Science.gov

Sample records for encephalitis vaccine inactivated

  1. Second Generation Inactivated Eastern Equine Encephalitis Virus Vaccine Candidates Protect Mice against a Lethal Aerosol Challenge

    PubMed Central

    Honnold, Shelley P.; Bakken, Russell R.; Fisher, Diana; Lind, Cathleen M.; Cohen, Jeffrey W.; Eccleston, Lori T.; Spurgers, Kevin B.; Maheshwari, Radha K.; Glass, Pamela J.

    2014-01-01

    Currently, there are no FDA-licensed vaccines or therapeutics for eastern equine encephalitis virus (EEEV) for human use. We recently developed several methods to inactivate CVEV1219, a chimeric live-attenuated eastern equine encephalitis virus (EEEV). Dosage and schedule studies were conducted to evaluate the immunogenicity and protective efficacy of three potential second-generation inactivated EEEV (iEEEV) vaccine candidates in mice: formalin-inactivated CVEV1219 (fCVEV1219), INA-inactivated CVEV1219 (iCVEV1219) and gamma-irradiated CVEV1219 (gCVEV1219). Both fCVEV1219 and gCVEV1219 provided partial to complete protection against an aerosol challenge when administered by different routes and schedules at various doses, while iCVEV1219 was unable to provide substantial protection against an aerosol challenge by any route, dose, or schedule tested. When evaluating antibody responses, neutralizing antibody, not virus specific IgG or IgA, was the best correlate of protection. The results of these studies suggest that both fCVEV1219 and gCVEV1219 should be evaluated further and considered for advancement as potential second-generation inactivated vaccine candidates for EEEV. PMID:25116127

  2. Use of an inactivated eastern equine encephalitis virus vaccine in cranes

    USGS Publications Warehouse

    Carpenter, J.W.; Dein, F.J.; Clark, G.G.; Watts, D.M.; Crabbs, C.L.

    1986-01-01

    An unprecedented outbreak of fatal eastern equine encephalitis (EEE) virus occurred during the late summer and fall of 1984 in endangered whooping cranes (Grus americana) at the Patuxent Wildlife Research Center, Laurel, Maryland. As part of efforts to prevent future epizootics of EEE. studies were conducted to evaluate the antibody response of cranes following vaccination with a formalin-inactivated EEE virus vaccine. Viral specific neutralizing antibody was elicited in sandhill cranes (Grus canadensis) and whooping cranes following 1M inoculation with the vaccine. Among the 1M-inoculated cranes, peak antibody titers of 1:80 on days 30 to 60 had waned to undetectable levels by days 90 to 120. Although the initial titers were not increased by the first booster dose, the duration of the antibody was extended considerably. Whooping cranes, receiving vaccine 6 months after their first vaccination, developed titers of 1:80 to 1:320 by day 30. At 45 days after the final vaccination, these titers had dropped to 1:10 to 1:160. Cranes with preexisting EEE virus antibody, apparently reflecting natural infection, exhibited an anamnestic response indicated by a rapid increase and sustained high antibody titer. Even though EEE virus vaccine induced neutralizing antibody and produced no adverse side effects, further studies will be required to assess the significance of this response as a strategy for protecting whooping cranes against natural EEE virus infection. The loss of captive whooping cranes to the EEE virus presented a previously unrecognized risk and obstacle to recovery of this species. Not only was, there a setback in the captive breeding and reintroduction program for the whooping crane, but, because of the susceptibility of the species to the EEE virus. establishment of additional crane populations may be more complicated than initially envisioned. However, through continued surveillance, serological monitoring, and vaccination activities, we are confident that

  3. Japanese Encephalitis Vaccines

    PubMed Central

    McArthur, Monica A.; Holbrook, Michael R.

    2012-01-01

    Japanese encephalitis (JE) is a significant human health concern in Asia, Indonesia and parts of Australia with more than 3 billion people potentially at risk of infection with Japanese encephalitis virus (JEV), the causative agent of JE. Given the risk to human health and the theoretical potential for JEV use as a bioweapon, the development of safe and effective vaccines to prevent JEV infection is vital for preserving human health. The development of vaccines for JE began in the 1940s with formalin-inactivated mouse brain-derived vaccines. These vaccines have been shown to induce a protective immune response and to be very effective. Mouse brain-derived vaccines were still in use until May 2011 when the last lots of the BIKEN® JE-VAX® expired. Development of modern JE vaccines utilizes cell culture-derived viruses and improvements in manufacturing processes as well as removal of potential allergens or toxins have significantly improved vaccine safety. China has developed a live-attenuated vaccine that has proven to induce protective immunity following a single inoculation. In addition, a chimeric vaccine virus incorporating the prM and E structural proteins derived from the live-attenuated JE vaccine into the live-attenuated yellow fever 17D vaccine virus backbone is currently in clinical trials. In this article, we provide a summary of JE vaccine development and on-going clinical trials. We also discuss the potential risk of JEV as a bioweapon with a focus on virus sustainability if used as a weapon. PMID:23125946

  4. Safety and immunogenicity of a delta inulin-adjuvanted inactivated Japanese encephalitis virus vaccine in pregnant mares and foals.

    PubMed

    Bielefeldt-Ohmann, Helle; Prow, Natalie A; Wang, Wenqi; Tan, Cindy S E; Coyle, Mitchell; Douma, Alysha; Hobson-Peters, Jody; Kidd, Lisa; Hall, Roy A; Petrovsky, Nikolai

    2014-01-01

    In 2011, following severe flooding in Eastern Australia, an unprecedented epidemic of equine encephalitis occurred in South-Eastern Australia, caused by Murray Valley encephalitis virus (MVEV) and a new variant strain of Kunjin virus, a subtype of West Nile virus (WNVKUN). This prompted us to assess whether a delta inulin-adjuvanted, inactivated cell culture-derived Japanese encephalitis virus (JEV) vaccine (JE-ADVAX™) could be used in horses, including pregnant mares and foals, to not only induce immunity to JEV, but also elicit cross-protective antibodies against MVEV and WNVKUN. Foals, 74-152 days old, received two injections of JE-ADVAX™. The vaccine was safe and well-tolerated and induced a strong JEV-neutralizing antibody response in all foals. MVEV and WNVKUN antibody cross-reactivity was seen in 33% and 42% of the immunized foals, respectively. JE-ADVAX™ was also safe and well-tolerated in pregnant mares and induced high JEV-neutralizing titers. The neutralizing activity was passively transferred to their foals via colostrum. Foals that acquired passive immunity to JEV via maternal antibodies then were immunized with JE-ADVAX™ at 36-83 days of age, showed evidence of maternal antibody interference with low peak antibody titers post-immunization when compared to immunized foals of JEV-naïve dams. Nevertheless, when given a single JE-ADVAX™ booster immunization as yearlings, these animals developed a rapid and robust JEV-neutralizing antibody response, indicating that they were successfully primed to JEV when immunized as foals, despite the presence of maternal antibodies. Overall, JE-ADVAX™ appears safe and well-tolerated in pregnant mares and young foals and induces protective levels of JEV neutralizing antibodies with partial cross-neutralization of MVEV and WNVKUN. PMID:25516480

  5. Tick-borne Encephalitis Vaccines

    PubMed Central

    Lehrer, Axel T; Holbrook, Michael R.

    2012-01-01

    Tick-borne encephalitis (TBE) is a disease that is found from western Europe across Asia and into Japan. In recent years the incidence rate has been increasing as has the endemic range of the virus. Tick-borne encephalitis is caused by three genetically distinct sutypes of viruses within a single TBE virus (TBEV) serocomplex. These three subtypes consist of Far-eastern subtype TBEV (TBEV-FE), Siberian subtype (TBEV-Sib) and European subtype (TBEV-Eu). Each of these subtypes cause clinically distinct diseases with varying degrees of severity. Development of the first vaccines for TBEV began in the late 1930s shortly after the first isolation of TBEV-FE in Russia. In the 1970s Austria began large scale vaccine production and a nationalized vaccine campaign that significantly reduced the incidence rate of TBE. Currently there are four licensed TBE vaccines, two in Europe and two in Russia. These vaccines are all quite similar formalin-inactivated virus vaccines but the each use a different virus strain for production. Published studies have shown that European vaccines are cross-protective in rodent studies and elicit cross-reactive neutralizing antibody responses in human vaccines. European vaccines have been licensed for a rapid vaccine schedule that could be used in response to a significant outbreak and reasonable neutralizing antibody titers can be achieved after a single dose although a second dose provides nearly complete and long-lasting protection. This review focuses on the current status of licensed TBE vaccines and provides a brief summary of technology currently being developed for new vaccines. PMID:23997980

  6. Formalin Inactivation of Japanese Encephalitis Virus Vaccine Alters the Antigenicity and Immunogenicity of a Neutralization Epitope in Envelope Protein Domain III

    PubMed Central

    Fan, Yi-Chin; Chiu, Hsien-Chung; Chen, Li-Kuang; Chang, Gwong-Jen J.; Chiou, Shyan-Song

    2015-01-01

    Formalin-inactivated Japanese encephalitis virus (JEV) vaccines are widely available, but the effects of formalin inactivation on the antigenic structure of JEV and the profile of antibodies elicited after vaccination are not well understood. We used a panel of monoclonal antibodies (MAbs) to map the antigenic structure of live JEV virus, untreated control virus (UCV), formalin-inactivated commercial vaccine (FICV), and formalin-inactivated virus (FIV). The binding activity of T16 MAb against Nakayama-derived FICV and several strains of FIV was significantly lower compared to live virus and UCV. T16 MAb, a weakly neutralizing JEV serocomplex antibody, was found to inhibit JEV infection at the post-attachment step. The T16 epitope was mapped to amino acids 329, 331, and 389 within domain III (EDIII) of the envelope (E) glycoprotein. When we explored the effect of formalin inactivation on the immunogenicity of JEV, we found that Nakayama-derived FICV, FIV, and UCV all exhibited similar immunogenicity in a mouse model, inducing anti-JEV and anti-EDII 101/106/107 epitope-specific antibodies. However, the EDIII 329/331/389 epitope-specific IgG antibody and neutralizing antibody titers were significantly lower for FICV-immunized and FIV-immunized mouse serum than for UCV-immunized. Formalin inactivation seems to alter the antigenic structure of the E protein, which may reduce the potency of commercially available JEV vaccines. Virus inactivation by H2O2, but not by UV or by short-duration and higher temperature formalin treatment, is able to maintain the antigenic structure of the JEV E protein. Thus, an alternative inactivation method, such as H2O2, which is able to maintain the integrity of the E protein may be essential to improving the potency of inactivated JEV vaccines. PMID:26495991

  7. Protective efficacies of live attenuated and formaldehyde-inactivated Venezuelan equine encephalitis virus vaccines against aerosol challenge in hamsters.

    PubMed Central

    Jahrling, P B; Stephenson, E H

    1984-01-01

    Although two investigational vaccines are used to immunize humans against Venezuelan equine encephalomyelitis virus, neither had previously been tested for protective efficacy against aerosol exposure. Live attenuated vaccine (TC-83) protected all hamsters challenged by either aerosol or subcutaneous routes with 4.7 to 5.2 log10 PFU of virulent Venezuelan equine encephalomyelitis virus. Formaldehyde-inactivated vaccine (C-84) failed to protect against aerosol challenge but did protect against subcutaneous challenge. Protection elicited by TC-83 vaccine did not depend solely on serum-neutralizing antibody. These studies suggest that TC-83 vaccine is preferable to C-84 vaccine for protecting laboratory workers at risk to aerosol exposure. PMID:6715512

  8. Japanese encephalitis and vaccines: past and future prospects.

    PubMed

    Paulke-Korinek, Maria; Kollaritsch, Herwig

    2008-01-01

    The Japanese encephalitis virus is the main cause of encephalitis in Asia. The vectors are mosquitoes. Every year 30,000 to 50,000 cases and 10,000 deaths from Japanese encephalitis are reported, and estimates go up to 100,000 cases. No effective antiviral therapy exists to treat this flavivirus infection. For prophylaxis vaccines are available. In Asia numerous vaccines are used regionally. The production of the only vaccine that was internationally licensed, JE-VAX, was ceased in 2005. Therefore a shortage of Japanese encephalitis vaccines might occur before new generation vaccines based on cell cultures will be available. An inactivated Vero cell-derived vaccine based on the Beijing-1 strain is developed in Japan by Biken and Kaketsuken. Another promising vaccine candidate is the inactivated whole-virus vaccine IC-51 (Strain SA14-14-2) by the Austrian company Intercell. The third interesting vaccine candidate being in the late stages of clinical trials is the genetically engineered, chimeric and live-attenuated vaccine ChimeriVaxtrade mark-JE by the UK/USA-based company Acambis. The new vaccines in the pipeline show promising results and market licensures are expected in the near future. Showing excellent tolerability, these vaccines will not only be used in the population living in endemic areas where the risk of infection is extremely high, but also for travellers and military personnel. PMID:19066766

  9. Japanese encephalitis: the virus and vaccines.

    PubMed

    Yun, Sang-Im; Lee, Young-Min

    2014-01-01

    Japanese encephalitis (JE) is an infectious disease of the central nervous system caused by Japanese encephalitis virus (JEV), a zoonotic mosquito-borne flavivirus. JEV is prevalent in much of Asia and the Western Pacific, with over 4 billion people living at risk of infection. In the absence of antiviral intervention, vaccination is the only strategy to develop long-term sustainable protection against JEV infection. Over the past half-century, a mouse brain-derived inactivated vaccine has been used internationally for active immunization. To date, however, JEV is still a clinically important, emerging, and re-emerging human pathogen of global significance. In recent years, production of the mouse brain-derived vaccine has been discontinued, but 3 new cell culture-derived vaccines are available in various parts of the world. Here we review current aspects of JEV biology, summarize the 4 types of JEV vaccine, and discuss the potential of an infectious JEV cDNA technology for future vaccine development. PMID:24161909

  10. Japanese encephalitis vaccines: moving away from the mouse brain.

    PubMed

    Zanin, Mark P; Webster, Diane E; Martin, Jenny L; Wesselingh, Steven L

    2003-06-01

    Japanese encephalitis (JE) is a severe disease that is widespread throughout Asia and is spreading beyond its traditional boundaries. Three vaccines are currently in use against JE but only one is available internationally, a mouse-brain-derived inactivated vaccine first used in the 1930s. Although this vaccine has been effective in reducing the incidence of JE, it is relatively expensive and has been linked to severe allergic and neurological reactions. Cell-culture-derived inactivated and attenuated vaccines have been developed but are only used in the People's Republic of China. Other vaccines currently in various stages of development are DNA vaccines, a chimeric yellow fever-JE viral vaccine, virus-like particle vaccines and poxvirus-based vaccines. Poxvirus-based vaccines and the chimeric yellow fever-JE vaccine have been tested in Phase I clinical trials. These new vaccines have the potential to significantly reduce the impact of JE in Asia, particularly if used in an oral vaccine delivery strategy. PMID:12903806

  11. The smallpox vaccine and postvaccinal encephalitis.

    PubMed

    Roos, Karen L; Eckerman, Nancy L

    2002-03-01

    Smallpox is one of the deadliest infectious diseases in history. The discovery by Edward Jenner that inoculation with a droplet of pus from a cow with cowpox protected a person from smallpox resulted in the successful vaccination of millions of people. There were, however, complications associated with smallpox vaccination; the most serious complication was postvaccinal encephalitis, which was reported to occur with an incidence of 1 in 110,000 vaccinations and a case-fatality rate of 50%. Before we become complacent with the idea that we will respond to a bioterrorism attack with a mass immunization program for smallpox, it is important to be reminded of the risk and clinical manifestations of postvaccinal encephalitis and the efficacy of antivaccinia gamma-globulin in preventing this complication. The first case of postvaccinal encephalitis as a complication of the Jennerian cowpox inoculation was observed in 1905. A century later, there is no effective therapy. PMID:12170398

  12. Leucine-rich glioma-inactivated protein 1 antibody encephalitis

    PubMed Central

    Mayasi, Yunis; Takhtani, Deepak

    2014-01-01

    Objective: To describe a case of leucine-rich glioma-inactivated protein 1 (LGI1) antibody–associated encephalitis. Methods: The clinical and ancillary data and brain MRIs were gathered retrospectively by chart review. Relevant literature on similar cases was also reviewed. Results: The diagnosis of LGI1 antibody–associated autoimmune encephalitis was based on the typical clinical presentation of seizures, psychiatric symptoms, and memory loss as well as negative diagnostic testing for cancer; the diagnosis was confirmed by positive LGI1 antibody. The patient responded favorably to treatment with IV immunoglobulin and continues to do well. Conclusion: LGI1 antibody–associated encephalitis has increasingly been recognized as a primary autoimmune disorder with good prognosis and response to treatment. PMID:25520958

  13. Studies on Japanese B Encephalitis Virus Vaccines from Tissue Culture

    PubMed Central

    Singh, Balwant; Hammon, W. McD.

    1971-01-01

    A study was carried out to evaluate the reliability of and to determine the mechanism involved in an antigen extinction mouse intraperitoneal (ip) challenge test for potency of a cell culture vaccine for Japanese B encephalitis, a modification of a test originated by Sabin for a mouse brain vaccine. Some comparisons were made with the official Japanese test using an intracerebral (ic) challenge after a more prolonged immunization procedure. The Japanese method of using a lyophilized reference vaccine with each test was also employed. It was found that the ip and the ic test appeared to show similar relative differences between lots. The ip test was more quickly and readily performed, gave reasonably consistent results on repetition, and, when used with a suitable reference vaccine, gave promise of being an entirely suitable and reliable test. Immunization by the intramuscular route rather than by the regular ip route appeared to offer no advantage and was less consistent in responses shown. Neutralizing antibody responses of the mice in the standard procedure were very quick to appear, about 4 days after the first dose of vaccine and had a peak titer about the seventh day, the time of challenge. This titer fell quickly unless challenge occurred. The antibody was heat stable, but it was readily inactivated by 2-mercaptoethanol (2-ME). Not until the 11th or 15th day did a small amount of immunoglobulin G appear. Challenge on day 7 significantly increased titers, but this antibody was also mostly inactivated by 2-ME. Interferon did not appear to play any significant role in the protection shown by the mice. PMID:4325023

  14. Travel-acquired Japanese encephalitis and vaccination considerations.

    PubMed

    Pavli, Androula; Maltezou, Helena C

    2015-09-01

    Japanese encephalitis (JE) is a serious arboviral disease caused by a virus of the genus Flavivirus. Japanese encephalitis is the most common vaccine-preventable virus causing encephalitis in Asia, affecting more than 50,000 persons and leading to 15,000 fatalities per year in endemic countries. For most travelers to Asia, the risk of Japanese encephalitis infection is extremely low and depends on destination, duration of travel, season, and activities. This article reviews travel-acquired Japanese encephalitis with a focus on epidemiology and prevention in the light of the newly available options for active immunization against Japanese encephalitis which have become available, and of the increasing popularity of travels to Japanese encephalitis endemic countries. PMID:26409731

  15. Japanese encephalitis vaccines: current vaccines and future prospects.

    PubMed

    Monath, T P

    2002-01-01

    Vaccination against JE ideally should be practiced in all areas of Asia where the virus is responsible for human disease. The WHO has placed a high priority on the development of a new vaccine for prevention of JE. Some countries in Asia (Japan, South Korea, North Korea, Taiwan, Vietnam, Thailand, and the PRC) manufacture JE vaccines and practice childhood immunization, while other countries suffering endemic or epidemic disease (India, Nepal, Laos, Cambodia, Bangladesh, Myanmar, Malaysia, Indonesia and the Philippines) have no JE vaccine manufacturing or policy for use. With the exception of the PRC, all countries practicing JE vaccination use formalin inactivated mouse brain vaccines, which are relatively expensive and are associated with rare but clinically significant allergic and neurological adverse events. New inactivated JE vaccines manufactured in Vero cells are in advanced preclinical or early clinical development in Japan, South Korea, Taiwan, and the PRC. An empirically derived, live attenuated vaccine (SA14-14-2) is widely used in the PRC. Trials in the PRC have shown SA14-14-2 to be safe and effective when administered in a two-dose regimen, but regulatory concerns over manufacturing and control have restricted international distribution. The genetic basis of attenuation of SA14-14-2 has been partially defined. A new live attenuated vaccine (ChimeriVax-JE) that uses a reliable flavivirus vaccine--yellow fever 17D--as a live vector for the envelope genes of SA14-14-2 virus is in early clinical trials and appears to be well tolerated and immunogenic after a single dose. Vaccinia and avipox vectored vaccines have also been tested clinically, but are no longer being pursued due to restricted effectiveness mediated by anti-vector immunity. Other approaches to JE vaccines--including naked DNA, oral vaccination, and recombinant subunit vaccines--have been reviewed. PMID:12082985

  16. Rabies direct fluorescent antibody test does not inactivate rabies or eastern equine encephalitis viruses.

    PubMed

    Jarvis, Jodie A; Franke, Mary A; Davis, April D

    2016-08-01

    An examination using the routine rabies direct fluorescent antibody test was performed on rabies or Eastern equine encephalitis positive mammalian brain tissue to assess inactivation of the virus. Neither virus was inactivated with acetone fixation nor the routine test, thus laboratory employees should treat all samples as rabies and when appropriate Eastern equine encephalitis positive throughout the whole procedure. PMID:27079827

  17. 1,5-Iodonaphthyl azide-inactivated V3526 protects against aerosol challenge with virulent venezuelan equine encephalitis virus.

    PubMed

    Gupta, Paridhi; Sharma, Anuj; Spurgers, Kevin B; Bakken, Russell R; Eccleston, Lori T; Cohen, Jeffrey W; Honnold, Shelley P; Glass, Pamela J; Maheshwari, Radha K

    2016-05-27

    Venezuelan equine encephalitis virus (VEEV) is a New World alphavirus. VEEV is highly infectious in aerosolized form and has been identified as a bio-terrorism agent. There is no licensed vaccine for prophylaxis against VEEV. The current IND vaccine is poorly immunogenic and does not protect against an aerosol challenge with virulent VEEV. We have previously shown that VEEV inactivated by 1,5-iodonaphthyl azide (INA) protects against footpad challenge with virulent VEEV. In this study, we inactivated an attenuated strain of VEEV, V3526, with INA and evaluated its protective efficacy against aerosol challenge with wild type VEEV. We demonstrated that among three routes of immunization, intramuscular immunization with INA-inactivate V3526 (INA-iV3526) provided complete protection against aerosol challenge with virulent VEEV. Our data suggests that INA-iV3526 can be explored further for development as an effective vaccine candidate against aerosol challenge of virulent VEEV. PMID:27129427

  18. [Recurrent encephalitis following annual influenza vaccine. Case report].

    PubMed

    González, Bernardita; Fica, Alberto

    2016-04-01

    Influenza vaccine is rarely associated with neurological adverse effects such as Guillain Barré syndrome, encephalitis or aseptic meningitis. We report the case of a male patient that presented two episodes of acute encephalitis in consecutive years, 16 and 20 days after his annual influenza vaccine shot, respectively. In both instances, patient required ICU admission and evolved with fast recovery and no sequels. The first episode was managed empirically as herpetic encephalitis but an extensive study was performed in the second episode without identifying any microorganism. Neuroimaging studies also discarded acute disseminated encephalomyelitis. Mild pleocytosis of mononuclear predominance was detected in both cases in CSF. Naranjo score punctuated 8 points indicating a probable causal relationship. Acute encephalitis is a rare adverse effect of influenza vaccine and occurs several days after immunization. It has a broad differential diagnosis, and appears to be of self-limited duration and associated with good prognosis. PMID:27315001

  19. Comparison of Four Serological Tests for Detecting Antibodies to Japanese Encephalitis Virus after Vaccination in Children

    PubMed Central

    Cha, Go Woon; Cho, Jung Eun; Ju, Young Ran; Hong, Young-Jin; Han, Myung Guk; Lee, Won-Ja; Choi, Eui Yul; Jeong, Young Eui

    2014-01-01

    Objectives Several different methods are currently used to detect antibodies to Japanese encephalitis virus (JEV) in serum samples or cerebrospinal fluid. These methods include the plaque reduction neutralization test (PRNT), the hemagglutination inhibition (HI) test, indirect immunofluorescence assay (IFA), and enzyme-linked immunosorbent assay (ELISA). The purpose of this study was to compare the performance of each method in detecting vaccine-induced antibodies to JEV. Methods The study included 29 children who had completed a primary immunization schedule with an inactivated vaccine against JEV derived from mouse brain (n = 15) or a live attenuated SA14-14-2 vaccine (n = 14). Serum samples were collected between 3 months and 47 months after the last immunization. The serum samples were tested by performing the PRNT, HI test, in-house IFA, and commercial ELISA. The antibody detection rates were compared between tests. Results All 29 serum samples were positive with the PRNT, showing antibody titers from 1:20 to 1:2560. The HI test showed positive rates of 86.7% (13/15) and 71.4% (10/14) in the inactivated and live attenuated vaccine groups, respectively. The results of the IFA for immunoglobulin (Ig)G were positive in 53.3% (8/15) of children in the inactivated vaccine group and 35.7% (5/14) in the live attenuated vaccine group. Neither the IFA nor ELISA detected JEV IgM antibodies in any of the 29 children. Conclusion These results show that detection rates of vaccine-induced antibodies to JEV have a wide range (0–100%) depending on the testing method as well as the time since immunization and individual differences between children. These findings are helpful in interpreting serological test results for the diagnosis of Japanese encephalitis in situations where vaccines are widely administered. PMID:25389515

  20. A collaborative study of an alternative in vitro potency assay for the Japanese encephalitis vaccine.

    PubMed

    Kim, Byung-Chul; Kim, Do-Keun; Kim, Hyung-Jin; Hong, Seung-Hwa; Kim, Yeonhee; Lim, Jong-Mi; Hong, JiYoung; Kim, Cheol-Hee; Park, Yong-Keun; Kim, Jaeok

    2016-09-01

    The use of inactivated Japanese encephalitis (JE) vaccines has been ongoing in East Asia for 40 years. A mouse immunogenicity assay followed by a Plaque Reduction Neutralization (PRN) Test (PRNTest) is currently recommended for each lot release of the vaccine by many national authorities. We developed an alternative in vitro ELISA to determine the E antigen content of the Japanese encephalitis virus to observe the 3Rs strategy. A collaborative study for replacing the in vivo potency assay for the Japanese encephalitis vaccine with the in vitro ELISA assay was confirmed comparability between these two methods. The study demonstrated that an in vitro assay could perform faster and was more convenient than the established in vivo PRNTest. Moreover, this assay had better precision and reproducibility compared with the conventional in vivo assay. Additionally, the content of antigen determined using the in vitro ELISA correlated well with the potency of the in vivo assay. Furthermore, this method allowed discrimination between individual lots. Thus, we propose a progressive switch from the in vivo assay to the in vitro ELISA for JE vaccine quality control. PMID:27497622

  1. A vaccine candidate for eastern equine encephalitis virus based on IRES-mediated attenuation

    PubMed Central

    Pandya, Jyotsna; Gorchakov, Rodion; Wang, Eryu; Leal, Grace; Weaver, Scott C.

    2012-01-01

    To develop an effective vaccine against eastern equine encephalitis (EEE), we engineered a recombinant EEE virus (EEEV) that was attenuated and capable of replicating only in vertebrate cells, an important safety feature for live vaccines against mosquito-borne viruses. The subgenomic promoter was inactivated with 13 synonymous mutations and expression of the EEEV structural proteins was placed under the control of an internal ribosomal entry site (IRES) derived from encephalomyocarditis virus (EMCV). We tested this vaccine candidate for virulence, viremia and efficacy in the murine model. A single subcutaneous immunization with 104 infectious units protected 100% of mice against intraperitoneal challenge with a highly virulent North American EEEV strain. None of the mice developed any signs of disease or viremia after immunization or following challenge. Our findings suggest that the IRES-based attenuation approach can be used to develop a safe and effective vaccine against EEE and other alphaviral diseases. PMID:22222869

  2. Whooping crane titers to eastern equine encephalitis vaccinations

    USGS Publications Warehouse

    Olsen, G.H.; Kolski, E.; Hatfield, J.S.; Docherty, D.E.

    2005-01-01

    In 1984 an epizootic of eastern equine encephalitis (EEE) virus killed 7 of 39 (18%) whooping cranes in captivity at the Patuxent Wildlife Research Center in Laurel, Maryland, USA. Since that time whooping cranes have been vaccinated with a human EEE vaccine. This vaccine was unavailable for several years, necessitating use of an equine vaccine in the cranes. This study compared the antibody titers measured for three years using the human vaccine with those measured for two years using the equine form. Whooping cranes developed similarly elevated titers in one year using the human vaccine and both years using the equine vaccine. However, in two years where the human vaccine was used, the whooping cranes developed significantly lower titers compared to other years.

  3. Japanese Encephalitis Vaccines: WHO position paper, February 2015--Recommendations.

    PubMed

    2016-01-12

    This article presents the World Health Organization's (WHO) recommendations on the use of Japanese Encephalitis (JE) vaccines excerpted from the WHO position paper on Japanese Encephalitis vaccines recently published in the Weekly Epidemiological Record [1]. This updated position paper on JE vaccines replaces the 2006 position paper on this subject [2]; it focuses on new information concerning the availability, safety, immunogenicity and effectiveness of JE vaccines and the duration of protection they confer. Recent data on global prevalence and burden of disease caused by JE and cost-effectiveness considerations regarding JE vaccination are also summarized. Footnotes to this paper provide a number of core references including references to grading tables that assess the quality of the scientific evidence. In accordance with its mandate to provide guidance to Member States on health policy matters, WHO issues a series of regularly updated position papers on vaccines and combinations of vaccines against diseases that have an international public health impact. These papers are concerned primarily with the use of vaccines in large-scale immunization programmes; they summarize essential background information on diseases and vaccines, and conclude with WHO's current position on the use of vaccines in the global context. This paper reflects the recommendations of WHO's Strategic Advisory Group of Experts (SAGE) on immunization. These recommendations were discussed by SAGE at its October 2014 meeting. Evidence presented at the meeting can be accessed at http://www.who.int/immunization/sage/previous/en/index.html. PMID:26232543

  4. Influenza Vaccine, Inactivated or Recombinant

    MedlinePlus

    ... small amount of a mercury-based preservative called thimerosal. Studies have not shown thimerosal in vaccines to be harmful, but flu vaccines that do not contain thimerosal are available.There is no live flu virus ...

  5. Cross-protection induced by Japanese encephalitis vaccines against different genotypes of Dengue viruses in mice

    PubMed Central

    Li, Jieqiong; Gao, Na; Fan, Dongying; Chen, Hui; Sheng, Ziyang; Fu, Shihong; Liang, Guodong; An, Jing

    2016-01-01

    Dengue viruses (DENVs) and Japanese encephalitis virus (JEV) are closely related mosquito-borne flaviviruses that cause very high global disease burdens. Although cross-reactivity and cross-protection within flaviviruses have been demonstrated, the effect of JEV vaccination on susceptibility to DENV infection has not been well elucidated. In this study, we found that vaccination with the JEV inactivated vaccine (INV) and live attenuated vaccine (LAV) could induce cross-immune responses and cross-protection against DENV1-4 in mice. Despite the theoretical risk of immune enhancement, no increased mortality was observed in our mouse model. Additionally, low but consistently detectable cross-neutralizing antibodies against DENV2 and DENV3 were also observed in the sera of JEV vaccine-immunized human donors. The results suggested that both JEV-LAV and JEV-INV could elicit strong cross-immunity and protection against DENVs, indicating that inoculation with JEV vaccines may influence the distribution of DENVs in co-circulated areas and that the cross-protection induced by JEV vaccines against DENVs might provide important information in terms of DENV prevention. PMID:26818736

  6. Antibody response of sandhill and whooping cranes to an eastern equine encephalitis virus vaccine

    USGS Publications Warehouse

    Clark, G.G.; Dein, F.J.; Crabbs, C.L.; Carpenter, J.W.; Watts, D.M.

    1987-01-01

    As a possible strategy to protect whooping cranes (Grus americana) from fatal eastern equine encephalitis (EEE) viral infection, studies were conducted to determine the immune response of this species and sandhill cranes (Grus canadensis) to a formalin-inactivated EEE viral vaccine. Viral-specific neutralizing antibody was elicited in both species after intramuscular (IM) vaccination. Subcutaneous and intravenous routes of vaccination failed to elicit detectable antibody in sandhill cranes. Among the IM vaccinated cranes, the immune response was characterized by nondetectable or low antibody titers that waned rapidly following primary exposure to the vaccine. However, one or more booster doses consistently elicited detectable antibody and/or increased antibody titers in the whooping cranes. In contrast, cranes with pre-existing EEE viral antibody, apparently induced by natural infection, exhibited a rapid increase and sustained high-antibody titers. Even though EEE virus vaccine induced neutralizing antibody and produced no adverse side effects, further studies will be required to determine the protective efficacy of the antibody.

  7. THE AUSTRIAN VACCINATION PARADOX: TICK-BORNE ENCEPHALITIS VACCINATION VERSUS INFLUENZA VACCINATION.

    PubMed

    Kunze, Ursula; Kunze, Michael

    2015-09-01

    This paper describes a paradoxical situation in Austria. The vaccination rate against tick-borne encephalitis (TBE) in the general population is 82%, which is the highest worldwide, whereas the vaccination rate against influenza is about 8% and is among the lowest worldwide. A high awareness of TBE among the Austrian population achieved by an annual social marketing programme and the wide use of effective and well-tolerated vaccines have led to a successful containment of that disease. The vaccination coverage increased from 6% in 1980 to 82% in 2013 and exceeds 90% in some high-risk areas. This has led to a steady decline in the number of TBE cases from several hundred cases to 50 to 100 cases per year. The situation in regard to influenza vaccination is the opposite. Although Austria has issued one of the most extensive recommendations for influenza vaccination worldwide, the vaccination rate of the general population is extremely low. The possible reasons for the failure in the implementation of recommendations are ignorance, lack of social marketing and the predominance of a distinct discordance within the health system in general, and the Austrian medical fraternity in particular. PMID:26615654

  8. Polio inactivated vaccine costs into routine childhood immunization in Brazil

    PubMed Central

    Sartori, Ana Marli Christovam; Vicentine, Margarete Paganotti; Gryninger, Lígia Castelloni Figueiredo; de Soárez, Patricia Coelho; Novaes, Hillegonda Maria Dutilh

    2015-01-01

    OBJECTIVE To analyze the costs of vaccination regimens for introducing inactivated polio vaccine in routine immunization in Brazil. METHODS A cost analysis was conducted for vaccines in five vaccination regimens, including inactivated polio vaccine, compared with the oral polio vaccine-only regimen. The costs of the vaccines were estimated for routine use and for the “National Immunization Days”, during when the oral polio vaccine is administered to children aged less than five years, independent of their vaccine status, and the strategic stock of inactivated polio vaccine. The presented estimated costs are of 2011. RESULTS The annual costs of the oral vaccine-only program (routine and two National Immunization Days) were estimated at US$19,873,170. The incremental costs of inclusion of the inactivated vaccine depended on the number of vaccine doses, presentation of the vaccine (bottles with single dose or ten doses), and number of “National Immunization Days” carried out. The cost of the regimen adopted with two doses of inactivated vaccine followed by three doses of oral vaccine and one “National Immunization Day” was estimated at US$29,653,539. The concomitant replacement of the DTPw/Hib and HepB vaccines with the pentavalent vaccine enabled the introduction of the inactivated polio without increasing the number of injections or number of visits needed to complete the vaccination. CONCLUSIONS The introduction of the inactivated vaccine increased the annual costs of the polio vaccines by 49.2% compared with the oral vaccine-only regimen. This increase represented 1.13% of the expenditure of the National Immunization Program on the purchase of vaccines in 2011. PMID:25741645

  9. Long-term remission with rituximab in refractory leucine-rich glioma inactivated 1 antibody encephalitis.

    PubMed

    Brown, J William L; Martin, Peter J; Thorpe, John W; Michell, Andrew W; Coles, Alasdair J; Cox, Amanda L; Vincent, Angela; Zandi, Michael S

    2014-06-15

    Autoimmune encephalitis associated with antibodies to leucine-rich glioma inactivated 1 (LGI1) is recently described and there is a lack of detailed reports on the treatment of relapsing or refractory cases and long-term outcomes. Two case reports are presented. Both cases had faciobrachial dystonic seizures (FBDS) and received rituximab after relapsing or refractory disease. Both cases achieved sustained clinical remission of up to 15 and 56 months respectively. Rituximab use allowed withdrawal of corticosteroids and was well tolerated. Randomized clinical trials are needed in LGI1 encephalitis and other autoimmune encephalitides. PMID:24703099

  10. Influenza (flu) vaccine (Inactivated or Recombinant): What you need to know

    MedlinePlus

    ... your family and other people. 2. Inactivated and recombinant flu vaccines A dose of flu vaccine is recommended every ... Vaccine Information Statement. Influenza (Flu) Vaccine (Inactivated or ... website at www.cdc.gov/vaccines/hcp/vis/vis-statements/ ...

  11. Recombinant Measles AIK-C Vaccine Strain Expressing the prM-E Antigen of Japanese Encephalitis Virus

    PubMed Central

    Higuchi, Akira; Toriniwa, Hiroko; Komiya, Tomoyoshi; Nakayama, Tetsuo

    2016-01-01

    An inactivated Japanese encephalitis virus (JEV) vaccine, which induces neutralizing antibodies, has been used for many years in Japan. In the present study, the JEV prM-E protein gene was cloned, inserted at the P/M junction of measles AIK-C cDNA, and an infectious virus was recovered. The JEV E protein was expressed in B95a cells infected with the recombinant virus. Cotton rats were inoculated with recombinant virus. Measles PA antibodies were detected three weeks after immunization. Neutralizing antibodies against JEV developed one week after inoculation, and EIA antibodies were detected three weeks after immunization. The measles AIK-C-based recombinant virus simultaneously induced measles and JEV immune responses, and may be a candidate for infant vaccines. Therefore, the present strategy of recombinant viruses based on a measles vaccine vector would be applicable to the platform for vaccine development. PMID:26930411

  12. Non-thermal plasma for inactivated-vaccine preparation.

    PubMed

    Wang, Guomin; Zhu, Ruihao; Yang, Licong; Wang, Kaile; Zhang, Qian; Su, Xia; Yang, Bing; Zhang, Jue; Fang, Jing

    2016-02-17

    Vaccines are of great importance in controlling the spread of infectious diseases in poultry farming. The safety and efficacy of vaccines are also essential. To explore the feasibility of a novel technology (non-thermal plasma) in inactivated vaccine preparation, an alternating current atmospheric pressure non-thermal plasma (NTP) jet with Ar/O2/N2 as the operating gas was used to inactivate a Newcastle disease virus (NDV, LaSota) strain and H9N2 avian influenza virus (AIV, A/Chicken/Hebei/WD/98) for vaccine preparation. The results showed that complete inactivation could be achieved with 2 min of NTP treatment for both NDV and AIV. Moreover, a proper NTP treatment time is needed for inactivation of a virus without destruction of the antigenic determinants. Compared to traditional formaldehyde-inactivated vaccine, the vaccine made from NDV treated by NTP for 2 min (NTP-2 min-NDV-vaccine) could induce a higher NDV-specific antibody titer in specific pathogen-free (SPF) chickens, and the results of a chicken challenge experiment showed that NTP-2 min-NDV-vaccine could protect SPF chickens from a lethal NDV challenge. Vaccines made from AIV treated by NTP for 2 min (NTP-2 min-AIV-vaccine) also showed a similar AIV-specific antibody titer compared with traditional AIV vaccines prepared using formaldehyde inactivation. Studies of the morphological changes of the virus, chemical analysis of NDV allantoic fluid and optical emission spectrum analysis of NTP suggested that reactive oxygen species and reactive nitrogen species produced by NTP played an important role in the virus inactivation process. All of these results demonstrated that it could be feasible to use non-thermal NTP as an alternative strategy to prepare inactivated vaccines for Newcastle disease and avian influenza. PMID:26529075

  13. 21 CFR 610.11a - Inactivated influenza vaccine, general safety test.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 7 2012-04-01 2012-04-01 false Inactivated influenza vaccine, general safety test... Inactivated influenza vaccine, general safety test. For inactivated influenza vaccine, the general safety test... subcutaneous or intraperitoneal injection of 5.0 milliliters of inactivated influenza vaccine into each...

  14. 21 CFR 610.11a - Inactivated influenza vaccine, general safety test.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 7 2011-04-01 2010-04-01 true Inactivated influenza vaccine, general safety test... Inactivated influenza vaccine, general safety test. For inactivated influenza vaccine, the general safety test... subcutaneous or intraperitoneal injection of 5.0 milliliters of inactivated influenza vaccine into each...

  15. 21 CFR 610.11a - Inactivated influenza vaccine, general safety test.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 7 2010-04-01 2010-04-01 false Inactivated influenza vaccine, general safety test... Inactivated influenza vaccine, general safety test. For inactivated influenza vaccine, the general safety test... subcutaneous or intraperitoneal injection of 5.0 milliliters of inactivated influenza vaccine into each...

  16. 21 CFR 610.11a - Inactivated influenza vaccine, general safety test.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 7 2014-04-01 2014-04-01 false Inactivated influenza vaccine, general safety test... Inactivated influenza vaccine, general safety test. For inactivated influenza vaccine, the general safety test... subcutaneous or intraperitoneal injection of 5.0 milliliters of inactivated influenza vaccine into each...

  17. 21 CFR 610.11a - Inactivated influenza vaccine, general safety test.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 7 2013-04-01 2013-04-01 false Inactivated influenza vaccine, general safety test... Inactivated influenza vaccine, general safety test. For inactivated influenza vaccine, the general safety test... subcutaneous or intraperitoneal injection of 5.0 milliliters of inactivated influenza vaccine into each...

  18. Japanese encephalitis

    PubMed Central

    Yun, Sang-Im; Lee, Young-Min

    2014-01-01

    Japanese encephalitis (JE) is an infectious disease of the central nervous system caused by Japanese encephalitis virus (JEV), a zoonotic mosquito-borne flavivirus. JEV is prevalent in much of Asia and the Western Pacific, with over 4 billion people living at risk of infection. In the absence of antiviral intervention, vaccination is the only strategy to develop long-term sustainable protection against JEV infection. Over the past half-century, a mouse brain-derived inactivated vaccine has been used internationally for active immunization. To date, however, JEV is still a clinically important, emerging, and re-emerging human pathogen of global significance. In recent years, production of the mouse brain-derived vaccine has been discontinued, but 3 new cell culture-derived vaccines are available in various parts of the world. Here we review current aspects of JEV biology, summarize the 4 types of JEV vaccine, and discuss the potential of an infectious JEV cDNA technology for future vaccine development. PMID:24161909

  19. Encephalitis

    MedlinePlus

    ... during a certain season. Encephalitis caused by the herpes simplex virus is the leading cause of more severe cases ... show: Abnormal reflexes Increased intracranial pressure Mental confusion Mouth ulcers Muscle weakness Neck stiffness Signs in other ...

  20. Encephalitis

    MedlinePlus

    ... from an infected person Contaminated food or drink Mosquito, tick, and other insect bites Skin contact Different ... with anyone who has encephalitis. Controlling mosquitoes (a mosquito bite can transmit some viruses) may reduce the ...

  1. Phase III Clinical Trials Comparing the Immunogenicity and Safety of the Vero Cell-Derived Japanese Encephalitis Vaccine Encevac with Those of Mouse Brain-Derived Vaccine by Using the Beijing-1 Strain

    PubMed Central

    Miyazaki, Chiaki; Okada, Kenji; Ozaki, Takao; Hirose, Mizuo; Iribe, Kaneshige; Ishikawa, Yuji; Togashi, Takehiro; Ueda, Kohji

    2014-01-01

    The immunogenicity and safety of an inactivated cell culture Japanese encephalitis vaccine (CC-JEV) were compared with those of an inactivated mouse brain-derived Japanese encephalitis vaccine (MB-JEV) in phase III clinical multicenter trials conducted in children. The vaccines contain the same Japanese encephalitis virus strain, the Beijing-1 strain. Two independent clinical trials (trials 1 and 2) were conducted. Trial 1 was conducted in 468 healthy children. Each subject was injected with 17 μg per dose of either CC-JEV or MB-JEV, and the immunogenicity and safety of the vaccines were investigated. Trial 1 showed that CC-JEV was more immunogenic and reactive than MB-JEV at the same dose. Therefore, to adjust the immunogenicity of CC-JEV to that of MB-JEV, a vaccine that has had a good track record regarding its efficacy for a long time, trial 2 was conducted in 484 healthy children. To improve the stability, CC-JEV was converted from a liquid type to a freeze-dried type of vaccine. Each subject was injected subcutaneously with either 4 μg per dose of CC-JEV, 8 μg per dose of CC-JEV, or 17 μg per dose of MB-JEV twice, at an interval of 2 to 4 weeks, followed by an additional booster immunization 1 to 15 months after the primary immunization. Based on the results of trial 2, 4 μg per dose of the freeze-dried CC-JEV (under the label Encevac) was selected as a substitute for the MB-JEV. Encevac was approved and launched in 2011 and has since been in use as a 2nd-generation Japanese encephalitis vaccine in Japan. (These studies have been registered at the JapicCTI under registration no. JapicCTI-132063 and JapicCTI-080586 for trials 1 and 2, respectively.) PMID:24334689

  2. The efficacy of Japanese encephalitis vaccine in Henan, China: a case-control study.

    PubMed

    Luo, D; Yin, H; Xili, L; Song, J; Wang, Z

    1994-12-01

    A population based case-control study to evaluate Japanese encephalitis (JE) vaccine efficacy was carried out in Gusi County, Henan Province, China from June to September in 1991. This study showed that the JE vaccine had a strong protective effect. The estimate of the vaccine efficacy was 78% (95% CI = 16-94%). An unimmunized child was at 4.54 times greater risk of developing JE than were fully immunized children during the study period. The present study may have underestimated the vaccine efficacy due to evaluation based on routine vaccination which might have been affected by vaccination management and the local cold chain system. PMID:7667706

  3. Efficacy Evaluation of an Inactivated Duck Tembusu Virus Vaccine.

    PubMed

    Lin, Jian; Liu, Yuehuan; Wang, Xiuqing; Yang, Baoshou; He, Pingyou; Yang, Zhiyuan; Duan, Huijuan; Xie, Jia; Zou, Lihong; Zhao, Jicheng; Pan, Jie

    2015-06-01

    To evaluate the potential use of an inactivated virus-based vaccine for the control and prevention of the newly emerged duck Tembusu virus infection in China, a duck Tembusu virus isolate, Tembusu-HB, was propagated in 12-day-old duck embryos and inactivated by treatment with formaldehyde. The inactivated viral antigen was emulsified with mineral oil, and five batches of the vaccine were manufactured. The immunogenicity and protection efficacy of the vaccine were evaluated in Beijing ducks and Beijing white geese. Results showed that more than 80% of immunized ducks were protected against virulent virus challenge after two intramuscular or subcutaneous injections of the inactivated vaccine, as evidenced by the negative virus isolation results. The protection is also correlated with a positive virus-specific antibody response as detected by ELISA. In contrast, none of the control ducks and geese had any detectable antibody response. Virus was isolated from all control ducks and geese after virulent virus challenge. Interestingly, a variable level of protection (20%-80%) was observed in Beijing white geese immunized twice with the same batches of vaccine, suggesting a species-specific effect of the vaccine. Overall, the results clearly suggest that the inactivated duck Tembusu virus vaccine is immunogenic and provides protection against virulent virus challenge. PMID:26473674

  4. Immunogenicity and safety of currently available Japanese encephalitis vaccines: A systematic review

    PubMed Central

    Li, Xing; Ma, Shu-Juan; Liu, Xie; Jiang, Li-Na; Zhou, Jun-Hua; Xiong, Yi-Quan; Ding, Hong; Chen, Qing

    2015-01-01

    A number of Japanese encephalitis (JE) vaccines have been used for preventing Japanese encephalitis around the world. We here reviewed the immunogenicity and safety of the currently available Japanese encephalitis vaccines. We searched Pubmed, Embase, Web of Science, the Cochrane Library and other online databases up to March 25, 2014 for studies focusing on currently used JE vaccines in any language. The primary outcomes were the seroconversion rate against JEV and adverse events. Meta-analysis was performed for the primary outcome when available. A total of 51 articles were included. Studies were grouped on the basic types of vaccines. This systematic review led to 2 aspects of the conclusions. On one hand, all the currently available JE vaccines are safe and effective. On the other hand, the overall of JE vaccine evaluation is disorganized, the large variation in study designs, vaccine types, schedules, doses, population and few hand-to-hand trails, make direct comparisons difficult. In order to make a more evidence-based decision on optimizing the JE vaccine, it is warranted to standardize the JE vaccine evaluation research. PMID:25668666

  5. Economic benefits of inactivated influenza vaccines in the prevention of seasonal influenza in children

    PubMed Central

    Salleras, Luis; Navas, Encarna; Torner, Nuria; Prat, Andreu A.; Garrido, Patricio; Soldevila, Núria; Domínguez, Angela

    2013-01-01

    The aim of this study was to systematically review published studies that evaluated the efficiency of inactivated influenza vaccination in preventing seasonal influenza in children. The vaccine evaluated was the influenza-inactivated vaccine in 10 studies and the virosomal inactivated vaccine in 3 studies. The results show that yearly vaccination of children with the inactivated influenza vaccine saves money from the societal and family perspectives but not from the public or private provider perspective. When vaccination does not save money, the cost-effectiveness ratios were very acceptable. It can be concluded, that inactivated influenza vaccination of children is a very efficient intervention. PMID:23295894

  6. Tailored Vaccines Targeting the Elderly Using Whole Inactivated Influenza Vaccines Bearing Cytokine Immunomodulators

    PubMed Central

    Khan, Tila; Heffron, Connie L.; High, Kevin P.

    2014-01-01

    Influenza and its complications disproportionately affect the elderly, leading to high morbidity and mortality in this ever-increasing population. Despite widespread vaccination efforts, the current influenza vaccines are less effective in the elderly; hence newer vaccine strategies are needed to improve their efficacy in this age group. We have previously shown that co-presentation of cytokines on the surface of inactivated influenza virus particles affords better protection from lethal homotypic viral challenge in young adult mice than conventional non-adjuvanted whole inactivated vaccine. Here, we determined the efficacy of these vaccine formulations in Balb/c mice “aged” to 17 months (“aged mice”) along with the addition of a membrane-bound interleukin-12 (IL-12) vaccine formulation. Our investigations found that a single low-dose intramuscular vaccination with inactivated whole influenza vaccine co-presenting IL-12 was sufficient to provide enhanced protection from subsequent influenza challenge as compared with non-adjuvanted whole inactivated vaccine. Our results indicate that incorporation of cytokines such as IL-12 in a membrane-bound formulation in whole inactivated vaccine may provide a means to lower the vaccine dose while eliciting enhanced protective responses in the elderly, an age group that responds poorly to current vaccination regimens. PMID:24102577

  7. Recommendations for tick-borne encephalitis vaccination from the Central European Vaccination Awareness Group (CEVAG)

    PubMed Central

    Zavadska, Dace; Anca, Ioana; André, Francis; Bakir, Mustafa; Chlibek, Roman; Čižman, Milan; Ivaskeviciene, Inga; Mangarov, Atanas; Mészner, Zsófia; Pokorn, Marko; Prymula, Roman; Richter, Darko; Salman, Nuran; Šimurka, Pavol; Tamm, Eda; Tešović, Goran; Urbancikova, Ingrid; Usonis, Vytautas

    2013-01-01

    Tick-borne encephalitis (TBE) is a viral neurological zoonotic disease transmitted to humans by ticks or by consumption of unpasteurized dairy products from infected cows, goats, or sheep. TBE is highly endemic in areas of Central and Eastern Europe and Russia where it is a major public health concern. However, it is difficult to diagnose TBE as clinical manifestations tend to be relatively nonspecific and a standardized case definition does not exist across the region. TBE is becoming more important in Europe due to the appearance of new endemic areas. Few Central European Vaccination Awareness Group (CEVAG) member countries have implemented universal vaccination programmes against TBE and vaccination coverage is not considered sufficient to control the disease. When implemented, immunization strategies only apply to risk groups under certain conditions, with no harmonized recommendations available to date across the region. Effective vaccination programmes are essential in preventing the burden of TBE. This review examines the current situation of TBE in CEVAG countries and contains recommendations for the vaccination of children and high-risk groups. For countries at very high risk of TBE infections, CEVAG strongly recommends the introduction of universal TBE vaccination in children > 1 y of age onwards. For countries with a very low risk of TBE, recommendations should only apply to those traveling to endemic areas. Overall, it is generally accepted that each country should be free to make its own decision based on regional epidemiological data and the vaccination calendar, although recommendations should be made, especially for those living in endemic areas. PMID:23291941

  8. [Experimental study of an antirabies vaccine from sheep brain tissue inactivated by UV rays (author's transl)].

    PubMed

    Pospeeva, N A; Morogova, V M; Gil'dina, S S; Nikolaeva, N V; Losev, M N

    1975-01-01

    The optimal regimen of sheep brain rabies vaccine inactivation with UV rays has been developed. The immunogenic activity of 22 experimental lots of UV-inactivated rabies vaccine was found to be considerably higher than that of commercial Fermi vaccine. The antigenic activity of the inactivated vaccine in animals was also high. PMID:1210319

  9. Encephalitis in dogs associated with a batch of canine distemper (Rockborn) vaccine.

    PubMed

    Cornwell, H J; Thompson, H; McCandlish, I A; Macartney, L; Nash, A S

    1988-01-16

    During a period of seven months in 1982-83 cases of postvaccinal encephalitis were recorded in dogs in various parts of Britain after the administration of a particular batch of combined distemper/hepatitis vaccine. Detailed investigations of one of these cases revealed that the distemper component was responsible and the vaccine virus was recovered from the brain of an affected dog. PMID:2895528

  10. Influenza (flu) vaccine (Inactivated or Recombinant): What you need to know

    MedlinePlus

    ... taken in its entirety from the CDC Inactivated Influenza Vaccine Information Statement (VIS) www.cdc.gov/vaccines/hcp/vis/vis-statements/flu.html CDC review information for Inactivated Influenza VIS: ...

  11. Adjuvants and Inactivated Polio Vaccine: A Systematic Review

    PubMed Central

    Hawken, Jennifer; Troy, Stephanie B.

    2012-01-01

    Poliomyelitis is nearing universal eradication; in 2011, there were 650 cases reported globally. When wild polio is eradicated, global oral polio vaccine (OPV) cessation followed by universal use of inactivated polio vaccine (IPV) is believed to be the safest vaccination strategy as IPV does not mutate or run the risk of vaccine derived outbreaks that OPV does. However, IPV is significantly more expensive than OPV. One strategy to make IPV more affordable is to reduce the dose by adding adjuvants, compounds that augment the immune response to the vaccine. No adjuvants are currently utilized in stand-alone IPV; however, several have been explored over the past six decades. From aluminum, used in many licensed vaccines, to newer and more experimental adjuvants such as synthetic DNA, a diverse group of compounds has been assessed with varying strengths and weaknesses. This review summarizes the studies to date evaluating the efficacy and safety of adjuvants used with IPV. PMID:23041122

  12. Establishment of the 3rd national standard for lot release testing of the Japanese encephalitis vaccine (Nakayama-NIH strain) in Korea.

    PubMed

    Lee, Sunmi; Moon, Hyungsil; Kim, Min Gyu; Kim, Do Keun; Chung, Hye Joo; Park, Yong Keun; Oh, Ho Jung

    2016-07-01

    In Korea, 2 inactivated Japanese encephalitis vaccines from Nakayama-NIH and Beijing-1 strain have been utilized to date. The 1(st) national standard for lot release testing of the JE vaccine was established in 2002. The 2(nd) national standard, established in 2007, is currently in use for JE vaccine (Nakayama-NIH strain) potency testing. However, the supply of this standard is expected to be exhausted by 2015, necessitating the establishment of a new national standard with quality equivalent to that of the existing standard. Quality control tests were performed to verify that the new standard candidate material was equivalent to that of the 2(nd) national standard, proving its appropriateness for potency testing of JE vaccine. In addition, based on the results of a collaborative study conducted among 4 institutions including Ministry of Food and Drug Safety, the potency of the new national standard material was determined to be 2.69 neutralizing-antibody titer (log10) per vial. Therefore, the newly established national standard material is expected to be used for the Japanese encephalitis vaccine lot release in Korea. PMID:26890572

  13. Establishment of the 3rd national standard for lot release testing of the Japanese encephalitis vaccine (Nakayama-NIH strain) in Korea

    PubMed Central

    Lee, Sunmi; Moon, Hyungsil; Kim, Min Gyu; Kim, Do Keun; Chung, Hye Joo; Park, Yong Keun; Oh, Ho Jung

    2016-01-01

    ABSTRACT In Korea, 2 inactivated Japanese encephalitis vaccines from Nakayama-NIH and Beijing-1 strain have been utilized to date. The 1st national standard for lot release testing of the JE vaccine was established in 2002. The 2nd national standard, established in 2007, is currently in use for JE vaccine (Nakayama-NIH strain) potency testing. However, the supply of this standard is expected to be exhausted by 2015, necessitating the establishment of a new national standard with quality equivalent to that of the existing standard. Quality control tests were performed to verify that the new standard candidate material was equivalent to that of the 2nd national standard, proving its appropriateness for potency testing of JE vaccine. In addition, based on the results of a collaborative study conducted among 4 institutions including Ministry of Food and Drug Safety, the potency of the new national standard material was determined to be 2.69 neutralizing-antibody titer (log10) per vial. Therefore, the newly established national standard material is expected to be used for the Japanese encephalitis vaccine lot release in Korea. PMID:26890572

  14. Chimeric Alphavirus Vaccine Candidates Protect Mice from Intranasal Challenge with Western Equine Encephalitis Virus

    PubMed Central

    Atasheva, Svetlana; Wang, Eryu; Adams, A. Paige; Plante, Kenneth S.; Ni, Sai; Taylor, Katherine; Miller, Mary E.; Frolov, Ilya; Weaver, Scott C.

    2011-01-01

    We developed two types of chimeric Sindbis virus (SINV)/western equine encephalitis virus (WEEV) alphaviruses to investigate their potential use as live virus vaccines against WEE. The first-generation vaccine candidate, SIN/CO92, was derived from structural protein genes of WEEV strain CO92-1356, and two second-generation candidates were derived from WEEV strain McMillan. For both first- and second-generation vaccine candidates, the nonstructural protein genes were derived from SINV strain AR339. Second-generation vaccine candidates SIN/SIN/McM and SIN/EEE/McM included the envelope glycoprotein genes from WEEV strain McMillan; however, the amino-terminal half of the capsid, which encodes the RNA-binding domain, was derived from either SINV or eastern equine encephalitis virus (EEEV) strain FL93-939. All chimeric viruses replicated efficiently in mammalian and mosquito cell cultures and were highly attenuated in 6-week-old mice. Vaccinated mice developed little or no detectable disease and showed little or no evidence of challenge virus replication; however, all developed high titers of neutralizing antibodies. Upon intranasal challenge with high doses of virulent WEEV strains, mice vaccinated with ≥105 PFU of SIN/CO92 or ≥104 PFU of SIN/SIN/McM or SIN/EEE/McM were completely protected from disease. These findings support the potential use of these live-attenuated vaccine candidates as safe and effective vaccines against WEE. PMID:19446595

  15. Vaccine-associated herpes zoster ophthalmicus [correction of opthalmicus] and encephalitis in an immunocompetent child.

    PubMed

    Chouliaras, Giorgos; Spoulou, Vana; Quinlivan, Mark; Breuer, Judith; Theodoridou, Maria

    2010-04-01

    Varicella-zoster virus vaccine has diminished the consequences of chicken pox in terms of health and economical burden. The increasing number of doses administered worldwide has revealed rare but important adverse effects that had not occurred during clinical trials. We report here the case of an immunocompetent 3(1/2)-year-old girl who developed encephalitis and herpes zoster opthalmicus 20 months after her immunization with varicella-zoster virus vaccine. Molecular analysis confirmed the vaccine strain as the causative agent. After an intravenous course with acyclovir, the child made a full recovery with no neurologic sequelae. PMID:20194287

  16. [Inactivated saponin vaccine against salmonellal abortion in sheep].

    PubMed

    Girginov, G; Vodas, K; Bozhilov, B

    1978-01-01

    An inactivated saponine vaccine is prepared from five highly immunogenic Salmonella abortus ovis strains, selected by means of a biological test on white rats. Saline was used as a diluent of the vaccine, with the addition of 30 per cent glycerine, 0.012 per cent saponine and 0.1 per cent propiolactone. The optimum immunization dose of 5 cm3 is injected singly subcutaneously behind the elbow, two and a half months after impregnation. The vaccine is applied on infected farms before the disease occurs. The cellular-humoral immunity, which forms 14 days after the injection, lasts 4--5 months and protects the sheep against salmonellosis abortion. PMID:571645

  17. Low Protective Efficacy of the Current Japanese Encephalitis Vaccine against the Emerging Genotype 5 Japanese Encephalitis Virus

    PubMed Central

    Gao, Xiaoyan; Li, Minghua; Cui, Shiheng; Li, Xiaolong; Cao, Yuxi; Lei, Wenwen; Lu, Zhi; He, Ying; Wang, Huanyu; Yan, Jinghua; Gao, George Fu; Liang, Guodong

    2016-01-01

    Background The current Japanese encephalitis (JE) vaccine derived from G3 JE virus (JEV) can induce protective immunity against G1–G4 JEV genotypes. However, protective efficacy against the emerging G5 genotype has not been reported. Methods/Principal Findings Using in vitro and in vivo tests, biological phenotype and cross-immunoreactions were compared between G3 JEV and G5 JEV (wild strains). The PRNT90 method was used to detect neutralizing antibodies against different genotypes of JEV in JE vaccine-immunized subjects and JE patients. In JE vaccine-immunized mice, the lethal challenge protection rates against G3 and G5 JEV wild strains were 100% and 50%, respectively. The seroconversion rates (SCRs) of virus antibodies against G3 and G5 JEV among vaccinated healthy subjects were 100% and 35%, respectively. All clinically identified JE patients showed high levels of G3 JEV neutralizing antibodies (≥1:10–1280) with positive serum geometric mean titers (GMTs) of 43.2, while for G5 JEV, neutralizing antibody conversion rates were only 64% with positive serum GMTs of 11.14. Moreover, the positive rate of JEV neutralizing antibodies against G5 JEV in pediatric patients was lower than in adults. Conclusions/Significance Low levels of neutralizing/protective antibodies induced by the current JE vaccine, based on the G3 genotype, were observed against the emerging G5 JEV genotype. Our results demonstrate the need for more detailed studies to reevaluate whether or not the apparent emergence of G5 JEV can be attributed to failure of the current vaccine to induce appropriate immune protectivity against this genotype of JEV. PMID:27139722

  18. Anti-leucine-rich glioma-inactivated 1 limbic encephalitis: A case report and literature review

    PubMed Central

    LIU, JINGYAO; LI, MIN; LI, GUIBO; ZHOU, CHUNKUI; ZHANG, RENSHENG

    2016-01-01

    This study describes the case of a 41-year-old woman admitted for anterograde memory loss, right facial grimacing and right arm posturing that had begun 1 month previously. Cranial magnetic resonance-diffusion weighted imaging and -fluid-attenuated inversion recovery imaging revealed a hyperintense signal in the left hippocampus and right basal ganglia, but no contrast enhancement. An electroencephalogram revealed rhythmic sharp and slow waves and rhythmic θ build-ups in the left temporal area. Single-photon emission computed tomography showed increased regional blood flow perfusion in the left cerebral frontal lobe and the right basal ganglia. The cerebrospinal fluid was normal, with the exception of the presence of leucine-rich glioma-inactivated 1 (LGI1) antibodies, and LGI1 antibodies were also found in the blood serum. The presence of the antibodies, the faciobrachial dystonic seizures (FBDSs) and the memory loss indicated limbic encephalitis. After 3 months of immunotherapy, the patient was free from epileptic seizures and had undergone a partial memory restoration. FBDSs alone justify the immediate initiation of immunotherapy, even prior to laboratory confirmation of the disease, as early treatment limits the duration of the illness. PMID:26889260

  19. Tick-borne encephalitis in a child with previous history of completed primary vaccination.

    PubMed

    Zlamy, Manuela; Haberlandt, Edda; Brunner, Jürgen; Dozcy, Ludwig; Rostasy, Kevin

    2016-01-01

    We report the case of a 13-year-old girl who presented with fever, headache, nausea and pain behind the right ear. Cerebrospinal fluid (CSF; leukocytes 227/μL), electroencephalogram and cerebral magnetic resonance imaging were indicative of meningoencephalitis. Despite intensive therapy the general condition worsened and the patient was admitted to the intensive care unit. Serological analysis of CSF and serum indicated acute tick-borne encephalitis virus (TBEV) infection (IgG and IgM positive). TBEV infection has been reported after incomplete and complete vaccination. TBEV vaccination breakthrough in childhood has been shown to cause severe disease. It has been suggested that immunized patients develop more severe disease due to altered immune response, but the exact mechanism is unknown. In the presence of typical symptoms and a history of vaccination, possible vaccination breakthrough or missing booster vaccination should be considered. PMID:26541246

  20. CHIMERIC SINDBIS/EASTERN EQUINE ENCEPHALITIS VACCINE CANDIDATES ARE HIGHLY ATTENUATED AND IMMUNOGENIC IN MICE

    PubMed Central

    Wang, Eryu; Petrakova, Olga; Adams, A. Paige; Aguilar, Patricia V.; Kang, Wenli; Paessler, Slobodan; Volk, Sara M.; Frolov, Ilya; Weaver, Scott C.

    2007-01-01

    We developed chimeric Sindbis (SINV)/Eastern equine encephalitis (EEEV) viruses and investigated their potential for use as live virus vaccines against EEEV. One vaccine candidate contained structural protein genes from a typical North American EEEV strain, while the other had structural proteins from a naturally attenuated Brazilian isolate. Both chimeric viruses replicated efficiently in mammalian and mosquito cell cultures and were highly attenuated in mice. Vaccinated mice did not develop detectable disease or viremia, but developed high titers of neutralizing antibodies. Upon challenge with EEEV, mice vaccinated with >104PFU of the chimeric viruses were completely protected from disease. These findings support the potential use of these SIN/EEEV chimeras as safe and effective vaccines. PMID:17904699

  1. Use of Japanese Encephalitis Vaccine in US Travel Medicine Practices in Global TravEpiNet

    PubMed Central

    Deshpande, Bhushan R.; Rao, Sowmya R.; Jentes, Emily S.; Hills, Susan L.; Fischer, Marc; Gershman, Mark D.; Brunette, Gary W.; Ryan, Edward T.; LaRocque, Regina C.

    2014-01-01

    Few data regarding the use of Japanese encephalitis (JE) vaccine in clinical practice are available. We identified 711 travelers at higher risk and 7,578 travelers at lower risk for JE who were seen at US Global TravEpiNet sites from September of 2009 to August of 2012. Higher-risk travelers were younger than lower-risk travelers (median age = 29 years versus 40 years, P < 0.001). Over 70% of higher-risk travelers neither received JE vaccine during the clinic visit nor had been previously vaccinated. In the majority of these instances, clinicians determined that the JE vaccine was not indicated for the higher-risk traveler, which contradicts current recommendations of the Advisory Committee on Immunization Practices. Better understanding is needed of the clinical decision-making regarding JE vaccine in US travel medicine practices. PMID:25070999

  2. A chimeric Sindbis-based vaccine protects cynomolgus macaques against a lethal aerosol challenge of eastern equine encephalitis virus

    PubMed Central

    Roy, Chad J.; Adams, A. Paige; Wang, Eryu; Leal, Grace; Seymour, Robert L.; Sivasubramani, Satheesh K.; Mega, William; Frolov, Ilya; Didier, Peter J.; Weaver, Scott C.

    2013-01-01

    Eastern equine encephalitis virus (EEEV) is a mosquito-borne alphavirus that causes sporadic, often fatal disease outbreaks in humans and equids, and is also a biological threat agent. Two chimeric vaccine candidates were constructed using a cDNA clone with a Sindbis virus (SINV) backbone and structural protein genes from either a North (SIN/NAEEEV) or South American (SIN/SAEEEV) strain of EEEV. The vaccine candidates were tested in a nonhuman primate (NHP) model of eastern equine encephalitis (EEE). Cynomolgus macaques were either sham-vaccinated, or vaccinated with a single dose of either SIN/NAEEEV or SIN/SAEEEV. After vaccination, animals were challenged by aerosol with a virulent North American strain of EEEV (NA EEEV). The SIN/NAEEEV vaccine provided significant protection, and most vaccinated animals survived EEEV challenge (82%) with little evidence of disease, whereas most SIN/SAEEEV-vaccinated (83%) and control (100%) animals died. Protected animals exhibited minimal changes in temperature and cardiovascular rhythm, whereas unprotected animals showed profound hyperthermia and changes in heart rate post-exposure. Acute inflammation and neuronal necrosis were consistent with EEEV-induced encephalitis in unprotected animals, whereas no encephalitis-related histopathologic changes were observed in the SIN/NAEEEV-vaccinated animals. These results demonstrate that the chimeric SIN/NAEEEV vaccine candidate protects against an aerosol EEEV exposure. PMID:23333212

  3. Influenza vaccination with live-attenuated and inactivated virus-vaccines during an outbreak of disease.

    PubMed Central

    Rocchi, G.; Ragona, G.; Piga, C.; Pelosio, A.; Volpi, A.; Vella, S.; Legniti, N.; de Felici, A.

    1979-01-01

    Immunization procedures with live attenuated and inactivated vaccines were carried out on a group of young recruits at the beginning of an outbreak of infection due to an A/Victoria/3/75-related virus strain, which occurred in February 1977 in a military camp. A retrospective investigation on protection from clinical influenza was then performed in order to investigate whether immunization with live virus vaccines, administered at the beginning of an epidemic, could provide early protection from the disease. In the course of the two weeks following vaccination, laboratory-confirmed clinical influenza cases occurred in 4 subjects among the 110 volunteers of the control group which received placebo, and in 8, 7 and 4 subjects respectively of the 3 groups of about 125 individuals, each of which received one of the following vaccine preparations: (a), live attenuated A/Victoria/3/75 influenza virus oral vaccine, grown on chick embryo kidney culture; (b), live attenuated nasal vaccine, a recombinant of A/Puerto Rico/8/34 with A/Victoria/3/75 virus; and (c), inactivated A/Victoria/3/75 virus intramuscular vaccine. These data do not support the hypothesis that, during an epidemic of infection, early protection from clinical influenza can be achieved through immunization with live attenuated or inactivated influenza virus vaccines, in spite of the high immunizing capability of the vaccine preparations. PMID:512351

  4. Japanese encephalitis virus vaccine candidates generated by chimerization with dengue virus type 4.

    PubMed

    Gromowski, Gregory D; Firestone, Cai-Yen; Hanson, Christopher T; Whitehead, Stephen S

    2014-05-23

    Japanese encephalitis virus (JEV) is a leading cause of viral encephalitis worldwide and vaccination is one of the most effective ways to prevent disease. A suitable live-attenuated JEV vaccine could be formulated with a live-attenuated tetravalent dengue vaccine for the control of these viruses in endemic areas. Toward this goal, we generated chimeric virus vaccine candidates by replacing the precursor membrane (prM) and envelope (E) protein structural genes of recombinant dengue virus type 4 (rDEN4) or attenuated vaccine candidate rDEN4Δ30 with those of wild-type JEV strain India/78. Mutations were engineered in E, NS3 and NS4B protein genes to improve replication in Vero cells. The chimeric viruses were attenuated in mice and some elicited modest but protective levels of immunity after a single dose. One particular chimeric virus, bearing E protein mutation Q264H, replicated to higher titer in tissue culture and was significantly more immunogenic in mice. The results are compared with live-attenuated JEV vaccine strain SA14-14-2. PMID:24699473

  5. Anti-tick-borne encephalitis (TBE) virus neutralizing antibodies dynamics in natural infections versus vaccination.

    PubMed

    Remoli, Maria Elena; Marchi, Antonella; Fortuna, Claudia; Benedetti, Eleonora; Minelli, Giada; Fiorentini, Cristiano; Mel, Rosanna; Venturi, Giulietta; Ciufolini, Maria Grazia

    2015-03-01

    Tick-borne encephalitis (TBE) virus infection elicits a life-long lasting protection. However, little is known about the neutralizing antibodies titres following natural infection. In this study, subjects with past TBE disease (n = 62) were analysed for the presence and titre of anti-TBE neutralizing antibodies, and compared with a vaccinated cohort (n = 101). Neutralizing antibody titres were higher in individuals with past TBE and did not show an age-dependent decrease when compared with vaccinees. PMID:25722483

  6. Vaccine Strategies for the Control and Prevention of Japanese Encephalitis in Mainland China, 1951–2011

    PubMed Central

    Li, Minghua; Fu, Shihong; Wang, Huanyu; Lu, Zhi; Cao, Yuxi; He, Ying; Zhu, Wuyang; Zhang, Tingting; Gould, Ernest A.; Liang, Guodong

    2014-01-01

    Japanese encephalitis (JE) is arguably one of the most serious viral encephalitis diseases worldwide. China has a long history of high prevalence of Japanese encephalitis, with thousands of cases reported annually and incidence rates often exceeding 15/100,000. In global terms, the scale of outbreaks and high incidence of these pandemics has almost been unique, placing a heavy burden on the Chinese health authorities. However, the introduction of vaccines, developed in China, combined with an intensive vaccination program initiated during the 1970s, as well as other public health interventions, has dramatically decreased the incidence from 20.92/100,000 in 1971, to 0.12/100,000 in 2011. Moreover, in less readily accessible areas of China, changes to agricultural practices designed to reduce chances of mosquito bites as well as mosquito population densities have also been proven effective in reducing local JE incidence. This unprecedented public health achievement has saved many lives and provided valuable experience that could be directly applicable to the control of vector-borne diseases around the world. Here, we review and discuss strategies for promotion and expansion of vaccination programs to reduce the incidence of JE even further, for the benefit of health authorities throughout Asia and, potentially, worldwide. PMID:25121596

  7. Safety and immunogenicity of a live attenuated Japanese encephalitis chimeric virus vaccine (IMOJEV®) in children.

    PubMed

    Chokephaibulkit, K; Houillon, G; Feroldi, E; Bouckenooghe, A

    2016-01-01

    JE-CV (IMOJEV®, Sanofi Pasteur, France) is a live attenuated virus vaccine constructed by inserting coding sequences of the prM and E structural proteins of the Japanese encephalitis SA14-14-2 virus into the genome of yellow fever 17D virus. Primary immunization with JE-CV requires a single dose of the vaccine. This article reviews clinical trials of JE-CV in children aged up to 6 years conducted in countries across South-East Asia. Strong and persistent antibody responses were observed after single primary and booster doses, with 97% of children seroprotected up to five years after booster vaccination. Models of long-term antibody persistence predict a median duration of protection of approximately 30 years after a booster dose. The safety and reactogenicity profiles of JE-CV primary and booster doses are comparable to other widely used childhood vaccines. PMID:26588242

  8. A spatial and temporal analysis of Japanese encephalitis in mainland China, 1963-1975: a period without Japanese encephalitis vaccination.

    PubMed

    Li, Xiaolong; Gao, Xiaoyan; Ren, Zhoupeng; Cao, Yuxi; Wang, Jinfeng; Liang, Guodong

    2014-01-01

    More than a million Japanese encephalitis (JE) cases occurred in mainland China from the 1960s to 1970s without vaccine interventions. The aim of this study is to analyze the spatial and temporal pattern of JE cases reported in mainland China from 1965 to 1973 in the absence of JE vaccination, and to discuss the impacts of climatic and geographical factors on JE during that period. Thus, the data of reported JE cases at provincial level and monthly precipitation and monthly mean temperature from 1963 to 1975 in mainland China were collected. Local Indicators of Spatial Association analysis was performed to identify spatial clusters at the province level. During that period, The epidemic peaked in 1966 and 1971 and the JE incidence reached up to 20.58/100000 and 20.92/100000, respectively. The endemic regions can be divided into three classes including high, medium, and low prevalence regions. Through spatial cluster analysis, JE epidemic hot spots were identified; most were located in the Yangtze River Plain which lies in the southeast of China. In addition, JE incidence was shown to vary among eight geomorphic units in China. Also, the JE incidence in the Loess Plateau and the North China Plain was showed to increase with the rise of temperature. Likewise, JE incidence in the Loess Plateau and the Yangtze River Plain was observed a same trend with the increase of rainfall. In conclusion, the JE cases clustered geographically during the epidemic period. Besides, the JE incidence was markedly higher on the plains than plateaus. These results may provide an insight into the epidemiological characteristics of JE in the absence of vaccine interventions and assist health authorities, both in China and potentially in Europe and Americas, in JE prevention and control strategies. PMID:24911168

  9. Inactivated virus vaccines from chemistry to prophylaxis: merits, risks and challenges.

    PubMed

    Delrue, Iris; Verzele, Dieter; Madder, Annemieke; Nauwynck, Hans J

    2012-06-01

    The aim of this review is to make researchers aware of the benefits of an efficient quality control system for prediction of a developed vaccine's efficacy. Two major goals should be addressed when inactivating a virus for vaccine purposes: first, the infectious virus should be inactivated completely in order to be safe, and second, the viral epitopes important for the induction of protective immunity should be conserved after inactivation in order to have an antigen of high quality. Therefore, some problems associated with the virus inactivation process, such as virus aggregate formation, protein crosslinking, protein denaturation and degradation should be addressed before testing an inactivated vaccine in vivo. PMID:22873127

  10. Characterization of 10 adjuvants for inactivated avian influenza virus (AIV) vaccines against challenge with highly pathogenic AIV in chickens

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Inactivated vaccines comprise 95% of all vaccine used for avian influenza virus (AIV) by dose. Optimizing the adjuvant is one way to improve vaccine efficacy. Inactivated vaccines were produced with beta-propiolactone inactivated A/chicken/BC/314514-1/2004 H7N3 low pathogenicity AIV and standardiz...

  11. IRES-Based Venezuelan Equine Encephalitis Vaccine Candidate Elicits Protective Immunity in Mice

    PubMed Central

    Rossi, Shannan L.; Guerbois, Mathilde; Gorchakov, Rodion; Plante, Kenneth S.; Forrester, Naomi L.; Weaver, Scott C

    2013-01-01

    Venezuelan equine encephalitis virus (VEEV) is an arbovirus that causes periodic outbreaks that impact equine and human populations in the Americas. One of the VEEV subtypes located in Mexico and Central America (IE) has recently been recognized as an important cause of equine disease and death, and human exposure also appears to be widespread. Here, we describe the use of an Internal Ribosome Entry Site (IRES) from encephalomyocarditis virus to stably attenuate VEEV, creating a vaccine candidate independent of unstable point mutations. Mice infected with this virus produced antibodies and were protected against lethal VEEV challenge. This IRES-based vaccine was unable to establish productive infection in mosquito cell cultures or in intrathoracically injected Aedes taeniorhynchus, demonstrating that it cannot be transmitted from a vaccinee. These attenuation, efficacy and safety results justify further development for humans or equids of this new VEEV vaccine candidate. PMID:23351391

  12. IRES-Containing VEEV Vaccine Protects Cynomolgus Macaques from IE Venezuelan Equine Encephalitis Virus Aerosol Challenge

    PubMed Central

    Rossi, Shannan L.; Russell-Lodrigue, Kasi E.; Killeen, Stephanie Z.; Wang, Eryu; Leal, Grace; Bergren, Nicholas A.; Vinet-Oliphant, Heather; Weaver, Scott C.; Roy, Chad J.

