Sample records for emulsion chamber experiments

  1. Large area emulsion chamber experiments for the Space Shuttle

    NASA Technical Reports Server (NTRS)

    Parnell, T. A.

    1985-01-01

    Emulsion-chamber experiments employing nuclear-track emulsions, etchable plastic detectors, metal plates, and X-ray films continue to demonstrate high productivity and potential in the study of cosmic-ray primaries and their interactions. Emulsions, with unsurpassed track-recording capability, provide an appropriate medium for the study of nucleus-nucleus interactions at high energy, which will likely produce observations of a phase change in nuclear matter. The many advantages of emulsion chambers (excellent multitrack recording capability, large geometry factor, low apparatus cost, simplicity of design and construction) are complemented by the major advantages of the Space Shuttle as an experiment carrier. A Shuttle experiment which could make a significant advance in both cosmic-ray primary and nucleus-nucleus interaction studies is described. Such an experiment would serve as a guide for use of emulsions during the Space Station era. Some practical factors that must be considered in planning a Shuttle exposure of emulsion chambers are discussed.

  2. Emulsion Chamber Technology Experiment (ECT)

    NASA Technical Reports Server (NTRS)

    Gregory, John C.; Takahashi, Yoshiyuki

    1996-01-01

    The experimental objective of Emulsion Chamber Technology (ECT) was to develop space-borne emulsion chamber technology so that cosmic rays and nuclear interactions may subsequently be studied at extremely high energies with long exposures in space. A small emulsion chamber was built and flown on flight STS-62 of the Columbia in March 1994. Analysis of the several hundred layers of radiation-sensitive material has shown excellent post-flight condition and suitability for cosmic ray physics analysis at much longer exposures. Temperature control of the stack was 20 +/-1 C throughout the active control period and no significant deviations of temperature or pressure in the chamber were observed over the entire mission operations period. The unfortunate flight attitude of the orbiter (almost 90% Earth viewing) prevented any significant number of heavy particles (Z greater than or equal to 10) reaching the stack and the inverted flow of shower particles in the calorimeter has not allowed evaluation of absolute primary cosmic ray-detection efficiency nor of the practical time limits of useful exposure of these calorimeters in space to the level of detail originally planned. Nevertheless, analysis of the observed backgrounds and quality of the processed photographic and plastic materials after the flight show that productive exposures of emulsion chambers are feasible in low orbit for periods of up to one year or longer. The engineering approaches taken in the ECT program were proven effective and no major environmental obstacles to prolonged flight are evident.

  3. The emulsion chamber technology experiment

    NASA Technical Reports Server (NTRS)

    Gregory, John C.

    1992-01-01

    Photographic emulsion has the unique property of recording tracks of ionizing particles with a spatial precision of 1 micron, while also being capable of deployment over detector areas of square meters or 10's of square meters. Detectors are passive, their cost to fly in Space is a fraction of that of instruments of similar collecting. A major problem in their continued use has been the labor intensiveness of data retrieval by traditional microscope methods. Two factors changing the acceptability of emulsion technology in space are the astronomical costs of flying large electronic instruments such as ionization calorimeters in Space, and the power and low cost of computers, a small revolution in the laboratory microscope data-taking. Our group at UAH made measurements of the high energy composition and spectra of cosmic rays. The Marshall group has also specialized in space radiation dosimetry. Ionization calorimeters, using alternating layers of lead and photographic emulsion, to measure particle energies up to 10(exp 15) eV were developed. Ten balloon flights were performed with them. No such calorimeters have ever flown in orbit. In the ECT program, a small emulsion chamber was developed and will be flown on the Shuttle mission OAST-2 to resolve the principal technological questions concerning space exposures. These include assessments of: (1) pre-flight and orbital exposure to background radiation, including both self-shielding and secondary particle generation; the practical limit to exposure time in space can then be determined; (2) dynamics of stack to optimize design for launch and weightlessness; and (3) thermal and vacuum constraints on emulsion performance. All these effects are cumulative and affect our ability to perform scientific measurements but cannot be adequately predicted by available methods.

  4. Hadrons registration in emulsion chamber with carbon block

    NASA Technical Reports Server (NTRS)

    Tomaszewski, A.; Wlodarczyk, Z.

    1985-01-01

    Nuclear-electro-magnetic cascade (NEC) in X-ray emulsion chambers with carbon block, which are usually used in the Pamir experiment, was Monte-Carlo simulated. Going over from optical density to Summary E sub gamma is discussed. The hole of NEC in the interpretation of energy spectra is analyzed.

  5. Search for anomalous C-jets in Chacaltaya emulsion chamber experiment

    NASA Technical Reports Server (NTRS)

    Kumano, H.

    1985-01-01

    Anomalous C-jets were measured in Chacaltaya emulsion chamber No.17. Measurement of 150 C-jets nuclear interactions occured in the target layer in the chamber itself with total visible energy greater than 5 TeV was completed. they are recorded in area of 11 sq m, corresponding to 17.1 sq m year exposure. Among them, seven events have no pinaught and two events are peculiar in that three showers out of four show abnormal cascade development. Two show remarkable characteristics indicating that they are coming from exotic interactions in the target layer. Illustrations of these events are presented and the thresholds of this type of event are discussed.

  6. The response of a scintillation counter below an emulsion chamber to heavy nucleus interactions in the chamber

    NASA Technical Reports Server (NTRS)

    Burnett, T. H.; Dake, S.; Derrickson, J. H.; Fountain, W. F.; Fuki, M.; Gregory, J. C.; Hayashi, T.; Hayashi, T.; Holynski, R.; Iwai, J.; hide

    1985-01-01

    In 1982 a hybrid electronic counter-emulsion chamber experiment was flown on a balloon to study heavy nucleus interactions in the 20 to approximately 100 GeV/AMU energy range. A gas Cerenkov counter, two solid Cerenkov counters, and a proportional counter hodoscope gave the primary energy, the primary charge and the trajectory of the particles, respectively. Using the trajectory information cosmic ray nuclei of Z 10 were found reliably and efficiently, and interaction characteristics of the Fe group nuclei were measured in the chamber. A plastic scintillator below the emulsion chamber responded to showers resulting from interactions in the chamber and to noninteracting nuclei. Data on the response of the counter have been compared with simulations of hadronic-electromagnetic cascades to derive the average neutral energy fraction released by the heavy interactions, and to predict the performance of this kind of counter at higher energies. For the interacting events of highest produced particles multiplicity comparison between various simulations and the shower counter signal have been made.

  7. Numerical analysis of electromagnetic cascades in emulsion chambers

    NASA Technical Reports Server (NTRS)

    Plyasheshnikov, A. V.; Vorobyev, K. V.

    1985-01-01

    A new calculational scheme of the Monte Carlo method assigned for the investigation of the development of high and extremely high energy electromagnetic cascades (EMC) in the matter was elaborated. The scheme was applied to the analysis of angular and radial distributions of EMC electrons in the atmosphere. By means of this scheme the EMC development in dense medium is investigated and some preliminary data are presented on the behavior of EMC in emulsion chambers. The results of more detailed theoretical analysis of the EMC development in emulsion chambers are discussed.

  8. Origin of Gamma-Ray Families Accompanied by Halos and Detected in Experiments with X-Ray Emulsion Chambers

    NASA Astrophysics Data System (ADS)

    Puchkov, V. S.; Pyatovsky, S. E.

    2018-03-01

    The phenomenon of gamma-ray families featuring halos that is observed in an experiment with x-ray emulsion chambers (XREC) in the Pamir experiment and in other XREC experiments is explained. The experimental properties of halos are analyzed via a comparison with the results of their simulation. It is shown that gamma-ray families featuring halos are predominantly produced (more than 96% of them) by protons and heliumnuclei. This makes it possible to employ the experimental properties of halos to estimate the fraction of protons and helium nuclei in the mass composition of primary cosmic radiation.

  9. Emulsion chamber observations and interpretation (HE 3)

    NASA Technical Reports Server (NTRS)

    Shibata, M.

    1986-01-01

    Experimental results from Emulsion Chamber (EC) experiments at mountain altitudes or at higher levels using flying carriers are examined. The physical interest in this field is concentrated on the strong interaction at the very high energy region exceeding the accelerator energy, also on the primary cosmic ray intensity and its chemical composition. Those experiments which observed cosmic ray secondaries gave information on high energy interaction characteristics through the analyses of secondary spectra, gamma-hadron families and C-jets (direct observation of the particle production occuring at the carbon target). Problems of scaling violation in fragmentation region, interaction cross section, transverse momentum of produced secondaries, and some peculiar features of exotic events are discussed.

  10. Observation of direct hadronic pairs in nucleus-nucleus collisions in JACEE emulsion chambers

    NASA Technical Reports Server (NTRS)

    Burnett, T. H.; Dake, S.; Fuki, M.; Gregory, J. C.; Hayashi, T.; Hayashi, T.; Holynski, R.; Iwai, J.; Jones, W. V.; Jurak, A.

    1985-01-01

    In a number of high energy ( or = 1 TeV/amu) nucleus-nucleus collisions observed in Japanese-American Cooperative Emulsion Experiment (JACEE) emulsion chambers, nonrandom spatial association of produced charged particles, mostly hadronic pairs, are observed. Similar narrow pairs are observed in about 100 events at much low energy (20 to 60 GeV/amu). Analysis shows that 30 to 50% of Pair abundances are understood by the Hambury-Brown-Twiss effect, and the remainder seems to require other explanations.

  11. Development of Large Area Emulsion Chamber Methods with a Super Conducting Magnet for Observation of Cosmic Ray Nuclei from 1 GeV to 1,000 TeV (Emulsion Techniques)

    NASA Technical Reports Server (NTRS)

    Takahashi, Yoshiyuki; Gregory, John C.; Tominaga, Taka; Dong, Bei Lei

    1997-01-01

    The research developed the fundamental techniques of the emulsion chamber methods that permit measurements of the composition and energy spectra of cosmic rays at energies ranging from 1 GeV/n to over 1,000 TeV/n. The research program consisted of exploring new principles and techniques in measuring very high energy cosmic nuclei with large-area emulsion chambers for high statistics experiments. These tasks have been accomplished and their use was essential in successful analysis of the balloon-borne emulsion chamber experiments up to 10(exp 14) eV. It also provided the fundamental technologies for designing large-area detectors that are aimed at measuring the composition at above 1015 eV region. The latter is now partially succeeded by a NASA Mission Concept, Advanced Cosmic Composition Experiments on the Space Station (ACCESS). The cosmic ray group at the University of Alabama in Huntsville has performed technological R & D as well as contributing to the Japanese-American-Emulsion-Chamber-Experiments (JACEE) Collaboration with the regular data analysis. While primary research support for other institutions' efforts in the JACEE experiments came from NSF and DOE, primary support for the University of Alabama in Huntsville was this contract. Supplemental tasks to standardize the data base and hardware upgrades (automatized microscope) had this institutions cooperation. Investigation of new techniques in this program consisted of development of a fast calorimetry, magnetic/scattering selection of high momentum tracks for a pairmeter, and high statistics momentum measurements for low energy nuclei (E < 1 TeV/n). The highest energy calorimetry and a pairmeter have been considered as strawman instruments by the GOAL (Galactic Origin and Acceleration Limit) proposal of the NASA Cosmic Ray Working Group for long- duration balloon flights. We accomplished the objectives of the GOAL program with three circumpolar, Antarctic JACEE balloon flights during 1992 - 1994.

  12. Unusual interactions above 100 TeV: A review of cosmic ray experiments with emulsion chambers

    NASA Technical Reports Server (NTRS)

    Yodh, D. B.

    1977-01-01

    A method is given for analyzing the space correlated collection of jets (gamma ray families) with energies greater than 100 TeV in Pb or Fe absorber sampled by photosensitive layers in an emulsion chamber. Events analyzed indicate large multiplicities of particles in the primary hadron-air interaction, and a marked absence of neutral pions.

  13. High energy primary electron spectrum observed by the emulsion chamber

    NASA Technical Reports Server (NTRS)

    Nishimura, J.; Fujii, M.; Aizu, H.; Hiraiwa, N.; Taira, T.; Kobayashi, T.; Niu, K.; Koss, T. A.; Lord, J. J.; Golden, R. L.

    1978-01-01

    A detector of the emulsion chamber type is used to measure the energy spectrum of cosmic-ray electrons. Two large emulsion chambers, each having an area of 40 by 50 sq cm, are exposed for about 25.5 hr at an average pressure altitude of 3.9 mbar. About 500 high-energy cascades (no less than about 600 GeV) are detected by searching for dark spots on the X-ray films. A power-law energy dependence formula is derived for the spectrum of primary cosmic-ray electrons in the energy region over 100 GeV. The results are in good agreement with the transition curves obtained previously by theoretical and Monte Carlo calculations.

  14. Energy spectrum of cosmic-ray iron nucleus observed with emulsion chamber

    NASA Technical Reports Server (NTRS)

    Sato, Y.; Shimada, E.; Ohta, I.; Tasaka, S.; Tanaka, S.; Sugimoto, H.; Taira, K.; Tateyama, N.

    1985-01-01

    Energy spectrum of cosmic-ray Fe-nucleus has been measured from 4 GeV per nucleon to beyond 100 GeV per nucleon. The data were obtained using emulsion chambers on a balloon from Sanriku, Japan. The energies were estimated by the opening angle method after calibrated using 1.88 GeV per nucleon Fe collisions. The spectrum of Fe is approximately E-2.5 in the range from 10 to 200 GeV per nucleon. This result is in good agreement with those of other experiments.

  15. Japan - USSR joint emulsion chamber experiment at Pamir

    NASA Technical Reports Server (NTRS)

    1985-01-01

    The results are presented for the systematic measurement of cosmic ray showers in the first carbon chamber of Japan-USSR joint experiment at Pamir Plateau. The intensity and the energy distribution of electromagnetic particles, of hadrons and of families are in good agreement with the results of other mountain experiment if the relative error in energy estimation is taken into consideration.

  16. Lateral distortions of electromagnetic cascades in emulsion chambers

    NASA Technical Reports Server (NTRS)

    Porter, L. G.; Levit, L. B.; Jones, W. V.; Huggett, R. W.; Barrowes, S. C.

    1975-01-01

    Electromagnetic cascades in a lead-emulsion chamber have been studied to determine the effect of air gaps on the upstream sides of the emulsions. Such air gaps cause a change in the form of the radial distribution of electron tracks, making cascades appear older and giving incorrect energy estimates. The number of tracks remaining within a radius r was found to vary as exp(-g/G), where g is the gap thickness. The characteristic gap thickness in mm is G = 3.04 + 1.30 ln (Err per GeV per sq mm) where E is the energy of the initiating gamma ray. Use of this relation provides a significant correction to cascade-energy estimates and allows one to calculate the effect of different gap thicknesses on the energy threshold for visual detection of cascades.

  17. Results on ultra-relativistic nucleus-nucleus interactions from balloon-borne emulsion chambers

    NASA Technical Reports Server (NTRS)

    Burnett, T. H.; Dake, S.; Derrickson, J. H.; Fountain, W.; Meegan, C. A.; Takahashi, Y.; Watts, J. W.; Fuki, M.; Gregory, J. C.; Hayashi, T.

    1985-01-01

    The results of balloon-borne emulsion-chamber measurements on high-energy cosmic-ray nuclei (Burnett et al., 1983) are summarized in tables and graphs and briefly characterized. Special consideration is given to seven nucleus-nucleus interaction events at energy in excess of 1 TeV/A with multiplicity greater than 400, and to Fe interactions (53 with CHO, 10 with emulsion, and 14 with Pb) at 20-60 GeV/A.

  18. JACEE long duration balloon flights. [Japanese-American Cooperative Emulsion Experiment

    NASA Technical Reports Server (NTRS)

    Burnett, T.; Iwai, J.; Dake, S.; Derrickson, J.; Fountain, W.; Fuki, M.; Gregory, J.; Hayashi, T.; Holynski, R.; Jones, W. V.

    1989-01-01

    JACEE balloon-borne emulsion chamber detectors are used to observe the spectra and interactions of cosmic ray protons and nuclei in the energy range 1 to 100A TeV. Experiments with long duration mid-latitude balloon flights and characteristics of the detector system that make it ideal for planned Antarctic balloon flights are discussed.

  19. Observation of super high energy big family with large scale Fe emulsion chambers

    NASA Technical Reports Server (NTRS)

    1985-01-01

    In order to get higher efficiencies for detecting hadrons and to make technical improvements in the chamber structure, the Mt. Kambala Emulsion Chamber Collaboration constructed 57 sq. m. of Fe chamber, with thickness 29 c.u.(1c.u.=17.6 mm Fe), using 300 tons of Fe plates and made the first exposure from Sept., 1982 to May, 1984. The photosensitive layers consist of X-ray films of Sakura N type, Fuji No. 100 type and Tianjin III type, some of them contain also emulsion plates of Fuji ET7B type. They are inserted between the Fe plates at 2 c.u., beginning at 5 c.u. from the chamber top. In a number of blocks, 3 mm spacings are provided at every 2 c.u. of Fe plates to facilitate the replacement of photosensitive layers, without disassembling the chamber. On the bottom of the chamber Fe plates of thickness 9 mm are placed in order to shield the chamber from the radioactivities of the ground. An event, numbered K2 58 of visible energy sigma E sub gamma = 7345 TeV was found in this exposure. No obvious halo is seen in the event and all the showers are clearly separated and easy to measure. A brief report of the preliminary results is presented.

  20. Hadron-rich cosmic-ray families detected by emulsion chamber.

    NASA Astrophysics Data System (ADS)

    Navia, C. E.; Augusto, C. R. K.; Pinto, F. A.; Shibuya, H.

    1995-11-01

    Observed hadrons in excess, larger-than-expected charged mesons (pions) in cosmic-ray families detected in emulsion chamber experiment at mountain altitude and produced in a cosmic-ray hadronic interaction not far from the PeV energy region are studied. The hypothesis that these extra hadrons could be a bundle of surviving nuclear fragments (nucleons) is verified through a simulation method using a hybrid code composed of a superposition model to describe the number of interacting nucleon-nucleon pairs in a nucleus-nucleus collision. Together with the UA5 algorithm to describe a nucleon-nucleon collision, atmospheric propagation structure is also considered. A comparison between simulation output with experimental data shows that the surviving-nuclear-fragments hypothesis is not enough to explain the non-pionic hadron excess, even if a heavy dominance composition in the primary flux is considered.

  1. On the characteristics of emulsion chamber family events produced in low heights

    NASA Technical Reports Server (NTRS)

    Jing, G.; Jing, C.; Zhu, Q.; Ding, L.

    1985-01-01

    The uncertainty of the primary cosmic ray composition at 10 to the 14th power -10 to the 16th power eV is well known to make the study of the nuclear interaction mechanism more difficult. Experimentally considering, if one can identify effectively the family events which are produced in low heights, then an event sample induced by primary protons might be able to be separated. It is undoubtedly very meaningful. In this paper an attempt is made to simulate the family events under the condition of mountain emulsion chamber experiments with a reasonable model. The aim is to search for the dependence of some experimentally observable quantities to the interaction height.

  2. A halo event created at 200 m above the Chacaltaya emulsion chamber

    NASA Technical Reports Server (NTRS)

    Amato, N. M.; Arata, N.; Maldonado, R. H. C.

    1985-01-01

    The results of analysis on a cosmic-ray induced nuclear event with the total visible energy approx. = 1300 TeV which is characterized by the central (halo) part of a strong energy concentration and the outer part of a large lateral spread are presented. The event (named as P06) was detected in the 18th two-storied emulsion chamber exposed at Chacaltaya by Brasil-Japan Collaboration. As the nuclear emulsion plates were inserted at every layer of the concerned blocks in the upper and the lower chambers together with RR- and N-type X-ray films, it is possible to study the details of the event. Some results on P06 have already been reported 1 based on the general measurement of opacity on N-type X-ray films: (1) the total energy of halo is approx. = 1000 TeV; (2) the shower transition reaches its maximum at approx. 16 cu; and (3) the radius of halo is 6.5 mm (at the level of 10 to the 6th power electrons/sq.cm.). The results in more details will be described.

  3. OBSERVATIONS OF HIGH-ENERGY COSMIC-RAY ELECTRONS FROM 30 GeV TO 3 TeV WITH EMULSION CHAMBERS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kobayashi, T.; Komori, Y.; Yoshida, K.

    2012-12-01

    We have performed a series of cosmic-ray electron observations using balloon-borne emulsion chambers since 1968. While we previously reported the results from subsets of the exposures, the final results of the total exposures up to 2001 are presented here. Our successive experiments have yielded a total exposure of 8.19 m{sup 2} sr day at altitudes of 4.0-9.4 g cm{sup -2}. The performance of the emulsion chambers was examined by accelerator beam tests and Monte Carlo simulations, and the on-board calibrations were carried out by using the flight data. In this work, we present the cosmic-ray electron spectrum in the energymore » range from 30 GeV to 3 TeV at the top of the atmosphere, which is well represented by a power-law function with an index of -3.28 {+-} 0.10. The observed data can also be interpreted in terms of diffusive propagation models. The evidence of cosmic-ray electrons up to 3 TeV suggests the existence of cosmic-ray electron sources at distances within {approx}1 kpc and times within {approx}1 Multiplication-Sign 10{sup 5} yr ago.« less

  4. Performance of automatic scanning microscope for nuclear emulsion experiments

    NASA Astrophysics Data System (ADS)

    Güler, A. Murat; Altınok, Özgür

    2015-12-01

    The impressive improvements in scanning technology and methods let nuclear emulsion to be used as a target in recent large experiments. We report the performance of an automatic scanning microscope for nuclear emulsion experiments. After successful calibration and alignment of the system, we have reached 99% tracking efficiency for the minimum ionizing tracks that penetrating through the emulsions films. The automatic scanning system is successfully used for the scanning of emulsion films in the OPERA experiment and plan to use for the next generation of nuclear emulsion experiments.

  5. Performance of automatic scanning microscope for nuclear emulsion experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Güler, A. Murat, E-mail: mguler@newton.physics.metu.edu.tr; Altınok, Özgür; Tufts University, Medford, MA 02155

    The impressive improvements in scanning technology and methods let nuclear emulsion to be used as a target in recent large experiments. We report the performance of an automatic scanning microscope for nuclear emulsion experiments. After successful calibration and alignment of the system, we have reached 99% tracking efficiency for the minimum ionizing tracks that penetrating through the emulsions films. The automatic scanning system is successfully used for the scanning of emulsion films in the OPERA experiment and plan to use for the next generation of nuclear emulsion experiments.

  6. High energy electrons beyond 100 GEV observed by emulsion chamber

    NASA Technical Reports Server (NTRS)

    Nishimura, J.; Fujii, M.; Yoshida, A.; Taira, T.; Aizu, H.; Nomura, Y.; Kobayashi, T.; Kazuno, M.; Nishio, A.; Golden, R. L.

    1986-01-01

    Much efforts have been expended to observe the spectrum of electrons in the high energy region with large area emulsion chambers exposed at balloon altitudes, and now 15 electrons beyond 1 TeV have been observed. The observed integral flux at 1 TeV is (3.24 + or - 0.87)x10(-5)/sq m sec sr. The statistics of the data around a few hundred GeV are also improving by using new shower detecting films of high sensitivity. The astrophysical significance of the observed spectrum are discussed for the propagation of electrons based on the leaky box and the nested leaky box model.

  7. Electron Identification and Energy Measurement with Emulsion Cloud Chamber

    NASA Astrophysics Data System (ADS)

    Kitagawa, Nobuko; Komatsu, Masahiro

    Charged particles undergo the Multiple Coulomb Scattering (MCS) when passing through a material. Their momentum can be estimated from the distribution of the scattering angle directly. Angle of electrons (or positrons) largely changes because of the energy loss in bremsstrahlung, and they are distinguished from other charged particles by making use of its feature. Electron energy is generally measured by counting of electromagnetic shower (e.m. shower) tracks in Emulsion Cloud Chamber (ECC), so enough absorber material is needed to develop the shower. In the range from sub-GeV to a few GeV, electrons don't develop noticeable showers. In order to estimate the energy of electrons in this range with a limited material, we established the new method which is based on the scattering angle considering the energy loss in bremsstrahlung. From the Monte Carlo simulation (MC) data, which is generated by electron beam (0.5 GeV, 1 GeV, 2 GeV) exposure to ECC, we derived the correlation between energy and scattering angle in each emulsion layer. We fixed the function and some parameters which 1 GeV MC sample would return 1 GeV as the center value, and then applied to 0.5 GeV and 2 GeV sample and confirmed the energy resolution about 50% within two radiation length.

  8. Spectra, composition, and interactions of nuclei with magnet interaction chambers

    NASA Astrophysics Data System (ADS)

    Parnell, T. A.; Burnett, T. H.; Cherry, M. C.; Dake, S.; Derrickson, J. H.; Fountain, W. F.; Fuki, M.; Gregory, J. C.; Hayashi, T.; Holynski, R.; Iwai, J.; Jurak, A.; Lord, J. J.; Miyamura, O.; Niwa, K.; Oda, H.; Ogata, T.; Roberts, F. E.; Shibata, T.; Strausz, S. C.; Tabuki, T.; Taira, T.; Takahashi, Y.; Tominaga, T.; Watts, J. W.; Wefel, J. P.; Wilczynska, B.; Wilczynski, H.; Wilkes, R. J.; Wolter, W.; Wosiek, T.; Yamamoto, A.; Yokomi, H.; Yuda, T.

    1990-03-01

    Emulsion chambers will be flown in the Astromag Facility to measure the cosmic ray composition and spectra to 10 exp 15 eV total energy and to definitively study the characteristics of nucleus-nucleus interactions above 10 exp 12 eV/n. Two configurations of emulsion chambers will be flown in the SCIN/MAGIC experiment. One chamber has an emulsion target and a calorimeter similar to those recently flown on balloons for composition and spectra measurements. The other has an identical calorimeter and a low-density target section optimized for performing rigidity measurements on charged particles produced in interactions. The transverse momenta of charged and neutral mesons, direct hadronic pairs from resonance decays and interference effects, and possible charge clustering in high-density states of matter will be studied.

  9. Effect of electron divergence in air gaps on the measurement of the energy of cascades in emulsion chambers

    NASA Technical Reports Server (NTRS)

    Apanasenko, A. V.; Baradzey, L. T.; Kanevskaya, Y. A.; Smorodin, Y. A.

    1975-01-01

    The effect of an increase in electron density in the vicinity of the cascade axis caused by an avalanche passing through the gap between lead filters of the emulsion chamber was investigated experimentally. Optical densities were measured in three X-ray films spaced at 400, 800 and 1200 micrometer from the filter surface having a thickness of 6 cascade units. The optical densities of blackening spots caused by electron photon cascades of 1 to 2, 2 to 7 and greater than 7 BeV energies were measured. The results prove the presence of a gap between the filter and the nuclear emulsion which results in the underestimation of energy by several tenths of a percent.

  10. OPERA experiment and its releted emulsion techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ariga, Akitaka

    2008-02-21

    The OPERA experiment is designed to clarify neutrino oscillation by detecting appearance of {nu}{sub {tau}} in pure {nu}{sub {mu}} beam through a long baseline method (CNGS beam from cern to the Gran Sasso laboratory). The key technique is the use of emulsion films and their scanning. We developed a new high speed scanning system with speed of 50 cm{sup 2}/h and it was successfully demonstrated in 2006 CNGS commissioning. The new scanning system is not only meant for the OPERA experiment, but it has large potential of applications. For example, measurement of {nu}{sub e} with strong separation power against {pi}{supmore » 0}. Or a compact emulsion spectrometer for future neutrino experiments.« less

  11. Japanese-American Cooperative Emulsion Experiment /JACEE/. [high energy cosmic ray studies

    NASA Technical Reports Server (NTRS)

    Huggett, R. W.; Hunter, S. D.; Jones, W. V.; Takahashi, Y.; Ogata, T.; Saito, T.; Holynski, R.; Jurak, A.; Wolter, W.; Parnell, T. A.

    1981-01-01

    The instrumentation and results of long duration balloon flights carried out jointly by U.S. and Japan researchers to examine high energy cosmic rays are reported. Basic detector geometries are 2.5 sq m sr with operation at altitudes with 3-4 g/sq cm pressure, with observations thus far of over 100 hr. Energies from 2-100 TeV are recorded for nucleus-nucleus and hadron-nucleus interactions, and searches are made for new particle or interactions. The detector is an emulsion chamber which comprises doubly-coated nuclear emulsions on 800 micron thick methacryl substrates, X-ray films, etchable detectors, low density spacers, and lead sheets. Segmentation of the instrument into a primary charge module, a target section, a spacer section, and a lead-emulsion calorimeter allows accurate charge measurement for primary nuclei, reliable energy resolution, and a large geometrical factor for collecting high energy events. A primary Ca nucleus of 300 TeV has been observed.

  12. Nuclear Emulsion - Skylab Experiment S009

    NASA Technical Reports Server (NTRS)

    1970-01-01

    This photograph shows Skylab's Nuclear Emulsion experiment, a Skylab science facility that was mounted inside the Multiple Docking Adapter used to record the relative abundance of primary, high-energy heavy nuclei outside the Earth's atmosphere. The Marshall Space Flight Center had program management responsibility for the development of Skylab hardware and experiments.

  13. Results of investigation of muon fluxes of superhigh energy cosmic rays with X-ray emulsion chambers

    NASA Technical Reports Server (NTRS)

    Ivanenko, I. P.; Ivanova, M. A.; Kuzmichev, L. A.; Ilyina, N. P.; Mandritskaya, K. V.; Osipova, E. A.; Rakobolskaya, I. V.; Zatsepin, G. T.

    1985-01-01

    The overall data from the investigation of the cosmic ray muon flux in the range of zenith angles (0-90) deg within the energy range (3.5 to 5.0) TeV is presented. The exposure of large X-ray emulsion chambers underground was 1200 tons. year. The data were processe using the method which was applied in the experiment Pamir and differred from the earlier applied one. The obtained value of a slope power index of the differential energy spectrum of the global muon flux is =3.7 that corresponds to the slope of the pion generation differential spectrum, gamma sub PI = 2.75 + or - .04. The analysis of the muon zenith-angular distribution showed that the contribution of rapid generation muons in the total muon flux agree the best with the value .2% and less with .7% at a 90% reliability level.

  14. Rheology and microstructure of magmatic emulsions - Theory and experiments

    NASA Technical Reports Server (NTRS)

    Stein, Daniel J.; Spera, Frank J.

    1992-01-01

    The rheological properties of a dilute mixture of melt plus vapor bubbles, referred to as emulsion, are investigated theoretically and in rheometric experiments on dilute viscous germanium dioxide emulsions at temperatures between 1100 and 1175 C and at 100 kPa pressure in a rotating rod rheometer at shear rates between 0.05/s and 7/s. The results indicate that the emulsions may be described by a power-law constitutive relation when observations cover a sufficient range of shear rates to resolve nonlinear flow.

  15. Proton Linear Energy Transfer measurement using Emulsion Cloud Chamber

    NASA Astrophysics Data System (ADS)

    Shin, Jae-ik; Park, Seyjoon; Kim, Haksoo; Kim, Meyoung; Jeong, Chiyoung; Cho, Sungkoo; Lim, Young Kyung; Shin, Dongho; Lee, Se Byeong; Morishima, Kunihiro; Naganawa, Naotaka; Sato, Osamu; Kwak, Jungwon; Kim, Sung Hyun; Cho, Jung Sook; Ahn, Jung Keun; Kim, Ji Hyun; Yoon, Chun Sil; Incerti, Sebastien

    2015-04-01

    This study proposes to determine the correlation between the Volume Pulse Height (VPH) measured by nuclear emulsion and Linear Energy Transfer (LET) calculated by Monte Carlo simulation based on Geant4. The nuclear emulsion was irradiated at the National Cancer Center (NCC) with a therapeutic proton beam and was installed at 5.2 m distance from the beam nozzle structure with various thicknesses of water-equivalent material (PMMA) blocks to position with specific positions along the Bragg curve. After the beam exposure and development of the emulsion films, the films were scanned by S-UTS developed in Nagoya University. The proton tracks in the scanned films were reconstructed using the 'NETSCAN' method. Through this procedure, the VPH can be derived from each reconstructed proton track at each position along the Bragg curve. The VPH value indicates the magnitude of energy loss in proton track. By comparison with the simulation results obtained using Geant4, we found the correlation between the LET calculated by Monte Carlo simulation and the VPH measured by the nuclear emulsion.

  16. Recent Emulsion Technologies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ariga, A.

    2011-10-06

    Emulsion technologies are very much developed in the last decade and still developing in both the emulsion gel and the data taking. Emulsion detectors are suitable for the neutrino experiments because they can distinguish all 3 flavors of neutrino. The OPERA experiment, a recent pillar in the emulsion experiments aiming at the first observation of the neutrino oscillation in CNGS beam in appearance mode, is running, showing the good capability to separate 3 flavor neutrino interactions. In this poster, the recent developments and prospects of the emulsions for the next generation experiments are reported.

  17. Development of High Sensitivity Nuclear Emulsion and Fine Grained Emulsion

    NASA Astrophysics Data System (ADS)

    Kawahara, H.; Asada, T.; Naka, T.; Naganawa, N.; Kuwabara, K.; Nakamura, M.

    2014-08-01

    Nuclear emulsion is a particle detector having high spacial resolution and angular resolution. It became useful for large statistics experiment thanks to the development of automatic scanning system. In 2010, a facility for emulsion production was introduced and R&D of nuclear emulsion began at Nagoya university. In this paper, we present results of development of the high sensitivity emulsion and fine grained emulsion for dark matter search experiment. Improvement of sensitivity is achieved by raising density of silver halide crystals and doping well-adjusted amount of chemicals. Production of fine grained emulsion was difficult because of unexpected crystal condensation. By mixing polyvinyl alcohol (PVA) to gelatin as a binder, we succeeded in making a stable fine grained emulsion.

  18. Composition and energy spectra of cosmic ray nuclei above 500 GeV/nucleon from the JACEE emulsion chambers

    NASA Technical Reports Server (NTRS)

    Burnett, T. H.; Dake, S.; Derrickson, J. H.; Fountain, W. F.; Fuki, M.; Gregory, J. C.; Hayashi, T.; Holynski, R.; Iwai, J.; Jones, W. V.

    1985-01-01

    The composition and energy spectra of charge groups (C - 0), (Ne - S), and (Z approximately 17) above 500 GeV/nucleon from the experiments of JACEE series balloonborne emulsion chambers are reported. Studies of cosmic ray elemental composition at higher energies provide information on propagation through interstellar space, acceleration mechanisms, and their sources. One of the present interests is the elemental composition at energies above 100 GeV/nucleon. Statistically sufficient data in this energy region can be decisive in judgment of propagation models from the ratios of SECONDARY/PRIMARY and source spectra (acceleration mechanism), as well as speculative contributions of different sources from the ratios of PRIMARY/PRIMARY. At much higher energies, i.e., around 10 to the 15th power eV, data from direct observation will give hints on the knee problem, as to whether they favor an escape effect possibly governed by magnetic rigidity above 10 to the 16th power eV.

  19. Skylab experiment performance evaluation manual. Appendix K: Experiment S009 nuclear emulsion (MSFC)

    NASA Technical Reports Server (NTRS)

    Meyers, J. E.

    1972-01-01

    A series of analyses are presented for Experiment S009, nuclear emulsion (MSFC), to be used for evaluating the performance of the Skylab corollary experiments under preflight, inflight, and postflight conditions. Experiment contingency plan workaround procedure and malfunction analyses are included in order to assist in making the experiment operationally successful.

  20. Spectra, composition, and interactions of nuclei above 10 TeV using magnet-interferometric chambers

    NASA Technical Reports Server (NTRS)

    Gregory, J. C.; Takahashi, Y.

    1991-01-01

    Although the SCIN-MAGIC experiment has, like all ASTROMAG and most other Attached Payload experiments, been 'deselected' from Space Station, it is expected that ultimately such emulsion chambers will be flown on the Station. Some brief studies are described which were made in support of the design efforts for such a program being conducted at NASA Marshall.

  1. Comment to "The pharmacopeial evolution of Intralipid injectable emulsion in plastic containers: from a coarse to a fine emulsion".

    PubMed

    Ellborg, Anders; Ferreira, Denise; Mohammadnejad, Javad; Wärnheim, Torbjörn

    2010-06-15

    The droplet size distribution of 50 batches of multi-chamber bags containing the parenteral nutrition emulsions Intralipid (Kabiven and Kabiven Peripheral) or Structolipid (StructoKabiven and StructoKabiven Peripheral), respectively, has been investigated. The results show that the non-compounded lipid emulsions analysed are in compliance with the United States Pharmacopeia (USP) chapter 729, Method II limit for the droplet size distribution, PFAT(5)<0.05%. Copyright 2010 Elsevier B.V. All rights reserved.

  2. Analysis of relativistic nucleus-nucleus interactions in emulsion chambers

    NASA Technical Reports Server (NTRS)

    Mcguire, Stephen C.

    1987-01-01

    The development of a computer-assisted method is reported for the determination of the angular distribution data for secondary particles produced in relativistic nucleus-nucleus collisions in emulsions. The method is applied to emulsion detectors that were placed in a constant, uniform magnetic field and exposed to beams of 60 and 200 GeV/nucleon O-16 ions at the Super Proton Synchrotron (SPS) of the European Center for Nuclear Research (CERN). Linear regression analysis is used to determine the azimuthal and polar emission angles from measured track coordinate data. The software, written in BASIC, is designed to be machine independent, and adaptable to an automated system for acquiring the track coordinates. The fitting algorithm is deterministic, and takes into account the experimental uncertainty in the measured points. Further, a procedure for using the track data to estimate the linear momenta of the charged particles observed in the detectors is included.

  3. Experiment S009: Nuclear Emulsion

    NASA Technical Reports Server (NTRS)

    Odell, F. W.; Shapiro, M. M.; Silberberg, R.; Stiller, B.; Tsao, C. H.; Durgaprasad, N.; Fichtel, C. E.; Guss, D. E.; Reames, D. V.

    1971-01-01

    The first exposure on a spacecraft of a nuclear emulsion apparatus designed to collect 1000 high quality tracks of heavy nuclei under a negligible thickness of matter (0.07 g/sq cm) is described. The cosmic ray detector consisted of a stack of nuclear emulsions that were designed to register at least 400 heavy nuclei tracks for each 10 hours of useful exposure. The spacecraft had to be oriented in a heads-up attitude during the 10-hour period to eliminate atmospheric albedo particles. The results are as follows: (1) a definite odd-even effect, with low abundances for elements of atomic number 7, 9, and 11; (2) a ratio O/C approximately 0.9; (3) Ne/C, Mg/C, and Si/C ratios between 0.2 and 0.3; (4) an abundance gap in the region 15 less than or equal to Z less than or equal to 19; and (5) a ratio (20 less than or equal to Z less than or equal to 28)/C 0.2, with a large concentration at Z = 26. These results are indicative that successful exposures of nuclear emulsions were obtained on the Gemini 11 mission.

  4. Remarkable events from X ray emulsion chambers and multiple production at LHC energy

    NASA Astrophysics Data System (ADS)

    Capdevielle, J. N.; Talai, M. C.; Attallah, R.

    The CORSIKA programme and specific Monte Carlo collision generators are employed in the interpretation of X-ray emulsion chambers data on super gamma ray families at mountain altitude (Chacaltaya, Kanbala, Pamir...) and in the stratosphere (Concorde, balloons). The consequences of measurement conditions(energy thresholds levels...) are detailed to extract common features for the neutral and charged secondaries. The vertex is approached by invariant mass method, geometry, pseudo rapidity distributions , and factors. Sorting the gamma's coupled in the maximum of invariant histograms, we evaluate the multiplicity , , inelasticity behavior up to LHC energy. Attention is given to the penetration power of EAS which levels off one energy decade around the knee and observations related with the fragmentation region (high energy hadron and gamma spectra in EAS, intensity of families with halo's). Hints of new physics are considered around the intriguing alignments registrated in the energy band between colliders and LHC. Several events (stratosphere and mountain) exhibit coplanar emission at similar visible energy, suggesting the valence diquark breaking. Such violent breaking suppressing the leading cluster recombination might come from the rupture of the string under very high tension between the two partners of the diquark.

  5. First demonstration of an emulsion multi-stage shifter for accelerator neutrino experiments in J-PARC T60

    NASA Astrophysics Data System (ADS)

    Yamada, K.; Aoki, S.; Cao, S.; Chikuma, N.; Fukuda, T.; Fukuzawa, Y.; Gonin, M.; Hayashino, T.; Hayato, Y.; Hiramoto, A.; Hosomi, F.; Inoh, T.; Iori, S.; Ishiguro, K.; Kawahara, H.; Kim, H.; Kitagawa, N.; Koga, T.; Komatani, R.; Komatsu, M.; Matsushita, A.; Mikado, S.; Minamino, A.; Mizusawa, H.; Matsumoto, T.; Matsuo, T.; Morimoto, Y.; Morishima, K.; Morishita, M.; Naganawa, N.; Nakamura, K.; Nakamura, M.; Nakamura, Y.; Nakano, T.; Nakatsuka, Y.; Nakaya, T.; Nishio, A.; Ogawa, S.; Oshima, H.; Quilain, B.; Rokujo, H.; Sato, O.; Seiya, Y.; Shibuya, H.; Shiraishi, T.; Suzuki, Y.; Tada, S.; Takahashi, S.; Yokoyama, M.; Yoshimoto, M.

    2017-06-01

    We describe the first ever implementation of a clock-based, multi-stage emulsion shifter in an accelerator neutrino experiment. The system was installed in the neutrino monitoring building at the Japan Proton Accelerator Research Complex as part of a test experiment, T60, and stable operation was maintained for a total of 126.6 days. By applying time information to emulsion films, various results were obtained. Time resolutions of 5.3-14.7 s were evaluated in an operation spanning 46.9 days (yielding division numbers of 1.4-3.8×105). By using timing and spatial information, reconstruction of coincident events consisting of high-multiplicity and vertex-contained events, including neutrino events, was performed. Emulsion events were matched to events observed by INGRID, one of the on-axis near detectors of the T2K experiment, with high reliability (98.5%), and hybrid analysis of the emulsion and INGRID events was established by means of the multi-stage shifter. The results demonstrate that the multi-stage shifter can feasibly be used in neutrino experiments.

  6. Fluctuation analysis of relativistic nucleus-nucleus collisions in emulsion chambers

    NASA Technical Reports Server (NTRS)

    Mcguire, Stephen C.

    1988-01-01

    An analytical technique was developed for identifying enhanced fluctuations in the angular distributions of secondary particles produced from relativistic nucleus-nucleus collisions. The method is applied under the assumption that the masses of the produced particles are small compared to their linear momenta. The importance of particles rests in the fact that enhanced fluctuations in the rapidity distributions is considered to be an experimental signal for the creation of the quark-gluon-plasma (QGP), a state of nuclear matter predicted from the quantum chromodynamics theory (QCD). In the approach, Monte Carlo simulations are employed that make use of a portable random member generator that allow the calculations to be performed on a desk-top computer. The method is illustrated with data taken from high altitude emulsion exposures and is immediately applicable to similar data from accelerator-based emulsion exposures.

  7. An instrument employing electronic counters and an emulsion chamber for studying heavy cosmic ray interactions (JACEE-3)

    NASA Technical Reports Server (NTRS)

    Austin, R. W.; Meegan, C. A.; Parnell, T. A.; Selig, W. J.; Watts, J. W.; Burnett, T. H.; Iwai, J.; Lord, J. J.; Strauscz, S.; Wilkes, R. J.; hide

    1983-01-01

    A JACEE-3 instrument was flown on a balloon in June 1982 for 6.1 sq m sr hr exposure at an average atmospheric depth of 5 gm/sq cm in order to study the cosmic ray spectra, composition, and interactions above 1 TeV. The nucleus-nucleus interactions were studied above 20 GeV/amu from z = 6 to z = 26. The electronic counters contained gas Cerenkov structures with a 1.0-cm thick lead glass and a 1.27-cm thick Teflon radiator. A comparison to the instrument prototype is made. Based on the electronic counter event data, the finding efficiency of the hodoscope is noted to be near 100 percent for z greater than or equal to 22. A comparison is made between the hodoscope-predicted position and track found at P3 in an emulsion chamber.

  8. Dynamic consideration of smog chamber experiments

    NASA Astrophysics Data System (ADS)

    Chuang, Wayne K.; Donahue, Neil M.

    2017-08-01

    Recent studies of the α-pinene + ozone reaction that address particle nucleation show relatively high molar yields of highly oxidized multifunctional organic molecules with very low saturation concentrations that can form and grow new particles on their own. However, numerous smog-chamber experiments addressing secondary organic aerosol (SOA) mass yields, interpreted via equilibrium partitioning theory, suggest that the vast majority of SOA from α-pinene is semivolatile. We explore this paradox by employing a dynamic volatility basis set (VBS) model that reproduces the new-particle growth rates observed in the CLOUD experiment at CERN and then modeling SOA mass yield experiments conducted at Carnegie Mellon University (CMU). We find that the base-case simulations do overpredict observed SOA mass but by much less than an equilibrium analysis would suggest; this is because delayed condensation of vapors suppresses the apparent mass yields early in the chamber experiments. We further find that a second VBS model featuring substantial oligomerization of semivolatile monomers can match the CLOUD growth rates with substantially lower SOA mass yields; this is because the lighter monomers have a higher velocity and thus a higher condensation rate for a given mass concentration. The oligomerization simulations are a closer match to the CMU experiments than the base-case simulations, though they overpredict the observations somewhat. However, we also find that if the chemical conditions in CLOUD and the CMU chamber were identical, substantial nucleation would have occurred in the CMU experiments when in fact none occurred. This suggests that the chemical mechanisms differed in the two experiments, perhaps because the high oxidation rates in the SOA formation experiments led to rapid termination of peroxy radical chemistry.

  9. Super-family P2 C-96-125 observed by Japan-URSS Joint Emulsion Chamber Experiment

    NASA Technical Reports Server (NTRS)

    Shibuya, E. H.

    1985-01-01

    A detailed description of the event detected in the second chamber of Japan-URSS Collaboration is presented. A preliminary description was already published and from that time a careful microscopic scanning was carried out.

  10. Lateral distribution of high energy hadrons and gamma ray in air shower cores observed with emulsion chambers

    NASA Technical Reports Server (NTRS)

    Matano, T.; Machida, M.; Kawasumi, N.; Tsushima, I.; Honda, K.; Hashimoto, K.; Navia, C. E.; Matinic, N.; Aquirre, C.

    1985-01-01

    A high energy event of a bundle of electrons, gamma rays and hadronic gamma rays in an air shower core were observed. The bundles were detected with an emulsion chamber with thickness of 15 cm lead. This air shower is estimated to be initiated with a proton with energy around 10 to the 17th power to 10 to the 18th power eV at an altitude of around 100 gmc/2. Lateral distributions of the electromagnetic component with energy above 2 TeV and also the hadronic component of energy above 6 TeV of this air shower core were determined. Particles in the bundle are produced with process of the development of the nuclear cascade, the primary energy of each interaction in the cascade which produces these particles is unknown. To know the primary energy dependence of transverse momentum, the average products of energy and distance for various average energies of secondary particles are studied.

  11. Emulsion Droplet Combustion in Microgravity: Water/Heptane Emulsions

    NASA Technical Reports Server (NTRS)

    Avedisian, C. Thomas

    1997-01-01

    This presentation reviews a series of experiments to further examine parametric effects on sooting processes of droplet flames in microgravity. The particular focus is on a fuel droplet emulsified with water, specifically emulsions of n-heptane as the fuel-phase and water as the dispersed phase. Water was selected as the additive because of its anticipated effect on soot formation, and the heptane fuel phase was chosen to theoretically reduce the likelihood of microexplosions because its boiling point is nearly the same as that of water: 100 C for water and 98 C for heptane. The water content was varied while the initial droplet diameter was kept within a small range. The experiments were carried out in microgravity to reduce the effects of buoyancy and to promote spherical symmetry in the burning process. Spherically symmetric droplet burning is a convenient starting point for analysis, but experimental data are difficult to obtain for this situation as evidenced by the fact that no quantitative data have been reported on unsupported emulsion droplet combustion in a convection-free environment. The present study improves upon past work carried out on emulsion droplet combustion in microgravity which employed emulsion droplets suspended from a fiber. The fiber can be instrusive to the emulsion droplet burning process as it can promote coalescence of the dispersed water phase and heterogeneous nucleation on the fiber. Prior work has shown that the presence of water in liquid hydrocarbons can have both beneficial and detrimental effects on the combustion process. Water is known to reduce soot formation and radiation heat transfer to combustor walls Gollahalli (1979) reduce flame temperatures and thereby NOx emissions, and encourage secondary droplet atomization or microexplosion. Water also tends to retard ignition and and promote early extinction. The former effect restricted the range of water volume fractions as discussed below.

  12. How does oil type determine emulsion characteristics in concentrated Na-caseinate emulsions?

    PubMed

    Tan, Hui Lin; McGrath, Kathryn M

    2013-08-01

    Macroscopic properties and ensemble average diffusion of concentrated (dispersed phase 50-60 wt%) Na-caseinate-stabilised emulsions for three different oils (soybean oil, palm olein and tetradecane) were explored. On a volume fraction basis, pulsed gradient stimulated echo (PGSTE)-NMR data show that droplet dynamics for all three systems are similar within a region of the emulsion morphology diagram. The exact limits of the emulsion space depend however on which oil is considered. The reduced solubility of tetradecane in water, and Na-caseinate in tetradecane, result in the stabilisation of flocs during formulation. Floc formation is not observed when soybean oil or palm olein is used under identical emulsion formulation conditions. Linear rheology experiments provide indirect evidence that the local structure and the properties of the thin film interfacial domain of tetradecane emulsions vary from those of soybean oil and palm olein emulsions. Collectively these data indicate that protein/oil interactions within a system dominate over specific oil droplet structure and size distribution, which are similar in the three systems. Copyright © 2013 Elsevier Inc. All rights reserved.

  13. Drift chamber readout system of the DIRAC experiment

    NASA Astrophysics Data System (ADS)

    Afanasyev, L.; Karpukhin, V.

    2002-10-01

    A drift chamber readout system of the DIRAC experiment at CERN is presented. The system is intended to read out the signals from planar chambers operating in a high current mode. The sense wire signals are digitized in the 16-channel time-to-digital converter boards which are plugged in the signal plane connectors. This design results in a reduced number of modules, a small number of cables and high noise immunity. The system has been successfully operating in the experiment since 1999.

  14. Long-term characteristics of nuclear emulsion

    NASA Astrophysics Data System (ADS)

    Naganawa, N.; Kuwabara, K.

    2010-02-01

    Long-term characteristics of the nuclear emulsion so called ``OPERA film'' used in the neutrino oscillation experiment, OPERA, has been studied for 8 years since its production or refreshing after it. In the results, it turned out to be excellent in sensitivity, amount of random noise, and refreshing characteristics. The retention capacity of latent image of tracks was also studied. The result will open the way to the recycling of 7,000,000 emulsion films which will remain not developed after 5 years of OPERA's run, and other long-term experiments with emulsion.

  15. Analysis of Multiallelic CNVs by Emulsion Haplotype Fusion PCR.

    PubMed

    Tyson, Jess; Armour, John A L

    2017-01-01

    Emulsion-fusion PCR recovers long-range sequence information by combining products in cis from individual genomic DNA molecules. Emulsion droplets act as very numerous small reaction chambers in which different PCR products from a single genomic DNA molecule are condensed into short joint products, to unite sequences in cis from widely separated genomic sites. These products can therefore provide information about the arrangement of sequences and variants at a larger scale than established long-read sequencing methods. The method has been useful in defining the phase of variants in haplotypes, the typing of inversions, and determining the configuration of sequence variants in multiallelic CNVs. In this description we outline the rationale for the application of emulsion-fusion PCR methods to the analysis of multiallelic CNVs, and give practical details for our own implementation of the method in that context.

  16. Automated Track Recognition and Event Reconstruction in Nuclear Emulsion

    NASA Technical Reports Server (NTRS)

    Deines-Jones, P.; Cherry, M. L.; Dabrowska, A.; Holynski, R.; Jones, W. V.; Kolganova, E. D.; Kudzia, D.; Nilsen, B. S.; Olszewski, A.; Pozharova, E. A.; hide

    1998-01-01

    The major advantages of nuclear emulsion for detecting charged particles are its submicron position resolution and sensitivity to minimum ionizing particles. These must be balanced, however, against the difficult manual microscope measurement by skilled observers required for the analysis. We have developed an automated system to acquire and analyze the microscope images from emulsion chambers. Each emulsion plate is analyzed independently, allowing coincidence techniques to be used in order to reject back- ground and estimate error rates. The system has been used to analyze a sample of high-multiplicity Pb-Pb interactions (charged particle multiplicities approx. 1100) produced by the 158 GeV/c per nucleon Pb-208 beam at CERN. Automatically reconstructed track lists agree with our best manual measurements to 3%. We describe the image analysis and track reconstruction techniques, and discuss the measurement and reconstruction uncertainties.

  17. CHAMBER - IONIZATION - EXPERIMENT - GEMINI-TITAN (GT)-6 EQUIPMENT - CAPE

    NASA Image and Video Library

    1965-12-10

    S65-61788 (For release: 11 Dec. 1965) --- Close-up view of equipment which will be used in the D-8 (Radiation in Spacecraft) experiment on the National Aeronautics and Space Administration's Gemini-6 spaceflight. This experiment is designed to make highly accurate measurements of the absorbed dose rate of radiation which penetrates the Gemini spacecraft, and determine the spatial distribution of dose levels inside the spacecraft particularly in the crew area. This is experimentation of the U.S. Air Force Weapons Laboratory, Kirtland AFB, N.M. LOWER LEFT: The second ionization chamber, this one is unshielded. This chamber can be removed from its bracket by the astronaut who will periodically take measurements at various locations in the spacecraft. Nearby is Passive Dosimeter Unit which is one of five small packets each containing a standard pocket ionization chamber, gamma electron sensitive film, glass needles and thermo luminescent dosimeters which are mounted at various locations in the cabin. UPPER LEFT: Photo illustrates how ionization chamber can be removed from bracket for measurements. LOWER RIGHT: Shield of bulb-shaped chamber will be removed (shown in photo) as the spacecraft passes through the South Atlantic anomaly, the area where the radiation belt dips closest to Earth's surface. UPPER RIGHT: Dome-shaped object is shield covering one of two Tissue Equivalent Ionization Chambers (sensors) which will read out continuously the instantaneous rate at which dose is delivered during the flight. This chamber is mounted permanently. The information will be recorded aboard the spacecraft, and will also be received directly by ground stations. This chamber is shielded to simulate the amount of radiation the crew members are receiving beneath their skin. Photo credit: NASA or National Aeronautics and Space Administration

  18. Topical delivery of acetyl hexapeptide-8 from different emulsions: influence of emulsion composition and internal structure.

    PubMed

    Hoppel, Magdalena; Reznicek, Gottfried; Kählig, Hanspeter; Kotisch, Harald; Resch, Günter P; Valenta, Claudia

    2015-02-20

    Acetyl hexapeptide-8 (AH-8) is a well-known component of anti-aging products and was recently explored as a promising topical treatment of blepharospasm. Although AH-8 appears in a variety of cosmetic products, its skin penetration is sparsely studied and controversially discussed. Therefore, the aim of the present study was to investigate the influence of the vehicle type on the AH-8 delivery to the skin. Besides skin permeation experiments with Franz type diffusion cells, the spatial distribution of AH-8 in the stratum corneum after a real in-use application was investigated by in vitro tape stripping on porcine ear skin. By applying LC-MS/MS for quantification of AH-8, we demonstrated that a multiple water-in-oil-in-water (W/O/W) emulsion can significantly increase penetration of AH-8 into porcine skin compared to simple O/W and W/O emulsions. The internal structure of the developed multiple emulsion was confirmed by electron microscopic investigations and NMR self diffusion studies. In general, a clear superiority of water-rich W/O/W and O/W emulsions over an oil-rich W/O emulsion in terms of dermal delivery of AH-8 was found. This enhanced delivery of AH-8 could be explained by an increased absorption of the water-rich emulsions into the skin, confirmed by combined ATR-FTIR and tape stripping experiments. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Transport and Retention of Emulsion Droplets in Sandy Porous Media

    NASA Astrophysics Data System (ADS)

    Esahani, S. G.; Muller, K.; Chapra, S. C.; Ramsburg, A.

    2014-12-01

    Emulsions are commonly used as amendments during remediation; yet, the processes controlling the distribution of droplets within the subsurface are not well understood. Given that inadequate spatial and/or temporal delivery of amendments often leads to ineffective treatment, there is a need to better understand emulsion transport. Experiments were conducted to evaluate the transport and retention of emulsion droplets in columns containing Ottawa sands. Breakthrough curves and deposition profiles from these experiments were interrogated using a mathematical model capable of describing attachment, detachment, and straining to begin to elucidate the physical processes controlling delivery. Emulsions were constructed by stabilizing soybean oil droplets within a continuous aqueous phase. Physical properties of the resulting oil-in-water emulsions were favorable for subsurface delivery (nominal properties: 1 g/mL density; 10 cP viscosity; and 1.5 μm droplet d50). Emulsions were introduced to the columns for approximately two pore volumes and followed by an extended flush of background solution. Effluent droplet size distributions did not vary significantly over the course of the experiment and remained similar to those measured for the influent emulsion. Emulsion breakthrough curves exhibited tailing, and deposition profiles were found to be hyper-exponential and unaffected by extended periods of background flow. Depending on emulsion composition and flow characteristics, 10-30% of the injected emulsion was retained on the sand suggesting a non-negligible influence on accessible porosity over the course of the experiment. Experimental results were further interpreted using a droplet transport model that accounts for temporal and spatial variation in porosity due to the retention of the emulsion droplets. At present the model assumes a uniform size distribution of inelastic emulsion droplets which are transported by advection and dispersion, and exchanged with the solid

  20. Track reconstruction in the emulsion-lead target of the OPERA experiment using the ESS microscope

    NASA Astrophysics Data System (ADS)

    Arrabito, L.; Bozza, C.; Buontempo, S.; Consiglio, L.; Cozzi, M.; D'Ambrosio, N.; DeLellis, G.; DeSerio, M.; Di Capua, F.; Di Ferdinando, D.; Di Marco, N.; Ereditato, A.; Esposito, L. S.; Fini, R. A.; Giacomelli, G.; Giorgini, M.; Grella, G.; Ieva, M.; Janicsko Csathy, J.; Juget, F.; Kreslo, I.; Laktineh, I.; Manai, K.; Mandrioli, G.; Marotta, A.; Migliozzi, P.; Monacelli, P.; Moser, U.; Muciaccia, M. T.; Pastore, A.; Patrizii, L.; Petukhov, Y.; Pistillo, C.; Pozzato, M.; Romano, G.; Rosa, G.; Russo, A.; Savvinov, N.; Schembri, A.; Scotto Lavina, L.; Simone, S.; Sioli, M.; Sirignano, C.; Sirri, G.; Strolin, P.; Tioukov, V.; Waelchli, T.

    2007-05-01

    The OPERA experiment, designed to conclusively prove the existence of νμ→ντ oscillations in the atmospheric sector, makes use of a massive lead-nuclear emulsion target to observe the appearance of ντ's in the CNGS νμ beam. The location and analysis of the neutrino interactions in quasi real-time required the development of fast computer-controlled microscopes able to reconstruct particle tracks with sub-micron precision and high efficiency at a speed of ~20 cm2/h. This paper describes the performance in particle track reconstruction of the European Scanning System, a novel automatic microscope for the measurement of emulsion films developed for OPERA.

  1. Nano-emulsions of fluorinated trityl radicals as sensors for EPR oximetry

    NASA Astrophysics Data System (ADS)

    Charlier, N.; Driesschaert, B.; Wauthoz, N.; Beghein, N.; Préat, V.; Amighi, K.; Marchand-Brynaert, J.; Gallez, B.

    2009-04-01

    This article reports the development and evaluation of two nano-emulsions (F45T-03/HFB and F15T-03/PFOB) containing fluorinated trityl radicals dissolved in perfluorocarbons. Preparation with a high-pressure homogenizer conferred sub-micronic size to both nano-emulsions. In vitro and in vivo EPR spectroscopy showed that the nano-emulsions had much greater oxygen sensitivity than the hydrophilic trityl, CT-03. In vivo experiments in rodents confirmed the ability of the nano-emulsions to follow the changes in oxygen concentration after induced ischemia. Histological evaluation of the tissue injected with the nano-emulsions revealed some acute toxicity for the F45T-03/HFB nano-emulsion but none for the F15T-03/PFOB nano-emulsion. These new formulations should be considered for further EPR oximetry experiments in pathophysiological situations where subtle changes in tissue oxygenation are expected.

  2. Plasma Crystal-3 Plus experiment Chamber Leak Check

    NASA Image and Video Library

    2010-07-01

    ISS024-E-007144 (1 July 2010) --- Russian cosmonaut Alexander Skvortsov, Expedition 24 commander, performs chamber leak checks on the new Plasma Crystal-3 Plus experiment in the Poisk Mini-Research Module 2 (MRM2) of the International Space Station.

  3. High-Speed Automatic Microscopy for Real Time Tracks Reconstruction in Nuclear Emulsion

    NASA Astrophysics Data System (ADS)

    D'Ambrosio, N.

    2006-06-01

    The Oscillation Project with Emulsion-tRacking Apparatus (OPERA) experiment will use a massive nuclear emulsion detector to search for /spl nu//sub /spl mu///spl rarr//spl nu//sub /spl tau// oscillation by identifying /spl tau/ leptons through the direct detection of their decay topology. The feasibility of experiments using a large mass emulsion detector is linked to the impressive progress under way in the development of automatic emulsion analysis. A new generation of scanning systems requires the development of fast automatic microscopes for emulsion scanning and image analysis to reconstruct tracks of elementary particles. The paper presents the European Scanning System (ESS) developed in the framework of OPERA collaboration.

  4. Charge Identification of Highly Ionizing Particles in Desensitized Nuclear Emulsion Using High Speed Read-Out System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Toshito, T.; Kodama, K.; Yusa, K.

    2006-05-10

    We performed an experimental study of charge identification of heavy ions from helium to carbon having energy of about 290 MeV/u using an emulsion chamber. Emulsion was desensitized by means of forced fading (refreshing) to expand a dynamic range of response to highly charged particles. For the track reconstruction and charge identification, the fully automated high speed emulsion read-out system, which was originally developed for identifying minimum ionizing particles, was used without any modification. Clear track by track charge identification up to Z=6 was demonstrated. The refreshing technique has proved to be a powerful technique to expand response of emulsionmore » film to highly ionizing particles.« less

  5. The research about microscopic structure of emulsion membrane in O/W emulsion by NMR and its influence to emulsion stability.

    PubMed

    Xie, Yiqiao; Chen, Jisheng; Zhang, Shu; Fan, Kaiyan; Chen, Gang; Zhuang, Zerong; Zeng, Mingying; Chen, De; Lu, Longgui; Yang, Linlin; Yang, Fan

    2016-03-16

    This paper discussed the influence of microstructure of emulsion membrane on O/W emulsion stability. O/W emulsions were emulsified with equal dosage of egg yolk lecithin and increasing dosage of co-emulsifier (oleic acid or HS15). The average particle size and centrifugal stability constant of emulsion, as well as interfacial tension between oil and water phase were determined. The microstructure of emulsion membrane had been studied by (1)H/(13)C NMR, meanwhile the emulsion droplets were visually presented with TEM and IFM. With increasing dosage of co-emulsifier, emulsions showed two stable states, under which the signal intensity of characteristic group (orient to lipophilic core) of egg yolk lecithin disappeared in NMR of emulsions, but that (orient to aqueous phase) of co-emulsifiers only had some reduction at the second stable state. At the two stable states, the emulsion membranes were neater in TEM and emulsion droplets were rounder in IFM. Furthermore, the average particle size of emulsions at the second stable state was bigger than that at the first stable state. Egg yolk lecithin and co-emulsifier respectively arranged into monolayer and bilayer emulsion membrane at the two stable states. The microstructure of emulsion membrane was related to the stability of emulsion. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Relating emulsion stability to interfacial properties for pharmaceutical emulsions stabilized by Pluronic F68 surfactant.

    PubMed

    Powell, Kristin Conrad; Damitz, Robert; Chauhan, Anuj

    2017-04-15

    We explore mechanisms of emulsion stability for several systems using Pluronic F68 and a range of oils commonly used in pharmaceutics and cosmetics. We report measurements of dynamic emulsion drop size, zeta potential, and creaming time, as well as dynamic interfacial tension and interfacial viscoelasticity. Experiments show that with 1wt% Pluronic F68, soybean oil emulsions were the most stable with no creaming over six months, followed by isopropyl myristate, octanoic acid, and then ethyl butyrate. The eventual destabilization occurred due to the rising of large drops which formed through Ostwald ripening and coalescence. While Ostwald ripening is important, it is not the dominant destabilization mechanism for the time scale of interest in pharmaceutical emulsions. The more significant destabilization mechanism, coalescence, is reduced through surfactant adsorption, which decreases surface tension, increases surface elasticity, and adds a stearic hindrance to collisions. Though the measured values of elasticity obtained using a standard oscillatory pendant drop method did not correlate to emulsion stability, this is because the frequencies for the measurements were orders of magnitude below those relevant to coalescence in emulsions. However, we show that the high frequency elasticity obtained by fitting the surface tension data to a Langmuir isotherm has very good correlation with the emulsion stability, indicating that the elasticity of the interface plays a key role in stabilizing these pharmaceutical formulations. Further, this study highlights how these important high frequency elasticity values can be easily estimated from surface isotherms. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. The influence of the emulsion composition on the wettability of the emulsion

    NASA Astrophysics Data System (ADS)

    Liu, Yan Jun; Shao, Jian Nan; Lei Liu, Peng

    2018-03-01

    In order to explore the influence of the emulsion composition on the wettability of the emulsion, using lauric acid polyoxyethylene esters (LAE) and polyethylene oleic acid diester (DQA) as the emulsifier and oleic acid ester (QA) as the smoothing agent, the spinning oil emulsion system with the content of smoothing agent above 30% was prepared. The results show that: with the increase of emulsion concentration, the surface tension of emulsion, the contact Angle of emulsion on the surface of the polypropylene fiber and the wetting time of canvas in emulsion all decreases. At the same time,the emulsion has critical micelle concentration, when the concentration is less than CMC, the surface tension of emulsion, the contact Angle of emulsion on the surface of the polypropylene fiber and the wetting time of canvas in the emulsion decreases rapidly with the increase of the emulsion concentration, while it’s more than this concentration, the influence of emulsion concentration on the three kinds of nature is smaller. Besides, the increase of the mass fraction of the smoothing agent and the increase of the compound emulsifier HLB will result in worse wettability.

  8. MULTI-PLATE IONIZATION CHAMBER FOR THE DETECTION OF SLOW NEUTRONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bubzanowski, A.; Grotowski, K.

    1957-01-01

    A description is given of an ionization chamber, the electrodes of which are coated with a layer of natural boron of thickness 3 mg/cm/sup 2/. Each electrode of the chamber consists of three disks, placed between plates of the other electrodes. The capacitance between the electrodes does not exceed 15 micromicrofarads. The technology of coating the layer is as follows: the boron is mixed with alcohol and a small amount of Canada balsam and is coated in the form of an emulsion on the plates. The chamber efficiency is approximately 2%. The filler is argon at atmospheric pressure. The durationmore » of the output pulses after forming is approximately 5 microseconds.« less

  9. Particle Identification in Nuclear Emulsion by Measuring Multiple Coulomb Scattering

    NASA Astrophysics Data System (ADS)

    Than Tint, Khin; Nakazawa, Kazuma; Yoshida, Junya; Kyaw Soe, Myint; Mishina, Akihiro; Kinbara, Shinji; Itoh, Hiroki; Endo, Yoko; Kobayashi, Hidetaka; E07 Collaboration

    2014-09-01

    We are developing particle identification techniques for single charged particles such as Xi, proton, K and π by measuring multiple Coulomb scattering in nuclear emulsion. Nuclear emulsion is the best three dimensional detector for double strangeness (S = -2) nuclear system. We expect to accumulate about 10000 Xi-minus stop events which produce double lambda hypernucleus in J-PARC E07 emulsion counter hybrid experiment. The purpose of this particle identification (PID) in nuclear emulsion is to purify Xi-minus stop events which gives information about production probability of double hypernucleus and branching ratio of decay mode. Amount of scattering parameterized as angular distribution and second difference is inversely proportional to the momentum of particle. We produced several thousands of various charged particle tracks in nuclear emulsion stack via Geant4 simulation. In this talk, PID with some measuring methods for multiple scattering will be discussed by comparing with simulation data and real Xi-minus stop events in KEK-E373 experiment.

  10. Improving the detection efficiency in nuclear emulsion trackers

    NASA Astrophysics Data System (ADS)

    Alexandrov, A.; Bozza, C.; Buonaura, A.; Consiglio, L.; D`Ambrosio, N.; Lellis, G. De; De Serio, M.; Di Capua, F.; Di Crescenzo, A.; Di Ferdinando, D.; Di Marco, N.; Fini, R. A.; Galati, G.; Giacomelli, G.; Grella, G.; Hosseini, B.; Kose, U.; Lauria, A.; Longhin, A.; Mandrioli, G.; Mauri, N.; Medinaceli, E.; Montesi, M. C.; Paoloni, A.; Pastore, A.; Patrizii, L.; Pozzato, M.; Pupilli, F.; Rescigno, R.; Roda, M.; Rosa, G.; Schembri, A.; Shchedrina, T.; Simone, S.; Sioli, M.; Sirignano, C.; Sirri, G.; Spinetti, M.; Stellacci, S. M.; Tenti, M.; Tioukov, V.

    2015-03-01

    Nuclear emulsion films are a tracking device with unique space resolution. Their use in nowadays large-scale experiments relies on the availability of automated microscope operating at very high speed. In this paper we describe the features and the latest improvements of the European Scanning System, a last-generation automated microscope for emulsion scanning. In particular, we present a new method for the recovery of tracking inefficiencies. Stacks of double coated emulsion films have been exposed to a 10 GeV/c pion beam. Efficiencies as high as 98% have been achieved for minimum ionising particle tracks perpendicular to the emulsion films and of 93% for tracks with tan(θ) ≃ 0.8.

  11. Food emulsions as delivery systems for flavor compounds: A review.

    PubMed

    Mao, Like; Roos, Yrjö H; Biliaderis, Costas G; Miao, Song

    2017-10-13

    Food flavor is an important attribute of quality food, and it largely determines consumer food preference. Many food products exist as emulsions or experience emulsification during processing, and therefore, a good understanding of flavor release from emulsions is essential to design food with desirable flavor characteristics. Emulsions are biphasic systems, where flavor compounds are partitioning into different phases, and the releases can be modulated through different ways. Emulsion ingredients, such as oils, emulsifiers, thickening agents, can interact with flavor compounds, thus modifying the thermodynamic behavior of flavor compounds. Emulsion structures, including droplet size and size distribution, viscosity, interface thickness, etc., can influence flavor component partition and their diffusion in the emulsions, resulting in different release kinetics. When emulsions are consumed in the mouth, both emulsion ingredients and structures undergo significant changes, resulting in different flavor perception. Special design of emulsion structures in the water phase, oil phase, and interface provides emulsions with great potential as delivery systems to control flavor release in wider applications. This review provides an overview of the current understanding of flavor release from emulsions, and how emulsions can behave as delivery systems for flavor compounds to better design novel food products with enhanced sensorial and nutritional attributes.

  12. Penetrative nature of high energy showers observed in Chacaltaya emulsion chamber

    NASA Technical Reports Server (NTRS)

    Funayama, Y.; Tamada, M.

    1985-01-01

    About 30% of single core showers with E (sup gamma) 10 TeV have stronger penetrating power than that expected from electromagnetic showers (e,gamma). On the other hand, their starting points of cascades in the chamber are found to be as shallow as those of (e,gamma) components. It is suggested that those showers are very collimated bundles of hadron and (e,gamma) component. Otherwise, it is assumed that the collision mean free path of those showers in the chamber is shorter than that of hadron with geometrical value.

