Science.gov

Sample records for endocytosis nuclear translocation

  1. Translocation and Endocytosis for Cell-penetrating Peptide Internalization

    PubMed Central

    Jiao, Chen-Yu; Delaroche, Diane; Burlina, Fabienne; Alves, Isabel D.; Chassaing, Gérard; Sagan, Sandrine

    2009-01-01

    Cell-penetrating peptides (CPPs) share the property of cellular internalization. The question of how these peptides reach the cytoplasm of cells is still widely debated. Herein, we have used a mass spectrometry-based method that enables quantification of internalized and membrane-bound peptides. Internalization of the most used CPP was studied at 37 °C (endocytosis and translocation) and 4 °C (translocation) in wild type and proteoglycan-deficient Chinese hamster ovary cells. Both translocation and endocytosis are internalization pathways used by CPP. The choice of one pathway versus the other depends on the peptide sequence (not the number of positive changes), the extracellular peptide concentration, and the membrane components. There is no relationship between the high affinity of these peptides for the cell membrane and their internalization efficacy. Translocation occurs at low extracellular peptide concentration, whereas endocytosis, a saturable and cooperative phenomenon, is activated at higher concentrations. Translocation operates in a narrow time window, which implies a specific lipid/peptide co-import in cells. PMID:19833724

  2. The translocation of fullerenic nanoparticles into lysosome via the pathway of clathrin-mediated endocytosis

    NASA Astrophysics Data System (ADS)

    Li, Wei; Chen, Chunying; Ye, Chang; Wei, Taotao; Zhao, Yuliang; Lao, Fang; Chen, Zhen; Meng, Huan; Gao, Yuxi; Yuan, Hui; Xing, Genmei; Zhao, Feng; Chai, Zhifang; Zhang, Xujia; Yang, Fuyu; Han, Dong; Tang, Xianhua; Zhang, Yingge

    2008-04-01

    Manufactured fullerene nanoparticles easily enter into cells and hence have been rapidly developed for biomedical uses. However, it is generally unknown which route the nanoparticles undergo when crossing cell membranes and where they localize to the intracellular compartments. Herein we have used both microscopic imaging and biological techniques to explore the processes of [C60(C(COOH)2)2]n nanoparticles across cellular membranes and their intracellular translocation in 3T3 L1 and RH-35 living cells. The fullerene nanoparticles are quickly internalized by the cells and then routed to the cytoplasm with punctate localization. Upon entering the cell, they are synchronized to lysosome-like vesicles. The [C60(C(COOH)2)2]n nanoparticles entering cells are mainly via endocytosis with time-, temperature- and energy-dependent manners. The cellular uptake of [C60(C(COOH)2)2]n nanoparticles was found to be clathrin-mediated but not caveolae-mediated endocytosis. The endocytosis mechanism and the subcellular target location provide key information for the better understanding and predicting of the biomedical function of fullerene nanoparticles inside cells.

  3. Nuclear-cytoplasmic transport of EGFR involves receptor endocytosis, importin beta1 and CRM1.

    PubMed

    Lo, Hui-Wen; Ali-Seyed, Mohamed; Wu, Yadi; Bartholomeusz, Geoffrey; Hsu, Sheng-Chieh; Hung, Mien-Chie

    2006-08-15

    Many receptor tyrosine kinases (RTKs) can be detected in the cell nucleus, such as EGFR, HER-2, HER-3, HER-4, and fibroblast growth factor receptor. EGFR, HER-2 and HER-4 contain transactivational activity and function as transcription co-factors to activate gene promoters. High EGFR in tumor nuclei correlates with increased tumor proliferation and poor survival in cancer patients. However, the mechanism by which cell-surface EGFR translocates into the cell nucleus remains largely unknown. Here, we found that EGFR co-localizes and interacts with importins alpha1/beta1, carriers that are critical for macromolecules nuclear import. EGFR variant mutated at the nuclear localization signal (NLS) is defective in associating with importins and in entering the nuclei indicating that EGFR's NLS is critical for EGFR/importins interaction and EGFR nuclear import. Moreover, disruption of receptor internalization process using chemicals and forced expression of dominant-negative Dynamin II mutant suppressed nuclear entry of EGFR. Additional evidences suggest an involvement of endosomal sorting machinery in EGFR nuclear translocalization. Finally, we found that nuclear export of EGFR may involve CRM1 exportin as we detected EGFR/CRM1 interaction and markedly increased nuclear EGFR following exposure to leptomycin B, a CRM1 inhibitor. Collectively, these data suggest the importance of receptor endocytosis, endosomal sorting machinery, interaction with importins alpha1/beta1, and exportin CRM1 in EGFR nuclear-cytoplasmic trafficking. Together, our work sheds light into the nature and regulation of the nuclear EGFR pathway and provides a plausible mechanism by which cells shuttle cell-surface EGFR and potentially other RTKs through the nuclear pore complex and into the nuclear compartment. PMID:16552725

  4. The nuclear translocation of endostatin is mediated by its receptor nucleolin in endothelial cells.

    PubMed

    Song, Nan; Ding, Yanping; Zhuo, Wei; He, Ting; Fu, Zhiguang; Chen, Yang; Song, Xiaomin; Fu, Yan; Luo, Yongzhang

    2012-12-01

    Endostatin, the C-terminal fragment of collagen XVIII, is a potent anti-angiogenic factor that significantly modulates the gene expression pattern in endothelial cells. Upon cell surface binding, endostatin can not only function extracellularly, but also translocate to the nucleus within minutes. However, the mechanism by which this occurs is partially understood. Here we systematically investigated the nuclear translocation mechanism of endostatin. By chemical inhibition and RNA interference, we firstly observed that clathrin-mediated endocytosis, but not caveolae-dependent endocytosis or macropinocytosis, is essential for the nuclear translocation of endostatin. We then indentified that nucleolin and integrin α5β1, two widely accepted endostatin receptors, mediate this clathrin-dependent uptake process, which also involves urokinase plasminogen activator receptor (uPAR). Either mutagenesis study, fluorescence resonance energy transfer assay, or fluorescence cell imaging demonstrates that nucleolin and integrin α5β1 interact with uPAR simultaneously upon endostatin stimulation. Blockade of uPAR decreases not only the interaction between nucleolin and integrin α5β1, but also the uptake process, suggesting that the nucleolin/uPAR/integrin α5β1 complex facilitates the internalization of endostatin. After endocytosis, nucleolin further regulates the nuclear transport of endostatin. RNA interference and mutational analysis revealed that the nuclear translocation of endostatin involves the association of nucleolin with importin α1β1 via the nuclear localization sequence. Taken together, this study reveals the pathway by which endostatin translocates to the nucleus and the importance of nucleolin in this process, providing a new perspective for the functional investigation of the nuclear-translocated endostatin in endothelial cells. PMID:22711211

  5. Endocytosis is essential for dynamic translocation of a syntaxin 1 orthologue during fission yeast meiosis

    PubMed Central

    Kashiwazaki, Jun; Yamasaki, Yuriko; Itadani, Akiko; Teraguchi, Erika; Maeda, Yukari; Shimoda, Chikashi; Nakamura, Taro

    2011-01-01

    Syntaxin is a component of the target soluble N-ethylmaleimide–sensitive factor attachment protein receptor complex, which is responsible for fusion of membrane vesicles at the target membrane. The fission yeast syntaxin 1 orthologue Psy1 is essential for both vegetative growth and spore formation. During meiosis, Psy1 disappears from the plasma membrane (PM) and dramatically relocalizes on the nascent forespore membrane, which becomes the PM of the spore. Here we report the molecular details and biological significance of Psy1 relocalization. We find that, immediately after meiosis I, Psy1 is selectively internalized by endocytosis. In addition, a meiosis-specific signal induced by the transcription factor Mei4 seems to trigger this internalization. The internalization of many PM proteins is facilitated coincident with the initiation of meiosis, whereas Pma1, a P-type ATPase, persists on the PM even during the progression of meiosis II. Ergosterol on the PM is also important for the internalization of PM proteins in general during meiosis. We consider that during meiosis in Schizosaccharomyces pombe cells, the characteristics of endocytosis change, thereby facilitating internalization of Psy1 and accomplishing sporulation. PMID:21832151

  6. Activated ErbB3 Translocates to the Nucleus via Clathrin-independent Endocytosis, Which Is Associated with Proliferating Cells.

    PubMed

    Reif, Raymond; Adawy, Alshaimaa; Vartak, Nachiket; Schröder, Jutta; Günther, Georgia; Ghallab, Ahmed; Schmidt, Marcus; Schormann, Wiebke; Hengstler, Jan G

    2016-02-19

    Members of the receptor tyrosine kinase family (RTK) have been shown to be present in the nucleus of cells; however, the mechanisms underlying their trafficking to the nucleus, and their relevance once there are poorly understood. In the present study, we focus on the RTK ErbB3 and elucidate the mechanisms regulating its trafficking. We show that heregulin-stimulation induces trafficking of phosphorylated ErbB3 from the plasma membrane to the nucleus via a clathrin-independent mechanism. Nuclear import of ErbB3 occurs via importin β1, which drives the receptor through the nuclear pore complex. In the nucleus, ErbB3 interacts with transcription complexes, and thereby has a role in transcriptional regulation. Our results also demonstrate that ErbB3 nuclear localization is transient as it is exported out of the nucleus by the nuclear receptor protein crm-1. Analysis of normal, regenerating tissues, and tumors showed that ErbB3 nuclear translocation is a common event in proliferating tissues. PMID:26719328

  7. Importin-mediated nuclear translocation of galectin-3.

    PubMed

    Nakahara, Susumu; Hogan, Victor; Inohara, Hidenori; Raz, Avraham

    2006-12-22

    Galectin-3 (Gal-3), a member of a beta-galactoside-binding protein family, is involved in RNA processing and cell cycle regulation through activation of transcription factors when translocated to the nucleus. We have previously shown that Gal-3 can import into the nucleus through at least two pathways; via passive diffusion and/or active transport (Nakahara, S., Oka, N., Wang, Y., Hogan, V., Inohara, H, and Raz, A. (2006) Cancer Res. 66, 9995-10006). Here, we investigated the process mediated by the active nuclear transport of Gal-3 and have identified a nuclear localization signal (NLS)-like motif in its protein sequence, (223)HRVKKL(228), that resembles p53 and c-Myc NLSs ((378)SRHKKL(383), (322)AKRVKL(327)), respectively. Moreover, trimers of enhanced green fluorescence protein (3xGFP) fused with this NLS-like sequence, which is too large to passively diffuse through the nuclear pores, accumulated in the cell nuclei. To gain insights into this newly identified nuclear import mechanism, the interaction between Gal-3 and importins (importins alpha and beta) that carry the NLS harboring nuclear proteins into the nucleus, was investigated. Pull-down assays and bimolecular fluorescence complementation (BiFC) analysis revealed that wild-type Gal-3, but not mutant Gal-3 (R224A), binds to importin-alpha. Down-regulation of importin-beta by RNA interference (RNAi) efficiently abrogates its nuclear accumulation. Furthermore, we provide evidence that impaired nuclear translocation of mutant Gal-3 protein (R224A) results in accelerated degradation compared with the wild-type protein. Thus, these results suggest that Gal-3 is translocated to the nucleus, in part, via the importin-alpha/beta route and that Arg(224) amino acid residue of human Gal-3 is essential for its active nuclear translocation and its molecular stability. PMID:17056590

  8. Nuclear translocation of urokinase-type plasminogen activator.

    PubMed

    Stepanova, Victoria; Lebedeva, Tatiana; Kuo, Alice; Yarovoi, Serge; Tkachuk, Sergei; Zaitsev, Sergei; Bdeir, Khalil; Dumler, Inna; Marks, Michael S; Parfyonova, Yelena; Tkachuk, Vsevolod A; Higazi, Abd Al-Roof; Cines, Douglas B

    2008-07-01

    Urokinase-type plasminogen activator (uPA) participates in diverse (patho)physiological processes through intracellular signaling events that affect cell adhesion, migration, and proliferation, although the mechanisms by which these occur are only partially understood. Here we report that upon cell binding and internalization, single-chain uPA (scuPA) translocates to the nucleus within minutes. Nuclear translocation does not involve proteolytic activation or degradation of scuPA. Neither the urokinase receptor (uPAR) nor the low-density lipoprotein-related receptor (LRP) is required for nuclear targeting. Rather, translocation involves the binding of scuPA to the nucleocytoplasmic shuttle protein nucleolin through a region containing the kringle domain. RNA interference and mutational analysis demonstrate that nucleolin is required for the nuclear transport of scuPA. Furthermore, nucleolin is required for the induction smooth muscle alpha-actin (alpha-SMA) by scuPA. These data reveal a novel pathway by which uPA is rapidly translocated to the nucleus where it might participate in regulating gene expression. PMID:18337556

  9. Stat1 Nuclear Translocation by Nucleolin upon Monocyte Differentiation

    PubMed Central

    Jerke, Uwe; Tkachuk, Sergey; Kiyan, Julia; Stepanova, Victoria; Kusch, Angelika; Hinz, Michael; Dietz, Rainer; Haller, Hermann; Fuhrman, Bianca; Dumler, Inna

    2009-01-01

    Background Members of the signal transducer and activator of transcription (Stat) family of transcription factors traverse the nuclear membrane through a specialized structure, called the nuclear pore complex (NPC), which represents a selective filter for the import of proteins. Karyophilic molecules can bind directly to a subset of proteins of the NPC, collectively called nucleoporins. Alternatively, the transport is mediated via a carrier molecule belonging to the importin/karyopherin superfamily, which transmits the import into the nucleus through the NPC. Methodology/Principal Findings In this study, we provide evidence for an alternative Stat1 nuclear import mechanism, which is mediated by the shuttle protein nucleolin. We observed Stat1-nucleolin association, nuclear translocation and specific binding to the regulatory DNA element GAS. Using expression of nucleolin transgenes, we found that the nuclear localization signal (NLS) of nucleolin is responsible for Stat1 nuclear translocation. We show that this mechanism is utilized upon differentiation of myeloid cells and is specific for the differentiation step from monocytes to macrophages. Conclusions/Significance Our data add the nucleolin-Stat1 complex as a novel functional partner for the cell differentiation program, which is uniquely poised to regulate the transcription machinery via Stat1 and nuclear metabolism via nucleolin. PMID:20011528

  10. Akt phosphorylation is essential for nuclear translocation and retention in NGF-stimulated PC12 cells

    SciTech Connect

    Truong Le Xuan Nguyen; Choi, Joung Woo; Lee, Sang Bae; Ye, Keqiang; Woo, Soo-Dong; Lee, Kyung-Hoon; Ahn, Jee-Yin . E-mail: jyahn@med.skku.ac.kr

    2006-10-20

    Nerve growth factor (NGF) elicits Akt translocation into the nucleus, where it phosphorylates nuclear targets. Here, we describe that Akt phosphorylation can promote the nuclear translocation of Akt and is necessary for its nuclear retention. Overexpression of Akt-K179A, T308A, S473A-mutant failed to show either nuclear translocation or nuclear Akt phosphorylation, whereas expression of wild-type counterpart elicited profound Akt phosphorylation and induced nuclear translocation under NGF stimulation. Employing the PI3K inhibitor and a variety of mutants PI3K, we showed that nuclear translocation of Akt was mediated by activation of PI3K, and Akt phosphorylation status in the nucleus required PI3K activity. Thus the activity of PI3K might contribute to the nuclear translocation of Akt, and that Akt phosphorylation is essential for its nuclear retention under NGF stimulation conditions.

  11. Elevated chromosome translocation frequencies in New Zealand nuclear test veterans.

    PubMed

    Wahab, M A; Nickless, E M; Najar-M'kacher, R; Parmentier, C; Podd, J V; Rowland, R E

    2008-01-01

    In 1957/58 the British Government conducted a series of nuclear tests in the mid-Pacific codenamed Operation Grapple, which involved several naval vessels from Britain and New Zealand. Two New Zealand frigates with 551 personnel onboard were stationed at various distances between 20 and 150 nautical miles from ground zero. In the present study we applied the cytomolecular technique mFISH (multicolour fluorescent in situ hybridisation) to investigate a potential link between chromosome abnormalities and possible past radiation exposure in New Zealand nuclear test veterans who participated in Operation Grapple. Compared to age matched controls, the veterans showed significantly higher (P < 0.0001) frequencies of chromosomal abnormalities (275 translocations and 12 dicentrics in 9,360 cells vs. 96 translocations and 1 dicentric in 9,548 cells in the controls), in addition to a significant excess of CCRs (complex chromosomal rearrangements) in the veterans. A Kolmogorov-Smirnoff test showed that the distributions of translocations for the two groups were significantly different. PMID:18544930

  12. Conversion of graded phosphorylation into switch-like nuclear translocation via autoregulatory mechanisms in ERK signalling

    PubMed Central

    Shindo, Yuki; Iwamoto, Kazunari; Mouri, Kazunari; Hibino, Kayo; Tomita, Masaru; Kosako, Hidetaka; Sako, Yasushi; Takahashi, Koichi

    2016-01-01

    The phosphorylation cascade in the extracellular signal-regulated kinase (ERK) pathway is a versatile reaction network motif that can potentially act as a switch, oscillator or memory. Nevertheless, there is accumulating evidence that the phosphorylation response is mostly linear to extracellular signals in mammalian cells. Here we find that subsequent nuclear translocation gives rise to a switch-like increase in nuclear ERK concentration in response to signal input. The switch-like response disappears in the presence of ERK inhibitor, suggesting the existence of autoregulatory mechanisms for ERK nuclear translocation involved in conversion from a graded to a switch-like response. In vitro reconstruction of ERK nuclear translocation indicates that ERK-mediated phosphorylation of nucleoporins regulates ERK translocation. A mathematical model and knockdown experiments suggest a contribution of nucleoporins to regulation of the ERK nuclear translocation response. Taken together, this study provides evidence that nuclear translocation with autoregulatory mechanisms acts as a switch in ERK signalling. PMID:26786866

  13. Characterization of nuclear ferritin and mechanism of translocation

    PubMed Central

    2005-01-01

    Ferritin, normally considered a cytoplasmic iron-storage protein, is also found in cell nuclei. It is an established fact that H-ferritin is the major form of nuclear ferritin, but little is known about the roles of ferritin in nuclei or about the mechanisms that control its appearance within the nuclear volume. In the present study, we show that, for human SW1088 astrocytoma cells, the nuclear and cytoplasmic forms of H-ferritin are products of the same mRNA. Histochemical and biochemical evidence is presented showing that ferritin is distributed non-randomly within the nuclear volume and that it preferentially associates with heterochromatin. Both cytoplasmic and nuclear populations of H-ferritin contain mixtures of non- and O-glycosylated forms, but the nuclear population is enriched in O-glycosylated forms. Cells treated with alloxan, a potent inhibitor of O-glycosylation, contained significantly less nuclear ferritin compared with cells grown in control media. Alloxan inhibited the reappearance of H-ferritin in nuclei of cells released from conditions of iron depletion, but did not prevent its disappearance from nuclei of cells undergoing iron depletion. These results suggest that O-glycosylation accompanies the transfer of ferritin from the cytoplasm to the nucleus, but does not influence the reverse process. The picture that emerges is one in which ferritin translocation between the cytoplasm and the nucleus is post-translationally regulated and responds to environmental and nutritional cues. PMID:15675895

  14. Bovine Lactoferrampin, Human Lactoferricin, and Lactoferrin 1-11 Inhibit Nuclear Translocation of HIV Integrase.

    PubMed

    Wang, Winston Yan; Wong, Jack Ho; Ip, Denis Tsz Ming; Wan, David Chi Cheong; Cheung, Randy Chifai; Ng, Tzi Bun

    2016-08-01

    This study aimed to investigate fragments derived from human and bovine lactoferrins for ability to inhibit nuclear translocation of HIV-1 integrase. It was shown that human lactoferricin, human lactoferrin 1-11, and bovine lactoferrampin reduced nuclear distribution of HIV-1 integrase. Bovine lactoferrampin could inhibit both the activity and nuclear translocation of HIV-1 integrase. Human lactoferrampin, bovine lactoferricin, and bovine lactoferrin 1-11 had no effect on HIV-1 integrase nuclear translocation. Human lactoferrampin which inhibited the activity of integrase did not prevent its nuclear translocation. Human lactoferricin and lactoferrin 1-11 did not inhibit HIV-1 integrase nuclear translocation despite their ability to attenuate the enzyme activity. The discrepancy between the findings on reduction of HIV-1 activity and inhibition of nuclear translocation of HIV-1 integrase was due to the different mechanisms involved. A similar reasoning can also be applied to the different inhibitory potencies of the milk peptides on different HIV enzymes, i.e., nuclear translocation. PMID:27022750

  15. Featured Article: Effect of copper on nuclear translocation of copper chaperone for superoxide dismutase-1.

    PubMed

    Wang, Lin; Ge, Yan; Kang, Y James

    2016-08-01

    Copper chaperone for superoxide dismutase-1 (CCS-1), facilitating copper insertion into superoxide dismutase 1 (SOD-1), is present in the nucleus. However, it is unknown how CCS-1 is translocated to the nucleus. The present study was undertaken to determine the effect of copper on nuclear translocation of CCS-1. Human umbilical vein endothelial cells (HUVECs) were subjected to hypoxia, causing an increase in both copper and CCS-1 in the nucleus. Treatment with tetraethylenepentamine (TEPA) not only decreased the total cellular concentration and the nuclear translocation of copper, but also completely suppressed the entry of CCS-1 to the nucleus. On the other hand, siRNA targeting CCS-1 neither inhibited the increase in total concentrations nor blocked the nuclear translocation of copper. This study thus demonstrates that under hypoxia condition, both copper and CCS-1 are transported to the nucleus. The nuclear translocation of CCS-1 is copper dependent, but the nuclear translocation of copper could take place alternatively in a CCS-1-independent pathway. PMID:27190267

  16. Olomoucine inhibits cathepsin L nuclear translocation, activates autophagy and attenuates toxicity of 6-hydroxydopamine.

    PubMed

    Fei, Xi-Feng; Qin, Zheng-Hong; Xiang, Bei; Li, Ling-Yun; Han, Feng; Fukunaga, Kohji; Liang, Zhong-Qin

    2009-04-01

    The finding of nuclear translocation of cathepsin L and its ability to process the CDP/Cux transcription factor uncovers an important role of cathepsin L in control of cell cycle progression. As the expression of certain cell cycle regulators is associated with nigral neuronal death, the present study was sought to investigate if nuclear translocation of cathepsin L and expression of certain cyclins were induced in DA neurons by 6-hydroxydopamine (6-OHDA). The neuroprotective effects of the cell cycle inhibitor olomoucine against 6-OHDA-induced death of nigral neurons were examined. Using immunocytochemistry and real-time PCR we demonstrated that cyclin D1, cyclin B1 and proliferating cell nuclear antigen (PCNA) were aberrantly expressed in some dopaminergic neurons after 6-OHDA infusion. The nuclear translocation of cathepsin L and up-regulation of LC3, a protein involved in autophagy, were observed in nigral DA neurons. Olomoucine, a cyclin dependent kinase (CDK) inhibitor, reduced contralateral rotations and the loss of TH-positive neurons in substantia nigra induced by lesion with 6-OHDA. Pretreatment of rats or primary DA neurons with olomoucine resulted in a partial blockade of nuclear translocation of cathepsin L. Olomoucine also increased the expression of punctate LC3 immunoreactivity, indicating activation of autophagy. These findings suggest that olomoucine may exert neuroprotective effects through inhibiting cathepsin L nuclear translocation and activating autophagy. PMID:19368812

  17. Progesterone receptors in human breast cancer. Stoichiometric translocation and nuclear receptor processing.

    PubMed

    Mockus, M B; Horwitz, K B

    1983-04-25

    In a subline of T47D human breast cancer cells, progesterone receptors (PR) are synthesized at very high levels, but their synthesis is not estrogen-dependent. Despite the unusual control of synthesis, the physicochemical properties of PR are normal. These are, therefore, ideal cells to study PR regulation by progesterone, free of estrogen effects. In this paper, we show that nuclear translocation of PR is stoichiometric, and that an unusual and very rapid nuclear turnover, or processing step, characterizes receptor-DNA interactions. In intact T47D cells, PR are translocated to the nucleus only by progestins; 70-90% of cytoplasmic receptors are depleted at 37 degrees C within 5 min of progestin addition. After PR are translocated by 0.1 muM progesterone, they can be quantitatively recovered from nuclei only in the first 5 min; thereafter, a rapid nuclear processing step results in loss of 50-80% of the newly translocated sites. Rapid processing may be inherent to PR; it also occurs in PR of MCF-7 cells. The extent of receptor translocation and of nuclear receptor processing is dependent on the progesterone concentration and on the treatment time, and can be masked by endogenous hormones. Proteolytic enzyme inhibitors (leupeptin, antipain) do not prevent nuclear PR loss. G-C specific DNA intercalators that prevent nuclear estrogen receptor processing (actinomycin D, chromomycin A3) also fail to prevent PR loss, but some A-T specific DNA-binding dyes (chloroquine, primaquine, quinacrine) protect 50-75% of nuclear PR. We conclude that translocated nuclear PR can be quantitatively measured only at early time points because the nuclear receptors are rapidly processed. Furthermore, the processing step may involve an interaction of receptors with DNA since it can be partially blocked by DNA-binding agents. PMID:6833276

  18. SIRT1 interacts with and protects glyceraldehyde-3-phosphate dehydrogenase (GAPDH) from nuclear translocation: Implications for cell survival after irradiation

    SciTech Connect

    Joo, Hyun-Yoo; Woo, Seon Rang; Shen, Yan-Nan; Yun, Mi Yong; Shin, Hyun-Jin; Park, Eun-Ran; Kim, Su-Hyeon; Park, Jeong-Eun; Ju, Yeun-Jin; Hong, Sung Hee; Hwang, Sang-Gu; Cho, Myung-Haing; Kim, Joon; Lee, Kee-Ho

    2012-08-10

    Highlights: Black-Right-Pointing-Pointer SIRT1 serves to retain GAPDH in the cytosol, preventing GAPDH nuclear translocation. Black-Right-Pointing-Pointer When SIRT1 is depleted, GAPDH translocation occurs even in the absence of stress. Black-Right-Pointing-Pointer Upon irradiation, SIRT1 interacts with GAPDH. Black-Right-Pointing-Pointer SIRT1 prevents irradiation-induced nuclear translocation of GAPDH. Black-Right-Pointing-Pointer SIRT1 presence rather than activity is essential for inhibiting GAPDH translocation. -- Abstract: Upon apoptotic stimulation, glyceraldehyde-3-phosphate dehydrogenase (GAPDH), a cytosolic enzyme normally active in glycolysis, translocates into the nucleus and activates an apoptotic cascade therein. In the present work, we show that SIRT1 prevents nuclear translocation of GAPDH via interaction with GAPDH. SIRT1 depletion triggered nuclear translocation of cytosolic GAPDH even in the absence of apoptotic stress. Such translocation was not, however, observed when SIRT1 enzymatic activity was inhibited, indicating that SIRT1 protein per se, rather than the deacetylase activity of the protein, is required to inhibit GAPDH translocation. Upon irradiation, SIRT1 prevented irradiation-induced nuclear translocation of GAPDH, accompanied by interaction of SIRT1 and GAPDH. Thus, SIRT1 functions to retain GAPDH in the cytosol, protecting the enzyme from nuclear translocation via interaction with these two proteins. This serves as a mechanism whereby SIRT1 regulates cell survival upon induction of apoptotic stress by means that include irradiation.

  19. Differential effect of glucocorticoid receptor antagonists on glucocorticoid receptor nuclear translocation and DNA binding

    PubMed Central

    Spiga, Francesca; Knight, David M; Droste, Susanne K; Conway-Campbell, Becky; Kershaw, Yvonne; MacSweeney, Cliona P; Thomson, Fiona J; Craighead, Mark; Peeters, Bernard WMM; Lightman, Stafford L

    2016-01-01

    The effects of RU486 and S-P, a more selective glucocorticoid receptor antagonist from Schering-Plough, were investigated on glucocorticoid receptor nuclear translocation and DNA binding. In the in vitro study, AtT20 cells were treated with vehicle or with RU486, S-P or corticosterone (3–300 nM) or co-treated with vehicle or glucocorticoid receptor antagonists (3–300 nM) and 30 nM corticosterone. Both glucocorticoid receptor antagonists induced glucocorticoid receptor nuclear translocation but only RU486 induced DNA binding. RU486 potentiated the effect of corticosterone on glucocorticoid receptor nuclear translocation and DNA binding, S-P inhibited corticosterone-induced glucocorticoid receptor nuclear translocation, but not glucocorticoid receptor-DNA binding. In the in vivo study, adrenalectomized rats were treated with vehicle, RU486 (20 mg/kg) and S-P (50 mg/kg) alone or in combination with corticosterone (3 mg/kg). RU486 induced glucocorticoid receptor nuclear translocation in the pituitary, hippocampus and prefrontal cortex and glucocorticoid receptor-DNA binding in the hippocampus, whereas no effect of S-P on glucocorticoid receptor nuclear translocation or DNA binding was observed in any of the areas analysed. These findings reveal differential effects of RU486 and S-P on areas involved in regulation of hypothalamic–pituitary–adrenal axis activity in vivo and they are important in light of the potential use of this class of compounds in the treatment of disorders associated with hyperactivity of the hypothalamic–pituitary–adrenal axis. PMID:20093322

  20. Nuclear EGFRvIII resists hypoxic microenvironment induced apoptosis via recruiting ERK1/2 nuclear translocation.

    PubMed

    Xie, Hui; Yang, Jinfeng; Xing, Wenjing; Dong, Yucui; Ren, Huan

    2016-02-01

    Glioblastoma (GBM) is the most aggressive type of primary brain tumor. Its interaction with the tumor microenvironment promotes tumor progression. Furthermore, GBM bearing expression of EGFRvIII displays more adaptation to tumor microenvironment related stress. But the mechanisms were poorly understood. Here, we presented evidence that in the human U87MG glioblastoma tumor model, EGFRvIII overexpression led aberrant kinase activation and nuclear translocation of EGFRvIII/ERK1/2 under hypoxia, which induced growth advantage by resisting apoptosis. Additionally, EGFRvIII defective in nuclear entry impaired this capacity in hypoxia adaptation, and partially interrupted ERK1/2 nuclear translocation. Pharmacology or genetic interference ERK1/2 decreased hypoxia resistance triggered by EGFRvIII expression, but not EGFRvIII nuclear translocation. In summary, this study identified a novel role for EGFRvIII in hypoxia tolerance, supporting an important link between hypoxia and subcellular localization alterations of the receptor. PMID:26742423

  1. CacyBP/SIP nuclear translocation regulates p27Kip1 stability in gastric cancer cells

    PubMed Central

    Niu, Ying-Lin; Li, Ya-Jun; Wang, Jing-Bo; Lu, Yuan-Yuan; Liu, Zhen-Xiong; Feng, Shan-Shan; Hu, Jian-Guo; Zhai, Hui-Hong

    2016-01-01

    AIM: To investigate the mechanism of calcyclin binding protein/Siah-1 interacting protein (CacyBP/SIP) nuclear translocation in promoting the proliferation of gastric cancer (GC) cells. METHODS: The effect of CacyBP/SIP nuclear translocation on cell cycle was investigated by cell cycle analysis. Western blot analysis was used to assess the change in expression of cell cycle regulatory proteins and proteasome-mediated degradation of p27Kip1. Co-immunoprecipitation (co-IP) analysis was performed to examine the binding of CacyBP/SIP with Skp1. A CacyBP/SIP truncation mutant which lacked the Skp1 binding site was constructed and fused to a fluorescent protein. Subsequently, the effect on Skp1 binding with the fusion protein was examined by co-IP, while localization of fluorescent fusion protein observed by confocal laser microscopy, and change in p27Kip1 protein expression assessed by Western blot analysis. RESULTS: CacyBP/SIP nuclear translocation induced by gastrin promoted progression of GC cells from G1 phase. However, while CacyBP/SIP nuclear translocation was inhibited using siRNA to suppress CacyBP/SIP expression, cell cycle was clearly inhibited. CacyBP/SIP nuclear translocation significantly decreased the level of cell cycle inhibitor p27Kip1, increased Cyclin E protein expression whereas the levels of Skp1, Skp2, and CDK2 were not affected. Upon inhibition of CacyBP/SIP nuclear translocation, there were no changes in protein levels of p27Kip1 and Cyclin E, while p27Kip1 decrease could be prevented by the proteasome inhibitor MG132. Moreover, CacyBP/SIP was found to bind to Skp1 by immunoprecipitation, an event that was abolished by mutant CacyBP/SIP, which also failed to stimulate p27Kip1 degradation, even though the mutant could still translocate into the nucleus. CONCLUSION: CacyBP/SIP nuclear translocation contributes to the proliferation of GC cells, and CacyBP/SIP exerts this effect, at least in part, by stimulating ubiquitin-mediated degradation of p27

  2. Effects of different ligands on epidermal growth factor receptor (EGFR) nuclear translocation.

    PubMed

    Faria, Jerusa A Q A; de Andrade, Carolina; Goes, Alfredo M; Rodrigues, Michele A; Gomes, Dawidson A

    2016-09-01

    The epidermal growth factor receptor (EGFR) is activated through binding to specific ligands and generates signals for proliferation, differentiation, migration, and cell survival. Recent data show the role of nuclear EGFR in tumors. Although many EGFR ligands are upregulated in cancers, little is known about their effects on EGFR nuclear translocation. We have compared the effects of six EGFR ligands (EGF, HB-EGF, TGF-α, β-Cellulin, amphiregulin, and epiregulin) on nuclear translocation of EGFR, receptor phosphorylation, migration, and proliferation. Cell fractionation and confocal immunofluorescence detected EGFR in the nucleus after EGF, HB-EGF, TGF-α and β-Cellulin stimulation in a dose-dependent manner. In contrast, amphiregulin and epiregulin did not generate nuclear translocation of EGFR. EGF, HB-EGF, TGF-α and β-Cellulin showed correlations between a higher rate of wound closure and increased phosphorylation of residues in the carboxy-terminus of EGFR, compared to amphiregulin and epiregulin. The data indicate that EGFR is translocated to the nucleus after stimulation with EGF, HB-EGF, TGF-α and β-Cellulin, and that these ligands are related to increased phosphorylation of EGFR tyrosine residues, inducing migration of SkHep-1 cells. PMID:27462018

  3. High level of GHR nuclear translocation in skeletal muscle of a hyperplasic transgenic zebrafish.

    PubMed

    Figueiredo, Marcio A; Boyle, Robert T; Sandrini, Juliana Z; Varela, Antonio S; Marins, Luis F

    2016-01-01

    It has been reported that nuclear translocation of growth hormone receptor (GHR) may directly activate cell proliferation in mammals and birds. However, this phenomenon has not yet been described in fish. Recently, we have developed a transgenic zebrafish that overexpresses GHR in a muscle-specific manner. Considering that this transgenic model exhibits hyperplasic muscle growth, the present work aims at verifying the relationship between GHR nuclear translocation and muscle cell proliferation. This relationship was evaluated by the phosphorylation state of the proliferative MEK/ERK pathway, expression of nuclear import-related genes, immunostaining of phospho-histone H3 (PH3) as a proliferation marker, and nuclear GHR localization. The results showed a significant decrease in the phosphorylation state of ERK1/2 proteins in transgenics. Moreover, there was an increase in expression of three out of four importin genes analyzed parallel to a large flow of GHR displacement toward and into the nucleus of transgenic muscle cells. Also, transgenics presented a marked increase in PH3 staining, which indicates cell proliferation. These findings, as far as we know, are the first report suggesting a proliferative action of GHR in fish as a consequence of its increased nuclear translocation. Thus, it appears that the nuclear migration of cytokine receptors is a common event among different taxonomic groups. In addition, the results presented here highlight the possibility that these membrane proteins may be involved more directly than previously thought in the control of genes related to cell growth and proliferation. PMID:26553237

  4. G-protein coupling and nuclear translocation of the human abscisic acid receptor LANCL2

    PubMed Central

    Fresia, Chiara; Vigliarolo, Tiziana; Guida, Lucrezia; Booz, Valeria; Bruzzone, Santina; Sturla, Laura; Di Bona, Melody; Pesce, Mattia; Usai, Cesare; De Flora, Antonio; Zocchi, Elena

    2016-01-01

    Abscisic acid (ABA), a long known phytohormone, has been recently demonstrated to be present also in humans, where it targets cells of the innate immune response, mesenchymal and hemopoietic stem cells and cells involved in the regulation of systemic glucose homeostasis. LANCL2, a peripheral membrane protein, is the mammalian ABA receptor. We show that N-terminal glycine myristoylation causes LANCL2 localization to the plasmamembrane and to cytoplasmic membrane vesicles, where it interacts with the α subunit of a Gi protein and starts the ABA signaling pathway via activation of adenylate cyclase. Demyristoylation of LANCL2 by chemical or genetic means triggers its nuclear translocation. Nuclear enrichment of native LANCL2 is also induced by ABA treatment. Therefore human LANCL2 is a non-transmembrane G protein-coupled receptor susceptible to hormone-induced nuclear translocation. PMID:27222287

  5. G-protein coupling and nuclear translocation of the human abscisic acid receptor LANCL2.

    PubMed

    Fresia, Chiara; Vigliarolo, Tiziana; Guida, Lucrezia; Booz, Valeria; Bruzzone, Santina; Sturla, Laura; Di Bona, Melody; Pesce, Mattia; Usai, Cesare; De Flora, Antonio; Zocchi, Elena

    2016-01-01

    Abscisic acid (ABA), a long known phytohormone, has been recently demonstrated to be present also in humans, where it targets cells of the innate immune response, mesenchymal and hemopoietic stem cells and cells involved in the regulation of systemic glucose homeostasis. LANCL2, a peripheral membrane protein, is the mammalian ABA receptor. We show that N-terminal glycine myristoylation causes LANCL2 localization to the plasmamembrane and to cytoplasmic membrane vesicles, where it interacts with the α subunit of a Gi protein and starts the ABA signaling pathway via activation of adenylate cyclase. Demyristoylation of LANCL2 by chemical or genetic means triggers its nuclear translocation. Nuclear enrichment of native LANCL2 is also induced by ABA treatment. Therefore human LANCL2 is a non-transmembrane G protein-coupled receptor susceptible to hormone-induced nuclear translocation. PMID:27222287

  6. Nitric oxide induces thioredoxin-1 nuclear translocation: Possible association with the p21Ras survival pathway

    SciTech Connect

    Arai, Roberto J.; Yodoi, J.; Debbas, V.; Laurindo, Francisco R.; Stern, A.; Monteiro, Hugo P. . E-mail: hpmonte@uol.com.br

    2006-10-06

    One of the major redox-regulating molecules with thiol reducing activity is thioredoxin-1 (TRX-1). TRX-1 is a multifunctional protein that exists in the extracellular millieu, cytoplasm, and nucleus, and has a distinct role in each environment. It is well known that TRX-1 promptly migrates to the nuclear compartment in cells exposed to oxidants. However, the intracellular location of TRX-1 in cells exposed to nitrosothiols has not been investigated. Here, we demonstrated that the exposure of HeLa cells to increasing concentrations of the nitrosothiol S-nitroso-N-acetylpenicillamine (SNAP) promoted TRX-1 nuclear accumulation. The SNAP-induced TRX-1 translocation to the nucleus was inhibited by FPTIII, a selective inhibitor of p21Ras. Furthermore, TRX-1 migration was attenuated in cells stably transfected with NO insensitive p21Ras (p21{sup RasC118S}). Downstream to p21Ras, the MAP Kinases ERK1/2 were activated by SNAP under conditions that promote TRX-1 nuclear translocation. Inhibition of MEK prevented SNAP-stimulated ERK1/2 activation and TRX-1 nuclear migration. In addition, cells treated with p21Ras or MEK inhibitor showed increased susceptibility to cell death induced by SNAP. In conclusion, our observations suggest that the nuclear translocation of TRX-1 is induced by SNAP involving p21Ras survival pathway.

  7. Nuclear translocation of glutathione S-transferase {pi} is mediated by a non-classical localization signal

    SciTech Connect

    Kawakatsu, Miho; Goto, Shinji; Yoshida, Takako; Urata, Yoshishige; Li, Tao-Sheng

    2011-08-12

    Highlights: {yields} Nuclear translocation of GST{pi} is abrogated by the deletion of the last 16 amino acid residues in the carboxy-terminal region, indicating that residues 195-208 of GST{pi} are required for nuclear translocation. {yields} The lack of a contiguous stretch of positively charged amino acid residues within the carboxy-terminal region of GST{pi}, suggests that the nuclear translocation of GST{pi} is mediated by a non-classical nuclear localization signal. {yields} An in vitro transport assay shows that the nuclear translocation of GST{pi} is dependent on cytosolic factors and ATP. -- Abstract: Glutathione S-transferase {pi} (GST{pi}), a member of the GST family of multifunctional enzymes, is highly expressed in human placenta and involved in the protection of cellular components against electrophilic compounds or oxidative stress. We have recently found that GST{pi} is expressed in the cytoplasm, mitochondria, and nucleus in some cancer cells, and that the nuclear expression of GST{pi} appears to correlate with resistance to anti-cancer drugs. Although the mitochondrial targeting signal of GST{pi} was previously identified in the amino-terminal region, the mechanism of nuclear translocation remains completely unknown. In this study, we find that the region of GST{pi}195-208 is critical for nuclear translocation, which is mediated by a novel and non-classical nuclear localization signal. In addition, using an in vitro transport assay, we demonstrate that the nuclear translocation of GST{pi} depends on the cytosolic extract and ATP. Although further experiments are needed to understand in depth the precise mechanism of nuclear translocation of GST{pi}, our results may help to establish more efficient anti-cancer therapy, especially with respect to resistance to anti-cancer drugs.