    2015-01-01

    Venezuelan equine encephalitis virus (VEEV) is an arbovirus endemic to the Americas that is responsible for severe, sometimes fatal, disease in humans and horses. We previously described an IRES-based VEE vaccine candidate based up the IE serotype that offers complete protection against a lethal subtype IE VEEV challenge in mice. Here we demonstrate the IRES-based vaccine’s ability to protect against febrile disease in cynomolgus macaques. Vaccination was well tolerated and elicited robust neutralizing antibody titers noticed as early as day 14. Moreover, complete protection from disease characterized by absence of viremia and characteristic fever following aerosolized IE VEEV challenge was observed in all vaccinees compared to control animals, which developed clinical disease. Together, these results highlight the safety and efficacy of IRES-based VEEV vaccine to protect against an endemic, pathogenic VEEV IE serotype. PMID:26020513

  13. Review of tick-borne encephalitis and vaccines: clinical and economical aspects.

    PubMed

    Šmit, Renata; Postma, Maarten J

    2015-05-01

    Tick-borne encephalitis (TBE) disease is an increasing burden not only locally but also globally. In most endemic countries, vaccination coverage is too low to reduce the TBE burden significantly; however, vaccination is the most effective protection against TBE, with various vaccines currently available. In spite of rising awareness of TBE, little attention is directed toward the health economics of the disease. The purpose of the present review is to compile information on TBE and its explicit clinical and economical aspects. Given the scarcity of studies, the authors conclude that more attention is needed for health economics of TBE. Notably, this would help establish guidance on efficient policies for TBE prevention, reduce disease burden and achieve population health benefits. PMID:25427237

  14. Formaldehyde-inactivated human enterovirus 71 vaccine is compatible for co-immunization with a commercial pentavalent vaccine.

    PubMed

    Chen, Chun-Wei; Lee, Yi-Ping; Wang, Ya-Fang; Yu, Chun-Keung

    2011-03-24

    In this study we tested the effectiveness of a formaldehyde-inactivated EV71 vaccine and its compatibility for co-immunization with a pentavalent vaccine that contained inactivated poliovirus (PV) vaccine. The inactivated EV71 vaccine (C2 genogroup) elicited an antibody response which broadly neutralized homologous and heterologous genogroups, including B4, C4, and B5. Pups from vaccinated dams were resistant to the EV71 challenge and had a high survival rate and a low tissue viral burden when compared to those from non-vaccinated counterparts. Co-immunization with pentavalent and inactivated EV71 vaccines elicited antibodies against the major components of the pentavalent vaccine including the PV, Bordetella pertussis, Haemophilus influenzae type b, diphtheria toxoid, and tetanus toxoid at the same levels as in mice immunized with pentavalent vaccine alone. Likewise, EV71 neutralizing antibody titers were comparable between EV71-vaccinated mice and mice co-immunized with the two vaccines. These results indicate that formaldehyde-inactivated whole virus EV71 vaccine is feasible for designing multivalent vaccines. PMID:21315698

  15. Chemical-free inactivated whole influenza virus vaccine prepared by ultrashort pulsed laser treatment

    NASA Astrophysics Data System (ADS)

    Tsen, Shaw-Wei David; Donthi, Nisha; La, Victor; Hsieh, Wen-Han; Li, Yen-Der; Knoff, Jayne; Chen, Alexander; Wu, Tzyy-Choou; Hung, Chien-Fu; Achilefu, Samuel; Tsen, Kong-Thon

    2015-05-01

    There is an urgent need for rapid methods to develop vaccines in response to emerging viral pathogens. Whole inactivated virus (WIV) vaccines represent an ideal strategy for this purpose; however, a universal method for producing safe and immunogenic inactivated vaccines is lacking. Conventional pathogen inactivation methods such as formalin, heat, ultraviolet light, and gamma rays cause structural alterations in vaccines that lead to reduced neutralizing antibody specificity, and in some cases, disastrous T helper type 2-mediated immune pathology. We have evaluated the potential of a visible ultrashort pulsed (USP) laser method to generate safe and immunogenic WIV vaccines without adjuvants. Specifically, we demonstrate that vaccination of mice with laser-inactivated H1N1 influenza virus at about a 10-fold lower dose than that required using conventional formalin-inactivated influenza vaccines results in protection against lethal H1N1 challenge in mice. The virus, inactivated by the USP laser irradiation, has been shown to retain its surface protein structure through hemagglutination assay. Unlike conventional inactivation methods, laser treatment did not generate carbonyl groups in protein, thereby reducing the risk of adverse vaccine-elicited T helper type 2 responses. Therefore, USP laser treatment is an attractive potential strategy to generate WIV vaccines with greater potency and safety than vaccines produced by current inactivation techniques.

  16. Chemical-free inactivated whole influenza virus vaccine prepared by ultrashort pulsed laser treatment.

    PubMed

    Tsen, Shaw-Wei David; Donthi, Nisha; La, Victor; Hsieh, Wen-Han; Li, Yen-Der; Knoff, Jayne; Chen, Alexander; Wu, Tzyy-Choou; Hung, Chien-Fu; Achilefu, Samuel; Tsen, Kong-Thon

    2015-05-01

    There is an urgent need for rapid methods to develop vaccines in response to emerging viral pathogens. Whole inactivated virus (WIV) vaccines represent an ideal strategy for this purpose; however, a universal method for producing safe and immunogenic inactivated vaccines is lacking. Conventional pathogen inactivation methods such as formalin, heat, ultraviolet light, and gamma rays cause structural alterations in vaccines that lead to reduced neutralizing antibody specificity, and in some cases, disastrous T helper type 2-mediated immune pathology. We have evaluated the potential of a visible ultrashort pulsed (USP) laser method to generate safe and immunogenic WIV vaccines without adjuvants. Specifically, we demonstrate that vaccination of mice with laser-inactivated H1N1 influenza virus at about a 10-fold lower dose than that required using conventional formalin-inactivated influenza vaccines results in protection against lethal H1N1 challenge in mice. The virus, inactivated by the USP laser irradiation, has been shown to retain its surface protein structure through hemagglutination assay. Unlike conventional inactivation methods, laser treatment did not generate carbonyl groups in protein, thereby reducing the risk of adverse vaccine-elicited T helper type 2 responses. Therefore, USP laser treatment is an attractive potential strategy to generate WIV vaccines with greater potency and safety than vaccines produced by current inactivation techniques. PMID:25423046

  17. Clinical data on Fluarix: an inactivated split seasonal influenza vaccine.

    PubMed

    El Sahly, Hana M; Keitel, Wendy A

    2008-08-01

    Influenza viruses cause annual winter epidemics in temperate regions, with significant morbidity, mortality and economical impact. Fluarix is a split, trivalent, inactivated vaccine, manufactured from highly purified, egg-grown influenza viruses by GlaxoSmithKline. In 2005, Fluarix underwent accelerated approval for use in adults by the US FDA following a US-based, randomized, placebo-controlled trial that established its safety and immunogenicity in adults. The vaccine has been licensed in Europe since 1992 for all age groups. Multiple registration trials in all age groups in Europe have demonstrated that the vaccine was safe and well tolerated and of immunogenicity standards that met the requirements of the European Committee for Medicinal Products for Human Use. There are no published clinical trials evaluating the effectiveness or efficacy of Fluarix against influenza and its complications. Currently, Fluarix plays an important role in the diversification of the supply chain of influenza vaccine to the community. However, vaccines with improved immunogenicity in at-risk populations, such as the elderly, and with less reliance on growth in eggs, as well as the inherent demanding timelines, are needed to enhance the control of influenza. PMID:18665769

  18. Antibody to the nonstructural protein NS1 of Japanese encephalitis virus: potential application of mAb-based indirect ELISA to differentiate infection from vaccination.

    PubMed

    Shu, P Y; Chen, L K; Chang, S F; Yueh, Y Y; Chow, L; Chien, L J; Chin, C; Lin, T H; Huang, J H

    2001-02-01

    An indirect enzyme-linked immunosorbent assay (ELISA) was developed to detect and differentiate the antibody responses to Japanese encephalitis (JE) virus nonstructural protein NS1 between infected and vaccinated individuals. The results showed that all convalescent sera from JE patients contained NS1-specific IgG antibodies, while 65 and 40% of these sera showed detectable NS1-specific IgM and IgA antibodies, respectively. Specificity analysis showed that NS1-specific IgM and IgA antibodies from JE patients do not cross-react to dengue virus NS1 glycoprotein, while IgG antibodies from 10% of JE patients showed significant cross-reaction to dengue virus NS1 glycoprotein. To differentiate infection from vaccination, the immune sera from 24 children vaccinated with inactivated JE vaccine were analyzed. The data showed that none of these immune sera had detectable NS1-specific IgG antibodies. The results demonstrated the potential application of JE NS1-specific indirect ELISA to differentiate infection from vaccination. PMID:11166901

  19. Clinically mild encephalitis with a reversible splenial lesion (MERS) after mumps vaccination.

    PubMed

    Takanashi, Jun-Ichi; Shiihara, Takashi; Hasegawa, Takeshi; Takayanagi, Masaru; Hara, Munetsugu; Okumura, Akihisa; Mizuguchi, Masashi

    2015-02-15

    We retrospectively collected three patients with clinically mild encephalitis with a reversible splenial lesion (MERS) after mumps vaccination, and reviewed five patients, including two patients previously reported. The five patients (all males, aged 1 to 9) presented with fever, vomiting, or headache as the initial symptoms (day 0), suggesting meningitis, at 13 to 21 days after mumps vaccination. Consciousness disturbance, delirious behavior, seizures, or dysarthria was observed on days 1 to 3, which had completely resolved before day 11. Hyponatremia was observed in all patients. A cerebrospinal fluid study showed pleocytosis, and confirmed the vaccine strain genome. MRI revealed reduced diffusion in the splenium of the corpus callosum on days 2 to 4, which had completely disappeared on the follow-up studies performed on days 7-15. EEG showed high voltage slow wave in three patients, which later normalized. These findings led to a diagnosis of MERS after mumps vaccination. MERS after mumps vaccination may be more common than previously considered. MERS is suspected when a male patient after mumps vaccination presents with neurological symptoms with hyponatremia, following symptoms of aseptic meningitis, and MRI would be performed to examine the splenium of the corpus callosum. PMID:25542078

  20. Correlates of Protection Following Vaccination with Inactivated Porcine Circovirus 2 Vaccines.

    PubMed

    Zanotti, Cinzia; Martinelli, Nicola; Lelli, Davide; Amadori, Massimo

    2015-12-01

    Porcine circovirus type 2 (PCV2) is associated with a number of diseases and syndromes, collectively referred to as porcine circovirus-associated disease. The main objective of this study was to define some in vitro correlates of protection after injection of inactivated PCV2 vaccines with a defined antigen mass. Twelve pigs were vaccinated with three different doses of inactivated, whole-virus antigen (211-844 ng), while four animals were injected with a commercial vaccine (positive control) and four other pigs were mock-vaccinated with phosphate-buffered saline (PBS) in the same oil emulsion. Four weeks later, they were intranasally challenged with 2 × 10(5) TCID50 of a PCV2a strain. Antibody was measured in blood and oral fluids by enzyme-linked immunosorbent assay (ELISA) and a neutralization assay. PCV2 was quantified in serum by real-time polymerase chain reaction for ORF2 gene. PCV2-specific cell-mediated responses were investigated by an IFN-γ release assay in whole blood, IFN-γ ELISPOT, and lymphocyte proliferation (Ki-67 and BrDU assays). All the vaccines under study but mock provided complete or incomplete protection from PCV2 infection in terms of post-challenge viremia. Serum antibody titers (ELISA and neutralizing) after vaccination were not correlated with protection, as opposed to the early neutralizing antibody levels of vaccinated pigs at day 7 after infection. Cell-mediated immune parameters showed a good correlation with vaccine efficacy. In particular, the IFN-γ release assay at 3 weeks after vaccination was an effective marker for predicting protection. All control pigs always tested negative in assays of cell-mediated immunity. Our results outline in vitro testing procedures toward reduced animal usage in the control of PCV2 vaccine batches. PMID:26401584

  1. Polio eradication. Efficacy of inactivated poliovirus vaccine in India.

    PubMed

    Jafari, Hamid; Deshpande, Jagadish M; Sutter, Roland W; Bahl, Sunil; Verma, Harish; Ahmad, Mohammad; Kunwar, Abhishek; Vishwakarma, Rakesh; Agarwal, Ashutosh; Jain, Shilpi; Estivariz, Concepcion; Sethi, Raman; Molodecky, Natalie A; Grassly, Nicholas C; Pallansch, Mark A; Chatterjee, Arani; Aylward, R Bruce

    2014-08-22

    Inactivated poliovirus vaccine (IPV) is efficacious against paralytic disease, but its effect on mucosal immunity is debated. We assessed the efficacy of IPV in boosting mucosal immunity. Participants received IPV, bivalent 1 and 3 oral poliovirus vaccine (bOPV), or no vaccine. A bOPV challenge was administered 4 weeks later, and excretion was assessed 3, 7, and 14 days later. Nine hundred and fifty-four participants completed the study. Any fecal shedding of poliovirus type 1 was 8.8, 9.1, and 13.5% in the IPV group and 14.4, 24.1, and 52.4% in the control group by 6- to 11-month, 5-year, and 10-year groups, respectively (IPV versus control: Fisher's exact test P < 0.001). IPV reduced excretion for poliovirus types 1 and 3 between 38.9 and 74.2% and 52.8 and 75.7%, respectively. Thus, IPV in OPV-vaccinated individuals boosts intestinal mucosal immunity. PMID:25146288

  2. Antibody response in cattle after vaccination with inactivated and attenuated rabies vaccines.

    PubMed

    Rodrigues da Silva, A C; Caporale, G M; Gonçalves, C A; Targueta, M C; Comin, F; Zanetti, C R; Kotait, I

    2000-01-01

    Despite the absence of current official reports showing the number of cattle infected by rabies, it is estimated that nearly 30,000 bovines are lost each year in Brazil. In order to minimize the important economic losses, control of the disease is achieved by eliminating bat colonies and by herd vaccination. In this study, we compare the antibody response in cattle elicited by vaccination with an attenuated ERA vaccine (AEvac) and an inactivated-adjuvanted PV (IPVvac) vaccine. The antibody titers were appraised by cell-culture neutralization test and ELISA, and the percentage of seropositivity was ascertained for a period of 180 days. IPVvac elicited complete seropositivity rates from day 30 to day 150, and even on day 180, 87% of the sera showed virus-neutralizing antibody titers (VNA) higher than 0.5IU/ml. There were no significant differences between the VNA titers and seropositivity rates obtained with IPVvac in the two methods tested. AEvac, however, elicited significantly lower titers than those observed in the group receiving inactivated vaccine. In addition, the profiles of antirabies IgG antibodies, evaluated by ELISA, and VNA, appraised by cell-culture neutralization test, were slightly different, when both vaccines were compared. PMID:10810324

  3. Specificities of human CD4+ T cell responses to an inactivated flavivirus vaccine and infection: correlation with structure and epitope prediction.

    PubMed

    Schwaiger, Julia; Aberle, Judith H; Stiasny, Karin; Knapp, Bernhard; Schreiner, Wolfgang; Fae, Ingrid; Fischer, Gottfried; Scheinost, Ondrej; Chmelik, Vaclav; Heinz, Franz X

    2014-07-01

    Tick-borne encephalitis (TBE) virus is endemic in large parts of Europe and Central and Eastern Asia and causes more than 10,000 annual cases of neurological disease in humans. It is closely related to the mosquito-borne yellow fever, dengue, Japanese encephalitis, and West Nile viruses, and vaccination with an inactivated whole-virus vaccine can effectively prevent clinical disease. Neutralizing antibodies are directed to the viral envelope protein (E) and an accepted correlate of immunity. However, data on the specificities of CD4(+) T cells that recognize epitopes in the viral structural proteins and thus can provide direct help to the B cells producing E-specific antibodies are lacking. We therefore conducted a study on the CD4(+) T cell response against the virion proteins in vaccinated people in comparison to TBE patients. The data obtained with overlapping peptides in interleukin-2 (IL-2) enzyme-linked immunosorbent spot (ELISpot) assays were analyzed in relation to the three-dimensional structures of the capsid (C) and E proteins as well as to epitope predictions based on major histocompatibility complex (MHC) class II peptide affinities. In the C protein, peptides corresponding to two out of four alpha helices dominated the response in both vaccinees and patients, whereas in the E protein concordance of immunodominance was restricted to peptides of a single domain (domain III). Epitope predictions were much better for C than for E and were especially erroneous for the transmembrane regions. Our data provide evidence for a strong impact of protein structural features that influence peptide processing, contributing to the discrepancies observed between experimentally determined and computer-predicted CD4(+) T cell epitopes. Importance: Tick-borne encephalitis virus is endemic in large parts of Europe and Asia and causes more than 10,000 annual cases of neurological disease in humans. It is closely related to yellow fever, dengue, Japanese encephalitis, and

  4. Adjuvant effects of chitosan and calcium phosphate particles in an inactivated Newcastle disease vaccine

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The adjuvant activity of chitosan and calcium phosphate-particles (CAP) was studied following intranasal coadministration of commercial chickens with inactivated Newcastle disease virus (NDV) vaccine. After three vaccinations with inactivated NDV in combination with chitosan or CAP an increase in an...

  5. Adenovirus vectored vaccines against influenza a virus do not result in vaccine associated enhanced respiratory disease following heterologous challenge in contrast to whole inactivated virus vaccine

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Heterologous influenza A virus (IAV) challenge following vaccination with an intramuscular (IM) whole inactivated vaccine (WIV) can result in vaccine-associated enhanced respiratory disease (VAERD). The objective of this study was to use an adenovirus (Ad5) vector vaccine platform that expressed IAV...

  6. Japanese Encephalitis: Frequently Asked Questions

    MedlinePlus

    ... of Page How long does the Japanese encephalitis vaccination last? The duration of protection is unknown. For ... What are the side effects of Japanese encephalitis vaccination? Pain and tenderness are the most commonly reported ...

  7. Persistence of antibodies and anamnestic response in calves vaccinated with inactivated infectious bovine rhinotracheitis virus and parainfluenza-3 virus vaccines.

    PubMed

    Sweat, R L

    1983-04-15

    Persistence of antibodies in calves vaccinated with 2 types of inactivated infectious bovine rhinotracheitis (IBR) virus and parainfluenza-3 (PI-3) virus vaccines were determined. Calves seronegative for IBR and PI-3 viruses were inoculated with 2 doses of inactivated IBR virus-PI-3 virus vaccines administered 2 weeks apart. Blood samples were obtained from the calves for serum at 2 weeks, 6 months, and 1 year after vaccination. The serums were tested by serum-neutralization tests. Antibody response to the vaccines persisted on a declining scale for 1 year. The anamnestic responses to the vaccines were determined by inoculating the same calves with a booster dose of vaccine 1 year after the original 2 doses were given. Blood samples were obtained from the calves for serum 2 weeks later. The serums were tested by serum-neutralization tests. The single booster dose of vaccine elicited an anamnestic response to both IBR and PI-3 viruses. PMID:6303996

  8. Safety, Immunogenicity and Duration of Immunity Elicited by an Inactivated Bovine Ephemeral Fever Vaccine

    PubMed Central

    Aziz-Boaron, Orly; Leibovitz, Keren; Gelman, Boris; Kedmi, Maor; Klement, Eyal

    2013-01-01

    Bovine ephemeral fever (BEF) is an economically important viral vector-borne cattle disease. Several live-attenuated, inactivated and recombinant vaccines have been tested, demonstrating varying efficacy. However, to the best of our knowledge, duration of immunity conferred by an inactivated vaccine has never been reported. In the last decade, Israel has faced an increasing number of BEF outbreaks. The need for an effective vaccine compatible with strains circulating in the Middle East region led to the development of a MONTANIDE™ ISA 206 VG (water-in-oil-in-water), inactivated vaccine based on a local strain. We tested the safety, immunogenicity and duration of immunity conferred by this vaccine. The induced neutralizing antibody (NA) response was followed for 493 days in 40 cows vaccinated by different protocols. The vaccine did not cause adverse reactions or a decrease in milk production. All cows [except 2 (6.7%) which did not respond to vaccination] showed a significant rise in NA titer of up to 1:256 following the second, third or fourth booster vaccination. Neutralizing antibody levels declined gradually to 1:16 up to 120 days post vaccination. This decline continued in cows vaccinated only twice, whereas cows vaccinated 3 or 4 times showed stable titers of approximately 1:16 for up to 267 days post vaccination. At least three vaccinations with the inactivated BEF vaccine were needed to confer long-lasting immunity. These results may have significant implications for the choice of vaccination protocol with inactivated BEF vaccines. Complementary challenge data should however be added to the above results in order to determine what is the minimal NA response conferring protection from clinical disease. PMID:24349225

  9. An inactivated yellow fever 17DD vaccine cultivated in Vero cell cultures.

    PubMed

    Pereira, Renata C; Silva, Andrea N M R; Souza, Marta Cristina O; Silva, Marlon V; Neves, Patrícia P C C; Silva, Andrea A M V; Matos, Denise D C S; Herrera, Miguel A O; Yamamura, Anna M Y; Freire, Marcos S; Gaspar, Luciane P; Caride, Elena

    2015-08-20

    Yellow fever is an acute infectious disease caused by prototype virus of the genus Flavivirus. It is endemic in Africa and South America where it represents a serious public health problem causing epidemics of hemorrhagic fever with mortality rates ranging from 20% to 50%. There is no available antiviral therapy and vaccination is the primary method of disease control. Although the attenuated vaccines for yellow fever show safety and efficacy it became necessary to develop a new yellow fever vaccine due to the occurrence of rare serious adverse events, which include visceral and neurotropic diseases. The new inactivated vaccine should be safer and effective as the existing attenuated one. In the present study, the immunogenicity of an inactivated 17DD vaccine in C57BL/6 mice was evaluated. The yellow fever virus was produced by cultivation of Vero cells in bioreactors, inactivated with β-propiolactone, and adsorbed to aluminum hydroxide (alum). Mice were inoculated with inactivated 17DD vaccine containing alum adjuvant and followed by intracerebral challenge with 17DD virus. The results showed that animals receiving 3 doses of the inactivated vaccine (2 μg/dose) with alum adjuvant had neutralizing antibody titers above the cut-off of PRNT50 (Plaque Reduction Neutralization Test). In addition, animals immunized with inactivated vaccine showed survival rate of 100% after the challenge as well as animals immunized with commercial attenuated 17DD vaccine. PMID:25862300

  10. Incompatibility of lyophilized inactivated polio vaccine with liquid pentavalent whole-cell-pertussis-containing vaccine.

    PubMed

    Kraan, Heleen; Ten Have, Rimko; van der Maas, Larissa; Kersten, Gideon; Amorij, Jean-Pierre

    2016-08-31

    A hexavalent vaccine containing diphtheria toxoid, tetanus toxoid, whole cell pertussis, Haemophilius influenza type B, hepatitis B and inactivated polio vaccine (IPV) may: (i) increase the efficiency of vaccination campaigns, (ii) reduce the number of injections thereby reducing needlestick injuries, and (iii) ensure better protection against pertussis as compared to vaccines containing acellular pertussis antigens. An approach to obtain a hexavalent vaccine might be reconstituting lyophilized polio vaccine (IPV-LYO) with liquid pentavalent vaccine just before intramuscular delivery. The potential limitations of this approach were investigated including thermostability of IPV as measured by D-antigen ELISA and rat potency, the compatibility of fluid and lyophilized IPV in combination with thimerosal and thimerosal containing hexavalent vaccine. The rat potency of polio type 3 in IPV-LYO was 2 to 3-fold lower than standardized on the D-antigen content, suggesting an alteration of the polio type 3 D-antigen particle by lyophilization. Type 1 and 2 had unaffected antigenicity/immunogenicity ratios. Alteration of type 3 D-antigen could be detected by showing reduced thermostability at 45°C compared to type 3 in non-lyophilized liquid controls. Reconstituting IPV-LYO in the presence of thimerosal (TM) resulted in a fast temperature dependent loss of polio type 1-3 D-antigen. The presence of 0.005% TM reduced the D-antigen content by ∼20% (polio type 2/3) and ∼60% (polio type 1) in 6h at 25°C, which are WHO open vial policy conditions. At 37°C, D-antigen was diminished even faster, suggesting that very fast, i.e., immediately after preparation, intramuscular delivery of the conceived hexavalent vaccine would not be a feasible option. Use of the TM-scavenger, l-cysteine, to bind TM (or mercury containing TM degradation products), resulted in a hexavalent vaccine mixture in which polio D-antigen was more stable. PMID:27470209

  11. Cost-effectiveness analysis of universal influenza vaccination with quadrivalent inactivated vaccine in the United States

    PubMed Central

    Clements, Karen M; Meier, Genevieve; McGarry, Lisa J; Pruttivarasin, Narin; Misurski, Derek A

    2014-01-01

    To address influenza B lineage mismatch and co-circulation, several quadrivalent inactivated influenza vaccines (IIV4s) containing two type A strains and both type B lineages have recently been approved in the United States. Currently available trivalent inactivated vaccines (IIV3s) or trivalent live attenuated influenza vaccines (LAIV3s) comprise two influenza A strains and one of the two influenza B lineages that have co-circulated in the United States since 2001. The objective of this analysis was to evaluate the cost-effectiveness of a policy of universal vaccination with IIV4 vs. IIV3/LAIV3 during 1 year in the United States. On average per influenza season, IIV4 was predicted to result in 30 251 fewer influenza cases, 3512 fewer hospitalizations, 722 fewer deaths, 4812 fewer life-years lost, and 3596 fewer quality-adjusted life-years (QALYs) lost vs. IIV3/LAIV3. Using the Fluarix QuadrivalentTM (GlaxoSmithKline) prices and the weighted average IIV3/LAIV3 prices, the model predicts that the vaccination program costs would increase by $452.2 million, while direct medical and indirect costs would decrease by $111.6 million and $218.7 million, respectively, with IIV4. The incremental cost-effectiveness ratio (ICER) comparing IIV4 to IIV3/LAIV3 is predicted to be $90 301/QALY gained. Deterministic sensitivity analyses found that influenza B vaccine-matched and mismatched efficacies among adults aged ≥65 years had the greatest impact on the ICER. Probabilistic sensitivity analysis showed that the cost per QALY remained below $100 000 for 61% of iterations. In conclusion, vaccination with IIV4 in the US is predicted to reduce morbidity and mortality. This strategy is also predicted to be cost-effective vs. IIV3/LAIV3 at conventional willingness-to-pay thresholds. PMID:24609063

  12. [Evaluation of an experimental rabies vaccine by the oral and intestinal route with inactivated vaccines, concentrated or non-concentrated].

    PubMed

    Atanasiu, P; Metianu, T; Bolanos, A

    1982-01-01

    Application of beta-propiolactone inactivated rabies vaccine prepared in bovine embryo kidney cells, concentrated or non concentrated, by intestinal or oral route resulted in antibody production in rats and cats. 80-100% of vaccinated rats were protected against challenge with street rabies virus. The same vaccines (lyophilized in gelatin capsules) stimulated antibody production in more than 50% (5/8) cats which received the vaccine by the oral route. PMID:7128069

  13. Immunization of foxes Vulpes vulpes by the oral and intramuscular routes with inactivated rabies vaccines.

    PubMed Central

    Lawson, K F; Johnston, D H; Patterson, J M; Black, J G; Rhodes, A J; Zalan, E

    1982-01-01

    Inactivated rabies vaccines prepared from common vaccine strains of virus were inoculated into foxes by the intramuscular and intestinal route. There were differences among the vaccines in the duration of antibody produced after intramuscular administration. Inactivated vaccines deposited directly into the lumen of the duodenum by means of a fiberscope caused seroconversion in some foxes, especially following a booster dose, but the antibodies produced were for the most part of short duration. The ERA modified live virus vaccine, in contrast, produced a satisfactory and long lasting antibody after intestinal instillation. PMID:7172102

  14. Comparison of Humoral and Cellular Immune Responses to Inactivated Swine Influenza Virus Vaccine in Weaned Pigs

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Purpose: To evaluate and compare humoral and cellular immune responses to inactivated swine influenza virus (SIV) vaccine. Methods: Fifty 3-week-old weaned pigs from a herd free of SIV and PRRSV were randomly divided into the non-vaccinated control group and vaccinated group containing 25 pigs each....

  15. Comparison of Humoral and Cellular Immune Responses to Inactivated Swine Influenza Virus Vaccine in Weaned Pigs

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Humoral and cellular immune responses to inactivated swine influenza virus (SIV) vaccine were evaluated and compared. Fifty 3-week-old weaned pigs from a herd free of SIV and PRRSV were randomly divided into the non-vaccinated control group and vaccinated group containing 25 pigs each. Pigs were va...

  16. A summary of antibody titration experiments in some animal species treated with ERA vaccine and an inactivated rabies vaccine.

    PubMed

    Mantovani, A; Caporale, V; Ciuchini, F; Di Trani, L; Irsara, A; Prosperi, S

    1982-01-01

    The results of antibody titrations in different animal species vaccinated against rabies are reported. The following points are considered: (1) antibody titration may be used to detect an immunity status in dogs, (2) equines should be vaccinated in infected areas, (3) experiments in progress are comparing ERA vaccine and an inactivated vaccine in bovines, and (4) the vaccination of fallow deer (Dama dama) and moufflons (Ovis ammon musimon) produced results suggesting an extension of the experiment with the purpose of vaccinating wild ruminants whenever possible. PMID:7128062

  17. Protection against Tuberculosis in Eurasian Wild Boar Vaccinated with Heat-Inactivated Mycobacterium bovis

    PubMed Central

    Garrido, Joseba M.; Sevilla, Iker A.; Beltrán-Beck, Beatriz; Minguijón, Esmeralda; Ballesteros, Cristina; Galindo, Ruth C.; Boadella, Mariana; Lyashchenko, Konstantin P.; Romero, Beatriz; Geijo, Maria Victoria; Ruiz-Fons, Francisco; Aranaz, Alicia; Juste, Ramón A.; Vicente, Joaquín; de la Fuente, José; Gortázar, Christian

    2011-01-01

    Tuberculosis (TB) caused by Mycobacterium bovis and closely related members of the Mycobacterium tuberculosis complex continues to affect humans and animals worldwide and its control requires vaccination of wildlife reservoir species such as Eurasian wild boar (Sus scrofa). Vaccination efforts for TB control in wildlife have been based primarily on oral live BCG formulations. However, this is the first report of the use of oral inactivated vaccines for controlling TB in wildlife. In this study, four groups of 5 wild boar each were vaccinated with inactivated M. bovis by the oral and intramuscular routes, vaccinated with oral BCG or left unvaccinated as controls. All groups were later challenged with a field strain of M. bovis. The results of the IFN-gamma response, serum antibody levels, M. bovis culture, TB lesion scores, and the expression of C3 and MUT genes were compared between these four groups. The results suggested that vaccination with heat-inactivated M. bovis or BCG protect wild boar from TB. These results also encouraged testing combinations of BCG and inactivated M. bovis to vaccinate wild boar against TB. Vaccine formulations using heat-inactivated M. bovis for TB control in wildlife would have the advantage of being environmentally safe and more stable under field conditions when compared to live BCG vaccines. The antibody response and MUT expression levels can help differentiating between vaccinated and infected wild boar and as correlates of protective response in vaccinated animals. These results suggest that vaccine studies in free-living wild boar are now possible to reveal the full potential of protecting against TB using oral M. bovis inactivated and BCG vaccines. PMID:21935486

  18. Optimization and Characterization of Candidate Strain for Coxsackievirus A16 Inactivated Vaccine

    PubMed Central

    Li, Jingliang; Liu, Guanchen; Liu, Xin; Yang, Jiaxin; Chang, Junliang; Zhang, Wenyan; Yu, Xiao-Fang

    2015-01-01

    Coxsackievirus A16 (CA16) and enterovirus 71 (EV71), both of which can cause hand, foot and mouth disease (HFMD), are responsible for large epidemics in Asian and Pacific areas. Although inactivated EV71 vaccines have completed testing in phase III clinical trials in Mainland China, CA16 vaccines are still under development. A Vero cell-based inactivated CA16 vaccine was developed by our group. Screening identified a CA16 vaccine strain (CC024) isolated from HFMD patients, which had broad cross-protective abilities and satisfied all requirements for vaccine production. Identification of the biological characteristics showed that the CA16CC024 strain had the highest titer (107.5 CCID50/mL) in Vero cells, which would benefit the development of an EV71/CA16 divalent vaccine. A potential vaccine manufacturing process was established, including the selection of optimal time for virus harvesting, membrane for diafiltration and concentration, gel-filtration chromatography for the down-stream virus purification and virus inactivation method. Altogether, the analyses suggested that the CC-16, a limiting dilution clone of the CC024 strain, with good genetic stability, high titer and broad-spectrum immunogenicity, would be the best candidate strain for a CA16 inactivated vaccine. Therefore, our study provides valuable information for the development of a Vero cell-based CA16 or EV71-CA16 divalent inactivated vaccine. PMID:26193302

  19. Optimization and Characterization of Candidate Strain for Coxsackievirus A16 Inactivated Vaccine.

    PubMed

    Li, Jingliang; Liu, Guanchen; Liu, Xin; Yang, Jiaxin; Chang, Junliang; Zhang, Wenyan; Yu, Xiao-Fang

    2015-07-01

    Coxsackievirus A16 (CA16) and enterovirus 71 (EV71), both of which can cause hand, foot and mouth disease (HFMD), are responsible for large epidemics in Asian and Pacific areas. Although inactivated EV71 vaccines have completed testing in phase III clinical trials in Mainland China, CA16 vaccines are still under development. A Vero cell-based inactivated CA16 vaccine was developed by our group. Screening identified a CA16 vaccine strain (CC024) isolated from HFMD patients, which had broad cross-protective abilities and satisfied all requirements for vaccine production. Identification of the biological characteristics showed that the CA16CC024 strain had the highest titer (107.5 CCID50/mL) in Vero cells, which would benefit the development of an EV71/CA16 divalent vaccine. A potential vaccine manufacturing process was established, including the selection of optimal time for virus harvesting, membrane for diafiltration and concentration, gel-filtration chromatography for the down-stream virus purification and virus inactivation method. Altogether, the analyses suggested that the CC-16, a limiting dilution clone of the CC024 strain, with good genetic stability, high titer and broad-spectrum immunogenicity, would be the best candidate strain for a CA16 inactivated vaccine. Therefore, our study provides valuable information for the development of a Vero cell-based CA16 or EV71-CA16 divalent inactivated vaccine. PMID:26193302

  20. Comparison of antibody responses after vaccination with two inactivated rabies vaccines.

    PubMed

    Minke, J M; Bouvet, J; Cliquet, F; Wasniewski, M; Guiot, A L; Lemaitre, L; Cariou, C; Cozette, V; Vergne, L; Guigal, P M

    2009-01-13

    Thirty laboratory dogs were randomly assigned to two groups (A and B) of 15 dogs and subcutaneously vaccinated with a single dose of one of two commercially available monovalent inactivated rabies vaccines: RABISIN (Merial, France) (group A) and NOBIVAC Rabies (Intervet International) (group B). Rabies antibodies were measured over a period of 4 months using the fluorescent antibody virus neutralization (FAVN) test. The two vaccines performed differently in terms of magnitude and persistence of rabies antibodies titers in dogs. Two weeks after vaccination, average rabies antibody titers peaked at 2.53 IU/mL (range, 0.17-13.77 IU/mL) and 1.26 IU/mL (range, 0.50-4.56 IU/mL) in groups A and B dogs, respectively. The average FAVN antibody titres against rabies on D28, D56, D84, D112 and D120 were significantly higher in group A than in group B. Although all dogs from group B serologically responded to vaccination, the proportion of dogs with antibody titres >or=0.5 IU/mL dropped significantly after D28 and was statistically significantly lower on D56, D84 and D112 compared to group A dogs. In conclusion, in the context of international trade, the choice of the vaccine and the timing of blood tests are critical factors in achieving successful serological test results after rabies vaccination. RABISIN induces high and sustained antibody titres against rabies, increasing the flexibility for the time of blood sampling after primo-vaccination. PMID:18757142

  1. Epidemiological trends and characteristics of Japanese encephalitis changed based on the vaccination program between 1960 and 2013 in Guangxi Zhuang Autonomous Region, southern China.

    PubMed

    Yang, Yan; Liang, Nengxiu; Tan, Yi; Xie, Zhichun

    2016-04-01

    Japanese encephalitis (JE) is one of the most severe kinds of viral encephalitis and is prevalent in Asia and the Western Pacific. In China, JE was first reported in the 1940s and became the main cause of viral encephalitis, including in the Guangxi Zhuang Autonomous Region. In 1951, JE was included in the Chinese mandatory disease reporting system. In the pre-vaccine era of the 1960s and 1970s, the incidence of JE continued to rise without any vaccine supply. Since JE vaccines became available in the late 1970s (MBD) and 1989 (LAV-SA-14-14-2), and as JE vaccine became freely available to patients beginning in 2008, the incidence of JE has declined significantly. Despite these gains, outbreaks continue to occur among children in rural and suburban areas. Strengthening vaccine delivery models and improving swine vaccine production are important in order to sustain continuous declines in the incidence of JE in Guangxi. PMID:26972041

  2. Inactivated or live-attenuated bivalent vaccines that confer protection against rabies and Ebola viruses.

    PubMed

    Blaney, Joseph E; Wirblich, Christoph; Papaneri, Amy B; Johnson, Reed F; Myers, Carey J; Juelich, Terry L; Holbrook, Michael R; Freiberg, Alexander N; Bernbaum, John G; Jahrling, Peter B; Paragas, Jason; Schnell, Matthias J

    2011-10-01

    The search for a safe and efficacious vaccine for Ebola virus continues, as no current vaccine candidate is nearing licensure. We have developed (i) replication-competent, (ii) replication-deficient, and (iii) chemically inactivated rabies virus (RABV) vaccines expressing Zaire Ebola virus (ZEBOV) glycoprotein (GP) by a reverse genetics system based on the SAD B19 RABV wildlife vaccine. ZEBOV GP is efficiently expressed by these vaccine candidates and is incorporated into virions. The vaccine candidates were avirulent after inoculation of adult mice, and viruses with a deletion in the RABV glycoprotein had greatly reduced neurovirulence after intracerebral inoculation in suckling mice. Immunization with live or inactivated RABV vaccines expressing ZEBOV GP induced humoral immunity against each virus and conferred protection from both lethal RABV and EBOV challenge in mice. The bivalent RABV/ZEBOV vaccines described here have several distinct advantages that may speed the development of inactivated vaccines for use in humans and potentially live or inactivated vaccines for use in nonhuman primates at risk of EBOV infection in endemic areas. PMID:21849459

  3. Inactivated or Live-Attenuated Bivalent Vaccines That Confer Protection against Rabies and Ebola Viruses ▿

    PubMed Central

    Blaney, Joseph E.; Wirblich, Christoph; Papaneri, Amy B.; Johnson, Reed F.; Myers, Carey J.; Juelich, Terry L.; Holbrook, Michael R.; Freiberg, Alexander N.; Bernbaum, John G.; Jahrling, Peter B.; Paragas, Jason; Schnell, Matthias J.

    2011-01-01

    The search for a safe and efficacious vaccine for Ebola virus continues, as no current vaccine candidate is nearing licensure. We have developed (i) replication-competent, (ii) replication-deficient, and (iii) chemically inactivated rabies virus (RABV) vaccines expressing Zaire Ebola virus (ZEBOV) glycoprotein (GP) by a reverse genetics system based on the SAD B19 RABV wildlife vaccine. ZEBOV GP is efficiently expressed by these vaccine candidates and is incorporated into virions. The vaccine candidates were avirulent after inoculation of adult mice, and viruses with a deletion in the RABV glycoprotein had greatly reduced neurovirulence after intracerebral inoculation in suckling mice. Immunization with live or inactivated RABV vaccines expressing ZEBOV GP induced humoral immunity against each virus and conferred protection from both lethal RABV and EBOV challenge in mice. The bivalent RABV/ZEBOV vaccines described here have several distinct advantages that may speed the development of inactivated vaccines for use in humans and potentially live or inactivated vaccines for use in nonhuman primates at risk of EBOV infection in endemic areas. PMID:21849459

  4. Vaccine-associated enhanced respiratory disease is influenced by hemagglutinin and neuraminidase in whole inactivated influenza virus vaccines

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Multiple subtypes and many antigenic variants of influenza A virus (IAV) co-circulate in swine in the USA, complicating effective use of commercial vaccines to control disease and transmission. Whole inactivated virus (WIV) vaccines may provide partial protection against IAV with substantial antigen...

  5. The Willingness to Pay for Vaccination against Tick-Borne Encephalitis and Implications for Public Health Policy: Evidence from Sweden

    PubMed Central

    Slunge, Daniel

    2015-01-01

    The increasing incidence of tick-borne encephalitis (TBE) in Sweden and several other European countries has sparked a discussion about the need for a public vaccination strategy. However, TBE vaccination coverage is incomplete and there is little knowledge about the factors influencing vaccination behavior. Based on a survey of 1,500 randomly selected respondents in Sweden, we estimate vaccination coverage in areas with different TBE risk levels and analyze the role of vaccine price and other factors influencing the demand for vaccination. First, we find that the average rate of TBE vaccination in Sweden is 33% in TBE risk areas and 18% elsewhere. Income, age and risk-related factors such as incidence of TBE in the area of residence, frequency of visits to areas with TBE risk, and experience with tick bites are positively associated with demand for TBE vaccine. Next, using contingent valuation methodology, we estimate the willingness to pay for TBE vaccination among the unvaccinated respondents and the effect of a possible subsidy. Among the unvaccinated respondents in TBE risk areas, we estimate the mean willingness to pay for the recommended three doses of TBE vaccine to be 465 SEK (approximately 46 euros or 40% of the current market price). We project that a subsidy making TBE vaccines free of charge could increase the vaccination rate in TBE risk areas to around 78%, with a larger effect on low-income households, whose current vaccination rate is only 15% in risk areas. However, price is not the only factor affecting demand. We find significant effects on vaccination behavior associated with trust in vaccine recommendations, perceptions about tick bite-related health risks and knowledge about ticks and tick-borne diseases. Hence, increasing knowledge and trust, as well as ease of access to vaccinations, can also be important measures for public health agencies that want to increase the vaccination rate. PMID:26641491

  6. Inactivated and subunit vaccines against porcine reproductive and respiratory syndrome: Current status and future direction.

    PubMed

    Renukaradhya, Gourapura J; Meng, Xiang-Jin; Calvert, Jay G; Roof, Michael; Lager, Kelly M

    2015-06-17

    Within a few years of its emergence in the late 1980s, the PRRS virus had spread globally to become the foremost infectious disease concern for the pork industry. Since 1994, modified live-attenuated vaccines against porcine reproductive and respiratory syndrome virus (PRRSV-MLV) have been widely used, but have failed to provide complete protection against emerging and heterologous field strains of the virus. Moreover, like many other MLVs, PRRSV-MLVs have safety concerns including vertical and horizontal transmission of the vaccine virus and several documented incidences of reversion to virulence. Thus, the development of efficacious inactivated vaccines is warranted for the control and eradication of PRRS. Since the early 1990s, researchers have been attempting to develop inactivated PRRSV vaccines, but most of the candidates have failed to elicit protective immunity even against homologous virus challenge. Recent research findings relating to both inactivated and subunit candidate PRRSV vaccines have shown promise, but they need to be pursued further to improve their heterologous efficacy and cost-effectiveness before considering commercialization. In this comprehensive review, we provide information on attempts to develop PRRSV inactivated and subunit vaccines. These includes various virus inactivation strategies, adjuvants, nanoparticle-based vaccine delivery systems, DNA vaccines, and recombinant subunit vaccines produced using baculovirus, plant, and replication-deficient viruses as vector vaccines. Finally, future directions for the development of innovative non-infectious PRRSV vaccines are suggested. Undoubtedly there remains a need for novel PRRSV vaccine strategies targeted to deliver cross-protective, non-infectious vaccines for the control and eradication of PRRS. PMID:25980425

  7. Dengue encephalitis-associated immunopathology in the mouse model: Implications for vaccine developers and antigens inducer of cellular immune response.

    PubMed

    Marcos, Ernesto; Lazo, Laura; Gil, Lázaro; Izquierdo, Alienys; Suzarte, Edith; Valdés, Iris; Blanco, Aracelys; Ancizar, Julio; Alba, José Suárez; Pérez, Yusleydis de la C; Cobas, Karen; Romero, Yaremis; Guillén, Gerardo; Guzmán, María G; Hermida, Lisset

    2016-08-01

    Despite the many efforts made by the scientific community in the development of vaccine candidates against dengue virus (DENV), no vaccine has been licensed up to date. Although the immunopathogenesis associated to the disease is a key factor to take into account by vaccine developers, the lack of animal models that reproduce the clinical signs of the disease has hampered the vaccine progress. Non-human primates support viral replication, but they are very expensive and do not show signs of disease. Immunocompromised mice develop viremia and some signs of the disease; however, they are not valuable for vaccine testing. Nowadays, immunocompetent mice are the most used model to evaluate the immunogenicity of vaccine candidates. These animals are resistant to DENV infection; therefore, the intracranial inoculation with neuroadapted virus, which provokes viral encephalitis, represents an alternative to evaluate the protective capacity of vaccine candidates. Previous results have demonstrated the crucial role of cellular immune response in the protection induced by the virus and vaccine candidates in this mouse encephalitis model. However, in the present work we are proposing that the magnitude of the cell-mediated immunity and the inflammatory response generated by the vaccine can modulate the survival rate after viral challenge. We observed that the intracranial challenge of naïve mice with DENV-2 induces the recruitment of immune cells that contribute to the reduction of viral load, but does not increase the survival rate. On the contrary, animals treated with cyclophosphamide, an immunosuppressive drug that affects proliferating lymphocytes, had a higher viral load but a better survival rate than untreated animals. These results suggest that the immune system is playing an immunopathogenic role in this model and the survival rate may not be a suitable endpoint in the evaluation of vaccine candidates based on antigens that induce a strong cellular immune response

  8. Venezuelan Equine Encephalitis Virus Replicon Particle Vaccine Protects Nonhuman Primates from Intramuscular and Aerosol Challenge with Ebolavirus

    PubMed Central

    Herbert, Andrew S.; Kuehne, Ana I.; Barth, James F.; Ortiz, Ramon A.; Nichols, Donald K.; Zak, Samantha E.; Stonier, Spencer W.; Muhammad, Majidat A.; Bakken, Russell R.; Prugar, Laura I.; Olinger, Gene G.; Groebner, Jennifer L.; Lee, John S.; Pratt, William D.; Custer, Max; Kamrud, Kurt I.; Smith, Jonathan F.; Hart, Mary Kate

    2013-01-01

    There are no vaccines or therapeutics currently approved for the prevention or treatment of ebolavirus infection. Previously, a replicon vaccine based on Venezuelan equine encephalitis virus (VEEV) demonstrated protective efficacy against Marburg virus in nonhuman primates. Here, we report the protective efficacy of Sudan virus (SUDV)- and Ebola virus (EBOV)-specific VEEV replicon particle (VRP) vaccines in nonhuman primates. VRP vaccines were developed to express the glycoprotein (GP) of either SUDV or EBOV. A single intramuscular vaccination of cynomolgus macaques with VRP expressing SUDV GP provided complete protection against intramuscular challenge with SUDV. Vaccination against SUDV and subsequent survival of SUDV challenge did not fully protect cynomolgus macaques against intramuscular EBOV back-challenge. However, a single simultaneous intramuscular vaccination with VRP expressing SUDV GP combined with VRP expressing EBOV GP did provide complete protection against intramuscular challenge with either SUDV or EBOV in cynomolgus macaques. Finally, intramuscular vaccination with VRP expressing SUDV GP completely protected cynomolgus macaques when challenged with aerosolized SUDV, although complete protection against aerosol challenge required two vaccinations with this vaccine. PMID:23408633

  9. Alternative delivery of a thermostable inactivated polio vaccine.

    PubMed

    Kraan, Heleen; Ploemen, Ivo; van de Wijdeven, Gijsbert; Que, Ivo; Löwik, Clemens; Kersten, Gideon; Amorij, Jean-Pierre

    2015-04-21

    In the near future oral polio vaccine (OPV) will be replaced by inactivated polio vaccine (IPV) as part of the eradication program of polio. For that reason, there is a need for substantial amount of safe and more affordable IPV for low-income countries. Bioneedles, which are biodegradable mini-implants, have the potential to deliver vaccines outside the cold-chain and administer them without the use of needles and syringes. In the current study, Bioneedles were filled with IPV, subsequently lyophilized, and antigenic recoveries were determined both directly after IPV-Bioneedle preparation as well as after elevated stability testing. Further, we assessed the immunogenicity of IPV-Bioneedles in rats and the residence time at the site of administration. Trivalent IPV was formulated in Bioneedles with recoveries of 101±10%, 113±18%, and 92±15%, respectively for serotypes 1, 2 and 3. IPV in Bioneedles is more resistant to elevated temperatures than liquid IPV: liquid IPV retained less than half of its antigenicity after 1 day at 45°C and IPV in Bioneedles showed remaining recoveries of 80±10%, 85±4% and 63±4% for the three serotypes. In vivo imaging revealed that IPV administered via Bioneedles as well as subcutaneously injected liquid IPV showed a retention time of 3 days at the site of administration. Finally, an immunogenicity study showed that IPV-filled Bioneedles are able to induce virus-neutralizing antibody titers similar to those obtained by liquid intramuscular injection when administered in a booster regime. The addition of LPS-derivate PagL in IPV-filled Bioneedles did not increase immunogenicity compared to IPV-Bioneedles without adjuvant. The current study demonstrates the pre-clinical proof of concept of IPV-filled Bioneedles as a syringe-free alternative delivery system. Further pre-clinical and clinical studies will be required to assess the feasibility whether IPV-Bioneedles show sufficient safety and efficacy, and may contribute to the efforts

  10. Oral and Inactivated Poliovirus Vaccines in the Newborn: A review

    PubMed Central

    Mateen, Farrah J.; Shinohara, Russell T.; Sutter, Roland W.

    2015-01-01

    Background Oral poliovirus vaccine (OPV) remains the vaccine-of-choice for routine immunization and supplemental immunization activities (SIAs) to eradicate poliomyelitis globally. Recent data from India suggested lowerthanexpected immunogenicity of an OPV birth dose, prompting a review of the immunogenicity of OPV or inactivated poliovirus vaccine (IPV) when administered at birth. Methods We evaluated the seroconversion and reported adverse events among infants given a single birth dose (given ≤7 days of life) of OPV or IPV through a systematic review of published articles and conference abstracts from 1959-2011 in any language found on PubMed, Google Scholar, or reference lists of selected articles. Results 25 articles from 13 countries published between1959 and 2011 documented seroconversion rates in newborns following an OPV dose given within the first seven days of life. There were 10 studies that measured seroconversion rates between 4 and 8 weeks of a single birth dose of TOPV, using an umbilical cord blood draw at the time of birth to establish baseline antibody levels. The percentage of newborns who seroconverted at 8 weeks range 6-42% for poliovirus type 1, 2-63% for type 2, and 1-35% for type 3). For mOPV type 1, seroconversion ranged from 10-76%; mOPV type 3, the range was 12-58%; and for the one study reporting bOPV, it was 20% for type 1 and 7% for type 3. There were four studies of IPV in newborns with a seroconversion rate of 8-100% for serotype 1, 15-100% for serotype 2, and 15-94% for serotype 3, measured at 4-6 weeks of life. No serious adverse events related to newborn OPV or IPV dosing were reported, including no cases of acute flaccid paralysis. Conclusions There is great variability of the immunogenicity of a birth dose of OPV for reasons largely unknown. Our review confirms the utility of a birth dose of OPV, particularly in countries where early induction of polio immunity is imperative. IPV has higher seroconversion rates in newborns and

  11. Comparison of the efficacy of autogenous inactivated Porcine Reproductive and Respiratory Syndrome Virus (PRRSV) vaccines with that of commercial vaccines against homologous and heterologous challenges

    PubMed Central

    2012-01-01

    Background The porcine reproductive and respiratory syndrome virus (PRRSV) is a rapidly evolving pathogen of swine. At present, there is a high demand for safe and more effective vaccines that can be adapted regularly to emerging virus variants. A recent study showed that, by the use of a controlled inactivation procedure, an experimental BEI-inactivated PRRSV vaccine can be developed that offers partial protection against homologous challenge with the prototype strain LV. At present, it is however not known if this vaccine can be adapted to currently circulating virus variants. In this study, two recent PRRSV field isolates (07 V063 and 08 V194) were used for BEI-inactivated vaccine production. The main objective of this study was to assess the efficacy of these experimental BEI-inactivated vaccines against homologous and heterologous challenge and to compare it with an experimental LV-based BEI-inactivated vaccine and commercial inactivated and attenuated vaccines. In addition, the induction of challenge virus-specific (neutralizing) antibodies by the different vaccines was assessed. Results In a first experiment (challenge with 07 V063), vaccination with the experimental homologous (07 V063) inactivated vaccine shortened the viremic phase upon challenge with approximately 2 weeks compared to the mock-vaccinated control group. Vaccination with the commercial attenuated vaccines reduced the duration of viremia with approximately one week compared to the mock-vaccinated control group. In contrast, the experimental heterologous (LV) inactivated vaccine and the commercial inactivated vaccine did not influence viremia. Interestingly, both the homologous and the heterologous experimental inactivated vaccine induced 07 V063-specific neutralizing antibodies upon vaccination, while the commercial inactivated and attenuated vaccines failed to do so. In the second experiment (challenge with 08 V194), use of the experimental homologous (08 V194) inactivated vaccine shortened

  12. Development and introduction of inactivated poliovirus vaccines derived from Sabin strains in Japan.

    PubMed

    Shimizu, Hiroyuki

    2016-04-01

    During the endgame of global polio eradication, the universal introduction of inactivated poliovirus vaccines is urgently required to reduce the risk of vaccine-associated paralytic poliomyelitis and polio outbreaks due to wild and vaccine-derived polioviruses. In particular, the development of inactivated poliovirus vaccines (IPVs) derived from the attenuated Sabin strains is considered to be a highly favorable option for the production of novel IPV that reduce the risk of facility-acquired transmission of poliovirus to the communities. In Japan, Sabin-derived IPVs (sIPVs) have been developed and introduced for routine immunization in November 2012. They are the first licensed sIPVs in the world. Consequently, trivalent oral poliovirus vaccine was used for polio control in Japan for more than half a century but has now been removed from the list of vaccines licensed for routine immunization. This paper reviews the development, introduction, characterization, and global status of IPV derived from attenuated Sabin strains. PMID:25448090

  13. Investigation of antigen specific lymphocyte responses in healthy horses vaccinated with an inactivated West Nile virus vaccine.

    PubMed

    Davis, Elizabeth G; Zhang, Yuwen; Tuttle, John; Hankins, Kevin; Wilkerson, Melinda

    2008-12-15

    West Nile virus (WNV) is a single-stranded, enveloped RNA virus capable of causing encephalitic disease in horses. Unvaccinated horses are at risk for developing WNV disease in endemic geographic regions. Effective vaccination reduces disease frequency and diminishes disease severity in vaccinated individuals that become infected with WNV. Recent data indicate CD4+ lymphocytes are required for effective protection against disease; in particular, cross talk between CD4+ and CD8+ lymphocytes must be functional. The objective of this project was to investigate immune responses in horses throughout a series of three vaccinations using a commercial inactivated vaccine under natural conditions. Immune responses to vaccination were determined by neutralizing antibody titers with plaque reduction neutralization test (PRNT), IgM titer (capture ELISA), WNV specific antibody Ig subclass responses, WNV lymphocyte proliferative responses and intracellular cytokine expression. Horses were vaccinated with a series of three vaccines at 3-week intervals using an inactivated product. An initial measure of immune activation following vaccination was determined by evaluating changes in lymphocyte cytokine expression. Interferon (IFN) gamma and interleukin (IL)-4 expressing CD4+ lymphocytes significantly increased 14 days following initial vaccination compared to unvaccinated horses (P<0.05). IFN-gamma expressing CD8+ lymphocytes also increased and remained elevated for 110 days. Antigen specific lymphocyte proliferative responses were significantly increased up to 90 days following the third vaccination (P<0.05). As expected, vaccinated horses produced increased neutralizing antibody based on PRNT data and WNV antigen-specific Ig subclass responses compared with unvaccinated horses (P<0.05). Our data indicate that WNV vaccination with an inactivated product effectively induced an antigen-specific antibody responses, as well as CD4+ and CD8+ lymphocyte activation. PMID:18838173

  14. Introduction of sequential inactivated polio vaccine-oral polio vaccine schedule for routine infant immunization in Brazil's National Immunization Program.

    PubMed

    Domingues, Carla Magda Allan S; de Fátima Pereira, Sirlene; Cunha Marreiros, Ana Carolina; Menezes, Nair; Flannery, Brendan

    2014-11-01

    In August 2012, the Brazilian Ministry of Health introduced inactivated polio vaccine (IPV) as part of sequential polio vaccination schedule for all infants beginning their primary vaccination series. The revised childhood immunization schedule included 2 doses of IPV at 2 and 4 months of age followed by 2 doses of oral polio vaccine (OPV) at 6 and 15 months of age. One annual national polio immunization day was maintained to provide OPV to all children aged 6 to 59 months. The decision to introduce IPV was based on preventing rare cases of vaccine-associated paralytic polio, financially sustaining IPV introduction, ensuring equitable access to IPV, and preparing for future OPV cessation following global eradication. Introducing IPV during a national multivaccination campaign led to rapid uptake, despite challenges with local vaccine supply due to high wastage rates. Continuous monitoring is required to achieve high coverage with the sequential polio vaccine schedule. PMID:25316829

  15. Development of an inactivated iridovirus vaccine against turbot viral reddish body syndrome

    NASA Astrophysics Data System (ADS)

    Fan, Tingjun; Hu, Xiuzhong; Wang, Liyan; Geng, Xiaofen; Jiang, Guojian; Yang, Xiuxia; Yu, Miaomiao

    2012-03-01

    Turbot ( Scophthalmus maximus L.) reddish body iridovirus (TRBIV) was propagated in turbot fin cells (TF cells) and inactivated as the TRBIV vaccine with its protection efficiency evaluated in this study. TF cells were cultured in 10% bovine calf serum (BCS)-containing MEM medium (pH7.0) at 22°C, in which TRBIV propagated to a titer as high as 105.6 TCID50 mL-1. The TRBIV was inactivated with 0.1% formalin and formulated with 0.5% aluminum hydroxide. The inactivated vaccine caused neither cytopathogenic effect (CPE) on TF cells nor pathogenic effect on turbots. After being administered with the vaccine twice via muscle injection, the turbot developed high-tittered TRBIV neutralizing antibodies in a dose-dependent manner. The vaccine protected the turbot from dying with an immunoprotection rate of 83.3% as was determined via subcutaneous vaccination in the laboratory and 90.5% via bath vaccination in turbot farms, respectively. The inactivated vaccine was very immunogenic, efficiently preventing turbot from death. It holds the potential of being applied in aquaculture.

  16. Efficacy of an inactivated genotype 2b porcine epidemic diarrhea virus vaccine in neonatal piglets.

    PubMed

    Baek, Pil-Soo; Choi, Hwan-Won; Lee, Sunhee; Yoon, In-Joong; Lee, Young Ju; Lee, Du Sik; Lee, Seungyoon; Lee, Changhee

    2016-06-01

    Massive outbreaks of porcine epidemic diarrhea virus (PEDV) recurred in South Korea in 2013-2014 and affected approximately 40% of the swine breeding herds across the country, incurring a tremendous financial impact on producers and consumers. Despite the nationwide use of commercially available attenuated and inactivated vaccines in South Korea, PEDV has continued to plague the domestic pork industry, raising concerns regarding their protective efficacies and the need for new vaccine development. In a previous study, we isolated and serially cultivated a Korean PEDV epidemic strain, KOR/KNU-141112/2014, in Vero cells. With the availability of a cell culture-propagated PEDV strain, we are able to explore vaccination and challenge studies on pigs. Therefore, the aim of the present study was to produce an inactivated PEDV vaccine using the KNU-141112 strain and evaluate its effectiveness in neonatal piglets. Pregnant sows were immunized intramuscularly with the inactivated adjuvanted monovalent vaccine at six and three weeks prior to farrowing. Six-day-old piglets born to vaccinated or unvaccinated sows were challenged with the homogeneous KNU-141112 virus. The administration of the inactivated vaccine to sows greatly increased the survival rate of piglets challenged with the virulent strain, from 0% to approximately 92% (22/24), and significantly reduced diarrhea severity including viral shedding in feces. In addition, litters from unvaccinated sows continued to lose body weight throughout the experiment, whereas litters from vaccinated sows started recovering their daily weight gain at 7 days after the challenge. Furthermore, strong neutralizing antibody responses to PEDV were verified in immunized sows and their offspring, but were absent in the unvaccinated controls. Altogether, our data demonstrated that durable lactogenic immunity was present in dams administrated with the inactivated vaccine and subsequently conferred critical passive immune protection to

  17. Preliminary results on innocuity and immunogenicity of an inactivated vaccine against Peste des petits ruminants.

    PubMed

    Ronchi, Gaetano Federico; Monaco, Federica; Harrak, Mehdi El; Chafiqa, Loutfi; Capista, Sara; Bortone, Grazia; Orsini, Gianluca; Pinoni, Chiara; Iorio, Mariangela; Iapaolo, Federica; Pini, Attilio; Di Ventura, Mauro

    2016-06-30

    Peste des petits ruminants (PPR) virus belongs to the family Paramyxoviridae and represents a major threat to small livestock industry. In recent years, outbreaks of PPR have occurred in Turkey and North Africa. In endemic areas, disease prevention is accomplished using live‑attenuated vaccines. However, the use of live vaccines in non‑endemic regions, such as Europe, is not approved by Veterinary Authorities. In these regions inactivated vaccines are then the only viable alternative. In this study an inactivated vaccine (iPPRVac) was formulated with either a water‑in‑oil emulsion (ISA 71 VG) or with delta inulin adjuvant, alone (AFSA1) or combined with a TLR9 agonist oligonucleotide (AFSA2). These formulations were then tested for immunogenicity on rats. The iPPRV formulation with AFSA2 adjuvant induced 100% seroconversion in rats after 2 injections and was subsequently evaluated in goats. Five goats were immunised twice subcutaneously, 36 days apart with iPPRVac + AFSA2. The immunised goats all seroconverted to PPR by day 9 and remained seropositive until the end of the experimental period (133 days). These data indicate that the rat model is useful in predicting vaccine responses in goats and that inactivated vaccine, when formulated with a delta inulin adjuvant, represents a promising alternative to live attenuated vaccines for PPR vaccination campaigns in non‑endemic areas. PMID:27393872

  18. Reduction of high pathogenicity avian influenza virus in eggs from chickens once or twice vaccinated with an oil-emulsified inactivated H5 avian influenza vaccine

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The negative impact of high pathogenicity avian influenza virus (HPAIV) infection on egg production and deposition of virus in eggs, as well as any protective effect of vaccination, is unknown. Individually housed non-vaccinated, sham-vaccinated and inactivated H5N9 vaccinated once or twice adult Wh...

  19. Vaccine-associated enhanced respiratory disease is influenced by haemagglutinin and neuraminidase in whole inactivated influenza virus vaccines.

    PubMed

    Rajão, Daniela S; Chen, Hongjun; Perez, Daniel R; Sandbulte, Matthew R; Gauger, Phillip C; Loving, Crystal L; Shanks, G Dennis; Vincent, Amy

    2016-07-01

    Multiple subtypes and many antigenic variants of influenza A virus (IAV) co-circulate in swine in the USA, complicating effective use of commercial vaccines to control disease and transmission. Whole inactivated virus (WIV) vaccines may provide partial protection against IAV with substantial antigenic drift, but have been shown to induce vaccine-associated enhanced respiratory disease (VAERD) when challenged with an antigenic variant of the same haemagglutinin (HA) subtype. This study investigated the role the immune response against HA, neuraminidase (NA) and nucleoprotein (NP) may play in VAERD by reverse engineering vaccine and challenge viruses on a common backbone and using them in a series of vaccination/challenge trials. Mismatched HA between vaccine and challenge virus was necessary to induce VAERD. However, vaccines containing a matched NA abrogated the VAERD phenomenon induced by the HA mismatch and this was correlated with NA-inhibiting (NI) antibodies. Divergence between the two circulating swine N2 lineages (92 % identity) resulted in a loss of NI cross-reactivity and also resulted in VAERD with the mismatched HA. The NP lineage selected for use in the WIV vaccine strains did not affect protection or pathology. Thus the combination of HA and NA in the vaccine virus strains played a substantial role in vaccine protection versus immunopathology, suggesting that vaccines that target the HA protein alone could be more prone to VAERD due to the absence of cross-protective NI antibodies. PMID:27031847

  20. Vaccination of pigs against Aujeszky's disease by the intradermal route using live attenuated and inactivated virus vaccines.

    PubMed

    Vannier, P; Cariolet, R

    1989-09-01

    A study was undertaken of the protection induced by inactivated and live Aujeszky's disease virus vaccines. The vaccines were administered using a special device which, without the use of a needle, delivered the preparation intradermally. The trials were performed on 88 pigs which were vaccinated at the beginning of the fattening period both in experimental conditions and in pig herds. All the pigs were challenged at the end of the fattening period in isolation units. The results obtained were compared with those obtained using the same vaccines injected intramuscularly. It was shown that vaccination via the intradermal route induced good protection in the vaccinated animals and was similar to that conferred by live virus vaccine injected intramuscularly. The results, with the inactivated virus vaccine, were not so good when it was injected via the intradermal route. Studies with intradermal vaccination showed no local lesion or very small nodules strictly localized to the dermis. The results also confirmed that the effects of challenge exposure depended on the health status of animals prior to infection and show the necessity to use a synthetic value (delta G) to interpret the data and mainly to compare the results objectively. In fattening pigs this vaccination procedure is attractive because (i) less animal constraint is needed than would be for intramuscular injections, (ii) injection can be checked by the presence of a visible papula at the site of inoculation and, (iii) pigs can be vaccinated in the ham while they are feeding. Injection without a needle also contributes to avoiding bacterial contamination under practical farm conditions of vaccination. PMID:2554623

  1. Rabies virus pathogenesis in relationship to intervention with inactivated and attenuated rabies vaccines.

    PubMed

    Franka, Richard; Wu, Xianfu; Jackson, Felix R; Velasco-Villa, Andres; Palmer, Dustyn P; Henderson, Heather; Hayat, Wajid; Green, Douglas B; Blanton, Jesse D; Greenberg, Lauren; Rupprecht, Charles E

    2009-11-27

    Despite progress in vaccine development in the past century the mechanisms behind immune responses elicited by rabies biologics or via natural infection remain largely unknown. In this study, we compared protection elicited by standard, early, or delayed prophylaxis with a reduced number of vaccine doses using inactivated and live-attenuated vaccines. Two-month-old Syrian hamsters, 4-week-old ICR mice or adult rhesus macaques were inoculated with canine rabies virus variants. Thereafter, prophylaxis was initiated 6h, 1, 2, 3, 4, 5, 6 or 7 days post-exposure (p.e.). One or several doses of inactivated (HDCV), or reverse genetically attenuated (live), or gamma-irradiated (inactivated)-ERAG333 vaccines were administered intramuscularly. The dynamics of virus spread were measured over time in the rodent models. Rabies virus reached the spinal cord at day 4 and brain at day 6 p.e. All hamsters succumbed in groups in which live ERAG333 was delayed until days 5 and 6 p.e. However, 78%, 44%, 56% and 22% of hamsters survived when one dose of live ERAG333 was administered 6h, 1, 2, 3, and 4 days p.e., respectively. Similarly, 67% survived when inactivated ERAG333 was administered at 24h p.e. All hamsters succumbed when standard prophylaxis (the Essen regimen) was delayed until days 3-6, but 67% and 33% of hamsters survived when PEP began 1 or 2 days p.e., respectively. Macaques were protected by one dose of attenuated ERAG333 at 24h p.e. The highly attenuated (live) and inactivated ERAG333 vaccines elicited potent protective immune responses, even when prophylaxis initiation was delayed. When 2-5 doses of commercial vaccine and HRIG were administered according to the Essen scheme, 89-100% of the animals survived. Reduced vaccine schedules provided efficacious intervention, regardless of the total number of vaccine doses administered. PMID:19925945

  2. Antibody and cellular immune responses of naïve mares to repeated vaccination with an inactivated equine herpesvirus vaccine.

    PubMed

    Wagner, B; Goodman, L B; Babasyan, S; Freer, H; Torsteinsdóttir, S; Svansson, V; Björnsdóttir, S; Perkins, G A

    2015-10-13

    Equine herpesvirus type 1 (EHV-1) continues to cause severe outbreaks of abortions or myeloencephalopathy in horses despite widely used vaccination. The aim of this work was to determine the effects of frequent vaccination with an inactivated EHV vaccine on immune development in horses. Fifteen EHV-1 naïve mares were vaccinated a total of 5 times over a period of 8 months with intervals of 20, 60, 90 and 60 days between vaccine administrations. Total antibody and antibody isotype responses were evaluated with a new sensitive EHV-1 Multiplex assay to glycoprotein C (gC) and gD for up to 14 months after initial vaccination. Antibodies peaked after the first two vaccine doses and then declined despite a third administration of the vaccine. The fourth vaccine dose was given at 6 months and the gC and gD antibody titers increased again. Mixed responses with increasing gC but decreasing gD antibody values were observed after the fifth vaccination at 8 months. IgG4/7 isotype responses mimicked the total Ig antibody production to vaccination most closely. Vaccination also induced short-lasting IgG1 antibodies to gC, but not to gD. EHV-1-specific cellular immunity induced by vaccination developed slower than antibodies, was dominated by IFN-γ producing T-helper 1 (Th1) cells, and was significantly increased compared to pre-vaccination values after administration of 3 vaccine doses. Decreased IFN-γ production and reduced Th1-cell induction were also observed after the second and fourth vaccination. Overall, repeated EHV vaccine administration did not always result in increasing immunity. The adverse effects on antibody and cellular immunity that were observed here when the EHV vaccine was given in short intervals might in part explain why EHV-1 outbreaks are observed worldwide despite widely used vaccination. The findings warrant further evaluation of immune responses to EHV vaccines to optimize vaccination protocols for different vaccines and horse groups at risk. PMID

  3. An inactivated avian polyomavirus vaccine is safe and immunogenic in various Psittaciformes.

    PubMed

    Ritchie, B W; Niagro, F D; Latimer, K S; Pritchard, N; Campagnoli, R P; Lukert, P D

    1996-08-01

    The safety and immunogenicity of adjuvanted and nonadjuvanted inactivated avian polyomavirus vaccines, administered either intramuscularly or subcutaneously (s.c.), were evaluated in a group of mixed species Psittaciformes. In 233 vaccinates representing species of macaws, cockatoos, conures, and parrots, gross reactions were limited to small scab formation at the s.c. injection site in three African grey parrots. Both vaccines stimulated a virus neutralizing (VN) antibody response, particularly in birds that were seronegative prior to vaccination. Ninety-three percent of the birds that were seronegative at the beginning of the study seroconverted (greater than fourfold increase in VN antibody titer) by 2 weeks after the second vaccination. Seventy-six percent of all the vaccinates had at least a fourfold increase in VN antibody titer at this time. There was no significant difference in seroconversion between the birds vaccinated with adjuvanted or nonadjuvanted vaccines. This study indicates that an inactivated avian polyomavirus vaccine can be used to safely immunize various species of psittacine birds in a field setting. PMID:8911004

  4. Limited efficacy of inactivated influenza vaccine in elderly individuals is associated with decreased production of vaccine-specific antibodies

    PubMed Central

    Sasaki, Sanae; Sullivan, Meghan; Narvaez, Carlos F.; Holmes, Tyson H.; Furman, David; Zheng, Nai-Ying; Nishtala, Madhuri; Wrammert, Jens; Smith, Kenneth; James, Judith A.; Dekker, Cornelia L.; Davis, Mark M.; Wilson, Patrick C.; Greenberg, Harry B.; He, Xiao-Song

    2011-01-01

    During seasonal influenza epidemics, disease burden is shouldered predominantly by the very young and the elderly. Elderly individuals are particularly affected, in part because vaccine efficacy wanes with age. This has been linked to a reduced ability to induce a robust serum antibody response. Here, we show that this is due to reduced quantities of vaccine-specific antibodies, rather than a lack of antibody avidity or affinity. We measured levels of vaccine-specific plasmablasts by ELISPOT 1 week after immunization of young and elderly adults with inactivated seasonal influenza vaccine. Plasmablast-derived polyclonal antibodies (PPAbs) were generated from bulk-cultured B cells, while recombinant monoclonal antibodies (re-mAbs) were produced from single plasmablasts. The frequency of vaccine-specific plasmablasts and the concentration of PPAbs were lower in the elderly than in young adults, whereas the yields of secreted IgG per plasmablast were not different. Differences were not detected in the overall vaccine-specific avidity or affinity of PPAbs and re-mAbs between the 2 age groups. In contrast, reactivity of the antibodies induced by the inactivated seasonal influenza vaccine toward the 2009 pandemic H1N1 virus, which was not present in the vaccine, was higher in the elderly than in the young. These results indicate that the inferior antibody response to influenza vaccination in the elderly is primarily due to reduced quantities of vaccine-specific antibodies. They also suggest that exposure history affects the cross-reactivity of vaccination-induced antibodies. PMID:21785218

  5. Pressure-inactivated yellow fever 17DD virus: implications for vaccine development.

    PubMed

    Gaspar, Luciane P; Mendes, Ygara S; Yamamura, Anna M Y; Almeida, Luiz F C; Caride, Elena; Gonçalves, Rafael B; Silva, Jerson L; Oliveira, Andréa C; Galler, Ricardo; Freire, Marcos S

    2008-06-01

    The successful Yellow Fever (YF) vaccine consists of the live attenuated 17D-204 or 17DD viruses. Despite its excellent record of efficacy and safety, serious adverse events have been recorded and influenced extensive vaccination in endemic areas. Therefore, alternative strategies should be considered, which may include inactivated whole virus. High hydrostatic pressure has been described as a method for viral inactivation and vaccine development. The present study evaluated whether high hydrostatic pressure would inactivate the YF 17DD virus. YF 17DD virus was grown in Vero cells in roller bottle cultures and subjected to 310MPa for 3h at 4 degrees C. This treatment abolished YF infectivity and eliminated the ability of the virus to cause disease in mice. Pressure-inactivated virus elicited low level of neutralizing antibody titers although exhibited complete protection against an otherwise lethal challenge with 17DD virus in the murine model. The data warrant further development of pressure-inactivated vaccine against YF. PMID:18420285

  6. Failure to detect infection by oral polio vaccine virus following natural exposure among inactivated polio vaccine recipients

    PubMed Central

    GARY, H. E.; SMITH, B.; JENKS, J.; RUIZ, J.; SESSIONS, W.; VINJE, J.; SOBSEY, M.

    2008-01-01

    SUMMARY While oral polio vaccine (OPV) has been shown to be safe and effective, it has been observed that it can circulate within a susceptible population and revert to a virulent form. Inactivated polio vaccine (IPV) confers protection from paralytic disease, but provides limited protection against infection. It is possible, then, that an IPV-immunized population, when exposed to OPV, could sustain undetected circulation of vaccine-derived poliovirus. This study examines the possibility of polio vaccine virus circulating within the United States (highly IPV-immunized) population that borders Mexico (OPV-immunized). A total of 653 stool and 20 sewage samples collected on the US side of the border were tested for the presence of poliovirus. All samples were found to be negative. These results suggest that the risk of circulating vaccine-derived poliovirus is low in fully immunized IPV-using populations in developed countries that border OPV-using populations. PMID:17376256

  7. Serological response to vaccination against avian influenza in zoo-birds using an inactivated H5N9 vaccine.

    PubMed

    Bertelsen, Mads F; Klausen, Joan; Holm, Elisabeth; Grøndahl, Carsten; Jørgensen, Poul H

    2007-05-30

    Five hundred and forty birds in three zoos were vaccinated twice against avian influenza with a 6-week interval using an inactivated H5N9 vaccine. Serological response was evaluated by hemagglutination inhibition test 4-6 weeks following the second vaccine administration. 84% of the birds seroconverted, and 76% developed a titre > or =32. The geometric mean titre after vaccination was 137. A significant species variation in response was noted; penguins, pelicans, ducks, geese, herons, Guinea fowl, cranes, cockatiels, lovebirds, and barbets showed very poor response to vaccination, while very high titres and seroconversion rates were seen in flamingos, ibis, rheas, Congo peafowl, black-winged stilts, amazon parrots, and kookaburras. PMID:17467857

  8. Concomitant turkey herpesvirus-infectious bursal disease vector vaccine and oil-adjuvanted inactivated Newcastle disease vaccine administration: consequences for vaccine intake and protection.

    PubMed

    Lemiere, Stephane; Fernández, Rafael; Pritchard, Nikki; Cruz-Coy, Julio; Rojo, Francisco; Wong, Siam Yit; Saint-Gerand, Anne-Lise; Gauthier, Jean-Claude; Perozo, Francisco

    2011-12-01

    Hatchery vaccination protocols in day-old chicks are designed to provide early priming and protection against several poultry diseases including, but not limited to, Marek's disease (MD), infectious bursal disease (IBD), and Newcastle disease (ND). The constraint of concomitant administration of live MD and IBD vaccines plus ND inactivated oil-adjuvanted vaccines (IOAVs) requires improvements in vaccine technology. Single-needle concomitant subcutaneous (SC) application of IBD/MDV and killed NDV vaccine and the use of viral vectors for expression of immunogenic proteins are a current trend in the industry. The objective of this work was to assess the compatibility of a turkey herpesvirus (HVT)-infectious bursal disease (vHVT-IBD) vector vaccine applied simultaneously with IOAV and to evaluate the consequences for vaccine intake, the need for additional immunizations with the respective vaccines, and protection. Five separate trials were performed using double- and/or single-needle injectors. The levels and persistence of vaccine intake, serologic response, vHVT-IBD virus combination with the MD Rispens strain, and/or live NDV vaccination were also assessed. Histopathology and PCR at injection sites showed adequate vaccine intake detected up to 44 days postvaccination. Serologic evidence of vaccine priming was observed, and all vaccinated groups differed (P < 0.05) from the control at different time points. MD, NDV, and IBD protection results after concomitant double-shot single-needle vaccination were near 85%, 95%, and 100%, respectively. Taken together the results indicate no deleterious effects on the efficacy of the vHVT-IBD vaccine monitored by vaccine intake, serologic and challenge results, and combinations after concomitant live/killed vaccination, suggesting the suitability of its use in hatchery vaccination. All types of injectors used as well as injection techniques, vaccines injected separately or together, gave the same results. PMID:22312985

  9. [Modalities of production and immunity conferred by an inactivated rabies vaccine originating from cell culture].