  13. Ultrahigh vacuum/high pressure chamber for surface x-ray diffraction experiments

    NASA Astrophysics Data System (ADS)

    Bernard, P.; Peters, K.; Alvarez, J.; Ferrer, S.

    1999-02-01

    We describe an ultrahigh vacuum chamber that can be internally pressurized to several bars and that is designed to perform surface x-ray diffraction experiments on solid-gas interfaces. The chamber has a cylindrical beryllium window that serves as the entrance and exit for the x rays. The sample surface can be ion bombarded with an ancillary ion gun and annealed to 1200 K.

  14. W/O/W multiple emulsions with diclofenac sodium.

    PubMed

    Lindenstruth, Kai; Müller, Bernd W

    2004-11-01

    The disperse oil droplets of W/O/W multiple emulsions contain small water droplets, in which drugs could be incorporated, but the structure of these emulsions is also the reason for possible instability. Due to the middle oil phase which acts as a 'semipermeable' membrane the passage of water across the oil phase can take place. However, the emulsions have been produced in a two-step-production process so not only the leakage of encapsulated drug molecules out of the inner water phase during storage but also a production-induced reduction of the encapsulation rate should be considered. The aim of this study was to ascertain how far the production-induced reduction of the encapsulation rate relates to the size of inner water droplets and to evaluate the relevance of multiple emulsions as drug carrier for diclofenac sodium. Therefore multiple emulsions were produced according to a central composite design. During the second production step it was observed that the parameters pressure and temperature have an influence on the size of the oil droplets in the W/O/W multiple emulsions. Further experiments with different W/O emulsions resulted in W/O/W multiple emulsions with different encapsulation rates of diclofenac sodium, due to the different sizes of the inner water droplets, which were obtained in the first production step.

  15. Programmed emulsions for sodium reduction in emulsion based foods.

    PubMed

    Chiu, Natalie; Hewson, Louise; Fisk, Ian; Wolf, Bettina

    2015-05-01

    In this research a microstructure approach to reduce sodium levels in emulsion based foods is presented. If successful, this strategy will enable reduction of sodium without affecting consumer satisfaction with regard to salty taste. The microstructure approach comprised of entrapment of sodium in the internal aqueous phase of water-in-oil-in-water emulsions. These were designed to destabilise during oral processing when in contact with the salivary enzyme amylase in combination with the mechanical manipulation of the emulsion between the tongue and palate. Oral destabilisation was achieved through breakdown of the emulsion that was stabilised with a commercially modified octenyl succinic anhydride (OSA)-starch. Microstructure breakdown and salt release was evaluated utilising in vitro, in vivo and sensory methods. For control emulsions, stabilised with orally inert proteins, no loss of structure and no release of sodium from the internal aqueous phase was found. The OSA-starch microstructure breakdown took the initial form of oil droplet coalescence. It is hypothesised that during this coalescence process sodium from the internalised aqueous phase is partially released and is therefore available for perception. Indeed, programmed emulsions showed an enhancement in saltiness perception; a 23.7% reduction in sodium could be achieved without compromise in salty taste (p < 0.05; 120 consumers). This study shows a promising new approach for sodium reduction in liquid and semi-liquid emulsion based foods.

  16. Oil-in-water emulsions for encapsulated delivery of reactive iron particles.

    PubMed

    Berge, Nicole D; Ramsburg, C Andrew

    2009-07-01

    Treatment of dense nonaqueous phase liquid (DNAPL) source zones using suspensions of reactive iron particles relies upon effective transport of the nano- to submicrometer scale iron particles within the subsurface. Recognition that poor subsurface transport of iron particles results from particle-particle and particle-soil interactions permits development of strategies which increase transport. In this work, experiments were conducted to assess a novel approach for encapsulated delivery of iron particles within porous media using oil-in-water emulsions. Objectives of this study included feasibility demonstration of producing kinetically stable, iron-containing, oil-in-water emulsions and evaluating the transport of these iron-containing, oil-in-water emulsions within water-saturated porous media. Emulsions developed in this study have mean droplet diameters between 1 and 2 microm, remain kinetically stable for > 1.5 h, and possess densities (0.996-1.00 g/mL at 22 degrees C) and dynamic viscosities (2.4-9.3 mPa x s at 22 degrees C and 20 s(-1)) that are favorable to transport within DNAPL source zones. Breakthrough curves and post-experiment extractions from column experiments conducted with medium and fine sands suggest little emulsion retention (< 0.20% wt) at a Darcy velocity of 0.4 m/day. These findings demonstrate that emulsion encapsulation is a promising method for delivery of iron particles and warrants further investigation.

  17. Modeling selected emulsions and double emulsions as memristive systems.

    PubMed

    Spasic, Aleksandar M; Jovanovic, Jovan M; Jovanovic, Mica

    2012-06-15

    The recent development in basic and applied science and engineering of finely dispersed systems is presented in general, but more attention has been paid to the liquid-liquid finely dispersed systems or to the particular emulsions and double emulsions. The selected systems for theoretical and experimental research were emulsions and double emulsions that appeared in the pilot plant for extraction of uranium from wet phosphoric acid. The objective of this research was to try to provide a new or different approach to elaborate the complex phenomena that occur at developed liquid-liquid interfaces. New concepts were introduced, the first is a concept of an entity, and the corresponding classification of finely dispersed systems and the second concept consider the introduction of an almost forgotten basic electrodynamics element memristor, and the corresponding memristive systems. Based on these concepts a theory of electroviscoelasticity was proposed and experimentally corroborated using the selected representative liquid-liquid system. Also, it is shown that the droplet, and/or droplet-film structure, that is, selected emulsion and/or double emulsion may be considered as the particular example of memristive systems. Copyright © 2012 Elsevier B.V. All rights reserved.

  18. Synthetic Polymers at Interfaces: Monodisperse Emulsions Multiple Emulsions and Liquid Marbles

    NASA Astrophysics Data System (ADS)

    Sun, Guanqing

    The adsorption of polymeric materials at interfaces is an energetically favorable process which is investigated in much diversified fields, such as emulsions, bubbles, foams, liquid marbles. Pickering emulsion, which is emulsion stabilized by solid particles has been investigated for over one century and preparation of Pickering emulsion with narrow size distribution is crucial for both the theoretical study of the stabilization mechanism and practical application, such as templated fabrication of colloidosomes. The precise control over the size and functionality of polymer latices allows the preparation of monodisperse Pickering emulsions with desired sizes through SPG membrane emulsification at rather rapid rate compared to microfludic production. Double or multiple emulsions have long been investigated but its rapid destabilization has always been a major obstacle in applying them into practical applications. The modern living polymerization techniques allow us to prepare polymers with designed structure of block copolymers which makes it possible to prepare ultra-stable multiple emulsions. The precise tuning of the ratio of hydrophobic part over the hydrophilic can unveil the stabilization mechanism. Liquid marble is a new type of materials of which liquid droplets are coated by dry particles. The coating of an outer layer of dry particles renders the liquid droplets non-sticky at solid surface which is useful in transportation of small amount of liquid without leakage at extreme low friction force. The property of liquid marbles relies largely on the stabilizers and the drying condition of polymeric latices is shown to have great influence on the property of liquid marbles. Firstly, an introduction to the interfacial and colloidal science with special attention to topics on emulsions, multiple emulsion and liquid marbles is given in Chapter 1. The unique features of an interface and a discussion on the definition of colloids are introduced prior to the

  19. Kinetic Release of Alkalinity from Particle-Containing Oil-in-Water Emulsions

    NASA Astrophysics Data System (ADS)

    Muller, K.; Chapra, S. C.; Ramsburg, A.

    2014-12-01

    Oil-in-water emulsions are typically employed during remediation to promote biotic reduction of contaminants. Emulsions, however, hold promise for encapsulated delivery of many types of active ingredients required for successful site remediation or long-term site stewardship. Our research is currently focused on using alkalinity-containing particles held within oil-in-water emulsions to sustain control of subsurface pH. Here we describe results from laboratory experiments and mathematical modeling conducted to quantify the kinetics associated with the emulsion delivery and alkalinity release process. Kinetically stable oil-in-water emulsions containing (~60 nmCaCO3 or ~100 nm MgO particles) were previously developed using soybean oil and Gum Arabic as a stabilizing agent. Batch and column experiments were employed to assess the accessibility and release of the alkalinity from the emulsion. Successive additions of HCl were used in batch systems to produce several pH responses (pH rebounds) that were subsequently modeled to elucidate release mechanisms and rates for varying emulsion compositions and particle types. Initial results suggest that a linear-driving-force model is generally able to capture the release behavior in the batch system when the temporally-constant, lumped mass-transfer coefficient is scaled by the fraction of particle mass remaining within the droplets. This result suggests that the rate limiting step in the release process may be the interphase transfer of reactive species at the oil-water interface. 1-d column experiments were also completed in order to quantify the extent and rate of alkalinity release from emulsion droplets retained in a sandy medium. Alkalinity release from the retained droplets treated a pH 4 influent water for 25-60 pore volumes (the duration depended on particle type and mass loading), and the cessation in treatment corresponded to exhaustion of the particle mass held within the oil. Column experiments were simulated

  20. Investigation of particle and vapor wall-loss effects on controlled wood-smoke smog-chamber experiments

    NASA Astrophysics Data System (ADS)

    Bian, Q.; May, A. A.; Kreidenweis, S. M.; Pierce, J. R.

    2015-10-01

    Smog chambers are extensively used to study processes that drive gas and particle evolution in the atmosphere. A limitation of these experiments is that particles and gas-phase species may be lost to chamber walls on shorter timescales than the timescales of the atmospheric processes being studied in the chamber experiments. These particle and vapor wall losses have been investigated in recent studies of secondary organic aerosol (SOA) formation, but they have not been systematically investigated in experiments of primary emissions from combustion. The semi-volatile nature of combustion emissions (e.g. from wood smoke) may complicate the behavior of particle and vapor wall deposition in the chamber over the course of the experiments due to the competition between gas/particle and gas/wall partitioning. Losses of vapors to the walls may impact particle evaporation in these experiments, and potential precursors for SOA formation from combustion may be lost to the walls, causing underestimations of aerosol yields. Here, we conduct simulations to determine how particle and gas-phase wall losses contributed to the observed evolution of the aerosol during experiments in the third Fire Lab At Missoula Experiment (FLAME III). We use the TwO-Moment Aerosol Sectional (TOMAS) microphysics algorithm coupled with the organic volatility basis set (VBS) and wall-loss formulations to examine the predicted extent of particle and vapor wall losses. We limit the scope of our study to the dark periods in the chamber before photo-oxidation to simplify the aerosol system for this initial study. Our model simulations suggest that over one-third of the initial particle-phase organic mass (41 %) was lost during the experiments, and over half of this particle-organic mass loss was from direct particle wall loss (65 % of the loss) with the remainder from evaporation of the particles driven by vapor losses to the walls (35 % of the loss). We perform a series of sensitivity tests to understand

  1. Investigation of particle and vapor wall-loss effects on controlled wood-smoke smog-chamber experiments

    NASA Astrophysics Data System (ADS)

    Bian, Q.; May, A. A.; Kreidenweis, S. M.; Pierce, J. R.

    2015-06-01

    Smog chambers are extensively used to study processes that drive gas and particle evolution in the atmosphere. A limitation of these experiments is that particles and gas-phase species may be lost to chamber walls on shorter timescales than the timescales of the atmospheric processes being studied in the chamber experiments. These particle and vapor wall losses have been investigated in recent studies of secondary organic aerosol (SOA) formation, but they have not been systematically investigated in experiments of primary emissions from combustion. The semi-volatile nature of combustion emissions (e.g. from wood smoke) may complicate the behavior of particle and vapor wall deposition in the chamber over the course of the experiments due to the competition between gas/particle and gas/wall partitioning. Losses of vapors to the walls may impact particle evaporation in these experiments, and potential precursors for SOA formation from combustion may be lost to the walls, causing underestimates of aerosol yields. Here, we conduct simulations to determine how particle and gas-phase wall losses contributed to the observed evolution of the aerosol during experiments in the third Fire Lab At Missoula Experiment (FLAME III). We use the TwO-Moment Aerosol Sectional (TOMAS) microphysics algorithm coupled with the organic volatility basis set (VBS) and wall-loss formulations to examine the predicted extent of particle and vapor wall losses. We limit the scope of our study to the dark periods in the chamber before photo-oxidation to simplify the aerosol system for this initial study. Our model simulations suggest that over one third of the initial particle-phase organic mass (36%) was lost during the experiments, and roughly half of this particle organic mass loss was from direct particle wall loss (56% of the loss) with the remainder from evaporation of the particles driven by vapor losses to the walls (44% of the loss). We perform a series of sensitivity tests to understand

  2. Investigation of particle and vapor wall-loss effects on controlled wood-smoke smog-chamber experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bian, Q.; May, A. A.; Kreidenweis, Sonia M.

    Here, smog chambers are extensively used to study processes that drive gas and particle evolution in the atmosphere. A limitation of these experiments is that particles and gas-phase species may be lost to chamber walls on shorter timescales than the timescales of the atmospheric processes being studied in the chamber experiments. These particle and vapor wall losses have been investigated in recent studies of secondary organic aerosol (SOA) formation, but they have not been systematically investigated in experiments of primary emissions from combustion. The semi-volatile nature of combustion emissions (e.g. from wood smoke) may complicate the behavior of particle andmore » vapor wall deposition in the chamber over the course of the experiments due to the competition between gas/particle and gas/wall partitioning. Losses of vapors to the walls may impact particle evaporation in these experiments, and potential precursors for SOA formation from combustion may be lost to the walls, causing underestimations of aerosol yields. Here, we conduct simulations to determine how particle and gas-phase wall losses contributed to the observed evolution of the aerosol during experiments in the third Fire Lab At Missoula Experiment (FLAME III). We use the TwO-Moment Aerosol Sectional (TOMAS) microphysics algorithm coupled with the organic volatility basis set (VBS) and wall-loss formulations to examine the predicted extent of particle and vapor wall losses. We limit the scope of our study to the dark periods in the chamber before photo-oxidation to simplify the aerosol system for this initial study. Our model simulations suggest that over one-third of the initial particle-phase organic mass (41 %) was lost during the experiments, and over half of this particle-organic mass loss was from direct particle wall loss (65 % of the loss) with the remainder from evaporation of the particles driven by vapor losses to the walls (35 % of the loss). We perform a series of sensitivity tests

  3. Fish oil–based lipid emulsions in the treatment of parenteral nutrition-associated liver disease: An ongoing positive experience

    USDA-ARS?s Scientific Manuscript database

    We previously reported the beneficial effect of fish oil-based lipid emulsions (FOLEs) as monotherapy in the treatment of parenteral nutrition-associated liver disease (PNALD). In this report, we share our ongoing experience at Texas Children's Hospital, Houston, in the use of FOLE in treatment of P...

  4. Use of olive oil-in-water gelled emulsions in model turkey breast emulsions

    NASA Astrophysics Data System (ADS)

    Serdaroğlu, M.; Öztürk, B.

    2017-09-01

    Today, gelled emulsion systems offer a novel possibility in lipid modification of meat products. In this study, we aimed to investigate the quality characteristics of model turkey emulsions that were prepared with olive oil-in-water gelled emulsion (GE) as partial or total beef fat replacer. The results indicated that while most of the GE treatments showed equivalent emulsion characteristics in terms of emulsion stability, water-holding capacity and cook yield, utilization of 100% GE as the lipid source could increase total expressible fluid of the model turkey emulsion and thus negatively affect the quality. Utilization of GE was effective in total fat reduction, as the model turkey emulsions formulated with more than 50% GE had significantly lower fat content compared to full-beef fat control model emulsion. However, beef fat replacement with GE produced considerable changes in colour parameters. Finally, it was concluded that utilization of GE as a partial beef fat replacer has good potential to enhance stability and reduce total fat in turkey meat emulsion products.

  5. Multiple emulsions: an overview.

    PubMed

    Khan, Azhar Yaqoob; Talegaonkar, Sushama; Iqbal, Zeenat; Ahmed, Farhan Jalees; Khar, Roop Krishan

    2006-10-01

    Multiple emulsions are complex polydispersed systems where both oil in water and water in oil emulsion exists simultaneously which are stabilized by lipophillic and hydrophilic surfactants respectively. The ratio of these surfactants is important in achieving stable multiple emulsions. Among water-in-oil-in-water (w/o/w) and oil-in-water-in-oil (o/w/o) type multiple emulsions, the former has wider areas of application and hence are studied in great detail. Formulation, preparation techniques and in vitro characterization methods for multiple emulsions are reviewed. Various factors affecting the stability of multiple emulsions and the stabilization approaches with specific reference to w/o/w type multiple emulsions are discussed in detail. Favorable drug release mechanisms and/or rate along with in vivo fate of multiple emulsions make them a versatile carrier. It finds wide range of applications in controlled or sustained drug delivery, targeted delivery, taste masking, bioavailability enhancement, enzyme immobilization, etc. Multiple emulsions have also been employed as intermediate step in the microencapsulation process and are the systems of increasing interest for the oral delivery of hydrophilic drugs, which are unstable in gastrointestinal tract like proteins and peptides. With the advancement in techniques for preparation, stabilization and rheological characterization of multiple emulsions, it will be able to provide a novel carrier system for drugs, cosmetics and pharmaceutical agents. In this review, emphasis is laid down on formulation, stabilization techniques and potential applications of multiple emulsion system.

  6. Research on the influence of ozone dissolved in the fuel-water emulsion on the parameters of the CI engine

    NASA Astrophysics Data System (ADS)

    Wojs, M. K.; Orliński, P.; Kamela, W.; Kruczyński, P.

    2016-09-01

    The article presents the results of empirical research on the impact of ozone dissolved in fuel-water emulsion on combustion process and concentration of toxic substances in CI engine. The effect of ozone presence in the emulsion and its influence on main engine characteristics (power, torque, fuel consumption) and selected parameters that characterize combustion process (levels of pressures and temperatures in combustion chamber, period of combustion delay, heat release rate, fuel burnt rate) is shown. The change in concentration of toxic components in exhausts gases when engine is fueled with ozonized emulsion was also identified. The empirical research and their analysis showed significant differences in the combustion process when fuel-water emulsion containing ozone was used. These differences include: increased power and efficiency of the engine that are accompanied by reduction in time of combustion delay and beneficial effects of ozone on HC, PM, CO and NOX emissions.

  7. Rheology of attractive emulsions

    NASA Astrophysics Data System (ADS)

    Datta, Sujit S.; Gerrard, Dustin D.; Rhodes, Travers S.; Mason, Thomas G.; Weitz, David A.

    2011-10-01

    We show how attractive interactions dramatically influence emulsion rheology. Unlike the repulsive case, attractive emulsions below random close packing, φRCP, can form soft gel-like elastic solids. However, above φRCP, attractive and repulsive emulsions have similar elasticities. Such compressed attractive emulsions undergo an additional shear-driven relaxation process during yielding. Our results suggest that attractive emulsions begin to yield at weak points through the breakage of bonds, and, above φRCP, also undergo droplet configurational rearrangements.

  8. Rheology of attractive emulsions.

    PubMed

    Datta, Sujit S; Gerrard, Dustin D; Rhodes, Travers S; Mason, Thomas G; Weitz, David A

    2011-10-01

    We show how attractive interactions dramatically influence emulsion rheology. Unlike the repulsive case, attractive emulsions below random close packing, φ(RCP), can form soft gel-like elastic solids. However, above φ(RCP), attractive and repulsive emulsions have similar elasticities. Such compressed attractive emulsions undergo an additional shear-driven relaxation process during yielding. Our results suggest that attractive emulsions begin to yield at weak points through the breakage of bonds, and, above φ(RCP), also undergo droplet configurational rearrangements.

  9. On a possibility of inelasticity partial coefficient K sub gamma determination in pi C and pi Pb interactions at 10 to the 14th power eV (experiment PAMIR 1)

    NASA Technical Reports Server (NTRS)

    Borisov, A. S.; Cherdyntseva, K. V.; Guseva, Z. M.; Denisova, V. G.; Dunaevsky, A. M.; Kanevskaya, E. A.; Maximenko, V. M.; Nam, R. A.; Pashkov, S. V.; Puchkov, V. S.

    1985-01-01

    The investigation of hadron-nuclear interactions in Pamir experiment is carried out by means of X-ray emulsion chambers of two types: carbon (C) and lead (Pb). While comparing the results from the chambers of both types it was found a discrepancy in n sub h and E sub h(1)R values. The observed discrepancy in C and Pb chambers is connected with the difference in values of effective coefficients of energy transfer to the soft component K sub eff for C and Pb chambers.

  10. NORSE2015 - A Focused Experiment On Oil Emulsion Characterization Using PolSAR During the 2015 Norwegian Oil-On-Water Exercise

    NASA Astrophysics Data System (ADS)

    Holt, B.; Jones, C. E.; Brekke, C.; Breivik, O.; Skrunes, S.; Espeseth, M.

    2016-02-01

    A targeted experiment in characterizing the properties and development of mineral oil slicks was undertaken by NASA, UiT - The Arctic University of Norway, and the Norwegian Meteorological Institute during the 2015 Norwegian oil-on-water spill exercise in the North Sea (OPV2015). NORSE2015 (Norwegian Radar oil Spill Experiment) involved controlled release of plant oil and mineral emulsions of three different oil-to-water ratios, imaging of the slicks with satellite-borne synthetic aperture radars (SAR), and tracking their development with the NASA-UAVSAR instrument over a period of eight hours following release. During the experiment, in situ measurements were made from ship or aircraft with meteorological instruments, released drift buoys, and optical/IR imagers. The experiment was designed to provide validation data for development of a physical model relating polarization-dependent electromagnetic scattering to the dielectric properties of oil mixed with ocean water in a thick slick or emulsion. UAVSAR is a particularly low noise instrument, which enables detection of oil characteristics, and serves as the basis for a relative comparison of different radar frequencies and instruments in oil slick detection and characterization. The time series of UAVSAR polarimetric SAR (PolSAR) is used to track the spreading, movement, and change in backscatter of the different emulsion slicks and the plant oil, to look at movement relative to wind and wave directions, and to develop methods to differentiate between biogenic and mineral slicks based upon temporal changes in the slicks, including environment-driven changes. In this presentation, the experiment will be described and preliminary results presented. This work was carried out in part at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with NASA. The Norwegian experiment was partly financed by CIRFA - Centre for integrated remote sensing and forecasting for arctic operations.

  11. Measurements of 12C ions beam fragmentation at large angle with an Emulsion Cloud Chamber

    NASA Astrophysics Data System (ADS)

    Alexandrov, A.; De Lellis, G.; Di Crescenzo, A.; Lauria, A.; Montesi, M. C.; Pastore, A.; Patera, V.; Sarti, A.; Tioukov, V.

    2017-08-01

    Hadron radiotherapy is a powerful technique for the treatment of deep-seated tumours. The physical dose distribution of hadron beams is characterized by a small dose delivered in the entrance channel and a large dose in the Bragg peak area. Fragmentation of the incident particles and struck nuclei occurs along the hadron path. Knowledge of the fragment energies and angular distributions is crucial for the validation of the models used in treatment planning systems. We report on large angle fragmentation measurements of a 400 MeV/n 12C beam impinging on a composite target at the GSI laboratory in Germany. The detector was made of 300 micron thick nuclear emulsion films, with sub-micrometric spatial resolution and large angle track detection capability, interleaved with passive material. Thanks to newly developed techniques in the automated scanning of emulsions it was possible to extend the angular range of detected particles. This resulted in the first measurement of the angular and momentum spectrum for fragments emitted in the range from 34o to 81o.

  12. Oil-in-oil emulsions stabilised solely by solid particles.

    PubMed

    Binks, Bernard P; Tyowua, Andrew T

    2016-01-21

    A brief review of the stabilisation of emulsions of two immiscible oils is given. We then describe the use of fumed silica particles coated with either hydrocarbon or fluorocarbon groups in acting as sole stabilisers of emulsions of various vegetable oils with linear silicone oils (PDMS) of different viscosity. Transitional phase inversion of emulsions, containing equal volumes of the two oils, from silicone-in-vegetable (S/V) to vegetable-in-silicone (V/S) occurs upon increasing the hydrophobicity of the particles. Close to inversion, emulsions are stable to coalescence and gravity-induced separation for at least one year. Increasing the viscosity of the silicone oil enables stable S/V emulsions to be prepared even with relatively hydrophilic particles. Predictions of emulsion type from calculated contact angles of a silica particle at the oil-oil interface are in agreement with experiment provided a small polar contribution to the surface energy of the oils is included. We also show that stable multiple emulsions of V/S/V can be prepared in a two-step procedure using two particle types of different hydrophobicity. At fixed particle concentration, catastrophic phase inversion of emulsions from V/S to S/V can be effected by increasing the volume fraction of vegetable oil. Finally, in the case of sunflower oil + 20 cS PDMS, the study is extended to particles other than silica which differ in chemical type, particle size and particle shape. Consistent with the above findings, we find that only sufficiently hydrophobic particles (clay, zinc oxide, silicone, calcium carbonate) can act as efficient V/S emulsion stabilisers.

  13. Evaporation of oil-water emulsion drops when heated at high temperature

    NASA Astrophysics Data System (ADS)

    Strizhak, P. A.; Piskunov, M. V.; Kuznetsov, G. V.; Voytkov, I. S.

    2017-10-01

    An experimental study on conditions and main characteristics for high-temperature (more than 700 K) evaporation of oil-water drops is presented. The high-temperature water purification from impurities can be the main practical application of research results. Thus, the heating of drops is implemented by the two typical schemes: on a massive substrate (the heating conditions are similar to those achieved in a heating chamber) and in a flow of the heated air. In the latter case, the heating conditions correspond to those attained while moving water drops with impurities in a counter high-temperature gaseous flow in the process of water purification. Evaporation time as function of heating temperature is presented. The influence of oil product concentration in an emulsion drop on evaporation characteristics is discussed. The conditions for intensive flash boiling of an emulsion drop and its explosive breakup with formation of the fine droplets cloud are pointed out. Heat fluxes required for intensive flash boiling and explosive breakup of a drop with further formation of the fine aerosol are determined in the boundary layer of a drop. The fundamental differences between flash boiling and explosive breakup of an emulsion drop when heated on a substrate and in a flow of the heated air are described. The main prospects for the development of the high-temperature water purification technology are detailed taking into account the fast emulsion drop breakup investigated in the paper.

  14. Creating nanoscale emulsions using condensation.

    PubMed

    Guha, Ingrid F; Anand, Sushant; Varanasi, Kripa K

    2017-11-08

    Nanoscale emulsions are essential components in numerous products, ranging from processed foods to novel drug delivery systems. Existing emulsification methods rely either on the breakup of larger droplets or solvent exchange/inversion. Here we report a simple, scalable method of creating nanoscale water-in-oil emulsions by condensing water vapor onto a subcooled oil-surfactant solution. Our technique enables a bottom-up approach to forming small-scale emulsions. Nanoscale water droplets nucleate at the oil/air interface and spontaneously disperse within the oil, due to the spreading dynamics of oil on water. Oil-soluble surfactants stabilize the resulting emulsions. We find that the oil-surfactant concentration controls the spreading behavior of oil on water, as well as the peak size, polydispersity, and stability of the resulting emulsions. Using condensation, we form emulsions with peak radii around 100 nm and polydispersities around 10%. This emulsion formation technique may open different routes to creating emulsions, colloidal systems, and emulsion-based materials.

  15. Precise measurements of droplet-droplet contact forces in quasi-2D emulsions

    NASA Astrophysics Data System (ADS)

    Lowensohn, Janna; Orellana, Carlos; Weeks, Eric

    2015-03-01

    We use microscopy to visualize a quasi-2D oil-in-water emulsion confined between two parallel slides. We then use the droplet shapes to infer the forces they exert on each other. To calibrate our force law, we set up an emulsion in a tilted sample chamber so that the droplets feel a known buoyant force. By correlating radius of the droplet and length of contacts with the buoyant forces, we validate our empirical force law. We improve upon prior work in our lab by using a high-resolution camera to image each droplet multiple times, thus providing sub-pixel resolution and reducing the noise. Our new technique identifies contact forces with only a 1% uncertainty, five times better than prior work. We demonstrate the utility of our technique by examining the normal modes of the droplet contact network in our samples.

  16. Construction of an anechoic chamber for aeroacoustic experiments and examination of its acoustic parameters

    NASA Astrophysics Data System (ADS)

    Kopiev, V. F.; Palchikovskiy, V. V.; Belyaev, I. V.; Bersenev, Yu. V.; Makashov, S. Yu.; Khramtsov, I. V.; Korin, I. A.; Sorokin, E. V.; Kustov, O. Yu.

    2017-01-01

    The acoustic parameters of a new anechoic chamber constructed at Perm National Research Polytechnic University (PNRPU) are presented. This chamber is designed to be used, among other things, for measuring noise from aerodynamic sources. Sound-absorbing wedges lining the walls of the chamber were studied in an interferometer with normal wave incidence. The results are compared to the characteristics of sound-absorbing wedges of existing anechoic facilities. Metrological examination of the acoustic parameters of the PNRPU anechoic chamber demonstrates that free field conditions are established in it, which will make it possible to conduct quantitative acoustic experiments.

  17. A facility for long-term Mars simulation experiments: the Mars Environmental Simulation Chamber (MESCH).

    PubMed

    Jensen, Lars Liengaard; Merrison, Jonathan; Hansen, Aviaja Anna; Mikkelsen, Karina Aarup; Kristoffersen, Tommy; Nørnberg, Per; Lomstein, Bente Aagaard; Finster, Kai

    2008-06-01

    We describe the design, construction, and pilot operation of a Mars simulation facility comprised of a cryogenic environmental chamber, an atmospheric gas analyzer, and a xenon/mercury discharge source for UV generation. The Mars Environmental Simulation Chamber (MESCH) consists of a double-walled cylindrical chamber. The double wall provides a cooling mantle through which liquid N(2) can be circulated. A load-lock system that consists of a small pressure-exchange chamber, which can be evacuated, allows for the exchange of samples without changing the chamber environment. Fitted within the MESCH is a carousel, which holds up to 10 steel sample tubes. Rotation of the carousel is controlled by an external motor. Each sample in the carousel can be placed at any desired position. Environmental data, such as temperature, pressure, and UV exposure time, are computer logged and used in automated feedback mechanisms, enabling a wide variety of experiments that include time series. Tests of the simulation facility have successfully demonstrated its ability to produce temperature cycles and maintain low temperature (down to -140 degrees C), low atmospheric pressure (5-10 mbar), and a gas composition like that of Mars during long-term experiments.

  18. A Facility for Long-Term Mars Simulation Experiments: The Mars Environmental Simulation Chamber (MESCH)

    NASA Astrophysics Data System (ADS)

    Jensen, Lars Liengaard; Merrison, Jonathan; Hansen, Aviaja Anna; Mikkelsen, Karina Aarup; Kristoffersen, Tommy; Nørnberg, Per; Lomstein, Bente Aagaard; Finster, Kai

    2008-06-01

    We describe the design, construction, and pilot operation of a Mars simulation facility comprised of a cryogenic environmental chamber, an atmospheric gas analyzer, and a xenon/mercury discharge source for UV generation. The Mars Environmental Simulation Chamber (MESCH) consists of a double-walled cylindrical chamber. The double wall provides a cooling mantle through which liquid N2 can be circulated. A load-lock system that consists of a small pressure-exchange chamber, which can be evacuated, allows for the exchange of samples without changing the chamber environment. Fitted within the MESCH is a carousel, which holds up to 10 steel sample tubes. Rotation of the carousel is controlled by an external motor. Each sample in the carousel can be placed at any desired position. Environmental data, such as temperature, pressure, and UV exposure time, are computer logged and used in automated feedback mechanisms, enabling a wide variety of experiments that include time series. Tests of the simulation facility have successfully demonstrated its ability to produce temperature cycles and maintain low temperature (down to -140°C), low atmospheric pressure (5 10 mbar), and a gas composition like that of Mars during long-term experiments.

  19. Muon radiography in Russia with emulsion technique. First experiments future perspectives

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aleksandrov, A. B.; Bagulya, A. V.; Chernyavsky, M. M.

    Cosmic ray muon radiography is a novel technique for imaging the internal structures of massive objects. It exploits the capability of high energy muons from cosmic-rays in order to obtain a density map of investigated object and trying to guess information on the variation in the density distribution. Nuclear emulsions are tracking detectors well suited to be employed in this context since they have an excellent angular resolution (few mrad), they are cheap, compact and robust, easily transportable, able to work in harsh environments, and do not require power supply. This work presents the first successful results in the fieldmore » of muon radiography in Russia with nuclear emulsions.« less

  20. Adelphi-Goddard emulsified fuel project. [using water/oil emulsions

    NASA Technical Reports Server (NTRS)

    1977-01-01

    Thermal efficiency and particle emissions were studied using water/oil emulsions. These studies were done using number 2 and number 6 fuel oil. The number 6 oil had a sulfur content greater than one percent and experiments were conducted to remove the sulfur dioxide from the stack gases. Test findings include: (1) emulsion effected a reduction in soot at a low excess air levels; (2) a steam atomizing system will produce a water/oil emulsion. The fuel in the study was emulsified in the steam atomization process, hence, pre-emulsification did not yield a dramatic reduction in soot or an increase in thermal efficiency.

  1. Bubble chambers for experiments in nuclear astrophysics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DiGiovine, B.; Henderson, D.; Holt, R. J.

    A bubble chamber has been developed to be used as an active target system for low energy nuclear astrophysics experiments. Adopting ideas from dark matter detection with superheated liquids, a detector system compatible with gamma-ray beams has been developed. This detector alleviates some of the limitations encountered in standard measurements of the minute cross sections of interest to stellar environments. While the astrophysically relevant nuclear reaction processes at hydrostatic burning temperatures are dominated by radiative captures, in this experimental scheme we measure the time reversed processes. Such photodisintegrations allow us to compute the radiative capture cross sections when transitions tomore » excited states of the reaction products are negligible. Due to the transformation of phase space, the photodisintegration cross-sections are up to two orders of magnitude higher. The main advantage of the new target-detector system is a density several orders of magnitude higher than conventional gas targets. Also, the detector is virtually insensitive to the gamma-ray beam itself, thus allowing us to detect only the products of the nuclear reaction of interest. The development and the operation as well as the advantages and disadvantages of the bubble chamber are discussed.« less

  2. Nonlinear Dynamic Characteristics of Oil-in-Water Emulsions

    NASA Astrophysics Data System (ADS)

    Yin, Zhaoqi; Han, Yunfeng; Ren, Yingyu; Yang, Qiuyi; Jin, Ningde

    2016-08-01

    In this article, the nonlinear dynamic characteristics of oil-in-water emulsions under the addition of surfactant were experimentally investigated. Firstly, based on the vertical upward oil-water two-phase flow experiment in 20 mm inner diameter (ID) testing pipe, dynamic response signals of oil-in-water emulsions were recorded using vertical multiple electrode array (VMEA) sensor. Afterwards, the recurrence plot (RP) algorithm and multi-scale weighted complexity entropy causality plane (MS-WCECP) were employed to analyse the nonlinear characteristics of the signals. The results show that the certainty is decreasing and the randomness is increasing with the increment of surfactant concentration. This article provides a novel method for revealing the nonlinear dynamic characteristics, complexity, and randomness of oil-in-water emulsions with experimental measurement signals.

  3. Lipid Emulsion in Treatment of Local Anesthetic Toxicity.

    PubMed

    Collins, Shawn; Neubrander, Judy; Vorst, Zachary; Sheffield, Brad

    2015-08-01

    Epidural, spinal, regional, local, and intravenous administration of local anesthetics (LAs) is a cornerstone of anesthetic practice. LA toxicity is a grave consequence that is of great significance to anesthesia providers. Outcomes of LA toxicity range from inconvenient symptoms such as tinnitus, twitching, and hypotension to seizures; cardiovascular or respiratory collapse; and death. Lipid emulsion has emerged as a potential "magic bullet" in treating LA toxicity. This literature review provides background information and proposed mechanisms of action for LAs and lipid emulsion as well as animal experiments and a case report that speak to the effectiveness of lipid emulsion in the face of LA toxicity. Copyright © 2015 American Society of PeriAnesthesia Nurses. Published by Elsevier Inc. All rights reserved.

  4. Atmospheric turbulence chamber for optical transmission experiment Characterization by thermal method

    NASA Technical Reports Server (NTRS)

    Gamo, H.; Majumdar, A. K.

    1978-01-01

    Consideration is given to an atmospheric turbulence chamber designed for optical wave propagation experiments. The chamber consists of ten small electric heater/blowers with an aluminum foil screen and three screens of 2-mm aluminum wire meshes. Calculations are made of the temperature structure constant squared on the basis of temperature structure function measurements derived from a differential microthermocouple system. Values are presented for the refractive-index structure constant squared. The average wind velocity and temperature are found to be, respectively, 0.41 m/sec and 53 C. The inner and outer scales of turbulence are 5.0 mm and 6.5 cm. It is shown that the measured temperature structure function and the power spectrum of temperature fluctuations satisfy, respectively, the 2/3 and -5/3 power similarity laws in the inertial subrange. Possible chamber improvements are discussed.

  5. Agglutination of intravenously administered phosphatidylcholine-containing lipid emulsions with serum C-reactive protein.

    PubMed

    Tugirimana, Pierrot; Speeckaert, Marijn M; Fiers, Tom; De Buyzere, Marc L; Kint, Jos; Benoit, Dominique; Delanghe, Joris R

    2013-04-01

    C-reactive protein (CRP) is able to bind phospholipids in the presence of calcium. We wanted to investigate the reaction of CRP with various commercial fat emulsions and to explore the impact of CRP agglutination on serum CRP levels. Serum specimens were mixed with Intralipid 20% (soybean oil-based fat emulsion), Structolipid (structured oil-based fat emulsion), Omegaven (fish oil-based fat emulsion), or SMOFlipid (mixed soybean oil-, olive oil-, and fish oil-based emulsion) in Tris-calcium buffer (pH 7.5). After 30 minutes of incubation at 37°C, CRP-phospholipid complexes were turbidimetrically quantified and flow cytometric analysis was performed. Similarly, CRP complexes were monitored in vivo, following administration of fat emulsion. CRP was able to agglutinate phospholipid-containing lipid droplets present in the soybean oil-based fat emulsion and the structured oil-based fat emulsion. To a lesser extent, agglutination was observed for fish oil-containing fat emulsions, whereas no agglutination was noticed for the mixed soybean oil-, olive oil-, and fish oil-based emulsion. Results for propofol-containing emulsions were comparable. Agglutination correlated with phospholipid content of the emulsions. When in vivo agglutination occurred, plasma CRP values dropped due to consumption of CRP by phospholipid-induced agglutination. In this in vitro experiment, we demonstrated agglutination of CRP with phospholipids in various fat emulsions. Research studies are required in patients to determine which effects occur with various intravenous fat emulsions.

  6. Use of micro-emulsion technology for the directed evolution of antibodies.

    PubMed

    Buhr, Diane L; Acca, Felicity E; Holland, Erika G; Johnson, Katie; Maksymiuk, Gail M; Vaill, Ada; Kay, Brian K; Weitz, David A; Weiner, Michael P; Kiss, Margaret M

    2012-09-01

    Affinity reagents, such as antibodies, are needed to study protein expression patterns, sub-cellular localization, and post-translational modifications in complex mixtures and tissues. Phage Emulsion, Secretion, and Capture (ESCape) is a novel micro-emulsion technology that utilizes water-in-oil (W/O) emulsions for the identification and isolation of cells secreting phage particles that display desirable antibodies. Using this method, a large library of antibody-displaying phage will bind to beads in individual compartments. Rather than using biopanning on a large mixed population, phage micro-emulsion technology allows us to individually query clonal populations of amplified phage against the antigen. The use of emulsions to generate microdroplets has the promise of accelerating phage selection experiments by permitting fine discrimination of kinetic parameters for binding to targets. In this study, we demonstrate the ability of phage micro-emulsion technology to distinguish two scFvs with a 300-fold difference in binding affinities (100nM and 300pM, respectively). In addition, we describe the application of phage micro-emulsion technology for the selection of scFvs that are resistant to elevated temperatures. Copyright © 2012. Published by Elsevier Inc.

  7. Rapid crystallization and morphological adjustment of zeolite ZSM-5 in nonionic emulsions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang Ying, E-mail: yingzh1977@163.co; Jin Chao; Research Institute of Petroleum Processing, Beijing 100083

    2011-01-15

    Zeolite ZSM-5 was synthesized for the first time in a nonionic emulsion composed of polyoxyethylated alkylphenol, butanol, cyclohexane and tetraethylammonium hydroxide (TEAOH)-containing zeolite synthesis mixture. The crystallization kinetics in the emulsion was investigated and the ZSM-5 product was characterized in detail by XRD, SEM, FT-IR, TG, N{sub 2} adsorption and CHN analysis techniques. Compared with the conventionally hydrothermal synthesis with the same structure directing agent TEAOH, the emulsion system allows rapid crystallization of ZSM-5. The ZSM-5 product exhibits unusual agglomerated structure and possesses larger specific surface area. The FT-IR, TG results plus CHN analysis show the encapsulation of a tracemore » of emulsion components in the emulsion ZSM-5. Control experiments show the emulsion system exerts the crystallization induction and morphological adjustment effects mainly during the aging period. The effects are tentatively attributed to the confined space domains, surfactant-water interaction as well as surfactant-growing crystals interaction existing in the emulsion. -- Graphical abstract: The nonionic emulsion synthesis allows rapid crystallization and morphological adjustment of zeolite ZSM-5 compared with the conventional hydrothermal synthesis. Display Omitted« less

  8. Nuclear Emulsion Analysis Methods of Locating Neutrino Interactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Erickson, Carolyn Lee

    2006-12-01

    The Fermilab experiment 872 (DONUT) was the first to directly observe tau neutrinos in the charged current interactionV more » $$\\tau$$+N →$$\\tau$$ +X. The observation was made using a hybrid emulsion-spectrometer detector to identify the signature kink or trident decay of the tau particle. Although nuclear emulsion has the benefit of sub-micron resolution, its use incorporates difficulties such as significant distortions and a high density of data resulting from its continuously active state. Finding events and achieving sub-micron resolution in emulsion requires a multi-pronged strategy of tracking and vertex location to deal with these inherent difficulties. By applying the methods developed in this thesis, event location efficiency can be improved from a value of 58% to 87%.« less

  9. Preparation of Pickering Double Emulsions Using Block Copolymer Worms

    PubMed Central

    2015-01-01

    The rational formulation of Pickering double emulsions is described using a judicious combination of hydrophilic and hydrophobic block copolymer worms as highly anisotropic emulsifiers. More specifically, RAFT dispersion polymerization was utilized to prepare poly(lauryl methacrylate)–poly(benzyl methacrylate) worms at 20% w/w solids in n-dodecane and poly(glycerol monomethacrylate)–poly(2-hydroxypropyl methacrylate)–poly(benzyl methacrylate) worms at 13% w/w solids in water by polymerization-induced self-assembly (PISA). Water-in-oil-in-water (w/o/w) double emulsions can be readily prepared with mean droplet diameters ranging from 30 to 80 μm using a two-stage approach. First, a w/o precursor emulsion comprising 25 μm aqueous droplets is prepared using the hydrophobic worms, followed by encapsulation within oil droplets stabilized by the hydrophilic worms. The double emulsion droplet diameter and number of encapsulated water droplets can be readily varied by adjusting the stirring rate employed during the second stage. For each stage, the droplet volume fraction is relatively high at 0.50. The double emulsion nature of the final formulation was confirmed by optical and fluorescence microscopy studies. Such double emulsions are highly stable to coalescence, with little or no change in droplet diameter being detected over storage at 20 °C for 10 weeks as judged by laser diffraction. Preliminary experiments indicate that the complementary o/w/o emulsions can also be prepared using the same pair of worms by changing the order of homogenization, although somewhat lower droplet volume fractions were required in this case. Finally, we demonstrate that triple and even quadruple emulsions can be formulated using these new highly anisotropic Pickering emulsifiers. PMID:25834923

  10. Spectra, composition and interactions of nuclei above 10 TeV using magnet-interferometric chambers (SCIN/MAGIC)

    NASA Technical Reports Server (NTRS)

    Wefel, John P.

    1991-01-01

    Initial definition studies were performed for the SCIN/MAGIC experiment selected as an Astromag investigation on Space Station Freedom. The study focused on Science Objectives and Science Requirement, Accommodation on both the STS and the Astromag facility, Data extraction techniques and Background Studies. The detectors are emulsion chambers which will be exposed for approximately 90 days and then recovered from orbit for subsequent processing and analysis in the laboratory. Such a technique is the only means to obtain information on the ultrahigh energy cosmic rays and their nuclear interactions. The SCIN/MAGIC investigation can supply unique data in relatively unexplored energy region and address many of the fundamental questions in particle astrophysics.

  11. Acquisition of Co metal from spent lithium-ion battery using emulsion liquid membrane technology and emulsion stability test

    NASA Astrophysics Data System (ADS)

    Yuliusman; Wulandari, P. T.; Amiliana, R. A.; Huda, M.; Kusumadewi, F. A.

    2018-03-01

    Lithium-ion batteries are the most common type to be used as energy source in mobile phone. The amount of lithium-ion battery wastes is approximated by 200 – 500 ton/year. In one lithium-ion battery, there are 5 – 20% of cobalt metal, depend on the manufacturer. One of the way to recover a valuable metal from waste is leaching process then continued with extraction, which is the aim of this study. Spent lithium-ion batteries will be characterized with EDX and AAS, the result will show the amount of cobalt metal with form of LiCoO2 in the cathode. Hydrochloric acid concentration used is 4 M, temperature 80°C, and reaction time 1 hour. This study will discuss the emulsion stability test on emulsion liquid membrane. The purpose of emulsion stability test in this study was to determine optimum concentration of surfactant and extractant to produce a stable emulsion. Surfactant and extractant used were SPAN 80 and Cyanex 272 respectively with both concentrations varied. Membrane and feed phase ratios used in this experiment was 1 : 2. The optimum results of this study were SPAN 80 concentrations of 10% w/v and Cyanex 272 0.7 M.

  12. The INAF/IAPS Plasma Chamber for ionospheric simulation experiment

    NASA Astrophysics Data System (ADS)

    Diego, Piero

    2016-04-01

    The plasma chamber is particularly suitable to perform studies for the following applications: - plasma compatibility and functional tests on payloads envisioned to operate in the ionosphere (e.g. sensors onboard satellites, exposed to the external plasma environment); - calibration/testing of plasma diagnostic sensors; - characterization and compatibility tests on components for space applications (e.g. optical elements, harness, satellite paints, photo-voltaic cells, etc.); - experiments on satellite charging in a space plasma environment; - tests on active experiments which use ion, electron or plasma sources (ion thrusters, hollow cathodes, field effect emitters, plasma contactors, etc.); - possible studies relevant to fundamental space plasma physics. The facility consists of a large volume vacuum tank (a cylinder of length 4.5 m and diameter 1.7 m) equipped with a Kaufman type plasma source, operating with Argon gas, capable to generate a plasma beam with parameters (i.e. density and electron temperature) close to the values encountered in the ionosphere at F layer altitudes. The plasma beam (A+ ions and electrons) is accelerated into the chamber at a velocity that reproduces the relative motion between an orbiting satellite and the ionosphere (≈ 8 km/s). This feature, in particular, allows laboratory simulations of the actual compression and depletion phenomena which take place in the ram and wake regions around satellites moving through the ionosphere. The reproduced plasma environment is monitored using Langmuir Probes (LP) and Retarding Potential Analyzers (RPA). These sensors can be automatically moved within the experimental space using a sled mechanism. Such a feature allows the acquisition of the plasma parameters all around the space payload installed into the chamber for testing. The facility is currently in use to test the payloads of CSES satellite (Chinese Seismic Electromagnetic Satellite) devoted to plasma parameters and electric field

  13. Lipid globule size in total nutrient admixtures prepared in three-chamber plastic bags.

    PubMed

    Driscoll, David F; Thoma, Andrea; Franke, Rolf; Klütsch, Karsten; Nehne, Jörg; Bistrian, Bruce R

    2009-04-01

    The stability of injectable lipid emulsions in three-chamber plastic (3CP) bags, applying the globule-size limits established by United States Pharmacopeia ( USP ) chapter 729, was studied. A total of five premixed total nutrient admixture (TNA) products packaged in 3CP bags from two different lipid manufacturers containing either 20% soybean oil or a mixture of soybean oil and medium-chain-triglyceride oil as injectable lipid emulsions were tested. Two low-osmolarity 3CP bags and three high-osmolarity 3CP bags were studied. All products were tested with the addition of trace elements and multivitamins. All additive conditions (with and without electrolytes) were tested in triplicate at time 0 (immediately after mixing) and at 6, 24, 30, and 48 hours after mixing; the bags were stored at 24-26 degrees C. All additives were equally distributed in each bag for comparative testing, applying both globule sizing methods outlined in USP chapter 729. Of the bags tested, all bags from one manufacturer were coarse emulsions, showing signs of significant growth in the large-diameter tail when mixed as a TNA formulation and failing the limits set by method II of USP chapter 729 from the outset and throughout the study, while the bags from the other manufacturer were fine emulsions and met these limits. Of the bags that failed, significant instability was noted in one series containing additional electrolytes. Injectable lipid emulsions provided in 3CP bags that did not meet the globule-size limits of USP chapter 729 produced coarser TNA formulations than emulsions that met the USP limits.

  14. Responsiveness of emulsions stabilized by lactoferrin nano-particles to simulated intestinal conditions.

    PubMed

    Meshulam, Dafna; Lesmes, Uri

    2014-01-01

    There is an upsurge of interest in the use of nano-particles to fabricate emulsions and modulate their functionality, with particular emphasis on modulating emulsion digestive fate. Food grade nano-particles formed through controlled processing and electrostatic biopolymer interactions are yet to be systematically studied for their ability to stabilize emulsions and modulate emulsion digestibility. This study focused on the responsiveness of emulsions stabilized by lactoferrin (LF) nano-particles (NPs) and dietary fibers to key digestive parameters. Compared to native LF, LF-NPs comprised emulsion exhibited elevated creaming rates as evident from accelerated stability tests performed by analytical centrifugation. The electrostatic deposition of alginate or carrageenan onto the LF-NPs significantly improved the stability of the corresponding emulsions. Further, the use of various nano-particles showed to have both beneficial and deleterious effects on emulsion responsiveness to pH (2.0 < pH < 10.0), CaCl2 (0-40 mM) and bile (0-25 mg mL(-1)). Simulated pH-stat lipolysis experiments show that the use of LF or LF-NPs had no marked effect on lipolysis. Intriguingly, the use of LF-NPs and alginate reduced emulsion lipolysis by 14% while the use of LF-NPs and carrageenan increased lipolysis by 10%. Microscopy images as well as droplet characterization in terms of size and charge indicate that the altered emulsion responsiveness may be due to physical differences in emulsion properties (e.g. droplet size) and overall organization during digestion (e.g. aggregation vs. coalescence). Overall, this study's insights could prospectively be used to harness protein nano-particles to tweak emulsion behavior during digestion.

  15. Innovative applications of food-related emulsions.

    PubMed

    Kiokias, S; Varzakas, T

    2017-10-13

    Research on oxidative stability of multiple emulsions is very scarce. Given that this is a relevant topic that must be ascertained before the successful application of multiple emulsions in foods (especially when a combination of highly unsaturated oils is used as a lipid phase), this review mainly focuses on various aspects of the multiple emulsions. Fat replacement in meat products using emulsions is critically discussed along with innovative applications of natural antioxidants in food-based emulsions and multiple emulsions based on bioactive compounds/encapsulation as well as confectionery products.

  16. Emulsion Mapping in Pork Meat Emulsion Systems with Various Lipid Types and Brown Rice Fiber.

    PubMed

    Choi, Yun-Sang; Kim, Young-Boong; Kim, Hyun-Wook; Hwang, Ko-Eun; Song, Dong-Heon; Jeong, Tae-Jun; Park, Jinhee; Kim, Cheon-Jei

    2015-01-01

    This study was conducted to evaluate emulsion mapping between emulsion stability and cooking yields, apparent viscosity, and hardness of reduced-fat pork emulsion systems. The reduced-fat emulsion systems were supplemented with different lipid types and brown rice bran fiber (BRF) concentrations. Compared to the control with 30% back fat, lower emulsion stability and higher cooking yield of meat emulsion systems were observed in T1 (30% back fat+1% BRF), T2 (30% back fat+2% BRF), T3 (30% back fat+3% BRF), T4 (30% back fat+6% BRF), and T15 (10% back fat+10% canola oil+2% BRF). Lower emulsion stability and higher apparent viscosity were observed in T1, T2, T3, T4, and T8 (20% back fat+3% BRF) compared to the control. Lower emulsion stability and higher hardness was detected in all treatments compared with the control, except T5 (20% back fat), T10 (10% back fat+10% canola oil+2% BRF), T11 (10% back fat+10% olive oil+2% BRF), T12 (10% back fat+10% grape seed oil+2% BRF), and T13 (10% back fat+10% soybean oil+2% BRF). This approach has been found particularly useful for highlighting differences among the emulsified properties in emulsion meat products. Thus, the results obtained with emulsion mapping are useful in making emulsified meat products of desired quality characteristics, partially replacing pork back fat with a mix of 10% back fat, 10% canola oil and 2% BRF was most similar to the control with 30% pork back fat.

  17. Emulsion Mapping in Pork Meat Emulsion Systems with Various Lipid Types and Brown Rice Fiber

    PubMed Central

    Choi, Yun-Sang; Kim, Young-Boong; Park, Jinhee

    2015-01-01

    This study was conducted to evaluate emulsion mapping between emulsion stability and cooking yields, apparent viscosity, and hardness of reduced-fat pork emulsion systems. The reduced-fat emulsion systems were supplemented with different lipid types and brown rice bran fiber (BRF) concentrations. Compared to the control with 30% back fat, lower emulsion stability and higher cooking yield of meat emulsion systems were observed in T1 (30% back fat+1% BRF), T2 (30% back fat+2% BRF), T3 (30% back fat+3% BRF), T4 (30% back fat+6% BRF), and T15 (10% back fat+10% canola oil+2% BRF). Lower emulsion stability and higher apparent viscosity were observed in T1, T2, T3, T4, and T8 (20% back fat+3% BRF) compared to the control. Lower emulsion stability and higher hardness was detected in all treatments compared with the control, except T5 (20% back fat), T10 (10% back fat+10% canola oil+2% BRF), T11 (10% back fat+10% olive oil+2% BRF), T12 (10% back fat+10% grape seed oil+2% BRF), and T13 (10% back fat+10% soybean oil+2% BRF). This approach has been found particularly useful for highlighting differences among the emulsified properties in emulsion meat products. Thus, the results obtained with emulsion mapping are useful in making emulsified meat products of desired quality characteristics, partially replacing pork back fat with a mix of 10% back fat, 10% canola oil and 2% BRF was most similar to the control with 30% pork back fat. PMID:26761836

  18. Emulsion characteristics, chemical and textural properties of meat systems produced with double emulsions as beef fat replacers.

    PubMed

    Serdaroğlu, Meltem; Öztürk, Burcu; Urgu, Müge

    2016-07-01

    In recent years, double emulsions are stated to have a promising potential in low-fat food production, however, there are very few studies on their possible applications in meat matrices. We aimed to investigate the quality of beef emulsion systems in which beef fat was totally replaced by double emulsions (W1/O/W2) prepared with olive oil and sodium caseinate (SC) by two-step emulsification procedure. Incorporation of W1/O/W2 emulsion resulted in reduced lipid, increased protein content, and modified fatty acid composition. W1/O/W2 emulsion treatments had lower jelly and fat separation, higher water-holding capacity and higher emulsion stability than control samples with beef fat. Increased concentrations of W1/O/W2 emulsions resulted in significant changes in texture parameters. TBA values were lower in W1/O/W2 emulsion treatments than control treatment after 60days of storage. In conclusion, our study confirms that double emulsions had promising impacts on modifying fatty acid composition and developing both technologically and oxidatively stable beef emulsion systems. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Spreading of Emulsions on Glass Substrates

    NASA Astrophysics Data System (ADS)

    Mohammad Karim, Alireza; Kavehpour, Pirouz

    2012-11-01

    The wettability of emulsions is an important factor with explicit influence in an extensive variety of industrial applications ranging from the petroleum to food industries. Surprisingly, there is no comprehensive study of emulsion spreading to date; this is due to the complexity of the structure of the emulsions and non-homogeneity of the dispersed phase bubbles in size as well as distribution through the emulsion. The spreading of water/silicone oil emulsions on glass substrates was investigated. The emulsions were prepared with varying volume fractions of water dispersed in silicone oil, with addition of small amounts of surfactant to stabilize the emulsion structure. The time dependent variation of dynamic contact angle, base diameter, and the spreading rate of the droplets of an emulsion are different from a pure substance. The effect of water/silicone oil weight percentage as well as the droplet size and dispersed phase bubble size were also investigated. The weight percentage of water/silicone oil emulsion and droplet size did not have significant influence on the spreading dynamics; however the dispersed phase drop size affected the spreading dynamics substantially.

  20. On the halo events observed by Mount Fuji and Mount Kanbala Emulsion Chamber Experiments

    NASA Technical Reports Server (NTRS)

    Ren, J. R.; Kuang, H. H.; Huo, A. X.; Lu, S. L.; Su, S.; Wang, Y. X.; Xue, Y. G.; Wang, C. R.; He, M.; Zhang, N. J.

    1985-01-01

    The intensity of big gamma-ray families associated by halo is obtained from Mt. Fuji experiment (650 g/sq.cm. atmospheric depth) and Mt. Kanbala experiment (515 g/sq.cm.). The results are compared with Monte Carlo calculation based on several assumptions on interaction mechanisms and the primary cosmic ray composition. The results suggest more than 3 times lower proton abundance among primaries than that of 10 to the 12th to 10 to the 13th eV region within the framework of quasi-scaling model of multiple production.

  1. Controlling molecular transport in minimal emulsions

    NASA Astrophysics Data System (ADS)

    Gruner, Philipp; Riechers, Birte; Semin, Benoît; Lim, Jiseok; Johnston, Abigail; Short, Kathleen; Baret, Jean-Christophe

    2016-01-01

    Emulsions are metastable dispersions in which molecular transport is a major mechanism driving the system towards its state of minimal energy. Determining the underlying mechanisms of molecular transport between droplets is challenging due to the complexity of a typical emulsion system. Here we introduce the concept of `minimal emulsions', which are controlled emulsions produced using microfluidic tools, simplifying an emulsion down to its minimal set of relevant parameters. We use these minimal emulsions to unravel the fundamentals of transport of small organic molecules in water-in-fluorinated-oil emulsions, a system of great interest for biotechnological applications. Our results are of practical relevance to guarantee a sustainable compartmentalization of compounds in droplet microreactors and to design new strategies for the dynamic control of droplet compositions.

  2. Lentil and chickpea protein-stabilized emulsions: optimization of emulsion formulation.

    PubMed

    Can Karaca, Asli; Nickerson, Michael T; Low, Nicholas H

    2011-12-28

    Chickpea and lentil protein-stabilized emulsions were optimized with regard to pH (3.0-8.0), protein concentration (1.1-4.1% w/w), and oil content (20-40%) for their ability to form and stabilize oil-in-water emulsions using response surface methodology. Specifically, creaming stability, droplet size, and droplet charge were assessed. Optimum conditions for minimal creaming (no serum separation after 24 h), small droplet size (<2 μm), and high net droplet charge (absolute value of ZP > 40 mV) were identified as 4.1% protein, 40% oil, and pH 3.0 or 8.0, regardless of the plant protein used for emulsion preparation.

  3. The Preparation and Testing of a Common Emulsion and Personal Care Product: Lotion

    ERIC Educational Resources Information Center

    Mabrouk, Suzanne T.

    2004-01-01

    A chemical analysis of lotions, which comprises of categorizations of moisturizers and emulsions, with the preparation and testing of three lotions, is done. The experiment piques students' interest in preparing lotions and emulsions, and proves the value of chemistry in satisfying the needs of everyday life.

  4. Complementary methods for the determination of dissolved oxygen content in perfluorocarbon emulsions and other solutions.

    PubMed

    Fraker, Christopher A; Mendez, Armando J; Stabler, Cherie L

    2011-09-08

    Perfluorocarbons (PFCs) are compounds with increased oxygen solubility and effective diffusivity, making them ideal candidates for improving oxygen mass transfer in numerous biological applications. Historically, quantification of the mass transfer characteristics of these liquids has relied on the use of elaborate laboratory equipment and complicated methodologies, such as in-line gas chromatography coupled with temperature-controlled glass fritted diffusion cells. In this work, we present an alternative method for the determination of dissolved oxygen content in PFC emulsions and, by extrapolation, pure PFCs. We implemented a simple stirred oxygen consumption microchamber coupled with an enzymatic reaction for the quantitative determination of oxygen by optical density measurements. Chambers were also custom fitted with lifetime oxygen sensors to permit simultaneous measurement of internal chamber oxygen levels. Analyzing the consumption of oxygen during the enzymatic reaction via recorded oxygen depletion traces, we found a strong degree of correlation between the zero-order reaction rate and the total measured oxygen concentrations, relative to control solutions. The values obtained were in close agreement with published values in the literature, establishing the accuracy of this method. Overall, this method allows for easy, reliable, and reproducible measurements of oxygen content in aqueous solutions, including, but not limited to PFC emulsions.

  5. Rapid, chemical-free breaking of microfluidic emulsions with a hand-held antistatic gun

    PubMed Central

    Shahi, Payam; Abate, Adam R.

    2017-01-01

    Droplet microfluidics can form and process millions of picoliter droplets with speed and ease, allowing the execution of huge numbers of biological reactions for high-throughput studies. However, at the conclusion of most experiments, the emulsions must be broken to recover and analyze their contents. This is usually achieved with demulsifiers, like perfluorooctanol and chloroform, which can interfere with downstream reactions and harm cells. Here, we describe a simple approach to rapidly and efficiently break microfluidic emulsions, which requires no chemicals. Our method allows one-pot multi-step reactions, making it useful for large scale automated processing of reactions requiring demulsification. Using a hand-held antistatic gun, we pulse emulsions with the electric field, coalescing ∼100 μl of droplets in ∼10 s. We show that while emulsions broken with chemical demulsifiers exhibit potent PCR inhibition, the antistatic-broken emulsions amplify efficiently. The ability to break emulsions quickly without chemicals should make our approach valuable for most demulsification needs in microfluidics. PMID:28794817

  6. Pre-launch simulation experiment of microwave-ionosphere nonlinear interaction rocket experiment in the space plasma chamber

    NASA Astrophysics Data System (ADS)

    Kaya, N.; Tsutsui, M.; Matsumoto, H.; Kimura, I.

    1980-09-01

    A pre-flight test experiment of a microwave-ionosphere nonlinear interaction rocket experiment (MINIX) has been carried out in a space plasma simulation chamber. Though the first rocket experiment ended up in failure because of a high voltage trouble, interesting results are observed in the pre-flight experiment. A significant microwave heating of plasma up to 300% temperature increase is observed. Strong excitations of plasma waves by the transmitted microwaves in the VLF and HF range are observed as well. These microwave effects may have to be taken into account in solar power satellite projects in the future.

  7. A new fast scanning system for the measurement of large angle tracks in nuclear emulsions

    NASA Astrophysics Data System (ADS)

    Alexandrov, A.; Buonaura, A.; Consiglio, L.; D'Ambrosio, N.; De Lellis, G.; Di Crescenzo, A.; Di Marco, N.; Galati, G.; Lauria, A.; Montesi, M. C.; Pupilli, F.; Shchedrina, T.; Tioukov, V.; Vladymyrov, M.

    2015-11-01

    Nuclear emulsions have been widely used in particle physics to identify new particles through the observation of their decays thanks to their unique spatial resolution. Nevertheless, before the advent of automatic scanning systems, the emulsion analysis was very demanding in terms of well trained manpower. Due to this reason, they were gradually replaced by electronic detectors, until the '90s, when automatic microscopes started to be developed in Japan and in Europe. Automatic scanning was essential to conceive large scale emulsion-based neutrino experiments like CHORUS, DONUT and OPERA. Standard scanning systems have been initially designed to recognize tracks within a limited angular acceptance (θ lesssim 30°) where θ is the track angle with respect to a line perpendicular to the emulsion plane. In this paper we describe the implementation of a novel fast automatic scanning system aimed at extending the track recognition to the full angular range and improving the present scanning speed. Indeed, nuclear emulsions do not have any intrinsic limit to detect particle direction. Such improvement opens new perspectives to use nuclear emulsions in several fields in addition to large scale neutrino experiments, like muon radiography, medical applications and dark matter directional detection.

  8. Crocin loaded nano-emulsions: Factors affecting emulsion properties in spontaneous emulsification.

    PubMed

    Mehrnia, Mohammad-Amin; Jafari, Seid-Mahdi; Makhmal-Zadeh, Behzad S; Maghsoudlou, Yahya

    2016-03-01

    Spontaneous emulsification may be used for encapsulating bioactive compounds in food and pharmaceutical industry. It has several advantages over high energy and other low energy methods including, protecting sensitive compounds against severe conditions of high energy method and its ability to minimize surfactant, removal of cosurfactant and thermal stability compared with other low energy methods. In this study, we examined possibility of encapsulating highly soluble crocin in W/O micro-emulsions using spontaneous method which further could be used for making double emulsions. Nonionic surfactants of Span 80 and polyglycerol polyricinoleate (PGPR) were used for making micro-emulsions that showed the high potential of PGPR for spontaneous method. Surfactant to water ratio (SWR%) was evaluated to find the highest amount of aqueous phase which can be dispersed in organic phase. Droplet size decreased by increasing SWR toward the SWR=100% which had the smallest droplet size and then increased at higher levels of surfactant. By increasing SWR, shear viscosity increased which showed the high effect of PGPR on rheological properties. This study shows in addition to W/O micro-emulsions, spontaneous method could be used for preparing stable O/W micro-emulsions. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Calibration of cathode strip gains in multiwire drift chambers of the GlueX experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berdnikov, V. V.; Somov, S. V.; Pentchev, L.

    A technique for calibrating cathode strip gains in multiwire drift chambers of the GlueX experiment is described. The accuracy of the technique is estimated based on Monte Carlo generated data with known gain coefficients in the strip signal channels. One of the four detector sections has been calibrated using cosmic rays. Results of drift chamber calibration on the accelerator beam upon inclusion in the GlueX experimental setup are presented.

  10. Application of mathematical planning in production of filled emulsion rubbers

    NASA Astrophysics Data System (ADS)

    Pugacheva, I. N.; Molokanova, L. V.; Popova, L. V.; Repin, P. S.

    2018-05-01

    The applicability of mathematical planning of experiment in the field of chemistry and chemical engineering, in particular in the industrial production of synthetic rubbers, is considered in the article. Possibility of using secondary material resources, which are waste products of light industry, in the production of elastomeric compositions is studied. The method of obtaining a powdered cellulose additive from wastes containing cellulose fiber is described. The best way of introducing the obtained additive into elastomeric compositions based on the emulsion rubber is established. Optimal conditions for obtaining filled emulsion rubber with the help of a powdered cellulose additive were established basing on the mathematical planning of experiment.

  11. Stabilization Improves Theranostic Properties of Lipiodol®-Based Emulsion During Liver Trans-arterial Chemo-embolization in a VX2 Rabbit Model.

    PubMed

    Deschamps, F; Farouil, G; Gonzalez, W; Robic, C; Paci, A; Mir, L M; Tselikas, L; de Baère, T

    2017-06-01

    To demonstrate that stability is a crucial parameter for theranostic properties of Lipiodol ® -based emulsions during liver trans-arterial chemo-embolization. We compared the theranostic properties of two emulsions made of Lipiodol ® and doxorubicin in two successive animal experiments (One VX2 tumour implanted in the left liver lobe of 30 rabbits). Emulsion-1 reproduced one of the most common way of preparation (ratio of oil/water: 1/1), and emulsion-2 was designed to obtain a water-in-oil emulsion with enhanced stability (ratio of oil/water: 3/1, plus an emulsifier). The first animal experiment compared the tumour selectivity of the two emulsions: seven rabbits received left hepatic arterial infusion (HAI) of emulsion-1 and eight received HAI of emulsion-2. 3D-CBCT acquisitions were acquired after HAI of every 0.1 mL to measure the densities' ratios between the tumours and the left liver lobes. The second animal experiment compared the plasmatic and tumour doxorubicin concentrations after HAI of 1.5 mg of doxorubicin administered either alone (n = 3) or in emulsion-1 (n = 6) or in emulsion-2 (n = 6). Emulsion-2 resulted in densities' ratios between the tumours and the left liver lobes that were significantly higher compared to emulsion-1 (up to 0.4 mL infused). Plasmatic doxorubicin concentrations (at 5 min) were significantly lower after HAI of emulsion-2 (19.0 μg/L) than emulsion-1 (275.3 μg/L, p < 0.01) and doxorubicin alone (412.0 μg/L, p < 0.001), and tumour doxorubicin concentration (day-1) was significantly higher after HAI of emulsion-2 (20,957 ng/g) than in emulsion-1 (8093 ng/g, p < 0.05) and doxorubicin alone (2221 ng/g, p < 0.01). Stabilization of doxorubicin in a water-in-oil Lipiodol ® -based emulsion results in better theranostic properties.

  12. Transport and Retention of Concentrated Oil-in-Water Emulsions in Sandy Porous Media

    NASA Astrophysics Data System (ADS)

    Muller, K.; Esahani, S. G.; Steven, C. C.; Ramsburg, A.

    2015-12-01

    Oil-in-water emulsions are widely employed to promote biotic reduction of contaminants; however, emulsions can also be used to encapsulate and deliver active ingredients required for long-term subsurface treatment. Our research focuses on encapsulating alkalinity-releasing particles in oil-in-water emulsions for sustained control of subsurface pH. Typical characteristics of these emulsions include kinetically stable for >20 hr; 20% soybean oil; 1 g/mL density; 8-10 cP viscosity; and 1.5 μm droplet d50, with emulsions developed for favorable subsurface delivery. The viscosity of the oil-in-water emulsions was found to be a function of oil content. Ultimately we aim to model both emulsion delivery and alkalinity release (from retained emulsion droplets) to provide a description of pH treatment. Emulsion transport and retention was investigated via a series of 1-d column experiments using varying particle size fractions of Ottawa sand. Emulsions were introduced for approximately two pore volumes followed by a flush of background solution (approx. ρ=1 g/mL; μ=1cP). Emulsion breakthrough curves exhibit an early fall on the backside of the breakthrough curve along with tailing. Deposition profiles are found to be hyper-exponential and unaffected by extended periods of background flow. Particle transport models established for dilute suspensions are unable to describe the transport of the concentrated emulsions considered here. Thus, we explore the relative importance of additional processes driving concentrated droplet transport and retention. Focus is placed on evaluating the role of attachment-detachment-straining processes, as well as the influence of mixing from both viscous instabilities and variable water saturation due to deposited mass.