  8. Cooperation of six and eya in activation of their target genes through nuclear translocation of Eya.

    PubMed

    Ohto, H; Kamada, S; Tago, K; Tominaga, S I; Ozaki, H; Sato, S; Kawakami, K

    1999-10-01

    Drosophila sine oculis and eyes absent genes synergize in compound-eye formation. The murine homologues of these genes, Six and Eya, respectively, show overlapping expression patterns during development. We hypothesized that Six and Eya proteins cooperate to regulate their target genes. Cotransfection assays were performed with various combinations of Six and Eya to assess their effects on a potential natural target, myogenin promoter, and on a synthetic promoter, the thymidine kinase gene promoter fused to multimerized Six4 binding sites. A clear synergistic activation of these promoters was observed in certain combinations of Six and Eya. To investigate the molecular basis for the cooperation, we first examined the intracellular distribution of Six and Eya proteins in transfected COS7 cells. Coexpression of Six2, Six4, or Six5 induced nuclear translocation of Eya1, Eya2, and Eya3, which were otherwise distributed in the cytoplasm. In contrast, coexpression of Six3 did not result in nuclear localization of any Eya proteins. Six and Eya proteins were coimmunoprecipitated from nuclear extracts prepared from cotransfected COS7 cells and from rat liver. Six domain and homeodomain, two evolutionarily conserved domains among various Six proteins, were necessary and sufficient for the nuclear translocation of Eya. In contrast, the Eya domain, a conserved domain among Eya proteins, was not sufficient for the translocation. A specific interaction between the Six domain and homeodomain of Six4 and Eya2 was observed by yeast two-hybrid analysis. Our results suggest that transcription regulation of certain target genes by Six proteins requires cooperative interaction with Eya proteins: complex formation through direct interaction and nuclear translocation of Eya proteins. This implies that the synergistic action of Six and Eya is conserved in the mouse and is mediated through cooperative activation of their target genes. PMID:10490620

  9. Non-muscle myosin IIB is critical for nuclear translocation during 3D invasion

    PubMed Central

    Yenepalli, Aishwarya; Denais, Celine Marie; Rape, Andrew; Beach, Jordan R.; Wang, Yu-li; Schiemann, William P.; Baskaran, Harihara; Lammerding, Jan

    2015-01-01

    Non-muscle myosin II (NMII) is reported to play multiple roles during cell migration and invasion. However, the exact biophysical roles of different NMII isoforms during these processes remain poorly understood. We analyzed the contributions of NMIIA and NMIIB in three-dimensional (3D) migration and in generating the forces required for efficient invasion by mammary gland carcinoma cells. Using traction force microscopy and microfluidic invasion devices, we demonstrated that NMIIA is critical for generating force during active protrusion, and NMIIB plays a major role in applying force on the nucleus to facilitate nuclear translocation through tight spaces. We further demonstrate that the nuclear membrane protein nesprin-2 is a possible linker coupling NMIIB-based force generation to nuclear translocation. Together, these data reveal a central biophysical role for NMIIB in nuclear translocation during 3D invasive migration, a result with relevance not only to cancer metastasis but for 3D migration in other settings such as embryonic cell migration and wound healing. PMID:26261182

  10. TDP-43 Inhibits NF-κB Activity by Blocking p65 Nuclear Translocation.

    PubMed

    Zhu, Jingyan; Cynader, Max S; Jia, William

    2015-01-01

    TDP-43 (TAR DNA binding protein 43) is a heterogeneous nuclear ribonucleoprotein (hnRNP) that has been found to play an important role in neurodegenerative diseases. TDP-43's involvement in nuclear factor-kappaB pathways has been reported in both neurons and microglial cells. The NF-κB pathway targets hundreds of genes, many of which are involved in inflammation, immunity and cancer. p50/p65 (p50/RelA) heterodimers, as the major Rel complex in the NF-κB family, are induced by diverse external physiological stimuli and modulate transcriptional activity in almost all cell types. Both p65 and TDP-43 translocation occur through the classic nuclear transportation system. In this study, we report that TDP-43 overexpression prevents TNF-α induced p65 nuclear translocation in a dose dependent manner, and that this further inhibits p65 transactivation activity. The inhibition by TDP-43 does not occur through preventing IκB degradation but probably by competing for the nuclear transporter-importin α3 (KPNA4). This competition is dependent on the presence of the nuclear localization signal (NLS) in TDP-43. Silencing TDP-43 using a specific siRNA also increased p65 nuclear localization upon TNF-α stimulation, suggesting that endogenous TDP-43 may be a default suppressor of the NF-κB pathway. Our results indicate that TDP-43 may play an important role in regulating the levels of NF-κB activity by controlling the nuclear translocation of p65. PMID:26571498

  11. TDP-43 Inhibits NF-κB Activity by Blocking p65 Nuclear Translocation

    PubMed Central

    Zhu, Jingyan; Cynader, Max S.; Jia, William

    2015-01-01

    TDP-43 (TAR DNA binding protein 43) is a heterogeneous nuclear ribonucleoprotein (hnRNP) that has been found to play an important role in neurodegenerative diseases. TDP-43’s involvement in nuclear factor-kappaB pathways has been reported in both neurons and microglial cells. The NF-κB pathway targets hundreds of genes, many of which are involved in inflammation, immunity and cancer. p50/p65 (p50/RelA) heterodimers, as the major Rel complex in the NF-κB family, are induced by diverse external physiological stimuli and modulate transcriptional activity in almost all cell types. Both p65 and TDP-43 translocation occur through the classic nuclear transportation system. In this study, we report that TDP-43 overexpression prevents TNF-α induced p65 nuclear translocation in a dose dependent manner, and that this further inhibits p65 transactivation activity. The inhibition by TDP-43 does not occur through preventing IκB degradation but probably by competing for the nuclear transporter-importin α3 (KPNA4). This competition is dependent on the presence of the nuclear localization signal (NLS) in TDP-43. Silencing TDP-43 using a specific siRNA also increased p65 nuclear localization upon TNF-α stimulation, suggesting that endogenous TDP-43 may be a default suppressor of the NF-κB pathway. Our results indicate that TDP-43 may play an important role in regulating the levels of NF-κB activity by controlling the nuclear translocation of p65. PMID:26571498

  12. KPNB1 mediates PER/CRY nuclear translocation and circadian clock function

    PubMed Central

    Lee, Yool; Jang, A Reum; Francey, Lauren J; Sehgal, Amita; Hogenesch, John B

    2015-01-01

    Regulated nuclear translocation of the PER/CRY repressor complex is critical for negative feedback regulation of the circadian clock of mammals. However, the precise molecular mechanism is not fully understood. Here, we report that KPNB1, an importin β component of the ncRNA repressor of nuclear factor of activated T cells (NRON) ribonucleoprotein complex, mediates nuclear translocation and repressor function of the PER/CRY complex. RNAi depletion of KPNB1 traps the PER/CRY complex in the cytoplasm by blocking nuclear entry of PER proteins in human cells. KPNB1 interacts mainly with PER proteins and directs PER/CRY nuclear transport in a circadian fashion. Interestingly, KPNB1 regulates the PER/CRY nuclear entry and repressor function, independently of importin α, its classical partner. Moreover, inducible inhibition of the conserved Drosophila importin β in lateral neurons abolishes behavioral rhythms in flies. Collectively, these data show that KPNB1 is required for timely nuclear import of PER/CRY in the negative feedback regulation of the circadian clock. DOI: http://dx.doi.org/10.7554/eLife.08647.001 PMID:26319354

  13. AIRE-induced apoptosis is associated with nuclear translocation of stress sensor protein GAPDH

    SciTech Connect

    Liiv, Ingrid; Haljasorg, Uku; Kisand, Kai; Maslovskaja, Julia; Laan, Martti; Peterson, Paert

    2012-06-22

    Highlights: Black-Right-Pointing-Pointer AIRE induces apoptosis in epithelial cells. Black-Right-Pointing-Pointer CARD domain of AIRE is sufficient for apoptosis induction. Black-Right-Pointing-Pointer AIRE induced apoptosis involves GAPDH translocation to the nuclei. Black-Right-Pointing-Pointer Deprenyl inhibits AIRE induced apoptosis. -- Abstract: AIRE (Autoimmune Regulator) has a central role in the transcriptional regulation of self-antigens in medullary thymic epithelial cells, which is necessary for negative selection of autoreactive T cells. Recent data have shown that AIRE can also induce apoptosis, which may be linked to cross-presentation of these self-antigens. Here we studied AIRE-induced apoptosis using AIRE over-expression in a thymic epithelial cell line as well as doxycycline-inducible HEK293 cells. We show that the HSR/CARD domain in AIRE together with a nuclear localization signal is sufficient to induce apoptosis. In the nuclei of AIRE-positive cells, we also found an increased accumulation of a glycolytic enzyme, glyceraldehyde-3-phosphate (GAPDH) reflecting cellular stress and apoptosis. Additionally, AIRE-induced apoptosis was inhibited with an anti-apoptotic agent deprenyl that blocks GAPDH nitrosylation and nuclear translocation. We propose that the AIRE-induced apoptosis pathway is associated with GAPDH nuclear translocation and induction of NO-induced cellular stress in AIRE-expressing cells.

  14. Free Radicals Generated by Ionizing Radiation Signal Nuclear Translocation of p53

    NASA Technical Reports Server (NTRS)

    Martinez, J. D.; Pennington, M. E.; Craven, M. T.; Warters, R. L.

    1997-01-01

    The p53 tumor suppressor is a transcription factor that regulates several pathways, which function collectively to maintain the integrity of the genome. Nuclear localization is critical for wild-type function. However, the signals that regulate subcellular localization of p53 have not been identified. Here, we examine the effect of ionizing radiation on the subcellular localization of p53 in two cell lines in which p63 is normally sequestered in the cytoplasm and found that ionizing radiation caused a biphasic translocation response. p53 entered the nucleus 1-2 hours postirradiation (early response), subsequently emerged from the nucleus, and then again entered the nucleus 12-24 hours after the cells had been irradiated (delayed response). These changes in subcellular localization could be completely blocked by the free radical scavenger, WR1065. By comparison, two DNA-damaging agents that do not generate free radicals, mitomycin C and doxorubicin, caused translocation only after 12-24 h of exposure to the drugs, and this effect could not be inhibited by WR1065. Hence, although all three DNA-damaging agents induced relocalization of p53 to the nucleus, only the translocation caused by radiation was sensitive to free radical scavenging. We suggest that the free radicals generated by ionizing radiation can signal p53 translocation to the nucleus.

  15. Yes and Lyn play a role in nuclear translocation of the epidermal growth factor receptor.

    PubMed

    Iida, M; Brand, T M; Campbell, D A; Li, C; Wheeler, D L

    2013-02-01

    The epidermal growth factor receptor (EGFR) is a central regulator of tumor progression in human cancers. Cetuximab is an anti-EGFR antibody that has been approved for use in oncology. Previously we investigated mechanisms of resistance to cetuximab using a model derived from the non-small cell lung cancer line NCI-H226. We demonstrated that cetuximab-resistant clones (Ctx(R)) had increased nuclear localization of the EGFR. This process was mediated by Src family kinases (SFKs), and nuclear EGFR had a role in resistance to cetuximab. To better understand SFK-mediated nuclear translocation of EGFR, we investigated which SFK member(s) controlled this process as well as the EGFR tyrosine residues that are involved. Analyses of mRNA and protein expression indicated upregulation of the SFK members Yes (v-Yes-1 yamaguchi sarcoma viral oncogene) and Lyn (v-yes-1 Yamaguchi sarcoma viral-related oncogene homolog) in all Ctx(R) clones. Further, immunoprecipitation analysis revealed that EGFR interacts with Yes and Lyn in Ctx(R) clones, but not in cetuximab-sensitive (Ctx(S)) parental cells. Using RNAi interference, we found that knockdown of either Yes or Lyn led to loss of EGFR translocation to the nucleus. Conversely, overexpression of Yes or Lyn in low nuclear EGFR-expressing Ctx(S) parental cells led to increased nuclear EGFR. Chromatin immunoprecipitation (ChIP) assays confirmed nuclear EGFR complexes associated with the promoter of the known EGFR target genes B-Myb and iNOS. Further, all Ctx(R) clones exhibited upregulation of B-Myb and iNOS at the mRNA and protein levels. siRNAs directed at Yes or Lyn led to decreased binding of EGFR complexes to the B-Myb and iNOS promoters based on ChIP analyses. SFKs have been shown to phosphorylate EGFR on tyrosines 845 and 1101 (Y845 and Y1101), and mutation of Y1101, but not Y845, impaired nuclear entry of the EGFR. Taken together, our findings demonstrate that Yes and Lyn phosphorylate EGFR at Y1101, which influences EGFR

  16. Malondialdehyde inhibits an AMPK-mediated nuclear translocation and repression activity of ALDH2 in transcription

    SciTech Connect

    Choi, Ji-Woong; Kim, Jae-Hwan; Cho, Sung-Chun; Ha, Moon-Kyung; Song, Kye-Yong; Youn, Hong-Duk; Park, Sang Chul

    2011-01-07

    Research highlights: {yields} ALDH2 is an MDA-modified protein in old rat kidney tissues. {yields} AMPK associates with ALDH2 and triggers the nuclear localization of ALDH2. {yields} ALDH2 serves as a general transcriptional repressor by associating with HDACs. {yields} MDA inhibits the AMPK-mediated translocation of ALDH2 and its repression activity. -- Abstract: Aging process results from deleterious damages by reactive oxygen species, in particular, various metabolic aldehydes. Aldehyde dehydrogenase 2 (ALDH2) is one of metabolic enzymes detoxifying various aldehydes under oxidative conditions. AMP-activated protein kinase (AMPK) plays a key role in controlling metabolic process. However, little was known about the relationship of ALDH2 with AMPK under oxidative conditions. Here, we, by using MDA-specific monoclonal antibody, screened the tissues of young and old rats for MDA-modified proteins and identified an ALDH2 as a prominent MDA-modified protein band in the old rat kidney tissue. ALDH2 associates with AMPK and is phosphorylated by AMPK. In addition, AICAR, an activator of AMP-activated protein kinase, induces the nuclear translocation of ALDH2. ALDH2 in nucleus is involved in general transcription repression by association with histone deacetylases. Furthermore, MDA modification inhibited the translocation of ALDH2 and the association with AMPK, and ultimately led to de-repression of transcription in the reporter system analysis. In this study, we have demonstrated that ALDH2 acts as a transcriptional repressor in response to AMPK activation, and MDA modifies ALDH2 and inhibits repressive activity of ALDH2 in general transcription. We thus suggest that increasing amount of MDA during aging process may interrupt the nuclear function of ALDH2, modulated by AMPK.

  17. Differences between brain structures in nuclear translocation and DNA binding of the glucocorticoid receptor during stress and the circadian cycle.

    PubMed

    Kitchener, Pierre; Di Blasi, Francesco; Borrelli, Emiliana; Piazza, Pier Vincenzo

    2004-04-01

    Glucocorticoid receptors (GRs) are transcription factors that, upon activation by glucocorticoids, translocate to the cell nucleus, and bind to specific response elements (GREs) in the promoter region of target genes. We analysed stress- and circadian-induced changes in nuclear translocation and GRE binding of GRs in the hippocampus and the prefrontal cortex of the rat brain. Nuclear translocation and binding to GRE were measured in nuclear extracts by Western blot and gel shift, respectively. When glucocorticoid levels were low, as during the light period of the circadian cycle, nuclear GRs and GRE binding were almost undetectable. However, the increase in glucocorticoid levels observed during the dark phase of the circadian cycle or after stress induced a massive nuclear translocation of GRs and GRE binding. These effects were corticosterone-dependent because they were suppressed by adrenalectomy and restored by the injection of corticosterone. Furthermore, GR translocation and GRE binding were of higher amplitude or lasted longer in the hippocampus than in the prefrontal cortex. By contrast, extracellular levels of glucocorticoids, measured by microdialysis in freely moving animals, were identical in the two structures. These results suggest that specific intracellular regulations of GR activity contribute to differentiate the effects of glucocorticoids in different regions of the brain. PMID:15078557

  18. Nuclear translocation of histone deacetylase 4 induces neuronal death in stroke.

    PubMed

    Yuan, Hui; Denton, Kyle; Liu, Lin; Li, Xue-Jun; Benashski, Sharon; McCullough, Louise; Li, Jun

    2016-07-01

    Mounting evidence suggests that epigenetic modifications play critical roles in the survival/death of stressed neurons. Chief among these modifications is the deacetylation of histones within the chromatin by histone deacetylases (HDACs). HDAC4 is highly expressed in neurons and is usually trapped in cytosol. However, tightly regulated signal-dependent shuttling of this molecule between cytosol and nucleus occurs. Here, we studied the intracellular trafficking of HDAC4 and regulatory mechanisms during stroke. HDAC4 translocated from the cytosol into the nucleus of neurons in response to stroke induced by middle cerebral artery occlusion (MCAO) in mice. Similar translocation was seen after oxygen-glucose deprivation (OGD) in cultured mouse neurons. Expression of nuclear-restricted HDAC4 increased neuronal death after OGD and worsened infarcts and functional deficits in mice following MCAO; however, expression of cytosolic-restricted HDAC4 did not affect outcome after ischemia. In contrast, HDAC4 knockdown with siRNA improved neuronal survival after OGD. Furthermore, expression of nuclear-restricted HDAC4 reduced the acetylation of histones 3 and 4 as well as the levels of pro-survival downstream molecules after OGD. Finally, genetic deletion of calcium/calmodulin-dependent protein kinase IV (CaMKIV) increased the nuclear accumulation of HDAC4 in MCAO model, while overexpression of CaMKIV reduced the levels of nuclear HDAC4 following OGD. When HDAC4 was inhibited, the neuroprotection provided by CaMKIV overexpression was absent during OGD. Our data demonstrate a detrimental role of the nuclear accumulation of HDAC4 following stroke and identify CaMKIV as a key regulator of neuronal intracellular HDAC4 trafficking during stroke. PMID:26969532

  19. Phorbol 12-myristate 13-acetate promotes nuclear translocation of hepatic steroid response element binding protein-2.

    PubMed

    Wong, Tsz Yan; Tan, Yan Qin; Lin, Shu-Mei; Leung, Lai K

    2016-06-01

    Sterol regulatory element-binding protein (SREBP)-2 is a pivotal transcriptional factor in cholesterol metabolism. Factors interfering with the proper functioning of SREBP-2 potentially alter plasma lipid profiles. Phorbol 12-myristate 13-acetate (PMA), which is a common protein kinase C (PKC) activator, was shown to promote the post-translational processing and nuclear translocation of SREBP-2 in hepatic cells in the current study. Following SREBP-2 translocation, the transcripts of its target genes HMGCR and LDLR were upregulated as demonstrated by quantitative reverse transcriptase-polymerase chain reaction (RT-PCR) assay. Electrophoretic mobility shift assays (EMSA) also demonstrated an induced DNA-binding activity on the sterol response element (SRE) domain under PMA treatment. The increase of activated Srebp-2 without the concurrent induced mRNA expression was also observed in an animal model. As the expression of SREBP-2 was not increased by PMA, the activation of PKC was the focus of investigation. Specific PKC isozyme inhibition and overexpression supported that PKCβ was responsible for the promoting effect. Further studies showed that the mitogen-activated protein kinases (MAPKs) extracellular signal-regulated kinases (ERK) and c-Jun N-terminal kinases (JNK), but not 5' adenosine monophosphate-activated protein kinase (AMPK), were the possible downstream signaling proteins of PKCβ. In conclusion, this study illustrated that PKCβ increased SREBP-2 nuclear translocation in a pathway mediated by MEK/ERK and JNK, rather than the one dictated by AMPK. These results revealed a novel signaling target of PKCβ in the liver cells. PMID:27032751

  20. A Cell-Based Assay Reveals Nuclear Translocation of Intracellular Domains Released by SPPL Proteases.

    PubMed

    Mentrup, Torben; Häsler, Robert; Fluhrer, Regina; Saftig, Paul; Schröder, Bernd

    2015-08-01

    During regulated intramembrane proteolysis (RIP) a membrane-spanning substrate protein is cleaved by an ectodomain sheddase and an intramembrane cleaving protease. A cytoplasmic intracellular domain (ICD) is liberated, which can migrate to the nucleus thereby influencing transcriptional regulation. Signal peptide peptidase-like (SPPL) 2a and 2b have been implicated in RIP of type II transmembrane proteins. Even though SPPL2a might represent a potential pharmacological target for treatment of B-cell-mediated autoimmunity, no specific and potent inhibitors for this enzyme are currently available. We report here on the first quantitative cell-based assay for measurement of SPPL2a/b activity. Demonstrating the failure of standard Gal4/VP16 reporter assays for SPPL2a/b analysis, we have devised a novel system employing β-galactosidase (βGal) complementation. This is based on detecting nuclear translocation of the proteolytically released substrate ICDs, which results in specific restoration of βGal activity. Utilizing this potentially high-throughput compatible new setup, we demonstrate nuclear translocation of the ICDs from integral membrane protein 2B (ITM2B), tumor necrosis factor (TNF) and CD74 and identify secreted frizzled-related protein 2 (SFRP2) as potential transcriptional downstream target of the CD74 ICD. We show that the presented assay is easily adaptable to other intramembrane proteases and therefore represents a valuable tool for the functional analysis and development of new inhibitors of this class of enzymes. PMID:25824657

  1. Nuclear Translocation of Crk Adaptor Proteins by the Influenza A Virus NS1 Protein.

    PubMed

    Ylösmäki, Leena; Fagerlund, Riku; Kuisma, Inka; Julkunen, Ilkka; Saksela, Kalle

    2016-01-01

    The non-structural protein-1 (NS1) of many influenza A strains, especially those of avian origin, contains an SH3 ligand motif, which binds tightly to the cellular adaptor proteins Crk (Chicken tumor virus number 10 (CT10) regulator of kinase) and Crk-like adapter protein (CrkL). This interaction has been shown to potentiate NS1-induced activation of the phosphatidylinositol 3-kinase (PI3K), but additional effects on the host cell physiology may exist. Here we show that NS1 can induce an efficient translocation of Crk proteins from the cytoplasm into the nucleus, which results in an altered pattern of nuclear protein tyrosine phosphorylation. This was not observed using NS1 proteins deficient in SH3 binding or engineered to be exclusively cytoplasmic, indicating a physical role for NS1 as a carrier in the nuclear translocation of Crk. These data further emphasize the role of Crk proteins as host cell interaction partners of NS1, and highlight the potential for host cell manipulation gained by a viral protein simply via acquiring a short SH3 binding motif. PMID:27092521

  2. Oxymatrine Prevents NF-κB Nuclear Translocation And Ameliorates Acute Intestinal Inflammation

    PubMed Central

    Guzman, Javier Rivera; Koo, Ja Seol; Goldsmith, Jason R.; Mühlbauer, Marcus; Narula, Acharan; Jobin, Christian

    2013-01-01

    Oxymatrine is a traditional Chinese herbal product that exhibits anti-inflammatory effects in models of heart, brain and liver injury. We investigated the impact of oxymatrine in an acute model of intestinal injury and inflammation. Oxymatrine significantly decreased LPS-induced NF-κB-driven luciferase activity, correlating with diminished induction of Cxcl2, Tnfα and Il6 mRNA expression in rat IEC-6 and murine BMDC. Although oxymatrine decreased LPS-induced p65 nuclear translocation and binding to the Cxcl2 gene promoter, this effect was independent of IκBα degradation/phosphorylation. DSS-induced weight loss and histological damage were ameliorated in oxymatrine-treated C57BL/6-WT-mice. While this effect correlated with reduced colonic Il6 and Il1β mRNA accumulation, global NF-κB activity as measured in NF-κBEGFP mice was unaffected. Our data demonstrate that oxymatrine reduces LPS-induced NF-κB nuclear translocation and activity independently of IκBα status, prevents intestinal inflammation through blockade of inflammatory signaling and ameliorates overall intestinal inflammation in vivo. PMID:23568217

  3. Nuclear volume differences between balanced and unbalanced spermatozoa in chromosomal translocation carriers.

    PubMed

    Rouen, Alexandre; Lavillaureix, Alinoë; Hyon, Capucine; Heide, Solveig; Clède, Sylvain; Balet, Richard; Kott, Esther; Cassuto, Nino Guy; Siffroi, Jean-Pierre

    2015-03-01

    While chromosomal translocations are usually associated with a normal phenotype, they can still cause male infertility as well as recurrent miscarriages and fetal malformations related to their transmission in an unbalanced state. The distinction between balanced and unbalanced spermatozoa on morphological criteria is still unfeasible. However, we previously showed that: i) spermatozoa with an unbalanced content have a higher rate of DNA fragmentation; and ii) that density gradient centrifugation partially separates balanced from unbalanced sperm cells. We hypothesized that a chromosomal imbalance could alter the fine spermatic nuclear architecture and consequently the condensation of DNA, thus modifying normal sperm density. Spermatic nuclear volumes in four translocation carriers were analyzed using confocal microscopy. Secondarily, FISH analysis was used to establish the segregation mode of each spermatozoon. We found the average spermatic nuclei size to be higher among unbalanced spermatozoa in all patients but one. All the unbalanced modes were associated with larger nuclei in two patients, while this was the case for the 3:1 mode only in the other two, suggesting an abnormal condensation. This could be the first step in elaborating a procedure to completely eliminate unbalanced spermatozoa from semen prior to in vitro fertilization. PMID:25599825

  4. Nuclear Translocation of Crk Adaptor Proteins by the Influenza A Virus NS1 Protein

    PubMed Central

    Ylösmäki, Leena; Fagerlund, Riku; Kuisma, Inka; Julkunen, Ilkka; Saksela, Kalle

    2016-01-01

    The non-structural protein-1 (NS1) of many influenza A strains, especially those of avian origin, contains an SH3 ligand motif, which binds tightly to the cellular adaptor proteins Crk (Chicken tumor virus number 10 (CT10) regulator of kinase) and Crk-like adapter protein (CrkL). This interaction has been shown to potentiate NS1-induced activation of the phosphatidylinositol 3-kinase (PI3K), but additional effects on the host cell physiology may exist. Here we show that NS1 can induce an efficient translocation of Crk proteins from the cytoplasm into the nucleus, which results in an altered pattern of nuclear protein tyrosine phosphorylation. This was not observed using NS1 proteins deficient in SH3 binding or engineered to be exclusively cytoplasmic, indicating a physical role for NS1 as a carrier in the nuclear translocation of Crk. These data further emphasize the role of Crk proteins as host cell interaction partners of NS1, and highlight the potential for host cell manipulation gained by a viral protein simply via acquiring a short SH3 binding motif. PMID:27092521

  5. Nuclear translocation of phospholipase C-zeta, an egg-activating factor, during early embryonic development

    SciTech Connect

    Sone, Yoshie; Ito, Masahiko; Shirakawa, Hideki; Shikano, Tomohide; Takeuchi, Hiroyuki; Kinoshita, Katsuyuki; Miyazaki, Shunichi . E-mail: shunm@research.twmu.ac.jp

    2005-05-13

    Phospholipase C-zeta (PLC{zeta}), a strong candidate of the egg-activating sperm factor, causes intracellular Ca{sup 2+} oscillations and egg activation, and is subsequently accumulated into the pronucleus (PN), when expressed in mouse eggs by injection of RNA encoding PLC{zeta}. Changes in the localization of expressed PLC{zeta} were investigated by tagging with a fluorescent protein. PLC{zeta} began to translocate into the PN formed at 5-6 h after RNA injection and increased there. Observation in the same embryo revealed that PLC{zeta} in the PN dispersed to the cytoplasm upon nuclear envelope breakdown and translocated again into the nucleus after cleavage. The dynamics was found in the second mitosis as well. When RNA was injected into fertilization-originated 1-cell embryos or blastomere(s) of 2-8-cell embryos, the nuclear localization of expressed PLC{zeta} was recognized in every embryo up to blastocyst. Thus, PLC{zeta} exhibited alternative cytoplasm/nucleus localization during development. This supports the view that the sperm factor could control cell cycle-dependent generation of Ca{sup 2+} oscillations in early embryogenesis.

  6. MAP kinase-signaling controls nuclear translocation of tripeptidyl-peptidase II in response to DNA damage and oxidative stress

    SciTech Connect

    Preta, Giulio; Klark, Rainier de; Chakraborti, Shankhamala; Glas, Rickard

    2010-08-27

    Research highlights: {yields} Nuclear translocation of TPPII occurs in response to different DNA damage inducers. {yields} Nuclear accumulation of TPPII is linked to ROS and anti-oxidant enzyme levels. {yields} MAPKs control nuclear accumulation of TPPII. {yields} Inhibited nuclear accumulation of TPPII decreases DNA damage-induced {gamma}-H2AX expression. -- Abstract: Reactive oxygen species (ROS) are a continuous hazard in eukaroytic cells by their ability to cause damage to biomolecules, in particular to DNA. Previous data indicated that the cytosolic serine peptidase tripeptidyl-peptidase II (TPPII) translocates into the nucleus of most tumor cell lines in response to {gamma}-irradiation and ROS production; an event that promoted p53 expression as well as caspase-activation. We here observed that nuclear translocation of TPPII was dependent on signaling by MAP kinases, including p38MAPK. Further, this was caused by several types of DNA-damaging drugs, a DNA cross-linker (cisplatinum), an inhibitor of topoisomerase II (etoposide), and to some extent also by nucleoside-analogues (5-fluorouracil, hydroxyurea). In the minority of tumor cell lines where TPPII was not translocated into the nucleus in response to DNA damage we observed reduced intracellular ROS levels, and the expression levels of redox defense systems were increased. Further, treatment with the ROS-inducer {gamma}-hexa-chloro-cyclohexane ({gamma}-HCH, lindane), an inhibitor of GAP junctions, restored nuclear translocation of TPPII in these cell lines upon {gamma}-irradiation. Moreover, blocking nuclear translocation of TPPII in etoposide-treated cells, by using a peptide-derived inhibitor (Z-Gly-Leu-Ala-OH), attenuated expression of {gamma}-H2AX in {gamma}-irradiated melanoma cells. Our results indicated a role for TPPII in MAPK-dependent DNA damage signaling.

  7. Nuclear translocation of the cytoskeleton-associated protein, smALP, upon induction of skeletal muscle differentiation

    SciTech Connect

    Cambier, Linda; Pomies, Pascal

    2011-06-17

    Highlights: {yields} The cytoskeleton-associated protein, smALP, is expressed in differentiated skeletal muscle. {yields} smALP is translocated from the cytoplasm to the nucleus of C2C12 myoblasts upon induction of myogenesis. {yields} The differentiation-dependent nuclear translocation of smALP occurs in parallel with the nuclear accumulation of myogenin. {yields} The LIM domain of smALP is essential for the nuclear accumulation of the protein. {yields} smALP might act in the nucleus to control some critical aspect of the muscle differentiation process. -- Abstract: The skALP isoform has been shown to play a critical role in actin organization and anchorage within the Z-discs of skeletal muscles, but no data is available on the function of the smALP isoform in skeletal muscle cells. Here, we show that upon induction of differentiation a nuclear translocation of smALP from the cytoplasm to the nucleus of C2C12 myoblasts, concomitant to an up-regulation of the protein expression, occurs in parallel with the nuclear accumulation of myogenin. Moreover, we demonstrate that the LIM domain of smALP is essential for the nuclear translocation of the protein.

  8. Nuclear translocation of doublecortin-like protein kinase and phosphorylation of a transcription factor JDP2

    SciTech Connect

    Nagamine, Tadashi; Nomada, Shohgo; Onouchi, Takashi; Kameshita, Isamu; Sueyoshi, Noriyuki

    2014-03-28

    Highlights: • Doublecortin-like protein kinase (DCLK) is a microtubule-associated protein kinase. • In living cells, DCLK was cleaved into two functional fragments. • zDCLK(kinase) was translocated into the nucleus by osmotic stresses. • Jun dimerization protein 2 (JDP2) was identified as zDCLK(kinase)-binding protein. • JDP2 was efficiently phosphorylated by zDCLK(kinase) only when histone was present. - Abstract: Doublecortin-like protein kinase (DCLK) is a microtubule-associated protein kinase predominantly expressed in brain. In a previous paper, we reported that zebrafish DCLK2 (zDCLK) was cleaved into two functional fragments; the N-terminal zDCLK(DC + SP) with microtubule-binding activity and the C-terminal zDCLK(kinase) with a Ser/Thr protein kinase activity. In this study, we demonstrated that zDCLK(kinase) was widely distributed in the cytoplasm and translocated into the nucleus when the cells were treated under hyperosmotic conditions with NaCl or mannitol. By two-hybrid screening using the C-terminal domain of DCLK, Jun dimerization protein 2 (JDP2), a nuclear transcription factor, was identified as zDCLK(kinase)-binding protein. Furthermore, JDP2 served as an efficient substrate for zDCLK(kinase) only when histone was present. These results suggest that the kinase fragment of DCLK is translocated into the nucleus upon hyperosmotic stresses and that the kinase efficiently phosphorylates JDP2, a possible target in the nucleus, with the aid of histones.

  9. Isolation of a human nuclear complex that may promote oncogenic translocations

    SciTech Connect

    Eisen, A.

    1994-09-01

    Specific chromosomal translocations can lead to the activation of oncogenes and the formation of characteristic malignancies. The DNA sequences flanking translocation break points may be recombinogenic and promote these genomic rearrangements. Indeed, the t(14;18) seen in most human follicular lymphomas occurs adjacent to octanucleotides that resemble the recombinogenic Chi (5{prime}-GCTGGTGG-3{prime}) sequence. These Chi-like sequences are likely to be targets for nuclear proteins that cleave superhelical chromosomal DNA and re-ligate non-homologous chromosome ends. A complex of human nuclear proteins with these properties has now been isolated and the component proteins identified. The complex consists of three human DNA repair proteins. The three proteins co-purify from HeLa nuclear extracts in a single step by Chi-sequence DNA affinity chromatography. The Chi-binding protein was identified as the DNA repair enzyme poly (ADP-ribose) polymerase (PARP). Sequence specificity is a newly described property for this DNA-binding protein. Furthermore, the DNA-dependent enzymatic activity of PARP is enhanced by the presence of a Chi sequence. PARP associates with a stable heterodimer consisting of DNA ligase I and its putative inhibitor. The complex leads to rearrangements of DNA in the presence of an exact Chi sequence. Together, these proteins will cleave and re-ligate superhelical plasmid DNA with an exact Chi sequence to form end-to-end linear multimers. The concerted activities of this complex may account for the t(14;18) chromosomal rearrangement adjacent to Chi-like sequences frequently seen in various tumors.

  10. Oncogenic conversion of a novel orphan nuclear receptor by chromosome translocation.

    PubMed

    Labelle, Y; Zucman, J; Stenman, G; Kindblom, L G; Knight, J; Turc-Carel, C; Dockhorn-Dworniczak, B; Mandahl, N; Desmaze, C; Peter, M

    1995-12-01

    A recurrent t(9;22) (q22;q12) chromosome translocation has been described in extraskeletal myxoid chondrosarcoma (EMC). Fluorescent in situ hybridization experiments performed on one EMC tumour indicated that the chromosome 22 breakpoint occurred in the EWS gene. Northern blot analysis revealed an aberrant EWS transcript which is cloned by a modified RT-PCR procedure. This transcript consists of an in-frame fusion of the 5' end of EWS to a previously unidentified gene, which was named TEC. This fusion transcript was detected in six of eight EMC studied, and three different junction types between the two genes were found. In all junction types, the putative translation product contained the amino-terminal transactivation domain of EWS linked to the entire TEC protein. Homology analysis showed that the predicted TEC protein contains a DNA-binding domain characteristic of nuclear receptors. The highest identity scores were observed with the NURR1 family of orphan nuclear receptors. These receptors are involved in the control of cell proliferation and differentiation by modulating the response to growth factors and retinoic acid. This work provides, after the PML/RAR alpha gene fusion, the second example of the oncogenic conversion of a nuclear receptor and the first example involving the orphan subfamily. Analysis of the disturbance induced by the EWS/TEc protein in the nuclear receptor network and their target genes may lead to new approaches for EMC treatment. PMID:8634690

  11. Sperm Nuclear Architecture Is Locally Modified in Presence of a Robertsonian Translocation t(13;17)

    PubMed Central

    Acloque, Hervé; Bonnet-Garnier, Amélie; Mompart, Florence; Pinton, Alain; Yerle-Bouissou, Martine

    2013-01-01

    In mammals, the non-random organization of the sperm nucleus supports an early function during embryonic development. Altering this organization may interfere with the zygote development and reduce fertility or prolificity. Thus, rare studies on sperm cells from infertile patients described an altered nuclear organization that may be a cause or a consequence of their respective pathologies. Thereby, chromosomal rearrangements and aneuploidy can be studied not only for their adverse effects on production of normal/balanced gametes at meiosis but also for their possible impact on sperm nuclear architecture and the epigenetic consequences of altered chromosome positioning. We decided to compare the global architecture of sperm nuclei from boars, either with a normal chromosome composition or with a Robertsonian translocation involving chromosomes 13 and 17. We hypothesized that the fusion between these chromosomes may change their spatial organization and we examined to what extend it could also modify the global sperm nuclear architecture. Analysis of telomeres, centromeres and gonosomes repartition does not support a global nuclear disorganization. But specific analysis of chromosomes 13 and 17 territories highlights an influence of chromosome 17 for the positioning of the fused chromosomes within the nucleus. We also observed a specific clustering of centromeres depending of the chromosome subtypes. Altogether our results showed that chromosome fusion does not significantly alter sperm nucleus architecture but suggest that centromere remodelling after chromosome fusion locally impacts chromosome positioning. PMID:24205066

  12. Sulfur mustard induced nuclear translocation of glyceraldehyde-3-phosphate-dehydrogenase (GAPDH).

    PubMed

    Steinritz, Dirk; Weber, Jana; Balszuweit, Frank; Thiermann, Horst; Schmidt, Annette

    2013-12-01

    Sulfur Mustard (SM) is a vesicant chemical warfare agent, which is acutely toxic to a variety of organ systems including skin, eyes, respiratory system and bone marrow. The underlying molecular pathomechanism was mainly attributed to the alkylating properties of SM. However, recent studies have revealed that cellular responses to SM exposure are of more complex nature and include increased protein expression and protein modifications that can be used as biomarkers. In order to confirm already known biomarkers, to detect potential new ones and to further elucidate the pathomechanism of SM, we conducted large-scale proteomic experiments based on a human keratinocyte cell line (HaCaT) exposed to SM. Surprisingly, our analysis identified glyceraldehyde-3-phosphate-dehydrogenase (GAPDH) as one of the up-regulated proteins after exposure of HaCaT cells to SM. In this paper we demonstrate the sulfur mustard induced nuclear translocation of GAPDH in HaCaT cells by 2D gel-electrophoresis (2D GE), immunocytochemistry (ICC), Western Blot (WB) and a combination thereof. 2D GE in combination with MALDI-TOF MS/MS analysis identified GAPDH as an up-regulated protein after SM exposure. Immunocytochemistry revealed a distinct nuclear translocation of GAPDH after exposure to 300μM SM. This finding was confirmed by fractionated WB analysis. 2D GE and subsequent immunoblot staining of GAPDH demonstrated two different spot locations of GAPH (pI 7.0 and pI 8.5) that are related to cytosolic or nuclear GAPDH respectively. After exposure to 300μM SM a significant increase of nuclear GAPDH at pI 8.5 occurred. Nuclear GAPDH has been associated with apoptosis, detection of structural DNA alterations, DNA repair and regulation of genomic integrity and telomere structure. The results of our study add new aspects to the pathophysiology of sulfur mustard toxicity, yet further studies will be necessary to reveal the specific function of nuclear GAPDH in the pathomechanism of sulfur mustard

  13. Nuclear translocation of type I transforming growth factor β receptor confers a novel function in RNA processing.

    PubMed

    Chandra, Manasa; Zang, Shengbing; Li, Haiqing; Zimmerman, Lisa J; Champer, Jackson; Tsuyada, Akihiro; Chow, Amy; Zhou, Weiying; Yu, Yang; Gao, Harry; Ren, Xiubao; Lin, Ren-Jang; Wang, Shizhen Emily

    2012-06-01

    Signaling of transforming growth factor β (TGF-β) is redirected in cancer to promote malignancy, but how TGF-β function is altered in a transformed cell is not fully understood. We investigated TGF-β signaling by profiling proteins that differentially bound to type I TGF-β receptor (TβRI) in nontransformed, HER2-transformed, and HER2-negative breast cancer cells using immunoprecipitation followed by protein identification. Interestingly, several nuclear proteins implicated in posttranscriptional RNA processing were uniquely identified in the TβRI coprecipitates from HER2-transformed cells. Ligand-inducible nuclear translocation of TβRI was observed only in transformed cells, and the translocation required importin β1, nucleolin, and Smad2/3. This trafficking was dependent on the high Ran GTPase activity resulting from oncogenic transformation. In the nucleus, TβRI associated with purine-rich RNA sequences in a synergistic manner with the RNA-binding factor hnRNP A1. We further found that nuclear translocation of TβRI specifically induced epidermal growth factor receptor (EGFR) transcript isoform c, which encodes a soluble EGFR protein, through alternative splicing or 3'-end processing. Our study confirms a cancer-specific nuclear translocation of TβRI and demonstrates its potential function in regulating nuclear RNA processing, as well as a novel gain-of-function mechanism of TGF-β signaling in cancer. PMID:22473997

  14. Nuclear translocation of IQGAP1 protein upon exposure to puromycin aminonucleoside in cultured human podocytes: ERK pathway involvement.