    PubMed

    Précausta, P; Soulebot, J P; Bugand, M; Brun, A; Chappuis, G

    1982-01-01

    Further to guidelines advised by the World Health Organization, an inactivated Rabies vaccine was prepared from virus propagated on cell culture. This vaccine is presented either in the freeze-dried form or in the liquid form together with an immunity adjuvant. The specific and nonspecific immunity of the vaccine is excellent. The potency, tested in laboratory animals and in species for which the vaccine is intended, satisfies recommendations published by the W.H.O. The immunity persistence, evaluated by the titration of serum antibodies and by challenge with a pathogenic virus, proves to be excellent 3 years following primovaccination. Finally, the stability of this vaccine is an interesting factor for its application, especially in the form of a combined vaccine. PMID:7128075

  10. Live attenuated and inactivated viral vaccine formulation and nasal delivery: potential and challenges.

    PubMed

    Tlaxca, José L; Ellis, Scott; Remmele, Richard L

    2015-10-01

    Vaccines are cost-effective for the prevention of infectious diseases and have significantly reduced mortality and morbidity. Novel approaches are needed to develop safe and effective vaccines against disease. Major challenges in vaccine development include stability in a suitable dosage form and effective modes of delivery. Many live attenuated vaccines are capable of eliciting both humoral and cell mediated immune responses if physicochemically stable in an appropriate delivery vehicle. Knowing primary stresses that impart instability provides a general rationale for formulation development and mode of delivery. Since most pathogens enter the body through the mucosal route, live-attenuated vaccines have the advantage of mimicking natural immunization via non-invasive delivery. This presentation will examine aspects of formulation design, types of robust dosage forms to consider, effective routes of delivery (invasive and noninvasive), and distinctions between live attenuated or inactivated vaccines. PMID:25312673

  11. Assessment of inactivated human rabies vaccines: biochemical characterization and genetic identification of virus strains.

    PubMed

    Finke, Stefan; Karger, Axel; Freuling, Conrad; Müller, Thomas

    2012-05-21

    The World Health Organization (WHO) recommends the periodic evaluation of the purity of the cell lines used in the production of rabies vaccines, as well as the antigenic identity of the virus strains. Here, we analyzed seventeen marketed inactivated human rabies virus vaccines for viral and non-viral proteins by SDS-PAGE and Coomassie/silver staining. Mass spectrometric analysis of an abundant 60-70 kDa signal indicated that in most vaccines serum albumin of human origin (HSA) was the major component. Quantification of HSA in the vaccines revealed a mean concentration of 22 mg HSA/dose in all tested PVRV (purified vero cell rabies vaccine), HDCV (human diploid cell rabies vaccine) and PHK (primary hamster kidney) vaccines. In contrast, 1000-fold lower HSA levels and no HSA were detected in PCECV (purified chick embryo cell-culture vaccine) and PDEV (duck embryo rabies vaccine), respectively. Western blot analyses further confirmed a high bias in the HSA content, whereas the virus protein levels were rather similar in all tested vaccines. In addition, the vaccine viruses were sequenced within the N- and G-genes to identify the strain. In the majority of sequenced vaccines, the declared vaccine strain was confirmed. However, some discrepancies in the genetic identification were observed, supporting WHO's recommendation for the molecular characterization of vaccine seed strains. This research highlights the variation in purity found between different human rabies virus vaccines, and suggests that further research is needed to establish the impact non-active components have on the potency of such vaccines. PMID:22469862

  12. Preclinical Development of Inactivated Rabies Virus-Based Polyvalent Vaccine Against Rabies and Filoviruses.

    PubMed

    Willet, Mallory; Kurup, Drishya; Papaneri, Amy; Wirblich, Christoph; Hooper, Jay W; Kwilas, Steve A; Keshwara, Rohan; Hudacek, Andrew; Beilfuss, Stefanie; Rudolph, Grit; Pommerening, Elke; Vos, Adriaan; Neubert, Andreas; Jahrling, Peter; Blaney, Joseph E; Johnson, Reed F; Schnell, Matthias J

    2015-10-01

    We previously described the generation of a novel Ebola virus (EBOV) vaccine based on inactivated rabies virus (RABV) containing EBOV glycoprotein (GP) incorporated in the RABV virion. Our results demonstrated safety, immunogenicity, and protective efficacy in mice and nonhuman primates (NHPs). Protection against viral challenge depended largely on the quality of the humoral immune response against EBOV GP.Here we present the extension and improvement of this vaccine by increasing the amount of GP incorporation into virions via GP codon-optimization as well as the addition of Sudan virus (SUDV) and Marburg virus (MARV) GP containing virions. Immunogenicity studies in mice indicate similar immune responses for both SUDV GP and MARV GP compared to EBOV GP. Immunizing mice with multiple antigens resulted in immune responses similar to immunization with a single antigen. Moreover, immunization of NHP with the new inactivated RABV EBOV vaccine resulted in high titer neutralizing antibody levels and 100% protection against lethal EBOV challenge when applied with adjuvant.Our results indicate that an inactivated polyvalent vaccine against RABV filoviruses is achievable. Finally, the novel vaccines are produced on approved VERO cells and a clinical grade RABV/EBOV vaccine for human trials has been produced. PMID:26063224

  13. [Development and evaluation of an inactivated bivalent vaccine against duck viral hepatitis].

    PubMed

    Yin, Fenggui; Jing, Li; Zhang, Shuang; Yu, Meng; Zhang, Wanlin; Fan, Guobing; Dong, Xiukai; Liu, Wenjun

    2015-11-01

    The rapid mutation and widely spread of duck hepatitis A virus (DHAV) lead to the vast economic loss of the duck industry. To prepare and evaluate bivalent inactivated vaccine laboratory products of DHAV, 6 strains were screened from 201 DHAV-1 strains and 38 DHAV-3 strains by using serotype epidemiological analysis in most of the duck factory. Vaccine candidate strains were selected by ELD50 and LD50 tests in the 6 strains. Continuously passaged, the 5th passaged duck embryos bodies grinding fluid was selected as vaccine virus seeds. The virus seeds were treated with formaldehyde and water in oil in water (W/O/W) emulsions, making into three batches of two bivalent inactivated vaccine laboratory products. The safety test, antibody neutralization test, challenged protection and cross immune protection experiment suggested that the vaccines possessed good safety, and neutralizing antibodies were detected at 7th day and the challenged protection rate reached 90% to 100% at the 14th and 21st day. Moreover, immune duration of ducklings lasted more than five weeks. However, cross-immunity protection experiments with DHAV-SH and DHAV-FS only had 20%-30%. The two bivalent inactivated vaccine laboratory products of duck viral hepatitis were effective and reliable, providing a new method as well as a new product for DHAV prevention and control. PMID:26939441

  14. Cessation of Trivalent Oral Poliovirus Vaccine and Introduction of Inactivated Poliovirus Vaccine - Worldwide, 2016.

    PubMed

    Hampton, Lee M; Farrell, Margaret; Ramirez-Gonzalez, Alejandro; Menning, Lisa; Shendale, Stephanie; Lewis, Ian; Rubin, Jennifer; Garon, Julie; Harris, Jennifer; Hyde, Terri; Wassilak, Steven; Patel, Manish; Nandy, Robin; Chang-Blanc, Diana

    2016-01-01

    Since the 1988 World Health Assembly resolution to eradicate poliomyelitis, transmission of the three types of wild poliovirus (WPV) has been sharply reduced (1). WPV type 2 (WPV2) has not been detected since 1999 and was declared eradicated in September 2015. Because WPV type 3 has not been detected since November 2012, WPV type 1 (WPV1) is likely the only WPV that remains in circulation (1). This marked progress has been achieved through widespread use of oral poliovirus vaccines (OPVs), most commonly trivalent OPV (tOPV), which contains types 1, 2, and 3 live, attenuated polioviruses and has been a mainstay of efforts to prevent polio since the early 1960s. However, attenuated polioviruses in OPV can undergo genetic changes during replication, and in communities with low vaccination coverage, can result in vaccine-derived polioviruses (VDPVs) that can cause paralytic polio indistinguishable from the disease caused by WPVs (2). Among the 721 polio cases caused by circulating VDPVs (cVDPVs*) detected during January 2006-May 2016, type 2 cVDPVs (cVDPV2s) accounted for >94% (2). Eliminating the risk for polio caused by VDPVs will require stopping all OPV use. The first stage of OPV withdrawal involved a global, synchronized replacement of tOPV with bivalent OPV (bOPV) containing only types 1 and 3 attenuated polioviruses, planned for April 18-May 1, 2016, thereby withdrawing OPV type 2 from all immunization activities (3). Complementing the switch from tOPV to bOPV, introduction of at least 1 dose of injectable, trivalent inactivated poliovirus vaccine (IPV) into childhood immunization schedules reduces risks from and facilitates responses to cVDPV2 outbreaks. All 155 countries and territories that were still using OPV in immunization schedules in 2015 have reported that they had ceased use of tOPV by mid-May 2016.(†) As of August 31, 2016, 173 (89%) of 194 World Health Organization (WHO) countries included IPV in their immunization schedules.(§) The cessation of

  15. Colostral antibody induced interference of inactivated bluetongue serotype-8 vaccines in calves

    PubMed Central

    2011-01-01

    Since its introduction into northern Europe in 2006, bluetongue has become a major threat to animal health. While the efficacy of commercial vaccines has been clearly demonstrated in livestock, little is known regarding the effect of maternal immunity on vaccinal efficacy. Here, we have investigated the duration and amplitude of colostral antibody-induced immunity in calves born to dams vaccinated against bluetongue virus serotype 8 (BTV-8) and the extent of colostral antibody-induced interference of vaccination in these calves. Twenty-two calf-cow pairs were included in this survey. The median age at which calves became seronegative for BTV was 84 and 112 days as assayed by seroneutralisation test (SNT) and VP7 BTV competitive ELISA (cELISA), respectively. At the mean age of 118 days, 13/22 calves were immunized with inactivated BTV-8 vaccine. In most calves vaccination elicited a weak immune response, with seroconversion in only 3/13 calves. The amplitude of the humoral response to vaccination was inversely proportional to the maternal antibody level prior to vaccination. Thus, the lack of response was attributed to the persistence of virus-specific colostral antibodies that interfered with the induction of the immune response. These data suggest that the recommended age for vaccination of calves born to vaccinated dams needs to be adjusted in order to optimize vaccinal efficacy. PMID:21314901

  16. Development of a dried influenza whole inactivated virus vaccine for pulmonary immunization.

    PubMed

    Audouy, Sandrine A L; van der Schaaf, Gieta; Hinrichs, Wouter L J; Frijlink, Henderik W; Wilschut, Jan; Huckriede, Anke

    2011-06-10

    Stabilization and ease of administration are two ways to substantially improve the use of current vaccines. In the present study an influenza whole inactivated virus (WIV) vaccine was freeze-dried or spray-freeze dried in the presence of inulin as a cryoprotectant. Only spray-freeze drying rendered powders compatible with administration to the lungs by insufflation. Pulmonary administration of the powder vaccine obtained by this method to BALB/c mice led to a transient influx of neutrophils and a concomitant decrease in the number of macrophages as did administration of liquid vaccine. Inflammatory reactions to both vaccines were mild and short-lived. Immunization studies showed that the immunogenic properties of WIV vaccine were not affected by drying. Pulmonary administration of the powder WIV vaccine induced a systemic immune response of the same magnitude as liquid vaccine while mucosal IgA responses were higher for powder WIV. In a challenge study where immunized mice were exposed to a lethal dose of live virus, two pulmonary doses of either liquid or powder WIV vaccine were equally effective as a single intramuscular injection of subunit vaccine in terms of reduction of the viral load in the lungs. To conclude, in the models employed for these studies the use of a dry powder WIV vaccine for pulmonary immunization was shown to be safe and efficient. PMID:21514345

  17. Clinical analysis of leucine-rich glioma inactivated-1 protein antibody associated with limbic encephalitis onset with seizures

    PubMed Central

    Li, Zhimei; Cui, Tao; Shi, Weixiong; Wang, Qun

    2016-01-01

    Abstract We summarized the clinical characteristics of patients presenting with seizures and limbic encephalitis (LE) associated with leucine-rich glioma inactivated-1 protein antibody (LGI1) in order help recognize and treat this condition at its onset. We analyzed clinical, video electroencephalogram (VEEG), magnetic resonance imaging (MRI), and laboratory data of 10 patients who presented with LGI1-LE and followed up their outcomes from 2 to 16 (9.4 ± 4.2) months. All patients presented with seizures onset, including faciobrachial dystonic seizure (FBDS), partial seizure (PS), and generalized tonic-clonic seizure (GTCS). Four patients (Cases 3, 5, 7, and 8) had mild cognitive deficits. Interictal VEEG showed normal patterns, focal slowing, or sharp waves in the temporal or frontotemporal lobes. Ictal VEEG of Cases 4, 5, and 7 showed diffuse voltage depression preceding FBDS, a left frontal/temporal origin, and a bilateral temporal origin, respectively. Ictal foci could not be localized in other cases. MRI scan revealed T2/fluid-attenuated inversion recovery (FLAIR) hyperintensity and evidence of edema in the right medial temporal lobe in Case 3, left hippocampal atrophy in Case 5, hyperintensities in the bilateral medial temporal lobes in Case 7, and hyperintensities in the basal ganglia and frontal cortex in Case 10. All 10 serum samples were positive for LGI1 antibody, but it was only detected in the cerebrospinal fluid (CSF) of 7 patients. Five patients (Cases 2, 4, 6, 7, and 8) presented with hyponatremia. One patient (Case 2) was diagnosed with small cell lung cancer. While responses to antiepileptic drugs (AEDs) were poor, most patients (except Case 2) responded favorably to immunotherapy. LGI1-LE may initially manifest with various types of seizures, particularly FBDS and complex partial seizures (CPS) of mesial temporal origin, and slowly progressive cognitive involvement. Clinical follow-up, VEEG monitoring, and MRI scan are helpful in early

  18. Safety and immunogenicity of an inactivated thimerosal‐free influenza vaccine in infants and children

    PubMed Central

    Nolan, Terry; Richmond, Peter C.; McVernon, Jodie; Skeljo, Maryanne V.; Hartel, Gunter F.; Bennet, Jillian; Basser, Russell L.

    2009-01-01

    Objective  Few prospective studies of inactivated split virion influenza vaccine have been conducted in infants and children. Our objective was to evaluate the safety, reactogenicity and immunogenicity of a thimerosal‐free inactivated influenza vaccine (Fluvax®; CSL Limited, Parkville, Australia) in children aged 6 months to <9 years. Methods  A prospective, open‐label, phase III clinical trial was conducted in 298 healthy children previously unvaccinated with influenza, commencing in the Southern Hemisphere 2005 autumn. Participants were divided into two groups (Group A: ≥6 months to <3 years; Group B: ≥3 years to <9 years), and received two doses of the 2005 vaccine, and one dose of the 2006 vaccine one year later (Group A: 0·25 ml per dose; Group B: 0·5 ml per dose). Vaccine safety and reactogenicity was evaluated for 30 days after each dose. Immunogenicity was assessed using hemagglutination inhibition and single radial hemolysis assays. Results  There were no withdrawals due to adverse events (AEs). The majority of solicited local and systemic AEs were of mild severity. A maximum intensity of severe was reported for injection site pain and fever by only 3·0% and 3·4% of participants, respectively. The vaccine was immunogenic for all antigens, with ≥95% of both younger and older children achieving seroprotection after dose 2. Conclusions  This thimerosal‐free inactivated influenza vaccine had a favorable safety profile and was immunogenic in children aged ≥6 months and <9 years. Primary and booster vaccination produced consistently immunogenic responses including in children under 3 years of age receiving 0·25 ml doses of vaccine. PMID:19903213

  19. Influenza Vaccine Manufacturing: Effect of Inactivation, Splitting and Site of Manufacturing. Comparison of Influenza Vaccine Production Processes.

    PubMed

    Kon, Theone C; Onu, Adrian; Berbecila, Laurentiu; Lupulescu, Emilia; Ghiorgisor, Alina; Kersten, Gideon F; Cui, Yi-Qing; Amorij, Jean-Pierre; Van der Pol, Leo

    2016-01-01

    The aim of this study was to evaluate the impact of different inactivation and splitting procedures on influenza vaccine product composition, stability and recovery to support transfer of process technology. Four split and two whole inactivated virus (WIV) influenza vaccine bulks were produced and compared with respect to release criteria, stability of the bulk and haemagglutinin recovery. One clarified harvest of influenza H3N2 A/Uruguay virus prepared on 25.000 fertilized eggs was divided equally over six downstream processes. The main unit operation for purification was sucrose gradient zonal ultracentrifugation. The inactivation of the virus was performed with either formaldehyde in phosphate buffer or with beta-propiolactone in citrate buffer. For splitting of the viral products in presence of Tween®, either Triton™ X-100 or di-ethyl-ether was used. Removal of ether was established by centrifugation and evaporation, whereas removal of Triton-X100 was performed by hydrophobic interaction chromatography. All products were sterile filtered and subjected to a 5 months real time stability study. In all processes, major product losses were measured after sterile filtration; with larger losses for split virus than for WIV. The beta-propiolactone inactivation on average resulted in higher recoveries compared to processes using formaldehyde inactivation. Especially ether split formaldehyde product showed low recovery and least stability over a period of five months. PMID:26959983

  20. Influenza Vaccine Manufacturing: Effect of Inactivation, Splitting and Site of Manufacturing. Comparison of Influenza Vaccine Production Processes

    PubMed Central

    Kon, Theone C.; Onu, Adrian; Berbecila, Laurentiu; Lupulescu, Emilia; Ghiorgisor, Alina; Kersten, Gideon F.; Cui, Yi-Qing; Amorij, Jean-Pierre; Van der Pol, Leo

    2016-01-01

    The aim of this study was to evaluate the impact of different inactivation and splitting procedures on influenza vaccine product composition, stability and recovery to support transfer of process technology. Four split and two whole inactivated virus (WIV) influenza vaccine bulks were produced and compared with respect to release criteria, stability of the bulk and haemagglutinin recovery. One clarified harvest of influenza H3N2 A/Uruguay virus prepared on 25.000 fertilized eggs was divided equally over six downstream processes. The main unit operation for purification was sucrose gradient zonal ultracentrifugation. The inactivation of the virus was performed with either formaldehyde in phosphate buffer or with beta-propiolactone in citrate buffer. For splitting of the viral products in presence of Tween®, either Triton™ X-100 or di-ethyl-ether was used. Removal of ether was established by centrifugation and evaporation, whereas removal of Triton-X100 was performed by hydrophobic interaction chromatography. All products were sterile filtered and subjected to a 5 months real time stability study. In all processes, major product losses were measured after sterile filtration; with larger losses for split virus than for WIV. The beta-propiolactone inactivation on average resulted in higher recoveries compared to processes using formaldehyde inactivation. Especially ether split formaldehyde product showed low recovery and least stability over a period of five months. PMID:26959983

  1. Seasonal trivalent inactivated influenza vaccine protects against 1918 Spanish influenza virus in ferrets

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The influenza H1N1 pandemic of 1918 was one of the worst medical disasters in human history. Recent studies have demonstrated that the hemagglutinin (HA) protein of the 1918 virus and 2009 H1N1 pandemic virus, the latter now a component of the seasonal trivalent inactivated influenza vaccine (TIV),...

  2. Electron-beam-inactivated vaccine against Salmonella enteritidis colonization in molting hens

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Electron Beam (eBeam) ionization technology has a variety of applications in modern society. The underlying hypothesis was that electron beam (eBeam) inactivated Salmonella enterica serovar Enteritidis (SE) cells can serve as a vaccine to control Salmonella colonization and Salmonella shedding in c...

  3. Mucosal immune response in broilers following vaccination with inactivated influenza and recombinant Bacillus subtilis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Mucosal and systemic immunity were observed in broilers vaccinated with mannosylated chitosan adjuvated (MCA) inactivated A/Turkey/Virginia/158512/2002 (H7N2) and administered with and without recombinant Bacillus subtilis to elicit heterologous influenza strain protection. Previously, mucosal immu...

  4. Studies on an inactivated vaccine against rabies virus in domestic animals.

    PubMed

    Monaco, F; Franchi, P M; Lelli, R

    2006-01-01

    An inactivated vaccine against rabies virus was prepared from the attenuated ATCC PV-12 viral rabbit Pasteur strain. The virus was grown on Baby Hamster Kidney (BHK21) cells, and the supernatant was purified by filtration and inactivated with beta-propriolactone. The inactivated product was checked according to the NHI and European Pharmacopoeia methods. Part of the product was then lyophilised and the other part was adjuvanted with Al(OH)3. Both parts were used to vaccinate and boost groups of horses, cattle and sheep at different intervals. Their immunogenicity was compared with a similar commercial product. Blood samples were collected on a regular basis and the antibody titre was determined by the Fluorescence Antibody Virus Neutralisation (FAVN) test. No significant differences were found between species after both inoculations even though the immune response increased in intensity and duration after the booster dose in all the animals tested and was stronger and lasted longer with the adjuvanted aliquot. PMID:16878481

  5. Assessment of reduced vaccine dose on efficacy of an inactivated avian influenza vaccine against an H5N1 high pathogenicity avian influenza virus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Avian influenza (AI) vaccines have emerged to be a viable emergency tool for use in a comprehensive strategy for dealing with high pathogenicity (HP) AI in developed countries. However, the available doses of inactivated AI vaccine are limited to national vaccine banks and inventory stocks of some ...

  6. Influenza: the virus and prophylaxis with inactivated influenza vaccine in "at risk" groups, including COPD patients.

    PubMed

    Hovden, Arnt-Ove; Cox, Rebecca Jane; Haaheim, Lars Reinhardt

    2007-01-01

    Influenza is a major respiratory pathogen, which exerts a huge human and economic toll on society. Influenza is a vaccine preventable disease, however, the vaccine strains must be annually updated due to the continuous antigenic changes in the virus. Inactivated influenza vaccines have been used for over 50 years and have an excellent safety record. Annual vaccination is therefore recommended for all individuals with serious medical conditions, like COPD, and protects the vaccinee against influenza illness and also against hospitalization and death. In COPD patients, influenza infection can lead to exacerbations resulting in reduced quality of life, hospitalization and death in the most severe cases. Although there is only limited literature on the use of influenza vaccination solely in COPD patients, there is clearly enough evidence to recommend annual vaccination in this group. This review will focus on influenza virus and prophylaxis with inactivated influenza vaccines in COPD patients and other "at risk" groups to reduce morbidity, save lives, and reduce health care costs. PMID:18229561

  7. A controlled field trial of the effectiveness of acetone-dried and inactivated and heat-phenol-inactivated typhoid vaccines in Yugoslavia*

    PubMed Central

    1964-01-01

    In 1954-60 a Yugoslav Typhoid Commission showed in the first controlled field trial of typhoid vaccines, carried out in Osijek, Yugoslavia, that heat-phenol-inactivated typhoid vaccine gave a relatively high and long-lasting immunity. However, this liquid vaccine preparation was unstable and laboratory potency tests were inconclusive, and it was therefore decided that stable, dried, heat-killed, phenol-preserved vaccine be tested together with an acetone-inactivated and -dried vaccine in controlled field trials, supported in part by the World Health Organization, in Yugoslavia and British Guiana. This is report on the controlled trials organized in two Yugoslav towns, Bitola and Priština. Three comparable groups were formed by random allocation of vaccines among 45 497 volunteers in the two towns. In each town one group received heat-phenol vaccine, the second group acetone-dried vaccine and the third (control) group tetanus toxoid. Two doses were given four weeks apart in the spring of 1960 and the vaccinated persons were followed up for 2 1/2 years. The effectiveness of the vaccines was measured by comparing typhoid morbidity rates in the three groups. It was found during an outbreak of typhoid fever in Priština two years after primary vaccination that both the acetone-dried and the heat-phenol vaccines were effective, the former being superior. PMID:14196811

  8. Efficacy of three inactivated vaccines against challenge with HPAI H5N1 Vietnam/05 viruses in ducks

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objective of the study was to compare the efficacy of inactivated vaccines containing a European isolate (A/turkey/England/73, H5N2 Chinese commercial vaccine), an American isolate (A/chicken/Hidalgo/94, H5N2 Mexican commercial vaccine), or a recombinant virus (RE-1, H5N1 recombinant Chinese vac...

  9. [Prevention of virus-related neurological diseases by vaccines].

    PubMed

    Takahashi, M

    1997-04-01

    Prevention of virus-related neurological diseases are surveyed. Patients of poliomyelitis has recently been drastically reduced by world-wide administrating live vaccines. In view of rare incidence of paralysis after giving live vaccine, adoption of inactivated vaccine has recently been reconsidered. A live varicella vaccine was developed and has been world-wide used for normal and high-risk children. Incidence of zoster in vaccinated acute leukemic children is several times higher in those who with rash after vaccination as compared with those without rash, and as no or few rash appears after vaccination of normal children, it is expected that vaccination of normal children would lead to reduction of zoster after their aging. Measles encephalitis has rapidly been reduced by world-wide use of live vaccines. Mouse-brain derived vaccine against Japanese encephalitis(JE) has been used in Asian countries. Development of tissue-culture derived JE vaccine is under way. PMID:9103901

  10. A sensitive in vitro assay for the detection of residual viable rabies virus in inactivated rabies vaccines.

    PubMed

    Takayama-Ito, Mutsuyo; Nakamichi, Kazuo; Kinoshita, Hitomi; Kakiuchi, Satsuki; Kurane, Ichiro; Saijo, Masayuki; Lim, Chang-Kweng

    2014-01-01

    Rabies is a viral disease transmitted through bites from rabid animals and can be prevented by vaccines. Clinically used rabies vaccines are prepared from inactivated rabies viruses grown in cell cultures or embryonated eggs. In Japan and across the world, tests that confirm complete inactivation, such as the in vivo suckling mouse assay, in which suckling mice are intracerebrally inoculated with vaccine products, are required for quality control. In this study, we developed a novel cell-based immunofluorescence assay that does not require mice for testing rabies vaccine inactivation for human use. The sensitivity of this cell-based in vitro assay was 5.7 times that of the in vivo suckling mouse assay, with a detection limit of one focus forming units per ml of test sample. This newly developed in vitro assay may replace the established in vivo suckling mouse assay for confirming viral vaccine inactivation. PMID:24321529

  11. Evaluation of adaptive immune responses and heterologous protection induced by inactivated bluetongue virus vaccines.

    PubMed

    Breard, Emmanuel; Belbis, Guillaume; Viarouge, Cyril; Nomikou, Kyriaki; Haegeman, Andy; De Clercq, Kris; Hudelet, Pascal; Hamers, Claude; Moreau, Francis; Lilin, Thomas; Durand, Benoit; Mertens, Peter; Vitour, Damien; Sailleau, Corinne; Zientara, Stéphan

    2015-01-15

    Eradication of bluetongue virus is possible, as has been shown in several European countries. New serotypes have emerged, however, for which there are no specific commercial vaccines. This study addressed whether heterologous vaccines would help protect against 2 serotypes. Thirty-seven sheep were randomly allocated to 7 groups of 5 or 6 animals. Four groups were vaccinated with commercial vaccines against BTV strains 2, 4, and 9. A fifth positive control group was given a vaccine against BTV-8. The other 2 groups were unvaccinated controls. Sheep were then challenged by subcutaneous injection of either BTV-16 (2 groups) or BTV-8 (5 groups). Taken together, 24/25 sheep from the 4 experimental groups developed detectable antibodies against the vaccinated viruses. Furthermore, sheep that received heterologous vaccines showed significantly reduced viraemia and clinical scores for BTV-16 when compared to unvaccinated controls. Reductions in clinical signs and viraemia among heterologously vaccinated sheep were not as common after challenge with BTV-8. This study shows that heterologous protection can occur, but that it is difficult to predict if partial or complete protection will be achieved following inactivated-BTV vaccination. PMID:25500308

  12. Immunogenicity of a cell culture-derived inactivated vaccine against a common virulent isolate of grass carp reovirus.

    PubMed

    Zeng, Weiwei; Wang, Qing; Wang, Yingying; Zhao, Changchen; Li, Yingying; Shi, Chunbin; Wu, Shuqin; Song, Xinjian; Huang, Qiwen; Li, Shoujun

    2016-07-01

    Grass carp (Ctenopharyngodon idella) hemorrhagic disease, caused by grass carp reovirus (GCRV), is emerging as a serious problem in grass carp aquaculture. There is no available antiviral therapy and vaccination is the primary method of disease control. In the present study, the immunological effects and protective efficacy of an inactivated HuNan1307 vaccine in grass carp were evaluated. The GCRV isolate HuNan1307 was produced by replication onto the grass carp PSF cell line, and inactivated with 1% β-propiolactone for 60 h at 4 °C. Grass carp were injected with inactivated GCRV vaccine, followed by challenge with the isolate HuNan1307. The results showed that the minimum dosage of the inactivated vaccine was 10(5.5) TCID50/0.2 mL to induce immune protection. All grass carp immunized with the inactivated vaccine produced a high titer of serum antibodies and GCRV-specific neutralizing antibody. Moreover, the inactivated vaccine injection increased the expression of 6 immune-related genes in the spleen and head kidney, which indicated that a immune response was induced by the HuNan1307 vaccine. In addition, grass carp immunized with the inactivated vaccine showed a survival rate above 80% after the viral challenge, equal to that of grass carp immunized with a commercial attenuated vaccine, and the protection lasted at least for one year. The data in this study suggested that the inactivated HuNan1307 vaccine may represent an efficient method to induce immunity against GCRV infection and the induced disease in grass carp. PMID:27142935

  13. Systemic and local immune response in pigs intradermally and intramuscularly injected with inactivated Mycoplasma hyopneumoniae vaccines.

    PubMed

    Martelli, P; Saleri, R; Cavalli, V; De Angelis, E; Ferrari, L; Benetti, M; Ferrarini, G; Merialdi, G; Borghetti, P

    2014-01-31

    The systemic and respiratory local immune response induced by the intradermal administration of a commercial inactivated Mycoplasma hyopneumoniae whole-cell vaccine (Porcilis(®) MHYO ID ONCE - MSD AH) in comparison with two commercial vaccines administered via the intramuscular route and a negative control (adjuvant only) was investigated. Forty conventional M. hyopneumoniae-free pigs were randomly assigned to four groups (ten animals each): Group A=intradermal administration of the test vaccine by using the needle-less IDAL(®) vaccinator at a dose of 0.2 ml; Group B=intramuscular administration of a commercially available vaccine (vaccine B); Group C=intramuscular administration of the adjuvant only (2 ml of X-solve adjuvant); Group D=intramuscular administration of a commercially available vaccine (vaccine D). Pigs were vaccinated at 28 days of age. Blood and bronchoalveolar lavage (BAL) fluid samples were collected at vaccination (blood only), 4 and 8 weeks post-vaccination. Serum and BAL fluid were tested for the presence of antibodies by ELISA test. Peripheral blood monomorphonuclear cells (PBMC) were isolated to quantify the number of IFN-γ secreting cells by ELISpot. Moreover, cytokine gene expression from the BAL fluid was performed. Total antibodies against M. hyopneumoniae and specific IgG were detected in serum of intradermally and intramuscularly (vaccine B only) vaccinated pigs at 4 and 8 weeks post-vaccination. M. hyopneumoniae specific IgA were detected in BAL fluid from vaccinated animals (Groups A and B) but not from controls and animals vaccinated with the bacterin D (p<0.05). Significantly higher gene expression of IL-10 was observed in the BAL fluid at week 8 post-vaccination in the intradermally vaccinated pigs (p<0.05). The results support that the intradermal administration of an adjuvanted bacterin induces both systemic and mucosal immune responses. Moreover, the intramuscularly administered commercial vaccines each had a different

  14. Study of the Integrated Immune Response Induced by an Inactivated EV71 Vaccine

    PubMed Central

    Wang, Jingjing; Zhao, Hongling; Jiang, Li; Che, Yanchun; Shi, Haijin; Li, Rongcheng; Mo, Zhaojun; Huang, Teng; Liang, Zhenglun; Mao, Qunying; Wang, Lichun; Dong, Chenghong; Liao, Yun; Guo, Lei; Yang, Erxia; Pu, Jing; Yue, Lei; Zhou, Zhenxin; Li, Qihan

    2013-01-01

    Enterovirus 71 (EV71), a major causative agent of hand-foot-and-mouth disease (HFMD), causes outbreaks among children in the Asia-Pacific region. A vaccine is urgently needed. Based on successful pre-clinical work, phase I and II clinical trials of an inactivated EV71 vaccine, which included the participants of 288 and 660 respectively, have been conducted. In the present study, the immune response and the correlated modulation of gene expression in the peripheral blood mononuclear cells (PBMCs) of 30 infants (6 to 11 months) immunized with this vaccine or placebo and consented to join this study in the phase II clinical trial were analyzed. The results showed significantly greater neutralizing antibody and specific T cell responses in vaccine group after two inoculations on days 0 and 28. Additionally, more than 600 functional genes that were up- or down-regulated in PBMCs were identified by the microarray assay, and these genes included 68 genes associated with the immune response in vaccine group. These results emphasize the gene expression profile of the immune system in response to an inactivated EV71 vaccine in humans and confirmed that such an immune response was generated as the result of the positive mobilization of the immune system. Furthermore, the immune response was not accompanied by the development of a remarkable inflammatory response. Clinical Trial Registration: NCT01391494 and NCT01512706. PMID:23372725

  15. Efficacy of a piglet-specific commercial inactivated vaccine against Porcine circovirus type 2 in clinical field trials

    PubMed Central

    Han, Kiwon; Seo, Hwi Won; Oh, Yeonsu; Park, Changhoon; Kang, Ikjae; Jang, Hyun; Chae, Chanhee

    2013-01-01

    The efficacy of a piglet-specific inactivated Porcine circovirus type 2 (PCV2) vaccine was evaluated with clinical field trials, as recommended by the Republic of Korea’s Animal, Plant & Fisheries Quarantine & Inspection Agency. Three farms were selected on the basis of their history of postweaning multisystemic wasting syndrome. On each farm 60, 1-week-old pigs were randomly allocated to 1 of 2 treatment groups: vaccination at 1 and 3 wk of age or no vaccination. The 2-dose schedule of vaccination with inactivated PCV2 vaccine improved the average daily weight gain from birth to 16 wk of age, the PCV2 load in the blood, and the frequency and severity of lymph node lesions. Inactivated PCV2 vaccine seems to be very effective in controlling PCV2 infection under field conditions. PMID:24101803

  16. Viral Aetiology of Acute Flaccid Paralysis Surveillance Cases, before and after Vaccine Policy Change from Oral Polio Vaccine to Inactivated Polio Vaccine

    PubMed Central

    Saraswathy Subramaniam, T. S.; Apandi, Mohd Apandi; Jahis, Rohani; Samsudin, Mohd Samsul; Saat, Zainah

    2014-01-01

    Since 1992, surveillance for acute flaccid paralysis (AFP) cases was introduced in Malaysia along with the establishment of the National Poliovirus Laboratory at the Institute for Medical Research. In 2008, the Ministry of Health, Malaysia, approved a vaccine policy change from oral polio vaccine to inactivated polio vaccine (IPV). Eight states started using IPV in the Expanded Immunization Programme, followed by the remaining states in January 2010. The objective of this study was to determine the viral aetiology of AFP cases below 15 years of age, before and after vaccine policy change from oral polio vaccine to inactivated polio vaccine. One hundred and seventy-nine enteroviruses were isolated from the 3394 stool specimens investigated between 1992 and December 2012. Fifty-six out of 107 virus isolates were polioviruses and the remaining were non-polio enteroviruses. Since 2009 after the sequential introduction of IPV in the childhood immunization programme, no Sabin polioviruses were isolated from AFP cases. In 2012, the laboratory AFP surveillance was supplemented with environmental surveillance with sewage sampling. Thirteen Sabin polioviruses were also isolated from sewage in the same year, but no vaccine-derived poliovirus was detected during this period. PMID:24772175

  17. Recombinant chimeric Japanese encephalitis virus/tick-borne encephalitis virus is attenuated and protective in mice.

    PubMed

    Wang, Hong-Jiang; Li, Xiao-Feng; Ye, Qing; Li, Shi-Hua; Deng, Yong-Qiang; Zhao, Hui; Xu, Yan-Peng; Ma, Jie; Qin, E-De; Qin, Cheng-Feng

    2014-02-12

    Tick-borne encephalitis virus (TBEV) represents one of the most dangerous human pathogens circulating in Europe and East Asia. No effective treatment for TBEV infection currently exists, and vaccination is the primary preventive measure. Although several inactivated vaccines have been licensed, the development of novel vaccines against TBEV remains a high priority in disease-endemic countries. In the present study, a live chimeric recombinant TBEV (ChinTBEV) was created by substituting the major structural genes of TBEV for the corresponding regions of Japanese encephalitis virus (JEV) live vaccine strain SA14-14-2. The resulting chimera had a small-plaque phenotype, replicated efficiently in both mammalian and mosquito cells. The preliminary data from in vitro passaging indicated the potential for stability of ChinTBEV. ChinTBEV also exhibited significantly attenuated neuroinvasiveness in mice upon either intraperitoneal or subcutaneous inoculation in comparison with its parental TBEV. Importantly, a single immunisation with ChinTBEV elicited TBEV-specific IgG and neutralising antibody responses in a dose-dependent manner, providing significant protection against lethal TBEV challenge in mice. Taken together, the results of this proof-of-concept study indicate that ChinTBEV can be further developed as a potential vaccine candidate against TBEV infection. Moreover, the construction of this type of flavivirus chimera using a JEV vaccine strain as the genetic backbone represents a universal vaccine approach. PMID:24394443

  18. [Specific activity of an UV-inactivated antirabies vaccine made from brain tissue administered in a shortened schedule].

    PubMed

    Morogova, V M; Magazov, R Sh; Gil'dina, S S; Latypova, R G; Shafeeva, R S

    1982-04-01

    The results obtained in the study of the specific potency of rabies vaccine prepared from sheep brain tissue and inactivated by UV irradiation indicate that, even in the presence of the lowest immunogenicity index (0.5), 5-6 injections of the vaccine, made not daily, but at interval of 3 and 7 days, induced the production of antibodies in the titers not lower than those resulting from 14-20 daily injections of the same vaccine or Fermi vaccine. The preparation inactivated by UV irradiation should be introduced for therapy according to the shortened immunization schedule with intervals, taking into account the immunogenicity index. PMID:7080770

  19. Effect of Osmotic Pressure on the Stability of Whole Inactivated Influenza Vaccine for Coating on Microneedles

    PubMed Central

    Choi, Hyo-Jick; Song, Jae-Min; Bondy, Brian J.; Compans, Richard W.; Kang, Sang-Moo; Prausnitz, Mark R.

    2015-01-01

    Enveloped virus vaccines can be damaged by high osmotic strength solutions, such as those used to protect the vaccine antigen during drying, which contain high concentrations of sugars. We therefore studied shrinkage and activity loss of whole inactivated influenza virus in hyperosmotic solutions and used those findings to improve vaccine coating of microneedle patches for influenza vaccination. Using stopped-flow light scattering analysis, we found that the virus underwent an initial shrinkage on the order of 10% by volume within 5 s upon exposure to a hyperosmotic stress difference of 217 milliosmolarity. During this shrinkage, the virus envelope had very low osmotic water permeability (1 – 6×10−4 cm s–1) and high Arrhenius activation energy (Ea = 15.0 kcal mol–1), indicating that the water molecules diffused through the viral lipid membranes. After a quasi-stable state of approximately 20 s to 2 min, depending on the species and hypertonic osmotic strength difference of disaccharides, there was a second phase of viral shrinkage. At the highest osmotic strengths, this led to an undulating light scattering profile that appeared to be related to perturbation of the viral envelope resulting in loss of virus activity, as determined by in vitro hemagglutination measurements and in vivo immunogenicity studies in mice. Addition of carboxymethyl cellulose effectively prevented vaccine activity loss in vitro and in vivo, believed to be due to increasing the viscosity of concentrated sugar solution and thereby reducing osmotic stress during coating of microneedles. These results suggest that hyperosmotic solutions can cause biphasic shrinkage of whole inactivated influenza virus which can damage vaccine activity at high osmotic strength and that addition of a viscosity enhancer to the vaccine coating solution can prevent osmotically driven damage and thereby enable preparation of stable microneedle coating formulations for vaccination. PMID:26230936

  20. High resolution identity testing of inactivated poliovirus vaccines

    PubMed Central

    Mee, Edward T.; Minor, Philip D.; Martin, Javier

    2015-01-01

    Background Definitive identification of poliovirus strains in vaccines is essential for quality control, particularly where multiple wild-type and Sabin strains are produced in the same facility. Sequence-based identification provides the ultimate in identity testing and would offer several advantages over serological methods. Methods We employed random RT-PCR and high throughput sequencing to recover full-length genome sequences from monovalent and trivalent poliovirus vaccine products at various stages of the manufacturing process. Results All expected strains were detected in previously characterised products and the method permitted identification of strains comprising as little as 0.1% of sequence reads. Highly similar Mahoney and Sabin 1 strains were readily discriminated on the basis of specific variant positions. Analysis of a product known to contain incorrect strains demonstrated that the method correctly identified the contaminants. Conclusion Random RT-PCR and shotgun sequencing provided high resolution identification of vaccine components. In addition to the recovery of full-length genome sequences, the method could also be easily adapted to the characterisation of minor variant frequencies and distinction of closely related products on the basis of distinguishing consensus and low frequency polymorphisms. PMID:26049003

  1. Frequency of medically attended events following rapid revaccination with trivalent inactivated influenza vaccine.

    PubMed

    Schmidt, Mark A; Crane, Brad; Mullooly, John P; Naleway, Allison L

    2010-11-16

    In 2008, potential temperature compromise of one lot of trivalent inactivated influenza vaccine (TIV) led to the revaccination of 13,210 Kaiser Permanente Northwest members within 28 days of receipt of their initial TIV dose. We conducted a retrospective cohort study to determine if these individuals experienced a higher rate of medically attended events (MAE) than those receiving only one TIV dose. We found no increase in MAE among those rapidly revaccinated (odds ratio 1.08; 95% confidence interval 0.80, 1.45), which may reassure individuals of the safety of revaccination with TIV should it be necessary, thereby leading to increased compliance with influenza vaccination recommendations. PMID:20875495

  2. Improved immunogenicity of Newcastle disease virus inactivated vaccine following DNA vaccination using Newcastle disease virus hemagglutinin-neuraminidase and fusion protein genes

    PubMed Central

    Firouzamandi, Masoumeh; Moeini, Hassan; Hosseini, Davood; Bejo, Mohd Hair; Omar, Abdul Rahman; Mehrbod, Parvaneh

    2016-01-01

    The present study describes the development of DNA vaccines using the hemagglutinin-neuraminidase (HN) and fusion (F) genes from AF2240 Newcastle disease virus strain, namely pIRES/HN, pIRES/F and pIRES-F/HN. Transient expression analysis of the constructs in Vero cells revealed the successful expression of gene inserts in vitro. Moreover, in vivo experiments showed that single vaccination with the constructed plasmid DNA (pDNA) followed by a boost with inactivated vaccine induced a significant difference in enzyme-linked immunosorbent assay antibody levels (p < 0.05) elicited by either pIRES/F, pIRES/F+ pIRES/HN or pIRES-F/HN at one week after the booster in specific pathogen free chickens when compared with the inactivated vaccine alone. Taken together, these results indicated that recombinant pDNA could be used to increase the efficacy of the inactivated vaccine immunization procedure. PMID:27051336

  3. Bivalent vaccine platform based on Japanese encephalitis virus (JEV) elicits neutralizing antibodies against JEV and hepatitis C virus.

    PubMed

    Saga, Ryohei; Fujimoto, Akira; Watanabe, Noriyuki; Matsuda, Mami; Hasegawa, Makoto; Watashi, Koichi; Aizaki, Hideki; Nakamura, Noriko; Tajima, Shigeru; Takasaki, Tomohiko; Konishi, Eiji; Kato, Takanobu; Kohara, Michinori; Takeyama, Haruko; Wakita, Takaji; Suzuki, Ryosuke

    2016-01-01

    Directly acting antivirals recently have become available for the treatment of hepatitis C virus (HCV) infection, but there is no prophylactic vaccine for HCV. In the present study, we took advantage of the properties of Japanese encephalitis virus (JEV) to develop antigens for use in a HCV vaccine. Notably, the surface-exposed JEV envelope protein is tolerant of inserted foreign epitopes, permitting display of novel antigens. We identified 3 positions that permitted insertion of the HCV E2 neutralization epitope recognized by HCV1 antibody. JEV subviral particles (SVP) containing HCV-neutralization epitope (SVP-E2) were purified from culture supernatant by gel chromatography. Sera from mice immunized with SVP-E2 inhibited infection by JEV and by trans-complemented HCV particles (HCVtcp) derived from multi-genotypic viruses, whereas sera from mice immunized with synthetic E2 peptides did not show any neutralizing activity. Furthermore, sera from mice immunized with SVP-E2 neutralized HCVtcp with N415K escape mutation in E2. As with the SVP-E2 epitope-displaying particles, JEV SVPs with HCV E1 epitope also elicited neutralizing antibodies against HCV. Thus, this novel platform harboring foreign epitopes on the surface of the particle may facilitate the development of a bivalent vaccine against JEV and other pathogens. PMID:27345289

  4. Bivalent vaccine platform based on Japanese encephalitis virus (JEV) elicits neutralizing antibodies against JEV and hepatitis C virus

    PubMed Central

    Saga, Ryohei; Fujimoto, Akira; Watanabe, Noriyuki; Matsuda, Mami; Hasegawa, Makoto; Watashi, Koichi; Aizaki, Hideki; Nakamura, Noriko; Tajima, Shigeru; Takasaki, Tomohiko; Konishi, Eiji; Kato, Takanobu; Kohara, Michinori; Takeyama, Haruko; Wakita, Takaji; Suzuki, Ryosuke

    2016-01-01

    Directly acting antivirals recently have become available for the treatment of hepatitis C virus (HCV) infection, but there is no prophylactic vaccine for HCV. In the present study, we took advantage of the properties of Japanese encephalitis virus (JEV) to develop antigens for use in a HCV vaccine. Notably, the surface-exposed JEV envelope protein is tolerant of inserted foreign epitopes, permitting display of novel antigens. We identified 3 positions that permitted insertion of the HCV E2 neutralization epitope recognized by HCV1 antibody. JEV subviral particles (SVP) containing HCV-neutralization epitope (SVP-E2) were purified from culture supernatant by gel chromatography. Sera from mice immunized with SVP-E2 inhibited infection by JEV and by trans-complemented HCV particles (HCVtcp) derived from multi-genotypic viruses, whereas sera from mice immunized with synthetic E2 peptides did not show any neutralizing activity. Furthermore, sera from mice immunized with SVP-E2 neutralized HCVtcp with N415K escape mutation in E2. As with the SVP-E2 epitope-displaying particles, JEV SVPs with HCV E1 epitope also elicited neutralizing antibodies against HCV. Thus, this novel platform harboring foreign epitopes on the surface of the particle may facilitate the development of a bivalent vaccine against JEV and other pathogens. PMID:27345289

  5. A Mechanistic Study on the Destabilization of Whole Inactivated Influenza Virus Vaccine in Gastric Environment

    PubMed Central

    Choi, Hyo-Jick; Ebersbacher, Charles F.; Kim, Min-Chul; Kang, Sang-Moo; Montemagno, Carlo D.

    2013-01-01

    Oral immunization using whole inactivated influenza virus vaccine promises an efficient vaccination strategy. While oral vaccination was hampered by harsh gastric environment, a systematic understanding about vaccine destabilization mechanisms was not performed. Here, we investigated the separate and combined effects of temperature, retention time, pH, and osmotic stress on the stability of influenza vaccine by monitoring the time-dependent morphological change using stopped-flow light scattering. When exposed to osmotic stress, clustering of vaccine particles was enhanced in an acidic medium (pH 2.0) at ≥25°C. Fluorescence spectroscopic studies showed that hyper-osmotic stress at pH 2.0 and 37°C caused a considerable increase in conformational change of antigenic proteins compared to that in acidic iso-osmotic medium. A structural integrity of membrane was destroyed upon exposure to hyper-osmotic stress, leading to irreversible morphological change, as observed by undulation in stopped-flow light scattering intensity and transmission electron microscopy. Consistent with these analyses, hemagglutination activity decreased more significantly with an increasing magnitude of hyper-osmotic stress than in the presence of the hypo- and iso-osmotic stresses. This study shows that the magnitude and direction of the osmotic gradient has a substantial impact on the stability of orally administrated influenza vaccine. PMID:23776657

  6. Immunogenicity of an Electron Beam Inactivated Rhodococcus equi Vaccine in Neonatal Foals

    PubMed Central

    Bordin, Angela I.; Pillai, Suresh D.; Brake, Courtney; Bagley, Kaytee B.; Bourquin, Jessica R.; Coleman, Michelle; Oliveira, Fabiano N.; Mwangi, Waithaka; McMurray, David N.; Love, Charles C.; Felippe, Maria Julia B.; Cohen, Noah D.

    2014-01-01

    Rhodococcus equi is an important pathogen of foals that causes severe pneumonia. To date, there is no licensed vaccine effective against R. equi pneumonia of foals. The objectives of our study were to develop an electron beam (eBeam) inactivated vaccine against R. equi and evaluate its immunogenicity. A dose of eBeam irradiation that inactivated replication of R. equi while maintaining outer cell wall integrity was identified. Enteral administration of eBeam inactivated R. equi increased interferon-γ production by peripheral blood mononuclear cells in response to stimulation with virulent R. equi and generated naso-pharyngeal R. equi-specific IgA in newborn foals. Our results indicate that eBeam irradiated R. equi administered enterally produce cell-mediated and upper respiratory mucosal immune responses, in the face of passively transferred maternal antibodies, similar to those produced in response to enteral administration of live organisms (a strategy which previously has been documented to protect foals against intrabronchial infection with virulent R. equi). No evidence of adverse effects was noted among vaccinated foals. PMID:25153708

  7. Immunogenicity of an electron beam inactivated Rhodococcus equi vaccine in neonatal foals.

    PubMed

    Bordin, Angela I; Pillai, Suresh D; Brake, Courtney; Bagley, Kaytee B; Bourquin, Jessica R; Coleman, Michelle; Oliveira, Fabiano N; Mwangi, Waithaka; McMurray, David N; Love, Charles C; Felippe, Maria Julia B; Cohen, Noah D

    2014-01-01

    Rhodococcus equi is an important pathogen of foals that causes severe pneumonia. To date, there is no licensed vaccine effective against R. equi pneumonia of foals. The objectives of our study were to develop an electron beam (eBeam) inactivated vaccine against R. equi and evaluate its immunogenicity. A dose of eBeam irradiation that inactivated replication of R. equi while maintaining outer cell wall integrity was identified. Enteral administration of eBeam inactivated R. equi increased interferon-γ production by peripheral blood mononuclear cells in response to stimulation with virulent R. equi and generated naso-pharyngeal R. equi-specific IgA in newborn foals. Our results indicate that eBeam irradiated R. equi administered enterally produce cell-mediated and upper respiratory mucosal immune responses, in the face of passively transferred maternal antibodies, similar to those produced in response to enteral administration of live organisms (a strategy which previously has been documented to protect foals against intrabronchial infection with virulent R. equi). No evidence of adverse effects was noted among vaccinated foals. PMID:25153708

  8. Control of Salmonella enterica serovar Enteritidis in laying hens by inactivated Salmonella Enteritidis vaccines

    PubMed Central

    de Freitas Neto, Oliveiro Caetano; Mesquita, Aline Lopes; de Paiva, Jaqueline Boldrin; Zotesso, Fábio; Berchieri Júnior, Angelo

    2008-01-01

    Salmonella Enteritidis is one of the agents that is responsible for outbreaks of human foodborne salmonellosis caused by Salmonella Enteritidis and is generally associated with the consumption of poultry products. Inactivated Salmonella Enteritidis cell vaccine is one of the available methods to control Salmonella Enteritidis in breeders and laying hens, however results in terms of efficacy vary. This vaccine has never been tested in Brazil, therefore, the present work was carried out to assess three commercial inactivated Salmonella Enteritidis vaccines allowed in Brazil. Four hundred white light variety commercial laying hens were obtained at one-day-of age. At eight weeks old, the birds were divided into four groups with one hundred animals each. Birds from three groups (V1, V2 and V3) received different intramuscular vaccines, followed by a booster dose at 16 weeks of age. Birds from another group (CG) were not vaccinated. When the laying hens were 20, 25 and 31 weeks old, 13 from each group were transferred to another room and were challenged by inoculating 2 mL neat culture of Salmonella Enteritidis. On the second day after each challenge, the caecal contents, spleen, liver and ovary of three birds from each group were analyzed for the presence of Salmonella Enteritidis. Twice a week a cloacal swab of each bird was taken and all eggs laid were examined for the presence of Salmonella Enteritidis. After four consecutive negative cloacal swabs in all the groups, the birds were sacrificed so as to examine the liver, caecal contents and ovaries. Overall, the inactivated vaccine used in group V3 reduced Salmonella Enteritidis in the feces and eggs. A very small amount of Salmonella was found in the spleen, liver, ovary and caeca of the birds in the four groups during the whole experiment. In general, inactivated Salmonella Enteritidis vaccines was able to decrease the presence of Salmonella Enteritidis in the birds and in the eggs as well. Nevertheless, they must

  9. Immune responses elicited to a live-attenuated influenza virus vaccine compared to a traditional whole-inactivated virus vaccine for pandemic H1N1in pigs

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In the United States there are currently two influenza vaccine platforms approved for use in humans - conventional inactivated virus and live-attenuated influenza virus (LAIV). One of the major challenges for influenza vaccination is designing a platform that provides cross-protection across strains...

  10. Potency testing of inactivated rabies vaccines using a serological method.

    PubMed

    Kamphuis, E; Krämer, B; Schildger, H; Duchow, K

    2012-01-01

    Batch potency testing of rabies vaccines could be done by challenge, measurement of serum response or antigen quantification. Here, we show the development of a serological test that was successfully validated for use in batch release. The serological test is based on serum neutralization (SNT). The correlation to the NIH challenge was demonstrated by batches passing respectively failing equivalently in the NIH and SNT. The SNT provides information on immunogenicity and exhibits several advantages to the NIH: 1) SNT uses many fewer animals for batch release. 2) SNT allows quantitative information on the individual serum response, in contrast to the "dead"/"alive" interpretation of the NIH. 3) SNT is quicker than the NIH and needs fewer working hours. 4) SNT avoids the highly disturbing intra-cerebral injection and suffering from rabies for mice and spares the staff the emotional stress of massively harming animals. PMID:22888591

  11. Evaluating the effectiveness of an inactivated vaccine from Anaplasma marginale derived from tick cell culture.

    PubMed

    Lasmar, Pedro Veloso Facury; Carvalho, Antônio Último de; Facury Filho, Elias Jorge; Bastos, Camila Valgas; Ribeiro, Múcio Flávio Barbosa

    2012-01-01

    The protective efficacy of an inactivated vaccine from Anaplasma marginale that was cultured in tick cells (IDE8) for use against bovine anaplasmosis was evaluated. Five calves (Group 1) were inoculated subcutaneously, at 21-day intervals, with three doses of vaccine containing 3 × 10(9) A. marginale initial bodies. Five control calves received saline solution alone (Group 2). Thirty-two days after the final inoculation, all the calves were challenged with approximately 3 × 10(5) erythrocytes infected with A. marginale high-virulence isolate (UFMG2). The Group 1 calves seroconverted 14 days after the second dose of vaccine. After the challenge, all the animals showed patent rickettsemia. There was no significant difference (p > 0.05) between the Group 1 and 2 calves during the incubation period, patency period or convalescence period. All the animals required treatment to prevent death. The results suggest that the inactivated vaccine from A. marginale produced in IDE8 induced seroconversion in calves, but was not effective for preventing anaplasmosis induced by the UFMG2 isolate under the conditions of this experiment. PMID:22832750

  12. Fractional-Dose Inactivated Poliovirus Vaccine Immunization Campaign - Telangana State, India, June 2016.

    PubMed

    Bahl, Sunil; Verma, Harish; Bhatnagar, Pankaj; Haldar, Pradeep; Satapathy, Asish; Kumar, K N Arun; Horton, Jennifer; Estivariz, Concepcion F; Anand, Abhijeet; Sutter, Roland

    2016-01-01

    Wild poliovirus type 2 was declared eradicated in September 2015 (1). In April 2016, India, switched from use of trivalent oral poliovirus vaccine (tOPV; containing types 1, 2, and 3 polio vaccine viruses), to bivalent OPV (bOPV; containing types 1 and 3), as part of a globally synchronized initiative to withdraw Sabin poliovirus type 2 vaccine. Concurrently, inactivated poliovirus vaccine (IPV) was introduced into India's routine immunization program to maintain an immunity base that would mitigate the number of paralytic cases in the event of epidemic transmission of poliovirus type 2 (2,3). After cessation of use of type 2 Sabin vaccine, any reported isolation of vaccine-derived poliovirus type 2 (VDPV2) would be treated as a public health emergency and might need outbreak response with monovalent type 2 oral vaccine, IPV, or both (4). In response to identification of a VDPV2 isolate from a sewage sample collected in the southern state of Telangana in May 2016, India conducted a mass vaccination campaign in June 2016 using an intradermal fractional dose (0.1 ml) of IPV (fIPV). Because of a global IPV supply shortage, fIPV, which uses one fifth of regular intramuscular (IM) dose administered intradermally, has been recommended as a response strategy for VDPV2 (5). Clinical trials have demonstrated that fIPV is highly immunogenic (6,7). During the 6-day campaign, 311,064 children aged 6 weeks-3 years were vaccinated, achieving an estimated coverage of 94%. With appropriate preparation, an emergency fIPV response can be promptly and successfully implemented. Lessons learned from this campaign can be applied to successful implementation of future outbreak responses using fIPV. PMID:27559683

  13. A novel dengue virus serotype 1 vaccine candidate based on Japanese encephalitis virus vaccine strain SA14-14-2 as the backbone.

    PubMed

    Yang, Huiqiang; Li, Zhushi; Lin, Hua; Wang, Wei; Yang, Jian; Liu, Lina; Zeng, Xianwu; Wu, Yonglin; Yu, Yongxin; Li, Yuhua

    2016-06-01

    To develop a potential dengue vaccine candidate, a full-length cDNA clone of a novel chimeric virus was constructed using recombinant DNA technology, with Japanese encephalitis virus (JEV) vaccine strain SA14-14-2 as the backbone, with its premembrane (prM) and envelope (E) genes substituted by their counterparts from dengue virus type 1 (DENV1). The chimeric virus (JEV/DENV1) was successfully recovered from primary hamster kidney (PHK) cells by transfection with the in vitro transcription products of JEV/DENV1 cDNA and was identified by complete genome sequencing and immunofluorescent staining. No neuroinvasiveness of this chimeric virus was observed in mice inoculated by the subcutaneous route (s.c.) or by the intraperitoneal route (i.p.), while some neurovirulence was displayed in mice that were inoculated directly by the intracerebral route (i.c.). The chimeric virus was able to stimulate high-titer production of antibodies against DENV1 and provided protection against lethal challenge with neuroadapted dengue virus in mice. These results suggest that the chimeric virus is a promising dengue vaccine candidate. PMID:26976137

  14. Dynamics of Japanese Encephalitis Virus Transmission among Pigs in Northwest Bangladesh and the Potential Impact of Pig Vaccination

    PubMed Central

    Khan, Salah Uddin; Salje, Henrik; Hannan, A.; Islam, Md. Atiqul; Bhuyan, A. A. Mamun; Islam, Md. Ariful; Rahman, M. Ziaur; Nahar, Nazmun; Hossain, M. Jahangir; Luby, Stephen P.; Gurley, Emily S.

    2014-01-01

    Background Japanese encephalitis (JE) virus infection can cause severe disease in humans, resulting in death or permanent neurologic deficits among survivors. Studies indicate that the incidence of JE is high in northwestern Bangladesh. Pigs are amplifying hosts for JE virus (JEV) and a potentially important source of virus in the environment. The objectives of this study were to describe the transmission dynamics of JEV among pigs in northwestern Bangladesh and estimate the potential impact of vaccination to reduce incidence among pigs. Methodology/Principal Findings We conducted a comprehensive census of pigs in three JE endemic districts and tested a sample of them for evidence of previous JEV infection. We built a compartmental model to describe JEV transmission dynamics in this region and to estimate the potential impact of pig vaccination. We identified 11,364 pigs in the study area. Previous JEV infection was identified in 30% of pigs with no spatial differences in the proportion of pigs that were seropositive across the study area. We estimated that JEV infects 20% of susceptible pigs each year and the basic reproductive number among pigs was 1.2. The model suggest that vaccinating 50% of pigs each year resulted in an estimated 82% reduction in annual incidence in pigs. Conclusions/Significance The widespread distribution of historic JEV infection in pigs suggests they may play an important role in virus transmission in this area. Future studies are required to understand the contribution of pig infections to JE risk in humans and the potential impact of pig vaccination on human disease. PMID:25255286

  15. New Generation of Inactivated Poliovirus Vaccines for Universal Immunization After Eradication of Poliomyelitis

    PubMed Central

    Chumakov, Konstantin; Ehrenfeld, Ellie

    2008-01-01

    Twenty years of global polio eradication efforts may soon eliminate wild-type poliovirus transmission. However, new information about poliovirus learned during this campaign, as well as the political realities of a modern world demand that universal immunity against poliomyelitis be maintained even after wild poliovirus is eradicated. Although two excellent vaccines have proven highly effective in the past, neither the live nor current inactivated products are optimal for use in the post-eradication setting. Therefore, concerted efforts are urgently needed to develop a new generation of vaccine that is risk-free and affordable and can be produced on a global scale. Here we discuss the desired properties and ways to create a new polio vaccine. PMID:18990066

  16. National choices related to inactivated poliovirus vaccine, innovation and the endgame of global polio eradication.

    PubMed

    Thompson, Kimberly M; Duintjer Tebbens, Radboud J

    2014-02-01

    Achieving the goal of a world free of poliomyelitis still requires significant effort. Although polio immunization represents a mature area, the polio endgame will require new tools and strategies, particularly as national and global health leaders coordinate the cessation of all three serotypes of oral poliovirus vaccine and increasingly adopt inactivated poliovirus vaccine (IPV). Poliovirus epidemiology and the global options for managing polioviruses continue to evolve, along with our understanding and appreciation of the resources needed and the risks that require management. Based on insights from modeling, we offer some perspective on the current status of plans and opportunities to achieve and maintain a world free of wild polioviruses and to successfully implement oral poliovirus vaccine cessation. IPV costs and potential wastage will represent an important consideration for national policy makers. Innovations may reduce future IPV costs, but the world urgently needs lower-cost IPV options. PMID:24308581

  17. Vaccination of travelers: how far have we come and where are we going?

    PubMed

    Chen, Lin H; Hill, David R; Wilder-Smith, Annelies

    2011-11-01

    Vaccine recommendations are a prominent part of health preparations before international travel. We review progress made in the past decade regarding vaccines used primarily by persons traveling from high-income countries to low- and middle-income countries. The combined hepatitis A-B vaccine, the recently licensed Vero cell-derived Japanese encephalitis vaccine and conjugated quadrivalent meningococcal vaccines are discussed. This article provides updates on yellow fever vaccine-associated visceral and neurologic adverse events, indications for influenza vaccine in travelers, the rapid immunization schedule for tick-borne encephalitis vaccine, schedules for postexposure rabies prophylaxis, and new insights about oral cholera vaccines following the outbreak in Haiti. The future should bring vaccines for serogroup B Neiserria meningitidis, dengue and malaria, as well as an inactivated yellow fever vaccine. PMID:22043959

  18. Short-Fragment DNA Residue from Vaccine Purification Processes Promotes Immune Response to the New Inactivated EV71 Vaccine by Upregulating TLR9 mRNA

    PubMed Central

    Shao, Jie; Gao, Fan; Lin, Hui-Juan; Mao, Qun-Ying; Chen, Pan; Wu, Xing; Yao, Xin; Kong, Wei; Liang, Zheng-Lun

    2016-01-01

    To reduce potential oncogenic long genomic DNA in vaccines, nuclease treatment has been applied in the purification processes. However, this action increased the residue of short-fragment DNA and its effect on vaccine potency was still elusive. In this study, we found residual sf-DNA in an inactivated EV71 vaccine could enhance humoral immune response in mice. Ag stimulation in vitro and vaccine injection in vivo revealed that TLR9 transcription level was elevated, indicating that sf-DNA could activate TLR9. These new findings will help us to understand the molecular mechanism induced by vero-cell culture-derived vaccines. PMID:27082865

  19. Short-Fragment DNA Residue from Vaccine Purification Processes Promotes Immune Response to the New Inactivated EV71 Vaccine by Upregulating TLR9 mRNA.

    PubMed

    Shao, Jie; Gao, Fan; Lin, Hui-Juan; Mao, Qun-Ying; Chen, Pan; Wu, Xing; Yao, Xin; Kong, Wei; Liang, Zheng-Lun

    2016-01-01

    To reduce potential oncogenic long genomic DNA in vaccines, nuclease treatment has been applied in the purification processes. However, this action increased the residue of short-fragment DNA and its effect on vaccine potency was still elusive. In this study, we found residual sf-DNA in an inactivated EV71 vaccine could enhance humoral immune response in mice. Ag stimulation in vitro and vaccine injection in vivo revealed that TLR9 transcription level was elevated, indicating that sf-DNA could activate TLR9. These new findings will help us to understand the molecular mechanism induced by vero-cell culture-derived vaccines. PMID:27082865

  20. Adjuvant potential of resiquimod with inactivated Newcastle disease vaccine and its mechanism of action in chicken.

    PubMed

    Sachan, Swati; Ramakrishnan, Saravanan; Annamalai, Arunsaravanakumar; Sharma, Bal Krishan; Malik, Hina; Saravanan, B C; Jain, Lata; Saxena, Meeta; Kumar, Ajay; Krishnaswamy, Narayanan

    2015-08-26

    Resiquimod (R-848), an imidazoquinoline compound, is a potent synthetic Toll-like receptor (TLR) 7 agonist. Although the solitary adjuvant potential of R-848 is well established in mammals, such reports are not available in avian species hitherto. Hence, the adjuvant potential of R-848 was tested in SPF chicken in this study. Two week old chicks were divided into four groups (10 birds/group) viz., control (A), inactivated Newcastle disease virus (NDV) vaccine prepared from velogenic strain (B), commercial oil adjuvanted inactivated NDV vaccine prepared from lentogenic strain (C) and inactivated NDV vaccine prepared from velogenic strain with R-848 (D). Booster was given two weeks post primary vaccination. Humoral immune response was assessed by haemagglutination inhibition (HI) test and ELISA while the cellular immune response was quantified by lymphocyte transformation test (LTT) and flow cytometry post-vaccination. Entire experiment was repeated twice to check the reproducibility. Highest HI titre was observed in group D at post booster weeks 1 and 2 that corresponds to mean log2 HI titre of 6.4 ± 0.16 and 6.8 ± 0.13, respectively. The response was significantly higher than that of group B or C (P<0.01). LTT stimulation index (P ≤ 0.01) as well as CD4(+) and CD8(+) cells in flow cytometry (P<0.05) were significantly high and maximum in group D. Group D conferred complete protection against virulent NDV challenge, while it was only 80% in group B and C. To understand the effects of R-848, the kinetics of immune response genes in spleen were analyzed using quantitative real-time PCR after R-848 administration (50 μg/bird, i.m. route). Resiquimod significantly up-regulated the expression of IFN-α, IFN-β, IFN-γ, IL-1β, IL-4, iNOS and MHC-II genes (P<0.01). In conclusion, the study demonstrated the adjuvant potential of R-848 when co-administered with inactivated NDV vaccine in SPF chicken which is likely due to the up-regulation of immune response genes

  1. Evaluation of inactivated hepatitis A vaccine in Canadians 40 years of age or more.

    PubMed Central

    Scheifele, D W; Bjornson, G J

    1993-01-01

    OBJECTIVE: To assess the side effects and immune responses after three serial doses of a new inactivated hepatitis A vaccine in people 40 years of age or more. DESIGN: Open, noncomparative trial. SETTING: A hospital, a regional laboratory and public health units in British Columbia. PARTICIPANTS: A volunteer sample of 64 healthy adults aged 40 to 61 years who were seronegative for hepatitis A virus (HAV). All were staff or associates of the health facilities. Exclusion criteria included elevated serum alanine and aspartate aminotransferase levels, a history of liver disease and recent travel to areas of high risk for HAV infection. INTERVENTION: A formalin-inactivated, alum-adsorbed vaccine containing 720 ELISA (enzyme-linked immunosorbent assay) units of antigen from HAV strain HM175 per 1.0-mL dose was injected intramuscularly into the delgoid area. The second and third doses were given 1 and 6 months later respectively. MAIN OUTCOME MEASURES: A detailed diary of any adverse effects for 3 days after each dose. HAV antibody levels in blood samples taken before and 30 days after each dose. RESULTS: All subjects completed the planned series of vaccinations and blood tests; symptom diaries were returned after 190 (99%) of 192 vaccinations. Local symptoms, most often soreness, were reported after 46% of the vaccinations but were mild and usually resolved within 24 hours. A temperature of more than 38.0 degrees C was never reported. Seroconversion occurred in all cases after the two primary doses, and the subjects were still seropositive at 6 months. After the booster dose the geometric mean titre was 2380 mIU/mL, all values being 200 mIU/mL or greater. CONCLUSION: In healthy adults 40 years of age or more the HAV vaccine was well tolerated and highly immunogenic. Final antibody levels were much higher than reported in people passively immunized against HAV with immune serum globulin. PMID:8431816

  2. Effects of Three Types of Inactivation Agents on the Antibody Response and Immune Protection of Inactivated IHNV Vaccine in Rainbow Trout.

    PubMed

    Tang, Lijie; Kang, Haiyan; Duan, Kexin; Guo, Mengting; Lian, Gaihong; Wu, Yang; Li, Yijing; Gao, Shuai; Jiang, Yanping; Yin, Jiyuan; Liu, Min

    2016-09-01

    Infectious hematopoietic necrosis virus (IHNV) infects salmonid fish, resulting in high mortality and serious economic losses to salmonid aquaculture. Therefore, an effective IHNV vaccine is urgently needed. To select an inactivation agent for the preparation of an effective IHNV vaccine, rainbow trout were immunized with mineral oil emulsions of IHNV vaccines inactivated by formaldehyde, binary ethylenimine (BEI), or β-propiolactone (BPL). The fish were challenged 8 weeks after vaccination, and their IgM antibody response and relative percent survival (RPS) were evaluated. The results show that formaldehyde, BEI, and BPL abolished IHNV HLJ-09 infectivity within 24, 48, and 24 h at final concentrations of 0.2%, 0.02%, and 0.01%, respectively. The mean levels of specific IgM, both in serum and mucus (collected from the skin surface and gills), for the three immunized groups (from high to low) ranked as follows: the BPL group, BEI group, and formaldehyde group. From weeks 5 to 9, the mean log2 serum titers of IgM in the BPL group were significantly higher compared with those of the other groups (p < 0.05) during the 9 weeks of observation after vaccination (immunized at weeks 0 and6). Mucus OD490 values of the BPL group were significantly higher compared with those of the other groups (p < 0.05) when reaching their peak at weeks 5 and 8, but the difference between the formaldehyde and BEI groups was not significant (p > 0.05). The BPL-inactivated whole-virus vaccine had the greatest protective effect on the rainbow trout after challenge by an intraperitoneal injection of live IHNV, with an RPS rate of 91.67%, which was significantly higher compared with the BEI (83.33%) and formaldehyde (79.17%) groups. These results indicate that the BPL-inactivated IHNV oil-adjuvant vaccine was more effective than the formaldehyde- or BEI-inactivated vaccines. The results of this study provide an important foundation for further studies on inactivated IHNV vaccines

  3. Experimental Infection of Aedes sollicitans and Aedes taeniorhynchus with Two Chimeric Sindbis/Eastern Equine Encephalitis Virus Vaccine Candidates

    PubMed Central

    Arrigo, Nicole C.; Watts, Douglas M.; Frolov, Ilya; Weaver, Scott C.

    2008-01-01

    Two chimeric vaccine candidates for Eastern equine encephalitis virus (EEEV) were developed by inserting the structural protein genes of either a North American (NA) or South American (SA) EEEV into a Sindbis virus (SINV) backbone. To assess the effect of chimerization on mosquito infectivity, experimental infections of two potential North American bridge vectors of EEEV, Aedes sollicitans and Ae. taeniorhynchus, were attempted. Both species were susceptible to oral infection with all viruses after ingestion of high titer blood meals of ca. 7.0 log10 plaque-forming units/mL. Dissemination rates for SIN/NAEEEV (0 of 56) and SIN/SAEEEV (1 of 54) were low in Ae. taeniorhynchus and no evidence of transmission potential was observed. In contrast, the chimeras disseminated more efficiently in Ae. sollicitans (19 of 68 and 13 of 57, respectively) and were occasionally detected in the saliva of this species. These results indicate that chimerization of the vaccine candidates reduces infectivity. However, its impact on dissemination and potential transmission is mosquito species-specific. PMID:18187790

  4. A Phase 1 clinical trial of a DNA vaccine for Venezuelan equine encephalitis delivered by intramuscular or intradermal electroporation.

    PubMed

    Hannaman, Drew; Dupuy, Lesley C; Ellefsen, Barry; Schmaljohn, Connie S

    2016-06-30

    Venezuelan equine encephalitis virus (VEEV), a mosquito-borne alphavirus, causes periodic epizootics in equines and is a recognized biological defense threat for humans. There are currently no FDA-licensed vaccines against VEEV. We developed a candidate DNA vaccine expressing the E3-E2-6K-E1 genes of VEEV (pWRG/VEE) and performed a Phase 1 clinical study to assess the vaccine's safety, reactogenicity, tolerability, and immunogenicity when administered by intramuscular (IM) or intradermal (ID) electroporation (EP) using the Ichor Medical Systems TriGrid™ Delivery System. Subjects in IM-EP groups received 0.5mg (N=8) or 2.0mg (N=9) of pWRG/VEE or a saline placebo (N=4) in a 1.0ml injection. Subjects in ID-EP groups received 0.08mg (N=8) or 0.3mg (N=8) of DNA or a saline placebo (N=4) in a 0.15ml injection. Subjects were monitored for a total period of 360 days. No vaccine- or device-related serious adverse events were reported. Based on the results of a subject questionnaire, the IM- and ID-EP procedures were both considered to be generally acceptable for prophylactic vaccine administration, with the acute tolerability of ID EP delivery judged to be greater than that of IM-EP delivery. All subjects (100%) in the high and low dose IM-EP groups developed detectable VEEV-neutralizing antibodies after two or three administrations of pWRG/VEE, respectively. VEEV-neutralizing antibody responses were detected in seven of eight subjects (87.5%) in the high dose and five of eight subjects (62.5%) in the low dose ID-EP groups after three vaccine administrations. There was a correlation between the DNA dose and the magnitude of the resulting VEEV-neutralizing antibody responses for both IM and ID EP delivery. These results indicate that pWRG/VEE delivered by either IM- or ID-EP is safe, tolerable, and immunogenic in humans at the evaluated dose levels. Clinicaltrials.gov registry number NCT01984983. PMID:27206386

  5. PapMV nanoparticles improve mucosal immune responses to the trivalent inactivated flu vaccine

    PubMed Central

    2014-01-01

    Background Trivalent inactivated flu vaccines (TIV) are currently the best means to prevent influenza infections. However, the protection provided by TIV is partial (about 50%) and it is needed to improve the efficacy of protection. Since the respiratory tract is the main site of influenza replications, a vaccine that triggers mucosal immunity in this region can potentially improve protection against this disease. Recently, PapMV nanoparticles used as an adjuvant in a formulation with TIV administered by the subcutaneous route have shown improving the immune response directed to the TIV and protection against an influenza challenge. Findings In the present study, we showed that intranasal instillation with a formulation containing TIV and PapMV nanoparticles significantly increase the amount of IgG, IgG2a and IgA in lungs of vaccinated mice as compared to mice that received TIV only. Instillation with the adjuvanted formulation leads to a more robust protection against an influenza infection with a strain that is lethal to mice vaccinated with the TIV. Conclusions We demonstrate for the first time that PapMV nanoparticles are an effective and potent mucosal adjuvant for vaccination. PMID:24885884

  6. Transcutaneous delivery and thermostability of a dry trivalent inactivated influenza vaccine patch

    PubMed Central

    Frolov, Vladimir G.; Seid, Robert C.; Odutayo, Olabisi; Al‐Khalili, Mohammad; Yu, Jianmei; Frolova, Olga Y.; Vu, Hong; Butler, Barbara A.; Look, Jee Loon; Ellingsworth, Larry R.; Glenn, Gregory M.

    2008-01-01

    A patch containing a trivalent inactivated influenza vaccine (TIV) was prepared in a dried, stabilized formulation for transcutaneous delivery. When used in a guinea pig immunogenicity model, the dry patch was as effective as a wet TIV patch in inducing serum anti‐influenza IgG antibodies. When the dry TIV patch was administered with LT as an adjuvant, a robust immune response was obtained that was comparable with or better than an injected TIV vaccine. When stored sealed in a nitrogen‐purged foil, the dry TIV patch was stable for 12 months, as measured by HA content, under both refrigerated and room temperature conditions. Moreover, the immunological potency of the vaccine product was not affected by long‐term storage. The dry TIV patch was also thermostable against three cycles of alternating low‐to‐high temperatures of −20/25 and −20/40°C, and under short‐term temperature stress conditions. These studies indicate that the dry TIV patch product can tolerate unexpected environmental stresses that may be encountered during shipping and distribution. Because of its effectiveness in vaccine delivery and its superior thermostable characteristics, the dry TIV patch represents a major advance for needle‐free influenza vaccination. PMID:19453472

  7. Vaxtracker: Active on-line surveillance for adverse events following inactivated influenza vaccine in children.

    PubMed

    Cashman, Patrick; Moberley, Sarah; Dalton, Craig; Stephenson, Jody; Elvidge, Elissa; Butler, Michelle; Durrheim, David N

    2014-09-22

    Vaxtracker is a web based survey for active post marketing surveillance of Adverse Events Following Immunisation. It is designed to efficiently monitor vaccine safety of new vaccines by early signal detection of serious adverse events. The Vaxtracker system automates contact with the parents or carers of immunised children by email and/or sms message to their smart phone. A hyperlink on the email and text messages links to a web based survey exploring adverse events following the immunisation. The Vaxtracker concept was developed during 2011 (n=21), and piloted during the 2012 (n=200) and 2013 (n=477) influenza seasons for children receiving inactivated influenza vaccine (IIV) in the Hunter New England Local Health District, New South Wales, Australia. Survey results were reviewed by surveillance staff to detect any safety signals and compare adverse event frequencies among the different influenza vaccines administered. In 2012, 57% (n=113) of the 200 participants responded to the online survey and 61% (290/477) in 2013. Vaxtracker appears to be an effective method for actively monitoring adverse events following influenza vaccination in children. PMID:25077424

  8. Evaluation of enteric-coated tablets as a whole cell inactivated vaccine candidate against Vibrio cholerae.

    PubMed

    Fernández, Sonsire; Año, Gemma; Castaño, Jorge; Pino, Yadira; Uribarri, Evangelina; Riverón, Luis A; Cedré, Bárbara; Valmaseda, Tania; Falero, Gustavo; Pérez, José L; Infante, Juan F; García, Luis G; Solís, Rosa L; Sierra, Gustavo; Talavera, Arturo

    2013-01-01

    A vaccine candidate against cholera was developed in the form of oral tablets to avoid difficulties during application exhibited by current whole cell inactivated cholera vaccines. In this study, enteric-coated tablets were used to improve the protection of the active compound from gastric acidity. Tablets containing heat-killed whole cells of Vibrio cholerae strain C7258 as the active pharmaceutical compound was enteric-coated with the polymer Kollicoat(®) MAE-100P, which protected them efficiently from acidity when a disintegration test was carried out. Enzyme-linked immunosorbent assay (ELISA) anti-lipopolysaccharide (LPS) inhibition test and Western blot assay revealed the presence of V. cholerae antigens as LPS, mannose-sensitive haemagglutinin (MSHA) and outer membrane protein U (Omp U) in enteric-coated tablets. Immunogenicity studies (ELISA and vibriocidal test) carried out by intraduodenal administration in rabbits showed that the coating process of tablets did not affect the immunogenicity of V. cholerae-inactivated cells. In addition, no differences were observed in the immune response elicited by enteric-coated or uncoated tablets, particularly because the animal model and immunization route used did not allow discriminating between acid resistances of both tablets formulations in vivo. Clinical studies with volunteers will be required to elucidate this aspect, but the results suggest the possibility of using enteric-coated tablets as a final pharmaceutical product for a cholera vaccine. PMID:23492079

  9. Safety and effectiveness of the new inactivated hepatitis A virus vaccine.

    PubMed Central

    Furesz, J; Scheifele, D W; Palkonyay, L

    1995-01-01

    PURPOSE: To examine the evidence concerning the safety and effectiveness of the inactivated hepatitis A virus vaccine recently licensed for use in Canada. DATA SOURCES: The main source of information were papers presented at the International Symposium on Active Immunization against Hepatitis A, held in Vienna, Austria, Jan. 27-29, 1992. The bibliographies of these papers were searched for additional references. Recent articles describing the new vaccine and the epidemiologic aspects of infection with hepatitis A virus (HAV) were also reviewed. STUDY SELECTION: Peer-reviewed reports of trials approved by a government regulatory agency on the safety, immunogenic properties and efficacy of the vaccine. DATA EXTRACTION: The authors assembled key reports on adverse reactions, protection from disease and serologic assessment of immune response in vaccine recipients; data from these reports were tabulated and analysed. RESULTS OF DATA SYNTHESIS: The new vaccine contains the HM175 strain of HAV, which is adapted to grow in tissue culture. The virus is purified, inactivated with the use of formaldehyde and adsorbed onto aluminum hydroxide. The recommended dose for adults is 720 enzyme-linked immunosorbent assay (ELISA) units in a 1.0-mL dose and for children 360 ELISA units in a 0.5-mL dose, injected intramuscularly. The usual schedule is three serial doses, the second given 1 month and the third 6 to 12 months after the initial dose. Reported side effects are infrequent and minor. In healthy persons who have received two doses, the seroconversion rate is almost 100%. Protective efficacy after two doses is estimated to be 94%. However, the persistence of protective antibodies has been studied only over the short term (3 years). CONCLUSIONS: The new HAV vaccine is safe, effective and best suited to pre-exposure prophylaxis in people with an increased risk of infection for an extended period, such as travellers to areas where the disease is endemic. Further studies are

  10. A study on the immune response of sheep to foot and mouth disease virus vaccine type 'O' prepared with different inactivants and adjuvants.