  13. Liquid Fuel Emulsion Jet-in-Crossflow Penetration and Dispersion Under High Pressure Conditions

    NASA Astrophysics Data System (ADS)

    Gomez, Guillermo Andres

    The current work focuses on the jet-in-crossflow penetration and dispersion behavior of water-in-oil emulsions in a high pressure environment. Both fuel injection strategies of using a water-in-oil emulsion and a jet-in-crossflow have demonstrated unique benefits in improving gas turbine performance from an emissions and efficiency standpoint. A jet-in-crossflow is very practical for use in gas turbine engines, rocket propulsion, and aircraft engines since it utilizes already available crossflow air to atomize fuel. Injecting water into a combustion chamber in the form of a water-in-oil emulsion allows for pollutant emissions reduction while reducing efficiency loses that may result from using a separate water or steam injection circuit. Dispersion effects on oil droplets are expected, therefore investigating the distribution of both oil and water droplets in the crossflow is an objective in this work. Understanding the synchronization and injection behavior of the two strategies is of key interest due to their combined benefits. A water-to-oil ratio and an ambient pressure parameter are developed for emulsion jet-in-crossflow trajectories. To this end, a total of 24 emulsion jet-in-crossflow tests were performed with varying ambient pressures of 2-8 atm and momentum flux ratios of 50, 85, and 120. Sobel edge filtering was applied to each averaged image obtained from a high speed video of each test case. Averaged and filtered images were used to resolve top and bottom edges of the trajectory in addition to the overall peak intensity up to 40 mm downstream of the injection point. An optimized correlation was established and found to differ from literature based correlations obtained under atmospheric pressure conditions. Overall it was found that additional parameters were not necessary for the top edge and peak intensity correlations, but a need for a unique emulsion bottom edge and width trajectory correlation was recognized. In addition to investigating emulsion

  14. Multiple pickering emulsions stabilized by microbowls.

    PubMed

    Nonomura, Yoshimune; Kobayashi, Naoto; Nakagawa, Naoki

    2011-04-19

    Some researchers have focused on the adsorption of solid particles at fluid-fluid interfaces and prepared emulsions and foams called "Pickering emulsions/foams". However, while several reports exist on simple spherical emulsions, few reports are available on the formation of more complex structures. Here, we show that holes on particle surfaces are a key factor in establishing the variety and complexity of mesoscale structures. Microbowls, which are hollow particles with holes on their surfaces, form multiple emulsions (water-in-oil-in-water and oil-in-water-in-oil emulsions) by simply mixing them with water and oil. Furthermore, stable potato-like or coffee-bean-like emulsions are also obtained, although nonspherical emulsions are usually unstable because of their larger interfacial energies. These findings are useful in designing the building blocks of complex supracolloidal systems for pharmaceutical, food, and cosmetic products. © 2011 American Chemical Society

  15. Tri-fuel (diesel-biodiesel-ethanol) emulsion characterization, stability and the corrosion effect

    NASA Astrophysics Data System (ADS)

    Low, M. H.; Mukhtar, N. A. M.; Yohaness Hagos, Ftwi; Noor, M. M.

    2017-10-01

    This paper presents the result of experimenting emulsified tri-fuel in term of stability, physico-chemical properties and corrosion effect on three common metals. The results were interpreted in terms of the impact of five minutes emulsification approach. Tri-fuel emulsions were varied in proportion ratio consist of biodiesel; 0%, 5%, 10%, and ethanol; 5%, 10%, 15%. Fuel characterization includes density, calorific value, flash point, and kinematic viscosity. Flash point of tri-fuel emulsion came with range catalog. Calorific value of tri-fuel emulsion appeared in declining pattern as more ethanol and biodiesel were added. Biodiesel promoted flow resistance while ethanol with opposite effect. 15% ethanol content in tri-fuel emulsion separated faster than 10% ethanol content but ethanol content with 5% yield no phase separation at all. Close cap under static immersion with various ratio of tri-fuel emulsions for over a month, corrosiveness attack was detected via weight loss technique on aluminum, stainless steel and mild steel.

  16. Analysis of emulsion stability in acrylic dispersions

    NASA Astrophysics Data System (ADS)

    Ahuja, Suresh

    2012-02-01

    Emulsions either micro or nano permit transport or solubilization of hydrophobic substances within a water-based phase. Different methods have been introduced at laboratory and industrial scales: mechanical stirring, high-pressure homogenization, or ultrasonics. In digital imaging, toners may be formed by aggregating a colorant with a latex polymer formed by batch or semi-continuous emulsion polymerization. Latex emulsions are prepared by making a monomer emulsion with monomer like Beta-carboxy ethyl acrylate (β-CEA) and stirring at high speed with an anionic surfactant like branched sodium dodecyl benzene sulfonates , aqueous solution until an emulsion is formed. Initiator for emulsion polymerization is 2-2'- azobis isobutyramide dehydrate with chain transfer agent are used to make the latex. If the latex emulsion is unstable, the resulting latexes produce a toner with larger particle size, broader particle size distribution with relatively higher latex sedimentation, and broader molecular weight distribution. Oswald ripening and coalescence cause droplet size to increase and can result in destabilization of emulsions. Shear thinning and elasticity of emulsions are applied to determine emulsion stability.

  17. Characterization of flaxseed oil emulsions.

    PubMed

    Lee, Pei-En; Choo, Wee-Sim

    2015-07-01

    The emulsifying capacity of surfactants (polysorbate 20, polysorbate 80 and soy lecithin) and proteins (soy protein isolate and whey protein isolate) in flaxseed oil was measured based on 1 % (w/w) of emulsifier. Surfactants showed significantly higher emulsifying capacity compared to the proteins (soy protein isolate and whey protein isolate) in flaxseed oil. The emulsion stability of the flaxseed oil emulsions with whey protein isolate (10 % w/w) prepared using a mixer was ranked in the following order: 1,000 rpm (58 min) ≈ 1,000 rpm (29 min) ≈ 2,000 rpm (35 min) >2,000 rpm (17.5 min). The emulsion stability of the flaxseed oil emulsions with whey protein isolate (10 % w/w) prepared using a homogenizer (Ultra Turrax) was independent of the speed and mixing time. The mean particle size of the flaxseed oil emulsions prepared using the two mixing devices ranged from 23.99 ± 1.34 μm to 47.22 ± 1.99 μm where else the particle size distribution and microstructure of the flaxseed oil emulsions demonstrated using microscopic imaging were quite similar. The flaxseed oil emulsions had a similar apparent viscosity and exhibited shear thinning (pseudoplastic) behavior. The flaxseed oil emulsions had L* value above 70 and was in the red-yellow color region (positive a* and b* values).

  18. Active nematic emulsions

    PubMed Central

    Hardoüin, Jérôme; Sagués, Francesc

    2018-01-01

    The formation of emulsions from multiple immiscible fluids is governed by classical concepts such as surface tension, differential chemical affinity and viscosity, and the action of surface-active agents. Much less is known about emulsification when one of the components is active and thus inherently not constrained by the laws of thermodynamic equilibrium. We demonstrate one such realization consisting in the encapsulation of an active liquid crystal (LC)–like gel, based on microtubules and kinesin molecular motors, into a thermotropic LC. These active nematic emulsions exhibit a variety of dynamic behaviors that arise from the cross-talk between topological defects separately residing in the active and passive components. Using numerical simulations, we show a feedback mechanism by which active flows continuously drive the passive defects that, in response, resolve the otherwise degenerated trajectories of the active defects. Our experiments show that the choice of surfactant, which stabilizes the active/passive interface, allows tuning the regularity of the self-sustained dynamic events. The hybrid active-passive system demonstrated here provides new perspectives for dynamic self-assembly driven by an active material but regulated by the equilibrium properties of the passive component. PMID:29740605

  19. Active nematic emulsions.

    PubMed

    Guillamat, Pau; Kos, Žiga; Hardoüin, Jérôme; Ignés-Mullol, Jordi; Ravnik, Miha; Sagués, Francesc

    2018-04-01

    The formation of emulsions from multiple immiscible fluids is governed by classical concepts such as surface tension, differential chemical affinity and viscosity, and the action of surface-active agents. Much less is known about emulsification when one of the components is active and thus inherently not constrained by the laws of thermodynamic equilibrium. We demonstrate one such realization consisting in the encapsulation of an active liquid crystal (LC)-like gel, based on microtubules and kinesin molecular motors, into a thermotropic LC. These active nematic emulsions exhibit a variety of dynamic behaviors that arise from the cross-talk between topological defects separately residing in the active and passive components. Using numerical simulations, we show a feedback mechanism by which active flows continuously drive the passive defects that, in response, resolve the otherwise degenerated trajectories of the active defects. Our experiments show that the choice of surfactant, which stabilizes the active/passive interface, allows tuning the regularity of the self-sustained dynamic events. The hybrid active-passive system demonstrated here provides new perspectives for dynamic self-assembly driven by an active material but regulated by the equilibrium properties of the passive component.

  20. Study on preparation and formation mechanism of n-alkanol/water emulsion using alpha-cyclodextrin.

    PubMed

    Hashizaki, Kaname; Kageyama, Takashi; Inoue, Motoki; Taguchi, Hiroyuki; Ueda, Haruhisa; Saito, Yoshihiro

    2007-11-01

    Surfactants are usually used for the preparation of emulsions; however, some have an adverse effect on the human body such as skin irritation, hemolysis, and protein denaturation, etc. In this study, we examined the preparation and formation mechanism of n-alkanol/water emulsions using alpha-cyclodextrin (alpha-CD) as an emulsifier. Emulsions were prepared by mixing oil and water phases for 4 min at 2500 rpm using a vortex mixer. The mechanism of emulsification was investigated with some physico-chemical techniques. From phase diagrams of n-alkanol/alpha-CD/water systems, the emulsion phase extended as the chain length of n-alkanols and the amount of alpha-CD added increased. Furthermore, the emulsion was not formed in the region where the n-alkanol/alpha-CD complex didn't precipitate; however, the emulsion was formed in the region where the complex precipitated. In addition, it was clear that the emulsions have a yield stress value and correspond to the Maxwell model from rheological measurement. Our experiments clearly showed that the stable emulsions are formed because the precipitated complexes form a dense film at the oil-water interface and prevent aggregation among dispersed phases. Furthermore, it is suggested that the creation of a three-dimensional network structure formed by precipitated complexes in the continuous phase contributes to the stabilization of the emulsion. Thus, we concluded that the n-alkanol/water emulsions using alpha-cyclodextrin were a kind of the Pickering emulsion.

  1. A comparative study of the physicochemical properties of a virgin coconut oil emulsion and commercial food supplement emulsions.

    PubMed

    Khor, Yih Phing; Koh, Soo Peng; Long, Kamariah; Long, Shariah; Ahmad, Sharifah Zarah Syed; Tan, Chin Ping

    2014-07-01

    Food manufacturers are interested in developing emulsion-based products into nutritional foods by using beneficial oils, such as fish oil and virgin coconut oil (VCO). In this study, the physicochemical properties of a VCO oil-in-water emulsion was investigated and compared to other commercial oil-in-water emulsion products (C1, C2, C3, and C4). C3 exhibited the smallest droplet size of 3.25 µm. The pH for the emulsion samples ranged from 2.52 to 4.38 and thus were categorised as acidic. In a texture analysis, C2 was described as the most firm, very adhesive and cohesive, as well as having high compressibility properties. From a rheological viewpoint, all the emulsion samples exhibited non-Newtonian behaviour, which manifested as a shear-thinning property. The G'G'' crossover illustrated by the VCO emulsion in the amplitude sweep graph but not the other commercial samples illustrated that the VCO emulsion had a better mouthfeel. In this context, the VCO emulsion yielded the highest zeta potential (64.86 mV), which was attributed to its strong repulsive forces, leading to a good dispersion system. C2 comprised the highest percentage of fat among all emulsion samples, followed by the VCO emulsion, with 18.44% and 6.59%, respectively.

  2. Using emulsion inversion in industrial processes.

    PubMed

    Salager, Jean-Louis; Forgiarini, Ana; Márquez, Laura; Peña, Alejandro; Pizzino, Aldo; Rodriguez, María P; Rondón-González, Marianna

    2004-05-20

    Emulsion inversion is a complex phenomenon, often perceived as an instability that is essentially uncontrollable, although many industrial processes make use of it. A research effort that started 2 decades ago has provided the two-dimensional and three-dimensional description, the categorization and the theoretical interpretation of the different kinds of emulsion inversion. A clear-cut phenomenological approach is currently available for understanding its characteristics, the factors that influence it and control it, the importance of fine-tuning the emulsification protocol, and the crucial occurrence of organized structures such as liquid crystals or multiple emulsions. The current know-how is used to analyze some industrial processes involving emulsion inversion, e.g. the attainment of a fine nutrient or cosmetic emulsion by temperature or formulation-induced transitional inversion, the preparation of a silicone oil emulsion by catastrophic phase inversion, the manufacture of a viscous polymer latex by combined inversion and the spontaneous but enigmatic inversion of emulsions used in metal working operations such as lathing or lamination.

  3. Crystals and crystallization in oil-in-water emulsions: implications for emulsion-based delivery systems.

    PubMed

    McClements, David Julian

    2012-06-15

    Many bioactive components intended for oral ingestion (pharmaceuticals and nutraceuticals) are hydrophobic molecules with low water-solubilities and high melting points, which poses considerable challenges to the formulation of oral delivery systems. Oil-in-water emulsions are often suitable vehicles for the encapsulation and delivery of this type of bioactive component. The bioactive component is usually dissolved in a carrier lipid phase by either dilution and/or heating prior to homogenization, and then the carrier lipid and water phases are homogenized to form an emulsion consisting of small oil droplets dispersed in water. The successful development of this kind of emulsion-based delivery system depends on a good understanding of the influence of crystals on the formation, stability, and properties of emulsions. This review article addresses the physicochemical phenomena associated with the encapsulation, retention, crystallization, release, and absorption of hydrophobic bioactive components within emulsions. This knowledge will be useful for the rational formulation of effective emulsion-based delivery systems for oral delivery of crystalline hydrophobic bioactive components in the food, health care, and pharmaceutical industries. Copyright © 2012 Elsevier B.V. All rights reserved.

  4. The stability behavior of sol-emulsion systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sunkel, J.M.; Berg, J.C.

    1996-05-10

    Sol-emulsion systems, i.e., colloids consisting of mixed populations of solid particles and emulsion droplets, are encountered in a number of applications, e.g., oil-assisted agglomeration for particle removal (coal fines from water). The stability characteristics of mixed aqueous dispersions of titanium dioxide and mineral oil emulsion droplets are examined as a function of pH and emulsifier type and content. Zeta potentials of both the titanium dioxide and the mineral oil particles are measured under all conditions to identify regions of expected heterocoagulation and to quantify the electrostatic boundary conditions. The latter are used in the numerical solution of the pair interactionmore » potentials based on the recent theory of McCormack et al. The potential functions are used in a modified version of the stability model of Hogg, Healy, and Fuerstenau to calculate early-stage aggregation rates. Photon correlation spectroscopy is used to determine stability ratios for homo- and heterocoagulation, and initial results indicate good agreement between experiments and computations.« less

  5. Showing Emulsion Properties with Common Dairy Foods

    NASA Astrophysics Data System (ADS)

    Bravo-Diaz, Carlos; Gonzalez-Romero, Elisa

    1996-09-01

    Foods are mixtures of different chemical compounds, and the quality we sense (taste, texture, color, etc.) are all manifestations of its chemical properties. Some of them can be visualized with the aid of simple, safe and inexpensive experiments using dairy products that can be found in any kitchen and using almost exclusively kitchen utensils. In this paper we propose some of them related with food emulsions. Food emulsions cover an extremely wide area of daily-life applications such as milk, sauces, dressings and beverages. Experimentation with some culinary recipes to prepare them and the analyisis of the observed results is close to ideal subject for the introduction of chemical principles, allowing to discuss about the nature and composition of foods, the effects of additives, etc. At the same time it allows to get insights into the scientific reasons that underlie on the recipes (something that it is not usually found in most cookbooks). For example, when making an emulsion like mayonnaise, why the egg yolks and water are the first materials in the bowl , and the oil is added to them rather than in the other way around? How you can "rescue" separate emulsions (mayonnaise)? Which parameters affect emulsion stability? Since safety, in its broad sense, is the first requisite for any food, concerns about food exist throughout the world and the more we are aware of our everyday life, the more likely we will be to deal productively with the consequences. On the other hand, understanding what foods are and how cooking works destroys no delightful mystery of the art of cuisine, instead the mystery expands.

  6. Arrested of coalescence of emulsion droplets of arbitrary size

    NASA Astrophysics Data System (ADS)

    Mbanga, Badel L.; Burke, Christopher; Blair, Donald W.; Atherton, Timothy J.

    2013-03-01

    With applications ranging from food products to cosmetics via targeted drug delivery systems, structured anisotropic colloids provide an efficient way to control the structure, properties and functions of emulsions. When two fluid emulsion droplets are brought in contact, a reduction of the interfacial tension drives their coalescence into a larger droplet of the same total volume and reduced exposed area. This coalescence can be partially or totally hindered by the presence of nano or micron-size particles that coat the interface as in Pickering emulsions. We investigate numerically the dependance of the mechanical stability of these arrested shapes on the particles size, their shape anisotropy, their polydispersity, their interaction with the solvent, and the particle-particle interactions. We discuss structural shape changes that can be induced by tuning the particles interactions after arrest occurs, and provide design parameters for the relevant experiments.

  7. Genesis of emulsion texture due to magma mixing: a case study from Chotanagpur Granite Gneiss Complex of Eastern India

    NASA Astrophysics Data System (ADS)

    Gogoi, Bibhuti; Saikia, Ashima; Ahmad, Mansoor

    2016-04-01

    The emulsion texture is a rare magma mixing feature in which rounded bodies of one magmatic phase remain dispersed in the other coherent phase (Freundt and Schmincke, 1992). This type of special texture in hybrid rocks can significantly contribute toward understanding the mechanisms facilitating magma mixing and magma chamber dynamics involving two disparate magmas as the exact processes by which mixing occurs still remain unclear. Recent developments in microfluidics have greatly helped us to understand the complex processes governing magma mixing occurring at micro-level. Presented work uses some of the results obtained from microfluidic experiments with a view to understand the formation mechanism of emulsions preserved in the hybrid rocks of the Ghansura Rhyolite Dome (GRD) of Proterozoic Chotanagpur Granite Gneiss Complex (CGGC), Eastern India. The GRD has preserved hybrid rocks displaying emulsion texture that formed due to the interaction of a phenocryst-rich basaltic magma and host rhyolite magma. The emulsions are more or less spherical in shape and dominantly composed of amphibole having biotite rinds set in a matrix of biotite, plagioclase, K-feldspar and quartz. Amphibole compositions were determined from the core of the emulsions to the rim with a view to check for cationic substitutions. The amphibole constituting the emulsions is actinolite in composition, and commonly shows tschermakite (Ts) and pargasite (Prg) substitutions. From petrographical and mineral-chemical analyses we infer that when mafic magma, containing phenocrysts of augite, came in contact with felsic magma, diffusion of cations like H+, Al3+and others occurred from the felsic to the mafic system. These cations reacted with the clinopyroxene phenocrysts in the mafic magma to form amphibole (actinolite) crystals. The formation of amphibole crystals in the mafic system greatly increased the viscosity of the system allowing the amphibole crystals to venture into the adjacent felsic

  8. Promising perspectives for ruminal protection of polyunsaturated fatty acids through polyphenol-oxidase-mediated crosslinking of interfacial protein in emulsions.

    PubMed

    De Neve, N; Vlaeminck, B; Gadeyne, F; Claeys, E; Van der Meeren, P; Fievez, V

    2018-03-16

    Previously, polyunsaturated fatty acids (PUFA) from linseed oil were effectively protected (>80%) against biohydrogenation through polyphenol-oxidase-mediated protein crosslinking of an emulsion, prepared with polyphenol oxidase (PPO) extract from potato tuber peelings. However, until now, emulsions of only 2 wt% oil have been successfully protected, which implies serious limitations both from a research perspective (e.g. in vivo trials) as well as for further upscaling toward practical applications. Therefore, the aim of this study was to increase the oil/PPO ratio. In the original protocol, the PPO extract served both an emulsifying function as well as a crosslinking function. Here, it was first evaluated whether alternative protein sources could replace the emulsifying function of the PPO extract, with addition of PPO extract and 4-methylcatechol (4MC) to induce crosslinking after emulsion preparation. This approach was then further used to evaluate protection of emulsions with higher oil content. Five candidate emulsifiers (soy glycinin, gelatin, whey protein isolate (WPI), bovine serum albumin and sodium caseinate) were used to prepare 10 wt% oil emulsions, which were diluted five times (w/w) with PPO extract (experiment 1). As a positive control, 2 wt% oil emulsions were prepared directly with PPO extract according to the original protocol. Further, emulsions of 2, 4, 6, 8 and 10 wt% oil were prepared, with 80 wt% PPO extract (experiment 2), or with 90, 80, 70, 60 and 50 wt% PPO extract, respectively (experiment 3) starting from WPI-stabilized emulsions. Enzymatic crosslinking was induced by 24-h incubation with 4MC. Ruminal protection efficiency was evaluated by 24-h in vitro batch simulation of the rumen metabolism. In experiment 1, protection efficiencies were equal or higher than the control (85.5% to 92.5% v. 81.3%). In both experiments 2 and 3, high protection efficiencies (>80%) were achieved, except for emulsions containing 10 wt% oil emulsions (<50

  9. Steroidal Compounds in Commercial Parenteral Lipid Emulsions

    PubMed Central

    Xu, Zhidong; Harvey, Kevin A.; Pavlina, Thomas; Dutot, Guy; Hise, Mary; Zaloga, Gary P.; Siddiqui, Rafat A.

    2012-01-01

    Parenteral nutrition lipid emulsions made from various plant oils contain steroidal compounds, called phytosterols. During parenteral administration of lipid emulsions, phytosterols can reach levels in the blood that are many fold higher than during enteral administration. The elevated phytosterol levels have been associated with the development of liver dysfunction and the rare development of liver failure. There is limited information available in the literature related to phytosterol concentrations in lipid emulsions. The objective of the current study was to validate an assay for steroidal compounds found in lipid emulsions and to compare their concentrations in the most commonly used parenteral nutrition lipid emulsions: Liposyn® II, Liposyn® III, Lipofundin® MCT, Lipofundin® N, Structolipid®, Intralipid®, Ivelip® and ClinOleic®. Our data demonstrates that concentrations of the various steroidal compounds varied greatly between the eight lipid emulsions, with the olive oil-based lipid emulsion containing the lowest levels of phytosterols and cholesterol, and the highest concentration of squalene. The clinical impression of greater incidences of liver dysfunction with soybean versus MCT/LCT and olive/soy lipid emulsions may be reflective of the levels of phytosterols in these emulsions. This information may help guide future studies and clinical care of patients with lipid emulsion-associated liver dysfunction. PMID:23016123

  10. Steroidal compounds in commercial parenteral lipid emulsions.

    PubMed

    Xu, Zhidong; Harvey, Kevin A; Pavlina, Thomas; Dutot, Guy; Hise, Mary; Zaloga, Gary P; Siddiqui, Rafat A

    2012-08-01

    Parenteral nutrition lipid emulsions made from various plant oils contain steroidal compounds, called phytosterols. During parenteral administration of lipid emulsions, phytosterols can reach levels in the blood that are many fold higher than during enteral administration. The elevated phytosterol levels have been associated with the development of liver dysfunction and the rare development of liver failure. There is limited information available in the literature related to phytosterol concentrations in lipid emulsions. The objective of the current study was to validate an assay for steroidal compounds found in lipid emulsions and to compare their concentrations in the most commonly used parenteral nutrition lipid emulsions: Liposyn(®) II, Liposyn(®) III, Lipofundin(®) MCT, Lipofundin(®) N, Structolipid(®), Intralipid(®), Ivelip(®) and ClinOleic(®). Our data demonstrates that concentrations of the various steroidal compounds varied greatly between the eight lipid emulsions, with the olive oil-based lipid emulsion containing the lowest levels of phytosterols and cholesterol, and the highest concentration of squalene. The clinical impression of greater incidences of liver dysfunction with soybean versus MCT/LCT and olive/soy lipid emulsions may be reflective of the levels of phytosterols in these emulsions. This information may help guide future studies and clinical care of patients with lipid emulsion-associated liver dysfunction.

  11. Electrochemically driven emulsion inversion

    NASA Astrophysics Data System (ADS)

    Johans, Christoffer; Kontturi, Kyösti

    2007-09-01

    It is shown that emulsions stabilized by ionic surfactants can be inverted by controlling the electrical potential across the oil-water interface. The potential dependent partitioning of sodium dodecyl sulfate (SDS) was studied by cyclic voltammetry at the 1,2-dichlorobenzene|water interface. In the emulsion the potential control was achieved by using a potential-determining salt. The inversion of a 1,2-dichlorobenzene-in-water (O/W) emulsion stabilized by SDS was followed by conductometry as a function of added tetrapropylammonium chloride. A sudden drop in conductivity was observed, indicating the change of the continuous phase from water to 1,2-dichlorobenzene, i.e. a water-in-1,2-dichlorobenzene emulsion was formed. The inversion potential is well in accordance with that predicted by the hydrophilic-lipophilic deviation if the interfacial potential is appropriately accounted for.

  12. Track following of Ξ-hyperons in nuclear emulsion for the E07 experiment

    NASA Astrophysics Data System (ADS)

    Mishina, Akihiro; Nakazawa, Kazuma; Hoshino, Kaoru; Itonaga, Kazunori; Yoshida, Junya; Than Tint, Khin; Kyaw Soe, Myint; Kinbara, Shinji; Itoh, Hiroki; Endo, Yoko; Kobayashi, Hidetaka; Umehara, Kaori; Yokoyama, Hiroyuki; Nakashima, Daisuke; J-PARC E07 Collaboration

    2014-09-01

    Events of Double- Λ and Twin Single- Λ Hypernuclei are very important to understand Λ- Λ and Ξ--N interaction. We planned the E07 experiment to find Nuclear mass dependences of them with ten times higher statistics than before. In the experiment, the number of Ξ- hyperon stopping at rest is about ten thousands which is ten times larger than before. Such number of tracks for Ξ- hyperon candidates should be followed in nuclear emulsion plate up to their stopping point. To complete its job within one year, it is necessary for development of automated track following system. The important points for track following is Track connection in plate by plate. To carry out these points, we innovated image processing methods. Especially, we applied pattern match of K- beams for 2nd point. Position accuracy of this method was 1.4 +/-0.8 μm . If we succeed this application in about one minute for a track in each plate, all track following can be finished in one year.

  13. Multiple emulsions controlled by stimuli-responsive polymers.

    PubMed

    Besnard, Lucie; Marchal, Frédéric; Paredes, Jose F; Daillant, Jean; Pantoustier, Nadège; Perrin, Patrick; Guenoun, Patrick

    2013-05-28

    The phase inversion of water-toluene emulsions stabilized with a single thermo- and pH-sensitive copolymer occurs through the formation of multiple emulsions. At low pH and ambient temperature, oil in water emulsions are formed which transform into highly stable multiple emulsions at pHs immediately lower than the inversion border. At higher pHs, the emulsion turns into a water in oil one. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Pickering emulsions stabilized by biodegradable block copolymer micelles for controlled topical drug delivery.

    PubMed

    Laredj-Bourezg, Faiza; Bolzinger, Marie-Alexandrine; Pelletier, Jocelyne; Chevalier, Yves

    2017-10-05

    Surfactant-free biocompatible and biodegradable Pickering emulsions were investigated as vehicles for skin delivery of hydrophobic drugs. O/w emulsions of medium-chain triglyceride (MCT) oil droplets loaded with all-trans retinol as a model hydrophobic drug were stabilized by block copolymer nanoparticles: either poly(lactide)-block-poly(ethylene glycol) (PLA-b-PEG) or poly(caprolactone)-block-poly(ethylene glycol) (PCL-b-PEG). Those innovative emulsions were prepared using two different processes allowing drug loading either inside oil droplets or inside both oil droplets and non-adsorbed block copolymer nanoparticles. Skin absorption of retinol was investigated in vitro on pig skin biopsies using the Franz cell method. Supplementary experiments by confocal fluorescence microscopy allowed the visualization of skin absorption of the Nile Red dye on histological sections. Retinol and Nile Red absorption experiments showed the large accumulation of hydrophobic drugs in the stratum corneum for the Pickering emulsions compared to the surfactant-based emulsion and an oil solution. Loading drug inside both oil droplets and block copolymer nanoparticles enhanced again skin absorption of drugs, which was ascribed to the supplementary contribution of free block copolymer nanoparticles loaded with drug. Such effect allowed tuning drug delivery to skin over a wide range by means of a suitable selection of either the formulation or the drug loading process. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Water-in-diesel emulsions and related systems.

    PubMed

    Lif, Anna; Holmberg, Krister

    2006-11-16

    Water-in-diesel emulsions are fuels for regular diesel engines. The advantages of an emulsion fuel are reductions in the emissions of nitrogen oxides and particulate matters, which are both health hazardous, and reduction in fuel consumption due to better burning efficiency. An important aspect is that diesel emulsions can be used without engine modifications. This review presents the influence of water on the emissions and on the combustion efficiency. Whereas there is a decrease in emissions of nitrogen oxides and particulate matters, there is an increase in the emissions of hydrocarbons and carbon monoxide with increasing water content of the emulsion. The combustion efficiency is improved when water is emulsified with diesel. This is a consequence of the microexplosions, which facilitate atomization of the fuel. The review also covers related fuels, such as diesel-in-water-in-diesel emulsions, i.e., double emulsions, water-in-diesel microemulsions, and water-in-vegetable oil emulsions, i.e., biodiesel emulsions. A brief overview of other types of alternative fuels is also included.

  16. Stabilization Improves Theranostic Properties of Lipiodol{sup ®}-Based Emulsion During Liver Trans-arterial Chemo-embolization in a VX2 Rabbit Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deschamps, F., E-mail: frederic.deschamps@gustaveroussy.fr; Farouil, G.; Gonzalez, W.

    PurposeTo demonstrate that stability is a crucial parameter for theranostic properties of Lipiodol{sup ®}-based emulsions during liver trans-arterial chemo-embolization.Materials and MethodsWe compared the theranostic properties of two emulsions made of Lipiodol{sup ®} and doxorubicin in two successive animal experiments (One VX2 tumour implanted in the left liver lobe of 30 rabbits). Emulsion-1 reproduced one of the most common way of preparation (ratio of oil/water: 1/1), and emulsion-2 was designed to obtain a water-in-oil emulsion with enhanced stability (ratio of oil/water: 3/1, plus an emulsifier). The first animal experiment compared the tumour selectivity of the two emulsions: seven rabbits received leftmore » hepatic arterial infusion (HAI) of emulsion-1 and eight received HAI of emulsion-2. 3D-CBCT acquisitions were acquired after HAI of every 0.1 mL to measure the densities’ ratios between the tumours and the left liver lobes. The second animal experiment compared the plasmatic and tumour doxorubicin concentrations after HAI of 1.5 mg of doxorubicin administered either alone (n = 3) or in emulsion-1 (n = 6) or in emulsion-2 (n = 6).ResultsEmulsion-2 resulted in densities’ ratios between the tumours and the left liver lobes that were significantly higher compared to emulsion-1 (up to 0.4 mL infused). Plasmatic doxorubicin concentrations (at 5 min) were significantly lower after HAI of emulsion-2 (19.0 μg/L) than emulsion-1 (275.3 μg/L, p < 0.01) and doxorubicin alone (412.0 μg/L, p < 0.001), and tumour doxorubicin concentration (day-1) was significantly higher after HAI of emulsion-2 (20,957 ng/g) than in emulsion-1 (8093 ng/g, p < 0.05) and doxorubicin alone (2221 ng/g, p < 0.01).ConclusionStabilization of doxorubicin in a water-in-oil Lipiodol{sup ®}-based emulsion results in better theranostic properties.« less

  17. The effects of biomacromolecules on the physical stability of W/O/W emulsions.

    PubMed

    Li, Jinlong; Zhu, Yunping; Teng, Chao; Xiong, Ke; Yang, Ran; Li, Xiuting

    2017-02-01

    The effect of bovine serum albumin (BSA), whey protein isolate (WPI), whey protein hydrolysate (WPH), sodium caseinate (SC), carboxymethylcellulose sodium (CMC), fish gelatin (FG), high methoxyl apple pectin (HMAP), low methoxyl apple pectin (LMAP), gum Arabic (GA), ι-carrageenan (CGN), and hydroxypropyl chitosan (HPCTS) on physical stability of internal or external aqueous phase of water-in-oil-in-water (W/O/W) emulsions was evaluated. WPI and CGN in the internal aqueous phase, and GA, HPCTS, and CMC in the external phase reduced the size of emulsion droplets. BSA, WPI, SC, FG, CGN, and HPCTS improved the dilution stability of W/O/W emulsions, but HMAP had a negative effect. BSA, WPI, SC, FG, LMAP, GA, CGN, HPCTS, or CMC significantly improved the thermal stability of W/O/W emulsions. Results also indicated that the addition of CGN (1.0%), HMAP (1.0%), WPH (1.0%), or HPCTS (1.0%) in internal aqueous phase significantly increased the viscosity of emulsions, however, addition to the external aqueous phase had insignificant effects. A protein-knockout experiment confirmed that proteins as biomacromolecules, were the key factor in improving physical stability of emulsions.

  18. Development of novel zein-sodium caseinate nanoparticle (ZP)-stabilized emulsion films for improved water barrier properties via emulsion/solvent evaporation.

    PubMed

    Wang, Li-Juan; Yin, Ye-Chong; Yin, Shou-Wei; Yang, Xiao-Quan; Shi, Wei-Jian; Tang, Chuan-He; Wang, Jin-Mei

    2013-11-20

    This work attempted to develop novel high barrier zein/SC nanoparticle (ZP)-stabilized emulsion films through microfluidic emulsification (ZPE films) or in combination with solvent (ethyl acetate) evaporation techniques (ZPE-EA films). Some physical properties, including tensile and optical properties, water vapor permeability (WVP), and surface hydrophobicity, as well as the microstructure of ZP-stabilized emulsion films were evaluated and compared with SC emulsion (SCE) films. The emulsion/solvent evaporation approach reduced lipid droplets of ZP-stabilized emulsions, and lipid droplets of ZP-stabilized emulsions were similar to or slightly lower than that of SC emulsions. However, ZP- and SC-stabilized emulsion films exhibited a completely different microstructure, nanoscalar lipid droplets were homogeneously distributed in the ZPE film matrix and interpenetrating protein-oil complex networks occurred within ZPE-EA films, whereas SCE films presented a heterogeneous microstructure. The different stabilization mechanisms against creaming or coalescence during film formation accounted for the preceding discrepancy of the microstructures between ZP-and SC-stabilized emulsion films. Interestingly, ZP-stabilized emulsion films exhibited a better water barrier efficiency, and the WVP values were only 40-50% of SCE films. A schematic representation for the formation of ZP-stabilized emulsion films was proposed to relate the physical performance of the films with their microstructure and to elucidate the possible forming mechanism of the films.

  19. Emulsion-based encapsulation and delivery of nanoparticles for the controlled release of alkalinity within the subsurface environment

    NASA Astrophysics Data System (ADS)

    Ramsburg, C. A.; Muller, K.; Gill, J.

    2012-12-01

    Many current approaches to managing groundwater contamination rely on further advances in amendment delivery in order to initiate and sustain contaminant degradation or immobilization. In fact, limited or ineffective delivery is often cited when treatment objectives are not attained. Emulsions, specifically oil-in-water emulsions, have demonstrated potential to aid delivery of remediation amendments. Emulsions also afford opportunities to control the release of active ingredients encapsulated within the droplets. Our research is currently focused on the controlled release of nanoparticle-based buffering agents using oil-in-water emulsions. This interest is motivated by the fact that chemical and biological processes employed for the remediation and stewardship of contaminated sites often necessitate control of pH during treatment and, in some cases, long thereafter. Alkalinity-release nanoparticles (e.g., CaCO3, MgO) were suspended within soybean oil and subsequently encapsulated by through the creation of oil-in-water emulsions. These oil-in-water emulsions are designed to have physical properties which are favorable for subsurface delivery (nominal properties: 1 g/mL density; 10 cP viscosity; and 1.5 μm droplet diameter). Buffer capacity titrations suggest that MgO particles are moderately more accessible within the oil phase and nearly twice as effective (on a per mass basis) at releasing alkalinity (as compared to the CaCO3 particles). Results from experiments designed to assess the release kinetics suggest that a linear driving force model is capable of describing the release process and mass transfer coefficients are constant through the reactive life of the emulsion. The release kinetics in emulsions containing MgO particles were found to be three orders of magnitude faster than those quantified for emulsions containing CaCO3. The slower release kinetics of the emulsions containing CaCO3 particles may prove beneficial when considering pH control at sites

  20. Ion flow experiments in a multipole discharge chamber

    NASA Technical Reports Server (NTRS)

    Kaufman, H. R.; Robinson, R. S.; Frisa, L. E.

    1982-01-01

    It has been customary to assume that ions flow nearly equally in all directions from the ion production region within an electron-bombardment discharge chamber. Ion flow measurements in a multipole discharge chamber have shown that this assumption is not true. In general, the electron current through a magnetic field can alter the electron density, and hence the ion density, in such a way that ions tend to be directed away from the region bounded by the magnetic field. When this mechanism is understood, it becomes evident that many past discharge chamber designs have operated with a preferentially directed flow of ions.

  1. Nanocellulose-stabilized Pickering emulsions and their applications

    PubMed Central

    Fujisawa, Shuji; Togawa, Eiji; Kuroda, Katsushi

    2017-01-01

    Abstract Pickering emulsion, which is an emulsion stabilized by solid particles, offers a wide range of potential applications because it generally provides a more stable system than surfactant-stabilized emulsion. Among various solid stabilizers, nanocellulose may open up new opportunities for future Pickering emulsions owing to its unique nanosizes, amphiphilicity, and other favorable properties (e.g. chemical stability, biodegradability, biocompatibility, and renewability). In this review, the preparation and properties of nanocellulose-stabilized Pickering emulsions are summarized. We also provide future perspectives on their applications, such as drug delivery, food, and composite materials. PMID:29383046

  2. Nanocellulose-stabilized Pickering emulsions and their applications

    NASA Astrophysics Data System (ADS)

    Fujisawa, Shuji; Togawa, Eiji; Kuroda, Katsushi

    2017-12-01

    Pickering emulsion, which is an emulsion stabilized by solid particles, offers a wide range of potential applications because it generally provides a more stable system than surfactant-stabilized emulsion. Among various solid stabilizers, nanocellulose may open up new opportunities for future Pickering emulsions owing to its unique nanosizes, amphiphilicity, and other favorable properties (e.g. chemical stability, biodegradability, biocompatibility, and renewability). In this review, the preparation and properties of nanocellulose-stabilized Pickering emulsions are summarized. We also provide future perspectives on their applications, such as drug delivery, food, and composite materials.

  3. A quality by design approach to optimization of emulsions for electrospinning using factorial and D-optimal designs.

    PubMed

    Badawi, Mariam A; El-Khordagui, Labiba K

    2014-07-16

    Emulsion electrospinning is a multifactorial process used to generate nanofibers loaded with hydrophilic drugs or macromolecules for diverse biomedical applications. Emulsion electrospinnability is greatly impacted by the emulsion pharmaceutical attributes. The aim of this study was to apply a quality by design (QbD) approach based on design of experiments as a risk-based proactive approach to achieve predictable critical quality attributes (CQAs) in w/o emulsions for electrospinning. Polycaprolactone (PCL)-thickened w/o emulsions containing doxycycline HCl were formulated using a Span 60/sodium lauryl sulfate (SLS) emulsifier blend. The identified emulsion CQAs (stability, viscosity and conductivity) were linked with electrospinnability using a 3(3) factorial design to optimize emulsion composition for phase stability and a D-optimal design to optimize stable emulsions for viscosity and conductivity after shifting the design space. The three independent variables, emulsifier blend composition, organic:aqueous phase ratio and polymer concentration, had a significant effect (p<0.05) on emulsion CQAs, the emulsifier blend composition exerting prominent main and interaction effects. Scanning electron microscopy (SEM) of emulsion-electrospun NFs and desirability functions allowed modeling of emulsion CQAs to predict electrospinnable formulations. A QbD approach successfully built quality in electrospinnable emulsions, allowing development of hydrophilic drug-loaded nanofibers with desired morphological characteristics. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. High speed automated microtomography of nuclear emulsions and recent application

    NASA Astrophysics Data System (ADS)

    Tioukov, V.; Aleksandrov, A.; Consiglio, L.; De Lellis, G.; Vladymyrov, M.

    2015-12-01

    The development of high-speed automatic scanning systems was the key-factor for massive and successful emulsions application for big neutrino experiments like OPERA. The emulsion detector simplicity, the unprecedented sub-micron spatial resolution and the unique ability to provide intrinsically 3-dimensional spatial information make it a perfect device for short-living particles study, where the event topology should be precisely reconstructed in a 10-100 um scale vertex region. Recently the exceptional technological progress in image processing and automation together with intensive R&D done by Italian and Japanese microscopy groups permit to increase the scanning speed to unbelievable few years ago m2/day scale and so greatly extend the range of the possible applications for emulsion-based detectors to other fields like: medical imaging, directional dark matter search, nuclear physics, geological and industrial applications.

  5. Slowly and rapidly digested fat emulsions are equally satiating but their triglycerides are differentially absorbed and metabolized in humans.

    PubMed

    Keogh, Jennifer B; Wooster, Tim J; Golding, Matthew; Day, Li; Otto, Bärbel; Clifton, Peter M

    2011-05-01

    Little is known about the effect of dietary fat emulsion microstructure on plasma TG concentrations, satiety hormones, and food intake. The aim of this study was to structure dietary fat to slow digestion and flatten postprandial plasma TG concentrations but not increase food intake. Emulsions were stabilized by egg lecithin (control), sodium sterol lactylate, or sodium caseinate/monoglyceride (CasMag) with either liquid oil or a liquid oil/solid fat mixture. In a randomized, double-blind, crossover design, 4 emulsions containing 30 g of fat in a 350-mL preload were consumed by 10 men and 10 women (BMI = 25.1 ± 2.8 kg/m(2); age = 58.8 ± 4.8 y). Pre- and postprandial plasma TG, cholecystokinin (CCK), glucagon-like peptide-1 (GLP-1), and peptide YY (PYY) concentrations and food intake were measured. In a second experiment in a subset of the participants (n = 8, 4 men and 4 women), (13)C-labeled mixed TG was incorporated into 2 different emulsions and breath (13)C was measured over 6 h. In the first experiment, the postprandial rise in plasma TG concentrations following the CasMag-stabilized emulsion containing 30% solid fat was lower than all other emulsions at 90 and 120 min (P < 0.05). Plasma CCK (P < 0.0001), GLP-1 (P < 0.01), and PYY (P < 0.001) concentrations were also reduced following this emulsion compared with control. Food intake at a test meal, eaten 3 h after the preload, did not differ among the emulsions. In the second experiment, when measured by the (13)C breath test, 25% of the TG in the CasMag emulsion was absorbed and metabolized compared with control. In conclusion, fat can be structured to decrease its effect on plasma TG concentrations without increasing food intake.

  6. On mini-cluster observed by Chacaltaya emulsion chamber experiment

    NASA Technical Reports Server (NTRS)

    Tati, T.

    1985-01-01

    Bundles of electromagnetic showers with very small tranverse momenta (approx. 10 MeV) accompanied by decay products of Chiron-type fireballs, have been observed. These bundles are called Miniclusters. This phenomenon supports the picture of fireballs made up of hadronic matter and based on the theory of the finite degree of freedom.

  7. A straw chambers' tracker for the high rate experiment 835 at the Fermilab accumulator

    NASA Astrophysics Data System (ADS)

    Bagnasco, S.; Dughera, G.; Giraudo, G.; Govi, G.; Marchetto, F.; Menichetti, E.; Pastrone, N.; Rumerio, P.; Trapani, P. P.

    1998-02-01

    Two layers of proportional drift tubes (aluminum mylar straws) are staggered in two cylindrical light chambers to measure charged particles' azimuthal angle. To stand the high rates (˜10 kHz/ cm2) and minimize the pile-up of the high luminosity experiment 835 at FNAL, a fast ASIC Amplifier-Shaper-Discriminator (ASD-8B) was chosen. The front-end electronics, designed exclusively with SMD components, was mounted on the downstream end plug of each chamber to avoid oscillations and noise. Design, construction and operational performances of these detectors are presented.

  8. Altering Emulsion Stability with Heterogeneous Surface Wettability

    NASA Astrophysics Data System (ADS)

    Meng, Qiang; Zhang, Yali; Li, Jiang; Lammertink, Rob G. H.; Chen, Haosheng; Tsai, Peichun Amy

    2016-06-01

    Emulsions-liquid droplets dispersed in another immiscible liquid-are widely used in a broad spectrum of applications, including food, personal care, agrochemical, and pharmaceutical products. Emulsions are also commonly present in natural crude oil, hampering the production and quality of petroleum fuels. The stability of emulsions plays a crucial role in their applications, but controlling the stability without external driving forces has been proven to be difficult. Here we show how heterogeneous surface wettability can alter the stability and dynamics of oil-in-water emulsions, generated by a co-flow microfluidic device. We designed a useful methodology that can modify a micro-capillary of desired heterogeneous wettability (e.g., alternating hydrophilic and hydrophobic regions) without changing the hydraulic diameter. We subsequently investigated the effects of flow rates and heterogeneous wettability on the emulsion morphology and motion. The experimental data revealed a universal critical timescale of advective emulsions, above which the microfluidic emulsions remain stable and intact, whereas below they become adhesive or inverse. A simple theoretical model based on a force balance can be used to explain this critical transition of emulsion dynamics, depending on the droplet size and the Capillary number-the ratio of viscous to surface effects. These results give insight into how to control the stability and dynamics of emulsions in microfluidics with flow velocity and different wettability.

  9. Ultrasonication-assisted preparation and characterization of emulsions and emulsion gels for topical drug delivery.

    PubMed

    Singh, Vinay K; Behera, Baikuntha; Pramanik, Krishna; Pal, Kunal

    2015-03-01

    The current study describes the use of ultrasonication for the preparation of biphasic emulsions and emulsion gels for topical drug delivery. Sorbitan monostearate (SMS) was used as the surfactant for stabilizing the interface of sesame oil (apolar phase) and water (polar phase). Emulsions were formed at lower concentrations of SMS, whereas emulsion gels were formed at higher concentrations of SMS. The formulations were characterized by fluorescent microscopy, X-ray diffraction, viscosity, stress relaxation, spreadability, and differential scanning calorimetry studies. Fluorescence microscopy suggested formation of oil-in-water type of formulations. There was an increase in the viscosity, bulk resistance, and firmness of the formulations as the proportions of SMS was increased. The emulsion gels were viscoelastic in nature. Thermal studies suggested higher thermodynamic stability at higher proportions of either SMS or water. Metronidazole, a model antimicrobial drug, was incorporated within the formulations. The release of the drug from the formulations was found to be diffusion mediated. The drug-loaded formulations showed sufficient antimicrobial efficiency to be used as carriers for topical antimicrobial drug delivery. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association.

  10. Direct electron-pair production by high energy heavy charged particles

    NASA Technical Reports Server (NTRS)

    Takahashi, Y.; Gregory, J. C.; Hayashi, T.; Dong, B. L.

    1989-01-01

    Direct electron pain production via virtual photons by moving charged particles is a unique electro-magnetic process having a substantial dependence on energy. Most electro-magnetic processes, including transition radiation, cease to be sensitive to the incident energy above 10 TeV/AMU. Thus, it is expected, that upon establishment of cross section and detection efficiency of this process, it may provide a new energy measuring technique above 10 TeV/AMU. Three accelerator exposures of emulsion chambers designed for measurements of direct electron-pains were performed. The objectives of the investigation were to provide the fundamental cross-section data in emulsion stacks to find the best-fit theoretical model, and to provide a calibration of measurements of direct electron-pairs in emulsion chamber configurations. This paper reports the design of the emulsion chambers, accelerator experiments, microscope measurements, and related considerations for future improvements of the measurements, and for possible applications to high energy cosmic ray experiments. Also discussed are the results from scanning 56m of emulsion tracks at 1200x magnification so that scanning efficiency is optimized. Measurements of the delta-ray range spectrum were also performed for much shorter track lengths, but with sufficiently large statistics in the number of measured delta-rays.

  11. Controlled release of insect sex pheromones from paraffin wax and emulsions.

    PubMed

    Atterholt, C A; Delwiche, M J; Rice, R E; Krochta, J M

    1999-02-22

    Paraffin wax and aqueous paraffin emulsions can be used as controlled release carriers for insect sex pheromones for mating disruption of orchard pests. Paraffin can be applied at ambient temperature as an aqueous emulsion, adheres to tree bark or foliage, releases pheromone for an extended period of time, and will slowly erode from bark and biodegrade in soil. Pheromone emulsions can be applied with simple spray equipment. Pheromone release-rates from paraffin were measured in laboratory flow-cell experiments. Pheromone was trapped from an air stream with an adsorbent, eluted periodically, and quantified by gas chromatography. Pheromone release from paraffin was partition-controlled, providing a constant (zero-order) release rate. A typical paraffin emulsion consisted of 30% paraffin, 4% pheromone, 4% soy oil, 1% vitamin E, 2% emulsifier, and the balance water. Soy oil and vitamin E acted as volatility suppressants. A constant release of oriental fruit moth pheromone from paraffin emulsions was observed in the laboratory for more than 100 days at 27 degreesC, with release-rates ranging from 0.4 to 2 mg/day, depending on the concentration and surface area of the dried emulsion. The use of paraffin emulsions is a viable method for direct application of insect pheromones for mating disruption. Sprayable formulations can be designed to release insect pheromones to the environment at a rate necessary for insect control by mating disruption. At temperatures below 38 degreesC, zero-order release was observed. At 38 degreesC and higher, pheromone oxidation occurred. A partition-controlled release mechanism was supported by a zero-order pheromone release-rate, low air/wax partition coefficients, and pheromone solubility in paraffin.

  12. Health effects of subchronic exposure to diesel-water emulsion emission.

    PubMed

    Reed, M D; Blair, L F; Burling, K; Daly, I; Gigliotti, A P; Gudi, R; Mercieca, M D; McDonald, J D; Naas, D J; O'callaghan, J P; Seilkop, S K; Ronsko, N L; Wagner, V O; Kraska, R C

    2005-12-15

    The U.S. Environmental Protection Agency (EPA) National Ambient Air Quality Standards for ozone and particulate matter are requiring urban nonattainment areas to implement pollution-reduction strategies for anthropogenic source emissions. A type of fuel shown to decrease combustion emissions components versus traditional diesel fuels is the diesel-water emulsion. The Lubrizol Corporation in conjunction with Lovelace Respiratory Research Institute and several subcontracting laboratories recently conducted a rodent health assessment of inhaled combustion emissions of PuriNO(x) diesel fuel emulsion. Combustion emissions from either of two 2001 model Cummins 5.9-L ISB engines were diluted with charcoal-filtered air to exposure concentrations of 100, 200, and 400 microg total particulate matter/m(3). The engines were operated on a continuously repeating, heavy-duty certification cycle (U.S. Code of Federal Regulations, Title 40, Chapter I) using Rotella-T 15W-40 engine oil. Nitrogen oxide and particulate matter were reduced when engines were operated on PuriNO(x) versus California Air Resources Board diesel fuel under these conditions. Male and female F344 rats were housed in Hazleton H2000 exposure chambers and exposed to exhaust atmospheres 6 h/day, 5 days/wk for the first 11 wk and 7 days/wk threafter. Exposures ranged from 58 to 70 days, depending on the treatment group. Indicators of general toxicity (body weight, organ weight, clinical pathology, and histopathology), neurotoxicity (glial fibrillary acidic protein assay), genotoxicity (Ames assay, micronucleus, sister chromatid exchange), and reproduction and development were measured. Overall, effects observed were mild. Emulsion combustion emissions were not associated with neurotoxicity, reproductive/developmental toxicity, or in vivo genotoxicity. Small decreases in serum cholesterol and small increases in platelet values in some groups of exposed animals were observed. Particulate matter accumulation within

  13. Multidimensional analysis of data obtained in experiments with X-ray emulsion chambers and extensive air showers

    NASA Technical Reports Server (NTRS)

    Chilingaryan, A. A.; Galfayan, S. K.; Zazyan, M. Z.; Dunaevsky, A. M.

    1985-01-01

    Nonparametric statistical methods are used to carry out the quantitative comparison of the model and the experimental data. The same methods enable one to select the events initiated by the heavy nuclei and to calculate the portion of the corresponding events. For this purpose it is necessary to have the data on artificial events describing the experiment sufficiently well established. At present, the model with the small scaling violation in the fragmentation region is the closest to the experiments. Therefore, the treatment of gamma families obtained in the Pamir' experiment is being carried out at present with the application of these models.

  14. Rapid dissolution of propofol emulsions under sink conditions.

    PubMed

    Damitz, Robert; Chauhan, Anuj

    2015-03-15

    Pain accompanying intravenous injections of propofol is a major problem in anesthesia. Pain is ascribed to the interaction of propofol with the local vasculature and could be impacted by rapid dissolution of the emulsion formulation to release the drug. In this paper, we measure the dissolution of propofol emulsions including the commercial formulation Diprivan(®). We image the turbidity of blood protein sink solutions after emulsions are injected. The images are digitized, and the drug release times are estimated from the pixel intensity data for a range of starting emulsion droplet size. Drug release times are compared to a mechanistic model. After injection, pixel intensity or turbidity decreases due to reductions in emulsion droplet size. Drug release times can still be measured even if the emulsion does not completely dissolve such as with Diprivan(®). Both pure propofol emulsions and Diprivan(®) release drug very rapidly (under five seconds). Reducing emulsion droplet size significantly increases the drug release rate. Drug release times observed are slightly longer than the model prediction likely due to imperfect mixing. Drug release from emulsions occurs very rapidly after injection. This could be a contributing factor to pain on injection of propofol emulsions. Copyright © 2015. Published by Elsevier B.V.

  15. Structured triglyceride emulsions in parenteral nutrition.

    PubMed

    Chambrier, C; Lauverjat, M; Bouletreau, P

    2006-08-01

    Over the past 3 decades, various concepts for IV fat emulsions (IVFE) have been developed. A randomized, structured-lipid emulsion based on an old technology has recently become available. This structured-lipid emulsion is produced by mixing medium-chain triglycerides and long-chain triglycerides, then allowing hydrolysis to form free fatty acids, followed by random transesterification of the fatty acids into mixed triglyceride molecules. Studies in animals have shown an improvement in nitrogen balance with the use of these lipid emulsions. Only 8 human clinical studies with these products have been performed. The results of these human clinical studies have been less promising than the animal studies; however, an improvement in nitrogen balance and lipid metabolism exceeds results associated with infusion of long-chain triglycerides (LCT) or a physical mixture of long-chain triglycerides and medium-chain triglycerides (LCT-MCT). Structured-lipid emulsion seems to induce less elevation in serum liver function values compared with standard IVFEs. In addition, structured-lipid emulsions have no detrimental effect on the reticuloendothelial system. Further studies are necessary in order to recommend the use of structured-lipid emulsions. The clinical community hopes that chemically defined structured triglycerides will make it possible to determine the distribution of specific fatty acids on a specific position on the glycerol core and therefore obtain specific activity for a specific clinical situation.

  16. High speed automated microtomography of nuclear emulsions and recent application

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tioukov, V.; Aleksandrov, A.; Consiglio, L.

    2015-12-31

    The development of high-speed automatic scanning systems was the key-factor for massive and successful emulsions application for big neutrino experiments like OPERA. The emulsion detector simplicity, the unprecedented sub-micron spatial resolution and the unique ability to provide intrinsically 3-dimensional spatial information make it a perfect device for short-living particles study, where the event topology should be precisely reconstructed in a 10-100 um scale vertex region. Recently the exceptional technological progress in image processing and automation together with intensive R&D done by Italian and Japanese microscopy groups permit to increase the scanning speed to unbelievable few years ago m{sup 2}/day scalemore » and so greatly extend the range of the possible applications for emulsion-based detectors to other fields like: medical imaging, directional dark matter search, nuclear physics, geological and industrial applications.« less

  17. Antioxidant activity and emulsion-stabilizing effect of pectic enzyme treated pectin in soy protein isolate-stabilized oil/water emulsion.

    PubMed

    Huang, Ping-Hsiu; Lu, Hao-Te; Wang, Yuh-Tai; Wu, Ming-Chang

    2011-09-14

    The antioxidant activity of pectic enzyme treated pectin (PET-pectin) prepared from citrus pectin by enzymatic hydrolysis and its potential use as a stabilizer and an antioxidant for soy protein isolate (SPI)-stabilized oil in water (O/W) emulsion were investigated. Trolox equivalent antioxidant capacity (TEAC) was found to be positively associated with molecular weight (M(w)) of PET-pectin and negatively associated with degree of esterification (DE) of PET-pectin. PET-pectin (1 kDa and 11.6% DE) prepared from citrus pectin after 24 h of hydrolysis by commercial pectic enzyme produced by Aspergillus niger expressed higher α,α-diphenyl-β-picrylhydrazyl (DPPH) radical scavenging activity, TEAC, and reducing power than untreated citrus pectin (353 kDa and 60% DE). The addition of PET-pectin could increase both emulsifying activity (EA) and emulsion stability (ES) of SPI-stabilized O/W emulsion. When the SPI-stabilized lipid droplet was coated with the mixture of PET-pectin and pectin, the EA and ES of the emulsion were improved more than they were when the lipid droplet was coated with either pectin or PET-pectin alone. The amount of secondary oxidation products (thiobarbituric acid reactive substances) produced in the emulsion prepared with the mixture of SPI and PET-pectin was less than the amount produced in the emulsion prepared with either SPI or SPI/pectin. These results suggest that PET-pectin has an emulsion-stabilizing effect and lipid oxidation inhibition ability on SPI-stabilized emulsion. Therefore, PET-pectin can be used as a stabilizer as well as an antioxidant in plant origin in SPI-stabilized O/W emulsion and thus prolong the shelf life of food emulsion.

  18. Development of multiple W/O/W emulsions as dermal carrier system for oligonucleotides: effect of additives on emulsion stability.

    PubMed

    Schmidts, T; Dobler, D; Schlupp, P; Nissing, C; Garn, H; Runkel, F

    2010-10-15

    Multiple water-in-oil-in-water (W/O/W) emulsions are of major interest as potential skin delivery systems for water-soluble drugs like oligonucleotides due to their distinct encapsulation properties. However, multiple emulsions are highly sensitive in terms of variations of the individual components. The presence of osmotic active ingredients in the inner water phase is crucial for the generation of stable multiple emulsions. In order to stabilize the emulsions the influence of NaCl, MgSO(4), glucose and glycine and two cellulose derivatives was investigated. Briefly, multiple W/O/W emulsions using Span 80 as a lipophilic emulsifier and different hydrophilic emulsifiers (PEG-40/50 stearate, steareth-20 and polysorbate 80) were prepared. Stability of the emulsions was analyzed over a period of time using rheological measurements, droplet size observations and conductivity analysis. In this study we show that additives strongly influence the properties stability of multiple emulsions. By increasing the concentration of the osmotic active ingredients, smaller multiple droplets are formed and the viscosity is significantly increased. The thickening agents resulted in a slightly improved stability. The most promising emulsions were chosen and further evaluated for their suitability and compatibility to incorporate a DNAzyme oligonucleotide as active pharmaceutical ingredient. Copyright 2010 Elsevier B.V. All rights reserved.

  19. Optical transmission measurements for in-line monitoring of turbid oil-water emulsions

    NASA Astrophysics Data System (ADS)

    Metz, Philipp; Dopf, Katja; Aichholz, Markus; Riedel, Boris; Lemmer, Uli; Freudig, Barbara; Zimmermann, Clifton; Gerken, Martina

    2014-05-01

    For absorbing media the concentration may be calculated directly from the optical transmission following the logarithmic dependence given in the Lambert-Beer law. Due to multiple scattering events in oil-water emulsions (e.g. milk, cream, etc.), these exhibit a nonlinear relationship between the attenuation and the oil concentration. We demonstrate that for increasing oil content in oil-water emulsions the attenuation first increases, then levels out, and finally even decreases for a fat content of 60%. Single-wavelength optical transmission measurements are found to be well suited for the in-line monitoring of oil-water emulsions of fat contents below 20%, e.g., for the in-line fat content monitoring of milk. Using experiments and ray-tracing simulations we evaluate system optimization.

  20. Transport of Nitric Oxide by Perfluorocarbon Emulsion

    PubMed Central

    Ortiz, Daniel; Briceño, Juan C.; Cabrales, Pedro

    2014-01-01

    Perfluorocarbon (PFC) emulsions can transport and release various gases based on concentration gradients. The objective of this study was to determine the possibility of carrying and delivering exogenous nitric oxide (NO) into the circulation by simply loading PFC emulsion with NO prior infusion. PFC was equilibrated with room air (PFC) or 300 ppm NO (PFC-NO) at atmospheric pressure. Isotonic saline solution was used as a volume control (Saline). PFC and PFC-NO were infused at a dose of 3.5 mL/kg in the hamster window chamber model. Blood chemistry, and systemic and microvascular hemodynamic response were measured. Infusion of PFC preloaded with NO reduced blood pressure, induced microvascular vasodilation and increased capillary perfusion; although these changes lasted less than 30 min post infusion. On the other hand, infusion of PFC (without NO) produced vasoconstriction; however, the vasoconstriction was followed by vasodilatation at 30 min post infusion. Plasma nitrite and nitrate increased 15 min after infusion of NO preloaded PFC compared to PFC, 60 min after infusion nitrite and nitrate were not different, and 90 min after infusion plasma S-nitrosothiols increased in both groups. Infusion of NO preloaded PFC resulted in acute vascular relaxation, where as infusion of PFC (without NO) produced vasoconstriction, potentially due to NO sequestration by the PFC micelles. The late effects of PFC infusion are due to NO redistribution and plasma S-nitrosothiols. Gas solubility in PFC can provide a tool to modulate plasma vasoactive NO forms availability and improve microcirculatory function and promote increased blood flow. PMID:23966236

  1. Emulsion-Based Intradermal Delivery of Melittin in Rats.

    PubMed

    Han, Sang Mi; Kim, Se Gun; Pak, Sok Cheon

    2017-05-19

    Bee venom (BV) has long been used as a traditional medicine. The aim of the present study was to formulate a BV emulsion with good rheological properties for dermal application and investigate the effect of formulation on the permeation of melittin through dermatomed rat skin. A formulated emulsion containing 1% ( w / v ) BV was prepared. The emulsion was compared with distilled water (DW) and 25% ( w / v ) N -methyl-2-pyrrolidone (NMP) in DW. Permeation of melittin from aqueous solution through the dermatomed murine skin was evaluated using the Franz diffusion cells. Samples of receptor cells withdrawn at pre-determined time intervals were measured for melittin amount. After the permeation study, the same skin was used for melittin extraction. In addition, a known amount of melittin (5 μg/mL) was added to stratum corneum, epidermis, and dermis of the rat skin, and the amount of melittin was measured at pre-determined time points. The measurement of melittin from all samples was done with HPLC-MS/MS. No melittin was detected in the receptor phase at all time points in emulsion, DW, or NMP groups. When the amount of melittin was further analyzed in stratum corneum, epidermis, and dermis from the permeation study, melittin was still not detected. In an additional experiment, the amount of melittin added to all skin matrices was corrected against the amount of melittin recovered. While the total amount of melittin was retained in the stratum corneum, less than 10% of melittin remained in epidermis and dermis within 15 and 30 min, respectively. Skin microporation with BV emulsion facilitates the penetration of melittin across the stratum corneum into epidermis and dermis, where emulsified melittin could have been metabolized by locally-occurring enzymes.

  2. Paraquat detoxication with multiple emulsions.

    PubMed

    Frasca, S; Couvreur, P; Seiller, M; Pareau, D; Lacour, B; Stambouli, M; Grossiord, J L

    2009-10-01

    In this study, we show that detoxifying W/O/W multiple emulsions, prepared with an appropriate extractant/trapping couple, represent a promising technology for quick and safe poisoning treatments, with application to the highly toxic herbicide Paraquat, responsible of poisonings from low-dose exposure leading to several deaths every year. In vitro tests led to the choice of an appropriate extractant/trapping couple system with significant detoxication performance. In vivo tests showed (i) that rats receiving high doses of Paraquat, then a detoxifying emulsion, presented an increase from 50% to 100% of the MST (median survival time) and (ii) that no mortality was observed during 30 days with rats dosed with emulsions initially loaded with Paraquat at a concentration much higher than the lethal dose, proving the stability and the inocuity of the detoxifying multiple emulsion in the gastrointestinal tract.

  3. Specifications for and preliminary design of a plant growth chamber for orbital experimental experiments

    NASA Technical Reports Server (NTRS)

    Sweet, H. C.; Simmonds, R. C.

    1976-01-01

    It was proposed that plant experiments be performed on board the space shuttle. To permit the proper execution of most tests, the craft must contain a plant growth chamber which is adequately designed to control those environmental factors which can induce changes in a plant's physiology and morphology. The various needs of, and environmental factors affecting, plants are identified. The permissilbe design, construction and performance limits for a plant-growth chamber are set, and tentative designs were prepared for units which are compatible with both the botanical requirements and the constraints imposed by the space shuttle.

  4. Intravenous Lipid Emulsions in Parenteral Nutrition123

    PubMed Central

    Fell, Gillian L; Nandivada, Prathima; Gura, Kathleen M; Puder, Mark

    2015-01-01

    Fat is an important macronutrient in the human diet. For patients with intestinal failure who are unable to absorb nutrients via the enteral route, intravenous lipid emulsions play a critical role in providing an energy-dense source of calories and supplying the essential fatty acids that cannot be endogenously synthesized. Over the last 50 y, lipid emulsions have been an important component of parenteral nutrition (PN), and over the last 10–15 y many new lipid emulsions have been manufactured with the goal of improving safety and efficacy profiles and achieving physiologically optimal formulations. The purpose of this review is to provide a background on the components of lipid emulsions, their role in PN, and to discuss the lipid emulsions available for intravenous use. Finally, the role of parenteral fat emulsions in the pathogenesis and management of PN-associated liver disease in PN-dependent pediatric patients is reviewed. PMID:26374182

  5. Computed tomography-guided screening of surfactant effect on blood circulation time of emulsions: application to the design of an emulsion formulation for paclitaxel.

    PubMed

    Lee, Eun-Hye; Hong, Soon-Seok; Kim, So Hee; Lee, Mi-Kyung; Lim, Joon Seok; Lim, Soo-Jeong

    2014-08-01

    In an effort to apply the imaging techniques currently used in disease diagnosis for monitoring the pharmacokinetics and biodisposition of particulate drug carriers, we sought to use computed tomography (CT) scanning methodology to investigate the impact of surfactant on the blood residence time of emulsions. We prepared the iodinated oil Lipiodol emulsions with different compositions of surfactants and investigated the impact of surfactant on the blood residence time of emulsions by CT scanning. The blood circulation time of emulsions was prolonged by including Tween 80 or DSPE-PEG (polyethylene glycol 2000) in emulsions. Tween 80 was less effective than DSPE-PEG in terms of prolongation effect, but the blood circulating time of emulsions was prolonged in a Tween 80 content-dependent manner. As a proof-of-concept demonstration of the usefulness of CT-guided screening in the process of formulating drugs that need to be loaded in emulsions, paclitaxel was loaded in emulsions prepared with 87 or 65% Tween 80-containing surfactant mixtures. A pharmacokinetics study showed that paclitaxel loaded in 87% Tween 80 emulsions circulated longer in the bloodstream compared to those in 65% Tween 80 emulsions, as predicted by CT imaging. CT-visible, Lipiodol emulsions enabled the simple evaluation of surfactant composition effects on the biodisposition of emulsions.

  6. Superparamagnetic polymer emulsion particles from a soap-free seeded emulsion polymerization and their application for lipase immobilization.

    PubMed

    Cui, Yanjun; Chen, Xia; Li, Yanfeng; Liu, Xiao; Lei, Lin; Zhang, Yakui; Qian, Jiayu

    2014-01-01

    Using emulsion copolymer of styrene (St), glycidyl methacrylate (GMA) and 2-hydroxyethyl methacrylate (HEMA) as seed latexes, the superparamagnetic polymer emulsion particles were prepared by seeded emulsion copolymerization of butyl methacrylate (BMA), vinyl acetate (VAc) and ethylene glycol dimethacrylate in the presence of the seed latexes and superparamagnetic Fe3O4/SiOx nanoparticles (or Fe3O4-APTS nanoparticles) through a two-step process, without addition of any emulsifier. The magnetic emulsion particles named P(St-GMA-HEMA)/P(BMA-VAc) were characterized by transmission electron microscope and vibrating sample magnetometry. The results showed that the magnetic emulsion particles held a structure with a thinner shell (around 100 nm) and a bigger cavity (around 200 nm), and possessed a certain level of magnetic response. The resulting magnetic emulsion particles were employed in the immobilization of lipase by two strategies to immobilized lipase onto the resulting magnetic composites directly (S-1) or using glutaraldehyde as a coupling agent (S-2), thus, experimental data showed that the thermal stability and reusability of immobilized lipase based on S-2 were higher than that of S-1.

  7. Tuning Amphiphilicity of Particles for Controllable Pickering Emulsion

    PubMed Central

    Wang, Zhen; Wang, Yapei

    2016-01-01

    Pickering emulsions with the use of particles as emulsifiers have been extensively used in scientific research and industrial production due to their edge in biocompatibility and stability compared with traditional emulsions. The control over Pickering emulsion stability and type plays a significant role in these applications. Among the present methods to build controllable Pickering emulsions, tuning the amphiphilicity of particles is comparatively effective and has attracted enormous attention. In this review, we highlight some recent advances in tuning the amphiphilicity of particles for controlling the stability and type of Pickering emulsions. The amphiphilicity of three types of particles including rigid particles, soft particles, and Janus particles are tailored by means of different mechanisms and discussed here in detail. The stabilization-destabilization interconversion and phase inversion of Pickering emulsions have been successfully achieved by changing the surface properties of these particles. This article provides a comprehensive review of controllable Pickering emulsions, which is expected to stimulate inspiration for designing and preparing novel Pickering emulsions, and ultimately directing the preparation of functional materials. PMID:28774029

  8. A review of chamber experiments for determining specific emission rates and investigating migration pathways of flame retardants

    NASA Astrophysics Data System (ADS)

    Rauert, Cassandra; Lazarov, Borislav; Harrad, Stuart; Covaci, Adrian; Stranger, Marianne

    2014-01-01

    The widespread use of flame retardants (FRs) in indoor products has led to their ubiquitous distribution within indoor microenvironments with many studies reporting concentrations in indoor air and dust. Little information is available however on emission of these compounds to air, particularly the measurement of specific emission rates (SERs), or the migration pathways leading to dust contamination. Such knowledge gaps hamper efforts to develop understanding of human exposure. This review summarizes published data on SERs of the following FRs released from treated products: polybrominated diphenyl ethers (PBDEs), hexabromocyclododecanes (HBCDs), tetrabromobisphenol-A (TBBPA), novel brominated flame retardants (NBFRs) and organophosphate flame retardants (PFRs), including a brief discussion of the methods used to derive these SERs. Also reviewed are published studies that utilize emission chambers for investigations/measurements of mass transfer of FRs to dust, discussing the chamber configurations and methods used for these experiments. A brief review of studies investigating correlations between concentrations detected in indoor air/dust and possible sources in the microenvironment is included along with efforts to model contamination of indoor environments. Critical analysis of the literature reveals that the major limitations with utilizing chambers to derive SERs for FRs arise due to the physicochemical properties of FRs. In particular, increased partitioning to chamber surfaces, airborne particles and dust, causes loss through “sink” effects and results in long times to reach steady state conditions inside the chamber. The limitations of chamber experiments are discussed as well as their potential for filling gaps in knowledge in this area.

  9. Destabilization of emulsions by natural minerals.

    PubMed

    Yuan, Songhu; Tong, Man; Wu, Gaoming

    2011-09-15

    This study developed a novel method to destabilize emulsions and recycle oils, particularly for emulsified wastewater treatment. Natural minerals were used as demulsifying agents, two kinds of emulsions collected from medical and steel industry were treated. The addition of natural minerals, including artificial zeolite, natural zeolite, diatomite, bentonite and natural soil, could effectively destabilize both emulsions at pH 1 and 60 °C. Over 90% of chemical oxygen demand (COD) can be removed after treatment. Medical emulsion can be even destabilized by artificial zeolite at ambient temperature. The mechanism for emulsion destabilization by minerals was suggested as the decreased electrostatic repulsion at low pH, the enhanced gathering of oil microdroplets at elevated temperature, and the further decreased surface potential by the addition of minerals. Both flocculation and coalescence were enhanced by the addition of minerals at low pH and elevated temperature. Copyright © 2011 Elsevier B.V. All rights reserved.

  10. High pressure-resistant nonincendive emulsion explosive

    DOEpatents

    Ruhe, Thomas C.; Rao, Pilaka P.