    PubMed

    Rigothier, Claire; Saleem, Moin Ahson; Bourget, Chantal; Mathieson, Peter William; Combe, Christian; Welsh, Gavin Iain

    2016-10-01

    IQGAP1, a protein that links the actin cytoskeleton to slit diaphragm proteins, is involved in podocyte motility and permeability. Its regulation in glomerular disease is not known. We have exposed human podocytes to puromycin aminonucleoside (PAN), an inducer of nephrotic syndrome in rats, and studied the effects on IQGAP1 biology and function. In human podocytes exposed to PAN, a nuclear translocation of IQGAP1 was observed by immunocytolocalization and confirmed by Western blot after selective nuclear/cytoplasmic extraction. In contrast to IQGAP1, IQGAP2 expression remained cytoplasmic. IQGAP1 nuclear translocation was associated with a significant decrease in its interaction with nephrin and podocalyxin. Activation of the ERK pathway was observed in PAN treated podocytes with a preponderant nuclear localization of the phosphorylated form of ERK (P-ERK). The interaction between IQGAP1 and P-ERK increased upon podocyte exposure to PAN. Inhibitors of ERK pathway activation blocked IQGAP1 nuclear translocation (p<0.02). Chromatin interaction protein assays demonstrated an interaction of IQGAP1 with chromatin and with Histone H3, which increased in response to PAN. In summary, PAN induces the ERK dependent translocation of IQGAP1 into the nuclei in human podocytes which leads to the interaction of IQGAP1 with chromatin and Histone H3, and decreased interactions between IQGAP1 and slit-diaphragm proteins. Therefore, IQGAP1 may have a role in podocyte gene regulation in glomerular disease. PMID:27377965

  15. Effect of charge, hydrophobicity, and sequence of nucleoporins on the translocation of model particles through the nuclear pore complex.

    PubMed

    Tagliazucchi, Mario; Peleg, Orit; Kröger, Martin; Rabin, Yitzhak; Szleifer, Igal

    2013-02-26

    The molecular structure of the yeast nuclear pore complex (NPC) and the translocation of model particles have been studied with a molecular theory that accounts for the geometry of the pore and the sequence and anchoring position of the unfolded domains of the nucleoporin proteins (the FG-Nups), which control selective transport through the pore. The theory explicitly models the electrostatic, hydrophobic, steric, conformational, and acid-base properties of the FG-Nups. The electrostatic potential within the pore, which arises from the specific charge distribution of the FG-Nups, is predicted to be negative close to pore walls and positive along the pore axis. The positive electrostatic potential facilitates the translocation of negatively charged particles, and the free energy barrier for translocation decreases for increasing particle hydrophobicity. These results agree with the experimental observation that transport receptors that form complexes with hydrophilic/neutral or positively charged proteins to transport them through the NPC are both hydrophobic and strongly negatively charged. The molecular theory shows that the effects of electrostatic and hydrophobic interactions on the translocating potential are cooperative and nonequivalent due to the interaction-dependent reorganization of the FG-Nups in the presence of the translocating particle. The combination of electrostatic and hydrophobic interactions can give rise to complex translocation potentials displaying a combination of wells and barriers, in contrast to the simple barrier potential observed for a hydrophilic/neutral translocating particle. This work demonstrates the importance of explicitly considering the amino acid sequence and hydrophobic, electrostatic, and steric interactions in understanding the translocation through the NPC. PMID:23404701

  16. HE4 expression is associated with hormonal elements and mediated by importin-dependent nuclear translocation

    PubMed Central

    Lokich, Elizabeth; Singh, Rakesh K.; Han, Alex; Romano, Nicole; Yano, Naohiro; Kim, Kyukwang; Moore, Richard G.

    2014-01-01

    Antiestrogens including tamoxifen and fulvestrant have been evaluated as chemotherapeutics for ovarian cancer, particularly in cases of platinum resistant disease. Human epididymis protein 4 (HE4) is highly overexpressed in women with ovarian cancer and overexpression of HE4 has been found to correlate with platinum resistance. However, the role of HE4 in modulating responses to hormones and hormonal therapy has not been characterized in ovarian cancer. Here we demonstrate that 17β-estradiol, tamoxifen, and fulvestrant induce nuclear and nucleolar translocation of HE4 and that HE4 overexpression induces resistance to antiestrogens. HE4 was found to interact with estrogen receptor-α (ER-α), and HE4 overexpression resulted in ER-α downregulation in vitro and in human ovarian cancers. We identified a novel role for importin-4 in governing the nuclear transport of HE4. Treatment with ivermectin, an importin inhibitor, blocked HE4/importin-4 nuclear accumulation and sensitized HE4-overexpressing ovarian cancer cells to fulvestrant and tamoxifen. PMID:24975515

  17. Cyclic AMP regulates the expression and nuclear translocation of RFC40 in MCF7 cells

    SciTech Connect

    Gupte, Rakhee S. . E-mail: rakhee_gupte@nymc.edu; Sampson, Valerie; Traganos, Frank; Darzynkiewicz, Zbigniew; Lee, Marietta Y.W.T.

    2006-04-01

    We have previously shown that the regulatory subunit of PKA, RI{alpha}, functions as a nuclear transport protein for the second subunit of the replication factor C complex, RFC40, and that this transport appears to be crucial for cell cycle progression from G1 to S phase. In this study, we found that N {sup 6}-monobutyryl cAMP significantly up-regulates the expression of RFC40 mRNA by 1.8-fold and its endogenous protein by 2.3-fold with a subsequent increase in the RI{alpha}-RFC40 complex formation by 3.2-fold. Additionally, the nuclear to cytoplasmic ratio of RFC40 increased by 26% followed by a parallel increase in the percentage of S phase cells by 33%. However, there was reduction in the percentage of G1 cells by 16% and G2/M cells by 43% with a concurrent accumulation of cells in S phase. Interestingly, the higher percentage of S phase cells did not correlate with a parallel increase in DNA replication. Moreover, although cAMP did not affect the expression of the other RFC subunits, there was a significant decrease in the RFC40-37 complex formation by 81.3%, substantiating the decrease in DNA replication rate. Taken together, these findings suggest that cAMP functions as an upstream modulator that regulates the expression and nuclear translocation of RFC40.

  18. Synaptic Vesicle Endocytosis

    PubMed Central

    Saheki, Yasunori; De Camilli, Pietro

    2012-01-01

    Neurons can sustain high rates of synaptic transmission without exhausting their supply of synaptic vesicles. This property relies on a highly efficient local endocytic recycling of synaptic vesicle membranes, which can be reused for hundreds, possibly thousands, of exo-endocytic cycles. Morphological, physiological, molecular, and genetic studies over the last four decades have provided insight into the membrane traffic reactions that govern this recycling and its regulation. These studies have shown that synaptic vesicle endocytosis capitalizes on fundamental and general endocytic mechanisms but also involves neuron-specific adaptations of such mechanisms. Thus, investigations of these processes have advanced not only the field of synaptic transmission but also, more generally, the field of endocytosis. This article summarizes current information on synaptic vesicle endocytosis with an emphasis on the underlying molecular mechanisms and with a special focus on clathrin-mediated endocytosis, the predominant pathway of synaptic vesicle protein internalization. PMID:22763746

  19. ATM-mediated PTEN phosphorylation promotes PTEN nuclear translocation and autophagy in response to DNA-damaging agents in cancer cells.

    PubMed

    Chen, Jing-Hong; Zhang, Peng; Chen, Wen-Dan; Li, Dan-Dan; Wu, Xiao-Qi; Deng, Rong; Jiao, Lin; Li, Xuan; Ji, Jiao; Feng, Gong-Kan; Zeng, Yi-Xin; Jiang, Jian-Wei; Zhu, Xiao-Feng

    2015-01-01

    PTEN (phosphatase and tensin homolog), a tumor suppressor frequently mutated in human cancer, has various cytoplasmic and nuclear functions. PTEN translocates to the nucleus from the cytoplasm in response to oxidative stress. However, the mechanism and function of the translocation are not completely understood. In this study, topotecan (TPT), a topoisomerase I inhibitor, and cisplatin (CDDP) were employed to induce DNA damage. The results indicate that TPT or CDDP activates ATM (ATM serine/threonine kinase), which phosphorylates PTEN at serine 113 and further regulates PTEN nuclear translocation in A549 and HeLa cells. After nuclear translocation, PTEN induces autophagy, in association with the activation of the p-JUN-SESN2/AMPK pathway, in response to TPT. These results identify PTEN phosphorylation by ATM as essential for PTEN nuclear translocation and the subsequent induction of autophagy in response to DNA damage. PMID:25701194

  20. Methylseleninic acid promotes antitumour effects via nuclear FOXO3a translocation through Akt inhibition

    PubMed Central

    Tarrado-Castellarnau, Míriam; Cortés, Roldán; Zanuy, Miriam; Tarragó-Celada, Josep; Polat, Ibrahim H.; Hill, Richard; Fan, Teresa W.; Link, Wolfgang; Cascante, Marta

    2016-01-01

    Selenium supplement has been shown in clinical trials to reduce the risk of different cancers including lung carcinoma. Previous studies reported that the antiproliferative and pro-apoptotic activities of methylseleninic acid (MSA) in cancer cells could be mediated by inhibition of the PI3K pathway. A better understanding of the downstream cellular targets of MSA will provide information on its mechanism of action and will help to optimise its use in combination therapies with PI3K inhibitors. For this study, the effects of MSA on viability, cell cycle, metabolism, apoptosis, protein and mRNA expression, and Reactive Oxygen Species production were analysed in A549 cells. FOXO3a subcellular localisation was examined in A549 cells and in stably transfected human osteosarcoma U2foxRELOC cells. Our results demonstrate that MSA induces FOXO3a nuclear translocation in A549 cells and in U2OS cells that stably express GFP-FOXO3a. Interestingly, sodium selenite, another selenium compound, did not induce any significant effects on FOXO3a translocation despite inducing apoptosis. Single strand break of DNA, disruption of tumour cell metabolic adaptations, decrease in ROS production, and cell cycle arrest in G1 accompanied by induction of apoptosis are late events occurring after 24 h of MSA treatment in A549 cells. Our findings suggest that FOXO3a is a relevant mediator of the antiproliferative effects of MSA. This new evidence on the mechanistic action of MSA can open new avenues in exploiting its antitumour properties and in the optimal design of novel combination therapies. We present MSA as a promising chemotherapeutic agent with synergistic antiproliferative effects with cisplatin. PMID:26375988

  1. The phosphoenolpyruvate/phosphate translocator is required for phenolic metabolism, palisade cell development, and plastid-dependent nuclear gene expression.

    PubMed Central

    Streatfield, S J; Weber, A; Kinsman, E A; Häusler, R E; Li, J; Post-Beittenmiller, D; Kaiser, W M; Pyke, K A; Flügge, U I; Chory, J

    1999-01-01

    The Arabidopsis chlorophyll a/b binding protein (CAB) gene underexpressed 1 (cue1) mutant underexpresses light-regulated nuclear genes encoding chloroplast-localized proteins. cue1 also exhibits mesophyll-specific chloroplast and cellular defects, resulting in reticulate leaves. Both the gene underexpression and the leaf cell morphology phenotypes are dependent on light intensity. In this study, we determine that CUE1 encodes the plastid inner envelope phosphoenolpyruvate/phosphate translocator (PPT) and define amino acid residues that are critical for translocator function. The biosynthesis of aromatics is compromised in cue1, and the reticulate phenotype can be rescued by feeding aromatic amino acids. Determining that CUE1 encodes PPT indicates the in vivo role of the translocator in metabolic partitioning and reveals a mesophyll cell-specific requirement for the translocator in Arabidopsis leaves. The nuclear gene expression defects in cue1 suggest that a light intensity-dependent interorganellar signal is modulated through metabolites dependent on a plastid supply of phosphoenolpyruvate. PMID:10488230

  2. Endocytosis of Nanomedicines

    PubMed Central

    Sahay, Gaurav; Alakhova, Daria Y; Kabanov, Alexander V

    2010-01-01

    Novel nanomaterials are being developed to improve diagnosis and therapy of diseases through effective delivery of drugs, biopharmaceutical molecules and imaging agents to target cells in disease sites. Such diagnostic and therapeutic nanomaterials, also termed “nanomedicines”, often require site-specific cellular entry to deliver their payload to subcellular locations hidden beneath cell membranes. Nanomedicines can employ multiple pathways for cellular entry, which are currently insufficiently understood. This review, first, classifies various mechanisms of endocytosis available to nanomedicines including phagocytosis and pinocytosis through clathrin-dependent and clathrin-independent pathways. Second, it describes the current experimental tools to study endocytosis of nanomedicines. Third, it provides specific examples from recent literature and our own work on endocytosis of nanomedicines. Finally, these examples are used to ascertain 1) the role of particle size, shape, material composition, surface chemistry and/or charge for utilization of a selected pathway(s); 2) the effect of cell type on the processing of nanomedicines; 3) the effect of nanomaterial-cell interactions on the processes of endocytosis, the fate of the nanomedicines and the resulting cellular responses. This review will be useful to a diverse audience of students and scientists who are interested in understanding endocytosis of nanomedicines. PMID:20226220

  3. p52-independent nuclear translocation of RelB promotes LPS-induced attachment

    SciTech Connect

    Saito, T.; Sasaki, C.Y.; Rezanka, L.J.; Ghosh, P.; Longo, D.L.

    2010-01-01

    The NF-{kappa}B signaling pathways have a critical role in the development and progression of various cancers. In this study, we demonstrated that the small cell lung cancer cell line (SCLC) H69 expressed a unique NF-{kappa}B profile as compared to other cancer cell lines. The p105/p50, p100/p52, c-Rel, and RelB protein and mRNA transcripts were absent in H69 cells but these cells expressed RelA/p65. The activation of H69 cells by lipopolysaccharide (LPS) resulted in the induction of RelB and p100 expression. The treatment also induced the nuclear translocation of RelB without the processing of p100 to p52. Furthermore, LPS-induced {beta}1 integrin expression and cellular attachment through an NF-{kappa}B-dependent mechanism. Blocking RelB expression prevented the increase in the expression of {beta}1 integrin and the attachment of H69. Taken together, the results suggest that RelB was responsible for the LPS-mediated attachment and may play an important role in the progression of some cancers.

  4. Location, location, location: FoxM1 mediates β-catenin nuclear translocation and promotes glioma tumorigenesis.

    PubMed

    Bowman, Angela; Nusse, Roel

    2011-10-18

    Genetic alterations in the Wnt/β-catenin/TCF-signaling pathway are commonly found in human tumors, but not in glioblastomas. In this issue of Cancer Cell, Zhang et al. report that FoxM1 mediates β-catenin nuclear translocation in glioblastoma, suggesting a novel mechanism for glioblastoma progression in the absence of conventional Wnt/β-catenin pathway activation. PMID:22014565

  5. Over expression of hyaluronan promotes progression of HCC via CD44-mediated pyruvate kinase M2 nuclear translocation

    PubMed Central

    Li, Jing-Huan; Wang, Ying-Cong; Qin, Cheng-Dong; Yao, Rong-Rong; Zhang, Rui; Wang, Yan; Xie, Xiao-Ying; Zhang, Lan; Wang, Yan-Hong; Ren, Zheng-Gang

    2016-01-01

    Hyaluronan is expressed in hepatocellular carcinoma (HCC) as HCC generally arises from a cirrhotic liver in which excessive production and accumulation of HA leads to developing cirrhosis. Though it has been suggested HA is involved in progression of HCC, the mechanisms underlying the connection between HA and HCC progression are unclear. Since increased aerobic glycolysis is a metabolic trait of malignant cells and HA-CD44 can modulate glucose metabolism, we aim to investigate the roles of PKM2, a key enzyme in glucose metabolism, in the HA-CD44 axis facilitated the progress of HCC. We shown PKM2 was required for HA-promoted HCC progression, which was not modulated by PKM2 kinase activity but by nuclear translocation of PKM2. PKM2 translocation was Erk (Thr202/Tyr204) phosphorylation dependent, which functioned at the downstream of HA-CD44 binding. Furthermore, elevated HA expression significantly correlated with PKM2 nuclear location and was an independent factors predicting poor HCC prognosis. In conclusions PKM2 nuclear translocation is required for mediating the described HA biological effects on HCC progression and our results imply that inhibition of HA may have therapeutic value in treating HCC. PMID:27186420

  6. MST1 activation by curcumin mediates JNK activation, Foxo3a nuclear translocation and apoptosis in melanoma cells

    SciTech Connect

    Yu, Teng; Ji, Jiang; Guo, Yong-li

    2013-11-08

    Highlights: •Curcumin activates MST1 in melanoma cells. •MST1 mediates curcumin-induced apoptosis of melanoma cells. •ROS production is involved in curcumin-induced MST1 activation. •MST1 mediates curcumin-induced JNK activation in melanoma cells. •MST1 mediates curcumin-induced Foxo3a nuclear translocation and Bim expression. -- Abstract: Different groups including ours have shown that curcumin induces melanoma cell apoptosis, here we focused the role of mammalian Sterile 20-like kinase 1 (MST1) in it. We observed that curcumin activated MST1-dependent apoptosis in cultured melanoma cells. MST1 silencing by RNA interference (RNAi) suppressed curcumin-induced cell apoptosis, while MST1 over-expressing increased curcumin sensitivity. Meanwhile, curcumin induced reactive oxygen species (ROS) production in melanoma cells, and the ROS scavenger, N-acetyl-cysteine (NAC), almost blocked MST1 activation to suggest that ROS might be required for MST1 activation by curcumin. c-Jun N-terminal protein kinase (JNK) activation by curcumin was dependent on MST1, since MST1 inhibition by RNAi or NAC largely inhibited curcumin-induced JNK activation. Further, curcumin induced Foxo3 nuclear translocation and Bim-1 (Foxo3 target gene) expression in melanoma cells, such an effect by curcumin was inhibited by MST1 RNAi. In conclusion, we suggested that MST1 activation by curcumin mediates JNK activation, Foxo3a nuclear translocation and apoptosis in melanoma cells.

  7. Nuclear-translocated endostatin downregulates hypoxia inducible factor-1α activation through interfering with Zn(II) homeostasis.

    PubMed

    Guo, Lifang; Chen, Yang; He, Ting; Qi, Feifei; Liu, Guanghua; Fu, Yan; Rao, Chunming; Wang, Junzhi; Luo, Yongzhang

    2015-05-01

    Hypoxia‑inducible factor‑1α (HIF‑1α) is key in tumor progression and aggressiveness as it regulates a series of genes involved in angiogenesis and anaerobic metabolism. Previous studies have shown that the transcriptional levels of HIF‑1α may be downregulated by endostatin. However, the molecular mechanism by which endostatin represses HIF‑1α expression remains unknown. The current study investigated the mechanism by which nuclear‑translocated endostatin suppresses HIF‑1α activation by disrupting Zn(II) homeostasis. Endostatin was observed to downregulate HIF‑1α expression at mRNA and protein levels. Blockage of endostatin nuclear translocation by RNA interference of importin α1/β1 or ectopic expression of NLS‑deficient mutant nucleolin in human umbilical vein endothelial cells co‑transfected with small interfering (si)‑nucleolin siRNA compromises endostatin‑reduced HIF‑1α expression. Nuclear‑translocated apo‑endostatin, but not holo‑endostatin, significantly disrupts the interaction between CBP/p300 and HIF‑1α by disturbing Zn(II) homeostasis, which leads to the transcriptional inactivation of HIF‑1α. The results reveal mechanistic insights into the method by which nuclear‑translocated endostatin downregulates HIF‑1α activation and provides a novel way to investigate the function of endostatin in endothelial cells. PMID:25607980

  8. Small ubiquitin-related modifier 1 is involved in hepatocellular carcinoma progression via mediating p65 nuclear translocation

    PubMed Central

    Liu, Jun; Tao, Xiaofang; Zhang, Jin; Wang, Peng; Sha, Manqi; Ma, Yong; Geng, Xiaoping; Feng, Lijie; Shen, Yujun; Yu, Yifan; Wang, Siying; Fang, Shengyun; Shen, Yuxian

    2016-01-01

    Small ubiquitin-related modifier (SUMO) proteins participate in a post-translational modification called SUMOylation and regulate a variety of intracellular processes, such as targeting proteins for nuclear import. The nuclear transport of p65 results in the activation of NF-κB, and p65 contains several SUMO interacting motifs (SIMs). However, the relationship between p65 and SUMO1 in hepatocellular carcinoma (HCC) remains unclear. In this study, we demonstrated the potential roles of SUMO1 in HCC via the regulation of p65 subcellular localization. We found that either SUMO1- or p65-positive immunoreactivity was remarkably increased in the nuclei of tumor tissues in HCC patients compared with non-tumor tissues, and further analysis suggested a correlation between SUMO1- and nuclear p65-positive immunoreactivities (R = 0.851, P = 0.002). We also verified the interaction between p65 and SUMO1 in HCC by co-immunoprecipitation. TNF-α and hypoxia increased SUMO1 protein levels and enhanced SUMO1-modified p65 SUMOylation. Moreover, the knockdown of SUMO1 decreased p65 nuclear translocation and inhibited NF-κB transcriptional activity. Further the results of this study revealed that the knockdown of SUMO1 suppressed the proliferation and migration of hepatoma cells. These results suggest that SUMO1 contributes to HCC progression by promoting p65 nuclear translocation and regulating NF-κB activity. PMID:26993772

  9. Hepatic microtubule acetylation and stability induced by chronic alcohol exposure impair nuclear translocation of STAT3 and STAT5B, but not Smad2/3.

    PubMed

    Fernandez, David J; Tuma, Dean J; Tuma, Pamela L

    2012-12-15

    Although alcoholic liver disease is clinically well described, the molecular basis for alcohol-induced hepatotoxicity is not well understood. Previously, we found that alcohol exposure led to increased microtubule acetylation and stability in polarized, hepatic WIF-B cells and in livers from ethanol-fed rats. Because microtubules are known to regulate transcription factor nuclear translocation and dynamic microtubules are required for translocation of at least a subset of these factors, we examined whether alcohol-induced microtubule acetylation and stability impair nuclear translocation. We examined nuclear delivery of factors representing the two mechanisms by which microtubules regulate translocation. To represent factors that undergo directed delivery, we examined growth hormone-induced STAT5B translocation and IL-6-induced STAT3 translocation. To represent factors that are sequestered in the cytoplasm by microtubule attachment until ligand activation, we examined transforming growth factor-β-induced Smad2/3 translocation. We found that ethanol exposure selectively impaired translocation of the STATs, but not Smad2/3. STAT5B delivery was decreased to a similar extent by addition of taxol (a microtubule-stabilizing drug) or trichostatin A (a deacetylase inhibitor), agents that promote microtubule acetylation in the absence of alcohol. Thus the alcohol-induced impairment of STAT nuclear translocation can be explained by increased microtubule acetylation and stability. Only ethanol treatment impaired STAT5B activation, indicating that microtubules are not important for its activation by Jak2. Furthermore, nuclear exit was not changed in treated cells, indicating that this process is also independent of microtubule acetylation and stability. Together, these results raise the exciting possibility that deacetylase agonists may be effective therapeutics for the treatment of alcoholic liver disease. PMID:23064763

  10. Arsenic Trioxide Activate Transcription of Heme Oxygenase-1 by Promoting Nuclear Translocation of NFE2L2

    PubMed Central

    Yue, Zhen; Zhong, Lingzhi; Mou, Yan; Wang, Xiaotong; Zhang, Haiying; Wang, Yang; Xia, Jianxin; Li, Ronggui; Wang, Zonggui

    2015-01-01

    In a previous study, we found that induced expression of Heme Oxygenase-1 (HO-1) is responsible for the resistance of human osteosarcoma MG63 cells to the chemotherapeutic agent arsenic trioxide (ATO). The present study was aimed at investigating the molecular mechanisms underlying the induction of HO-1 that occurs after exposure of MG63 cells to ATO. First, using RT-QPCT and Western-blot, we found that ATO strongly induced the expression of heme oxygenase-1 (HO-1) in these human osteosarcoma cells. Then by analyzing HO-1 mRNA of MG63 cells exposed to ATO in the presence and absence of a transcription inhibitor Actinomycin-D (Act-D), we demonstrated that ATO activates HO-1 expression in MG63 cells by regulating the transcription of the gene. Finally, through the analysis of the NFE2L2 protein levels among the total cellular and nuclear proteins by Western-blot and Immunocytochemical staning, we determined that ATO enhanced the nuclear translocation of nuclear factor erythroid 2-like 2 (NFE2L2), also known as Nrf2. From these results we have concluded that transcription activation of HO-1 resulting from the nuclear translocation of NFE2L2 is the underlying molecular mechanism for its high induction, which, in turn, is responsible for the resistance of human osteosarcoma cells to ATO treatment. PMID:26283888

  11. Proper Level of Cytosolic Disabled-1, Which Is Regulated by Dual Nuclear Translocation Pathways, Is Important for Cortical Neuronal Migration.

    PubMed

    Honda, Takao; Nakajima, Kazunori

    2016-07-01

    Disabled-1 (Dab1) is an essential intracellular protein in the Reelin pathway. It has a nuclear localization signal (NLS; hereafter referred to as "NLS1") and 2 nuclear export signals, and shuttles between the nucleus and the cytoplasm. In this study, we found that Dab1 has an additional unidentified NLS, and that the Dab1 NLS1 mutant could translocate to the nucleus in an unconventional ATP/temperature-dependent and cytoplasmic factor/RanGTP gradient-independent manner. Additional mutations in the NLS1 mutant revealed that K(67) and K(69) are important for the nuclear transport. Furthermore, an excess of the intracellular domain of the Reelin receptors inhibited the nuclear translocation of Dab1. An in utero electroporation study showed that a large amount of Dab1 in the cytoplasm in migrating neurons inhibited the migration, and that forced transport of Dab1 into the nucleus attenuated this inhibitory effect. In addition, rescue experiments using yotari, an autosomal recessive mutant of dab1, revealed that cells expressing Dab1 NLS1 mutant tend to distribute at more superficial positions than those expressing wild-type Dab1. Taken together, these findings suggest that Dab1 has at least 2 NLSs, and that the regulation of the subcellular localization of Dab1 is important for the proper migration of excitatory neurons. PMID:26209842

  12. Simulated microgravity inhibits osteogenic differentiation of mesenchymal stem cells via depolymerizing F-actin to impede TAZ nuclear translocation

    PubMed Central

    Chen, Zhe; Luo, Qing; Lin, Chuanchuan; Kuang, Dongdong; Song, Guanbin

    2016-01-01

    Microgravity induces observed bone loss in space flight, and reduced osteogenesis of bone mesenchymal stem cells (BMSCs) partly contributes to this phenomenon. Abnormal regulation or functioning of the actin cytoskeleton induced by microgravity may cause the inhibited osteogenesis of BMSCs, but the underlying mechanism remains obscure. In this study, we demonstrated that actin cytoskeletal changes regulate nuclear aggregation of the transcriptional coactivator with PDZ-binding motif (TAZ), which is indispensable for osteogenesis of bone mesenchymal stem cells (BMSCs). Moreover, we utilized a clinostat to model simulated microgravity (SMG) and demonstrated that SMG obviously depolymerized F-actin and hindered TAZ nuclear translocation. Interestingly, stabilizing the actin cytoskeleton induced by Jasplakinolide (Jasp) significantly rescued TAZ nuclear translocation and recovered the osteogenic differentiation of BMSCs in SMG, independently of large tumor suppressor 1(LATS1, an upstream kinase of TAZ). Furthermore, lysophosphatidic acid (LPA) also significantly recovered the osteogenic differentiation of BMSCs in SMG through the F-actin-TAZ pathway. Taken together, we propose that the depolymerized actin cytoskeleton inhibits osteogenic differentiation of BMSCs through impeding nuclear aggregation of TAZ, which provides a novel connection between F-actin cytoskeleton and osteogenesis of BMSCs and has important implications in bone loss caused by microgravity. PMID:27444891

  13. Simulated microgravity inhibits osteogenic differentiation of mesenchymal stem cells via depolymerizing F-actin to impede TAZ nuclear translocation.

    PubMed

    Chen, Zhe; Luo, Qing; Lin, Chuanchuan; Kuang, Dongdong; Song, Guanbin

    2016-01-01

    Microgravity induces observed bone loss in space flight, and reduced osteogenesis of bone mesenchymal stem cells (BMSCs) partly contributes to this phenomenon. Abnormal regulation or functioning of the actin cytoskeleton induced by microgravity may cause the inhibited osteogenesis of BMSCs, but the underlying mechanism remains obscure. In this study, we demonstrated that actin cytoskeletal changes regulate nuclear aggregation of the transcriptional coactivator with PDZ-binding motif (TAZ), which is indispensable for osteogenesis of bone mesenchymal stem cells (BMSCs). Moreover, we utilized a clinostat to model simulated microgravity (SMG) and demonstrated that SMG obviously depolymerized F-actin and hindered TAZ nuclear translocation. Interestingly, stabilizing the actin cytoskeleton induced by Jasplakinolide (Jasp) significantly rescued TAZ nuclear translocation and recovered the osteogenic differentiation of BMSCs in SMG, independently of large tumor suppressor 1(LATS1, an upstream kinase of TAZ). Furthermore, lysophosphatidic acid (LPA) also significantly recovered the osteogenic differentiation of BMSCs in SMG through the F-actin-TAZ pathway. Taken together, we propose that the depolymerized actin cytoskeleton inhibits osteogenic differentiation of BMSCs through impeding nuclear aggregation of TAZ, which provides a novel connection between F-actin cytoskeleton and osteogenesis of BMSCs and has important implications in bone loss caused by microgravity. PMID:27444891

  14. Exploiting Endocytosis for Nanomedicines

    PubMed Central

    Akinc, Akin; Battaglia, Giuseppe

    2013-01-01

    In this article, we briefly review the endocytic pathways used by cells, pointing out their defining characteristics and highlighting physical limitations that may direct the internalization of nanoparticles to a subset of these pathways. A more detailed description of these pathways is presented in the literature. We then focus on the endocytosis of nanomedicines and present how various nanomaterial parameters impact these endocytic processes. This topic is an area of active research, motivated by the recognition that an improved understanding of how nanomaterials interact at the molecular, cellular, and whole-organism level will lead to the design of better nanomedicines in the future. Next, we briefly review some of the important nanomedicines already on the market or in clinical development that serve to exemplify how endocytosis can be exploited for medical benefit. Finally, we present some key unanswered questions and remaining challenges to be addressed by the field. PMID:24186069

  15. Endocytosis in enterocytes.

    PubMed

    Zimmer, Klaus-Peter; de Laffolie, Jan; Barone, Maria Vittoria; Naim, Hassan Y

    2016-05-01

    Endocytosis is a fundamental cell biological process, which carries out essential functions in a polarized epithelial cell such as enterocytes provided with a huge surface area of the brush border membrane. Major tasks of enterocytes, which are regulated by endocytic signals, are digestion and absorption of nutrients and drugs/pharmacological agents, barrier permeability to microorganism, toxins and antigens, and transcytotic crosstalk between intestinal lumen and lamina propria cells with access to the circulation.Investigations on inflammatory bowel diseases such as food allergy, celiac disease, Crohn's disease, and ulcerative colitis focus on immune processes originating within enterocytes as antigen presenting cells. Thus the initiation of oral tolerance, that is, the binding of food antigens to MHC class II proteins, might be localized within late endosomes of enterocytes. Furthermore, the late endosomal compartment of enterocytes seems to be involved in the processing of luminal antigens during the pathogenesis of celiac disease and inflammatory bowel diseases. Investigations of inherited diseases such as microvillus inclusion disease have revealed a pathogenetic defect in the autophagocytotic and/or recycling pathway of enterocytes.Our progress in the cell and molecular biological understanding of the endocytosis and the methodical opportunities of translational research offer now new therapeutic options for patients suffering from endocytosis-related diseases of enterocytes. PMID:26993488

  16. Progesterone receptor-NFκB complex formation is required for progesterone-induced NFκB nuclear translocation and binding onto the p53 promoter.

    PubMed

    Hsu, Sung-Po; Yang, Ho-Ching; Kuo, Chun-Ting; Wen, Heng-Ching; Chen, Li-Ching; Huo, Yen-Nien; Lee, Wen-Sen

    2015-01-01

    We previously demonstrated that progesterone (P4) up-regulates p53 expression in human umbilical venous endothelial cells (HUVECs) through P4 receptor (PR) activation of extranuclear signaling pathways. However, the involvement of nuclear PR in P4-increased p53 expression is still unclear. Here, the molecular mechanism underlying PR-regulated p53 expression in HUVECs was investigated. Treatment with P4 increased nuclear factor of κ light polypeptide gene enhancer in B-cells inhibitor, α phosphorylation (IκBα and nuclear factor-κB (NFκB) nuclear translocation. Interestingly, P4 also increased PR-A, but not PR-B, nuclear translocation in HUVECs. Immunoprecipitation assay illustrated that P4 increased the formation of PR-A-NFκB complex in both the cytosol and the nucleus of HUVEC. Chromatin immunoprecipitation assay showed an interaction between PR and the NFκB binding motif on the p53 promoter. Ablation of the NFκB binding motif in the p53 promoter completely abolished P4-increased p53 promoter activity. In the absence of P4, overexpression of NFκB did not increase NFκB nuclear translocation. In contrast, treatment of NFκB-overexpressing HUVECs with P4 for only 4 hours, which is much shorter than the time (21.5 h) required for P4-induced IκBα phosphorylation, increased NFκB nuclear translocation. Blockade of PR activity abolished this effect. Taken together, these results uncover a novel role of PR for P4-induced NFκB nuclear translocation and suggest that PR-A-NFκB complex formation is required for NFκB nuclear translocation and binding onto the p53 promoter in HUVECs. Our data indicate that both nuclear and extranuclear signaling pathways of PR are involved in P4-regulated p53 expression in HUVECs. PMID:25353185

  17. Aryl hydrocarbon receptor nuclear translocator in human liver is regulated by miR-24

    SciTech Connect

    Oda, Yuki; Nakajima, Miki; Mohri, Takuya; Takamiya, Masataka; Aoki, Yasuhiro; Fukami, Tatsuki; Yokoi, Tsuyoshi

    2012-05-01

    Aryl hydrocarbon receptor nuclear translocator (ARNT) forms a heterodimer with aryl hydrocarbon receptor or hypoxia inducible factor 1α to mediate biological responses to xenobiotic exposure and hypoxia. Although the regulation mechanism of the ARNT expression is largely unknown, earlier studies reported that the human ARNT protein level was decreased by hydrogen peroxide or reactive oxygen species. These stimuli increase the miR-24 level in various human cell lines. In silico analysis predicts that some microRNAs including miR-16 and miR-23b may bind to ARNT mRNA. This background prompted us to investigate whether human ARNT is regulated by microRNAs. Overexpression of miR-24 into HuH-7 and HepG2 cells significantly decreased the ARNT protein level, but not the ARNT mRNA level, indicating translational repression. However, overexpression of miR-16 or miR-23b caused no change in the ARNT expression. The miR-24-dependent down-regulation of ARNT decreased the expression of its downstream genes such as CYP1A1 and carbonic anhydrase IX. Luciferase assay was performed to determine the element on the ARNT mRNA to which miR-24 binds. Finally, it was demonstrated that the miR-24 levels in a panel of 26 human livers were inversely correlated with the protein levels or the translational efficiency of ARNT. Taken together, we found that miR-24 negatively regulates ARNT expression in human liver, affecting the expression of its downstream genes. miR-24 would be one of the factors underlying the mechanisms by which ARNT protein is decreased by reactive oxygen species. -- Highlights: ► Overexpression of miR-24 into human cell lines decreased the ARNT protein level. ► miR-24-dependent down-regulation of ARNT affected the expression of CYP1A1 and CA IX. ► Luciferase assay was performed to identify functional MREs for miR-24 in ARNT mRNA. ► The miR-24 levels inversely correlated with the ARNT protein levels in human liver.

  18. Reciprocal translocations

    SciTech Connect

    1993-12-31

    Chapter 26, describes reciprocal translocations of chromosomes: their occurrence, breakpoints, and multiple rearrangements. In addition, phenotypes of balanced and unbalanced translocation carriers and fetal death are discussed. Examples of translocation families are given. Meiosis and genetic risk in translocation carriers is presented. Finally, sperm chromosomes in meiotic segregation analysis is mentioned. 39 refs., 3 figs., 1 tab.

  19. Regulation of cell proliferation by ERK and signal-dependent nuclear translocation of ERK is dependent on Tm5NM1-containing actin filaments

    PubMed Central

    Schevzov, Galina; Kee, Anthony J.; Wang, Bin; Sequeira, Vanessa B.; Hook, Jeff; Coombes, Jason D.; Lucas, Christine A.; Stehn, Justine R.; Musgrove, Elizabeth A.; Cretu, Alexandra; Assoian, Richard; Fath, Thomas; Hanoch, Tamar; Seger, Rony; Pleines, Irina; Kile, Benjamin T.; Hardeman, Edna C.; Gunning, Peter W.

    2015-01-01

    ERK-regulated cell proliferation requires multiple phosphorylation events catalyzed first by MEK and then by casein kinase 2 (CK2), followed by interaction with importin7 and subsequent nuclear translocation of pERK. We report that genetic manipulation of a core component of the actin filaments of cancer cells, the tropomyosin Tm5NM1, regulates the proliferation of normal cells both in vitro and in vivo. Mouse embryo fibroblasts (MEFs) lacking Tm5NM1, which have reduced proliferative capacity, are insensitive to inhibition of ERK by peptide and small-molecule inhibitors, indicating that ERK is unable to regulate proliferation of these knockout (KO) cells. Treatment of wild-type MEFs with a CK2 inhibitor to block phosphorylation of the nuclear translocation signal in pERK resulted in greatly decreased cell proliferation and a significant reduction in the nuclear translocation of pERK. In contrast, Tm5NM1 KO MEFs, which show reduced nuclear translocation of pERK, were unaffected by inhibition of CK2. This suggested that it is nuclear translocation of CK2-phosphorylated pERK that regulates cell proliferation and this capacity is absent in Tm5NM1 KO cells. Proximity ligation assays confirmed a growth factor–stimulated interaction of pERK with Tm5NM1 and that the interaction of pERK with importin7 is greatly reduced in the Tm5NM1 KO cells. PMID:25971798

  20. Cyclosporine A increases hair follicle growth by suppressing apoptosis-inducing factor nuclear translocation: a new mechanism.

    PubMed

    Lan, Shaowei; Liu, Feilin; Zhao, Guifang; Zhou, Tong; Wu, Chunling; Kou, Junna; Fan, Ruirui; Qi, Xiaojuan; Li, Yahui; Jiang, Yixu; Bai, Tingting; Li, Pengdong; Liu, Li; Hao, Deshun; Zhang, Lihong; Li, Yulin; Liu, Jin Yu

    2015-04-01

    Cyclosporine A (CsA) enhances hair growth through caspase-dependent pathways by retarding anagen-to-catagen phase transition in the hair follicle growth cycle. Whether apoptosis-inducing factor (AIF), a protein that induces caspase-independent apoptosis, can regulate the hair follicle cycle in response to CsA is currently unclear. Here, we show that the pro-hair growth properties of CsA are in part due to blockage of AIF nuclear translocation. We first isolate hair follicles from murine dorsal skin. We then used Western blot, immunohistochemistry and immunofluorescence to evaluate the expression and localization of AIF in hair follicles. We also determined whether modulation of AIF was responsible for the effects of CsA at the anagen-to-catagen transition. AIF was expressed in hair follicles during the anagen, catagen and telogen phases. There was significant nuclear translocation of AIF as hair follicles transitioned from anagen to late catagen phase; this was inhibited by CsA, likely due to reduced cyclophilin A expression and attenuated AIF release from mitochondria. However, we note that AIF translocation was not completely eliminated, which likely explains why the transition to catagen phase was severely retarded by CsA, rather than being completely inhibited. We speculate that blockade of the AIF signalling pathway is a critical event required for CsA-dependent promotion of hair growth in mice. The study of AIF-related signalling pathways may provide insight into hair diseases and suggest potential novel therapeutic strategies. PMID:25619112

  1. Regulation of nuclear translocation of nuclear factor-kappaB relA: evidence for complex dynamics at the single-cell level.

    PubMed Central

    Schooley, Kenneth; Zhu, Ping; Dower, Steven K; Qwarnström, Eva E

    2003-01-01

    We have analysed activation of nuclear factor-kappaB (NF-kappaB) in response to interleukin-1 (IL-1) in human fibroblasts by tracking intracellular distribution and levels of endogenous relA, NF-kappaB1 and inhibitor of kappaB (I-kappaB) alpha using semi-quantitative confocal microscopy. Nuclear translocation of endogenous relA correlated with I-kappaBalpha degradation during stimulation with IL-1, whereas no effects were seen on levels or localization of NF-kappaB1. During pathway activation, relA was transported up a concentration gradient, resulting in a 3-4-fold increase in nuclear levels, but without any significant decrease in cytoplasmic concentration. IL-1 stimulation caused translocation of only 20% of the relA, but resulted in degradation of up to 70% of the cytoplasmic I-kappaBalpha. RelA nuclear translocation in fibroblasts correlated with DNA-binding activity measured by electrophoretic mobility shift assay (EMSA), both with respect to kinetics and IL-1 concentration-dependence. Clonal populations of cells demonstrated a marked degree of heterogeneity in the response to IL-1. The single-cell assay revealed the presence of responder and non-responder subpopulations, with an enhanced proportion of responder cells, and prolonged responses at higher concentrations of IL-1. Comparing different cell types demonstrated that whereas HepG2 cells, as fibroblasts, showed good correlation between nuclear translocation of relA and activation of DNA binding by relA-containing dimers, EL4 thymoma cells showed no effect on relA localization, even during induction of significant levels NF-kappaB activity, as measured by EMSA. The analysis shows that stimulation by IL-1 results in transient perturbation of the NF-kappaB system, which cycles between the resting and active states with net redistribution of a minor proportion of its DNA-binding component. In addition, it demonstrates significant cell-to-cell variations, as well as cell-type-specific differences in net rel

  2. Importin-7 mediates memory consolidation through regulation of nuclear translocation of training-activated MAPK in Drosophila.