    PubMed

    Nair, S P; Sen, A K

    1992-10-01

    Foot and mouth disease virus (FMDV) type 'O' was inactivated either with formaldehyde or binaryethyleneimine (BEI). Vaccines were prepared with inactivated virus incorporating aluminum hydroxide gel or mineral oil as an adjuvant. The antibody response in sheep was monitored by serum neutralization and ELISA test for a period of six months. Significant difference in antibody response was not observed between vaccines inactivated with formaldehyde or BEI. On the other hand significant difference in the antibody response was noticed between alhydrogel and oil vaccines. The high titer of antibodies stimulated by oil adjuvant vaccines persisted longer than those of alhydrogel vaccines within the period of study. PMID:1364024

  11. Peracetic Acid Treatment Generates Potent Inactivated Oral Vaccines from a Broad Range of Culturable Bacterial Species

    PubMed Central

    Moor, Kathrin; Wotzka, Sandra Y.; Toska, Albulena; Diard, Médéric; Hapfelmeier, Siegfried; Slack, Emma

    2016-01-01

    Our mucosal surfaces are the main sites of non-vector-borne pathogen entry, as well as the main interface with our commensal microbiota. We are still only beginning to understand how mucosal adaptive immunity interacts with commensal and pathogenic microbes to influence factors such as infectivity, phenotypic diversity, and within-host evolution. This is in part due to difficulties in generating specific mucosal adaptive immune responses without disrupting the mucosal microbial ecosystem itself. Here, we present a very simple tool to generate inactivated mucosal vaccines from a broad range of culturable bacteria. Oral gavage of 1010 peracetic acid-inactivated bacteria induces high-titer-specific intestinal IgA in the absence of any measurable inflammation or species invasion. As a proof of principle, we demonstrate that this technique is sufficient to provide fully protective immunity in the murine model of invasive non-typhoidal Salmonellosis, even in the face of severe innate immune deficiency. PMID:26904024

  12. Peracetic Acid Treatment Generates Potent Inactivated Oral Vaccines from a Broad Range of Culturable Bacterial Species.

    PubMed

    Moor, Kathrin; Wotzka, Sandra Y; Toska, Albulena; Diard, Médéric; Hapfelmeier, Siegfried; Slack, Emma

    2016-01-01

    Our mucosal surfaces are the main sites of non-vector-borne pathogen entry, as well as the main interface with our commensal microbiota. We are still only beginning to understand how mucosal adaptive immunity interacts with commensal and pathogenic microbes to influence factors such as infectivity, phenotypic diversity, and within-host evolution. This is in part due to difficulties in generating specific mucosal adaptive immune responses without disrupting the mucosal microbial ecosystem itself. Here, we present a very simple tool to generate inactivated mucosal vaccines from a broad range of culturable bacteria. Oral gavage of 10(10) peracetic acid-inactivated bacteria induces high-titer-specific intestinal IgA in the absence of any measurable inflammation or species invasion. As a proof of principle, we demonstrate that this technique is sufficient to provide fully protective immunity in the murine model of invasive non-typhoidal Salmonellosis, even in the face of severe innate immune deficiency. PMID:26904024

  13. Leucine-Rich Glioma Inactivated-1 and Voltage-Gated Potassium Channel Autoimmune Encephalitis Associated with Ischemic Stroke: A Case Report

    PubMed Central

    McGinley, Marisa; Morales-Vidal, Sarkis; Ruland, Sean

    2016-01-01

    Autoimmune encephalitis is associated with a wide variety of antibodies and clinical presentations. Voltage-gated potassium channel (VGKC) antibodies are a cause of autoimmune non-paraneoplastic encephalitis characterized by memory impairment, psychiatric symptoms, and seizures. We present a case of VGKC encephalitis likely preceding an ischemic stroke. Reports of autoimmune encephalitis associated with ischemic stroke are rare. Several hypotheses linking these two disease processes are proposed. PMID:27242653

  14. Levels of humoral antibodies induced by different inactivated vaccines correlate with egg production in commercial layers challenged with virulent Newcastle disease virus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    To evaluate the relationship between humoral antibodies from homologous and heterologous vaccines and egg production, twenty-two week-old commercial layers previously vaccinated with four live B1 vaccines were boosted with two different inactivated Newcastle disease virus (NDV) vaccines, a virulent ...

  15. Further characterization of the immune response in mice to inactivated and live rabies vaccines expressing Ebola virus glycoprotein.

    PubMed

    Papaneri, Amy B; Wirblich, Christoph; Cooper, Kurt; Jahrling, Peter B; Schnell, Matthias J; Blaney, Joseph E

    2012-09-21

    We have previously developed (a) replication-competent, (b) replication-deficient, and (c) chemically inactivated rabies virus (RABV) vaccines expressing Ebola virus (EBOV) glycoprotein (GP) that induce humoral immunity against each virus and confer protection from both lethal RABV and mouse-adapted EBOV challenge in mice. Here, we expand our investigation of the immunogenic properties of these bivalent vaccines in mice. Both live and killed vaccines induced primary EBOV GP-specific T-cells and a robust recall response as measured by interferon-γ ELISPOT assay. In addition to cellular immunity, an effective filovirus vaccine will likely require a multivalent humoral immune response against multiple virus species. As a proof-of-principle experiment, we demonstrated that inactivated RV-GP could be formulated with another inactivated RABV vaccine expressing the nontoxic fragment of botulinum neurotoxin A heavy chain (HC50) without a reduction in immunity to each component. Finally, we demonstrated that humoral immunity to GP could be induced by immunization of mice with inactivated RV-GP in the presence of pre-existing immunity to RABV. The ability of these novel vaccines to induce strong humoral and cellular immunity indicates that they should be further evaluated in additional animal models of infection. PMID:22884661

  16. Further characterization of the immune response in mice to inactivated and live rabies vaccines expressing Ebola virus glycoprotein

    PubMed Central

    Papaneri, Amy B.; Wirblich, Christoph; Cooper, Kurt; Jahrling, Peter B.; Schnell, Matthias J.; Blaney, Joseph E.

    2012-01-01

    We have previously developed (a) replication-competent, (b) replication-deficient, and (c) chemically inactivated rabies virus (RABV) vaccines expressing ebolavirus (EBOV) glycoprotein (GP) that induce humoral immunity against each virus and confer protection from both lethal RABV and mouse-adapted EBOV challenge in mice. Here, we expand our investigation of the immunogenic properties of these bivalent vaccines in mice. Both live and killed vaccines induced primary EBOV GP-specific T-cells and a robust recall response as measured by interferon-γ ELISPOT assay. In addition to cellular immunity, an effective filovirus vaccine will likely require a multivalent humoral immune response against multiple virus species. As a proof-of-principle experiment, we demonstrated that inactivated RV-GP could be formulated with another inactivated RABV vaccine expressing the nontoxic fragment of botulinum neurotoxin A heavy chain (HC50) without a reduction in immunity to each component. Finally, we demonstrated that humoral immunity to GP could be induced by immunization of mice with inactivated RV-GP in the presence of pre-existing immunity to RABV. The ability of these novel vaccines to induce strong humoral and cellular immunity indicates that they should be further evaluated in additional animal models of infection. PMID:22884661

  17. A new recombinant hybrid polypeptide and its immunologic adjuvant activity for inactivated infectious bursal disease vaccine.

    PubMed

    Cai, Mei-hong; Zhu, Feng; Wu, Hao-chen; Shen, Ping-ping

    2014-07-01

    Both bursin (Lys-His-Gly-NH2) and Gagnon's peptides (Lys-Asn-Pro-Tyr) can induce B-cell differentiation. However, it is unclear whether a recombinant hybrid polypeptide consisting of a tandem array of 14 copies of bursin and two copies of Gagnon's peptide can induce the proliferative activity of lymphocytes. Here, this recombinant hybrid polypeptide was expressed in Escherichia coli and purified by SDS-PAGE. Various assays showed that it not only promoted B-lymphocyte proliferation in vitro but also increased the titers of antibodies directed against infectious bursal disease virus fourfold in the sera of chickens vaccinated with the inactivated infectious bursal disease virus vaccine. The recombinant hybrid polypeptide also reduced the pathological lesions in the bursa of Fabricius caused by infectious bursal disease virus BC6/85. Our results show that this recombinant hybrid polypeptide may be a promising immune adjuvant. PMID:24652544

  18. Nanoemulsion W805EC improves immune responses upon intranasal delivery of an inactivated pandemic H1N1 influenza vaccine.

    PubMed

    Das, Subash C; Hatta, Masato; Wilker, Peter R; Myc, Andrzej; Hamouda, Tarek; Neumann, Gabrielle; Baker, James R; Kawaoka, Yoshihiro

    2012-11-01

    Currently available influenza vaccines provide suboptimal protection. In order to improve the quality of protective immune responses elicited following vaccination, we developed an oil-in-water nanoemulsion (NE)-based adjuvant for an intranasally-delivered inactivated influenza vaccine. Using a prime-boost vaccination regimen, we show that intranasal vaccines containing the W(80)5EC NE elicited higher titers of serum hemagglutination inhibiting (HAI) antibody and influenza-specific IgG and IgA titers compared to vaccines that did not contain the NE. Similarly, vaccines containing the W(80)5EC NE resulted in higher influenza-specific IgA levels in the bronchoalveolar lavage (BAL) fluid and nasal wash when compared to vaccines formulated without NE. The higher antibody titers in mice immunized with the NE-containing vaccines correlated with reduced viral loads in the lungs and nasal turbinates following a high dose viral challenge. Mice immunized with vaccines containing the W(80)5EC NE also showed a reduction in body weight loss following challenge compared to mice immunized with equivalent vaccines produced without NE. Taken together, our results show that the W(80)5EC NE substantially improves the magnitude of protective influenza-specific antibody responses and is a promising mucosal adjuvant for influenza vaccines and vaccines against other mucosal pathogens. PMID:22989689

  19. Next Generation Inactivated Polio Vaccine Manufacturing to Support Post Polio-Eradication Biosafety Goals

    PubMed Central

    Thomassen, Yvonne E.; van ’t Oever, Aart G.; van Oijen, Monique G. C. T.; Wijffels, René H.; van der Pol, Leo A.; Bakker, Wilfried A. M.

    2013-01-01

    Worldwide efforts to eradicate polio caused a tipping point in polio vaccination strategies. A switch from the oral polio vaccine, which can cause circulating and virulent vaccine derived polioviruses, to inactivated polio vaccines (IPV) is scheduled. Moreover, a manufacturing process, using attenuated virus strains instead of wild-type polioviruses, is demanded to enhance worldwide production of IPV, especially in low- and middle income countries. Therefore, development of an IPV from attenuated (Sabin) poliovirus strains (sIPV) was pursued. Starting from the current IPV production process based on wild type Salk strains, adaptations, such as lower virus cultivation temperature, were implemented. sIPV was produced at industrial scale followed by formulation of both plain and aluminium adjuvanted sIPV. The final products met the quality criteria, were immunogenic in rats, showed no toxicity in rabbits and could be released for testing in the clinic. Concluding, sIPV was developed to manufacturing scale. The technology can be transferred worldwide to support post polio-eradication biosafety goals. PMID:24349497

  20. [Tick-borne encephalitis (TBE) and TBE-vaccination in Austria: Update 2014].

    PubMed

    Kunze, Ursula; Böhm, Gabriela

    2015-07-01

    TBE is a public health problem well under control in Austria because of a mass vaccination programme. There have been 50-100 registered cases per year for many years, the vaccination rate of the population is currently 85 %. Special attention has to be given to the "older" generation 40 plus as this is the segment of the population where the majority of cases are observed annually. In comparison of the counties, Tyrol and Upper Austria finished first and second after a long time when Styria and Carynthia had observed most of the cases. For TBE applies the same as for Tetanus, namely the principle of disease control or disease elimination: The virus cannot be eliminated and vaccination provides individual protection. The both available TBE vaccines have proven to be very effective with an effectivity of 96-99 %, also when given irregular vaccinations the protection rate is still very high (>90 %). More than 4000 prevented cases between 2000 and 2011 prove this impressively. PMID:26055812

  1. Immunogenicity and tolerability of inactivated flu vaccine in high risk and healthy children.

    PubMed

    Avila Aguero, María Luisa; Soriano-Fallas, Alejandra; Umaña-Sauma, María de los Angeles; Ulloa-Gutierrez, Rolando; Arnoux, Sabine

    2007-01-01

    We conducted this open study to evaluate the immunogenicity and safety of the inactivated influenza vaccine, Imovax Gripe in 154 children between 6 and 36 months of age at high risk of influenza-related complications, and in a reference group of 64 healthy children. The study was conducted over two flu seasons, in which the vaccine contained the same A strains but different B strains. The results for the A/H3N2 and A/H1N1 strains from the two flu seasons were pooled, but those for the B strains were not. Anti-hemagglutinin (HA) antibody titers were determined before, and one month after each vaccination, and safety was evaluated based on diary card reporting any adverse event observed, either included or not in the list of "solicited events". Within each group of vaccines, the seroconversion rates, seroprotection rates, and ratio of post- to prevaccination geometric mean titers (GMTR) for the A/H3N2 and the A/H1N1 strains fulfilled all requirements of the criteria of the European Union Committee for Proprietary Medicinal Products (CPMP). The immune responses in high-risk and in healthy children were similar, and consistent with those observed in previous studies conducted in healthy children. The vaccine was equally well tolerated by all study groups. Reactogenicity was low and similar in both high-risk and healthy children. Overall from 9.5% to 15.4% of at-risk children and 12% of healthy children reported a solicited local reaction; 23.0 to 28.8% of high-risk and 25.3% of healthy children reported a solicited systemic reaction. The study results provide support for vaccination of children at high-risk of influenza related complications. PMID:17891930

  2. [A case of smoldering anti-leucine-rich glioma-inactivated 1 (LGI1) antibody-associated limbic encephalitis with faciobrachial dystonic seizure].

    PubMed

    Nakaoku, Yuriko; Maki, Takakuni; Kanazawa, Kyoko; Matsumoto, Riki; Fukuyama, Hidenao; Takahashi, Ryosuke; Ikeda, Akio

    2013-01-01

    We report a 59-year-old right-handed woman with smoldering leucine-rich glioma-inactivated 1 (LGI1) antibody-associated limbic encephalitis (LE) following faciobrachial dystonic seizures. During 8 months before her admission, she developed partial seizures manifesting very brief and very frequent dystonia in her right hand sometimes with oral automatism and loss of awareness. In addition, she showed psychiatric disturbances such as emotionally labile condition and personality changes. On admission, neuropsychological examination revealed short-term memory impairment. During electroencephalography (EEG) monitoring, ictal EEG showed rhythmic delta waves and interictal EEG showed intermittent irregular slow waves at the bilateral frontotemporal area. Brain MRI demonstrated high T2/FLAIR signal changes in the left amygdala expanding into the left hippocampus. FDG-PET showed hypermetabolism in the left amygdala, hippocampus and the bilateral basal ganglia. Cerebrospinal fluid analysis was unremarkable. There were no signs of malignant tumor detected on systemic examination. LGI1 antibody was positive in the serum and the cerebrospinal fluid and the clinical diagnosis of LGI1 antibody-associated LE was confirmed. Her symptoms and the abnormalities in the brain MRI/FDG-PET showed immediate improvement after anti-epileptic and steroid therapy. PMID:24097318

  3. Influence of adjuvant and antigen dose on protection induced by an inactivated whole vaccine against Neospora caninum infection in mice.

    PubMed

    Rojo-Montejo, Silvia; Collantes-Fernández, Esther; Regidor-Cerrillo, Javier; Rodríguez-Bertos, Antonio; Prenafeta, Antoni; Gomez-Bautista, Mercedes; Ortega-Mora, Luis M

    2011-02-10

    In this study, the protection afforded by a Neospora caninum inactivated vaccine formulated with three different adjuvants (water-in-oil emulsion, aluminum hydroxide with CpG oligodeoxynucleotides and aluminum hydroxide with ginseng extract) and three different parasite doses (10(5), 5 × 10(5) or 10(6) inactivated whole tachyzoites) was evaluated using a mouse model. Mice were immunized subcutaneously twice at three-week intervals with inactivated Nc-Spain 1H tachyzoites and challenged by intraperitoneal inoculation with 10(6) live Nc-1 tachyzoites. The efficacy of the immunization was evaluated in non-pregnant BALB/c mice on days 1 and 5 (acute infection phase) and days 14 and 30 (chronic infection phase) post-challenge. The results showed the ability of water-in-oil emulsion combined with inactivated 5 × 10(5) tachyzoites to induce protection against neosporosis during the chronic stage, limiting parasite multiplication in the brain. Aluminum hydroxide-ginseng extract and inactivated tachyzoites reduced the number of parasites circulating in the blood during acute phase but failed to limit the establishment of chronic infection. On the other hand, a dose-effect was observed in groups vaccinated with aluminum hydroxide-ginseng extract in which the lesion severity increased as the inactivated tachyzoite dose. This study demonstrates that efficacy can significantly vary depending on the adjuvant, the dose of antigen and the phase of N. caninum infection in which the vaccine is tested. PMID:21067865

  4. The compatibility of inactivated-Enterovirus 71 vaccination with Coxsackievirus A16 and Poliovirus immunizations in humans and animals

    PubMed Central

    Mao, Qunying; Wang, Yiping; Shao, Jie; Ying, Zhifang; Gao, Fan; Yao, Xin; Li, Changgui; Ye, Qiang; Xu, Miao; Li, Rongcheng; Zhu, Fengcai; Liang, Zhenglun

    2015-01-01

    Enterovirus 71 (EV71) is the key pathogen for Hand, Foot, and Mouth Disease (HFMD) and can result in severe neurological complications and death among young children. Three inactivated-EV71 vaccines have gone through phase III clinical trials and have demonstrated good safety and efficacy. These vaccines will benefit young children under the threat of severe HFMD. However, the potential immunization-related compatibility for different enterovirus vaccines remains unclear, making it hard to include the EV71 vaccine in Expanded Program on Immunization (EPI). Here, we measured the neutralizing antibodies (NTAbs) against EV71, Coxsackievirus A16 (CA16) and Poliovirus from infants enrolled in those EV71 vaccine clinical trials. The results indicated that the levels of NTAb GMTs for EV71 increased significantly in all 3 vaccine groups (high, middle and low dosages, respectively) post-vaccination. Seroconversion ratios and Geometric mean fold increase were significantly higher in the vaccine groups (≥7/9 and 8.9~228.1) than in the placebo group (≤1/10 and 0.8~1.7, P < 0.05). But no similar NTAb response trends were found in CA16 and 3 types of Poliovirus. The decrease of 3 types of Poliovirus NTAb GMTs and an increase of CA16 GMTs post-EV71-vaccination were found in vaccine and placebo groups. Further animal study on CA16 and poliovirus vaccine co-immunization or pre-immunization with EV71 vaccine in mice indicated that there was no NTAb cross-activity between EV71 and CA16/Poliovirus. Our research showed that inactivated-EV71 vaccine has good specific-neutralizing capacity and can be included in EPI. PMID:25715318

  5. Induction of Heterosubtypic Cross-Protection against Influenza by a Whole Inactivated Virus Vaccine: The Role of Viral Membrane Fusion Activity

    PubMed Central

    Budimir, Natalija; Huckriede, Anke; Meijerhof, Tjarko; Boon, Louis; Gostick, Emma; Price, David A.; Wilschut, Jan; de Haan, Aalzen

    2012-01-01

    Background The inability of seasonal influenza vaccines to effectively protect against infection with antigenically drifted viruses or newly emerging pandemic viruses underlines the need for development of cross-reactive influenza vaccines that induce immunity against a variety of virus subtypes. Therefore, potential cross-protective vaccines, e.g., whole inactivated virus (WIV) vaccine, that can target conserved internal antigens such as the nucleoprotein (NP) and/or matrix protein (M1) need to be explored. Methodology/Principal Findings In the current study we show that a WIV vaccine, through induction of cross-protective cytotoxic T lymphocytes (CTLs), protects mice from heterosubtypic infection. This protection was abrogated after depletion of CD8+ cells in vaccinated mice, indicating that CTLs were the primary mediators of protection. Previously, we have shown that different procedures used for virus inactivation influence optimal activation of CTLs by WIV, most likely by affecting the membrane fusion properties of the virus. Specifically, inactivation with formalin (FA) severely compromises fusion activity of the virus, while inactivation with β-propiolactone (BPL) preserves fusion activity. Here, we demonstrate that vaccination of mice with BPL-inactivated H5N1 WIV vaccine induces solid protection from lethal heterosubtypic H1N1 challenge. By contrast, vaccination with FA-inactivated WIV, while preventing death after lethal challenge, failed to protect against development of disease and severe body weight loss. Vaccination with BPL-inactivated WIV, compared to FA-inactivated WIV, induced higher levels of specific CD8+ T cells in blood, spleen and lungs, and a higher production of granzyme B in the lungs upon H1N1 virus challenge. Conclusion/Significance The results underline the potential use of WIV as a cross-protective influenza vaccine candidate. However, careful choice of the virus inactivation procedure is important to retain membrane fusion activity

  6. [Antigenic activity and the reactogenicity of UV ray-inactivated antirabies vaccine from the brain of sheep].

    PubMed

    Morogova, V M; Latypova, R G; Gil'dina, S S; Pospeeva, N A; Pogrebniak, E M

    1979-06-01

    Tests in volunteers showed that the reactogenicity of rabies vaccine prepared from sheep brain and inactivated with ultraviolet rays was not greater than the reactogenicity of Fermi vaccine. At the same time it was found to have a higher activity when injected both in the form of 5% suspension (in full and decreased doses) and with brain tissue content as low as 2.5%. PMID:380240

  7. The potential adjuvanticity of quaternized chitosan hydrogel based microparticles for porcine reproductive and respiratory syndrome virus inactivated vaccine.

    PubMed

    Wang, Yue-Qi; Liu, Yan; Wang, Yu-Xia; Wu, Ya-Jun; Jia, Pei-Yuan; Shan, Jun-Jie; Wu, Jie; Ma, Guang-Hui; Su, Zhi-Guo

    2016-10-01

    Infectious diseases possess a big threat to the livestock industry worldwide. Currently, inactivated veterinary vaccines have attracted much attention to prevent infection due to their safer profile compared to live attenuated vaccine. However, its intrinsic poor immunogenicity demands the incorporation of an adjuvant. Mineral oil based adjuvant (Montanide™ ISA206) was usually used to potentiate the efficacy of veterinary vaccines. However, ISA206 could not induce robust cellular immune responses, which was very important in controlling virus replication and clearing the infected cells. Moreover, mineral oil would result in severe side effects. To improve both the humoral and cellular immune responses of porcine reproductive and respiratory syndrome virus (PRRSV) inactivated vaccine, we developed pH-sensitive and size-controllable quaternized chitosan hydrogel microparticles (Gel MPs) without using chemical cross linking agent. Gel MPs, ionic cross-linked with glycerophosphate (GP), were biocompatible and could efficiently adsorb the inactivated PRRSV vaccine with a loading capacity of 579.05μg/mg. After intramuscular immunization in mice, results suggested that Gel MPs elicited significantly higher cell-mediated immune responses and comparable humoral immune responses compared to ISA 206. Regarding the biocompatibility, safety and effectiveness, Gel MPs would be a promising candidate to enhance the efficacy of veterinary vaccine. PMID:27449471

  8. Immunogenicity and Safety of an Inactivated Trivalent Split Influenza Virus Vaccine in Young Children with Recurrent Wheezing

    PubMed Central

    Bae, E. Young; Choi, Ui Yoon; Kwon, Hyo Jin; Jeong, Dae Chul; Rhim, Jung Woo; Ma, Sang Hyuk; Lee, Kyung Il

    2013-01-01

    Influenza virus vaccination is recommended for children, but so far, active vaccination has not been achieved because most parents lack knowledge of vaccine safety and many doctors are reluctant to administer vaccine due to concerns that steroids might alter immunogenicity. The aim of this study was to compare the immunogenicity and safety of inactivated trivalent split influenza virus vaccine between children with recurrent wheezing and healthy children of the same age group. Sixty-eight healthy children and 62 children with recurrent wheezing took part in this study. Seroconversion rates, seroprotection rates, geometric mean titers (GMTs), and geometric mean titer ratios (GMTRs) were measured by a hemagglutination inhibition assay for the assessment of immunogenicity. Solicited and unsolicited local and systemic adverse events were measured for the assessment of safety. Regarding immunogenicity, the seroconversion and seroprotection rates showed no difference overall between healthy children and children with recurrent wheezing. Also, no difference was observed between steroid-treated and nontreated groups with recurrent wheezing. Generally, the GMTs after vaccination were higher in the one-dose vaccination groups for healthy children and children with recurrent wheezing, but the GMTRs revealed different results according to strain in the two groups. Regarding safety, solicited local and systemic adverse events showed no differences between healthy children and children with recurrent wheezing. This study demonstrates that inactivated split influenza virus vaccine is able to induce protective immune responses in healthy children, as observed in previous studies, as well as in children with recurrent wheezing who require frequent steroid treatment. PMID:23536692

  9. Immunopotentiators Improve the Efficacy of Oil-Emulsion-Inactivated Avian Influenza Vaccine in Chickens, Ducks and Geese

    PubMed Central

    Zhang, Xuehua; Feng, Lei; Dong, Bin; Chu, Xuan; Liu, Xiufan; Peng, Daxin; Liu, Yuan; Ma, Huailiang; Hou, Jibo; Tang, Yinghua

    2016-01-01

    Combination of CVCVA5 adjuvant and commercial avian influenza (AI) vaccine has been previously demonstrated to provide good protection against different AI viruses in chickens. In this study, we further investigated the protective immunity of CVCVA5-adjuvanted oil-emulsion inactivated AI vaccine in chickens, ducks and geese. Compared to the commercial H5 inactivated vaccine, the H5-CVCVA5 vaccine induced significantly higher titers of hemaglutinin inhibitory antibodies in three lines of broiler chickens and ducks, elongated the antibody persistence periods in geese, elevated the levels of cross serum neutralization antibody against different clade and subclade H5 AI viruses in chicken embryos. High levels of mucosal antibody were detected in chickens injected with the H5 or H9-CVCA5 vaccine. Furthermore, cellular immune response was markedly improved in terms of increasing the serum levels of cytokine interferon-γ and interleukine 4, promoting proliferation of splenocytes and upregulating cytotoxicity activity in both H5- and H9-CVCVA5 vaccinated chickens. Together, these results provide evidence that AI vaccines supplemented with CVCVA5 adjuvant is a promising approach for overcoming the limitation of vaccine strain specificity of protection. PMID:27232188

  10. Immunogenicity and safety of a trivalent inactivated 2010-2011 influenza vaccine in Taiwan infants aged 6-12 months.

    PubMed

    Hwang, Kao-Pin; Hsu, Yu-Lung; Hsieh, Tsung-Hsueh; Lin, Hsiao-Chuan; Yen, Ting-Yu; Wei, Hsiu-Mei; Lin, Hung-Chih; Chen, An-Chyi; Chow, Julie Chi; Huang, Li-Min

    2014-05-01

    This prospective study aimed to investigate the immune responses and safety of an influenza vaccine in vaccine-naïve infants aged 6-12 months, and was conducted from November 2010 to May 2011. Fifty-nine infants aged 6-12 months received two doses of trivalent inactivated influenza vaccine 4 weeks apart. Hemagglutination inhibition titers were measured 4 weeks after the two doses of study vaccine. Based on the assumption that a hemagglutination inhibition titer of 1:40 or greater against the antigen would be protective in adults, two doses of the study vaccine generated a protective immune response of 63.2% against influenza A(H1N1), 82.5% against influenza A(H3N2) and 38.6% against influenza B viruses in infants aged 6-12 months. The geometric mean fold rises against influenza type A and B viruses also met the European Medicines Agency criteria for flu vaccines. The solicited events within 7 days after vaccination were mild in intensity. No deaths or adverse events such as optic neuritis, cranial neuropathy, and brachial neuropathy or Guillain-Barre syndrome were reported. Two doses of inactivated influenza vaccine were well tolerated and induced a protective immune response against influenza in infants aged 6-12 months. PMID:24625341

  11. Immunopotentiators Improve the Efficacy of Oil-Emulsion-Inactivated Avian Influenza Vaccine in Chickens, Ducks and Geese.

    PubMed

    Lu, Jihu; Wu, Peipei; Zhang, Xuehua; Feng, Lei; Dong, Bin; Chu, Xuan; Liu, Xiufan; Peng, Daxin; Liu, Yuan; Ma, Huailiang; Hou, Jibo; Tang, Yinghua

    2016-01-01

    Combination of CVCVA5 adjuvant and commercial avian influenza (AI) vaccine has been previously demonstrated to provide good protection against different AI viruses in chickens. In this study, we further investigated the protective immunity of CVCVA5-adjuvanted oil-emulsion inactivated AI vaccine in chickens, ducks and geese. Compared to the commercial H5 inactivated vaccine, the H5-CVCVA5 vaccine induced significantly higher titers of hemaglutinin inhibitory antibodies in three lines of broiler chickens and ducks, elongated the antibody persistence periods in geese, elevated the levels of cross serum neutralization antibody against different clade and subclade H5 AI viruses in chicken embryos. High levels of mucosal antibody were detected in chickens injected with the H5 or H9-CVCA5 vaccine. Furthermore, cellular immune response was markedly improved in terms of increasing the serum levels of cytokine interferon-γ and interleukine 4, promoting proliferation of splenocytes and upregulating cytotoxicity activity in both H5- and H9-CVCVA5 vaccinated chickens. Together, these results provide evidence that AI vaccines supplemented with CVCVA5 adjuvant is a promising approach for overcoming the limitation of vaccine strain specificity of protection. PMID:27232188

  12. Japanese encephalitis.

    PubMed

    Morita, K; Nabeshima, T; Buerano, C C

    2015-08-01

    Japanese encephalitis (JE) is an inflammation of the central nervous system in humans and animals, specifically horses and cattle. The disease, which can sometimes be fatal, is caused by the flavivirus Japanese encephalitis virus (JEV), of which there are five genotypes (genotypes 1, 2, 3, 4 and 5). The transmission cycle of the virus involves pigs and wild birds as virus amplifiers and mosquitoes as vectors for transferring the virus between amplifying hosts and to dead- end hosts, i.e. humans, horses and cattle. In horses and cattle the disease is usually asymptomatic, but when clinical signs do occur they include fever, decreased appetite, frothing at the mouth, rigidity of the legs and recumbency, and neurological signs, such as convulsive fits, circling, marked depression and disordered consciousness. In pigs, it can cause abortion and stillbirths. At present, the virus is detected in a wide area covering eastern and southern Asia, Indonesia, northern Australia, Papua New Guinea and Pakistan. JEV RNA has also been detected in Italy, first in dead birds in 1997 and 2000 and then in mosquitoes in 2010. Genotype shift, i.e. a change of genotype from genotype 3 to genotype 1, has occurred in some countries, namely Japan, South Korea, Chinese Taipei and Vietnam. Laboratory methods are available for confirming the causative agent of the disease. There are control measures to prevent or minimise infection and, among them, vaccination is one of the most important and one which should be adopted in endemic and epidemic areas. PMID:26601447

  13. Isatis indigotica root polysaccharides as adjuvants for an inactivated rabies virus vaccine.

    PubMed

    Zhang, Weijiao; Zheng, Xuexing; Cheng, Nan; Gai, Weiwei; Xue, Xianghong; Wang, Yuxia; Gao, Yuwei; Shan, Junjie; Yang, Songtao; Xia, Xianzhu

    2016-06-01

    Adjuvants can enhance vaccine immunogenicity and induce long-term enhancement of immune responses. Thus, adjuvants are important for vaccine research. Polysaccharides isolated from select Chinese herbs have been demonstrated to possess various beneficial functions and excellent adjuvant abilities. In the present study, the polysaccharides IIP-A-1 and IIP-2 were isolated from Isatis indigotica root and compared with the common vaccine adjuvant aluminum hydroxide via intramuscular co-administration of inactivated rabies virus rCVS-11-G into mice. Blood was collected to determine virus neutralizing antibody (VNA) titers and B and T lymphocyte activation status. Inguinal lymph node samples were collected and used to measure B lymphocyte proliferation. Splenocytes were isolated, from which antigen-specific cellular immune responses were detected via ELISpot, ELISA and intracellular cytokine staining. The results revealed that both types of polysaccharides induce more rapid changes and higher VNA titers than aluminum hydroxide. Flow cytometry assays revealed that the polysaccharides activated more B lymphocytes in the lymph nodes and more B and T lymphocytes in the blood than aluminum hydroxide. Antigen-specific cellular immune responses showed that IIP-2 strongly induced T lymphocyte proliferation in the spleen and high levels of cytokine secretion from splenocytes, whereas aluminum hydroxide induced proliferation in only a small number of lymphocytes and the secretion of only small quantities of cytokines. Collectively, these data suggest that the polysaccharide IIP-2 exhibits excellent adjuvant activity and can enhance both cellular and humoral immunity. PMID:26875535

  14. New Strains Intended for the Production of Inactivated Polio Vaccine at Low-Containment After Eradication

    PubMed Central

    Knowlson, Sarah; Burlison, John; Giles, Elaine; Fox, Helen; Macadam, Andrew J.; Minor, Philip D.

    2015-01-01

    Poliomyelitis has nearly been eradicated through the efforts of the World Health Organization’s Global Eradication Initiative raising questions on containment of the virus after it has been eliminated in the wild. Most manufacture of inactivated polio vaccines currently requires the growth of large amounts of highly virulent poliovirus, and release from a production facility after eradication could be disastrous; WHO have therefore recommended the use of the attenuated Sabin strains for production as a safer option although it is recognised that they can revert to a transmissible paralytic form. We have exploited the understanding of the molecular virology of the Sabin vaccine strains to design viruses that are extremely genetically stable and hyperattenuated. The viruses are based on the type 3 Sabin vaccine strain and have been genetically modified in domain V of the 5’ non-coding region by changing base pairs to produce a cassette into which capsid regions of other serotypes have been introduced. The viruses give satisfactory yields of antigenically and immunogenically correct viruses in culture, are without measurable neurovirulence and fail to infect non-human primates under conditions where the Sabin strains will do so. PMID:26720150

  15. Tick-borne encephalitis.

    PubMed

    Gritsun, T S; Lashkevich, V A; Gould, E A

    2003-01-01

    Tick-borne encephalitis (TBE) is one of the most dangerous human infections occurring in Europe and many parts of Asia. The etiological agent Tick-borne encephalitis virus (TBEV), is a member of the virus genus Flavivirus, of the family Flaviviridae. TBEV is believed to cause at least 11,000 human cases of encephalitis in Russia and about 3000 cases in the rest of Europe annually. Related viruses within the same group, Louping ill virus (LIV), Langat virus (LGTV) and Powassan virus (POWV), also cause human encephalitis but rarely on an epidemic scale. Three other viruses within the same group, Omsk hemorrhagic fever virus (OHFV), Kyasanur Forest disease virus (KFDV) and Alkhurma virus (ALKV), are closely related to the TBEV complex viruses and tend to cause fatal hemorrhagic fevers rather than encephalitis. This review describes the clinical manifestations associated with TBEV infections, the main molecular-biological properties of these viruses, and the different factors that define the incidence and severity of disease. The role of ticks and their local hosts in the emergence of new virus variants with different pathogenic characteristics is also discussed. This review also contains a brief history of vaccination against TBE including trials with live attenuated vaccine and modern tendencies in developing of vaccine virus strains. PMID:12615309

  16. Thermostabilization of inactivated polio vaccine in PLGA-based microspheres for pulsatile release.

    PubMed

    Tzeng, Stephany Y; Guarecuco, Rohiverth; McHugh, Kevin J; Rose, Sviatlana; Rosenberg, Evan M; Zeng, Yingying; Langer, Robert; Jaklenec, Ana

    2016-07-10

    Vaccines are a critical clinical tool in preventing illness and death due to infectious diseases and are regularly administered to children and adults across the globe. In order to obtain full protection from many vaccines, an individual needs to receive multiple doses over the course of months. However, vaccine administration in developing countries is limited by the difficulty in consistently delivering a second or third dose, and some vaccines, including the inactivated polio vaccine (IPV), must be injected more than once for efficacy. In addition, IPV does not remain stable over time at elevated temperatures, such as those it would encounter over time in the body if it were to be injected as a single-administration vaccine. In this manuscript, we describe microspheres composed of poly(lactic-co-glycolic acid) (PLGA) that can encapsulate IPV along with stabilizing excipients and release immunogenic IPV over the course of several weeks. Additionally, pH-sensitive, cationic dopants such as Eudragit E polymer caused clinically relevant amounts of stable IPV release upon degradation of the PLGA matrix. Specifically, IPV was released in two separate bursts, mimicking the delivery of two boluses approximately one month apart. In one of our top formulations, 1.4, 1.1, and 1.2 doses of the IPV serotype 1, 2, and 3, respectively, were released within the first few days from 50mg of particles. During the delayed, second burst, 0.5, 0.8, and 0.6 doses of each serotype, respectively, were released; thus, 50mg of these particles released approximately two clinical doses spaced a month apart. Immunization of rats with the leading microsphere formulation showed more robust and long-lasting humoral immune response compared to a single bolus injection and was statistically non-inferior from two bolus injections spaced 1 month apart. By minimizing the number of administrations of a vaccine, such as IPV, this technology can serve as a tool to aid in the eradication of polio and

  17. Development of a small animal peripheral challenge model of Japanese encephalitis virus using interferon deficient AG129 mice and the SA14-14-2 vaccine virus strain.

    PubMed

    Calvert, Amanda E; Dixon, Kandice L; Delorey, Mark J; Blair, Carol D; Roehrig, John T

    2014-01-01

    Japanese encephalitis virus (JEV) is the most common cause of viral encephalitis in Asia, and it is increasingly a global public health concern due to its recent geographic expansion. While commercial vaccines are available and used in some endemic countries, JEV continues to be a public health problem, with 50,000 cases reported annually. Research with virulent JEV in mouse models to develop new methods of prevention and treatment is restricted to BSL-3 containment facilities, confining these studies to investigators with access to these facilities. We have developed an adult small animal peripheral challenge model using interferon-deficient AG129 mice and the JEV live-attenuated vaccine SA14-14-2, thus requiring only BSL-2 containment. A low dose of virus (10PFU/0.1ml) induced 100% morbidity in infected mice. Increased body temperatures measured by implantable temperature transponders correlated with an increase in infectious virus and viral RNA in serum, spleen and brain as well as an increase in pro-inflammatory markers measured by a 58-biomarker multi-analyte profile (MAP) constructed during the course of infection. In the future, the MAP measurements can be used as a baseline for comparison in order to better assess the inhibition of disease progression by other prophylactic and therapeutic agents. The use of the AG129/JEV SA14-14-2 animal model makes vaccine and therapeutic studies feasible for laboratories with limited biocontainment facilities. PMID:24252694

  18. A step forward in the quality control testing of inactivated rabies vaccines - extensive evaluation of European vaccines by using alternative methods to the in vivo potency tests.

    PubMed

    Servat, Alexandre; Kempff, Sébastien; Brogat, Valère; Litaize, Estelle; Schereffer, Jean-Luc; Cliquet, Florence

    2015-03-01

    The mouse challenge test still remains the reference method for the potency determination of human and animal inactivated rabies vaccines, and it is still widely used throughout the world. This test suffers from many disadvantages - it is expensive and time consuming, uses a large number of mice, causes significant animal distress, and suffers from high variability. Recently, the European Pharmacopoeia has recognised the use of a serological potency assay (SPA) as an alternative method to the challenge test. This new test is based on the determination of rabies neutralising antibody titres in vaccinated mice, by using the modified Rapid Fluorescent Focus Inhibition Test (mRFFIT). With the objective of adopting this new method for the batch release of inactivated rabies vaccines, we evaluated its performance on a large collection of rabies vaccines currently assessed in our laboratory. The Fluorescent Antibody Virus Neutralisation test (FAVNt) was used in parallel with the mRFFIT, and the results were compared to the mouse challenge test. Our results demonstrate that the SPA is capable of estimating the potency of vaccines formulated with a potency margin well above the minimum of 1IU/dose. For low potency vaccines, this new method demonstrated some limitations, due to the recurrent invalidation of the assay. We have also demonstrated the superior sensitivity of the FAVNt when compared to the mRFFIT, and the importance of minimising the risk of detecting non-responders in vaccinated mice. PMID:25802995

  19. Extrapolating theoretical efficacy of inactivated influenza A/H5N1 virus vaccine from human immunogenicity studies.

    PubMed

    Feldstein, Leora R; Matrajt, Laura; Elizabeth Halloran, M; Keitel, Wendy A; Longini, Ira M

    2016-07-19

    Influenza A virus subtype H5N1 has been a public health concern for almost 20years due to its potential ability to become transmissible among humans. Phase I and II clinical trials have assessed safety, reactogenicity and immunogenicity of inactivated influenza A/H5N1 virus vaccines. A shortage of vaccine is likely to occur during the first months of a pandemic. Hence, determining whether to give one dose to more people or two doses to fewer people to best protect the population is essential. We use hemagglutination-inhibition antibody titers as an immune correlate for avian influenza vaccines. Using an established relationship to obtain a theoretical vaccine efficacy from immunogenicity data from thirteen arms of six phase I and phase II clinical trials of inactivated influenza A/H5N1 virus vaccines, we assessed: (1) the proportion of theoretical vaccine efficacy achieved after a single dose (defined as primary response level), and (2) whether theoretical efficacy increases after a second dose, with and without adjuvant. Participants receiving vaccine with AS03 adjuvant had higher primary response levels (range: 0.48-0.57) compared to participants receiving vaccine with MF59 adjuvant (range: 0.32-0.47), with no observed trends in primary response levels by antigen dosage. After the first and second doses, vaccine with AS03 at dosage levels 3.75, 7.5 and 15mcg had the highest estimated theoretical vaccine efficacy: Dose (1) 45% (95% CI: 36-57%), 53% (95% CI: 42-63%) and 55% (95% CI: 44-64%), respectively and Dose (2) 93% (95% CI: 89-96%), 97% (95% CI: 95-98%) and 97% (95% CI: 96-100%), respectively. On average, the estimated theoretical vaccine efficacy of lower dose adjuvanted vaccines (AS03 and MF59) was 17% higher than that of higher dose unadjuvanted vaccines, suggesting that including an adjuvant is dose-sparing. These data indicate adjuvanted inactivated influenza A/H5N1 virus vaccine produces high theoretical efficacy after two doses to protect individuals

  20. Production in Vero cells of an inactivated rabies vaccine from strain FRV/K for animal and human use.

    PubMed

    el-Karamany, R M

    1987-08-01

    A new concentrated and purified rabies vaccine was produced in Vero cells. Two rabies virus strains, the fixed rabies virus Pasteur (FRV) and Pittman Moore (PM) were adapted to Vero cells by 20 cycles of alternating passages in the brain of weaning mice. Intracerebral (i.c.) inoculation of weaning mice was followed then by 17 and 20 serial passages in Vero cells of RFV and PM strains, respectively. The adapted strains designated as FRV/K and PM/K gave titres of 10(6) +/- 1.5 log (LD50/ml for i.c. inoculated mice) in several harvests taken from one infected cell culture. Pooled harvests were concentrated 20-fold by ultrafiltration and were tested as animal vaccine after inactivation with beta-propiolactone (BPL). Another vaccine preparation destined for human use, in addition to concentration and inactivation, was also purified by gel filtration. Control tests revealed that the antigenic content of different strain FRV/K harvests was very high in comparison with that of strain PM/K and the reference tissue culture vaccine (RIV, Netherland). In sheep the antibody response induced by the FRV/K strain was very high; serum neutralizing index (NI) higher than 4 was reached 40 days after the second vaccine dose, whereas the vaccine preparation from strain PM/K gave NI of 2.3 and the reference vaccine NI of 3.8, respectively. Safety tests in rabbits and guinea pigs showed neither pyrogenicity nor toxicity. PMID:2892381

  1. Co-adjuvant effects of plant polysaccharide and propolis on chickens inoculated with Bordetella avium inactivated vaccine.

    PubMed

    Yang, Ya; Wei, Kai; Yang, Shifa; Li, Bing; Zhang, Yongbing; Zhu, Fujie; Wang, Di; Chi, Shanshan; Jiang, Xiaodong; Zhu, Ruiliang

    2015-01-01

    Taishan Pinus massoniana pollen polysaccharide (TPPPS), propolis (PP) and aloe polysaccharide (AP), used as adjuvants, have been proven to possess immunity-enhancing functions. However, their collaborative immunomodulatory effects are largely unknown. To determine which combination can induce the best effects, the three adjuvants were separately or conjointly added into Bordetella avium inactivated vaccines to investigate their co-adjuvant effects on vaccinated chickens. We found that, among all six adjuvant-treated vaccine inoculated groups (TPPPS, PP, AP, TPPPS-PP, PP-AP and TPPPS-AP), the chickens inoculated with TPPPS, PP or TPPPS-PP adjuvant vaccines showed significantly higher levels of antibody titre, cytokine, lymphocyte transformation and peripheral blood T-lymphocyte count than those of non-adjuvant vaccine inoculated groups (P < 0.05), indicating the good immune-enhancing effects of TPPPS and PP. The TPPPS-PP group showed the highest levels of antibody titres and interleukin-2 (IL-2) at 14-28 days post the first inoculation (dpi), lymphocyte transformation rates (LTRs) at 14-35 dpi, CD4(+) T-lymphocyte counts at 14-42 dpi, and CD8(+) T-lymphocyte counts at 28 dpi. The results revealed that B. avium inactivated vaccine used conjointly with TPPPS and PP induced the strongest humoral and cellular immune responses. Thus, there was a synergistic effect between TPPPS and PP on enhancing immunity, which suggests that they can be used as a novel adjuvant formulation for the development of poultry vaccines. PMID:25989924

  2. Influenza: the virus and prophylaxis with inactivated influenza vaccine in “at risk” groups, including COPD patients

    PubMed Central

    Hovden, Arnt-Ove; Cox, Rebecca Jane; Haaheim, Lars Reinhardt

    2007-01-01

    Influenza is a major respiratory pathogen, which exerts a huge human and economic toll on society. Influenza is a vaccine preventable disease, however, the vaccine strains must be annually updated due to the continuous antigenic changes in the virus. Inactivated influenza vaccines have been used for over 50 years and have an excellent safety record. Annual vaccination is therefore recommended for all individuals with serious medical conditions, like COPD, and protects the vaccinee against influenza illness and also against hospitalization and death. In COPD patients, influenza infection can lead to exacerbations resulting in reduced quality of life, hospitalization and death in the most severe cases. Although there is only limited literature on the use of influenza vaccination solely in COPD patients, there is clearly enough evidence to recommend annual vaccination in this group. This review will focus on influenza virus and prophylaxis with inactivated influenza vaccines in COPD patients and other “at risk” groups to reduce morbidity, save lives, and reduce health care costs. PMID:18229561

  3. Mucosal vaccination with formalin-inactivated avian metapneumovirus Subtype C reduces clinical signs of disease but enhances local pathology of turkeys following challenge

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Studies were performed to determine if mucosal vaccination with inactivated avian metapneumovirus (aMPV) subtype C protected turkey poults from clinical disease and virus replication following mucosal challenge. Although decreases in clinical disease were observed in vaccinated groups, the vaccine...

  4. Divergent immune responses and disease outcomes in piglets immunized with inactivated and attenuated H3N2 swine influenza vaccines in the presence of maternally-derived antibodies

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Vaccine-associated enhanced respiratory disease (VAERD) can occur in pigs immunized with whole-inactivated influenza virus (WIV) vaccine and subsequently infected with an antigenically divergent virus of the same HA subtype. Live-attenuated influenza virus (LAIV) vaccines administered intranasally h...

  5. Divergent immune responses and disease outcomes in piglets immunized with inactivated and attenuated H3N2 swine influenza vaccines in the presence of maternally-derived antibodies

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Vaccine-associated enhanced respiratory disease (VAERD) can occur in pigs given whole-inactivated virus (WIV) influenza vaccine upon infection with an antigenically divergent virus. VAERD was first characterized with H1 viruses, and later described in pigs vaccinated with H3N2 WIV and challenged wit...

  6. Protection of trivalent inactivated influenza vaccine against hospitalizations among pandemic influenza A (H1N1) cases in Argentina.

    PubMed

    Orellano, P W; Reynoso, J I; Carlino, O; Uez, O

    2010-07-19

    The aim of this study was to estimate the effectiveness of 2009 seasonal trivalent inactivated vaccine in reducing hospitalizations due to the novel influenza A H1N1 virus among positive cases. Data collected from Argentina's national epidemiological surveillance system were analyzed. All patients had a clinical diagnosis and underwent positive serological tests for pandemic influenza A H1N1. Logistic regression was used to estimate vaccine effectiveness to prevent severe cases of the disease, measured as hospitalizations. The adjusted effectiveness of the vaccine was 50% (95% CI: 40-59%). Vaccination was significantly associated with hospitalizations in all age groups, and within groups that had and had not received antiviral treatment. These results suggest that seasonal influenza vaccine might have conferred partial protection against severe cases due to the novel pandemic influenza. PMID:20541580

  7. Evaluation of Immune Response Against Inactivated Avian Influenza (H9N2) Vaccine, by Using Chitosan Nanoparticles

    PubMed Central

    Khalili, Iraj; Ghadimipour, Rahim; Sadigh Eteghad, Saeed; Fathi Najafi, Mohsen; Ebrahimi, Mohammad Majid; Godsian, Naser; Sefidi Heris, Yousef; Khalili, Mohammad Taghi

    2015-01-01

    Background: Influenza A is a virus that affects a wide range of animals and also human beings. Avian influenza virus (AIV) subtype H9N2 has the potential to create influenza pandemic and vaccination is a common solution for this problem. The vaccine, used for rapid intervention, should be safe to use and highly effective, after a single administration. Chitosan nanoparticles (CNP) have already been recommended as a new adjuvant for inactivated AIV H9N2 vaccine immunization. Objectives: This study aimed at the evaluation and better understanding of optimum concentration of CNP preparations and also, assessment of loading capacity of AIV into CNP, as an adjuvant in specific pathogen-free (SPF) chickens. Materials and Methods: For measurement of vaccine-antibody response, different types of CNP were injected intramuscularly, in a single dose, to 21-day-old specific pathogen-free chickens. Chickens were monitored for the efficacy of the nanoparticles and, also, their immune response, during a follow up of 7 weeks, by using hemagglutination-inhibition (HI) test. The CNP were prepared according to modified ionic gelation method and inactivated antigen was loaded in four hemagglutinin units (HAU) concentrations. Loading capacity of nanoparticles was determined by hemagglutination (HA) method. Inactivated A/H9N2 AIV was mixed with chitosan of low molecular weight. Results: The CNP did not cause any mortality or side effects, when chickens were administered the prepared vaccine. The results strongly showed that this novel vaccine significantly enhances the immunogenicity of inactivated AIV, comparing with ISA70 (SEPPIC, Puteaux, France) adjuvant that is used routinely in the Razi Serum and Vaccine Research and Production Institute, Karaj, Iran, to reduce ISA70’s side effects. Conclusions: The AIV loaded into CNP vaccines induce appropriate antibody titers, after a single immunization, while requiring a low dose of antigen. The CNP also represent an interesting new

  8. Rabies vaccination: comparison of neutralizing antibody responses after priming and boosting with different combinations of DNA, inactivated virus, or recombinant vaccinia virus vaccines.

    PubMed

    Lodmell, D L; Ewalt, L C

    2000-05-01

    Long-term levels of neutralizing antibody were evaluated in mice after a single immunization with experimental DNA or recombinant vaccinia virus (RVV) vaccines encoding the rabies virus glycoprotein (G), or the commercially available inactivated virus human diploid cell vaccine (HDCV). Anamnestic antibody titers were also evaluated after two booster immunizations with vaccines that were identical to or different from the priming vaccine. Five hundred and forty days (1.5 year) after a single immunization with any of the three vaccines, neutralizing antibody titers remained greater than the minimal acceptable human level of antibody titer (0.5 International Units (IU)/ml). In addition, either an HDCV or DNA booster elicited early and elevated anamnestic antibody responses in mice that had been primed with any of the three vaccines. In contrast, RVV boosters failed to elevate titers in mice that had been previously primed with RVV, and elicited slowly rising titers in mice that had been primed with either DNA or HDCV. Thus, a single vaccination with any of the three different vaccines elicited long-term levels of neutralizing antibody that exceeded 0.5 IU/ml. In contrast, different prime-booster vaccine combinations elicited anamnestic neutralizing antibody responses that increased quickly, increased slowly or failed to increase. PMID:10738096

  9. The adjuvanticity of ophiopogon polysaccharide liposome against an inactivated porcine parvovirus vaccine in mice.

    PubMed

    Fan, Yunpeng; Ma, Xia; Hou, Weifeng; Guo, Chao; Zhang, Jing; Zhang, Weimin; Ma, Lin; Song, Xiaoping

    2016-01-01

    In this study, the adjuvant activity of ophiopogon polysaccharide liposome (OPL) was investigated. The effects of OPL on the splenic lymphocyte proliferation of mice were measured in vitro. The results showed that OPL could significantly promote lymphocyte proliferation singly or synergistically with PHA and LPS and that the effect was better than ophiopogon polysaccharide (OP) at most of concentrations. The adjuvant activities of OPL, OP and mineral oil were compared in BALB/c mice inoculated with inactivated PPV in vivo. The results showed that OPL could significantly enhance lymphocyte proliferation, increase the proportion of CD4(+) and CD8(+) T cells, improve the HI antibody titre and specific IgG response, and promote the production of cytokines, and the efficacy of OPL was significantly better than that of OP. In addition, OPL significantly improved the cellular immune response compared with oil adjuvant. These results suggested that OPL possess superior adjuvanticity and that a medium dose had the best efficacy. Therefore, OPL can be used as an effective immune adjuvant for an inactivated PPV vaccine. PMID:26529188

  10. Characterization of genetically inactivated pertussis toxin mutants: candidates for a new vaccine against whooping cough.

    PubMed Central

    Nencioni, L; Pizza, M; Bugnoli, M; De Magistris, T; Di Tommaso, A; Giovannoni, F; Manetti, R; Marsili, I; Matteucci, G; Nucci, D

    1990-01-01

    the introduction of two amino acid substitutions within the enzymatically active subunit S1 of pertussis toxin (PT) abolishes its ADP-ribosyltransferase activity and toxicity on CHO cells (Pizza et al., Science 246:497-500, 1989). These genetically inactivated molecules are also devoid of other in vivo adverse reactions typical of PT, such as induction of leukocytosis, potentiation of anaphylaxis, stimulation of insulin secretion, and histamine sensitivity. However, the mutant PT molecules are indistinguishable from wild-type PT in sodium dodecyl sulfate-polyacrylamide gel electrophoresis and maintain all the physical and chemical properties of PT, including affinity for toxin-neutralizing poly- and monoclonal antibodies. Either alone or stabilized with formaldehyde, PT mutants are able to induce high levels of neutralizing antibodies and to protect mice in a dose-dependent fashion against intracerebral challenge with virulent B. pertussis. These results clearly show that these genetically inactivated PT molecules are nontoxic but still immunogenic and justify their development as a component of a new, safer acellular vaccine against whooping cough. Images PMID:2323818

  11. The immunogenicity and protection effect of the BPL-inactivated CA16 vaccine in different animal systems

    PubMed Central

    Qi An, Wen; Guo Su, Zhi; Wen Pan, Ruo; Ping Yang, Bao; Chao Zhang, Yong; Shi, Liang; Li, Qing

    2014-01-01

    We evaluated the effect of a β-propiolactone (BPL)-inactivated coxsackievirus A16 (CA16) vaccine, using three immunogenicity evaluation and two animal challenge systems. A CA16 virus strain, named 419, was used as the production strain. Another CA16 strain, named 1131, was isolated and used as the challenge strain in intracerebral inoculation of neonatal mice for the calculation of median lethal dose (LD50). In the passive and maternal antibody-protection challenge systems, all results indicated that the vaccine could protect mouse pups from lethal challenge with the CA16 virus. In the immunogenicity systems, three types of animal (mouse, rat, and cynomolgus monkey), were immunized with the 419/CA16 vaccine. The dose–effect relationship and the antibody-generation routine were described. The CA16 vaccine induced a more potent serum antibody effect in rat than in mouse. The serum antibody titer was detectable more than 63 days after the initial vaccination. We also identified tools to evaluate the effect of the BPL-inactivated CA16 vaccine. PMID:24401488

  12. Comparison of serum hemagglutinin and neuraminidase inhibition antibodies after 2010-2011 trivalent inactivated influenza vaccination in healthcare personnel.

    PubMed

    Laguio-Vila, Maryrose R; Thompson, Mark G; Reynolds, Sue; Spencer, Sarah M; Gaglani, Manjusha; Naleway, Allison; Ball, Sarah; Bozeman, Sam; Baker, Steven; Martínez-Sobrido, Luis; Levine, Min; Katz, Jackie; Fry, Alicia M; Treanor, John J

    2015-01-01

    Background.  Most inactivated influenza vaccines contain purified and standardized hemagglutinin (HA) and residual neuraminidase (NA) antigens. Vaccine-associated HA antibody responses (hemagglutination inhibition [HAI]) are well described, but less is known about the immune response to the NA. Methods.  Serum of 1349 healthcare personnel (HCP) electing or declining the 2010-2011 trivalent-inactivated influenza vaccine ([IIV3], containing A/California/7/2009 p(H1N1), A/Perth/16/2009 [H3N2], B/Brisbane/60/2008 strains) were tested for NA-inhibiting (NAI) antibody by a modified lectin-based assay using pseudotyped N1 and N2 influenza A viruses with an irrelevant (H5) HA. Neuraminidase-inhibiting and HAI antibody titers were evaluated approximately 30 days after vaccination and end-of-season for those with polymerase chain reaction (PCR)-confirmed influenza infection. Results.  In 916 HCP (68%) receiving IIV3, a 2-fold increase in N1 and N2 NAI antibody occurred in 63.7% and 47.3%, respectively. Smaller responses occurred in HCP age >50 years and those without prior 2009-2010 IIV3 nor monovalent A(H1N1)pdm09 influenza vaccinations. Forty-four PCR-confirmed influenza infections were observed, primarily affecting those with lower pre-exposure HAI and NAI antibodies. Higher pre-NAI titers correlated with shorter duration of illness for A(H1N1)pdm09 virus infections. Conclusions.  Trivalent-inactivated influenza vaccine is modestly immunogenic for N1 and N2 antigens in HCP. Vaccines eliciting robust NA immune responses may improve efficacy and reduce influenza-associated morbidity. PMID:25884004

  13. IRES-driven Expression of the Capsid Protein of the Venezuelan Equine Encephalitis Virus TC-83 Vaccine Strain Increases Its Attenuation and Safety

    PubMed Central

    Guerbois, Mathilde; Volkova, Eugenia; Forrester, Naomi L.; Rossi, Shannan L.; Frolov, Ilya; Weaver, Scott C.

    2013-01-01

    The live-attenuated TC-83 strain is the only licensed veterinary vaccine available to protect equids against Venezuelan equine encephalitis virus (VEEV) and to protect humans indirectly by preventing equine amplification. However, TC-83 is reactogenic due to its reliance on only two attenuating point mutations and has infected mosquitoes following equine vaccination. To increase its stability and safety, a recombinant TC-83 was previously engineered by placing the expression of the viral structural proteins under the control of the Internal Ribosome Entry Site (IRES) of encephalomyocarditis virus (EMCV), which drives translation inefficiently in insect cells. However, this vaccine candidate was poorly immunogenic. Here we describe a second generation of the recombinant TC-83 in which the subgenomic promoter is maintained and only the capsid protein gene is translated from the IRES. This VEEV/IRES/C vaccine candidate did not infect mosquitoes, was stable in its attenuation phenotype after serial murine passages, and was more attenuated in newborn mice but still as protective as TC-83 against VEEV challenge. Thus, by using the IRES to modulate TC-83 capsid protein expression, we generated a vaccine candidate that combines efficient immunogenicity and efficacy with lower virulence and a reduced potential for spread in nature. PMID:23675542

  14. Inactivated pep27 mutant as an effective mucosal vaccine against a secondary lethal pneumococcal challenge in mice

    PubMed Central

    Choi, Sang-Yoon; Tran, Thao Dang-Hien; Briles, David E.

    2013-01-01

    Purpose A pep27 mutant may be able to elicit mucosal immunity against pneumococcal diseases, and could be employed as an inexpensive attenuated vaccine. However, this particular mutant contains an erythromycin-resistance marker. The purpose of the current study is to develop a markerless pep27 mutant and assess whether this inactivated mutant is able to induce mucosal immunity. Materials and Methods Mice were vaccinated intranasally with the inactivated markerless pep27 mutant every 2 weeks for a total of three times, after which time serum samples were analyzed for antibody titers. The mice were then challenged with a lethal D39 strain and their survival time was measured. The cross-reactivity of the antisera against pep27 was also compared to other mutant serotypes. Results Intranasal immunization of mice with the inactivated markerless pep27 mutant provides effective protection and rapidly cleared bacterial colonization in vivo. Moreover, antisera raised against the pep27 mutant may cross-react with several other serotype strains. Conclusion Intranasal immunization with the inactivated pep27 mutant may be able to provide mucosal immunity, and could represent an efficient mucosal vaccine. PMID:23596592

  15. Evaluation of Extracellular Subviral Particles of Dengue Virus Type 2 and Japanese Encephalitis Virus Produced by Spodoptera frugiperda Cells for Use as Vaccine and Diagnostic Antigens ▿

    PubMed Central

    Kuwahara, Miwa; Konishi, Eiji

    2010-01-01

    New or improved vaccines against dengue virus types 1 to 4 (DENV1 to DENV4) and Japanese encephalitis virus (JEV), the causative agents of dengue fever and Japanese encephalitis (JE), respectively, are urgently required. The use of noninfectious subviral extracellular particles (EPs) is an inexpensive and safe strategy for the production of protein-based flavivirus vaccines. Although coexpression of premembrane (prM) and envelope (E) proteins has been demonstrated to produce EPs in mammalian cells, low yields have hindered their commercial application. Therefore, we used an insect cell expression system with Spodoptera frugiperda-derived Sf9 cells to investigate high-level production of DENV2 and JEV EPs. Sf9 cells transfected with the prM and E genes of DENV2 or JEV secreted corresponding viral antigens in a particulate form that were biochemically and biophysically equivalent to the authentic antigens obtained from infected C6/36 mosquito cells. Additionally, equivalent neutralizing antibody titers were induced in mice immunized either with EPs produced by transfected Sf9 cells or with EPs produced by transfected mammalian cells, in the context of coimmunization with a DNA vaccine that expresses EPs. Furthermore, the results of an enzyme-linked immunosorbent assay (ELISA) using an EP antigen derived from Sf9 cells correlated significantly with the results obtained by a neutralization test and an ELISA using an EP antigen derived from mammalian cells. Finally, Sf9 cells could produce 10- to 100-fold larger amounts of E antigen than mammalian cells. These results indicate the potential of Sf9 cells for high-level production of flavivirus protein vaccines and diagnostic antigens. PMID:20668137

  16. Efficacy of a formalin-inactivated vaccine against Streptococcus iniae infection in the farmed grouper Epinephelus coioides by intraperitoneal immunization.

    PubMed

    Huang, Hsing-Yen; Chen, Yan-Chun; Wang, Pei-Chi; Tsai, Ming-An; Yeh, Shih-Chun; Liang, Hong-Jen; Chen, Shih-Chu

    2014-12-01

    Vaccination is the most effective means of preventing infectious diseases; however, few vaccines are effective against Streptococcus iniae (S. iniae) in grouper. This work presents an efficacious and safe vaccine against S. iniae infections in the grouper Epinephelus coioides. The vaccine candidate was the S. iniae GSI-310 strain. The vaccination was administered by intraperitoneal injection, and consisted of formalin-inactivated antigens combined with an AS-F or ISA763A adjuvant. Peripheral blood samples were collected for RT-qPCR and phagocytosis and agglutination assays. Our results indicated that immunoglobulin M (igm) was maximally expressed in the two vaccinated groups at 3 months post-secondary vaccination (PSV). A significant upregulation of mRNA expression for interleukin-1β (il-1β) and tumor necrosis factor-α (tnf-α) was also observed in fish treated with antigens combined with ISA763A, which peaked at 3 months PSV. In fish treated with antigens combined with AS-F, il-1β and tnf-α expression peaked at 14 days post-primary vaccination (PPV). Phagocytic activity and index increased significantly in the two vaccinated groups. Furthermore, fish in the two vaccinated groups exhibited significantly elevated agglutination titers compared to fish in the control group, in which almost no agglutination reaction was detected. In the efficacy test, the vaccinated and control groupers were treated with S. iniae at 1, 3, and 6 months PSV. The relative percentage survival (RPS) values of antigens with AS-F and antigens with ISA763A were both 100% at 1 and 3 months PSV; at 6 months PSV, the RPS values for these groups were 100% and 97.7%, respectively. Furthermore, the level of protection observed in the field trial closely resembled that achieved on a laboratory scale. Therefore, the proposed vaccine mixed with AS-F or ISA763A improved immune responses and provided safe and long-lasting protection in farmed groupers. PMID:25192808

  17. Failure of an inactivated vaccine against porcine reproductive and respiratory syndrome to protect gilts against a heterologous challenge with PRRSV.

    PubMed

    Scortti, M; Prieto, C; Alvarez, E; Simarro, I; Castro, J M

    2007-12-15

    This study was designed to evaluate the efficacy of an inactivated vaccine based on a European-type strain of porcine reproductive and respiratory syndrome virus (PRRSV) against the reproductive form of the syndrome in breeding gilts, and any congenital disease in their piglets. Five gilts were vaccinated twice, following the manufacturer's instructions, before they were inseminated. Nine additional gilts remained unvaccinated and served as positive (five gilts) and negative (four gilts) controls. A European wild-type strain genetically divergent from the vaccine strain was used to challenge the five vaccinated and five unvaccinated positive control gilts at 90 days' gestation. The vaccination of the five seronegative gilts did not produce any clinical signs or adverse reactions. However, the vaccine failed to prevent the clinical signs associated with PRRSV infection, viraemia after the challenge and transplacental infection of their piglets. The reproductive performance of the vaccinated gilts was similar to that of the unvaccinated positive controls, and there were no statistically significant differences in most of the parameters tested. However, the preweaning mortality of the piglets born to the vaccinated gilts was significantly lower than that of the piglets born to the positive control gilts. PMID:18083979

  18. Evaluation of protective efficacy of a novel inactivated Salmonella Pullorum ghost vaccine against virulent challenge in chickens.

    PubMed

    Guo, Rongxian; Geng, Shizhong; Jiao, Hongmei; Pan, Zhiming; Chen, Xiang; Jiao, Xinan

    2016-05-01

    Salmonella Gallinarum biovar Pullorum is the causative agent of pullorum disease in poultry, an acute systemic disease that results in a high mortality rate in young chickens. Vaccines have been considered in many developing countries where levels of infection are high and eradication is not a realistic option. An attenuated strain combined with protein E-mediated cell lysis was used to generate a safety enhanced Salmonella Pullorum ghost vaccine. Immune responses and protection induced by ghost vaccine in chickens were investigated following a prime-boost immunization administered via intramuscular and oral routes. Chickens from vaccinated groups showed significant increases in antigen-specific IgG, especially after booster immunization. Lymphocyte proliferation responses were also significantly increased in all immunized groups at 2-weeks post-final vaccination. The Salmonella Pullorum ghost vaccine provided satisfactory protection against virulent Salmonella Pullorum infection, as shown by the robust stimulation of both humoral and cell-mediated immune responses as well as the reduction in the number of bacterial recovered post-challenge. Moreover, the immune effects and survival rates indicated intramuscular injection is more efficient than oral vaccination. In conclusion, our results suggest that Salmonella Pullorum ghosts may be used as a safe and effective novel inactivated vaccine candidate to protect against virulent Salmonella Pullorum infection. PMID:27090623

  19. Reactogenicity and immunogenicity of an inactivated influenza vaccine administered by intramuscular or subcutaneous injection in elderly adults.

    PubMed

    Cook, Ian F; Barr, Ian; Hartel, Gunter; Pond, Dimity; Hampson, Alan W

    2006-03-20

    In many countries there is no clear recommendation regarding the preferred route of administration of inactivated influenza vaccines. In a randomised, observer blind study of 720 elderly subjects, a split, trivalent influenza vaccine was significantly more immunogenic for both A strains (H3N2 and H1N1, p = 0.0016 and 0.003, respectively) when given intramuscularly compared to subcutaneously. This difference was due entirely to a gender effect, with females in the intramuscular (IM) group having a significantly greater serological response than females in the subcutaneous (SC) group for both of these strains. Similar results were seen with local adverse effects. These data suggest that vaccination practices that ensure intramuscular injection are required for optimal administration of influenza vaccines in the elderly. PMID:16406171

  20. Effect of a phase I Coxiella burnetii inactivated vaccine on body temperature and milk yield in dairy cows.

    PubMed

    Schulze, L S-Ch; Borchardt, S; Ouellet, V; Heuwieser, W

    2016-01-01

    Q fever is a zoonotic disease caused by Coxiella burnetii. The pathogen is prevalent in ruminants (goats, sheep, cows), which are the main sources of human infection. In the cattle industry around the world, animal (15 to 20%) and herd (38 to 72%) level prevalences of C. burnetii are high. Vaccination of ruminants against Q fever is considered important to prevent spreading of the disease and risk of infection in humans. However, published information on side effects of the Q fever vaccination under field conditions is limited for cows. The objective of this study was to investigate the effect of the phase I C. burnetii inactivated vaccine Coxevac on body temperature and milk yield in dairy cows. In 2 experiments, a total of 508 cows were randomly divided into 2 groups to determine the effect of first vaccination on body temperature and milk yield. The C. burnetii serostatus of all cows was tested before vaccination with an indirect ELISA. The first experiment took place in the teaching and research barn of the Clinic of Animal Reproduction at the Freie Universität Berlin. Temperature was measured vaginally in 10 cows in a crossover design. The second experiment was conducted on a commercial dairy farm. Milk yield of 498 cows was measured 1 wk before and 1 wk after vaccination. In a subset of 41 cows, temperature was measured rectally. In both experiments, body temperature increased significantly after vaccination (1.0 ± 0.9°C and 0.7 ± 0.8°C). A significant difference was also found in body temperature between vaccinated and control cows. Thirty percent of the vaccinated animals in experiment 1 showed reversible swelling at the injection site as a reaction to the vaccination. The results indicate that vaccination against Q fever causes a transient increase of body temperature that peaks in the first 12 to 24h and declines after that. In experiment 2, vaccinated cows (26.8 ± 0.39 kg/d) produced significantly less milk than did control cows (28.2 ± 0.44 kg

  1. The rapid fluorescent focus inhibition test is a suitable method for batch potency testing of inactivated rabies vaccines.

    PubMed

    Krämer, B; Schildger, H; Behrensdorf-Nicol, H A; Hanschmann, K M; Duchow, K

    2009-04-01

    The European Pharmacopoeia proposes two methods for potency determination of inactivated rabies vaccines for veterinary use: The first one is a classical mouse challenge test, which is imprecise, time-consuming, and causes severe distress to the test animals. Alternatively, the potency may be determined serologically by measuring the neutralizing antibody titers induced after vaccination of mice by using a rapid fluorescent focus inhibition test (RFFIT). Although this method is faster and less painful for the animals, it is not widely used yet, and only little data exist concerning the comparability of both methods. We have therefore performed a comparative study, in which we demonstrated a good correlation between the challenge test results and the mean titers determined by RFFIT. Furthermore, all vaccine batches failing the challenge test were also recognized as insufficient in the serological assay. This publication further describes the influence of different vaccine administration routes on the resulting antibody titers, and it proposes various modifications to the serological assay protocol which could improve its overall practicability. Finally, we recommend that the serological assay be used for the potency testing of inactivated rabies vaccines. PMID:19181541

  2. Immunogenicity and Safety of an Inactivated Quadrivalent Influenza Vaccine Candidate: A Phase III Randomized Controlled Trial in Children

    PubMed Central

    Langley, Joanne M.; Carmona Martinez, Alfonso; Chatterjee, Archana; Halperin, Scott A.; McNeil, Shelly; Reisinger, Keith S.; Aggarwal, Naresh; Huang, Li-Min; Peng, Ching-Tien; Garcia-Sicilia, José; Salamanca de la Cueva, Ignacio; Cabañas, Fernando; Treviño-Garza, Consuelo; Rodríguez-Weber, Miguel Angel; de la O, Manuel; Chandrasekaran, Vijayalakshmi; Dewé, Walthère; Liu, Aixue; Innis, Bruce L.; Jain, Varsha K.

    2013-01-01

    Background. Mismatch between circulating influenza B viruses (Yamagata and Victoria lineages) and vaccine strains occurs frequently. Methods. In a randomized controlled trial, immunogenicity and safety of an inactivated quadrivalent influenza vaccine candidate (QIV) versus trivalent inactivated influenza vaccine (TIV)-Victoria(Vic) and TIV-Yamagata(Yam) in children 3–17 years of age was evaluated. In an open-label study arm, QIV only was assessed in children 6–35 months of age. Results. A total of 3094 children (932 QIV, 929 TIV-Vic, 932 TIV-Yam, and 301 QIV only) were vaccinated. QIV was noninferior to the TIVs for shared strains (A/H3N2 and A/H1N1) based on hemagglutination-inhibition (HI) antibodies 28 days after last vaccination, and superior for the unique B strains Victoria and Yamagata (geometric mean titer ratios 2.61, 3.78; seroconversion rate differences 33.96%, 44.63%). Among children in the randomized trial, adverse event rates were similar except for injection site pain (dose 1: 65.4% QIV, 54.6% TIV-Vic, 55.7% TIV-Yam). Conclusion. QIV elicited superior HI responses to the added B strains compared to TIV controls, potentially improving its effectiveness against influenza B. HI responses were similar between QIV and TIV controls for the shared strains. QIV had an acceptable safety profile relative to TIVs. Clinical Trials Registration. NCT01198756. PMID:23847058

  3. Protective efficacy of a high-growth reassortant swine H3N2 inactivated vaccine constructed by reverse genetic manipulation.

    PubMed

    Wen, Feng; Ma, Ji-Hong; Yu, Hai; Yang, Fu-Ru; Huang, Meng; Zhou, Yan-Jun; Li, Ze-Jun; Tong, Guang-Zhi

    2014-01-01

    Novel reassortant H3N2 swine influenza viruses (SwIV) with the matrix gene from the 2009 H1N1 pandemic virus have been isolated in many countries as well as during outbreaks in multiple states in the United States, indicating that H3N2 SwIV might be a potential threat to public health. Since southern China is the world's largest producer of pigs, efficient vaccines should be developed to prevent pigs from acquiring H3N2 subtype SwIV infections, and thus limit the possibility of SwIV infection at agricultural fairs. In this study, a high-growth reassortant virus (GD/PR8) was generated by plasmid-based reverse genetics and tested as a candidate inactivated vaccine. The protective efficacy of this vaccine was evaluated in mice by challenging them with another H3N2 SwIV isolate [A/Swine/Heilongjiang/1/05 (H3N2) (HLJ/05)]. Prime and booster inoculation with GD/PR8 vaccine yielded high-titer serum hemagglutination inhibiting antibodies and IgG antibodies. Complete protection of mice against H3N2 SwIV was observed, with significantly reduced lung lesion and viral loads in vaccine-inoculated mice relative to mock-vaccinated controls. These results suggest that the GD/PR8 vaccine may serve as a promising candidate for rapid intervention of H3N2 SwIV outbreaks in China. PMID:24675833

  4. Inactivated poliovirus type 2 vaccine delivered to rat skin via high density microprojection array elicits potent neutralising antibody responses.