    1994-01-01

    An improved emulsion explosive composition including hollow microspheres/bulking agents having high density and high strength. The hollow microspheres/bulking agents have true particle densities of about 0.2 grams per cubic centimeter or greater and include glass, siliceous, ceramic and synthetic resin microspheres, expanded minerals, and mixtures thereof. The preferred weight percentage of hollow microspheres/bulking agents in the composition ranges from 3.0 to 10.0 A chlorinated paraffin oil, also present in the improved emulsion explosive composition, imparts a higher film strength to the oil phase in the emulsion. The emulsion is rendered nonincendive by the production of sodium chloride in situ via the decomposition of sodium nitrate, a chlorinated paraffin oil, and sodium perchlorate. The air-gap sensitivity is improved by the in situ formation of monomethylamine perchlorate from dissolved monomethylamine nitrate and sodium perchlorate. The emulsion explosive composition can withstand static pressures to 139 bars and dynamic pressure loads on the order of 567 bars.

  11. Characteristics of Nano-emulsion for Cold Thermal Storage

    NASA Astrophysics Data System (ADS)

    Fumoto, Koji; Kawaji, Masahiro; Kawanami, Tsuyoshi

    Phase change emulsion (PCE) is novel kind of heat storage and heat transfer fluids. It has characteristics as follows; greater apparent specific heat and higher heat transfer abilities in the phase change temperature range than conventional single phase heat transfer fluid. In this paper, a phase change emulsion, which has droplet diameter distribution of nanometer, were prepared. The Nano-emulsion was formed by low energy emulsification methods, as known the phase inversion temperature (PIT) method. Physical properties, such as viscosity, diameter and its distribution of emulsion were investigated. Especially, the relationships between preparation method and the concentration of surfactant have been discussed in detail. The results show that the viscosity of the Nano-emulsion is lower than the micro-emulsion, which was made by same mixing ratio of surfactant and concentration of phase change material. In addition, the Nano-emulsion clarified that stability was higher than microemulsions.

  12. Microfluidic preparation and self diffusion PFG-NMR analysis of monodisperse water-in-oil-in-water double emulsions.

    PubMed

    Hughes, Eric; Maan, Abid Aslam; Acquistapace, Simone; Burbidge, Adam; Johns, Michael L; Gunes, Deniz Z; Clausen, Pascal; Syrbe, Axel; Hugo, Julien; Schroen, Karin; Miralles, Vincent; Atkins, Tim; Gray, Richard; Homewood, Philip; Zick, Klaus

    2013-01-01

    Monodisperse water-in-oil-in-water (WOW) double emulsions have been prepared using microfluidic glass devices designed and built primarily from off the shelf components. The systems were easy to assemble and use. They were capable of producing double emulsions with an outer droplet size from 100 to 40 μm. Depending on how the devices were operated, double emulsions containing either single or multiple water droplets could be produced. Pulsed-field gradient self-diffusion NMR experiments have been performed on the monodisperse water-in-oil-in-water double emulsions to obtain information on the inner water droplet diameter and the distribution of the water in the different phases of the double emulsion. This has been achieved by applying regularization methods to the self-diffusion data. Using these methods the stability of the double emulsions to osmotic pressure imbalance has been followed by observing the change in the size of the inner water droplets over time. Copyright © 2012 Elsevier Inc. All rights reserved.

  13. Drug delivery to the ocular posterior segment using lipid emulsion via eye drop administration: effect of emulsion formulations and surface modification.

    PubMed

    Ying, Lin; Tahara, Kohei; Takeuchi, Hirofumi

    2013-09-10

    This work explored submicron-sized lipid emulsion as potential carriers for intraocular drug delivery to the posterior segment via eye drops. The effects of physicochemical properties of lipid emulsion on drug delivery were evaluated in vivo using mice. Different formulations of submicron-sized lipid emulsions were prepared using a high pressure homogenization system. Using coumairn-6 as a model drug and fluorescent marker, fluorescence could be observed in the retina after administration of the lipid emulsion. The fluorescence intensity observed after administration of medium chain triglycerides containing the same amount of coumarin-6 was much lower than that observed after administration of lipid emulsions. The inner oil property and phospholipid emulsifier did not affect the drug delivery efficiency to the retina. However, compared with unmodified emulsions, the fluorescence intensity in the retina increased by surface modification using a positive charge inducer and the functional polymers chitosan (CS) and poloxamer 407 (P407). CS-modified lipid emulsions could be electrostatically interacted with the eye surface. By its adhesive property, poloxamer 407, a surface modifier, possibly increased the lipid emulsion retention time on the eye surface. In conclusion, we suggested that surface-modified lipid emulsions could be promising vehicles of hydrophobic drug delivery to the ocular posterior segment. Copyright © 2013. Published by Elsevier B.V.

  14. Integrated, Continuous Emulsion Creamer.

    PubMed

    Cochrane, Wesley G; Hackler, Amber L; Cavett, Valerie J; Price, Alexander K; Paegel, Brian M

    2017-12-19

    Automated and reproducible sample handling is a key requirement for high-throughput compound screening and currently demands heavy reliance on expensive robotics in screening centers. Integrated droplet microfluidic screening processors are poised to replace robotic automation by miniaturizing biochemical reactions to the droplet scale. These processors must generate, incubate, and sort droplets for continuous droplet screening, passively handling millions of droplets with complete uniformity, especially during the key step of sample incubation. Here, we disclose an integrated microfluidic emulsion creamer that packs ("creams") assay droplets by draining away excess oil through microfabricated drain channels. The drained oil coflows with creamed emulsion and then reintroduces the oil to disperse the droplets at the circuit terminus for analysis. Creamed emulsion assay incubation time dispersion was 1.7%, 3-fold less than other reported incubators. The integrated, continuous emulsion creamer (ICEcreamer) was used to miniaturize and optimize measurements of various enzymatic activities (phosphodiesterase, kinase, bacterial translation) under multiple- and single-turnover conditions. Combining the ICEcreamer with current integrated microfluidic DNA-encoded library bead processors eliminates potentially cumbersome instrumentation engineering challenges and is compatible with assays of diverse target class activities commonly investigated in drug discovery.

  15. Peltier-based cloud chamber

    NASA Astrophysics Data System (ADS)

    Nar, Sevda Yeliz; Cakir, Altan

    2018-02-01

    Particles produced by nuclear decay, cosmic radiation and reactions can be identified through various methods. One of these methods that has been effective in the last century is the cloud chamber. The chamber makes visible cosmic particles that we are exposed to radiation per second. Diffusion cloud chamber is a kind of cloud chamber that is cooled by dry ice. This traditional model has some application difficulties. In this work, Peltier-based cloud chamber cooled by thermoelectric modules is studied. The new model provided uniformly cooled base of the chamber, moreover, it has longer lifetime than the traditional chamber in terms of observation time. This gain has reduced the costs which spent each time for cosmic particle observation. The chamber is an easy-to-use system according to traditional diffusion cloud chamber. The new model is portable, easier to make, and can be used in the nuclear physics experiments. In addition, it would be very useful to observe Muons which are the direct evidence for Lorentz contraction and time expansion predicted by Einsteins special relativity principle.

  16. Double emulsion solvent evaporation techniques used for drug encapsulation.

    PubMed

    Iqbal, Muhammad; Zafar, Nadiah; Fessi, Hatem; Elaissari, Abdelhamid

    2015-12-30

    Double emulsions are complex systems, also called "emulsions of emulsions", in which the droplets of the dispersed phase contain one or more types of smaller dispersed droplets themselves. Double emulsions have the potential for encapsulation of both hydrophobic as well as hydrophilic drugs, cosmetics, foods and other high value products. Techniques based on double emulsions are commonly used for the encapsulation of hydrophilic molecules, which suffer from low encapsulation efficiency because of rapid drug partitioning into the external aqueous phase when using single emulsions. The main issue when using double emulsions is their production in a well-controlled manner, with homogeneous droplet size by optimizing different process variables. In this review special attention has been paid to the application of double emulsion techniques for the encapsulation of various hydrophilic and hydrophobic anticancer drugs, anti-inflammatory drugs, antibiotic drugs, proteins and amino acids and their applications in theranostics. Moreover, the optimized ratio of the different phases and other process parameters of double emulsions are discussed. Finally, the results published regarding various types of solvents, stabilizers and polymers used for the encapsulation of several active substances via double emulsion processes are reported. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Double emulsions based on silicone-fluorocarbon-water and their skin penetration.

    PubMed

    Mahrhauser, Denise-Silvia; Fischer, Claudia; Valenta, Claudia

    2016-02-10

    Double emulsions have significant potential in pharmacy and cosmetics due to the feasibility of combining incompatible substances in one product and the protection of sensitive compounds by incorporating them into their innermost phase. However, a major drawback of double emulsions is their thermodynamic instability and their strong tendency to coalesce. In the present study, the physicochemical stability, the skin permeation and the skin penetration potential of modified semi-solid double emulsions was investigated. The double emulsions were prepared of the cosmetically applied perfluoropolyethers Fomblin HC/04 or Fomblin HC-OH, silicone, carbomer and water. Measurement of the droplet size and examination of the microscopic images confirmed their physicochemical stability over the observation period of eight weeks. Franz-type diffusion cell experiments revealed no increase in curcumin permeation due to the employed perfluoropolyethers compared to the respective control formulations. The formulations used as control were O/W macroemulsions with or without a Polysorbate 80/Sorbitane monooleate 80 surfactant combination. Likewise, tape stripping studies showed no penetration enhancing effect of the employed perfluoropolyethers which is desirable as both perfluoropolyethers are commonly applied components in human personal-care products. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Traversing the Skin Barrier with Nano-emulsions.

    PubMed

    Burger, Cornel; Shahzad, Yasser; Brummer, Alicia; Gerber, Minja; du Plessis, Jeanetta

    2017-01-01

    In recent years, colloidal delivery systems based on nano-emulsion are gaining popularity; being used for encapsulation and delivery of many drugs. This review therefore aims at summarizing various methods of nano-emulsion formulation and their use as a topical and transdermal delivery vehicle for a number of active pharmaceutical ingredients from different pharmacological classes. This article represents a systematic review of nano-emulsions for topical and transdermal drug delivery. A vast literature was searched and critically analysed. Nano-emulsions are thermokinetically stable dispersion systems, which have been used in topical and transdermal delivery of a number of pharmaceutically active compounds. Nano-emulsions have a narrow droplet size range with tuneable surface properties, which make them an ideal delivery vehicle. Nanoemulsions have a number of advantages over conventional emulsions, including easy preparation using various low and high energy methods, optical transparency, high solubilisation capacity, high stability to droplet aggregation and the ability to penetrate the skin; thus allowing the transdermal delivery of drugs. This review indicated that nano-emulsions are promising vehicle for entrapping various drugs and are suitable for traversing the skin barrier for systemic effects. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  19. SUMO Chamber Conditions

    DOE Data Explorer

    Sevanto, Sanna [Los Alamos National Laboratory; Powers, Heath [Los Alamos National Laboratory; Dickman, Turin L. [Los Alamos National Laboratory; Collins, Adam [Los Alamos National Laboratory; Grossiord, Charlotte [Swiss Federal Institute for Forest Snow and Landscape Research; Adams, Henry [Oklahoma State University; Borrego, Isaac [USGS Southwest Biological Science Center; McDowell, Nate [Pacific Northwest National Laboratory (PNNL); Stockton, Elizabeth [University of New Mexico; Ryan, Max [Los Alamos National Laboratory; Slentz, Matthew [Mohle Adams; Briggs, Sam [Fossil Creek Nursery; McBranch, Natalie [Los Alamos National Laboratory; Morgan, Bryn [Los Alamos National Laboratory

    2018-01-01

    The Los Alamos Survival–Mortality experiment (SUMO) is located on Frijoles Mesa near Los Alamos, New Mexico, USA, at an elevation of 2150 m. This was a tree manipulation study that investigated the relative impacts of drought and warming on plant function and reveals how trees adapt to drought and heat in semi-arid regions. The study factored the role of tree hydraulic acclimation to both precipitation and temperature and separated their effects.The experiment is located in a pinon-juniper woodland near the ponderosa pine (Pinus ponderosa) forest ecotone. Chamber conditions (temperature, relative humidity, vapor pressure deficit) for SUMO Open Top Chambers (OTCs) used to control air temperatures surrounding heated and control chamber trees. See SUMO Target Tree Information data package (doi:10.15485/1440544) for additional information. Data released by Los Alamos National Lab for public use under LA-UR-18-23656.

  20. Demulsification of oil-in-water emulsions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roark, D.N.

    1986-09-30

    This patent describes a process of demulsifying an oil-in-water emulsion which comprises admixing with the emulsion a water-soluble polymer of monoallylamine that causes formation of and separation between an oil phase and an aqueous phase to occur. The emulsion has a pH in the range of about 5 to about 10 and the polymer has a weight average molecular weight of at least 1000 and contains at least 95% by weight of monoallylamine.

  1. Bond Graph Modeling and Validation of an Energy Regenerative System for Emulsion Pump Tests

    PubMed Central

    Li, Yilei; Zhu, Zhencai; Chen, Guoan

    2014-01-01

    The test system for emulsion pump is facing serious challenges due to its huge energy consumption and waste nowadays. To settle this energy issue, a novel energy regenerative system (ERS) for emulsion pump tests is briefly introduced at first. Modeling such an ERS of multienergy domains needs a unified and systematic approach. Bond graph modeling is well suited for this task. The bond graph model of this ERS is developed by first considering the separate components before assembling them together and so is the state-space equation. Both numerical simulation and experiments are carried out to validate the bond graph model of this ERS. Moreover the simulation and experiments results show that this ERS not only satisfies the test requirements, but also could save at least 25% of energy consumption as compared to the original test system, demonstrating that it is a promising method of energy regeneration for emulsion pump tests. PMID:24967428

  2. Nanoscale and Microscale Iron Emulsions for Treating DNAPL

    NASA Technical Reports Server (NTRS)

    Geiger, Cherie L.

    2002-01-01

    This study demonstrated the feasibility of using emulsified nanoscale and microscale iron particles to enhance dehalogenation of (Dense Non-Aqueous Phase Liquid) DNAPL free-phase. The emulsified system consisted of a surfactant-stabilized, biodegradable oil-in-water emulsion with nanoscale or microscale iron particles contained within the emulsion droplets. It was demonstrated that DNAPLs, such as trichloroethene (TCE), diffuse through the oil membrane of the emulsion particle whereupon they reach an aqueous interior and the surface of an iron particle where dehalogenation takes place. The hydrocarbon reaction by-products of the dehalogenation reaction, primarily ethene (no chlorinated products detected), diffuse out of the emulsion droplet. This study also demonstrated that an iron-emulsion system could be delivered in-situ to the DNAPL pool in a soil matrix by using a simulated push well technique. Iron emulsions degraded pure TCE at a rate comparable to the degradation of dissolved phase TCE by iron particles, while pure iron had a very low degradation rate for free-phase TCE. The iron-emulsion systems can be injected into a sand matrix where they become immobilized and are not moved by flowing water. It has been documented that surfactant micelles possess the ability to pull pooled TCE into emulsion droplets where degradation of TCE takes place.

  3. Influence of the Supramolecular Micro-Assembly of Multiple Emulsions on their Biopharmaceutical Features and In vivo Therapeutic Response.

    PubMed

    Cilurzo, Felisa; Cristiano, Maria Chiara; Di Marzio, Luisa; Cosco, Donato; Carafa, Maria; Ventura, Cinzia Anna; Fresta, Massimo; Paolino, Donatella

    2015-01-01

    The ability of some surfactants to self-assemble in a water/oil bi-phase environment thus forming supramolecular structure leading to the formation of w/o/w multiple emulsions was investigated. The w/o/w multiple emulsions obtained by self-assembling (one-step preparation method) were compared with those prepared following the traditional two-step procedure. Methyl-nicotinate was used as a hydrophilic model drug. The formation of the multiple emulsion structure was evidenced by optical microscopy, which showed a mean size of the inner oil droplets of 6 μm and 10 μm for one-step and two-step multiple emulsions, respectively. The in vitrobiopharmaceutical features of the various w/o/w multiple emulsion formulations were evaluated by means of viscosimetry studies, drug release and in vitro percutaneous permeation experiments through human stratum corneum and viable epidermis membranes. The self-assembled multiple emulsions allowed a more gradual percutaneous permeation (a zero-order permeation rate) than the two-step ones. The in vivotopical carrier properties of the two different multiple emulsions were evaluated on healthy human volunteers by using the spectrophotometry of reflectance, an in vivonon invasive method. These multiple emulsion systems were also compared with conventional emulsion formulations. Our findings demonstrated that the multiple emulsions obtained by self-assembling were able to provide a more sustained drug delivery into the skin and hence a longer therapeutic action than two-step multiple emulsions and conventional emulsion formulations. Finally, our findings showed that the supramolecular micro-assembly of multiple emulsions was able to influence not only the biopharmaceutical characteristics but also the potential in vivotherapeutic response.

  4. Lipid Emulsions Containing Medium Chain Triacylglycerols Blunt Bradykinin-Induced Endothelium-Dependent Relaxation in Porcine Coronary Artery Rings.

    PubMed

    Amissi, Said; Boisramé-Helms, Julie; Burban, Mélanie; Rashid, Sherzad K; León-González, Antonio J; Auger, Cyril; Toti, Florence; Meziani, Ferhat; Schini-Kerth, Valérie B

    2017-03-01

    Lipid emulsions for parenteral nutrition are used to provide calories and essential fatty acids for patients. They have been associated with hypertriglyceridemia, hypercholesterolemia, and metabolic stress, which may promote the development of endothelial dysfunction in patients. The aim of the present study was to determine whether five different industrial lipid emulsions may affect the endothelial function of coronary arteries. Porcine coronary artery rings were incubated with lipid emulsions 0.5, 1, or 2% (v/v) for 30 min before the determination of vascular reactivity in organ chambers and the level of oxidative stress using electron paramagnetic resonance. Incubation of coronary artery rings with either Lipidem ® , Medialipid ® containing long- and medium-chain triacylglycerols (LCT/MCT), or SMOFlipid ® containing LCT, MCT, omega-9, and -3, significantly reduced the bradykinin-induced endothelium-dependent relaxation, affecting both the nitric oxide (NO) and endothelium-dependent hyperpolarization (EDH) components, whereas, Intralipid ® containing LCT (soybean oil) and ClinOleic ® containing LCT (soybean and olive oil) did not have such an effect. The endothelial dysfunction induced by Lipidem ® was significantly improved by indomethacin, a cyclooxygenase (COX) inhibitor, inhibitors of oxidative stress (N-acetylcysteine, superoxide dismutase, catalase) and transition metal chelating agents (neocuproine, tetrathiomolybdate, deferoxamine and L-histidine). Lipidem ® significantly increased the arterial level of oxidative stress. The present findings indicate that lipid emulsions containing LCT/MCT induce endothelial dysfunction in coronary artery rings by blunting both NO- and EDH-mediated relaxations. The Lipidem ® -induced endothelial dysfunction is associated with increased vascular oxidative stress and the formation of COX-derived vasoconstrictor prostanoids.

  5. Enzymatically Crosslinked Emulsion Gels Using Star-Polymer Stabilizers.

    PubMed

    Ma, Kai; An, Zesheng

    2016-10-01

    A novel type of emulsion gel based on star-polymer-stabilized emulsions is highlighted, which contains discrete hydrophobic oil and hydrophilic aqueous solution domains. Well-defined phenol-functionalized core-crosslinked star polymers are synthesized via reversible addition-fragmentation chain transfer (RAFT)-mediated dispersion polymerization and are used as stabilizers for oil-in-water emulsions. Horseradish-peroxidase-catalyzed polymerization of the phenol moieties in the presence of H 2 O 2 enables rapid formation of crosslinked emulsion gels under mild conditions. The crosslinked emulsion gels exhibit enhanced mechanical strength, as well as widely tunable composition. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Cold in-place recycling using solventless emulsion - phase IV (emulsion qualification and long-term field performance).

    DOT National Transportation Integrated Search

    2016-05-01

    This report looks into how a successful Cold In-Place solventless emulsion behaves and how the emulsion : break test developed in Phase III of this project demonstrates that behavior. Modifications to the test have been : made to improve the consiste...

  7. Enhancement of the antimicrobial properties of bacteriophage-K via stabilization using oil-in-water nano-emulsions.

    PubMed

    Esteban, Patricia Perez; Alves, Diana R; Enright, Mark C; Bean, Jessica E; Gaudion, Alison; Jenkins, A T A; Young, Amber E R; Arnot, Tom C

    2014-01-01

    Bacteriophage therapy is a promising new treatment that may help overcome the threat posed by antibiotic-resistant pathogenic bacteria, which are increasingly identified in hospitalized patients. The development of biocompatible and sustainable vehicles for incorporation of viable bacterial viruses into a wound dressing is a promising alternative. This article evaluates the antimicrobial efficacy of Bacteriophage K against Staphylococcus aureus over time, when stabilized and delivered via an oil-in-water nano-emulsion. Nano-emulsions were formulated via thermal phase inversion emulsification, and then bacterial growth was challenged with either native emulsion, or emulsion combined with Bacteriophage K. Bacteriophage infectivity, and the influence of storage time of the preparation, were assessed by turbidity measurements of bacterial samples. Newly prepared Bacteriophage K/nano-emulsion formulations have greater antimicrobial activity than freely suspended bacteriophage. The phage-loaded emulsions caused rapid and complete bacterial death of three different strains of S. aureus. The same effect was observed for preparations that were either stored at room temperature (18-20°C), or chilled at 4°C, for up to 10 days of storage. A response surface design of experiments was used to gain insight on the relative effects of the emulsion formulation on bacterial growth and phage lytic activity. More diluted emulsions had a less significant effect on bacterial growth, and diluted bacteriophage-emulsion preparations yielded greater antibacterial activity. The enhancement of bacteriophage activity when delivered via nano-emulsions is yet to be reported. This prompts further investigation into the use of these formulations for the development of novel anti-microbial wound management strategies. © 2014 American Institute of Chemical Engineers.

  8. EPA GAS PHASE CHEMISTRY CHAMBER STUDIES

    EPA Science Inventory

    Gas-phase smog chamber experiments are being performed at EPA in order to evaluate a number of current chemical mechanisms for inclusion in EPA regulatory and research models. The smog chambers are 9000 L in volume and constructed of 2-mil teflon film. One of the chambers is co...

  9. A new plant chamber facility PLUS coupled to the atmospheric simulation chamber SAPHIR

    NASA Astrophysics Data System (ADS)

    Hohaus, T.; Kuhn, U.; Andres, S.; Kaminski, M.; Rohrer, F.; Tillmann, R.; Wahner, A.; Wegener, R.; Yu, Z.; Kiendler-Scharr, A.

    2015-11-01

    A new PLant chamber Unit for Simulation (PLUS) for use with the atmosphere simulation chamber SAPHIR (Simulation of Atmospheric PHotochemistry In a large Reaction Chamber) has been build and characterized at the Forschungszentrum Jülich GmbH, Germany. The PLUS chamber is an environmentally controlled flow through plant chamber. Inside PLUS the natural blend of biogenic emissions of trees are mixed with synthetic air and are transferred to the SAPHIR chamber where the atmospheric chemistry and the impact of biogenic volatile organic compounds (BVOC) can be studied in detail. In PLUS all important enviromental parameters (e.g. temperature, PAR, soil RH etc.) are well-controlled. The gas exchange volume of 9.32 m3 which encloses the stem and the leafes of the plants is constructed such that gases are exposed to FEP Teflon film and other Teflon surfaces only to minimize any potential losses of BVOCs in the chamber. Solar radiation is simulated using 15 LED panels which have an emission strength up to 800 μmol m-2 s-1. Results of the initial characterization experiments are presented in detail. Background concentrations, mixing inside the gas exchange volume, and transfer rate of volatile organic compounds (VOC) through PLUS under different humidity conditions are explored. Typical plant characteristics such as light and temperature dependent BVOC emissions are studied using six Quercus Ilex trees and compared to previous studies. Results of an initial ozonolysis experiment of BVOC emissions from Quercus Ilex at typical atmospheric concentrations inside SAPHIR are presented to demonstrate a typical experimental set up and the utility of the newly added plant chamber.

  10. A new plant chamber facility, PLUS, coupled to the atmosphere simulation chamber SAPHIR

    NASA Astrophysics Data System (ADS)

    Hohaus, T.; Kuhn, U.; Andres, S.; Kaminski, M.; Rohrer, F.; Tillmann, R.; Wahner, A.; Wegener, R.; Yu, Z.; Kiendler-Scharr, A.

    2016-03-01

    A new PLant chamber Unit for Simulation (PLUS) for use with the atmosphere simulation chamber SAPHIR (Simulation of Atmospheric PHotochemistry In a large Reaction Chamber) has been built and characterized at the Forschungszentrum Jülich GmbH, Germany. The PLUS chamber is an environmentally controlled flow-through plant chamber. Inside PLUS the natural blend of biogenic emissions of trees is mixed with synthetic air and transferred to the SAPHIR chamber, where the atmospheric chemistry and the impact of biogenic volatile organic compounds (BVOCs) can be studied in detail. In PLUS all important environmental parameters (e.g., temperature, photosynthetically active radiation (PAR), soil relative humidity (RH)) are well controlled. The gas exchange volume of 9.32 m3 which encloses the stem and the leaves of the plants is constructed such that gases are exposed to only fluorinated ethylene propylene (FEP) Teflon film and other Teflon surfaces to minimize any potential losses of BVOCs in the chamber. Solar radiation is simulated using 15 light-emitting diode (LED) panels, which have an emission strength up to 800 µmol m-2 s-1. Results of the initial characterization experiments are presented in detail. Background concentrations, mixing inside the gas exchange volume, and transfer rate of volatile organic compounds (VOCs) through PLUS under different humidity conditions are explored. Typical plant characteristics such as light- and temperature- dependent BVOC emissions are studied using six Quercus ilex trees and compared to previous studies. Results of an initial ozonolysis experiment of BVOC emissions from Quercus ilex at typical atmospheric concentrations inside SAPHIR are presented to demonstrate a typical experimental setup and the utility of the newly added plant chamber.

  11. Tocopherol and tocotrienol homologs in parenteral lipid emulsions

    PubMed Central

    Xu, Zhidong; Harvey, Kevin A; Pavlina, Thomas M; Zaloga, Gary P; Siddiqui, Rafat A

    2015-01-01

    Parenteral lipid emulsions, which are made of oils from plant and fish sources, contain different types of tocopherols and tocotrienols (vitamin E homologs). The amount and types of vitamin E homologs in various lipid emulsions vary considerably and are not completely known. The objective of this analysis was to develop a quantitative method to determine levels of all vitamin E homologs in various lipid emulsions. An HPLC system was used to measure vitamin E homologs using a Pinnacle DB Silica normal phase column and an isocratic, n-hexane:1,4 dioxane (98:2) mobile phase. An optimized protocol was used to report vitamin E homolog concentrations in soybean oil-based (Intralipid®, Ivelip®, Lipofundin® N, Liposyn® III, and Liposyn® II), medium- and long-chain fatty acid-based (Lipofundin®, MCT and Structolipid®), olive oil-based (ClinOleic®), and fish oil-based (Omegaven®) and mixture of these oils-based (SMOFlipid®, Lipidem®) commercial parenteral lipid emulsions. Total content of all vitamin E homologs varied greatly between different emulsions, ranging from 57.9 to 383.9 µg/mL. Tocopherols (α, β, γ, δ) were the predominant vitamin E homologs for all emulsions, with tocotrienol content < 0.3%. In all of the soybean emulsions, except for Lipofundin® N, the predominant vitamin E homolog was γ-tocopherol, which ranged from 57–156 µg/mL. ClinOleic® predominantly contained α-tocopherol (32 µg/mL), whereas α-tocopherol content in Omegaven® was higher than most of the other lipid emulsions (230 µg/mL). Practical applications The information on the types and quantity of vitamin E homologs in various lipid emulsions will be extremely useful to physicians and healthcare personnel in selecting appropriate lipid emulsions that are exclusively used in patients with inadequate gastrointestinal function, including hospitalized and critically ill patients. Some emulsions may require vitamin E supplementation in order to meet minimal human requirements

  12. Adsorption of the Three-phase Emulsion on Various Solid Surfaces.

    PubMed

    Enomoto, Yasutaka; Imai, Yoko; Tajima, Kazuo

    2017-07-01

    The present study investigates the adsorption of the three-phase emulsion on various solid/water interfaces. Vesicles can be used as emulsifiers in the three-phase emulsions and act as an independent phase unlike the surfactant used in conventional emulsions; therefore, it is expected that the three-phase emulsion formed by the adhesion of vesicles to the oil/water interface will adsorb on various solid/water interfaces. The cationic three-phase emulsion was prepared to encourage emulsion adsorption on negatively charged solid substrates in water. The emulsifier polyoxyethylene-(10) hydrogenated castor oil was rendered cationic by mixing with the surfactant cetyltrimethylammonium bromide and then used to prepare the cationic three-phase emulsion of hexadecane-in-water. Three solid substrates (silicon, glass, and copper) were dipped in the cationic emulsion and the emulsion was found to adsorb on the solid substrates while maintaining its structure. The amount of hexadecane adsorbed on the various surfaces was investigated by gas chromatography and found to increase with increasing hexadecane concentration in the emulsion and eventually plateaued just like molecular adsorption. The maximum surface coverage of the emulsion on the substrates was approximately 80%. However, even the equivalent nonionic three-phase emulsion was found to adsorb on the three solid surfaces. This was attributed to a novel mechanism of irreversible adhesion via the van der Waals attractive force.

  13. A new scanning system for alpha decay events as calibration sources for range-energy relation in nuclear emulsion

    NASA Astrophysics Data System (ADS)

    Yoshida, J.; Kinbara, S.; Mishina, A.; Nakazawa, K.; Soe, M. K.; Theint, A. M. M.; Tint, K. T.

    2017-03-01

    A new scanning system named "Vertex picker" has been developed to rapid collect alpha decay events, which are calibration sources for the range-energy relation in nuclear emulsion. A computer-controlled optical microscope scans emulsion layers exhaustively, and a high-speed and high-resolution camera takes their micrographs. A dedicated image processing picks out vertex-like shapes. Practical operations of alpha decay search were demonstrated by emulsion sheets of the KEK-PS E373 experiment. Alpha decays of nearly 28 events were detected in eye-check work on a PC monitor per hour. This yield is nearly 20 times more effective than that by the conventional eye-scan method. The speed and quality is acceptable for the coming new experiment, J-PARC E07.

  14. Egg white powder-stabilised multiple (water-in-olive oil-in-water) emulsions as beef fat replacers in model system meat emulsions.

    PubMed

    Öztürk, Burcu; Urgu, Müge; Serdaroğlu, Meltem

    2017-05-01

    Today, multiple emulsions are believed to have a considerable application potential in food industry. We aimed to investigate physical, chemical and textural quality characteristics of model system meat emulsions (MSME) in which beef fat (C) was totally replaced by 10% (E-10), 20% (E-20) or 30% (E-30) multiple emulsions (W 1 /O/W 2 ) prepared with olive oil and egg white powder (EWP). Incorporation of W 1 /O/W 2 emulsion resulted in reduced fat (from 11.54% to 4.01%), increased protein content (from 13.66% to 14.74%), and modified fatty acid composition, significantly increasing mono- and polyunsaturated fatty acid content and decreasing saturated fatty acid content. E-20 and E-30 samples had lower jelly and fat separation (5.77% and 5.25%) compared to C and E-10 (9.67% and 8.55%). W 1 /O/W 2 emulsion treatments had higher water-holding capacity (93.96-94.35%) than C samples (91.84%), and also showed the desired storage stability over time. Emulsion stability results showed that E-20 and E-30 samples had lower total expressible fluid (14.05% and 14.53%) and lower total expressible fat (5.06% and 5.33%) compared to C samples (19.13% and 6.09%). Increased concentrations of W 1 /O/W 2 emulsions led to alterations in colour and texture parameters. TBA values of samples were lower in W 1 /O/W 2 emulsion treatments than control treatment during 60 days of storage. Our results indicated that multiple emulsions prepared with olive oil and EWP had promising impacts on reducing fat, modifying the lipid composition and developing both technologically and oxidatively stable meat systems. These are the first findings concerning beef matrix fat replacement with multiple emulsions stabilised by EWP. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  15. Flow of emulsion droplets in 3D porous media

    NASA Astrophysics Data System (ADS)

    Huang, Chao; Shi, Lin; Parsa, Shima; Weitz, David

    2017-11-01

    We study the pore-level behavior of large emulsion droplets in 3D micromodel of porous media using confocal microscopy. We match the index of refraction of the emulsion droplets and the ambient fluid to the porous media. The emulsion droplets are uniform in size and generated using microfluidics. We measure the changes in the fluid velocity as the emulsion droplets flow in the medium using particle image velocimetry. We find that due to the trapping and flow of emulsion the velocities change locally. These changes are particularly beneficial in enhanced oil recovery.

  16. An easily regenerable enzyme reactor prepared from polymerized high internal phase emulsions.

    PubMed

    Ruan, Guihua; Wu, Zhenwei; Huang, Yipeng; Wei, Meiping; Su, Rihui; Du, Fuyou

    2016-04-22

    A large-scale high-efficient enzyme reactor based on polymerized high internal phase emulsion monolith (polyHIPE) was prepared. First, a porous cross-linked polyHIPE monolith was prepared by in-situ thermal polymerization of a high internal phase emulsion containing styrene, divinylbenzene and polyglutaraldehyde. The enzyme of TPCK-Trypsin was then immobilized on the monolithic polyHIPE. The performance of the resultant enzyme reactor was assessed according to the conversion ability of Nα-benzoyl-l-arginine ethyl ester to Nα-benzoyl-l-arginine, and the protein digestibility of bovine serum albumin (BSA) and cytochrome (Cyt-C). The results showed that the prepared enzyme reactor exhibited high enzyme immobilization efficiency and fast and easy-control protein digestibility. BSA and Cyt-C could be digested in 10 min with sequence coverage of 59% and 78%, respectively. The peptides and residual protein could be easily rinsed out from reactor and the reactor could be regenerated easily with 4 M HCl without any structure destruction. Properties of multiple interconnected chambers with good permeability, fast digestion facility and easily reproducibility indicated that the polyHIPE enzyme reactor was a good selector potentially applied in proteomics and catalysis areas. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Feasibility of low frequency ultrasound for water removal from crude oil emulsions.

    PubMed

    Antes, Fabiane G; Diehl, Liange O; Pereira, Juliana S F; Guimarães, Regina C L; Guarnieri, Ricardo A; Ferreira, Bianca M S; Dressler, Valderi L; Flores, Erico M M

    2015-07-01

    The feasibility of indirect application of low frequency ultrasound for demulsification of crude oil was investigated without using chemical demulsifiers. Experiments were performed in an ultrasonic bath with frequency of 35 kHz. Synthetic emulsions with water content of 12%, 35% and 50% and median of droplet size distribution (DSD), median D(0.5), of 5, 10 and 25 μm were prepared from crude oil with API density of 19 (heavy crude oil) and submitted to the proposed ultrasound-assisted demulsification procedure. Experimental conditions as temperature, time of exposition to ultrasound and ultrasonic power were evaluated. Separation of water from crude oil emulsion was observed for all emulsions investigated. Demulsification efficiency up to 65% was obtained for emulsion with 50% of water content and DSD of 10 μm. Higher efficiency of demulsification was achieved using US temperature of 45 °C and ultrasound power of 160 W by 15 min. Results obtained in this study showed that ultrasound could be considered a promising technology for industrial crude oil treatment and respective water removal. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Emulsion based cast booster - a priming system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gupta, R.N.; Mishra, A.K.

    2005-07-01

    This paper explores the potential of emulsion based cast booster to be used as primer to initiate bulk delivered emulsion explosives used in mines. An attempt has been made for comparative study between conventional cast booster and emulsion based cast booster in terms of the initiation process developed and their capability to develop and maintain the stable detonation process in the column explosives. The study has been conducted using a continuous velocity of detonation (VOD) measuring instrument. During this study three blasts have been monitored. In each blast two holes have been selected for study, the first hole being initiatedmore » with conventional cast booster while the other one with emulsion based cast booster. The findings of the study advocates that emulsion based cast booster is capable of efficient priming of bulk delivered column explosive with stable detonation process in the column. Further, the booster had advantages over the conventional PETN/TNT based cast booster. 5 refs., 2 figs., 1 tab., 1 photo.« less

  19. Radon detection in conical diffusion chambers: Monte Carlo calculations and experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rickards, J.; Golzarri, J. I.; Espinosa, G., E-mail: espinosa@fisica.unam.mx

    2015-07-23

    The operation of radon detection diffusion chambers of truncated conical shape was studied using Monte Carlo calculations. The efficiency was studied for alpha particles generated randomly in the volume of the chamber, and progeny generated randomly on the interior surface, which reach track detectors placed in different positions within the chamber. Incidence angular distributions, incidence energy spectra and path length distributions are calculated. Cases studied include different positions of the detector within the chamber, varying atmospheric pressure, and introducing a cutoff incidence angle and energy.

  20. Heat Transfer in Boiling Dilute Emulsion with Strong Buoyancy

    NASA Astrophysics Data System (ADS)

    Freeburg, Eric Thomas

    Little attention has been given to the boiling of emulsions compared to that of boiling in pure liquids. The advantages of using emulsions as a heat transfer agent were first discovered in the 1970s and several interesting features have since been studied by few researchers. Early research focuses primarily on pool and flow boiling and looks to determine a mechanism by which the boiling process occurs. This thesis looks at the boiling of dilute emulsions in fluids with strong buoyant forces. The boiling of dilute emulsions presents many favorable characteristics that make it an ideal agent for heat transfer. High heat flux electronics, such as those seen in avionics equipment, produce high heat fluxes of 100 W/cm2 or more, but must be maintained at low temperatures. So far, research on single phase convection and flow boiling in small diameter channels have yet to provide an adequate solution. Emulsions allow the engineer to tailor the solution to the specific problem. The fluid can be customized to retain the high thermal conductivity and specific heat capacity of the continuous phase while enhancing the heat transfer coefficient through boiling of the dispersed phase component. Heat transfer experiments were carried out with FC-72 in water emulsions. FC-72 has a saturation temperature of 56 °C, far below that of water. The parameters were varied as follows: 0% ≤ epsilon ≤ 1% and 1.82 x 1012 ≤ RaH ≤ 4.42 x 1012. Surface temperatures along the heated surface reached temperature that were 20 °C in excess of the dispersed phase saturation temperature. An increase of ˜20% was seen in the average Nusselt numbers at the highest Rayleigh numbers. Holography was used to obtain images of individual and multiple FC-72 droplets in the boundary layer next to the heated surface. The droplet diameters ranged from 0.5 mm to 1.3 mm. The Magnus effect was observed when larger individual droplets were injected into the boundary layer, causing the droplets to be pushed

  1. One-step formation of multiple emulsions in microfluidics.

    PubMed

    Abate, Adam R; Thiele, Julian; Weitz, David A

    2011-01-21

    We present a robust way to create multiple emulsions with controllable shell thicknesses that can vary over a wide range. We use a microfluidic device to create a coaxial jet of immiscible fluids; using a dripping instability, we break the jet into multiple emulsions. By controlling the thickness of each layer of the jet, we adjust the thicknesses of the shells of the multiple emulsions. The same method is also effective in creating monodisperse emulsions from fluids that cannot otherwise be controllably emulsified, such as, for example, viscoelastic fluids.

  2. Emulsion chamber observations of primary cosmic-ray electrons in the energy range 30-1000 GeV

    NASA Technical Reports Server (NTRS)

    Nishimura, J.; Fujii, M.; Taira, T.; Aizu, E.; Hiraiwa, H.; Kobayashi, T.; Niu, K.; Ohta, I.; Golden, R. L.; Koss, T. A.

    1980-01-01

    The results of a series of emulsion exposures, beginning in Japan in 1968 and continued in the U.S. since 1975, which have yielded a total balloon-altitude exposure of 98,700 sq m sr s, are presented. The data are discussed in terms of several models of cosmic-ray propagation. Interpreted in terms of the energy-dependent leaky-box model, the spectrum results suggest a galactic electron residence time of 1.0(+2.0, -0.5) x 10 to the 7th yr, which is consistent with results from Be-10 observations. Finally, the possibility that departures from smooth power law behavior in the spectrum due to individual nearby sources will be observable in the energy range above 1 TeV is discussed.

  3. Emulsion design to improve the delivery of functional lipophilic components.

    PubMed

    McClements, David Julian

    2010-01-01

    The food industry has used emulsion science and technology for many years to create a diverse range of food products, such as milk, cream, soft drinks, nutritional beverages, dressings, mayonnaise, sauces, dips, deserts, ice cream, margarine, and butter. The majority of these food products are conventional oil-in-water (O/W) or water-in-oil (W/O) type emulsions. Recently, there has been increasing interest within the food industry in either improving or extending the functional performance of foods using novel structured emulsions. This article reviews recent developments in the creation of structured emulsions that could be used by the food and other industries, including nanoemulsions, multiple emulsions, multilayer emulsions, solid lipid particles, and filled hydrogel particles. These structured emulsions can be produced from food-grade [generally recognized as safe (GRAS)] ingredients (e.g., lipids, proteins, polysaccharides, surfactants, and minerals), using simple processing operations (e.g., mixing, homogenizing, and thermal processing). The structure, production, performance, and potential applications of each type of structured emulsion system are discussed.

  4. Bespoke contrast-matched diblock copolymer nanoparticles enable the rational design of highly transparent Pickering double emulsions

    NASA Astrophysics Data System (ADS)

    Rymaruk, Matthew J.; Thompson, Kate L.; Derry, Matthew J.; Warren, Nicholas J.; Ratcliffe, Liam P. D.; Williams, Clive N.; Brown, Steven L.; Armes, Steven P.

    2016-07-01

    We report the preparation of highly transparent oil-in-water Pickering emulsions using contrast-matched organic nanoparticles. This is achieved via addition of judicious amounts of either sucrose or glycerol to an aqueous dispersion of poly(glycerol monomethacrylate)56-poly(2,2,2-trifluoroethyl methacrylate)500 [PGMA-PTFEMA] diblock copolymer nanoparticles prior to high shear homogenization with an equal volume of n-dodecane. The resulting Pickering emulsions comprise polydisperse n-dodecane droplets of 20-100 μm diameter and exhibit up to 96% transmittance across the visible spectrum. In contrast, control experiments using non-contrast-matched poly(glycerol monomethacrylate)56-poly(benzyl methacrylate)300 [PGMA56-PBzMA300] diblock copolymer nanoparticles as a Pickering emulsifier only produced conventional highly turbid emulsions. Thus contrast-matching of the two immiscible phases is a necessary but not sufficient condition for the preparation of highly transparent Pickering emulsions: it is essential to use isorefractive nanoparticles in order to minimize light scattering. Furthermore, highly transparent oil-in-water-in-oil Pickering double emulsions can be obtained by homogenizing the contrast-matched oil-in-water Pickering emulsion prepared using the PGMA56-PTFEMA500 nanoparticles with a contrast-matched dispersion of hydrophobic poly(lauryl methacrylate)39-poly(2,2,2-trifluoroethyl methacrylate)800 [PLMA39-PTFEMA800] diblock copolymer nanoparticles in n-dodecane. Finally, we show that an isorefractive oil-in-water Pickering emulsion enables fluorescence spectroscopy to be used to monitor the transport of water-insoluble small molecules (pyrene and benzophenone) between n-dodecane droplets. Such transport is significantly less efficient than that observed for the equivalent isorefractive surfactant-stabilized emulsion. Conventional turbid emulsions do not enable such a comparison to be made because the intense light scattering leads to substantial spectral

  5. Metallic nanoshells on porphyrin-stabilized emulsions

    DOEpatents

    Wang, Haorong; Song, Yujiang; Shelnutt, John A; Medforth, Craig J

    2013-10-29

    Metal nanostructures formed by photocatalytic interfacial synthesis using a porphyrin-stabilized emulsion template and the method for making the nanostructures. Catalyst-seeded emulsion droplets are employed as templates for hollow-nanoshell growth. The hollow metal nanospheres may be formed with or without inclusions of other materials.

  6. Thermocapillary Motion in an Emulsion

    NASA Technical Reports Server (NTRS)

    Pukhnachov, Vladislav V.; Voinov, Oleg V.

    1996-01-01

    The phenomenological model for the motion of an emulsion or a gas-liquid mixture exposed to thermocapillary forces and micro-acceleration is formulated. The analytical and numerical investigation of one-dimensional flows for these media is fulfilled, the structure of discontinuous motion is studied. The stability conditions of a space-uniform state and of the interface between an emulsion and a pure liquid are obtained.

  7. Ultra high energy events in ECHOS series and primary energy spectrum

    NASA Technical Reports Server (NTRS)

    Capdevielle, J. N.; Iwai, J.; Ogata, T.

    1985-01-01

    The compilation of ultra high energy jets suggests at present the existence of a bump in primary energy spectrum (with the standard concept of high energy collisions). The pseudo-rapidity distribution exhibits some typical anomalies, more than the (P sub t) behavior, which are (may be) the fingerprints of quark gluon plasma transition. The next results of Emulsion Chamber on Supersonic (ECHOS) will be in both cases determinant to confirm those tendancies, as well as an important effort of the cosmic ray community to develop in that sense a flying emulsion chamber experiment.

  8. Development of soy lecithin based novel self-assembled emulsion hydrogels.

    PubMed

    Singh, Vinay K; Pandey, Preeti M; Agarwal, Tarun; Kumar, Dilip; Banerjee, Indranil; Anis, Arfat; Pal, Kunal

    2015-03-01

    The current study reports the development and characterization of soy lecithin based novel self-assembled emulsion hydrogels. Sesame oil was used as the representative oil phase. Emulsion gels were formed when the concentration of soy lecithin was >40% w/w. Metronidazole was used as the model drug for the drug release and the antimicrobial tests. Microscopic study showed the apolar dispersed phase in an aqueous continuum phase, suggesting the formation of emulsion hydrogels. FTIR study indicated the formation of intermolecular hydrogen bonding, whereas, the XRD study indicated predominantly amorphous nature of the emulsion gels. Composition dependent mechanical and drug release properties of the emulsion gels were observed. In-depth analyses of the mechanical studies were done using Ostwald-de Waele power-law, Kohlrausch and Weichert models, whereas, the drug release profiles were modeled using Korsmeyer-Peppas and Peppas-Sahlin models. The mechanical analyses indicated viscoelastic nature of the emulsion gels. The release of the drug from the emulsion gels was diffusion mediated. The drug loaded emulsion gels showed good antimicrobial activity. The biocompatibility test using HaCaT cells (human keratinocytes) suggested biocompatibility of the emulsion gels. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Stabilization of Oil-Water Emulsions by Hydrophobic Bacteria

    PubMed Central

    Dorobantu, Loredana S.; Yeung, Anthony K. C.; Foght, Julia M.; Gray, Murray R.

    2004-01-01

    Formation of oil-water emulsions during bacterial growth on hydrocarbons is often attributed to biosurfactants. Here we report the ability of certain intact bacterial cells to stabilize oil-in-water and water-in-oil emulsions without changing the interfacial tension, by inhibition of droplet coalescence as observed in emulsion stabilization by solid particles like silica. PMID:15466587

  10. Simulation of Non-Newtonian Emulsion Flows in Microchannels

    NASA Astrophysics Data System (ADS)

    Malanichev, I. V.; Akhmadiev, F. G.

    2015-11-01

    Simulation of emulsion flows in differently shaped microchannels to reproduce the choking of such flows as a result of the effect of dynamic blocking has been made. A model of a highly concentrated emulsion as a structure of tightly packed deformed droplets surrounded by elastic shells is considered. The motion of liquid was determined by the method of the lattice Boltzmann equations together with the immersed boundary method. The influence of the non-Newtonian properties and of elastic turbulence of the indicated emulsion, as well as of the elasticity of the shells of its droplets and of the interaction of these shells on the emulsion motion in a microchannel, has been investigated. It is shown that the flow of this emulsion can be slowed down substantially only due to the mutual attraction of the shells of its droplets.

  11. Bakeout Chamber Within Vacuum Chamber

    NASA Technical Reports Server (NTRS)

    Taylor, Daniel M.; Soules, David M.; Barengoltz, Jack B.

    1995-01-01

    Vacuum-bakeout apparatus for decontaminating and measuring outgassing from pieces of equipment constructed by mounting bakeout chamber within conventional vacuum chamber. Upgrade cost effective: fabrication and installation of bakeout chamber simple, installation performed quickly and without major changes in older vacuum chamber, and provides quantitative data on outgassing from pieces of equipment placed in bakeout chamber.

  12. The cloud chamber as a field diagnostic tool

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clark, A

    1967-10-19

    This document presents the Pros and Cons of using a cloud chamber for field use. Historical aspects are briefly discussed. A cloud chamber experiment on Midi Mist is described. Plans for fielding an experiment on Hupmobile are presented.

  13. Study the effect of polymers on the stability and rheological properties of oil-in-water (O/W) Pickering emulsion muds

    NASA Astrophysics Data System (ADS)

    Jha, Praveen Kumar; Mahto, Vikas; Saxena, Vinod Kumar

    2018-05-01

    A new type of oil-in-water (O/W) Pickering emulsion systems, which were prepared by polymers such as xanthan gum, carboxymethyl cellulose (CMC), and sodium lignosulfonate have been investigated for their properties as multifunctional emulsion muds with respect to rheological control and filtration control properties. Diesel oil was used as dispersed phase and KCl-brine as continuous phase in the developed emulsions. Initially, rheological parameters like apparent viscosity, plastic viscosity, gel strength, and filtration control properties were measured using recommended practices. Emulsion stability was analyzed using steady state shear stress-shear rate and oscillatory (dynamic) rheological measurement techniques. The emulsions were found to exhibit shear-thinning (pseudoplastic) behavior. Experiments conducted for oscillatory rheological measurements have shown that emulsions are stable as per the stability criteria G' (elastic modulus) > G'' (loss modulus) and both are independent of changing ω (Frequency). These fluids have shown stable properties upto 70°C which shows that they can be used as drilling muds for drilling oil and gas wells.

  14. The Drift Chamber for the Experiment to Study the Nature of the Confinement

    DOE PAGES

    Berdnikov, Vladimir V.; Somov, S. V.; Pentchev, Lubomir; ...

    2015-01-01

    The GlueX experiment was designed to search for hybrid mesons with exotic quantum numbers using a beam of linearly polarized photons incident on a liquid hydrogen target. The spectrum of these states and their mass splitting from normal mesons may yield information on confinement. The description of the GlueX spectrometer and Forward Drift Chambers (FDC) as a part of track reconstruction system is presented in the text. FDC‘s are multiwire chambers with cathode and anode read-out. The system allows reconstructing tracks of charged particles with ~200mkm accuracy with angles from 20° up to 1°. One of the detector features ismore » 1.64% X 0 material amount in the active area. The cathode gain calibration procedure is presented. The results of such calibration using cosmic data and beam data are presented as well.« less

  15. Binding of long-lasting local anesthetics to lipid emulsions.

    PubMed

    Mazoit, Jean-Xavier; Le Guen, Régine; Beloeil, Hélène; Benhamou, Dan

    2009-02-01

    Rapid infusion of lipid emulsion has been proposed to treat local anesthetic toxicity. The authors wanted to test the buffering properties of two commercially available emulsions made of long- and of long- and medium-chain triglycerides. Using the shake-flask method, the authors measured the solubility and binding of racemic bupivacaine, levobupivacaine, and ropivacaine to diluted Intralipid (Fresenius Kabi, Paris, France) and Medialipide (B-Braun, Boulogne, France). The apparent distribution coefficient expressed as the ratio of mole fraction was 823 +/- 198 and 320 +/- 65 for racemic bupivacaine and levobupivacaine, and ropivacaine, respectively, at 500 mg in the Medialipide/buffer emulsion; and 1,870 +/- 92 and 1,240 +/- 14 for racemic bupivacaine and levobupivacaine, and ropivacaine, respectively, in the Intralipid/buffer emulsion. Decreasing the pH from 7.40 to 7.00 of the Medialipide/buffer emulsion led to a decrease in ratio of molar concentration from 121 +/- 3.8 to 46 +/- 2.8 for bupivacaine, and to a lesser extent from 51 +/- 4.0 to 31 +/- 1.6 for ropivacaine. The capacity of the 1% emulsions was 871 and 2,200 microM for the 1% Medialipide and Intralipid emulsions, respectively. The dissociation constant was 818 and 2,120 microM for racemic bupivacaine and levobupivacaine, and ropivacaine, respectively. Increasing the temperature from 20 to 37 degrees C led to a greater increase in affinity for ropivacaine (55%) than for bupivacaine (27%). When the pH of the buffer was decreased from 7.40 to 7.00, the affinity was decreased by a factor of 1.68, similar for both anesthetics. The solubility of long-acting local anesthetics in lipid emulsions and the high capacity of binding of these emulsions most probably explain their clinical efficacy in case of toxicity. The long-chain triglyceride emulsion Intralipid appears to be about 2.5 times more efficacious than the 50/50 medium-chain/long-chain Medialipide emulsion. Also, because of their higher hydrophobicity

  16. Autoxidation of unsaturated lipids in food emulsion.

    PubMed

    Sun, Yue-E; Wang, Wei-Dong; Chen, Hong-Wei; Li, Chao

    2011-05-01

    Unsaturated lipids having various physiological roles are of significance in biochemistry, nutrition, medicine, and food. However, the susceptibility of lipids to oxidation is a major cause of quality deterioration in food emulsions. The reaction mechanism and factors that influence oxidation are appreciably different for emulsified lipids and bulk lipids. This article gives a brief overview of the current knowledge on autoxidation of oil-in-water food emulsions, especially those that contain unsaturated lipids, which are important in the food industry. Autoxidation of unsaturated lipids in oil-in-water emulsion is discussed, and so also their oxidation mechanism, the major factors influencing oxidation, determination measures, research status, and the problems encountered in recent years. Some effective strategies for controlling lipid oxidation in food emulsion have been presented in this review.

  17. Aging properties of Kodak type 101 emulsions

    NASA Technical Reports Server (NTRS)

    Dohne, B.; Feldman, U.; Neupert, W.

    1984-01-01

    Aging tests for several batches of Kodak type 101 emulsion show that storage conditions significantly influence how well the film will maintain its sensitometric properties, with sensitivity and density increasing to a maximum during this period. Any further aging may result in higher fog levels and sensitivity loss. It is noted that storage in an environment free of photographically active compounds allows film property optimization, and that film batches with different sensitivities age differently. Emulsions with maximum 1700-A sensitivity are 2.5 times faster than those at the low end of the sensitivity scale. These sensitive emulsions exhibit significantly accelerated changes in aging properties. Their use in space applications requires careful consideration of time and temperature profiles, encouraging the use of less sensitive emulsions when the controllability of these factors is limited.

  18. Microfluidic approach for encapsulation via double emulsions.

    PubMed

    Wang, Wei; Zhang, Mao-Jie; Chu, Liang-Yin

    2014-10-01

    Double emulsions, with inner drops well protected by the outer shells, show great potential as compartmentalized systems to encapsulate multiple components for protecting actives, masking flavor, and targetedly delivering and controllably releasing drugs. Precise control of the encapsulation characteristics of each component is critical to achieve an optimal therapeutic efficacy for pharmaceutical applications. Such controllable encapsulation can be realized by using microfluidic approaches for producing monodisperse double emulsions with versatile and controllable structures as the encapsulation system. The size, number and composition of the emulsion drops can be accurately manipulated for optimizing the encapsulation of each component for pharmaceutical applications. In this review, we highlight the outstanding advantages of controllable microfluidic double emulsions for highly efficient and precisely controllable encapsulation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Studying breaking of inverted emulsions with thermolysis purification TD600

    NASA Astrophysics Data System (ADS)

    Tarasova, G. I.; Shevaga, O. N.; Grachyova, E. O.

    2018-03-01

    Currently, emulsions are used in many branches of industry and agriculture. It explains significant attention paid to issues in production, stabilization and breaking of emulsion. Besides, producing steady emulsions is of importance in many processes; the reverse problem, that of demulsification, is important as well in oil production and treatment of oil emulsion waste water. This paper studies the breaking (demulsification) of inverted emulsions with the help of thermolysis purification TD600, produced by thermal modification of purification, a large-scale waste of the sugar industry.

  20. Conditions for Destabilizing Pickering emulsions using external electric fields

    NASA Astrophysics Data System (ADS)

    Hwang, Kyuho; Singh, Pushpendra; Aubry, Nadine

    2009-11-01

    Fine particles are readily adsorbed at fluid-fluid interfaces, and can be used as stabilizers in emulsion technology by preventing adjacent drops from coalescing with each other. We investigate a new technique to destabilize such emulsions, or Pickering emulsions, by applying an external electric field. Experiments show that the latter has two effects: (i) the drops elongate in the direction of the electric field, (ii) the local particle density varies on the drop surface due to the dielectrophoretic (DEP) force acting on the particles. It is shown that the latter is the dominant factor in the destabilization process. Particularly, the success of the method depends on the values of certain dimensionless parameters; specifically, the ratio of the work done by the dielectrophoretic force must be larger than the work done by the buoyant force. Moreover, drops do not coalesce through the regions where the particles locally cluster, whether those are gathered at the poles or at the equator of the drops. As particles move, particle-free openings form on the drop's surface, which allow for adjacent drops to merge. This process takes place even if the particles are fully packed on the drops' surfaces as particles get ejected from the clustering areas due to a buckling phenomenon.

  1. Treatment of local-anesthetic toxicity with lipid emulsion therapy.

    PubMed

    Burch, Melissa S; McAllister, Russell K; Meyer, Tricia A

    2011-01-15

    The use of lipid emulsion to treat local-anesthetic toxicity is discussed. Systemic toxicity from local anesthetics is a rare but potentially fatal complication of regional anesthesia. There is increasing evidence that lipid emulsion may be an effective treatment to reverse the cardiac and neurologic effects of local-anesthetic toxicity. A literature search identified seven case reports of local-anesthetic toxicity in which lipid emulsion was used. Lipid emulsion was found to be successful in the treatment of local-anesthetic toxicity associated with various regional anesthetic techniques and multiple local anesthetics. The majority of patients in the case reports reviewed were unresponsive to initial management of local-anesthetic toxicity with standard resuscitative measures, but all recovered completely after receiving lipid emulsion therapy. The initial dose of lipid emulsion administered varied among the case reports, as well as whether a lipid emulsion infusion was started and at what point during resuscitation. Based on the case reports reviewed, an initial bolus dose of 1.5 mL/kg followed by an infusion of 10 mL/min as soon as local-anesthetic toxicity is suspected seems most beneficial. The pharmacokinetics of lipid emulsion therapy in the treatment of local-anesthetic toxicity has not been fully elucidated but likely involves increasing metabolism, distribution, or partitioning of the local anesthetic away from receptors into lipid within tissues. Lipid emulsion has been reported useful in the treatment of systemic toxicity caused by local anesthetics. The mechanism of effect is unclear, and evidence for the benefit of lipid therapy in humans is from case reports only.

  2. FAT EMULSION COMPOSITION ALTERS INTAKE AND THE EFFECTS OF BACLOFEN

    PubMed Central

    Wang, Y; Wilt, DC; Wojnicki, FHE; Babbs, RK; Coupland, JN; Corwin, RLC

    2011-01-01

    Thickened oil-in-water emulsions are useful model foods in rat studies due to their high acceptance and similarity to foods consumed by humans. Previous work from this laboratory used oil-in-water emulsions thickened with a biopolymer blend containing starch. Intake and effects of baclofen, a GABA-B agonist that decreases fat intake and drug self-administration, were reported, but the contribution of starch was not assessed. In the present study, intake and effects of baclofen were assessed in rats using emulsions prepared with two fat types (32% vegetable shortening, 32% corn oil) and thickened with three biopolymer blends. One biopolymer blend contained starch and the other two did not. Daily 1-h intake of the vegetable shortening emulsion containing starch was significantly greater than the other emulsions. When starch was added to the emulsions originally containing no starch, intake significantly increased. Baclofen generally reduced intake of all emulsions regardless of starch content and stimulated intake of chow. However, effects were more often significant for vegetable shortening emulsions. This report: 1) demonstrates that products used to prepare thickened oil-in-water emulsions have significant effects on rat ingestive behavior, and 2) confirms the ability of baclofen to reduce consumption of fatty foods, while simultaneously stimulating intake of chow. PMID:21855586

  3. Droplet-based microfluidics and the dynamics of emulsions

    NASA Astrophysics Data System (ADS)

    Baret, Jean-Christophe; Brosseau, Quentin; Semin, Benoit; Qu, Xiaopeng

    2012-02-01

    Emulsions are complex fluids already involved for a long time in a wide-range of industrial processes, such as, for example, food, cosmetics or materials synthesis [1]. More recently, applications of emulsions have been extended to new fields like biotechnology or biochemistry where the compartmentalization of compounds in emulsion droplets is used to parallelise (bio-) chemical reactions [2]. Interestingly, these applications pinpoint to fundamental questions dealing with surfactant dynamics, dynamic surface tension, hydrodynamic interactions and electrohydrodynamics. Droplet-based microfluidics is a very powerful tool to quantitatively study the dynamics of emulsions at the single droplet level or even at the single interface level: well-controlled emulsions are produced and manipulated using hydrodynamics, electrical forces, optical actuation and combination of these effects. We will describe here how droplet-based microfluidics is used to extract quantitative informations on the physical-chemistry of emulsions for a better understanding and control of the dynamics of these systems [3].[4pt] [1] J. Bibette et al. Rep. Prog. Phys., 62, 969-1033 (1999)[0pt] [2] A. Theberge et al., Angewandte Chemie Int. Ed. 49, 5846 (2010)[0pt] [3] J.-C. Baret et al., Langmuir, 25, 6088 (2009)

  4. Factors that affect Pickering emulsions stabilized by graphene oxide.

    PubMed

    He, Yongqiang; Wu, Fei; Sun, Xiying; Li, Ruqiang; Guo, Yongqin; Li, Chuanbao; Zhang, Lu; Xing, Fubao; Wang, Wei; Gao, Jianping

    2013-06-12

    Stable Pickering emulsions were prepared using only graphene oxide (GO) as a stabilizer, and the effects of the type of oil, the sonication time, the GO concentration, the oil/water ratio, and the pH value on the stability, type, and morphology of these emulsions were investigated. In addition, the effects of salt and the extent of GO reduction on emulsion formation and stability were studied and discussed. The average droplet size decreased with sonication time and with GO concentration, and the emulsions tended to achieve good stability at intermediate oil/water ratios and at low pH values. In all solvents, the emulsions were of the oil-in-water type, but interestingly, some water-in-oil-in-water (w/o/w) multiple emulsion droplets were also observed with low GO concentrations, low pH values, high oil/water ratios, high salt concentrations, or moderately reduced GO in the benzyl chloride-water system. A Pickering emulsion stabilized by Ag/GO was also prepared, and its catalytic performance for the reduction of 4-nitrophenol was investigated. This research paves the way for the fabrication of graphene-based functional materials with novel nanostructures and microstructures.

  5. Indomethacin-5-fluorouracil-methyl ester dry emulsion: a potential oral delivery system for 5-fluorouracil.

    PubMed

    Wang, Jing; Hu, Yanchen; Li, Ling; Jiang, Tongying; Wang, Siling; Mo, Fengkui

    2010-06-01

    To produce a combined effect of indomethacin (IDM) and 5-fluorouracil (5FU) for cancer therapy, the side effects of IDM on the gastrointestinal (GI) tract were reduced and the oral adsorption of 5FU was improved. Indomethacin-5-fluorouracil-methyl ester (IFM) dry emulsion was prepared and evaluated as a potential oral delivery system for 5FU. IFM was synthesized by formation of an ester between IDM and 5FU intermediate and then characterized by structure, melting point, solubility, apparent partition coefficient, and incubation with GI tract contents and plasma. Gum acacia and sodium carboxymethyl cellulose (CMC-Na) were applied as the adsorbent and solid carrier to prepare IFM dry emulsion. IFM dry emulsion was then characterized by reconstitution in water and in situ intestinal perfusion experiment. Physicochemical properties of the new synthesized compound confirmed the formation of IFM. Incubation of IFM in the contents of the GI tract and plasma revealed that IFM was not relatively stable in GI contents during the time period of transit through the GI tract, whereas it was very unstable in plasma and released 5FU rapidly. The IFM dry emulsion could be easily reconstituted in water, and the mean particle size was 2.416 microm. The absorption rate constant (K) for IFM with concentration of 2, 5, and 10 microg/mL in the in situ perfusion experiment were 0.473, 0.423, and 0.433/h, respectively, demonstrating passive diffusion of IFM across the biological membranes. This study indicates that the IFM dry emulsion may represent a potentially useful oral delivery system for 5FU.

  6. Factors influencing the stability and type of hydroxyapatite stabilized Pickering emulsion.

    PubMed

    Zhang, Ming; Wang, Ai-Juan; Li, Jun-Ming; Song, Na; Song, Yang; He, Rui

    2017-01-01

    Hydroxyapatite (HAp) nanoparticle stabilized Pickering emulsion was fabricated with poly(l-lactic acid) dissolved in dichloromethane (CH 2 Cl 2 ) solution as oil phase and HAp aqueous dispersion as aqueous phase. Pickering emulsion was cured via in situ solvent evaporation method. Effect of PLLA concentrations, pH value, HAp concentrations, oil-water ratio, emulsification rates and times were studied on emulsion stability and emulsion type, etc. The results indicated emulsion stability increased with the increase of HAp concentration, emulsification rate and time; it is very stable when pH value of aqueous phase was adjusted to 10. Stable W/O and O/W emulsions were fabricated successfully using as-received HAp particles as stabilizer by adjusting the fabricating parameters. The interaction between HAp and PLLA played an important role to stabilize Pickering emulsions. SEM results indicated that both microsphere and porous materials were fabricated using emulsion stabilized by unmodified HAp nanoparticles, implying that both W/O and O/W emulsion type were obtained. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Impact of model fat emulsions on sensory perception using repeated spoon to spoon ingestion.

    PubMed

    Appelqvist, I A M; Poelman, A A M; Cochet-Broch, M; Delahunty, C M

    2016-06-01

    Eating is a dynamic behaviour, in which food interacts with the mechanical and physiological environment of the mouth. This dynamic interaction changes the oral surfaces leaving particles of food and building up a film on the oral surfaces, which may impact on the temporal perception during the eating experience. The effect of repeated spoon to spoon ingestion of oil in water emulsion products (2%-50% w/w oil) was evaluated using descriptive in-mouth and after swallowing sensory attributes. Descriptive sensory analysis indicated that fatty mouthfeel and afterfeel perception (measured post swallowing) increased with the number of spoonfuls for emulsions containing 50% fat. This effect is likely due to the build-up of oil droplet layers deposited on the mouth surfaces. There was an enhancement of fatty afterfeel intensity for 50% fat emulsions containing the more lipophilic aroma ethylhexanoate compared to ethyl butanoate, indicating a cross-modal interaction. No increase in these attributes from spoon to spoon was observed for the low oil emulsions; since most of the oil in the emulsion was swallowed and very little oil was likely to be left in the mouth. Sweetness perception increased as fat level increased in the emulsion due to an increase in the effective concentration of sugar in the aqueous phase. However, the sweetness perceived did not change from spoon to spoon, suggesting that any oil-droplets deposited on the oral surfaces did not form a complete barrier, restricting access of the sucrose to the taste buds. This study highlights the importance of measuring the dynamic nature of eating and demonstrated change in sensory perception occurring with repeated ingestion of model emulsions, which was likely due to a change in mouth environment. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Studies with a safflower oil emulsion in total parenteral nutrition.

    PubMed Central

    Wong, K. H.; Deitel, M.

    1981-01-01

    The prevention of essential fatty acid deficiency and the provision of adequate amounts of energy are two major concerns in total parenteral nutrition. Since earlier preparations of fat emulsion used to supplement the usual regimen of hypertonic glucose and amino acids have widely varying clinical acceptability, a new product, a safflower oil emulsion available in two concentrations (Liposyn), was evaluated. In four clinical trials the emulsion was used as a supplement to total parenteral nutrition. In five surgical patients 500 ml of the 10% emulsion infused every third day prevented or corrected essential fatty acid deficiency; however, in some cases in infusion every other day may be necessary. In 40 patients in severe catabolic states the emulsion provided 30% to 50% of the energy required daily: 10 patients received the 10% emulsion for 14 to 42 days, 9 patients received each emulsion in turn for 7 days, and 21 patient received the 20% emulsion for 14 to 28 days. All the patients survived and tolerated the lipid well; no adverse clinical effects were attributable to the lipid infusions. Transient mild, apparently clinically insignificant abnormalities in the results of one or more liver function tests and eosinophilia were observed in some patients. Thus, the safflower oil emulsion, at both concentrations, was safe and effective as a source of 30% to 50% of the energy required daily by seriously ill patients. PMID:6799182

  9. The FASES instrument development and experiment preparation for the ISS

    NASA Astrophysics Data System (ADS)

    Picker, Gerold; Gollinger, Klaus; Greger, Ralf; Dettmann, Jan; Winter, Josef; Dewandre, Thierry; Castiglione, Luigi; Vincent-Bonnieu, Sebastien; Liggieri, Libero; Clausse, Daniele; Antoni, Mickael

    The FASES experiments target the investigation of the stability of emulsions. The main objec-tives are the study of the surfactant adsorption at the liquid / liquid interfaces, the interaction of the droplets as well as the behaviour of the liquid film between nearby drops. Particular focus is given to the dynamic droplet evolution during emulsion destabilisation. The results of the experiments shall support development of methods for the modelling of droplet size distri-butions, which are important to many industries using stable emulsions like food production, cosmetics and pharmaceutics or unstable emulsions as required for applications in waste water treatment or crude oil recovery. The development of the experimental instrumentation was initiated in 2002. The flight instru-ment hardware development was started in 2004 and finally the flight unit was completed in 2009. Currently the final flight preparation is proceeding targeting a launch to the International Space Station (ISS) with Progress 39P in September 2010. The experiment setup of the instrument is accommodated in a box type insert called Experiment Container (EC), which will be installed in the Fluid Science Laboratory part of the European Columbus module of the ISS. The EC is composed of two diagnostics instruments for the investigation of transparent and opaque liquid emulsion. The transparent emulsions will be subject to the experiment called "Investigations on drop/drop interactions in Transparent Emulsions" (ITEM). The opaque emulsion samples will be studied in the experiment called "Investigations on concentrated or opaque Emulsions and on Phase Inversions" (EMPI). The thermal conditioning unit (TCU) allows performing homogeneous thermalization, tem-perature sweeps, emulsion preparation by stirrer, and optical diagnostics with a scanning mi-croscope. The objective of the instrument is the 3D reconstruction of the emulsion droplet distribution in the liquid matrix in terms of the droplet sizes

  10. Flows of Wet Foamsand Concentrated Emulsions

    NASA Technical Reports Server (NTRS)

    Nemer, Martin B.

    2005-01-01

    The aim of this project was is to advance a microstructural understanding of foam and emulsion flows. The dynamics of individual surfactant-covered drops and well as the collective behavior of dilute and concentrated was explored using numerical simulations. The long-range goal of this work is the formulation of reliable microphysically-based statistical models of emulsion flows.

  11. Simple Cloud Chambers Using Gel Ice Packs

    ERIC Educational Resources Information Center

    Kamata, Masahiro; Kubota, Miki

    2012-01-01

    Although cloud chambers are highly regarded as teaching aids for radiation education, school teachers have difficulty in using cloud chambers because they have to prepare dry ice or liquid nitrogen before the experiment. We developed a very simple and inexpensive cloud chamber that uses the contents of gel ice packs which can substitute for dry…

  12. Efficacy of a new topical cationic emulsion of cyclosporine A on dry eye clinical signs in an experimental mouse model of dry eye.