    PubMed

    Li, Qian; Zhang, Xuchen; Hu, Wantong; Liang, Xitong; Zhang, Fang; Wang, Lianzhang; Liu, Zhong-Jian; Zhong, Yi

    2016-03-15

    Translocation of signaling molecules, MAPK in particular, from the cytosol to nucleus represents a universal key element in initiating the gene program that determines memory consolidation. Translocation mechanisms and their behavioral impact, however, remain to be determined. Here, we report that a highly conserved nuclear transporter, Drosophila importin-7 (DIM-7), regulates import of training-activated MAPK for consolidation of long-term memory (LTM). We show that silencing DIM-7 functions results in impaired LTM, whereas overexpression of DIM-7 enhances LTM. This DIM-7-dependent regulation of LTM is confined to a consolidation time window and in mushroom body neurons. Image data show that bidirectional alteration in DIM-7 expression results in proportional changes in the intensity of training-activated MAPK accumulated within the nuclei of mushroom body neurons during LTM consolidation. Such DIM-7-regulated nuclear accumulation of activated MAPK is observed only in the training specified for LTM induction and determines the amplitude, but not the time course, of memory consolidation. PMID:26929354

  3. Catching Up with Ultrafast Endocytosis.

    PubMed

    Brockmann, Marisa M; Rosenmund, Christian

    2016-05-01

    The mechanism and speed of endocytosis at central synapses after neurotransmitter release is still under debate. In this issue of Neuron,Delvendahl et al. (2016) propose an ultrafast form of endocytosis after single action potentials (APs) at physiological temperature. PMID:27151632

  4. Efficient nuclear drug translocation and improved drug efficacy mediated by acidity-responsive boronate-linked dextran/cholesterol nanoassembly.

    PubMed

    Zhu, Jing-Yi; Lei, Qi; Yang, Bin; Jia, Hui-Zhen; Qiu, Wen-Xiu; Wang, Xuli; Zeng, Xuan; Zhuo, Ren-Xi; Feng, Jun; Zhang, Xian-Zheng

    2015-06-01

    The present study reported a lysosome-acidity-targeting bio-responsive nanovehicle self-assembled from dextran (Dex) and phenylboronic acid modified cholesterol (Chol-PBA), aiming at the nucleus-tropic drug delivery. The prominent advantage of this assembled nanoconstruction arose from its susceptibility to acidity-labile dissociation concurrently accompanied with the fast liberation of encapsulated drugs, leading to efficient nuclear drug translocation and consequently favorable drug efficacy. By elaborately exploiting NH4Cl pretreatment to interfere with the cellular endosomal acidification progression, this study clearly evidenced at a cellular level the strong lysosomal-acidity dependency of nuclear drug uptake efficiency, which was shown to be the main factor influencing the drug efficacy. The boronate-linked nanoassembly displayed nearly no cytotoxicity and can remain structural stability under the simulated physiological conditions including 10% serum and the normal blood sugar concentration. The cellular exposure to cholesterol was found to bate the cellular uptake of nanoassembly in a dose-dependent manner, suggesting a cholesterol-associated mechanism of the intracellular internalization. The in vivo antitumor assessment in xenograft mouse models revealed the significant superiority of DOX-loaded Dex/Chol-PBA nanoassembly over the controls including free DOX and the DOX-loaded non-sensitive Dex-Chol, as reflected by the more effective tumor-growth inhibition and the better systematic safety. In terms of the convenient preparation, sensitive response to lysosomal acidity and efficient nuclear drug translocation, Dex/Chol-PBA nanoassembly derived from natural materials shows promising potentials as the nanovehicle for nucleus-tropic drug delivery especially for antitumor agents. More attractively, this study offers a deeper insight into the mechanism concerning the contribution of acidity-responsive delivery to the enhanced chemotherapy performance. PMID

  5. TNFα Amplifies DNaseI Expression in Renal Tubular Cells while IL-1β Promotes Nuclear DNaseI Translocation in an Endonuclease-Inactive Form

    PubMed Central

    Thiyagarajan, Dhivya; Rekvig, Ole Petter; Seredkina, Natalya

    2015-01-01

    We have demonstrated that the renal endonuclease DNaseI is up-regulated in mesangial nephritis while down-regulated during progression of the disease. To determine the basis for these reciprocal DNaseI expression profiles we analyse processes accounting for an early increase in renal DNaseI expression. Main hypotheses were that i. the mesangial inflammation and secreted pro-inflammatory cytokines directly increase DNaseI protein expression in tubular cells, ii. the anti-apoptotic protein tumor necrosis factor receptor-associated protein 1 (Trap 1) is down-regulated by increased expression of DNaseI due to transcriptional interference, and iii. pro-inflammatory cytokines promote nuclear translocation of a variant of DNaseI. The latter hypothesis emerges from the fact that anti-DNaseI antibodies stained tubular cell nuclei in murine and human lupus nephritis. The present study was performed on human tubular epithelial cells stimulated with pro-inflammatory cytokines. Expression of the DNaseI and Trap 1 genes was determined by qPCR, confocal microscopy, gel zymography, western blot and by immune electron microscopy. Results from in vitro cell culture experiments were analysed for biological relevance in kidneys from (NZBxNZW)F1 mice and human patients with lupus nephritis. Central data indicate that stimulating the tubular cells with TNFα promoted increased DNaseI and reduced Trap 1 expression, while TNFα and IL-1β stimulation induced nuclear translocation of the DNaseI. TNFα-stimulation resulted in 3 distinct effects; increased DNaseI and IL-1β gene expression, and nuclear translocation of DNaseI. IL-1β-stimulation solely induced nuclear DNaseI translocation. Tubular cells stimulated with TNFα and simultaneously transfected with IL-1β siRNA resulted in increased DNaseI expression but no nuclear translocation. This demonstrates that IL-1β promotes nuclear translocation of a cytoplasmic variant of DNaseI since translocation clearly was not dependent on DNase

  6. Nuclear translocation of phosphorylated STAT3 regulates VEGF-A-induced lymphatic endothelial cell migration and tube formation

    SciTech Connect

    Okazaki, Hideki; Tokumaru, Sho; Hanakawa, Yasushi; Shiraishi, Ken; Shirakata, Yuji; Dai, Xiuju; Yang, Lijun; Tohyama, Mikiko; Hashimoto, Koji; Sayama, Koji

    2011-09-02

    Highlights: {yields} VEGF-A enhanced lymphatic endothelial cell migration and increased tube formation. {yields} VEGF-A treated lymphatic endothelial cell showed activation of STAT3. {yields} Dominant-negative STAT3 inhibited VEGF-A-induced lymphatic endothelial cell migration and tube formation. -- Abstract: Vascular endothelial growth factor (VEGF) is an endothelial cell-specific growth factor that regulates endothelial functions, and signal transducers and activators of transcription (STATs) are known to be important during VEGF receptor signaling. The aim of this study was to determine whether STAT3 regulates VEGF-induced lymphatic endothelial cell (LEC) migration and tube formation. VEGF-A (33 ng/ml) enhanced LEC migration by 2-fold and increased tube length by 25% compared with the control, as analyzed using a Boyden chamber and Matrigel assay, respectively. Western blot analysis and immunostaining revealed that VEGF-A induced the nuclear translocation of phosphorylated STAT3 in LECs, and this translocation was blocked by the transfection of LECs with an adenovirus vector expressing a dominant-negative mutant of STAT3 (Ax-STAT3F). Transfection with Ax-STAT3F also almost completely inhibited VEGF-A-induced LEC migration and tube formation. These results indicate that STAT3 is essential for VEGF-A-induced LEC migration and tube formation and that STAT3 regulates LEC functions.

  7. Oxidative stress induces nuclear translocation of C-terminus of {alpha}-synuclein in dopaminergic cells

    SciTech Connect

    Xu Shengli; Zhou Ming; Yu Shun; Cai Yanning; Zhang Alex; Ueda, Kenji; Chan Piu . E-mail: pbchan@bjsap.org

    2006-03-31

    Growing evidence suggests that oxidative stress is involved in the neuronal degeneration and can promote the aggregation of {alpha}-synuclein. However, the role of {alpha}-synuclein under physiological and pathological conditions remains poorly understood. In the present study, we examined the possible interaction between the {alpha}-synuclein and oxidative stress. In a dopaminergic cell line MES23.5, we have found that the 200 {mu}M H{sub 2}O{sub 2} treatment induced the translocation of {alpha}-synuclein from cytoplasm to nuclei at 30 min post-treatment. The immunoactivity of {alpha}-synuclein became highly intensive in the nuclei after 2 h treatment. The protein translocated to nucleus was a 10 kDa fragment of C-terminus region of {alpha}-synuclein, while full-length {alpha}-synuclein remained in cytoplasm. Thioflavine-S staining suggested that the C-terminal fragment in the nuclei has no {beta}-sheet structures. Our present results indicated that 200 {mu}M H{sub 2}O{sub 2} treatment induces the intranuclear accumulation of the C-terminal fragment of {alpha}-synuclein in dopaminergic neurons, whose role remains to be investigated.

  8. Nuclear translocation and overexpression of GAPDH by the hyper-pressure in retinal ganglion cell

    SciTech Connect

    Kim, Choong-Il; Lee, Sung-Ho; Seong, Gong-Je; Kim, Yeon-Hyang; Lee, Mi-Young . E-mail: miyoung@sch.ac.kr

    2006-03-24

    To investigate the effect of hyper-pressure on retinal ganglion cells (RGC-5), RGC-5 cells were exposed to an ambient hydrostatic pressure of 100 mm Hg. Upon treatment, the proliferation of RGC-5 cells was inhibited and neuronal apoptosis was detected by specific apoptosis marker TUNEL (terminal deoxynucleotidyl transferase dUTP nick-end labeling). To probe into the mechanism mediating the apoptosis of RGC-5 cells in 100 mm Hg, protein profile alterations following hyper-pressure treatment were examined using two-dimensional gel electrophoresis (2-DE) followed by MALDI-TOF. Out of the 400 protein spots of RGC-5 cells detected on 2-DE gels, 37 differentially expressed protein spots were further identified using in gel tryptic digestion and mass spectrometry. Among these proteins, glyceraldehyde-3-phosphate-dehydrogenase (GAPDH) was significantly expressed 10 times more in 100 mm Hg than in normal pressure. The accumulation of GAPDH in the nucleus and its translocation from the cytosol to the nucleus in 100 mm Hg were observed using a microscope. These results suggest that the hyper-pressure-induced apoptosis in RGC-5 cells may be involved with not only the increase of GAPDH expression, but also the accumulation and the translocalization of GAPDH to the nucleus.

  9. Angiogenin-induced protein kinase B/Akt activation is necessary for angiogenesis but is independent of nuclear translocation of angiogenin in HUVE cells

    SciTech Connect

    Kim, Hye-Mi; Kang, Dong-Ku; Kim, Hak Yong; Kang, Sang Sun; Chang, Soo-Ik . E-mail: sichang@cbnu.ac.kr

    2007-01-12

    Angiogenin, a potent angiogenic factor, binds to endothelial cells and is endocytosed and rapidly translocated to and concentrated in the nucleolus where it binds to DNA. In this study, we report that angiogenin induces transient phosphorylation of protein kinase B/Akt in cultured human umbilical vein endothelial (HUVE) cells. LY294002 inhibits the angiogenin-induced protein kinase B/Akt activation and also angiogenin-induced cell migration in vitro as well as angiogenesis in chick embryo chorioallantoic membrane in vivo without affecting nuclear translocation of angiogenin in HUVE cells. These results suggest that cross-talk between angiogenin and protein kinase B/Akt signaling pathways is essential for angiogenin-induced angiogenesis in vitro and in vivo, and that angiogenin-induced PKB/Akt activation is independent of nuclear translocation of angiogenin in HUVE cells.

  10. An overview of the CCAAT-box binding factor in filamentous fungi: assembly, nuclear translocation, and transcriptional enhancement.

    PubMed

    Kato, Masashi

    2005-04-01

    Filamentous fungi are frequently used for the production of industrial enzymes, since they produce a variety of enzymes including polysaccharide-degrading enzymes. Among the many filamentous fungi, Aspergillus species, such as A. oryzae and A. niger, are known as strong producers of amylolytic enzymes. We have been studying on the regulatory mechanisms underlying the expression of A. oryzae amylolytic genes. Based on analyses using a hybrid model system of A. nidulans transformed by a gene encoding A. oryzae Taka-amylase A, the major amylase (taaG2), we have found that three factors, CCAAT-box binding protein, CreA, and AmyR, are involved in taaG2 gene expression and regulation. In this review, the focus is on the CCAAT-box binding protein of filamentous fungi. The assembly, nuclear translocation, and transcriptional enhancement mechanisms of the CCAAT-box binding protein are discussed. PMID:15849404

  11. The association and nuclear translocation of the PIAS3-STAT3 complex is ligand and time dependent.

    PubMed

    Dabir, Snehal; Kluge, Amy; Dowlati, Afshin

    2009-11-01

    The epidermal growth factor (EGF) receptor activation of downstream signal transducers and activators of transcription 3 (STAT3) plays a crucial role in the pathogenesis of lung cancer. STAT3 transcriptional activity can be negatively regulated by protein inhibitor of activated STAT3 (PIAS3). We investigated the time-dependent PIAS3 shuffling and binding to STAT3 in an EGF-dependent model in lung cancer by using confocal microscopy, immunoprecipitation, luciferase reporter assay, and protein analysis of segregated cellular components. We also explored the role of phosphorylation at Tyr705 of STAT3 in the formation and intracellular shuffling of the PIAS3-STAT3 complex. In a growth factor-free state, PIAS3 was localized to the cytoplasm and unbound to STAT3 in both H520 and A549 cells. On exposure to EGF, we observed STAT3 phosphorylation and rapid formation of the PIAS3-STAT3 complex. Within 5 minutes, there was a progressive translocation of the complex to the nucleus, and by 10 minutes, PIAS3 was uniquely localized to the nuclear compartment. After 30 minutes, PIAS3 returned to the cytoplasm. Using site-directed mutagenesis, we substituted Tyr705 of STAT3 with a phenylalanine. Despite EGF stimulation, we observed a significant decrease in PIAS3-STAT3 binding and a significant reduction in nuclear translocation of PIAS3. Furthermore, there was a significant reduction in the capacity of PIAS3 to reduce STAT3-mediated gene transcription. In wild-type STAT3 cells, increasing concentrations of PIAS3 resulted in a proportional decrease in STAT3 phosphorylation. These data suggest an important role for the negative regulatory effect of PIAS3 on STAT3 in EGF-driven tumors. PMID:19903771

  12. Borrelia burgdorferi outer membrane protein A induces nuclear translocation of nuclear factor-kappa B and inflammatory activation in human endothelial cells.

    PubMed

    Wooten, R M; Modur, V R; McIntyre, T M; Weis, J J

    1996-11-15

    Lyme disease is caused by infection with Borrelia burgdorferi, and is characterized by bacterial persistence and inflammation in a number of host tissues. B. burgdorferi outer surface lipoproteins possess cytokine stimulatory properties that may be responsible for localized inflammation. B. burgdorferi presence is correlated with severity of disease, and the pathology of many tissues, particularly the arthritic joint, is consistent with localized cytokine production. Spirochete invasion of tissues requires interaction with and penetration of vascular endothelium, suggesting endothelial cells may participate in the inflammation of Lyme disease. In this study, outer surface protein A (OspA), a model B. burgdorferi lipoprotein, was found to be a potent stimulant of nuclear factor-kappa B (NF-kappa B) nuclear translocation in human endothelial cells, resulting in nuclear levels similar to those seen in response to known inflammatory mediators. Only the lipid-modified OspA had activity, and activity was not due to contamination with LPS. Nuclear NF-kappa B was detectable within 15 min, suggesting that OspA directly mediates NF-kappa B nuclear translocation. OspA also rapidly up-regulated endothelial cell production of several proteins whose transcription is dependent on NF-kappa B: the cytokine IL-6; the chemokine IL-8; and the adhesion molecules E-selectin, VCAM-1, and ICAM-1. The adhesion molecules were functional, as demonstrated by enhanced binding of neutrophils to OspA-stimulated endothelial monolayers. These data suggest that OspA may initiate synthesis of many proteins essential for localized inflammation via the direct activation of NF-kappa B-dependent transcription. These observations suggest that the interaction of B. burgdorferi lipoproteins with the endothelium may directly induce the inflammation responsible for the symptoms of Lyme disease. PMID:8906837

  13. Nuclear translocation and regulation of intranuclear distribution of cytoplasmic poly(A)-binding protein are distinct processes mediated by two Epstein Barr virus proteins.

    PubMed

    Park, Richard; El-Guindy, Ayman; Heston, Lee; Lin, Su-Fang; Yu, Kuan-Ping; Nagy, Mate; Borah, Sumit; Delecluse, Henri-Jacques; Steitz, Joan; Miller, George

    2014-01-01

    Many viruses target cytoplasmic polyA binding protein (PABPC) to effect widespread inhibition of host gene expression, a process termed viral host-shutoff (vhs). During lytic replication of Epstein Barr Virus (EBV) we observed that PABPC was efficiently translocated from the cytoplasm to the nucleus. Translocated PABPC was diffusely distributed but was excluded from viral replication compartments. Vhs during EBV infection is regulated by the viral alkaline nuclease, BGLF5. Transfection of BGLF5 alone into BGLF5-KO cells or uninfected 293 cells promoted translocation of PAPBC that was distributed in clumps in the nucleus. ZEBRA, a viral bZIP protein, performs essential functions in the lytic program of EBV, including activation or repression of downstream viral genes. ZEBRA is also an essential replication protein that binds to viral oriLyt and interacts with other viral replication proteins. We report that ZEBRA also functions as a regulator of vhs. ZEBRA translocated PABPC to the nucleus, controlled the intranuclear distribution of PABPC, and caused global shutoff of host gene expression. Transfection of ZEBRA alone into 293 cells caused nuclear translocation of PABPC in the majority of cells in which ZEBRA was expressed. Co-transfection of ZEBRA with BGLF5 into BGLF5-KO cells or uninfected 293 cells rescued the diffuse intranuclear pattern of PABPC seen during lytic replication. ZEBRA mutants defective for DNA-binding were capable of regulating the intranuclear distribution of PABPC, and caused PABPC to co-localize with ZEBRA. One ZEBRA mutant, Z(S186E), was deficient in translocation yet was capable of altering the intranuclear distribution of PABPC. Therefore ZEBRA-mediated nuclear translocation of PABPC and regulation of intranuclear PABPC distribution are distinct events. Using a click chemistry-based assay for new protein synthesis, we show that ZEBRA and BGLF5 each function as viral host shutoff factors. PMID:24705134

  14. Cell shape and the microenvironment regulate nuclear translocation of NF-κB in breast epithelial and tumor cells

    PubMed Central

    Sero, Julia E; Sailem, Heba Zuhair; Ardy, Rico Chandra; Almuttaqi, Hannah; Zhang, Tongli; Bakal, Chris

    2015-01-01

    Although a great deal is known about the signaling events that promote nuclear translocation of NF-κB, how cellular biophysics and the microenvironment might regulate the dynamics of this pathway is poorly understood. In this study, we used high-content image analysis and Bayesian network modeling to ask whether cell shape and context features influence NF-κB activation using the inherent variability present in unperturbed populations of breast tumor and non-tumor cell lines. Cell–cell contact, cell and nuclear area, and protrusiveness all contributed to variability in NF-κB localization in the absence and presence of TNFα. Higher levels of nuclear NF-κB were associated with mesenchymal-like versus epithelial-like morphologies, and RhoA-ROCK-myosin II signaling was critical for mediating shape-based differences in NF-κB localization and oscillations. Thus, mechanical factors such as cell shape and the microenvironment can influence NF-κB signaling and may in part explain how different phenotypic outcomes can arise from the same chemical cues. PMID:25735303

  15. Cell shape and the microenvironment regulate nuclear translocation of NF-κB in breast epithelial and tumor cells.

    PubMed

    Sero, Julia E; Sailem, Heba Zuhair; Ardy, Rico Chandra; Almuttaqi, Hannah; Zhang, Tongli; Bakal, Chris

    2015-01-01

    Although a great deal is known about the signaling events that promote nuclear translocation of NF-κB, how cellular biophysics and the microenvironment might regulate the dynamics of this pathway is poorly understood. In this study, we used high-content image analysis and Bayesian network modeling to ask whether cell shape and context features influence NF-κB activation using the inherent variability present in unperturbed populations of breast tumor and non-tumor cell lines. Cell-cell contact, cell and nuclear area, and protrusiveness all contributed to variability in NF-κB localization in the absence and presence of TNFα. Higher levels of nuclear NF-κB were associated with mesenchymal-like versus epithelial-like morphologies, and RhoA-ROCK-myosin II signaling was critical for mediating shape-based differences in NF-κB localization and oscillations. Thus, mechanical factors such as cell shape and the microenvironment can influence NF-κB signaling and may in part explain how different phenotypic outcomes can arise from the same chemical cues. PMID:25735303

  16. Cell shape and the microenvironment regulate nuclear translocation of NF-κB in breast epithelial and tumor cells.

    PubMed

    Sero, Julia E; Sailem, Heba Zuhair; Ardy, Rico Chandra; Almuttaqi, Hannah; Zhang, Tongli; Bakal, Chris

    2015-03-01

    Although a great deal is known about the signaling events that promote nuclear translocation of NF-κB, how cellular biophysics and the microenvironment might regulate the dynamics of this pathway is poorly understood. In this study, we used high-content image analysis and Bayesian network modeling to ask whether cell shape and context features influence NF-κB activation using the inherent variability present in unperturbed populations of breast tumor and non-tumor cell lines. Cell–cell contact, cell and nuclear area, and protrusiveness all contributed to variability in NF-κB localization in the absence and presence of TNFα. Higher levels of nuclear NF-κB were associated with mesenchymal-like versus epithelial-like morphologies, and RhoA-ROCK-myosin II signaling was critical for mediating shape-based differences in NF-κB localization and oscillations. Thus, mechanical factors such as cell shape and the microenvironment can influence NF-κB signaling and may in part explain how different phenotypic outcomes can arise from the same chemical cues. PMID:26148352

  17. Evolutionary analysis of a large mtDNA translocation (numt) into the nuclear genome of the Panthera genus species

    PubMed Central

    Kim, Jae-Heup; Antunes, Agostinho; Luo, Shu-Jin; Menninger, Joan; Nash, William G.; O’Brien, Stephen J.; Johnson, Warren E.

    2006-01-01

    Translocation of cymtDNA into the nuclear genome, also referred to as numt, has been reported in many species, including several closely related to the domestic cat (Felis catus). We describe the recent transposition of 12,536 bp of the 17 kb mitochondrial genome into the nucleus of the common ancestor of the five Panthera genus species: tiger, P. tigris; snow leopard, P. uncia; jaguar, P. onca; leopard, P. pardus; and lion, P. leo. This nuclear integration, representing 74% of the mitochondrial genome, is one of the largest to be reported in eukaryotes. The Panthera genus numt differs from the numt previously described in the Felis genus in: (1) chromosomal location (F2 – telomeric region vs. D2 – centromeric region), (2) gene make up (from the ND5 to the ATP8 vs. from the CR to the COII), (3) size (12.5 kb vs. 7.9 kb), and (4) structure (single monomer vs. tandemly repeated in Felis). These distinctions indicate that the origin of this large numt fragment in the nuclear genome of the Panthera species is an independent insertion from that of the domestic cat lineage, which has been further supported by phylogenetic analyses. The tiger cymtDNA shared around 90% sequence identity with the homologous numt sequence, suggesting an origin for the Panthera numt at around 3.5 million years ago, prior to the radiation of the five extant Panthera species. PMID:16380222

  18. On the modeling of endocytosis

    NASA Astrophysics Data System (ADS)

    Zhang, Tao; Sknepnek, Rastko; Schwarz, Jennifer; Bowick, Mark

    2013-03-01

    Endocytosis is the primary mechanism by which extracellular material enters the cell. During endocytosis, the cell membrane deforms to surround the extracellular material and draw it into the cell, followed by a pinch-off to produce an internal vesicle. Recent experiments on clathrin-mediated endocytosis all agree that the actin cytoskeleton plays a crucial role in the deformation of the cell membrane. The actin cytoskeleton is a crosslinked network of filaments exerting active forces. However, competing ideas remain as to precisely how the actin cytoskeleton organizes itself to help drive the deformation. To begin to resolve this controversy, we mathematically model clathrin-mediated endocytosis using variational methods and Monte Carlo simulations. In particular, we investigate how the deformation of the cell membrane depends on the organization of the actin cytoskeletal network, and its associated active forces, to rule out one or more of the competing ideas.

  19. A role for nuclear translocation of tripeptidyl-peptidase II in reactive oxygen species-dependent DNA damage responses

    SciTech Connect

    Preta, Giulio; Klark, Rainier de; Glas, Rickard

    2009-11-27

    Responses to DNA damage are influenced by cellular metabolism through the continuous production of reactive oxygen species (ROS), of which most are by-products of mitochondrial respiration. ROS have a strong influence on signaling pathways during responses to DNA damage, by relatively unclear mechanisms. Previous reports have shown conflicting data on a possible role for tripeptidyl-peptidase II (TPPII), a large cytosolic peptidase, within the DNA damage response. Here we show that TPPII translocated into the nucleus in a p160-ROCK-dependent fashion in response to {gamma}-irradiation, and that nuclear expression of TPPII was present in most {gamma}-irradiated transformed cell lines. We used a panel of nine cell lines of diverse tissue origin, including four lymphoma cell lines (T, B and Hodgkins lymphoma), a melanoma, a sarcoma, a colon and two breast carcinomas, where seven out of nine cell lines showed nuclear TPPII expression after {gamma}-irradiation. Further, this required cellular production of ROS; treatment with either N-acetyl-Cysteine (anti-oxidant) or Rotenone (inhibitor of mitochondrial respiration) inhibited nuclear accumulation of TPPII. The local density of cells was important for nuclear accumulation of TPPII at early time-points following {gamma}-irradiation (at 1-4 h), indicating a bystander effect. Further, we showed that the peptide-based inhibitor Z-Gly-Leu-Ala-OH, but not its analogue Z-Gly-(D)-Leu-Ala-OH, excluded TPPII from the nucleus. This correlated with reduced nuclear expression of p53 as well as caspase-3 and -9 activation in {gamma}-irradiated lymphoma cells. Our data suggest a role for TPPII in ROS-dependent DNA damage responses, through alteration of its localization from the cytosol into the nucleus.

  20. HIV-1 gp120 induces NFAT nuclear translocation in resting CD4+ T-cells

    SciTech Connect

    Cicala, Claudia . E-mail: ccicala@nih.gov; Arthos, James; Censoplano, Nina; Cruz, Catherine; Chung, Eva; Martinelli, Elena; Lempicki, Richard A.; Natarajan, Ven; VanRyk, Donald; Daucher, Marybeth; Fauci, Anthony S.

    2006-02-05

    The replication of human immunodeficiency virus (HIV) in CD4+ T-cells is strongly dependent upon the state of activation of infected cells. Infection of sub-optimally activated cells is believed to play a critical role in both the transmission of virus and the persistence of CD4+ T-cell reservoirs. There is accumulating evidence that HIV can modulate signal-transduction pathways in a manner that may facilitate replication in such cells. We previously demonstrated that HIV gp120 induces virus replication in resting CD4+ T cells isolated from HIV-infected individuals. Here, we show that in resting CD4+ T-cells, gp120 activates NFATs and induces their translocation into the nucleus. The HIV LTR encodes NFAT recognition sites, and NFATs may play a critical role in promoting viral replication in sub-optimally activated cells. These observations provide insight into a potential mechanism by which HIV is able to establish infection in resting cells, which may have implications for both transmission of HIV and the persistence of viral reservoirs.

  1. Increased EID1 nuclear translocation impairs synaptic plasticity and memory function associated with pathogenesis of Alzheimer's disease.

    PubMed

    Liu, Rugao; Lei, Joy X; Luo, Chun; Lan, Xun; Chi, Liying; Deng, Panyue; Lei, Saobo; Ghribi, Othman; Liu, Qing Yan

    2012-03-01

    Though loss of function in CBP/p300, a family of CREB-binding proteins, has been causally associated with a variety of human neurological disorders, such as Rubinstein-Taybi syndrome, Huntington's disease and drug addiction, the role of EP300 interacting inhibitor of differentiation 1 (EID1), a CBP/p300 inhibitory protein, in modulating neurological functions remains completely unknown. Through the examination of EID1 expression and cellular distribution, we discovered that there is a significant increase of EID1 nuclear translocation in the cortical neurons of Alzheimer's disease (AD) patient brains compared to that of control brains. To study the potential effects of EID1 on neurological functions associated with learning and memory, we generated a transgenic mouse model with a neuron-specific expression of human EID1 gene in the brain. Overexpression of EID1 led to an increase in its nuclear localization in neurons mimicking that seen in human AD brains. The transgenic mice had a disrupted neurofilament organization and increase of astrogliosis in the cortex and hippocampus. Furthermore, we demonstrated that overexpression of EID1 reduced hippocampal long-term potentiation and impaired spatial learning and memory function in the transgenic mice. Our results indicated that the negative effects of extra nuclear EID1 in transgenic mouse brains are likely due to its inhibitory function on CBP/p300 mediated histone and p53 acetylation, thus affecting the expression of downstream genes involved in the maintenance of neuronal structure and function. Together, our data raise the possibility that alteration of EID1 expression, particularly the increase of EID1 nuclear localization that inhibits CBP/p300 activity in neuronal cells, may play an important role in AD pathogenesis. PMID:22186421

  2. Aryl hydrocarbon receptor nuclear translocator (ARNT) isoforms control lymphoid cancer cell proliferation through differentially regulating tumor suppressor p53 activity

    PubMed Central

    Fang, Gloria; Sarkar, Krishnakali; Mendez, Omayra; Wright, Casey W.

    2016-01-01

    The aryl hydrocarbon receptor nuclear translocator (ARNT) is involved in xenobiotic and hypoxic responses, and we previously showed that ARNT also regulates nuclear factor-κB (NF-κB) signaling by altering the DNA binding activity of the RelB subunit. However, our initial study of ARNT-mediated RelB modulation was based on simultaneous suppression of the two ARNT isoforms, isoform 1 and 3, and precluded the examination of their individual functions. We find here that while normal lymphocytes harbor equal levels of isoform 1 and 3, lymphoid malignancies exhibit a shift to higher levels of ARNT isoform 1. These elevated levels of ARNT isoform 1 are critical to the proliferation of these cancerous cells, as suppression of isoform 1 in a human multiple myeloma (MM) cell line, and an anaplastic large cell lymphoma (ALCL) cell line, triggered S-phase cell cycle arrest, spontaneous apoptosis, and sensitized cells to doxorubicin treatment. Furthermore, co-suppression of RelB or p53 with ARNT isoform 1 prevented cell cycle arrest and blocked doxorubicin induced apoptosis. Together our findings reveal that certain blood cancers rely on ARNT isoform 1 to potentiate proliferation by antagonizing RelB and p53-dependent cell cycle arrest and apoptosis. Significantly, our results identify ARNT isoform 1 as a potential target for anticancer therapies. PMID:26909609

  3. Cytomegalovirus Assembly Protein Precursor and Proteinase Precursor Contain Two Nuclear Localization Signals That Mediate Their Own Nuclear Translocation and That of the Major Capsid Protein

    PubMed Central

    Plafker, Scott M.; Gibson, Wade

    1998-01-01

    The cytomegalovirus (CMV) assembly protein precursor (pAP) interacts with the major capsid protein (MCP), and this interaction is required for nuclear translocation of the MCP, which otherwise remains in the cytoplasm of transfected cells (L. J. Wood et al., J. Virol. 71:179–190, 1997). We have interpreted this finding to indicate that the CMV MCP lacks its own nuclear localization signal (NLS) and utilizes the pAP as an NLS-bearing escort into the nucleus. The CMV pAP amino acid sequence has two clusters of basic residues (e.g., KRRRER [NLS1] and KARKRLK [NLS2], for simian CMV) that resemble the simian virus 40 large-T-antigen NLS (D. Kalderon et al., Cell 39:499–509, 1984) and one of these (NLS1) has a counterpart in the pAP homologs of other herpesviruses. The work described here establishes that NLS1 and NLS2 are mutually independent NLS that can act (i) in cis to translocate pAP and the related proteinase precursor (pNP1) into the nucleus and (ii) in trans to transport MCP into the nucleus. By using combinations of NLS mutants and carboxy-terminal deletion constructs, we demonstrated a self-interaction of pAP and cytoplasmic interactions of pAP with pNP1 and of pNP1 with itself. The relevance of these findings to early steps in capsid assembly, the mechanism of MCP nuclear transport, and the possible cytoplasmic formation of protocapsomeric substructures is discussed. PMID:9733808

  4. Control of Protein Activity and Cell Fate Specification via Light-Mediated Nuclear Translocation

    PubMed Central

    Zimmerman, Seth P.; Bear, James E.; Goldstein, Bob; Hahn, Klaus; Kuhlman, Brian

    2015-01-01

    Light-activatable proteins allow precise spatial and temporal control of biological processes in living cells and animals. Several approaches have been developed for controlling protein localization with light, including the conditional inhibition of a nuclear localization signal (NLS) with the Light Oxygen Voltage (AsLOV2) domain of phototropin 1 from Avena sativa. In the dark, the switch adopts a closed conformation that sterically blocks the NLS motif. Upon activation with blue light the C-terminus of the protein unfolds, freeing the NLS to direct the protein to the nucleus. A previous study showed that this approach can be used to control the localization and activity of proteins in mammalian tissue culture cells. Here, we extend this result by characterizing the binding properties of a LOV/NLS switch and demonstrating that it can be used to control gene transcription in yeast. Additionally, we show that the switch, referred to as LANS (light-activated nuclear shuttle), functions in the C. elegans embryo and allows for control of nuclear localization in individual cells. By inserting LANS into the C. elegans lin-1 locus using Cas9-triggered homologous recombination, we demonstrated control of cell fate via light-dependent manipulation of a native transcription factor. We conclude that LANS can be a valuable experimental method for spatial and temporal control of nuclear localization in vivo. PMID:26083500

  5. Dynamin-dependent endocytosis of Bone Morphogenetic Protein2 (BMP2) and its receptors is dispensable for the initiation of Smad signaling.

    PubMed

    Paarmann, Pia; Dörpholz, Gina; Fiebig, Juliane; Amsalem, Ayelet R; Ehrlich, Marcelo; Henis, Yoav I; Müller, Thomas; Knaus, Petra

    2016-07-01

    Bone Morphogenetic Protein (BMP) signal transduction via the canonical Smad158 pathway has previously been linked to dynamin-dependent endocytosis, since the application of chemical inhibitors of clathrin or dynamin in functional cell culture based assays negatively affects initiation and propagation of the Smad response. More recent studies, however, demonstrated efficient Smad signaling by non-internalizable BMP2. The role of endocytosis in BMP signal transduction thus remained controversial. In our study we aimed to refine cell biological assays and to apply novel tools, including a new site-directed fluorescently labeled BMP2 ligand, to revisit key steps in BMP Smad signaling. We found that dynamin2 function was required for BMP2 uptake but was dispensable for C-terminal phosphorylation, nuclear translocation and transcriptional activity of BMP-dependent Smads. Furthermore, we demonstrated a role of dynamin2 in the regulation of steady-state and surface BMP receptor levels, as well as an impact on Smad1 protein level. Thus, dynamin2 allows for modulation of basal and ligand-dependent Smad signaling capacity. High levels of functional dynamin2 enhanced the myogenic differentiation of precursor cells. From our study we conclude that dynamin-dependent endocytosis serves as a regulatory mechanism to fine-tune Smad signaling, but it is not a prerequisite for signal initiation and propagation. Our findings contribute to the understanding of fundamental mechanisms of BMP signaling and thus provide important information for future consideration in the context of therapeutic applications of BMPs. PMID:27113717

  6. ASIC1-mediated calcium entry stimulates NFATc3 nuclear translocation via PICK1 coupling in pulmonary arterial smooth muscle cells.

    PubMed

    Gonzalez Bosc, Laura V; Plomaritas, Danielle R; Herbert, Lindsay M; Giermakowska, Wieslawa; Browning, Carly; Jernigan, Nikki L

    2016-07-01

    The development of chronic hypoxia (CH)-induced pulmonary hypertension is associated with increased pulmonary arterial smooth muscle cell (PASMC) Ca(2+) influx through acid-sensing ion channel-1 (ASIC1) and activation of the Ca(2+)/calcineurin-dependent transcription factor known as nuclear factor of activated T-cells isoform c3 (NFATc3). Whether Ca(2+) influx through ASIC1 contributes to NFATc3 activation in the pulmonary vasculature is unknown. Furthermore, both ASIC1 and calcineurin have been shown to interact with the scaffolding protein known as protein interacting with C kinase-1 (PICK1). In the present study, we tested the hypothesis that ASIC1 contributes to NFATc3 nuclear translocation in PASMC in a PICK1-dependent manner. Using both ASIC1 knockout (ASIC1(-/-)) mice and pharmacological inhibition of ASIC1, we demonstrate that ASIC1 contributes to CH-induced (1 wk at 380 mmHg) and endothelin-1 (ET-1)-induced (10(-7) M) Ca(2+) responses and NFATc3 nuclear import in PASMC. The interaction between ASIC1/PICK1/calcineurin was shown using a Duolink in situ Proximity Ligation Assay. Inhibition of PICK1 by using FSC231 abolished ET-1-induced and ionomycin-induced NFATc3 nuclear import, but it did not alter ET-1-mediated Ca(2+) responses, suggesting that PICK1 acts downstream of Ca(2+) influx. The key findings of the present work are that 1) Ca(2+) influx through ASIC1 mediates CH- and ET-1-induced NFATc3 nuclear import and 2) the scaffolding protein PICK1 is necessary for NFATc3 nuclear import. Together, these data provide an essential link between CH-induced ASIC1-mediated Ca(2+) influx and activation of the NFATc3 transcription factor. Identification of this ASIC1/PICK1/NFATc3 signaling complex increases our understanding of the mechanisms contributing to the vascular remodeling and increased vascular contractility that are associated with CH-induced pulmonary hypertension. PMID:27190058

  7. Ethanol and Acetaminophen Synergistically Induce Hepatic Aggregation and TCH346-Insensitive Nuclear Translocation of GAPDH

    PubMed Central

    Snider, Natasha T.; Portney, Daniel A.; Willcockson, Helen H.; Maitra, Dhiman; Martin, Hope C.; Greenson, Joel K.; Omary, M. Bishr

    2016-01-01

    The glycolytic enzyme glyceraldehyde-3-phosphate dehydrogenase (GAPDH) signals during cellular stress via several post-translational modifications that change its folding properties, protein-protein interactions and sub-cellular localization. We examined GAPDH properties in acute mouse liver injury due to ethanol and/or acetaminophen (APAP) treatment. Synergistic robust and time-dependent nuclear accumulation and aggregation of GAPDH were observed only in combined, but not individual, ethanol/APAP treatments. The small molecule GAPDH-targeting compound TCH346 partially attenuated liver damage possibly via mitochondrial mechanisms, and independent of nuclear accumulation and aggregation of GAPDH. These findings provide a novel potential mechanism for hepatotoxicity caused by combined alcohol and acetaminophen exposure. PMID:27513663

  8. 5-Lipoxygenase is located in the euchromatin of the nucleus in resting human alveolar macrophages and translocates to the nuclear envelope upon cell activation.