    PubMed

    Muller, David A; Pearson, Frances E; Fernando, Germain J P; Agyei-Yeboah, Christiana; Owens, Nick S; Corrie, Simon R; Crichton, Michael L; Wei, Jonathan C J; Weldon, William C; Oberste, M Steven; Young, Paul R; Kendall, Mark A F

    2016-01-01

    Polio eradication is progressing rapidly, and the live attenuated Sabin strains in the oral poliovirus vaccine (OPV) are being removed sequentially, starting with type 2 in April 2016. For risk mitigation, countries are introducing inactivated poliovirus vaccine (IPV) into routine vaccination programs. After April 2016, monovalent type 2 OPV will be available for type 2 outbreak control. Because the current IPV is not suitable for house-to-house vaccination campaigns (the intramuscular injections require health professionals), we developed a high-density microprojection array, the Nanopatch, delivered monovalent type 2 IPV (IPV2) vaccine to the skin. To assess the immunogenicity of the Nanopatch, we performed a dose-matched study in rats, comparing the immunogenicity of IPV2 delivered by intramuscular injection or Nanopatch immunisation. A single dose of 0.2 D-antigen units of IPV2 elicited protective levels of poliovirus antibodies in 100% of animals. However, animals receiving IPV2 by IM required at least 3 immunisations to reach the same neutralising antibody titres. This level of dose reduction (1/40th of a full dose) is unprecedented for poliovirus vaccine delivery. The ease of administration coupled with the dose reduction observed in this study points to the Nanopatch as a potential tool for facilitating inexpensive IPV for mass vaccination campaigns. PMID:26911254

  5. Characterization of the Immune Response Induced by a Commercially Available Inactivated Bluetongue Virus Serotype 1 Vaccine in Sheep

    PubMed Central

    Pérez de Diego, Ana Cristina; Sánchez-Cordón, Pedro José; de las Heras, Ana Isabel; Sánchez-Vizcaíno, José Manuel

    2012-01-01

    The protective immune response generated by a commercial monovalent inactivated vaccine against bluetongue virus serotype 1 (BTV1) was studied. Five sheep were vaccinated, boost-vaccinated, and then challenged against BTV1 ALG/2006. RT-PCR did not detect viremia at any time during the experiment. Except a temperature increase observed after the initial and boost vaccinations, no clinical signs or lesions were observed. A specific and protective antibody response checked by ELISA was induced after vaccination and boost vaccination. This specific antibody response was associated with a significant increase in B lymphocytes confirmed by flow cytometry, while significant increases were not observed in T lymphocyte subpopulations (CD4+, CD8+, and WC1+), CD25+ regulatory cells, or CD14+ monocytes. After challenge with BTV1, the antibody response was much higher than during the boost vaccination period, and it was associated with a significant increase in B lymphocytes, CD14+ monocytes, CD25+ regulatory cells, and CD8+ cytotoxic T lymphocytes. PMID:22619592

  6. A multi-dose serological assay suitable to quantify the potency of inactivated rabies vaccines for veterinary use.

    PubMed

    Krämer, Beate; Kamphuis, Elisabeth; Hanschmann, Kay-Martin; Milne, Catherine; Daas, Arnold; Duchow, Karin

    2013-11-01

    The mouse vaccination-challenge test, which is the most widely used method for determining the potency of inactivated rabies vaccines, is imprecise, time-consuming, and causes severe distress to the test animals. An alternative single-dose serological method has been implemented in the European Pharmacopoeia Monograph 0451 to replace the mouse challenge test for batch release. This single-dose limit method provides semi-quantitative results, but is not suitable for quantifying potency. We have now extended this serological method to a multi-dose format which allows a quantification of vaccine potency. In studies including all rabies vaccine strains relevant for Europe, we found dose-dependency for all vaccines and standard preparations. We have demonstrated that the multi-dose serological approach provides reliable quantitative potency results and is more precise than the mouse vaccination-challenge test. We have shown that adjuvanted vaccines can be calibrated against non-adjuvanted material, and that reference material can be calibrated against the International Standard. The method is therefore capable of assigning potency with the additional advantage of requiring fewer animals and reducing distress. Once the applicability of the method has been further verified in a collaborative study, it can complement the single-dose assay and eventually eliminate the need for the mouse challenge test. PMID:24144483

  7. Inactivated poliovirus type 2 vaccine delivered to rat skin via high density microprojection array elicits potent neutralising antibody responses

    PubMed Central

    Muller, David A.; Pearson, Frances E.; Fernando, Germain J.P.; Agyei-Yeboah, Christiana; Owens, Nick S.; Corrie, Simon R.; Crichton, Michael L.; Wei, Jonathan C.J.; Weldon, William C.; Oberste, M. Steven; Young, Paul R.; Kendall, Mark A. F.

    2016-01-01

    Polio eradication is progressing rapidly, and the live attenuated Sabin strains in the oral poliovirus vaccine (OPV) are being removed sequentially, starting with type 2 in April 2016. For risk mitigation, countries are introducing inactivated poliovirus vaccine (IPV) into routine vaccination programs. After April 2016, monovalent type 2 OPV will be available for type 2 outbreak control. Because the current IPV is not suitable for house-to-house vaccination campaigns (the intramuscular injections require health professionals), we developed a high-density microprojection array, the Nanopatch, delivered monovalent type 2 IPV (IPV2) vaccine to the skin. To assess the immunogenicity of the Nanopatch, we performed a dose-matched study in rats, comparing the immunogenicity of IPV2 delivered by intramuscular injection or Nanopatch immunisation. A single dose of 0.2 D-antigen units of IPV2 elicited protective levels of poliovirus antibodies in 100% of animals. However, animals receiving IPV2 by IM required at least 3 immunisations to reach the same neutralising antibody titres. This level of dose reduction (1/40th of a full dose) is unprecedented for poliovirus vaccine delivery. The ease of administration coupled with the dose reduction observed in this study points to the Nanopatch as a potential tool for facilitating inexpensive IPV for mass vaccination campaigns. PMID:26911254

  8. Protection of horses from West Nile virus Lineage 2 challenge following immunization with a whole, inactivated WNV lineage 1 vaccine.

    PubMed

    Bowen, Richard A; Bosco-Lauth, Angela; Syvrud, Kevin; Thomas, Anne; Meinert, Todd R; Ludlow, Deborah R; Cook, Corey; Salt, Jeremy; Ons, Ellen

    2014-09-22

    Over the last years West Nile virus (WNV) lineage 2 has spread from the African to the European continent. This study was conducted to demonstrate efficacy of an inactivated, lineage 1-based, WNV vaccine (Equip WNV) against intrathecal challenge of horses with a recent isolate of lineage 2 WNV. Twenty horses, sero-negative for WNV, were enrolled and were randomly allocated to one of two treatment groups: an unvaccinated control group (T01, n=10) and a group administered with Equip WNV (T02, n=10). Horses were vaccinated at Day 0 and 21 and were challenged at day 42 with WNV lineage 2, Nea Santa/Greece/2010. Personnel performing clinical observations were blinded to treatment allocation. Sixty percent of the controls had to be euthanized after challenge compared to none of the vaccinates. A significantly lower percentage of the vaccinated animals showed clinical disease (two different clinical observations present on the same day) on six different days of study and the percentage of days with clinical disease was significantly lower in the vaccinated group. A total of 80% of the non-vaccinated horses showed viremia while only one vaccinated animal was positive by virus isolation on a single occasion. Vaccinated animals started to develop antibodies against WNV lineage 2 from day 14 (2 weeks after the first vaccination) and at day 42 (the time of onset of immunity) they had all developed a strong antibody response. Histopathology scores for all unvaccinated animals ranged from mild to very severe in each of the tissues examined (cervical spinal cord, medulla and pons), whereas in vaccinated horses 8 of 10 animals had no lesions and 2 had minimal lesions in one tissue. In conclusion, Equip WNV significantly reduced the number of viremic horses, the duration and severity of clinical signs of disease and mortality following challenge with lineage 2 WNV. PMID:25131745

  9. Clinical evaluation for batch consistency of an inactivated enterovirus 71 vaccine in a large-scale phase 3 clinical trial

    PubMed Central

    Chen, Yi-Juan; Meng, Fan-Yue; Mao, Qunying; Li, Jing-Xin; Wang, Hua; Liang, Zheng-Lun; Zhang, Yun-Tao; Gao, Fan; Chen, Qing-Hua; Hu, Yuemei; Ge, Zi-Jun; Yao, Xin; Guo, Hui-Jie; Zhu, Feng-Cai; Li, Xiu-Ling

    2014-01-01

    The demonstration of batch-to-batch consistency to confirm the reliability of the manufacturing process has become a mandatory step in vaccine development. This is a post-hoc analysis aimed to provide more solid evidence on the immunogenicity and consistency of 3 consecutive batches of a novel inactivated enterovirus 71 (EV71) vaccine. In total 10 245 healthy Chinese children aged 6–35 months had been recruited and randomized to receive one of 3 batches of EV71 vaccine or placebo according to a two-dose immunization schedule in a phase 3 clinical trial. Blood samples were taken just before and 28 days after vaccinations for serological tests of EV71 neutralizing antibody (NTAb) titer from the subjects. Among them, 7263 (70.9%) subjects with seronegative EV71 NTAb at baseline and the data of serological tests post-vaccination available were included for the analysis. The results showed that EV71 vaccine elicited high geometric mean titers (GMTs) of 407.0 U/mL (95% CI, 373.5–443.6) for batch 1, 468.1 U/mL (95% CI, 432.2–507.0) for batch 2, and 520.6 U/mL (95% CI, 481.2–563.3) for batch 3. The two-sided 95% confidence intervals (CIs) for the GMT ratios between each pair of vaccine batches were all within an interval of [0.67, 1.5]. Subjects who received EV71 vaccines demonstrated significant higher GMTs than those received placebos did (P < 0.001). In terms of incidence of both local and general adverse reactions, no differences were found among 3 vaccine batches and placebos. EV71 vaccine was highly immunogenic in children, and the 3 consecutive batches were well consistent. PMID:24633366

  10. Efficacy of an inactivated FeLV vaccine compared to a recombinant FeLV vaccine in minimum age cats following virulent FeLV challenge.

    PubMed

    Stuke, Kristin; King, Vickie; Southwick, Kendra; Stoeva, Mira I; Thomas, Anne; Winkler, M Teresa C

    2014-05-01

    The aim of the study was to determine the efficacy of an inactivated feline leukemia virus (FeLV) vaccine (Versifel(®) FeLV, Zoetis.) compared to a recombinant FeLV vaccine (Purevax(®) FeLV, Merial Animal Health) in young cats, exposed under laboratory conditions to a highly virulent challenge model. The study was designed to be consistent with the general immunogenicity requirements of the European Pharmacopoeia 6.0 Monograph 01/2008:1321-Feline Leukaemia Vaccine (Inactivated) with the exception that commercial-strength vaccines were assessed. Fifty seronegative cats (8-9 weeks old) were vaccinated subcutaneously on two occasions, three weeks apart, with either placebo (treatment group T01), Versifel FeLV Vaccine (treatment group T02), or Purevax FeLV Vaccine (treatment group T03) according to the manufacturer's directions. Cats were challenged three weeks after the second vaccination with a virulent FeLV isolate (61E strain). Persistent FeLV antigenemia was determined from 3 to 15 weeks postchallenge. Bone marrow samples were tested for the presence of FeLV proviral DNA to determine FeLV latent infection. At week 15 after challenge with the virulent FeLV 61E strain, the Versifel FeLV Vaccine conferred 89.5% protection against FeLV persistent antigenemia and 94.7% protection against FeLV proviral DNA integration in bone marrow cells. In comparison, the Purevax FeLV Vaccine conferred 20% protection against FeLV persistent antigenemia and 35% protection against FeLV proviral DNA integration in bone marrow cells following challenge. The data from this study show that the Versifel FeLV Vaccine was efficacious in preventing both FeLV persistent p27 antigenemia and FeLV proviral DNA integration in bone marrow cells of cats challenged with this particular challenge model under laboratory conditions and provided better protection than Purevax FeLV in this experimental challenge model with highly virulent FeLV. PMID:24662705

  11. Characterization of Immune Responses to an Inactivated Avian Influenza Virus Vaccine Adjuvanted with Nanoparticles Containing CpG ODN.

    PubMed

    Singh, Shirene M; Alkie, Tamiru N; Abdelaziz, Khaled Taha; Hodgins, Douglas C; Novy, Anastasia; Nagy, Éva; Sharif, Shayan

    2016-06-01

    Avian influenza virus (AIV), a mucosal pathogen, gains entry into host chickens through respiratory and gastrointestinal routes. Most commercial AIV vaccines for poultry consist of inactivated, whole virus with adjuvant, delivered by parenteral administration. Recent advances in vaccine development have led to the application of nanoparticle emulsion delivery systems, such as poly (d,l-lactic-co-glycolic acid) (PLGA) nanoparticles to enhance antigen-specific immune responses. In chickens, the Toll-like receptor 21 ligand, CpG oligodeoxynucleotides (ODNs), have been demonstrated to be immunostimulatory. The objective of this study was to compare the adjuvant potential of CpG ODN 2007 encapsulated in PLGA nanoparticles with nonencapsulated CpG ODN 2007 when combined with a formalin-inactivated H9N2 virus, through intramuscular and aerosol delivery routes. Chickens were vaccinated at days 7 and 21 posthatch for the intramuscular route and at days 7, 21, and 35 for the aerosol route. Antibody-mediated responses were evaluated weekly in sera and lacrimal secretions in specific pathogen-free chickens. The results indicate that nonencapsulated CpG ODN 2007 in inactivated AIV vaccines administered by the intramuscular route generated higher antibody responses compared to the encapsulated CpG ODN 2007 formulation by the same route. Additionally, encapsulated CpG ODN 2007 in AIV vaccines administered by the aerosol route elicited higher mucosal responses compared to nonencapsulated CpG ODN 2007. Future studies may be aimed at evaluating protective immune responses induced with PLGA encapsulation of AIV and adjuvants. PMID:27077969

  12. Standardization of an enzyme immunoassay for the in vitro potency assay of inactivated tissue culture rabies vaccines: determination of the rabies virus glycoprotein with polyclonal antisera.

    PubMed

    Thraenhart, O; Ramakrishnan, K

    1989-10-01

    A non-competitive enzyme-linked immunoassay (ELISA) has been standardized to supplement the in vivo potency test used for the quality control of inactivated tissue culture vaccines against rabies. The essentials of the ELISA were: fixation of the virus in different dilutions of vaccine on the surface of microtitre plates; testing of the reference and up to six test vaccines on one plate; incubation with polyclonal antisera to rabies virus glycoprotein containing an excess of antibody; further incubation with a species-specific anti-IgG coupled to peroxidase; a final incubation with a substrate. The incubation periods were 1 h, 1 h and 30 min both at +37 degrees C. The relative potency determinations were made graphically or by a computer using a parallel line bioassay in which the potencies of the vaccines of unknown potency were tested against the reference preparation on a single microtitre plate. Under these conditions inactivated rabies vaccines of different types (virus strains, cell substrates, inactivation and concentration procedures) were tested for potency. Furthermore, it was possible with this in vitro method to assay adjuvanted vaccines, in process samples such as tissue culture supernatants with live or inactivated rabies virus, concentrates, and vaccines undergoing thermal stability tests. The rabies glycoprotein antigen-antibody reaction was highly specific according to the results and the glycoprotein content was measured quantitatively. The potency determined by the in vitro ELISA correlated with the in vivo NIH protection potency test. The lower limit of detection of the ELISA was 0.015 IU/ml. Quantitative antigen determination was possible with both homologous and heterologous antisera to rabies virus glycoprotein when vaccines of the same virus strain were tested. When the potencies of vaccines of different virus strain specificity were calculated, it was necessary to take into account the strain-specific antigenicity. Even so vaccines of high

  13. Regulatory acceptance and use of serology for inactivated veterinary rabies vaccines.

    PubMed

    Schiffelers, Marie-Jeanne W A; Blaauboer, Bas J; Bakker, Wieger E; Hendriksen, Coenraad F M

    2015-01-01

    In April 2013 the mouse antibody serum neutralization test (SNT) was formally incorporated into European Pharmacopoeia monograph 0451 for potency testing of inactivated veterinary rabies vaccines. The SNT is designed to replace the highly variable and pain and distress causing NIH mouse rabies challenge assay. The adoption of the SNT meets the European ambition (i.e., EC and CoE) to replace, reduce and/or refine laboratory animal testing. However, regulatory acceptance and use of 3R models, such as the SNT, remains challenging. This paper aims at clarifying the process of acceptance and use of the SNT. For this purpose it reconstructs the process and reveals barriers and drivers that have been observed by involved stakeholders to have played a role. In addition it extracts lessons to stimulate regulatory acceptance in similar future processes. The incorporation of the SNT into the monographs went relatively quick due to a thorough test development and pre-validation phase, commitment and cooperation of relevant stakeholders and a strong project coordination of the international validation study. The test was developed by the Paul Ehrlich Institut; a leading European OMCLs. This facilitated its European regulatory use. The use by industry is in a critical phase. At this stage product specific validation and the question whether the SNT will be accepted outside Europe are important influencing factors. PMID:25936354

  14. Current Strategic Thinking for the Development of a Trivalent Alphavirus Vaccine for Human Use

    PubMed Central

    Wolfe, Daniel N.; Heppner, D. Gray; Gardner, Shea N.; Jaing, Crystal; Dupuy, Lesley C.; Schmaljohn, Connie S.; Carlton, Kevin

    2014-01-01

    Vaccinations against the encephalitic alphaviruses (western, eastern, and Venezuelan equine encephalitis virus) are of significant interest to biological defense, public health, and agricultural communities alike. Although vaccines licensed for veterinary applications are used in the Western Hemisphere and attenuated or inactivated viruses have been used under Investigational New Drug status to protect at-risk personnel, there are currently no licensed vaccines for use in humans. Here, we will discuss the need for a trivalent vaccine that can protect humans against all three viruses, recent progress to such a vaccine, and a strategy to continue development to Food and Drug Administration licensure. PMID:24842880

  15. Chimeric Yellow Fever Virus 17D-Japanese Encephalitis Virus Vaccine: Dose-Response Effectiveness and Extended Safety Testing in Rhesus Monkeys

    PubMed Central

    Monath, T. P.; Levenbook, I.; Soike, K.; Zhang, Z.-X.; Ratterree, M.; Draper, K.; Barrett, A. D. T.; Nichols, R.; Weltzin, R.; Arroyo, J.; Guirakhoo, F.

    2000-01-01

    ChimeriVax-JE is a live, attenuated recombinant virus prepared by replacing the genes encoding two structural proteins (prM and E) of yellow fever 17D virus with the corresponding genes of an attenuated strain of Japanese encephalitis virus (JE), SA14-14-2 (T. J. Chambers et al., J. Virol. 73:3095–3101, 1999). Since the prM and E proteins contain antigens conferring protective humoral and cellular immunity, the immune response to vaccination is directed principally at JE. The prM-E genome sequence of the ChimeriVax-JE in diploid fetal rhesus lung cells (FRhL, a substrate acceptable for human vaccines) was identical to that of JE SA14-14-2 vaccine and differed from sequences of virulent wild-type strains (SA14 and Nakayama) at six amino acid residues in the envelope gene (E107, E138, E176, E279, E315, and E439). ChimeriVax-JE was fully attenuated for weaned mice inoculated by the intracerebral (i.c.) route, whereas commercial yellow fever 17D vaccine (YF-Vax) caused lethal encephalitis with a 50% lethal dose of 1.67 log10 PFU. Groups of four rhesus monkeys were inoculated by the subcutaneous route with 2.0, 3.0, 4.0, and 5.0 log10 PFU of ChimeriVax-JE. All 16 monkeys developed low viremias (mean peak viremia, 1.7 to 2.1 log10 PFU/ml; mean duration, 1.8 to 2.3 days). Neutralizing antibodies appeared between days 6 and 10; by day 30, neutralizing antibody responses were similar across dose groups. Neutralizing antibody titers to the homologous (vaccine) strain were higher than to the heterologous wild-type JE strains. All immunized monkeys and sham-immunized controls were challenged i.c. on day 54 with 5.2 log10 PFU of wild-type JE. None of the immunized monkeys developed viremia or illness and had mild residual brain lesions, whereas controls developed viremia, clinical encephalitis, and severe histopathologic lesions. Immunized monkeys developed significant (≥4-fold) increases in serum and cerebrospinal fluid neutralizing antibodies after i.c. challenge. In a

  16. Delivery of immunogens to mucosal immune system using an oral inactivated cholera vaccine: a new approach for development of oral vaccines.

    PubMed

    Azizi, Ali; Ghunaim, Haitham; Sirskyj, Danylo; Fallahi, Firouzeh; Le, Hoang Thanh; Kumar, Ashok

    2013-07-01

    Oral vaccines have several attractive features; however, due to several challenges, to date, only a limited number of oral vaccines are licensed. Over the past two decades, several oral vehicle delivery systems have been developed to address these challenges and deliver antigens to the target cells in the mucosal immune system. While the size of vehicle delivery systems, the quantity of components in the vehicle formulation, the dose of administration, and even the type of animals species, are important aspects in development of a suitable oral vaccine, our results showed that entrapment of inactivated Vibrio cholera, a component in the structure of Dukoral vaccine into oral vehicle delivery systems, is able to induce a more rigorous humoral immune response in the systemic compartment. We further investigated the mechanism of Dukoral vaccine as a potential stimulator in induction of immune response by immunizing TLR-2-, TLR-4-, MyD88- and Trif-deficient mice. We are hopeful that these findings will lead to development of more precisely-designed oral vaccines in the future. PMID:23466688

  17. Heightened adaptive immune responses following vaccination with a temperature-sensitive, live-attenuated influenza virus compared to adjuvanted, whole-inactivated virus in pigs

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In the United States there are currently two influenza vaccine platforms approved for use in humans - conventional inactivated virus and live-attenuated influenza virus (LAIV). One of the major challenges for influenza A virus (IAV) vaccination is designing a platform that provides protection across...

  18. Immunogenicity and efficacy of fowlpox-vectored and inactivated avian influenza vaccines alone or in a prime-boost schedule in chickens with maternal antibodies

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Inactivated and fowlpox (FP)-vectored vaccines have been used to control avian influenza (AI) in poultry. In endemic countries, breeder flocks are vaccinated and therefore, maternally-derived antibodies (MDA) are transferred to their progeny. Results of several immunogenicity and efficacy studies ...

  19. Estimation of the Impact of a Japanese Encephalitis Immunization Program with Live, Attenuated SA 14-14-2 Vaccine in Nepal

    PubMed Central

    Upreti, Shyam Raj; Janusz, Kristen B.; Schluter, W. William; Bichha, Ram Padarath; Shakya, Geeta; Biggerstaff, Brad J.; Shrestha, Murari Man; Sedai, Tika Ram; Fischer, Marc; Gibbons, Robert V.; Shrestha, Sanjaya K.; Hills, Susan L.

    2013-01-01

    Wider availability of the live, attenuated SA 14-14-2 Japanese encephalitis (JE) vaccine has facilitated introduction or expansion of immunization programs in many countries. However, information on their impact is limited. In 2006, Nepal launched a JE immunization program, and by 2009, mass campaigns had been implemented in 23 districts. To describe the impact, we analyzed surveillance data from 2004 to 2009 on laboratory-confirmed JE and clinical acute encephalitis syndrome (AES) cases. The post-campaign JE incidence rate of 1.3 per 100,000 population was 72% lower than expected if no campaigns had occurred, and an estimated 891 JE cases were prevented. In addition, AES incidence was 58% lower, with an estimated 2,787 AES cases prevented, suggesting that three times as many disease cases may have been prevented than indicated by the laboratory-confirmed JE cases alone. These results provide useful information on preventable JE disease burden and the potential value of JE immunization programs. PMID:23358643

  20. Human Phase 1 trial of low-dose inactivated seasonal influenza vaccine formulated with Advax™ delta inulin adjuvant.

    PubMed

    Gordon, David L; Sajkov, Dimitar; Honda-Okubo, Yoshikazu; Wilks, Samuel H; Aban, Malet; Barr, Ian G; Petrovsky, Nikolai

    2016-07-19

    Influenza vaccines are usually non-adjuvanted but addition of adjuvant may improve immunogenicity and permit dose-sparing, critical for vaccine supply in the event of an influenza pandemic. The aim of this first-in-man study was to determine the effect of delta inulin adjuvant on the safety and immunogenicity of a reduced dose seasonal influenza vaccine. Healthy male and female adults aged 18-65years were recruited to participate in a randomized controlled study to compare the safety, tolerability and immunogenicity of a reduced-dose 2007 Southern Hemisphere trivalent inactivated influenza vaccine formulated with Advax™ delta inulin adjuvant (LTIV+Adj) when compared to a full-dose of the standard TIV vaccine which does not contain an adjuvant. LTIV+Adj provided equivalent immunogenicity to standard TIV vaccine as assessed by hemagglutination inhibition (HI) assays against each vaccine strain as well as against a number of heterosubtypic strains. HI responses were sustained at 3months post-immunisation in both groups. Antibody landscapes against a large panel of H3N2 influenza viruses showed distinct age effects whereby subjects over 40years old had a bimodal baseline HI distribution pattern, with the highest HI titers against the very oldest H3N2 isolates and with a second HI peak against influenza isolates from the last 5-10years. By contrast, subjects >40years had a unimodal baseline HI distribution with peak recognition of H3N2 isolates from approximately 20years ago. The reduced dose TIV vaccine containing Advax adjuvant was well tolerated and no safety issues were identified. Hence, delta inulin may be a useful adjuvant for use in seasonal or pandemic influenza vaccines. Australia New Zealand Clinical Trial Registry: ACTRN12607000599471. PMID:27342914

  1. Similar protective immunity induced by an inactivated enterovirus 71 (EV71) vaccine in neonatal rhesus macaques and children.

    PubMed

    Zhang, Ying; Wang, Lichun; Liao, Yun; Liu, Longding; Ma, Kaili; Yang, Erxia; Wang, Jingjing; Che, Yanchun; Jiang, Li; Pu, Jing; Guo, Lei; Feng, Min; Liang, Yan; Cui, Wei; Yang, Huai; Li, Qihan

    2015-11-17

    During the development of enterovirus 71 (EV71) inactivated vaccine for preventing human hand, foot and mouth diseases (HFMD) by EV71 infection, an effective animal model is presumed to be significant and necessary. Our previous study demonstrated that the vesicles in oral regions and limbs potentially associated with viremia, which are the typical manifestations of HFMD, and remarkable pathologic changes were identified in various tissues of neonatal rhesus macaque during EV71 infection. Although an immune response in terms of neutralizing antibody and T cell memory was observed in animals infected by the virus or stimulated by viral antigen, whether such a response could be considered as an indicator to justify the immune response in individuals vaccinated or infected in a pandemic needs to be investigated. Here, a comparative analysis of the neutralizing antibody response and IFN-γ-specific T cell response in vaccinated neonatal rhesus macaques and a human clinical trial with an EV71 inactivated vaccine was performed, and the results showed the identical tendency and increased level of neutralizing antibody and the IFN-γ-specific T cell response stimulated by the EV71 antigen peptide. Importantly, the clinical protective efficacy against virus infection by the elicited immune response in the immunized population compared with the placebo control and the up-modulated gene profile associated with immune activation were similar to those in infected macaques. Further safety verification of this vaccine in neonatal rhesus macaques and children confirmed the potential use of the macaque as a reliable model for the evaluation of an EV71 candidate vaccine. PMID:26419198

  2. Immune response and protection in gibel carp, Carassius gibelio, after vaccination with β-propiolactone inactivated cyprinid herpesvirus 2.

    PubMed

    Zhang, Linlin; Ma, Jie; Fan, Yuding; Zhou, Yong; Xu, Jin; Liu, Wenzhi; Gu, Zemao; Zeng, Lingbing

    2016-02-01

    Herpesviral haematopoietic necrosis (HVHN) of gibel carp (Carassius gibelio) is a newly emerged infectious disease caused by cyprinid herpesvirus 2 (CyHV-2) and has caused huge economic losses in aquaculture operations. Currently, no effective methods are available for the control of the disease. In this study, β-propiolactone inactivated cyprinid herpesvirus 2 (CyHV-2) vaccine was prepared, and the immune response and protection in cultured gibel carp after vaccination was thoroughly investigated. This included blood cell counting and classification, phagocytic activity, lysozyme and superoxide dismutase activity, neutralizing antibody titration, immune gene expression analysis, and determination of the relative percent survival in vaccinated gibel carp. The results of blood cell counts indicated that the numbers of the red and white blood cells in the peripheral blood of immunized gibel carp increased significantly at day 4 and day 7 after vaccination (p < 0.01). The differential leukocyte count of neutrophils and monocytes were significantly different compared to the control group at day 4 and 7 and the percentage of lymphocytes reached a peak at day 21. The phagocytic percentage and phagocytic index peaked at day 4 post-vaccination. The lysozyme activity and superoxide dismutase activity were significantly increased compared to the control group (p < 0.01). The serum neutralizing antibody titer peaked (203.03 ± 13.44) at day 21. The qPCR analysis revealed that the expression of the immune genes interlukin 11 and complement component C3 were significantly up-regulated in the immunized group. The challenge test demonstrated that the immunized group had a relative survival rate of 71.4%. These results indicate that the inactivated CyHV-2 vaccine induced both non-specific and specific anti-viral immune responses that resulted in significant protection against HVHN disease and mortality in gibel carp. PMID:26772479

  3. Determination of minimum hemagglutinin units in an inactivated Newcastle disease virus vaccine for clinical protection of chickens from exotic Newcastle disease virus challenge.

    PubMed

    Liljebjelke, K A; King, D J; Kapczynski, D R

    2008-06-01

    The potency of inactivated Newcastle disease virus (NDV) vaccines in the United States is currently determined using vaccination and challenge of experimental animals against a velogenic strain of NDV. Because velogenic strains of NDV are now classified as select agents in the United States, all vaccine potency testing must be performed in live animals under biosafety level 3 agriculture conditions. If the minimum amount of inactivated viral antigen required for clinical protection can be determined using other methods, vaccines meeting these criteria might be considered of adequate potency. The linearity of correlation between the hemagglutination (HA) assay measurement and the 50% embryo infectious dose titer ofNDV Hitchner B1 vaccine virus was determined. Correlation between hemagglutinin units (HAU) per vaccine dose, clinical protection, and antibody response was then determined using a vaccinate-and-challenge model similar to Chapter 9 of the U.S. code of federal regulations approved method for vaccine potency testing. The dose providing 50% protection of an in-house water-in-oil emulsion vaccine formulated with inactivated NDV B1 was determined to be between 400 and 600 HAU from two separate trials. A positive correlation (R2 = 0.97) was observed between antibody response and HAU per vaccine dose. Serum antibody responses from vaccinated birds indicate HA inhibition titers >2(5) log2 would provide 100% protection from morbidity and mortality and require a minimum protective dose of 1000 HAU per bird. These are the first studies to examine establishing both a minimum protective HAU content for inactivated ND vaccines and a minimum serologic response necessary to ensure potency. PMID:18646455

  4. Effect of Previous-Year Vaccination on the Efficacy, Immunogenicity, and Safety of High-Dose Inactivated Influenza Vaccine in Older Adults

    PubMed Central

    DiazGranados, Carlos A.; Dunning, Andrew J.; Robertson, Corwin A.; Talbot, H. Keipp; Landolfi, Victoria; Greenberg, David P.

    2016-01-01

    Background. High-dose inactivated influenza vaccine (IIV-HD) is an alternative to the standard-dose inactivated influenza vaccine (IIV-SD) in the United States for influenza prevention in older adults. IIV-HD improved efficacy relative to IIV-SD in a randomized controlled trial. Recent observational studies suggest that previous influenza vaccination may influence the immunogenicity and effectiveness of current-season vaccination. Methods. The original study was a double-blind, randomized trial comparing IIV-HD to IIV-SD in adults aged ≥65 years over 2 influenza seasons. A subset of year 1 (Y1) participants reenrolled in year 2 (Y2), receiving vaccine by random assignment in both years. We evaluated the effect of Y1 vaccination on Y2 relative vaccine efficacy (VE), immunogenicity (hemagglutination inhibition [HAI] titers), and safety among reenrolled participants. Results. Of 14 500 Y1 participants, 7643 reenrolled in Y2. Relative to participants who received IIV-SD both seasons, VE was higher for IIV-HD vaccinees in Y2 (28.3% overall; 25.1% for Y1 IIV-HD, Y2 IIV-HD; and 31.6% for Y1 IIV-SD, Y2 IIV-HD). In multivariate logistic regression models, Y1 vaccine was not a significant modifier of Y2 VE (P = .43), whereas Y2 IIV-HD remained significantly associated with lower influenza risk (P = .043). Compared to administration of IIV-SD in both years, postvaccination HAI titers were significantly higher for patterns that included IIV-HD in Y2. No safety concerns were raised with IIV-HD revaccination. Conclusions. IIV-HD is likely to provide clinical benefit over IIV-SD irrespective of previous-season vaccination with IIV-HD or IIV-SD. IIV-HD consistently improved immune responses, and no safety concerns emerged in the context of IIV-HD revaccination. PMID:26908801

  5. A pilot study of the immune response to whole inactivated avian influenza H7N1 virus vaccine in mice

    PubMed Central

    Hovden, Arnt‐Ove; Brokstad, Karl A.; Major, Diane; Wood, John; Haaheim, Lars R.; Cox, Rebecca J.

    2009-01-01

    Background  Highly pathogenic avian influenza (HPAI) outbreaks in domestic poultry bring humans into close contact with new influenza subtypes and represent a threat to human health. In 1999, an HPAI outbreak of H7N1 virus occurred in domestic poultry in Italy, and a wild‐type virus isolate from this outbreak was chosen as a pandemic vaccine candidate. Objectives  We conducted a pilot study to investigate the kinetics of the humoral immune response induced after immunisation with an egg grown whole inactivated H7N1 virus vaccine in BALB/c mice. Methods  Mice were vaccinated with one or two doses of H7N1 vaccine (15 μg total protein) to investigate the influenza specific antibody secreting cell (IS‐ASC) and serum antibody responses. Results  After the first dose of vaccine, only IgM IS‐ASC were detected in the spleen and bone marrow, whereas IgG, IgA and IgM IS‐ASC were found after the second dose. Low antibody titres were detected after the first immunisation, whilst the second dose of vaccine significantly boosted the HI (range 128–512), neutralising and IgG antibody titres. The IgG subclass response was dominated by IgG2a indicating a dominant Th1 response after the first vaccination, whereas a more mixed Th1/Th2 profile was observed after the second dose. Conclusions  This pilot study shows the value of using a number of immunological methods to evaluate the quality of the immune response to potential pandemic candidate vaccines. PMID:19453438

  6. Increased efficacy of inactivated vaccine candidates prepared with Salmonella enterica serovar Typhimurium strains of predominant genotypes in ducks.

    PubMed

    Youn, S Y; Kwon, Y K; Song, C S; Lee, H J; Jeong, O M; Choi, B K; Jung, S C; Kang, M S

    2016-08-01

    Salmonella enterica serovar Typhimurium has been a major causative agent of food-borne human disease, mainly due to consumption of contaminated food animal products. In particular, ducks serve as a reservoir of serovar Typhimurium, and are one of the common sources of human infection. To prevent infection of ducks, and therefore minimize human infection, it is critical to control the persistent epidemic strains in ducks. Here, we analyzed the genetic diversity and virulence of serovar Typhimurium isolates from ducks in Korea to identify the predominant strains that might be used as efficient vaccine candidates for ducks. Among the isolates, 2 representative isolates (ST26 and ST76) of predominant genotypes were selected as vaccine strains on the basis of genotypic analysis by pulsed-field gel electrophoresis and DNA microarrays. Two-week-old ducks were then injected intramuscularly with inactivated vaccine candidates prepared using ST26 or ST76 (10(8) cfu/0.5 mL/duck or 10(9) cfu/0.5 mL/duck), and oral challenge with a highly virulent serovar Typhimurium strain (10(9) cfu/0.5 mL/duck) was carried out 2 wk later. Shedding of the challenge strain was significantly decreased in group 2 after vaccination. The antibody levels by enzyme-linked immunosorbent assay in all vaccinated groups were enhanced significantly (P < 0.05) compared to the unvaccinated control group. Overall, vaccination with ST26 or ST76 reduced bacterial shedding and colonization in internal organs, and induced elevated antibody response. In particular, serovar Typhimurium ST26 (10(8) cfu/0.5 mL/duck) was the most effective vaccine candidate, which can provide efficient protection against serovar Typhimurium in ducks with higher effectiveness compared to a commercial vaccine currently used worldwide. PMID:26994209

  7. Limbic encephalitis

    PubMed Central

    Mahawish, Karim; Teinert, Lynne; Cavanagh, Kathryn; Brennan, Joseph

    2014-01-01

    We present a case of paraneoplastic limbic encephalitis, describing the presenting features, diagnosis and management plan. Limbic encephalitis is one differential of rapidly progressive dementia. We describe a rational approach to the diagnosis of the patient with rapid cognitive decline. PMID:24891487

  8. Rotavirus Vaccine -- Questions and Answers

    MedlinePlus

    ... to these vaccines. The infant's immune response to influenza vaccine administered at the same time as rotavirus vaccine ... previously that an inactivated vaccine (e.g., inactivated influenza vaccine) may be administered either simultaneously or at any ...

  9. Synthetic virus seeds for improved vaccine safety: Genetic reconstruction of poliovirus seeds for a PER.C6 cell based inactivated poliovirus vaccine.

    PubMed

    Sanders, Barbara P; Edo-Matas, Diana; Papic, Natasa; Schuitemaker, Hanneke; Custers, Jerome H H V

    2015-10-13

    Safety of vaccines can be compromised by contamination with adventitious agents. One potential source of adventitious agents is a vaccine seed, typically derived from historic clinical isolates with poorly defined origins. Here we generated synthetic poliovirus seeds derived from chemically synthesized DNA plasmids encoding the sequence of wild-type poliovirus strains used in marketed inactivated poliovirus vaccines. The synthetic strains were phenotypically identical to wild-type polioviruses as shown by equivalent infectious titers in culture supernatant and antigenic content, even when infection cultures are scaled up to 10-25L bioreactors. Moreover, the synthetic seeds were genetically stable upon extended passaging on the PER.C6 cell culture platform. Use of synthetic seeds produced on the serum-free PER.C6 cell platform ensures a perfectly documented seed history and maximum control over starting materials. It provides an opportunity to maximize vaccine safety which increases the prospect of a vaccine end product that is free from adventitious agents. PMID:26362098

  10. An Inactivated Antibiotic-Exposed Whole-Cell Vaccine Enhances Bactericidal Activities Against Multidrug-Resistant Acinetobacter baumannii

    PubMed Central

    Shu, Meng-Hooi; MatRahim, NorAziyah; NorAmdan, NurAsyura; Pang, Sui-Ping; Hashim, Sharina H.; Phoon, Wai-Hong; AbuBakar, Sazaly

    2016-01-01

    Vaccination may be an alternative treatment for infection with multidrug-resistance (MDR) Acinetobacter baumannii. The study reported here evaluated the bactericidal antibody responses following immunization of mice using an inactivated whole-cell vaccine derived from antibiotic-exposed MDR A. baumannii (I-M28-47-114). Mice inoculated with I-M28-47 (non-antibiotic-exposed control) and I-M28-47-114 showed a high IgG antibody response by day 5 post-inoculation. Sera from mice inoculated with I-M28-47-114 collected on day 30 resulted in 80.7 ± 12.0% complement-mediated bacteriolysis in vitro of the test MDR A. baumannii treated with imipenem, which was a higher level of bacteriolysis over sera from mice inoculated with I-M28-47. Macrophage-like U937 cells eliminated 49.3 ± 11.6% of the test MDR A. baumannii treated with imipenem when opsonized with sera from mice inoculated with I-M28-47-114, which was a higher level of elimination than observed for test MDR A. baumannii opsonized with sera from mice inoculated with I-M28-47. These results suggest that vaccination with I-M28-47-114 stimulated antibody responses capable of mounting high bactericidal killing of MDR A. baumannii. Therefore, the inactivated antibiotic-exposed whole-cell vaccine (I-M28-47-114) has potential for development as a candidate vaccine for broad clearance and protection against MDR A. baumannii infections. PMID:26923424

  11. A comparative pharmacokinetic estimate of mercury in U.S. Infants following yearly exposures to inactivated influenza vaccines containing thimerosal.

    PubMed

    Mitkus, Robert J; King, David B; Walderhaug, Mark O; Forshee, Richard A

    2014-04-01

    The use of thimerosal preservative in childhood vaccines has been largely eliminated over the past decade in the United States because vaccines have been reformulated in single-dose vials that do not require preservative. An exception is the inactivated influenza vaccines, which are formulated in both multidose vials requiring preservative and preservative-free single-dose vials. As part of an ongoing evaluation by USFDA of the safety of biologics throughout their lifecycle, the infant body burden of mercury following scheduled exposures to thimerosal preservative in inactivated influenza vaccines in the United States was estimated and compared to the infant body burden of mercury following daily exposures to dietary methylmercury at the reference dose established by the USEPA. Body burdens were estimated using kinetic parameters derived from experiments conducted in infant monkeys that were exposed episodically to thimerosal or MeHg at identical doses. We found that the body burden of mercury (AUC) in infants (including low birth weight) over the first 4.5 years of life following yearly exposures to thimerosal was two orders of magnitude lower than that estimated for exposures to the lowest regulatory threshold for MeHg over the same time period. In addition, peak body burdens of mercury following episodic exposures to thimerosal in this worst-case analysis did not exceed the corresponding safe body burden of mercury from methylmercury at any time, even for low-birth-weight infants. Our pharmacokinetic analysis supports the acknowledged safety of thimerosal when used as a preservative at current levels in certain multidose infant vaccines in the United States. PMID:24117921

  12. An Inactivated Antibiotic-Exposed Whole-Cell Vaccine Enhances Bactericidal Activities Against Multidrug-Resistant Acinetobacter baumannii.

    PubMed

    Shu, Meng-Hooi; MatRahim, NorAziyah; NorAmdan, NurAsyura; Pang, Sui-Ping; Hashim, Sharina H; Phoon, Wai-Hong; AbuBakar, Sazaly

    2016-01-01

    Vaccination may be an alternative treatment for infection with multidrug-resistance (MDR) Acinetobacter baumannii. The study reported here evaluated the bactericidal antibody responses following immunization of mice using an inactivated whole-cell vaccine derived from antibiotic-exposed MDR A. baumannii (I-M28-47-114). Mice inoculated with I-M28-47 (non-antibiotic-exposed control) and I-M28-47-114 showed a high IgG antibody response by day 5 post-inoculation. Sera from mice inoculated with I-M28-47-114 collected on day 30 resulted in 80.7 ± 12.0% complement-mediated bacteriolysis in vitro of the test MDR A. baumannii treated with imipenem, which was a higher level of bacteriolysis over sera from mice inoculated with I-M28-47. Macrophage-like U937 cells eliminated 49.3 ± 11.6% of the test MDR A. baumannii treated with imipenem when opsonized with sera from mice inoculated with I-M28-47-114, which was a higher level of elimination than observed for test MDR A. baumannii opsonized with sera from mice inoculated with I-M28-47. These results suggest that vaccination with I-M28-47-114 stimulated antibody responses capable of mounting high bactericidal killing of MDR A. baumannii. Therefore, the inactivated antibiotic-exposed whole-cell vaccine (I-M28-47-114) has potential for development as a candidate vaccine for broad clearance and protection against MDR A. baumannii infections. PMID:26923424

  13. Diagnosis and treatment of viral encephalitis

    PubMed Central

    Chaudhuri, A; Kennedy, P

    2002-01-01

    Acute encephalitis constitutes a medical emergency. In most cases, the presence of focal neurological signs and focal seizures will distinguish encephalitis from encephalopathy. Acute disseminated encephalomyelitis is a non-infective inflammatory encephalitis that may require to be treated with steroids. Acute infective encephalitis is usually viral. Herpes simplex encephalitis (HSE) is the commonest sporadic acute viral encephalitis in the Western world. Magnetic resonance imaging of brain is the investigation of choice in HSE and the diagnosis may be confirmed by the polymerase chain reaction test for the virus in the cerebrospinal fluid. In this article, we review the diagnosis, investigations, and management of acute encephalitis. With few exceptions (for example, aciclovir for HSE), no specific therapy is available for most forms of viral encephalitis. Mortality and morbidity may be high and long term sequelae are known among survivors. The emergence of unusual forms of zoonotic encephalitis has posed an important public health problem. Vaccination and vector control measures are useful preventive strategies in certain arboviral and zoonotic encephalitis. However, we need better antiviral therapy to meet the challenge of acute viral encephalitis more effectively. PMID:12415078

  14. Protection induced by a glycoprotein E-deleted bovine herpesvirus type 1 marker strain used either as an inactivated or live attenuated vaccine in cattle

    PubMed Central

    2014-01-01

    Background Bovine herpesvirus type 1 (BoHV-1) is the causative agent of respiratory and genital tract infections; causing a high economic loss in all continents. Use of marker vaccines in IBR eradication programs is widely accepted since it allows for protection of the animals against the disease while adding the possibility of differentiating vaccinated from infected animals. The aim of the present study was the development and evaluation of safety and efficacy of a glycoprotein E-deleted (gE-) BoHV-1 marker vaccine strain (BoHV-1ΔgEβgal) generated by homologous recombination, replacing the viral gE gene with the β-galactosidase (βgal) gene. Results In vitro growth kinetics of the BoHV-1ΔgEβgal virus was similar to BoHV-1 LA. The immune response triggered by the new recombinant strain in cattle was characterized both as live attenuated vaccine (LAV) and as an inactivated vaccine. BoHV-1ΔgEβgal was highly immunogenic in both formulations, inducing specific humoral and cellular immune responses. Antibody titers found in animals vaccinated with the inactivated vaccine based on BoHV-1ΔgEβgal was similar to the titers found for the control vaccine (BoHV-1 LA). In the same way, titers of inactivated vaccine groups were significantly higher than any of the LAV immunized groups, independently of the inoculation route (p < 0.001). Levels of IFN-γ were significantly higher (p < 0.001) in those animals that received the LAV compared to those that received the inactivated vaccine. BoHV-1ΔgEβgal exhibited an evident attenuation when administered as a LAV; no virus was detected in nasal secretions of vaccinated or sentinel animals during the post-vaccination period. BoHV-1ΔgEβgal, when used in either formulation, elicited an efficient immune response that protected animals against challenge with virulent wild-type BoHV-1. Also, the deletion of the gE gene served as an immunological marker to differentiate vaccinated animals from infected animals. All

  15. Inactivated Influenza Vaccine That Provides Rapid, Innate-Immune-System-Mediated Protection and Subsequent Long-Term Adaptive Immunity

    PubMed Central

    Wong, Chinn Yi; Mifsud, Edin J.; Edenborough, Kathryn M.; Sekiya, Toshiki; Tan, Amabel C. L.; Mercuri, Francesca; Rockman, Steve; Chen, Weisan; Turner, Stephen J.; Doherty, Peter C.; Kelso, Anne; Brown, Lorena E.; Jackson, David C.

    2015-01-01

    ABSTRACT The continual threat to global health posed by influenza has led to increased efforts to improve the effectiveness of influenza vaccines for use in epidemics and pandemics. We show in this study that formulation of a low dose of inactivated detergent-split influenza vaccine with a Toll-like receptor 2 (TLR2) agonist-based lipopeptide adjuvant (R4Pam2Cys) provides (i) immediate, antigen-independent immunity mediated by the innate immune system and (ii) significant enhancement of antigen-dependent immunity which exhibits an increased breadth of effector function. Intranasal administration of mice with vaccine formulated with R4Pam2Cys but not vaccine alone provides protection against both homologous and serologically distinct (heterologous) viral strains within a day of administration. Vaccination in the presence of R4Pam2Cys subsequently also induces high levels of systemic IgM, IgG1, and IgG2b antibodies and pulmonary IgA antibodies that inhibit hemagglutination (HA) and neuraminidase (NA) activities of homologous but not heterologous virus. Improved primary virus nucleoprotein (NP)-specific CD8+ T cell responses are also induced by the use of R4Pam2Cys and are associated with robust recall responses to provide heterologous protection. These protective effects are demonstrated in wild-type and antibody-deficient animals but not in those depleted of CD8+ T cells. Using a contact-dependent virus transmission model, we also found that heterologous virus transmission from vaccinated mice to naive mice is significantly reduced. These results demonstrate the potential of adding a TLR2 agonist to an existing seasonal influenza vaccine to improve its utility by inducing immediate short-term nonspecific antiviral protection and also antigen-specific responses to provide homologous and heterologous immunity. PMID:26507227

  16. A Chimeric Dengue Virus Vaccine using Japanese Encephalitis Virus Vaccine Strain SA14-14-2 as Backbone Is Immunogenic and Protective against Either Parental Virus in Mice and Nonhuman Primates

    PubMed Central

    Li, Xiao-Feng; Deng, Yong-Qiang; Yang, Hui-Qiang; Zhao, Hui; Jiang, Tao; Yu, Xue-Dong; Li, Shi-Hua; Ye, Qing; Zhu, Shun-Ya; Wang, Hong-Jiang; Zhang, Yu; Ma, Jie; Yu, Yong-Xin; Liu, Zhong-Yu; Qin, E-De; Shi, Pei-Yong

    2013-01-01

    The development of a safe and efficient dengue vaccine represents a global challenge in public health. Chimeric dengue viruses (DENV) based on an attenuated flavivirus have been well developed as vaccine candidates by using reverse genetics. In this study, based on the full-length infectious cDNA clone of the well-known Japanese encephalitis virus live vaccine strain SA14-14-2 as a backbone, a novel chimeric dengue virus (named ChinDENV) was rationally designed and constructed by replacement with the premembrane and envelope genes of dengue 2 virus. The recovered chimeric virus showed growth and plaque properties similar to those of the parental DENV in mammalian and mosquito cells. ChinDENV was highly attenuated in mice, and no viremia was induced in rhesus monkeys upon subcutaneous inoculation. ChinDENV retained its genetic stability and attenuation phenotype after serial 15 passages in cultured cells. A single immunization with various doses of ChinDENV elicited strong neutralizing antibodies in a dose-dependent manner. When vaccinated monkeys were challenged with wild-type DENV, all animals except one that received the lower dose were protected against the development of viremia. Furthermore, immunization with ChinDENV conferred efficient cross protection against lethal JEV challenge in mice in association with robust cellular immunity induced by the replicating nonstructural proteins. Taken together, the results of this preclinical study well demonstrate the great potential of ChinDENV for further development as a dengue vaccine candidate, and this kind of chimeric flavivirus based on JE vaccine virus represents a powerful tool to deliver foreign antigens. PMID:24109223

  17. Influenza (Flu) Vaccine (Inactivated or Recombinant): What You Need to Know

    MedlinePlus

    ... likely to cause disease in the upcoming flu season. But even when the vaccine doesn’t exactly ... after vaccination, and protection lasts through the flu season. 3 Sthoismveapcecoinpele should not get Tell the person ...

  18. In vitro and in vivo characterization of chimeric duck Tembusu virus based on Japanese encephalitis live vaccine strain SA14-14-2.

    PubMed

    Wang, Hong-Jiang; Liu, Long; Li, Xiao-Feng; Ye, Qing; Deng, Yong-Qiang; Qin, E-De; Qin, Cheng-Feng

    2016-07-01

    Duck Tembusu virus (DTMUV), a newly identified flavivirus, has rapidly spread to China, Malaysia and Thailand. The potential threats to public health have been well-highlighted; however its virulence and pathogenesis remain largely unknown. Here, by using reverse genetics, a recombinant chimeric DTMUV based on Japanese encephalitis live vaccine strain SA14-14-2 was obtained by substituting the corresponding prM and E genes (named ChinDTMUV). In vitro characterization demonstrated that ChinDTMUV replicated efficiently in mammalian cells with small-plaque phenotype in comparison with its parental viruses. Mouse tests showed ChinDTMUV exhibited avirulent phenotype in terms of neuroinvasiveness, while it retained neurovirulence from its parental virus DTMUV. Furthermore, immunization with ChinDTMUV was evidenced to elicit robust IgG and neutralizing antibody responses in mice. Overall, we successfully developed a viable chimeric DTMUV, and these results provide a useful platform for further investigation of the pathogenesis of DTMUV and development of a live attenuated DTMUV vaccine candidate. PMID:27100268

  19. Inactivated Eyedrop Influenza Vaccine Adjuvanted with Poly(I:C) Is Safe and Effective for Inducing Protective Systemic and Mucosal Immunity

    PubMed Central

    Kim, Eun-Do; Han, Soo Jung; Byun, Young-Ho; Yoon, Sang Chul; Choi, Kyoung Sub; Seong, Baik Lin; Seo, Kyoung Yul

    2015-01-01

    The eye route has been evaluated as an efficient vaccine delivery routes. However, in order to induce sufficient antibody production with inactivated vaccine, testing of the safety and efficacy of the use of inactivated antigen plus adjuvant is needed. Here, we assessed various types of adjuvants in eyedrop as an anti-influenza serum and mucosal Ab production-enhancer in BALB/c mice. Among the adjuvants, poly (I:C) showed as much enhancement in antigen-specific serum IgG and mucosal IgA antibody production as cholera toxin (CT) after vaccinations with trivalent hemagglutinin-subunits or split H1N1 vaccine antigen in mice. Vaccination with split H1N1 eyedrop vaccine antigen plus poly(I:C) showed a similar or slightly lower efficacy in inducing antibody production than intranasal vaccination; the eyedrop vaccine-induced immunity was enough to protect mice from lethal homologous influenza A/California/04/09 (H1N1) virus challenge. Additionally, ocular inoculation with poly(I:C) plus vaccine antigen generated no signs of inflammation within 24 hours: no increases in the mRNA expression levels of inflammatory cytokines nor in the infiltration of mononuclear cells to administration sites. In contrast, CT administration induced increased expression of IL-6 cytokine mRNA and mononuclear cell infiltration in the conjunctiva within 24 hours of vaccination. Moreover, inoculated visualizing materials by eyedrop did not contaminate the surface of the olfactory bulb in mice; meanwhile, intranasally administered materials defiled the surface of the brain. On the basis of these findings, we propose that the use of eyedrop inactivated influenza vaccine plus poly(I:C) is a safe and effective mucosal vaccine strategy for inducing protective anti-influenza immunity. PMID:26355295

  20. Will containment of wild poliovirus in laboratories and inactivated poliovirus vaccine production sites be effective for global certification?

    PubMed Central

    Dowdle, Walter R.; Wolff, Christopher; Sanders, Raymond; Lambert, Scott; Best, Maureen

    2004-01-01

    The absolute laboratory containment of any virus cannot be guaranteed, but a wealth of experience indicates that effective containment of wild poliovirus materials for global certification is technically and operationally feasible. Effective containment is based on the principles of minimal wild poliovirus infectious and potentially infectious materials in laboratories; minimal risks of operations in laboratories and inactivated poliovirus vaccine production facilities; minimal susceptibility of workers to wild poliovirus infection and shedding; and minimal susceptibility of populations to wild poliovirus spread. Each principle alone is imperfect, but collectively they greatly minimize the risks of transmitting wild poliovirus from the laboratory to the community. PMID:15106302

  1. Stability of whole inactivated influenza virus vaccine during coating onto metal microneedles

    PubMed Central

    Choi, Hyo-Jick; Bondy, Brian J.; Yoo, Dae-Goon; Compans, Richard W.; Kang, Sang-Moo; Prausnitz, Mark R.

    2012-01-01

    Immunization using a microneedle patch coated with vaccine offers the promise of simplified vaccination logistics and increased vaccine immunogenicity. This study examined the stability of influenza vaccine during the microneedle coating process, with a focus on the role of coating formulation excipients. Thick, uniform coatings were obtained using coating formulations containing a viscosity enhancer and surfactant, but these formulations retained little functional vaccine hemagglutinin (HA) activity after coating. Vaccine coating in a trehalose-only formulation retained about 40 – 50% of vaccine activity, which is a significant improvement. The partial viral activity loss observed in the trehalose-only formulation was hypothesized to come from osmotic pressure-induced vaccine destabilization. We found that inclusion of a viscosity enhancer, carboxymethyl cellulose, overcame this effect and retained full vaccine activity on both washed and plasma-cleaned titanium surfaces. The addition of polymeric surfactant, Lutrol® micro 68, to the trehalose formulation generated phase transformations of the vaccine coating, such as crystallization and phase separation, which was correlated to additional vaccine activity loss, especially when coating on hydrophilic, plasma-cleaned titanium. Again, the addition of a viscosity enhancer suppressed the surfactant-induced phase transformations during drying, which was confirmed by in vivo assessment of antibody response and survival rate after immunization in mice. We conclude that trehalose and a viscosity enhancer are beneficial coating excipients, but the inclusion of surfactant is detrimental to vaccine stability. PMID:23246470

  2. Inactivated rabies vaccine produced from the Flury LEP strain of virus grown in BHK-21 suspension cells.

    PubMed

    Chapman, W G; Ramshaw, I A; Crick, J

    1973-12-01

    Suspension cultures of BHK-21 cells maintained at 32 to 33 C were infected with the Flury LEP strain of rabies virus. By using a cell concentration of 2.0 x 10(6) to 2.5 x 10(6) cells per ml infected at a multiplicity of 0.05, high titers of extracellular virus were reached in 96 to 120 h, and potent inactivated vaccines were prepared from culture fluids harvested between 96 to 168 h. The addition of 1% bovine serum to the maintenance medium resulted in an increase in virus yields and vaccine potency. Estimation of the number of infected cells by immunofluorescent procedures proved a rapid and reliable guide to the virus content of suspension cultures. PMID:4588193

  3. Whole inactivated virus influenza vaccine is superior to subunit vaccine in inducing immune responses and secretion of proinflammatory cytokines by DCs

    PubMed Central

    Geeraedts, Felix; Bungener, Laura; Pool, Judith; Ter Veer, Wouter; Wilschut, Jan; Huckriede, Anke

    2008-01-01

    Background  For protection against (re‐)infection by influenza virus not only the magnitude of the immune response but also its quality in terms of antibody subclass and T helper profile is important. Information about the type of immune response elicited by vaccination is therefore urgently needed. Objectives  The aim of the study was to evaluate in detail the immune response elicited by three current influenza vaccine formulations and to shed light on vaccine characteristics which determine this response. Methods  Mice were immunized with whole inactivated virus (WIV), virosomes (VS) or subunit vaccine (SU). Following subsequent infection with live virus, serum antibody titers and Th cell responses were measured. The effects of the vaccines on cytokine production by conventional and plasmacytoid dendritic cells were investigated in vitro. Results and conclusions  In Balb/c mice (Th2 prone) as well as in C57Bl/6 mice (Th1 prone), WIV induced consistently higher hemagglutination‐inhibition titers and virus‐neutralizing antibody titers than VS or SU. In contrast to VS and SU, WIV stimulated the production of the antibody subclasses IgG2a (Balb/c) and IgG2c (C57BL/6), considered to be particularly important for viral clearance, and activation of IFN‐γ‐producing T cells. Similar to live virus, WIV stimulated the production of proinflammatory cytokines by conventional dendritic cells and IFN‐α by plasmacytoid cells, while VS and SU had little effect on cytokine synthesis by either cell type. We conclude that vaccination with WIV in contrast to VS or SU results in the desired Th1 response presumably by induction of type I interferon and other proinflammatory cytokines. PMID:19453471

  4. Mitigation of pyrexia by a Th-1-biased IgG subclass response after infection with equine herpesvirus type 1 in horses pre-immunized with inactivated vaccine.

    PubMed

    Bannai, Hiroshi; Tsujimura, Koji; Kondo, Takashi; Nemoto, Manabu; Yamanaka, Takashi; Sugiura, Takeo; Kato, Tomohiro; Maeda, Ken; Matsumura, Tomio

    2012-06-01

    The immunoglobulin G (IgG) subclass response was investigated in horses with or without pyrexia after natural infection with equine herpesvirus type 1 (EHV-1) in the field. All horses were kept at the training centers of the Japan Racing Association and were immunized with an inactivated EHV-1 vaccine before EHV-1 infection. An IgG subclass response dominated by IgGa and IgGb was induced in horses without pyrexia after EHV-1 infection. In contrast, horses that developed pyrexia showed increased IgGc and IgG (T) subclass production in addition to IgGa and IgGb. Although inactivated EHV-1 vaccines are considered to induce a mainly Th-2-biased response, these results indicated that the responses in horses inoculated with inactivated EHV-1 vaccine were not uniform, and that horses with a Th-1-biased response were likely to be protected from pyrexia. PMID:22230983

  5. High-Level Cellular and Humoral Immune Responses in Guinea Pigs Immunized Intradermally with a Heat-Inactivated Varicella-Zoster Virus Vaccine

    PubMed Central

    Sarkadi, Julia; Jankovics, Mate; Fodor, Kinga; Kis, Zoltan; Takacs, Maria; Visontai, Ildiko; Jankovics, Istvan

    2015-01-01

    The threat of varicella and herpes zoster in immunocompromised individuals necessitates the development of a safe and effective varicella-zoster virus (VZV) vaccine. The immune responses of guinea pigs to the intradermal (i.d.) or subcutaneous (s.c.) administration of a heat-inactivated or live VZV vaccine were investigated. Relative to nonimmunized animals, a single 399-PFU dose of vaccine induced nonsignificant increases in gamma interferon (IFN-γ), granzyme B, and perforin mRNA expression in the splenocytes of all groups, while two i.d. administrations of the inactivated vaccine increased IFN-γ mRNA expression significantly (P < 0.005). A single 1,995-PFU dose significantly increased the expression of IFN-γ mRNA in the groups receiving the vaccine either i.d. (P < 0.005) or s.c. (P < 0.05), that of granzyme B mRNA in the groups immunized i.d. with the inactivated (P < 0.005) or live (P < 0.005) vaccine, and that of perforin mRNA in the animals that received the inactivated vaccine i.d. (P < 0.005). Importantly, increases in the expression of IFN-γ (P = 0.025), granzyme B (P = 0.004), and perforin (P > 0.05) mRNAs were observed in the animals immunized i.d. with 1,995 PFU of inactivated vaccine relative to those immunized s.c. with the same dose. The proportion of animals expressing IFN-γ mRNA mirrored the proportion expressing IFN-γ protein (correlation coefficient of 0.88). VZV glycoprotein-specific and virus-neutralizing antibodies were produced with no significant intergroup differences. A booster i.d. administration of the 399-PFU dose of heat-inactivated vaccine enhanced the antibody responses. These results demonstrate that i.d. administration of an inactivated VZV vaccine can be an efficient mode of immunization against VZV. PMID:25787138

  6. Multivariate analysis of factors affecting the immunogenicity of trivalent inactivated influenza vaccine in school-age children

    PubMed Central

    Freeman, G.; Ng, S.; Perera, R. A. P. M.; Fang, V. J.; Ip, D. K. M.; Leung, G. M.; Peiris, J. S. M.; Cowling, B. J.

    2016-01-01

    We examined factors affecting the immunogenicity of trivalent inactivated influenza vaccination (TIV) in children using the antibody titers of children participating in a Hong Kong community-based study. Antibody titers of strains included in the 2009-10 northern hemisphere TIV (seasonal A(H1N1), seasonal A(H3N2) and B (Victoria lineage)) and those not included in the TIV (2009 pandemic A(H1N1) and B (Yamagata lineage)) were measured by hemagglutination inhibition immediately before and one month after vaccination. Multivariate regression models were fitted in a Bayesian framework to characterize the distribution of changes in antibody titers following vaccination. Statistically significant rises in geometric mean antibody titers were observed against all strains with a range of standard deviations and correlations in rises, with pandemic A(H1N1) showing the least variability and correlation with other titers. The patterns in boosting of antibody titers following vaccination can be taken into account in more detailed models of antibody dynamics in populations. PMID:24786933

  7. An inactivated whole-virus porcine parvovirus vaccine protects pigs against disease but does not prevent virus shedding even after homologous virus challenge.

    PubMed

    Foerster, Tessa; Streck, André Felipe; Speck, Stephanie; Selbitz, Hans-Joachim; Lindner, Thomas; Truyen, Uwe

    2016-06-01

    Inactivated whole-virus vaccines against porcine parvovirus (PPV) can prevent disease but not infection and virus shedding after heterologous virus challenge. Here, we showed that the same is true for a homologous challenge. Pregnant sows were vaccinated with an experimental inactivated vaccine based on PPV strain 27a. They were challenged on day 40 of gestation with the virulent porcine parvovirus PPV-27a from which the vaccine was prepared (homologous challenge). On day 90 of gestation, the fetuses from vaccinated sows were protected against disease, while the fetuses of the non-vaccinated sows (control group) exhibited signs of parvovirus disease. All gilts, whether vaccinated or not vaccinated, showed a boost of PPV-specific antibodies indicative of virus infection and replication. Low DNA copy numbers, but not infectious virus, could be demonstrated in nasal or rectal swabs of immunized sows, but high copy numbers of challenge virus DNA as well as infectious virus could both be demonstrated in non-vaccinated sows. PMID:26939976

  8. [Autoimmune encephalitis].

    PubMed

    Davydovskaya, M V; Boyko, A N; Beliaeva, I A; Martynov, M Yu; Gusev, E I

    2015-01-01

    The authors consider the issues related to pathogenesis, clinical features, diagnosis and treatment of autoimmune encephalitis. It has been demonstrated that the development of autoimmune encephalitis can be associated with the oncologic process or be of idiopathic character. The pathogenesis of autoimmune encephalitis is caused by the production of antibodies that directly or indirectly (via T-cell mechanism) damage exo-and/or endocellular structures of the nerve cells. The presence of antobodies to endocellular structures of neurons in the cerebrospinal fluid of patients with autoimmune encephalitis in the vast majority of cases (> 95%) indicates the concomitant oncologic process, the presence of antibodies to membranes or neuronal synapses can be not associated with the oncologic process. Along with complex examination, including neuroimaging, EEG, cerebrospinal fluid and antibodies, the diagnostic algorithm in autoimmune encephalitis should include the search for the nidus of cancer. The treatment algorithm in autoimmune encephalitis included the combined immunosupressive therapy, plasmapheresis, immunoglobulines, cytostatics as well as treatment of the oncologic process. PMID:26322363

  9. EFFICACY OF TWO H5N9 INACTIVATED VACCINES AGAINST CHALLENGE WITH A RECENT H5N1 HIGHLY PATHOGENIC AVIAN INFLUENZA ISOLATED FROM A CHICKEN IN THAILAND

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objective of the study was to compare the efficacy of two avian influenza (AI) H5 inactivated vaccines containing either an American (A/turkey/Wisconsin/68 H5N9, H5N9-WI) or a Eurasian isolate (A/chicken/Italy/22A/98 H5N9 or H5N9-It). Three-week-old SPF chickens were vaccinated once and challeng...

  10. Establishment of an animal challenge model as a potency assay for an inactivated Enterovirus Type 71 vaccine.

    PubMed

    Wang, Kun-Teng; Lin, Shih-Jie; Wang, Hsiu-Chi; Chen, Pin-Chun; Lin, Jiao-Jung; Chiang, Jen-Ron; Chang, Chao-Liang; Shih, Daniel Yang-Chih; Lo, Chi-Fang; Wang, Der-Yuan

    2016-07-01

    Enterovirus 71 (EV71) belongs to the Enterovirus genus of the Picornaviridae family, and its occurrence in Asia is associated with hand-foot-and-mouth disease (HFMD), leading to death in some cases, in young children. An effective EV71 vaccine is therefore urgently needed. In this study, we established a two-step EV71 vaccine potency model. Intraperitoneal injections in 2-day-old suckling mice were used to establish the LD50 of EV71 B4, B5, C2, C4, and C5 subgenotypes. Only C4 caused hind limb paralysis in mice (LD50: 2.62 ± 0.45). EV71 VP1 protein was identified in the brain tissues at histology. In the second phase of the model, 3-week-old female ICR mice received one primary and two boosting i.p. injections of formalin-inactivated EV71 B4 and C4 vaccine. Immunized serum was neutralized in vitro with EV71 C4 and applied to the murine challenge model. The C4 vaccine-immunized serum exhibited the highest protective titre (ED50 = 114.6), while the B4 immunized serum had the weakest protective titre (ED50 = 34.3). Additionally, human plasma and intravenous immunoglobulin displayed significant protection in the neutralization assay. Our results could facilitate candidate EV71 vaccine immunogenicity and efficacy evaluations, and may help establish reference EV71 antisera in the future. PMID:27068365

  11. Effects of an Inactivated Porcine Circovirus Type 2 (PCV2) Vaccine on PCV2 Virus Shedding in Semen from Experimentally Infected Boars ▿

    PubMed Central

    Seo, Hwi Won; Han, Kiwon; Kim, Duyeol; Oh, Yeonsu; Kang, Ikjae; Park, Changhoon; Jang, Hyun; Chae, Chanhee

    2011-01-01

    The objective of the present study was to determine the effect of an inactivated porcine circovirus type 2 (PCV2) vaccine on PCV2b virus shedding in the semen of experimentally infected boars by measuring the immunological response and the PCV2b DNA load in blood and semen. Twelve boars were randomly divided into three groups. The boars in group 1 (n = 4) were immunized with an inactivated PCV2 vaccine and were challenged with PCV2b. The boars in group 2 (n = 4) were only challenged with PCV2b. The boars in group 3 (n = 4) served as negative controls. The number of PCV2 genome copies of PCV2 in the serum and semen were significantly lower in vaccinated challenged boars than in nonvaccinated challenged boars at 7, 10, 14, 21, 32, 35, 42, 49, and 60 days postinoculation. The number of PCV2b genomes in the semen correlated with the number of PCV2b genomes in the blood in both vaccinated challenged (R = 0.714) and nonvaccinated challenged (R = 0.861) boars. The results of the present study demonstrate that the inactivated PCV2 vaccine significantly decreases the amount of PCV2b DNA shedding in semen from vaccinated boars after experimental infection with PCV2b. PMID:21613465

  12. Inactivated porcine reproductive and respiratory syndrome virus vaccine adjuvanted with Montanide™ Gel 01 ST elicits virus-specific cross-protective inter-genotypic response in piglets.

    PubMed

    Tabynov, Kairat; Sansyzbay, Abylay; Tulemissova, Zhanara; Tabynov, Kaissar; Dhakal, Santosh; Samoltyrova, Aigul; Renukaradhya, Gourapura J; Mambetaliyev, Muratbay

    2016-08-30

    The efficacy of a novel BEI-inactivated porcine reproductive and respiratory syndrome virus (PRRSV) candidate vaccine in pigs, developed at RIBSP Republic of Kazakhstan and delivered with an adjuvant Montanide™ Gel 01 ST (D/KV/ADJ) was compared with a commercial killed PRRSV vaccine (NVDC-JXA1, C/KV/ADJ) used widely in swine herds of the Republic of Kazakhstan. Clinical parameters (body temperature and respiratory disease scores), virological and immunological profiles [ELISA and virus neutralizing (VN) antibody titers], macroscopic lung lesions and viral load in the lungs (quantitative real-time PCR and cell culture assay) were assessed in vaccinated and both genotype 1 and 2 PRRSV challenged pigs. Our results showed that the commercial vaccine failed to protect pigs adequately against the clinical disease, viremia and lung lesions caused by the challenged field isolates, Kazakh strains of PRRSV type 1 and type 2 genotypes. In contrast, clinical protection, absence of viremia and lung lesions in D/KV/ADJ vaccinated pigs was associated with generation of VN antibodies in both homologous vaccine strain LKZ/2010 (PRRSV type 2) and a heterogeneous type 1 PRRSV strain (CM/08) challenged pigs. Thus, our data indicated the induction of cross-protective VN antibodies by D/KV/ADJ vaccine, and importantly demonstrated that an inactivated PRRSV vaccine could also induce cross-protective response across the viral genotype. PMID:27527768

  13. [Production and study of the immunogenic properties of a bivalent inactivated vaccine against mucosal disease (bovine viral diarrhea and infectious rhinotracheitis)].

    PubMed

    Tsvetkov, P; Petkova, K; Bachiĭski, L; Kharalambiev, Kh E

    1979-01-01

    Bivalent inactivated vaccine against mucous disease (MD) and infectious rhinotracheitis (IR) in cattle was produced from cell cultural MD and IR virus suspensions. The vaccine was concentrated on aluminium hydroxide, inactivated by ethanol and is without residual virus. Saponine in final 1:1500 dilution is added as supplementary adjuvant. Immunogeneity of the vaccine was tested on 10-month-old calves, which had shown full resistance against experimental infection with virulent strains of both viruses. Testing on calves for harmlessness by use of a five-fold higher vaccine dose indicated complete tolerance of the vaccine. The prophylactic effect of the vaccine applied in practical work to directly threatened with immediate MD and IR infection cows, including pregnant ones, consisted in reduced number of cases of abortion, of inborn malformations, in lower neonatal calf death-rate, etc. No disturbances were observed following two-fold vaccination of the animals, a fact proving its harmlessness. The positive results of the studied vaccine allow its further application in the combined prophylaxis of MD and IR in calf fattening and breeding complexes. PMID:232586

  14. Immunogenicity and safety assessment of a trivalent, inactivated split influenza vaccine in Korean children: Double-blind, randomized, active-controlled multicenter phase III clinical trial

    PubMed Central

    Han, Seung Beom; Rhim, Jung-Woo; Shin, Hye Jo; Lee, Soo Young; Kim, Hyun-Hee; Kim, Jong-Hyun; Lee, Kyung-Yil; Ma, Sang Hyuk; Park, Joon Soo; Kim, Hwang Min; Kim, Chun Soo; Kim, Dong Ho; Choi, Young Youn; Cha, Sung-Ho; Hong, Young Jin; Kang, Jin Han

    2015-01-01

    A multicenter, double-blind, randomized, active-control phase III clinical trial was performed to assess the immunogenicity and safety of a trivalent, inactivated split influenza vaccine. Korean children between the ages of 6 months and 18 y were enrolled and randomized into a study (study vaccine) or a control vaccine group (commercially available trivalent, inactivated split influenza vaccine) in a 5:1 ratio. Antibody responses were determined using hemagglutination inhibition assay, and post-vaccination immunogenicity was assessed based on seroconversion and seroprotection rates. For safety assessment, solicited local and systemic adverse events up to 28 d after vaccination and unsolicited adverse events up to 6 months after vaccination were evaluated. Immunogenicity was assessed in 337 and 68 children of the study and control groups. In the study vaccine group, seroconversion rates against influenza A/H1N1, A/H3N2, and B strains were 62.0% (95% CI: 56.8–67.2), 53.4% (95% CI: 48.1–58.7), and 54.9% (95% CI: 48.1–60.2), respectively. The corresponding seroprotection rates were 95.0% (95% CI: 92.6–97.3), 93.8% (95% CI: 91.2–96.4), and 95.3% (95% CI: 93.0–97.5). The lower 95% CI limits of the seroconversion and seroprotection rates were over 40% and 70%, respectively, against all strains. Seroconversion and seroprotection rates were not significantly different between the study and control vaccine groups. Furthermore, the frequencies of adverse events were not significantly different between the 2 vaccine groups, and no serious vaccination-related adverse events were noted. In conclusion, the study vaccine exhibited substantial immunogenicity and safety in Korean children and is expected to be clinically effective. PMID:25875868

  15. Immunogenicity and safety assessment of a trivalent, inactivated split influenza vaccine in Korean children: Double-blind, randomized, active-controlled multicenter phase III clinical trial.

    PubMed

    Han, Seung Beom; Rhim, Jung-Woo; Shin, Hye Jo; Lee, Soo Young; Kim, Hyun-Hee; Kim, Jong-Hyun; Lee, Kyung-Yil; Ma, Sang Hyuk; Park, Joon Soo; Kim, Hwang Min; Kim, Chun Soo; Kim, Dong Ho; Choi, Young Youn; Cha, Sung-Ho; Hong, Young Jin; Kang, Jin Han

    2015-01-01

    A multicenter, double-blind, randomized, active-control phase III clinical trial was performed to assess the immunogenicity and safety of a trivalent, inactivated split influenza vaccine. Korean children between the ages of 6 months and 18 y were enrolled and randomized into a study (study vaccine) or a control vaccine group (commercially available trivalent, inactivated split influenza vaccine) in a 5:1 ratio. Antibody responses were determined using hemagglutination inhibition assay, and post-vaccination immunogenicity was assessed based on seroconversion and seroprotection rates. For safety assessment, solicited local and systemic adverse events up to 28 d after vaccination and unsolicited adverse events up to 6 months after vaccination were evaluated. Immunogenicity was assessed in 337 and 68 children of the study and control groups. In the study vaccine group, seroconversion rates against influenza A/H1N1, A/H3N2, and B strains were 62.0% (95% CI: 56.8-67.2), 53.4% (95% CI: 48.1-58.7), and 54.9% (95% CI: 48.1-60.2), respectively. The corresponding seroprotection rates were 95.0% (95% CI: 92.6-97.3), 93.8% (95% CI: 91.2-96.4), and 95.3% (95% CI: 93.0-97.5). The lower 95% CI limits of the seroconversion and seroprotection rates were over 40% and 70%, respectively, against all strains. Seroconversion and seroprotection rates were not significantly different between the study and control vaccine groups. Furthermore, the frequencies of adverse events were not significantly different between the 2 vaccine groups, and no serious vaccination-related adverse events were noted. In conclusion, the study vaccine exhibited substantial immunogenicity and safety in Korean children and is expected to be clinically effective. PMID:25875868

  16. Production of Inactivated Influenza H5N1 Vaccines from MDCK Cells in Serum-Free Medium

    PubMed Central

    Hu, Alan Yung-Chih; Tseng, Yu-Fen; Weng, Tsai-Chuan; Liao, Chien-Chun; Wu, Johnson; Chou, Ai-Hsiang; Chao, Hsin-Ju; Gu, Anna; Chen, Janice; Lin, Su-Chen; Hsiao, Chia-Hsin; Wu, Suh-Chin; Chong, Pele

    2011-01-01

    Background Highly pathogenic influenza viruses pose a constant threat which could lead to a global pandemic. Vaccination remains the principal measure to reduce morbidity and mortality from such pandemics. The availability and surging demand for pandemic vaccines needs to be addressed in the preparedness plans. This study presents an improved high-yield manufacturing process for the inactivated influenza H5N1 vaccines using Madin-Darby canine kidney (MDCK) cells grown in a serum-free (SF) medium microcarrier cell culture system. Principal Finding The current study has evaluated the performance of cell adaptation switched from serum-containing (SC) medium to several commercial SF media. The selected SF medium was further evaluated in various bioreactor culture systems for process scale-up evaluation. No significant difference was found in the cell growth in different sizes of bioreactors studied. In the 7.5 L bioreactor runs, the cell concentration reached to 2.3×106 cells/mL after 5 days. The maximum virus titers of 1024 Hemagglutinin (HA) units/50 µL and 7.1±0.3×108 pfu/mL were obtained after 3 days infection. The concentration of HA antigen as determined by SRID was found to be 14.1 µg/mL which was higher than those obtained from the SC medium. A mouse immunogenicity study showed that the formalin-inactivated purified SF vaccine candidate formulated with alum adjuvant could induce protective level of virus neutralization titers similar to those obtained from the SC medium. In addition, the H5N1 viruses produced from either SC or SF media showed the same antigenic reactivity with the NIBRG14 standard antisera. Conclusions The advantages of this SF cell-based manufacturing process could reduce the animal serum contamination, the cost and lot-to-lot variation of SC medium production. This study provides useful information to manufacturers that are planning to use SF medium for cell-based influenza vaccine production. PMID:21283675

  17. CD4+ T cells provide protection against acute lethal encephalitis caused by Venezuelan equine encephalitis virus

    PubMed Central

    Yun, Nadezhda E.; Peng, Bi-Hung; Bertke, Andrea S.; Borisevich, Viktoriya; Smith, Jennifer K.; Smith, Jeanon N.; Poussard, Allison L.; Salazar, Milagros; Judy, Barbara M.; Zacks, Michele A.; Estes, D. Mark; Paessler, Slobodan

    2009-01-01

    Studying the mechanisms of host survival resulting from viral encephalitis is critical to the development of vaccines. Here we have shown in several independent studies that high-dose treatment with neutralizing antibody prior to intranasal infection with Venezuelan equine encephalitis virus had an antiviral effect in the visceral organs and prolonged survival time of infected mice, even in the absence of alpha beta T cells. Nevertheless, the antibody treatment did not prevent the development of lethal encephalitis. In contrary, the adoptive transfer of primed CD4+ T cells is necessary to prevent lethal encephalitis in mice lacking alpha beta T cell receptor. PMID:19446933

  18. A randomized study of the immunogenicity and safety of Japanese Encephalitis Chimeric Virus Vaccine (JE-CV) in comparison with SA14-14-2 Vaccine in children in the Republic of Korea

    PubMed Central

    Kim, Dong Soo; Houillon, Guy; Jang, Gwang Cheon; Cha, Sung-Ho; Choi, Soo-Han; Lee, Jin; Kim, Hwang Min; Kim, Ji Hong; Kang, Jin Han; Kim, Jong-Hyun; Kim, Ki Hwan; Kim, Hee Soo; Bang, Joon; Naimi, Zulaikha; Bosch-Castells, Valérie; Boaz, Mark; Bouckenooghe, Alain

    2014-01-01

    A new live attenuated Japanese encephalitis chimeric virus vaccine (JE-CV) has been developed based on innovative technology to give protection against JE with an improved immunogenicity and safety profile. In this phase 3, observer-blind study, 274 children aged 12−24 months were randomized 1:1 to receive one dose of JE-CV (Group JE-CV) or the SA14–14–2 vaccine currently used to vaccinate against JE in the Republic of Korea (Group SA14–14–2). JE neutralizing antibody titers were assessed using PRNT50 before and 28 days after vaccination. The primary endpoint of non-inferiority of seroconversion rates on D28 was demonstrated in the Per Protocol analysis set as the difference between Group JE-CV and Group SA14–14–2 was 0.9 percentage points (95% confidence interval [CI]: −2.35; 4.68), which was above the required −10%. Seroconversion and seroprotection rates 28 days after administration of a single vaccine dose were 100% in Group JE-CV and 99.1% in Group SA14–14–2; all children except one (Group SA14–14–2) were seroprotected. Geometric mean titers (GMTs) increased in both groups from D0 to D28; GM of titer ratios were slightly higher in Group JE-CV (182 [95% CI: 131; 251]) than Group SA14–14–2 (116 [95% CI: 85.5, 157]). A single dose of JE-CV was well tolerated and no safety concerns were identified. In conclusion, a single dose of JE-CV or SA14–14–2 vaccine elicited a comparable immune response with a good safety profile. Results obtained in healthy Korean children aged 12−24 months vaccinated with JE-CV are consistent with those obtained in previous studies conducted with JE-CV in toddlers. PMID:25483480

  19. Cost-effectiveness of routine immunization to control Japanese encephalitis in Shanghai, China.

    PubMed Central

    Ding, Ding; Kilgore, Paul E.; Clemens, John D.; Wei, Liu; Zhi-Yi, Xu

    2003-01-01

    OBJECTIVE: To assess the cost-effectiveness of inactivated and live attenuated Japanese encephalitis (JE) vaccines given to infants and children in Shanghai. METHODS: A decision-analytical model was constructed in order to compare costs and outcomes for three hypothetical cohorts of 100,000 children followed from birth in 1997 to the age of 30 years who received either no JE vaccine, inactivated JE vaccine (P3), or live attenuated JE vaccine (SA 14-14-2). Cumulative incidences of JE from birth to 30 years of age in the pre-immunization era, i.e. before 1968, were used to estimate expected rates of JE in the absence of vaccination. The economic consequences were measured as cost per case, per death, and per disability-adjusted life year (DALY) averted for the two JE immunization programmes. FINDINGS: In comparison with no JE immunization, a programme using the P3 vaccine would prevent 420 JE cases and 105 JE deaths and would save 6456 DALYs per 100,000 persons; the use of the SA 14-14-2 vaccine would prevent 427 cases and 107 deaths and would save 6556 DALYs per 100,000 persons. Both kinds of immunization were cost saving but the SA 14-14-2 vaccine strategy resulted in a saving that was 47% greater (512,456 US dollars) than that obtained with the P3 vaccine strategy (348,246 US dollars). CONCLUSION: Both JE immunization strategies resulted in cost savings in comparison with no JE immunization. This provides a strong economic rationale for vaccinating against JE in Shanghai and suggests that vaccination against JE might be economically justifiable in other parts of China and in certain other developing countries of Asia where the disease is endemic. PMID:12856051

  20. Induction of protective immunity in animals vaccinated with recombinant vaccinia viruses that express PreM and E glycoproteins of Japanese encephalitis virus.