    PubMed

    Daull, Philippe; Feraille, Laurence; Barabino, Stefano; Cimbolini, Nicolas; Antonelli, Sophie; Mauro, Virgine; Garrigue, Jean-Sébastien

    2016-12-01

    Dry eye disease (DED) is a complex, multifactorial pathology characterized by corneal epithelium lesions and inflammation. The aim of the present study was to evaluate the efficacy of a cationic emulsion of cyclosporine A (CsA) in a mouse model that mimics severe dry eye. Eight to 12-week-old female C57BL/6N mice with tail patches of scopolamine were housed in controlled environment chambers to induce dry eye. At day three, following dry eye confirmation by corneal fluorescein staining (CFS, score 0-15) and phenol red thread (PRT) lacrimation test, the mice (n = 10/gp) were either treated 3 times a day in both eyes with drug-free cationic emulsion, a 0.1% CsA cationic emulsion, or 1% methylprednisolone (positive control), or non-treated. Aqueous tear production and CFS scores were evaluated at baseline and throughout the treatment period. The lacrimation test confirmed the scopolamine-induced decrease in aqueous production by the lacrimal gland. A reduction of 59% in induced-CFS was observed following topical treatment with 0.1% CsA. The beneficial effect of the cationic emulsion vehicle itself on keratitis was also clearly evidenced by its better performance over 1% methylprednisolone, -36%, vs. -28% on the CFS scores, respectively. This study indicates that the cationic emulsion of CsA (0.1%) was a very effective formulation for the management of corneal epithelium lesions in a severe DED mouse model. In addition, it performed better than a potent glucocorticosteroid (1% methylprednisolone). This cationic emulsion of CsA (0.1%), combining CsA and a tear film oriented therapy (TFOT), i.e. with vehicle properties that mechanically stabilize the tear film, represents a promising new treatment strategy for the management of the signs of dry eye. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  13. Submicron Emulsions and Their Applications in Oral Delivery.

    PubMed

    Mundada, Veenu; Patel, Mitali; Sawant, Krutika

    2016-01-01

    A "submicron emulsion" is an isotropic mixture of drug, lipids, and surfactants, usually with hydrophilic cosolvents and with droplet diameters ranging from 10 to 500 nm. Submicron emulsions are of increasing interest in medicine due to their kinetic stability, high solubilizing capacity, and tiny globule size. Because of these properties, they have been applied in various fields, such as personal care, cosmetics, health care, pharmaceuticals, and agrochemicals. Submicron emulsions are by far the most advanced nanoparticulate systems for the systemic delivery of biologically active agents for controlled drug delivery and targeting. They are designed mainly for pharmaceutical formulations suitable for various routes of administration like parenteral, ocular, transdermal, and oral. This review article describes the marked potential of submicron emulsions for oral drug delivery owing to their numerous advantages like reduced first pass metabolism, inhibition of P-glycoprotein efflux system, and enhanced absorption via intestinal lymphatic pathway. To overcome the limitations of liquid dosage forms, submicron emulsions can be formulated into solid dosage forms such as solid self-emulsifying systems. This article covers various types of submicron emulsions like microemulsion, nanoemulsion, and self-emulsifying drug delivery system (SEDDS), and their potential pharmaceutical applications in oral delivery with emphasis on their advantages, limitations, and advancements.

  14. Centrifugal Pump Effect on Average Particle Diameter of Oil-Water Emulsion

    NASA Astrophysics Data System (ADS)

    Morozova, A.; Eskin, A.

    2017-11-01

    In this paper we review the process of oil-water emulsion particles fragmentation in a turbulent flow created by a centrifugal pump. We examined the influence of time necessary for oil-water emulsion preparation on the particle size of oil products and the dependence of a centrifugal pump emulsifying capacity on the initial emulsion dispersion. The investigated emulsion contained the brand fuel oil M-100 and tap water; it was sprayed with a nozzle in a gas-water flare. After preparation of the emulsion, the centrifugal pump was turned on and the emulsion samples were taken before and after the pump passing in 15, 30 and 45 minutes of spraying. To determine the effect the centrifugal pump has on the dispersion of the oil-water emulsion, the mean particle diameter of the emulsion particles was determined by the optical and microscopic method before and after the pump passing. A dispersion analysis of the particles contained in the emulsion was carried out by a laser diffraction analyzer. By analyzing the pictures of the emulsion samples, it was determined that after the centrifugal pump operation a particle size of oil products decreases. This result is also confirmed by the distribution of the obtained analyzer where the content of fine particles with a diameter less than 10 μm increased from 12% to 23%. In case of increasing emulsion preparation time, a particle size of petroleum products also decreases.

  15. Immunomodulatory and Physical Effects of Oil Composition in Vaccine Adjuvant Emulsions

    PubMed Central

    Fox, Christopher B.; Baldwin, Susan L.; Duthie, Malcolm S.; Reed, Steven G.; Vedvick, Thomas S.

    2011-01-01

    Squalene-based oil-in-water emulsions have been used for years in some seasonal and pandemic influenza vaccines. However, concerns have been expressed regarding squalene source and potential biological activities. Little information is available regarding the immunomodulatory activity of squalene in comparison with other metabolizable oils in the context of oil-in-water emulsions formulated with vaccines. The present work describes the manufacture and physical characterization of emulsions composed of different classes of oils, including squalene, long chain triglycerides, a medium chain triglyceride, and a perfluorocarbon, all emulsified with egg phosphatidylcholine. Some differences were apparent among the non-squalene oils in terms of emulsion stability, including higher size polydispersity in the perfluorocarbon emulsion, more rapid visual instability at 60 °C for the long-chain triglyceride and perfluorocarbon emulsions, and an increased creaming rate in the medium-chain triglyceride emulsion at 60 °C as detected by laser scattering optical profiling. The biological activity of each of these emulsions was compared when formulated with either a recombinant malaria antigen or a split-virus inactivated influenza vaccine. Overall, vaccines containing the squalene emulsion elicited higher antibody titers and more abundant long-lived plasma cells than vaccines containing emulsions based on other oils. Since squalene-based emulsions show higher adjuvant potency compared to the other oils tested, non-squalene oils may be more suitable as carriers of amphiphilic or hydrophobic immunostimulatory molecules (such as TLR agonists) rather than as stand-alone adjuvants. PMID:21906648

  16. Integrated microfluidic system with simultaneous emulsion generation and concentration.

    PubMed

    Koppula, Karuna S; Fan, Rong; Veerapalli, Kartik R; Wan, Jiandi

    2016-03-15

    Because the size, size distribution, and concentration of emulsions play an important role in most of the applications, controlled emulsion generation and effective concentration are of great interest in fundamental and applied studies. While microfluidics has been demonstrated to be able to produce emulsion drops with controlled size, size distribution, and hierarchical structures, progress of controlled generation of concentrated emulsions is limited. Here, we present an effective microfluidic emulsion generation system integrated with an orifice structure to separate aqueous droplets from the continuous oil phase, resulting in concentrated emulsion drops in situ. Both experimental and simulation results show that the efficiency of separation is determined by a balance between pressure drop and droplet accumulation near the orifice. By manipulating this balance via changing flow rates and microfluidic geometry, we can achieve monodisperse droplets on chip that have a concentration as high as 80,000 drops per microliter (volume fraction of 66%). The present approach thus provides insights to the design of microfluidic device that can be used to concentrate emulsions (drops and bubbles), colloidal particles (drug delivery polymer particles), and biological particles (cells and bacteria) when volume fractions as high as 66% are necessary. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Influence of acetazolamide loading on the (in vitro) performances of non-phospholipid-based cationic nanosized emulsion in comparison with phospholipid-based anionic and neutral-charged nanosized emulsions.

    PubMed

    Tamilvanan, Shunmugaperumal; Kumar, Balakrishnan Ajith

    2011-09-01

    Acetazolamide (ACZM)-loaded anionic, cationic, and neutral-charged oil-in-water nanosized emulsions were prepared and compared with their mean droplet diameter, surface charge, entrapment efficiency, freeze-thaw cycling stability, in vitro drug release, and transcorneal permeation. The present study aims to determine the influence of ACZM loading on the performances of non-phospholipid-based cationic nanosized emulsion in comparison with phospholipid-based anionic and neutral-charged nanosized emulsions. Regardless of charges, all of these emulsions exhibited a nanometer range mean particle diameter (240-443 nm) following autoclave sterilization. While the anionic and cationic emulsions did show high negative (-36.9 mV) and positive zeta potential (+41.4 mV) values, the neutral-charged emulsion did not. Presence of cryoprotectants (5% w/w sucrose + 5% w/w sorbitol) improved the stability of cationic emulsion to droplet aggregation during freeze-thaw cycling. The in vitro release kinetic behavior of drug exchange with physiological anions present in the simulated tear solution appears to be complex and difficult to characterize using mathematical fitting model equations. Augmentation in drug permeation through goat cornea, in vitro, was noticed for cationic emulsion. ACZM-loaded cationic nanosized emulsion could be suitable for topical application into eye to elicit better therapeutic effect in comparison with its anionic and neutral-charged emulsions.

  18. Experiments with a pressure-driven Stirling refrigerator with flexible chambers

    NASA Astrophysics Data System (ADS)

    McFarlane, Patrick; Suire, Jonathan; Sen, Mihir; Semperlotti, Fabio

    2014-06-01

    We report on the design and experimental testing of a Stirling refrigerator that uses air as the working fluid, and where the conventional piston-cylinder assemblies are replaced by pressure-driven flexible chambers. The two chambers are periodically compressed by pneumatic actuators resulting in airflow through the regenerator and in a net temperature difference between the chambers. An experimental setup is used to investigate the performance of the refrigerator under different operating conditions with particular attention to actuation frequencies, driving pressure differences, and phase angles between the two inputs. The time constant of the temperature difference between the two chambers is determined, and the temperature difference is measured as a function of the system parameters. The results of several tests conducted under different operating conditions show that the refrigerating effect is very robust and allows good performance even for modulated inputs. The frequency response is radically different from that of a traditional motion-driven device. This work suggests that mechanical to thermal energy conversion devices based on this principle can be successfully powered by human motion.

  19. Search for νμ → νe oscillations with the OPERA experiment in the CNGS beam

    NASA Astrophysics Data System (ADS)

    Tenti, M.; OPERA Collaboration

    2016-04-01

    The OPERA hybrid detector, designed to prove neutrino oscillations in the νμ →ντ channel, was exposed to the CNGS νμ beam at a distance of 730 km from the neutrino source. Profiting of the tracking capabilities of its Emulsion Cloud Chamber system, OPERA can perform also a search for νμ →νe oscillations. Current results are compatible with the non-oscillation hypothesis in the three flavour mixing model. The same data allow to constrain the non-standard oscillation parameters θnew and Δmnew2 indicated by the LSND and MiniBooNE experiments.

  20. 40 CFR 467.20 - Applicability; description of the rolling with emulsions subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... rolling with emulsions subcategory. 467.20 Section 467.20 Protection of Environment ENVIRONMENTAL... Rolling With Emulsions Subcategory § 467.20 Applicability; description of the rolling with emulsions... the rolling with emulsions subcategory. ...

  1. 40 CFR 467.20 - Applicability; description of the rolling with emulsions subcategory.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... rolling with emulsions subcategory. 467.20 Section 467.20 Protection of Environment ENVIRONMENTAL... Rolling With Emulsions Subcategory § 467.20 Applicability; description of the rolling with emulsions... the rolling with emulsions subcategory. ...

  2. Health effects of subchronic exposure to diesel-water-methanol emulsion emission.

    PubMed

    Reed, M D; Blair, L F; Burling, K; Daly, I; Gigliotti, A P; Gudi, R; Mercieca, M D; McDonald, J D; O'Callaghan, J P; Seilkop, S K; Ronskoh, N L; Wagner, V O; Kraska, R C

    2006-03-01

    The U.S. Environmental Protection Agency's National Ambient Air Quality Standards for ozone and particulate matter (PM) require urban non-attainment areas to implement pollution-reduction strategies for anthropogenic source emissions. The type of fuel shown to decrease combustion emissions components versus traditional diesel fuel, is the diesel emulsion. The Lubrizol Corporation, in conjunction with Lovelace Respiratory Research Institute and several subcontracting laboratories, recently conducted a health assessment of the combustion emissions of PuriNOx diesel fuel emulsion (diesel-water-methanol) in rodents. Combustion emissions from either of two, 2002 model Cummins 5.9L ISB engines, were diluted with charcoal-filtered air to exposure concentrations of 125, 250 and 500 microg total PM/m3. The engines were operated on a continuous, repeating, heavy-duty certification cycle (U.S. Code of Federal Regulations, Title 40, Chapter I) using Rotella-T 15W-40 engine oil. Nitrogen oxide (NO) and PM were reduced when engines were operated on PuriNOx versus California Air Resources Board diesel fuel under these conditions. Male and female F344 rats were housed in Hazleton H2000 exposure chambers and exposed to exhaust atmospheres 6 h/day, five days/week for the first 11 weeks and seven days/week thereafter. Exposures ranged from 61 to 73 days depending on the treatment group. Indicators of general toxicity (body weight, organ weight, clinical pathology and histopathology), neurotoxicity (glial fibrillary acidic protein assay), genotoxicity (Ames assay, micronucleus, sister chromatid exchange), and reproduction and development were measured. Overall, effects observed were mild. Emulsion combustion emissions were not associated with neurotoxicity, reproductive/developmental toxicity, or in vivo genotoxicity. Small decreases in serum cholesterol in the 500-microg/m3 exposure group were observed. PM accumulation within alveolar macrophages was evident in all exposure groups

  3. Premature detonation of an NH₄NO₃ emulsion in reactive ground.

    PubMed

    Priyananda, Pramith; Djerdjev, Alex M; Gore, Jeff; Neto, Chiara; Beattie, James K; Hawkett, Brian S

    2015-01-01

    When NH4NO3 emulsions are used in blast holes containing pyrite, they can exothermally react with pyrite, causing the emulsion to intensively heat and detonate prematurely. Such premature detonations can inflict fatal and very costly damages. The mechanism of heating of the emulsions is not well understood though such an understanding is essential for designing safe blasting. In this study the heating of an emulsion in model blast holes was simulated by solving the heat equation. The physical factors contributing to the heating phenomenon were studied using microscopic and calorimetric methods. Microscopic studies revealed the continuous formation of a large number of gas bubbles as the reaction progressed at the emulsion-pyrite interface, which made the reacting emulsion porous. Calculations show that the increase in porosity causes the thermal conductivity of a reacting region of an emulsion column in a blast hole to decrease exponentially. This large reduction in the thermal conductivity retards heat dissipation from the reacting region causing its temperature to rise. The rise in temperature accelerates the exothermic reaction producing more heat. Simulations predict a migration of the hottest spot of the emulsion column, which could dangerously heat the primers and boosters located in the blast hole. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Evaluation of emulsion emulsified by starch nanocrystal: A preliminary study

    NASA Astrophysics Data System (ADS)

    Ahmad, Azfar Al Ariff; Lazim, Azwan Mat

    2018-04-01

    The starch nanocrystals (SNC) used in this study were made of sago starch and prepared by using sulfuric acid hydrolysis of sago starch. The aim of this study is to look at the potential of SNC as and emulsifier. Previously, the SNC underwent analytical analysis in order to understand and evaluate the isolated SNC. The ability of SNC as emulsifier was further investigated in this study. Emulsions with low, medium and high oil content has been prepared in function of different wt% of SNC. The emulsion stability against coalescence for two weeks has also been studied. Results showed that the emulsions prepared are steadily stable after one weeks of storage without any separation and changes. From the observation, there are two major factor contributed to the formation of emulsion and its stability, the SNC concentration and oil content. Relatively, higher percentage of SNC resulting a higher emulsion index, whereas no emulsion was formed if oil content exceeding 50% of the systems. The most suitable formulation to prepare Pickering Emulsion is the oil content around 45% and SNC concentration around 2 - 4%.

  5. Properties and oxidative stability of emulsions prepared with myofibrillar protein and lard diacylglycerols.

    PubMed

    Diao, Xiaoqin; Guan, Haining; Zhao, Xinxin; Chen, Qian; Kong, Baohua

    2016-05-01

    The objective of this study was to investigate the emulsifying properties and oxidative stability of emulsions prepared with porcine myofibrillar proteins (MPs) and different lipids, including lard, glycerolized lard (GL) and purified glycerolized lard (PGL). The GL and PGL emulsions had significantly higher emulsifying activity indices and emulsion stability indices than the lard emulsion (P<0.05). The PGL emulsion presented smaller droplet sizes, thus decreasing particle aggregation and improving emulsion stability. The static and dynamic rheological observations of the emulsions showed that the emulsions had pseudo-plastic behavior, and the PGL emulsion presented a larger viscosity and a higher storage modulus (G') and loss modulus (G'') compared with the other two emulsions (P<0.05). The formation of thiobarbituric acid-reactive substances, carbonyl contents and total sulfhydryl contents was not significantly different between the emulsions with PGL, GL and lard (P<0.05). In general, lard diacylglycerols enhanced emulsifying abilities and had no adverse effects on the oxidation stability of the emulsions prepared with MPs. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Non-coalescence of oppositely charged droplets in pH-sensitive emulsions

    PubMed Central

    Liu, Tingting; Seiffert, Sebastian; Thiele, Julian; Abate, Adam R.; Weitz, David A.; Richtering, Walter

    2012-01-01

    Like charges stabilize emulsions, whereas opposite charges break emulsions. This is the fundamental principle for many industrial and practical processes. Using micrometer-sized pH-sensitive polymeric hydrogel particles as emulsion stabilizers, we prepare emulsions that consist of oppositely charged droplets, which do not coalesce. We observe noncoalescence of oppositely charged droplets in bulk emulsification as well as in microfluidic devices, where oppositely charged droplets are forced to collide within channel junctions. The results demonstrate that electrostatic interactions between droplets do not determine their stability and reveal the unique pH-dependent properties of emulsions stabilized by soft microgel particles. The noncoalescence can be switched to coalescence by neutralizing the microgels, and the emulsion can be broken on demand. This unusual feature of the microgel-stabilized emulsions offers fascinating opportunities for future applications of these systems. PMID:22203968

  7. The crop growth research chamber

    NASA Technical Reports Server (NTRS)

    Wagenbach, Kimberly

    1993-01-01

    The Crop Growth Research Chamber (CGRC) has been defined by CELSS principle investigators and science advisory panels as a necessary ground-based tool in the development of a regenerative life support system. The focus of CGRC research will be on the biomass production component of the CELSS system. The ground-based Crop Growth Research Chamber is for the study of plant growth and development under stringently controlled environments isolated from the external environment. The chamber has importance in three areas of CELSS activities: (1) crop research; (2) system control and integration, and (3) flight hardware design and experimentation. The laboratory size of the CGRC will be small enough to allow duplication of the unit, the conducting of controlled experiments, and replication of experiments, but large enough to provide information representative of larger plant communities. Experiments will focus on plant growth in a wide variety of environments and the effects of those environments on plant production of food, water, oxygen, toxins, and microbes. To study these effects in a closed system, tight control of the environment is necessary.

  8. Quantitative imaging of aggregated emulsions.

    PubMed

    Penfold, Robert; Watson, Andrew D; Mackie, Alan R; Hibberd, David J

    2006-02-28

    Noise reduction, restoration, and segmentation methods are developed for the quantitative structural analysis in three dimensions of aggregated oil-in-water emulsion systems imaged by fluorescence confocal laser scanning microscopy. Mindful of typical industrial formulations, the methods are demonstrated for concentrated (30% volume fraction) and polydisperse emulsions. Following a regularized deconvolution step using an analytic optical transfer function and appropriate binary thresholding, novel application of the Euclidean distance map provides effective discrimination of closely clustered emulsion droplets with size variation over at least 1 order of magnitude. The a priori assumption of spherical nonintersecting objects provides crucial information to combat the ill-posed inverse problem presented by locating individual particles. Position coordinates and size estimates are recovered with sufficient precision to permit quantitative study of static geometrical features. In particular, aggregate morphology is characterized by a novel void distribution measure based on the generalized Apollonius problem. This is also compared with conventional Voronoi/Delauney analysis.

  9. Experimental investigation of a lightweight rocket chamber

    NASA Technical Reports Server (NTRS)

    Dalgleish, John E; Tischler, Adelbert O

    1953-01-01

    Experiments have been conducted with a jacketed rocket combustion chamber that was fabricated by hydraulic-forming from sheet metal. Rocket combustion chambers made by this method have been used successfully. Runs with these combustion chambers have been made at over-all heat-transfer rates 1.7 Btu per square inch per second with water cooling and also ammonia as a regenerative coolant.

  10. Small particle size lipid emulsions, satiety and energy intake in lean men.

    PubMed

    Chan, Y K; Budgett, S C; MacGibbon, A K; Quek, S Y; Kindleysides, S; Poppitt, S D

    2017-02-01

    Lipid emulsions have been proposed to suppress hunger and food intake. Whilst there is no consensus on optimal structural properties or mechanism of action, small particle size (small-PS) stable emulsions may have greatest efficacy. Fabuless®, a commercial lipid emulsion reported in some studies to decrease energy intake (EI), is a small-PS, 'hard' fat emulsion comprising highly saturated palm oil base (PS, 82nm). To determine whether small-PS dairy lipid emulsions can enhance satiety, firstly, we investigated 2 'soft' fat dairy emulsions generated using dairy and soy emulsifying agents (PS, 114nm and 121nm) and a non-emulsified dairy control. Secondly, we investigated a small-PS palmolein based 'hard' fat emulsion (fractionated palm oil, PS, 104nm) and non-emulsified control. This was a 6 arm, randomized, cross-over study in 18 lean men, with test lipids delivered in a breakfast meal: (i) Fabuless® emulsion (F EM ); (ii) dairy emulsion with dairy emulsifier (DE DE ); (iii) dairy emulsion with soy lecithin emulsifier (DE SE ); (iv) dairy control (DC ON ); (v) palmolein emulsion with dairy emulsifier (PE DE ); (vi) palmolein control (PC ON ). Participants rated postprandial appetite sensations using visual analogue scales (VAS), and ad libitum energy intake (EI) was measured at a lunch meal 3.5h later. Dairy lipid emulsions did not significantly alter satiety ratings or change EI relative to dairy control (DE DE , 4035kJ; DE SE , 3904kJ; DC ON , 3985kJ; P>0.05) nor did palm oil based emulsion relative to non-emulsified control (PE DE, 3902 kJ; PC ON, 3973kJ; P>0.05). There was no evidence that small-PS dairy lipid emulsions or commercial Fabuless altered short-term appetite or food intake in lean adults. Copyright © 2016. Published by Elsevier Inc.

  11. Comparison of crop yield sensitivity to ozone between open-top chamber and free-air experiments.

    PubMed

    Feng, Zhaozhong; Uddling, Johan; Tang, Haoye; Zhu, Jianguo; Kobayashi, Kazuhiko

    2018-02-02

    Assessments of the impacts of ozone (O 3 ) on regional and global food production are currently based on results from experiments using open-top chambers (OTCs). However, there are concerns that these impact estimates might be biased due to the environmental artifacts imposed by this enclosure system. In this study, we collated O 3 exposure and yield data for three major crop species-wheat, rice, and soybean-for which O 3 experiments have been conducted with OTCs as well as the ecologically more realistic free-air O 3 elevation (O 3 -FACE) exposure system; both within the same cultivation region and country. For all three crops, we found that the sensitivity of crop yield to the O 3 metric AOT40 (accumulated hourly O 3 exposure above a cut-off threshold concentration of 40 ppb) significantly differed between OTC and O 3 -FACE experiments. In wheat and rice, O 3 sensitivity was higher in O 3 -FACE than OTC experiments, while the opposite was the case for soybean. In all three crops, these differences could be linked to factors influencing stomatal conductance (manipulation of water inputs, passive chamber warming, and cultivar differences in gas exchange). Our study thus highlights the importance of accounting for factors that control stomatal O 3 flux when applying experimental data to assess O 3 impacts on crops at large spatial scales. © 2018 John Wiley & Sons Ltd.

  12. An update on safety and immunogenicity of vaccines containing emulsion-based adjuvants.

    PubMed

    Fox, Christopher B; Haensler, Jean

    2013-07-01

    With the exception of alum, emulsion-based vaccine adjuvants have been administered to far more people than any other adjuvant, especially since the 2009 H1N1 influenza pandemic. The number of clinical safety and immunogenicity evaluations of vaccines containing emulsion adjuvants has correspondingly mushroomed. In this review, the authors introduce emulsion adjuvant composition and history before detailing the most recent findings from clinical and postmarketing data regarding the effects of emulsion adjuvants on vaccine immunogenicity and safety, with emphasis on the most widely distributed emulsion adjuvants, MF59® and AS03. The authors also present a summary of other emulsion adjuvants in clinical development and indicate promising avenues for future emulsion-based adjuvant development. Overall, emulsion adjuvants have demonstrated potent adjuvant activity across a number of disease indications along with acceptable safety profiles.

  13. Stability of cosmetic emulsion containing different amount of hemp oil.

    PubMed

    Kowalska, M; Ziomek, M; Żbikowska, A

    2015-08-01

    The aim of the study was to determine the optimal conditions, that is the content of hemp oil and time of homogenization to obtain stable dispersion systems. For this purpose, six emulsions were prepared, their stability was examined empirically and the most correctly formulated emulsion composition was determined using a computer simulation. Variable parameters (oil content and homogenization time) were indicated by the optimization software based on Kleeman's method. Physical properties of the synthesized emulsions were studied by numerous techniques involving particle size analysis, optical microscopy, Turbiscan test and viscosity of emulsions. The emulsion containing 50 g of oil and being homogenized for 6 min had the highest stability. Empirically determined parameters proved to be consistent with the results obtained using the computer software. The computer simulation showed that the most stable emulsion should contain from 30 to 50 g of oil and should be homogenized for 2.5-6 min. The computer software based on Kleeman's method proved to be useful for quick optimization of the composition and production parameters of stable emulsion systems. Moreover, obtaining an emulsion system with proper stability justifies further research extended with sensory analysis, which will allow the application of such systems (containing hemp oil, beneficial for skin) in the cosmetic industry. © 2015 Society of Cosmetic Scientists and the Société Française de Cosmétologie.

  14. The Rheology of a Three Component System: COAL/WATER/#4 Oil Emulsions.

    NASA Astrophysics Data System (ADS)

    Gilmartin, Barbara Jean

    The purpose of this investigation was to study the rheology of a three component system, coal/water/#4 oil emulsions (COW), in which the third component, water, was present in a significant concentration, and to determine the applicability of existing theories from suspension rheology to the three component system studied. In a coal/water/oil emulsion, free coal particles adhere to the surface of the water droplets, preventing their coagulation, while the larger coal particles reside in the matrix of stabilized water droplets. The use of liquid fuels containing coal is a means of utilizing our nation's coal reserves while conserving oil. These fuels can be burned in conventional oil-fired furnaces. In this investigation, a high sulfur, high ash, bituminous coal was used, along with a heavy #4 oil to prepare the emulsions. The coal was ground to a log-normal distribution with an average particle size of 62 microns. A Haake RV3 concentric cylinder viscometer, with a ribbed measuring system, was used to determine the viscosity of the emulsions. A physical pendulum settling device measured the shift in center of mass of the COW as a function of time. The flow behavior of the fuel in pipes was also tested. In interpreting the data from the viscometer and the pipe flow experiments, a power law analysis was used in the region from 30 s('-1) to 200 s('-1). Extrapolation methods were used to obtain the low and high shear behavior of the emulsions. In the shear rate region found in boiler feed systems, COW are shear thinning with a flow behavior index of 0.7. The temperature dependent characteristic of the emulsions studied were similar and followed an Arrhenius type relationship. The viscosity of the COW decreases with increasing coal average particle size and is also a function of the width of the size distribution used. The type of coal used strongly influences the rheology of the fuel. The volatile content and the atomic oxygen to nitrogen ratio of the coal are the most

  15. Instant polysaccharide-based emulsions: impact of microstructure on lipolysis.

    PubMed

    Torcello-Gómez, Amelia; Foster, Timothy J

    2017-06-21

    The development of emulsion-based products through optimisation of ingredients, reduction in energy-input during manufacture, while fulfilling healthy attributes, are major objectives within the food industry. Instant emulsions can meet these features, but comprehensive studies are necessary to investigate the effect of the initial formulation on the final microstructure and, in turn, on the in vitro lipolysis, comprising the double aim of this work. The instant emulsion is formed within 1.5-3 min after pouring the aqueous phase into the oil phase which contains a mixture of emulsifier (Tween 20), swelling particles (Sephadex) and thickeners (hydroxypropylmethylcellulose, HPMC, and guar gum, GG) under mild shearing (180 rpm). The creation of oil-in-water emulsions is monitored in situ by viscosity analysis, the final microstructure visualised by microscopy and the release of free fatty acids under simulated intestinal conditions quantified by titration. Increasing the concentration and molecular weight (M w ) of GG leads to smaller emulsion droplets due to increased bulk viscosity upon shearing. This droplet size reduction is magnified when increasing the M w of HPMC or swelling capacity of viscosifying particles. In addition, in the absence of the emulsifier Tween 20, the sole use of high-Mw HPMC is effective in emulsification due to combined increased bulk viscosity and interfacial activity. Hence, optimisation of the ingredient choice and usage level is possible when designing microstructures. Finally, emulsions with larger droplet size (>20 μm) display a slower rate and lower extent of lipolysis, while finer emulsions (droplet size ≤20 μm) exhibit maximum rate and extent profiles. This correlates with the extent of emulsion destabilisation observed under intestinal conditions.

  16. Formulation and evaluation of carrot seed oil-based cosmetic emulsions.

    PubMed

    Singh, Shalini; Lohani, Alka; Mishra, Arun Kumar; Verma, Anurag

    2018-05-08

    The present study deals with the evaluation of antiaging potential of carrot seed oil-based cosmetic emulsions. Briefly, cosmetic emulsions composed of carrot seed oil in varying proportions (2, 4, and 6% w/v) were prepared using the hydrophile-lipophile balance (HLB) technique. Coconut oil, nonionic surfactants (Tween 80 and Span 80), and xanthan gum were used as the oil phase, emulgent, and emulsion stabilizer, respectively. The formed emulsions were evaluated for various physical, chemical, and biochemical parameters such as the zeta potential, globule size measurement, antioxidant activity, sun protection factor (SPF), skin irritation, and biochemical studies. The zeta potential values ranged from -43.2 to -48.3, indicating good stability. The polydispersity index (PDI) of various emulsion formulations ranged from 0.353 to 0.816. 1,1-Diphenyl-2-picrylhydrazyl- (DPPH) and nitric oxide-free radical scavenging activity showed the antioxidant potential of the prepared carrot seed oil emulsions. The highest SPF value (6.92) was shown by F3 having 6%w/v carrot seed oil. Histopathological data and biochemical analysis (ascorbic acid (ASC) and total protein content) suggest that these cosmetic emulsions have sufficient potential to be used as potential skin rejuvenating preparations.

  17. Promoted-Combustion Chamber with Induction Heating Coil

    NASA Technical Reports Server (NTRS)

    Richardson, Erin; Hagood, Richard; Lowery, Freida; Herald, Stephen

    2006-01-01

    An improved promoted-combustion system has been developed for studying the effects of elevated temperatures on the flammability of metals in pure oxygen. In prior promoted-combustion chambers, initial temperatures of metal specimens in experiments have been limited to the temperatures of gas supplies, usually near room temperature. Although limited elevated temperature promoted-combustion chambers have been developed using water-cooled induction coils for preheating specimens, these designs have been limited to low-pressure operation due to the hollow induction coil. In contrast, the improved promoted-combustion chamber can sustain a pressure up to 10 kpsi (69 MPa) and, through utilization of a solid induction coil, is capable of preheating a metal specimen up to its melting point [potentially in excess of 2,000 F (approximately equal to 1,100 C)]. Hence, the improved promoted combustion chamber makes a greater range of physical conditions and material properties accessible for experimentation. The chamber consists of a vertical cylindrical housing with an inner diameter of 8 in. (20.32 cm) and an inner height of 20.4 in. (51.81 cm). A threaded, sealing cover at one end of the housing can be unscrewed to gain access for installing a specimen. Inlet and outlet ports for gases are provided. Six openings arranged in a helical pattern in the chamber wall contain sealed sapphire windows for viewing an experiment in progress. The base of the chamber contains pressure-sealed electrical connectors for supplying power to the induction coil. The connectors feature a unique design that prevents induction heating of the housing and the pressure sealing surfaces; this is important because if such spurious induction heating were allowed to occur, chamber pressure could be lost. The induction coil is 10 in. (25.4 cm) long and is fitted with a specimen holder at its upper end. At its lower end, the induction coil is mounted on a ceramic base, which affords thermal insulation to

  18. Structure- and oil type-based efficacy of emulsion adjuvants.

    PubMed

    Jansen, Theo; Hofmans, Marij P M; Theelen, Marc J G; Manders, Frans; Schijns, Virgil E J C

    2006-06-29

    Oil-based emulsions are well-known immunopotentiators for inactivated, "killed" vaccines. We addressed the relationship between emulsion structure and levels of in vivo antibody formation to inactivated New Castle Disease virus (NDV) and Infectious Bronchitis virus (IBV) as antigens in 3-week-old chickens. The use of a polymeric emulsifier allowed for direct comparison of three types of emulsions, water-in-oil (W/O), oil-in-water (O/W) and W/O-in-water (W/O/W), while maintaining an identical content of components for each vehicle. They were prepared with either non-metabolizable, mineral oil or metabolizable, Miglyol 840. In addition, we assessed the inherent release capacity of each emulsion variant in vitro. Remarkably, we noted that W/O-type emulsions induced the best immune responses, while they released no antigen during 3 weeks. In general, mineral oil vaccines showed superior efficacy compared to Miglyol 840-based vaccines.

  19. Rejuvenation of Spent Media via Supported Emulsion Liquid Membranes

    NASA Technical Reports Server (NTRS)

    Wiencek, John M.

    2002-01-01

    The overall goal of this project was to maximize the reuseability of spent fermentation media. Supported emulsion liquid membrane separation, a highly efficient extraction technique, was used to remove inhibitory byproducts during fermentation; thus, improve the yield while reducing the need for fresh water. The key objectives of this study were: (1) Develop an emulsion liquid membrane system targeting low molecular weight organic acids which has minimal toxicity on a variety of microbial systems. (2) Conduct mass transfer studies to allow proper modeling and design of a supported emulsion liquid membrane system. (3) Investigate the effect of gravity on emulsion coalescence within the membrane unit. (4) Access the effect of water re-use on fermentation yields in a model microbial system. and (5) Develop a perfusion-type fermentor utilizing a supported emulsion liquid membrane system to control inhibitory fermentation byproducts (not completed due to lack of funds)

  20. Rheological behavior of water-in-oil emulsions stabilized by hydrophobic bentonite particles.

    PubMed

    Binks, Bernard P; Clint, John H; Whitby, Catherine P

    2005-06-07

    A study of the rheological behavior of water-in-oil emulsions stabilized by hydrophobic bentonite particles is described. Concentrated emulsions were prepared and diluted at constant particle concentration to investigate the effect of drop volume fraction on the viscosity and viscoelastic response of the emulsions. The influence of the structure of the hydrophobic clay particles in the oil has also been studied by using oils in which the clay swells to very different extents. Emulsions prepared from isopropyl myristate, in which the particles do not swell, are increasingly flocculated as the drop volume fraction increases and the viscosity of the emulsions increases accordingly. The concentrated emulsions are viscoelastic and the elastic storage and viscous loss moduli also increase with increasing drop volume fraction. Emulsions prepared from toluene, in which the clay particles swell to form tactoids, are highly structured due to the formation of an integrated network of clay tactoids and drops, and the moduli of the emulsions are significantly larger than those of the emulsions prepared from isopropyl myristate.

  1. The influence of emulsion structure on the Maillard reaction of ghee.

    PubMed

    Newton, Angela E; Fairbanks, Antony J; Golding, Matt; Andrewes, Paul; Gerrard, Juliet A

    2015-04-15

    Food systems, such as cream and butter, have an emulsion or emulsion-like structure. When these food emulsions are heated to high temperatures to make products such as ghee, the Maillard reaction forms a range of volatile flavour compounds. The objective of this paper was to unravel the specific influence of emulsion structure on the Maillard reaction pathways that occur during the cooking of ghee using model systems. Switching the dispersed phase from oil to water provided a means of altering the ratios of volatile compounds produced in the cooked samples. The oil-in-water emulsion generated a volatile compound profile similar to that of the fat containing two phase model matrix, whereas the water-in-oil emulsion produced a different ratio of these compounds. The ability to generate different volatile compound profiles through the use of inverted emulsion structures could point to a new avenue for control of the Maillard reaction in high temperature food systems. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Anti-Inflammatory and Anti-Fibrotic Profile of Fish Oil Emulsions Used in Parenteral Nutrition-Associated Liver Disease

    PubMed Central

    Pastor-Clerigues, Alfonso; Marti-Bonmati, Ezequiel; Milara, Javier; Almudever, Patricia; Cortijo, Julio

    2014-01-01

    Home parenteral nutrition (PN) is associated with many complications including severe hepatobiliary dysfunction. Commercial ω-6 fatty acid-soybean based-lipid emulsions in PN may mediate long term PN associate liver disease (PNALD) whereas ω-3-fish oil parenteral emulsions have shown to reverse PNALD in children. However, its clinical effectiveness in adults has been scarcely reported. In this work, we study the role of soybean and fish oil lipid commercial emulsions on inflammatory and profibrotic liver markers in adults with long term PNALD and in in vitro cellular models. Inflammatory and profibrotic markers were measured in serum of ten adults with long term PNALD and in culture supernatants of monocytes. Liver epithelial to mesenchymal transition (EMT) was induced by transforming growth factor beta 1 (TGFβ1) to evaluate in vitro liver fibrosis. Omegaven®, a 100% fish oil commercial emulsion, was infused during four months in two patients with severe long term PNALD reversing, at the first month, the inflammatory, profibrotic and clinical parameters of PNALD. The effect was maintained during the treatment course but impaired when conventional lipid emulsions were reintroduced. The other patients under chronic soybean oil-based PN showed elevated inflammatory and profibrotic parameters. In vitro human monocytes stimulated with lipopolysaccharide induced a strong inflammatory response that was suppressed by Omegaven®, but increased by soybean emulsions. In other experiments, TGFβ1 induced EMT that was suppressed by Omegaven® and enhanced by soybean oil lipid emulsions. Omegaven® improves clinical, anti-inflammatory and anti-fibrotic parameters in adults with long-term home PNALD. PMID:25502575

  3. Highway Binder Materials from Modified Sulfur-Water Emulsions

    DOT National Transportation Integrated Search

    1982-04-01

    This project had the objectives of developing and characterizing stable modified-sulfur water emulsions using sulfur-extended-asphalt and Sulphlex as base stocks. Anionic and cationic emulsions which had rapid and slow setting characteristics were st...

  4. Powdery Emulsion Explosive: A New Excellent Industrial Explosive

    NASA Astrophysics Data System (ADS)

    Ni, Ouqi; Zhang, Kaiming; Yu, Zhengquan; Tang, Shujuan

    2012-07-01

    Powdery emulsion explosive (PEE), a new powdery industrial explosive with perfect properties, has been made using an emulsification-spray drying technique. PEE is composed of 91-92.5 wt% ammonium nitrate (AN), 4.5-6 wt% organic fuels, and 1.5-1.8 wt% water. Due to its microstructure as a water-in-oil (W/O) emulsion and low water content, it has excellent detonation performance, outstanding water resistance, reliable safety, and good application compared with other industrial explosives, such as ammonite, emulsion explosives, and ANFO.

  5. Gamma-hadron families and scaling violation

    NASA Technical Reports Server (NTRS)

    Gaisser, T. K.; Stanev, T.; Wrotniak, J. A.

    1985-01-01

    For three different interaction models we have simulated gamma-hadron families, including the detector (Pamir emulsion chamber) response. Rates of gamma families, hadrons, and hadron-gamma ratios were compared with experiments.

  6. 40 CFR 428.20 - Applicability; description of the emulsion crumb rubber subcategory.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... emulsion crumb rubber subcategory. 428.20 Section 428.20 Protection of Environment ENVIRONMENTAL PROTECTION... CATEGORY Emulsion Crumb Rubber Subcategory § 428.20 Applicability; description of the emulsion crumb rubber... manufacture of emulsion crumb rubber, other than acrylonitrilebutadiene rubber. [40 FR 18173, Apr. 25, 1975] ...

  7. 40 CFR 428.20 - Applicability; description of the emulsion crumb rubber subcategory.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... emulsion crumb rubber subcategory. 428.20 Section 428.20 Protection of Environment ENVIRONMENTAL PROTECTION... CATEGORY Emulsion Crumb Rubber Subcategory § 428.20 Applicability; description of the emulsion crumb rubber... manufacture of emulsion crumb rubber, other than acrylonitrilebutadiene rubber. [40 FR 18173, Apr. 25, 1975] ...

  8. 40 CFR 428.20 - Applicability; description of the emulsion crumb rubber subcategory.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... emulsion crumb rubber subcategory. 428.20 Section 428.20 Protection of Environment ENVIRONMENTAL PROTECTION... CATEGORY Emulsion Crumb Rubber Subcategory § 428.20 Applicability; description of the emulsion crumb rubber... manufacture of emulsion crumb rubber, other than acrylonitrilebutadiene rubber. [40 FR 18173, Apr. 25, 1975] ...

  9. Preparation of hybrid thiol-acrylate emulsion-templated porous polymers by interfacial copolymerization of high internal phase emulsions.

    PubMed

    Langford, Caitlin R; Johnson, David W; Cameron, Neil R

    2015-05-01

    Emulsion-templated highly porous polymers (polyHIPEs), containing distinct regions differing in composition, morphology, and/or properties, are prepared by the simultaneous polymerization of two high internal phase emulsions (HIPEs) contained within the same mould. The HIPEs are placed together in the mould and subjected to thiol-acrylate photopolymerization. The resulting polyHIPE material is found to contain two distinct semicircular regions, reflecting the composition of each HIPE. The original interface between the two emulsions becomes a copolymerized band between 100 and 300 μm wide, which is found to be mechanically robust. The separate polyHIPE layers are distinguished from one another by their differing average void diameter, chemical composition, and extent of contraction upon drying. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Rheological Behaviour of Water-in-Light Crude Oil Emulsion

    NASA Astrophysics Data System (ADS)

    Husin, H.; Taju Ariffin, T. S.; Yahya, E.

    2018-05-01

    Basically, emulsions consist of two immiscible liquids which have different density. In petroleum industry, emulsions are undesirable due to their various costly problems in term of transportation difficulties and production loss. A study of the rheological behaviour of light crude oil and its mixture from Terengganu were carried out using Antoon Paar MCR 301 rheometer operated at pressure of 2.5 bar at temperature C. Water in oil emulsions were prepared by mixing light crude oil with different water volume fractions (20%, 30% and 40%). The objectives of present paper are to study the rheological behaviour of emulsion as a fuction of shear rate and model analysis that fitted with the experimental data. The rheological models of Ostwald-De-Waele and Herschel-Bulkley were fitted to the experimental results. All models represented well the rheological data, with high values for the correlation coefficients. The result indicated that variation of water content influenced shear rate-shear stress rheogram of the prepared emulsions. In the case of 100% light crude oil, the study demonstrated non-Newtonian shear thickening behavior. However, for emulsion with different volume water ratios, the rheological behaviour could be well described by Herschel-Bulkley models due to the present of yield stress parameter (R2 = 0.99807). As a conclusion, rheological studies showed that volume water ratio have a great impact on the shear stress and viscosity of water in oil emulsion and it is important to understand these factors to avoid various costly problems.

  11. Dynamically reconfigurable complex emulsions via tunable interfacial tensions

    PubMed Central

    Zarzar, Lauren D.; Sresht, Vishnu; Sletten, Ellen M.; Kalow, Julia A.; Blankschtein, Daniel; Swager, Timothy M.

    2015-01-01

    Emulsification is a powerful, well-known technique for mixing and dispersing immiscible components within a continuous liquid phase. Consequently, emulsions are central components of medicine, food and performance materials. Complex emulsions, including multiple emulsions and Janus droplets which contain hemispheres of differing material, are of increasing importance1 in pharmaceuticals and medical diagnostics2, in the fabrication of microparticles and capsules3–5 for food6, in chemical separations7, in cosmetics8, and in dynamic optics9. Because complex emulsion properties and functions are related to the droplet geometry and composition, the development of rapid, simple fabrication approaches allowing precise control over the droplets’ physical and chemical characteristics is critical. Significant advances in the fabrication of complex emulsions have been made using a number of procedures, ranging from large-scale, less precise techniques that give compositional heterogeneity using high-shear mixers and membranes10, to small-volume but more precise microfluidic methods11,12. However, such approaches have yet to create droplet morphologies that can be controllably altered after emulsification. Reconfigurable complex liquids potentially have greatly increased utility as dynamically tunable materials. Here we describe an approach to the one-step fabrication of three- and four-phase complex emulsions with highly controllable and reconfigurable morphologies. The fabrication makes use of the temperature-sensitive miscibility of hydrocarbon, silicone and fluorocarbon liquids, and is applied to both the microfluidic and the scalable batch production of complex droplets. We demonstrate that droplet geometries can be alternated between encapsulated and Janus configurations by varying the interfacial tensions using hydrocarbon and fluorinated surfactants including stimuli-responsive and cleavable surfactants. This yields a generalizable strategy for the fabrication of

  12. Dynamically reconfigurable complex emulsions via tunable interfacial tensions.

    PubMed

    Zarzar, Lauren D; Sresht, Vishnu; Sletten, Ellen M; Kalow, Julia A; Blankschtein, Daniel; Swager, Timothy M

    2015-02-26

    Emulsification is a powerful, well-known technique for mixing and dispersing immiscible components within a continuous liquid phase. Consequently, emulsions are central components of medicine, food and performance materials. Complex emulsions, including Janus droplets (that is, droplets with faces of differing chemistries) and multiple emulsions, are of increasing importance in pharmaceuticals and medical diagnostics, in the fabrication of microparticles and capsules for food, in chemical separations, in cosmetics, and in dynamic optics. Because complex emulsion properties and functions are related to the droplet geometry and composition, the development of rapid, simple fabrication approaches allowing precise control over the droplets' physical and chemical characteristics is critical. Significant advances in the fabrication of complex emulsions have been made using a number of procedures, ranging from large-scale, less precise techniques that give compositional heterogeneity using high-shear mixers and membranes, to small-volume but more precise microfluidic methods. However, such approaches have yet to create droplet morphologies that can be controllably altered after emulsification. Reconfigurable complex liquids potentially have great utility as dynamically tunable materials. Here we describe an approach to the one-step fabrication of three- and four-phase complex emulsions with highly controllable and reconfigurable morphologies. The fabrication makes use of the temperature-sensitive miscibility of hydrocarbon, silicone and fluorocarbon liquids, and is applied to both the microfluidic and the scalable batch production of complex droplets. We demonstrate that droplet geometries can be alternated between encapsulated and Janus configurations by varying the interfacial tensions using hydrocarbon and fluorinated surfactants including stimuli-responsive and cleavable surfactants. This yields a generalizable strategy for the fabrication of multiphase emulsions with

  13. Dynamically reconfigurable complex emulsions via tunable interfacial tensions

    NASA Astrophysics Data System (ADS)

    Zarzar, Lauren D.; Sresht, Vishnu; Sletten, Ellen M.; Kalow, Julia A.; Blankschtein, Daniel; Swager, Timothy M.

    2015-02-01

    Emulsification is a powerful, well-known technique for mixing and dispersing immiscible components within a continuous liquid phase. Consequently, emulsions are central components of medicine, food and performance materials. Complex emulsions, including Janus droplets (that is, droplets with faces of differing chemistries) and multiple emulsions, are of increasing importance in pharmaceuticals and medical diagnostics, in the fabrication of microparticles and capsules for food, in chemical separations, in cosmetics, and in dynamic optics. Because complex emulsion properties and functions are related to the droplet geometry and composition, the development of rapid, simple fabrication approaches allowing precise control over the droplets' physical and chemical characteristics is critical. Significant advances in the fabrication of complex emulsions have been made using a number of procedures, ranging from large-scale, less precise techniques that give compositional heterogeneity using high-shear mixers and membranes, to small-volume but more precise microfluidic methods. However, such approaches have yet to create droplet morphologies that can be controllably altered after emulsification. Reconfigurable complex liquids potentially have great utility as dynamically tunable materials. Here we describe an approach to the one-step fabrication of three- and four-phase complex emulsions with highly controllable and reconfigurable morphologies. The fabrication makes use of the temperature-sensitive miscibility of hydrocarbon, silicone and fluorocarbon liquids, and is applied to both the microfluidic and the scalable batch production of complex droplets. We demonstrate that droplet geometries can be alternated between encapsulated and Janus configurations by varying the interfacial tensions using hydrocarbon and fluorinated surfactants including stimuli-responsive and cleavable surfactants. This yields a generalizable strategy for the fabrication of multiphase emulsions with

  14. FINE GRAIN NUCLEAR EMULSION

    DOEpatents

    Oliver, A.J.

    1962-04-24

    A method of preparing nuclear track emulsions having mean grain sizes less than 0.1 microns is described. The method comprises adding silver nitrate to potassium bromide at a rate at which there is always a constant, critical excess of silver ions. For minimum size grains, the silver ion concentration is maintained at the critical level of about pAg 2.0 to 5.0 during prectpitation, pAg being defined as the negative logarithm of the silver ion concentration. It is preferred to eliminate the excess silver at the conclusion of the precipitation steps. The emulsion is processed by methods in all other respects generally similar to the methods of the prior art. (AEC)

  15. Rejuvenation of Spent Media via Supported Emulsion Liquid Membranes

    NASA Technical Reports Server (NTRS)

    Wiencek, John M.

    2002-01-01

    The overall goal of this project is to maximize the reuseability of spent fermentation media. Supported emulsion liquid membrane separation, a highly efficient extraction technique, is used to remove inhibitory byproducts during fermentation; thus, improving the yield while reducing the need for fresh water. The key objectives of this study are: Develop an emulsion liquid membrane system targeting low molecular weight organic acids which has minimal toxicity on a variety of microbial systems; Conduct mass transfer studies to allow proper modeling and design of a supported emulsion liquid membrane system; Investigate the effect of gravity on emulsion coalescence within the membrane unit; Access the effect of water re-use on fermentation yields in a model microbial system; Develop a perfusion-type fermentor utilizing a supported emulsion liquid membrane system to control inhibitory fermentation byproducts; Work for the coming year will focus on the determination of toxicity of various solvents, selection of the emulsifying agents, as well as characterizing the mass transfer of hollow-fiber contactors.

  16. Chamber transport for heavy ion fusion

    NASA Astrophysics Data System (ADS)

    Olson, Craig L.

    2014-01-01

    A brief review is given of research on chamber transport for HIF (heavy ion fusion) dating from the first HIF Workshop in 1976 to the present. Chamber transport modes are categorized into ballistic transport modes and channel-like modes. Four major HIF reactor studies are summarized (HIBALL-II, HYLIFE-II, Prometheus-H, OSIRIS), with emphasis on the chamber transport environment. In general, many beams are used to provide the required symmetry and to permit focusing to the required small spots. Target parameters are then discussed, with a summary of the individual heavy ion beam parameters required for HIF. The beam parameters are then classified as to their line charge density and perveance, with special emphasis on the perveance limits for radial space charge spreading, for the space charge limiting current, and for the magnetic (Alfven) limiting current. The major experiments on ballistic transport (SFFE, Sabre beamlets, GAMBLE II, NTX, NDCX) are summarized, with specific reference to the axial electron trapping limit for charge neutralization. The major experiments on channel-like transport (GAMBLE II channel, GAMBLE II self-pinch, LBNL channels, GSI channels) are discussed. The status of current research on HIF chamber transport is summarized, and the value of future NDCX-II transport experiments for the future of HIF is noted.

  17. Application of petroleum demulsification technology to shale oil emulsions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robertson, R.E.

    1983-01-01

    Demulsification, the process of emulsion separation, of water-in-oil shale oil emulsions produced by several methods was accomplished using commercial chemical demulsifiers which are used typically for petroleum demulsification. The shale oil emulsions were produced from Green River shale by one in situ and three different above-ground retorts, an in situ high pressure/high temperature steam process, and by washing both retort-produced and hydrotreated shale oils.

  18. Evaporation of Particle-Stabilized Emulsion Sunscreen Films.

    PubMed

    Binks, Bernard P; Fletcher, Paul D I; Johnson, Andrew J; Marinopoulos, Ioannis; Crowther, Jonathan M; Thompson, Michael A

    2016-08-24

    We recently showed (Binks et al., ACS Appl. Mater. Interfaces, 2016, DOI: 10.1021/acsami.6b02696) how evaporation of sunscreen films consisting of solutions of molecular UV filters leads to loss of UV light absorption and derived sun protection factor (SPF). In the present work, we investigate evaporation-induced effects for sunscreen films consisting of particle-stabilized emulsions containing a dissolved UV filter. The emulsions contained either droplets of propylene glycol (PG) in squalane (SQ), droplets of SQ in PG or droplets of decane in PG. In these different emulsion types, the SQ is involatile and shows no evaporation, the PG is volatile and evaporates relatively slowly, whereas the decane is relatively very volatile and evaporates quickly. We have measured the film mass and area, optical micrographs of the film structure, and the UV absorbance spectra during evaporation. For emulsion films containing the involatile SQ, evaporation of the PG causes collapse of the emulsion structure with some loss of specular UV absorbance due to light scattering. However, for these emulsions with droplets much larger than the wavelength of light, the light is scattered only at small forward angles so does not contribute to the diffuse absorbance and the film SPF. The UV filter remains soluble throughout the evaporation and thus the UV absorption by the filter and the SPF remain approximately constant. Both PG-in-SQ and SQ-in-PG films behave similarly and do not show area shrinkage by dewetting. In contrast, the decane-in-PG film shows rapid evaporative loss of the decane, followed by slower loss of the PG resulting in precipitation of the UV filter and film area shrinkage by dewetting which cause the UV absorbance and derived SPF to decrease. Measured UV spectra during evaporation are in reasonable agreement with spectra calculated using models discussed here.

  19. Multi-body coalescence in Pickering emulsions

    NASA Astrophysics Data System (ADS)

    Wu, Tong; Wang, Haitao; Jing, Benxin; Liu, Fang; Burns, Peter C.; Na, Chongzheng

    2015-01-01

    Particle-stabilized Pickering emulsions have shown unusual behaviours such as the formation of non-spherical droplets and the sudden halt of coalescence between individual droplets. Here we report another unusual behaviour of Pickering emulsions—the simultaneous coalescence of multiple droplets in a single event. Using latex particles, silica particles and carbon nanotubes as model stabilizers, we show that multi-body coalescence can occur in both water-in-oil and oil-in-water emulsions. The number of droplets involved in the nth coalscence event equals four times the corresponding number of the tetrahedral sequence in close packing. Furthermore, coalescence is promoted by repulsive latex and silica particles but inhibited by attractive carbon nanotubes. The revelation of multi-body coalescence is expected to help better understand Pickering emulsions in natural systems and improve their designs in engineering applications.

  20. Physical stability of R-(+)-Limonene emulsions stabilized by Ulva fasciata algae polysaccharide.

    PubMed

    Shao, Ping; Ma, Huiling; Qiu, Qiang; Jing, Weiping

    2016-11-01

    The physical stability of R-(+)-Limonene emulsions stabilized by Ulva fasciata polysaccharide (UFP) was investigated in this study. Emulsion physical stability was evaluated under different polysaccharide concentrations (1%-5%, wt/wt) and pH values (3.0-11.0). The stability of R-(+)-Limonene emulsions was demonstrated by droplet size distribution, rheological properties, zeta potential and visual phase separation. R-(+)-Limonene emulsions displayed monomodal droplet size distributions, high absolute values of zeta potential and good storage stability when 3% (wt/wt) UFP was used. The rheological properties and stability of R-(+)-Limonene emulsions appeared to be dependent on polysaccharide concentration. The emulsion stability was impacted by pH. Higher zeta potential (-52.6mV) and smaller mean droplet diameter (2.45μm) were achieved in neutral liquid environment (pH 7.0). Extreme acidity caused the flocculation of emulsions, which was manifested as phase separation, while emulsions were quite stable in an alkaline environment. Through comparing the stabilities of emulsions stabilized by different emulsifiers (i.e. UFP, GA and Gelatin), the result suggested that UFP was the best emulsifying agent among them. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Novel Biobased Sodium Shellac for Wrapping Disperse Multiscale Emulsion Particles.

    PubMed

    Luo, Qingming; Li, Kai; Xu, Juan; Li, Kun; Zheng, Hua; Liu, Lanxiang; Zhang, Hong; Sun, Yanlin

    2016-12-14

    As a result of amphipathic oligomers driven by different forces including hydrophobic interaction, electrostatic interaction, H-bond, and heat, multiscale emulsion particles can be wrapped. In this paper we attempted to use sodium shellac as a novel biobased wrapping material. The H + , Ca + , and spray-drying methods were employed to solidify the complex vitamin E (VE) emulsion with sodium shellac to fabricate the beads. The VE loading and encapsulation efficiency were used to evaluate the wrapping process. The results show that the microscale VE emulsion particles could easily be wrapped by these three means. However, due to the high solid content of the nanoscale emulsion particles, it was difficult to wrap them by spray-drying method. The beads solidified by H + had higher VE loading and encapsulation efficiency than those solidified by other methods and even grabbed the hydrophobic molecule VE from the emulsion micelles. At an R VS of 1:4, these two parameters, which are obtained by the nanoscale emulsion particle wrapping process, could reach 18.9 and 64.3% supported by the single driving force of hydrophobic interaction. Above all, this research introduced a novel wrapping material driven by different forces that can aggregate and wrap the emulsion micelles. It can be widely used in the medical, food, and cosmetics industries.

  2. Fabrication, characterisation and stability of oil-in-water emulsions stabilised by solid lipid particles: the role of particle characteristics and emulsion microstructure upon Pickering functionality.

    PubMed

    Zafeiri, I; Smith, P; Norton, I T; Spyropoulos, F

    2017-07-19

    The quest to identify and use bio-based particles with a Pickering stabilisation potential for food applications has lately been particularly substantial and includes, among other candidates, lipid-based particles. The present study investigates the ability of solid lipid particles to stabilise oil-in-water (o/w) emulsions against coalescence. Results obtained showed that emulsion stability could be achieved when low amounts (0.8 wt/wt%) of a surface active species (e.g. Tween 80 or NaCas) were used in particles' fabrication. Triple staining of the o/w emulsions enabled the visualisation of emulsion droplets' surface via confocal microscopy. This revealed an interfacial location of the lipid particles, hence confirming stabilisation via a Pickering mechanism. Emulsion droplet size was controlled by varying several formulation parameters, such as the type of the lipid and surface active component, the processing route and the polarity of the dispersed phase. Differential scanning calorimetry (DSC) was employed as the analytical tool to quantify the amount of crystalline material available to stabilise the emulsion droplets at different intervals during the experimental timeframe. Dissolution of lipid particles in the oil phase was observed and evolved distinctly between a wax and a triglyceride, and in the presence of a non-ionic surfactant and a protein. Yet, this behaviour did not result in emulsion destabilisation. Moreover, emulsion's thermal stability was found to be determined by the behaviour of lipid particles under temperature effects.

  3. Annatto Polymeric Microparticles: Natural Product Encapsulation by the Emulsion-Solvent Evaporation Method

    ERIC Educational Resources Information Center

    Teixeira, Zaine; Duran, Nelson; Guterres, Silvia S.

    2008-01-01

    In this experiment, the extract from annatto seeds was encapsulated in poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) particles by the emulsion-solvent evaporation method. The particles were washed and centrifuged to remove excess stabilizer and then freeze-dried. The main compound of annatto seeds, bixin, has antioxidant properties as well…

  4. Brine-in-crude-oil emulsions at the Strategic Petroleum Reserve

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nemer, Martin B.; Lord, David L.; MacDonald, Terry L.

    2013-10-01

    Metastable water-in-crude-oil emulsion formation could occur in a Strategic Petroleum Reserve (SPR) cavern if water were to flow into the crude-oil layer at a sufficient rate. Such a situation could arise during a drawdown from a cavern with a broken-hanging brine string. A high asphaltene content (> 1.5 wt %) of the crude oil provides the strongest predictor of whether a metastable water-in-crude-oil emulsion will form. However there are many crude oils with an asphaltene content > 1.5 wt % that don't form stable emulsions, but few with a low asphaltene content that do form stable emulsions. Most of themore » oils that form stable emulsions are "sour" by SPR standards indicating they contain total sulfur > 0.50 wt %.« less

  5. Discrimination of orange beverage emulsions with different formulations using multivariate analysis.

    PubMed

    Mirhosseini, Hamed; Tan, Chin Ping

    2010-06-01

    The constituents in a food emulsion interact with each other, either physically or chemically, determining the overall physico-chemical and organoleptic properties of the final product. Thus, the main objective of present study was to investigate the effect of emulsion components on beverage emulsion properties. In most cases, the second-order polynomial regression models with no significant (P > 0.05) lack of fit and high adjusted coefficient of determination (adjusted R(2), 0.851-0.996) were significantly fitted to explain the beverage emulsion properties as function of main emulsion components. The main effect of gum arabic was found to be significant (P < 0.05) in all response regression models. Orange beverage emulsion containing 222.0 g kg(-1) gum arabic, 2.4 g kg(-1) xanthan gum and 152.7 g kg(-1) orange oil was predicted to provide the desirable emulsion properties. The present study suggests that the concentration of gum arabic should be considered as a primary critical factor for the formulation of orange beverage emulsion. This study also indicated that the interaction effect between xanthan gum and orange oil showed the most significant (P < 0.05) effect among all interaction effects influencing all the physicochemical properties except for density. Copyright (c) 2010 Society of Chemical Industry.

  6. Multiple emulsions as effective platforms for controlled anti-cancer drug delivery.

    PubMed

    Dluska, Ewa; Markowska-Radomska, Agnieszka; Metera, Agata; Tudek, Barbara; Kosicki, Konrad

    2017-09-01

    Developing pH-responsive multiple emulsion platforms for effective glioblastoma multiforme therapy with reduced toxicity, a drug release study and modeling. Cancer cell line: U87 MG, multiple emulsions with pH-responsive biopolymer and encapsulated doxorubicin (DOX); preparation of multiple emulsions in a Couette-Taylor flow biocontactor, in vitro release study of DOX (fluorescence intensity analysis), in vitro cytotoxicity study (alamarBlue cell viability assay) and numerical simulation of DOX release rates. The multiple emulsions offered a high DOX encapsulation efficiency (97.4 ± 1%) and pH modulated release rates of a drug. Multiple emulsions with a low concentration of DOX (0.02 μM) exhibited broadly advanced cell (U87 MG) cytotoxicity than free DOX solution used at the same concentration. Emulsion platforms could be explored for potential delivery of chemotherapeutics in glioblastoma multiforme therapy.

  7. Effects of Partial Beef Fat Replacement with Gelled Emulsion on Functional and Quality Properties of Model System Meat Emulsions

    PubMed Central

    2016-01-01

    The objective of this study was to investigate the effects of partial beef fat replacement (0, 30, 50, 100%) with gelled emulsion (GE) prepared with olive oil on functional and quality properties of model system meat emulsion (MSME). GE consisted of inulin and gelatin as gelling agent and characteristics of gelled and model system meat emulsions were investigated. GE showed good initial stability against centrifugation forces and thermal stability at different temperatures. GE addition decreased the pH with respect to increase in GE concentration. Addition of GE increased lightness and yellowness but reduced redness compared to control samples. The results of the study showed that partial replacement of beef fat with GE could be used for improving cooking yield without negative effects on water holding capacity and emulsion stability compared to C samples when replacement level is up to 50%. The presence of GE significantly affected textural behaviors of samples (p<0.05). In conclusion, our study showed that GE have promising impacts on developing healthier meat product formulations besides improving technological characteristics. PMID:28115885

  8. Effects of Partial Beef Fat Replacement with Gelled Emulsion on Functional and Quality Properties of Model System Meat Emulsions.

    PubMed

    Serdaroğlu, Meltem; Nacak, Berker; Karabıyıkoğlu, Merve; Keser, Gökçen

    2016-01-01

    The objective of this study was to investigate the effects of partial beef fat replacement (0, 30, 50, 100%) with gelled emulsion (GE) prepared with olive oil on functional and quality properties of model system meat emulsion (MSME). GE consisted of inulin and gelatin as gelling agent and characteristics of gelled and model system meat emulsions were investigated. GE showed good initial stability against centrifugation forces and thermal stability at different temperatures. GE addition decreased the pH with respect to increase in GE concentration. Addition of GE increased lightness and yellowness but reduced redness compared to control samples. The results of the study showed that partial replacement of beef fat with GE could be used for improving cooking yield without negative effects on water holding capacity and emulsion stability compared to C samples when replacement level is up to 50%. The presence of GE significantly affected textural behaviors of samples ( p <0.05). In conclusion, our study showed that GE have promising impacts on developing healthier meat product formulations besides improving technological characteristics.

  9. Wetting-induced formation of controllable monodisperse multiple emulsions in microfluidics.

    PubMed

    Deng, Nan-Nan; Wang, Wei; Ju, Xiao-Jie; Xie, Rui; Weitz, David A; Chu, Liang-Yin

    2013-10-21

    Multiple emulsions, which are widely applied in a myriad of fields because of their unique ability to encapsulate and protect active ingredients, are typically produced by sequential drop-formations and drop-encapsulations using shear-induced emulsification. Here we report a qualitatively novel method of creating highly controlled multiple emulsions from lower-order emulsions. By carefully controlling the interfacial energies, we adjust the spreading coefficients between different phases to cause drops of one fluid to completely engulf other drops of immiscible fluids; as a result multiple emulsions are directly formed by simply putting preformed lower-order emulsion drops together. Our approach has highly controllable flexibility. We demonstrate this in preparation of both double and triple emulsions with a controlled number of inner drops and precisely adjusted shell thicknesses including ultra-thin shells. Moreover, this controllable drop-engulfing-drop approach has a high potential in further investigations and applications of microfluidics. Importantly, this innovative approach opens a window to exploit new phenomena occurring in fluids at the microscale level, which is of great significance for developing novel microfluidics.

  10. Detonation Characteristics of Mixtures of HMX and Emulsion Explosives

    DTIC Science & Technology

    1989-04-01

    and an aqueous emulsion explo- sive have been determined. The emulsion explosive consisted of amonium - nitrate , sodium- nitrate and water in the...1989 D Cb ID A Final Report C14 Approved for public release; distribution unlimited. AIR FORCE WEAPONS LABORATORY Air Force Systems Command Kirtland...TERMS (ContInue on nvwn Nf ocosury and idsŘ by block number) FIELD GROUP SUB-GROUP Explosives; Ammonium Nitrate ;- 19 01Emulsion Explosives; ( 07 04

  11. Ultrasonic energy input influence οn the production of sub-micron o/w emulsions containing whey protein and common stabilizers.

    PubMed

    Kaltsa, O; Michon, C; Yanniotis, S; Mandala, I

    2013-05-01

    Ultrasonication may be a cost-effective emulsion formation technique, but its impact on emulsion final structure and droplet size needs to be further investigated. Olive oil emulsions (20wt%) were formulated (pH∼7) using whey protein (3wt%), three kinds of hydrocolloids (0.1-0.5wt%) and two different emulsification energy inputs (single- and two-stage, methods A and B, respectively). Formula and energy input effects on emulsion performance are discussed. Emulsions stability was evaluated over a 10-day storage period at 5°C recording the turbidity profiles of the emulsions. Optical micrographs, droplet size and viscosity values were also obtained. A differential scanning calorimetric (DSC) multiple cool-heat cyclic method (40 to -40°C) was performed to examine stability via crystallization phenomena of the dispersed phase. Ultrasonication energy input duplication from 11kJ to 25kJ (method B) resulted in stable emulsions production (reduction of back scattering values, dBS∼1% after 10days of storage) at 0.5wt% concentration of any of the stabilizers used. At lower gum amount samples became unstable due to depletion flocculation phenomena, regardless of emulsification energy input used. High energy input during ultrasonic emulsification also resulted in sub-micron oil-droplets emulsions (D(50)=0.615μm compared to D(50)=1.3μm using method A) with narrower particle size distribution and in viscosity reduction. DSC experiments revealed no presence of bulk oil formation, suggesting stability for XG 0.5wt% emulsions prepared by both methods. Reduced enthalpy values found when method B was applied suggesting structural modifications produced by extensive ultrasonication. Change of ultrasonication conditions results in significant changes of oil droplet size and stability of the produced emulsions. Copyright © 2012 Elsevier B.V. All rights reserved.

  12. Research notes : polymer modified emulsions for chip seals.

    DOT National Transportation Integrated Search

    1991-12-01

    The Research Unit is conducting a study of chip seal emulsions using asphalts containing polymers on test sections that were built in 1987 on Oregon Route 22 near Stayton in Marion County. A commonly used emulsion in the 1987 OSHD Specifications for ...

  13. A new generation scanning system for the high-speed analysis of nuclear emulsions

    NASA Astrophysics Data System (ADS)

    Alexandrov, A.; Buonaura, A.; Consiglio, L.; D'Ambrosio, N.; De Lellis, G.; Di Crescenzo, A.; Galati, G.; Lauria, A.; Montesi, M. C.; Tioukov, V.; Vladymyrov, M.

    2016-06-01

    The development of automatic scanning systems was a fundamental issue for large scale neutrino detectors exploiting nuclear emulsions as particle trackers. Such systems speed up significantly the event analysis in emulsion, allowing the feasibility of experiments with unprecedented statistics. In the early 1990s, R&D programs were carried out by Japanese and European laboratories leading to automatic scanning systems more and more efficient. The recent progress in the technology of digital signal processing and of image acquisition allows the fulfillment of new systems with higher performances. In this paper we report the description and the performance of a new generation scanning system able to operate at the record speed of 84 cm2/hour and based on the Large Angle Scanning System for OPERA (LASSO) software infrastructure developed by the Naples scanning group. Such improvement, reduces the scanning time by a factor 4 with respect to the available systems, allowing the readout of huge amount of nuclear emulsions in reasonable time. This opens new perspectives for the employment of such detectors in a wider variety of applications.

  14. The effects of emulsifying agents on disposition of lipid-soluble drugs included in fat emulsion.

    PubMed

    Suzuki, Yasuyuki; Masumitsu, Yasushi; Okudaira, Kazuho; Hayashi, Masahiro

    2004-02-01

    The uses for drug delivery systems of two soybean oil fat emulsions prepared with an emulsifying agent, phosphatidyl choline (PC) or Pluronic F-127 (PLU), were examined comparatively in vivo and in vitro. In the presence of lipoprotein lipase (LPL) in vitro, the mean particle size of the PLU emulsion changed less than that of the PC emulsion. The production of non-esterified fatty acid (NEFA) from the PLU emulsion in the presence of LPL was smaller than that from the PC emulsion. These in vitro results indicate that the PLU emulsion is more stable than the PC emulsion. Plasma NEFA concentration following intravenous administration of the emulsions decreased with time for the PC emulsion, but was kept lower and constant for the PLU emulsion, supporting the in vitro stability data. The order of plasma cyclosporine A (CsA) concentration following intravenous administration in the above two emulsions and the mixed solution of polyethylene glycol 400 (PEG) and dimethylamide (DMA) in rats was PLU emulsion>PC emulsion>PEG/DMA solution. The plasma concentration was maintained higher and tissue distribution lower for the PLU emulsion than for other formulations. The uptake of oil violet (OV) into the rat parenchymal cells from the PLU emulsion was approximately half that from the PC emulsion, but the uptake into the Kupffer cells was almost equal in both emulsions. In conclusion, these emulsifying agents can control plasma elimination and tissue distribution of lipophilic drugs included in the emulsion. The use of the emulsion formulation makes it possible to avoid side effects through the reduction of drug uptake into non-targeted tissues.

  15. 40 CFR 443.10 - Applicability; description of the asphalt emulsion subcategory.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... asphalt emulsion subcategory. 443.10 Section 443.10 Protection of Environment ENVIRONMENTAL PROTECTION... ROOFING MATERIALS (TARS AND ASPHALT) POINT SOURCE CATEGORY Asphalt Emulsion Subcategory § 443.10 Applicability; description of the asphalt emulsion subcategory. The provisions of this subpart are applicable to...

  16. 40 CFR 443.10 - Applicability; description of the asphalt emulsion subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... asphalt emulsion subcategory. 443.10 Section 443.10 Protection of Environment ENVIRONMENTAL PROTECTION... MATERIALS (TARS AND ASPHALT) POINT SOURCE CATEGORY Asphalt Emulsion Subcategory § 443.10 Applicability; description of the asphalt emulsion subcategory. The provisions of this subpart are applicable to discharges...