    PubMed Central

    Woods, J W; Coffey, M J; Brock, T G; Singer, I I; Peters-Golden, M

    1995-01-01

    5-Lipoxygenase (5-LO) and 5-lipoxygenase-activating protein (FLAP) are two key proteins involved in the synthesis of leukotrienes (LT) from arachidonic acid. Although both alveolar macrophages (AM) and peripheral blood leukocytes (PBL) produce large amounts of LT after activation, 5-LO translocates from a soluble pool to a particulate fraction upon activation of PBL, but is contained in the particulate fraction in AM irrespective of activation. We have therefore examined the subcellular localization of 5-LO in autologous human AM and PBL collected from normal donors. While immunogold electron microscopy demonstrated little 5-LO in resting PBL, resting AM exhibited abundant 5-LO epitopes in the euchromatin region of the nucleus. The presence of substantial quantities of 5-LO in the nucleus of resting AM was verified by cell fractionation and immunoblot analysis and by indirect immunofluorescence microscopy. In both AM and PBL activated by A23187, all of the observable 5-LO immunogold labeling was found associated with the nuclear envelope. In resting cells of both types, FLAP was predominantly associated with the nuclear envelope, and its localization was not affected by activation with A23187. The effects of MK-886, which binds to FLAP, were examined in ionophore-stimulated AM and PBL. Although MK-886 inhibited LT synthesis in both cell types, it failed to prevent the translocation of 5-LO to the nuclear envelope. These results indicate that the nuclear envelope is the site at which 5-LO interacts with FLAP and arachidonic acid to catalyze LT synthesis in activated AM as well as PBL, and that in resting AM the euchromatin region of the nucleus is the predominant source of the translocated enzyme. In addition, LT synthesis is a two-step process consisting of FLAP-independent translocation of 5-LO to the nuclear envelope followed by the FLAP-dependent activation of the enzyme. Images PMID:7738170

  9. FOXP2 promotes the nuclear translocation of POT1, but FOXP2(R553H), mutation related to speech-language disorder, partially prevents it

    SciTech Connect

    Tanabe, Yuko; Fujita, Eriko; Momoi, Takashi

    2011-07-08

    Highlights: {yields} We isolated protection of telomeres 1 (POT1) as a FOXP2-associated protein by a yeast two-hybrid. {yields} FOXP2 associated and co-localized with POT1 in the nuclei. {yields} FOXP2(R553H) also co-localized with POT1 in both the cytoplasm and nuclei. {yields} FOXP2(R553H) partially prevented the nuclear translocation of POT1. {yields} FOXP2(R553H) mutation may be associated with the pathogenesis of speech-language disorder. -- Abstract: FOXP2 is a forkhead box-containing transcription factor with several recognizable sequence motifs. However, little is known about the FOXP2-associated proteins except for C-terminal binding protein (CtBP). In the present study, we attempted to isolate the FOXP2-associated protein with a yeast two-hybrid system using the C-terminal region, including the forkhead domain, as a bait probe, and identified protection of telomeres 1 (POT1) as a FOXP2-associated protein. Immunoprecipitation assay confirmed the association with FOXP2 and POT1. POT1 alone localized in the cytoplasm but co-localized with FOXP2 and the forkhead domain of FOXP2 in nuclei. However, both FOXP2 with mutated nuclear localization signals and (R553H) mutated forkhead, which is associated with speech-language disorder, prevented the nuclear translocation of POT1. These results suggest that FOXP2 is a binding partner for the nuclear translocation of POT1. As loss of POT1 function induces the cell arrest, the impaired nuclear translocation of POT1 in the developing neuronal cells may be associated with the pathogenesis of speech-language disorder with FOXP2(R553H) mutation.

  10. SEPT9_i1 is required for the association between HIF-1α and importin-α to promote efficient nuclear translocation

    PubMed Central

    Golan, Maya; Mabjeesh, Nicola J

    2013-01-01

    Septin 9 isoform 1 (SEPT9_i1) protein associates with hypoxia-inducible factor (HIF)-1α to augment HIF-1 transcriptional activity. The first 25 amino acids of SEPT9_i1 (N25) are unique compared with other members of the mammalian septin family. This N25 domain is critical for HIF-1 activation by SEPT9_i1 but not essential for the protein-protein interaction. Here, we show that expression of N25 induces a significant dose-dependent inhibition of HIF-1 transcriptional activity under normoxia and hypoxia without influencing cellular HIF-1α protein levels. In vivo, N25 expression inhibits proliferation, tumor growth and angiogenesis concomitant with decreased expression levels of intratumoral HIF-1 downstream genes. Depletion of endogenous SEPT9_i1 or the exogenous expression of N25 fragment reduces nuclear HIF-1α levels accompanied by reciprocal accumulation of HIF-1α in the cytoplasm. Mechanistically, SEPT9_i1 binds to importin-α through N25 depending on its bipartite nuclear localization signal, to scaffold the association between HIF-1α and importin-α, which leads to facilitating HIF-1α nuclear translocation. Our data explore a new and a previously unrecognized role of a septin protein in the cytoplasmic-nuclear translocation process. This new level in the regulation of HIF-1α translocation is critical for efficient HIF-1 transcriptional activation that could be targeted for cancer therapeutics. PMID:24067372

  11. Sulfasalazine prevents the increase in TGF-β, COX-2, nuclear NFκB translocation and fibrosis in CCl4-induced liver cirrhosis in the rat.

    PubMed

    Chávez, E; Castro-Sánchez, L; Shibayama, M; Tsutsumi, V; Moreno, M G; Muriel, P

    2012-09-01

    It has been demonstrated that this sulfasalazine (SF) inhibits the nuclear factor κB (NFκB) pathway, which regulates important genes during inflammation and immune answer. The aim of this work was to evaluate the effects of SF on carbon tetrachloride (CCl(4))-induced liver fibrosis. We formed the following experimental groups of rats: controls, damage induced by chronic CCl(4) (0.4 g/kg, intraperitoneally, three times a week for 8 weeks) administration and CCl(4) + SF (100 mg/kg/day, postoperatively for 8 weeks) administration. We determined the activities of alanine aminotransferase (ALT), γ-glutamyl transpeptidase (γ-GTP), cyclooxygenase (COX)-1 and COX-2, lipid peroxidation, glutathione levels, collagen content, expression of transforming growth factor-β (TGF-β) and nuclear translocation of NFκB. SF was capable to inhibit the ALT and γ-GTP elevated levels induced with the CCl(4) administration. SF had antioxidant properties, prevented the lipid peroxidation and the imbalance of reduced and oxidized glutathione produced by CCl(4). Importantly, SF blocked the accumulation of collagen in the liver, the expression of TGF-β, the nuclear translocation of NFκB and the activity of COX-2, all induced with the administration of CCl(4) in the rat. These results show that SF has strong antifibrotic properties because of its antioxidant properties and its ability to prevent nuclear translocation of NFκB and consequently the expression of TGF-β and the activity of COX-2. PMID:22381741

  12. TGF-β Targets the Hippo Pathway Scaffold RASSF1A to Facilitate YAP/SMAD2 Nuclear Translocation.

    PubMed

    Pefani, Dafni-Eleftheria; Pankova, Daniela; Abraham, Aswin G; Grawenda, Anna M; Vlahov, Nikola; Scrace, Simon; O' Neill, Eric

    2016-07-01

    Epigenetic inactivation of the Hippo pathway scaffold RASSF1A is associated with poor prognosis in a wide range of sporadic human cancers. Loss of expression reduces tumor suppressor activity and promotes genomic instability, but how this pleiotropic biomarker is regulated at the protein level is unknown. Here we show that TGF-β is the physiological signal that stimulates RASSF1A degradation by the ubiquitin-proteasome pathway. In response to TGF-β, RASSF1A is recruited to TGF-β receptor I and targeted for degradation by the co-recruited E3 ubiquitin ligase ITCH. RASSF1A degradation is necessary to permit Hippo pathway effector YAP1 association with SMADs and subsequent nuclear translocation of receptor-activated SMAD2. We find that RASSF1A expression regulates TGF-β-induced YAP1/SMAD2 interaction and leads to SMAD2 cytoplasmic retention and inefficient transcription of TGF-β targets genes. Moreover, RASSF1A limits TGF-β induced invasion, offering a new framework on how RASSF1A affects YAP1 transcriptional output and elicits its tumor-suppressive function. PMID:27292796

  13. Nuclear translocation and activation of YAP by hypoxia contributes to the chemoresistance of SN38 in hepatocellular carcinoma cells

    PubMed Central

    Zhou, Tian-Yi; Chang, Lin-Lin; Gai, Ren-Hua; Zhu, Di-Feng; Yang, Bo; Zhu, Hong; He, Qiao-Jun

    2016-01-01

    Although hypoxia is a prominent feature contributing to the therapeutic resistance of hepatocellular carcinoma cells (HCC) against chemotherapeutic agents, including the Topoisomerase I inhibitor SN38, the underlying mechanism is not fully understood and its understanding remains a major clinical challenge. In the present study, we found that hypoxia-induced nuclear translocation and accumulation of YAP acted as a survival input to promote resistance to SN38 in HCC. The induction of YAP by hypoxia was not mediated by HIF-1α because manipulating the abundance of HIF-1α with CoCl2, exogenous expression, and RNA interference had no effect on the phosphorylation or total levels of YAP. The mevalonate-HMG-CoA reductase (HMGCR) pathway may modulate the YAP activation under hypoxia. Combined YAP inhibition using either siRNA or the HMGCR inhibitor statins together with SN38 treatment produced improved anti-cancer effects in HCC cells. The increased anti-cancer effect of the combined treatment with statins and irinotecan (the prodrug of SN-38) was further validated in a human HepG2 xenograft model of HCC in nude mice. Taken together, our findings identify YAP as a novel mediator of hypoxic-resistance to SN38. These results suggest that the administration of SN28 together with the suppression of YAP using statins is a promising strategy for enhancing the treatment response in HCC patients, particularly in advanced stage HCC cases presenting hypoxic resistance. PMID:26771844

  14. PROX1 promotes hepatocellular carcinoma proliferation and sorafenib resistance by enhancing β-catenin expression and nuclear translocation.

    PubMed

    Liu, Y; Ye, X; Zhang, J-B; Ouyang, H; Shen, Z; Wu, Y; Wang, W; Wu, J; Tao, S; Yang, X; Qiao, K; Zhang, J; Liu, J; Fu, Q; Xie, Y

    2015-10-29

    Aberrant activation of the Wnt/β-catenin pathway is frequent in hepatocellular carcinoma (HCC) and contributes to HCC initiation and progression. This abnormal activation may result from somatic mutations in the genes of the Wnt/β-catenin pathway and/or dysregulation of the Wnt/β-catenin pathway. The mechanism for the latter remains poorly understood. Prospero-related homeobox 1 (PROX1) is a downstream target of the Wnt/β-catenin pathway in human colorectal cancer and elevated PROX1 expression promotes malignant progression. However, the Wnt/β-catenin pathway does not regulate PROX1 expression in the liver and HCC cells. Here we report that PROX1 promotes HCC cell proliferation in vitro and tumor growth in HCC xenograft mice. PROX1 and β-catenin levels are positively correlated in tumor tissues as well as in cultured HCC cells. PROX1 can upregulate β-catenin transcription by stimulating the β-catenin promoter and enhance the nuclear translocation of β-catenin in HCC cells, which leads to the activation of the Wnt/β-catenin pathway. Moreover, we show that increase in PROX1 expression renders HCC cells more resistant to sorafenib treatment, which is the standard therapy for advanced HCC. Overall, we have pinpointed PROX1 as a critical factor activating the Wnt/β-catenin pathway in HCC, which promotes HCC proliferation and sorafenib resistance. PMID:25684142

  15. Binding studies using Pichia pastoris expressed human aryl hydrocarbon receptor and aryl hydrocarbon receptor nuclear translocator proteins.

    PubMed

    Zheng, Yujuan; Xie, Jinghang; Huang, Xin; Dong, Jin; Park, Miki S; Chan, William K

    2016-06-01

    The aryl hydrocarbon receptor (AHR) is a transcription factor which activates gene transcription by binding to its corresponding enhancer as the heterodimer, which is consisted of AHR and the aryl hydrocarbon receptor nuclear translocator (ARNT). Human AHR can be rather difficult to study, when compared among the AHR of other species, since it is relatively unstable and less sensitive to some ligands in vitro. Overexpression of human AHR has been limited to the baculovirus expression, which is costly and tedious due to the need of repetitive baculovirus production. Here we explored whether we could generate abundant amounts of human AHR and ARNT in a better overexpression system for functional study. We observed that human AHR and ARNT can be expressed in Pichia pastoris with yields that are comparable to the baculovirus system only if their cDNAs are optimized for Pichia expression. Fusion with a c-myc tag at their C-termini seems to increase the expression yield. These Pichia expressed proteins can effectively heterodimerize and form the ternary AHR/ARNT/enhancer complex in the presence of β-naphthoflavone or kynurenine. Limited proteolysis using thermolysin can be used to study the heterodimerization of these human AHR and ARNT proteins. PMID:26923060

  16. Impact of tamoxifen on adipocyte lineage tracing: Inducer of adipogenesis and prolonged nuclear translocation of Cre recombinase

    PubMed Central

    Ye, Risheng; Wang, Qiong A.; Tao, Caroline; Vishvanath, Lavanya; Shao, Mengle; McDonald, Jeffery G.; Gupta, Rana K.; Scherer, Philipp E.

    2015-01-01

    Background The selective estrogen receptor modulator tamoxifen, in combination with the Cre-ERT2 fusion protein, has been one of the mainstream methods to induce genetic recombination and has found widespread application in lineage tracing studies. Methods & results Here, we report that tamoxifen exposure at widely used concentrations remains detectable by mass-spectrometric analysis in adipose tissue after a washout period of 10 days. Surprisingly, its ability to maintain nuclear translocation of the Cre-ERT2 protein is preserved beyond 2 months of washout. Tamoxifen treatment acutely leads to transient lipoatrophy, followed by de novo adipogenesis that reconstitutes the original fat mass. In addition, we find a “synthetically lethal” phenotype for adipocytes when tamoxifen treatment is combined with adipocyte-specific loss-of-function mutants, such as an adipocyte-specific PPARγ knockout. This is observed to a lesser extent when alternative inducible approaches are employed. Conclusions These findings highlight the potential for tamoxifen-induced adipogenesis, and the associated drawbacks of the use of tamoxifen in lineage tracing studies, explaining the discrepancy in lineage tracing results from different systems with temporal control of gene targeting. PMID:26629402

  17. Knockdown of MAP4 and DNAL1 produces a post-fusion and pre-nuclear translocation impairment in HIV-1 replication

    SciTech Connect

    Gallo, Daniel E. Hope, Thomas J.

    2012-01-05

    DNAL1 and MAP4 are both microtubule-associated proteins. These proteins were identified as HIV-1 dependency factors in a screen with wild-type HIV-1. In this study we demonstrate that knockdown using DNAL1 and MAP4 siRNAs and shRNAs inhibits HIV-1 infection regardless of envelope. Using a fusion assay, we show that DNAL1 and MAP4 do not impact fusion. By assaying for late reverse transcripts and 2-LTR circles, we show that DNAL1 and MAP4 inhibit both by approximately 50%. These results demonstrate that DNAL1 and MAP4 impact reverse transcription but not nuclear translocation. DNAL1 and MAP4 knockdown cells do not display cytoskeletal defects. Together these experiments indicate that DNAL1 and MAP4 may exert their functions in the HIV life cycle at reverse transcription, prior to nuclear translocation.

  18. Immunoglobulin Free Light Chains and GAGs Mediate Multiple Myeloma Extracellular Vesicles Uptake and Secondary NfκB Nuclear Translocation

    PubMed Central

    Di Noto, Giuseppe; Chiarini, Marco; Paolini, Lucia; Mazzoldi, Elena Laura; Giustini, Viviana; Radeghieri, Annalisa; Caimi, Luigi; Ricotta, Doris

    2014-01-01

    Multiple myeloma (MM) is a hematological malignancy caused by a microenviromentally aided persistence of plasma cells in the bone marrow. Monoclonal plasma cells often secrete high amounts of immunoglobulin free light chains (FLCs) that could induce tissue damage. Recently, we showed that FLCs are internalized in endothelial and myocardial cell lines and secreted in extracellular vesicles (EVs). MM serum derived EVs presented phenotypic differences if compared with monoclonal gammopathy of undetermined significance (MGUS) serum derived EVs suggesting their involvement in MM pathogenesis or progression. To investigate the effect of circulating EVs on endothelial and myocardial cells, we purified MM and MGUS serum derived EVs with differential ultracentrifugation protocols and tested their biological activity. We found that MM and MGUS EVs induced different proliferation and internalization rates in endothelial and myocardial cells, thus we tried to find specific targets in MM EVs docking and processing. Pre-treatment of EVs with anti-FLCs antibodies or heparin blocked the MM EVs uptake, highlighting that FLCs and glycosaminoglycans are involved. Indeed, only MM EVs exposure induced a strong nuclear factor kappa B nuclear translocation that was completely abolished after anti-FLCs antibodies and heparin pre-treatment. The protein tyrosine kinase c-src is present on MM circulating EVs and redistributes to the cell plasma membrane after MM EVs exposure. The anti-FLCs antibodies and heparin pre-treatments were able to block the intracellular re-distribution of the c-src kinase and the subsequent c-src kinase containing EVs production. Our results open new insights in EVs cellular biology and in MM therapeutic and diagnostic approaches. PMID:25386176

  19. Cr(VI)-stimulated STAT3 tyrosine phosphorylation and nuclear translocation in human airway epithelial cells requires Lck

    PubMed Central

    O'hara, Kimberley A.; Vaghjiani, Rasilaben J.; Nemec, Antonia A.; Klei, Linda R.; Barchowsky, Aaron

    2006-01-01

    Chronic inhalation of low amounts of Cr(VI) promotes pulmonary diseases and cancers through poorly defined mechanisms. SFKs (Src family kinases) in pulmonary airway cells may mediate Cr(VI) signalling for lung injury, although the downstream effectors of Cr(VI)-stimulated SFKs and how they relate to pathogenic gene induction are unknown. Therefore SFK-dependent activation of transcription factors by non-cytotoxic exposure of human bronchial epithelial cells to Cr(VI) was determined. Protein–DNA binding arrays demonstrated that exposing BEAS 2B cells to 5 μM Cr(VI) for 4 and 24 h resulted in increased protein binding to 25 and 43 cis-elements respectively, while binding to 12 and 16 cis-elements decreased. Of note, Cr(VI) increased protein binding to several STAT (signal transducer and activator of transcription) cis-elements. Cr(VI) stimulated acute tyrosine phosphorylation and nuclear translocation of STAT1 over a 4 h period and a prolonged activation of STAT3 that reached a peak between 48 and 72 h. This prolonged activation was observed for both STAT3α and STAT3β. Immunofluorescent confocal microscopy confirmed that Cr(VI) increased nuclear localization of phosphorylated STAT3 for more than 72 h in both primary and BEAS 2B human airway cells. Cr(VI) induced transactivation of both a STAT3-driven luciferase reporter construct and the endogenous inflammatory gene IL-6 (interleukin-6). Inhibition with siRNA (small interfering RNA) targeting the SFK Lck, but not dominant-negative JAK (Janus kinase), prevented Cr(VI)-stimulated phosphorylation of both STAT3 isoforms and induction of IL-6. The results suggest that Cr(VI) activates epithelial cell Lck to signal for prolonged STAT3 activation and transactivation of IL-6, an important immunomodulator of lung disease progression. PMID:17078813

  20. Virus-Dependent Phosphorylation of the IRF-3 Transcription Factor Regulates Nuclear Translocation, Transactivation Potential, and Proteasome-Mediated Degradation

    PubMed Central

    Lin, Rongtuan; Heylbroeck, Christophe; Pitha, Paula M.; Hiscott, John

    1998-01-01

    Ser-398 in IRF-3 abrogated its binding to CBP. These results are discussed in terms of a model in which virus-inducible, C-terminal phosphorylation of IRF-3 alters protein conformation to permit nuclear translocation, association with transcriptional partners, and primary activation of IFN- and IFN-responsive genes. PMID:9566918

  1. Curcumin Induces Nrf2 Nuclear Translocation and Prevents Glomerular Hypertension, Hyperfiltration, Oxidant Stress, and the Decrease in Antioxidant Enzymes in 5/6 Nephrectomized Rats

    PubMed Central

    Tapia, Edilia; Soto, Virgilia; Ortiz-Vega, Karla Mariana; Zarco-Márquez, Guillermo; Molina-Jijón, Eduardo; Cristóbal-García, Magdalena; Santamaría, José; García-Niño, Wylly Ramsés; Correa, Francisco; Zazueta, Cecilia; Pedraza-Chaverri, José

    2012-01-01

    Renal injury resulting from renal ablation induced by 5/6 nephrectomy (5/6NX) is associated with oxidant stress, glomerular hypertension, hyperfiltration, and impaired Nrf2-Keap1 pathway. The purpose of this work was to know if the bifunctional antioxidant curcumin may induce nuclear translocation of Nrf2 and prevents 5/6NX-induced oxidant stress, renal injury, decrease in antioxidant enzymes, and glomerular hypertension and hyperfiltration. Four groups of rats were studied: (1) control, (2) 5/6NX, (3) 5/6NX +CUR, and (4) CUR (n = 8–10). Curcumin was given by gavage to NX5/6 +CUR and CUR groups (60 mg/kg/day) starting seven days before surgery. Rats were studied 30 days after NX5/6 or sham surgery. Curcumin attenuated 5/6NX-induced proteinuria, systemic and glomerular hypertension, hyperfiltration, glomerular sclerosis, interstitial fibrosis, interstitial inflammation, and increase in plasma creatinine and blood urea nitrogen. This protective effect was associated with enhanced nuclear translocation of Nrf2 and with prevention of 5/6NX-induced oxidant stress and decrease in the activity of antioxidant enzymes. It is concluded that the protective effect of curcumin against 5/6NX-induced glomerular and systemic hypertension, hyperfiltration, renal dysfunction, and renal injury was associated with the nuclear translocation of Nrf2 and the prevention of both oxidant stress and the decrease of antioxidant enzymes. PMID:22919438

  2. The mother of all endocytosis

    PubMed Central

    2013-01-01

    Massive endocytosis is initiated by a series of steps that involve a sudden influx of calcium ions, changes in mitochondria, and modification of surface proteins by lipids. A better understanding of this process could lead to new approaches to reducing the tissue damage that is caused by heart attacks. PMID:24282238

  3. Chondroitin-6-sulfate attenuates inflammatory responses in murine macrophages via suppression of NF-κB nuclear translocation.

    PubMed

    Tan, Guak-Kim; Tabata, Yasuhiko

    2014-06-01

    Inflammation is a host protective response to noxious stimuli, and excessive production of pro-inflammatory mediators by macrophages (mφ) can lead to numerous pathological conditions. In this study, immunomodulatory effects of immobilized and soluble glycosaminoglycans (GAGs) on mouse-bone-marrow-derived mφ were compared by measuring nitric oxide (NO). We demonstrate here that all GAGs studied except for heparin were able to modulate interferon-γ/lipopolysaccharide (IFN-γ/LPS)-induced NO release by mφ to varying extents after 24h of incubation. In particular, the modulatory activities of soluble chondroitin-6-sulfate (C6S), hyaluronic acid and heparan sulfate altered markedly after covalent immobilization. Of these, soluble C6S exhibited the strongest NO inhibitory activity, and the inhibition was dose- and time-dependent. Moreover, C6S significantly reduced pro-inflammatory cytokines interleukin (IL)-6 and tumor necrosis factor (TNF)-α production by IFN-γ/LPS- or LPS-activated mφ. Specifically, the C6S-mediated suppression of mφ pro-inflammatory phenotype was accompanied by an increase in the IL-10 level, suggesting a possible switch towards anti-inflammatory/wound healing M2 state. In addition, the highest magnitude of inhibitory effects was obtained when cells were pre-treated with C6S prior to IFN-γ/LPS or LPS challenge, suggesting an additional role for C6S in protection against microbial infection. Further investigations reveal that the anti-inflammatory effects of C6S on activated mφ may be ascribed at least in part to suppression of NF-κB nuclear translocation. PMID:24561712

  4. Nuclear Translocation of p65 is Controlled by Sec6 via the Degradation of IκBα.

    PubMed

    Tanaka, Toshiaki; Iino, Mitsuyoshi

    2016-03-01

    Nuclear factor-κB (NF-κB) is an inducible transcription factor that mediates immune and inflammatory responses. NF-κB pathways are also involved in cell adhesion, differentiation, proliferation, autophagy, senescence, and protection against apoptosis. The deregulation of NF-κB activity is found in a number of disease states, including cancer, arthritis, chronic inflammation, asthma, neurodegenerative diseases, and heart disease. The 90 kDa ribosomal S6 kinase (p90RSK) family, which is serine/threonine kinases, is phosphorylated by extracellular signal-regulated kinase1/2 (ERK1/2) and is related to NF-κB pathways. Our previous studies revealed that Sec6, a component of the exocyst complex, plays specific roles in cell-cell adhesion and cell cycle arrest. However, the mechanism by which Sec6 regulates the NF-κB signaling pathway is unknown. We demonstrated that Sec6 knockdown inhibited the degradation of IκBα and delayed the nucleus-cytoplasm translocation of p65 in HeLa cells transfected with Sec6 siRNAs after treatment with tumor necrosis factor alpha (TNF-α). Furthermore, the binding of p65 and cAMP response element binding protein (CREB) binding protein (CBP) or p300 decreased and NF-κB related genes which were inhibitors of NF-κB alpha (IκBα), A20, B cell lymphoma protein 2 (Bcl-2), and monocyte chemoattractant protein-1 (MCP-1) were low in cells transfected with Sec6 siRNAs in response to TNF-α stimulation. Sec6 knockdown decreased the expression of p90RSKs and the phosphorylation of ERK or p90RSK1 at Ser380 or IκBα at Ser32. The present study suggests that Sec6 regulates NF-κB transcriptional activity via the control of the phosphorylation of IκBα, p90RSK1, and ERK. PMID:26247921

  5. Retinoic acid induces nuclear FAK translocation and reduces breast cancer cell adhesion through Moesin, FAK, and Paxillin.

    PubMed

    Sanchez, Angel Matías; Shortrede, Jorge Eduardo; Vargas-Roig, Laura María; Flamini, Marina Inés

    2016-07-15

    Breast cancer is the most common malignancy in women, with metastases being the cause of death in 98%. In previous works we have demonstrated that retinoic acid (RA), the main retinoic acid receptor (RAR) ligand, is involved in the metastatic process by inhibiting migration through a reduced expression of the specific migration-related proteins Moesin, c-Src, and FAK. At present, our hypothesis is that RA also acts for short periods in a non-genomic action to cooperate with motility reduction and morphology of breast cancer cells. Here we identify that the administration of 10(-6) M RA (10-20 min) induces the activation of the migration-related proteins Moesin, FAK, and Paxillin in T-47D breast cancer cells. The phosphorylation exerted by the selective agonists for RARα and RARβ, on Moesin, FAK, and Paxillin was comparable to the activation exerted by RA. The RARγ agonist only led to a weak activation, suggesting the involvement of RARα and RARβ in this pathway. We then treated the cells with different inhibitors that are involved in cell signaling to regulate the mechanisms of cell motility. RA failed to activate Moesin, FAK, and Paxillin in cells treated with Src inhibitor (PP2) and PI3K inhibitor (WM), suggesting the participation of Src-PI3K in this pathway. Treatment with 10(-6) M RA for 20 min significantly decreased cell adhesion. However, when cells were treated with 10(-6) M RA and FAK inhibitor, the RA did not significantly inhibit adhesion, suggesting a role of FAK in the adhesion inhibited by RA. By immunofluorescence and immunoblotting analysis we demonstrated that RA induced nuclear FAK translocation leading to a reduced cellular adhesion. These findings provide new information on the actions of RA for short periods. RA participates in cell adhesion and subsequent migration, modulating the relocation and activation of proteins involved in cell migration. PMID:27130522

  6. Water-soluble coenzyme q10 inhibits nuclear translocation of apoptosis inducing factor and cell death caused by mitochondrial complex I inhibition.

    PubMed

    Li, Haining; Chen, Guisheng; Ma, Wanrui; Li, Ping-An Andy

    2014-01-01

    The objectives of the study were to explore the mechanism of rotenone-induced cell damage and to examine the protective effects of water-soluble Coenzyme Q10 (CoQ10) on the toxic effects of rotenone. Murine hippocampal HT22 cells were cultured with mitochondrial complex I inhibitor rotenone. Water-soluble CoQ10 was added to the culture media 3 h prior to the rotenone incubation. Cell viability was determined by alamar blue, reactive oxygen species (ROS) production by dihydroethidine (DHE) and mitochondrial membrane potential by tetramethyl rhodamine methyl ester (TMRM). Cytochrome c, caspase-9 and apoptosis-inducing factor (AIF) were measured using Western blotting after 24 h rotenone incubation. Rotenone caused more than 50% of cell death, increased ROS production, AIF nuclear translocation and reduction in mitochondrial membrane potential, but failed to cause mitochondrial cytochrome c release and caspase-9 activation. Pretreatment with water-soluble CoQ10 enhanced cell viability, decreased ROS production, maintained mitochondrial membrane potential and prevented AIF nuclear translocation. The results suggest that rotenone activates a mitochondria-initiated, caspase-independent cell death pathway. Water-soluble CoQ10 reduces ROS accumulation, prevents the fall of mitochondrial membrane potential, and inhibits AIF translocation and subsequent cell death. PMID:25089873

  7. LKB1 inhibits the proliferation of gastric cancer cells by suppressing the nuclear translocation of Yap and β-catenin.

    PubMed

    Ma, Lian-Gang; Bian, Shi-Bo; Cui, Jian-Xin; Xi, Hong-Qing; Zhang, Ke-Cheng; Qin, Hong-Zhen; Zhu, Xiao-Ming; Chen, Lin

    2016-04-01

    prognosis for GC patients. LKB1 inhibits the proliferation of GC cells by suppressing the nuclear translocation of Yap and β-catenin. PMID:26936013

  8. Activated Rac1 regulates the degradation of IκBα and the nuclear translocation of STAT3–NFκB complexes in starved cancer cells

    PubMed Central

    Kim, Sung Joo; Yoon, Sarah

    2016-01-01

    In several human tumors, signal transducer and activator of transcription 3 (STAT3) and nuclear factor κB (NFκB) are activated and interact; how these STAT3–NFκB complexes are transported to the nucleus is not fully understood. In this study, we found that Rac1 was activated in starved cancer cells and that activated Rac1 coexisted with STAT3 and NFκB. Rac1 knockdown and overexpression of the dominant-negative mutant Rac1N19 inhibited the degradation of IκBα, an inhibitor of NFκB. MG132, an inhibitor of the ubiquitin proteasome pathway, increased the amount of non-phosphorylated IκBα, but not serine-phosphorylated IκBα, indicating that IκBα degradation by Rac1 in starved cancer cells is independent of IκBα serine phosphorylation by IKK. Rac1 knockdown also inhibited the nuclear translocation of STAT3–NFκB complexes, indicating that this translocation requires activated Rac1. We also demonstrated that the mutant STAT3 Y705F could form complexes with NFκB, and these unphosphorylated STAT3–NFκB complexes translocated into the nucleus and upregulated the activity of NFκB in starved cancer cells, suggesting that phosphorylation of STAT3 is not essential for its translocation. To our knowledge, this is the first study demonstrating the crucial role of Rac1 in the function of STAT3–NFκB complexes in starved cancer cells and implies that targeting Rac1 may have future therapeutic significance in cancer therapy. PMID:27151455

  9. A small molecule induces integrin β4 nuclear translocation and apoptosis selectively in cancer cells with high expression of integrin β4

    PubMed Central

    Liu, ShuYan; Ge, Di; Chen, LiNa; Zhao, Jing; Su, Le; Zhang, ShangLi; Miao, JunYing; Zhao, BaoXiang

    2016-01-01

    Increased integrin β4 (ITGB4) level is accompanied by malignant progression of multiple carcinomas. However, selective therapeutic strategies against cancer cells expressing a high level of ITGB4 have not been reported. Here, for the first time, we report that a chiral small molecule, SEC, selectively promotes apoptosis in cancer cells expressing a high level of ITGB4 by inducing ITGB4 nuclear translocation. Nuclear ITGB4 can bind to the ATF3 promoter region and activate the expression of ATF3, then upregulate the downstream pro-apoptosis genes. Furthermore, SEC promoted the binding of annexin A7 (ANXA7) to ITGB4 and increased ANXA7 GTPase activity. Activated ANXA7 promoted ITGB4 nuclear translocation by triggering ITGB4 phosphorylation at Y1494. SEC also inhibited the growth of xenograft tumors in the avian embryo model. We identified a small molecule, SEC, with selective pro-apoptosis effects on cancer cells with high expression of ITGB4, both in vitro and in vivo, by triggering the binding of ITGB4 and ANXA7, ITGB4 nuclear trafficking, and pro-apoptosis gene expression. PMID:26918348

  10. The E3 SUMO ligase Nse2 regulates sumoylation and nuclear-to-cytoplasmic translocation of skNAC-Smyd1 in myogenesis.

    PubMed

    Berkholz, Janine; Michalick, Laura; Munz, Barbara

    2014-09-01

    Skeletal and heart muscle-specific variant of the α subunit of nascent polypeptide associated complex (skNAC; encoded by NACA) is exclusively found in striated muscle cells. Its function, however, is largely unknown. Previous reports have demonstrated that skNAC binds to m-Bop/Smyd1, a multi-functional protein that regulates myogenesis both through the control of transcription and the modulation of sarcomerogenesis, and that both proteins undergo nuclear-to-cytoplasmic translocation at the later stages of myogenic differentiation. Here, we show that skNAC binds to the E3 SUMO ligase mammalian Mms21/Nse2 and that knockdown of Nse2 expression inhibits specific aspects of myogenic differentiation, accompanied by a partial blockade of the nuclear-to-cytoplasmic translocation of the skNAC-Smyd1 complex, retention of the complex in promyelocytic leukemia (PML)-like nuclear bodies and disturbed sarcomerogenesis. In addition, we show that the skNAC interaction partner Smyd1 contains a putative sumoylation motif and is sumoylated in muscle cells, with depletion of Mms21/Nse2 leading to reduced concentrations of sumoylated Smyd1. Taken together, our data suggest that the function, specifically the balance between the nuclear and cytosolic roles, of the skNAC-Smyd1 complex might be regulated by sumoylation. PMID:25002400

  11. Numb: "Adapting" notch for endocytosis.

    PubMed

    Jafar-Nejad, Hamed; Norga, Koenraad; Bellen, Hugo

    2002-08-01

    During sensory organ precursor divisions in Drosophila, the numb gene product segregates asymmetrically into one of the two daughter cells, to which it confers a specific fate by inhibiting Notch signaling. In this issue of Developmental Cell, Berdnik et al. show that Numb recruits alpha-Adaptin and that this physical interaction plays a role in downregulating Notch, presumably by stimulating endocytosis of Notch. PMID:12194846

  12. Endocytosis of Viruses and Bacteria

    PubMed Central

    Cossart, Pascale; Helenius, Ari

    2014-01-01

    Of the many pathogens that infect humans and animals, a large number use cells of the host organism as protected sites for replication. To reach the relevant intracellular compartments, they take advantage of the endocytosis machinery and exploit the network of endocytic organelles for penetration into the cytosol or as sites of replication. In this review, we discuss the endocytic entry processes used by viruses and bacteria and compare the strategies used by these dissimilar classes of pathogens. PMID:25085912

  13. Protein kinase C modulates aryl hydrocarbon receptor nuclear translocator protein-mediated transactivation potential in a dimer context.

    PubMed

    Long, W P; Chen, X; Perdew, G H

    1999-04-30

    Protein kinase C (PKC)- and protein kinase A (PKA)-mediated modulation of the transactivation potential of human aryl hydrocarbon receptor nuclear translocator (hARNT), a basic helix-loop-helix (bHLH)-PAS transcription factor, and the bHLH-ZIP transcription factors USF-1 (for upstream regulatory factor 1) and c-Myc were examined. An 81 nM dose of the PKC activator phorbol-12-myristate-13-acetate (PMA), shown here to specifically activate PKC in COS-1 cells, or a 1 nM dose of the PKA activator 8-bromoadenosine-3',5'-cyclic monophosphate (8-Br-cAMP) results in 2. 6- and 1.9-fold enhancements, respectively, in hARNT-mediated transactivation of the class B, E-box-driven reporter pMyc3E1bLuc relative to identically transfected, carrier solvent-treated COS-1 cells. In contrast, 81 nM PMA and 1 nM 8-Br-cAMP did not enhance transactivation of pMyc3E1bLuc-driven by USF-1 and c-Myc expression relative to identically transfected, carrier-treated COS-1 cells. Co-transfection of pcDNA3/ARNT-474-Flag, expressing a hARNT carboxyl-terminal transactivation domain deletion, and pMyc3E1bLuc does not result in induction of reporter activity, suggesting PMA's effects do not involve formation of unknown hARNT-protein heterodimers. Additionally, PMA had no effect on hARNT expression relative to Me2SO-treated cells. Metabolic 32P labeling of hARNT in cells treated with carrier solvent or 81 nM PMA demonstrates that PMA does not increase the overall phosphorylation level of hARNT. These results demonstrate, for the first time, that the transactivation potential of ARNT in a dimer context can be specifically modulated by PKC or PKA stimulation and that the bHLH-PAS and bHLH-ZIP transcription factors are differentially regulated by these pathways in COS-1 cells. PMID:10212212

  14. Mechanistic insights of O-GlcNAcylation that promote progression of cholangiocarcinoma cells via nuclear translocation of NF-κB

    PubMed Central

    Phoomak, Chatchai; Vaeteewoottacharn, Kulthida; Sawanyawisuth, Kanlayanee; Seubwai, Wunchana; Wongkham, Chaisiri; Silsirivanit, Atit; Wongkham, Sopit

    2016-01-01

    O-GlcNAcylation, an O-linked protein glycosylation with a single molecule of N-acetylglucosamine (GlcNAc), is reversibly controlled by O-GlcNAc transferase (OGT) and N-acetyl D-glucosaminidase (OGA). Aberrant O-GlcNAcylation contributes an important role in initiation and progression of many human cancers. Elevation of O-GlcNAcylation in tumor tissues and poor prognosis of cholangiocarcinoma (CCA) patients have been reported. In this study, the role of O-GlcNAcylation in promoting tumor progression was further investigated in CCA cell lines. Suppression of O-GlcNAcylation using small interfering RNAs of OGT (siOGT) significantly reduced cell migration and invasion of CCA cells whereas siOGA treated cells exhibited opposite effects. Manipulating levels of O-GlcNAcylation did affect the nuclear translocation of NF-κB and Akt-phosphorylation together with expression of matrix-metalloproteinases (MMPs). O-GlcNAcylation and nuclear translocation of NF-κB, the upstream signaling cascade of MMP activation were shown to be important for MMP activation. Immunoprecipitation revealed the elevation of O-GlcNAc-modified NF-κB with increased cellular O-GlcNAcylation. Involvement of O-GlcNAcylation in MMP-mediated migration and invasion of CCA cells was shown to be via O-GlcNAcylation and nuclear translocation of NF-κB. This information indicates the significance of O-GlcNAcylation in controlling the metastatic ability of CCA cells, hence, O-GlcNAcylation and its products may be new targets for treatment of metastatic CCA. PMID:27290989

  15. Mechanistic insights of O-GlcNAcylation that promote progression of cholangiocarcinoma cells via nuclear translocation of NF-κB.

    PubMed

    Phoomak, Chatchai; Vaeteewoottacharn, Kulthida; Sawanyawisuth, Kanlayanee; Seubwai, Wunchana; Wongkham, Chaisiri; Silsirivanit, Atit; Wongkham, Sopit

    2016-01-01

    O-GlcNAcylation, an O-linked protein glycosylation with a single molecule of N-acetylglucosamine (GlcNAc), is reversibly controlled by O-GlcNAc transferase (OGT) and N-acetyl D-glucosaminidase (OGA). Aberrant O-GlcNAcylation contributes an important role in initiation and progression of many human cancers. Elevation of O-GlcNAcylation in tumor tissues and poor prognosis of cholangiocarcinoma (CCA) patients have been reported. In this study, the role of O-GlcNAcylation in promoting tumor progression was further investigated in CCA cell lines. Suppression of O-GlcNAcylation using small interfering RNAs of OGT (siOGT) significantly reduced cell migration and invasion of CCA cells whereas siOGA treated cells exhibited opposite effects. Manipulating levels of O-GlcNAcylation did affect the nuclear translocation of NF-κB and Akt-phosphorylation together with expression of matrix-metalloproteinases (MMPs). O-GlcNAcylation and nuclear translocation of NF-κB, the upstream signaling cascade of MMP activation were shown to be important for MMP activation. Immunoprecipitation revealed the elevation of O-GlcNAc-modified NF-κB with increased cellular O-GlcNAcylation. Involvement of O-GlcNAcylation in MMP-mediated migration and invasion of CCA cells was shown to be via O-GlcNAcylation and nuclear translocation of NF-κB. This information indicates the significance of O-GlcNAcylation in controlling the metastatic ability of CCA cells, hence, O-GlcNAcylation and its products may be new targets for treatment of metastatic CCA. PMID:27290989

  16. Overexpression of glutaredoxin protects cardiomyocytes against nitric oxide-induced apoptosis with suppressing the S-nitrosylation of proteins and nuclear translocation of GAPDH

    SciTech Connect

    Inadomi, Chiaki; Murata, Hiroaki; Ihara, Yoshito; Goto, Shinji; Urata, Yoshishige; Yodoi, Junji; Kondo, Takahito; Sumikawa, Koji

    2012-08-31

    Highlights: Black-Right-Pointing-Pointer GRX1 overexpression protects myocardiac H9c2 cells against NO-induced apoptosis. Black-Right-Pointing-Pointer NO-induced nuclear translocation of GAPDH is suppressed in GRX overexpressors. Black-Right-Pointing-Pointer Oxidation of GAPDH by NO is less in GRX overexpressors than in controls. -- Abstract: There is increasing evidence demonstrating that glutaredoxin 1 (GRX1), a cytosolic enzyme responsible for the catalysis of protein deglutathionylation, plays distinct roles in inflammation and apoptosis by inducing changes in the cellular redox system. In this study, we investigated whether and how the overexpression of GRX1 protects cardiomyocytes against nitric oxide (NO)-induced apoptosis. Cardiomyocytes (H9c2 cells) were transfected with the expression vector for mouse GRX1 cDNA, and mock-transfected cells were used as a control. Compared with the mock-transfected cells, the GRX1-transfected cells were more resistant to NO-induced apoptosis. Stimulation with NO significantly increased the nuclear translocation of glyceraldehyde-3-phosphate dehydrogenase (GAPDH), a pro-apoptotic protein, in the mock-transfected cells, but did not change GAPDH localization in the GRX1-transfected cells. Furthermore, we found that NO stimulation clearly induced the oxidative modification of GAPDH in the mock-transfected cells, whereas less modification of GAPDH was observed in the GRX1-transfected cells. These data suggest that the overexpression of GRX1 could protect cardiomyocytes against NO-induced apoptosis, likely through the inhibition of the oxidative modification and the nuclear translocation of GAPDH.