    PubMed Central

    Yasuda, A; Kimura-Kuroda, J; Ogimoto, M; Miyamoto, M; Sata, T; Sato, T; Takamura, C; Kurata, T; Kojima, A; Yasui, K

    1990-01-01

    A cDNA clone representing the genome of structural proteins of Japanese encephalitis virus (JEV) was inserted into the thymidine kinase gene of vaccinia virus strains LC16mO and WR under the control of a strong early-late promoter for the vaccinia virus 7.5-kilodalton polypeptide. Indirect immunofluorescence and fluorescence-activated flow cytometric analysis revealed that the recombinant vaccinia viruses expressed JEV E protein on the membrane surface, as well as in the cytoplasm, of recombinant-infected cells. In addition, the E protein expressed from the JEV recombinants reacted to nine different characteristic monoclonal antibodies, some of which have hemagglutination-inhibiting and JEV-neutralizing activities. Radioimmunoprecipitation analysis demonstrated that two major proteins expressed in recombinant-infected cells were processed and glycosylated as the authentic PreM and E glycoproteins of JEV. Inoculation of rabbits with the infectious recombinant vaccinia virus resulted in rapid production of antiserum specific for the PreM and E glycoproteins of JEV. This antiserum had both hemagglutination-inhibiting and virus-neutralizing activities against JEV. Furthermore, mice vaccinated with the recombinant also produced JEV-neutralizing antibodies and were resistant to challenge with JEV. Images PMID:2159544

  1. Development of Novel Vaccines against Enterovirus-71.

    PubMed

    Yee, Pinn Tsin Isabel; Poh, Chit Laa

    2016-01-01

    The hand, foot and mouth disease is caused by a group of Enteroviruses such as Enterovirus 71 (EV-A71) and Coxsackievirus CV-A5, CV-A8, and CV-A16. Mild symptoms of EV-A71 infection in children range from high fever, vomiting, rashes and ulcers in mouth but can produce more severe symptoms such as brainstem and cerebellar encephalitis, leading up to cardiopulmonary failure and death. The lack of vaccines and antiviral drugs against EV-A71 highlights the urgency of developing preventive and treatment agents against EV-A71 to prevent further fatalities. Research groups have developed experimental inactivated vaccines, recombinant Viral Protein 1 (VP1) vaccine and virus-like particles (VLPs). The inactivated EV-A71 vaccine is considered the safest viral vaccine, as there will be no reversion to the infectious wild type strain. The recombinant VP1 vaccine is a cost-effective immunogen, while VLPs contain an arrangement of epitopes that can elicit neutralizing antibodies against the virus. As each type of vaccine has its advantages and disadvantages, increased studies are required in the development of such vaccines, whereby high efficacy, long-lasting immunity, minimal risk to those vaccinated, safe and easy production, low cost, dispensing the need for refrigeration and convenient delivery are the major goals in their design. PMID:26729152

  2. Development of Novel Vaccines against Enterovirus-71

    PubMed Central

    Yee, Pinn Tsin Isabel; Poh, Chit Laa

    2015-01-01

    The hand, foot and mouth disease is caused by a group of Enteroviruses such as Enterovirus 71 (EV-A71) and Coxsackievirus CV-A5, CV-A8, and CV-A16. Mild symptoms of EV-A71 infection in children range from high fever, vomiting, rashes and ulcers in mouth but can produce more severe symptoms such as brainstem and cerebellar encephalitis, leading up to cardiopulmonary failure and death. The lack of vaccines and antiviral drugs against EV-A71 highlights the urgency of developing preventive and treatment agents against EV-A71 to prevent further fatalities. Research groups have developed experimental inactivated vaccines, recombinant Viral Protein 1 (VP1) vaccine and virus-like particles (VLPs). The inactivated EV-A71 vaccine is considered the safest viral vaccine, as there will be no reversion to the infectious wild type strain. The recombinant VP1 vaccine is a cost-effective immunogen, while VLPs contain an arrangement of epitopes that can elicit neutralizing antibodies against the virus. As each type of vaccine has its advantages and disadvantages, increased studies are required in the development of such vaccines, whereby high efficacy, long-lasting immunity, minimal risk to those vaccinated, safe and easy production, low cost, dispensing the need for refrigeration and convenient delivery are the major goals in their design. PMID:26729152

  3. Effect of inactivation method on the cross-protective immunity induced by whole 'killed' influenza A viruses and commercial vaccine preparations.

    PubMed

    Furuya, Yoichi; Regner, Matthias; Lobigs, Mario; Koskinen, Aulikki; Müllbacher, Arno; Alsharifi, Mohammed

    2010-06-01

    We have recently shown that intranasal (i.n.) administration of gamma-irradiated A/PR/8 [A/Puerto Rico/8/34 (H1N1)] protects mice against lethal avian influenza A/Vietnam/1203/2004 (H5N1) and other heterosubtypic influenza A infections. Here, we used gamma-irradiated, formalin- and UV-inactivated A/PC [A/Port Chalmers/1/73 (H3N2)] virus preparations and compared their ability to induce both homologous and heterosubtypic protective immunity. Our data show that, in contrast to i.n. vaccination with formalin- or UV-inactivated virus, or the present commercially available trivalent influenza vaccine, a single dose of gamma-ray-inactivated A/PC (gamma-A/PC) conferred significant protection in mice against both homologous and heterosubtypic virus challenges. A multiple immunization regime was required for formalin-inactivated virus preparations to induce protective immunity against a homotypic virus challenge, but did not induce influenza A strain cross-protective immunity. The highly immunogenic gamma-A/PC, but not formalin- or UV-inactivated A/PC, nor the currently available subvirion vaccine, elicited cytotoxic T-cell responses that are most likely responsible for the cross-protective and long-lasting immunity against highly lethal influenza A infections in mice. Finally, freeze-drying of gamma-A/PC did not affect the ability to induce cross-protective immunity. PMID:20147516

  4. First comparison of adjuvant for trivalent inactivated Haemophilus parasuis serovars 4, 5 and 12 vaccines against Glässer's disease.

    PubMed

    Xue, Qiao; Zhao, Zhanqin; Liu, Huisheng; Chen, Kunpeng; Xue, Yun; Wang, Le

    2015-12-15

    Haemophilus parasuis has had a huge impact in the swine industry throughout the world. Inactivated bacterium for H. parasuis is a traditional vaccine that can elicit efficient protection against homologous challenges. The objective of this study was to screen for the adjuvant-enhanced immune effect of trivalent inactivated H. parasuis serovars 4, 5 and 12 (prevalent serovars in China) vaccines against Glässer's disease. The adjuvants of mineral oil, aluminum hydroxide, Montanide GEL 01 PR, Montanide IMS 1313N VG and Montanide ISA 760 VG were used to make emulsified inactivated H. parasuis serovars 4, 5 and 12, respectively. Safety, antibody titer and protective efficacy of these vaccines were examined separately in piglets, and the feasibility of microagglutination test for detecting antibody titer of H. parasuis was confirmed for the first time. Due to easy of injection, high safety, rapidly immune responses, high concentrations of antibody, and 100% of protective efficacy for piglets, Montanide GEL 01 PR adjuvant can provide more homologous serovar protection than other domestically developed inactivated vaccines and should be used as a candidate adjuvant. PMID:26672914

  5. Detection and characterization of influenza A virus endemic circulation in neonatal and nursery pigs in a farm using an inactivated influenza vaccine

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Influenza A virus (IAV) is the cause of an acute respiratory disease affecting swine worldwide with potential zoonotic implications. Inactivated IAV vaccines used in breeding females provides passive immunity to neonatal piglets through colostrum. However, maternally derived antibody (MDA) may reduc...

  6. Cross-reactive immune responses following vaccination with a live-attenuated influenza virus compared to adjuvanted, whole-inactivated virus in pigs

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Circulating influenza A virus (IAV) in North America pigs consist of H3N2, H1N2, and H1N1 (4 genetic clusters) which contain the triple reassortant internal gene (TRIG) cassette resulting from incorporation of genes from swine, avian, and human IAV. Adjuvanted, whole-inactivated virus (WIV) vaccines...

  7. Passive protection of shrimp against white spot syndrome virus (WSSV) using specific antibody from egg yolk of chickens immunized with inactivated virus or a WSSV-DNA vaccine.

    PubMed

    Lu, Yanan; Liu, Junjun; Jin, Liji; Li, Xiaoyu; Zhen, Yuhong; Xue, Hongyu; You, Jiansong; Xu, Yongping

    2008-11-01

    White spot syndrome virus (WSSV) causes high mortality and large economic losses in cultured shrimp. The VP28, VP19 and VP15 genes encode viral structural proteins of WSSV. In this study, hens were immunized with recombinant plasmid (pCI-VP28/VP19/VP15) with linkers or with inactivated WSSV, which used CpG oligodeoxynucleotides (CpG ODNs) and Freund's adjuvant as adjuvant, respectively. Egg yolk immunoglobulin (IgY) from hens immunized with inactivated vaccine and DNA vaccine was obtained, purified and used for protection of Metapenaeus ensis shrimp against WSSV. The data showed that the antibody response of the hens immunized with the DNA vaccine was improved by CpG ODNs as adjuvant, but was still inferior to inactivated WSSV in both sera and egg yolks. Using specific IgY from hens immunized with inactivated WSSV and DNA vaccine to neutralize WSSV, the challenged shrimp showed 73.3% and 33.3% survival, respectively. Thus, the results suggest that passive immunization strategy with IgY will be a valuable method against WSSV infection in shrimp. PMID:18805492

  8. Modified live virus vaccine induces a distinct immune response profile compared to inactivated influenza A virus vaccines in swine

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Genetic and antigenic diversity within H1 influenza A virus (IAV) subtypes circulating in swine is increasing. The need for cross-protective influenza vaccines in swine is necessary as the virus becomes more diverse. This study compared the humoral and cell-mediated immune response of modified live ...

  9. Health-Related Behaviors and Effectiveness of Trivalent Inactivated versus Live Attenuated Influenza Vaccine in Preventing Influenza-Like Illness among Young Adults

    PubMed Central

    Sevick, Carter; Crum-Cianflone, Nancy F.; Blair, Patrick J.; Faix, Dennis

    2014-01-01

    Background Vaccination is the preferred preventive strategy against influenza. Though health behaviors are known to affect immunity and vaccine delivery modes utilize different immune processes, data regarding the preferred influenza vaccine type among adults endorsing specific health-related behaviors (alcohol use, tobacco use, and exercise level) are limited. Methods The relative effectiveness of two currently available influenza vaccines were compared for prevention of influenza-like illness during 2 well-matched influenza seasons (2006/2007, 2008/2009) among US military personnel aged 18–49 years. Relative vaccine effectiveness was compared between those self-reporting and not reporting recent smoking history and potential alcohol problem, and by exercise level using Cox proportional hazard modeling adjusted for sociodemographic and military factors, geographic area, and other health behaviors. Results 28,929 vaccination events and 3936 influenza-like illness events over both influenza seasons were studied. Of subjects, 27.5% were smokers, 7.7% had a potential alcohol-related problem, 10.5% reported minimal exercise, and 4.4% reported high exercise levels. Overall, the risk of influenza-like illness did not significantly differ between live attenuated and trivalent inactivated influenza vaccine recipients (hazard ratio, 0.98; 95% confidence interval, 0.90–1.06). In the final adjusted model, the relative effectiveness of the 2 vaccine types did not differ by smoking status (p = 0.10), alcohol status (p = 0.21), or activity level (p = 0.11). Conclusions Live attenuated and trivalent inactivated influenza vaccines were similarly effective in preventing influenza-like illness among young adults and did not differ by health-related behavior status. Influenza vaccine efforts should continue to focus simply on delivering vaccine. PMID:25013931

  10. Expansion of syndromic vaccine preventable disease surveillance to include bacterial meningitis and Japanese encephalitis: Evaluation of adapting polio and measles laboratory networks in Bangladesh, China and India, 2007–2008

    PubMed Central

    Cavallaro, Kathleen F.; Sandhu, Hardeep S.; Hyde, Terri B.; Johnson, Barbara W.; Fischer, Marc; Mayer, Leonard W.; Clark, Thomas A.; Pallansch, Mark A.; Yin, Zundong; Zuo, Shuyan; Hadler, Stephen C.; Diorditsa, Serguey; Hasan, A.S.M. Mainul; Bose, Anindya S.; Dietz, Vance

    2016-01-01

    Background Surveillance for acute flaccid paralysis with laboratory confirmation has been a key strategy in the global polio eradication initiative, and the laboratory platform established for polio testing has been expanded in many countries to include surveillance for cases of febrile rash illness to identify measles and rubella cases. Vaccine-preventable disease surveillance is essential to detect outbreaks, define disease burden, guide vaccination strategies and assess immunization impact. Vaccines now exist to prevent Japanese encephalitis (JE) and some etiologies of bacterial meningitis. Methods We evaluated the feasibility of expanding polio–measles surveillance and laboratory networks to detect bacterial meningitis and JE, using surveillance for acute meningitis-encephalitis syndrome in Bangladesh and China and acute encephalitis syndrome in India. We developed nine syndromic surveillance performance indicators based on international surveillance guidelines and calculated scores using supervisory visit reports, annual reports, and case-based surveillance data. Results Scores, variable by country and targeted disease, were highest for the presence of national guidelines, sustainability, training, availability of JE laboratory resources, and effectiveness of using polio–measles networks for JE surveillance. Scores for effectiveness of building on polio–measles networks for bacterial meningitis surveillance and specimen referral were the lowest, because of differences in specimens and techniques. Conclusions Polio–measles surveillance and laboratory networks provided useful infrastructure for establishing syndromic surveillance and building capacity for JE diagnosis, but were less applicable for bacterial meningitis. Laboratory-supported surveillance for vaccine-preventable bacterial diseases will require substantial technical and financial support to enhance local diagnostic capacity. PMID:25597940

  11. Evaluation of the immune response elicited by vaccination with viral vectors encoding FMDV capsid proteins and boosted with inactivated virus.

    PubMed

    Romanutti, Carina; D'Antuono, Alejandra; Palacios, Carlos; Quattrocchi, Valeria; Zamorano, Patricia; La Torre, Jose; Mattion, Nora

    2013-08-30

    The aim of the present study was to assess the effect of introducing a priming step with replication-defective viral vectors encoding the capsid proteins of FMDV, followed by a boost with killed virus vaccines, using a suitable BALB/c mice model. Additionally, the immune response to other combined vector immunization regimens was studied. For this purpose, we analyzed different prime-boost immunizations with recombinant adenovirus (Ad), herpesvirus amplicons (Hs) and/or killed virus (KV) vaccines. The highest antibody titers were found in the group that received two doses of adjuvanted KV (P<0.002). Antibody titers were higher in those groups receiving a mixed regimen of vectors, compared to immunization with either vector alone (P<0.0001). Priming with any of the viral vectors induced a shift of the cytokine balance toward a Th1 type immune response regardless of the delivery system used for boosting. The highest IgG1 titer was induced by two doses of adjuvanted KV (P=0.0002) and the highest IgG2a titer corresponded to the group primed with Ad and boosted with KV (P=0.01). Re-stimulation of all groups of mice with 0.5 μg of inactivated virus five months later resulted in a fast increase of antibody titers in all the groups tested. After virus stimulation, antibody titers in the groups that received KV alone or Ad prime-KV boost, were indistinguishable (P=0.800). Protection from challenge was similar (75%) in the groups of animals that received Ad prime-Hs boost or Ad prime-KV boost, or two doses of oil-adjuvanted KV. The data presented in this study suggest that sequential immunization with viral vectors-based vaccines combined with protein-based vaccines have the potential to enhance the quality of the immune response against FMDV. PMID:23683999

  12. Combined use of inactivated and oral poliovirus vaccines in refugee camps and surrounding communities - Kenya, December 2013.

    PubMed

    Sheikh, Mohamed A; Makokha, Frederick; Hussein, Abdullahi M; Mohamed, Gedi; Mach, Ondrej; Humayun, Kabir; Okiror, Samuel; Abrar, Leila; Nasibov, Orkhan; Burton, John; Unshur, Ahmed; Wannemuehler, Kathleen; Estivariz, Concepcion F

    2014-03-21

    Since the launch of the Global Polio Eradication Initiative (GPEI) in 1988, circulation of indigenous wild poliovirus (WPV) has continued without interruption in only three countries: Afghanistan, Nigeria, and Pakistan. During April-December 2013, a polio outbreak caused by WPV type 1 (WPV1) of Nigerian origin resulted in 217 cases in or near the Horn of Africa, including 194 cases in Somalia, 14 cases in Kenya, and nine cases in Ethiopia (all cases were reported as of March 10, 2014). During December 14-18, 2013, Kenya conducted the first-ever campaign providing inactivated poliovirus vaccine (IPV) together with oral poliovirus vaccine (OPV) as part of its outbreak response. The campaign targeted 126,000 children aged ≤59 months who resided in Somali refugee camps and surrounding communities near the Kenya-Somalia border, where most WPV1 cases had been reported, with the aim of increasing population immunity levels to ensure interruption of any residual WPV transmission and prevent spread from potential new importations. A campaign evaluation and vaccination coverage survey demonstrated that combined administration of IPV and OPV in a mass campaign is feasible and can achieve coverage >90%, although combined IPV and OPV campaigns come at a higher cost than OPV-only campaigns and require particular attention to vaccinator training and supervision. Future operational studies could assess the impact on population immunity and the cost-effectiveness of combined IPV and OPV campaigns to accelerate interruption of poliovirus transmission during polio outbreaks and in certain areas in which WPV circulation is endemic. PMID:24647400

  13. The effectiveness of seasonal trivalent inactivated influenza vaccine in preventing laboratory confirmed influenza hospitalisations in Auckland, New Zealand in 2012

    PubMed Central

    Turner, Nikki; Pierse, Nevil; Bissielo, Ange; Huang, Q Sue; Baker, Michael; Widdowson, Marc-Alain; Kelly, Heath

    2015-01-01

    Background Few studies report the effectiveness of trivalent inactivated influenza vaccine (TIV) in preventing hospitalisation for influenza-confirmed respiratory infections. Using a prospective surveillance platform, this study reports the first such estimate from a well-defined ethnically diverse population in New Zealand (NZ). Methods A case test-negative study was used to estimate propensity adjusted vaccine effectiveness. Patients with a severe acute respiratory infection (SARI), defined as a patient of any age requiring hospitalization with a history of a fever or a measured temperature ≥38°C and cough and onset within the past 7 days, admitted to public hospitals in Central, South and East Auckland were eligible for inclusion in the study. Cases were SARI patients who tested positive for influenza, while non-cases (controls) were SARI patients who tested negative. Results were adjusted for the propensity to be vaccinated and the timing of the influenza season Results The propensity and season adjusted vaccine effectiveness (VE) was estimated as 37% (95% CI 18;51). The VE point estimate against influenza A (H1N1) was higher than for influenza B or influenza A (H3N2) but confidence intervals were wide and overlapping. Estimated VE was 51% (95% CI 28;67) in patients aged 18-64 years but only 6% (95% CI -51;42) in those aged 65 years and above. Conclusion Prospective surveillance for SARI has been successfully established in NZ . This study for the first year, the 2012 influenza season, has shown low to moderate protection by TIV against hospitalisation for laboratory-confirmed influenza. PMID:24768730

  14. Immune responses of flounder Paralichthys olivaceus vaccinated by immersion of formalin-inactivated Edwardsiella tarda following hyperosmotic treatment.

    PubMed

    Gao, Ying-Li; Tang, Xiao-Qian; Sheng, Xiu-Zhen; Xing, Jing; Zhan, Wen-Bin

    2015-10-16

    The aim of the present study was to evaluate the effects of hyperosmotic immersion (HI) vaccination and determine the optimum hyperosmotic salinity for flounder Paralichthys olivaceus by investigating its immune responses following vaccination. Flounder were immersed in 1 of 3 hyperosmotic solutions at 50, 60 and 70‰ salinity, then transferred into 30‰ salinity normal seawater containing formalin-inactivated Edwardsiella tarda for vaccination (3 HI groups), or were immersed in normal seawater as direct immersion (DI group). The results showed that the percentages of surface membrane immunoglobulin-positive (sIg+) cells in peripheral blood leukocytes and spleen leukocytes induced by HI were significantly higher than that with DI (p < 0.05), and the 50‰ salinity group showed the strongest response among the HI groups, which reached peaks at Week 4. ELISA assay showed that the specific serum antibodies gradually increased after vaccination and reached peak at Day 32, and the fish treated with HI showed stronger antibody responses; among the HI groups, a significantly higher specific antibody level was detected in the 50‰ salinity group at Day 32 (p < 0.05). Similarly, the fish treated with HI showed higher specific mucosal antibody levels compared to the DI group, and the mucosal antibody showed a faster response, with peak time arriving 1 wk earlier than for the serum antibody. The relative percent survival (RPS) of flounder treated with HI at 50, 60 and 70‰ salinities were 79, 71 and 57% respectively, while this was 43% in the DI group. These results demonstrated that HI, especially the 50‰ salinity, could efficiently enhance the immune response of flounder and show higher RPS. This has significant value for immunological prevention of edwardsiellosis in flounder. PMID:26480914

  15. Comprehensive safety assessment of a human inactivated diploid enterovirus 71 vaccine based on a phase III clinical trial.

    PubMed

    Zhang, Wei; Kong, Yujia; Jiang, Zhiwei; Li, Chanjuan; Wang, Ling; Xia, Jielai

    2016-04-01

    Human enterovirus 71 (EV71) is a causative agent of hand, foot, and mouth disease (HFMD). In a previous phase III trial in children, a human diploid cell-based inactivated EV71 vaccine elicited EV71 specific immune responses and protection against EV71 associated HFMD. This study aimed to assess the factors influencing the severity of adverse events observed in this previous trial. This was a randomized, double-blinded, placebo-controlled, phase III clinical trial of a human diploid vaccine carried out in 12,000 children in Guangxi Zhuang Autonomous Region, China (ClinicalTrials.gov: NCT01569581). Solicited events were recorded for 7 days and unsolicited events were reported for 28 days after each injection. Age trend analysis of adverse reaction was conducted in each treatment group. Multiple logistic regression models were built to identify factors influencing the severity of adverse reactions. Fewer solicited adverse reactions were observed in older participants within the first 7 days after vaccination (P < 0.0001), except local pain and pruritus. More severe adverse reactions were observed after the initial injection than after the booster injection. Serious cold or respiratory tract infections (RTI) were observed more often in children aged 6-36 months than in older children. Only the severity of local swelling was associated with body mass index. Children with throat discomfort before injection had a higher risk of serious cold or RTI. These results indicated that the human diploid cell-based vaccine achieved a satisfactory safety profile. PMID:26837471

  16. Improvement of the Trivalent Inactivated Flu Vaccine Using PapMV Nanoparticles

    PubMed Central

    Savard, Christian; Guérin, Annie; Drouin, Karine; Bolduc, Marilène; Laliberté-Gagné, Marie-Eve; Dumas, Marie-Christine; Majeau, Nathalie; Leclerc, Denis

    2011-01-01

    Commercial seasonal flu vaccines induce production of antibodies directed mostly towards hemaglutinin (HA). Because HA changes rapidly in the circulating virus, the protection remains partial. Several conserved viral proteins, e.g., nucleocapsid (NP) and matrix proteins (M1), are present in the vaccine, but are not immunogenic. To improve the protection provided by these vaccines, we used nanoparticles made of the coat protein of a plant virus (papaya mosaic virus; PapMV) as an adjuvant. Immunization of mice and ferrets with the adjuvanted formulation increased the magnitude and breadth of the humoral response to NP and to highly conserved regions of HA. They also triggered a cellular mediated immune response to NP and M1, and long-lasting protection in animals challenged with a heterosubtypic influenza strain (WSN/33). Thus, seasonal flu vaccine adjuvanted with PapMV nanoparticles can induce universal protection to influenza, which is a major advancement when facing a pandemic. PMID:21747909

  17. Adjuvant activity of Chinese herbal polysaccharides in inactivated veterinary rabies vaccines.

    PubMed

    Liu, Ye; Zhang, Shoufeng; Zhang, Fei; Hu, Rongliang

    2012-04-01

    Four botanical polysaccharide preparations (from Astragalus, Echinacea, wolfberry, and kelp) were evaluated as immunopotentiators/adjuvants of a veterinary rabies vaccine. Results showed that lymphocyte proliferation and some cytokines were significantly elevated, with cellular immune responses skewed towards Th1 and Tc1. All four polysaccharides produced accelerated and enhanced effects on rabies-neutralizing antibody responses in mice and dogs. The results also indicated that certain botanical polysaccharides could be used in rabies vaccine formulations for early and persistent prophylaxis. PMID:22326819

  18. A potential molecular mechanism for hypersensitivity caused by formalin-inactivated vaccines.

    PubMed

    Moghaddam, Amin; Olszewska, Wieslawa; Wang, Belinda; Tregoning, John S; Helson, Rebecca; Sattentau, Quentin J; Openshaw, Peter J M

    2006-08-01

    Heat, oxidation and exposure to aldehydes create reactive carbonyl groups on proteins, targeting antigens to scavenger receptors. Formaldehyde is widely used in making vaccines, but has been associated with atypical enhanced disease during subsequent infection with paramyxoviruses. We show that carbonyl groups on formaldehyde-treated vaccine antigens boost T helper type 2 (T(H)2) responses and enhance respiratory syncytial virus (RSV) disease in mice, an effect partially reversible by chemical reduction of carbonyl groups. PMID:16862151

  19. Comparative Efficacy of Feline Leukemia Virus (FeLV) Inactivated Whole-Virus Vaccine and Canarypox Virus-Vectored Vaccine during Virulent FeLV Challenge and Immunosuppression.

    PubMed

    Patel, M; Carritt, K; Lane, J; Jayappa, H; Stahl, M; Bourgeois, M

    2015-07-01

    Four vaccines for feline leukemia virus (FeLV) are available in the United States. This study's purpose was to compare the efficacy of Nobivac feline 2-FeLV (an inactivated, adjuvanted whole-virus vaccine) and PureVax recombinant FeLV (a live, canarypox virus-vectored vaccine) following FeLV challenge. Cats were vaccinated at 9 and 12 weeks with Nobivac feline 2-FeLV (group A, n = 11) or PureVax recombinant FeLV (group B, n = 10). Group C (n = 11) comprised unvaccinated controls. At 3 months postvaccination, cats were immunosuppressed and challenged with FeLV-A/61E. The outcomes measured were persistent antigenemia at 12 weeks postchallenge (PC) and proviral DNA and viral RNA at 3 to 9 weeks PC. Persistent antigenemia was observed in 0 of 11 cats in group A, 5 of 10 cats in group B, and 10 of 11 cats in group C. Group A was significantly protected compared to those in groups B (P < 0.013) and C (P < 0.0001). No difference was found between groups B and C (P > 0.063). The preventable fraction was 100% for group A and 45% for group B. At 9 weeks PC, proviral DNA and viral RNA were detected 1 of 11 cats in group A, 6 of 10 cats in group B, and 9 of 11 cats in group C. Nucleic acid loads were significantly lower in group A than in group C (P < 0.01). Group A had significantly lower proviral DNA loads than group B at weeks 6 to 9 (P < 0.02). The viral RNA loads were significantly lower in group A than in group B at weeks 7 to 9 (P < 0.01). The results demonstrate that Nobivac feline 2-FeLV-vaccinated cats were fully protected against persistent antigenemia and had significantly smaller amounts of proviral DNA and plasma viral RNA loads than PureVax recombinant FeLV-vaccinated cats and unvaccinated controls. PMID:25972402

  20. Phase 1 study of an inactivated vaccine against American tegumentary leishmaniasis in normal volunteers in Brazil.

    PubMed

    Marzochi, K B; Marzochi, M A; Silva, A F; Grativol, N; Duarte, R; Confort, E M; Modabber, F

    1998-01-01

    A Phase 1 double-blind placebo-controlled study was performed to evaluate a vaccine against American tegumentary leishmaniasis in 61 healthy male volunteers. Side effects and the immune response to the vaccine were evaluated, with 1- and 2- dose schemes, with intervals of 7 or 21 days, each dose containing 1440 mg of protein N antigen of a single strain of Leishmania amazonensis (PH8) diluted in merthiolated saline (1:10,000). Merthiolated saline and an inert substance were used as placebos. No significant clinical alterations were found following the respective injections in the vaccinated individuals as compared to the placebos, except for local pain, which was associated significantly with injection of the vaccine. The laboratory alterations we observed bore no association with the clinical findings and were unimportant. We observed no differences between the groups with regard to seroconversion of the Montenegro skin test. However, the group that received a single dose of the vaccine and the one that received two doses with a 21-day interval displayed cutaneous induration significantly larger than in the control group, with 100%, 100%, and 66% conversion in the skin test, respectively. We concluded that the vaccine does not present any major side effect that would contraindicate its use in healthy individuals. PMID:9698895

  1. Immunogenicity against Far Eastern and Siberian subtypes of tick-borne encephalitis (TBE) virus elicited by the currently available vaccines based on the European subtype: systematic review and meta-analysis.

    PubMed

    Domnich, Alexander; Panatto, Donatella; Arbuzova, Eva Klementievna; Signori, Alessio; Avio, Ulderico; Gasparini, Roberto; Amicizia, Daniela

    2014-01-01

    Tick-borne encephalitis (TBE) virus, which is usually divided into European, Far Eastern and Siberian subtypes, is a serious public health problem in several European and Asian countries. Vaccination is the most effective measure to prevent TBE; cross-subtype protection elicited by the TBE vaccines is biologically plausible since all TBE virus subtypes are closely related. This manuscript systematically explores available data on the cross-subtype immunogenicity elicited by the currently available Western vaccines based on the European subtype. Completed immunization course of 3 doses of both Western vaccines determined very high seroconversion/seropositivity rates against both Far Eastern and Siberian subtypes among previously flavivirus-naïve subjects. All but one study found no statistically significant difference in titers of neutralizing antibodies against strains belonging to homologous and heterologous subtypes. Pooled analysis of randomized controlled trials on head-to-head comparison of immunogenicity of Western and Russian TBE vaccines did not reveal differences in seroconversion rates against Far Eastern isolates in either hemagglutination inhibition (risk ratio = 0.98, p = 0.83) or enzyme-linked immunosorbent (risk ratio = 0.95, p = 0.44) assays after 2 vaccine doses. This suggests that, in regions where a heterogeneous TBE virus population circulates, vaccines based on the European subtype may be used alongside vaccines based on the Far Eastern subtype. Studies on the field effectiveness of TBE vaccines and investigation of vaccination failures, especially in countries where different subtypes co-circulate, will further elucidate TBE vaccination-induced cross-subtype protection. PMID:25483679

  2. An Adjuvanted, Tetravalent Dengue Virus Purified Inactivated Vaccine Candidate Induces Long-Lasting and Protective Antibody Responses Against Dengue Challenge in Rhesus Macaques

    PubMed Central

    Fernandez, Stefan; Thomas, Stephen J.; De La Barrera, Rafael; Im-erbsin, Rawiwan; Jarman, Richard G.; Baras, Benoît; Toussaint, Jean-François; Mossman, Sally; Innis, Bruce L.; Schmidt, Alexander; Malice, Marie-Pierre; Festraets, Pascale; Warter, Lucile; Putnak, J. Robert; Eckels, Kenneth H.

    2015-01-01

    The immunogenicity and protective efficacy of a candidate tetravalent dengue virus purified inactivated vaccine (TDENV PIV) formulated with alum or an Adjuvant System (AS01, AS03 tested at three different dose levels, or AS04) was evaluated in a 0, 1-month vaccination schedule in rhesus macaques. One month after dose 2, all adjuvanted formulations elicited robust and persisting neutralizing antibody titers against all four dengue virus serotypes. Most of the formulations tested prevented viremia after challenge, with the dengue serotype 1 and 2 virus strains administered at 40 and 32 weeks post-dose 2, respectively. This study shows that inactivated dengue vaccines, when formulated with alum or an Adjuvant System, are candidates for further development. PMID:25646261

  3. [Autoimmune encephalitis].

    PubMed

    Günther, Albrecht; Schubert, Julia; Brämer, Dirk; Witte, Otto Wilhelm

    2016-08-01

    Autoimmune encephalitis, an inflammatory disease of the brain, is usually attributed to antibody-mediated damage and dysfunction of neuronal structures. A distinction is made between onconeuronal antibodies (directed against intracellular neuronal antigens with resulting paraneoplastic neurological syndromes) and antibodies directed against neuronal cell surface proteins (with resulting synaptic encephalopathies). Anti-NMDA-Receptor-Encephalitis, the most common form of autoimmune encephalopathy, is characterized by a phased course of disease. Early disease phase involves nonspecific prodromes (fatigue, fever, headache) which lead to family doctor or emergency department consultation. Subsequently, neuropsychiatric behavioural problems, seizures, disturbance of memory and finally coma, dysautonomia and respiratory insufficiency often result in major complications (e.g. status epilepticus) necessitating intensive care treatment. The diagnosis is secured by detection of auto-antibodies in serum or cerebrospinal fluid. An intensive search for tumors is also recommended. The treatment of autoimmune encephalitis comprises of immunomodulatory and immunosuppessive strategies. Tumor therapy is the most important treatment of autoimmune encephalitis by onconeuronal antibodies. PMID:27557073

  4. Deaths following vaccination: What does the evidence show?

    PubMed Central

    Miller, Elaine R.; Moro, Pedro L.; Cano, Maria; Shimabukuro, Tom

    2015-01-01

    Vaccines are rigorously tested and monitored and are among the safest medical products we use. Millions of vaccinations are given to children and adults in the United States each year. Serious adverse reactions are rare. However, because of the high volume of use, coincidental adverse events including deaths, that are temporally associated with vaccination, do occur. When death occurs shortly following vaccination, loved ones and others might naturally question whether it was related to vaccination. A large body of evidence supports the safety of vaccines, and multiple studies and scientific reviews have found no association between vaccination and deaths except in rare cases. During the US multi-state measles outbreak of 2014–2015, unsubstantiated claims of deaths caused by measles, mumps, and rubella (MMR) vaccine began circulating on the Internet, prompting responses by public health officials to address common misinterpretations and misuses of vaccine safety surveillance data, particularly around spontaneous reports submitted to the US Vaccine Adverse Event Reporting System (VAERS). We summarize epidemiologic data on deaths following vaccination, including examples where reasonable scientific evidence exists to support that vaccination caused or contributed to deaths. Rare cases where a known or plausible theoretical risk of death following vaccination exists include anaphylaxis, vaccine-strain systemic infection after administration of live vaccines to severely immunocompromised persons, intussusception after rotavirus vaccine, Guillain-Barré syndrome after inactivated influenza vaccine, fall-related injuries associated with syncope after vaccination, yellow fever vaccine-associated viscerotropic disease or associated neurologic disease, serious complications from smallpox vaccine including eczema vaccinatum, progressive vaccinia, postvaccinal encephalitis, myocarditis, and dilated cardiomyopathy, and vaccine-associated paralytic poliomyelitis from oral

  5. Deaths following vaccination: What does the evidence show?

    PubMed

    Miller, Elaine R; Moro, Pedro L; Cano, Maria; Shimabukuro, Tom T

    2015-06-26

    Vaccines are rigorously tested and monitored and are among the safest medical products we use. Millions of vaccinations are given to children and adults in the United States each year. Serious adverse reactions are rare. However, because of the high volume of use, coincidental adverse events including deaths, that are temporally associated with vaccination, do occur. When death occurs shortly following vaccination, loved ones and others might naturally question whether it was related to vaccination. A large body of evidence supports the safety of vaccines, and multiple studies and scientific reviews have found no association between vaccination and deaths except in rare cases. During the US multi-state measles outbreak of 2014-2015, unsubstantiated claims of deaths caused by measles, mumps, and rubella (MMR) vaccine began circulating on the Internet, prompting responses by public health officials to address common misinterpretations and misuses of vaccine safety surveillance data, particularly around spontaneous reports submitted to the US Vaccine Adverse Event Reporting System (VAERS). We summarize epidemiologic data on deaths following vaccination, including examples where reasonable scientific evidence exists to support that vaccination caused or contributed to deaths. Rare cases where a known or plausible theoretical risk of death following vaccination exists include anaphylaxis, vaccine-strain systemic infection after administration of live vaccines to severely immunocompromised persons, intussusception after rotavirus vaccine, Guillain-Barré syndrome after inactivated influenza vaccine, fall-related injuries associated with syncope after vaccination, yellow fever vaccine-associated viscerotropic disease or associated neurologic disease, serious complications from smallpox vaccine including eczema vaccinatum, progressive vaccinia, postvaccinal encephalitis, myocarditis, and dilated cardiomyopathy, and vaccine-associated paralytic poliomyelitis from oral

  6. [How to prove complete virus inactivation in rabies vaccines. A comparison of an in vivo to an in vitro method

    PubMed

    Blum, Stephanie A. E.; Braunschweiger, Manuela; Krämer, Beate; Rübmann, Petra; Duchow, Karin; Cubetaler, Klaus

    1998-01-01

    At present, the complete inactivation of rabies virus in rabies vaccines ad us. vet. is proven by an animal experiment which causes severe suffering, the intracerebral injection of mice. This animal experiment yet is not validated. We have quantified the sensitivity of the mouse test and examined whether the animal experiment may be replaced by the immunofluorescence assay (IFT) as an in vitro method. Detection limits of both assays were determined depending on the examined product, i.e. prior to and after the addition of adjuvans and preservative, respectively. Furthermore, symptoms of the rabies desease were recorded and their severity was classified on a range of 1-5. Symptoms of rabies-infected mice were clear and highly specific. Symptoms classified as >/= 2 in context with a loss of >/= 15% of the initial weight were defined as humane endpoints of the desease. The quantitative detection of active virus was not inhibited in the presence of even high concentrations of inactivated virus. The detection limit of the mouse test was 10 viruses ml-1 independent of the examined product. The detection limit of the IFT prior to the addition of adjuvans and preservative was 10 viruses ml-1 as well. After the addition of these substances the detection limit rose to 103 viruses ml-1. Advantages and disadvantages of the mouse test and IFT are discussed. PMID:11178540

  7. Neutralizing antibody response in dogs and cats inoculated with commercial inactivated rabies vaccines.

    PubMed

    Shiraishi, Rikiya; Nishimura, Masaaki; Nakashima, Ryuji; Enta, Chiho; Hirayama, Norio

    2014-04-01

    In Japan, the import quarantine regulation against rabies has required from 2005 that dogs and cats should be inoculated with the rabies vaccine and that the neutralizing antibody titer should be confirmed to be at least 0.5 international units (IU)/ml. The fluorescent antibody virus neutralization (FAVN) test is used as an international standard method for serological testing for rabies. To achieve proper immunization of dogs and cats at the time of import and export, changes in the neutralizing antibody titer after inoculation of the rabies vaccine should be understood in detail. However, few reports have provided this information. In this study, we aimed to determine evaluated, such changes by using sera from experimental dogs and cats inoculated with the rabies vaccine, and we tested samples using the routine FAVN test. In both dogs and cats, proper, regular vaccination enabled the necessary titer of neutralizing antibodies to be maintained in the long term. However, inappropriate timing of blood sampling after vaccination could result in insufficient detected levels of neutralizing antibodies. PMID:24389741

  8. Neutralizing Antibody Response in Dogs and Cats Inoculated with Commercial Inactivated Rabies Vaccines

    PubMed Central

    SHIRAISHI, Rikiya; NISHIMURA, Masaaki; NAKASHIMA, Ryuji; ENTA, Chiho; HIRAYAMA, Norio

    2013-01-01

    ABSTRACT In Japan, the import quarantine regulation against rabies has required from 2005 that dogs and cats should be inoculated with the rabies vaccine and that the neutralizing antibody titer should be confirmed to be at least 0.5 international units (IU)/ml. The fluorescent antibody virus neutralization (FAVN) test is used as an international standard method for serological testing for rabies. To achieve proper immunization of dogs and cats at the time of import and export, changes in the neutralizing antibody titer after inoculation of the rabies vaccine should be understood in detail. However, few reports have provided this information. In this study, we aimed to determine evaluated, such changes by using sera from experimental dogs and cats inoculated with the rabies vaccine, and we tested samples using the routine FAVN test. In both dogs and cats, proper, regular vaccination enabled the necessary titer of neutralizing antibodies to be maintained in the long term. However, inappropriate timing of blood sampling after vaccination could result in insufficient detected levels of neutralizing antibodies. PMID:24389741

  9. Superior Immunogenicity of Inactivated Whole Virus H5N1 Influenza Vaccine is Primarily Controlled by Toll-like Receptor Signalling

    PubMed Central

    Geeraedts, Felix; Goutagny, Nadege; Hornung, Veit; Severa, Martina; de Haan, Aalzen; Pool, Judith; Wilschut, Jan; Fitzgerald, Katherine A.; Huckriede, Anke

    2008-01-01

    In the case of an influenza pandemic, the current global influenza vaccine production capacity will be unable to meet the demand for billions of vaccine doses. The ongoing threat of an H5N1 pandemic therefore urges the development of highly immunogenic, dose-sparing vaccine formulations. In unprimed individuals, inactivated whole virus (WIV) vaccines are more immunogenic and induce protective antibody responses at a lower antigen dose than other formulations like split virus (SV) or subunit (SU) vaccines. The reason for this discrepancy in immunogenicity is a long-standing enigma. Here, we show that stimulation of Toll-like receptors (TLRs) of the innate immune system, in particular stimulation of TLR7, by H5N1 WIV vaccine is the prime determinant of the greater magnitude and Th1 polarization of the WIV-induced immune response, as compared to SV- or SU-induced responses. This TLR dependency largely explains the relative loss of immunogenicity in SV and SU vaccines. The natural pathogen-associated molecular pattern (PAMP) recognized by TLR7 is viral genomic ssRNA. Processing of whole virus particles into SV or SU vaccines destroys the integrity of the viral particle and leaves the viral RNA prone to degradation or involves its active removal. Our results show for a classic vaccine that the acquired immune response evoked by vaccination can be enhanced and steered by the innate immune system, which is triggered by interaction of an intrinsic vaccine component with a pattern recognition receptor (PRR). The insights presented here may be used to further improve the immune-stimulatory and dose-sparing properties of classic influenza vaccine formulations such as WIV, and will facilitate the development of new, even more powerful vaccines to face the next influenza pandemic. PMID:18769719

  10. Booster vaccination of pre-school children with reduced-antigen-content diphtheria-tetanus-acellular pertussis-inactivated poliovirus vaccine co-administered with measles-mumps-rubella-varicella vaccine

    PubMed Central

    Ferrera, Giuseppe; Cuccia, Mario; Mereu, Gabriele; Icardi, Giancarlo; Bona, Gianni; Esposito, Susanna; Marchetti, Federico; Messier, Marc; Kuriyakose, Sherine; Hardt, Karin

    2012-01-01

    Background: Pertussis occurs in older children, adolescents and adults due to waning immunity after primary vaccination. Booster vaccination for pre-school children has been recommended in Italy since 1999. In this study (NCT00871000), the immunogenicity, safety and reactogenicity of a booster dose of reduced-antigen content diphtheria-tetanus-acellular pertussis-inactivated poliovirus vaccine (dTpa-IPV; GSK Biologicals Boostrix™-Polio; 3-component pertussis) vs. full-strength DTPa-IPV vaccine (sanofi-pasteur—MSD Tetravac™; 2-component pertussis) was evaluated in pre-school Italian children.   Methods: Healthy children aged 5–6 y primed in a routine vaccination setting with three doses of DTPa-based vaccines were enrolled and randomized (1:1) in this phase IIIb, booster study to receive a single dose of dTpa-IPV or DTPa-IPV; the MMRV vaccine was co-administered. Antibody concentrations/titers against diphtheria, tetanus, pertussis and poliovirus 1–3 were measured before and one month post-booster. Reactogenicity and safety was assessed. Results: 305 subjects were enrolled of whom 303 (dTpa-IPV = 151; DTPa-IPV = 152) received booster vaccination. One month post-booster, all subjects were seroprotected/seropositive for anti-diphtheria, anti-tetanus, anti-PT, anti-FHA and anti-poliovirus 1–3; 99.3% of dTpa-IPV and 60.4% of DTPa-IPV subjects were seropositive for anti-PRN; 98–100% of subjects were seropositive against MMRV antigens post-booster. Pain at the injection site (dTpa-IPV: 63.6%; DTPa-IPV: 63.2%) and fatigue (dTpa-IPV: 26.5%; DTPa-IPV: 23.7%) were the most commonly reported solicited local and general symptoms, during the 4-d follow-up period. No SAEs or fatalities were reported. Conclusions: The reduced-antigen-content dTpa-IPV vaccine was non-inferior to full-strength DTPa-IPV vaccine with respect to immunogenicity. The vaccine was well-tolerated and can be confidently used as a booster dose in pre-school children. PMID:22327497

  11. Cold-Adapted Viral Attenuation (CAVA): Highly Temperature Sensitive Polioviruses as Novel Vaccine Strains for a Next Generation Inactivated Poliovirus Vaccine.

    PubMed

    Sanders, Barbara P; de Los Rios Oakes, Isabel; van Hoek, Vladimir; Bockstal, Viki; Kamphuis, Tobias; Uil, Taco G; Song, Yutong; Cooper, Gillian; Crawt, Laura E; Martín, Javier; Zahn, Roland; Lewis, John; Wimmer, Eckard; Custers, Jerome H H V; Schuitemaker, Hanneke; Cello, Jeronimo; Edo-Matas, Diana

    2016-03-01

    The poliovirus vaccine field is moving towards novel vaccination strategies. Withdrawal of the Oral Poliovirus Vaccine and implementation of the conventional Inactivated Poliovirus Vaccine (cIPV) is imminent. Moreover, replacement of the virulent poliovirus strains currently used for cIPV with attenuated strains is preferred. We generated Cold-Adapted Viral Attenuation (CAVA) poliovirus strains by serial passage at low temperature and subsequent genetic engineering, which contain the capsid sequences of cIPV strains combined with a set of mutations identified during cold-adaptation. These viruses displayed a highly temperature sensitive phenotype with no signs of productive infection at 37°C as visualized by electron microscopy. Furthermore, decreases in infectious titers, viral RNA, and protein levels were measured during infection at 37°C, suggesting a block in the viral replication cycle at RNA replication, protein translation, or earlier. However, at 30°C, they could be propagated to high titers (9.4-9.9 Log10TCID50/ml) on the PER.C6 cell culture platform. We identified 14 mutations in the IRES and non-structural regions, which in combination induced the temperature sensitive phenotype, also when transferred to the genomes of other wild-type and attenuated polioviruses. The temperature sensitivity translated to complete absence of neurovirulence in CD155 transgenic mice. Attenuation was also confirmed after extended in vitro passage at small scale using conditions (MOI, cell density, temperature) anticipated for vaccine production. The inability of CAVA strains to replicate at 37°C makes reversion to a neurovirulent phenotype in vivo highly unlikely, therefore, these strains can be considered safe for the manufacture of IPV. The CAVA strains were immunogenic in the Wistar rat potency model for cIPV, inducing high neutralizing antibody titers in a dose-dependent manner in response to D-antigen doses used for cIPV. In combination with the highly productive

  12. Cold-Adapted Viral Attenuation (CAVA): Highly Temperature Sensitive Polioviruses as Novel Vaccine Strains for a Next Generation Inactivated Poliovirus Vaccine

    PubMed Central

    Sanders, Barbara P.; de los Rios Oakes, Isabel; van Hoek, Vladimir; Bockstal, Viki; Kamphuis, Tobias; Uil, Taco G.; Song, Yutong; Cooper, Gillian; Crawt, Laura E.; Martín, Javier; Zahn, Roland; Lewis, John; Wimmer, Eckard; Custers, Jerome H. H. V.; Schuitemaker, Hanneke; Cello, Jeronimo; Edo-Matas, Diana

    2016-01-01

    The poliovirus vaccine field is moving towards novel vaccination strategies. Withdrawal of the Oral Poliovirus Vaccine and implementation of the conventional Inactivated Poliovirus Vaccine (cIPV) is imminent. Moreover, replacement of the virulent poliovirus strains currently used for cIPV with attenuated strains is preferred. We generated Cold-Adapted Viral Attenuation (CAVA) poliovirus strains by serial passage at low temperature and subsequent genetic engineering, which contain the capsid sequences of cIPV strains combined with a set of mutations identified during cold-adaptation. These viruses displayed a highly temperature sensitive phenotype with no signs of productive infection at 37°C as visualized by electron microscopy. Furthermore, decreases in infectious titers, viral RNA, and protein levels were measured during infection at 37°C, suggesting a block in the viral replication cycle at RNA replication, protein translation, or earlier. However, at 30°C, they could be propagated to high titers (9.4–9.9 Log10TCID50/ml) on the PER.C6 cell culture platform. We identified 14 mutations in the IRES and non-structural regions, which in combination induced the temperature sensitive phenotype, also when transferred to the genomes of other wild-type and attenuated polioviruses. The temperature sensitivity translated to complete absence of neurovirulence in CD155 transgenic mice. Attenuation was also confirmed after extended in vitro passage at small scale using conditions (MOI, cell density, temperature) anticipated for vaccine production. The inability of CAVA strains to replicate at 37°C makes reversion to a neurovirulent phenotype in vivo highly unlikely, therefore, these strains can be considered safe for the manufacture of IPV. The CAVA strains were immunogenic in the Wistar rat potency model for cIPV, inducing high neutralizing antibody titers in a dose-dependent manner in response to D-antigen doses used for cIPV. In combination with the highly productive

  13. Mass immunization with inactivated polio vaccine in conflict zones--Experience from Borno and Yobe States, North-Eastern Nigeria.

    PubMed

    Shuaibu, Faisal M; Birukila, Gerida; Usman, Samuel; Mohammed, Ado; Galway, Michael; Corkum, Melissa; Damisa, Eunice; Mkanda, Pascal; Mahoney, Frank; Wa Nganda, Gatei; Vertefeuille, John; Chavez, Anna; Meleh, Sule; Banda, Richard; Some, Almai; Mshelia, Hyelni; Umar, Al-Umra; Enemaku, Ogu; Etsano, Andrew

    2016-02-01

    The use of Inactivated Polio Vaccine (IPV) in routine immunization to replace Oral Polio Vaccine (OPV) is crucial in eradicating polio. In June 2014, Nigeria launched an IPV campaign in the conflict-affected states of Borno and Yobe, the largest ever implemented in Africa. We present the initiatives and lessons learned. The 8-day event involved two parallel campaigns. OPV target age was 0-59 months, while IPV targeted all children aged 14 weeks to 59 months. The Borno state primary health care agency set up temporary health camps for the exercise and treated minor ailments for all. The target population for the OPV campaign was 685,674 children in Borno and 113,774 in Yobe. The IPV target population for Borno was 608,964 and for Yobe 111,570. OPV coverage was 105.1 per cent for Borno and 103.3 per cent for Yobe. IPV coverage was 102.9 per cent for Borno and 99.1 per cent for Yobe. (Where we describe coverage as greater than 100 per cent, this reflects original underestimates of the target populations.) A successful campaign and IPV immunization is viable in conflict areas. PMID:26538455

  14. Recombinant Dengue 2 Virus NS3 Helicase Protein Enhances Antibody and T-Cell Response of Purified Inactivated Vaccine

    PubMed Central

    Simmons, Monika; Sun, Peifang; Putnak, Robert

    2016-01-01

    Dengue virus purified inactivated vaccines (PIV) are highly immunogenic and protective over the short term, but may be poor at inducing cell-mediated immune responses and long-term protection. The dengue nonstructural protein 3 (NS3) is considered the main target for T-cell responses during viral infection. The amino (N)-terminal protease and the carboxy (C)-terminal helicase domains of DENV-2 NS3 were expressed in E. coli and analyzed for their immune-potentiating capacity. Mice were immunized with DENV-2 PIV with and without recombinant NS3 protease or NS3 helicase proteins, and NS3 proteins alone on days 0, 14 and 28. The NS3 helicase but not the NS3 protease was effective in inducing T-cell responses quantified by IFN-γ ELISPOT. In addition, markedly increased total IgG antibody titer against virus antigen was seen in mice immunized with the PIV/NS3 helicase combination in the ELISA, as well as increased neutralizing antibody titer measured by the plaque reduction neutralization test. These results indicate the potential immunogenic properties of the NS3 helicase protein and its use in a dengue vaccine formulation. PMID:27035715

  15. Post-marketing surveillance of adverse events following immunization with inactivated quadrivalent and trivalent influenza vaccine in health care providers in Western Australia.

    PubMed

    Regan, Annette K; Tracey, Lauren; Gibbs, Robyn

    2015-11-17

    In 2015, inactivated quadrivalent influenza vaccine (QIV) was first introduced into the Australian market. A routine vaccine safety surveillance system in Western Australia was used to conduct post-licensure surveillance of adverse events following immunization with inactivated QIV and trivalent influenza vaccines (TIV) in a sample of 1685 healthcare providers (HCPs). A similar percentage of HCPs who received QIV reported having any reaction seven days post-vaccination as HCPs who received TIV (13.6 vs. 12.8%, respectively; p=0.66). However, a slightly higher percentage of HCPs who received QIV reported pain or swelling at the injection site as compared to HCPs who received TIV (6.9% vs. 4.2%, respectively; p=0.02). No serious vaccine-associated adverse events were detected during follow-up of either vaccine. Acknowledging the study limitations, the results of this post-marketing surveillance support the safety of QIV, suggesting there is little difference in the reactogenicity of QIV as compared to TIV. PMID:26476362

  16. Vaccination: Who Should Do It, Who Should Not and Who Should Take Precautions

    MedlinePlus

    ... shot (inactivated influenza vaccine or IIV) and the recombinant influenza vaccine (RIV). The nasal spray flu vaccine (live attenuated ... vaccines--inactivated influenza vaccine (or IIV) or the recombinant influenza vaccine (RIV). The nasal spray flu vaccine (live attenuated ...

  17. A user-friendly and scalable process to prepare a ready-to-use inactivated vaccine: the example of heartwater in ruminants under tropical conditions.

    PubMed

    Marcelino, Isabel; Lefrançois, Thierry; Martinez, Dominique; Giraud-Girard, Ken; Aprelon, Rosalie; Mandonnet, Nathalie; Gaucheron, Jérôme; Bertrand, François; Vachiéry, Nathalie

    2015-01-29

    The use of cheap and thermoresistant vaccines in poor tropical countries for the control of animal diseases is a key issue. Our work aimed at designing and validating a process for the large-scale production of a ready-to-use inactivated vaccine for ruminants. Our model was heartwater caused by the obligate intracellular bacterium Ehrlichia ruminantium (ER). The conventional inactivated vaccine against heartwater (based on whole bacteria inactivated with sodium azide) is prepared immediately before injection, using a syringe-extrusion method with Montanide ISA50. This is a fastidious time-consuming process and it limits the number of vaccine doses available. To overcome these issues, we tested three different techniques (syringe, vortex and homogenizer) and three Montanide ISA adjuvants (50, 70 and 70M). High-speed homogenizer was the optimal method to emulsify ER antigens with both ISA70 and 70M adjuvants. The emulsions displayed a good homogeneity (particle size below 1 μm and low phase separation), conductivity below 10 μS/cm and low antigen degradation at 4 °C for up to 1 year. The efficacy of the different formulations was then evaluated during vaccination trials on goats. The inactivated ER antigens emulsified with ISA70 and ISA70M in a homogenizer resulted in 80% and 100% survival rates, respectively. A cold-chain rupture assay using ISA70M+ER was performed to mimic possible field conditions exposing the vaccine at 37 °C for 4 days before delivery. Surprisingly, the animal survival rate was still high (80%). We also observed that the MAP-1B antibody response was very similar between animals vaccinated with ISA70+ER and ISA70M+ER emulsions, suggesting a more homogenous antigen distribution and presentation in these emulsions. Our work demonstrated that the combination of ISA70 or ISA70M and homogenizer is optimal for the production of an effective ready-to-use inactivated vaccine against heartwater, which could easily be produced on an industrial scale

  18. Administration of a probiotic associated with nasal vaccination with inactivated Lactococcus lactis-PppA induces effective protection against pneumoccocal infection in young mice

    PubMed Central

    Vintiñi, E; Villena, J; Alvarez, S; Medina, M

    2010-01-01

    Streptococcus pneumoniae is a serious public health problem, especially in developing countries, where available vaccines are not part of the vaccination calendar. We evaluated different respiratory mucosa immunization protocols that included the nasal administration of Lactococcus lactis-pneumococcal protective protein A (PppA) live, inactivated, and in association with a probiotic (Lc) to young mice. The animals that received Lc by the oral and nasal route presented the highest levels of immunoglobulin (Ig)A and IgG anti-PppA antibodies in bronchoalveolar lavages (BAL) and IgG in serum, which no doubt contributed to the protection against infection. However, only the groups that received the live and inactivated vaccine associated with the oral administration of the probiotic were able to prevent lung colonization by S. pneumoniae serotypes 3 and 14 in a respiratory infection model. This would be related to a preferential stimulation of the T helper type 1 (Th1) cells at local and systemic levels and with a moderate Th2 and Th17 response, shown by the cytokine profile induced in BAL and by the results of the IgG1/IgG2a ratio at local and systemic levels. Nasal immunization with the inactivated recombinant strain associated with oral Lc administration was able to stimulate the specific cellular and humoral immune response and afford protection against the challenge with the two S. pneumoniae serotypes. The results obtained show the probiotic-inactivated vaccine association as a valuable alternative for application to human health, especially in at-risk populations, and are the first report of a safe and effective immunization strategy using an inactivated recombinant strain. PMID:20002449

  19. Inactivated and subunit vaccines against porcine reproductive and respiratory syndrome: current status and future direction

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Within a few years of its emergence in the late 1980's, the PRRS virus had spread globally to become the foremost infectious disease concern for the pork industry. Since 1994, modified live-attenuated vaccines against porcine reproductive and respiratory syndrome virus (PRRSV-MLV) have been widely u...

  20. Use of inactivated E.Coli enterotoxins to enhance respiratory mucosal adjuvanticity during vaccination in swine

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In order to augment responses to respiratory vaccines in swine, various adjuvants were intranasally co-administered with an antigen to pigs. Detoxified E. coli enterotoxins LTK63 and LTR72 enhanced mucosal and systemic immunity to the model peptide, exhibiting their efficacy as mucosal adjuvants for...

  1. Strategies to overexpress enterotoxigenic Escherichia coli (ETEC) colonization factors for the construction of oral whole-cell inactivated ETEC vaccine candidates.

    PubMed

    Tobias, Joshua; Svennerholm, Ann-Mari

    2012-03-01

    Enterotoxigenic Escherichia coli (ETEC) is an important cause of diarrheal disease and deaths among children in developing countries and the major cause of traveler's diarrhea (TD). Since surface protein colonization factors (CFs) of ETEC are important for pathogenicity and immune protection is mainly mediated by locally produced IgA antibodies in the gut, much effort has focused on the development of an oral CF-based vaccine. The most extensively studied ETEC candidate vaccine is the rCTB-CF ETEC vaccine, containing recombinantly produced cholera B subunit and the most commonly encountered ETEC CFs on the surface of whole inactivated bacteria. Initial clinical trials with this vaccine showed significant immune responses against the key antigens in different age groups in Bangladesh and Egypt and protection against more severe TD in Western travelers. However, when tested in a phase-III trial in Egyptian infants, the protective efficacy of the vaccine was found to be low, indicating the need to improve the immunogenicity of the vaccine, e.g., by increasing the levels of the protective antigens. This review describes different strategies for the construction of recombinant nontoxigenic E. coli and Vibrio cholerae candidate vaccine strains over-expressing higher amounts of ETEC CFs than clinical ETEC isolates selected to produce high levels of the respective CF, e.g., those ETEC strains which have been used in the rCTB-CF ETEC vaccine. Several different expression vectors containing the genes responsible for the expression and assembly of the examined CFs, all downstream of the powerful tac promoter, which could be maintained either with or without antibiotic selection, were constructed. Expression from the tac promoter was under the control of the lacI(q) repressor present on the plasmids. Following induction with isopropyl-β-D-thiogalactopyranoside, candidate vaccine strains over-expressing single CFs, unnatural combinations of two CFs, and also hybrid forms of

  2. Field efficacy of an inactivated bivalent influenza vaccine in a multi-site swine production system during an outbreak of systemic porcine circovirus associated disease.

    PubMed

    Poljak, Zvonimir; Dewey, Catherine E; Martin, S Wayne; Christensen, Jette; Friendship, Robert M

    2010-04-01

    Swine influenza (SI) is a disease of significance for the swine industry, and vaccination is often recommended as a way to reduce its impact on production. The efficacy of SI vaccines is well established under experimental conditions, but information about field efficacy is scarce. The objective of this study was to evaluate the efficacy of a commercial inactivated bivalent (H1N1/H3N2) vaccine under conditions of natural exposure to a field SI variant. To accomplish our goal we used a randomized, blinded, field trial in 2 cohorts of finisher pigs in a multi-site swine production system located in southern Ontario. During the trial, this herd experienced an outbreak of porcine circovirus associated disease (PCVAD). The efficacy of the SI vaccine was assessed through its effect on average daily weight gain, and serological responses to SI over time. The effect of vaccination on pig growth was different in the 2 cohorts. Weight gain was higher in vaccinated pigs than in control pigs in Cohort 1, but was numerically higher for control pigs than for vaccinated pigs in Cohort 2. Vaccination against swine influenza, in a herd experiencing an outbreak of PCVAD, was of questionable value. PMID:20592840

  3. Primate encephalization.

    PubMed

    Lefebvre, Louis

    2012-01-01

    Encephalization is a concept that implies an increase in brain or neocortex size relative to body size, size of lower brain areas, and/or evolutionary time. Here, I review 26 large-scale comparative studies that provide robust evidence for five lifestyle correlates of encephalization (group living, a large home range, a high-quality diet, a strong reliance on vision, arboreal and forest dwelling), six cognitive correlates (better performance in captive tests, more tactical deception, innovation, tool use, social learning, all subsumed in part by general intelligence), one life history correlate (a longer lifespan), two evolutionary correlates (a high rate of change in microcephaly genes, an increase in brain size over macroevolutionary time), as well as three trade-offs (a slower juvenile development, a higher metabolic rate, sexually selected dimorphism). Of the 26 different encephalization measures used in these studies, corrected neocortex size, either with a ratio or a residual, is the most popular structural correlate of the functional variables, while residual brain size is the measure associated with the greatest number of them. Controversies remain on corrected or absolute measures of neural structure size, concerted versus mosaic evolution of brain parts and specialized versus domain-general brain structures and cognitive processes. PMID:22230638

  4. Needle-free delivery of an inactivated avian influenza H5N3 virus vaccine elicits potent antibody responses in chickens

    PubMed Central

    Ogunremi, Oladele; Pasick, John; Berhane, Yohannes

    2013-01-01

    A needle-free delivery system was assessed as a route for providing quick, safe, and effective vaccination against avian influenza (AI). Two groups of chickens were vaccinated with a commercially available inactivated H5N3 virus vaccine delivered either with a needle-free device or with the conventional syringe-and-needle method recommended by the vaccine manufacturer. The kinetic aspects of seroconversion, peak antibody levels, and antibody titers were measured by a combination of an indirect enzyme-linked immunosorbent assay and the hemagglutination-inhibition test and were all found to be similar in the 2 groups of chickens. We conclude that the needle-free delivery system could result in effective immunization against H5N1 AI epidemics and pandemics in chickens. PMID:24124275

  5. Antigen uptake and expression of antigen presentation-related immune genes in flounder (Paralichthys olivaceus) after vaccination with an inactivated Edwardsiella tarda immersion vaccine, following hyperosmotic treatment.

    PubMed

    Gao, Yingli; Tang, Xiaoqian; Sheng, Xiuzhen; Xing, Jing; Zhan, Wenbin

    2016-08-01

    Antigen uptake is a critical process for activation of the immune system, and therefore the ability to enhance antigen uptake is a primary consideration in the development of an immersion vaccination of fish. In the present work, flounders (Paralichthys olivaceus) were immersed in three hyperosmotic solutions with 40, 50 and 60‰ salinities, then transferred into seawater of normal salinity (i.e. 30‰) containing formalin-inactivated Edwardsiella tarda for 30 min. The antigen uptake in vaccinated flounder was determined using an absolute quantitative PCR (qPCR). The results showed significantly higher antigen uptake in the tissues of flounders immersed in solutions with 50‰ and 60‰ salinity compared to the control group directly immersed in vaccine (DI) (P < 0.05), and the highest amount of antigen was detected in flounders immersed in the 50‰ salinity solution, whereas there was no significant difference in antigen uptake between the 40‰ salinity group and the DI group (P > 0.05). A rapid and significant increase in antigen uptake was detected in the mucosal-associated tissues including the gill, skin and intestine (P < 0.05) compared with the spleen, kidney and liver. Antigen uptake in the gill and skin both peaked at 30 min post immersion, which was significantly higher than the levels of uptake measured in the other tissues (P < 0.05), and then quickly declined. In contrast, antigen uptake in the spleen, kidney and liver gradually increased 3 h post immersion (hpi). The expression profiles of four antigen presentation-related immune genes (MHC Iα, MHC IIα, CD4-1 and CD8α) were investigated after immersion. These four genes showed a significantly stronger response in the immersed flounders exposed to 50‰ salinity compared with the DI group (P < 0.05). In the mucosal-associated tissues, the expression of MHC Iα and CD8α genes peaked at 24 hpi, while the expression of MHC IIα and CD4-1 genes showed up-regulation in the gill and skin

  6. Immunogenicity and safety of an inactivated quadrivalent influenza vaccine in healthy adults: a phase II, open-label, uncontrolled trial in Japan.

    PubMed

    Tsurudome, Yukari; Kimachi, Kazuhiko; Okada, Yusuke; Matsuura, Kenta; Ooyama, Yusuke; Ibaragi, Kayo; Kino, Yoichiro; Ueda, Kohji

    2015-10-01

    Two antigenically distinct B strain lineages of influenza virus have co-circulated since the mid-1980s; however, inactivated trivalent influenza vaccines contain only one B lineage. The mismatch between the circulating and vaccine lineages has been a worldwide issue. In this study, an inactivated quadrivalent influenza vaccine (QIV) candidate containing two B lineages was manufactured and its immunogenicity and safety evaluated in an open-label, uncontrolled trial. In this phase II trial, 50 subjects aged 20-64 years received two doses of QIV s.c. 1 to 4 weeks apart. Sera were collected pre- and post-vaccination and safety assessed from the first vaccination to 21 ± 7 days after the second vaccination. After the first vaccination, hemagglutination inhibition titers against each strain increased markedly; the seroconversion rate, geometric mean titer ratio and seroprotection rate being 94.0%, 24.93, and 100.0%, respectively, for the A/H1N1pdm09 strain; 94.0%, 12.47, and 98.0%, respectively, for the A/H3N2 strain; 54.0%, 4.99, and 66.0%, respectively, for B/Yamagata strain, and 72.0%, 6.23 and 80.0%, respectively, for the B/Victoria strain, thus fulfilling the criteria of the European Medical Agency's Committee for Medicinal Products for Human Use. Also, the QIV induced sufficient single radial hemolysis and neutralizing antibodies against all four vaccine strains. No noteworthy adverse events were noted. The results of this trial demonstrate that QIV is well tolerated and immunogenic for each strain, suggesting that QIV potentially improves protection against influenza B by resolving the issue of B lineage mismatch. PMID:26272602

  7. Long-Term Immunogenicity Studies of Formalin-Inactivated Enterovirus 71 Whole-Virion Vaccine in Macaques

    PubMed Central

    Liu, Chia-Chyi; Hwang, Chyi-Sing; Yang, Wun-Syue; Tsai, Dan-Chin; Wu, Sze-Hsien; Chou, Ai-Hsiang; Chow, Yen-Hung; Wu, Suh-Chin; Wang, Jen-Ren; Chiang, Jen-Ron; Huang, Chin-Cheng; Pan, Chien-Hsiung; Chong, Pele

    2014-01-01

    Enterovirus 71 (EV71) has caused epidemics of hand, foot and mouth diseases in Asia during the past decades and no vaccine is available. A formalin-inactivated EV71 candidate vaccine (EV71vac) based on B4 subgenotype has previously been developed and found to elicit strong neutralizing antibody responses in mice and humans. In this study, we evaluated the long-term immunogenicity and safety of this EV71vac in a non-human primate model. Juvenile macaques were immunized at 0, 3 and 6 weeks either with 10 or 5 µg doses of EV71vac formulated with AlPO4 adjuvant, or PBS as control. During the 56 weeks of studies, no fever nor local redness and swelling at sites of injections was observed in the immunized macaques. After single immunization, 100% seroconversion based on 4-fold increased in neutralization titer (Nt) was detected in EV71vac immunized monkeys but not PBS controls. A dose-dependent IgG antibody response was observed in monkeys receiving EV71vac immunization. The Nt of EV71vac immunized macaques had reached the peak after 3 vaccinations, then decreased gradually; however, the GMT of neutralizing antibody in the EV71vac immunized macaques were still above 100 at the end of the study. Correspondingly, both dose- and time-dependent interferon-γ and CD4+ T cell responses were detected in monkeys receiving EV71vac. Interestingly, similar to human responses, the dominant T cell epitopes of macaques were identified mainly in VP2 and VP3 regions. In addition, strong cross-neutralizing antibodies against most EV71 subgenotypes except some C2 and C4b strains, and Coxsackievirus A16 were observed. In summary, our results indicate that EV71vac elicits dose-dependent T-cell and antibody responses in macaques that could be a good animal model for evaluating the long-term immune responses elicited by EV71 vaccines. PMID:25197967

  8. Adjuvanting an inactivated influenza vaccine with flagellin improves the function and quantity of the long-term antibody response in a nonhuman primate neonate model.

    PubMed

    Holbrook, Beth C; D'Agostino, Ralph B; Parks, Griffith D; Alexander-Miller, Martha A

    2016-09-01

    Young infants are at significantly increased risk of developing severe disease following infection with influenza virus. At present there is no approved vaccine for individuals below the age of six months given previous studies showing a failure of these individuals to efficiently seroconvert. Given the major impact of influenza on infant health, it is critical that we develop vaccines that will be safe and effective in this population. Using a nonhuman primate (NHP) model, we have evaluated the ability of an inactivated influenza virus vaccine adjuvanted with flagellin to result in long term immune responses in neonates. To evaluate this critical attribute, neonate NHP were vaccinated and boosted with inactivated influenza virus in combination with either flagellin or a mutant inactive flagellin control. Our studies show that inclusion of flagellin resulted in a significant increase (5-fold, p=0.04) in influenza virus-specific IgG antibody at 6months post-vaccination. In addition, the antibody present at this late time was of higher affinity (2.4-fold, p=0.02). Finally a greater percentage of infants had detectable neutralizing antibody. These results support the use of flagellin in neonates as an adjuvant that promotes long-lived, high affinity antibody responses. PMID:27516064

  9. Tick-borne encephalitis (TBE) and hepatitis B nonresponders feature different immunologic mechanisms in response to TBE and influenza vaccination with involvement of regulatory T and B cells and IL-10.

    PubMed

    Garner-Spitzer, Erika; Wagner, Angelika; Paulke-Korinek, Maria; Kollaritsch, Herwig; Heinz, Franz X; Redlberger-Fritz, Monika; Stiasny, Karin; Fischer, Gottfried F; Kundi, Michael; Wiedermann, Ursula

    2013-09-01

    Low responsiveness/nonresponsiveness is characterized by an insufficient immune response upon primary and/or booster vaccination and affects 1-10% of vaccinees. In the current study, we aimed to investigate whether nonresponsiveness is an Ag/vaccine-specific phenomenon and to clarify underlying immunological mechanisms. Nonresponders to tick-borne encephalitis (TBE) or hepatitis B Ag with a history of previous TBE vaccinations were booster vaccinated with TBE and influenza vaccine and compared with TBE high responders in terms of humoral and cellular immune response. Postboosters in TBE high responder existing TBE titers increased, and solid humoral responses to influenza vaccine were induced. In TBE nonresponders, low to undetectable prevaccination TBE titers remained low, whereas sufficient influenza Abs were induced. In both TBE groups, a positive correlation of humoral and cellular immune response was seen as high/low TBE titers were associated with sufficient/lack of Ag-specific T cell proliferation. Furthermore, responses to influenza were robust in terms of Abs and cytokine production. In contrast, in hepatitis B nonresponders, sufficient humoral responses to TBE and influenza Ags were induced despite lacking specific IL-2 and IFN-γ production. Importantly, these patients showed high IL-10 baseline levels in vitro. HLA-DR subtypes associated with hepatitis B nonresponsiveness were overrepresented in this group, and high IL-10 levels were linked to these subtypes. Whereas TBE and hepatitis B nonresponders had increased IL-10-producing FOXP3(+) T regulatory cells upon vaccination, only in hepatitis B nonresponders, showing elevated prevaccination IL-10 levels, a prominent population of B regulatory cells was detected. We conclude that immunological pathways of nonresponsiveness follow different patterns depending both on vaccine Ag and genetic predisposition of the vaccinee. PMID:23872054

  10. [Autoimmune Associated Encephalitis and Dementia].

    PubMed

    Watanabe, Osamu

    2016-04-01

    Antibodies against various neural surface antigens induce cognitive impairments. Anti-VGKC (voltage gated potassium channel) complex antibodies are well known as one of the causative autoantibodies. An anti-VGKC antibody was identified as the autoantibody in acquired neuromyotonia (Isaacs' syndrome), which causes muscle cramps and difficulty in opening the palm of the hands. However, this antibody also tests positive in autoimmune limbic encephalitis, which has a subacute progress and causes poor memory or epilepsy attacks. Typical cases have a distinctive adult-onset, frequent, brief dystonic seizure semiology that predominantly affects the arms and ipsilateral face. It has now been termed faciobrachial dystonic seizures. In recent years, the true target antigens of the anti-VGKC antibody of this VGKC limbic encephalitis have been recognized as leucine rich glioma inactivated protein (LGI)-1 and others. These antibodies to amnesia-related LGI-1 in limbic encephalitis neutralize the LGI-1-ADAM22 (an anchor protein) interaction and reduce synaptic AMPA receptors. There have been reports of limbic encephalitis associated with anti-VGKC complex antibodies mimicking Creutzfeldt-Jakob disease (CJD). Less than 2% of the patients with sporadic CJD (sCJD) develop serum anti-VGKC complex antibodies and, when positive, only at low titres. Low titres of these antibodies occur only rarely in suspected patients with sCJD, and when present, should be interpreted with caution. PMID:27056852

  11. Human-like antibodies neutralizing Western equine encephalitis virus

    PubMed Central

    Hülseweh, Birgit; Rülker, Torsten; Pelat, Thibaut; Langermann, Claudia; Frenzel, Andrè; Schirrmann, Thomas; Dübel, Stefan; Thullier, Philippe; Hust, Michael

    2014-01-01

    This study describes the development of the first neutralizing antibodies against Western equine encephalitis virus (WEEV), a member of the genus Alphavirus. WEEV is transmitted by mosquitoes and can spread to the human central nervous system, causing symptoms ranging from mild febrile reactions to life-threatening encephalitis. WEEV has been classified as a biological warfare agent by the US Centers for Disease Control and Prevention. No anti-WEEV drugs are currently commercially available. Neutralizing antibodies are useful for the pre- and post-exposure treatment of WEEV infections. In this study, two immune antibody gene libraries were constructed from two macaques immunized with inactivated WEEV. Four antibodies were selected from these libraries and recloned as scFv-Fc, with a human Fc part. These antibodies bound WEEV specifically in ELISA with little or no cross-reaction with other alphaviruses. They were further analyzed by immunohistochemistry. All binders were suitable for the intracellular detection of WEEV particles. Neutralizing activity was determined in vitro. Three of the four antibodies were found to be neutralizing; about 1 ng/mL of the best antibody (ToR69–3A2) neutralized 50% of 5x104 TCID50/mL. Due to its human-like nature with a germinality index of 89% (VH) and 91% (VL), the ToR69–3A2 antibody is a promising candidate for future passive vaccine development. PMID:24518197

  12. The impact of eastern equine encephalitis virus on efforts to recover the endangered whooping crane

    USGS Publications Warehouse

    Carpenter, J.W.; Clark, G.G.; Watts, D.M.