  17. 40 CFR 443.10 - Applicability; description of the asphalt emulsion subcategory.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... asphalt emulsion subcategory. 443.10 Section 443.10 Protection of Environment ENVIRONMENTAL PROTECTION... MATERIALS (TARS AND ASPHALT) POINT SOURCE CATEGORY Asphalt Emulsion Subcategory § 443.10 Applicability; description of the asphalt emulsion subcategory. The provisions of this subpart are applicable to discharges...

  18. 40 CFR 443.10 - Applicability; description of the asphalt emulsion subcategory.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... asphalt emulsion subcategory. 443.10 Section 443.10 Protection of Environment ENVIRONMENTAL PROTECTION... ROOFING MATERIALS (TARS AND ASPHALT) POINT SOURCE CATEGORY Asphalt Emulsion Subcategory § 443.10 Applicability; description of the asphalt emulsion subcategory. The provisions of this subpart are applicable to...

  19. 40 CFR 443.10 - Applicability; description of the asphalt emulsion subcategory.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... asphalt emulsion subcategory. 443.10 Section 443.10 Protection of Environment ENVIRONMENTAL PROTECTION... ROOFING MATERIALS (TARS AND ASPHALT) POINT SOURCE CATEGORY Asphalt Emulsion Subcategory § 443.10 Applicability; description of the asphalt emulsion subcategory. The provisions of this subpart are applicable to...

  20. Double emulsion formation through hierarchical flow-focusing microchannel

    NASA Astrophysics Data System (ADS)

    Azarmanesh, Milad; Farhadi, Mousa; Azizian, Pooya

    2016-03-01

    A microfluidic device is presented for creating double emulsions, controlling their sizes and also manipulating encapsulation processes. As a result of three immiscible liquids' interaction using dripping instability, double emulsions can be produced elegantly. Effects of dimensionless numbers are investigated which are Weber number of the inner phase (Wein), Capillary number of the inner droplet (Cain), and Capillary number of the outer droplet (Caout). They affect the formation process, inner and outer droplet size, and separation frequency. Direct numerical simulation of governing equations was done using volume of fluid method and adaptive mesh refinement technique. Two kinds of double emulsion formation, the two-step and the one-step, were simulated in which the thickness of the sheath of double emulsions can be adjusted. Altering each dimensionless number will change detachment location, outer droplet size and droplet formation period. Moreover, the decussate regime of the double-emulsion/empty-droplet is observed in low Wein. This phenomenon can be obtained by adjusting the Wein in which the maximum size of the sheath is discovered. Also, the results show that Cain has significant influence on the outer droplet size in the two-step process, while Caout affects the sheath in the one-step formation considerably.

  1. Ultra-High Pressure Homogenization enhances physicochemical properties of soy protein isolate-stabilized emulsions.

    PubMed

    Fernández-Ávila, C; Escriu, R; Trujillo, A J

    2015-09-01

    The effect of Ultra-High Pressure Homogenization (UHPH, 100-300MPa) on the physicochemical properties of oil-in-water emulsions prepared with 4.0% (w/v) of soy protein isolate (SPI) and soybean oil (10 and 20%, v/v) was studied and compared to emulsions treated by conventional homogenization (CH, 15MPa). CH emulsions were prepared with non-heated and heated (95°C for 15min) SPI dispersions. Emulsions were characterized by particle size determination with laser diffraction, rheological properties using a rotational rheometer by applying measurements of flow curve and by transmission electron microscopy. The variation on particle size and creaming was assessed by Turbiscan® analysis, and visual observation of the emulsions was also carried out. UHPH emulsions showed much smaller d 3.2 values and greater physical stability than CH emulsions. The thermal treatment of SPI prior CH process did not improve physical stability properties. In addition, emulsions containing 20% of oil exhibited greater physical stability compared to emulsions containing 10% of oil. Particularly, UHPH emulsions treated at 100 and 200MPa with 20% of oil were the most stable due to low particle size values (d 3.2 and Span), greater viscosity and partial protein denaturation. These results address the physical stability improvement of protein isolate-stabilized emulsions by using the emerging UHPH technology. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Treatment methods for breaking certain oil and water emulsions

    DOEpatents

    Sealock, Jr., L. John; Baker, Eddie G.; Elliott, Douglas C.

    1992-01-01

    Disclosed are treatment methods for breaking emulsions of petroleum oil and salt water, fatty oil and water, and those resulting from liquefication of organic material. The emulsions are broken by heating to a predetermined temperature at or above about 200.degree. C. and pressurizing to a predetermined pressure above the vapor pressure of water at the predetermined temperature to produce a heated and pressurized fluid. The heated and pressurized fluid is contained in a single vessel at the predetermined temperature and pressure for a predetermined period of time to effectively separate the emulsion into substantially distinct first and second phases, the first phase comprising primarily the petroleum oil, the second phase comprising primarily the water. The first and second phases are separately withdrawn from the vessel at a withdraw temperature between about 200.degree. C. and 374.degree. C. and a withdraw pressure above the vapor pressure of water at the withdraw temperature. Where solids are present in the certain emulsions, the above described treatment may also effectively separate the certain emulsion into a substantially distinct third phase comprising primarily the solids.

  3. DIMENSION STABILIZED FIXED PHOTOGRAPHIC TYPE EMULSION AND A METHOD FOR PRODUCING SAME

    DOEpatents

    Gilbert, F.C.

    1962-03-13

    A process is given for stabilizing the dimensions of fixed gelatin-base photographic type emulsions containing silver halide, and particularly to such emulsions containing large amounts of silver chloride for use as nuclear track emulsions, so that the dimensions of the final product are the same as or in a predetermined fixed ratio to the dimensions of the emulsions prior to exposure. The process comprises contacting an exposed, fixed emulsion with a solution of wood rosin dissolved in ethyl alcohol for times corresponding to the dimensions desired, and thereafter permitting the alcohol to evaporate. (AEC)

  4. Sensory and instrumental characterization of fast inverting oil-in-water emulsions for cosmetic application.

    PubMed

    Korać, R; Krajišnik, D; Milić, J

    2016-06-01

    The aim of this study was to perform short-term sensory testing and instrumental (conductivity and rheological) characterization of a fast inverted oil-in-water (o/w) emulsion base, also known as a SWOP (Switch-Oil-Phase) emulsion, and reference o/w and water-in-oil (w/o) emulsion bases under various testing conditions: in the presence of ions and at different temperatures. SWOP emulsions are known as metastable o/w emulsions, which invert into w/o emulsions on application of mechanical energy, while rubbing it onto the skin and due to their properties SWOP emulsion are especially suitable as a cosmetic vehicle in, for example, sun-protection products. Sensory testing, which included the evaluation of twenty attributes of the investigated emulsion bases, was performed by a panel of 20 healthy assessors experienced in the evaluation of cosmetic products. Rheological characterization of the investigated emulsion bases included continuous flow testing and oscillatory measurements under various testing conditions. Additionally, conductivity measurements were combined with rheological characterization to monitor stability changes of investigated emulsions. The instrumental and sensory results were analysed statistically and compared. The obtained results indicated that the investigated emulsions behaved differently in the presence of ions (originating from artificial sweat solution) and at different temperatures (under storage and application conditions). Namely, the SWOP emulsion showed similar behaviour to the reference o/w emulsion under storage conditions, but in the presence of ions and at skin temperature, the SWOP emulsion was followed by re-establishment of a stable w/o system, whereas reference o/w emulsion was irreversibly destroyed. The statistical analysis of chosen sensorial attributes indicated that the reference w/o emulsion was significantly different in comparison with the reference o/w and SWOP emulsions, mainly, standing in good agreement with the

  5. DELIVERY OF WATER-SOLUBLE DRUGS USING ACOUSTICALLY-TRIGGERED, PERFLUOROCARBON DOUBLE EMULSIONS

    PubMed Central

    Fabiilli, Mario L.; Lee, James A.; Kripfgans, Oliver D.; Carson, Paul L.; Fowlkes, J. Brian

    2010-01-01

    Purpose Ultrasound can be used to release a therapeutic payload encapsulated within a perfluorocarbon (PFC) emulsion via acoustic droplet vaporization (ADV), a process whereby the PFC phase is vaporized and the agent is released. ADV-generated microbubbles have been previously used to selectively occlude blood vessels in vivo. The coupling of ADV-generated drug delivery and occlusion has therapeutically, synergistic potentials. Methods Micron-sized, water-in-PFC-in-water (W1/PFC/W2) emulsions were prepared in a two-step process using perfluoropentane (PFP) or perfluorohexane (PFH) as the PFC phase. Fluorescein or thrombin was contained in the W1 phase. Results Double emulsions containing fluorescein in the W1 phase displayed a 5.7±1.4 fold and 8.2±1.3 fold increase in fluorescein mass flux, as measured using a Franz diffusion cell, after ADV for the PFP and PFH emulsions, respectively. Thrombin was stably retained in four out of five double emulsions. For three out of five formulations tested, the clotting time of whole blood decreased, in a statistically significant manner (p < 0.01), when incubated with thrombin-loaded emulsions exposed to ultrasound compared to emulsions not exposed to ultrasound. Conclusions ADV can be used to spatially and temporally control the delivery of water-soluble compounds formulated in PFC double emulsions. Thrombin release could extend the duration of ADV-generated, microbubble occlusions. PMID:20872050

  6. 21 CFR 524.802 - Enrofloxacin, silver sulfadiazine emulsion.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Enrofloxacin, silver sulfadiazine emulsion. 524.802 Section 524.802 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN... ANIMAL DRUGS § 524.802 Enrofloxacin, silver sulfadiazine emulsion. (a) Specifications. Each milliliter...

  7. 21 CFR 524.802 - Enrofloxacin, silver sulfadiazine emulsion.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Enrofloxacin, silver sulfadiazine emulsion. 524.802 Section 524.802 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN... ANIMAL DRUGS § 524.802 Enrofloxacin, silver sulfadiazine emulsion. (a) Specifications. Each milliliter...

  8. 21 CFR 524.802 - Enrofloxacin, silver sulfadiazine emulsion.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Enrofloxacin, silver sulfadiazine emulsion. 524.802 Section 524.802 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN... ANIMAL DRUGS § 524.802 Enrofloxacin, silver sulfadiazine emulsion. (a) Specifications. Each milliliter...

  9. Synthesis of metallic nanoshells on porphyrin-stabilized emulsions

    DOEpatents

    Wang, Haorong [Albuquerque, NM; Song, Yujiang [Albuquerque, NM; Shelnutt, John A [Tijeras, NM; Medforth, Craig J [Winters, CA

    2011-12-13

    Metal nanostructures formed by photocatalytic interfacial synthesis using a porphyrin-stabilized emulsion template and the method for making the nanostructures. Catalyst-seeded emulsion droplets are employed as templates for hollow-nanoshell growth. The hollow metal nanospheres may be formed with or without inclusions of other materials.

  10. Impact of Protein Gel Porosity on the Digestion of Lipid Emulsions.

    PubMed

    Sarkar, Anwesha; Juan, Jean-Marc; Kolodziejczyk, Eric; Acquistapace, Simone; Donato-Capel, Laurence; Wooster, Tim J

    2015-10-14

    The present study sought to understand how the microstructure of protein gels impacts lipolysis of gelled emulsions. The selected system consisted of an oil-in-water (o/w) emulsion embedded within gelatin gels. The gelatin-gelled emulsions consisted of a discontinuous network of aggregated emulsion droplets (mesoscale), dispersed within a continuous network of gelatin (microscale). The viscoelastic properties of the gelled emulsions were dominated by the rheological behavior of the gelatin, suggesting a gelatin continuous microstructure rather than a bicontinuous gel. A direct relationship between the speed of fat digestion and gel average mesh size was found, indicating that the digestion of fat within gelatin-gelled emulsions is controlled by the ability of the gel's microstructure to slow lipase diffusion to the interface of fat droplets. Digestion of fat was facilitated by gradual breakdown of the gelatin network, which mainly occurred via surface erosion catalyzed by proteases. Overall, this work has demonstrated that the lipolysis kinetics of gelled emulsions is driven by the microstructure of protein gels; this knowledge is key for the future development of microstructures to control fat digestion and/or the delivery of nutrients to different parts of the gastrointestinal tract.

  11. Flow chamber

    DOEpatents

    Morozov, Victor [Manassas, VA

    2011-01-18

    A flow chamber having a vacuum chamber and a specimen chamber. The specimen chamber may have an opening through which a fluid may be introduced and an opening through which the fluid may exit. The vacuum chamber may have an opening through which contents of the vacuum chamber may be evacuated. A portion of the flow chamber may be flexible, and a vacuum may be used to hold the components of the flow chamber together.

  12. Encapsulation of Polymethoxyflavones in Citrus Oil Emulsion-Based Delivery Systems.

    PubMed

    Yang, Ying; Zhao, Chengying; Chen, Jingjing; Tian, Guifang; McClements, David Julian; Xiao, Hang; Zheng, Jinkai

    2017-03-01

    The purpose of this work was to elucidate the effects of citrus oil type on polymethoxyflavone (PMF) solubility and on the physicochemical properties of PMF-loaded emulsion-based delivery systems. Citrus oils were extracted from mandarin, orange, sweet orange, and bergamot. The major constituents were determined by GC/MS: sweet orange oil (97.4% d-limonene); mandarin oil (72.4% d-limonene); orange oil (67.2% d-limonene); and bergamot oil (34.6% linalyl acetate and 25.3% d-limonene). PMF-loaded emulsions were fabricated using 10% oil phase (containing 0.1% w/v nobiletin or tangeretin) and 90% aqueous phase (containing 1% w/v Tween 80) using high-pressure homogenization. Delivery systems prepared using mandarin oil had the largest mean droplet diameters (386 or 400 nm), followed by orange oil (338 or 390 nm), bergamot oil (129 or 133 nm), and sweet orange oil (122 or 126 nm) for nobiletin- or tangeretin-loaded emulsions, respectively. The optical clarity of the emulsions increased with decreasing droplet size due to reduced light scattering. The viscosities of the emulsions (with or without PMFs) were similar (1.3 to 1.4 mPa·s), despite appreciable differences in oil phase viscosity. The loading capacity and encapsulation efficiency of the emulsions depended on carrier oil type, with bergamot oil giving the highest loading capacity. In summary, differences in the composition and physical characteristics of citrus oils led to PMF-loaded emulsions with different encapsulation and physicochemical characteristics. These results will facilitate the rational design of emulsion-based delivery systems for encapsulation of PMFs and other nutraceuticals in functional foods and beverages.

  13. Long-term stability of crystal-stabilized water-in-oil emulsions.

    PubMed

    Ghosh, Supratim; Pradhan, Mamata; Patel, Tejas; Haj-Shafiei, Samira; Rousseau, Dérick

    2015-12-15

    The impact of cooling rate and mixing on the long-term kinetic stability of wax-stabilized water-in-oil emulsions was investigated. Four cooling/mixing protocols were investigated: cooling from 45°C to either 25°C or 4°C with/without stirring and two cooling rates - slow (1°C/min) and fast (5°C/min). The sedimentation behaviour of the emulsions was significantly affected by cooling protocol. Stirring was critical to the stability of all emulsions, with statically-cooled (no stirring) emulsions suffering from extensive aqueous phase separation. Emulsions stirred while cooling showed sedimentation of a waxy emulsion layer leaving a clear oil layer at the top, with a smaller separation and droplet size distribution at 4°C compared to 25°C, indicating the importance of the amount of crystallized wax on emulsion stability. Light microscopy revealed that crystallized wax appeared both on the droplet surface and in the continuous phase, suggesting that stirring ensured dispersibility of the water droplets during cooling as the wax was crystallizing. Wax crystallization on the droplet surface provided stability against droplet coalescence while continuous phase wax crystals minimized inter-droplet collisions. The key novel aspect of this research is in the simplicity to tailor the spatial distribution of wax crystals, i.e., either at the droplet surface or in the continuous phase via use of a surfactant and judicious stirring and/or cooling. Knowledge gained from this research can be applied to develop strategies for long-term storage stability of crystal-stabilized W/O emulsions. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Concanavalin-A conjugated fine-multiple emulsion loaded with 6-mercaptopurine.

    PubMed

    Khopade, A J; Jain, N K

    2000-01-01

    Fine-multiple (water-in-oil-in-water) emulsions were prepared by two-step emulsification using sonication. They were coated with concanavalin-A (Con-A) by three methods. The one involving covalent coupling of Con-A to the multiple emulsion incorporated anchor was better compared with lipid derivatized Con-A anchoring or the glutaraldehyde-based cross-linking method, as shown by the faster rate of dextran-induced aggregation. The selected multiple emulsions were characterized by physical properties such as droplet size, encapsulation efficiency, and zeta potential. Stability parameters such as droplet size, creaming, leakage, and aggregation as a function of relative turbidity were monitored over a 1-month period, which revealed good stability of the formulations. The release profile of 6-mercaptopurine followed zero-order kinetics. Pharmacokinetic studies showed an increase in half-life and bioavailability from multiple emulsion formulations administered intravenously. There was prolonged retention of drug in various tissues of rats when treated with Con-A-coated multiple emulsion as compared with uncoated one. Our study demonstrates the suitability of fine-multiple emulsion for intravenous administration and the potential for prolonged retention of drugs and targeting in biological systems.

  15. Particle size analysis of some water/oil/water multiple emulsions.

    PubMed

    Ursica, L; Tita, D; Palici, I; Tita, B; Vlaia, V

    2005-04-29

    Particle size analysis gives useful information about the structure and stability of multiple emulsions, which are important characteristics of these systems. It also enables the observation of the growth process of particles dispersed in multiple emulsions, accordingly, the evolution of their dimension in time. The size of multiple particles in the seven water/oil/water (W/O/W) emulsions was determined by measuring the particles size observed during the microscopic examination. In order to describe the distribution of the size of multiple particles, the value of two parameters that define the particle size was calculated: the arithmetical mean diameter and the median diameter. The results of the particle size analysis in the seven multiple emulsions W/O/W studied are presented as histograms of the distribution density immediately, 1 and 3 months after the preparation of each emulsion, as well as by establishing the mean and the median diameter of particles. The comparative study of the distribution histograms and of the mean and median diameters of W/O/W multiple particles indicates that the prepared emulsions are fine and very fine dispersions, stable, and presenting a growth of the abovementioned diameters during the study.

  16. Whey protein isolate modified by transglutaminase aggregation and emulsion gel properties

    NASA Astrophysics Data System (ADS)

    Qi, Weiwei; Chen, Chong; Liu, Mujun; Yu, Guoping; Cai, Xinghang; Guo, Peipei; Yao, Yuxiu; Mei, Sijie

    2015-07-01

    Whey protein isolate and commercial soybean salad oil were used to produce the WPI emulsion dispersions. The properties of TG-catalyzed emulsion gelation produced from WPI emulsion dispersions were investigated by the amount of TG, temperature, pH and reaction time. Specifically, the texture properties (hardness and springiness), water-holding capacity and rheological properties (G' and G") were assessed. The result of Orthogonal tests showed WPI emulsion can form better hardness and springiness gel when the ratio of TG and WPI was 20U/g, pH 7.5, treatment temperature and time were 50°C and 3 h, respectively. The microstructure of TG emulsion gels was more compact, gel pore is smaller, distribution more uniform, the oil droplets size smaller compared with untreated emulsion gels. Compared to the control of rheological properties, G' and G" were significantly increased and G' > G", results showed that the gel was solid state, and TG speeded up the process of gelation.

  17. Tunable stability of monodisperse secondary O/W nano-emulsions

    NASA Astrophysics Data System (ADS)

    Vecchione, R.; Ciotola, U.; Sagliano, A.; Bianchini, P.; Diaspro, A.; Netti, P. A.

    2014-07-01

    Stable and biodegradable oil in water (O/W) nano-emulsions can have a huge impact on a wide range of bio-applications, from food to cosmetics and pharmaceuticals. Emulsions, however, are immiscible systems unstable over time; polymer coatings are known to be helpful, but an effective procedure to stabilize monodisperse and biodegradable O/W nano-emulsions is yet to be designed. Here, we coat biodegradable O/W nano-emulsions with a molecular layer of biodegradable polyelectrolytes such as polysaccharides - like chitosan - and polypeptides - like polylysine - and effectively re-disperse and densify the polymer coating at high pressure, thus obtaining monodisperse and stable systems. In particular, focusing on chitosan, our tests show that it is possible to obtain unprecedented ultra-stable O/W secondary nano-emulsions (diameter sizes tunable from ~80 to 160 nm and polydispersion indices below 0.1) by combining this process with high concentrations of polymers. Depending on the polymer concentration, it is possible to control the level of coating that results in a tunable stability ranging from a few weeks to several months. The above range of concentrations has been investigated using a fluorescence-based approach with new insights into the coating evolution.Stable and biodegradable oil in water (O/W) nano-emulsions can have a huge impact on a wide range of bio-applications, from food to cosmetics and pharmaceuticals. Emulsions, however, are immiscible systems unstable over time; polymer coatings are known to be helpful, but an effective procedure to stabilize monodisperse and biodegradable O/W nano-emulsions is yet to be designed. Here, we coat biodegradable O/W nano-emulsions with a molecular layer of biodegradable polyelectrolytes such as polysaccharides - like chitosan - and polypeptides - like polylysine - and effectively re-disperse and densify the polymer coating at high pressure, thus obtaining monodisperse and stable systems. In particular, focusing on

  18. 21 CFR 524.802 - Enrofloxacin, silver sulfadiazine emulsion.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Enrofloxacin, silver sulfadiazine emulsion. 524... ANIMAL DRUGS § 524.802 Enrofloxacin, silver sulfadiazine emulsion. (a) Specifications. Each milliliter contains 5 milligrams (mg) enrofloxacin and 10 mg silver sulfadiazine. (b) Sponsor. See No. 000859 in § 510...

  19. Efficiency of emulsifier-free emulsions and emulsions containing rapeseed lecithin as delivery systems for vectorization and release of coenzyme Q10: physico-chemical properties and in vitro evaluation.

    PubMed

    Kaci, M; Arab-Tehrany, E; Dostert, G; Desjardins, I; Velot, E; Desobry, S

    2016-11-01

    To improve the encapsulation and release of coenzyme Q10 (CoQ10), emulsifier-free-emulsions were developed with a new emulsification process using high-frequency ultrasound (HFU) at 1.7MHz. Nano-emulsions containing CoQ10 were prepared with or without rapeseed lecithin as an emulsifier. The emulsions prepared with HFU were compared with an emulsion of CoQ10 containing emulsifier prepared with the same emulsification technique as well as with emulsions prepared with low-frequency ultrasound coupled with high-pressure homogenization (LFU+HPH). The physico-chemical properties of the emulsions were determined by average droplet size measurement with nano-droplet tracking analysis, droplet surface charge with ζ potential measurement, surface tension and rheological behaviour. Emulsions made by LFU+HPH with an emulsifier showed lower droplet sizes due to cavitation generated by the HFU process. Surface tension results showed that there was no significant difference between emulsions containing lecithin emulsifier regardless of the preparation process or the inclusion of CoQ10. In vitro biocompatibility tests were performed on human mesenchymal stem cells in order to show the cytotoxicity of various formulations and the efficiency of CoQ10-loaded emulsions. In vitro tests proved that the vectors were not toxic. Furthermore, CoQ10 facilitated a high rate of cell proliferation and metabolic activity especially when in an emulsifier-free formulation. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Release and in vitro skin permeation of polyphenols from cosmetic emulsions.

    PubMed

    Zillich, O V; Schweiggert-Weisz, U; Hasenkopf, K; Eisner, P; Kerscher, M

    2013-10-01

    Polyphenols are natural antioxidants, which can inhibit oxidative chain reactions in human skin and prevent therefore some skin diseases and premature ageing. A prerequisite of this behaviour is their permeation through the skin barrier, in particular the stratum corneum (SC). In this study, we investigated the skin permeation kinetic of polyphenols, incorporated to semisolid emulsions, and the release of polyphenols from the emulsions. Mixtures of model substances, consisting of catechin, epigallocatechin gallate (EGCG), resveratrol, quercetin, rutin and protocatechuic acid (PCA), were formulated into o/w emulsions with different oil phase content. The in vitro experiments were carried out in Franz-type diffusion cells by means of ex vivo pig skin and a cellulose membrane. The increased oil content in the emulsion led to a significant decrease in initial release coefficients (K(r)), diffusion coefficients within the formulation (D(v)) and skin permeation coefficients (K(p)), respectively. The study considered the dependence of K(r) on molecular weight and lipophilicity of polyphenolics. For both more hydrophilic and more lipophilic substance groups, the values for K(r) were inverse proportional to molecular weight. For catechin, quercetin, rutin, resveratrol and PCA, a good correlation between K(p) and K(r) parameters was obtained. The most permeable substance was PCA (K(p) = 1.2·10(-3) cm h(-1)), and the least permeable was quercetin (K(p) = 1.5·10(-5) cm h(-1)). All substances could pass the SC barrier and were found mostly in the epidermis and dermis, confirming the potential of polyphenols as anti-ageing active cosmetic ingredients. © 2013 Society of Cosmetic Scientists and the Société Française de Cosmétologie.

  1. Use of oil-in-water emulsions to control fungal deterioration of strawberry jams.

    PubMed

    Ribes, Susana; Fuentes, Ana; Talens, Pau; Barat, José M

    2016-11-15

    This work aimed to control the fungal deterioration of strawberry jams. The antifungal activity of the clove, cinnamon leaf, lemon and mandarin essential oils and their effectiveness in oil-in-water emulsions were evaluated. According to the results obtained, only clove and cinnamon leaf oils were selected to prepare emulsions. All the tested emulsions were stable, independently the amount of polymer and essential oil used. Essential oil loss was affected by the amount of polymer employed to prepare the emulsions. The oil-in-water emulsions with 5.0mg/g xanthan gum, and with 0.55mg/g clove or 0.65mg/g cinnamon leaf essential oil, were used for the in vivo tests. The jams prepared with the oil-in-water emulsions showed a lower fungal decay compared with jams without emulsion. The present work demonstrated that emulsions can be employed to prevent strawberry jam mould spoilage. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Potential of Cinnamon Oil Emulsions as Alternative Washing Solutions of Carrots.

    PubMed

    Zhang, Yue; Chen, Huaiqiong; Critzer, Faith; Davidson, P Michael; Zhong, Qixin

    2017-06-01

    The objective of this study was to evaluate the potential of cinnamon oil emulsions as alternative washing solutions to improve the microbial safety of carrots. Whey protein concentrate (WPC), gum arabic (GA), lecithin, and their combinations were used to prepare cinnamon oil emulsions. The emulsions were characterized for their hydrodynamic diameter (D h ) during 7 days of storage and their antimicrobial activity against cocktails of Salmonella enterica , Escherichia coli O157:H7, and Listeria monocytogenes . The D h of the emulsion prepared with the GA+WPC blend did not change significantly (195.0 to 184.1 nm), whereas all other emulsions showed varying degrees of increases in D h . Compared with free cinnamon oil dissolved in 5% ethanol, all emulsions showed similar or lower MICs and MBCs. Emulsions prepared with GA and equal masses of GA and WPC were chosen and diluted to 0.2 and 0.5% cinnamon oil to wash carrots that were surface inoculated with bacterial cocktails because of their lower MICs and MBCs than free oil. Emulsions resulted in significantly higher reductions of pathogens on carrots than free cinnamon oil, 3.0 to 3.7 versus 2.1 to 2.3 log CFU/g at 0.5% cinnamon oil and 2.0 to 3.0 versus 1.0 to 1.7 log CFU/g at 0.2% cinnamon oil. No transfer of bacteria from inoculated carrots to wash solutions and no effects of organic load on log reductions were only observed for wash treatments with 0.5% emulsified cinnamon oil. Thus, the cinnamon oil emulsions are potential alternative postharvest washing solutions for fresh produce production.

  3. Preparation, characterization, and in vitro gastrointestinal digestibility of oil-in-water emulsion-agar gels.

    PubMed

    Wang, Zheng; Neves, Marcos A; Kobayashi, Isao; Uemura, Kunihiko; Nakajima, Mitsutoshi

    2013-01-01

    Soybean oil-in-water (O/W) emulsion-agar gel samples were prepared and their digestibility evaluated by using an in vitro gastrointestinal digestion model. Emulsion-agar sols were obtained by mixing the prepared O/W emulsions with a 1.5 wt % agar solution at 60 °C, and their subsequent cooling at 5 °C for 1 h formed emulsion-agar gels. Their gel strength values increased with increasing degree of polymerization of the emulsifiers, and the relative gel strength increased in the case of droplets with an average diameter smaller than 700 nm. Flocculation and coalescence of the released emulsion droplets depended strongly on the emulsifier type; however, the emulsifier type hardly affected the ζ-potential of emulsion droplets released from the emulsion-agar gels during in vitro digestion. The total FFA content released from each emulsion towards the end of the digestion period was nearly twice that released from the emulsion-agar gel, indicating that gelation of the O/W emulsion may have delayed lipid hydrolysis.

  4. Natural polymer-stabilized multiple water-in-oil-in-water emulsions: a novel dermal drug delivery system for 5-fluorouracil.

    PubMed

    Hoppel, Magdalena; Mahrhauser, Denise; Stallinger, Christina; Wagner, Florian; Wirth, Michael; Valenta, Claudia

    2014-05-01

    The aim of this study was to create multiple water-in-oil-in-water (W/O/W) emulsions with an increased long-term stability as skin delivery systems for the hydrophilic model drug 5-fluorouracil. Multiple W/O/W emulsions were prepared in a one-step emulsification process, and were characterized regarding particle size, microstructure and viscosity. In-vitro studies on porcine skin with Franz-type diffusion cells, tape stripping experiments and attenuated total reflectance-fourier transform infrared spectroscopy (ATR-FTIR) were performed. The addition of Solagum AX, a natural polymer mixture of acacia and xanthan gum, led to multiple W/O/W emulsions with a remarkably increased long-term stability in comparison to formulations without a thickener. The higher skin diffusion of 5-fluorouracil from the multiple emulsions compared with an O/W-macroemulsion could be explained by ATR-FTIR. Shifts to higher wave numbers and increase of peak areas of the asymmetric and symmetric CH2 stretching vibrations confirmed a transition of parts of the skin lipids from an ordered to a disordered state after impregnation of porcine skin with the multiple emulsions. Solagum AX is highly suitable for stabilization of the created multiple emulsions. Moreover, these formulations showed superiority over a simple O/W-macroemulsion regarding skin permeation and penetration of 5-fluorouracil. © 2013 Royal Pharmaceutical Society.

  5. Field trial of solvent-free emulsion in Oregon : appendices.

    DOT National Transportation Integrated Search

    2003-03-01

    This final report summarizes construction, laboratory and performance information gathered by ODOT personnel from a single field trial of solvent-free emulsion mix constructed in June 2001. The solvent-free emulsion mix presented several placement pr...

  6. Modified montmorillonite clay microparticles for stable oil-in-seawater emulsions.

    PubMed

    Dong, Jiannan; Worthen, Andrew J; Foster, Lynn M; Chen, Yunshen; Cornell, Kevin A; Bryant, Steven L; Truskett, Thomas M; Bielawski, Christopher W; Johnston, Keith P

    2014-07-23

    Environmentally benign clay particles are of great interest for the stabilization of Pickering emulsions. Dodecane-in-synthetic seawater (SSW) emulsions formed with montmorillonite (MMT) clay microparticles modified with bis(2-hydroxyethyl)oleylamine were stable against coalescence, even at clay concentrations down to 0.1% w/v. Remarkably, as little as 0.001% w/v surfactant lowered the hydrophilicity of the clay to a sufficient level for stabilization of oil-in-SSW emulsions. The favorable effect of SSW on droplet size reduction and emulsion stability enhancement is hypothesized to be due to reduced electrostatic repulsion between adsorbed clay particles and a consequent increase in the continuous phase (an aqueous clay suspension) viscosity. Water/oil (W/O) emulsions were inverted to O/W either by decreasing the mass ratio of surfactant-to-clay (transitional inversion) or by increasing the water volume fraction (catastrophic inversion). For both types of emulsions, coalescence was minimal and the sedimentation or creaming was highly correlated with the droplet size. For catastrophic inversions, the droplet size of the emulsions was smaller in the case of the preferred curvature. Suspensions of concentrated clay in oil dispersions in the presence of surfactant were stable against settling. The mass transfer pathways during emulsification of oil containing the clay particles were analyzed on the droplet size/stability phase diagrams to provide insight for the design of dispersant systems for remediating surface and subsurface oceanic oil spills.

  7. Container effects on the physicochemical properties of parenteral lipid emulsions.

    PubMed

    Gonyon, Thomas; Carter, Phillip W; Dahlem, Olivier; Denet, Anne-Rose; Owen, Heather; Trouilly, Jean-Luc

    2008-01-01

    We evaluated the effects of glass and plastic containers on the physicochemical properties of parenteral nutrition lipid emulsions and total nutrient admixtures with an emphasis on globule size distribution and colloidal stability. A commercial lipid emulsion, 20% ClinOleic, was separated into glass (type II soda-lime-silica) and plastic (polypropylene multilayer) containers, sterilized, and then stored for 16 wk at 40 degrees C. Globule size distribution, pH, and zeta potential measurements were made every 4 wk. Admixtures derived from parent lipid emulsions were tested after admixing (t = 0), storage for 7 d at 5 degrees C plus 24 h at 25 degrees C (t = 7 + 1), and then after an additional 3 d at 25 degrees C (t = 7 + 4). The parent lipid emulsions in glass and plastic containers exhibited identical time-dependent behavior with respect to mean globule size, percentage of oil droplets >or=5 mum, pH, and zeta potential measurements. The percentages of oil droplets >or=5 mum of all test conditions remained well below the United States Pharmacopeia <729> limits of 0.05%. The total nutrient admixture time-dependent physicochemical characteristics were also found to be independent of the parent lipid emulsion container type. Plastic and glass containers were found to be suitable, safe, and indistinguishable with respect to physicochemical stability of a representative parenteral nutrition lipid emulsion and total nutrient admixtures derived from the parent lipid emulsion.

  8. Dynamics of Unjammed Emulsions

    NASA Astrophysics Data System (ADS)

    Guerra, Rodrigo; Kodger, Thomas; Weitz, David

    2014-03-01

    Light scattering and NMR densitometry measurements of quiescent emulsions have shown that amorphous packings of soft, repulsive droplets unjam at osmotic pressures 105 times larger than the typical droplet thermal energy density: 3kB/T 4 πR3. This transition corresponds to the pressure at which the thermal fluctuations of individual droplet positions match the yield strain of the packing and drive the fluidization of the material. We use confocal microscopy to investigate the microscopic dynamics of this fluid-like phase and find them to be fundamentally different from those of conventional glass-forming liquids; cage-breaking dynamics are not evident from droplet mean squared displacements and the effective viscosity of the emulsion, though 105 larger than the background fluid, appears largely insensitive to the confining pressure.

  9. Advances with holographic DESA emulsions

    NASA Astrophysics Data System (ADS)

    Dünkel, Lothar; Eichler, Jürgen; Schneeweiss, Claudia; Ackermann, Gerhard

    2006-02-01

    DESA emulsions represent layer systems based on ultra-fine grained silver halide (AgX) technology. The new layers have an excellent performance for holographic application. The technology has been presented repeatedly in recent years, including the emulsion characterization and topics of chemical and spectral sensitization. The paper gives a survey of actual results referring to panchromatic sensitization and other improvements like the application of silver halide sensitized gelatine (SHSG) procedure. These results are embedded into intensive collaborations with small and medium enterprises (SME's) to commercialize DESA layers. Predominant goals are innovative products with holographic components and layers providing as well as cost effectiveness and high quality.

  10. Observation of genetic relation among new phenomena Geminion, Chiron and mini-Centauro

    NASA Technical Reports Server (NTRS)

    1985-01-01

    The threshold energy problem of exotic type interactions is discussed on the basis of available information from the Chacaltaya emulsion chamber experiment. The genetic hypothesis is proposed as a working hypothesis to explain the discrepancy seen in cosmic ray study and CERN p bar -p collider experiments.

  11. Experiment Pamir-2. Fianit: A giant super-family with halo (Epsilon sub 0 at approximately 10(17) eV)

    NASA Technical Reports Server (NTRS)

    Zatsepin, G. T.

    1985-01-01

    A superfamily with halo of extremely high energy named Fianit was recorded in X-ray emulsion chamber (XEC) at the Pamirs (atmospheric depth 600 g/sq.cm.). Detailed description of the superfamily and results of its analysis are presented.

  12. Automated Electrostatics Environmental Chamber

    NASA Technical Reports Server (NTRS)

    Calle, Carlos; Lewis, Dean C.; Buchanan, Randy K.; Buchanan, Aubri

    2005-01-01

    The Mars Electrostatics Chamber (MEC) is an environmental chamber designed primarily to create atmospheric conditions like those at the surface of Mars to support experiments on electrostatic effects in the Martian environment. The chamber is equipped with a vacuum system, a cryogenic cooling system, an atmospheric-gas replenishing and analysis system, and a computerized control system that can be programmed by the user and that provides both automation and options for manual control. The control system can be set to maintain steady Mars-like conditions or to impose temperature and pressure variations of a Mars diurnal cycle at any given season and latitude. In addition, the MEC can be used in other areas of research because it can create steady or varying atmospheric conditions anywhere within the wide temperature, pressure, and composition ranges between the extremes of Mars-like and Earth-like conditions.

  13. Physical and antimicrobial properties of thyme oil emulsions stabilized by ovalbumin and gum arabic.

    PubMed

    Niu, Fuge; Pan, Weichun; Su, Yujie; Yang, Yanjun

    2016-12-01

    Natural biopolymer stabilized oil-in-water emulsions were formulated using ovalbumin (OVA), gum arabic (GA) solutions and their complexes. The influence of interfacial structure of emulsion (OVA-GA bilayer and OVA/GA complexes emulsions) on the physical properties and antimicrobial activity of thyme oil (TO) emulsion against Escherichia coli (E. coli) was evaluated. The results revealed that the two types of emulsions with different oil phase compositions remained stable during a long storage period. The oil phase composition had an appreciable influence on the mean particle diameter and retention of the TO emulsions. The stable emulsion showed a higher minimum inhibitory concentration (MIC), and the TO emulsions showed an improved long-term antimicrobial activity compared to the pure thyme oil, especially complexes emulsion at pH 4.0. These results provided useful information for developing protection and delivery systems for essential oil using biopolymer. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Influence of processing parameters on morphology of polymethoxyflavone in emulsions.

    PubMed

    Ting, Yuwen; Li, Colin C; Wang, Yin; Ho, Chi-Tang; Huang, Qingrong

    2015-01-21

    Polymethoxyflavones (PMFs) are groups of compounds isolated from citrus peels that have been documented with wide arrays of health-promoting bioactivities. Because of their hydrophobic structure and high melting point, crystallized PMFs usually have poor systemic bioavailability when consumed orally. To improve the oral efficiency of PMFs, a viscoelastic emulsion system was formulated. Because of the crystalline nature, the inclusion of PMFs into the emulsion system faces great challenges in having sufficient loading capacity and stabilities. In this study, the process of optimizing the quality of emulsion-based formulation intended for PMF oral delivery was systematically studied. With alteration of the PMF loading concentration, processing temperature, and pressure, the emulsion with the desired droplet and crystal size can be effectively fabricated. Moreover, storage temperatures significantly influenced the stability of the crystal-containing emulsion system. The results from this study are a good illustration of system optimization and serve as a great reference for future formulation design of other hydrophobic crystalline compounds.

  15. Antioxidant Behavior of Olive Phenolics in Oil-in-Water Emulsions.

    PubMed

    Paradiso, Vito Michele; Di Mattia, Carla; Giarnetti, Mariagrazia; Chiarini, Marco; Andrich, Lucia; Caponio, Francesco

    2016-07-27

    The effect of the surrounding molecular environment (β-lactoglobulin as an emulsion stabilizer and maltodextrin as a viscosity modifier) on the antioxidant activity of three olive oil phenolic compounds (PCs) in olive oil-in-water emulsions was investigated. Oxidation potential, phenolic partitioning, and radical quenching capacity were assessed in solution and in emulsion for oleuropein, hydroxytyrosol, and tyrosol; the influence of β-lactoglobulin and maltodextrin concentration was also evaluated. Finally, the observed properties were related to the oxidative stability of the emulsions containing the PCs to explain their behavior. The order hydroxytyrosol > oleuropein > tyrosol was observed among the antioxidants for both oxidation potential and radical quenching activity. Radical quenching capacity in emulsion and anodic potential were complementary indices of antioxidant effectiveness. As the intrinsic susceptibility of an antioxidant to oxidation expressed by its anodic potential decreased, the environmental conditions (molecular interactions and changes in continuous phase viscosity) played a major role in the antioxidant effectiveness in preventing hydroperoxide decomposition.

  16. Dual function of tributyrin emulsion: solubilization and enhancement of anticancer effect of celecoxib.

    PubMed

    Kang, Sung Nam; Hong, Soon-Seok; Lee, Mi-Kyung; Lim, Soo-Jeong

    2012-05-30

    Tributyrin, a triglyceride analogue of butyrate, can act as a prodrug of an anticancer agent butyrate after being cleaved by intracellular enzymes. We recently demonstrated that the emulsion containing tributyrin as an inner oil phase possesses a potent anticancer activity. Herein we sought to develop tributyrin emulsion as a carrier of celecoxib, a poorly-water soluble drug with anticancer activity. Combined treatment of human HCT116 colon cancer cells with free celecoxib plus tributyrin emulsion inhibited the cellular proliferation more effectively than that of each drug alone, suggesting the possibility of tributyrin emulsion as a potential celecoxib carrier. The mean droplet size of emulsions tended to increase as the tributyrin content in emulsion increases and the concentration of celecoxib loaded in emulsions was affected by tributyrin content and the initial amount of celecoxib, but not by the total amount of surfactant mixture. The concentration of celecoxib required to inhibit the growth of HCT116 and B16-F10 cancer cells by 50% was 2.6- and 3.1-fold lowered by loading celecoxib in tributyrin emulsions, compared with free celecoxib. These data suggest that the anticancer activity of celecoxib was enhanced by loading in tributyrin emulsions, probably due to the solubilization capacity and anticancer activity of tributyrin emulsion. Copyright © 2012 Elsevier B.V. All rights reserved.

  17. ARADISH - Development of a Standardized Plant Growth Chamber for Experiments in Gravitational Biology Using Ground Based Facilities

    NASA Astrophysics Data System (ADS)

    Schüler, Oliver; Krause, Lars; Görög, Mark; Hauslage, Jens; Kesseler, Leona; Böhmer, Maik; Hemmersbach, Ruth

    2016-06-01

    Plant development strongly relies on environmental conditions. Growth of plants in Biological Life Support Systems (BLSS), which are a necessity to allow human survival during long-term space exploration missions, poses a particular problem for plant growth, as in addition to the traditional environmental factors, microgravity (or reduced gravity such as on Moon or Mars) and limited gas exchange hamper plant growth. Studying the effects of reduced gravity on plants requires real or simulated microgravity experiments under highly standardized conditions, in order to avoid the influence of other environmental factors. Analysis of a large number of biological replicates, which is necessary for the detection of subtle phenotypical differences, can so far only be achieved in Ground Based Facilities (GBF). Besides different experimental conditions, the usage of a variety of different plant growth chambers was a major factor that led to a lack of reproducibility and comparability in previous studies. We have developed a flexible and customizable plant growth chamber, called ARAbidopsis DISH (ARADISH), which allows plant growth from seed to seedling, being realized in a hydroponic system or on Agar. By developing a special holder, the ARADISH can be used for experiments with Arabidopsis thaliana or a plant with a similar habitus on common GBF hardware, including 2D clinostats and Random Positioning Machines (RPM). The ARADISH growth chamber has a controlled illumination system of red and blue light emitting diodes (LED), which allows the user to apply defined light conditions. As a proof of concept we tested a prototype in a proteomic experiment in which plants were exposed to simulated microgravity or a 90° stimulus. We optimized the design and performed viability tests after several days of growth in the hardware that underline the utility of ARADISH in microgravity research.

  18. Generation of colloidal granules and capsules from double emulsion drops

    NASA Astrophysics Data System (ADS)

    Hess, Kathryn S.

    Assemblies of colloidal particles are extensively used in ceramic processing, pharmaceuticals, inks and coatings. In this project, the aim was to develop a new technique to fabricate monodispersed colloidal assemblies. The use of microfluidic devices and emulsion processing allows for the fabrication of complex materials that can be used in a variety of applications. A microfluidic device is used to create monodispersed water/oil/water (w/o/w) double emulsions with interior droplets of colloidal silica suspension ranging in size from tens to hundreds of microns. By tailoring the osmotic pressure using glycerol as a solute in the continuous and inner phases of the emulsion, we can control the final volume size of the monodispersed silica colloidal crystals that form in the inner droplets of the double emulsion. Modifying the ionic strength in the colloidal dispersion can be used to affect the particle-particle interactions and crystal formation of the final colloidal particle. This w/o/w technique has been used with other systems of metal oxide colloids and cellulose nanocrystals. Encapsulation of the colloidal suspension in a polymer shell for the generation of ceramic-polymer core-shell particles has also been developed. These core-shell particles have spawned new research in the field of locally resonant acoustic metamaterials. Systems and chemistries for creating cellulose hydrogels within the double emulsions have also been researched. Water in oil single emulsions and double emulsions have been used to create cellulose hydrogel spheres in the sub-100 micron diameter range. Oil/water/oil double emulsions allow us to create stable cellulose capsules. The addition of a second hydrogel polymer, such as acrylate or alginate, further strengthens the cellulose gel network and can also be processed into capsules and particles using the microfluidic device. This work could have promising applications in acoustic metamaterials, personal care products, pharmaceuticals

  19. Enhanced reductive dechlorination in columns treated with edible oil emulsion

    NASA Astrophysics Data System (ADS)

    Long, Cameron M.; Borden, Robert C.

    2006-09-01

    The effect of edible oil emulsion treatment on enhanced reductive dechlorination was evaluated in a 14 month laboratory column study. Experimental treatments included: (1) emulsified soybean oil and dilute HCl to inhibit biological activity; (2) emulsified oil only; (3) emulsified oil and anaerobic digester sludge; and (4) continuously feeding soluble substrate. A single application of emulsified oil was effective in generating strongly reducing, anaerobic conditions for over 14 months. PCE was rapidly reduced to cis-DCE in all three live columns. Bioaugmentation with a halorespiring enrichment culture resulted in complete dechlorination of PCE to ethene in the soluble substrate column (yeast extract and lactate). However, an additional treatment with a pulse of yeast extract and bioaugmentation culture was required to stimulate complete dechlorination in the emulsion treated columns. Once the dechlorinating population was established, the emulsion only column degraded PCE from 90-120 μM to below detection with concurrent ethene production in a 33 day contact time. The lower biodegradation rates in the emulsion treated columns compared to the soluble substrate column suggest that emulsified oil barriers may require a somewhat longer contact time for effective treatment. In the HCl inhibited column, partitioning of PCE to the retained oil substantially delayed PCE breakthrough. However, reduction of PCE to more soluble degradation products ( cis-DCE, VC and ethene) greatly reduced the impact of oil-water partitioning in live columns. There was only a small decline in the hydraulic conductivity ( K) of column #1 (low pH + emulsion, Kfinal/ Kinitial = 0.57) and column #2 (live + emulsion, Kfinal/ Kinitial = 0.73) indicating emulsion injection did not result in appreciable clogging of the clayey sand. However, K loss was greater in column #3 (sludge +emulsion, Kfinal/ Kinitial = 0.12) and column #4 (soluble substrate, Kfinal/ Kinitial = 0.03) indicating clogging due

  20. Nano-emulsions as vehicles for topical delivery of forskolin.

    PubMed

    Miastkowska, Małgorzata; Sikora, Elżbieta; Lasoń, Elwira; Garcia-Celma, Maria Jose; Escribano-Ferrer, Elvira; Solans, Conxita; Llinas, Meritxell

    2017-01-01

    Two O/W forskolin-loaded nano-emulsions (0.075% wt.) based on medium chain triglycerides (MCT) and stabilized by a nonionic surfactant (Polysorbate 80 or Polysorbate 40) were studied as forskolin delivery systems. The nano-emulsions were prepared by the PIC method. The mean droplet size of the nano-emulsions with Polysorbate 80 and Polysorbate 40 with oil/surfactant (O/S) ratios of 20/80 and 80% water concentration, measured by Dynamic Light Scattering (DLS), was of 118 nm and 111 nm, respectively. Stability of the formulations, as assessed by light backscattering for 24 h, showed that both nano-emulsions were stable at 25°C. Studies of forskolin in vitro skin permeation from the nano-emulsions and from a triglyceride solution were carried out at 32°C, using Franz-type diffusion cells. A mixture of PBS/ethanol (60/40 v/v) was used as a receptor solution. The highest flux and permeability coefficient was obtained for the system stabilized with Polysorbate 80 (6.91±0.75 µg · cm -2 ·h -1 and 9.21 · 10 -3 ±1.00 · 10 -3 cm · h -1 , respectively) but no significant differences were observed with the flux and permeability coefficient value of forskolin dissolved in oil. The obtained results showed that the nano-emulsions developed in this study could be used as effective carriers for topical administration of forskolin.

  1. Multiscale and Multifunctional Emulsions by Host–Guest Interaction-Mediated Self-Assembly

    PubMed Central

    2018-01-01

    Emulsions are widely used in numerous fields. Therefore, there has been increasing interest in the development of new emulsification strategies toward emulsions with advanced functions. Herein we report the formation of diverse emulsions by host–guest interaction-mediated interfacial self-assembly under mild conditions. In this strategy, a hydrophilic diblock copolymer with one block containing β-cyclodextrin (β-CD) can assemble at the oil/water interface when its aqueous solution is mixed with an oil phase of benzyl alcohol (BA), by host–guest interactions between β-CD and BA. This results in significantly reduced interfacial tension and the formation of switchable emulsions with easily tunable droplet sizes. Furthermore, nanoemulsions with excellent stability are successfully prepared simply via vortexing. The self-assembled oil-in-water emulsions also show catastrophic phase inversion, which can generate stable bicontinuous phase and water-in-oil emulsions, thereby further extending phase structures that can be realized by this host–guest self-assembly approach. Moreover, the host–guest nanoemulsions are able to engineer different nanoparticles and microstructures as well as solubilize a diverse array of hydrophobic drugs and dramatically enhance their oral bioavailability. The host–guest self-assembly emulsification is facile, energetically friendly, and fully translatable to industry, therefore representing a conceptually creative approach toward advanced emulsions. PMID:29806006

  2. Sustained delivery of salbutamol and beclometasone from spray-dried double emulsions.

    PubMed

    Learoyd, Tristan P; Burrows, Jane L; French, Eddie; Seville, Peter C

    2010-01-01

    The sustained delivery of multiple agents to the lung offers potential benefits to patients. This study explores the preparation of highly respirable dual-loaded spray-dried double emulsions. Spray-dried powders were produced from water-in-oil-in-water (w/o/w) double emulsions, containing salbutamol sulphate and/or beclometasone dipropionate in varying phases. The double emulsions contained the drug release modifier polylactide co-glycolide (PLGA 50 : 50) in the intermediate organic phase of the original micro-emulsion and low molecular weight chitosan (Mw<190 kDa: emulsion stabilizer) and leucine (aerosolization enhancer) in the tertiary aqueous phase. Following spray-drying resultant powders were physically characterized: with in vitro aerosolization performance and drug release investigated using a Multi-Stage Liquid Impinger and modified USP II dissolution apparatus, respectively. Powders generated were of a respirable size exhibiting emitted doses of over 95% and fine particle fractions of up to 60% of the total loaded dose. Sustained drug release profiles were observed during dissolution for powders containing agents in the primary aqueous and secondary organic phases of the original micro-emulsion; the burst release of agents was witnessed from the tertiary aqueous phase. The novel spray-dried emulsions from this study would be expected to deposit and display sustained release character in the lung.

  3. Characterization of starch Pickering emulsions for potential applications in topical formulations.

    PubMed

    Marku, Diana; Wahlgren, Marie; Rayner, Marilyn; Sjöö, Malin; Timgren, Anna

    2012-05-30

    The aim of this work has been to characterize starch based Pickering emulsions as a first step to evaluate their possible use as vehicles for topical drug delivery. A minor phase study of emulsions with high oil content has been performed. Emulsion stability against coalescence over eight weeks and after mild centrifugation treatment has been studied. The particle size, rheological properties and in vitro skin penetration of emulsions containing three different oils (Miglyol, paraffin and sheanut oil) was investigated. It was shown that it is possible to produce oil in water starched stabilised Pickering emulsions with oil content as high as 56%. Furthermore, this emulsions show good stability during storage over eight weeks and towards mild centrifugation. The particle size of the systems are only dependent on the ratio between oil and starch and for liquid oils the type of oil do not affect the particle size. The type of oil also affects the cosmetic and rheological properties of the creams but did not affect the transdermal diffusion in in vitro tests. However, it seems as if the Pickering emulsions affected the transport over the skin, as the flux was twice that of what has been previously reported for solutions. Copyright © 2012 Elsevier B.V. All rights reserved.

  4. Multiwalled Carbon Nanotubes at the Interface of Pickering Emulsions.

    PubMed

    Briggs, Nicholas M; Weston, Javen S; Li, Brian; Venkataramani, Deepika; Aichele, Clint P; Harwell, Jeffrey H; Crossley, Steven P

    2015-12-08

    Carbon nanotubes exhibit very unique properties in biphasic systems. Their interparticle attraction leads to reduced droplet coalescence rates and corresponding improvements in emulsion stability. Here we use covalent and noncovalent techniques to modify the hydrophilicity of multiwalled carbon nanotubes (MWCNTs) and study their resulting behavior at an oil-water interface. By using both paraffin wax/water and dodecane/water systems, the thickness of the layer of MWNTs at the interface and resulting emulsion stability are shown to vary significantly with the approach used to modify the MWNTs. Increased hydrophilicity of the MWNTs shifts the emulsions from water-in-oil to oil-in-water. The stability of the emulsion is found to correlate with the thickness of nanotubes populating the oil-water interface and relative strength of the carbon nanotube network. The addition of a surfactant decreases the thickness of nanotubes at the interface and enhances the overall interfacial area stabilized at the expense of increased droplet coalescence rates. To the best of our knowledge, this is the first time the interfacial thickness of modified carbon nanotubes has been quantified and correlated to emulsion stability.

  5. Development of neutron measurement in high gamma field using new nuclear emulsion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kawarabayashi, J.; Ishihara, K.; Takagi, K.

    2011-07-01

    To precisely measure the neutron emissions from a spent fuel assembly of a fast breeder reactor, we formed nuclear emulsions based on a non-sensitized Oscillation Project with Emulsion tracking Apparatus (OPERA) film with AgBr grain sizes of 60, 90, and 160 nm. The efficiency for {sup 252}Cf neutron detection of the new emulsion was calculated to be 0.7 x 10{sup -4}, which corresponded to an energy range from 0.3 to 2 MeV and was consistent with a preliminary estimate based on experimental results. The sensitivity of the new emulsion was also experimentally estimated by irradiating with 565 keV and 14more » MeV neutrons. The emulsion with an AgBr grain size of 60 nm had the lowest sensitivity among the above three emulsions but was still sensitive enough to detect protons. Furthermore, the experimental data suggested that there was a threshold linear energy transfer of 15 keV/{mu}m for the new emulsion, below which no silver clusters developed. Further development of nuclear emulsion with an AgBr grain size of a few tens of nanometers will be the next stage of the present study. (authors)« less

  6. Oxidation Stability of O/W Emulsion Prepared with Linolenic Acid Enriched Diacylglycerol.

    PubMed

    Shin, Jung-Ah; Lee, Mi-Young; Lee, Ki-Teak

    2016-10-01

    The sn-1,3-regiospecific Rhizomucor miehei lipase (Lipozyme RM IM) was employed to produce structured diacylglycerol (SL-DAG), which contained 67.3 mol% DAG with 27.2 area% of C18:3. To investigate the oxidative stability of the SL-DAG in emulsion form, 5% oil-in-water (O/W) emulsions were prepared with 200 and 400 ppm sinapic acid. It was shown that the hydroperoxide values of the control (without any antioxidant) was the highest (117.7 meq/L) on day 43 of storage and thereafter the value decreased. However, the emulsions with 200 and 400 ppm sinapic acid resulted in slow oxidation degree until day 64 of storage (30.3 and 7.3 meq/L, respectively). Aldehyde measurements for the 200 ppm sinapic acid emulsion (12.8 mmol/mol) and the 400 ppm sinapic acid emulsion (7.5 mmol/mol) also showed better oxidative stability than that for the 200 ppm catechin emulsion (27.4 mmol/mol) and the control (52.7 mmol/mol). Although the SL-DAG in the emulsions contains high levels of polyunsaturated fatty acids, the degree of oxidation in the emulsions can be reduced when sinapic acid is used as an antioxidant. © 2016 Institute of Food Technologists®.

  7. Endocytosis of Corn Oil-Caseinate Emulsions In Vitro: Impacts of Droplet Sizes

    PubMed Central

    Fan, Yuting; Yokoyama, Wally; Yi, Jiang

    2017-01-01

    The relative uptake and mechanisms of lipid-based emulsions of three different particle diameters by Caco-2 cells were studied. The corn oil-sodium caseinate emulsions showed little or no cytotoxicity even at 2 mg/mL protein concentration for any of the three droplet size emulsions. Confocal laser scanning microscopy (CLSM) of Nile red containing emulsions showed that the lipid-based emulsions were absorbed by Caco-2 cells. A negative correlation between the mean droplet size and cellular uptake was observed. There was a time-dependent and energy-dependent uptake as shown by incubation at different times and treatment with sodium azide a general inhibitor of active transport. The endocytosis of lipid-based emulsions was size-dependent. The internalization of nanoemulsion droplets into Caco-2 cells mainly occurred through clathrin- and caveolae/lipid raft-related pathways, while macropinocytosis route played the most important role for 556 nm emulsion endocytosis as shown by the use of specific pathway inhibitors. Permeability of the emulsion through the apical or basal routes also suggested that active transport may be the main route for lipid-based nanoemulsions. The results may assist in the design and application of lipid-based nanoemulsions in nutraceuticals and pharmaceuticals delivery. PMID:29072633

  8. Transitional phase inversion of emulsions monitored by in situ near-infrared spectroscopy.

    PubMed

    Charin, R M; Nele, M; Tavares, F W

    2013-05-21

    Water-heptane/toluene model emulsions were prepared to study emulsion transitional phase inversion by in situ near-infrared spectroscopy (NIR). The first emulsion contained a small amount of ionic surfactant (0.27 wt % of sodium dodecyl sulfate) and n-pentanol as a cosurfactant. In this emulsion, the study was guided by an inversion coordinate route based on a phase behavior study previously performed. The morphology changes were induced by rising aqueous phase salinity in a "steady-state" inversion protocol. The second emulsion contained a nonionic surfactant (ethoxylated nonylphenol) at a concentration of 3 wt %. A continuous temperature change induced two distinct transitional phase inversions: one occurred during the heating of the system and another during the cooling. NIR spectroscopy was able to detect phase inversion in these emulsions due to differences between light scattered/absorbed by water in oil (W/O) and oil in water (O/W) morphologies. It was observed that the two model emulsions exhibit different inversion mechanisms closely related to different quantities of the middle phases formed during the three-phase behavior of Winsor type III.

  9. Bacteria interface pickering emulsions stabilized by self-assembled bacteria-chitosan network.

    PubMed

    Wongkongkatep, Pravit; Manopwisedjaroen, Khajohnpong; Tiposoth, Perapon; Archakunakorn, Somwit; Pongtharangkul, Thunyarat; Suphantharika, Manop; Honda, Kohsuke; Hamachi, Itaru; Wongkongkatep, Jirarut

    2012-04-03

    An oil-in-water Pickering emulsion stabilized by biobased material based on a bacteria-chitosan network (BCN) was developed for the first time in this study. The formation of self-assembled BCN was possible due to the electrostatic interaction between negatively charged bacterial cells and polycationic chitosan. The BCN was proven to stabilize the tetradecane/water interface, promoting formation of highly stable oil-in-water emulsion (o/w emulsion). We characterized and visualized the BCN stabilized o/w emulsions by scanning electron microscopy (SEM) and laser scanning confocal microscopy (LSCM). Due to the sustainability and low environmental impact of chitosan, the BCN-based emulsions open up opportunities for the development of an environmental friendly new interface material as well as the novel type of microreactor utilizing bacterial cells network.

  10. An Overview of Pickering Emulsions: Solid-Particle Materials, Classification, Morphology, and Applications

    PubMed Central

    Yang, Yunqi; Fang, Zhiwei; Chen, Xuan; Zhang, Weiwang; Xie, Yangmei; Chen, Yinghui; Liu, Zhenguo; Yuan, Weien

    2017-01-01

    Pickering emulsion, a kind of emulsion stabilized only by solid particles locating at oil–water interface, has been discovered a century ago, while being extensively studied in recent decades. Substituting solid particles for traditional surfactants, Pickering emulsions are more stable against coalescence and can obtain many useful properties. Besides, they are more biocompatible when solid particles employed are relatively safe in vivo. Pickering emulsions can be applied in a wide range of fields, such as biomedicine, food, fine chemical synthesis, cosmetics, and so on, by properly tuning types and properties of solid emulsifiers. In this article, we give an overview of Pickering emulsions, focusing on some kinds of solid particles commonly serving as emulsifiers, three main types of products from Pickering emulsions, morphology of solid particles and as-prepared materials, as well as applications in different fields. PMID:28588490

  11. The development of a super-fine-grained nuclear emulsion

    NASA Astrophysics Data System (ADS)

    Asada, Takashi; Naka, Tatsuhiro; Kuwabara, Ken-ichi; Yoshimoto, Masahiro

    2017-06-01

    A nuclear emulsion with micronized crystals is required for the tracking detection of submicron ionizing particles, which are one of the targets of dark-matter detection and other techniques. We found that a new production method, called the PVA—gelatin mixing method (PGMM), could effectively control crystal size from 20 nm to 50 nm. We called the two types of emulsion produced with the new method the nano imaging tracker and the ultra-nano imaging tracker. Their composition and spatial resolution were measured, and the results indicate that these emulsions detect extremely short tracks.

  12. Note: Small anaerobic chamber for optical spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chauvet, Adrien A. P., E-mail: adrien.chauvet@gmail.com; Chergui, Majed; Agarwal, Rachna

    2015-10-15

    The study of oxygen-sensitive biological samples requires an effective control of the atmosphere in which they are housed. In this aim however, no commercial anaerobic chamber is adequate to solely enclose the sample and small enough to fit in a compact spectroscopic system with which analysis can be performed. Furthermore, spectroscopic analysis requires the probe beam to pass through the whole chamber, introducing a requirement for adequate windows. In response to these challenges, we present a 1 l anaerobic chamber that is suitable for broad-band spectroscopic analysis. This chamber has the advantage of (1) providing access, via a septum, tomore » the sample and (2) allows the sample position to be adjusted while keeping the chamber fixed and hermetic during the experiment.« less

  13. New insights about flocculation process in sodium caseinate-stabilized emulsions.

    PubMed

    Huck-Iriart, Cristián; Montes-de-Oca-Ávalos, Juan; Herrera, María Lidia; Candal, Roberto Jorge; Pinto-de-Oliveira, Cristiano Luis; Linares-Torriani, Iris

    2016-11-01

    Flocculation process was studied in emulsions formulated with 10wt.% sunflower oil, 2, 5 or 7.5wt.% NaCas, and with or without addition of sucrose (0, 5, 10, 15, 20 or 30wt.%). Two different processing conditions were used to prepare emulsions: ultraturrax homogenization or further homogenization by ultrasound. Emulsions with droplets with diameters above (coarse) or below (fine) 1μm were obtained. Emulsions were analyzed for droplet size distribution by static light scattering (SLS), stability by Turbiscan, and structure by confocal laser scanning microscopy (CLSM) and small angle X-ray scattering (SAXS). SAXS data were fitted by a theoretical model that considered a system composed of poly dispersed spheres with repulsive interaction and presence of aggregates. Flocculation behavior was caused by the self-assembly properties of NaCas, but the process was more closely related to interfacial protein content than micelles concentration in the aqueous phase. The results indicated that casein aggregation was strongly affected by disaccharide addition, hydrophobic interaction of the emulsion droplets, and interactions among interfacial protein molecules. The structural changes detected in the protein micelles in different environments allowed understanding the macroscopic physical behavior observed in concentrated NaCas emulsions. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Synthesis of mesoporous poly(melamine-formaldehyde) particles by inverse emulsion polymerization.

    PubMed

    Schwarz, Dana; Weber, Jens

    2017-07-15

    Mesoporous poly(melamine-formaldehyde) (MF) particles with surface areas of up to 200m 2 g -1 were synthesized by an inverse emulsion polymerization using dodecane and Span80® as continuous phase. The finer details of the shape control (using emulsion techniques) and the porosity control (using silica nanoparticles as hard-template) are discussed. The impact of phase-separation processes on the observable porosity of the 20-200µm sized spherical particles is analysed by gas sorption methods and electron microscopy. The high density of amine and triazine functional groups in the porous MF particles make the material a promising adsorber for heavy metal ions and methylene blue. In a preliminary column experiment, the synthesized material exhibited a total capacity of 2.54mmol/g (≙ 812.4mg/g) for the adsorption of methylene blue. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Critical frequency for coalescence of emulsions in an AC electric field

    NASA Astrophysics Data System (ADS)

    Liu, Zhou; Ali, Faizi Hammad; Shum, Ho Cheung

    2017-11-01

    Applying an electric field to trigger the coalescence of emulsions has been applied in various applications which include crude oil recovery, emulsion stability characterization as well as pico-injection and droplet-based chemical reaction in microfluidics. In this work, we systematically investigated the responses of surfactant-stabilized emulsions to a controlled AC electric field using a customer-built chip. At a given amplitude of the AC voltage, we found a critical frequency beyond which the emulsions remain stable. When the frequency is decreased to below the critical value, emulsions coalesce immediately. Such critical frequency is found to be dependent of amplitude of the AC voltage, viscosity of the fluids, concentration and type of the surfactant as well as the electric conductivity of the droplet phase. Using a model based on the drainage of thin film, we have explored the mechanism behind and interpret this phenomenon systematically. Our work extends the understanding of the electro-coalescence of emulsions and can be beneficial for any applications involve the coalescence of droplets in an AC electric field.

  16. Dairy-Based Emulsions: Viscosity Affects Fat Difference Thresholds and Sweetness Perception.

    PubMed

    Zahn, Susann; Hoppert, Karin; Ullrich, Franziska; Rohm, Harald

    2013-11-27

    In complex emulsions, viscosity or viscosity-associated sensory attributes such as creaminess are important for quality assessment and product differentiation. Two sets of emulsions with fat or locust bean gum content being varied at seven levels were developed; the two emulsions at each level had similar apparent viscosity. Additionally, sugar concentration was kept constant either with respect to total emulsion, or with respect to the aqueous phase. Series of two-alternative forced choice tests were performed with one constant stimulus, and just noticeable differences were calculated using probability regression. The results show that, when viscosity was not compensated, it was easy for the subjects to (a) distinguish emulsions with different fat content when the fat content was addressed in the question, and to (b) distinguish emulsions with different fat or locust bean gum content when creaminess was addressed. For the latter descriptor, it is of minor importance whether viscosity is altered by fat content or a thickener. Weber fractions that were calculated for viscosity were approximately 0.20. The quantitative effects of viscosity on sweetness, however, depend on how product rheology was modified.

  17. Measurement of the Hadronic Charm Production Cross-Section in a High Resolution Streamer Chamber Experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tzeng, Liang

    1984-05-01

    Hadronic production of charmed particles in association with muons from semileptonic decay or. these short lived particles has been observed in a high resolution streamer cham her experiment performed at Fermi National Accelerator Laboratory in 1982. The incident beam was a collimated high energy neutron beam with an average energy or 280 Gev. The streamer cham her was triggered on the detection or the prom pt muon from the charm decay. Two toroids were installed at the downstream end or the muon spectrometer for analyzing the muon momentum. In the operation of the streamer chamber, we achieved a streamer size or 50 μm and a run track width or 120 μm in space. The streamer chamber optical system had a demagnification factor of about 1.5 from space to film. The minimum separation between two measurable tracks was about 150 μm on the film. With a special miss-distance analysis or the streamer chamber pictures. 17.32 ± 4.73 charm signal events were obtained. Using the assumption ofmore » $$A^{2/3}$$ dependenre for the production cross section and several different $$D-\\bar{D}$$ production models, the nucleonnucleon charm production cross section, averaged over the neutron spectrum, is estimated to be between 13 to 20 μb (with the average value equal to 17.69 ± 6.80 μb).« less

  18. 40 CFR 428.20 - Applicability; description of the emulsion crumb rubber subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... emulsion crumb rubber subcategory. 428.20 Section 428.20 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS RUBBER MANUFACTURING POINT SOURCE CATEGORY Emulsion Crumb Rubber Subcategory § 428.20 Applicability; description of the emulsion crumb rubber subcategory...

  19. 40 CFR 428.20 - Applicability; description of the emulsion crumb rubber subcategory.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... emulsion crumb rubber subcategory. 428.20 Section 428.20 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS RUBBER MANUFACTURING POINT SOURCE CATEGORY Emulsion Crumb Rubber Subcategory § 428.20 Applicability; description of the emulsion crumb rubber subcategory...

  20. Initial Back-to-Back Fission Chamber Testing in ATRC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Benjamin Chase; Troy Unruh; Joy Rempe

    2014-06-01

    Development and testing of in-pile, real-time neutron sensors for use in Materials Test Reactor experiments is an ongoing project at Idaho National Laboratory. The Advanced Test Reactor National Scientific User Facility has sponsored a series of projects to evaluate neutron detector options in the Advanced Test Reactor Critical Facility (ATRC). Special hardware was designed and fabricated to enable testing of the detectors in the ATRC. Initial testing of Self-Powered Neutron Detectors and miniature fission chambers produced promising results. Follow-on testing required more experiment hardware to be developed. The follow-on testing used a Back-to-Back fission chamber with the intent to providemore » calibration data, and a means of measuring spectral indices. As indicated within this document, this is the first time in decades that BTB fission chambers have been used in INL facilities. Results from these fission chamber measurements provide a baseline reference for future measurements with Back-to-Back fission chambers.« less

  1. 40 CFR 467.20 - Applicability; description of the rolling with emulsions subcategory.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... rolling with emulsions subcategory. 467.20 Section 467.20 Protection of Environment ENVIRONMENTAL... CATEGORY Rolling With Emulsions Subcategory § 467.20 Applicability; description of the rolling with emulsions subcategory. This subpart applies to dischargers of pollutants to waters of the United States and...

  2. 40 CFR 467.20 - Applicability; description of the rolling with emulsions subcategory.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... rolling with emulsions subcategory. 467.20 Section 467.20 Protection of Environment ENVIRONMENTAL... CATEGORY Rolling With Emulsions Subcategory § 467.20 Applicability; description of the rolling with emulsions subcategory. This subpart applies to dischargers of pollutants to waters of the United States and...

  3. 40 CFR 467.20 - Applicability; description of the rolling with emulsions subcategory.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... rolling with emulsions subcategory. 467.20 Section 467.20 Protection of Environment ENVIRONMENTAL... CATEGORY Rolling With Emulsions Subcategory § 467.20 Applicability; description of the rolling with emulsions subcategory. This subpart applies to dischargers of pollutants to waters of the United States and...

  4. Evaluation of percutaneous permeation of repellent DEET and sunscreen oxybenzone from emulsion-based formulations in artificial membrane and human skin.

    PubMed

    Wang, Tao; Miller, Donald; Burczynski, Frank; Gu, Xiaochen

    2014-02-01

    Insect repellent DEET and sunscreen ingredient oxybenzone play an essential role in minimizing vector-borne diseases and skin cancers. The purpose of this study was to investigate the effects of emulsion type, addition of thickening agent and droplet size in three emulsion-based lotions on percutaneous permeation of DEET and oxybenzone using in vitro diffusion experiments, in order to minimize overall systemic permeation of the substances. Formulation C (water-in-oil emulsion) significantly increased overall permeation of DEET through human skin (56%) compared to Formulation A (oil-in-water emulsion). Formulation B (oil-in-water emulsion with thickening agent xanthan gum) significantly decreased the size of oil droplet containing DEET (16%), but no effect on oil droplets containing oxybenzone. Adding xanthan gum also increased overall permeation of DEET and oxybenzone (21% and 150%) when compared to Formulation A; presence of both ingredients in Formulation B further increased their permeation (36% and 23%) in comparison to its single counterparts. Overall permeation of oxybenzone through LDPE was significantly higher by 26%-628% than that through human skin; overall permeation of DEET through human skin was significantly higher by 64%-338% than that through LDPE.