  17. Nuclear translocation of annexin 1 following oxygen-glucose deprivation-reperfusion induces apoptosis by regulating Bid expression via p53 binding.

    PubMed

    Li, Xing; Zhao, Yin; Xia, Qian; Zheng, Lu; Liu, Lu; Zhao, Baoming; Shi, Jing

    2016-01-01

    Previous data have suggested that the nuclear translocation of annexin 1 (ANXA1) is involved in neuronal apoptosis after ischemic stroke. As the mechanism and function of ANXA1 nuclear migration remain unclear, it is important to clarify how ANXA1 performs its role as an apoptosis 'regulator' in the nucleus. Here we report that importazole (IPZ), an importin β (Impβ)-specific inhibitor, decreased ANXA1 nuclear accumulation and reduced the rate of neuronal death induced by nuclear ANXA1 migration after oxygen-glucose deprivation-reoxygenation (OGD/R). Notably, ANXA1 interacted with the Bid (BH3-interacting-domain death agonist) promoter directly; however; this interaction could be partially blocked by the p53 inhibitor pifithrin-α (PFT-α). Accordingly, ANXA1 was shown to interact with p53 in the nucleus and this interaction was enhanced following OGD/R. A luciferase reporter assay revealed that ANXA1 was involved in the regulation of p53-mediated transcriptional activation after OGD/R. Consistent with this finding, the nuclear translocation of ANXA1 after OGD/R upregulated the expression of Bid, which was impeded by IPZ, ANXA1 shRNA, or PFT-α. Finally, cell-survival testing demonstrated that silencing ANXA1 could improve the rate of cell survival and decrease the expression of both cleaved caspase-3 and cleaved poly(ADP-ribose) polymerase. These data suggested that Impβ-dependent nuclear ANXA1 migration participates in the OGD/R-dependent induction of neuronal apoptosis. ANXA1 interacts with p53 and promotes p53 transcriptional activity, which in turn regulates Bid expression. Silencing ANXA1 decreases the expression of Bid and suppresses caspase-3 pathway activation, thus improving cell survival after OGD/R. This study provides a novel mechanism whereby ANXA1 regulates apoptosis, suggesting the potential for a previously unidentified treatment strategy in minimizing apoptosis after OGD/R. PMID:27584794

  18. Endocytosis as a Biological Response in Receptor Pharmacology: Evaluation by Fluorescence Microscopy

    PubMed Central

    Varela, María J.; de la Rocha, Arlet M. Acanda; Fernandez-Troyano, Juan C.; Barreiro, R. Belén; Lopez-Gimenez, Juan F.

    2015-01-01

    The activation of G-protein coupled receptors by agonist compounds results in diverse biological responses in cells, such as the endocytosis process consisting in the translocation of receptors from the plasma membrane to the cytoplasm within internalizing vesicles or endosomes. In order to functionally evaluate endocytosis events resulted from pharmacological responses, we have developed an image analysis method –the Q-Endosomes algorithm– that specifically discriminates the fluorescent signal originated at endosomes from that one observed at the plasma membrane in images obtained from living cells by fluorescence microscopy. Mu opioid (MOP) receptor tagged at the carboxy-terminus with yellow fluorescent protein (YFP) and permanently expressed in HEK293 cells was used as experimental model to validate this methodology. Time-course experiments performed with several agonists resulted in different sigmoid curves depending on the drug used to initiate MOP receptor endocytosis. Thus, endocytosis resulting from the simultaneous activation of co-expressed MOP and serotonin 5-HT2C receptors by morphine plus serotonin was significantly different, in kinetics as well as in maximal response parameters, from the one caused by DAMGO, sufentanyl or methadone. Therefore, this analytical tool permits the pharmacological characterization of receptor endocytosis in living cells with functional and temporal resolution. PMID:25849355

  19. Caspase 3 inactivates biologically active full length interleukin-33 as a classical cytokine but does not prohibit nuclear translocation

    SciTech Connect

    Ali, Shafaqat; Nguyen, Dang Quan; Falk, Werner; Martin, Michael Uwe

    2010-01-15

    IL-33 is a member of the IL-1 family of cytokines with dual function which either activates cells via the IL-33 receptor in a paracrine fashion or translocates to the nucleus to regulate gene transcription in an intracrine manner. We show that full length murine IL-33 is active as a cytokine and that it is not processed by caspase 1 to mature IL-33 but instead cleaved by caspase 3 at aa175 to yield two products which are both unable to bind to the IL-33 receptor. Full length IL-33 and its N-terminal caspase 3 breakdown product, however, translocate to the nucleus. Finally, bioactive IL-33 is not released by cells constitutively or after activation. This suggests that IL-33 is not a classical cytokine but exerts its function in the nucleus of intact cells and only activates others cells via its receptor as an alarm mediator after destruction of the producing cell.

  20. Levonorgestrel Inhibits Human Endometrial Cell Proliferation through the Upregulation of Gap Junctional Intercellular Communication via the Nuclear Translocation of Ser255 Phosphorylated Cx43

    PubMed Central

    Zhao, Xiaomiao; Tang, Xueliang; Ma, Tingting; Ding, Miao; Bian, Lijuan; Chen, Dongmei; Li, Yangzhi; Wang, Liangan; Zhuang, Yanyan; Xie, Meiqing; Yang, Dongzi

    2015-01-01

    Objects. To assess whether LNG exerts antiproliferation effects on human endometrial cells through changes of GJIC function and the phosphorylated Cx43. Methods. Cell proliferation and apoptosis of human endometrial stromal cells (HESCs) and glandular cells (HEGCs) treated with LNG in a dose- and time-dependent manner. GJIC change and further total Cx43 and serine 368 and 255 phosphorylated Cx43 were measured. Results. 5 × 10−5 mol/L LNG revealed a time-dependent inhibition of cell proliferation and an increase of apoptosis in both HESCs and HEGCs. Furthermore, these cells demonstrated a significant GJIC enhancement upon treatment with 5 × 10−5 mol/L for 48 hours. The effects of LNG were most noticeable in HESCs rather than in HEGCs. Associated with these changes, LNG induced a relative increase in total Cx43 in a time-dependent manner but not Ser368 phosphorylated Cx43. Moreover, laser scanning confocal microscope confirmed the increased expression of total Cx43 in the cytoplasm and, interestingly, the nuclear translocation of Ser255 phosphorylated Cx43. Conclusions. LNG likely inhibits the proliferation and promotes apoptosis in HESCs and HEGCs though an increase in gap junction permeability in vitro, which is achieved through the upregulation of Cx43 expression and the translocation of serine 255 phosphorylated Cx43 from the plasma to the nuclear compartment. PMID:26161412

  1. Aromadendrin Inhibits Lipopolysaccharide-Induced Nuclear Translocation of NF-κB and Phosphorylation of JNK in RAW 264.7 Macrophage Cells

    PubMed Central

    Lee, Jae-Won; Kim, Nam Ho; Kim, Ji-Young; Park, Jun-Ho; Shin, Seung-Yeon; Kwon, Yong-Soo; Lee, Hee Jae; Kim, Sung-Soo; Chun, Wanjoo

    2013-01-01

    Aromadendrin, a flavonol, has been reported to possess a variety of pharmacological activities such as anti-inflammatory, antioxidant, and anti-diabetic properties. However, the underlying mechanism by which aromadendrin exerts its biological activity has not been extensively demonstrated. The objective of this study is to elucidate the anti-inflammatory mechanism of aromadedrin in lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophage cells. Aromadendrin significantly suppressed LPS-induced excessive production of pro-inflammatory mediators such as nitric oxide (NO) and PGE2. In accordance, aromadendrin attenuated LPSinduced overexpression iNOS and COX-2. In addition, aromadendrin significantly suppressed LPS-induced degradation of IκB, which sequesters NF-κB in cytoplasm, consequently inhibiting the nuclear translocation of pro-inflammatory transcription factor NF- κB. To elucidate the underlying signaling mechanism of anti-inflammatory activity of aromadendrin, MAPK signaling pathway was examined. Aromadendrin significantly attenuated LPS-induced activation of JNK, but not ERK and p38, in a concentration-dependent manner. Taken together, the present study clearly demonstrates that aromadendrin exhibits anti-inflammatory activity through the suppression of nuclear translocation of NF-κB and phosphorylation of JNK in LPS-stimulated RAW 264.7 macrophage cells. PMID:24265867

  2. Inhibitory function of adapter-related protein complex 2 alpha 1 subunit in the process of nuclear translocation of human immunodeficiency virus type 1 genome

    SciTech Connect

    Kitagawa, Yukiko; Kameoka, Masanori Shoji-Kawata, Sanae; Iwabu, Yukie; Mizuta, Hiroyuki; Tokunaga, Kenzo; Fujino, Masato; Natori, Yukikazu; Yura, Yoshiaki; Ikuta, Kazuyoshi

    2008-03-30

    The transfection of human cells with siRNA against adapter-related protein complex 2 alpha 1 subunit (AP2{alpha}) was revealed to significantly up-regulate the replication of human immunodeficiency virus type 1 (HIV-1). This effect was confirmed by cell infection with vesicular stomatitis virus G protein-pseudotyped HIV-1 as well as CXCR4-tropic and CCR5-tropic HIV-1. Viral adsorption, viral entry and reverse transcription processes were not affected by cell transfection with siRNA against AP2{alpha}. In contrast, viral nuclear translocation as well as the integration process was significantly up-regulated in cells transfected with siRNA against AP2{alpha}. Confocal fluorescence microscopy revealed that a subpopulation of AP2{alpha} was not only localized in the cytoplasm but was also partly co-localized with lamin B, importin {beta} and Nup153, implying that AP2{alpha} negatively regulates HIV-1 replication in the process of nuclear translocation of viral DNA in the cytoplasm or the perinuclear region. We propose that AP2{alpha} may be a novel target for disrupting HIV-1 replication in the early stage of the viral life cycle.

  3. Brain distribution of carboxy terminus of Hsc70-interacting protein (CHIP) and its nuclear translocation in cultured cortical neurons following heat stress or oxygen-glucose deprivation.

    PubMed

    Anderson, Lauren G; Meeker, Rick B; Poulton, Winona E; Huang, David Y

    2010-09-01

    Carboxy terminus of Hsc70-interacting protein (CHIP) is thought to be a cytoprotective protein with protein quality control roles in neurodegenerative diseases and myocardial ischemia. This study describes the localization of CHIP expression in normal rodent brain and the early CHIP response in primary cultures of cortical neurons following ischemic stress models: heat stress (HS) and oxygen-glucose deprivation (OGD). CHIP was highly expressed throughout the brain, predominantly in neurons. The staining pattern was primarily cytoplasmic, although small amounts were seen in the nucleus. More intense nuclear staining was observed in primary cultured neurons which increased with stress. Nuclear accumulation of CHIP occurred within 5-10 min of HS and decreased to baseline levels or lower by 30-60 min. Decrease in nuclear CHIP at 30-60 min of HS was associated with a sharp increase in delayed cell death. While no changes in cytoplasmic CHIP were observed immediately following OGD, nuclear levels of CHIP increased slightly in response to OGD durations of 30 to 240 min. OGD-induced increases in nuclear CHIP decreased slowly during post-ischemic recovery. Nuclear CHIP decreased earlier in recovery following 120 min of OGD (4 h) than 30 min of OGD (12 h). Significant cell death first appeared between 12 and 24 h after OGD, again suggesting that delayed cell death follows closely behind the disappearance of nuclear CHIP. The ability of CHIP to translocate to and accumulate in the nucleus may be a limiting variable that determines how effectively cells respond to external stressors to facilitate cell survival. Using primary neuronal cell cultures, we were able to demonstrate rapid translocation of CHIP to the nucleus within minutes of heat stress and oxygen-glucose deprivation. An inverse relationship between nuclear CHIP and delayed cell death at 24 h suggests that the decrease in nuclear CHIP following extreme stress is linked to delayed cell death. Our findings of acute

  4. Robertsonian translocations

    SciTech Connect

    1993-12-31

    Chapter 27, describes the occurrence of Robertsonian translocations (RTs), which refer to the recombination of whole chromosome arms, in both monocentric and dicentric chromosomes. The nonrandom participation of acrocentric chromosomes in RTs is documented by various methods, including unbiased ascertainment and ascertainment through trisomy, infertility, unspecified mental retardation, and Prader-Willi syndrome. Causes of nonrandom participation of chromosomes in RTs is presented, as are the following topics: segregation in carriers of RTs and segregation in sperm cells of RT carriers, interchromosomal effects and conclusions. 48 refs., 3 figs., 2 tabs.

  5. Ricin A chain reaches the endoplasmic reticulum after endocytosis

    SciTech Connect

    Liu Qiong; Zhan Jinbiao . E-mail: jzhan2k@zju.edu.cn; Chen Xinhong; Zheng Shu

    2006-05-12

    Ricin is a potent ribosome inactivating protein and now has been widely used for synthesis of immunotoxins. To target ribosome in the mammalian cytosol, ricin must firstly retrograde transport from the endomembrane system to reach the endoplasmic reticulum (ER) where the ricin A chain (RTA) is recognized by ER components that facilitate its membrane translocation to the cytosol. In the study, the fusion gene of enhanced green fluorescent protein (EGFP)-RTA was expressed with the pET-28a (+) system in Escherichia coli under the control of a T7 promoter. The fusion protein showed a green fluorescence. The recombinant protein can be purified by metal chelated affinity chromatography on a column of NTA. The rabbit anti-GFP antibody can recognize the fusion protein of EGFP-RTA just like the EGFP protein. The cytotoxicity of EGFP-RTA and RTA was evaluated by the MTT assay in HeLa and HEP-G2 cells following fluid-phase endocytosis. The fusion protein had a similar cytotoxicity of RTA. After endocytosis, the subcellular location of the fusion protein can be observed with the laser scanning confocal microscopy and the immuno-gold labeling Electro Microscopy. This study provided important evidence by a visualized way to prove that RTA does reach the endoplasmic reticulum.

  6. BZLF1, an Epstein-Barr virus immediate-early protein, induces p65 nuclear translocation while inhibiting p65 transcriptional function

    SciTech Connect

    Morrison, Thomas E.; Kenney, Shannon C. . E-mail: shann@med.unc.edu

    2004-10-25

    We have previously demonstrated that the Epstein-Barr virus immediate-early BZLF1 protein interacts with, and is inhibited by, the NF-{kappa}B family member p65. However, the effects of BZLF1 on NF-{kappa}B activity have not been intensively studied. Here we show that BZLF1 inhibits p65-dependent gene expression. BZLF1 inhibited the ability of IL-1, as well as transfected p65, to activate the expression of two different NF-{kappa}B-responsive genes, ICAM-1 and I{kappa}B-{alpha}. BZLF1 also reduced the constitutive level of I{kappa}B-{alpha} protein in HeLa and A549 cells, and increased the amount of nuclear NF-{kappa}B to a similar extent as tumor necrosis factor-alpha (TNF-{alpha}) treatment. In spite of this BZLF1-associated increase in the nuclear form of NF-{kappa}B, BZLF1 did not induce binding of NF-{kappa}B to NF-{kappa}B responsive promoters (as determined by chromatin immunoprecipitation assay) in vivo, although TNF-{alpha} treatment induced NF-{kappa}B binding as expected. Overexpression of p65 dramatically inhibited the lytic replication cycle of EBV in 293-EBV cells, confirming that NF-{kappa}B also inhibits BZLF1 transcriptional function. Our results are consistent with a model in which BZLF1 inhibits the transcriptional function of p65, resulting in decreased transcription of I{kappa}B-{alpha}, decreased expression of I{kappa}B-{alpha} protein, and subsequent translocation of NF-{kappa}B to the nucleus. This nuclear translocation of NF-{kappa}B may promote viral latency by negatively regulating BZLF1 transcriptional activity. In situations where p65 activity is limiting in comparison to BZLF1, the ability of BZLF1 to inhibit p65 transcriptional function may protect the virus from the host immune system during the lytic form of infection.

  7. Peroxisome proliferator-activated receptor (PPAR)-binding protein (PBP) but not PPAR-interacting protein (PRIP) is required for nuclear translocation of constitutive androstane receptor in mouse liver

    SciTech Connect

    Guo Dongsheng; Sarkar, Joy; Ahmed, Mohamed R.; Viswakarma, Navin; Jia Yuzhi; Yu Songtao; Sambasiva Rao, M.; Reddy, Janardan K. . E-mail: jkreddy@northwestern.edu

    2006-08-25

    The constitutive androstane receptor (CAR) regulates transcription of phenobarbital-inducible genes that encode xenobiotic-metabolizing enzymes in liver. CAR is localized to the hepatocyte cytoplasm but to be functional, it translocates into the nucleus in the presence of phenobarbital-like CAR ligands. We now demonstrate that adenovirally driven EGFP-CAR, as expected, translocates into the nucleus of normal wild-type hepatocytes following phenobarbital treatment under both in vivo and in vitro conditions. Using this approach we investigated the role of transcription coactivators PBP and PRIP in the translocation of EGFP-CAR into the nucleus of PBP and PRIP liver conditional null mouse hepatocytes. We show that coactivator PBP is essential for nuclear translocation of CAR but not PRIP. Adenoviral expression of both PBP and EGFP-CAR restored phenobarbital-mediated nuclear translocation of exogenously expressed CAR in PBP null livers in vivo and in PBP null primary hepatocytes in vitro. CAR translocation into the nucleus of PRIP null livers resulted in the induction of CAR target genes such as CYP2B10, necessary for the conversion of acetaminophen to its hepatotoxic intermediate metabolite, N-acetyl-p-benzoquinone imine. As a consequence, PRIP-deficiency in liver did not protect from acetaminophen-induced hepatic necrosis, unlike that exerted by PBP deficiency. These results establish that transcription coactivator PBP plays a pivotal role in nuclear localization of CAR, that it is likely that PBP either enhances nuclear import or nuclear retention of CAR in hepatocytes, and that PRIP is redundant for CAR function.

  8. Differential modulatory effects of GSK-3β and HDM2 on sorafenib-induced AIF nuclear translocation (programmed necrosis) in melanoma

    PubMed Central

    2011-01-01

    Background GSK-3β phosphorylates numerous substrates that govern cell survival. It phosphorylates p53, for example, and induces its nuclear export, HDM2-dependent ubiquitination, and proteasomal degradation. GSK-3β can either enhance or inhibit programmed cell death, depending on the nature of the pro-apoptotic stimulus. We previously showed that the multikinase inhibitor sorafenib activated GSK-3β and that this activation attenuated the cytotoxic effects of the drug in various BRAF-mutant melanoma cell lines. In this report, we describe the results of studies exploring the effects of GSK-3β on the cytotoxicity and antitumor activity of sorafenib combined with the HDM2 antagonist MI-319. Results MI-319 alone increased p53 levels and p53-dependent gene expression in melanoma cells but did not induce programmed cell death. Its cytotoxicity, however, was augmented in some melanoma cell lines by the addition of sorafenib. In responsive cell lines, the MI-319/sorafenib combination induced the disappearance of p53 from the nucleus, the down modulation of Bcl-2 and Bcl-xL, the translocation of p53 to the mitochondria and that of AIF to the nuclei. These events were all GSK-3β-dependent in that they were blocked with a GSK-3β shRNA and facilitated in otherwise unresponsive melanoma cell lines by the introduction of a constitutively active form of the kinase (GSK-3β-S9A). These modulatory effects of GSK-3β on the activities of the sorafenib/MI-319 combination were the exact reverse of its effects on the activities of sorafenib alone, which induced the down modulation of Bcl-2 and Bcl-xL and the nuclear translocation of AIF only in cells in which GSK-3β activity was either down modulated or constitutively low. In A375 xenografts, the antitumor effects of sorafenib and MI-319 were additive and associated with the down modulation of Bcl-2 and Bcl-xL, the nuclear translocation of AIF, and increased suppression of tumor angiogenesis. Conclusions Our data demonstrate a

  9. The Ah receptor nuclear translocator gene (ARNT) is located on q21 of human chromosome 1 and on mouse chromosome 3 near Cf-3

    SciTech Connect

    Johnson, B.; Brooks, B.A.; Heinzmann, C. ); Mohandas, T. )

    1993-09-01

    The authors have mapped the Ah (aryl hydrocarbon) receptor nuclear translocator (ARNT) gene to a conserved linkage group located on mouse chromosome 3 and human chromosome 1. EcoRi-digested DNA from a panel of 17 human x mouse somatic cell hybrids was probed with a cDNA fragment of the human ARNT gene. Six of the 17 independent mouse x human hybrids were positive for human bands. Human chromosome 1 showed complete cosegregation with the gene, whereas discordant segregation was observed for all other human chromosomes. The human gene was localized to 1q21 by using DNA from mouse x human hybrid clones that retain translocations involving human chromosome 1, by segregation analysis in nine informative CEPH families, and by in situ hybridization. The mouse homologue was mapped to mouse chromosome 3 using a panel of 16 hamster x mouse somatic cell hybrids. Six of 16 mouse x hamster hybrids were positive for mouse bands, showing complete concordance with mouse chromosome 3. The mouse Arnt gene was regionally mapped on chromosome 3, using linkage analysis in an interspecific backcross. The results indicate that the mouse gene resides about 40 cM from the centromere and about 10 cM proximal to Cf-3, the gene for tissue factor. 41 refs., 4 figs., 5 tabs.

  10. Herpesvirus Genome Recognition Induced Acetylation of Nuclear IFI16 Is Essential for Its Cytoplasmic Translocation, Inflammasome and IFN-β Responses.

    PubMed

    Ansari, Mairaj Ahmed; Dutta, Sujoy; Veettil, Mohanan Valiya; Dutta, Dipanjan; Iqbal, Jawed; Kumar, Binod; Roy, Arunava; Chikoti, Leela; Singh, Vivek Vikram; Chandran, Bala

    2015-07-01

    The IL-1β and type I interferon-β (IFN-β) molecules are important inflammatory cytokines elicited by the eukaryotic host as innate immune responses against invading pathogens and danger signals. Recently, a predominantly nuclear gamma-interferon-inducible protein 16 (IFI16) involved in transcriptional regulation has emerged as an innate DNA sensor which induced IL-1β and IFN-β production through inflammasome and STING activation, respectively. Herpesvirus (KSHV, EBV, and HSV-1) episomal dsDNA genome recognition by IFI16 leads to IFI16-ASC-procaspase-1 inflammasome association, cytoplasmic translocation and IL-1β production. Independent of ASC, HSV-1 genome recognition results in IFI16 interaction with STING in the cytoplasm to induce interferon-β production. However, the mechanisms of IFI16-inflammasome formation, cytoplasmic redistribution and STING activation are not known. Our studies here demonstrate that recognition of herpesvirus genomes in the nucleus by IFI16 leads into its interaction with histone acetyltransferase p300 and IFI16 acetylation resulting in IFI16-ASC interaction, inflammasome assembly, increased interaction with Ran-GTPase, cytoplasmic redistribution, caspase-1 activation, IL-1β production, and interaction with STING which results in IRF-3 phosphorylation, nuclear pIRF-3 localization and interferon-β production. ASC and STING knockdowns did not affect IFI16 acetylation indicating that this modification is upstream of inflammasome-assembly and STING-activation. Vaccinia virus replicating in the cytoplasm did not induce nuclear IFI16 acetylation and cytoplasmic translocation. IFI16 physically associates with KSHV and HSV-1 genomes as revealed by proximity ligation microscopy and chromatin-immunoprecipitation studies which is not hampered by the inhibition of acetylation, thus suggesting that acetylation of IFI16 is not required for its innate sensing of nuclear viral genomes. Collectively, these studies identify the increased nuclear

  11. Herpesvirus Genome Recognition Induced Acetylation of Nuclear IFI16 Is Essential for Its Cytoplasmic Translocation, Inflammasome and IFN-β Responses

    PubMed Central

    Ansari, Mairaj Ahmed; Dutta, Sujoy; Veettil, Mohanan Valiya; Dutta, Dipanjan; Iqbal, Jawed; Kumar, Binod; Roy, Arunava; Chikoti, Leela; Singh, Vivek Vikram; Chandran, Bala

    2015-01-01

    The IL-1β and type I interferon-β (IFN-β) molecules are important inflammatory cytokines elicited by the eukaryotic host as innate immune responses against invading pathogens and danger signals. Recently, a predominantly nuclear gamma-interferon-inducible protein 16 (IFI16) involved in transcriptional regulation has emerged as an innate DNA sensor which induced IL-1β and IFN-β production through inflammasome and STING activation, respectively. Herpesvirus (KSHV, EBV, and HSV-1) episomal dsDNA genome recognition by IFI16 leads to IFI16-ASC-procaspase-1 inflammasome association, cytoplasmic translocation and IL-1β production. Independent of ASC, HSV-1 genome recognition results in IFI16 interaction with STING in the cytoplasm to induce interferon-β production. However, the mechanisms of IFI16-inflammasome formation, cytoplasmic redistribution and STING activation are not known. Our studies here demonstrate that recognition of herpesvirus genomes in the nucleus by IFI16 leads into its interaction with histone acetyltransferase p300 and IFI16 acetylation resulting in IFI16-ASC interaction, inflammasome assembly, increased interaction with Ran-GTPase, cytoplasmic redistribution, caspase-1 activation, IL-1β production, and interaction with STING which results in IRF-3 phosphorylation, nuclear pIRF-3 localization and interferon-β production. ASC and STING knockdowns did not affect IFI16 acetylation indicating that this modification is upstream of inflammasome-assembly and STING-activation. Vaccinia virus replicating in the cytoplasm did not induce nuclear IFI16 acetylation and cytoplasmic translocation. IFI16 physically associates with KSHV and HSV-1 genomes as revealed by proximity ligation microscopy and chromatin-immunoprecipitation studies which is not hampered by the inhibition of acetylation, thus suggesting that acetylation of IFI16 is not required for its innate sensing of nuclear viral genomes. Collectively, these studies identify the increased nuclear

  12. Hydrogen Sulfide Up-Regulates the Expression of ATP-Binding Cassette Transporter A1 via Promoting Nuclear Translocation of PPARα

    PubMed Central

    Li, Dong; Xiong, Qinghui; Peng, Jin; Hu, Bin; Li, Wanzhen; Zhu, Yizhun; Shen, Xiaoyan

    2016-01-01

    ATP binding cassette transporter A1 (ABCA1) plays a key role in atherogenesis. Hydrogen sulfide (H2S), a gasotransmitter, has been reported to play an anti-atherosclerotic role. However, the underlying mechanisms are largely unknown. In this study we examined whether and how H2S regulates ABCA1 expression. The effect of H2S on ABCA1 expression and lipid metabolism were assessed in vitro by cultured human hepatoma cell line HepG2, and in vivo by ApoE−/− mice with a high-cholesterol diet. NaHS (an exogenous H2S donor) treatment significantly increased the expression of ABCA1, ApoA1, and ApoA2 and ameliorated intracellular lipid accumulation in HepG2 cells. Depletion of the endogenous H2S generator cystathionine γ-lyase (CSE) by small RNA interference (siRNA) significantly decreased the expression of ABCA1 and resulted in the accumulation of lipids in HepG2 cells. In vivo NaHS treatment significantly reduced the serum levels of total cholesterol (TC), triglycerides (TG), and low-density lipoproteins (LDL), diminished atherosclerotic plaque size, and increased hepatic ABCA1 expression in fat-fed ApoE−/− mice. Further study revealed that NaHS upregulated ABCA1 expression by promoting peroxisome proliferator-activated receptor α (PPARα) nuclear translocation. H2S up-regulates the expression of ABCA1 by promoting the nuclear translocation of PPARα, providing a fundamental mechanism for the anti-atherogenic activity of H2S. H2S may be a promising potential drug candidate for the treatment of atherosclerosis. PMID:27136542

  13. Hydrogen Sulfide Up-Regulates the Expression of ATP-Binding Cassette Transporter A1 via Promoting Nuclear Translocation of PPARα.

    PubMed

    Li, Dong; Xiong, Qinghui; Peng, Jin; Hu, Bin; Li, Wanzhen; Zhu, Yizhun; Shen, Xiaoyan

    2016-01-01

    ATP binding cassette transporter A1 (ABCA1) plays a key role in atherogenesis. Hydrogen sulfide (H₂S), a gasotransmitter, has been reported to play an anti-atherosclerotic role. However, the underlying mechanisms are largely unknown. In this study we examined whether and how H₂S regulates ABCA1 expression. The effect of H₂S on ABCA1 expression and lipid metabolism were assessed in vitro by cultured human hepatoma cell line HepG2, and in vivo by ApoE(-/-) mice with a high-cholesterol diet. NaHS (an exogenous H₂S donor) treatment significantly increased the expression of ABCA1, ApoA1, and ApoA2 and ameliorated intracellular lipid accumulation in HepG2 cells. Depletion of the endogenous H₂S generator cystathionine γ-lyase (CSE) by small RNA interference (siRNA) significantly decreased the expression of ABCA1 and resulted in the accumulation of lipids in HepG2 cells. In vivo NaHS treatment significantly reduced the serum levels of total cholesterol (TC), triglycerides (TG), and low-density lipoproteins (LDL), diminished atherosclerotic plaque size, and increased hepatic ABCA1 expression in fat-fed ApoE(-/-) mice. Further study revealed that NaHS upregulated ABCA1 expression by promoting peroxisome proliferator-activated receptor α (PPARα) nuclear translocation. H₂S up-regulates the expression of ABCA1 by promoting the nuclear translocation of PPARα, providing a fundamental mechanism for the anti-atherogenic activity of H₂S. H₂S may be a promising potential drug candidate for the treatment of atherosclerosis. PMID:27136542

  14. Activation of adenosine A2A receptor reduces osteoclast formation via PKA- and ERK1/2-mediated suppression of NFκB nuclear translocation

    PubMed Central

    Mediero, Aránzazu; Perez-Aso, Miguel; Cronstein, Bruce N

    2013-01-01

    Background and Purpose We previously reported that adenosine, acting at adenosine A2A receptors (A2AR), inhibits osteoclast (OC) differentiation in vitro (A2AR activation OC formation reduces by half) and in vivo. For a better understanding how adenosine A2AR stimulation regulates OC differentiation, we dissected the signalling pathways involved in A2AR signalling. Experimental Approach OC differentiation was studied as TRAP+ multinucleated cells following M-CSF/RANKL stimulation of either primary murine bone marrow cells or the murine macrophage line, RAW264.7, in presence/absence of the A2AR agonist CGS21680, the A2AR antagonist ZM241385, PKA activators (8-Cl-cAMP 100 nM, 6-Bnz-cAMP) and the PKA inhibitor (PKI). cAMP was quantitated by EIA and PKA activity assays were carried out. Signalling events were studied in PKA knockdown (lentiviral shRNA for PKA) RAW264.7 cells (scrambled shRNA as control). OC marker expression was studied by RT-PCR. Key Results A2AR stimulation increased cAMP and PKA activity which and were reversed by addition of ZM241385. The direct PKA stimuli 8-Cl-cAMP and 6-Bnz-cAMP inhibited OC maturation whereas PKI increased OC differentiation. A2AR stimulation inhibited p50/p105 NFκB nuclear translocation in control but not in PKA KO cells. A2AR stimulation activated ERK1/2 by a PKA-dependent mechanism, an effect reversed by ZM241385, but not p38 and JNK activation. A2AR stimulation inhibited OC expression of differentiation markers by a PKA-mechanism. Conclusions and Implications A2AR activation inhibits OC differentiation and regulates bone turnover via PKA-dependent inhibition of NFκB nuclear translocation, suggesting a mechanism by which adenosine could target bone destruction in inflammatory diseases like Rheumatoid Arthritis. PMID:23647065

  15. Transcription of the Tollip gene is elevated in intestinal epithelial cells through impaired O-GlcNAcylation-dependent nuclear translocation of the negative regulator Elf-1

    SciTech Connect

    Sugi, Yutaka; Takahashi, Kyoko; Nakano, Kou; Hosono, Akira; Kaminogawa, Shuichi

    2011-09-09

    Highlights: {yields} Transcriptional activation of the Tollitip gene is higher in IECs than in monocytes. {yields} Nt -194/-186 region acts as a cis-element and is recognized by Elf-1. {yields} Elf-1 suppresses Tollip gene transcription in monocytes but not in IECs. {yields} O-GlcNAc modification is necessary for nuclear translocation of Elf-1. {yields} O-GlcNAcylation-dependent nuclear translocation of Elf-1 is impaired in IECs. -- Abstract: Intestinal epithelial cells (IECs) must be tolerant of the large number of commensal bacteria inhabiting the intestinal tract to avoid excessive inflammatory reactions. Toll-interacting protein (Tollip), a negative regulator of Toll-like receptor signaling, is known to be expressed at high levels in IECs, and to thereby contribute to the hyporesponsiveness of IECs to commensals. In this study, we analyzed the underlying mechanisms for elevated transcription of the Tollip gene in IECs using a human IEC line, Caco-2, and a human monocyte line, THP-1, as a control. Elf-1 was identified as a transcription factor that negatively regulates Tollip gene expression. The transcription factor Elf-1 was localized in the nucleus by O-linked N-acetylglucosamine (O-GlcNAc) modification, whereas the unmodified form was detected only in the cytoplasm. Comparison of Caco-2 and THP-1 cells revealed that O-GlcNAc modification of Elf-1 was significantly lower in IECs than in monocytes. Collectively, the results indicate that insufficient O-GlcNAc modification prevents Elf-1-mediated transcriptional repression and thereby upregulates Tollip gene expression in IECs.

  16. Conserved Residues in the N Terminus of Lipin-1 Are Required for Binding to Protein Phosphatase-1c, Nuclear Translocation, and Phosphatidate Phosphatase Activity*

    PubMed Central

    Kok, Bernard P. C.; Skene-Arnold, Tamara D.; Ling, Ji; Benesch, Matthew G. K.; Dewald, Jay; Harris, Thurl E.; Holmes, Charles F. B.; Brindley, David N.

    2014-01-01

    Lipin-1 is a phosphatidate phosphatase in glycerolipid biosynthesis and signal transduction. It also serves as a transcriptional co-regulator to control lipid metabolism and adipogenesis. These functions are controlled partly by its subcellular distribution. Hyperphosphorylated lipin-1 remains sequestered in the cytosol, whereas hypophosphorylated lipin-1 translocates to the endoplasmic reticulum and nucleus. The serine/threonine protein phosphatase-1 catalytic subunit (PP-1c) is a major protein dephosphorylation enzyme. Its activity is controlled by interactions with different regulatory proteins, many of which contain conserved RVXF binding motifs. We found that lipin-1 binds to PP-1cγ through a similar HVRF binding motif. This interaction depends on Mg2+ or Mn2+ and is competitively inhibited by (R/H)VXF-containing peptides. Mutating the HVRF motif in the highly conserved N terminus of lipin-1 greatly decreases PP-1cγ interaction. Moreover, mutations of other residues in the N terminus of lipin-1 also modulate PP-1cγ binding. PP-1cγ binds poorly to a phosphomimetic mutant of lipin-1 and binds well to the non-phosphorylatable lipin-1 mutant. This indicates that lipin-1 is dephosphorylated before PP-1cγ binds to its HVRF motif. Importantly, mutating the HVRF motif also abrogates the nuclear translocation and phosphatidate phosphatase activity of lipin-1. In conclusion, we provide novel evidence of the importance of the lipin-1 N-terminal domain for its catalytic activity, nuclear localization, and binding to PP-1cγ. PMID:24558042

  17. Mechanical stretch-induced vascular hypertrophy occurs through modulation of leptin synthesis-mediated ROS formation and GATA-4 nuclear translocation

    PubMed Central

    Ghantous, Crystal M.; Kobeissy, Firas H.; Soudani, Nadia; Rahman, Farah A.; Al-Hariri, Mustafa; Itani, Hana A.; Sabra, Ramzi; Zeidan, Asad

    2015-01-01

    Background: Obesity and hypertension are associated with increased leptin production contributing to cardiovascular remodeling. Mechanisms involving mechanical stretch-induced leptin production and the cross talk between signaling pathways leading to vascular remodeling have not been fully elucidated. Methods and Results: Rat portal vein (RPV) organ culture was used to investigate the effect of mechanical stretch on leptin protein expression in vascular smooth muscle cells (VSMCs). Moreover, the involvement of reactive oxygen species (ROS), the RhoA/ROCK pathway, actin cytoskeleton dynamics and the transcriptional factor GATA-4 activation in mechanical stretch-induced vascular remodeling were investigated. Stretching the RPV for 1 or 24 h significantly increased leptin protein level and ROS formation in VSMCs, which was prevented by 1 h pretreatment with the ROCK inhibitor Y-27632 and the actin cytoskeleton depolymerization agent cytochalasin D. Moreover, Western blotting and immunohistochemistry revealed that mechanical stretch or treatment with 3.1 nmol/L leptin for 24 h significantly increased actin polymerization, as reflected by an increase in the F-actin to G-actin ratio. Increases in blood vessels’ wet weight and [3H]-leucine incorporation following a 24 h treatment with conditioned media from cultured stretched RPVs indicated RPV hypertrophy. This effect was prevented by 1 h pretreatment with anti-leptin antibody, indicating leptin’s crucial role in promoting VSMC hypertrophy. As an index of GATA-4 activation, GATA-4 nuclear translocation was assessed by immunohistochemistry method. Pretreating VSMC with leptin for 1 h significantly activated GATA-4 nuclear translocation, which was potently attenuated by the NADPH oxidase inhibitor apocynin, Y-27632, and cytochalasin D. Conclusion: Our results demonstrate that ROS formation, RhoA/ROCK pathway, and GATA-4 activation play a pivotal role in mechanical stretch-induced leptin synthesis leading to VSMC

  18. KIF13B enhances the endocytosis of LRP1 by recruiting LRP1 to caveolae

    PubMed Central

    Kanai, Yoshimitsu; Wang, Daliang

    2014-01-01

    Multifunctional low-density lipoprotein (LDL) receptor-related protein 1 (LRP1) recognizes and internalizes a large number of diverse ligands, including LDL and factor VIII. However, little is known about the regulation of LRP1 endocytosis. Here, we show that a microtubule-based motor protein, KIF13B, in an unexpected and unconventional function, enhances caveolin-dependent endocytosis of LRP1. KIF13B was highly expressed in the liver and was localized on the sinusoidal plasma membrane of hepatocytes. KIF13B knockout (KO) mice showed elevated levels of serum cholesterol and factor VIII, and KO MEFs showed decreased uptake of LDL. Exogenous KIF13B, initially localized on the plasma membrane with caveolae, was translocated to the vesicles in the cytoplasm with LRP1 and caveolin-1. KIF13B bound to hDLG1 and utrophin, which, in turn, bound to LRP1 and caveolae, respectively. These linkages were required for the KIF13B-enhanced endocytosis of LRP1. Thus, we propose that KIF13B, working as a scaffold, recruits LRP1 to caveolae via LRP1–hDLG1–KIF13B–utrophin–caveolae linkage and enhances the endocytosis of LRP1. PMID:24469637

  19. Dynorphin 1-17 and Its N-Terminal Biotransformation Fragments Modulate Lipopolysaccharide-Stimulated Nuclear Factor-kappa B Nuclear Translocation, Interleukin-1beta and Tumor Necrosis Factor-alpha in Differentiated THP-1 Cells

    PubMed Central

    2016-01-01

    Dynorphin 1–17, (DYN 1–17) opioid peptide produces antinociception following binding to the kappa-opioid peptide (KOP) receptor. Upon synthesis and release in inflamed tissues by immune cells, DYN 1–17 undergoes rapid biotransformation and yields a unique set of opioid and non-opioid fragments. Some of these major fragments possess a role in immunomodulation, suggesting that opioid-targeted therapeutics may be effective in diminishing the severity of inflammatory disorders. This study aimed to examine the immunomodulatory effects of DYN 1–17 and major N-terminal fragments found in the inflammatory environment on nuclear factor-kappaB/p65 (NF-κB/p65) nuclear translocation and the release of interleukin-1beta (IL-1β) and tumor necrosis factor-alpha (TNF-α) from lipopolysaccharide (LPS)-stimulated, differentiated THP-1 cells. The results demonstrate that NF-κB/p65 nuclear translocation was significantly attenuated following treatment with DYN 1–17 and a specific range of fragments, with the greatest reduction observed with DYN 1–7 at a low concentration (10 nM). Antagonism with a selective KOP receptor antagonist, ML-190, significantly reversed the inhibitory effects of DYN 1–17, DYN 1–6, DYN 1–7 and DYN 1–9, but not other DYN 1–17 N-terminal fragments (DYN 1–10 and 1–11) on NF-κB/p65 nuclear translocation. DYN 1–17 and selected fragments demonstrated differential modulation on the release of IL-1β and TNF-α with significant inhibition observed with DYN 1–7 at low concentrations (1 nM and 10 pM). These effects were blocked by ML-190, suggesting a KOP receptor-mediated pathway. The results demonstrate that DYN 1–17 and certain N-terminal fragments, produced in an inflamed environment, play an anti-inflammatory role by inhibiting NF-κB/p65 translocation and the subsequent cytokine release through KOP receptor-dependent and independent pathways. PMID:27055013

  20. Ca2+ and calmodulin initiate all forms of endocytosis during depolarization at a nerve terminal

    PubMed Central

    Xu, Jianhua; Fan, Junmei; Xue, Lei; Melicoff, Ernestina; Adachi, Roberto; Bai, Li; Wu, Ling-Gang

    2016-01-01

    Although endocytosis maintains synaptic transmission, how endocytosis is initiated is unclear. We found that calcium influx initiated all forms of endocytosis at a single nerve terminal in rodents, including clathrin-dependent slow endocytosis, bulk endocytosis, rapid endocytosis and endocytosis overshoot (excess endocytosis), with each being evoked with a correspondingly higher calcium threshold. As calcium influx increased, endocytosis gradually switched from very slow endocytosis to slow endocytosis to bulk endocytosis to rapid endocytosis and to endocytosis overshoot. The calcium-induced endocytosis rate increase was a result of the speeding up of membrane invagination and fission. Pharmacological experiments suggested that the calcium sensor mediating these forms of endocytosis is calmodulin. In addition to its role in recycling vesicles, calcium/calmodulin-initiated endocytosis facilitated vesicle mobilization to the readily releasable pool, probably by clearing fused vesicle membrane at release sites. Our findings provide a unifying mechanism for the initiation of various forms of endocytosis that are critical in maintaining exocytosis. PMID:19633667

  1. The function of EHD2 in endocytosis and defense signaling is affected by SUMO.

    PubMed

    Bar, Maya; Schuster, Silvia; Leibman, Meirav; Ezer, Ran; Avni, Adi

    2014-03-01

    Post-translational modification of target proteins by the small ubiquitin-like modifier protein (SUMO) regulates many cellular processes. SUMOylation has been shown to regulate cellular localization and function of a variety of proteins, in some cases affecting nuclear import or export. We have previously characterized two EHDs (EH domain containing proteins) in Arabidospis and showed their involvement in plant endocytosis. AtEHD2 has an inhibitory effect on endocytosis of transferrin, FM-4-64, and the leucine rich repeat receptor like protein LeEix2, an effect that requires and intact coiled-coil domain. Inhibition of endocytosis of LeEix2 by EHD2 is effective in inhibiting defense responses mediated by the LeEix2 receptor in response to its ligand EIX. In the present work we demonstrate that SUMOylation of EHD2 appears to be required for EHD2-induced inhibition of LeEix2 endocytosis. Indeed, we found that a mutant form of EHD2, possessing a defective SUMOylation site, has an increased nuclear abundance, can no longer be SUMOylated and is no longer effective in inhibiting LeEix2 endocytosis or defense signaling in response to EIX. PMID:24154852

  2. Nitric oxide and superoxide anion differentially activate poly(ADP-ribose) polymerase-1 and Bax to induce nuclear translocation of apoptosis-inducing factor and mitochondrial release of cytochrome c after spinal cord injury.