    1989-01-01

    The whooping crane (Grus americana), although never abundant in North America, became endangered primarily because of habitat modification and destruction. To help recovery, a captive propagation and reintroduction program was initiated at the Patuxent Wildlife Research Center (PWRC) in 1966. However, in 1984, 7 of 39 whooping cranes at PWRC died from infection by eastern equine encephalitis (EEE) virus, an arbovirus that infects a wide variety of indigenous bird species, although mortality is generally restricted to introduced birds. Following identification of the aetiological agent, surveillance and control measures were implemented, including serological monitoring of both wild and captive birds for EEE viral antibody and assay of locally-trapped mosquitoes for virus. In addition, an inactivated EEE virus vaccine developed for use in humans was evaluated in captive whooping cranes. Results so far suggest that the vaccine will afford protection to susceptible birds.

  13. Evaluation of the Safety, Tolerability, and Immunogenicity of an Oral, Inactivated Whole-Cell Shigella flexneri 2a Vaccine in Healthy Adult Subjects.

    PubMed

    Chakraborty, Subhra; Harro, Clayton; DeNearing, Barbara; Bream, Jay; Bauers, Nicole; Dally, Len; Flores, Jorge; Van de Verg, Lillian; Sack, David A; Walker, Richard

    2016-04-01

    Shigellacauses high morbidity and mortality worldwide, but there is no licensed vaccine for shigellosis yet. We evaluated the safety and immunogenicity of a formalin-inactivated whole-cellShigella flexneri2a vaccine, Sf2aWC, given orally to adult volunteers. In a double-blind, placebo-controlled trial, 82 subjects were randomized to receive three doses of vaccine in dose escalation (2.6 ± 0.8 × 10(8), × 10(9), × 10(10), and × 10(11)vaccine particles/ml). Vaccine safety was actively monitored, and antigen-specific systemic and mucosal immune responses were determined in serum, antibody in lymphocyte supernatant (ALS), and fecal samples. Cytokines were measured in the serum. Sf2aWC was well tolerated and generally safe at all four dose levels. The vaccine resulted in a dose-dependent immune response. At the highest dose, the vaccine induced robust responses to lipopolysaccharide (LPS) in both serum and ALS samples. The highest magnitude and frequency of responses occurred after the first dose in almost all samples but was delayed for IgG in serum. Fifty percent of the vaccinees had a >4-fold increase in anti-LPS fecal antibody titers. Responses to invasion plasmid antigens (Ipa) were low. The levels of interleukin-17 (IL-17), IL-2, gamma interferon (IFN-γ), tumor necrosis factor alpha (TNF-α), and IL-10 were increased, and IL-8 was decreased immediately after first dose, but these changes were very transient. This phase I trial demonstrated that the Sf2aWC vaccine, a relatively simple vaccine concept, was safe and immunogenic. The vaccine elicited immune responses which were comparable to those induced by a live, attenuatedShigellavaccine that was protective in prior human challenge studies. PMID:26865592

  14. The challenge of changing the inactivated poliomyelitis vaccine in Latin America: declaration of the Latin American Society of Pediatric Infectious Diseases (SLIPE).

    PubMed

    Falleiros-Arlant, Luiza Helena; Avila-Agüero, María Luisa; Brea del Castillo, José; Mariño, Cristina

    2014-10-01

    Even though we have already covered 99% of the path to eradicate poliomyelitis from the world, this disease is still causing paralysis in children. Its eradication means not only the end of wild poliovirus circulation, but vaccine-derived poliovirus circulation as well. Taking into account different factors such as: current epidemiological data, adverse events of the attenuated oral poliomyelitis vaccine (OPV), the availability of an injectable inactivated vaccine (IPV) without the potential of causing the severe adverse events of the oral vaccine (OPV), the efficacy and effectiveness of the IPV in several countries of the world where it has been used for several years, the rationale of changing the vaccination schedule in different Latin American countries; the Latin American Society of Pediatric Infectious Diseases (SLIPE) announces its recommendation of switching to IPV in Latin America, by this Declaration, with an Action Plan for 2014-2015 period as regards vaccination against polio policies in Latin America. 1. The optimal proposed schedule consists of four IPV doses (three doses in the primary schedule plus a booster dose), whether IPV is combined or not with other indicated vaccines in the immunization program of the country. During the OPV to IPV transition phase, an alternative schedule is acceptable; 2. Countries should set optimal strategies in order to maintain and improve vaccination coverage, and implement a nominal immunization registry; 3. Improving the Epidemiological Surveillance of Acute Flaccid Paralysis (AFP) and setting up an environmental surveillance program; 4. Setting up strategies for introducing IPV in National Immunization Programs, such as communicating properly with the population, among others; 5. Bringing scientific societies closer to decision makers; 6. Ensuring optimal supply and prices for IPV introduction; 7. Training vaccination teams; 8. Enhancing the distribution and storing logistics of vaccines. In addition to the

  15. The role of membrane fusion activity of a whole inactivated influenza virus vaccine in (re)activation of influenza-specific cytotoxic T lymphocytes.

    PubMed

    Budimir, Natalija; Meijerhof, Tjarko; Wilschut, Jan; Huckriede, Anke; de Haan, Aalzen

    2010-12-01

    Induction of cytotoxic T lymphocyte (CTL) activity against conserved influenza antigens, e.g. nucleoprotein (NP) could be a step towards cross-protective influenza vaccine. The major challenge for non-replicating influenza vaccines aiming for activation of CTLs is targeting of antigen to the MHC class I processing and presentation pathway of professional antigen presenting cells, in particular dendritic cells (DCs). Intrinsic fusogenic properties of the vaccine particle itself can enable direct cytosolic delivery of the antigen by enhancing release of the antigen from the endosome to the cytosol. Alternatively, the vaccine particle would need to possess the capacity to activate DCs thereby triggering cell-intrinsic mechanisms of cross-presentation, processes that do not require fusion. Here, using fusion-active and fusion-inactive whole inactivated virus (WIV) as a vaccine model, we studied the relative contribution of these two pathways on priming and reactivation of influenza NP-specific CTLs in a murine model. We show that activation of bone marrow-derived DCs by WIV, as well as reactivation of NP-specific CTLs in vitro and in vivo were not affected by inactivation of membrane fusion of the WIV particles. However, in vivo priming of naive CTLs was optimal only upon vaccination with fusion-active WIV. Thus, DC-intrinsic mechanisms of cross-presentation are involved in the activation of CTLs upon vaccination with WIV. However, for optimal priming of naive CTLs these mechanisms should be complemented by delivery of antigen to the cytosol mediated by the membrane fusion capacity of the WIV particles. PMID:20965298

  16. Optimization of the Production of Inactivated Clostridium novyi Type B Vaccine Using Computational Intelligence Techniques.

    PubMed

    Aquino, P L M; Fonseca, F S; Mozzer, O D; Giordano, R C; Sousa, R

    2016-07-01

    Clostridium novyi causes necrotic hepatitis in sheep and cattle, as well as gas gangrene. The microorganism is strictly anaerobic, fastidious, and difficult to cultivate in industrial scale. C. novyi type B produces alpha and beta toxins, with the alpha toxin being linked to the presence of specific bacteriophages. The main strategy to combat diseases caused by C. novyi is vaccination, employing vaccines produced with toxoids or with toxoids and bacterins. In order to identify culture medium components and concentrations that maximized cell density and alpha toxin production, a neuro-fuzzy algorithm was applied to predict the yields of the fermentation process for production of C. novyi type B, within a global search procedure using the simulated annealing technique. Maximizing cell density and toxin production is a multi-objective optimization problem and could be treated by a Pareto approach. Nevertheless, the approach chosen here was a step-by-step one. The optimum values obtained with this approach were validated in laboratory scale, and the results were used to reload the data matrix for re-parameterization of the neuro-fuzzy model, which was implemented for a final optimization step with regards to the alpha toxin productivity. With this methodology, a threefold increase of alpha toxin could be achieved. PMID:27003282

  17. [New indications for the inactivated influenza vaccine in the pediatric population (2004-2005)].

    PubMed

    Reina, J

    2005-07-01

    Several epidemiological studies have indicated that, in all countries and in distinct epidemic years, the highest rates of influenza infection (between 15% and 42%) occur in the pediatric population, especially in school-aged children. Over various influenza seasons, the rates of annual outpatient visits attributable to influenza vary from 6-29% of children. Influenza and its complications have been reported to result in a 10-30% increase in the number of antibiotic courses prescribed to children during the influenza season. Current percentages of influenza vaccination in children are very low, although the hospitalization rates for infectious complications in children under 5 years are at least equal to those observed in individuals aged more than 65 years. The reasons for these low immunization rates are unknown, but many factors could be involved, especially the need for annual revaccination. In 2003 the Advisory Committee on Immunization Practices (ACIP) recommended influenza immunization only in children at high risk for influenza complications and in those living with someone in a high-risk group. However, they encouraged vaccination of all children aged 6-23 months old. After a review of various epidemiological studies, in 2004 both the ACIP and the American Academy of Pediatrics recommended systematic immunization of all healthy children within this age group. However, both institutions advise that before the routine introduction of influenza immunization in all children aged 6-23 months old, immunization programs in high-risk children need to be implemented. PMID:15989871

  18. Technology transfer of oil-in-water emulsion adjuvant manufacturing for pandemic influenza vaccine production in Romania: Preclinical evaluation of split virion inactivated H5N1 vaccine with adjuvant.

    PubMed

    Stavaru, Crina; Onu, Adrian; Lupulescu, Emilia; Tucureanu, Catalin; Rasid, Orhan; Vlase, Ene; Coman, Cristin; Caras, Iuliana; Ghiorghisor, Alina; Berbecila, Laurentiu; Tofan, Vlad; Bowen, Richard A; Marlenee, Nicole; Hartwig, Airn; Bielefeldt-Ohmann, Helle; Baldwin, Susan L; Van Hoeven, Neal; Vedvick, Thomas S; Huynh, Chuong; O'Hara, Michael K; Noah, Diana L; Fox, Christopher B

    2016-04-01

    Millions of seasonal and pandemic influenza vaccine doses containing oil-in-water emulsion adjuvant have been administered in order to enhance and broaden immune responses and to facilitate antigen sparing. Despite the enactment of a Global Action Plan for Influenza Vaccines and a multi-fold increase in production capabilities over the past 10 years, worldwide capacity for pandemic influenza vaccine production is still limited. In developing countries, where routine influenza vaccination is not fully established, additional measures are needed to ensure adequate supply of pandemic influenza vaccines without dependence on the shipment of aid from other, potentially impacted first-world countries. Adaptation of influenza vaccine and adjuvant technologies by developing country influenza vaccine manufacturers may enable antigen sparing and corresponding increases in global influenza vaccine coverage capacity. Following on previously described work involving the technology transfer of oil-in-water emulsion adjuvant manufacturing to a Romanian vaccine manufacturing institute, we herein describe the preclinical evaluation of inactivated split virion H5N1 influenza vaccine with emulsion adjuvant, including immunogenicity, protection from virus challenge, antigen sparing capacity, and safety. In parallel with the evaluation of the bioactivity of the tech-transferred adjuvant, we also describe the impact of concurrent antigen manufacturing optimization activities. Depending on the vaccine antigen source and manufacturing process, inclusion of adjuvant was shown to enhance and broaden functional antibody titers in mouse and rabbit models, promote protection from homologous virus challenge in ferrets, and facilitate antigen sparing. Besides scientific findings, the operational lessons learned are delineated in order to facilitate adaptation of adjuvant technologies by other developing country institutes to enhance global pandemic influenza preparedness. PMID:26618392

  19. Dismantling the Taboo against Vaccines in Pregnancy

    PubMed Central

    de Martino, Maurizio

    2016-01-01

    Vaccinating pregnant women in order to protect them, the fetus, and the child has become universal in no way at all. Prejudice in health professionals add to fears of women and their families. Both these feelings are not supported by even the smallest scientific data. Harmlessness for the mother and the child has been observed for seasonal, pandemic, or quadrivalent influenza, mono, combined polysaccharide or conjugated meningococcal or pneumococcal, tetanus toxoid, acellular pertussis, human papillomavirus, cholera, hepatitis A, Japanese encephalitis, rabies, anthrax, smallpox, yellow fever, mumps, measles and rubella combined, typhoid fever, inactivated or attenuated polio vaccines, and Bacillus Calmétte Guerin vaccines. Instead, the beneficial effects of influenza vaccine for the mother and the child as well as of pertussis vaccine for the child have been demonstrated. Obstetrician-gynecologists, general practitioners, and midwives must incorporate vaccination into their standard clinical care. Strong communication strategies effective at reducing parental vaccine hesitancy and approval of regulatory agencies for use of vaccines during pregnancy are needed. It must be clear that the lack of pre-licensure studies in pregnant women and, consequently, the lack of a statement about the use of the vaccine in pregnant women does not preclude its use in pregnancy. PMID:27338346

  20. Dismantling the Taboo against Vaccines in Pregnancy.

    PubMed

    de Martino, Maurizio

    2016-01-01

    Vaccinating pregnant women in order to protect them, the fetus, and the child has become universal in no way at all. Prejudice in health professionals add to fears of women and their families. Both these feelings are not supported by even the smallest scientific data. Harmlessness for the mother and the child has been observed for seasonal, pandemic, or quadrivalent influenza, mono, combined polysaccharide or conjugated meningococcal or pneumococcal, tetanus toxoid, acellular pertussis, human papillomavirus, cholera, hepatitis A, Japanese encephalitis, rabies, anthrax, smallpox, yellow fever, mumps, measles and rubella combined, typhoid fever, inactivated or attenuated polio vaccines, and Bacillus Calmétte Guerin vaccines. Instead, the beneficial effects of influenza vaccine for the mother and the child as well as of pertussis vaccine for the child have been demonstrated. Obstetrician-gynecologists, general practitioners, and midwives must incorporate vaccination into their standard clinical care. Strong communication strategies effective at reducing parental vaccine hesitancy and approval of regulatory agencies for use of vaccines during pregnancy are needed. It must be clear that the lack of pre-licensure studies in pregnant women and, consequently, the lack of a statement about the use of the vaccine in pregnant women does not preclude its use in pregnancy. PMID:27338346

  1. EV-A71 vaccine licensure: a first step for multivalent enterovirus vaccine to control HFMD and other severe diseases.

    PubMed

    Mao, Qunying; Wang, Yiping; Bian, Lianlian; Xu, Miao; Liang, Zhenglun

    2016-01-01

    Enteroviruses (EVs) are the most common viral agents in humans. Although most infections are mild or asymptomatic, there is a wide spectrum of clinical manifestations that may be caused by EV infections with varying degrees of severity. Among these viruses, EV-A71 and coxsackievirus (CV) CV-A16 from group A EVs attract the most attention because they are responsible for hand, foot and mouth disease (HFMD). Other EV-A viruses such as CV-A6 and CV-A10 were also reported to cause HFMD outbreaks in several countries or regions. Group B EVs such as CV-B3, CV-B5 and echovirus 30 were reported to be the main pathogens responsible for myocarditis and encephalitis epidemics and were also detected in HFMD patients. Vaccines are the best tools to control infectious diseases. In December 2015, China's Food and Drug Administration approved two inactivated EV-A71 vaccines for preventing severe HFMD.The CV-A16 vaccine and the EV-A71-CV-A16 bivalent vaccine showed substantial efficacy against HFMD in pre-clinical animal models. Previously, research on EV-B group vaccines was mainly focused on CV-B3 vaccine development. Because the HFMD pathogen spectrum has changed, and the threat from EV-B virus-associated severe diseases has gradually increased, it is necessary to develop multivalent HFMD vaccines. This study summarizes the clinical symptoms of diseases caused by EVs, such as HFMD, myocarditis and encephalitis, and the related EV vaccine development progress. In conclusion, developing multivalent EV vaccines should be strongly recommended to prevent HFMD, myocarditis, encephalitis and other severe diseases. PMID:27436364

  2. Efficacy of inactivated and live-attenuated influenza virus vaccines in pigs against infection and transmission of emerging H3N2 similar to the 2011-2012 H3N2v

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Vaccines provide a primary means to limit disease but may not be effective at blocking infection and pathogen transmission. The objective of the current study was to evaluate the efficacy of commercial inactivated swine influenza A virus (IAV) vaccines and experimental live-attenuated influenza viru...

  3. Japanese viral encephalitis

    PubMed Central

    Tiroumourougane, S; Raghava, P; Srinivasan, S

    2002-01-01

    One of the leading causes of acute encephalopathy in children in the tropics is Japanese encephalitis (JE). Transmitted by the culex mosquito, this neurotropic virus predominately affects the thalamus, anterior horns of the spinal cord, cerebral cortex, and cerebellum. It mainly affects children <15 years and is mostly asymptomatic. The occasional symptomatic child typically presents with a neurological syndrome characterised by altered sensorium, seizures, and features of intracranial hypertension. Aetiological diagnosis is based on virus isolation or demonstration of virus specific antigen or antibodies in the cerebrospinal fluid/blood. Though no antiviral drug is available against JE, effective supportive management can improve the outcome. Control of JE involves efficient vector control and appropriate use of vaccines. PMID:11930023

  4. The humoral immune response and protective efficacy of vaccination with inactivated split and whole influenza virus vaccines in BALB/c mice.

    PubMed

    Cox, Rebecca Jane; Hovden, Arnt-Ove; Brokstad, Karl Albert; Szyszko, Ewa; Madhun, Abdullah Sami; Haaheim, Lars Reinhardt

    2006-11-10

    Recently the urgency of developing a pandemic influenza vaccine has lead to the re-evaluation of the use of whole virus vaccine. We have compared the humoral immune response and the protective efficacy of whole and split influenza virus vaccines in mice. Whole virus vaccine was more immunogenic particularly after the first dose of vaccine, generally eliciting higher numbers of systemic antibody secreting cells and an earlier and higher neutralising antibody response. Immunisation with one dose of whole virus vaccine more effectively reduced viral shedding upon non-lethal homologous viral challenge, but two doses of split virus vaccine was most effective at limiting viral replication and this was correlated with high influenza specific serum IgG concentrations. The two vaccine formulations induced different T helper profiles particularly after one dose of vaccine; split virus vaccine induced a type 2 bias response, whereas whole virus vaccine elicited a dominant type 1 response. PMID:16839650

  5. Combined immunization of infants with oral and inactivated poliovirus vaccines: results of a randomized trial in The Gambia, Oman, and Thailand. WHO Collaborative Study Group on Oral and Inactivated Poliovirus Vaccines.

    PubMed Central

    1996-01-01

    To assess an immunization schedule combining oral (OPV) and inactivated poliovirus vaccines (IPV), we conducted a clinical trial in the Gambia, Oman, and Thailand. Children were randomized to receive one of the following schedules: OPV at birth, 6, 10, and 14 weeks of age; OPV at birth followed by both OPV and IPV at 6, 10, and 14 weeks of age: or placebo at birth followed by IPV at 6, 10, and 14 weeks of age. A total of 1685 infants were enrolled; 24-week serum specimens were available for 1291 infants (77%). Across the study sites at 24 weeks of age, the proportion of seropositive children in the combined schedule group was 95-99% for type 1, 99-100% for type 2, and 97-100% for type 3. In the Gambia and Oman, the combined schedule performed significantly better than OPV for type 1 (95-97% versus 88-90%) and type 3 (97-99% versus 72-73%). In the Gambia and Oman, seroprevalences in the IPV group were lower for type 1 (significantly lower in the Gambia); significantly lower for type 2; and significantly higher for type 3, compared with the OPV group. In Thailand, the IPV group had significantly lower proportions of children who were seropositive for each of the three types, compared with the OPV group. The responses to OPV in the Gambia, Oman, and Thailand were consistent with previous studies from these countries. IPV given at 6, 10, and 14 weeks of age provided inadequate serological protection against poliovirus, especially type 1. The combined schedule provided the highest levels of serum antibody response, with mucosal immunity equivalent to that produced by OPV alone. PMID:8789924

  6. A live-attenuated and an inactivated chimeric porcine circovirus (PCV)1-2 vaccine are both effective at inducing a humoral immune response and reducing PCV2 viremia and intrauterine infection in female swine of breeding age

    PubMed Central

    Hemann, Michelle; Beach, Nathan M.; Meng, Xiang-Jin; Wang, Chong; Halbur, Patrick G.; Opriessnig, Tanja

    2014-01-01

    The objective of this pilot study was to determine the efficacy of inactivated (1 or 2 dose) and live-attenuated chimeric porcine circovirus (PCV)1-2 vaccines in sows using the PCV2-spiked semen model. Thirty-five sows were randomly divided into 6 groups: negative and positive controls, 1 dose inactivated PCV1-2 vaccine challenged (1-VAC-PCV2), 2 dose inactivated PCV1-2 vaccine challenged (2-VAC-PCV2), 1 dose live-attenuated PCV1-2 vaccine unchallenged (1-LIVE-VAC), and 1 dose live-attenuated PCV1-2 vaccine challenged (1-LIVE-VAC-PCV2). The inactivated PCV1-2 vaccine induced higher levels of PCV2-specific antibodies in dams. All vaccination strategies provided good protection against PCV2 viremia in dams, whereas the majority of the unvaccinated sows were viremic. Four of the 35 dams became pregnant: a negative control, a positive control, a 2-VAC-PCV2 sow, and a 1-LIVE-VAC-PCV2 sow. The PCV2 DNA was detected in 100%, 67%, and 29% of the fetuses obtained from the positive control, inactivated vaccinated, or live-attenuated vaccinated dams, respectively. The PCV2 antigen in hearts was only detectable in the positive control litter (23% of the fetuses). The PCV1-2 DNA was detected in 29% of the fetuses in the litter from the 1-LIVE-VAC-PCV2 dam. Under the conditions of this pilot study, both vaccines protected against PCV2 viremia in breeding age animals; however, vertical transmission was not prevented. PMID:24396175

  7. Autoimmune Encephalitis

    PubMed Central

    Leypoldt, Frank; Wandinger, Klaus-Peter; Bien, Christian G; Dalmau, Josep

    2016-01-01

    The term autoimmune encephalitis is used to describe a group of disorders characterised by symptoms of limbic and extra-limbic dysfunction occurring in association with antibodies against synaptic antigens and proteins localised on the neuronal cell surface. In recent years there has been a rapidly expanding knowledge of these syndromes resulting in a shift in clinical paradigms and new insights into pathogenic mechanisms. Since many patients respond well to immunosuppressive treatment, the recognition of these disorders is of utmost importance. In general, there are no brain-imaging modalities or biomarkers specific of these disorders other than the demonstration of the neuronal antibodies. A disease classification based on these antibodies provides information on prognosis and paraneoplastic aetiology. This article focuses on recent clinical advances, newly characterised antibodies and treatment approaches to these disorders. PMID:27330568

  8. An inactivated Ross River virus vaccine is well tolerated and immunogenic in an adult population in a randomized phase 3 trial.

    PubMed

    Wressnigg, Nina; van der Velden, Maikel V W; Portsmouth, Daniel; Draxler, Wolfgang; O'Rourke, Maria; Richmond, Peter; Hall, Stephen; McBride, William J H; Redfern, Andrew; Aaskov, John; Barrett, P Noel; Aichinger, Gerald

    2015-03-01

    Ross River virus (RRV) is endemic in Australia and several South Pacific Islands. More than 90,000 cases of RRV disease, which is characterized by debilitating polyarthritis, were reported in Australia in the last 20 years. There is no vaccine available to prevent RRV disease. A phase 3 study was undertaken at 17 sites in Australia to investigate the safety and immunogenicity of an inactivated whole-virus Vero cell culture-derived RRV vaccine in 1,755 healthy younger adults aged 16 to 59 years and 209 healthy older adults aged ≥60 years. Participants received a 2.5-μg dose of Al(OH)(3)-adjuvanted RRV vaccine, with a second and third dose after 3 weeks and 6 months, respectively. Vaccine-induced RRV-specific neutralizing and total IgG antibody titers were measured after each immunization. Vaccine safety was monitored over the entire study period. The vaccine was safe and well-tolerated after each vaccination. No cases of arthritis resembling RRV disease were reported. The most frequently reported systemic reactions were headache, fatigue, and malaise; the most frequently reported injection site reactions were tenderness and pain. After the third immunization, 91.5% of the younger age group and 76.0% of the older age group achieved neutralizing antibody titers of ≥1:10; 89.1% of the younger age group and 70.9% of the older age group achieved enzyme-linked immunosorbent assay (ELISA) titers of ≥11 PanBio units. A whole-virus Vero cell culture-derived RRV vaccine is well tolerated in an adult population and induces antibody titers associated with protection from RRV disease in the majority of individuals. (This study is registered at www.clinicaltrials.gov under registration no. NCT01242670.). PMID:25540268

  9. Age and psychological influences on immune responses to trivalent inactivated influenza vaccine in the meditation or exercise for preventing acute respiratory infection (MEPARI) trial

    PubMed Central

    Hayney, Mary S; Coe, Christopher L; Muller, Daniel; Obasi, Chidi N; Backonja, Uba; Ewers, Tola; Barrett, Bruce

    2014-01-01

    Background: Strategies to improve influenza vaccine protection among elderly individuals are an important research priority. Mindfulness-based stress reduction (MBSR) and exercise have been shown to affect aspects of immune function in some populations. We hypothesized that influenza vaccine responses may be enhanced with meditation or exercise training as compared with controls. Results: No differences in vaccine responses were found comparing control to MBSR or exercise. Individuals achieving seroprotective levels of influenza antibody ≥160 units had higher optimism, less anxiety, and lower perceived stress than the nonresponders. Age correlated with influenza antibody responses, but not with IFNγ or IL-10 production. Conclusion: The MBSR and exercise training evaluated in this study failed to enhance immune responses to influenza vaccine. However, optimism, perceived stress, and anxiety were correlated in the expected directions with antibody responses to influenza vaccine. Methods: Healthy individuals ≥50 y were randomly assigned to exercise (n = 47) or MBSR (n = 51) training or a waitlist control condition (n = 51). Each participant received trivalent inactivated influenza vaccine after 6 weeks, and had blood draws prior to and 3 and 12 weeks after immunization. Serum influenza antibody, nasal immunoglobulin A, and peripheral blood mononuclear cell interferon-γ (IFNγ) and interleukin-10 (IL-10) concentrations were measured. Measures of optimism, perceived stress, and anxiety were obtained over the course of the study. Seroprotection was defined as an influenza antibody concentration ≥160 units. Vaccine responses were compared using ANOVA, t tests, and Kruskal–Wallis tests. The correlation between vaccine responses and age was examined with the Pearson test. PMID:24096366

  10. Epidemiological situation of Japanese encephalitis in Nepal.

    PubMed

    Bista, M B; Shrestha, J M

    2005-01-01

    after the rainy season (monsoon). Cases start to appear in the month of April - May and reach its peak during late August to early September and start to decline from October. There are four designated referral laboratories, namely National Public Health Laboratory (Teku), Vector Borne Diseases Research and Training Center (Hetauda), B.P. Koirala Institute of Medical Sciences (Dharan) and JE Laboratory (Nepalgunj), for confirmatory diagnosis of JE. For prevention of JE infection; chemical and biological control of vectors including environmental management at breeding sites are necessary. Segregate pigs from humans habitation. Wear long sleeved clothes and trousers and use repellent and bed net to avoid exposure to mosquitos. For the prevention of the disease in humans, safe and efficacious vaccines are available. Therefore immunize population at risk against JE. Immunize pigs at the surroundings against JE. 225,000 doses of live attenuated SA-14-14.2 JE vaccine were received in donation from Boran Pharmaceuticals, South Korea for the first time in Nepal. Altogether 224,000 children aged between 1 to 15 years were vaccinated in Banke, Bardiya and Kailali districts during 1999. From China also, 2,000,000 doses of inactivated vaccine were received in 2000 and a total of 481,421 children aged between 6m to 10 yrs were protected from JE during 2001/2002. Ministry of Agriculture, Department of Livestock Services has vaccinated around 200,000 pigs against JE in terai zone during February 2001. PMID:16554872

  11. Clinical trial to evaluate safety and immunogenicity of an oral inactivated enterotoxigenic Escherichia coli prototype vaccine containing CFA/I overexpressing bacteria and recombinantly produced LTB/CTB hybrid protein.

    PubMed

    Lundgren, A; Leach, S; Tobias, J; Carlin, N; Gustafsson, B; Jertborn, M; Bourgeois, L; Walker, R; Holmgren, J; Svennerholm, A-M

    2013-02-01

    We have developed a new oral vaccine against enterotoxigenic Escherichia coli (ETEC) diarrhea containing killed recombinant E. coli bacteria expressing increased levels of ETEC colonization factors (CFs) and a recombinant protein (LCTBA), i.e. a hybrid between the binding subunits of E. coli heat labile toxin (LTB) and cholera toxin (CTB). We describe a randomized, comparator controlled, double-blind phase I trial in 60 adult Swedish volunteers of a prototype of this vaccine. The safety and immunogenicity of the prototype vaccine, containing LCTBA and an E. coli strain overexpressing the colonization factor CFA/I, was compared to a previously developed oral ETEC vaccine, consisting of CTB and inactivated wild type ETEC bacteria expressing CFA/I (reference vaccine). Groups of volunteers were given two oral doses of either the prototype or the reference vaccine; the prototype vaccine was administered at the same or a fourfold higher dosage than the reference vaccine. The prototype vaccine was found to be safe and equally well-tolerated as the reference vaccine at either dosage tested. The prototype vaccine induced mucosal IgA (fecal secretory IgA and intestine-derived IgA antibody secreting cell) responses to both LTB and CFA/I, as well as serum IgA and IgG antibody responses to LTB. Immunization with LCTBA resulted in about twofold higher mucosal and systemic IgA responses against LTB than a comparable dose of CTB. The higher dose of the prototype vaccine induced significantly higher fecal and systemic IgA responses to LTB and fecal IgA responses to CFA/I than the reference vaccine. These results demonstrate that CF over-expression and inclusion of the LCTBA hybrid protein in an oral inactivated ETEC vaccine does not change the safety profile when compared to a previous generation of such a vaccine and that the prototype vaccine induces significant dose dependent mucosal immune responses against CFA/I and LTB. PMID:23306362

  12. Spray-dried powders of starch and crosslinked poly(acrylic acid) as carriers for nasal delivery of inactivated influenza vaccine.

    PubMed

    Coucke, D; Schotsaert, M; Libert, C; Pringels, E; Vervaet, C; Foreman, P; Saelens, X; Remon, J P

    2009-02-18

    Mucosal vaccination has several advantages over parenteral vaccination. In this study, viscosity-enhancing mucosal delivery systems for the induction of an adaptive immune response against viral antigen were investigated. Powder formulations based on spray-dried mixtures of starch (Amioca)/poly(acrylic acid) (Carbopol 974P) in different ratios were used as carriers of the viral antigen. A comparison of these formulations for intranasal delivery of heat-inactivated influenza virus combined with LTR192G adjuvant was made in vivo in a rabbit model. Individual rabbit sera were tested for seroconversion against hemagglutinin (HA), the major surface antigen of influenza. The powder vaccine formulations were able to induce systemic anti-HA IgG responses. The presence of Carbopol 974P improved the kinetics of the immune responses and the level of IgG titers in a dose-dependent way which was correlated with moderately irritating capacities of the formulation. In contrast, mucosal IgA responses were not detected. In conclusion, it was demonstrated that the use of bioadhesive carriers based on Amioca starch and poly(acrylic acid) facilitates the induction of a systemic anti-HA antibody response after intranasal vaccination with a whole virus influenza vaccine. PMID:19114075

  13. Comparative study of the immunogenicity in mice and monkeys of an inactivated CA16 vaccine made from a human diploid cell line

    PubMed Central

    Yang, Erxia; Cheng, Chen; Zhang, Ying; Wang, Jingjing; Che, Yanchun; Pu, Jing; Dong, Chenghong; Liu, Longding; He, Zhanlong; Lu, Shuaiyao; Zhao, Yuan; Jiang, Li; Liao, Yun; Shao, Congwen; Li, Qihan

    2014-01-01

    The coxsackie A16 virus (CA16), along with enterovirus 71 (EV71), is a primary pathogen that causes hand, foot, and mouth disease (HFMD). To control HFMD, CA16, and EV71 vaccines are needed. In this study, an experimental inactivated CA16 vaccine was prepared using human diploid cells, and the vaccine’s immunogenicity was analyzed in mice and rhesus monkeys. The results showed that the neutralizing antibody was developed in a dose-dependent manner, and was sustained for 70 days with an average GMT (geometric mean titer) level of 80 to 90 in immunized mouse and for 56 days with GMT of higher than 300 in monkeys. The neutralizing antibody had a cross-neutralizing activity against different viral strains (genotype A and B), and the specific IFN-γ-secreting cell response was activated by these virus strains in an ELISPOT assay. This study provides evidence for the potential use of inactivated CA16 as a candidate for use in vaccines. PMID:24583556

  14. The Adjuvant Activity of Epimedium Polysaccharide-Propolis Flavone Liposome on Enhancing Immune Responses to Inactivated Porcine Circovirus Vaccine in Mice.

    PubMed

    Fan, Yunpeng; Guo, Liwei; Hou, Weifeng; Guo, Chao; Zhang, Weimin; Ma, Xia; Ma, Lin; Song, Xiaoping

    2015-01-01

    Objectives. The adjuvant activity of Epimedium polysaccharide-propolis flavone liposome (EPL) was investigated in vitro and in vivo. Methods. In vitro, the effects of EPL at different concentrations on splenic lymphocytes proliferation and mRNA expression of IFN-γ and IL-6 were determined. In vivo, the adjuvant activities of EPL, EP, and mineral oil were compared in BALB/c mice through vaccination with inactivated porcine circovirus type 2 (PCV2) vaccine. Results. In vitro, EPL promoted lymphocytes proliferation and increased the mRNA expression of IFN-γ and IL-6, and the effect was significantly better than EP at all concentrations. In vivo, EPL significantly promoted the lymphocytes proliferation and the secretion of cytokines and improved the killing activity of NK cells, PCV2-specific antibody titers, and the proportion of T-cell subgroups. The effects of EPL were significantly better than EP and oil adjuvant at most time points. Conclusion. EPL could significantly improve both PCV2-specific cellular and humoral immune responses, and its medium dose had the best efficacy. Therefore, EPL would be exploited in an effective immune adjuvant for inactivated PCV2 vaccine. PMID:26612996

  15. The Adjuvant Activity of Epimedium Polysaccharide-Propolis Flavone Liposome on Enhancing Immune Responses to Inactivated Porcine Circovirus Vaccine in Mice

    PubMed Central

    Fan, Yunpeng; Guo, Liwei; Hou, Weifeng; Guo, Chao; Zhang, Weimin; Ma, Xia; Ma, Lin; Song, Xiaoping

    2015-01-01

    Objectives. The adjuvant activity of Epimedium polysaccharide-propolis flavone liposome (EPL) was investigated in vitro and in vivo. Methods. In vitro, the effects of EPL at different concentrations on splenic lymphocytes proliferation and mRNA expression of IFN-γ and IL-6 were determined. In vivo, the adjuvant activities of EPL, EP, and mineral oil were compared in BALB/c mice through vaccination with inactivated porcine circovirus type 2 (PCV2) vaccine. Results. In vitro, EPL promoted lymphocytes proliferation and increased the mRNA expression of IFN-γ and IL-6, and the effect was significantly better than EP at all concentrations. In vivo, EPL significantly promoted the lymphocytes proliferation and the secretion of cytokines and improved the killing activity of NK cells, PCV2-specific antibody titers, and the proportion of T-cell subgroups. The effects of EPL were significantly better than EP and oil adjuvant at most time points. Conclusion. EPL could significantly improve both PCV2-specific cellular and humoral immune responses, and its medium dose had the best efficacy. Therefore, EPL would be exploited in an effective immune adjuvant for inactivated PCV2 vaccine. PMID:26612996

  16. St. Louis Encephalitis

    MedlinePlus

    ... Virus Transmission Epidemiology & Geographic Distribution Symptoms & Treatment Arboviral Diagnostic Testing Links & References Technical Fact Sheet Other diseases transmitted by mosquitoes Chikungunya Dengue Eastern Equine Encephalitis Japanese Encephalitis Malaria La Crosse ...

  17. A Model Immunization Programme to Control Japanese Encephalitis in Viet Nam

    PubMed Central

    Yen, Nguyen Thu; Hanh, Hoang Duc; Chang, Na Yoon; Duong, Tran Nhu; Gibbons, Robert V.; Marks, Florian; Thu, Nghiem Anh; Hong, Nguyen Minh; Park, Jin Kyung; Tuan, Pham Anh; Nisalak, Ananda; Clemens, John D.; Xu, Zhi-yi

    2015-01-01

    ABSTRACT In Viet Nam, an inactivated, mouse brain-derived vaccine for Japanese encephalitis (JE) has been given exclusively to ≤5 years old children in 3 paediatric doses since 1997. However, JE incidence remained high, especially among children aged 5-9 years. We conducted a model JE immunization programme to assess the feasibility and impact of JE vaccine administered to 1-9 year(s) children in 3 standard-dose regimen: paediatric doses for children aged <3 years and adult doses for those aged ≥3 years. Of the targeted children, 96.2% were immunized with ≥2 doses of the vaccine. Compared to the national immunization programme, JE incidence rate declined sharply in districts with the model programme (11.32 to 0.87 per 100,000 in pre-versus post-vaccination period). The rate of reduction was most significant in the 5-9 years age-group. We recommend a policy change to include 5-9 years old children in the catch-up immunization campaign and administer a 4th dose to those aged 5-9 years, who had received 3 doses of the vaccine during the first 2-3 years of life. PMID:25995736

  18. Adjuvanted poly(lactic-co-glycolic) acid nanoparticle-entrapped inactivated porcine reproductive and respiratory syndrome virus vaccine elicits cross-protective immune response in pigs

    PubMed Central

    Binjawadagi, Basavaraj; Dwivedi, Varun; Manickam, Cordelia; Ouyang, Kang; Wu, Yun; Lee, Ly James; Torrelles, Jordi B; Renukaradhya, Gourapura J

    2014-01-01

    Porcine reproductive and respiratory syndrome (PRRS), caused by the PRRS virus (PRRSV), is an economically devastating disease, causing daily losses of approximately $3 million to the US pork industry. Current vaccines have failed to completely prevent PRRS outbreaks. Recently, we have shown that poly(lactic-co-glycolic) acid (PLGA) nanoparticle-entrapped inactivated PRRSV vaccine (NP-KAg) induces a cross-protective immune response in pigs. To further improve its cross-protective efficacy, the NP-KAg vaccine formulation was slightly modified, and pigs were coadministered the vaccine twice intranasally with a potent adjuvant: Mycobacterium tuberculosis whole-cell lysate. In vaccinated virulent heterologous PRRSV-challenged pigs, the immune correlates in the blood were as follows: 1) enhanced PRRSV-specific antibody response with enhanced avidity of both immunoglobulin (Ig)-G and IgA isotypes, associated with augmented virus-neutralizing antibody titers; 2) comparable and increased levels of virus-specific IgG1 and IgG2 antibody subtypes and production of high levels of both T-helper (Th)-1 and Th2 cytokines, indicative of a balanced Th1–Th2 response; 3) suppressed immunosuppressive cytokine response; 4) increased frequency of interferon-γ+ lymphocyte subsets and expanded population of antigen-presenting cells; and most importantly 5) complete clearance of detectable replicating challenged heterologous PRRSV and close to threefold reduction in viral ribonucleic acid load detected in the blood. In conclusion, intranasal delivery of adjuvanted NP-KAg vaccine formulation to growing pigs elicited a broadly cross-protective immune response, showing the potential of this innovative vaccination strategy to prevent PRRS outbreaks in pigs. A similar approach to control other respiratory diseases in food animals and humans appears to be feasible. PMID:24493925

  19. Influenza symptoms and their impact on elderly adults: randomised trial of AS03-adjuvanted or non-adjuvanted inactivated trivalent seasonal influenza vaccines

    PubMed Central

    van Essen, Gerrit A; Beran, Jiri; Devaster, Jeanne-Marie; Durand, Christelle; Duval, Xavier; Esen, Meral; Falsey, Ann R; Feldman, Gregory; Gervais, Pierre; Innis, Bruce L; Kovac, Martina; Launay, Odile; Leroux-Roels, Geert; McElhaney, Janet E; McNeil, Shelly; Oujaa, Mohammed; Richardus, Jan Hendrik; Ruiz-Palacios, Guillermo; Osborne, Richard H; Oostvogels, Lidia

    2014-01-01

    Background Patient-reported outcomes (PROs) are particularly relevant in influenza vaccine trials in the elderly where reduction in symptom severity could prevent illness-related functional impairment. Objectives To evaluate PROs in people aged ≥65 years receiving two different vaccines. Methods This was a phase III, randomised, observer-blind study (NCT00753272) of the AS03-adjuvanted inactivated trivalent split-virion influenza vaccine (AS03-TIV) versus non-adjuvanted vaccine (TIV). Using the FluiiQ questionnaire, symptom (systemic, respiratory, total) and life impact (activities, emotions, relationships) scores were computed as exploratory endpoints, with minimal important difference (MID) in influenza severity between vaccines considered post-hoc as >7%. Vaccine efficacy of AS03-TIV relative to TIV in severe influenza (hospitalisation, complication, most severe one-third of episodes based on the area under the curve for systemic symptom score) was calculated post-hoc. The main analyses (descriptive) were conducted in the according-to-protocol cohort (n = 280 AS03-TIV, n = 315 TIV) for influenza confirmed by culture or reverse transcriptase polymerase chain reaction. Results Mean systemic symptom, total symptom and impact on activities scores were lower with AS03-TIV versus TIV. Mean respiratory symptom, impact on emotions and impact on relationships scores were similar. Influenza tended to be less severe with AS03-TIV, but the MID was reached only for impact on activities (mean 9·0%). Relative vaccine efficacy in severe influenza was 29·38% (95% CI: 7·60–46·02). Conclusions AS03-TIV had advantages over TIV in impact on systemic symptoms and activities as measured by the FluiiQ in elderly people. Higher efficacy of AS03-TIV relative to TIV was shown for prevention of severe illness. PMID:24702710

  20. Adjuvant effects of invariant NKT cell ligand potentiates the innate and adaptive immunity to an inactivated H1N1 swine influenza virus vaccine in pigs.

    PubMed

    Dwivedi, Varun; Manickam, Cordelia; Dhakal, Santosh; Binjawadagi, Basavaraj; Ouyang, Kang; Hiremath, Jagadish; Khatri, Mahesh; Hague, Jacquelyn Gervay; Lee, Chang Won; Renukaradhya, Gourapura J

    2016-04-15

    Pigs are considered as the source of some of the emerging human flu viruses. Inactivated swine influenza virus (SwIV) vaccine has been in use in the US swine herds, but it failed to control the flu outbreaks. The main reason has been attributed to lack of induction of strong local mucosal immunity in the respiratory tract. Invariant natural killer T (iNKT) cell is a unique T cell subset, and activation of iNKT cell using its ligand α-Galactosylceramide (α-GalCer) has been shown to potentiate the cross-protective immunity to inactivated influenza virus vaccine candidates in mice. Recently, we discovered iNKT cell in pig and demonstrated its activation using α-GalCer. In this study, we evaluated the efficacy of an inactivated H1N1 SwIV coadministered with α-GalCer intranasally against a homologous viral challenge. Our results demonstrated the potent adjuvant effects of α-GalCer in potentiating both innate and adaptive immune responses to SwIV Ags in the lungs of pigs, which resulted in reduction in the lung viral load by 3 logs compared to without adjuvant. Immunologically, in the lungs of pigs vaccinated with α-GalCer an increased virus specific IgA response, IFN-α secretion and NK cell-cytotoxicity was observed. In addition, iNKT cell-stimulation enhanced the secretion of Th1 cytokines (IFN-γ and IL-12) and reduced the production of immunosuppressive cytokines (IL-10 and TGF-β) in the lungs of pigs⋅ In conclusion, we demonstrated for the first time iNKT cell adjuvant effects in pigs to SwIV Ags through augmenting the innate and adaptive immune responses in the respiratory tract. PMID:27016770

  1. Immune response in cattle induced by inactivated rabies vaccine adjuvanted with aluminium hydroxide either alone or in combination with avridine.

    PubMed

    Côrtes, J A; Rweyemamu, M M; Ito, F H; Umehara, O; Medeiros Neto, R R; De Lucca-Neto, D; Baltazar, M C; Vasconcellos, S A; Vasconcellos, M E

    1993-09-01

    In a comparative study of two commercial baby hamster kidney rabies vaccines produced in Brazil, the authors were able to demonstrate the following: a) both vaccines provoked a high level of antibody response and protection against challenge in cattle b) in primary vaccination, at least, the addition of avridine (a synthetic lipoidal amine) enhances the immune response in terms of the level and persistence of antibody c) over 90% of cattle vaccinated with either vaccine were protected against experimental challenge one year after revaccination, and the antibody response profile indicated that these vaccines were capable of maintaining antibody titres above protective levels for more than two years after revaccination. On the basis of these results, the authors recommend optional revaccination of young animals (i.e. "primo-vaccinates") at six months of age. Thereafter, annual revaccination should be sufficient to ensure high levels of antibody between vaccination cycles. PMID:8219344

  2. Reduction of porcine circovirus type 2 (PCV2) viremia by a reformulated inactivated chimeric PCV1-2 vaccine-induced humoral and cellular immunity after experimental PCV2 challenge

    PubMed Central

    2012-01-01

    Background The objective of the present study was to elucidate the humoral and cellular immune response mechanisms by which a reformulated inactivated chimeric PCV1-2 vaccine reduces the PCV2 viremia. Forty PCV2 seronegative 3-week-old pigs were randomly divided into the following four groups: vaccinated challenged (T01), vaccinated non-challenged (T02), non-vaccinated challenged (T03), and non-vaccinated non-challenged (T04) animals. The pigs in groups T01 and T02 were immunized with a reformulated inactivated chimeric PCV1-2 vaccine (Fostera™ PCV; Pfizer Animal Health) administered as a 2.0 ml dose at 21 days of age. At 35 days of age (0 days post-challenge), the pigs in groups T01 and T03 were inoculated intranasally with 2 ml each of PCV2b. Results A reduction of PCV2 viremia coincided with the appearance of both PCV2-specific neutralizing antibodies (NA) and interferon-γ-secreting cells (IFN-γ-SCs) in the vaccinated animals. However, the presence of anti-PCV2 IgG antibodies did not correlate with the reduction of PCV2 viremia. Lymphocyte subset analysis indicated that the numbers of CD3+ and CD4+ cells increased in vaccinated animals but the numbers of CD4+ cells decreased transiently in non-vaccinated animals. The observation of a delayed type hypersensitivity response in only the vaccinated animals also supports a CD4+ cell-associated protective cellular immune response induced by the reformulated inactivated chimeric PCV1-2 vaccine. Conclusions The induction of PCV2-specific NA and IFN-γ-SCs, and CD4+ cells by the reformulated inactivated chimeric PCV1-2 vaccine is the important protective immune response leading to reduction of the PCV2 viremia and control of the PCV2 infection. To our knowledge this is the first demonstration of protective humoral and cellular immunity induced by the reformulated inactivated chimeric PCV1-2 vaccine and its effect on reduction of PCV2 viremia by vaccination. PMID:23078878

  3. Safety and reactogenicity of the combined diphtheria-tetanus-acellular pertussis-inactivated poliovirus-Haemophilus influenzae type b (DTPa-IPV/Hib) vaccine in healthy Vietnamese toddlers: An open-label, phase III study

    PubMed Central

    Anh, Dang Duc; Van Der Meeren, Olivier; Karkada, Naveen; Assudani, Deepak; Yu, Ta-Wen; Han, Htay Htay

    2016-01-01

    abstract The introduction of combination vaccines plays a significant role in increasing vaccine acceptance and widening vaccine coverage. Primary vaccination against diphtheria, tetanus, pertussis, poliomyelitis and Haemophilus influenza type b (Hib) diseases has been implemented in Vietnam. In this study we evaluated the safety and reactogenicity of combined diphtheria-tetanus-pertussis-inactivated polio (DTPa-IPV)/Hib vaccine when administered as a booster dose in 300 healthy Vietnamese children <2 years of age (mean age: 15.8 months). During the 4-day follow-up period, pain (31.7%) and redness (27.3%) were the most frequent solicited local symptoms. Pain (2%) was also the most frequent grade 3 local symptom. One subject reported 2 serious adverse events that were not causally related to the study vaccine. DTPa-IPV/Hib conjugate vaccine was well tolerated as a booster dose in healthy Vietnamese children aged <2 years. PMID:26337197

  4. Safety and reactogenicity of the combined diphtheria-tetanus-acellular pertussis-inactivated poliovirus-Haemophilus influenzae type b (DTPa-IPV/Hib) vaccine in healthy Vietnamese toddlers: An open-label, phase III study.

    PubMed

    Anh, Dang Duc; Van Der Meeren, Olivier; Karkada, Naveen; Assudani, Deepak; Yu, Ta-Wen; Han, Htay Htay

    2016-03-01

    The introduction of combination vaccines plays a significant role in increasing vaccine acceptance and widening vaccine coverage. Primary vaccination against diphtheria, tetanus, pertussis, poliomyelitis and Haemophilus influenza type b (Hib) diseases has been implemented in Vietnam. In this study we evaluated the safety and reactogenicity of combined diphtheria-tetanus-pertussis-inactivated polio (DTPa-IPV)/Hib vaccine when administered as a booster dose in 300 healthy Vietnamese children <2 years of age (mean age: 15.8 months). During the 4-day follow-up period, pain (31.7%) and redness (27.3%) were the most frequent solicited local symptoms. Pain (2%) was also the most frequent grade 3 local symptom. One subject reported 2 serious adverse events that were not causally related to the study vaccine. DTPa-IPV/Hib conjugate vaccine was well tolerated as a booster dose in healthy Vietnamese children aged <2 years. PMID:26337197

  5. Recent Progress towards Novel EV71 Anti-Therapeutics and Vaccines.

    PubMed

    Ng, Qingyong; He, Fang; Kwang, Jimmy

    2015-12-01

    Enterovirus 71 (EV71) is a group of viruses that belongs to the Picornaviridae family, which also includes viruses such as polioviruses. EV71, together with coxsackieviruses, is widely known for its association with Hand Foot Mouth Disease (HFMD), which generally affects children age five and below. Besides HFMD, EV71 can also trigger more severe and life-threatening neurological conditions such as encephalitis. Considering the lack of a vaccine and antiviral drug against EV71, together with the increasing spread of these viruses, the development of such drugs and vaccines becomes the top priority in protecting our younger generations. This article, hence, reviews some of the recent progress in the formulations of anti-therapeutics and vaccine generation for EV71, covering (i) inactivated vaccines; (ii) baculovirus-expressed vaccines against EV71; (iii) human intravenous immunoglobulin (IVIg) treatment; and (iv) the use of monoclonal antibody therapy as a prevention and treatment for EV71 infections. PMID:26670245

  6. Recent Progress towards Novel EV71 Anti-Therapeutics and Vaccines

    PubMed Central

    Ng, Qingyong; He, Fang; Kwang, Jimmy

    2015-01-01

    Enterovirus 71 (EV71) is a group of viruses that belongs to the Picornaviridae family, which also includes viruses such as polioviruses. EV71, together with coxsackieviruses, is widely known for its association with Hand Foot Mouth Disease (HFMD), which generally affects children age five and below. Besides HFMD, EV71 can also trigger more severe and life-threatening neurological conditions such as encephalitis. Considering the lack of a vaccine and antiviral drug against EV71, together with the increasing spread of these viruses, the development of such drugs and vaccines becomes the top priority in protecting our younger generations. This article, hence, reviews some of the recent progress in the formulations of anti-therapeutics and vaccine generation for EV71, covering (i) inactivated vaccines; (ii) baculovirus-expressed vaccines against EV71; (iii) human intravenous immunoglobulin (IVIg) treatment; and (iv) the use of monoclonal antibody therapy as a prevention and treatment for EV71 infections. PMID:26670245

  7. Assessment of the safety and efficacy of low pathogenic avian influenza (H9N2) virus in inactivated oil emulsion vaccine in laying hens.

    PubMed

    Shin, Jeong-Hwa; Mo, Jong Seo; Kim, Jong-Nyeo; Mo, In-pil; Ha, Bong-Do

    2016-03-01

    In Korea, several outbreaks of low pathogenic AI (H9N2) viral infections leading to decreased egg production and increased mortality have been reported on commercial farms since 1996, resulting in severe economic losses. To control the H9N2 LPAI endemic, the Korea Veterinary Authority has permitted the use of the inactivated H9N2 LPAI vaccine since 2007. In this study, we developed a killed vaccine using a low pathogenic H9N2 AI virus (A/chicken/Korea/ADL0401) and conducted safety and efficacy tests in commercial layer farms while focusing on analysis of factors that cause losses to farms, including egg production rate, egg abnormality, and feed efficiency. The egg production rate of the control group declined dramatically 5 days after the challenge. There were no changes in feed consumption of all three groups before the challenge, but rates of the control declined afterward. Clinical signs in the vaccinated groups were similar, and a slight decline in feed consumption was observed after challenge; however, this returned to normal more rapidly than the control group and commercial layers. Overall, the results of this study indicate that the safety and efficacy of the vaccine are adequate to provide protection against the AI field infection (H9N2) epidemic in Korea. PMID:27051337

  8. Assessment of the safety and efficacy of low pathogenic avian influenza (H9N2) virus in inactivated oil emulsion vaccine in laying hens

    PubMed Central

    Shin, Jeong-Hwa; Mo, Jong Seo; Kim, Jong-Nyeo; Mo, In-pil

    2016-01-01

    In Korea, several outbreaks of low pathogenic AI (H9N2) viral infections leading to decreased egg production and increased mortality have been reported on commercial farms since 1996, resulting in severe economic losses. To control the H9N2 LPAI endemic, the Korea Veterinary Authority has permitted the use of the inactivated H9N2 LPAI vaccine since 2007. In this study, we developed a killed vaccine using a low pathogenic H9N2 AI virus (A/chicken/Korea/ADL0401) and conducted safety and efficacy tests in commercial layer farms while focusing on analysis of factors that cause losses to farms, including egg production rate, egg abnormality, and feed efficiency. The egg production rate of the control group declined dramatically 5 days after the challenge. There were no changes in feed consumption of all three groups before the challenge, but rates of the control declined afterward. Clinical signs in the vaccinated groups were similar, and a slight decline in feed consumption was observed after challenge; however, this returned to normal more rapidly than the control group and commercial layers. Overall, the results of this study indicate that the safety and efficacy of the vaccine are adequate to provide protection against the AI field infection (H9N2) epidemic in Korea. PMID:27051337

  9. Inactivated Enterovirus 71 Vaccine Produced by 200-L Scale Serum-Free Microcarrier Bioreactor System Provides Cross-Protective Efficacy in Human SCARB2 Transgenic Mouse

    PubMed Central

    Wu, Chia-Ying; Lin, Yi-Wen; Kuo, Chia-Ho; Liu, Wan-Hsin; Tai, Hsiu-Fen; Pan, Chien-Hung; Chen, Yung-Tsung; Hsiao, Pei-Wen; Chan, Chi-Hsien; Chang, Ching-Chuan; Liu, Chung-Cheng; Chow, Yen-Hung; Chen, Juine-Ruey

    2015-01-01

    Epidemics and outbreaks caused by infections of several subgenotypes of EV71 and other serotypes of coxsackie A viruses have raised serious public health concerns in the Asia-Pacific region. These concerns highlight the urgent need to develop a scalable manufacturing platform for producing an effective and sufficient quantity of vaccines against deadly enteroviruses. In this report, we present a platform for the large-scale production of a vaccine based on the inactivated EV71(E59-B4) virus. The viruses were produced in Vero cells in a 200 L bioreactor with serum-free medium, and the viral titer reached 107 TCID50/mL 10 days after infection when using an MOI of 10−4. The EV71 virus particles were harvested and purified by sucrose density gradient centrifugation. Fractions containing viral particles were pooled based on ELISA and SDS-PAGE. TEM was used to characterize the morphologies of the viral particles. To evaluate the cross-protective efficacy of the EV71 vaccine, the pooled antigens were combined with squalene-based adjuvant (AddaVAX) or aluminum phosphate (AlPO4) and tested in human SCARB2 transgenic (Tg) mice. The Tg mice immunized with either the AddaVAX- or AlPO4-adjuvanted EV71 vaccine were fully protected from challenges by the subgenotype C2 and C4 viruses, and surviving animals did not show any degree of neurological paralysis symptoms or muscle damage. Vaccine treatments significantly reduced virus antigen presented in the central nervous system of Tg mice and alleviated the virus-associated inflammatory response. These results strongly suggest that this preparation results in an efficacious vaccine and that the microcarrier/bioreactor platform offers a superior alternative to the previously described roller-bottle system. PMID:26287531

  10. The novel adjuvant dmLT promotes dose sparing, mucosal immunity and longevity of antibody responses to the inactivated polio vaccine in a murine model.

    PubMed

    Norton, Elizabeth B; Bauer, David L; Weldon, William C; Oberste, M Steven; Lawson, Louise B; Clements, John D

    2015-04-15

    One option for achieving global polio eradication is to replace the oral poliovirus vaccine (OPV), which has the risk of reversion to wild-type virulence, with the inactivated poliovirus vaccine (IPV) vaccine. Adjuvants and alternate routes of immunization are promising options that may reduce antigen dose in IPV vaccinations, potentially allowing dose sparing and cost savings. Use of adjuvants and alternate routes of immunization could also help promote mucosal immunity, potentially mimicking the protection against intestinal virus shedding seen with OPV. In the current study, we examined the impact of combining the novel adjuvant dmLT with trivalent IPV for dose sparing, induction of mucosal immunity and increasing longevity of anti-poliovirus (PV) responses in a mouse model following either intradermal (ID) or intramuscular (IM) delivery. We found that non-adjuvanted ID delivery was not superior to IM delivery for fractional dose sparing, but was associated with development of mucosal immunity. Vaccination with IPV+dmLT promoted serum anti-PV neutralizing antibodies with fractional IPV doses by either IM or ID delivery, achieving at least five-fold dose sparing above non-adjuvanted fractional doses. These responses were most noticeable with the PV1 component of the trivalent vaccine. dmLT also promoted germinal center formation and longevity of serum anti-PV neutralizing titers. Lastly, dmLT enhanced mucosal immunity, as defined by fecal and intestinal anti-PV IgA secretion, when included in IPV immunization by ID or IM delivery. These studies demonstrate that dmLT is an effective adjuvant for either IM or ID delivery of IPV. Inclusion of dmLT in IPV immunizations allows antigen dose sparing and enhances mucosal immunity and longevity of anti-PV responses. PMID:25765967

  11. The manufacturing process should remain the focus for severe febrile reactions in children administered an Australian inactivated influenza vaccine during 2010.

    PubMed

    Li-Kim-Moy, Jean; Booy, Robert

    2016-01-01

    Influenza vaccine safety is an ongoing issue. In 2010, inactivated trivalent influenza vaccines (TIVs), Fluvax(®) and Fluvax Junior(®) manufactured by CSL Biotherapies ('CSL'), Parkville, Australia, were associated with a marked increase in febrile seizures (FS) in children <5 years old. Extensive investigations initially failed to identify a root cause. The company's researchers recently published two papers outlining their latest findings. Cytokine responses to TIV were measured in paediatric whole blood assays (WBA); NF-κB activation was assessed using a HEK293 cell line reporter assay. CSL suggest that the combination of new influenza strains (H1N1 A/California/7/2009 and B/Brisbane/60/2008), increased complexes of viral RNA and lipid in the vaccine, and inherent sensitivities of some children <5 years old caused elevated inflammatory responses resulting in FS. Whilst the papers provide insight into pathogenesis, much remains unclear. The WBA were from only 10 'healthy' children, potentially affecting generalisability of the results and reliability of these in vitro tests in assessing future influenza vaccine safety. Increased fever rates (without FS) found in CSL TIV studies between 2005 and 2010 suggest a long-standing contribution to reactogenicity from the manufacturing process. More detailed comparisons with non-CSL vaccines would have helped elucidate the relative contribution of patient/strain factors and the manufacturing process. The focus remains on manufacturing process differences as the key causative factor of elevated febrile responses. Studies underway, of modified vaccines in young children, will determine whether reactogenicity issues have been successfully addressed and whether CSL TIV can be relicensed in children <5 years of age. PMID:26258888

  12. Inactivated Enterovirus 71 Vaccine Produced by 200-L Scale Serum-Free Microcarrier Bioreactor System Provides Cross-Protective Efficacy in Human SCARB2 Transgenic Mouse.

    PubMed

    Wu, Chia-Ying; Lin, Yi-Wen; Kuo, Chia-Ho; Liu, Wan-Hsin; Tai, Hsiu-Fen; Pan, Chien-Hung; Chen, Yung-Tsung; Hsiao, Pei-Wen; Chan, Chi-Hsien; Chang, Ching-Chuan; Liu, Chung-Cheng; Chow, Yen-Hung; Chen, Juine-Ruey

    2015-01-01

    Epidemics and outbreaks caused by infections of several subgenotypes of EV71 and other serotypes of coxsackie A viruses have raised serious public health concerns in the Asia-Pacific region. These concerns highlight the urgent need to develop a scalable manufacturing platform for producing an effective and sufficient quantity of vaccines against deadly enteroviruses. In this report, we present a platform for the large-scale production of a vaccine based on the inactivated EV71(E59-B4) virus. The viruses were produced in Vero cells in a 200 L bioreactor with serum-free medium, and the viral titer reached 10(7) TCID50/mL 10 days after infection when using an MOI of 10(-4). The EV71 virus particles were harvested and purified by sucrose density gradient centrifugation. Fractions containing viral particles were pooled based on ELISA and SDS-PAGE. TEM was used to characterize the morphologies of the viral particles. To evaluate the cross-protective efficacy of the EV71 vaccine, the pooled antigens were combined with squalene-based adjuvant (AddaVAX) or aluminum phosphate (AlPO4) and tested in human SCARB2 transgenic (Tg) mice. The Tg mice immunized with either the AddaVAX- or AlPO4-adjuvanted EV71 vaccine were fully protected from challenges by the subgenotype C2 and C4 viruses, and surviving animals did not show any degree of neurological paralysis symptoms or muscle damage. Vaccine treatments significantly reduced virus antigen presented in the central nervous system of Tg mice and alleviated the virus-associated inflammatory response. These results strongly suggest that this preparation results in an efficacious vaccine and that the microcarrier/bioreactor platform offers a superior alternative to the previously described roller-bottle system. PMID:26287531

  13. Vaccine Adjuvants in Fish Vaccines Make a Difference: Comparing Three Adjuvants (Montanide ISA763A Oil, CpG/Poly I:C Combo and VHSV Glycoprotein) Alone or in Combination Formulated with an Inactivated Whole Salmonid Alphavirus Antigen.

    PubMed

    Thim, Hanna L; Villoing, Stéphane; McLoughlin, Marian; Christie, Karen Elina; Grove, Søren; Frost, Petter; Jørgensen, Jorunn B

    2014-01-01

    Most commercial vaccines offered to the aquaculture industry include inactivated antigens (Ag) formulated in oil adjuvants. Safety concerns are related to the use of oil adjuvants in multivalent vaccines for fish, since adverse side effects (e.g., adhesions) can appear. Therefore, there is a request for vaccine formulations for which protection will be maintained or improved, while the risk of side effects is reduced. Here, by using an inactivated salmonid alphavirus (SAV) as the test Ag, the combined use of two Toll-like receptor (TLR) ligand adjuvants, CpG oligonucleotides (ODNs) and poly I:C, as well as a genetic adjuvant consisting of a DNA plasmid vector expressing the viral haemorrhagic septicaemia virus (VHSV) glycoprotein (G) was explored. VHSV-G DNA vaccine was intramuscularly injected in combination with intraperitoneal injection of either SAV Ag alone or combined with the oil adjuvant, Montanide ISA763, or the CpG/polyI:C combo. Adjuvant formulations were evaluated for their ability to boost immune responses and induce protection against SAV in Atlantic salmon, following cohabitation challenge. It was observed that CpG/polyI:C-based formulations generated the highest neutralizing antibody titres (nAbs) before challenge, which endured post challenge. nAb responses for VHSV G-DNA- and oil-adjuvanted formulations were marginal compared to the CpG/poly I:C treatment. Interestingly, heat-inactivated sera showed reduced nAb titres compared to their non-heated counterparts, which suggests a role of complement-mediated neutralization against SAV. Consistently elevated levels of innate antiviral immune genes in the CpG/polyI:C injected groups suggested a role of IFN-mediated responses. Co-delivery of the VHSV-G DNA construct with either CpG/polyI:C or oil-adjuvanted SAV vaccine generated higher CD4 responses in head kidney at 48 h compared to injection of this vector or SAV Ag alone. The results demonstrate that a combination of pattern recognizing receptor (PRR

  14. Development of an in vitro antigen-detection test as an alternative method to the in vivo plaque reduction neutralization test for the quality control of Japanese encephalitis virus vaccine.

    PubMed

    Kim, Do Keun; Kim, Hye-Youn; Kim, Joo-Young; Ye, Michael B; Park, Kee-Bum; Han, Euiri; Kim, Jaeok; Ja Ban, Sang; Hong, Seung Hwa; Park, Yong Keun; Nam, Jae-Hwan

    2012-07-01

    Japanese encephalitis virus (JEV) causes diseases that attack the human central nervous system. Traditionally, the quality control for JEV vaccines, in which the plaque reduction neutralization (PRN) titer is measured by the national control laboratories before the vaccine batches are marketed, has required laboratory animal testing. However, classical animal tests have inherent problems, including the very fact that animals are used, ethical issues, and the possibility of error. In this study, JEV antigen was measured in an in vitro assay to assess the feasibility of replacing in vivo assays that measure the PRN titers of JEV vaccines. We constructed a double-sandwich enzyme-linked immunosorbent assay (DS-ELISA) that could detect JEV envelope (E). Initially, monoclonal antibodies (mAbs) directed against the JEV E protein were generated and characterized. We isolated 18 mAbs against JEV E protein, and most were the IgG1 or IgG2a isotype. The mAbs (5F15 and 7D71) were selected as the most suitable mAb pair to detect JEV E protein. DS-ELISA with this pair detected as little as approximately 3 μg/mL JEV E protein and demonstrated a relationship between the amount of JEV E protein and the PRN titer. From these results, we surmise that this DS-ELISA may be useful, not only in terms of measuring the amount of JEV E protein, but also as a substitute for the PRN test for JEV vaccine evaluation. PMID:22486472

  15. Vaccinations

    MedlinePlus

    ... vaccinated? For many years, a set of annual vaccinations was considered normal and necessary for dogs and ... to protect for a full year. Consequently, one vaccination schedule will not work well for all pets. ...

  16. Existing antiviral vaccines.

    PubMed

    Ravanfar, Parisa; Satyaprakash, Anita; Creed, Rosella; Mendoza, Natalia

    2009-01-01

    The innovation of vaccines has allowed for one of the greatest advancements in the history of public health. The first of the vaccines have been the antiviral vaccines, in particular the smallpox vaccine that was first developed by Edward Jenner in 1796. This article will review vaccination for the following viral diseases: measles, mumps, rubella, polio, hepatitis A, hepatitis B, influenza, rotavirus, rabies, monkeypox, smallpox, Japanese encephalitis, and yellow fever. PMID:19335723

  17. Critical role of TLR7 signaling in the priming of cross-protective cytotoxic T lymphocyte responses by a whole inactivated influenza virus vaccine.

    PubMed

    Budimir, Natalija; de Haan, Aalzen; Meijerhof, Tjarko; Waijer, Simke; Boon, Louis; Gostick, Emma; Price, David A; Wilschut, Jan; Huckriede, Anke

    2013-01-01

    Current influenza vaccines fail to induce protection against antigenically distinct virus strains. Accordingly, there is a need for the development of cross-protective vaccines. Previously, we and others have shown that vaccination with whole inactivated virus (WIV) induces cross-protective cellular immunity in mice. To probe the mechanistic basis for this finding, we investigated the role of TLR7, a receptor for single-stranded RNA, in induction of cross-protection. Vaccination of TLR7-/- mice with influenza WIV failed to protect against a lethal heterosubtypic challenge; in contrast, wild-type mice were fully protected. The lack of protection in TLR7-/- mice was associated with high viral load and a relative paucity of influenza-specific CD8+ cytotoxic T lymphocyte (CTL) responses. Dendritic cells (DCs) from TLR7-/- mice were unable to cross-present WIV-derived antigen to influenza-specific CTLs in vitro. Similarly, TLR7-/- DCs failed to mature and become activated in response to WIV, as determined by the assessment of surface marker expression and cytokine production. Plasmacytoid DCs (pDCs) derived from wild-type mice responded directly to WIV while purified conventional DCs (cDCs) did not respond to WIV in isolation, but were responsive in mixed pDC/cDC cultures. Depletion of pDCs prior to and during WIV immunization resulted in reduced numbers of influenza-specific CTLs and impaired protection from heterosubtypic challenge. Thus, TLR7 plays a critical role in the induction of cross-protective immunity upon vaccination with WIV. The initial target cells for WIV appear to be pDCs which by direct or indirect mechanisms promote activation of robust CTL responses against conserved influenza epitopes. PMID:23658804

  18. Critical Role of TLR7 Signaling in the Priming of Cross-Protective Cytotoxic T Lymphocyte Responses by a Whole Inactivated Influenza Virus Vaccine

    PubMed Central

    Budimir, Natalija; de Haan, Aalzen; Meijerhof, Tjarko; Waijer, Simke; Boon, Louis; Gostick, Emma; Price, David A.; Wilschut, Jan; Huckriede, Anke

    2013-01-01

    Current influenza vaccines fail to induce protection against antigenically distinct virus strains. Accordingly, there is a need for the development of cross-protective vaccines. Previously, we and others have shown that vaccination with whole inactivated virus (WIV) induces cross-protective cellular immunity in mice. To probe the mechanistic basis for this finding, we investigated the role of TLR7, a receptor for single-stranded RNA, in induction of cross-protection. Vaccination of TLR7−/− mice with influenza WIV failed to protect against a lethal heterosubtypic challenge; in contrast, wild-type mice were fully protected. The lack of protection in TLR7−/− mice was associated with high viral load and a relative paucity of influenza-specific CD8+ cytotoxic T lymphocyte (CTL) responses. Dendritic cells (DCs) from TLR7−/− mice were unable to cross-present WIV-derived antigen to influenza-specific CTLs in vitro. Similarly, TLR7−/− DCs failed to mature and become activated in response to WIV, as determined by the assessment of surface marker expression and cytokine production. Plasmacytoid DCs (pDCs) derived from wild-type mice responded directly to WIV while purified conventional DCs (cDCs) did not respond to WIV in isolation, but were responsive in mixed pDC/cDC cultures. Depletion of pDCs prior to and during WIV immunization resulted in reduced numbers of influenza-specific CTLs and impaired protection from heterosubtypic challenge. Thus, TLR7 plays a critical role in the induction of cross-protective immunity upon vaccination with WIV. The initial target cells for WIV appear to be pDCs which by direct or indirect mechanisms promote activation of robust CTL responses against conserved influenza epitopes. PMID:23658804

  19. Evaluation of Cross-Protection of a Lineage 1 West Nile Virus Inactivated Vaccine against Natural Infections from a Virulent Lineage 2 Strain in Horses, under Field Conditions

    PubMed Central

    Chaintoutis, Serafeim C.; Diakakis, Nikolaos; Papanastassopoulou, Maria; Banos, Georgios

    2015-01-01

    Although experimental data regarding cross-protection of horse West Nile virus (WNV) vaccines against lineage 2 infections exist, the cross-protective efficacy of these vaccines under field conditions has not been demonstrated. This study was conducted to evaluate the capability of an inactivated lineage 1 vaccine (Equip WNV) to protect against natural infections from the Nea Santa-Greece-2010 lineage 2 strain. In total, 185 WNV-seronegative horses in Thessaloniki, Greece, were selected during 2 consecutive years (2011 and 2012); 140 were immunized, and 45 were used as controls. Horses were examined for signs compatible with WNV infection. Neutralizing antibody titers against the Greek strain and the PaAn001/France lineage 1 strain were determined in immunized horses. WNV circulation was detected during both years in the study area. It was estimated that 37% and 27% of the horses were infected during 2011 and 2012, respectively. Three control animals developed clinical signs, and the WNV diagnosis was confirmed. Signs related to WNV infection were not observed in the vaccinated animals. The nonvaccinated animals had a 7.58% ± 1.82% higher chance of exhibiting signs than immunized animals (P < 0.05). Neutralizing antibodies raised against both strains in all immunized horses were detectable 1 month after the initial vaccination course. The cross-protective capacity of the lowest titer (1:40) was evident in 19 animals which were subsequently infected and did not exhibit signs. Neutralizing antibodies were detectable until the annual booster, when strong anamnestic responses were observed (geometrical mean titer ratio [GMTR] for lineage 1 of 30.2; GMTR for lineage 2 of 27.5). The results indicate that Equip WNV is capable of inducing cross-protection against natural infections from a virulent lineage 2 WNV strain in horses. PMID:26178384

  20. Pekin and Muscovy ducks respond differently to vaccination with a H5N1 highly pathogenic avian influenza (HPAI) commercial inactivated vaccine

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Domestic ducks are key intermediates in the transmission of H5N1 highly pathogenic avian influenza (HPAI) viruses, and therefore are included in vaccination programs to control H5N1 HPAI. Although vaccination has proven effective in protecting ducks against disease, different species of domestic duc...

  1. A Novel R848-Conjugated Inactivated Influenza Virus Vaccine Is Efficacious and Safe in a Neonate Nonhuman Primate Model.

    PubMed

    Holbrook, Beth C; Kim, Jong R; Blevins, Lance K; Jorgensen, Matthew J; Kock, Nancy D; D'Agostino, Ralph B; Aycock, S Tyler; Hadimani, Mallinath B; King, S Bruce; Parks, Griffith D; Alexander-Miller, Martha A

    2016-07-15

    Influenza virus infection of neonates poses a major health concern, often resulting in severe disease and hospitalization. At present, vaccines for this at-risk population are lacking. Thus, development of an effective vaccine is an urgent need. In this study, we have used an innovative nonhuman primate neonate challenge model to test the efficacy of a novel TLR 7/8 agonist R848-conjugated influenza virus vaccine. The use of the intact virus represents a step forward in conjugate vaccine design because it provides multiple antigenic targets allowing for elicitation of a broad immune response. Our results show that this vaccine induces high-level virus-specific Ab- and cell-mediated responses in neonates that result in increased virus clearance and reduced lung pathology postchallenge compared with the nonadjuvanted virus vaccine. Surprisingly, the addition of a second TLR agonist (flagellin) did not enhance vaccine protection, suggesting that combinations of TLR that provide increased efficacy must be determined empirically. These data support further exploration of this new conjugate influenza vaccine approach as a platform for use in the at-risk neonate population. PMID:27279374

  2. Study of toxic properties of prototypes of photo inactivated vaccines against tularemia and brucellosis by speckle microscopy

    NASA Astrophysics Data System (ADS)

    Ulianova, Onega V.; Ulyanov, Sergey

    2010-10-01

    Testing of prototypes of vaccines against extremely dangerous diseases, such as tularemia and brucellosis has been performed using speckle-microscopy. Changes of microcirculation caused by effect of toxins at applications of suspension of photoinactivated bacteria have been studied. Toxic properties of prototypes of vaccines against tularemia and brucellosis have been analyzed.

  3. Study of toxic properties of prototypes of photo inactivated vaccines against tularemia and brucellosis by speckle microscopy

    NASA Astrophysics Data System (ADS)

    Ulianova, Onega V.; Ulyanov, Sergey

    2011-03-01

    Testing of prototypes of vaccines against extremely dangerous diseases, such as tularemia and brucellosis has been performed using speckle-microscopy. Changes of microcirculation caused by effect of toxins at applications of suspension of photoinactivated bacteria have been studied. Toxic properties of prototypes of vaccines against tularemia and brucellosis have been analyzed.

  4. Four new vaccines for routine immunization in India: what about hemophilus influenza B and pneumococcal vaccine?

    PubMed

    Paul, Sourabh; Sahoo, Jyotiranjan

    2015-01-01

    Immunization is the process whereby a person is made immune or resistant to an infectious disease, typically by the administration of a vaccine. The Expanded Program on Immunization (EPI) was flagged off in India in 1978. According to the recommendation of National technical advisory group of India (NATGI), Government of India is going to include four new vaccines in the UIP for whole India. The four new vaccines are Inactivated Poliomyelitis Vaccine (IPV) for polio, rota viral vaccine, vaccine against rubella, and Japanese encephalitis vaccine (179 districts in India). Here, authors have tried to show a comparative descriptive analysis of the hemophilus influenza and pneumococcal pneumonia with rota virus, so that in near future Government of India can also consider their inclusion in the national UIP. In India, 39.2% of all diarrheal death are due to rota virus, whereas 0.72 million deaths are due to hemophilus influenza B and 1.3 million are due to pneumococcal pneumonia in <5 years age-group. India's indigenous developed rota viral vaccine's (Rotavac) efficacy is 56% in 1(st) year compared to H influenza B (Hib) efficacy 95% and PCV13 vaccine "3 + 1" dose efficacy 100% (South Africa). Rotarix incremental cost-effectiveness ratio is US $21.4 to US $34 per disability-adjusted life years (DALYs) compared to Hib US $ 819 per DALYs in India. In case of pneumococcal vaccine, India needs more trails on the serotype specificity, efficacy, and cost-effectiveness but there is enough evidence that hemophilus influenza burden is high in India and the present Hib vaccine is safe and highly effective. In future with the help of donor agencies, India should include the hemophilus influenza B and pneumococcal pneumonia vaccine in national UIP which will save millions of poor children's life. PMID:25810981

  5. Impact of a mixed bacterial lysate (OM-85 BV) on the immunogenicity, safety and tolerability of inactivated influenza vaccine in children with recurrent respiratory tract infection.

    PubMed

    Esposito, Susanna; Marchisio, Paola; Prada, Elisabetta; Daleno, Cristina; Porretti, Laura; Carsetti, Rita; Bosco, Annalisa; Ierardi, Valentina; Scala, Alessia; Principi, Nicola

    2014-05-01

    It is known that the immunogenicity and efficacy of conventional inactivated influenza vaccines (IIVs) are not completely satisfactory in children. The aim of this prospective, randomised, single-blind study was to compare the immune response to, and the effectiveness and safety of, an IIV (Fluarix, GlaxoSmithKline Biologicals, Rixensart, Belgium) administered to 68 children aged 36-59 months affected by recurrent respiratory tract infections (RRTIs) who were vaccinated with (n=33) or without (n=35) the mixed bacterial lysate OM-85 BV (Broncho-vaxom, Vifor Pharma, Geneva, Switzerland). OM-85 BV had no effect on seroconversion or seroprotection rates, geometric mean titres, or dendritic cells, which were not significantly different between the two groups. Moreover, OM-85 BV did not significantly increase the pool of the memory B cells that produce IgG and IgM antibodies against the influenza antigens. However, respiratory morbidity was significantly lower in the children treated with OM-85 BV (p<0.05), thus confirming its positive effect on the incidence of RRTIs. There was no difference in the incidence of adverse events between the two groups. These findings show that the immune response of children to influenza vaccine is not significantly influenced by the administration of OM-85 BV. However, the use of OM-85 before and at the same time as IIV seems to reduce respiratory morbidity, and seems to be safe and well tolerated. PMID:24681270

  6. Immunization of mice against encephalomyocarditis virus. II. Intraperitoneal and respiratory immunization with ultraviolet-inactivated vaccine: effect of Bordetella pertussis extract on the immune response.