  5. Evaluation of percutaneous permeation of repellent DEET and sunscreen oxybenzone from emulsion-based formulations in artificial membrane and human skin

    PubMed Central

    Wang, Tao; Miller, Donald; Burczynski, Frank; Gu, Xiaochen

    2014-01-01

    Insect repellent DEET and sunscreen ingredient oxybenzone play an essential role in minimizing vector-borne diseases and skin cancers. The purpose of this study was to investigate the effects of emulsion type, addition of thickening agent and droplet size in three emulsion-based lotions on percutaneous permeation of DEET and oxybenzone using in vitro diffusion experiments, in order to minimize overall systemic permeation of the substances. Formulation C (water-in-oil emulsion) significantly increased overall permeation of DEET through human skin (56%) compared to Formulation A (oil-in-water emulsion). Formulation B (oil-in-water emulsion with thickening agent xanthan gum) significantly decreased the size of oil droplet containing DEET (16%), but no effect on oil droplets containing oxybenzone. Adding xanthan gum also increased overall permeation of DEET and oxybenzone (21% and 150%) when compared to Formulation A; presence of both ingredients in Formulation B further increased their permeation (36% and 23%) in comparison to its single counterparts. Overall permeation of oxybenzone through LDPE was significantly higher by 26%–628% than that through human skin; overall permeation of DEET through human skin was significantly higher by 64%–338% than that through LDPE. PMID:26579363

  6. Interfacial bioconjugation on emulsion droplet for biosensors.

    PubMed

    Zhang, Qifan; Scigliano, Anita; Biver, Tarita; Pucci, Andrea; Swager, Timothy M

    2018-04-13

    Interfacial bioconjugation methods are developed for intact liquid emulsion droplets. Complex emulsion droplets having internal hydrocarbon and fluorocarbon immiscible structured phases maintain a dynamic interface for controlled interfacial reactivity. The internal morphological change after binding to biomolecules is readily visualized and detected by light transmission, which provides a platform for the formation of inexpensive and portable bio-sensing assays for enzymes, antibodies, nucleic acids and carbohydrates. Copyright © 2018. Published by Elsevier Ltd.

  7. Reduced Fat Food Emulsions: Physicochemical, Sensory, and Biological Aspects.

    PubMed

    Chung, Cheryl; Smith, Gordon; Degner, Brian; McClements, David Julian

    2016-01-01

    Fat plays multiple important roles in imparting desirable sensory attributes to emulsion-based food products, such as sauces, dressings, soups, beverages, and desserts. However, there is concern that over consumption of fats leads to increased incidences of chronic diseases, such as obesity, coronary heart disease, and diabetes. Consequently, there is a need to develop reduced fat products with desirable sensory profiles that match those of their full-fat counterparts. The successful design of high quality reduced-fat products requires an understanding of the many roles that fat plays in determining the sensory attributes of food emulsions, and of appropriate strategies to replace some or all of these attributes. This paper reviews our current understanding of the influence of fat on the physicochemical and physiological attributes of food emulsions, and highlights some of the main approaches that can be used to create high quality emulsion-based food products with reduced fat contents.

  8. Characterization and testing of a new environmental chamber

    NASA Astrophysics Data System (ADS)

    Leskinen, A.; Yli-Pirilä, P.; Kuuspalo, K.; Sippula, O.; Jalava, P.; Hirvonen, M.-R.; Jokiniemi, J.; Virtanen, A.; Komppula, M.; Lehtinen, K. E. J.

    2015-06-01

    A 29 m3 Teflon chamber, designed for studies on the aging of combustion aerosols, at the University of Eastern Finland is described and characterized. The chamber is part of a research facility, called Ilmari, where small-scale combustion devices, a dynamometer for vehicle exhaust studies, dilution systems, the chamber, and cell and animal exposure devices are located side by side under the same roof. The small surface-to-volume ratio of the chamber enables reasonably long experiment times, with particle wall loss rate constants of 0.088, 0.080, 0.045, and 0.040 h-1 for polydisperse, 50, 100, and 200 nm monodisperse aerosols, respectively. The NO2 photolysis rate can be adjusted from 0 to 0.62 min-1. The irradiance spectrum is centered at either 350 or 365 nm, and the maximum irradiance, produced by up to 160 blacklight lamps, is 29.7 W m-2, which corresponds to the ultraviolet (UV) irradiance in Central Finland at noon on a sunny day in the midsummer. The temperature inside the chamber is uniform and can be kept at 25±1 °C. The chamber is kept in an overpressure with a moving top frame, which reduces sample dilution and entrance of contamination during an experiment. The functionality of the chamber was tested with oxidation experiments of toluene, resulting in secondary organic aerosol (SOA) yields of 12-42%, depending on the initial conditions, such as NOx concentration and UV irradiation. The highest gaseous oxidation product yields of 12.4-19.5% and 5.8-19.5% were detected with ions corresponding to methyl glyoxal (m/z 73.029) and 4-oxo-2-pentenal (m/z 99.044), respectively. Overall, reasonable yields of SOA and gaseous reaction products, comparable to those obtained in other laboratories, were obtained.

  9. Development of double emulsion nanoparticles for the encapsulation of bovine serum albumin.

    PubMed

    Martinez, Nelida Y; Andrade, Patricia F; Durán, Nelson; Cavalitto, Sebastian

    2017-10-01

    In the present work, a double emulsion was developed for the encapsulation of Bovine Serum Albumin (BSA) as a model protein for the future encapsulation of viral proteins. The first emulsion polydispersity index (PDI) was studied with increasing concentrations of poly (ε-caprolactone) (PCL) as stabilizer (from 16% w/v to 5% w/v) and polyvinyl alcohol (PVA) as the surfactant in the second emulsion at 1.5% w/v. Results suggest that at decreasing concentrations of PCL the PDI of the emulsion also decrease, indicating that viscosity of the emulsion is crucial in the homogeneity of the resultant size distribution of the nanoparticles. When PVA concentration in the second emulsion was increased from 1.5% w/v to 2.5% w/v the PDI also increased. To study the relationship between the structure of the surfactant in the second emulsion and the resultant BSA encapsulation, emulsions were prepared with Pluronic F68 and PVA both at 1.5% w/v and PCL in the first emulsion at 5% w/v. Results indicated that Pluronic F68 was a better stabilizer because at the same experimental conditions encapsulation of BSA was 1.5 higher than PVA. FTIR studies confirmed the presence of BSA in the nanoparticles. SEM and TEM microscopies showed a size distribution of 300nm-500nm size of nanoparticles. Circular dichroism studies demonstrated that the secondary structure of the protein was conserved after the encapsulation into the nanoparticles. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. The Outdoor Atmospheric Simulation Chamber of Orleans-France (HELIOS)

    NASA Astrophysics Data System (ADS)

    Mellouki, A.; Véronique, D.; Grosselin, B.; Peyroux, F.; Benoit, R.; Ren, Y.; Idir, M.

    2016-12-01

    Atmospheric simulation chambers are among the most advanced tools for investigating the atmospheric processes to derive physico-chemical parameters which are required for air quality and climate models. Recently, the ICARE-CNRS at Orléans (France) has set up a new large outdoor simulation chamber, HELIOS. HELIOS is one of the most advanced simulation chambers in Europe. It is one of the largest outdoor chambers and is especially suited to processes studies performed under realistic atmospheric conditions. HELIOS is a large hemispherical outdoor simulation chamber (volume of 90 m3) positioned on the top of ICARE-CNRS building at Orléans (47°50'18.39N; 1°56'40.03E). The chamber is made of FEP film ensuring more than 90 % solar light transmission. The chamber is protected against severe meteorological conditions by a moveable "box" which contains a series of Xenon lamps enabling to conduct experiments using artificial light. This special design makes HELIOS a unique platform where experiments can be made using both types of irradiations. HELIOS is dedicated mainly to the investigation of the chemical processes under different conditions (sunlight, artificial light and dark). The platform allows conducting the same type of experiments under both natural and artificial light irradiation. The available large range of complementary and highly sensitive instruments allows investigating the radical chemistry, gas phase processes and aerosol formation under realistic conditions. The characteristics of HELIOS will be presented as well as the first series of experimental results obtained so far.

  11. Oil-in-water emulsions stabilised by cellulose ethers: stability, structure and in vitro digestion.

    PubMed

    Borreani, Jennifer; Espert, María; Salvador, Ana; Sanz, Teresa; Quiles, Amparo; Hernando, Isabel

    2017-04-19

    The effect of cellulose ethers in oil-in-water emulsions on stability during storage and on texture, microstructure and lipid digestibility during in vitro gastrointestinal digestion was investigated. All the cellulose ether emulsions showed good physical and oxidative stability during storage. In particular, the methylcellulose with high methoxyl substituents (HMC) made it possible to obtain emulsions with high consistency which remained almost unchanged during gastric digestion, and thus could enhance fullness and satiety perceptions at gastric level. Moreover, the HMC emulsion slowed down lipid digestion to a greater extent than a conventional protein emulsion or the emulsions stabilised by the other cellulose ethers. Therefore, HMC emulsions could be used in weight management to increase satiation capacity and decrease lipid digestion.

  12. Hyperbaric and hypobaric chamber fires: a 73-year analysis.

    PubMed

    Sheffield, P J; Desautels, D A

    1997-09-01

    Fire can be catastrophic in the confined space of a hyperbaric chamber. From 1923 to 1996, 77 human fatalities occurred in 35 hyperbaric chamber fires, three human fatalities in a pressurized Apollo Command Module, and two human fatalities in three hypobaric chamber fires reported in Asia, Europe, and North America. Two fires occurred in diving bells, eight occurred in recompression (or decompression) chambers, and 25 occurred in clinical hyperbaric chambers. No fire fatalities were reported in the clinical hyperbaric chambers of North America. Chamber fires before 1980 were principally caused by electrical ignition. Since 1980, chamber fires have been primarily caused by prohibited sources of ignition that an occupant carried inside the chamber. Each fatal chamber fire has occurred in an enriched oxygen atmosphere (> 28% oxygen) and in the presence of abundant burnable material. Chambers pressurized with air (< 23.5% oxygen) had the only survivors. Information in this report was obtained from the literature and from the Undersea and Hyperbaric Medical Society's Chamber Experience and Mishap Database. This epidemiologic review focuses on information learned from critical analyses of chamber fires and how it can be applied to safe operation of hypobaric and hyperbaric chambers.

  13. Emulsion of Chloramphenicol: an Overwhelming Approach for Ocular Delivery.

    PubMed

    Ashara, Kalpesh C; Shah, Ketan V

    2017-03-01

    Ophthalmic formulations of chloramphenicol have poor bioavailability of chloramphenicol in the ocular cavity. The present study aimed at exploring the impact of different oil mixtures in the form of emulsion on the permeability of chloramphenicol after ocular application. Selection of oil mixture and ratio of the components was made by an equilibrium solubility method. An emulsifier was chosen according to its emulsification properties. A constrained simplex centroid design was used for the assessment of the emulsion development. Emulsions were evaluated for physicochemical properties; zone of inhibition, in-vitro diffusion and ex-vivo local accumulation of chloramphenicol. Validation of the design using check-point batch and reduced polynomial equations were also developed. Optimization of the emulsion was developed by software Design® expert 6.0.8. Assessment of the osmolarity, ocular irritation, sterility testing and isotonicity of optimized batch were also made. Parker Neem®, olive and peppermint oils were selected as an oil phase in the ratio 63.64:20.2:16.16. PEG-400 was selected as an emulsifier according to a pseudo-ternary phase diagram. Constrained simplex-centroid design was applied in the range of 25-39% water, 55-69% PEG-400, 5-19% optimized oil mixture, and 1% chloramphenicol. Unpaired Student's t-test showed for in-vitro and ex-vivo studies that there was a significant difference between the optimized batch of emulsion and Chloramphenicol eye caps (a commercial product) according to both were equally safe. The optimized batch of an emulsion of chloramphenicol was found to be as safe as and more effective than Chloramphenicol eye caps.

  14. Engineering of acidic O/W emulsions with pectin.

    PubMed

    Alba, K; Sagis, L M C; Kontogiorgos, V

    2016-09-01

    Pectins with distinct molecular design were isolated by aqueous extraction at pH 2.0 or 6.0 and were examined in terms of their formation and stabilisation capacity of model n-alkane-in-water emulsions at acidic pH (pH 2.0). The properties and stability of the resulting emulsions were examined by means of droplet size distribution analysis, Lifshitz-Slyozov-Wagner modelling, bulk rheology, interfacial composition analysis, large-amplitude oscillatory surface dilatational rheology, electrokinetic analysis and fluorescence microscopy. Both pectin preparations were able to emulsify alkanes in water but exhibited distinct ageing characteristics. Emulsions prepared using pectin isolated at pH 6.0 were remarkably stable with respect to droplet growth after thirty days of ageing, while those prepared with pectin isolated at pH 2.0 destabilised rapidly. Examination of chemical composition of interfacial layers indicated multi-layered adsorption of pectins at the oil-water interface. The higher long-term stability of emulsions prepared with pectin isolated at high pH is attributed to mechanically stronger interfaces, the highly branched nature and the low hydrodynamic volume of the chains that result in effective steric stabilisation whereas acetyl and methyl contents do not contribute to the long-term stability. The present work shows that it is possible by tailoring the fine structure of pectin to engineer emulsions that operate in acidic environments. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. One-dimensional terahertz imaging of surfactant-stabilized dodecane-brine emulsion

    NASA Astrophysics Data System (ADS)

    Nickel, Daniel Vincent

    Terahertz line-images of surfactant-stabilized dodecane(C12H 26)-brine emulsions are obtained by translating the emulsified region through the focus of a terahertz time-domain spectrometer, capturing a time-domain waveform at each vertical position. From these images, relative dodecane content, emulsion size, and stability can be extracted to evaluate the efficacy of the surfactant in solvating the dodecane. In addition, the images provide insight into the dynamics of concentrated emulsions after mixing.

  16. Viscoelasticity of Depletion-Induced Emulsion Gels

    NASA Astrophysics Data System (ADS)

    Meller, Amit; Stavans, Joel; Gisler, Thomas; Weitz, David A.

    1997-03-01

    The presence of non-adsorbing polymer in an oil-in-water emulsion results in a depletion attraction between the emulsion droplets, causing a phase separation into an droplet-rich phase and a polymer-rich phase largely devoid of emulsion droplets. At high enough droplet concentration, however, this phase separation is kinetically arrested to a gel-like state where large (diameter>50 μm) clusters of droplets are weakly connected via ramifications, leading to a measurable elastic modulus. We measure the mean-square displacement <Δ r ^2 (t)> of a droplet of size a inside a cluster using diffusing wave spectroscopy (DWS); by means of a generalized Stokes-Einstein relation we obtain frequency dependent storage and loss moduli G'(ω) and G''(ω), respectively. G'(ω) reaches a plateau at frequencies between 1 rad/s and 100 rad/s; this plateau modulus is found to scale with the hard-sphere energy density k_BT/a^3; within the clusters the droplets are densely packed, yet remain undeformed, the droplet volume fraction being determined by the osmotic pressure exerted by the polymer.

  17. Emulsions Stabilized by Chitosan-Modified Silica Nanoparticles: pH Control of Structure-Property Relations.

    PubMed

    Alison, Lauriane; Demirörs, Ahmet F; Tervoort, Elena; Teleki, Alexandra; Vermant, Jan; Studart, Andre R

    2018-05-29

    In food-grade emulsions, particles with an appropriate surface modification can be used to replace surfactants and potentially enhance the stability of emulsions. During the life cycle of products based on such emulsions, they can be exposed to a broad range of pH conditions and hence it is crucial to understand how pH changes affect stability of emulsions stabilized by particles. Here, we report on a comprehensive study of the stability, microstructure, and macroscopic behavior of pH-controlled oil-in-water emulsions containing silica nanoparticles modified with chitosan, a food-grade polycation. We found that the modified colloidal particles used as stabilizers behave differently depending on the pH, resulting in unique emulsion structures at multiple length scales. Our findings are rationalized in terms of the different emulsion stabilization mechanisms involved, which are determined by the pH-dependent charges and interactions between the colloidal building blocks of the system. At pH 4, the silica particles are partially hydrophobized through chitosan modification, favoring their adsorption at the oil-water interface and the formation of Pickering emulsions. At pH 5.5, the particles become attractive and the emulsion is stabilized by a network of agglomerated particles formed between the droplets. Finally, chitosan aggregates form at pH 9 and these act as the emulsion stabilizers under alkaline conditions. These insights have important implications for the processing and use of particle-stabilized emulsions. On one hand, changes in pH can lead to undesired macroscopic phase separation or coalescence of oil droplets. On the other hand, the pH effect on emulsion behavior can be harnessed in industrial processing, either to tune their flow response by altering the pH between processing stages or to produce pH-responsive emulsions that enhance the functionality of the emulsified end products.

  18. Stability and in vitro digestibility of emulsions containing lecithin and whey proteins.

    PubMed

    Mantovani, Raphaela Araujo; Cavallieri, Ângelo Luiz Fazani; Netto, Flavia Maria; Cunha, Rosiane Lopes

    2013-09-01

    The effect of pH and high-pressure homogenization on the properties of oil-in-water (O/W) emulsions stabilized by lecithin and/or whey proteins (WPI) was evaluated. For this purpose, emulsions were characterized by visual analysis, droplet size distribution, zeta potential, electrophoresis, rheological measurements and their response to in vitro digestion. Lecithin emulsions were stable even after 7 days of storage and WPI emulsions were unstable only at pH values close to the isoelectric point (pI) of proteins. Systems containing the mixture of lecithin and WPI showed high kinetic instability at pH 3, which was attributed to the electrostatic interaction between the emulsifiers oppositely charged at this pH value. At pH 5.5 and 7, the mixture led to reduction of the droplet size with enhanced emulsion stability compared to the systems with WPI or lecithin. The stability of WPI emulsions after the addition of lecithin, especially at pH 5.5, was associated with the increase of droplet surface charge density. The in vitro digestion evaluation showed that WPI emulsion was more stable against gastrointestinal conditions.

  19. Destabilization of Oil-in-Water Emulsions Formed Using Highly Hydrolyzed Whey Proteins.

    PubMed

    Agboola; Singh; Munro; Dalgleish; Singh

    1998-01-19

    Oil-in-water emulsions (4 wt % soy oil) were prepared with 0.5-5 wt % whey protein hydrolysate (WPH) (27% degree of hydrolysis), in a two-stage homogenizer using various first-stage pressures of 10.3, 20.6, and 34.3 MPa and a constant second-stage pressure of 3.4 MPa. Destabilization studies on the emulsions were carried out for up to 24 h, using both laser light scattering and confocal laser microscopy. It was found that emulsions formed with <2% WPH showed oiling off and coalescence at all homogenization pressures. Emulsions formed with 2, 3, and 4% WPH showed coalescence and creaming only, while slight flocculation but no creaming occurred in emulsions formed with 5% WPH. Furthermore, the apparent rate of coalescence increased with homogenization pressure but decreased with WPH concentration. In contrast, the surface concentration of WPH increased with the WPH concentration in the emulsions but decreased with homogenization pressure. Analysis of WPH by high-performance liquid chromatography showed an increase in the concentration of high molecular weight peptides at the droplet surface compared to the WPH solution. This was considered very important for the stability of these oil-in-water emulsions.

  20. Oil-in-Water Emulsions Stabilized by Saponified Epoxidized Soybean Oil-Grafted Hydroxyethyl Cellulose.

    PubMed

    Huang, Xujuan; Li, Qiaoguang; Liu, He; Shang, Shibin; Shen, Minggui; Song, Jie

    2017-05-03

    An oil-in-water emulsion stabilized by saponified epoxidized soybean oil-grafted hydroxyethyl cellulose (H-ESO-HEC) was investigated. By using an ultrasonic method, oil-in-water emulsions were prepared by blending 50 wt % soybean oil and 50 wt % H-ESO-HEC aqueous suspensions. The influence of H-ESO-HEC concentrations on the properties of oil-in-water emulsions was examined. The H-ESO-HEC concentrations in the aqueous phase varied from 0.02 to 0.40 wt %. When the H-ESO-HEC concentration was 0.4 wt %, the emulsion remained stable for >80 days. The mean droplet sizes of the emulsions decreased by increasing the H-ESO-HEC concentration and extending the ultrasonic time. The adsorption amounts of H-ESO-HEC at the oil-water interface increased when the H-ESO-HEC concentrations in the aqueous phase increased. The rheological property revealed that the apparent viscosity of the H-ESO-HEC-stabilized oil-in-water emulsions increased when the H-ESO-HEC concentrations increased. Steady flow curves indicated an interfacial film formation in the emulsions. The evolution of G', G″, and tan η indicated the predominantly elastic behaviors of all the emulsions.

  1. Size analysis of nanoparticles extracted from W/O emulsions.

    PubMed

    Nagelreiter, C; Kotisch, H; Heuser, T; Valenta, C

    2015-07-05

    Nanosized particles are frequently used in many different applications, especially TiO2 nanoparticles as physical filters in sunscreens to protect the skin from UV radiation. However, concerns have arisen about possible health issues caused by nanoparticles and therefore, the assessment of the occurrence of nanoparticles is important in pharmaceutical and cosmetic formulations. In a previous work of our group, a method was presented to extract nanoparticles from O/W emulsions. But to respond to the needs of dry and sensitive skin, sunscreens of the water-in-oil emulsion type are available. In these, assessment of present nanoparticles is also an important issue, so the present study offers a method for extracting nanoparticles from W/O emulsions. Both methods emanate from the same starting point, which minimizes both effort and cost before the beginning of the assessment. By addition of NaOH pellets and centrifugation, particles were extracted from W/O emulsions and measured for their size and surface area by laser diffraction. With the simple equation Q=A/S a distinction between nanoparticles and microparticles was achieved in W/O emulsions, even in commercially available samples. The present method is quick and easy to implement, which makes it cost-effective. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Ultra-low mass drift chambers

    NASA Astrophysics Data System (ADS)

    Assiro, R.; Cappelli, L.; Cascella, M.; De Lorenzis, L.; Grancagnolo, F.; Ignatov, F.; L'Erario, A.; Maffezzoli, A.; Miccoli, A.; Onorato, G.; Perillo, M.; Piacentino, G.; Rella, S.; Rossetti, F.; Spedicato, M.; Tassielli, G.; Zavarise, G.

    2013-08-01

    We present a novel low mass drift chamber concept, developed in order to fulfill the stringent requirements imposed by the experiments for extremely rare processes, which require high resolutions (order of 100-200 keV/c) for particle momenta in a range (50-100 MeV/c) totally dominated by the multiple scattering contribution. We describe a geometry optimization procedure and a new wiring strategy with a feed-through-less wire anchoring system developed and tested on a drift chamber prototype under completion at INFN-Lecce .

  3. Cosmic Ray Astronomy

    NASA Technical Reports Server (NTRS)

    Wu, S. T.

    2000-01-01

    The cosmic ray division participation in the cooperative agreement was activated in the second year. The scientific goals will be analysis of cosmic ray data from the Japanese-American Cooperative Emulsion Experiments (JACEE). Measurements of primary cosmic rays in the JACEE emulsion chambers will be made to derive for each detected particle the deposited energy in the chamber and the primary charge (atomic number). The data will be corrected to the primary flux above the atmosphere, and the composition and energy spectra will be derived. The spectra of the individual elements will be interpreted in context with the supernova shock and other models of cosmic ray acceleration. Additional information is contained in the original extended abstract.

  4. Temperature dependent of viscoelasticity measurement on fat emulsion phantom using acoustic radiation force elasticity imaging method

    PubMed Central

    Xie, Peng; Wang, Mengke; Guo, Yanrong; Wen, Huiying; Chen, Xin; Chen, Siping; Lin, Haoming

    2018-01-01

    During the past two decades, tissue elasticity has been extensively studied and has been used in clinical disease diagnosis. But biological soft tissues are viscoelastic in nature. Therefore, they should be simultaneously characterized in terms of elasticity and viscosity. In addition, the mechanical properties of soft tissues are temperature dependent. However, how the temperature influences the shear wave dispersion and the viscoelasticity of soft tissue are still unclear. The aim of this study is to compare viscoelasticity of fat emulsion phantom with different temperature using acoustic radiation force elasticity imaging method. In our experiment, we produced four proportions of ultrasonic phantom by adding fat emulsion gelatin. Through adjusting the component of the fat emulsion, we change the viscoelasticity of the ultrasonic phantom. We used verasonics system to gather data and voigt model to fit the elasticity and viscosity value of the ultrasonic phantom we made. The influence of temperature to the ultrasonic phantom also measured in our study. The results show that the addition of fat emulsion to the phantom can increase the viscosity of the phantom, and the shear wave phase velocity decreases gradually at each frequency with the temperature increases, which provides a new material for the production of viscoelastic phantom. PMID:29758968

  5. Temperature dependent of viscoelasticity measurement on fat emulsion phantom using acoustic radiation force elasticity imaging method.

    PubMed

    Xie, Peng; Wang, Mengke; Guo, Yanrong; Wen, Huiying; Chen, Xin; Chen, Siping; Lin, Haoming

    2018-04-27

    During the past two decades, tissue elasticity has been extensively studied and has been used in clinical disease diagnosis. But biological soft tissues are viscoelastic in nature. Therefore, they should be simultaneously characterized in terms of elasticity and viscosity. In addition, the mechanical properties of soft tissues are temperature dependent. However, how the temperature influences the shear wave dispersion and the viscoelasticity of soft tissue are still unclear. The aim of this study is to compare viscoelasticity of fat emulsion phantom with different temperature using acoustic radiation force elasticity imaging method. In our experiment, we produced four proportions of ultrasonic phantom by adding fat emulsion gelatin. Through adjusting the component of the fat emulsion, we change the viscoelasticity of the ultrasonic phantom. We used verasonics system to gather data and voigt model to fit the elasticity and viscosity value of the ultrasonic phantom we made. The influence of temperature to the ultrasonic phantom also measured in our study. The results show that the addition of fat emulsion to the phantom can increase the viscosity of the phantom, and the shear wave phase velocity decreases gradually at each frequency with the temperature increases, which provides a new material for the production of viscoelastic phantom.

  6. Investigation of the demulsification of water-in-oil emulsions formed when crude oil or fuel oil is spilt on the sea

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, M.A.

    The highly viscous water-in-oil emulsions, formed when crude or fuel oil is spilt at sea, are difficult to collect, and expensive to transport as they contain 50 to 80% water. Laboratory experiments have been carried out to determine the factors to be considered in the demulsification of these emulsions. The important factors were found to be the choice and amount of demulsifier, the temperature, and the time amount of mixing during the addition of the demulsifier. These preliminary findings will be used to develop large-scale demulsification systems for use at sea and on the beach, during collection of the emulsions.more » (Copyright (c) Crown Copyright 1980.)« less

  7. Physicochemical Properties and Chemical Stability of β-Carotene Bilayer Emulsion Coated with Bovine Serum Albumin and Arabic Gum Compared to Monolayer Emulsions.

    PubMed

    Sheng, Bulei; Li, Lin; Zhang, Xia; Jiao, Wenjuan; Zhao, Di; Wang, Xue; Wan, Liting; Li, Bing; Rong, Hui

    2018-02-23

    β-carotene is a lipophilic micronutrient that is considered beneficial to human health. However, there are some limitations in utilizing β-carotene in functional foods or dietary supplements currently because of its poor water dispersibility and chemical stability. A new type of β-carotene bilayer emulsion delivery system was prepared by a layer-by-layer electrostatic deposition technique, for which were chosen bovine serum albumin (BSA) as the inner emulsifier and Arabic gum (GA) as the outer emulsifier. The physicochemical properties of bilayer emulsions were mainly characterized by droplet size distribution, zeta potential, rheological behavior, Creaming Index (CI), and encapsulation ratio of β-carotene. Besides this, the effects of processing conditions (pH, thermal treatment, UV radiation, strong oxidant) and storage time on the chemical stability of bilayer emulsions were also evaluated. The bilayer emulsion had a small droplet size (221.27 ± 5.17 nm) and distribution (PDI = 0.23 ± 0.02), strong zeta potential (-30.37 ± 0.71 mV), good rheological behavior (with the highest viscosity that could reduce the possibility of flocculation) and physical stability (CI = 0), high β-carotene encapsulation ratio (94.35 ± 0.71%), and low interfacial tension (40.81 ± 0.86 mN/m). It also obtained better chemical stability under different environmental stresses when compared with monolayer emulsions studied, because it had a dense and thick bilayer structure.

  8. Structural Properties of a Sheared Dense Emulsion

    NASA Astrophysics Data System (ADS)

    Dutta, S. K.; Knowlton, E. D.; Blair, D. L.

    2011-03-01

    The flow of a compressed emulsion above its yield point can be described by a velocity profile in addition to a rearrangement of individual droplets on top of this time averaged motion. Using a confocal microscope, we have tracked the droplets of an oil-in-water emulsion as they are sheared in a rheometer. When the applied stress is large, the velocity profile shows a nearly affine deformation, while there is strong strain localization close to yield. The crossover between these two behaviors occurs at higher shear rates as the volume fraction of the droplets is increased. At shorter length scales, rearrangement events are heterogeneously distributed, reflecting the disordered packing of the emulsion droplets. This characterization is a step towards linking bulk viscoelastic properties to local structural relaxation as the system leaves the jammed state. This work is funded by the NSF through Grant DMR 0847490.

  9. Maximizing the stability of pyrolysis oil/diesel fuel emulsions

    USDA-ARS?s Scientific Manuscript database

    Several emulsions consisting of biomass pyrolysis oil (bio-oil) in diesel fuel were produced and analyzed for stability over time. An ultrasonic probe was used to generate microscopic droplets of bio-oil suspended in diesel fuel, and this emulsion was stabilized using surfactant chemicals. The most...

  10. One-step production of multiple emulsions: microfluidic, polymer-stabilized and particle-stabilized approaches.

    PubMed

    Clegg, Paul S; Tavacoli, Joe W; Wilde, Pete J

    2016-01-28

    Multiple emulsions have great potential for application in food science as a means to reduce fat content or for controlled encapsulation and release of actives. However, neither production nor stability is straightforward. Typically, multiple emulsions are prepared via two emulsification steps and a variety of approaches have been deployed to give long-term stability. It is well known that multiple emulsions can be prepared in a single step by harnessing emulsion inversion, although the resulting emulsions are usually short lived. Recently, several contrasting methods have been demonstrated which give rise to stable multiple emulsions via one-step production processes. Here we review the current state of microfluidic, polymer-stabilized and particle-stabilized approaches; these rely on phase separation, the role of electrolyte and the trapping of solvent with particles respectively.

  11. Evaluation of retinoic acid ophthalmic emulsion in dry eye.

    PubMed

    Selek, H; Unlü, N; Orhan, M; Irkeç, M

    2000-01-01

    An oil in water emulsion of 0.01% all-trans-retinoic acid (tretinoin) was prepared and clinically evaluated in dry eye patients. The ophthalmic emulsion consisted of 10% of arachis oil and 90% of the hydrogel of Carbopol 940. To evaluate retinoic acid emulsion clinically, a placebo-controlled, open-labeled, randomized study was performed with 22 dry-eye patients. Symptoms were recorded before and after the treatments. The Schirmer I test, measurement of tear film break-up time (BUT), rose Bengal and fluorescein staining of cornea and conjunctiva, and mucus fern test were done. Retinoic acid did not improve the dryness, photophobia and foreign body sensation more than placebo. Schirmer test and BUT were significantly improved by retinoic acid treatment. Corneal and conjunctival epithelium maintained their characteristics during the use of retinoic acid, as indicated by rose Bengal and fluorescein staining. Ophthalmic emulsion of retinoic acid can be suggested as a promising approach for the treatment of dry eye.

  12. Influence of droplet charge on the chemical stability of citral in oil-in-water emulsions.

    PubMed

    Choi, Seung Jun; Decker, Eric Andrew; Henson, Lulu; Popplewell, L Michael; McClements, David Julian

    2010-08-01

    The chemical stability of citral, a flavor component widely used in beverage, food, and fragrance products, in oil-in-water emulsions stabilized by surfactants with different charge characteristics was investigated. Emulsions were prepared using cationic (lauryl alginate, LAE), non-ionic (polyoxyethylene (23) lauryl ether, Brij 35), and anionic (sodium dodecyl sulfate, SDS) surfactants at pH 3.5. The citral concentration decreased over time in all the emulsions, but the rate of decrease depended on surfactant type. After 7 d storage, the citral concentrations remaining in the emulsions were around 60% for LAE- or Brij 35-stabilized emulsions and 10% for SDS-stabilized emulsions. An increase in the local proton (H(+)) concentration around negatively charged droplet surfaces may account for the more rapid citral degradation observed in SDS-stabilized emulsions. A strong metal ion chelator (EDTA), which has previously been shown to be effective at increasing the oxidative stability of labile components, had no effect on citral stability in LAE- or Brij 35-stabilized emulsions, but it slightly decreased the initial rate of citral degradation in SDS-stabilized emulsions. These results suggest the surfactant type used to prepare emulsions should be controlled to improve the chemical stability of citral in emulsion systems.

  13. Nuclear emulsions for the detection of micrometric-scale fringe patterns: an application to positron interferometry

    NASA Astrophysics Data System (ADS)

    Aghion, S.; Ariga, A.; Bollani, M.; Ereditato, A.; Ferragut, R.; Giammarchi, M.; Lodari, M.; Pistillo, C.; Sala, S.; Scampoli, P.; Vladymyrov, M.

    2018-05-01

    Nuclear emulsions are capable of very high position resolution in the detection of ionizing particles. This feature can be exploited to directly resolve the micrometric-scale fringe pattern produced by a matter-wave interferometer for low energy positrons (in the 10–20 keV range). We have tested the performance of emulsion films in this specific scenario. Exploiting silicon nitride diffraction gratings as absorption masks, we produced periodic patterns with features comparable to the expected interferometer signal. Test samples with periodicities of 6, 7 and 20 μ m were exposed to the positron beam, and the patterns clearly reconstructed. Our results support the feasibility of matter-wave interferometry experiments with positrons.

  14. Effects of a fish oil-based emulsion on rat hepatoma cell invasion in culture.

    PubMed

    Hagi, Akifumi; Nakayama, Mitsuo; Miura, Yutaka; Yagasaki, Kazumi

    2007-01-01

    Total parenteral nutrition containing a lipid emulsion is often employed after surgical tumor resection. This study investigated the effects of a fish oil-based infusion on rat hepatoma cell invasion. Rat ascites hepatoma cell line AH109A was precultured with a fish oil-based or safflower oil-based emulsion for 48 h. Changes in membranous fatty acid composition were evaluated by gas chromatography. The invasiveness of hepatoma cells was assessed by coculturing with mesentery-derived mesothelial cells. To examine ex vivo effects of the fish oil-based infusion on hepatoma invasion, sera were prepared from rats infused with fish oil- or safflower oil-based emulsion and the effects of these sera were assessed. To clarify the mechanism of inhibition of invasion by the fish oil-based emulsion, the effects of prostaglandin (PG) E(2) and PGE(3) on invasion were examined. Pretreatment with the fish oil-based emulsion reduced invasiveness without affecting growth compared with the safflower oil-based emulsion. Pretreatment with the sera from rats infused with the fish oil-based emulsion also reduced invasiveness compared with the sera from rats infused with the safflower oil-based emulsion. The addition of PGE(2) eliminated the inhibitory effect of the fish oil-based emulsion, and the addition of PGE(3) reduced the invasiveness of hepatoma cells pretreated with the safflower oil-based emulsion. These results suggest that the fish oil-based emulsion may have anti-invasive effects. Changes in the membranous fatty acid composition and consequent changes in the prostaglandins produced may be involved in this inhibitory effect.

  15. Field trial of solvent-free emulsion in Oregon : final report.

    DOT National Transportation Integrated Search

    2003-03-01

    This final report summarizes construction, laboratory and performance information gathered by ODOT personnel from a single field trial of solvent-free emulsion mix constructed in June 2001. The solvent-free emulsion mix presented several placement pr...

  16. Oil-in-Water Emulsion Exhibits Bitterness-Suppressing Effects in a Sensory Threshold Study.

    PubMed

    Torrico, Damir Dennis; Sae-Eaw, Amporn; Sriwattana, Sujinda; Boeneke, Charles; Prinyawiwatkul, Witoon

    2015-06-01

    Little is known about how emulsion characteristics affect saltiness/bitterness perception. Sensory detection and recognition thresholds of NaCl, caffeine, and KCl in aqueous solution compared with oil-in-water emulsion systems were evaluated. For emulsions, NaCl, KCl, or caffeine were dissolved in water + emulsifier and mixed with canola oil (20% by weight). Two emulsions were prepared: emulsion 1 (viscosity = 257 cP) and emulsion 2 (viscosity = 59 cP). The forced-choice ascending concentration series method of limits (ASTM E-679-04) was used to determine detection and/or recognition thresholds at 25 °C. Group best estimate threshold (GBET) geometric means were expressed as g/100 mL. Comparing NaCl with KCl, there were no significant differences in detection GBET values for all systems (0.0197 - 0.0354). For saltiness recognition thresholds, KCl GBET values were higher compared with NaCl GBET (0.0822 - 0.1070 compared with 0.0471 - 0.0501). For NaCl and KCl, emulsion 1 and/or emulsion 2 did not significantly affect the saltiness recognition threshold compared with that of the aqueous solution. However, the bitterness recognition thresholds of caffeine and KCl in solution were significantly lower than in the emulsions (0.0242 - 0.0586 compared with 0.0754 - 0.1025). Gender generally had a marginal effect on threshold values. This study showed that, compared with the aqueous solutions, emulsions did not significantly affect the saltiness recognition threshold of NaCl and KCl, but exhibited bitterness-suppressing effects on KCl and/or caffeine. © 2015 Institute of Food Technologists®

  17. Parameters for Stable Water-in-Oil Lipiodol Emulsion for Liver Trans-Arterial Chemo-Eembolization.

    PubMed

    Deschamps, F; Moine, L; Isoardo, T; Tselikas, L; Paci, A; Mir, L M; Huang, N; Fattal, E; de Baère, T

    2017-12-01

    Water-in-oil type and stability are important properties for Lipiodol emulsions during conventional trans-arterial chemo-embolization. Our purpose is to evaluate the influence of 3 technical parameters on those properties. The Lipiodol emulsions have been formulated by repetitive back-and-forth pumping of two 10-ml syringes through a 3-way stopcock. Three parameters were compared: Lipiodol/doxorubicin ratio (2/1 vs. 3/1), doxorubicin concentration (10 vs. 20 mg/ml) and speed of incorporation of doxorubicin in Lipiodol (bolus vs. incremental vs. continuous). The percentage of water-in-oil emulsion obtained and the duration until complete coalescence (stability) for water-in-oil emulsions were, respectively, evaluated with the drop-test and static light scattering technique (Turbiscan). Among the 48 emulsions formulated, 32 emulsions (67%) were water-in-oil. The percentage of water-in-oil emulsions obtained was significantly higher for incremental (94%) and for continuous (100%) injections compared to bolus injection (6%) of doxorubicin. Emulsion type was neither influenced by Lipiodol/doxorubicin ratio nor by doxorubicin concentration. The mean stability of water-in-oil emulsions was 215 ± 257 min. The emulsions stability was significantly longer when formulated using continuous compared to incremental injection (326 ± 309 vs. 96 ± 101 min, p = 0.018) and using 3/1 compared to 2/1 ratio of Lipiodol/doxorubicin (372 ± 276 vs. 47 ± 43 min, p = <0.0001). Stability was not influenced by the doxorubicin concentration. The continuous and incremental injections of doxorubicin in the Lipiodol result in highly predictable water-in-oil emulsion type. It also demonstrates a significant increase in stability compared to bolus injection. Higher ratio of Lipiodol/doxorubicin is a critical parameter for emulsion stability too.

  18. Influence of phase inversion on the formation and stability of one-step multiple emulsions.

    PubMed

    Morais, Jacqueline M; Rocha-Filho, Pedro A; Burgess, Diane J

    2009-07-21

    A novel method of preparation of water-in-oil-in-micelle-containing water (W/O/W(m)) multiple emulsions using the one-step emulsification method is reported. These multiple emulsions were normal (not temporary) and stable over a 60 day test period. Previously, reported multiple emulsion by the one-step method were abnormal systems that formed at the inversion point of simple emulsion (where there is an incompatibility in the Ostwald and Bancroft theories, and typically these are O/W/O systems). Pseudoternary phase diagrams and bidimensional process-composition (phase inversion) maps were constructed to assist in process and composition optimization. The surfactants used were PEG40 hydrogenated castor oil and sorbitan oleate, and mineral and vegetables oils were investigated. Physicochemical characterization studies showed experimentally, for the first time, the significance of the ultralow surface tension point on multiple emulsion formation by one-step via phase inversion processes. Although the significance of ultralow surface tension has been speculated previously, to the best of our knowledge, this is the first experimental confirmation. The multiple emulsion system reported here was dependent not only upon the emulsification temperature, but also upon the component ratios, therefore both the emulsion phase inversion and the phase inversion temperature were considered to fully explain their formation. Accordingly, it is hypothesized that the formation of these normal multiple emulsions is not a result of a temporary incompatibility (at the inversion point) during simple emulsion preparation, as previously reported. Rather, these normal W/O/W(m) emulsions are a result of the simultaneous occurrence of catastrophic and transitional phase inversion processes. The formation of the primary emulsions (W/O) is in accordance with the Ostwald theory ,and the formation of the multiple emulsions (W/O/W(m)) is in agreement with the Bancroft theory.

  19. Effects of Emulsion Composition on Pulmonary Tobramycin Delivery During Antibacterial Perfluorocarbon Ventilation

    PubMed Central

    Orizondo, Ryan A.; Fabiilli, Mario L.; Morales, Marissa A.

    2016-01-01

    Abstract Background: The effectiveness of inhaled aerosolized antibiotics is limited by poor ventilation of infected airways. Pulmonary delivery of antibiotics emulsified within liquid perfluorocarbon [antibacterial perfluorocarbon ventilation (APV)] may solve this problem through better airway penetration and improved spatial uniformity. However, little work has been done to explore emulsion formulation and the corresponding effects on drug delivery during APV. This study investigated the effects of emulsion formulation on emulsion stability and the pharmacokinetics of antibiotic delivery via APV. Methods: Gravity-driven phase separation was examined in vitro by measuring emulsion tobramycin concentrations at varying heights within a column of emulsion over 4 hours for varying values of fluorosurfactant concentration (Cfs = 5–48 mg/mL H2O). Serum and pulmonary tobramycin concentrations in rats were then evaluated following pulmonary tobramycin delivery via aerosol or APV utilizing sufficiently stable emulsions of varying aqueous volume percentage (Vaq = 1%–5%), aqueous tobramycin concentration (Ct = 20–100 mg/mL), and Cfs (15 and 48 mg/mL H2O). Results: In vitro assessment showed sufficient spatial and temporal uniformity of tobramycin dispersion within emulsion for Cfs ≥15 mg/mL H2O, while lower Cfs values showed insufficient emulsification even immediately following preparation. APV with stable emulsion formulations resulted in 5–22 times greater pulmonary tobramycin concentrations at 4 hours post-delivery relative to aerosolized delivery. Concentrations increased with emulsion formulations utilizing increased Vaq (with decreased Ct) and, to a lesser extent, increased Cfs. Conclusions: The emulsion stability necessary for effective delivery is retained at Cfs values as low as 15 mg/mL H2O. Additionally, the pulmonary retention of antibiotic delivered via APV is significantly greater than that of aerosolized delivery and can be

  20. pH-induced inversion of water-in-oil emulsions to oil-in-water high internal phase emulsions (HIPEs) using core cross-linked star (CCS) polymer as interfacial stabilizer.

    PubMed

    Chen, Qijing; Deng, Xiaoyong; An, Zesheng

    2014-06-01

    A pH-responsive core cross-linked star (CCS) polymer containing poly(N,N-dimethylaminoethyl methacrylate) (PDMAEMA) arms was used as an interfacial stabilizer for emulsions containing toluene (80 v%) and water (20 v%). In the pH range of 12.1-9.3, ordinary water-in-oil emulsions were formed. Intermediate multiple emulsions of oil-in-water-in-oil and water-in-oil-in-water were formed at pH 8.6 and 7.5, respectively. Further lowering the pH resulted in the formation of gelled high internal phase emulsions of oil-in-water type in the pH range of 6.4-0.6. The emulsion behavior was correlated with interfacial tension, conductivity and configuration of the CCS polymer at different pH. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Zero-Valent Metal Emulsion for Reductive Dehalogenation of DNAPLs

    NASA Technical Reports Server (NTRS)

    Reinhart, Debra R. (Inventor); Clausen, Christian (Inventor); Gelger, Cherie L. (Inventor); Quinn, Jacqueline (Inventor); Brooks, Kathleen (Inventor)

    2006-01-01

    A zero-valent metal emulsion is used to dehalogenate solvents, such as pooled dense non-aqueous phase liquids (DNAPLs), including trichloroethylene (TCE). The zero-valent metal emulsion contains zero-valent metal particles, a surfactant, oil and water, The preferred zero-valent metal particles are nanoscale and microscale zero-valent iron particles.

  2. Double emulsions from a capillary array injection microfluidic device.

    PubMed

    Shang, Luoran; Cheng, Yao; Wang, Jie; Ding, Haibo; Rong, Fei; Zhao, Yuanjin; Gu, Zhongze

    2014-09-21

    A facile microfluidic device was developed by inserting an annular capillary array into a collection channel for single-step emulsification of double emulsions. By inserting multiple inner-phase solutions into the capillary array, multicomponent double emulsions or microcapsules with inner droplets of different content could also be obtained from the device.

  3. Zero-Valent Metal Emulsion for Reductive Dehalogenation of DNAPLS

    NASA Technical Reports Server (NTRS)

    Reinhart, Debra R. (Inventor); Clausen, Christian (Inventor); Geiger, Cherie L. (Inventor); Quinn, Jacqueline (Inventor); Brooks, Kathleen (Inventor)

    2003-01-01

    A zero-valent metal emulsion is used to dehalogenate solvents, such as pooled dense non-aqueous phase liquids (DNAPLs), including trichloroethylene (TCE). The zero-valent metal emulsion contains zero-valent metal particles, a surfactant, oil and water. The preferred zero-valent metal particles are nanoscale and microscale zero-valent iron particles

  4. An alkyl polyglucoside-mixed emulsifier as stabilizer of emulsion systems: the influence of colloidal structure on emulsions skin hydration potential.

    PubMed

    Savic, Snezana; Lukic, Milica; Jaksic, Ivana; Reichl, Stephan; Tamburic, Slobodanka; Müller-Goymann, Christel

    2011-06-01

    To be considered as a suitable vehicle for drugs/cosmetic actives, an emulsion system should have a number of desirable properties mainly dependent on surfactant used for its stabilization. In the current study, C(12-14) alkyl polyglucoside (APG)-mixed emulsifier of natural origin has been investigated in a series of binary (emulsifier concentration 10-25% (w/w)) and ternary systems with fixed emulsifier content (15% (w/w)) with or without glycerol. To elucidate the systems' colloidal structure the following physicochemical techniques were employed: polarization and transmission electron microscopy, X-ray diffraction (WAXD and SAXD), thermal analysis (DSC and TGA), complex rheological, pH, and conductivity measurements. Additionally, the emulsion vehicles' skin hydration potential was tested in vivo, on human skin under occlusion. In a series of binary systems with fixed emulsifier/water ratios ranging from 10/90 to 25/75 the predominance of a lamellar mesophase was found, changing its character from a liquid crystalline to a gel crystalline type. The same was observed in gel emulsions containing equal amounts of emulsifier and oil (15% (w/w)), but varying in glycerol content (0-25%). Different emulsion samples exhibited different water distribution modes in the structure, reflecting their rheological behavior and also their skin hydration capacity. Copyright © 2011 Elsevier Inc. All rights reserved.

  5. To Model Chemical Reactivity in Heterogeneous Emulsions, Think Homogeneous Microemulsions.

    PubMed

    Bravo-Díaz, Carlos; Romsted, Laurence Stuart; Liu, Changyao; Losada-Barreiro, Sonia; Pastoriza-Gallego, Maria José; Gao, Xiang; Gu, Qing; Krishnan, Gunaseelan; Sánchez-Paz, Verónica; Zhang, Yongliang; Dar, Aijaz Ahmad

    2015-08-25

    Two important and unsolved problems in the food industry and also fundamental questions in colloid chemistry are how to measure molecular distributions, especially antioxidants (AOs), and how to model chemical reactivity, including AO efficiency in opaque emulsions. The key to understanding reactivity in organized surfactant media is that reaction mechanisms are consistent with a discrete structures-separate continuous regions duality. Aggregate structures in emulsions are determined by highly cooperative but weak organizing forces that allow reactants to diffuse at rates approaching their diffusion-controlled limit. Reactant distributions for slow thermal bimolecular reactions are in dynamic equilibrium, and their distributions are proportional to their relative solubilities in the oil, interfacial, and aqueous regions. Our chemical kinetic method is grounded in thermodynamics and combines a pseudophase model with methods for monitoring the reactions of AOs with a hydrophobic arenediazonium ion probe in opaque emulsions. We introduce (a) the logic and basic assumptions of the pseudophase model used to define the distributions of AOs among the oil, interfacial, and aqueous regions in microemulsions and emulsions and (b) the dye derivatization and linear sweep voltammetry methods for monitoring the rates of reaction in opaque emulsions. Our results show that this approach provides a unique, versatile, and robust method for obtaining quantitative estimates of AO partition coefficients or partition constants and distributions and interfacial rate constants in emulsions. The examples provided illustrate the effects of various emulsion properties on AO distributions such as oil hydrophobicity, emulsifier structure and HLB, temperature, droplet size, surfactant charge, and acidity on reactant distributions. Finally, we show that the chemical kinetic method provides a natural explanation for the cut-off effect, a maximum followed by a sharp reduction in AO efficiency with

  6. Studies on ocular and parenteral application potentials of azithromycin- loaded anionic, cationic and neutral-charged emulsions.

    PubMed

    Tamilvanan, Shunmugaperumal; Khanum, Ramona; Senthilkumar, Sudalimuthu Ramachandran; Muthuraman, Marimuthu; Rajasekharan, Thenrajan

    2013-10-01

    Ocular and parenteral application potentials of azithromycin-containing, non-phospholipid-based cationic nanosized emulsion in comparison to the phospholipid-based anionic and neutral-charged nanosized emulsions were investigated. Various physical, chemical, nonclinical toxicity and antimicrobial activity studies (mean droplet diameter, surface charge, creaming index, entrapment efficiency, accelerated, long-term and freeze-thaw cycling stabilities, TLC study, modified hen's egg chorioallantoic membrane (HET-CAM) test, in vitro hemolysis test, in vitro and in vivo myotoxicity, and in vitro antimicrobial activity) were conducted for assessing the potentials of these three types of emulsions. Following autoclave sterilization, all of these emulsions exhibited a nanometer range mean particle diameter (200 ± 29 to 434 ± 13 nm). While the anionic and cationic emulsions did show high negative (-34.2 ± 1.23 mV) and positive zeta potential (42.6 ± 1.45 mV) values, the neutral-charged emulsion did not. Even with 5 freeze-thaw cycles, the cationic emulsion remained stable whereas other two emulsions underwent phase-separation. The hen's egg chorioallantoic membrane test revealed an irritation score value that was higher for the anionic emulsion than for cationic or neutral-charged emulsion. A significantly higher % hemolysis value was also noticed for the anionic emulsion when compared to the % hemolysis value of cationic emulsion (ANOVA, P ‹ 0.05). However, all of the emulsions showed a lesser intracellular creatine kinase (CK) release/plasma CK level in comparison to the positive control (phenytoin) indicating their lesser myotoxicity at the injection site . When compared to anionic and neutral-charged emulsions, the possible controlled drug release from cationic emulsion delayed the in vitro antimicrobial action against H.influenzae and S.pneumoniae.

  7. Emulsion Inks for 3D Printing of High Porosity Materials.

    PubMed

    Sears, Nicholas A; Dhavalikar, Prachi S; Cosgriff-Hernandez, Elizabeth M

    2016-08-01

    Photocurable emulsion inks for use with solid freeform fabrication (SFF) to generate constructs with hierarchical porosity are presented. A high internal phase emulsion (HIPE) templating technique was utilized to prepare water-in-oil emulsions from a hydrophobic photopolymer, surfactant, and water. These HIPEs displayed strong shear thinning behavior that permitted layer-by-layer deposition into complex shapes and adequately high viscosity at low shear for shape retention after extrusion. Each layer was actively polymerized with an ultraviolet cure-on-dispense (CoD) technique and compositions with sufficient viscosity were able to produce tall, complex scaffolds with an internal lattice structure and microscale porosity. Evaluation of the rheological and cure properties indicated that the viscosity and cure rate both played an important role in print fidelity. These 3D printed polyHIPE constructs benefit from the tunable pore structure of emulsion templated material and the designed architecture of 3D printing. As such, these emulsion inks can be used to create ultra high porosity constructs with complex geometries and internal lattice structures not possible with traditional manufacturing techniques. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. [Dual chamber safety vacuum--initial experiences with a new suction cup].

    PubMed

    Korell, M; King, S; Hepp, H

    1994-06-01

    The main problem with vacuum extraction methods, alongside the cephalhaematoma produced, is the premature separation of the suction cup under traction, since the resulting sudden change in pressure can lead to severe intra-cerebral damage to the child. To reduce the risk of vaginal operative delivery, a new double-chamber safety vacuum extractor has been developed by Hepp/King. The basic feature of this instrument is an additional chamber with a thin overlapping area, which surrounds the actual suction cup and serves as a safety vacuum. If the suction cup starts to slip, the external vacuum is released and sounds an alarm. In addition, the inner vacuum has been designed to be convex and to reduce the volume of scalp, which is sucked into the vacuum, thus reducing the size of the cephalhaematoma produced. First experiences in clinical use demonstrated the reliability of the early warning signal, if the direction of traction is false or the applied traction is too strong. The inner vacuum remains constant at 0.8 atu, so that with care, the extraction can continue without interruption. We have used the new instrument in 18 deliveries. In 15 cases, the indication was failure to progress into the second stage of labour; in one case history of retinal detachment and in two cases signs of foetal asphyxia. In all cases, the child was delivered following one or two contractions with traction, without losing the vacuum. The average weight of the newborn was 3566 g. As expected, the cephalohaematoma produced was very much smaller than usual. Further clinical trials are necessary before the value of this new instrument can be assessed.

  9. Demulsification of crude oil-in-water emulsions by means of fungal spores.

    PubMed

    Vallejo-Cardona, Alba Adriana; Martínez-Palou, Rafael; Chávez-Gómez, Benjamín; García-Caloca, Graciela; Guerra-Camacho, Jairo; Cerón-Camacho, Ricardo; Reyes-Ávila, Jesús; Karamath, James Robert; Aburto, Jorge

    2017-01-01

    The present feature describes for the first time the application of spores from Aspergillus sp. IMPMS7 to break out crude oil-in-water emulsions (O/W). The fungal spores were isolated from marine sediments polluted with petroleum hydrocarbons. The spores exhibited the ability to destabilize different O/W emulsions prepared with medium, heavy or extra-heavy Mexican crude oils with specific gravities between 10.1 and 21.2°API. The isolated fungal spores showed a high hydrophobic power of 89.3 ± 1.9% and with 2 g of spores per liter of emulsion, the half-life for emulsion destabilization was roughly 3.5 and 0.7 h for extra-heavy and medium crude oil, respectively. Then, the kinetics of water separation and the breaking of the O/W emulsion prepared with heavy oil through a spectrofluorometric technique were studied. A decrease in the fluorescence ratio at 339 and 326 nm (I339/I326) was observed in emulsions treated with spores, which is similar to previously reported results using chemical demulsifiers.

  10. Demulsification of crude oil-in-water emulsions by means of fungal spores

    PubMed Central

    Vallejo-Cardona, Alba Adriana; Martínez-Palou, Rafael; Chávez-Gómez, Benjamín; García-Caloca, Graciela; Guerra-Camacho, Jairo; Cerón-Camacho, Ricardo; Reyes-Ávila, Jesús; Karamath, James Robert

    2017-01-01

    The present feature describes for the first time the application of spores from Aspergillus sp. IMPMS7 to break out crude oil-in-water emulsions (O/W). The fungal spores were isolated from marine sediments polluted with petroleum hydrocarbons. The spores exhibited the ability to destabilize different O/W emulsions prepared with medium, heavy or extra-heavy Mexican crude oils with specific gravities between 10.1 and 21.2°API. The isolated fungal spores showed a high hydrophobic power of 89.3 ± 1.9% and with 2 g of spores per liter of emulsion, the half-life for emulsion destabilization was roughly 3.5 and 0.7 h for extra-heavy and medium crude oil, respectively. Then, the kinetics of water separation and the breaking of the O/W emulsion prepared with heavy oil through a spectrofluorometric technique were studied. A decrease in the fluorescence ratio at 339 and 326 nm (I339/I326) was observed in emulsions treated with spores, which is similar to previously reported results using chemical demulsifiers. PMID:28234917

  11. Pickering emulsions for skin decontamination.

    PubMed

    Salerno, Alicia; Bolzinger, Marie-Alexandrine; Rolland, Pauline; Chevalier, Yves; Josse, Denis; Briançon, Stéphanie

    2016-08-01

    This study aimed at developing innovative systems for skin decontamination. Pickering emulsions, i.e. solid-stabilized emulsions, containing silica (S-PE) or Fuller's earth (FE-PE) were formulated. Their efficiency for skin decontamination was evaluated, in vitro, 45min after an exposure to VX, one of the most highly toxic chemical warfare agents. Pickering emulsions were compared to FE (FE-W) and silica (S-W) aqueous suspensions. PE containing an oil with a similar hydrophobicity to VX should promote its extraction. All the formulations reduced significantly the amount of VX quantified on and into the skin compared to the control. Wiping the skin surface with a pad already allowed removing more than half of VX. FE-W was the less efficient (85% of VX removed). The other formulations (FE-PE, S-PE and S-W) resulted in more than 90% of the quantity of VX removed. The charge of particles was the most influential factor. The low pH of formulations containing silica favored electrostatic interactions of VX with particles explaining the better elimination from the skin surface. Formulations containing FE had basic pH, and weak interactions with VX did not improve the skin decontamination. However, these low interactions between VX and FE promote the transfer of VX into the oil droplets in the FE-PE. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Oil-in-oil emulsions: a unique tool for the formation of polymer nanoparticles.

    PubMed

    Klapper, Markus; Nenov, Svetlin; Haschick, Robert; Müller, Kevin; Müllen, Klaus

    2008-09-01

    Polymer latex particles are nanofunctional materials with widespread applications including electronics, pharmaceuticals, photonics, cosmetics, and coatings. These materials are typically prepared using waterborne heterogeneous systems such as emulsion, miniemulsion, and suspension polymerization. However, all of these processes are limited to water-stable catalysts and monomers mainly polymerizable via radical polymerization. In this Account, we describe a method to overcome this limitation: nonaqueous emulsions can serve as a versatile tool for the synthesis of new types of polymer nanoparticles. To form these emulsions, we first needed to find two nonmiscible nonpolar/polar aprotic organic solvents. We used solvent mixtures of either DMF or acetonitrile in alkanes and carefully designed amphiphilic block and statistical copolymers, such as polyisoprene- b-poly(methyl methacrylate) (PI- b-PMMA), as additives to stabilize these emulsions. Unlike aqueous emulsions, these new emulsion systems allowed the use of water-sensitive monomers and catalysts. Although polyaddition and polycondensation reactions usually lead to a large number of side products and only to oligomers in the aqueous phase, these new conditions resulted in high-molecular-weight, defect-free polymers. Furthermore, conducting nanoparticles were produced by the iron(III)-induced synthesis of poly(ethylenedioxythiophene) (PEDOT) in an emulsion of acetonitrile in cyclohexane. Because metallocenes are sensitive to nitrile and carbonyl groups, the acetonitrile and DMF emulsions were not suitable for carrying out metallocene-catalyzed olefin polymerization. Instead, we developed a second system, which consists of alkanes dispersed in perfluoroalkanes. In this case, we designed a new amphipolar polymeric emulsifier with fluorous and aliphatic side chains to stabilize the emulsions. Such heterogeneous mixtures facilitated the catalytic polymerization of ethylene or propylene to give spherical nanoparticles

  13. Influence of membrane material on the production of colloidal emulsions by premix membrane emulsification.

    PubMed

    Gehrmann, Sandra; Bunjes, Heike

    2018-05-01

    Premix membrane emulsification is a possibility to produce colloidal emulsions as carrier systems for poorly water soluble drugs. During the extrusion of a coarse pre-emulsion through a porous membrane, the emulsion droplets are disrupted into smaller droplets. The influence of the membrane material on the emulsification success was investigated in dependence on the emulsifier. Premixed medium chain triglyceride (MCT) emulsions stabilized with five different emulsifiers were extruded through seven different hydrophilic polymeric membrane materials with pore sizes of 200nm. The resulting emulsions differed strongly in particle size and particle size distribution with a range of median particle sizes between 0.08μm and 11μm. The particle size of the emulsions did not depend mainly on the structure or thickness of the membrane but on the combination of emulsifier and membrane material. Contact angle measurements indicated that the wetting of the membrane with the continuous phase of the emulsion was decisive for achieving emulsions with colloidal particle sizes. The type of dispersed phase was of minor importance as basically the same results were obtained with peanut oil instead of MCT. To prove the assumption that only sufficiently hydrophilic membrane materials led to emulsions with colloidal particle sizes, two membrane materials were hydrophilized by plasma treatment. After hydrophilization, the emulsifying process led to emulsions with smaller particle sizes. The use of an alumina membrane (Anodisc®) improved the process even more. With this type of membrane, emulsions with a median particle size below 250nm and a narrow particle size distribution could be obtained with all investigated emulsifiers. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Volatile release from self-assembly structured emulsions: effect of monoglyceride content, oil content, and oil type.

    PubMed

    Mao, Like; Roos, Yrjö H; Miao, Song

    2013-02-20

    Monoglycerides (MGs) can form self-assembled structures in emulsions, which can be used to control volatile release. In this study, initial headspace concentrations (C(initial)), maximum headspace concentrations (C(max)), release rates, and partition coefficients of propanol, diacetyl, hexanal, and limonene were determined in MG structured oil-in-water emulsions using dynamic and static headspace analyses. For all of the volatile compounds, C(initial) values above structured emulsions were significantly lower than those above unstructured emulsions and decreased with increasing MG contents (p < 0.05). However, volatiles had higher release rates in emulsions with higher MG contents. When oil content was reduced from 20 to 10%, C(initial) and C(max) increased for limonene and hexanal and decreased for propanol and diacetyl. When different oils were applied, both C(initial) and C(max) were significantly lower in medium-chain triglyceride emulsions than in soybean oil emulsions (p < 0.05). Static headspace analysis revealed that volatile compounds had significantly lower air-emulsion partition coefficients in the structured emulsions than in unstructured emulsions (p < 0.05). These results indicated that MG structured emulsions can be potentially used as delivery systems to modulate volatile release.

  15. Exceptionally Stable Fluorous Emulsions for the Intravenous Delivery of Volatile General Anesthetics

    PubMed Central

    Jee, Jun-Pil; Parlato, Maria C.; Perkins, Mark G.; Mecozzi, Sandro; Pearce, Robert A.

    2012-01-01

    Background Intravenous delivery of volatile fluorinated anesthetics has a number of potential advantages when compared to the current inhalation method of administration. We reported previously that the IV delivery of sevoflurane can be achieved through an emulsion composed of a linear fluorinated diblock copolymer, a stabilizer, and the anesthetic. However, this original emulsion was subject to particle size growth that would limit its potential clinical utility. We hypothesized that the use of bulkier fluorous groups and smaller poly(ethylene glycol) moieties in the polymer design would result in improved emulsion stability while maintaining anesthetic functionality. Methods The authors prepared emulsions incorporating sevoflurane, perfluorooctyl bromide as a stabilizing agent, and combinations of linear fluorinated diblock copolymer and a novel dibranched fluorinated diblock copolymer. Emulsion stability was assessed using dynamic light scattering. The ability of the emulsions to induce anesthesia was tested in vivo by administering them intravenously to fifteen male Sprague-Dawley rats and measuring loss of the forepaw righting reflex. Results 20% (volume/volume) sevoflurane emulsions incorporating mixtures of dibranched- and linear diblock copolymers had improved stability, with those containing an excess of the dibranched polymers displaying stability of particle size for over one year. The ED50s for loss of forepaw righting reflex were all similar, and ranged between 0.55 and 0.60 ml/kg body weight. Conclusions Hemifluorinated dibranched polymers can be used to generate exceptionally stable sevoflurane nanoemulsions, as required of formulations intended for clinical use. Intravenous delivery of the emulsion in rats resulted in induction of anesthesia with rapid onset and smooth and rapid recovery. PMID:22354241

  16. Design of Plant Gas Exchange Experiments in a Variable Pressure Growth Chamber

    NASA Technical Reports Server (NTRS)

    Corey, Kenneth A.

    1996-01-01

    Sustainable human presence in extreme environments such as lunar and martian bases will require bioregenerative components to human life support systems where plants are used for generation of oxygen, food, and water. Reduced atmospheric pressures will be used to minimize mass and engineering requirements. Few studies have assessed the metabolic and developmental responses of plants to reduced pressure and varied oxygen atmospheres. The first tests of hypobaric pressures on plant gas exchange and biomass production at the Johnson Space Center will be initiated in January 1996 in the Variable Pressure Growth Chamber (VPGC), a large, closed plant growth chamber rated for 10.2 psi. Experiments were designed and protocols detailed for two complete growouts each of lettuce and wheat to generate a general database for human life support requirements and to answer questions about plant growth processes in reduced pressure and varied oxygen environments. The central objective of crop growth studies in the VPGC is to determine the influence of reduced pressure and reduced oxygen on the rates of photosynthesis, dark respiration, evapotranspiration and biomass production of lettuce and wheat. Due to the constraint of one experimental unit, internal controls, called pressure transients, will be used to evaluate rates of CO2 uptake, O2 evolution, and H2O generation. Pressure transients will give interpretive power to the results of repeated growouts at both reduced and ambient pressures. Other experiments involve the generation of response functions to partial pressures of O2 and CO2 and to light intensity. Protocol for determining and calculating rates of gas exchange have been detailed. In order to build these databases and implement the necessary treatment combinations in short time periods, specific requirements for gas injections and removals have been defined. A set of system capability checks will include determination of leakage rates conducted prior to the actual crop

  17. Simple and double emulsions via electrospray

    NASA Astrophysics Data System (ADS)

    Barrero, Antonio; Loscertales, Ignacio G.

    2005-11-01

    Generation of nanoemulsions is of great interest in medical and pharmaceutical applications; drug delivery or antiviral emulsions are typical examples. The use of electrosprays for dispersing liquids inside liquid insulator baths have been recently reported, (Barrero et al. J. Colloid Interf. Sci. 272, 104, 2004). Capsules, nanotubes and coaxial nanofibers have been obtained from electrified coaxial jets (Loscertales et al. Science 295, n. 5560, 1695, 2002; J. American Chem. Soc. 126, 5376, 2004). Here we present a method for making double emulsions (both water-oil-water and o/w/o) based on the generation of compound electrosprays inside insulator liquid baths. Basically, a conducting liquid injected throughout a capillary needle is electroatomized in cone-jet mode inside a dielectric liquid bath. A third insulating liquid is injected inside the Taylor cone to form a second meniscus. Then, a steady coaxial jet, in which the insulating liquid is coated by the conducting one, develops. A double emulsion forms as a result of the jet breaking up into compound droplets electrically charged. Experimental results carried out with glycerine and different oils in a bath of heptane are reported.

  18. Selective boron delivery by intra-arterial injection of BSH-WOW emulsion in hepatic cancer model for neutron capture therapy

    PubMed Central

    Dewi, Novriana; Higashi, Syushi; Ikushima, Ichiro; Seguchi, Koji; Mizumachi, Ryoji; Murata, Yuji; Morishita, Yasuyuki; Shinohara, Atsuko; Mikado, Shoji; Yasuda, Nakahiro; Fujihara, Mitsuteru; Sakurai, Yuriko; Mouri, Kikue; Yanagawa, Masashi; Iizuka, Tomoya; Suzuki, Minoru; Sakurai, Yoshinori; Masunaga, Shin-ichiro; Tanaka, Hiroki; Matsukawa, Takehisa; Yokoyama, Kazuhito; Fujino, Takashi; Ogura, Koichi; Nonaka, Yasumasa; Sugiyama, Hirotaka; Kajiyama, Tetsuya; Yui, Sho; Nishimura, Ryohei; Ono, Koji; Takamoto, Sinichi; Nakajima, Jun; Ono, Minoru; Eriguchi, Masazumi; Hasumi, Kenichiro; Takahashi, Hiroyuki

    2017-01-01

    Objective: Boron neutron-capture therapy (BNCT) has been used to inhibit the growth of various types of cancers. In this study, we developed a 10BSH-entrapped water-in-oil-in-water (WOW) emulsion, evaluated it as a selective boron carrier for the possible application of BNCT in hepatocellular carcinoma treatment. Methods: We prepared the 10BSH-entrapped WOW emulsion using double emulsification technique and then evaluated the delivery efficacy by performing biodistribution experiment on VX-2 rabbit hepatic tumour model with comparison to iodized poppy-seed oil mix conventional emulsion. Neutron irradiation was carried out at Kyoto University Research Reactor with an average thermal neutron fluence of 5 × 1012 n cm−2. Morphological and pathological analyses were performed on Day 14 after neutron irradiation. Results: Biodistribution results have revealed that 10B atoms delivery with WOW emulsion was superior compared with those using iodized poppy-seed oil conventional emulsion. There was no dissemination in abdomen or lung metastasis observed after neutron irradiation in the groups treated with 10BSH-entrapped WOW emulsion, whereas many tumour nodules were recognized in the liver, abdominal cavity, peritoneum and bilateral lobes of the lung in the non-injected group. Conclusion: Tumour growth suppression and cancer-cell-killing effect was observed from the morphological and pathological analyses of the 10BSH-entrapped WOW emulsion-injected group, indicating its feasibility to be applied as a novel intra-arterial boron carrier for BNCT. Advances in knowledge: The results of the current study have shown that entrapped 10BSH has the potential to increase the range of therapies available for hepatocellular carcinoma which is considered to be one of the most difficult tumours to cure. PMID:28406315

  19. Effect of the degree of substitution of octenyl succinic anhydride-banana starch on emulsion stability.

    PubMed

    Bello-Pérez, Luis A; Bello-Flores, Christopher A; Nuñez-Santiago, María del Carmen; Coronel-Aguilera, Claudia P; Alvarez-Ramirez, J

    2015-11-05

    Banana starch was esterified with octenylsuccinic anhydride (OSA) at different degree substitution (DS) and used to stabilize emulsions. Morphology, emulsion stability, emulsification index, rheological properties and particle size distribution of the emulsions were tested. Emulsions dyed with Solvent Red 26 showed affinity for the oil phase. Backscattering light showed three regions in the emulsion where the emulsified region was present. Starch concentration had higher effect in the emulsification index (EI) than the DS used in the study because similar values were found with OSA-banana and native starches. However, OSA-banana presented greater stability of the emulsified region. Rheological tests in emulsions with OSA-banana showed G'>G" values and low dependence of G' with the frequency, indicating a dominant elastic response to shear. When emulsions were prepared under high-pressure conditions, the emulsions with OSA-banana starch with different DS showed a bimodal distribution of particle size. The emulsion with OSA-banana starch and the low DS showed similar mean droplet diameter than its native counterpart. In contrast, the highest DS led to the highest mean droplet diameter. It is concluded that OSA-banana starch with DS can be used to stabilize specific emulsion types. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Separation Properties of Wastewater Containing O/W Emulsion Using Ceramic Microfiltration/Ultrafiltration (MF/UF) Membranes

    PubMed Central

    Nakamura, Kazuho; Matsumoto, Kanji

    2013-01-01

    Washing systems using water soluble detergent are used in electrical and mechanical industries and the wastewater containing O/W emulsion are discharged from these systems. Membrane filtration has large potential for the efficient separation of O/W emulsion for reuses of treated water and detergent. The separation properties of O/W emulsions by cross-flow microfiltration and ultrafiltration were studied with ceramic MF and UF membranes. The effects of pore size; applied pressure; cross-flow velocity; and detergent concentration on rejection of O/W emulsion and flux were systematically studied. At the condition achieving complete separation of O/W emulsion the pressure-independent flux was observed and this flux behavior was explained by gel-polarization model. The O/W emulsion tended to permeate through the membrane at the conditions of larger pore size; higher emulsion concentration; and higher pressure. The O/W emulsion could permeate the membrane pore structure by destruction or deformation. These results imply the stability of O/W emulsion in the gel-layer formed on membrane surface play an important role in the separation properties. The O/W emulsion was concentrated by batch cross-flow concentration filtration and the flux decline during the concentration filtration was explained by the gel- polarization model. PMID:24958621

  1. Chemical demulsification of tanker crude emulsions. Memorandum report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Little, R.C.