    PubMed

    Wu, Kay L H; Hsu, Chin; Chan, Julie Y H

    2009-07-01

    We reported previously that complete spinal cord transection (SCT) results in depression of mitochondrial respiratory chain enzyme activity that triggers apoptosis via sequential activations of apoptosis-inducing factor (AIF)- and caspase-dependent cascades in the injured spinal cord. This study tested the hypothesis that nitric oxide (NO) and superoxide anion (O(2)(.-)) serve as the interposing signals between SCT and impaired mitochondrial respiratory functions. Adult Sprague-Dawley rats manifested a significant increase in NO or O(2)(.-) level in the injured spinal cord during the first 3 days after SCT. The augmented O(2)(.-) production, along with concomitant reduction in mitochondrial respiratory chain enzyme activity or ATP level, nuclear translocation of AIF, cytosolic release of cytochrome c, and DNA fragmentation were reversed by osmotic minipump infusion of a NO trapping agent, carboxy-PTIO, or a superoxide dismutase mimetic, tempol, into the epicenter of the transected spinal cord. Intriguingly, carboxy-PTIO significantly suppressed upregulation of poly(ADP-ribose) polymerase-1 (PARP-1) in the nucleus, attenuated nuclear translocation of AIF, inhibited mitochondrial translocation of Bax and antagonized mitochondrial release of cytochrome c; whereas tempol only inhibited the later two cellular events after SCT. We conclude that overproduction of NO and O(2)(.-) in the injured spinal cord promulgates mitochondrial dysfunction and triggers AIF- and caspase-dependent apoptotic signaling cascades via differential upregulation of nuclear PARP-1 and mitochondrial translocation of Bax. PMID:19473058

  3. Regulation of Nuclear Translocation of the Myb1 Transcription Factor by TvCyclophilin 1 in the Protozoan Parasite Trichomonas vaginalis*

    PubMed Central

    Hsu, Hong-Ming; Chu, Chien-Hsin; Wang, Ya-Ting; Lee, Yu; Wei, Shu-Yi; Liu, Hsing-Wei; Ong, Shiou-Jeng; Chen, Chinpan; Tai, Jung-Hsiang

    2014-01-01

    In Trichomonas vaginalis, a Myb1 protein was previously demonstrated to repress transcription of an iron-inducible ap65-1 gene. In this study, a human cyclophilin A homologue, TvCyclophilin 1 (TvCyP1), was identified as a Myb1-binding protein using a bacterial two-hybrid library screening system. The recombinant TvCyP1 exhibited typical peptidyl-prolyl isomerase activity with kcat/Km of ∼7.1 μm−1 s−1. In a pulldown assay, the His-tagged Myb1 interacted with a GST-TvCyP1 fusion protein, which had an enzymatic proficiency half that of recombinant TvCyP1. Both the enzymatic proficiency of GST-TvCyP1 and its binding to His-Myb1 were eliminated by mutation of Arg63 in the catalytic motif or inhibited by cyclosporin A. TvCyP1 was primarily localized to the hydrogenosomes by immunofluorescence assay, but it was also co-purified with Myb1 in certain vesicle fractions from differential and gradient centrifugations. Transgenic cells overexpressing HA-TvCyP1 had a higher level of nuclear Myb1 but a much lower level of Myb1 associated with the vesicles than control and those overexpressing HA-TvCyP1(R63A). Myb1 was detected at a much higher level in the HA-TvCyP1 protein complex than in the HA-TvCyP1(R63A) protein complex immunoprecipitated from P15 and P100, but not S100, fractions of postnuclear lysates. A TvCyP1-binding motif, 105YGPKWNK111, was identified in Myb1 in which Gly106 and Pro107 were essential for its binding to TvCyP1. Mutation of Gly106 and Pro107, respectively, in HA-Myb1 resulted in cytoplasmic retention and elevated nuclear translocation of the overexpressed protein. These results suggest that TvCyP1 may induce the release of Myb1 that is restrained to certain cytoplasmic vesicles prior to its nuclear translocation. PMID:24831011

  4. Morphological changes and nuclear translocation of DLC1 tumor suppressor protein precede apoptosis in human non-small cell lung carcinoma cells

    SciTech Connect

    Yuan Baozhu Jefferson, Amy M.; Millecchia, Lyndell; Popescu, Nicholas C.; Reynolds, Steven H.

    2007-11-01

    We have previously shown that reactivation of DLC1, a RhoGAP containing tumor suppressor gene, inhibits tumorigenicity of human non-small cell lung carcinoma cells (NSCLC). After transfection of NSCLC cells with wild type (WT) DLC1, changes in cell morphology were observed. To determine whether such changes have functional implications, we generated several DLC1 mutants and examined their effects on cell morphology, proliferation, migration and apoptosis in a DLC1 deficient NSCLC cell line. We show that WT DLC1 caused actin cytoskeleton-based morphological alterations manifested as cytoplasmic extensions and membrane blebbings in most cells. Subsequently, a fraction of cells exhibiting DLC1 protein nuclear translocation (PNT) underwent caspase 3-dependent apoptosis. We also show that the RhoGAP domain is essential for the occurrence of morphological alterations, PNT and apoptosis, and the inhibition of cell migration. DLC1 PNT is dependent on a bipartite nuclear localizing sequence and most likely is regulated by a serine-rich domain at N-terminal part of the DLC1 protein. Also, we found that DLC1 functions in the cytoplasm as an inhibitor of tumor cell proliferation and migration, but in the nucleus as an inducer of apoptosis. Our analyses provide evidence for a possible link between morphological alterations, PNT and proapoptotic and anti-oncogenic activities of DLC1 in lung cancer.

  5. Morphological changes and nuclear translocation of DLC1 tumor suppressor protein precede apoptosis in human non-small cell lung carcinoma cells.

    PubMed

    Yuan, Bao-Zhu; Jefferson, Amy M; Millecchia, Lyndell; Popescu, Nicholas C; Reynolds, Steven H

    2007-11-01

    We have previously shown that reactivation of DLC1, a RhoGAP containing tumor suppressor gene, inhibits tumorigenicity of human non-small cell lung carcinoma cells (NSCLC). After transfection of NSCLC cells with wild type (WT) DLC1, changes in cell morphology were observed. To determine whether such changes have functional implications, we generated several DLC1 mutants and examined their effects on cell morphology, proliferation, migration and apoptosis in a DLC1 deficient NSCLC cell line. We show that WT DLC1 caused actin cytoskeleton-based morphological alterations manifested as cytoplasmic extensions and membrane blebbings in most cells. Subsequently, a fraction of cells exhibiting DLC1 protein nuclear translocation (PNT) underwent caspase 3-dependent apoptosis. We also show that the RhoGAP domain is essential for the occurrence of morphological alterations, PNT and apoptosis, and the inhibition of cell migration. DLC1 PNT is dependent on a bipartite nuclear localizing sequence and most likely is regulated by a serine-rich domain at N-terminal part of the DLC1 protein. Also, we found that DLC1 functions in the cytoplasm as an inhibitor of tumor cell proliferation and migration, but in the nucleus as an inducer of apoptosis. Our analyses provide evidence for a possible link between morphological alterations, PNT and proapoptotic and anti-oncogenic activities of DLC1 in lung cancer. PMID:17888903

  6. Dimethyl fumarate induces apoptosis of hematopoietic tumor cells via inhibition of NF-κB nuclear translocation and down-regulation of Bcl-xL and XIAP.

    PubMed

    Tsubaki, Masanobu; Ogawa, Naoki; Takeda, Tomoya; Sakamoto, Kotaro; Shimaoka, Hirotaka; Fujita, Arisa; Itoh, Tatsuki; Imano, Motohiro; Satou, Takao; Nishida, Shozo

    2014-10-01

    Dimethyl fumarate (DMF) is a fumaric acid ester that is used to treat psoriasis and multiple sclerosis. Recently, DMF was found to exhibit anti-tumor effects. However, the molecular mechanisms underlying these effects have not been elucidated. In this study, we investigated the mechanism of DMF-induced apoptosis in different human hematopoietic tumor cell lines. We found that DMF induced apoptosis in different human hematopoietic tumor cell lines but it did not affect the normal human B lymphocyte cell line RPMI 1788. We also observed a concurrent increase in caspase-3 activity and in the number of Annexin-V-positive cells. Furthermore, an examination of the survival signals, which are activated by apoptotic stimuli, revealed that DMF significantly inhibited nuclear factor-κB (NF-κB) p65 nuclear translocation. In addition, DMF suppressed B-cell lymphoma extra-large (Bcl-xL) and X-linked inhibitor of apoptosis (XIAP) expression whereas Bcl-2, survivin, Bcl-2-associated X protein (Bax), and Bim levels did not change. These results indicated that DMF induced apoptosis by suppressing NF-κB activation, and Bcl-xL and XIAP expression. These findings suggested that DMF might have potential as an anticancer agent that could be used in combination therapy with other anticancer drugs for the treatment of human hematopoietic tumors. PMID:25443417

  7. Mycoplasma gallisepticum MGA_0676 is a membrane-associated cytotoxic nuclease with a staphylococcal nuclease region essential for nuclear translocation and apoptosis induction in chicken cells.

    PubMed

    Xu, Jian; Teng, Da; Jiang, Fei; Zhang, Yuewei; El-Ashram, Saeed A; Wang, Hui; Sun, Zhenhong; He, Jinyan; Shen, Junjun; Wu, Wenxue; Li, Jinxiang

    2015-02-01

    Mycoplasma gallisepticum can infect a wide variety of birds including the commercial poultry. M. gallisepticum MGA_0676 is a putative lipoprotein, which is similar to bacterial thermostable nucleases. But the possible pathogenic effect of M. gallisepticum MGA_0676 has not been investigated so far. In the present study, we cloned the MGA_0676 gene after deletion of the amino-terminal signal sequence and mutagenesis of the Mycoplasma TGA tryptophan codons to TGG and expressed recombinant MGA_0676 protein in Escherichia coli. We identified and characterized MGA_0676 as a Ca(2+)-dependent cytotoxic nuclease of M. gallisepticum with a staphylococcal nuclease (SNc) region that displays the hallmarks of nucleases. Membrane protein immunoblot analysis and immunogold electron microscopy revealed that MGA_0676 locates on the membrane surface of M. gallisepticum. Furthermore, apoptosis assay using annexin V-FITC and propidium iodide (annexin V/PI) indicated that MGA_0676 played significant roles in apoptosis induction and pathological damages in chicken cells. Moreover, confocal microscopy showed that MGA_0676 localizes in the nuclei of host cells. Besides, after the SNc region was deleted, MGA_0676 lost its ability of nuclear localization, nuclease activity, and cytotoxicity, which revealed that the SNc region is essential for nuclear translocation and induction of apoptosis in chicken cells. The above results suggest that MGA_0676 is an important virulence factor in cellular pathology and may play a unique role in the life cycle events of M. gallisepticum. PMID:25363559

  8. Dietary anthocyanins protect endothelial cells against peroxynitrite-induced mitochondrial apoptosis pathway and Bax nuclear translocation: an in vitro approach.

    PubMed

    Paixão, Joana; Dinis, Teresa C P; Almeida, Leonor M

    2011-10-01

    Anthocyanins have received increasing attention because of their relatively high intake in humans and wide range of potential health-promoting effects, including anti-atherogenic properties. Evidences support their vascular protective effects but the involved molecular mechanisms have not been well clarified. The endothelium seems to have a central role in atherogenesis and apoptosis is emerging as a crucial event in this disease progression. Following our previous work on the biochemical pathways underlying peroxynitrite-triggered apoptosis in endothelial cells, here we investigated potential mechanisms responsible for the cytoprotective actions of three common anthocyanins, namely cyanidin- delphinidin- and pelargonidin-3-glucoside, against this process. Beyond their antioxidant properties, all these flavonoids, possessing either catecholic or monophenolic structures, were able to counteract peroxynitrite-induced apoptotic effects in endothelial cells through the inhibition of several crucial signaling cascades. Actually, pre-incubation of cells with 25 μM anthocyanins prevented them from peroxynitrite-mediated apoptosis, which was evaluated by the loss of mitochondrial membrane potential, caspases-9 and-3 activation, the increase in cytoplasmatic Bax levels and the inactivation of the PI3 K/Akt pathway. Moreover, they counteracted the translocation of Bax into the nucleus, as observed by immunocytochemistry and immunoblot, an event shown for the first time in endothelial cells apoptotic process. Such cellular actions could not be inferred from their in vitro antioxidant properties. These results suggest a potential role of dietary anthocyanins in the modulation of several apoptotic signaling pathways triggered by peroxynitrite in endothelial cells, supporting mechanistically their health benefits in the context of prevention of endothelial dysfunction and, ultimately, of atherosclerosis. PMID:21785847

  9. Phospholipid Scramblase-1-Induced Lipid Reorganization Regulates Compensatory Endocytosis in Neuroendocrine Cells

    PubMed Central

    Ory, Stéphane; Ceridono, Mara; Momboisse, Fanny; Houy, Sébastien; Chasserot-Golaz, Sylvette; Heintz, Dimitri; Calco, Valérie; Haeberlé, Anne-Marie; Espinoza, Flor A.; Sims, Peter J.; Bailly, Yannick; Bader, Marie-France; Gasman, Stéphane

    2013-01-01

    Calcium-regulated exocytosis in neuroendocrine cells and neurons is accompanied by the redistribution of phosphatidylserine (PS) to the extracellular space, leading to a disruption of plasma membrane asymmetry. How and why outward translocation of PS occurs during secretion are currently unknown. Immunogold labeling on plasma membrane sheets coupled with hierarchical clustering analysis demonstrate that PS translocation occurs at the vicinity of the secretory granule fusion sites. We found that altering the function of the phospholipid scramblase-1 (PLSCR-1) by expressing a PLSCR-1 calcium-insensitive mutant or by using chromaffin cells from PLSCR-1−/− mice prevents outward translocation of PS in cells stimulated for exocytosis. Remarkably, whereas transmitter release was not affected, secretory granule membrane recapture after exocytosis was impaired, indicating that PLSCR-1 is required for compensatory endocytosis but not for exocytosis. Our results provide the first evidence for a role of specific lipid reorganization and calcium-dependent PLSCR-1 activity in neuroendocrine compensatory endocytosis. PMID:23426682

  10. Ultrafast endocytosis at mouse hippocampal synapses

    NASA Astrophysics Data System (ADS)

    Watanabe, Shigeki; Rost, Benjamin R.; Camacho-Pérez, Marcial; Davis, M. Wayne; Söhl-Kielczynski, Berit; Rosenmund, Christian; Jorgensen, Erik M.

    2013-12-01

    To sustain neurotransmission, synaptic vesicles and their associated proteins must be recycled locally at synapses. Synaptic vesicles are thought to be regenerated approximately 20s after fusion by the assembly of clathrin scaffolds or in approximately 1s by the reversal of fusion pores via `kiss-and-run' endocytosis. Here we use optogenetics to stimulate cultured hippocampal neurons with a single stimulus, rapidly freeze them after fixed intervals and examine the ultrastructure using electron microscopy--`flash-and-freeze' electron microscopy. Docked vesicles fuse and collapse into the membrane within 30ms of the stimulus. Compensatory endocytosis occurs within 50 to 100ms at sites flanking the active zone. Invagination is blocked by inhibition of actin polymerization, and scission is blocked by inhibiting dynamin. Because intact synaptic vesicles are not recovered, this form of recycling is not compatible with kiss-and-run endocytosis; moreover, it is 200-fold faster than clathrin-mediated endocytosis. It is likely that `ultrafast endocytosis' is specialized to restore the surface area of the membrane rapidly.

  11. Leptin-induced cardiomyocyte hypertrophy reveals both calcium-dependent and calcium-independent/RhoA-dependent calcineurin activation and NFAT nuclear translocation.

    PubMed

    Rajapurohitam, Venkatesh; Izaddoustdar, Farzad; Martinez-Abundis, Eduardo; Karmazyn, Morris

    2012-12-01

    Leptin, a product of the obesity gene, has been shown to produce cardiac hypertrophy. Although leptin's mechanism of action is poorly understood activation of the RhoA/ROCK pathway has been proposed as a contributing mechanism. The Ca(2+)-dependent phosphatase calcineurin plays a critical role in the hypertrophic program although it is not known whether leptin can activate this signaling pathway or whether there is a relationship between RhoA activation and calcineurin. Accordingly, we determined the effect of leptin on calcineurin activation and assessed the possible role of RhoA. Experiments were performed using cultured neonatal rat ventricular myocytes exposed to 50 ng/ml leptin for 24h which resulted in a robust hypertrophic response. Moreover, leptin significantly increased intracellular Ca(2+) and Na(+) concentrations which was associated with significantly reduced activity of the 3Na(+)-2K(+)ATPase. The hypertrophic response to leptin were completely abrogated by both C3 exoenzyme (C3), a RhoA inhibitor as well as the reverse mode 3Na(+)-1Ca(2+) exchange inhibitor KB-R7943 ((2-[2-[4-(4-nitrobenzyloxy)phenyl] ethyl]isothiourea methanesulfonate), however only the effect of the latter was associated with attenuation of intracellular Ca(2+) concentrations whereas Ca(2+) concentrations were unaffected by C3. Similarly, C3 and KB-R7943 significantly attenuated early leptin-induced increase in calcineurin activity as well as the increase in nuclear translocation of the transcriptional factor nuclear factor of activated T cells. The hypertrophic response to leptin was also associated with increased p38 and ERK1/2 MAPK phosphorylation and increased p38, but not ERK1/2, translocation into nuclei. Both p38 responses as well as hypertrophy were abrogated by KB-R7943 as well as the calcineurin inhibitor FK-506 although ERK1/2 phosphorylation was unaffected. Our study therefore demonstrates a critical role for the calcineurin pathway in mediating leptin

  12. Regulations of Reversal of Senescence by PKC Isozymes in Response to 12-O-Tetradecanoylphorbol-13-Acetate via Nuclear Translocation of pErk1/2

    PubMed Central

    Lee, Yun Yeong; Ryu, Min Sook; Kim, Hong Seok; Suganuma, Masami; Song, Kye Yong; Lim, In Kyoung

    2016-01-01

    The mechanism by which 12-O-tetradecanoylphorbol-13-acetate (TPA) bypasses cellular senescence was investigated using human diploid fibroblast (HDF) cell replicative senescence as a model. Upon TPA treatment, protein kinase C (PKC) α and PKCβ1 exerted differential effects on the nuclear translocation of cytoplasmic pErk1/2, a protein which maintains senescence. PKCα accompanied pErk1/2 to the nucleus after freeing it from PEA-15pS104 via PKCβ1 and then was rapidly ubiquitinated and degraded within the nucleus. Mitogen-activated protein kinase docking motif and kinase activity of PKCα were both required for pErk1/2 transport to the nucleus. Repetitive exposure of mouse skin to TPA downregulated PKCα expression and increased epidermal and hair follicle cell proliferation. Thus, PKCα downregulation is accompanied by in vivo cell proliferation, as evidenced in 7, 12-dimethylbenz(a)anthracene (DMBA)-TPA-mediated carcinogenesis. The ability of TPA to reverse senescence was further demonstrated in old HDF cells using RNA-sequencing analyses in which TPA-induced nuclear PKCα degradation freed nuclear pErk1/2 to induce cell proliferation and facilitated the recovery of mitochondrial energy metabolism. Our data indicate that TPA-induced senescence reversal and carcinogenesis promotion share the same molecular pathway. Loss of PKCα expression following TPA treatment reduces pErk1/2-activated SP1 biding to the p21WAF1 gene promoter, thus preventing senescence onset and overcoming G1/S cell cycle arrest in senescent cells. PMID:26912086

  13. Bortezomib induces nuclear translocation of IκBα resulting in gene-specific suppression of NF-κB--dependent transcription and induction of apoptosis in CTCL.

    PubMed

    Juvekar, Ashish; Manna, Subrata; Ramaswami, Sitharam; Chang, Tzu-Pei; Vu, Hai-Yen; Ghosh, Chandra C; Celiker, Mahmut Y; Vancurova, Ivana

    2011-02-01

    Cutaneous T-cell lymphoma (CTCL) is characterized by constitutive activation of nuclear factor κB (NF-κB), which plays a crucial role in the survival of CTCL cells and their resistance to apoptosis. NF-κB activity in CTCL is inhibited by the proteasome inhibitor bortezomib; however, the mechanisms remained unknown. In this study, we investigated mechanisms by which bortezomib suppresses NF-κB activity in CTCL Hut-78 cells. We demonstrate that bortezomib and MG132 suppress NF-κB activity in Hut-78 cells by a novel mechanism that consists of inducing nuclear translocation and accumulation of IκBα (nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor, alpha), which then associates with NF-κB p65 and p50 in the nucleus and inhibits NF-κB DNA binding activity. Surprisingly, however, while expression of NF-κB-dependent antiapoptotic genes cIAP1 and cIAP2 is inhibited by bortezomib, expression of Bcl-2 is not suppressed. Chromatin immunoprecipitation indicated that cIAP1 and cIAP2 promoters are occupied by NF-κB p65/50 heterodimers, whereas Bcl-2 promoter is occupied predominantly by p50/50 homodimers. Collectively, our data reveal a novel mechanism of bortezomib function in CTCL and suggest that the inhibition of NF-κB-dependent gene expression by bortezomib is gene specific and depends on the subunit composition of NF-κB dimers recruited to NF-κB-responsive promoters. PMID:21224428

  14. Regulations of Reversal of Senescence by PKC Isozymes in Response to 12-O-Tetradecanoylphorbol-13-Acetate via Nuclear Translocation of pErk1/2.

    PubMed

    Lee, Yun Yeong; Ryu, Min Sook; Kim, Hong Seok; Suganuma, Masami; Song, Kye Yong; Lim, In Kyoung

    2016-03-01

    The mechanism by which 12-O-tetradecanoylphorbol-13-acetate (TPA) bypasses cellular senescence was investigated using human diploid fibroblast (HDF) cell replicative senescence as a model. Upon TPA treatment, protein kinase C (PKC) α and PKCβ1 exerted differential effects on the nuclear translocation of cytoplasmic pErk1/2, a protein which maintains senescence. PKCα accompanied pErk1/2 to the nucleus after freeing it from PEA-15pS(104) via PKCβ1 and then was rapidly ubiquitinated and degraded within the nucleus. Mitogen-activated protein kinase docking motif and kinase activity of PKCα were both required for pErk1/2 transport to the nucleus. Repetitive exposure of mouse skin to TPA downregulated PKCα expression and increased epidermal and hair follicle cell proliferation. Thus, PKCα downregulation is accompanied by in vivo cell proliferation, as evidenced in 7, 12-dimethylbenz(a)anthracene (DMBA)-TPA-mediated carcinogenesis. The ability of TPA to reverse senescence was further demonstrated in old HDF cells using RNA-sequencing analyses in which TPA-induced nuclear PKCα degradation freed nuclear pErk1/2 to induce cell proliferation and facilitated the recovery of mitochondrial energy metabolism. Our data indicate that TPA-induced senescence reversal and carcinogenesis promotion share the same molecular pathway. Loss of PKCα expression following TPA treatment reduces pErk1/2-activated SP1 biding to the p21(WAF1) gene promoter, thus preventing senescence onset and overcoming G1/S cell cycle arrest in senescent cells. PMID:26912086

  15. Clathrin-Independent Pathways of Endocytosis

    PubMed Central

    Mayor, Satyajit; Parton, Robert G.; Donaldson, Julie G.

    2014-01-01

    There are many pathways of endocytosis at the cell surface that apparently operate at the same time. With the advent of new molecular genetic and imaging tools, an understanding of the different ways by which a cell may endocytose cargo is increasing by leaps and bounds. In this review we explore pathways of endocytosis that occur in the absence of clathrin. These are referred to as clathrin-independent endocytosis (CIE). Here we primarily focus on those pathways that function at the small scale in which some have distinct coats (caveolae) and others function in the absence of specific coated intermediates. We follow the trafficking itineraries of the material endocytosed by these pathways and finally discuss the functional roles that these pathways play in cell and tissue physiology. It is likely that these pathways will play key roles in the regulation of plasma membrane area and tension and also control the availability of membrane during cell migration. PMID:24890511

  16. Ultrafast endocytosis at Caenorhabditis elegans neuromuscular junctions

    PubMed Central

    Watanabe, Shigeki; Liu, Qiang; Davis, M Wayne; Hollopeter, Gunther; Thomas, Nikita; Jorgensen, Nels B; Jorgensen, Erik M

    2013-01-01

    Synaptic vesicles can be released at extremely high rates, which places an extraordinary demand on the recycling machinery. Previous ultrastructural studies of vesicle recycling were conducted in dissected preparations using an intense stimulation to maximize the probability of release. Here, a single light stimulus was applied to motor neurons in intact Caenorhabditis elegans nematodes expressing channelrhodopsin, and the animals rapidly frozen. We found that docked vesicles fuse along a broad active zone in response to a single stimulus, and are replenished with a time constant of about 2 s. Endocytosis occurs within 50 ms adjacent to the dense projection and after 1 s adjacent to adherens junctions. These studies suggest that synaptic vesicle endocytosis may occur on a millisecond time scale following a single physiological stimulus in the intact nervous system and is unlikely to conform to current models of endocytosis. DOI: http://dx.doi.org/10.7554/eLife.00723.001 PMID:24015355

  17. Pycnogenol Induces Nuclear Translocation of Apoptosis-inducing Factor and Caspase-independent Apoptosis in MC-3 Human Mucoepidermoid Carcinoma Cell Line

    PubMed Central

    Yang, In-Hyoung; Shin, Ji-Ae; Cho, Sung-Dae

    2014-01-01

    Background: Pycnogenol is extracted from the pine bark of a tree known as Pinus pinaster that has variety biological effects. However, its anticancer activity has not yet been completely studied. The aim of this study is to investigate anticancer effect of pycnogenol in MC-3 human mucoepidermoid carcinoma (MEC) cell line. Methods: We describe the effect of anti-cancer of pycnogenol in MC-3 human oral MEC cells using trypan blue exclusion assay, 3-(4,5-dimethylthiazol-2-yl)-(3-carboxymethoxyphenyl)-2-(4-sulphophenyl)-2H-tetrazolium (MTS) assay, Western blot, preparation of cytosolic and nuclear fractions, immunocytochemistry and reverse transcriptase polymerase chain reaction. Results: Pycnogenol significantly decreased cell viability and also induced caspase-independent apoptosis. We confirmed that pycnogenol induced the translocation of apoptosis-inducing factor into nucleus and regulated apoptosis. Also, Bak protein stability was partly enhanced by pycnogenol to elevate the expression level of Bak protein. Conclusions: Overall, pycnogenol may be a fascinating therapeutic drug candidate for the treatment of MEC. PMID:25574461

  18. Atrovirinone inhibits proinflammatory mediator synthesis through disruption of NF-kappaB nuclear translocation and MAPK phosphorylation in the murine monocytic macrophage RAW 264.7.

    PubMed

    Israf, D A; Tham, C L; Syahida, A; Lajis, N H; Sulaiman, M R; Mohamad, A S; Zakaria, Z A

    2010-08-01

    In a previous communication we showed that atrovirinone, a 1,4-benzoquinone isolated from the roots of Garcinia atroviridis, was able to inhibit several major proinflammatory mediators of inflammation. In this report we show that atrovirinone inhibits NO and PGE(2) synthesis through inhibition of iNOS and COX-2 expression. We also show that atrovirinone inhibits the secretion of IL-1beta and IL-6 in a dose dependent fashion whereas the secretion of IL-10, the anti-inflammatory cytokine, was enhanced. Subsequently we determined that the inhibition of proinflammatory cytokine synthesis and inducible enzyme expression was due to a dose-dependent inhibition of phosphorylation of p38 and ERK1/2. We also showed that atrovirinone prevented phosphorylation of I-kappaBalpha, which resulted in a reduction of p65NF-kappaB nuclear translocation as demonstrated by expression analysis. We conclude that atrovirinone is a potential anti-inflammatory drug lead that targets both the MAPK and NF-kappaB pathway. PMID:20378317

  19. La Piedad Michoacán Mexico Virus V protein antagonizes type I interferon response by binding STAT2 protein and preventing STATs nuclear translocation.

    PubMed

    Pisanelli, Giuseppe; Laurent-Rolle, Maudry; Manicassamy, Balaji; Belicha-Villanueva, Alan; Morrison, Juliet; Lozano-Dubernard, Bernardo; Castro-Peralta, Felipa; Iovane, Giuseppe; García-Sastre, Adolfo

    2016-02-01

    La Piedad Michoacán Mexico Virus (LPMV) is a member of the Rubulavirus genus within the Paramyxoviridae family. LPMV is the etiologic agent of "blue eye disease", causing a significant disease burden in swine in Mexico with long-term implications for the agricultural industry. This virus mainly affects piglets and is characterized by meningoencephalitis and respiratory distress. It also affects adult pigs, causing reduced fertility and abortions in females, and orchitis and epididymitis in males. Viruses of the Paramyxoviridae family evade the innate immune response by targeting components of the interferon (IFN) signaling pathway. The V protein, expressed by most paramyxoviruses, is a well-characterized IFN signaling antagonist. Until now, there were no reports on the role of the LPMV-V protein in inhibiting the IFN response. In this study we demonstrate that LPMV-V protein antagonizes type I but not type II IFN signaling by binding STAT2, a component of the type I IFN cascade. Our results indicate that the last 18 amino acids of LPMV-V protein are required for binding to STAT2 in human and swine cells. While LPMV-V protein does not affect the protein levels of STAT1 or STAT2, it does prevent the IFN-induced phosphorylation and nuclear translocation of STAT1 and STAT2 thereby inhibiting cellular responses to IFN α/β. PMID:26546155

  20. Role of aryl hydrocarbon receptor nuclear translocator in K{sub ATP} channel-mediated insulin secretion in INS-1 insulinoma cells

    SciTech Connect

    Kim, Ji-Seon; Zheng Haifeng; Kim, Sung Joon; Ho, Won-Kyung; Chun, Yang-Sook

    2009-02-20

    Aryl hydrocarbon receptor nuclear translocator (ARNT) has been known to participate in cellular responses to xenobiotic and hypoxic stresses, as a common partner of aryl hydrocarbon receptor and hypoxia inducible factor-1/2{alpha}. Recently, it was reported that ARNT is essential for adequate insulin secretion in response to glucose input and that its expression is downregulated in the pancreatic islets of diabetic patients. In the present study, the authors addressed the mechanism by which ARNT regulates insulin secretion in the INS-1 insulinoma cell line. In ARNT knock-down cells, basal insulin release was elevated, but insulin secretion was not further stimulated by a high-glucose challenge. Electrophysiological analyses revealed that glucose-dependent membrane depolarization was impaired in these cells. Furthermore, K{sub ATP} channel activity and expression were reduced. Of two K{sub ATP} channel subunits, Kir6.2 was found to be positively regulated by ARNT at the mRNA and protein levels. Based on these results, the authors suggest that ARNT expresses K{sub ATP} channel and by so doing regulates glucose-dependent insulin secretion.

  1. Vaccination inhibits TLR2 transcription via suppression of GR nuclear translocation and binding to TLR2 promoter in porcine lung infected with Mycoplasma hyopneumoniae.

    PubMed

    Sun, Zhiyuan; Liu, Maojun; Zou, Huafeng; Li, Xian; Shao, Guoqing; Zhao, Ruqian

    2013-12-27

    Toll-like receptors (TLRs) and glucocorticoid receptor (GR) act respectively as effectors of innate immune and stress responses. The crosstalk between them is critical for the maintenance of homeostasis during the immune response. Vaccination is known to boost adaptive immunity, yet it remains elusive whether vaccination may affect GR/TLR interactions following infection. Duroc×Meishan crossbred piglets were allocated to three groups. The control group (CC) received neither vaccination nor infection; the non-vaccinated infection group (NI) was artificially infected intratracheally with Mycoplasma hyopneumoniae (M. hyopneumoniae); while the vaccinated, infected group (VI) was vaccinated intramuscularly with inactivated M. hyopneumoniae one month before infection. The clinical signs and macroscopic lung lesions were significantly reduced by vaccination. However, vaccination did not affect the concentration of M. hyopneumoniae DNA in the lung. Serum cortisol was significantly decreased in both NI and VI pigs (P<0.01), but only VI pigs demonstrated significantly diminished nuclear GR content. TLRs 1-10 were all expressed in lung, among which TLR2 was the most abundant and was significantly up-regulated (P<0.05) in NI pigs, but not in VI pigs. Accordingly, GR binding to the GR response element on TLR2 promoter was significantly increased (P<0.05) in NI pigs, but not in VI pigs. These results suggest that the inhibition of GR nuclear translocation and binding to the TLR2 promoter, which results in diminished TLR2 expression, is associated with the protective effect of vaccination on M. hyopneumoniae-induced lung lesions in the pig. PMID:24035265

  2. Leishmania donovani amastigotes impair gamma interferon-induced STAT1alpha nuclear translocation by blocking the interaction between STAT1alpha and importin-alpha5.

    PubMed

    Matte, Christine; Descoteaux, Albert

    2010-09-01

    The protozoan parasite Leishmania donovani, the etiological agent of visceral leishmaniasis, is renowned for its capacity to sabotage macrophage functions and signaling pathways stimulated by activators such as gamma interferon (IFN-gamma). Our knowledge of the strategies utilized by L. donovani to impair macrophage responsiveness to IFN-gamma remains fragmentary. In the present study, we investigated the impact of an infection by the amastigote stage of L. donovani on IFN-gamma responses and signaling via the Janus kinase (JAK)-signal transducer and activator of transcription (STAT) pathway in mouse bone marrow-derived macrophages. The levels of IFN-gamma-induced expression of major histocompatibility complex class II and inducible nitric oxide synthase (iNOS) were strongly reduced in L. donovani amastigote-infected macrophages. As the expression of those genes is mediated by the transcription factors STAT1alpha and IFN regulatory factor 1 (IRF-1), we investigated their activation in amastigote-infected macrophages treated with IFN-gamma. We found that whereas STAT1alpha protein levels and the levels of phosphorylation on Tyr701 and Ser727 were normal, IRF-1 expression was inhibited in infected macrophages. This inhibition of IRF-1 expression correlated with a defective nuclear translocation of STAT1alpha, and further analyses revealed that the IFN-gamma-induced STAT1alpha association with the nuclear transport adaptor importin-alpha5 was compromised in L. donovani amastigote-infected macrophages. Taken together, our results provide evidence for a novel mechanism used by L. donovani amastigotes to interfere with IFN-gamma-activated macrophage functions and provide a better understanding of the strategies deployed by this parasite to ensure its intracellular survival. PMID:20566692

  3. Thyroid hormone-induced cytosol-to-nuclear translocation of rat liver Nrf2 is dependent on Kupffer cell functioning.

    PubMed

    Videla, Luis A; Cornejo, Pamela; Romanque, Pamela; Santibáñez, Catherine; Castillo, Iván; Vargas, Romina

    2012-01-01

    L-3,3',5-triiodothyronine (T(3)) administration upregulates nuclear factor-E2-related factor 2 (Nrf2) in rat liver, which is redox-sensitive transcription factor mediating cytoprotection. In this work, we studied the role of Kupffer cell respiratory burst activity, a process related to reactive oxygen species generation and liver homeostasis, in Nrf2 activation using the macrophage inactivator gadolinium chloride (GdCl(3); 10 mg/kg i.v. 72 h before T(3) [0.1 mg/kg i.p.]) or NADPH oxidase inhibitor apocynin (1.5 mmol/L added to the drinking water for 7 days before T(3)), and determinations were performed 2 h after T(3). T(3) increased nuclear/cytosolic Nrf2 content ratio and levels of heme oxygenase 1 (HO-1), catalytic subunit of glutamate cysteine ligase, and thioredoxin (Western blot) over control values, proteins whose gene transcription is induced by Nrf2. These changes were suppressed by GdCl(3) treatment prior to T(3), an agent-eliciting Kupffer-cell depletion, inhibition of colloidal carbon phagocytosis, and the associated respiratory burst activity, with enhancement in nuclear inhibitor of Nrf2 kelch-like ECH-associated protein 1 (Keap1)/Nrf2 content ratios suggesting Nrf2 degradation. Under these conditions, T(3)-induced tumor necrosis factor-α (TNF-α) response was eliminated by previous GdCl(3) administration. Similar to GdCl(3), apocynin given before T(3) significantly reduced liver Nrf2 activation and HO-1 expression, a NADPH oxidase inhibitor eliciting abolishment of colloidal carbon-induced respiratory burst activity without altering carbon phagocytosis. It is concluded that Kupffer cell functioning is essential for upregulation of liver Nrf2-signaling pathway by T(3). This contention is supported by suppression of the respiratory burst activity of Kupffer cells and the associated reactive oxygen species production by GdCl(3) or apocynin given prior to T(3), thus hindering Nrf2 activation. PMID:22649286

  4. Activity-dependent acceleration of endocytosis at a central synapse.

    PubMed

    Wu, Wei; Xu, Jianhua; Wu, Xin-Sheng; Wu, Ling-Gang

    2005-12-14

    Accumulated evidence indicates the existence of rapid and slow endocytosis at many synapses. It has been proposed that rapid endocytosis is activated by intense stimulation when vesicle recycling needs to be speeded up to supply vesicles at hippocampal synapses. However, the evidence, as obtained with imaging techniques, which are somewhat indirect in indicating rapid endocytosis, is controversial. Furthermore, a slower time course of endocytosis is often found after more intense nerve activity, casting doubt on the role of rapid endocytosis at synapses. Here, we addressed this issue at a mammalian central synapse, the calyx of Held, using a capacitance measurement technique that provides a higher time resolution than imaging techniques. We found that rapid endocytosis with a time constant of approximately 1-2 s was activated during intense nerve activity. Reducing the presynaptic calcium current or buffering the intracellular calcium with EGTA significantly inhibited rapid endocytosis, suggesting that calcium triggers rapid endocytosis. During intense stimulation, rapid endocytosis retrieved up to approximately eight vesicles per second per active zone, approximately eightfold larger than reported in the hippocampus, and thus played a dominant role during and within 3 s after intense stimulation. Slow endocytosis became dominant 3 s after intense stimulation likely because of the fall of the intracellular calcium level that deactivated rapid endocytosis. These results underscore the importance of calcium-triggered rapid endocytosis, which offers the nerve terminal the plasticity to speed up vesicle cycling during intense nerve activity. PMID:16354926

  5. An immersed boundary method for endocytosis

    NASA Astrophysics Data System (ADS)

    Tseng, Yu-Hau; Huang, Huaxiong

    2014-09-01

    Endocytosis is one of the cellular functions for capturing (engulfing) vesicles or microorganisms. Understanding the biophysical mechanisms of this cellular process is essential from a bioengineering point of view since it will provide guidance for developing effective targeted drug delivery therapies. In this paper, we propose an immersed boundary (IB) method that can be used to simulate the dynamical process of this important biological function. In our model, membranes of the vesicle and the cell are treated as Canham-Helfrich Hamiltonian interfaces. The membrane-bound molecules are modeled as insoluble surfactants such that the molecules after binding are regarded as a product of a “chemical” reaction. Our numerical examples show that the immersed boundary method is a useful simulation tool for studying endocytosis, where the roles of interfacial energy, fluid flow and viscous dissipation in the success of the endocytosis process can be investigated in detail. A distinct feature of our IB method is the treatment of the two binding membranes that is different from the merging of fluid-fluid interfaces. Another important feature of our method is the strict conservation of membrane-borne receptors and ligands, which is important for predicting the dynamics of the endocytosis process.