    PubMed

    Bogaerts, W J; Durville-van der Oord

    1972-10-01

    Mice were immunized by intraperitoneal (ip) or respiratory administration of ultraviolet-inactivated virus alone or with Bordetella pertussis extract (BPE) as an adjuvant. The effect of immunization was tested by determination of antibody titers and by survival of a lethal challenge with 200 LD(50) of a virulent (large-plaque variant) strain of EMC virus. For plain vaccine the ip 50% effective dose (ED(50)) was 37 hemagglutination units (HAU; ca. 4 x 10(6) plaque-forming unit equivalents); with adjuvant the ip ED(50) was reduced to 20 HAU. After respiratory immunization by intratracheal injection, an ED(50) value of 100 HAU was found, which was not affected by BPE. After ip vaccination the primary immune response was enhanced by BPE, but the challenge response, measured 3 weeks after challenge, was unaffected. Respiratory immunization induced a primary response which was not influenced by BPE, but here the challenge response was enhanced by the adjuvant. After secondary treatment (challenge or booster vaccination) serum antibodies and protection against challenge persisted for at least 1 year. PMID:4344027

  7. Controlled trial of immune response of preterm infants to recombinant hepatitis B and inactivated poliovirus vaccines administered simultaneously shortly after birth

    PubMed Central

    Linder, N.; Handsher, R.; German, B.; Sirota, L.; Bachman, M.; Zinger, S.; Mendelson, E.; Barzilai, A.

    2000-01-01

    AIM—The study was conducted to evaluate the immunogenicity of an early, extra dose of enhanced inactivated poliovirus vaccine (IPV) administered simultaneously with recombinant hepatitis B vaccine (HBV) to preterm infants shortly after birth.
METHODS—Three groups were studied. Fifty preterm infants received IPV intramuscularly within 24 hours of birth, in addition to routine recommended childhood immunisations. Fifty two preterm infants and 35 full term infants received routine immunisations only (routine vaccination timing: HBV at birth, 1 and 6 months of age; IPV at 2 and 4 months; oral polio vaccine (OPV) at 4 and 6 months; diphtheria-tetanus-pertussis (DTP) at 2, 4, and 6 months; and Haemophilus influenzae B vaccine at 2 and 4 months). Blood samples were taken at birth, 3 and 7months of age from all infants, and at 1 month of age from preterm infants only.
RESULTS—At birth, a lower percentage of both study and control preterm infants had antipoliovirus type 3 titres ⩾ 1:8 than full term infants. At 1 and 3 months of age significantly more early IPV infants had antipoliovirus type 3 titres ⩾ 1:8 than routinely vaccinated preterm infants (p < 0.05). At 7 months of age there were no significant differences in percentage of antipoliovirus titres ⩾ 1:8 or geometric mean times (GMTs) between the early IPV group and the routinely vaccinated preterm group. At 3 and 7 months of age, the percentage of positive antihepatitis B titres (⩾ 1:10) and the GMT of the early IPV preterm group did not differ significantly from those of preterm controls. There was no significant difference in percentage of positive antihepatitis B titres between the early IPV group and full term controls at any time. GMTs for hepatitis B antibodies were significantly lower in the early IPV preterm group than in full term controls at 3 and 7 months of age.
CONCLUSIONS—Administration of an additional dose of IPV simultaneously with routine HBV to preterm infants shortly after

  8. Protection of Mice from Fatal Measles Encephalitis by Vaccination with Vaccinia Virus Recombinants Encoding Either the Hemagglutinin or the Fusion Protein

    NASA Astrophysics Data System (ADS)

    Drillien, Robert; Spehner, Daniele; Kirn, Andre; Giraudon, Pascale; Buckland, Robin; Wild, Fabian; Lecocq, Jean-Pierre

    1988-02-01

    Vaccinia virus recombinants encoding the hemagglutinin or fusion protein of measles virus have been constructed. Infection of cell cultures with the recombinants led to the synthesis of authentic measles proteins as judged by their electrophoretic mobility, recognition by antibodies, glycosylation, proteolytic cleavage, and presentation on the cell surface. Mice vaccinated with a single dose of the recombinant encoding the hemagglutinin protein developed antibodies capable of both inhibiting hemagglutination activity and neutralizing measles virus, whereas animals vaccinated with the recombinant encoding the fusion protein developed measles neutralizing antibodies. Mice vaccinated with either of the recombinants resisted a normally lethal intracerebral inoculation of a cell-associated measles virus subacute sclerosing panencephalitis strain.

  9. Protective efficacy of recombinant and inactivated H5 avian influenza vaccines against challenge from the 2014 intercontinental H5 highly pathogenic avian influenza viruses (H5N8 and H5N2)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Protective immunity against highly pathogenic avian influenza (HPAI) largely depends on the development of an antibody response against a specific subtype of challenge virus. Historically, the use of antigenically closely matched isolates has proven efficacious when used as inactivated vaccines. M...

  10. The adjuvant effect of low frequency ultrasound when applied with an inactivated Aeromonas salmonicida vaccine to rainbow trout (Oncorhynchus mykiss).

    PubMed

    Cobo Labarca, Cristóbal; Makhutu, Mary; Lumsdon, Alexander E; Thompson, Kim D; Jung, Rainer; Kloas, Werner; Knopf, Klaus

    2015-03-10

    Vaccine adjuvants are classified according to their properties of either inducing the persistence of antigens within the animal after immunisation and/or activation of the animal's immune response. The adjuvant effect of low intensity low frequency sonophoresis (LFS) was tested in rainbow trout using an Aeromonas salmonicida bacterin vaccine administered by immersion vaccination using LFS at 37 kHz. The adjuvant effect obtained with LFS was compared with that of normal immersion or intraperitoneal injection vaccination. Quantitative PCR was used to measure bacterial DNA in vaccinated fish up to 35 days post-vaccination, while RT-qPCR was used to assess gene expression during the early and late immune response post-vaccination. Results showed that antigen uptake in the gills was significantly higher in the group exposed to low intensity LFS compared to the other two vaccination groups 15 min post-vaccination, but this initially high uptake did not persist over the rest of the experiment. In the kidney, by comparison, the vast majority of the samples analysed did not show the presence or persistence of the bacterin. Showing that the route of vaccine uptake using the A. salmonicida bacterin, does not influence the persistence of the bacterin in the gills or the kidney. On the other hand, LFS induced a higher inflammatory response and T-helper cell activation, characterized by a significant up-regulation of interleukin-8 (IL-8), IL-1ß and CD-4, respectively. The expression of Ig-M, Ig-T and Ig-D was up-regulated in gills (being significant for Ig-M), but not in the spleen and kidney of the sonicated group. Conversely, Ig-M was up-regulated in the spleen of the non-sonicated groups, but not in the sonicated group. This highlights the ability of ultrasound to enhance mucosal immunity. It remains to be established whether the up-regulation of Ig-M in gills would be sufficient to offer protection in fish infected with A. salmonicida. PMID:25613719

  11. Vaccines

    MedlinePlus Videos and Cool Tools

    Vaccinations are injections of antigens into the body. Once the antigens enter the blood, they circulate along ... suppressor T cells stop the attack. After a vaccination, the body will have a memory of an ...

  12. Immunogenicity, Safety, and Lot Consistency of a Novel Inactivated Enterovirus 71 Vaccine in Chinese Children Aged 6 to 59 Months

    PubMed Central

    Hu, Yue-Mei; Wang, Xu; Wang, Jun-Zhi; Wang, Ling; Zhang, Yong-Jie; Chang, Lin; Liang, Zheng-Lun; Xia, Jie-Lai; Dai, Qi-Gang; Hu, Ya-Ling; Mao, Qun-Ying; Zhu, Feng-Cai; Song, Yu-Fei; Gao, Fan

    2013-01-01

    The determination of lot-to-lot consistency in the manufacturing process is a mandatory step in the clinical development of the novel enterovirus 71 (EV71) vaccine. A phase III, randomized, placebo-controlled, double-blind trial assessed the lot consistency, immunogenicity, and safety of the EV71 vaccine in children aged 6 to 59 months. Healthy children (n = 1,400) received one of three lots of the EV71 vaccine containing 400 U of EV71 antigen or a placebo at days 0 and 28. Blood samples were collected before dose 1 and at 28 days after dose 2 (day 56) for an anti-EV71 neutralizing antibody (NTAb) assay. The geometric mean titer (GMT) and the seropositivity rates (with titers of ≥1:8) were compared at day 56. After each dose, the solicited injection site and general adverse events (AEs) were recorded for 7 days, and unsolicited AEs were recorded for 28 days. At day 56, the seropositivity rates ranged from 99.7% to 100% for the vaccine groups. The NTAb GMTs for the vaccine were 140.3 (95% confidence interval [CI], 117.8 to 167.1), 141.5 (95% CI, 118.0 to 169.6), and 146.6 (95% CI, 122.5 to 175.3). The two-sided 95% CI of the log difference in GMTs between the pairs of lots were between −0.176 and 0.176, therefore meeting the predefined equivalence criteria. The percentages of subjects reporting any injection site AEs, general AEs, or serious AEs were similar across the four vaccination groups. In conclusion, the demonstration of consistency between the manufacturing lots confirms for the purposes of clinical development the reliability of the EV71 vaccine production process. (This study has been registered at ClinicalTrials.gov under registration no. NCT01636245.) PMID:24108780

  13. Evaluation of a diphtheria–tetanus–acellular pertussis–inactivated poliovirus–Haemophilus influenzae type b vaccine given concurrently with meningococcal group C conjugate vaccine at 2, 3 and 4 months of age

    PubMed Central

    Kitchin, N R E; Southern, J; Morris, R; Hemme, F; Thomas, S; Watson, M W; Cartwright, K; Miller, E

    2007-01-01

    Background and objective In view of the possible introduction of diphtheria–tetanus–acellular pertussis–inactivated poliovirus–Haemophilus influenzae type b (DTaP‐IPV‐Hib, eg Pediacel) vaccine in the UK, a study of the immunogenicity of Pediacel when given with one of two different meningococcal group C conjugate (MCC) vaccines at 2, 3 and 4 months of age was conducted. Methods Randomised controlled study in 241 infants. Results Post vaccination, the proportion of infants with anti‐polyribosylribitol phosphate (PRP) levels ⩾0.15 μg/ml was 93.2% (95% confidence interval (CI) 86.6 to 96.7) in the Pediacel group compared with 100% (95% CI 96.4 to 100) in the diphtheria–tetanus–whole‐cell pertussis–Haemophilus influenzae type b (DTwP‐Hib) group. The anti‐PRP response was lower in infants receiving either Pediacel or DTwP‐Hib when these vaccines were given concomitantly with meningococcal group C conjugate with diphtheria‐derived protein CRM197 as conjugate protein (MCC‐CRM) compared with meningococcal group C conjugate with tetanus toxoid as conjugate protein (MCC‐TT). For group C meningococcus, the proportion of infants with serum bactericidal antibody (SBA) titre ⩾1:8 in the Pediacel group was 99.0% compared with 100% in the DTwP‐Hib group. The MCC SBA geometric mean titre (GMT) was lower in those receiving Pediacel with MCC‐TT than in those receiving DTwP‐Hib with MCC‐TT, although all titres were well above the protective threshold. The MCC SBA GMT was similar in those receiving Pediacel and DTwP‐Hib and MCC‐CRM. Responses to all other vaccine components were equivalent in the two groups. Conclusions Pediacel is immunogenic when given at 2, 3 and 4 months of age. Coadministration of MCC vaccine can influence the Hib response, and the MCC response to a tetanus conjugate can be influenced by the nature of the coadministered DTP‐Hib vaccine. PMID:16670121

  14. Typhoid Vaccine

    MedlinePlus

    ... serious disease. It is caused by bacteria called Salmonella Typhi. Typhoid causes a high fever, fatigue, weakness, ... a typhoid carrier. • Laboratory workers who work with Salmonella Typhi bacteria. Inactivated typhoid vaccine (shot) • One dose ...

  15. Immunogenicity and Effectiveness of Routine Immunization With 1 or 2 Doses of Inactivated Poliovirus Vaccine: Systematic Review and Meta-analysis

    PubMed Central

    Grassly, Nicholas C.

    2014-01-01

    Background. The World Health Organization has recommended that all 124 countries currently using only oral poliovirus vaccine (OPV) introduce at least 1 dose of inactivated poliovirus vaccine (IPV) before the global withdrawal of serotype 2 OPV in 2016. A 1- or 2-dose schedule, potentially administered intradermally with reduced antigen content, may make this affordable. Methods. A systematic review and meta-analysis of studies documenting seroconversion after 1 or 2, full or fractional (1/5) doses of enhanced-potency IPV was performed. Studies reporting the clinical efficacy of IPV were also reviewed. Results. Twenty study arms from 12 published articles were included in the analysis of seroconversion. One full dose of intramuscular IPV seroconverted 33%, 41%, and 47% of infants against serotypes 1, 2, and 3 on average, whereas 2 full doses seroconverted 79%, 80%, and 90%, respectively. Seroconversion increased with age at administration. Limited data from case-control studies indicate clinical efficacy equivalent to the proportion seroconverting. One fractional dose of intradermal IPV gave lower seroconversion (10%–40%), but after 2 doses seroconversion was comparable to that with full-dose IPV. Conclusions. Routine immunization with 2 full or fractional doses of IPV given after 10 weeks of age is likely to protect >80% of recipients against poliomyelitis if poliovirus reemerges after withdrawal of OPV serotypes. PMID:24634499

  16. Temporal assessment of seroconversion in response to inactivated foot-and-mouth disease vaccine in Arabian oryx (Oryx leucoryx).

    PubMed

    Kilgallon, C P; Bailey, T A; O'Donovan, D; Wernery, U; Alexandersen, S

    2008-12-13

    Ten male Arabian oryx (Oryx leucoryx) were vaccinated with a commercially available standard aqueous foot-and-mouth-disease vaccine containing aluminium hydroxide as an adjuvant, and their antibody titres against serotypes O and A were measured using solid-phase blocking elisa and the virus neutralisation test. Mean elisa antibody titres greater than 1.45 log(10) were recorded for serotype A, but low elisa titres were recorded for serotype 0; low titres were recorded by VNT for both serotypes. PMID:19074789

  17. [Vaccination perspectives].

    PubMed

    Saliou, P; Plotkin, S

    1994-01-01

    The aim of vaccinology is to improve the available vaccines and to develop new ones in the light of progress in immunology, molecular biology and biotechnologies. But it must go beyond this, and aim to protect all populations and control diseases, even eradicate them where possible. New vaccine strategies must be developed taking into account the epidemiology of diseases and the inherent logistic problems of implementing these strategies under local conditions. There are three major thrusts to the progress of the discipline. The improvement of the vaccines available. One of the drives of vaccinology is not only to deliver vaccines of increasing safety (replacement of the current vaccine for whooping cough with an acellular vaccine for example), but also to improve vaccine efficacy and immunogenicity (in particular for flu, tuberculosis, cholera and rabies vaccines). The optimisation of vaccination programmes and strategies for vaccinations. The ideal is to protect against the greatest possible number of diseases with the smallest number of vaccinations. The development of combinations of vaccines is central to this goal. The objective for the year 2000 is a hexavalent vaccine DTPP Hib HB. The development of new vaccines. Classic techniques continue to be successfully used (inactivated hepatitis A vaccine; attenuated live vaccines for chicken pox and dengue fever; conjugated polyosidic bacterial vaccines for meningococci and Streptococcus pneumoniae). However, it will become possible to prepare vaccines against most transmissible diseases using genetic engineering techniques.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7921696

  18. Delivery of an inactivated avian influenza virus vaccine adjuvanted with poly(D,L-lactic-co-glycolic acid) encapsulated CpG ODN induces protective immune responses in chickens.

    PubMed

    Singh, Shirene M; Alkie, Tamiru N; Nagy, Éva; Kulkarni, Raveendra R; Hodgins, Douglas C; Sharif, Shayan

    2016-09-14

    In poultry, systemic administration of commercial vaccines consisting of inactivated avian influenza virus (AIV) requires the simultaneous delivery of an adjuvant (water-in-oil emulsion). These vaccines are often limited in their ability to induce quantitatively better local (mucosal) antibody responses capable of curtailing virus shedding. Therefore, more efficacious adjuvants with the ability to provide enhanced immunogenicity and protective anti-AIV immunity in chickens are needed. While the Toll-like receptor (TLR) 21 agonist, CpG oligodeoxynucleotides (ODNs) has been recognized as a potential vaccine adjuvant in chickens, poly(D,L-lactic-co-glycolic acid) (PLGA) nanoparticles, successfully tested as vaccine delivery systems in other species, have not been extensively explored. The present study, therefore, assessed both systemic and mucosal antibody-mediated responses following intramuscular vaccination (administered at 7 and 21days post-hatch) of chickens with PLGA encapsulated H9N2 AIV plus encapsulated CpG ODN 2007 (CpG 2007), and nonencapsulated AIV plus PLGA encapsulated CpG 2007 vaccine formulations. Virus challenge was performed at 2weeks post-secondary vaccination using the oculo-nasal route. Our results showed that chickens vaccinated with the nonencapsulated AIV vaccine plus PLGA encapsulated CpG 2007 developed significantly higher systemic IgY and local (mucosal) IgY antibodies as well as haemagglutination inhibition antibody titres compared to PLGA encapsulated AIV plus encapsulated CpG 2007 vaccinated chickens. Furthermore, chickens that received CpG 2007 as an adjuvant in the vaccine formulation had antibodies exhibiting higher avidity indicating that the TLR21-mediated pathway may enhance antibody affinity maturation qualitatively. Collectively, our data indicate that vaccination of chickens with nonencapsulated AIV plus PLGA encapsulated CpG 2007 results in qualitatively and quantitatively augmented antibody responses leading to a reduction in

  19. Immunogenicity of a combination vaccine containing diphtheria toxoid, tetanus toxoid, three-component acellular pertussis, hepatitis B, inactivated polio virus, and Haemophilus influenzae type b when given concomitantly with 13-valent pneumococcal conjugate vaccine.

    PubMed

    Gimenez-Sanchez, Francisco; Kieninger, Dorothee M; Kueper, Kathrin; Martinon-Torres, Federico; Bernaola, Enrique; Diez-Domingo, Javier; Steul, Kathrin; Juergens, Christine; Gurtman, Alejandra; Giardina, Peter; Liang, John Z; Gruber, William C; Emini, Emilio A; Scott, Daniel A

    2011-08-11

    Two randomized trials of 13-valent pneumococcal conjugate vaccine (PCV13) relative to PCV7 evaluated the immune responses of coadministered antigens comprising Infanrix(®) hexa/Infanrix(®)-IPV+Hib (diphtheria, tetanus, 3-component acellular pertussis, hepatitis B, inactivated poliovirus, and Haemophilus influenzae type b). After the 3-dose infant series, immunogenic noninferiority was demonstrated for all concomitantly administered antigens between the PCV13 and PCV7 groups. All antigens elicited good booster responses after the toddler dose except pertussis toxoid; however, 99.6% subjects achieved pertussis toxoid protective antibody level ≥5EU/mL in both groups. These results support the concomitant administration of PCV13 and Infanrix hexa/Infanrix-IPV+Hib as part of routine immunization schedules. PMID:21704105

  20. Effectiveness of the 2012/13 Trivalent Live and Inactivated Influenza Vaccines in Children and Adolescents in Saxony-Anhalt, Germany: A Test-Negative Case-Control Study

    PubMed Central

    Helmeke, Carina; Gräfe, Lutz; Irmscher, Hanns-Martin; Gottschalk, Constanze; Karagiannis, Ioannis; Oppermann, Hanna

    2015-01-01

    A live attenuated influenza vaccine has been available in Germany since the influenza season 2012/13, which is approved for children aged 2-17 years. Using data from our laboratory-based surveillance system, we described the circulation of influenza and non-influenza respiratory viruses during the influenza season 2012/13 in Saxony-Anhalt. We estimated the effectiveness of live and inactivated trivalent influenza vaccines in preventing laboratory-confirmed cases among children and adolescents. From week 40/2012 to 19/2013, sentinel paediatricians systematically swabbed acute respiratory illness patients for testing of influenza and 5 non-influenza viruses by PCR. We compared influenza cases and influenza-negative controls. Among children aged 2-17 years, we calculated overall and vaccine type-specific effectiveness against laboratory-confirmed influenza, stratified by age group (2-6; 7-17 years). We used multivariable logistic regression to adjust estimates for age group, sex and month of illness. Out of 1,307 specimens, 647 (35%) were positive for influenza viruses and 189 (15%) for at least one of the tested non-influenza viruses. For vaccine effectiveness estimation, we included 834 patients (mean age 7.3 years, 53% males) in our analysis. Of 347 (42%) influenza-positive specimens, 61 (18%) were positive for A(H1N1)pdm09, 112 (32%) for A(H3N2) and 174 (50%) for influenza B virus. The adjusted overall vaccine effectiveness including both age groups was 38% (95% CI: 0.8-61%). The adjusted effectiveness for inactivated vaccines was 37% (95% CI: -35-70%) and for live vaccines 84% (95% CI: 45-95%). Effectiveness for the live vaccine was higher in 2-6 year-old children (90%, 95% CI: 20-99%) than in children aged 7-17 years (74%, 95% CI: -32-95%). Our study of the strong influenza season in 2012/13 suggests a high preventive effect of live attenuated influenza vaccine especially among young children, which could not be reached by inactivated vaccines. We recommend the

  1. [Vaccinations for the travellers].

    PubMed

    Gendrel, Dominique

    2004-03-15

    Immunisations for the traveller include, before specific vaccine, a correct immunisation schedule according to national recommendations with appropriate boosters and hepatitis B immunisation. The yellow fever vaccine is required to entry in countries of endemic area and quadrivalent ACYW135 meningococcal vaccine for entry in Saudi Arabia. Hepatitis A immunisation could be performed at 1 year of age and is recommended for travellers in tropical areas and children vaccination control the disease both in the patient and in the contacts. Meningococcal A+C vaccines are required for travellers in meningitis-prone areas of tropical Africa during the dry season (December to June), and quadrivalent ACYW135 is useful only in Burkina-Faso and Niger. Typhoid and rabies vaccines are required for ambulatory travellers in endemic areas, as Japanese encephalitis in south-west Asia. In central Europe, tick-borne encephalitis vaccination is recommended for patients travelling in forest areas during spring and summer. PMID:15176511

  2. Immunogenicity of a Heptavalent Conjugate Pneumococcal Vaccine Administered Concurrently with a Combination Diphtheria, Tetanus, Five-Component Acellular Pertussis, Inactivated Polio, and Haemophilus influenzae Type b Vaccine and a Meningococcal Group C Conjugate Vaccine at 2, 3, and 4 Months of Age ▿

    PubMed Central

    Moss, S. J.; Fenton, A. C.; Toomey, J.; Grainger, A.; Borrow, R.; Balmer, P.; Smith, J.; Gennery, A. R.

    2010-01-01

    The immunogenicities of conjugate pneumococcal vaccines have been demonstrated when they are administered at 2, 3, and 4 months of age. There is a paucity of data on the immunogenicity of this vaccine when it is administered concurrently with other vaccines in the primary immunization schedule of the United Kingdom. We immunized 55 term infants at 2, 3, and 4 months of age with the seven-valent pneumococcal conjugate vaccine (PCV7), the meningococcal group C conjugate (MCC) vaccine, and the diphtheria, tetanus, five-component acellular pertussis, inactivated polio, and Haemophilus influenzae type b (DTaP5/IPV/Hib-TT) vaccine. The immune responses to the H. influenzae type b (Hib), MCC, and tetanus vaccines were measured at 2, 5, and 12 months of age; and the immune responses to PCV7 were measured at 2 and 5 months and then either at 12 months or following a 4th dose of PCV7. There were increases in the geometric mean concentrations (GMCs) of all antigens postimmunization. Greater than or equal to 90% of the infants achieved putatively protective levels postimmunization for all vaccine antigens except pneumococcal serotype 6B and Hib. The GMCs of the PCV7 serotypes increased following a 4th dose, although one infant had not reached putative levels of protection against serotype 6B. In conclusion, when infants were vaccinated according to the schedule described above, they had lower postprimary immunization responses to Hib, meningococcus group C capsular polysaccharide, and pneumococcal serotype 6B than the responses demonstrated by use of the other schedules. Despite this finding, there was a good response following a 4th dose of PCV7. PMID:20042517

  3. Protective Efficacy of Recombinant Turkey Herpes Virus (rHVT-H5) and Inactivated H5N1 Vaccines in Commercial Mulard Ducks against the Highly Pathogenic Avian Influenza (HPAI) H5N1 Clade 2.2.1 Virus.

    PubMed

    Kilany, Walid H; Safwat, Marwa; Mohammed, Samy M; Salim, Abdullah; Fasina, Folorunso Oludayo; Fasanmi, Olubunmi G; Shalaby, Azhar G; Dauphin, Gwenaelle; Hassan, Mohammed K; Lubroth, Juan; Jobre, Yilma M

    2016-01-01

    In Egypt, ducks kept for commercial purposes constitute the second highest poultry population, at 150 million ducks/year. Hence, ducks play an important role in the introduction and transmission of avian influenza (AI) in the Egyptian poultry population. Attempts to control outbreaks include the use of vaccines, which have varying levels of efficacy and failure. To date, the effects of vaccine efficacy has rarely been determined in ducks. In this study, we evaluated the protective efficacy of a live recombinant vector vaccine based on a turkey Herpes Virus (HVT) expressing the H5 gene from a clade 2.2 H5N1 HPAIV strain (A/Swan/Hungary/499/2006) (rHVT-H5) and a bivalent inactivated H5N1 vaccine prepared from clade 2.2.1 and 2.2.1.1 H5N1 seeds in Mulard ducks. A 0.3ml/dose subcutaneous injection of rHVT-H5 vaccine was administered to one-day-old ducklings (D1) and another 0.5ml/dose subcutaneous injection of the inactivated MEFLUVAC was administered at 7 days (D7). Four separate challenge experiments were conducted at Days 21, 28, 35 and 42, in which all the vaccinated ducks were challenged with 106EID50/duck of H5N1 HPAI virus (A/chicken/Egypt/128s/2012(H5N1) (clade 2.2.1) via intranasal inoculation. Maternal-derived antibody regression and post-vaccination antibody immune responses were monitored weekly. Ducks vaccinated at 21, 28, 35 and 42 days with the rHVT-H5 and MEFLUVAC vaccines were protected against mortality (80%, 80%, 90% and 90%) and (50%, 70%, 80% and 90%) respectively, against challenges with the H5N1 HPAI virus. The amount of viral shedding and shedding rates were lower in the rHVT-H5 vaccine groups than in the MEFLUVAC groups only in the first two challenge experiments. However, the non-vaccinated groups shed significantly more of the virus than the vaccinated groups. Both rHVT-H5 and MEFLUVAC provide early protection, and rHVT-H5 vaccine in particular provides protection against HPAI challenge. PMID:27304069

  4. Protective Efficacy of Recombinant Turkey Herpes Virus (rHVT-H5) and Inactivated H5N1 Vaccines in Commercial Mulard Ducks against the Highly Pathogenic Avian Influenza (HPAI) H5N1 Clade 2.2.1 Virus

    PubMed Central

    Kilany, Walid H.; Safwat, Marwa; Mohammed, Samy M.; Salim, Abdullah; Fasina, Folorunso Oludayo; Fasanmi, Olubunmi G.; Shalaby, Azhar G.; Dauphin, Gwenaelle; Hassan, Mohammed K.; Lubroth, Juan; Jobre, Yilma M.

    2016-01-01

    In Egypt, ducks kept for commercial purposes constitute the second highest poultry population, at 150 million ducks/year. Hence, ducks play an important role in the introduction and transmission of avian influenza (AI) in the Egyptian poultry population. Attempts to control outbreaks include the use of vaccines, which have varying levels of efficacy and failure. To date, the effects of vaccine efficacy has rarely been determined in ducks. In this study, we evaluated the protective efficacy of a live recombinant vector vaccine based on a turkey Herpes Virus (HVT) expressing the H5 gene from a clade 2.2 H5N1 HPAIV strain (A/Swan/Hungary/499/2006) (rHVT-H5) and a bivalent inactivated H5N1 vaccine prepared from clade 2.2.1 and 2.2.1.1 H5N1 seeds in Mulard ducks. A 0.3ml/dose subcutaneous injection of rHVT-H5 vaccine was administered to one-day-old ducklings (D1) and another 0.5ml/dose subcutaneous injection of the inactivated MEFLUVAC was administered at 7 days (D7). Four separate challenge experiments were conducted at Days 21, 28, 35 and 42, in which all the vaccinated ducks were challenged with 106EID50/duck of H5N1 HPAI virus (A/chicken/Egypt/128s/2012(H5N1) (clade 2.2.1) via intranasal inoculation. Maternal-derived antibody regression and post-vaccination antibody immune responses were monitored weekly. Ducks vaccinated at 21, 28, 35 and 42 days with the rHVT-H5 and MEFLUVAC vaccines were protected against mortality (80%, 80%, 90% and 90%) and (50%, 70%, 80% and 90%) respectively, against challenges with the H5N1 HPAI virus. The amount of viral shedding and shedding rates were lower in the rHVT-H5 vaccine groups than in the MEFLUVAC groups only in the first two challenge experiments. However, the non-vaccinated groups shed significantly more of the virus than the vaccinated groups. Both rHVT-H5 and MEFLUVAC provide early protection, and rHVT-H5 vaccine in particular provides protection against HPAI challenge. PMID:27304069

  5. Meningitis and Encephalitis

    MedlinePlus

    ... No. 04-4840 Back to Meningitis and Encephalitis Information Page See a list of all NINDS Disorders Publicaciones en Español Meningitis y Encefalitis Prepared by: Office of Communications and Public Liaison National Institute of Neurological Disorders ...

  6. Eastern Equine Encephalitis

    MedlinePlus

    ... Facebook Tweet Share Compartir Image of Culiseta melanura mosquito, photo taken by Jason Williams, reproduced by permission from the Virginia Mosquito Control Association. Eastern equine encephalitis virus (EEEV) is ...

  7. Outcome after childhood encephalitis.

    PubMed

    Rantala, H; Uhari, M; Uhari, M; Saukkonen, A; Sorri, M

    1991-10-01

    The prognosis for 73 children treated for encephalitis between 1973 and 1983 was evaluated. 70 children participated in a follow-up examination 2.4 to 12.9 years after the acute phase of the disease. The 61 school-aged children had lower performance and full-scale IQs than their randomly selected, age- and sex-matched controls. Visual acuity was more often reduced, and they more often had focal slowing on EEG and electronystagmogram abnormalities. Clinically, these differences were not significant. Encephalitis with a poor prognosis occurred seldom, the incidence being 3.5 cases per one million children at risk annually. These results show that the prognosis for childhood encephalitis is much better than anticipated on the basis of experience mainly with herpes simplex virus encephalitis. PMID:1743408

  8. Human arboviral encephalitis.

    PubMed

    Rust, Robert S

    2012-09-01

    Worldwide, arboviral illnesses constitute the most important international infectious threat to human neurological health and welfare. Before the availability of effective immunizations, approximately 50,000 cases of Japanese encephalitis occurred in the world each year, one-fifth of which cases proved lethal and a much larger number were left with severe neurological handicaps. With global climate change and perhaps other factors, the prevalences of some arboviral illnesses appear to be increasing. Arboviral illnesses, including Japanese encephalitis, tick-borne encephalitis, Yellow fever, and others, are emerging as possible global health care threats because of biological warfare. This chapter will review ecology, pathophysiology, diagnosis, management, and outcome of the forms of arboviral encephalitis that are of greatest importance in North America, together with some of the most important arboviral encephalitides prevalent in other parts of the world. PMID:22889543

  9. Meningitis and Encephalitis

    MedlinePlus

    ... Funding Information Research Programs Training & Career Awards Enhancing Diversity Find People About NINDS NINDS Meningitis and Encephalitis ... News From NINDS | Find People | Training | Research | Enhancing Diversity Careers@NINDS | FOIA | Accessibility Policy | Contact Us | Privacy ...

  10. Cross‐neutralisation of antibodies elicited by an inactivated split‐virion influenza A/Vietnam/1194/2004 (H5N1) vaccine in healthy adults against H5N1 clade 2 strains

    PubMed Central

    Höschler, Katja; Gopal, Robin; Andrews, Nick; Saville, Melanie; Pepin, Stephanie; Wood, John; Zambon, Maria C.

    2008-01-01

    Background  Highly pathogenic avian influenza A H5N1 viruses are widespread in different parts of the world and have evolved into clade 1 and 2 lineages. Their continuing circulation represents serious pandemic threat, spurring human vaccine development efforts. Initial clinical trials tested vaccines prepared from clade 1 strains circulating in 2004. Methods  Post‐vaccination sera from a phase I trial of an inactivated split‐virion vaccine based on A/Vietnam/1194/2004/NIBRG14 (H5N1) were analysed in vitro for cross‐reactivity against highly pathogenic, wild‐type clade 2 H5N1 strains isolated from human cases, and their corresponding reverse genetics derived vaccine candidate strains. Results  Neutralisation of clade 1 and 2 wild‐type and reverse‐genetics viruses was seen, with highest titres observed for viruses most closely related to the vaccine strain. There was no consistent relationship between vaccine dose given, or presence of aluminium adjuvant and cross‐neutralising antibody titre, possibly because of small sample size. Use of wild‐type highly pathogenic strains compared with antigenically equivalent reverse‐genetics viruses suggests presence of a higher level of cross‐neutralising antibody. Conclusion  Vaccination with a clade 1 H5N1 virus elicited antibodies capable of neutralising diverse clade 2 H5N1 strains. This data underlines that while a close match between vaccine virus and circulating virus is important to achieve maximum protection, population priming with a ‘pre‐pandemic’ vaccine may be beneficial for the protection of a naïve population. The data suggests that use of reverse‐genetic viruses in neutralisation assays may underestimate the extent of cross‐protective antibody present following H5N1 vaccination. PMID:19453427

  11. Protective efficacy of an inactivated Eurasian avian-like H1N1 swine influenza vaccine against homologous H1N1 and heterologous H1N1 and H1N2 viruses in mice.

    PubMed

    Sui, Jinyu; Yang, Dawei; Qiao, Chuanling; Xu, Huiyang; Xu, Bangfeng; Wu, Yunpu; Yang, Huanliang; Chen, Yan; Chen, Hualan

    2016-07-19

    Eurasian avian-like H1N1 (EA H1N1) swine influenza viruses are prevalent in pigs in Europe and Asia, but occasionally cause human infection, which raises concern about their pandemic potential. Here, we produced a whole-virus inactivated vaccine with an EA H1N1 strain (A/swine/Guangxi/18/2011, SW/GX/18/11) and evaluated its efficacy against homologous H1N1 and heterologous H1N1 and H1N2 influenza viruses in mice. A strong humoral immune response, which we measured by hemagglutination inhibition (HI) and virus neutralization (VN), was induced in the vaccine-inoculated mice upon challenge. The inactivated SW/GX/18/11 vaccine provided complete protection against challenge with homologous SW/GX/18/11 virus in mice and provided effective protection against challenge with heterologous H1N1 and H1N2 viruses with distinctive genomic combinations. Our findings suggest that this EA H1N1 vaccine can provide protection against both homologous H1N1 and heterologous H1N1 or H1N2 virus infection. As such, it is an excellent vaccine candidate to prevent H1N1 swine influenza. PMID:27321744

  12. [VACCINES].

    PubMed

    Bellver Capella, Vincente

    2015-10-01

    Vaccines are an extraordinary instrument of immunization of the population against infectious diseases. Around them there are many ethical issues. One of the most debated is what to do with certain groups opposition to vaccination of their children. States have managed in different ways the conflict between the duty of vaccination and the refusal to use vaccines: some impose the vaccination and others simply promote it. In this article we deal with which of these two approaches is the most suitable from an ethical and legal point of view. We stand up for the second option, which is the current one in Spain, and we propose some measures which should be kept in mind to improve immunization programs. PMID:26685562

  13. Single-cycle replicable Rift Valley fever virus mutants as safe vaccine candidates.

    PubMed

    Terasaki, Kaori; Tercero, Breanna R; Makino, Shinji

    2016-05-01

    Rift Valley fever virus (RVFV) is an arbovirus circulating between ruminants and mosquitoes to maintain its enzootic cycle. Humans are infected with RVFV through mosquito bites or direct contact with materials of infected animals. The virus causes Rift Valley fever (RVF), which was first recognized in the Great Rift Valley of Kenya in 1931. RVF is characterized by a febrile illness resulting in a high rate of abortions in ruminants and an acute febrile illness, followed by fatal hemorrhagic fever and encephalitis in humans. Initially, the virus was restricted to the eastern region of Africa, but the disease has now spread to southern and western Africa, as well as outside of the African continent, e.g., Madagascar, Saudi Arabia and Yemen. There is a serious concern that the virus may spread to other areas, such as North America and Europe. As vaccination is an effective tool to control RVFV epidemics, formalin-inactivated vaccines and live-attenuated RVFV vaccines have been used in endemic areas. The formalin-inactivated vaccines require boosters for effective protection, whereas the live-attenuated vaccines enable the induction of protective immunity by a single vaccination. However, the use of live-attenuated RVFV vaccines for large human populations having a varied health status is of concern, because of these vaccines' residual neuro-invasiveness and neurovirulence. Recently, novel vaccine candidates have been developed using replication-defective RVFV that can undergo only a single round of replication in infected cells. The single-cycle replicable RVFV does not cause systemic infection in immunized hosts, but enables the conferring of protective immunity. This review summarizes the properties of various RVFV vaccines and recent progress on the development of the single-cycle replicable RVFV vaccines. PMID:26022573

  14. Auto-immune encephalitis as differential diagnosis of infectious encephalitis

    PubMed Central

    Armangue, Thaís; Leypoldt, Frank; Dalmau, Josep

    2014-01-01

    Purpose of review To describe the main types of autoimmune encephalitis with special emphasis on those associated with antibodies against neuronal cell surface or synaptic proteins, and the differential diagnosis with infectious encephalitis. Recent findings There is a continuous expansion of the number of cell surface or synaptic proteins that are targets of autoimmunity. The most recently identified include the mGluR5, DPPX, and the GABAAR. In these and previously known autoimmune encephalitis (NMDAR, AMPAR, GABABR, LGI1, CASPR2), the prodromal symptoms or types of presentations often suggest a viral encephalitis. We review here clues that help in the differential diagnosis with infectious encephalitis. Moreover, recent investigations indicate that viral encephalitis (e.g., herpes simplex) can trigger synaptic autoimmunity. In all these disorders immunotherapy is usually effective. Summary Autoimmune encephalitis comprises an expanding group of potentially treatable disorders that should be included in the differential diagnosis of any type of encephalitis. PMID:24792345

  15. Protective efficacy and immune responses by homologous prime-booster immunizations of a novel inactivated Salmonella Gallinarum vaccine candidate

    PubMed Central

    2016-01-01

    Purpose Salmonella enterica serovar Gallinarum (SG) ghost vaccine candidate was recently constructed. In this study, we evaluated various prime-boost vaccination strategies using the candidate strain to optimize immunity and protection efficacy against fowl typhoid. Materials and Methods The chickens were divided into five groups designated as group A (non-immunized control), group B (orally primed and boosted), group C (primed orally and boosted intramuscularly), group D (primed and boosted intramuscularly), and group E (primed intramuscularly and boosted orally). The chickens were primed with the SG ghost at 7 days of age and were subsequently boosted at the fifth week of age. Post-immunization, the plasma IgG and intestinal secretory IgA (sIgA) levels, and the SG antigen-specific lymphocyte stimulation were monitored at weekly interval and the birds were subsequently challenged with a virulent SG strain at the third week post-second immunization. Results Chickens in group D showed an optimized protection with significantly increased plasma IgG, sIgA, and lymphocyte stimulation response compared to all groups. The presence of CD4+ and CD8+ T cells and monocyte/macrophage (M/M) in the spleen, and splenic expression of cytokines such as interferon γ (IFN-γ) and interleukin 6 (IL-6) in the immunized chickens were investigated. The prime immunization induced significantly higher splenic M/M population and mRNA levels of IFN-γ whereas the booster showed increases of splenic CD4+ and CD8+ T-cell population and IL-6 cytokine in mRNA levels. Conclusion Our results indicate that the prime immunization with the SG ghost vaccine induced Th1 type immune response and the booster elicited both Th1- and Th2-related immune responses. PMID:27489805

  16. Protection against morbillivirus-induced encephalitis by immunization with a rationally designed synthetic peptide vaccine containing B- and T-cell epitopes from the fusion protein of measles virus.

    PubMed Central

    Obeid, O E; Partidos, C D; Howard, C R; Steward, M W

    1995-01-01

    Synthetic peptides representing T- and B-cell epitopes from the fusion (F) protein of measles virus (MV) were tested for their ability to induce a protective immune response against intracerebral challenge with neuroadapted strains of MV and canine distemper virus (CDV) in mice. Of the panel of peptides tested, only a chimeric peptide consisting of two copies of a promiscuous T-cell epitope (representing residues 288 to 302 of MV F protein) synthesized at the amino terminus of a B-cell epitope (representing residues 404 to 414 of MV F protein) was able to induce a protective response against challenge with MV and CDV in inbred mice. The protective response induced by this peptide (TTB) was associated with a significant reduction in mortality, histological absence of acute encephalitis, and greatly reduced titers of virus in the brains of TTB-immune mice following challenge compared with the results for nonimmunized controls. A chimeric peptide comprising one copy of the T-cell epitope and one copy of the B-cell epitope (TB) did not induce a protective response. A comparison of the antibody responses induced by the two chimeras suggested that differences in protective efficacy following immunization may be a result of the higher affinity of the antibody induced by the TTB peptide than that of the antibody induced by the TB peptide. In addition, differences in the immunoglobulin G subclass of the antipeptide antibody responses were observed, and these may play a role in the differences in protection observed. These results indicate that appropriately designed synthetic peptides have potential as vaccines for the induction of cross-reactive protection against morbilliviruses. PMID:7531779

  17. Antigenic and immunogenic properties of defined physical forms of tick-borne encephalitis virus structural proteins.

    PubMed Central

    Heinz, F X; Tuma, W; Kunz, C

    1981-01-01

    Polymeric, delipidated glycoprotein complexes of defined size and composition were prepared from tick-borne encephalitis virus by solubilization with Triton X-100 or cetyltrimethylammonium bromide, followed by centrifugation into detergent-free sucrose density gradients. The antigenic reactivities and immunogenicities of these complexes were compared with those of complete inactivated virus. These glycoprotein preparations induced hemagglutination-inhibiting and neutralizing antibodies which proved to be protective in passive mouse protection tests and monospecifically reacted only with the viral envelope and not with the internal core. In a competitive radioimmunoassay the glycoprotein complexes revealed about 10-fold higher antigenicity than whole virus when tested at equal protein concentrations. The important implications of these results with respect to antigen quantification in vaccines are discussed. As shown in the mouse challenge potency test, glycoprotein complexes prepared after Triton X-100 solubilization actively protected mice almost as well as did complete inactivated virus at the same protein concentration, whereas those prepared after cetyltrimethylammonium bromide solubilization had a somewhat lower protective activity per microgram of protein. Images PMID:7263062

  18. Modulation of systemic and mucosal immunity against an inactivated vaccine of Newcastle disease virus by oral co-administration of live attenuated Salmonella enterica serovar Typhimurium expressing chicken interleukin-18 and interferon-α

    PubMed Central

    RAHMAN, Md. Masudur; UYANGAA, Erdenebelig; HAN, Young Woo; HUR, Jin; PARK, Sang-Youel; LEE, John Hwa; KIM, Koanhoi; EO, Seong Kug

    2014-01-01

    Newcastle disease (ND) is a highly contagious disease of chickens causing significant economic losses worldwide. Due to limitations in the efficacy against currently circulating ND viruses, existing vaccination strategies require improvements, and incorporating immunomodulatory cytokines with existing vaccines might be a novel approach. Here, we investigated the systemic and mucosal immunomodulatory properties of oral co-administration of chicken interleukin-18 (chIL-18) and chicken interferon-α (chIFN-α) using attenuated Salmonella enterica serovar Typhimurium on an inactivated ND vaccine. Our results demonstrate that oral administration of S. enterica serovar Typhimurium expressing chIL-18 or chIFN-α provided enhanced systemic and mucosal immune responses, as determined by serum hemagglutination inhibition antibody and NDV Ag-specific IgG as well as NDV Ag-specific IgA in lung and duodenal lavages of chickens immunized with inactivated ND vaccine via the intramuscular or intranasal route. Notably, combined oral administration of S. enterica serovar Typhimurium expressing chIL-18 and chIFN-α significantly enhanced systemic and mucosal immunity in ND-vaccinated chickens, compared to single administration of S. enterica serovar Typhimurium expressing chIL-18 or chIFN-α. In addition, oral co-administration of S. enterica serovar Typhimurium expressing chIL-18 and chIFN-α provided enhanced NDV Ag-specific proliferation of peripheral blood mononuclear cells and Th1-biased cell-mediated immunity, compared to single administration of either construct. Therefore, our results provide valuable insight into the modulation of systemic and mucosal immunity by incorporation of immunomodulatory chIL-18 and chIFN-α using Salmonella vaccines into existing ND vaccines. PMID:25502364

  19. Mucosal SIV Vaccines Comprising Inactivated Virus Particles and Bacterial Adjuvants Induce CD8+ T-Regulatory Cells that Suppress SIV-Positive CD4+ T-Cell Activation and Prevent SIV Infection in the Macaque Model

    PubMed Central

    Andrieu, Jean-Marie; Chen, Song; Lai, Chunhui; Guo, Weizhong; Lu, Wei

    2014-01-01

    A new paradigm of mucosal vaccination against human immunodeficiency virus (HIV) infection has been investigated in the macaque model. A vaccine consisting of inactivated simian immunodeficiency virus (SIV)mac239 particles together with a living bacterial adjuvant (either the Calmette and Guerin bacillus, Lactobacillus plantarum or Lactobacillus rhamnosus) was administered to macaques via the vaginal or oral/intragastric route. In contrast to all established human and veterinary vaccines, these three vaccine regimens did not elicit SIV-specific antibodies nor cytotoxic T-lymphocytes but induced a previously unrecognized population of non-cytolytic MHCIb/E-restricted CD8+ T-regulatory cells that suppressed the activation of SIV-positive CD4+ T-lymphocytes. SIV reverse transcription was thereby blocked in inactivated CD4+ T-cells; the initial burst of virus replication was prevented and the vaccinated macaques were protected from a challenge infection. For 3–14 months after intragastric immunization, 24 macaques were challenged intrarectally with a high dose of SIVmac239 or with the heterologous strain SIV B670 (both strains grown on macaques PBMC). Twenty-three of these animals were found to be protected for up to 48 months while all 24 control macaques became infected. This protective effect against SIV challenge together with the concomitant identification of a robust ex vivo correlate of protection suggests a new approach for developing an HIV vaccine in humans. The induction of this new class of CD8+ T-regulatory cells could also possibly be used therapeutically for suppressing HIV replication in infected patients and this novel tolerogenic vaccine paradigm may have potential applications for treating a wide range of immune disorders and is likely to may have profound implications across immunology generally. PMID:25071760

  20. Past, Present, and Future of Japanese Encephalitis

    PubMed Central

    Weiss, Svenja; Keiser, Jennifer; Utzinger, Jürg; Wiedenmayer, Karin

    2009-01-01

    Japanese encephalitis (JE), a vector-borne viral disease, is endemic to large parts of Asia and the Pacific. An estimated 3 billion people are at risk, and JE has recently spread to new territories. Vaccination programs, increased living standards, and mechanization of agriculture are key factors in the decline in the incidence of this disease in Japan and South Korea. However, transmission of JE is likely to increase in Bangladesh, Cambodia, Indonesia, Laos, Myanmar, North Korea, and Pakistan because of population growth, intensified rice farming, pig rearing, and the lack of vaccination programs and surveillance. On a global scale, however, the incidence of JE may decline as a result of large-scale vaccination programs implemented in China and India. PMID:19116041

  1. [Vaccination for international travelers].

    PubMed

    Arrazola, M Pilar; Serrano, Almudena; López-Vélez, Rogelio

    2016-05-01

    Traveler's vaccination is one of the key strategies for the prevention of infectious diseases during international travel. The risk of acquiring an infectious disease is determined in each case by the characteristics of the traveler and the travel, so the pre-departure medical advice of the traveler must be individualized. The World Health Organization classifies travelerś vaccines into three groups. - Vaccines for routine use in national immunization programs: Haemophilus influenzae type b, hepatitis B, polio, measles-mumps-rubella, tetanus-diphtheria-whooping a cough, and chickenpox. - Vaccinations required by law in certain countries before to enter them: yellow fever, meningococcal disease and poliomyelitis. - Vaccines recommended depending on the circumstances: cholera, japanese encephalitis, tick-borne encephalitis, meningococcal disease, typhoid fever, influenza, hepatitis A, hepatitis B, rabies and BCG. This review is intended to introduce the reader to the field of international vaccination. PMID:26920587

  2. Vaccines

    MedlinePlus Videos and Cool Tools

    ... help the body defend itself against foreign invaders. As the antigens invade the body's tissues, they attract ... the suppressor T cells stop the attack. After a vaccination, the body will have a memory of ...

  3. Vaccines

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Antigens that are processed by antigen-processing cells via the exogenous pathway elicit antibodies. Thus, extracellular bacteria (live or killed), inactivated viral particles, portions (subunits) of virus, and products are processed by the exogenous pathway. Epitopes are presented to the immune sys...

  4. Epidemiology of Japanese encephalitis: past, present, and future prospects

    PubMed Central

    Wang, Huanyu; Liang, Guodong

    2015-01-01

    Japanese encephalitis (JE) is one of severe viral encephalitis that affects individuals in Asia, western Pacific countries, and northern Australia. Although 67,900 JE cases have been estimated among 24 JE epidemic countries annually, only 10,426 have been reported in 2011. With the establishment of JE surveillance and vaccine use in some countries, the JE incidence rate has decreased; however, serious outbreaks still occur. Understanding JE epidemics and identifying the circulating JE virus genotypes will improve JE prevention and control. This review summarizes the current epidemiology data in these countries. PMID:25848290

  5. Protective efficacy of reverse genetics based on inactivated American and Asian neuraminidase DIVA marker vaccines against highly pathogenic H5N1 avian influenza viruses in chickens

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Asian H5N1 highly pathogenic avian influenza has become endemic in several countries, and vaccination is commonly being used. Vaccination can affect surveillance, and therefore there is considerable interest in DIVA (differentiate infected from vaccinated animals) vaccine strategies. Using reverse...

  6. Tick-borne encephalitis associated with consumption of raw goat milk, Slovenia, 2012.

    PubMed

    Hudopisk, Neda; Korva, Miša; Janet, Evgen; Simetinger, Marjana; Grgič-Vitek, Marta; Gubenšek, Jakob; Natek, Vladimir; Kraigher, Alenka; Strle, Franc; Avšič-Županc, Tatjana

    2013-05-01

    Tick-borne encephalitis (TBE) developed in 3 persons in Slovenia who drank raw milk; a fourth person, who had been vaccinated against TBE, remained healthy. TBE virus RNA was detected in serum and milk of the source goat. Persons in TBE-endemic areas should be encouraged to drink only boiled/pasteurized milk and to be vaccinated. PMID:23697658

  7. Safety, immunogenicity and cross-reactivity of a Northern hemisphere 2013-2014 seasonal trivalent inactivated split influenza virus vaccine, Anflu®.

    PubMed

    Shen, Yonggang; Hu, Yuansheng; Meng, Fanya; Du, Wenjun; Li, Wei; Song, Yufei; Ji, Xiaoci; Huo, Liqun; Fu, Zhenping; Yin, Weidong

    2016-05-01

    Anflu® is a seasonal trivalent inactivated split-virion influenza vaccine manufactured by Sinovac Biotech Co., Ltd. The objectives of this study were to evaluate the safety of Anflu® (2013-14 formulation: H1N1, H3N2 and BYAM) in infants and adults and its immunogenicity and cross-reactivity against mismatched influenza B lineage and avian influenza A(H7N9) viruses (hereafter BVIC and H7N9, respectively) in adults. In this phase IV open label trial, infants 6-35 months old (n=61) each received two injections with 28 days apart; adults 18-60 yrs old (n=60) and elderly >60 yrs old (n=61) each received one injection. Information of adverse events was collected through safety observation and follow-up visits. Pre- and post-immune blood samples (day 0 and 21) were collected from subjects ≥18 yrs old to detect hemagglutination inhibition antibody titers and calculate seroprotection rates (SPRs) and seroconversion rates (SCRs). The overall adverse reaction incidence was 1.6% (3/182), and no serious adverse event was reported during the study period. For subjects ≥18 yrs old, the SCRs, SPRs, and the geometric mean titers (GMTs) met the European criteria for all three strains. In addition, the point estimations of SCR, SPR and GMT for BVIC also met the European criteria. Six subjects were seroconverted against H7N9; however the serological results did not meet the European criteria. In conclusion, the results showed a satisfactory safety and immunogenicity profile of Anflu® and cross-reactivity against BVIC, but did not demonstrate cross-reactivity against H7N9 (Clinicaltrials.gov ID: NCT02269852). PMID:26934750

  8. Antiviral activity of luteolin against Japanese encephalitis virus.

    PubMed

    Fan, Wenchun; Qian, Suhong; Qian, Ping; Li, Xiangmin

    2016-07-15

    Japanese encephalitis virus (JEV), a member of family Flaviviridae, is a neurotropic flavivirus that causes Japanese encephalitis (JE). JEV is one of the most important causative agents of viral encephalitis in humans, and this disease leads to high fatality rates. Although effective vaccines are available, no effective antiviral therapy for JE has been developed. Hence, identifying effective antiviral agents against JEV infection is important. In this study, we found that luteolin was an antiviral bioflavonoid with potent antiviral activity against JEV replication in A549 cells with IC50=4.56μg/mL. Luteolin also showed extracellular virucidal activity on JEV. With a time-of-drug addition assay revealing that JEV replication was inhibited by luteolin after the entry stage. Overall, our results suggested that luteolin can be used to develop an antiviral drug against JEV. PMID:27126774

  9. Inactivation of rabies virus by hydrogen peroxide.

    PubMed

    Abd-Elghaffar, Asmaa A; Ali, Amal E; Boseila, Abeer A; Amin, Magdy A

    2016-02-01

    Development of safe and protective vaccines against infectious pathogens remains a challenge. Inactivation of rabies virus is a critical step in the production of vaccines and other research reagents. Beta-propiolactone (βPL); the currently used inactivating agent for rabies virus is expensive and proved to be carcinogenic in animals. This study aimed to investigate the ability of hydrogen peroxide (H2O2) to irreversibly inactivate rabies virus without affecting its antigenicity and immunogenicity in pursuit of finding safe, effective and inexpensive alternative inactivating agents. H2O2 3% rapidly inactivated a Vero cell adapted fixed rabies virus strain designated as FRV/K within 2h of exposure without affecting its antigenicity or immunogenicity. No residual infectious virus was detected and the H2O2-inactivated vaccine proved to be safe and effective when compared with the same virus harvest inactivated with the classical inactivating agent βPL. Mice immunized with H2O2-inactivated rabies virus produced sufficient level of antibodies and were protected when challenged with lethal CVS virus. These findings reinforce the idea that H2O2 can replace βPL as inactivating agent for rabies virus to reduce time and cost of inactivation process. PMID:26731189

  10. An MDCK Cell Culture-Derived Formalin-Inactivated Influenza Virus Whole-Virion Vaccine from an Influenza Virus Library Confers Cross-Protective Immunity by Intranasal Administration in Mice

    PubMed Central

    Haredy, Ahmad M.; Takenaka, Nobuyuki; Yamada, Hiroshi; Sakoda, Yoshihiro; Okamatsu, Masatoshi; Yamamoto, Naoki; Omasa, Takeshi; Ohtake, Hisao; Mori, Yasuko; Kida, Hiroshi; Yamanishi, Koichi

    2013-01-01

    It is currently impossible to predict the next pandemic influenza virus strain. We have thus established a library of influenza viruses of all hemagglutinin and neuraminidase subtypes and their genes. In this article, we examine the applicability of a rapid production model for the preparation of vaccines against emerging pandemic influenza viruses. This procedure utilizes the influenza virus library, cell culture-based vaccine production, and intranasal administration to induce a cross-protective immune response. First, an influenza virus reassortant from the library, A/duck/Hokkaido/Vac-3/2007 (H5N1), was passaged 22 times (P22) in Madin-Darby canine kidney (MDCK) cells. The P22 virus had a titer of >2 ×108 PFU/ml, which was 40 times that of the original strain, with 4 point mutations, which altered amino acids in the deduced protein sequences encoded by the PB2 and PA genes. We then produced a formalin-inactivated whole-virion vaccine from the MDCK cell-cultured A/duck/Hokkaido/Vac-3/2007 (H5N1) P22 virus. Intranasal immunization of mice with this vaccine protected them against challenges with lethal influenza viruses of homologous and heterologous subtypes. We further demonstrated that intranasal immunization with the vaccine induced cross-reactive neutralizing antibody responses against the homotypic H5N1 influenza virus and its antigenic variants and cross-reactive cell-mediated immune responses to the homologous virus, its variants within a subtype, and even an influenza virus of a different subtype. These results indicate that a rapid model for emergency vaccine production may be effective for producing the next generation of pandemic influenza virus vaccines. PMID:23637045

  11. Protective Efficacy of the Inactivated H5N1 Influenza Vaccine Re-6 Against Different Clades of H5N1 Viruses Isolated in China and the Democratic People's Republic of Korea.

    PubMed

    Zeng, Xianying; Deng, Guohua; Liu, Liling; Li, Yanbing; Shi, Jianzhong; Chen, Pucheng; Feng, Huapeng; Liu, Jingli; Guo, Xingfu; Mao, Shenggang; Yang, Fan; Chen, Zhiyu; Tian, Guobin; Chen, Hualan

    2016-05-01

    An inactivated H5N1 avian influenza (AI) vaccine (Re-6) that bears the HA and NA genes from a clade 2.3.2.1 H5N1 virus, A/duck/Guangdong/S1322/10 (DK/GD/S1322/10), has been used in domestic poultry in China and other Southeast Asian countries to control clade 2.3.2.1 H5N1viruses since 2012. The efficacy of this vaccine against H5N1 viruses isolated in recent years has not been reported. In this study, we evaluated the protection efficacy of the Re-6 vaccine in chickens against challenge with four clade 2.3.2.1 H5N1 viruses, one clade 2.3.4.4 H5N1 virus, and one clade 7.2 H5N1 virus; these viruses were isolated in mainland China, Hong Kong, and the Democratic People's Republic of Korea between 2011 and 2015. The vaccinated chickens were completely protected (no disease signs, virus shedding, or death) from the challenge with the four clade 2.3.2.1 H5N1 viruses. In the clade 7.2 virus-challenged group, all of the vaccinated chickens remained healthy and survived for the entire 2-wk observation period; virus shedding was only detected from 1 of 10 chickens on day 3 postchallenge. In the clade 2.3.4.4 virus-challenged group, 8 of the 10 vaccinated chickens remained healthy and survived the 2-wk observation period; however, virus shedding was detected from 8 of 10 chickens on day 5 postchallenge. These results indicate that the Re-6 vaccine provides solid protection against clade 2.3.2.1, good protection against clade 7.2, and poor protection against clade 2.3.4.4. PMID:27309061

  12. [Neurological syndromes, encephalitis].

    PubMed

    Yamamoto, Tomotaka; Tsuji, Shoji

    2010-06-01

    The remote effects of malignant tumors in most cases of paraneoplastic neurological syndromes(PNS)are mediated by autoimmune processes against antigens shared by the tumor cells and the nervous tissue(onconeural antigens). Onconeural (or paraneoplastic)antibodies are broadly categorized into two groups according to the location of the corresponding onconeural antigens, inside or on the surface of neurons. Antibodies established as clinically relevant diagnostic markers for PNS are designated as well-characterized onconeural antibodies (or classical antibodies)that target intracellular antigens(Hu, Yo, Ri, CV2/CRMP5,Ma2, and amphiphysin). They also serve as useful markers in detecting primary tumors. Recent identification of new antibodies as markers of subtypes of limbic encephalitis has also expanded the concept of autoimmune limbic encephalitis. These autoantibodies are directed to neuronal cell-surface antigens including neurotransmitter receptors(NMDA, AMPA, and GABAB receptors)and ion channels(VGKC). They are less frequently associated with cancer, so that they cannot be used as specific markers for PNS. Autoimmune limbic encephalitis with anti-neuronal cell surface antobodies and paraneoplastic limbic encephalitis with classical antibodies overlap in some clinical features but are pathophysiologically distinct. Classical antibodies are not simple tumor markers. They seem to be closely related to the disease mechanisms because specific intrathecal synthesis has been shown in PNS patients. However, attempts to produce an animal model of PNS by passive transfer of these antibodies have been unsuccessful, and there is no direct evidence demonstrating the pathogenic role of classical antibodies. Instead, some circumstantial evidence, including pathological studies showing extensive infiltrates of T cells in the CNS of the patients, supports the hypothesis that cytotoxic-T cell mechanisms cause irreversible neuronal damage. On the other hand, humoral immune

  13. Immunogenicity of a low-dose diphtheria, tetanus and acellular pertussis combination vaccine with either inactivated or oral polio vaccine compared to standard-dose diphtheria, tetanus, acellular pertussis when used as a pre-school booster in UK children: A 5-year follow-up of a randomised controlled study.

    PubMed

    John, T; Voysey, M; Yu, L M; McCarthy, N; Baudin, M; Richard, P; Fiquet, A; Kitchin, N; Pollard, A J

    2015-08-26

    This serological follow up study assessed the kinetics of antibody response in children who previously participated in a single centre, open-label, randomised controlled trial of low-dose compared to standard-dose diphtheria booster preschool vaccinations in the United Kingdom (UK). Children had previously been randomised to receive one of three combination vaccines: either a combined adsorbed tetanus, low-dose diphtheria, 5-component acellular pertussis and inactivated polio vaccine (IPV) (Tdap-IPV, Repevax(®); Sanofi Pasteur MSD); a combined adsorbed tetanus, low-dose diphtheria and 5-component acellular pertussis vaccine (Tdap, Covaxis(®); Sanofi Pasteur MSD) given concomitantly with oral polio vaccine (OPV); or a combined adsorbed standard-dose diphtheria, tetanus, 2-component acellular pertussis and IPV (DTap-IPV, Tetravac(®); Sanofi Pasteur MSD). Blood samples for the follow-up study were taken at 1, 3 and 5 years after participation in the original trial (median, 5.07 years of age at year 1), and antibody persistence to each vaccine antigen measured against defined serological thresholds of protection. All participants had evidence of immunity to diphtheria with antitoxin concentrations greater than 0.01IU/mL five years after booster vaccination and 75%, 67% and 79% of children who received Tdap-IPV, Tdap+OPV and DTap-IPV, respectively, had protective antitoxin levels greater than 0.1IU/mL. Long lasting protective immune responses to tetanus and polio antigens were also observed in all groups, though polio responses were lower in the sera of those who received OPV. Low-dose diphtheria vaccines provided comparable protection to the standard-dose vaccine and are suitable for use for pre-school booster vaccination. PMID:26165918

  14. Prepandemic influenza vaccine H5N1 (split virion, inactivated, adjuvanted) [Prepandrix]: a review of its use as an active immunization against influenza A subtype H5N1 virus.

    PubMed

    Carter, Natalie J; Plosker, Greg L

    2008-01-01

    Although rare, influenza pandemics are a recurrent event, and influenza A/H5N1 is generally considered to be the most likely causative agent of the next pandemic. Vaccines are widely considered to be the first line of defense for protecting populations in advance of an influenza pandemic. Because it is not known beforehand which strain of influenza A/H5N1 virus could give rise to a pandemic, prepandemic vaccines that impart broad cross-reactive immunogenicity are required. In addition, low doses of H5 hemagglutinin are preferable in order to make antigen supplies go further towards meeting global demands for prepandemic vaccines.Prepandemic influenza vaccine H5N1 [Prepandrix(trade mark); AS03-H5N1 vaccine] is a split virion, inactivated vaccine containing H5 hemagglutinin antigen adjuvanted with a novel 10% oil-in-water emulsion-based adjuvant system (AS03). It is approved in the EU for use as an active immunization against H5N1 subtype influenza A virus (influenza A/H5N1 virus) in adults aged 18-60 years. The recommended dosage in this population is two doses of 0.5 mL containing 3.75 microg of H5 hemagglutinin, administered > or =21 days apart. Adjuvantation of H5N1 vaccine with AS03 allows for a reduction in the H5 hemagglutinin dose required to elicit an adequate immune response, and administration of two doses of the adjuvanted vaccine met all criteria for the licensure of influenza vaccines set out in European Committee for Proprietary Medicinal Products (CPMP) and US FDA documents. In two clinical trials, two doses of AS03-H5N1 vaccine containing 3.75 microg of H5 hemagglutinin induced an immune response in healthy volunteers aged 18-60 years against the homologous, clade 1 vaccine strain, A/Vietnam/1194/2004, and the heterologous, drifted, clade 2 nonvaccine strains, A/Anhui/1/2005, A/Indonesia/5/2005, and A/turkey/Turkey/1/2005. This cross-clade response persisted for > or =6 months following administration of the first vaccine dose in the majority of

  15. Raccoon roundworm encephalitis.

    PubMed

    Murray, William J; Kazacos, Kevin R

    2004-11-15

    The raccoon roundworm, Baylisascaris procyonis, is increasingly recognized as a cause of zoonotic visceral, ocular, and neural larva migrans and, in particular, of devastating encephalitis in young children. Exposure occurs mainly at raccoon latrines, where large numbers of infective eggs may be accidentally ingested. Risk factors for infection include contact with raccoon latrines, pica/geophagia, age of <4 years, and male sex. The severity of central nervous system (CNS) disease depends on the number of eggs ingested, the extent and location of larval migration, and the severity of ensuing inflammation and necrosis. Diagnosis of Baylisascaris encephalitis is based on clinical CNS disease, peripheral and cerebrospinal fluid eosinophilia, deep white matter lesions visible by magnetic resonance imaging, and positive results of serologic tests. Treatment efficacy in clinical cases is poor, but albendazole prevents disease if given promptly after infection. Considering the seriousness of this disease and limitations of diagnosis and treatment, prevention of infection with eggs is of utmost importance. PMID:15546085

  16. Nipah encephalitis - an update.

    PubMed

    Sherrini, B A; Chong, T T

    2014-08-01

    Between September 1998 to May 1999, Malaysia and Singapore were hit by an outbreak of fatal encephalitis caused by a novel virus from the paramyxovirus family. This virus was subsequently named as Nipah virus, after the Sungei Nipah village in Negeri Sembilan, where the virus was first isolated. The means of transmission was thought to be from bats-topigs and subsequently pigs-to-human. Since 2001, almost yearly outbreak of Nipah encephalitis has been reported from Bangladesh and West Bengal, India. These outbreaks were characterized by direct bats-to-human, and human-to-human spread of infection. Nipah virus shares many similar characteristics to Hendra virus, first isolated in an outbreak of respiratory illness involving horses in Australia in 1994. Because of their homology, a new genus called Henipavirus (Hendra + Nipah) was introduced. Henipavirus infection is a human disease manifesting most often as acute encephalitis (which may be relapsing or late-onset) or pneumonia, with a high mortality rate. Pteropus bats act as reservoir for the virus, which subsequently lead to human spread. Transmission may be from consumption of food contaminated by bats secretion, contact with infected animals, or human-to-human spread. With wide geographical distribution of Pteropus bats, Henipavirus infection has become an important emerging human infection with worldwide implication. PMID:25417957

  17. Inexpensive anti-cysticercosis vaccine: S3Pvac expressed in heat inactivated M13 filamentous phage proves effective against naturally acquired Taenia solium porcine cysticercosis.

    PubMed

    Morales, Julio; Martínez, José Juan; Manoutcharian, Karen; Hernández, Marisela; Fleury, Agnes; Gevorkian, Goar; Acero, Gonzalo; Blancas, Abel; Toledo, Andrea; Cervantes, Jacquelynne; Maza, Victor; Quet, Fabrice; Bonnabau, Henri; de Aluja, Aline S; Fragoso, Gladis; Larralde, Carlos; Sciutto, Edda

    2008-06-01

    In search of reducing vaccine production costs', a recombinant M13 phage version of the anti-cysticercosis tripeptide vaccine (S3Pvac) was developed. The efficacy of S3Pvac-Phage vs. placebo was evaluated in a randomized trial that included 1,047 rural pigs in 16 villages of Central Mexico. Three to five months after vaccination 530 pigs were examined by tongue inspection. At 5-27 months of age, 331 pigs (197 vaccinated/134 controls) were inspected at necropsy. Vaccination reduced 70% the frequency of tongue cysticercosis and, based on necropsy, 54% of muscle-cysticercosis and by 87% the number of cysticerci. PMID:18440675

  18. Knowledge Obtained from an Elderly Case of Japanese Encephalitis.

    PubMed

    Itoh, Kyoko; Iwamoto, Kazuhide; Satoh, Yu; Fujita, Tomoaki; Takahashi, Kenta; Katano, Harutaka; Hasegawa, Hideki; Takasaki, Tomohiko; Tando, So; Fushiki, Shinji

    2016-01-01

    The nationwide introduction of a Japanese encephalitis (JE) vaccine has contributed to a reduction in the annual infection rate of JE in Japan. However, the current neutralizing antibody prevalence ratio in Japan is approximately 20% in children 3-4 years of age and in people in their forties and fifties. We herein report a man with JE who was definitively diagnosed by multi-virus real-time polymerase chain reaction employing biopsied brain tissue and serological examinations. JE should be kept in mind when a patient has severe encephalitis of unknown etiology. In order to protect the susceptible population from JE, vaccination is recommended, especially for children and middle-aged people. PMID:27580555

  19. PER.C6(®) cells as a serum-free suspension cell platform for the production of high titer poliovirus: a potential low cost of goods option for world supply of inactivated poliovirus vaccine.

    PubMed

    Sanders, Barbara P; Edo-Matas, Diana; Custers, Jerome H H V; Koldijk, Martin H; Klaren, Vincent; Turk, Marije; Luitjens, Alfred; Bakker, Wilfried A M; Uytdehaag, Fons; Goudsmit, Jaap; Lewis, John A; Schuitemaker, Hanneke

    2013-01-21

    There are two highly efficacious poliovirus vaccines: Sabin's live-attenuated oral polio vaccine (OPV) and Salk's inactivated polio vaccine (IPV). OPV can be made at low costs per dose and is easily administrated. However, the major drawback is the frequent reversion of the OPV vaccine strains to virulent poliovirus strains which can result in Vaccine Associated Paralytic Poliomyelitis (VAPP) in vaccinees. Furthermore, some OPV revertants with high transmissibility can circulate in the population as circulating Vaccine Derived Polioviruses (cVDPVs). IPV does not convey VAPP and cVDPVs but the high costs per dose and insufficient supply have rendered IPV an unfavorable option for low and middle-income countries. Here, we explored whether the human PER.C6(®) cell-line, which has the unique capability to grow at high density in suspension, under serum-free conditions, could be used as a platform for high yield production of poliovirus. PER.C6(®) cells supported replication of all three poliovirus serotypes with virus titers ranging from 9.4 log(10) to 11.1 log(10)TCID(50)/ml irrespective of the volume scale (10 ml in shaker flasks to 2 L in bioreactors). This production yield was 10-30 fold higher than in Vero cell cultures performed here, and even 100-fold higher than what has been reported for Vero cell cultures in literature [38]. In agreement, the D-antigen content per volume PER.C6(®)-derived poliovirus was on average 30-fold higher than Vero-derived poliovirus. Interestingly, PER.C6(®) cells produced on average 2.5-fold more D-antigen units per cell than Vero cells. Based on our findings, we are exploring PER.C6(®) as an interesting platform for large-scale production of poliovirus at low costs, potentially providing the basis for global supply of an affordable IPV. PMID:23123018

  20. Subviral Particle as Vaccine and Vaccine Platform

    PubMed Central

    Tan, Ming; Jiang, Xi

    2014-01-01

    Recombinant subvirual particles retain similar antigenic features of their authentic viral capsids and thus have been applied as nonreplicating subunit vaccines against viral infection and illness. Additionally, the self-assembled, polyvalent subviral particles are excellent platforms to display foreign antigens for immune enhancement for vaccine development. These subviral particle-based vaccines are noninfectious and thus safer than the conventional live attenuated and inactivated vaccines. While several VLP vaccines are available in the markets, numerous others, including dual vaccines against more than one pathogen, are under clinical or preclinical development. This article provides an update of these efforts. PMID:24662314

  1. Significant reduction in bacterial shedding and improvement in milk production in dairy farms after the use of a new inactivated paratuberculosis vaccine in a field trial

    PubMed Central

    2009-01-01

    Background Paratuberculosis vaccination has been in use in some regions for many decades, but results have not been widely spread. A new Mycobacterium avium subsp. paratuberculosis (MAP) killed vaccine was studied in relationship with its effects on fecal shedding and milk production in four farms while other two were kept as controls submitted to a test and cull scheme. Findings Fecal detection (n = 1829) and milking records (n = 2413) have been analyzed after two (5 herds) and four (1 herd) years of the beginning of the intervention. Shedder prevalence was reduced by 100% in three of the four vaccinated farms, 68% in the total of vaccinated animals and 46% in the two control farms. Total amount of MAP shed was reduced 77% in the vaccinated farms and 94% in the control farms. Overall milk production increased up to 3.9% after vaccination, while there was no significant difference in production after intervention in the non-vaccinated farms. Conclusion MAP shedding reduction can be quickly accomplished both by vaccination and by testing and culling. However, vaccination appears to be a less expensive and more sustainable strategy since it required one single intervention and was also associated with an increase in milk production. PMID:19930604

  2. Protective immunity spectrum induced by immunization with a vaccine from the TBEV strain Sofjin.

    PubMed

    Chernokhaeva, L L; Rogova, Yu V; Vorovitch, M F; Romanova, L Iu; Kozlovskaya, L I; Maikova, G B; Kholodilov, I S; Karganova, G G

    2016-04-29

    Tick-borne encephalitis (TBE) circulates widely in the territory of Eurasia with up to 10,000 cases registered annually. The TBE virus (TBEV) includes three main subtypes: European, Siberian and Far-Eastern, and two new Asiatic variants, phylogenetically distant from the others. The inactivated antigen of European or Far-Eastern strains is used in commercial TBE vaccines. A set of 14 TBEV strains, isolated in 1937-2008, with different passage histories, representing all subtypes and variants, was used in this work. The chosen set covers almost all the TBE area. Sera of mice, immunized with the TBE vaccine Moscow, prepared from the TBEV strain Sofjin, were studied in a plaque neutralization test against the set of TBEV strains. The vaccine induced antibodies at a protective titer against all TBEV strains and Omsk hemorrhagic fever virus (OHFV) with Е protein amino acid distances of 0.008-0.069, but not against Powassan virus. We showed that after a course of two immunizations, factors such as the period between vaccinations (1-4 weeks), the challenging virus dose (30-1000 LD50) and terms of challenge (1-4 weeks after the last immunization) did not significantly affect the assessment of protective efficacy of the vaccine in vivo. The protective effect of the TBE vaccine Moscow against the set of TBEV strains and the OHFV was demonstrated in in vivo experiments. TBE vaccine Moscow did not protect mice against 10 LD50 of the Powassan virus. We showed that this range of Е protein amino acid distances between the vaccine strain and challenging virus do not have a decisive impact on the TBE vaccine protective effect in vitro and in vivo. Moreover, the TBE vaccine Moscow induces an immune response protective against a wide range of TBEV variants. PMID:27013433

  3. [Production of rabies vaccine in animal diploid cells].

    PubMed

    Lucas, G; Reculard, P; Adamowicz, P; Vacher, B; Prunet, P

    1982-01-01

    Modalities for production of inactivated rabies vaccine derived from diploid hamster cell cultures are reported. The inactivated concentrated virus, purified by zonal centrifugation, is utilised for the preparation of vaccines destinated to carnivores, either in the form of monovalent vaccine or associated with distemper and canine contagious hepatitis vaccines. The inactivated concentrated virus is utilised for the preparation of bovine vaccine. The procedure is compatible with industrial production. The results concerning safety and potency tests of the experimental lots are presented. PMID:7128072

  4. Safety and Immunogenicity of a Single Low Dose or High Dose of Clade 2 Influenza A(H5N1) Inactivated Vaccine in Adults Previously Primed With Clade 1 Influenza A(H5N1) Vaccine.

    PubMed

    Winokur, Patricia L; Patel, Shital M; Brady, Rebecca; Chen, Wilbur H; El-Kamary, Samer S; Edwards, Kathryn; Creech, C Buddy; Frey, Sharon; Keitel, Wendy A; Belshe, Robert; Walter, Emmanuel; Bellamy, Abbie; Hill, Heather

    2015-08-15

    Influenza A(H5N1) vaccination strategies that improve the speed of the immunological response and cross-clade protection are desired. We compared the immunogenicity of a single 15-μg or 90-μg dose of A/H5N1/Indonesia/05/05 (clade 2) vaccine in adults who were previously primed with A/H5N1/Vietnam/1203/2004 (clade 1) vaccine. High-dose vaccine resulted in significantly higher titers to both clade 1 and 2 antigens. Clade 2 titers were unaffected by the previous dose of clade 1 vaccine. Low-dose priming with a mismatched pandemic influenza A(H5N1) vaccine would improve the rapidity, magnitude, and cross-reactivity of the immunological response following a single high-dose, unadjuvanted, pandemic vaccine. PMID:25712967

  5. Neurological complications of rabies vaccines.

    PubMed

    Tullu, Millind S; Rodrigues, Sean; Muranjan, Mamta N; Bavdekar, Sandeep B; Kamat, Jaishree R; Hira, Priya R

    2003-02-01

    The rabies vaccines containing neural elements are used in some countries including India. We report three cases that presented with various neurological complications following the use of these vaccines. The presenting manifestations included those of encephalitis, radiculitis and acute inflammatory demyelinating polyradiculoneuropathy. These neurological complications are highlighted so that scientific evidence compels the community to discontinue the use of the neural tissue rabies vaccines. Newer generation cell culture rabies vaccines should be preferred over the neural tissue rabies vaccines for post-exposure prophylaxis. PMID:12626831

  6. Immunogenicity, safety, and antibody persistence at 3, 5, and 10 years postvaccination in adolescents randomized to booster immunization with a combined tetanus, diphtheria, 5-component acellular pertussis, and inactivated poliomyelitis vaccine administered with a hepatitis B virus vaccine concurrently or 1 month apart.

    PubMed

    Embree, Joanne; Law, Barbara; Voloshen, Tim; Tomovici, Antigona

    2015-03-01