    1980-02-13

    The chemical demulsification of tanker crude emulsions was studied as a function of oil type (light vs. heavy crude), demulsifier concentrations, and temperature. Aerosol OT shows promise as a chemical demulsifier of tanker crude emulsions provided that ambient temperatures are not too cold and that an appropriate concentration range is used for specific oil. The evaporation rates and viscosities of the six crudes studied are also reported in the text.

  2. Two-step emulsification process for water-in-oil-in-water multiple emulsions stabilized by lamellar liquid crystals.

    PubMed

    Ito, Toshifumi; Tsuji, Yukitaka; Aramaki, Kenji; Tonooka, Noriaki

    2012-01-01

    Multiple emulsions, also called complex emulsions or multiphase emulsions, include water-in-oil-in-water (W/O/W)-type and oil-in-water-in-oil (O/W/O)-type emulsions. W/O/W-type multiple emulsions, obtained by utilizing lamellar liquid crystal with a layer structure showing optical anisotropy at the periphery of emulsion droplets, are superior in stability to O/W/O-type emulsions. In this study, we investigated a two-step emulsification process for a W/O/W-type multiple emulsion utilizing liquid crystal emulsification. We found that a W/O/W-type multiple emulsion containing lamellar liquid crystal can be prepared by mixing a W/O-type emulsion (prepared by primary emulsification) with a lamellar liquid crystal obtained from poly(oxyethylene) stearyl ether, cetyl alcohol, and water, and by dispersing and emulsifying the mixture in an outer aqueous phase. When poly(oxyethylene) stearyl ether and cetyl alcohol are each used in a given amount and the amount of water added is varied from 0 to 15 g (total amount of emulsion, 100 g), a W/O/W-type multiple emulsion is efficiently prepared. When the W/O/W-type multiple emulsion was held in a thermostatic bath at 25°C, the droplet size distribution showed no change 0, 30, or 60 days after preparation. Moreover, the W/O/W-type multiple emulsion strongly encapsulated Uranine in the inner aqueous phase as compared with emulsions prepared by one-step emulsification.

  3. Effect of citronella essential oil fractions as oil phase on emulsion stability

    NASA Astrophysics Data System (ADS)

    Septiyanti, Melati; Meliana, Yenny; Agustian, Egi

    2017-11-01

    The emulsion system consists of water, oil and surfactant. In order to create stable emulsion system, the composition and formulation between water phase, surfactant and oil phase are very important. Essential oil such as citronella oil has been known as active ingredient which has ability as insect repellent. This research studied the effect of citronella oil and its fraction as oil phase on emulsion stability. The cycle stability test was conducted to check the emulsion stability and it was monitored by pH, density, viscosity, particle size, refractive index, zeta potential, physical appearance and FTIR for 4 weeks. Citronellal fraction has better stability compared to citronella oil and rhodinol fraction with slight change of physical and chemical properties before and after the cycle stability test. However, it is need further study to enhance the stability of the emulsion stability for this formulation.

  4. Irradiation of nuclear track emulsions with thermal neutrons, heavy ions, and muons

    NASA Astrophysics Data System (ADS)

    Artemenkov, D. A.; Bradnova, V.; Zaitsev, A. A.; Zarubin, P. I.; Zarubina, I. G.; Kattabekov, R. R.; Mamatkulov, K. Z.; Rusakova, V. V.

    2015-07-01

    Exposures of test samples of nuclear track emulsion were analyzed. Angular and energy correlations of products originating from the thermal-neutron-induced reaction n th +10 B → 7 Li + (γ)+ α were studied in nuclear track emulsions enriched in boron. Nuclear track emulsions were also irradiated with 86Kr+17 and 124Xe+26 ions of energy about 1.2 MeV per nucleon. Measurements of ranges of heavy ions in nuclear track emulsionsmade it possible to determine their energies on the basis of the SRIM model. The formation of high-multiplicity nuclear stars was observed upon irradiating nuclear track emulsions with ultrarelativistic muons. Kinematical features studied in this exposure of nuclear track emulsions for events of the muon-induced splitting of carbon nuclei to three alpha particles are indicative of the nucleardiffraction interaction mechanism.

  5. Interactions of flavoured oil in-water emulsions with polylactide.

    PubMed

    Salazar, Rómulo; Domenek, Sandra; Ducruet, Violette

    2014-04-01

    Polylactide (PLA), a biobased polymer, might prove suitable as eco-friendly packaging, if it proves efficient at maintaining food quality. To assess interactions between PLA and food, an oïl in-water model emulsion was formulated containing aroma compounds representing different chemical structure classes (ethyl esters, 2-nonanone, benzaldehyde) at a concentration typically found in foodstuff (100 ppm). To study non-equilibrium effects during food shelf life, the emulsions were stored in a PLA pack (tray and lid). To assess equilibrium effects, PLA was conditioned in vapour contact with the aroma compounds at concentrations comparable to headspace conditions of real foods. PLA/emulsion interactions showed minor oil and aroma compound sorption in the packaging. Among tested aroma compounds, benzaldehyde and ethyl acetate were most sorbed and preferentially into the lid through the emulsion headspace. Equilibrium effects showed synergy of ethyl acetate and benzaldehyde, favouring sorption of additional aroma compounds in PLA. This should be anticipated during the formulation of food products. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Stability and Oil Migration of Oil-in-Water Emulsions Emulsified by Phase-Separating Biopolymer Mixtures.

    PubMed

    Yang, Nan; Mao, Peng; Lv, Ruihe; Zhang, Ke; Fang, Yapeng; Nishinari, Katsuyoshi; Phillips, Glyn O

    2016-08-01

    Oil-in-water (O/W) emulsions with varying concentration of oil phase, medium-chain triglyceride (MCT), were prepared using phase-separating gum arabic (GA)/sugar beet pectin (SBP) mixture as an emulsifier. Stability of the emulsions including emulsion phase separation, droplet size change, and oil migration were investigated by means of visual observation, droplet size analysis, oil partition analysis, backscattering of light, and interfacial tension measurement. It was found that in the emulsions prepared with 4.0% GA/1.0% SBP, when the concentration of MCT was greater than 2.0%, emulsion phase separation was not observed and the emulsions were stable with droplet size unchanged during storage. This result proves the emulsification ability of phase-separating biopolymer mixtures and their potential usage as emulsifiers to prepare O/W emulsion. However, when the concentration of MCT was equal or less than 2.0%, emulsion phase separation occurred after preparation resulting in an upper SBP-rich phase and a lower GA-rich phase. The droplet size increased in the upper phase whereas decreased slightly in the lower phase with time, compared to the freshly prepared emulsions. During storage, the oil droplets exhibited a complex migration process: first moving to the SBP-rich phase, then to the GA-rich phase and finally gathering at the interface between the two phases. The mechanisms of the emulsion stability and oil migration in the phase-separated emulsions were discussed. © 2016 Institute of Food Technologists®

  7. An easily regenerable enzyme reactor prepared from polymerized high internal phase emulsions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ruan, Guihua, E-mail: guihuaruan@hotmail.com; Guangxi Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin 541004; Wu, Zhenwei

    A large-scale high-efficient enzyme reactor based on polymerized high internal phase emulsion monolith (polyHIPE) was prepared. First, a porous cross-linked polyHIPE monolith was prepared by in-situ thermal polymerization of a high internal phase emulsion containing styrene, divinylbenzene and polyglutaraldehyde. The enzyme of TPCK-Trypsin was then immobilized on the monolithic polyHIPE. The performance of the resultant enzyme reactor was assessed according to the conversion ability of N{sub α}-benzoyl-L-arginine ethyl ester to N{sub α}-benzoyl-L-arginine, and the protein digestibility of bovine serum albumin (BSA) and cytochrome (Cyt-C). The results showed that the prepared enzyme reactor exhibited high enzyme immobilization efficiency and fast andmore » easy-control protein digestibility. BSA and Cyt-C could be digested in 10 min with sequence coverage of 59% and 78%, respectively. The peptides and residual protein could be easily rinsed out from reactor and the reactor could be regenerated easily with 4 M HCl without any structure destruction. Properties of multiple interconnected chambers with good permeability, fast digestion facility and easily reproducibility indicated that the polyHIPE enzyme reactor was a good selector potentially applied in proteomics and catalysis areas. - Graphical abstract: Schematic illustration of preparation of hypercrosslinking polyHIPE immobilized enzyme reactor for on-column protein digestion. - Highlights: • A reactor was prepared and used for enzyme immobilization and continuous on-column protein digestion. • The new polyHIPE IMER was quite suit for protein digestion with good properties. • On-column digestion revealed that the IMER was easy regenerated by HCl without any structure destruction.« less

  8. Fish oil lipid emulsions and immune response: what clinicians need to know.

    PubMed

    Waitzberg, Dan Linetzky; Torrinhas, Raquel Susana

    2009-01-01

    Current evidence indicates that omega-3 polyunsaturated fatty acids (PUFAs), particularly eicosapentaenoic acid and docosahexaenoic acid found in fish oil, can prevent the development of inflammatory diseases by affecting different steps of the immune response. The capacity of omega-3 PUFAs to modulate synthesis of eicosanoids, activity of nuclear receptor and nuclear transcription factors, and production of resolvins may also mitigate inflammatory processes already present. Parenteral infusion of omega-3 PUFAs is advantageous, particularly in severely ill patients, because the fatty acids are rapidly incorporated by cells. In addition, when fatty acids are given parenterally, there are no losses from digestion and absorption as there are with enteral infusion. Recently, lipid emulsions enriched with omega-3 fish oil have been introduced as a component of parenteral nutrition. Currently, there is one lipid emulsion that contains only fish oil; it is infused together with conventionally used lipid emulsions. Other commercially available lipid emulsions contain fish oil in a fat mixture; one contains 10% fish oil and another 15% fish oil. Relevant experimental and clinical data from studies evaluating fish oil lipid emulsions are discussed in the present review. Administration of fish oil lipid emulsion, when compared with soybean oil lipid emulsion (rich in omega-6 PUFA), decreases the length of hospital and intensive care unit stay in surgical patients.

  9. Portable Hyperbaric Chamber

    NASA Technical Reports Server (NTRS)

    Schneider, William C. (Inventor); Locke, James P. (Inventor); DeLaFuente, Horacio (Inventor)

    2001-01-01

    A portable, collapsible hyperbaric chamber was developed. A toroidal inflatable skeleton provides initial structural support for the chamber, allowing the attendant and/or patient to enter the chamber. Oval hatches mate against bulkhead rings, and the hyperbaric chamber is pressurized. The hatches seal against an o-ring, and the internal pressure of the chamber provides the required pressure against the hatch to maintain an airtight seal. In the preferred embodiment, the hyperbaric chamber has an airlock to allow the attendant to enter and exit the patient chamber during treatment. Visual communication is provided through portholes in the patient and/or airlock chamber. Life monitoring and support systems are in communication with the interior of the hyperbaric chamber and/or airlock chamber through conduits and/or sealed feed-through connectors into the hyperbaric chamber.

  10. Formation, antioxidant property and oxidative stability of cold pressed rice bran oil emulsion.

    PubMed

    Thanonkaew, Amonrat; Wongyai, Surapote; Decker, Eric A; McClements, David J

    2015-10-01

    Cold pressed rice bran oil (CPRBO) is used in foods, cosmetics, and pharmaceuticals due to its desirable health and functional attributes. The purpose of this work was to study the formation, antioxidant property and oxidative stability of oil-in-water emulsion of CPRBO. The influence of oil (10-40 % CPRBO) and surfactant (1-5 % glyceryl monostearate (GMS)) concentration on the properties of emulsions were studied. The lightness (L*) and yellowness (b*) of CPRBO emulsions decreased as GMS concentration increased, which was attributed to a decrease in droplet size after homogenization. The CPRBO emulsion was stable during storage at room temperature for 30 days. Increasing the oil concentration in the CPRBO emulsions increased their antioxidant activity, which can be attributed to the corresponding increase in phytochemical content. However, GMS concentration had little impact on the antioxidant activity of CPRBO emulsions. The storage of CPRBO emulsion at room temperature showed that lipid oxidation markers gradually increased after 30 days of storage, which was correlated to a decrease in gamma oryzanol content and antioxidant activity. These results have important implications for the utilization of rice bran oil (RBO) as a function ingredient in food, cosmetic, and pharmaceutical products.

  11. GEMINI-TITAN (GT)-XI - MISC. EXPERIMENTS - MSC

    NASA Image and Video Library

    1966-03-22

    S66-05515 (2 June 1966) --- Gemini-11 Experiment S-9 Nuclear Emulsion. This experiment will be used to study the cosmic radiation incident on Earth's atmosphere, to obtain detailed chemical composition of the heavy primary nuclei and to search for rare particles. Equipment is a rectangular package eight and a half by six by three inches weighing 15 pounds and including the nuclear emulsion film stack, motor to advance the emulsion and a timer to regulate the motor. The package is mounted atop the spacecraft retro adapter section prior to launch, is activated at insertion, and is retrieved by the EVA pilot. The experiment is conducted with the spacecraft in plus or minus 15 degrees of Earth's average magnetic field vector. Sponsors are NASA's Office of Space Science and Applications and the U.S. Naval Research Laboratories. Photo credit: NASA

  12. Induction of Infection in Sesbania exaltata by Colletotrichum gloeosporioides f. sp. aeschynomene Formulated in an Invert Emulsion

    USDA-ARS?s Scientific Manuscript database

    In greenhouse experiments, an experimental invert emulsion (MSG 8.25) was tested as an adjuvant with spores of the mycoherbicidal fungus Colletotrichum gloeosporioides f. sp. aeschynomene, a highly virulent pathogen of the leguminous weed Aeschynomene virginica (northern jointvetch), but non-pathoge...

  13. Emulsions of crude glycerin from biodiesel processing with fuel oil for industrial heating.

    PubMed

    Mize, Hannah E; Lucio, Anthony J; Fhaner, Cassie J; Pratama, Fredy S; Robbins, Lanny A; Karpovich, David S

    2013-02-13

    There is considerable interest in using crude glycerin from biodiesel production as a heating fuel. In this work crude glycerin was emulsified into fuel oil to address difficulties with ignition and sustained combustion. Emulsions were prepared with several grades of glycerin and two grades of fuel oil using direct and phase inversion emulsification. Our findings reveal unique surfactant requirements for emulsifying glycerin into oil; these depend on the levels of several contaminants, including water, ash, and components in MONG (matter organic non-glycerin). A higher hydrophile-lipophile balance was required for a stable emulsion of crude glycerin in fuel oil compared to water in fuel oil. The high concentration of salts from biodiesel catalysts generally hindered emulsion stability. Geometric close-packing of micelles was carefully balanced to mechanically stabilize emulsions while also enabling low viscosity for pumping and fuel injection. Phase inversion emulsification produced more stable emulsions than direct emulsification. Emulsions were tested successfully as fuel for a waste oil burner.

  14. Discovery of naked charm particles and lifetime differences among charm species using nuclear emulsion techniques innovated in Japan

    PubMed Central

    NIU, Kiyoshi

    2008-01-01

    This is a historical review of the discovery of naked charm particles and lifetime differences among charm species. These discoveries in the field of cosmic-ray physics were made by the innovation of nuclear emulsion techniques in Japan. A pair of naked charm particles was discovered in 1971 in a cosmic-ray interaction, three years prior to the discovery of the hidden charm particle, J/Ψ, in western countries. Lifetime differences between charged and neutral charm particles were pointed out in 1975, which were later re-confirmed by the collaborative Experiment E531 at Fermilab. Japanese physicists led by K.Niu made essential contributions to it with improved emulsion techniques, complemented by electronic detectors. This review also discusses the discovery of artificially produced naked charm particles by us in an accelerator experiment at Fermilab in 1975 and of multiple-pair productions of charm particles in a single interaction in 1987 by the collaborative Experiment WA75 at CERN. PMID:18941283

  15. Determination of longevities, chamber building rates and growth functions for Operculina complanata from long term cultivation experiments

    NASA Astrophysics Data System (ADS)

    Woeger, Julia; Kinoshita, Shunichi; Wolfgang, Eder; Briguglio, Antonino; Hohenegger, Johann

    2016-04-01

    Operculina complanata was collected in 20 and 50 m depth around the Island of Sesoko belonging to Japans southernmost prefecture Okinawa in a series of monthly sampling over a period of 16 months (Apr.2014-July2015). A minimum of 8 specimens (4 among the smallest and 4 among the largest) per sampling were cultured in a long term experiment that was set up to approximate conditions in the field as closely as possible. A set up allowing recognition of individual specimens enabled consistent documentation of chamber formation, which in combination with μ-CT-scanning after the investigation period permitted the assignment of growth steps to specific time periods. These data were used to fit various mathematical models to describe growth (exponential-, logistic-, generalized logistic-, Gompertz-function) and chamber building rate (Michaelis-Menten-, Bertalanffy- function) of Operculina complanata. The mathematically retrieved maximum lifespan and mean chamber building rate found in cultured Operculina complanata were further compared to first results obtained by the simultaneously conducted "natural laboratory approach". Even though these comparisons hint at a somewhat stunted growth and truncated life spans of Operculina complanata in culture, they represent a possibility to assess and improve the quality of further cultivation set ups, opening new prospects to a better understanding of the their theoretical niches.

  16. Pickering emulsions stabilized by whey protein nanoparticles prepared by thermal cross-linking.

    PubMed

    Wu, Jiande; Shi, Mengxuan; Li, Wei; Zhao, Luhai; Wang, Ze; Yan, Xinzhong; Norde, Willem; Li, Yuan

    2015-03-01

    A Pickering (o/w) emulsion was formed and stabilized by whey protein isolate nanoparticles (WPI NPs). Those WPI NPs were prepared by thermal cross-linking of denatured WPI proteins within w/o emulsion droplets at 80°C for 15 min. During heating of w/o emulsions containing 10% (w/v) WPI proteins in the water phase, the emulsions displayed turbid-transparent-turbid phase transitions, which is ascribed to the change in the size of the protein-containing water droplets caused by thermal cross-linking between denatured protein molecules. The transparent stage indicated the formation of WPI NPs. WPI NPs of different sizes were obtained by varying the mixing speed. WPI NPs of 200-500 nm were selected to prepare o/w Pickering emulsions because of their good stability against coalescence. By Confocal Laser Scanning Microscopy, it was observed that WPI NPs were closely packed and distributed at the surface of the emulsion droplets. By measuring water contact angles of WPI NPs films, it was found that under most conditions WPI NPs present good partial wetting properties, but that at the isoelectric point (pI) and high ionic strength the particles become more hydrophobic, resulting in less stable Pickering emulsion. Thus, at pH above and below the pI of WPI NPs and low to moderate ionic strengths (1-10 mM), and with a WPI NPs concentration of 2% (w/v), a stable Pickering emulsion can be obtained. The results may provide useful information for applications of WPI NPs in environmentally friendly and food grade applications, notably in food, pharmaceutical and cosmetic products. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Elucidation of stabilizing oil-in-water Pickering emulsion with different modified maize starch-based nanoparticles.

    PubMed

    Ye, Fan; Miao, Ming; Jiang, Bo; Campanella, Osvaldo H; Jin, Zhengyu; Zhang, Tao

    2017-08-15

    The aim of present study was to study the medium-chain triacylglycerol-in-water (O/W) Pickering emulsion stabilized using different modified starch-based nanoparticles (octenylsuccinylation treated soluble starch nanoparticle, OSA-SSNP, and insoluble starch nanoparticle, ISNP). The major factors for affecting the system stability, rheological behaviour and microstructure of the emulsions were also investigated. The parameters of the O/W emulsions stabilized by OSA-SSNP or ISNP were selected as follows: 3.0% of starch nanoparticles concentration, 50% of MCT fraction and 7.0 of system pH. The rheological properties indicated that both emulsions displayed shear-thinning behaviour as a non-Newtonian fluid. For OSA-SSNP, the viscosities of the emulsion were higher than those of ISNP throughout shear rate range for the same condition. The plot of droplet size distribution for emulsion stabilized OSA-SSNP appeared as a single narrow peak, whereas a broader droplet size distribution with bimodal pattern was observed for emulsion stabilized ISNP. The microscopy results showed that both OSA-SSNP and ISNP were adsorbed at oil-water interface to form a barrier film and retard the phase separation. When emulsion was stored for 30d, no phase separation was detected for O/W emulsion, revealing high stability of emulsion stabilized by both OSA-SSNP and ISNP. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Studies with cathode drift chambers for the GlueX experiment at Jefferson Lab

    DOE PAGES

    Pentchev, L.; Barbosa, F.; Berdnikov, V.; ...

    2017-04-22

    A drift chamber system consisting of 24 1 m-diameter chambers with both cathode and wire readout (total of 12,672 channels) is operational in Hall D at Jefferson Lab (Virginia). Two cathode strip planes and one wire plane in each chamber register the same avalanche allowing the study of avalanche development, charge induction process, and strip resolution. We demonstrate a method for reconstructing the two-dimensional distribution of the avalanche “center-of-gravity” position around the wire from an 55Fe source with resolutions down to 30 μm. We estimate the azimuthal extent of the avalanche around the wire as a function of the totalmore » charge for an Ar/CO 2 gas mixture. By means of cluster counting using a modified 3 cm-gap chamber, we observe significant space charge effects within the same track, resulting in an extent of the avalanche along the wire.« less

  19. New analysis of nuclear interaction observed by Mt. Kanbara emulsion chamber experiment

    NASA Technical Reports Server (NTRS)

    Nanjo, H.

    1985-01-01

    To date the analysis of the air cascade family has been performed using a full Monte Carlo simulation. It is difficult to draw a definite conclusion about the interaction mechanism by using only this kind of simulation. On the other hand, attempts to reproduce the original gamma ray at the interaction point, for example decascading, have also been made. This method makes it possible to observe the interaction directly and to analyze the data from various angles. All of these methods, however, assume a constant ER in the cascade shower, where E is energy and R is the distance from the center of the cascade shower. It is impossible to reproduce the exact interaction height and energy by these methods. A relative method in separating one cascade shower from others is adopted. This method makes it possible to estimate the interaction height and energy by using information about the lateral spread of the cascade shower.

  20. Lipid transfer in oil-in-water isasome emulsions: influence of arrested dynamics of the emulsion droplets entrapped in a hydrogel.

    PubMed

    Iglesias, Guillermo Ramón; Pirolt, Franz; Sadeghpour, Amin; Tomšič, Matija; Glatter, Otto

    2013-12-17

    The transfer kinetics of lipids between internally self-assembled droplets of O/W emulsions is studied. The droplets (isasomes) consist of various liquid-crystalline phases or W/O microemulsions stabilized by a polymeric stabilizer F127. The various internal phases were identified by the relative peak positions in the small-angle X-ray scattering (SAXS) curves. An arrested system composed of isasomes embedded in a gel matrix actually provides an additional possibility to control these systems in terms of the release of various host molecules. These experiments have been applied to examine the kinetics of the internal phase reorganization imposed by the lipids' release and uptake by the droplets embedded in a κ-carrageenan (KC) hydrogel network. Increasing the concentration of the gelling agent slows down the transfer from one droplet to the other through the aqueous phase. We examined the region where the free diffusion is stopped. i.e., the point where the system changes from the ergodic to the nonergodic state and the kinetics is essentially slowed down. This effect can be balanced by the addition of small amounts of free polymeric stabilizer, which speeds up the kinetics. This is even possible in the case of highly arrested dynamics of the emulsion droplets, as found for the highest KC hydrogel concentrations forming nonergodic systems.

  1. Effects of Preheating and Storage Temperatures on Aroma Profile and Physical Properties of Citrus-Oil Emulsions.

    PubMed

    Yang, Ying; Zhao, Chengying; Tian, Guifang; Lu, Chang; Zhao, Shaojie; Bao, Yuming; McClements, David Julian; Xiao, Hang; Zheng, Jinkai

    2017-09-06

    Citrus oils are used as good carrier oil for emulsion fabrication due to their special flavor and various health-promoting functions. In this study, the effects of preheating temperature (30, 40, 50, 60, and 70 °C) and storage temperature (4, 25, and 37 °C) on aroma profiles and physical properties of three citrus-oil (i.e., mandarin, sweet orange, and bergamot oils) emulsions were systematically investigated for the first time. The results demonstrated the significant impact of temperature on aroma profile and physical properties. The abundance of d-limonene was found to be the main factor determining the aroma of the three citrus-oil emulsions at different preheating and storage temperatures, while β-linalool and linalyl acetate were important for the aroma of bergamot oil emulsion. Preheating temperature showed a profound impact on the aroma of citrus-oil emulsions, and the aroma of different citrus oil emulsions showed different sensitivity to preheating temperature. Storage temperature was also able to alter the properties of citrus oil emulsions. The higher was the storage temperature, the more alteration of aroma and more instability of the emulsions there was, which could be attributed to the alteration of the oil components and the properties of emulsions. Among all three emulsions, bergamot-oil emulsion was the most stable and exhibited the most potent ability to preserve the aroma against high temperature. Our results would facilitate the application of citrus-oil emulsions in functional foods and beverages.

  2. Hierarchical Biomolecular Emulsions Using 3-D Microfluidics with Uniform Surface Chemistry.

    PubMed

    Toprakcioglu, Zenon; Levin, Aviad; Knowles, Tuomas P J

    2017-11-13

    Microfluidic devices can be used to produce single, double and higher order emulsions, where droplet sizes can be precisely controlled and modulated. Such emulsions have great potential for the storage and study of biomolecules, including peptides and proteins. However, advancement of this technique has remained challenging due to the tendency of various biomolecules to adhere to the surface of the formed channels, resulting in changes in surface wetting and fouling on the micrometer scale. Thus, precise control of surface wettability plays a crucial role in the processes that govern droplet formation. Here, we report an approach for producing both water-oil-water (w/o/w) and oil-water-oil (o/w/o) double emulsions without any need for surface modification, an enabling feature for biomolecular encapsulation. Using this strategy, we show that the number of monodisperse encapsulated internal droplets can be controlled systematically and reproducibly by suitable adjustment of the relevant flow rates, and ranges from 1 to 40 in the case of w/o/w emulsions. We further demonstrate that the number of internal droplets scales linearly with the reciprocal flow rate of the outer continuous phase, when the inner and middle phase flow rates are kept constant. We demonstrate that this approach is suitable for forming double emulsions where the inner phase consists of reconstituted silk protein solution whereby incubation of the internal droplets can be induced to form a gel resulting in silk fibroin microgels surrounded by an external oil shell. Finally, for o/w/o emulsions, we show that single or multiple monodisperse internal droplets can be encapsulated with a size that ranges over 1 order of magnitude, from ca. 10 μm to >100 μm. Moreover, o/w/o emulsions where the middle phase consists of silk fibroin solution were prepared and by allowing the protein to aggregate, a core-shell structure was formed. This microfluidic strategy allows for multiple emulsions to be generated

  3. Distribution of Tocopherols and Tocotrienols in Guinea Pig Tissues Following Parenteral Lipid Emulsion Infusion.

    PubMed

    Xu, Zhidong; Harvey, Kevin A; Pavlina, Thomas M; Zaloga, Gary P; Siddiqui, Rafat A

    2016-07-01

    Tocopherols and tocotrienols possess vitamin E activity and function as the major lipid-soluble antioxidants in the human body. Commercial lipid emulsions are composed of different oils and supply different amounts of vitamin E. The objective of this study was to measure all 8 vitamin E homologs within 4 different commercial lipid emulsions and evaluate their distribution in guinea pig tissues. The distribution of vitamin E homologs within plasma and guinea pig tissues was determined using a high-performance liquid chromatography (HPLC) system. Lipid hydroperoxides in lipid emulsions were determined using a commercial kit (Cayman Chemical Company, Ann Arbor, MI), and malondialdehyde tissue levels were determined using an HPLC system. The lipid emulsions contained variable amounts of tocopherols, which were significantly different between emulsions. Tocotrienols were present at very low concentrations (≤0.3%). We found no correlation between the amount of vitamin E present in the lipid emulsions and lipid peroxidation. Hydroperoxides were the lowest with an olive oil-based emulsion and highest with a fish oil emulsion. The predominant vitamin E homolog in guinea pig tissues was α-tocopherol. No tissues had detectable levels of tocotrienols. Vitamin E levels (primarily α-tocopherol and γ-tocopherol) were highly variable among organ tissues. Plasma levels were a poor reflection of most tissue levels. Vitamin E levels within different lipid emulsions and plasma/tissues are highly variable, and no one tissue or plasma sample serves as a good proxy for levels in other tissues. All study emulsions were well tolerated and did not significantly increase systemic lipid peroxidation. © 2014 American Society for Parenteral and Enteral Nutrition.

  4. Preparation and impact of multiple (water-in-oil-in-water) emulsions in meat systems.

    PubMed

    Cofrades, S; Antoniou, I; Solas, M T; Herrero, A M; Jiménez-Colmenero, F

    2013-11-01

    The aim of this paper was to prepare and characterise multiple emulsions and assess their utility as pork backfat replacers in meat gel/emulsion model systems. In order to improve the fat content (in quantitative and qualitative terms) pork backfat was replaced by a water-in-oil-in-water emulsion (W1/O/W2) prepared with olive oil (as lipid phase), polyglycerol ester of polyricinoleic acid (PGPR) as a lipophilic emulsifier, and sodium caseinate (SC) and whey protein concentrate (WP) as hydrophilic emulsifiers. The emulsion properties (particle size and distribution, stability, microstructure) and meat model system characteristics (composition, texture, fat and water binding properties, and colour) of the W1/O/W2, as affected by reformulation, were evaluated. Multiple emulsions showed a well-defined monomodal distribution. Freshly prepared multiple emulsions showed good thermal stability (better using SC) with no creaming. The meat systems had good water and fat binding properties irrespective of formulation. The effect on texture by replacement of pork backfat by W1/O/W2 emulsions generally depends on the type of double emulsion (associated with the hydrophilic emulsifier used in its formulation) and the fat level in the meat system. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Pickering emulsions stabilized by paraffin wax and Laponite clay particles.

    PubMed

    Li, Caifu; Liu, Qian; Mei, Zhen; Wang, Jun; Xu, Jian; Sun, Dejun

    2009-08-01

    Emulsions containing wax in dispersed droplets stabilized by disc-like Laponite clay particles are prepared. Properties of the emulsions prepared at different temperatures are examined using stability, microscopy and droplet-size analysis. At low temperature, the wax crystals in the oil droplets can protrude through the interface, leading to droplet coalescence. But at higher temperatures, the droplet size decreases with wax concentration. Considering the viscosity of the oil phase and the interfacial tension, we conclude that the wax is liquid-like during the high temperature emulsification process, but during cooling wax crystals appear around the oil/water interface and stabilize the droplets. The oil/water ratio has minimal effect on the emulsions between ratios of 3:7 and 7:3. The Laponite is believed to stabilize the emulsions by increasing the viscosity of the continuous phase and also by adsorbing at the oil/water interface, thus providing a physical barrier to coalescence.

  6. Current trends in water-in-diesel emulsion as a fuel.

    PubMed

    Yahaya Khan, Mohammed; Abdul Karim, Z A; Hagos, Ftwi Yohaness; Aziz, A Rashid A; Tan, Isa M

    2014-01-01

    Water-in-diesel emulsion (WiDE) is an alternative fuel for CI engines that can be employed with the existing engine setup with no additional engine retrofitting. It has benefits of simultaneous reduction of both NO x and particulate matters in addition to its impact in the combustion efficiency improvement, although this needs further investigation. This review paper addresses the type of emulsion, the microexplosion phenomenon, emulsion stability and physiochemical improvement, and effect of water content on the combustion and emissions of WiDE fuel. The review also covers the recent experimental methodologies used in the investigation of WiDE for both transport and stationary engine applications. In this review, the fuel injection pump and spray nozzle arrangement has been found to be the most critical components as far as the secondary atomization is concerned and further investigation of the effect of these components in the microexplosion of the emulsion is suggested to be center of focus.

  7. Current Trends in Water-in-Diesel Emulsion as a Fuel

    PubMed Central

    Yahaya Khan, Mohammed; Abdul Karim, Z. A.; Aziz, A. Rashid A.; Tan, Isa M.

    2014-01-01

    Water-in-diesel emulsion (WiDE) is an alternative fuel for CI engines that can be employed with the existing engine setup with no additional engine retrofitting. It has benefits of simultaneous reduction of both NOx and particulate matters in addition to its impact in the combustion efficiency improvement, although this needs further investigation. This review paper addresses the type of emulsion, the microexplosion phenomenon, emulsion stability and physiochemical improvement, and effect of water content on the combustion and emissions of WiDE fuel. The review also covers the recent experimental methodologies used in the investigation of WiDE for both transport and stationary engine applications. In this review, the fuel injection pump and spray nozzle arrangement has been found to be the most critical components as far as the secondary atomization is concerned and further investigation of the effect of these components in the microexplosion of the emulsion is suggested to be center of focus. PMID:24563631

  8. Globule-size distribution in injectable 20% lipid emulsions: Compliance with USP requirements.

    PubMed

    Driscoll, David F

    2007-10-01

    The compliance of injectable 20% lipid emulsions with the globule-size limits in chapter 729 of the U.S. Pharmacopeia (USP) was examined. As established in chapter 729, dynamic light scattering was applied to determine mean droplet diameter (MDD), with an upper limit of 500 nm. Light obscuration was used to determine the size of fat globules found in the large-diameter tail, expressed as the volume-weighted percent fat exceeding 5 microm (PFAT(5)), with an upper limit of 0.05%. Compliance of seven different emulsions, six of which were stored in plastic bags, with USP limits was assessed. To avoid reaching coincidence limits during the application of method II from overly concentrated emulsion samples, a variable dilution scheme was used to optimize the globule-size measurements for each emulsion. One-way analysis of variance of globule-size distribution (GSD) data was conducted if any results of method I or II exceeded the respective upper limits. Most injectable lipid emulsions complied with limits established by USP chapter 729, with the exception of those of one manufacturer, which failed limits as proposed for to meet the PFAT(5) three of the emulsions tested. In contrast, all others studied (one packaged in glass and three packaged in plastic) met both criteria. Among seven injectable lipid emulsions tested for GSD, all met USP chapter 729 MDD requirements and three, all from the same manufacturer and packaged in plastic, did not meet PFAT(5) requirements.

  9. Telerobotic Tending of Space Based Plant Growth Chamber

    NASA Technical Reports Server (NTRS)

    Backes, P. G.; Long, M. K.; Das, H.

    1994-01-01

    The kinematic design of a telerobotic mechanism for tending a plant growth space science experiment chamber is described. Ground based control of tending mechanisms internal to space science experiments will allow ground based principal investigators to interact directly with their space science experiments.

  10. [Multiple emulsions; bioactive compounds and functional foods].

    PubMed

    Jiménez-Colmenero, Francisco

    2013-01-01

    The continued appearance of scientific evidence about the role of diet and/or its components in health and wellness, has favored the emergence of functional foods which currently constitute one of the chief factors driving the development of new products. The application of multiple emulsions opens new possibilities in the design and development of functional foods. Multiple emulsions can be used as an intermediate product (food ingredient) into technological strategies normally used in the optimization of the presence of bioactive compounds in healthy and functional foods. This paper presents a summary of the types, characteristics and formation of multiple emulsions, possible location of bioactive compounds and their potential application in the design and preparation of healthy and functional foods. Such applications are manifested particularly relevant in relation to quantitative and qualitative aspects of lipid material (reduced fat/calories and optimization of fatty acid profile), encapsulation of bioactive compounds mainly hydrophilic and sodium reduction. This strategy offers interesting possibilities regarding masking flavours and improving sensory characteristics of foods. Copyright © AULA MEDICA EDICIONES 2013. Published by AULA MEDICA. All rights reserved.

  11. Lipid Emulsion for Local Anesthetic Systemic Toxicity

    PubMed Central

    Ciechanowicz, Sarah; Patil, Vinod

    2012-01-01

    The accidental overdose of local anesthetics may prove fatal. The commonly used amide local anesthetics have varying adverse effects on the myocardium, and beyond a certain dose all are capable of causing death. Local anesthetics are the most frequently used drugs amongst anesthetists and although uncommon, local anaesthetic systemic toxicity accounts for a high proportion of mortality, with local anaesthetic-induced cardiac arrest particularly resistant to standard resuscitation methods. Over the last decade, there has been convincing evidence of intravenous lipid emulsions as a rescue in local anesthetic-cardiotoxicity, and anesthetic organisations, over the globe have developed guidelines on the use of this drug. Despite this, awareness amongst practitioners appears to be lacking. All who use local anesthetics in their practice should have an appreciation of patients at high risk of toxicity, early symptoms and signs of toxicity, preventative measures when using local anesthetics, and the initial management of systemic toxicity with intravenous lipid emulsion. In this paper we intend to discuss the pharmacology and pathophysiology of local anesthetics and toxicity, and the rationale for lipid emulsion therapy. PMID:21969824

  12. Random close packing of polydisperse jammed emulsions

    NASA Astrophysics Data System (ADS)

    Brujic, Jasna

    2010-03-01

    Packing problems are everywhere, ranging from oil extraction through porous rocks to grain storage in silos and the compaction of pharmaceutical powders into tablets. At a given density, particulate systems pack into a mechanically stable and amorphous jammed state. Theoretical frameworks have proposed a connection between this jammed state and the glass transition, a thermodynamics of jamming, as well as geometric modeling of random packings. Nevertheless, a simple underlying mechanism for the random assembly of athermal particles, analogous to crystalline ordering, remains unknown. Here we use 3D measurements of polydisperse packings of emulsion droplets to build a simple statistical model in which the complexity of the global packing is distilled into a local stochastic process. From the perspective of a single particle the packing problem is reduced to the random formation of nearest neighbors, followed by a choice of contacts among them. The two key parameters in the model, the available space around a particle and the ratio of contacts to neighbors, are directly obtained from experiments. Remarkably, we demonstrate that this ``granocentric'' view captures the properties of the polydisperse emulsion packing, ranging from the microscopic distributions of nearest neighbors and contacts to local density fluctuations and all the way to the global packing density. Further applications to monodisperse and bidisperse systems quantitatively agree with previously measured trends in global density. This model therefore reveals a general principle of organization for random packing and lays the foundations for a theory of jammed matter.

  13. Diesel Glycerin Emulsion Fuel Project

    DOT National Transportation Integrated Search

    2018-05-30

    The work of the Marine Engine Testing and Emissions Laboratory (METEL) at Maine Maritime Academy (MMA) in the area of emulsion biofuels is presented. An overview of METEL is discussed including its unique capabilities in the fabrication, characteriza...

  14. Osmosis-driven viscous fingering of oil-in-water emulsions

    NASA Astrophysics Data System (ADS)

    Liu, Ying; Rallabandi, Bhargav; Baskaran, Mrudhula; Stone, Howard

    2017-11-01

    Viscous fingering occurs when a low viscosity fluid invades a more viscous fluid. Fingering of two miscible fluids is more complicated than that of immiscible fluids in that there is no sharp fluid-fluid interface and diffusion occurs between the phases. We experimentally studied the fingering of two miscible fluids: an oil-in-water emulsion and a sodium chloride solution. When the concentration of sodium chloride in the water phase in the emulsion exceeds that in the sodium chloride solution, the consequent osmotic flow automatically facilitates the occurrence of the fingering. On the contrary, when the sodium chloride solution has higher concentration, the spreading of emulsion is more uniform than the case without the concentration difference. We provide a model to rationalize and quantify these observations.

  15. Stabilization of kerosene/water emulsions using bioemulsifiers obtained by fermentation of hemicellulosic sugars with Lactobacillus pentosus.

    PubMed

    Portilla-Rivera, Oscar Manuel; Torrado, Ana María; Domínguez, José Manuel; Moldes, Ana Belén

    2010-09-22

    The results of the present study show that Lactobacillus pentosus can produce extracellular bioemulsifiers by utilizing hemicellulosic sugars from grape marc as a source of carbon. The effectiveness of these bioemulsifiers (LPEM) was studied by preparing kerosene/water (K/W) emulsions in the presence and absence of these emulsifiers. Various parameters such as relative emulsion volume (EV), stabilizing capacity (ES), viscosity, and droplet size of K/W emulsions were measured. The EV values for K/W emulsions stabilized by concentrated LPEM were approximately 74.5% after 72 h of emulsion formation, with ES values of 97%. These values were higher than those obtained with dodecyl sodium sulfate as emulsifier (EV=62.3% and ES=87.7%). Additionally, K/W emulsions stabilized by LPEM produced polydisperse emulsions containing droplets of radius between 10 and 40 μm, which were smaller than those obtained for K/W emulsions without LPEM (droplet radius=60-100 μm). Moreover, the viscosity values of the K/W emulsions without and with LPEM were approximately 236 and 495 cP, respectively.

  16. Exposure chamber

    DOEpatents

    Moss, Owen R.

    1980-01-01

    A chamber for exposing animals, plants, or materials to air containing gases or aerosols is so constructed that catch pans for animal excrement, for example, serve to aid the uniform distribution of air throughout the chamber instead of constituting obstacles as has been the case in prior animal exposure chambers. The chamber comprises the usual imperforate top, bottom and side walls. Within the chamber, cages and their associated pans are arranged in two columns. The pans are spaced horizontally from the walls of the chamber in all directions. Corresponding pans of the two columns are also spaced horizontally from each other. Preferably the pans of one column are also spaced vertically from corresponding pans of the other column. Air is introduced into the top of the chamber and withdrawn from the bottom. The general flow of air is therefore vertical. The effect of the horizontal pans is based on the fact that a gas flowing past the edge of a flat plate that is perpendicular to the flow forms a wave on the upstream side of the plate. Air flows downwardly between the chamber walls and the outer edges of the pan. It also flows downwardly between the inner edges of the pans of the two columns. It has been found that when the air carries aerosol particles, these particles are substantially uniformly distributed throughout the chamber.

  17. Cellulose nanofibrils for one-step stabilization of multiple emulsions (W/O/W) based on soybean oil.

    PubMed

    Carrillo, Carlos A; Nypelö, Tiina E; Rojas, Orlando J

    2015-05-01

    Cellulose nanofibrils (CNF) were incorporated in water-in-oil (W/O) microemulsions and emulsions, as well as water-in-oil-in-water (W/O/W) multiple emulsions using soybean oil. The addition of CNF to the aqueous phase expanded the composition range to obtain W/O/W emulsions. CNF also increased the viscosity of the continuous phase and reduced the drop size both of which increased the stability and effective viscosity of the emulsions. The effects of oil type and polarity on the properties of the W/O/W emulsions were tested with limonene and octane, which compared to soybean oil produced a smaller emulsion drop size, and thus a higher emulsion viscosity. Overall, CNF are a feasible alternative to conventional polysaccharides as stability enhancers for normal and multiple emulsions that exhibit strong shear thinning behavior. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. WE-G-BRA-06: Calibrating an Ionisation Chamber: Gaining Experience Using a Dosimetry 'flight Simulator'.

    PubMed

    Beavis, A; Saunderson, J; Ward, J

    2012-06-01

    Recently there has been great interest in the use of simulation training, with the view to enhance safety within radiotherapy practice. We have developed a Virtual Environment for Radiotherapy Training (VERT) which facilitates this, including the simulation of a number of 'Physics practices'. One such process is the calibration of an ionisation chamber for use in Linac photon beams. The VERT system was used to provide a life sized 3D virtual environment within which we were able to simulate the calibration of a departmental chamber for 6MV and 15 MV beams following the UK 1990 Code of Practice. The characteristics of the beams are fixed parameters in the simulation, whereas default (Absorbed dose to water) correction factors of the chambers are configurable thereby dictating their response in the virtual x-ray beam. When the simulation is started, a random, realistic temperature and pressure is assigned to the bunker. Measurement and chamber positional errors are assigned to the chambers. A virtual water phantom was placed on the Linac couch and irradiated through the side using a 10 × 10 field. With a chamber at the appropriate depths and irradiated iso-centrically, the Quality Indices (QI) of the beams were obtained. The two chambers were 'inter-compared', allowing the departmental chamber calibration factor to be calculated from that of the reference chamber. For the virtual 6/15 MV beams, the QI were found to be 0.668/ 0.761 and the inter-comparison ratios 0.4408/ 0.4402 respectively. The departmental chamber calibration factors were calculated; applying these and appropriate environmental corrections allowed the output of the Linac to be confirmed. We have shown how a virtual training environment can be used to demonstrate practical processes and reinforce learning. The UK CoP was used here, however any relevant protocol could be demonstrated. Two of the authors (Beavis and Ward) are Founders of Vertual Ltd, a spin-out company created to commercialise the

  19. Parenteral nutrition-associated liver disease and lipid emulsions.

    PubMed

    Zugasti Murillo, Ana; Petrina Jáuregui, Estrella; Elizondo Armendáriz, Javier

    2015-01-01

    Parenteral nutrition-associated liver disease (PNALD) is a particularly important problem in patients who need this type of nutritional support for a long time. Prevalence of the condition is highly variable depending on the series, and its clinical presentation is different in adults and children. The etiology of PNALD is not well defined, and participation of several factors at the same time has been suggested. When a bilirubin level >2 mg/dl is detected for a long time, other causes of liver disease should be ruled out and risk factors should be minimized. The composition of lipid emulsions used in parenteral nutrition is one of the factors related to PNALD. This article reviews the different types of lipid emulsions and the potential benefits of emulsions enriched with omega-3 fatty acids. Copyright © 2014 SEEN. Published by Elsevier España, S.L.U. All rights reserved.

  20. Double Emulsion Generation Using a Polydimethylsiloxane (PDMS) Co-axial Flow Focus Device.

    PubMed

    Cole, Russell H; Tran, Tuan M; Abate, Adam R

    2015-12-25

    Double emulsions are useful in a number of biological and industrial applications in which it is important to have an aqueous carrier fluid. This paper presents a polydimethylsiloxane (PDMS) microfluidic device capable of generating water/oil/water double emulsions using a coaxial flow focusing geometry that can be fabricated entirely using soft lithography. Similar to emulsion devices using glass capillaries, double emulsions can be formed in channels with uniform wettability and with dimensions much smaller than the channel sizes. Three dimensional flow focusing geometry is achieved by casting a pair of PDMS slabs using two layer soft lithography, then mating the slabs together in a clamshell configuration. Complementary locking features molded into the PDMS slabs enable the accurate registration of features on each of the slab surfaces. Device testing demonstrates formation of double emulsions from 14 µm to 50 µm in diameter while using large channels that are robust against fouling and clogging.

  1. Double Emulsion Generation Using a Polydimethylsiloxane (PDMS) Co-axial Flow Focus Device

    PubMed Central

    Cole, Russell H.; Tran, Tuan M.; Abate, Adam R.

    2015-01-01

    Double emulsions are useful in a number of biological and industrial applications in which it is important to have an aqueous carrier fluid. This paper presents a polydimethylsiloxane (PDMS) microfluidic device capable of generating water/oil/water double emulsions using a coaxial flow focusing geometry that can be fabricated entirely using soft lithography. Similar to emulsion devices using glass capillaries, double emulsions can be formed in channels with uniform wettability and with dimensions much smaller than the channel sizes. Three dimensional flow focusing geometry is achieved by casting a pair of PDMS slabs using two layer soft lithography, then mating the slabs together in a clamshell configuration. Complementary locking features molded into the PDMS slabs enable the accurate registration of features on each of the slab surfaces. Device testing demonstrates formation of double emulsions from 14 µm to 50 µm in diameter while using large channels that are robust against fouling and clogging. PMID:26780079

  2. Exploiting the pliability and lateral mobility of Pickering emulsion for enhanced vaccination

    NASA Astrophysics Data System (ADS)

    Xia, Yufei; Wu, Jie; Wei, Wei; Du, Yiqun; Wan, Tao; Ma, Xiaowei; An, Wenqi; Guo, Aiying; Miao, Chunyu; Yue, Hua; Li, Shuoguo; Cao, Xuetao; Su, Zhiguo; Ma, Guanghui

    2018-02-01

    A major challenge in vaccine formulations is the stimulation of both the humoral and cellular immune response for well-defined antigens with high efficacy and safety. Adjuvant research has focused on developing particulate carriers to model the sizes, shapes and compositions of microbes or diseased cells, but not antigen fluidity and pliability. Here, we develop Pickering emulsions--that is, particle-stabilized emulsions that retain the force-dependent deformability and lateral mobility of presented antigens while displaying high biosafety and antigen-loading capabilities. Compared with solid particles and conventional surfactant-stabilized emulsions, the optimized Pickering emulsions enhance the recruitment, antigen uptake and activation of antigen-presenting cells, potently stimulating both humoral and cellular adaptive responses, and thus increasing the survival of mice upon lethal challenge. The pliability and lateral mobility of antigen-loaded Pickering emulsions may provide a facile, effective, safe and broadly applicable strategy to enhance adaptive immunity against infections and diseases.

  3. Plant growth chamber based on space proven controlled environment technology

    NASA Astrophysics Data System (ADS)

    Ignatius, Ronald W.; Ignatius, Matt H.; Imberti, Henry J.

    1997-01-01

    Quantum Devices, Inc., in conjunction with Percival Scientific, Inc., and the Wisconsin Center for Space Automation and Robotics (WCSAR) have developed a controlled environment plant growth chamber for terrestrial agricultural and scientific applications. This chamber incorporates controlled environment technology used in the WCSAR ASTROCULTURE™ flight unit for conducting plant research on the Space Shuttle. The new chamber, termed CERES 2010, features air humidity, temperature, and carbon dioxide control, an atmospheric contaminant removal unit, an LED lighting system, and a water and nutrient delivery system. The advanced environment control technology used in this chamber will increase the reliability and repeatability of environmental physiology data derived from plant experiments conducted in this chamber.

  4. 21 CFR 524.802 - Enrofloxacin and silver sulfadiazine otic emulsion.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Enrofloxacin and silver sulfadiazine otic emulsion. 524.802 Section 524.802 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN... ANIMAL DRUGS § 524.802 Enrofloxacin and silver sulfadiazine otic emulsion. (a) Specifications. Each...

  5. Synthesis of nanocrystalline CeO{sub 2} particles by different emulsion methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Supakanapitak, Sunisa; Boonamnuayvitaya, Virote; Jarudilokkul, Somnuk, E-mail: somnuk.jar@kmutt.ac.th

    2012-05-15

    Cerium oxide nanoparticles were synthesized using three different methods of emulsion: (1) reversed micelle (RM); (2) emulsion liquid membrane (ELM); and (3) colloidal emulsion aphrons (CEAs). Ammonium cerium nitrate and polyoxyethylene-4-lauryl ether (PE4LE) were used as cerium and surfactant sources in this study. The powder was calcined at 500 Degree-Sign C to obtain CeO{sub 2}. The effect of the preparation procedure on the particle size, surface area, and the morphology of the prepared powders were investigated. The obtained powders are highly crystalline, and nearly spherical in shape. The average particle size and the specific surface area of the powders frommore » the three methods were in the range of 4-10 nm and 5.32-145.73 m{sup 2}/g, respectively. The CeO{sub 2} powders synthesized by the CEAs are the smallest average particle size, and the highest surface area. Finally, the CeO{sub 2} prepared by the CEAs using different cerium sources and surfactant types were studied. It was found that the surface tensions of cerium solution and the type of surfactant affect the particle size of CeO{sub 2}. - Graphical Abstract: The emulsion droplet size distribution and the TEM images of CeO{sub 2} prepared by different methods: reversed micelle (RM), emulsion liquid membrane (ELM) and colloidal emulsion aphrons (CEAs). Highlights: Black-Right-Pointing-Pointer Nano-sized CeO{sub 2} was successfully prepared by three different emulsion methods. Black-Right-Pointing-Pointer The colloidal emulsion aphrons method producing CeO{sub 2} with the highest surface area. Black-Right-Pointing-Pointer The surface tensions of a cerium solution have slightly effect on the particle size. Black-Right-Pointing-Pointer The size control could be interpreted in terms of the adsorption of the surfactant.« less

  6. Preliminary Experiments Using a Passive Detector for Measuring Indoor 220Rn Progeny Concentrations with an Aerosol Chamber.

    PubMed

    Sorimachi, Atsuyuki; Tokonami, Shinji; Kranrod, Chutima; Ishikawa, Tetsuo

    2015-06-01

    This paper describes preliminary experiments using a passive detector for integrating measurements of indoor thoron (²²⁰Rn) progeny concentrations with an aerosol chamber. A solid state nuclear detector (CR-39) covered with a thin aluminum-vaporized polyethylene plate (Mylar film) was used to detect only alpha particles emitted from ²¹²Po due to ²²⁰Rn progeny deposited on the detector surfaces. The initial experiment showed that Mylar film with area density of more than 5 mg cm⁻² was suitable to cut off completely alpha particles of 7.7 MeV from ²¹⁴Po of ²²²Rn progeny decay. In the experiment using the passive detector, it was observed that the net track density increased linearly with an increase of time-integrating ²²⁰Rn progeny concentration. As a result of dividing deposition rates by atom concentrations, the deposition velocity was given as 0.023 cm s⁻¹ for total ²²⁰Rn progeny. The model estimates of deposition velocities were 0.330 cm s⁻¹ for unattached ²²⁰Rn progeny and 0.0011 cm s⁻¹ for aerosol-attached ²²⁰Rn progeny using Lai-Nazaroff formulae. These deposition velocities were in the same range with the results reported in the literature. It was also found that the exposure experiments showed little influence of vertical profiles and surface orientations of the passive detector in the chamber on the detection responses, which was in good agreement with that in the model estimates. Furthermore, it was inferred that the main uncertainty of the passive detector was inhomogeneous deposition of Rn progeny onto its detection surfaces.

  7. Lipid emulsions enhance the norepinephrine-mediated reversal of local anesthetic-induced vasodilation at toxic doses.

    PubMed

    Lee, Soo Hee; Sung, Hui-Jin; Ok, Seong-Ho; Yu, Jongsun; Choi, Mun-Jeoung; Lim, Jin Soo; Sohn, Ju-Tae

    2013-11-01

    Intravenous lipid emulsions have been used to treat the systemic toxicity of local anesthetics. The goal of this in vitro study was to examine the effects of lipid emulsions on the norepinephrine-mediated reversal of vasodilation induced by high doses of levobupivacaine, ropivacaine, and mepivacaine in isolated endothelium-denuded rat aorta, and to determine whether such effects are associated with the lipid solubility of local anesthetics. The effects of lipid emulsions (0.30, 0.49, 1.40, and 2.61%) on norepinephrine concentration-responses in high-dose local anesthetic (6×10(-4) M levobupivacaine, 2×10(-3) M ropivacaine, and 7×10(-3) M mepivacaine)-induced vasodilation of isolated aorta precontracted with 60 mM KCl were assessed. The effects of lipid emulsions on local anesthetic- and diltiazem-induced vasodilation in isolated aorta precontracted with phenylephrine were also assessed. Lipid emulsions (0.30%) enhanced norepinephrine-induced contraction in levobupivacaine-induced vasodilation, whereas 1.40 and 2.61% lipid emulsions enhanced norepinephrine-induced contraction in both ropivacaine- and mepivacaine-induced vasodilation, respectively. Lipid emulsions (0.20, 0.49 and 1.40%) inhibited vasodilation induced by levobupivacaine and ropivacaine, whereas 1.40 and 2.61% lipid emulsions slightly attenuated mepivacaine (3×10(-3) M)-induced vasodilation. In addition, lipid emulsions attenuated diltiazem-induced vasodilation. Lipid emulsions enhanced norepinephrine-induced contraction in endothelium-denuded aorta without pretreatment with local anesthetics. Taken together, these results suggest that lipid emulsions enhance the norepinephrine-mediated reversal of local anesthetic-induced vasodilation at toxic anesthetic doses and inhibit local anesthetic-induced vasodilation in a manner correlated with the lipid solubility of a particular local anesthetic.

  8. High-energy Physics with Hydrogen Bubble Chambers

    DOE R&D Accomplishments Database

    Alvarez, L. W.

    1958-03-07

    Recent experience with liquid hydrogen bubble chambers of 25 and 40 cm dia. in high-energy physics experiments is discussed. Experiments described are: interactions of K{sup -} mesons with protons, interactions of antiprotons with protons, catalysis of nuclear fusion reactions by muons, and production and decay of hyperons from negative pions. (W.D.M.)

  9. Making and breaking bridges in a Pickering emulsion.

    PubMed

    French, David J; Taylor, Phil; Fowler, Jeff; Clegg, Paul S

    2015-03-01

    Particle bridges form in Pickering emulsions when the oil-water interfacial area generated by an applied shear is greater than that which can be stabilised by the available particles and the particles have a slight preference for the continuous phase. They can subsequently be broken by low shear or by modifying the particle wettability. We have developed a model oil-in-water system for studying particle bridging in Pickering emulsions stabilised by fluorescent Stöber silica. A mixture of dodecane and isopropyl myristate was used as the oil phase. We have used light scattering and microscopy to study the degree to which emulsions are bridged, and how this is affected by parameters including particle volume fraction, particle wettability and shear rate. We have looked for direct evidence of droplets sharing particles using freeze fracture scanning electron microscopy. We have created strongly aggregating Pickering emulsions using our model system. This aggregating state can be accessed by varying several different parameters, including particle wettability and particle volume fraction. Particles with a slight preference for the continuous phase are required for bridging to occur, and the degree of bridging increases with increasing shear rate but decreases with increasing particle volume fraction. Particle bridges can subsequently be removed by applying low shear or by modifying the particle wettability. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  10. Protein adsorption and excipient effects on kinetic stability of silicone oil emulsions.

    PubMed

    Ludwig, D Brett; Carpenter, John F; Hamel, Jean-Bernard; Randolph, Theodore W

    2010-04-01

    The effect of silicone oil on the stability of therapeutic protein formulations is of concern in the biopharmaceutical industry as more proteins are stored and delivered in prefilled syringes. Prefilled syringes provide convenience for medical professionals and patients, but prolonged exposure of proteins to silicone oil within prefilled syringes may be problematic. In this study, we characterize systems of silicone oil-in-aqueous buffer emulsions and model proteins in formulations containing surfactant, sodium chloride, or sucrose. For each of the formulations studied, silicone oil-induced loss of soluble protein, likely through protein adsorption onto the silicone oil droplet surface. Excipient addition affected both protein adsorption and emulsion stability. Addition of surfactant stabilized emulsions but decreased protein adsorption to silicone oil microdroplets. In contrast, addition of sodium chloride increased protein adsorption and decreased emulsion stability. Silicone oil droplets with adsorbed lysozyme rapidly agglomerated and creamed out of suspension. This decrease in the kinetic stability of the emulsion is ascribed to surface charge neutralization and a bridging flocculation phenomenon and illustrates the need to investigate not only the effects of silicone oil on protein stability, but also the effects of protein formulation variables on emulsion stability. 2009 Wiley-Liss, Inc. and the American Pharmacists Association

  11. Study of nuclear multifragmentation induced by ultrarelativistic μ-mesons in nuclear track emulsion

    NASA Astrophysics Data System (ADS)

    Artemenkov, D. A.; Bradnova, V.; Firu, E.; Kornegrutsa, N. K.; Haiduc, M.; Mamatkulov, K. Z.; Kattabekov, R. R.; Neagu, A.; Rukoyatkin, P. A.; Rusakova, V. V.; Stanoeva, R.; Zaitsev, A. A.; Zarubin, P. I.; Zarubina, I. G.

    2016-02-01

    Exposures of test samples of nuclear track emulsion were analyzed. The formation of high-multiplicity nuclear stars was observed upon irradiating nuclear track emulsions with ultrarelativistic muons. Kinematical features studied in this exposure of nuclear track emulsions for events of the muon-induced splitting of carbon nuclei to three α-particles are indicative of the nuclear-diffraction interaction mechanism.

  12. Synergistic performance of lecithin and glycerol monostearate in oil/water emulsions.

    PubMed

    Moran-Valero, María I; Ruiz-Henestrosa, Víctor M Pizones; Pilosof, Ana M R

    2017-03-01

    The effects of the combination of two low-molecular weight emulsifiers (lecithin and glycerol-monostearate (GMS)) on the stability, the dynamic interfacial properties and rheology of emulsions have been studied. Different lecithin/GMS ratios were tested in order to assess their impact in the formation and stabilization of oil in water emulsions. The combination of the two surfactants showed a synergistic behaviour, mainly when combined at the same ratio. The dynamic film properties and ζ-potential showed that lecithin dominated the surface of oil droplets, providing stability to the emulsions against flocculation and coalescence, while allowing the formation of small oil droplets. At long times of adsorption, all of the mixtures showed similar interfacial activity. However, higher values of interfacial pressure at the initial times were reached when lecithin and GMS were at the same ratio. Interfacial viscoelasticity and viscosity of mixed films were also similar to that of lecithin alone. On the other hand, emulsions viscosity was dominated by GMS. The synergistic performance of lecithin-GMS blends as stabilizers of oil/water emulsions is attributed to their interaction both in the bulk and at the interface. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Thiolated alkyl-modified carbomers: Novel excipients for mucoadhesive emulsions.

    PubMed

    Bonengel, Sonja; Hauptstein, Sabine; Leonaviciute, Gintare; Griessinger, Julia; Bernkop-Schnürch, Andreas

    2015-07-30

    The aim of this study was the design and evaluation of mucoadhesive emulsifying polymeric excipients. Three thiol bearing ligands with increasing pKa values of their sulfhydryl group, namely 4-aminothiophenol (pKa=6.86), l-cysteine (pKa=8.4) and d/l-homocysteine (pKa=10.0) were coupled to the polymeric backbone of alkyl-modified carbomer (PA1030). Resulting conjugates displayed 818.5μmol 4-aminothiophenol, 698.5μmol cysteine and 651.5μmol homocysteine per gram polymer and were evaluated regarding the reactivity of thiol groups, emulsifying and mucoadhesive properties. In general, the synthesized conjugates showed a pH dependent reactivity, whereby the fastest oxidation occurred in PA1030-cysteine, as almost no free thiol groups could be detected after 120min. Emulsification of medium chain triglycerides was feasible with all synthesized conjugates leading to oil-in-water-emulsions. Emulsions with PA1030-cysteine displayed the highest stability and the smallest droplet size among the tested formulations. Oxidation and consequently cross-linking of the thiomers prior to the emulsification process led to an overall decreased emulsion stability. Evaluating mucosal residence time of thiomer emulsions on porcine buccal mucosa, a 9.2-fold higher amount of formulation based on PA1030-cysteine remained on the mucosal tissue within 3h compared to the unmodified polymer. According to these results, the highest reactive ligand l-cysteine seems to be most promising in order to obtain thiolated polymers for the preparation of mucoadhesive o/w-emulsions. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Prevention of Over-Pressurization During Combustion in a Sealed Chamber

    NASA Technical Reports Server (NTRS)

    Gokoglu, Suleyman A.; Niehaus, Justin E.; Olson, Sandra L.; Dietrich, Daniel L.; Ruff, Gary A.; Johnston, Michael C.

    2012-01-01

    The combustion of flammable material in a sealed chamber invariably leads to an initial pressure rise in the volume. The pressure rise is due to the increase in the total number of gaseous moles (condensed fuel plus chamber oxygen combining to form gaseous carbon dioxide and water vapor) and, most importantly, the temperature rise of the gas in the chamber. Though the rise in temperature and pressure would reduce with time after flame extinguishment due to the absorption of heat by the walls and contents of the sealed spacecraft, the initial pressure rise from a fire, if large enough, could lead to a vehicle over-pressure and the release of gas through the pressure relief valve. This paper presents a simple lumped-parameter model of the pressure rise in a sealed chamber resulting from the heat release during combustion. The transient model considers the increase in gaseous moles due to combustion, and heat transfer to the chamber walls by convection and radiation and to the fuel-sample holder by conduction, as a function of the burning rate of the material. The results of the model are compared to the pressure rise in an experimental chamber during flame spread tests as well as to the pressure falloff after flame extinguishment. The experiments involve flame spread over thin solid fuel samples. Estimates of the heat release rate profiles for input to the model come from the assumed stoichiometric burning of the fuel along with the observed flame spread behavior. The sensitivity of the model to predict maximum chamber pressure is determined with respect to the uncertainties in input parameters. Model predictions are also presented for the pressure profile anticipated in the Fire Safety-1 experiment, a material flammability and fire safety experiment proposed for the European Space Agency (ESA) Automated Transfer Vehicle (ATV). Computations are done for a range of scenarios including various initial pressures and sample sizes. Based on these results, various

  15. Photonic band gap effect and structural color from silver nanoparticle gelatin emulsion

    NASA Astrophysics Data System (ADS)

    Kok, Mang Hin; Ma, Rui; Lee, Jeffrey Chi Wai; Tam, Wing Yim; Chan, C. T.; Sheng, Ping; Cheah, Kok Wai

    2005-10-01

    We have fabricated planar structures of silver nanoparticles in monochromatic gelatin emulsion with a continuous spacing ranging from 0.15-0.40 micron using a two-beam interference of a single laser source. Our planar holograms display a colorful “rainbow” pattern and photonic bandgaps covering the visible and IR ranges. We model the planar silver nanoparticle-gelatin composite system using an effective medium approach and good agreement is obtained between theory and experiment.

  16. Water-in-oil Pickering emulsions stabilized by stearoylated microcrystalline cellulose.

    PubMed

    Pang, Bo; Liu, Huan; Liu, Peiwen; Peng, Xinwen; Zhang, Kai

    2018-03-01

    Hydrophobic particles with static water contact angles larger than 90° are more like to stabilize W/O Pickering emulsions. In particular, high internal phase Pickering emulsions (HIPEs) are of great interest for diverse applications. However, W/O HIPEs have rarely been realized using sustainable biopolymers. Herein, we used stearoylated microcrystalline cellulose (SMCC) to stabilize W/O Pickering emulsions and especially, W/O HIPEs. Moreover, these W/O HIPEs can be further used as platforms for the preparation of porous materials, such as porous foams. Stearoylated microcrystalline cellulose (SMCC) was prepared by modifying MCC with stearoyl chloride under heterogeneous conditions. Using SMCC as emulsifiers, W/O medium and high internal phase Pickering emulsions (MIPEs and HIPEs) with various organic solvents as continuous phases were prepared using one-step and two-step methods, respectively. Polystyrene (PS) foams were prepared after polymerization of oil phase using HIPEs as templates and their oil/water separation capacity were studied. SMCC could efficiently stabilize W/O Pickering emulsions and HIPEs could only be prepared via the two-step method. The internal phase volume fraction of the SMCC-stabilized HIPEs reached as high as 89%. Diverse internal phase volume fractions led to distinct inner structures of foams with closed or open cells. These macroporous polystyrene (PS) foams demonstrated great potential for the effective absorption of organic solvents from underwater. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Pickering-type water-in-oil-in-water multiple emulsions toward multihollow nanocomposite microspheres.

    PubMed

    Maeda, Hayata; Okada, Masahiro; Fujii, Syuji; Nakamura, Yoshinobu; Furuzono, Tsutomu

    2010-09-07

    Multihollow hydroxyapatite (HAp)/poly(L-lactic acid) (PLLA) nanocomposite microspheres were readily fabricated by solvent evaporation from a "Pickering-type" water-in-(dichloromethane solution of PLLA)-in-water multiple emulsion stabilized with HAp nanoparticles. The multiple emulsion was stabilized with the aid of PLLA molecules used as a wettability modifier for HAp nanoparticles, although HAp nanoparticles did not work solely as particulate emulsifiers for Pickering-type emulsions consisting of pure dichloromethane and water. The interaction between PLLA and HAp nanoparticles at the oil-water interfaces plays a crucial role toward the preparation of stable multiple emulsion and multihollow microspheres.

  18. Development of Safe and Potent Oil-in-Water Emulsion of Paclitaxel to Treat Peritoneal Dissemination.

    PubMed

    Ogawara, Ken-Ichi; Fukuoka, Yoshiko; Yoshizawa, Yuta; Kimura, Toshikiro; Higaki, Kazutaka

    2017-04-01

    To develop a safer and more potent paclitaxel (PTX) formulation, we prepared various oil-in-water emulsions by using egg phosphatidylcholine, Tween 80, and a mixture of triglycerides with different fatty acid chain lengths as the cosurfactant, surfactant, and oil phase component, respectively. The mean particle diameters of the PTX-emulsions prepared were around 100 nm. The PTX-emulsions did not provoke histamine release from rat mast cells and did not show any significant hemolytic activity, suggesting that PTX-emulsions are biocompatible. In vivo antitumor activity after single intraperitoneal injection of PTX-emulsions to ascites tumor-bearing mice revealed that the formulation containing tricaproin and triacetin (3:1, wt/wt, PTX-emulsion B) significantly prolonged the survival time and suppressed the accumulation of ascites fluid. Two distinct in vitro release studies showed that the release of PTX from emulsion B was significantly faster than those from other preparations. These results indicate that the adequately sustained PTX release would lead to potent in vivo antitumor activity and that PTX-emulsion B would offer an alternative approach to treat peritoneal dissemination. Copyright © 2017 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  19. S-190 exposure verification flight test. [photographic emulsions and film

    NASA Technical Reports Server (NTRS)

    Perry, L.

    1973-01-01

    A flight test was conducted to determine the optimum exposures for the Skylab S-190A experiment. An aircraft multispectral photographic system (AMPS) which is installed in the NASA Earth Resources aircraft NP3A was used to simulate the S-190A system. The same film emulsions to be used for S-190A were used in the flight test. These rolls were on factory-loaded spools for use in the AMPS camera system. It was found that some variation is to be expected between these rolls and the S-190A flight loads.

  20. Physical and oxidative stability of fish oil-in-water emulsions stabilized with beta-lactoglobulin and pectin.

    PubMed

    Katsuda, Marly S; McClements, D J; Miglioranza, Lucia H S; Decker, Eric A

    2008-07-23

    The oxidation of fatty acids can be inhibited by engineering the surface of oil-in-water emulsion droplets to decrease interactions between aqueous phase prooxidants and lipids. The objective of this research was to evaluate whether emulsions stabilized by a multilayer emulsifier systems consisting of beta-lactoglobulin and citrus or sugar beet pectin could produce fish oil-in-water emulsions that had good physical and oxidative stability. Sugar beet pectin was compared to citrus pectin because the sugar beet pectin contains the known antioxidant, ferulic acid. A primary Menhaden oil-in-water emulsion was prepared with beta-lactoglobulin upon which the pectins were electrostatically deposited at pH 3.5. Emulsions prepared with 1% oil, 0.05% beta-lactoglobulin, and 0.06% pectins were physically stable for up to 16 days. As determined by monitoring lipid hydroperoxide and headspace propanal formation, emulsions prepared with the multilayer system of beta-lactoglobulin and citrus pectin were more stable than emulsions stabilized with beta-lactoglobulin alone. Emulsions prepared with the multilayer system of beta-lactoglobulin and sugar beet pectin were less stable than emulsions stabilized with beta-lactoglobulin alone despite the presence of ferulic acid in the sugar beet pectin. The lower oxidative stability of the emulsions with the sugar beet pectin could be due to its higher iron and copper concentrations which would produce oxidative stress that would overcome the antioxidant capacity of ferulic acid. These data suggest that the oxidative stability of oil-in-water emulsions containing omega-3 fatty acids could be improved by the use of multilayer emulsion systems containing pectins with low metal concentrations.