  6. METHODS TO QUANTIFY ENDOCYTOSIS: A REVIEW

    EPA Science Inventory

    Endocytosis is a process whereby extracellular matter is transported in bulk to the cell's interior. To accomplish this the cell extends portions of the plasma membrane which surround the mass to be ingested. As these cytoplasmic projections meet, they fuse. The endocytic vacuole...

  7. Zero tolerance: amphipathic helices in endocytosis.

    PubMed

    Wood, Laura A; Royle, Stephen J

    2015-04-20

    Endocytosis is the physical battle to form a new vesicle in the face of counteracting forces, such as membrane tension. Skruzny et al. (2015) and Miller et al. (2015) now shed light on endocytic proteins that bear a "Helix 0" and on the proteins' role in the struggle to make clathrin-coated vesicles. PMID:25898162

  8. Cowden syndrome-associated germline SDHD variants alter PTEN nuclear translocation through SRC-induced PTEN oxidation.

    PubMed

    Yu, Wanfeng; He, Xin; Ni, Ying; Ngeow, Joanne; Eng, Charis

    2015-01-01

    Germline mutations in the PTEN tumor-suppressor gene and germline variations in succinate dehydrogenase subunit D gene (SDHD-G12S, SDHD-H50R) are associated with a subset of Cowden syndrome and Cowden syndrome-like individuals (CS/CSL) and confer high risk of breast, thyroid and other cancers. However, very little is known about the underlying crosstalk between SDHD and PTEN in CS-associated thyroid cancer. Here, we show SDHD-G12S and SDHD-H50R lead to impaired PTEN function through alteration of its subcellular localization accompanied by resistance to apoptosis and induction of migration in both papillary and follicular thyroid carcinoma cell lines. Other studies have shown elevated proto-oncogene tyrosine kinase (SRC) activity in invasive thyroid cancer cells; so, we explore bosutinib, a specific inhibitor for SRC, to explore SRC as a mediator of SDH-PTEN crosstalk in this context. We show that SRC inhibition could rescue SDHD dysfunction-induced cellular phenotype and tumorigenesis only when wild-type PTEN is expressed, in thyroid cancer lines. Patient lymphoblast cells carrying either SDHD-G12S or SDHD-H50R also show increased nuclear PTEN and more oxidized PTEN after hydrogen peroxide treatment. Like in thyroid cells, bosutinib decreases oxidative PTEN in patient lymphoblast cells carrying SDHD variants, but not in patients carrying both SDHD variants and PTEN truncating mutations. In summary, our data suggest a novel mechanism whereby SDHD germline variants SDHD-G12S or SDHD-H50R induce thyroid tumorigenesis mediated by PTEN accumulation in the nucleus and may shed light on potential treatment with SRC inhibitors like bosutinib in PTEN-wild-type SDHD-variant/mutation positive CS/CSL patients and sporadic thyroid neoplasias. PMID:25149476

  9. Mechanism of Cationic Nanoparticles and Cell-Penetrating Peptides Direct Translocate Across Cell Membranes

    NASA Astrophysics Data System (ADS)

    Lin, Jiaqi; Alexander-Katz, Alfredo

    2014-03-01

    Cationic Nanoparticles (NPs) and cell-penetrating peptides (CPPs) are known effective intracellular delivery agents. These positively charged particles can bypass traditional endocytosis route to enter the cytosol, which is known as direct translocation. However, mechanism of direct translocation of both NPs and CPPs is not well understood. Using Coarse-grained (CG) molecular dynamics simulation, we found that gold nanoparticles (AuNPs) as well as HIV-1 Tat peptides can translocate across model biological membranes through nanoscale holes under a transmembrane (TM) potential. After the translocation, the TM is strongly weakened and the holes gradually reseal themselves, while the NPs/CPPs roam freely in the ``intracellular region.'' Both size and shape of the NPs/ CPPs are found to be a determine factor of their translocation behaviour, and the relationship between direct translocation and endocytosis is also discussed. The results provided here establish fundamental rules of direct translocation entry of NPs/CPPs, which may guide the rational design of cationic intracellular nanocarriers.

  10. Light-Activated Nuclear Translocation of Adeno-Associated Virus Nanoparticles Using Phytochrome B for Enhanced, Tunable, and Spatially Programmable Gene Delivery.

    PubMed

    Gomez, Eric J; Gerhardt, Karl; Judd, Justin; Tabor, Jeffrey J; Suh, Junghae

    2016-01-26

    Gene delivery vectors that are activated by external stimuli may allow improved control over the location and the degree of gene expression in target populations of cells. Light is an attractive stimulus because it does not cross-react with cellular signaling networks, has negligible toxicity, is noninvasive, and can be applied in space and time with unparalleled precision. We used the previously engineered red (R)/far-red (FR) light-switchable protein phytochrome B (PhyB) and its R light dependent interaction partner phytochrome interacting factor 6 (PIF6) from Arabidopsis thaliana to engineer an adeno-associated virus (AAV) platform whose gene delivery efficiency is controlled by light. Upon exposure to R light, AAV engineered to display PIF6 motifs on the capsid bind to PhyB tagged with a nuclear localization sequence (NLS), resulting in significantly increased translocation of viruses into the host cell nucleus and overall gene delivery efficiency. By modulating the ratio of R to FR light, the gene delivery efficiency can be tuned to as little as 35% or over 600% of the unengineered AAV. We also demonstrate spatial control of gene delivery using projected patterns of codelivered R and FR light. Overall, our successful use of light-switchable proteins in virus capsid engineering extends these important optogenetic tools into the adjacent realm of nucleic acid delivery and enables enhanced, tunable, and spatially controllable regulation of viral gene delivery. Our current light-triggered viral gene delivery prototype may be broadly useful for genetic manipulation of cells ex vivo or in vivo in transgenic model organisms, with the ultimate prospect of achieving dose- and site-specific gene expression profiles for either therapeutic (e.g., regenerative medicine) or fundamental discovery research efforts. PMID:26618393

  11. An ‘environment to nucleus’ signaling system operates in B lymphocytes: redox status modulates BSAP/Pax-5 activation through Ref-1 nuclear translocation

    PubMed Central

    Tell, Gianluca; Zecca, Alessandro; Pellizzari, Lucia; Spessotto, Paola; Colombatti, Alfonso; Kelley, Mark R.; Damante, Giuseppe; Pucillo, Carlo

    2000-01-01

    The Ref-1 (also called APE or HAP1) protein is a bifunctional enzyme impacting on a wide variety of important cellular functions. It acts as a major member of the DNA base excision repair pathway. Moreover, Ref-1 stimulates the DNA-binding activity of several transcription factors (TFs) through the reduction of highly reactive cysteine residues. Therefore, it represents a mechanism that regulates eukaryotic gene expression in a fast way. However, it has been demonstrated that external stimuli directly act on Ref-1 by increasing its expression levels, a time-consuming mechanism representing a paradox in terms of rapidity of TF regulation. In this paper we demonstrate that this is only an apparent paradox. Exposure of B lymphocytes to H2O2 induced a rapid and sustained increase in Ref-1 protein levels in the nucleus as evaluated by both western blot analysis and by pulse–chase experiments. A time course, two color in situ immunocytochemistry indicated that the up-regulation of Ref-1 in the nucleus at <30 min was primarily the consequence of translocation of its cytoplasmic form. This early nuclear accumulation is effective in modulating the DNA-binding activity of the B cell-specific activator protein BSAP/Pax-5. In fact, EMSA experiments demonstrate that a transient interaction with Ref-1 up-regulates the DNA-binding activity of BSAP/Pax-5. Moreover, in a co-transfection experiment, Ref-1 increased the BSAP/Pax-5 activating effect on an oligomerized BSAP/Pax-5 binding site of the CD19 promoter by 5- to 8-fold. Thus, Ref-1 mediates its effect by up-regulating the DNA-binding activity of BSAP/Pax-5, accounting for a new and fast outside/inside pathway of signaling in B cells. PMID:10666449

  12. Carboxyl-terminal domain of MUC16 imparts tumorigenic and metastatic functions through nuclear translocation of JAK2 to pancreatic cancer cells

    PubMed Central

    Das, Srustidhar; Lakshmanan, Imayavaramban; Majhi, Prabin D.; Smith, Lynette M.; Wagner, Kay-Uwe; Batra, Surinder K.

    2015-01-01

    MUC16 (CA125) is a type-I transmembrane glycoprotein that is up-regulated in multiple cancers including pancreatic cancer (PC). However, the existence and role of carboxyl-terminal MUC16 generated following its cleavage in PC is unknown. Our previous study using a systematic dual-epitope tagged domain deletion approach of carboxyl-terminal MUC16 has demonstrated the generation of a 17-kDa cleaved MUC16 (MUC16-Cter). Here, we demonstrate the functional significance of MUC16-Cter in PC using the dual-epitope tagged version (N-terminal FLAG- and C-terminal HA-tag) of 114 carboxyl-terminal residues of MUC16 (F114HA). In vitro analyses using F114HA transfected MiaPaCa-2 and T3M4 cells showed enhanced proliferation, motility and increased accumulation of cells in the G2/M phase with apoptosis resistance, a feature associated with cancer stem cells (CSCs). This was supported by enrichment of ALDH+ CSCs along with enhanced drug-resistance. Mechanistically, we demonstrate a novel function of MUC16-Cter that promotes nuclear translocation of JAK2 resulting in phosphorylation of Histone-3 up-regulating stemness-specific genes LMO2 and NANOG. Jak2 dependence was demonstrated using Jak2+/+ and Jak2−/− cells. Using eGFP-Luciferase labeled cells, we demonstrate enhanced tumorigenic and metastatic potential of MUC16-Cter in vivo. Taken together, we demonstrate that MUC16-Cter mediated enrichment of CSCs is partly responsible for tumorigenic, metastatic and drug-resistant properties of PC cells. PMID:25691062

  13. Inhibitors of endocytosis prevent Wnt/Wingless signalling by reducing the level of basal β-catenin/Armadillo.

    PubMed

    Gagliardi, Maria; Hernandez, Ana; McGough, Ian J; Vincent, Jean-Paul

    2014-11-15

    A key step in the canonical Wnt signalling pathway is the inhibition of GSK3β, which results in the accumulation of nuclear β-catenin (also known as CTNNB1), and hence regulation of target genes. Evidence suggests that endocytosis is required for signalling, yet its role and the molecular understanding remains unclear. A recent and controversial model suggests that endocytosis contributes to Wnt signalling by causing the sequestration of the ligand-receptor complex, including LRP6 and GSK3 to multivesicular bodies (MVBs), thus preventing GSK3β from accessing β-catenin. Here, we use specific inhibitors (Dynasore and Dyngo-4a) to confirm the essential role of endocytosis in Wnt/Wingless signalling in human and Drosophila cells. However, we find no evidence that, in Drosophila cells or wing imaginal discs, LRP6/Arrow traffics to MVBs or that MVBs are required for Wnt/Wingless signalling. Moreover, we show that activation of signalling through chemical blockade of GSK3β is prevented by endocytosis inhibitors, suggesting that endocytosis impacts on Wnt/Wingless signalling downstream of the ligand-receptor complex. We propose that, through an unknown mechanism, endocytosis boosts the resting pool of β-catenin upon which GSK3β normally acts. PMID:25236598

  14. Inhibitors of endocytosis prevent Wnt/Wingless signalling by reducing the level of basal β-catenin/Armadillo

    PubMed Central

    Gagliardi, Maria; Hernandez, Ana; McGough, Ian J.; Vincent, Jean-Paul

    2014-01-01

    ABSTRACT A key step in the canonical Wnt signalling pathway is the inhibition of GSK3β, which results in the accumulation of nuclear β-catenin (also known as CTNNB1), and hence regulation of target genes. Evidence suggests that endocytosis is required for signalling, yet its role and the molecular understanding remains unclear. A recent and controversial model suggests that endocytosis contributes to Wnt signalling by causing the sequestration of the ligand–receptor complex, including LRP6 and GSK3 to multivesicular bodies (MVBs), thus preventing GSK3β from accessing β-catenin. Here, we use specific inhibitors (Dynasore and Dyngo-4a) to confirm the essential role of endocytosis in Wnt/Wingless signalling in human and Drosophila cells. However, we find no evidence that, in Drosophila cells or wing imaginal discs, LRP6/Arrow traffics to MVBs or that MVBs are required for Wnt/Wingless signalling. Moreover, we show that activation of signalling through chemical blockade of GSK3β is prevented by endocytosis inhibitors, suggesting that endocytosis impacts on Wnt/Wingless signalling downstream of the ligand–receptor complex. We propose that, through an unknown mechanism, endocytosis boosts the resting pool of β-catenin upon which GSK3β normally acts. PMID:25236598

  15. Inhibition of Nuclear Translocation of Apoptosis-Inducing Factor Is an Essential Mechanism of the Neuroprotective Activity of Pigment Epithelium-Derived Factor in a Rat Model of Retinal Degeneration

    PubMed Central

    Murakami, Yusuke; Ikeda, Yasuhiro; Yonemitsu, Yoshikazu; Onimaru, Mitsuho; Nakagawa, Kazunori; Kohno, Ri-ichiro; Miyazaki, Masanori; Hisatomi, Toshio; Nakamura, Makoto; Yabe, Takeshi; Hasegawa, Mamoru; Ishibashi, Tatsuro; Sueishi, Katsuo

    2008-01-01

    Photoreceptor apoptosis is a critical process of retinal degeneration in retinitis pigmentosa (RP), a group of retinal degenerative diseases that result from rod and cone photoreceptor cell death and represent a major cause of adult blindness. We previously demonstrated the efficient prevention of photoreceptor apoptosis by intraocular gene transfer of pigment epithelium-derived factor (PEDF) in animal models of RP; however, the underlying mechanism of the neuroprotective activity of PEDF remains elusive. In this study, we show that an apoptosis-inducing factor (AIF)-related pathway is an essential target of PEDF-mediated neuroprotection. PEDF rescued serum starvation-induced apoptosis, which is mediated by AIF but not by caspases, of R28 cells derived from the rat retina by preventing translocation of AIF into the nucleus. Nuclear translocation of AIF was also observed in the apoptotic photoreceptors of Royal College of Surgeons rats, a well-known animal model of RP that carries a mutation of the Mertk gene. Lentivirus-mediated retinal gene transfer of PEDF prevented the nuclear translocation of AIF in vivo, resulting in the inhibition of the apoptotic loss of their photoreceptors in association with up-regulated Bcl-2 expression, which mediates the mitochondrial release of AIF. These findings clearly demonstrate that AIF is an essential executioner of photoreceptor apoptosis in inherited retinal degeneration and provide a therapeutic rationale for PEDF-mediated neuroprotective gene therapy for individuals with RP. PMID:18845835

  16. Modulation of airway epithelial cell functions by Pidotimod: NF-kB cytoplasmatic expression and its nuclear translocation are associated with an increased TLR-2 expression

    PubMed Central

    2013-01-01

    Background Recurrent respiratory infections are one of the most important causes of morbidity in childhood. When immune functions are still largely immature, the airway epithelium plays a primary defensive role since, besides providing a physical barrier, it is also involved in the innate and the adaptive immune responses. A study was therefore designed to evaluate in vitro whether pidotimod, a synthetic dipeptide able to stimulate the inflammatory and immune effector cells, could activate bronchial epithelial cell functions involved in response to infections. Methods BEAS-2B cell line (human bronchial epithelial cells infected with a replication-defective Adenovirus 12-SV40 virus hybrid) were cultured in the presence of pidotimod, with or without tumor necrosis factor (TNF)-α or zymosan to assess: a) intercellular adhesion molecule (ICAM)-1 expression, by flow cytometry; b) toll-like receptor (TLR)-2 expression and production, by immunofluorescence flow cytometry and western blotting; d) interleukin (IL)-8 release, by enzyme-linked immunosorbent assay (ELISA); e) activated extracellular-signal-regulated kinase (ERK1/2) phosphorylation and nuclear factor-kappa B (NF-kB) activation, by western blotting. Results The constitutive expression of ICAM-1 and IL-8 release were significant up-regulated by TNF-α (ICAM-1) and by TNF-α and zymosan (IL-8), but not by pidotimod. In contrast, an increased TLR-2 expression was found after exposure to pidotimod 10 and 100 μg/ml (p < 0.05) and to the association pidotimod 100 μg/ml + TNF-α (p < 0.05). Western blot analysis substantiated that the constitutive TLR-2 expression was significantly increased after exposure to all the stimuli. Finally, while a remarkable inhibition of TNF-α -induced ERK1/2 phosphorylation was observed in the presence of pidotimod, both TNF-α and pidotimod were effective in inducing NF-kB protein expression in the cytoplasm and its nuclear translocation. Conclusion Through different

  17. Multiscale perspectives of virus entry via endocytosis

    PubMed Central

    2013-01-01

    Most viruses take advantage of endocytic pathways to gain entry into host cells and initiate infections. Understanding of virus entry via endocytosis is critically important for the design of antiviral strategies. Virus entry via endocytosis is a complex process involving hundreds of cellular proteins. The entire process is dictated by events occurring at multiple time and length scales. In this review, we discuss and evaluate the available means to investigate virus endocytic entry, from both experimental and theoretical/numerical modeling fronts, and highlight the importance of multiscale features. The complexity of the process requires investigations at a systems biology level, which involves the combination of different experimental approaches, the collaboration of experimentalists and theorists across different disciplines, and the development of novel multiscale models. PMID:23734580

  18. Endocytosis and Endosomal Trafficking in Plants.

    PubMed

    Paez Valencia, Julio; Goodman, Kaija; Otegui, Marisa S

    2016-04-29

    Endocytosis and endosomal trafficking are essential processes in cells that control the dynamics and turnover of plasma membrane proteins, such as receptors, transporters, and cell wall biosynthetic enzymes. Plasma membrane proteins (cargo) are internalized by endocytosis through clathrin-dependent or clathrin-independent mechanism and delivered to early endosomes. From the endosomes, cargo proteins are recycled back to the plasma membrane via different pathways, which rely on small GTPases and the retromer complex. Proteins that are targeted for degradation through ubiquitination are sorted into endosomal vesicles by the ESCRT (endosomal sorting complex required for transport) machinery for degradation in the vacuole. Endocytic and endosomal trafficking regulates many cellular, developmental, and physiological processes, including cellular polarization, hormone transport, metal ion homeostasis, cytokinesis, pathogen responses, and development. In this review, we discuss the mechanisms that mediate the recognition and sorting of endocytic and endosomal cargos, the vesiculation processes that mediate their trafficking, and their connection to cellular and physiological responses in plants. PMID:27128466

  19. Actin-Regulator Feedback Interactions during Endocytosis.

    PubMed

    Wang, Xinxin; Galletta, Brian J; Cooper, John A; Carlsson, Anders E

    2016-03-29

    Endocytosis mediated by clathrin, a cellular process by which cells internalize membrane receptors and their extracellular ligands, is an important component of cell signaling regulation. Actin polymerization is involved in endocytosis in varying degrees depending on the cellular context. In yeast, clathrin-mediated endocytosis requires a pulse of polymerized actin and its regulators, which recruit and activate the Arp2/3 complex. In this article, we seek to identify the main protein-protein interactions that 1) cause actin and its regulators to appear in pulses, and 2) determine the effects of key mutations and drug treatments on actin and regulator assembly. We perform a joint modeling/experimental study of actin and regulator dynamics during endocytosis in the budding yeast Saccharomyces cerevisiae. We treat both a stochastic model that grows an explicit three-dimensional actin network, and a simpler two-variable Fitzhugh-Nagumo type model. The models include a negative-feedback interaction of F-actin onto the Arp2/3 regulators. Both models explain the pulse time courses and the effects of interventions on actin polymerization: the surprising increase in the peak F-actin count caused by reduced regulator branching activity, the increase in F-actin resulting from slowing of actin disassembly, and the increased Arp2/3 regulator lifetime resulting from latrunculin treatment. In addition, they predict that decreases in the regulator branching activity lead to increases in accumulation of regulators, and we confirmed this prediction with experiments on yeast harboring mutations in the Arp2/3 regulators, using quantitative fluorescence microscopy. Our experimental measurements suggest that the regulators act quasi-independently, in the sense that accumulation of a particular regulator is most strongly affected by mutations of that regulator, as opposed to the others. PMID:27028652

  20. Actin and Endocytosis in Budding Yeast

    PubMed Central

    Goode, Bruce L.; Eskin, Julian A.; Wendland, Beverly

    2015-01-01

    Endocytosis, the process whereby the plasma membrane invaginates to form vesicles, is essential for bringing many substances into the cell and for membrane turnover. The mechanism driving clathrin-mediated endocytosis (CME) involves > 50 different protein components assembling at a single location on the plasma membrane in a temporally ordered and hierarchal pathway. These proteins perform precisely choreographed steps that promote receptor recognition and clustering, membrane remodeling, and force-generating actin-filament assembly and turnover to drive membrane invagination and vesicle scission. Many critical aspects of the CME mechanism are conserved from yeast to mammals and were first elucidated in yeast, demonstrating that it is a powerful system for studying endocytosis. In this review, we describe our current mechanistic understanding of each step in the process of yeast CME, and the essential roles played by actin polymerization at these sites, while providing a historical perspective of how the landscape has changed since the preceding version of the YeastBook was published 17 years ago (1997). Finally, we discuss the key unresolved issues and where future studies might be headed. PMID:25657349

  1. Exocytosis and endocytosis: modes, functions, and coupling mechanisms.

    PubMed

    Wu, Ling-Gang; Hamid, Edaeni; Shin, Wonchul; Chiang, Hsueh-Cheng

    2014-01-01

    Vesicle exocytosis releases content to mediate many biological events, including synaptic transmission essential for brain functions. Following exocytosis, endocytosis is initiated to retrieve exocytosed vesicles within seconds to minutes. Decades of studies in secretory cells reveal three exocytosis modes coupled to three endocytosis modes: (a) full-collapse fusion, in which vesicles collapse into the plasma membrane, followed by classical endocytosis involving membrane invagination and vesicle reformation; (b) kiss-and-run, in which the fusion pore opens and closes; and (c) compound exocytosis, which involves exocytosis of giant vesicles formed via vesicle-vesicle fusion, followed by bulk endocytosis that retrieves giant vesicles. Here we review these exo- and endocytosis modes and their roles in regulating quantal size and synaptic strength, generating synaptic plasticity, maintaining exocytosis, and clearing release sites for vesicle replenishment. Furthermore, we highlight recent progress in understanding how vesicle endocytosis is initiated and is thus coupled to exocytosis. The emerging model is that calcium influx via voltage-dependent calcium channels at the calcium microdomain triggers endocytosis and controls endocytosis rate; calmodulin and synaptotagmin are the calcium sensors; and the exocytosis machinery, including SNARE proteins (synaptobrevin, SNAP25, and syntaxin), is needed to coinitiate endocytosis, likely to control the amount of endocytosis. PMID:24274740

  2. Exocytosis and Endocytosis: Modes, Functions, and Coupling Mechanisms*

    PubMed Central

    Wu, Ling-Gang; Hamid, Edaeni; Shin, Wonchul; Chiang, Hsueh-Cheng

    2016-01-01

    Vesicle exocytosis releases content to mediate many biological events, including synaptic transmission essential for brain functions. Following exocytosis, endocytosis is initiated to retrieve exocytosed vesicles within seconds to minutes. Decades of studies in secretory cells reveal three exocytosis modes coupled to three endocytosis modes: (a) full-collapse fusion, in which vesicles collapse into the plasma membrane, followed by classical endocytosis involving membrane invagination and vesicle reformation; (b) kiss-and-run, in which the fusion pore opens and closes; and (c) compound exocytosis, which involves exocytosis of giant vesicles formed via vesicle-vesicle fusion, followed by bulk endocytosis that retrieves giant vesicles. Here we review these exo- and endocytosis modes and their roles in regulating quantal size and synaptic strength, generating synaptic plasticity, maintaining exocytosis, and clearing release sites for vesicle replenishment. Furthermore, we highlight recent progress in understanding how vesicle endocytosis is initiated and is thus coupled to exocytosis. The emerging model is that calcium influx via voltage-dependent calcium channels at the calcium microdomain triggers endocytosis and controls endocytosis rate; calmodulin and synaptotagmin are the calcium sensors; and the exocytosis machinery, including SNARE proteins (synaptobrevin, SNAP25, and syntaxin), is needed to coinitiate endocytosis, likely to control the amount of endocytosis. PMID:24274740

  3. Type 1 IGF receptor translocates to the nucleus of human tumor cells

    PubMed Central

    Aleksic, Tamara; Chitnis, Meenali M.; Perestenko, Olga V.; Gao, Shan; Thomas, Peter H.; Turner, Gareth D.; Protheroe, Andrew S.; Howarth, Mark; Macaulay, Valentine M.

    2010-01-01

    The type 1 insulin-like growth factor receptor (IGF-1R) is a transmembrane glycoprotein comprising two extracellular α subunits and two β subunits with tyrosine kinase activity. The IGF-1R is frequently upregulated in cancers, and signals from the cell surface to promote proliferation and cell survival. Recent attention has focused on the IGF-1R as a target for cancer treatment. Here we report that the nuclei of human tumor cells contain IGF-1R, detectable using multiple antibodies to α- and β- subunit domains. Cell surface IGF-1R translocates to the nucleus following clathrin-mediated endocytosis, regulated by IGF levels. The IGF-1R is unusual among transmembrane receptors that undergo nuclear import, in that both α and β subunits traffic to the nucleus. Nuclear IGF-1R is phosphorylated in response to ligand, and undergoes IGF-induced interaction with chromatin, suggesting direct engagement in transcriptional regulation. The IGF-dependence of these phenomena indicate a requirement for the receptor kinase, and indeed IGF-1R nuclear import and chromatin binding can be blocked by a novel IGF-1R kinase inhibitor. Nuclear IGF-1R is detectable in primary renal cancer cells, formalin-fixed tumors, preinvasive lesions in the breast, and non-malignant tissues characterized by a high proliferation rate. In clear cell renal cancer, nuclear IGF-1R is associated with adverse prognosis. Our findings suggest that IGF-1R nuclear import has biological significance, may contribute directly to IGF-1R function, and may influence the efficacy of IGF-1R inhibitory drugs. PMID:20710042

  4. Hypoxia induced E-cadherin involving regulators of Hippo pathway due to HIF-1α stabilization/nuclear translocation in bone metastasis from breast carcinoma

    SciTech Connect

    Maroni, Paola; Matteucci, Emanuela; Drago, Lorenzo; Banfi, Giuseppe; Bendinelli, Paola; Desiderio, Maria Alfonsina

    2015-01-15

    Wwox as a novel molecule in the HIF-1α-HDM2 regulatory loop, necessary for the dynamic regulation of the HIF-1α amount, and we suggested that the reduction of endogenous Wwox free pool under hypoxia might also be due to the interaction with HDM2, sequestering the E3 ubiquitin ligase. We highlighted the importance of nuclear HIF-1α in the biology of metastasis for the mesenchymal-epithelial transition: this phenotype was regulated by Wwox plus hypoxia through E-cadherin target gene, playing a pivotal role in bone metastasis colonization. - Highlights: • E-cadherin accumulates in hypoxic bone metastasis opposite to primary carcinoma. • HIF-1 and PPARγ cooperate in inducing E-cadherin under hypoxia in metastatic cells. • Wwox regulates HIF-1α phosphorylation and nuclear translocation. • Hypoxia plus Wwox prevent HIF-1α degradation via HDM2 forming a regulatory loop.

  5. Molecular characterization and tissue distribution of aryl hydrocarbon receptor nuclear translocator isoforms, ARNT1 and ARNT2, and identification of novel splice variants in common cormorant (Phalacrocorax carbo).

    PubMed

    Lee, Jin-Seon; Kim, Eun-Young; Iwata, Hisato; Tanabe, Shinsuke

    2007-04-01

    High levels of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and related planar halogenated aromatic hydrocarbons (PHAHs) are accumulated in fish-eating birds including common cormorant (Phalacrocorax carbo). Most of the biochemical and toxic effects of TCDD are mediated by a basic helix-loop-helix and a conserved region among Per, ARNT, and Sim (bHLH/PAS) proteins, aryl hydrocarbon receptor (AHR) and AHR nuclear translocator (ARNT). To study the molecular mechanism of TCDD toxicity in common cormorant as an avian model species, characterization of the AHR/ARNT signaling pathway in this species is necessary. The present study focuses on molecular characterization of ARNT from common cormorant (ccARNT). The cDNA of the ccARNT isoform, ccARNT1 obtained by the screening of hepatic cDNA library contains a 2424-bp open reading frame that encodes 807 amino acids, exhibiting high identities (92%) with chicken ARNT. This isoform contains a unique 22 amino acid residue in 3' end of PAS A domain as is also recognized in chicken ARNT. The ccARNT2 cDNA isolated from brain tissue has a 2151-bp open reading frame. The deduced amino acid sequence of ccARNT2 protein (716 aa) shows a conservation of bHLH and PAS motif in its N-terminal region with high similarities (96% and 78%, respectively) to that of ccARNT1. Using quantitative RT-PCR methods, the tissue distribution profiles of ccARNT1 and ccARNT2 were unveiled. Both ccARNT1 and ccARNT2 mRNAs were ubiquitously expressed in all examined tissues including liver. The expression profile of ccARNT1 was comparable with that of rodent ARNT1, but ccARNT2 was not with rodent ARNT2, implying different roles of ARNT2 between the two species. There was a significant positive correlation between ARNT1 and ARNT2 mRNA expression levels in the liver of wild cormorant population, indicating that their expressions may be enforced by similar transcriptional regulation mechanism. Novel variants of ccARNT1 and ccARNT2 isoforms that were supposed to

  6. Physiology in conservation translocations

    PubMed Central

    Tarszisz, Esther; Dickman, Christopher R.; Munn, Adam J.

    2014-01-01

    Conservation translocations aim to restore species to their indigenous ranges, protect populations from threats and/or reinstate ecosystem functions. They are particularly important for the conservation and management of rare and threatened species. Despite tremendous efforts and advancement in recent years, animal conservation translocations generally have variable success, and the reasons for this are often uncertain. We suggest that when little is known about the physiology and wellbeing of individuals either before or after release, it will be difficult to determine their likelihood of survival, and this could limit advancements in the science of translocations for conservation. In this regard, we argue that physiology offers novel approaches that could substantially improve translocations and associated practices. As a discipline, it is apparent that physiology may be undervalued, perhaps because of the invasive nature of some physiological measurement techniques (e.g. sampling body fluids, surgical implantation). We examined 232 publications that dealt with translocations of terrestrial vertebrates and aquatic mammals and, defining ‘success’ as high or low, determined how many of these studies explicitly incorporated physiological aspects into their protocols and monitoring. From this review, it is apparent that physiological evaluation before and after animal releases could progress and improve translocation/reintroduction successes. We propose a suite of physiological measures, in addition to animal health indices, for assisting conservation translocations over the short term and also for longer term post-release monitoring. Perhaps most importantly, we argue that the incorporation of physiological assessments of animals at all stages of translocation can have important welfare implications by helping to reduce the total number of animals used. Physiological indicators can also help to refine conservation translocation methods. These approaches fall

  7. Shank2 Regulates Renal Albumin Endocytosis

    PubMed Central

    Dobrinskikh, Evgenia; Lewis, Linda; Doctor, R Brian; Okamura, Kayo; Lee, Min Goo; Altmann, Christopher; Faubel, Sarah; Kopp, Jeffrey B; Blaine, Judith

    2015-01-01

    Albuminuria is a strong and independent predictor of kidney disease progression but the mechanisms of albumin handling by the kidney remain to be fully defined. Previous studies have shown that podocytes endocytose albumin. Here we demonstrate that Shank2, a large scaffolding protein originally identified at the neuronal postsynaptic density, is expressed in podocytes in vivo and in vitro and plays an important role in albumin endocytosis in podocytes. Knockdown of Shank2 in cultured human podocytes decreased albumin uptake, but the decrease was not statistically significant likely due to residual Shank2 still present in the knockdown podocytes. Complete knockout of Shank2 in podocytes significantly diminished albumin uptake in vitro. Shank2 knockout mice develop proteinuria by 8 weeks of age. To examine albumin handling in vivo in wild-type and Shank2 knockout mice we used multiphoton intravital imaging. While FITC-labeled albumin was rapidly seen in the renal tubules of wild-type mice after injection, little albumin was seen in the tubules of Shank2 knockout mice indicating dysregulated renal albumin trafficking in the Shank2 knockouts. We have previously found that caveolin-1 is required for albumin endocytosis in cultured podocytes. Shank2 knockout mice had significantly decreased expression and altered localization of caveolin-1 in podocytes suggesting that disruption of albumin endocytosis in Shank2 knockouts is mediated via caveolin-1. In summary, we have identified Shank2 as another component of the albumin endocytic pathway in podocytes. PMID:26333830

  8. Cell mobility after endocytosis of carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Pirbhai, Massooma; Flores, Thomas; Jedlicka, Sabrina; Rotkin, Slava

    2013-03-01

    Directed cell movement plays a crucial role in cellular behaviors such as neuronal cell division, cell migration, and cell differentiation. There is evidence in preclinical in vivo studies that small fields have successfully been used to enhance regrowth of damages spinal cord axons but with a small success rate. Fortunately, the evolution of functional biomaterials and nanotechnology may provide promising solutions for enhancing the application of electric fields in guiding neuron migration and neurogenesis within the central nervous system. In this work, we studied how endocytosis and subsequent retention of carbon nanotubes affects the mobility of cells under the influence of an electric field, including the directed cell movement.

  9. Nanomechanics of magnetically driven cellular endocytosis

    NASA Astrophysics Data System (ADS)

    Zablotskii, V.; Lunov, O.; Dejneka, A.; Jastrabík, L.; Polyakova, T.; Syrovets, T.; Simmet, Th.

    2011-10-01

    Being essential for many pharmacodynamic and pharmacokinetic processes and playing a crucial role in regulating substrate detachment that enables cellular locomotion, endocytotic mechanisms in many aspects still remain a mystery and therefore can hardly be controlled. Here, we report on experimental and modeling studies of the magnetically assisted endocytosis of functionalized superparamagnetic iron oxide nanoparticles by prostate cancer cells (PC-3) and characterize the time and force scales of the cellular uptake machinery. The results indicate how the cellular uptake rate could be controlled by applied magnetic field, membrane elasticity, and nanoparticle magnetic moment.

  10. Kinetics of virus entry by endocytosis

    NASA Astrophysics Data System (ADS)

    Zhdanov, Vladimir P.

    2015-04-01

    Entry of virions into the host cells is either endocytotic or fusogenic. In both cases, it occurs via reversible formation of numerous relatively weak bonds resulting in wrapping of a virion by the host membrane with subsequent membrane rupture or scission. The corresponding kinetic models are customarily focused on the formation of bonds and do not pay attention to the energetics of the whole process, which is crucially dependent, especially in the case of endocytosis, on deformation of actin filaments forming the cytoskeleton of the host cell. The kinetic model of endocytosis, proposed by the author, takes this factor into account and shows that the whole process can be divided into a rapid initial transient stage and a long steady-state stage. The entry occurs during the latter stage and can be described as a first-order reaction. Depending on the details of the dependence of the grand canonical potential on the number of bonds, the entry can be limited either by the interplay of bond formation and membrane rupture (or scission) or by reaching a maximum of this potential.

  11. Exocytosis and endocytosis in juxtaglomerular cells.

    PubMed

    Friis, U G; Jensen, B L; Hansen, P B; Andreasen, D; Skøtt, O

    2000-01-01

    The cellular events related to secretion of renin are not well understood. Here we review some of the evidence that has led to the current understanding of renin secretion as a process that involves exocytosis as the predominant mode of secretion. This is based on the observation of occasional fusion events between secretory granules and cell membrane and measurement of intermittent secretion of renin from single afferent arterioles, with a renin content of each secretion episode that corresponds to the renin content of one secretory granule. More recently it has been demonstrated that the afferent arterioles lose a large number of renin granules after acute stimulation without changing the average granular volume. Current electrophysiological techniques have now permitted direct measurements of cell membrane capacitance in juxtaglomerular (JG) cells as a measure of net addition (exocytosis) or removal (endocytosis) of membrane material. With this technique we have shown that cAMP, which is a vasodilator and stimulates renin secretion, enhances net exocytosis at low concentrations, while at higher concentrations membrane retrieval processes are also stimulated. We suggest that both exocytosis and endocytosis are regulated processes in the JG-cells and both may be important for the long-term control of renin secretion at the single cell level. PMID:10691785

  12. Synaptotagmin-11 inhibits clathrin-mediated and bulk endocytosis.

    PubMed

    Wang, Changhe; Wang, Yeshi; Hu, Meiqin; Chai, Zuying; Wu, Qihui; Huang, Rong; Han, Weiping; Zhang, Claire Xi; Zhou, Zhuan

    2016-01-01

    Precise and efficient endocytosis is essential for vesicle recycling during a sustained neurotransmission. The regulation of endocytosis has been extensively studied, but inhibitors have rarely been found. Here, we show that synaptotagmin-11 (Syt11), a non-Ca(2+)-binding Syt implicated in schizophrenia and Parkinson's disease, inhibits clathrin-mediated endocytosis (CME) and bulk endocytosis in dorsal root ganglion neurons. The frequency of both types of endocytic event increases in Syt11 knockdown neurons, while the sizes of endocytosed vesicles and the kinetics of individual bulk endocytotic events remain unaffected. Specifically, clathrin-coated pits and bulk endocytosis-like structures increase on the plasma membrane in Syt11-knockdown neurons. Structural-functional analysis reveals distinct domain requirements for Syt11 function in CME and bulk endocytosis. Importantly, Syt11 also inhibits endocytosis in hippocampal neurons, implying a general role of Syt11 in neurons. Taken together, we propose that Syt11 functions to ensure precision in vesicle retrieval, mainly by limiting the sites of membrane invagination at the early stage of endocytosis. PMID:26589353

  13. Death-receptor activation halts clathrin-dependent endocytosis

    PubMed Central

    Austin, Cary D.; Lawrence, David A.; Peden, Andrew A.; Varfolomeev, Eugene E.; Totpal, Klara; De Mazière, Ann M.; Klumperman, Judith; Arnott, David; Pham, Victoria; Scheller, Richard H.; Ashkenazi, Avi

    2006-01-01

    Endocytosis is crucial for various aspects of cell homeostasis. Here, we show that proapoptotic death receptors (DRs) trigger selective destruction of the clathrin-dependent endocytosis machinery. DR stimulation induced rapid, caspase-mediated cleavage of key clathrin-pathway components, halting cellular uptake of the classic cargo protein transferrin. DR-proximal initiator caspases cleaved the clathrin adaptor subunit AP2α between functionally distinct domains, whereas effector caspases processed clathrin’s heavy chain. DR5 underwent ligand-induced, clathrin-mediated endocytosis, suggesting that internalization of DR signaling complexes facilitates clathrin-pathway targeting by caspases. An endocytosis-blocking, temperature-sensitive dynamin-1 mutant attenuated DR internalization, enhanced caspase stimulation downstream of DRs, and increased apoptosis. Thus, DR-triggered caspase activity disrupts clathrin-dependent endocytosis, leading to amplification of programmed cell death. PMID:16801533

  14. Differential requirements for actin during yeast and mammalian endocytosis.

    PubMed

    Aghamohammadzadeh, Soheil; Ayscough, Kathryn R

    2009-08-01

    Key features of clathrin-mediated endocytosis have been conserved across evolution. However, endocytosis in Saccharomyces cerevisiae is completely dependent on a functional actin cytoskeleton, whereas actin appears to be less critical in mammalian cell endocytosis. We reveal that the fundamental requirement for actin in the early stages of yeast endocytosis is to provide a strong framework to support the force generation needed to direct the invaginating plasma membrane into the cell against turgor pressure. By providing osmotic support, pressure differences across the plasma membrane were removed and this reduced the requirement for actin-bundling proteins in normal endocytosis. Conversely, increased turgor pressure in specific yeast mutants correlated with a decreased rate of endocytic patch invagination. PMID:19597484

  15. Systematic analysis of endocytosis by cellular perturbations.

    PubMed

    Kühling, Lena; Schelhaas, Mario

    2014-01-01

    Endocytosis is an essential process of eukaryotic cells that facilitates numerous cellular and organismal functions. The formation of vesicles from the plasma membrane serves the internalization of ligands and receptors and leads to their degradation or recycling. A number of distinct mechanisms have been described over the years, several of which are only partially characterized in terms of mechanism and function. These are often referred to as novel endocytic pathways. The pathways differ in their mode of uptake and in their intracellular destination. Here, an overview of the set of cellular proteins that facilitate the different pathways is provided. Further, the approaches to distinguish between the pathways by different modes of perturbation are critically discussed, emphasizing the use of genetic tools such as dominant negative mutant proteins. PMID:24947372

  16. Translocation of reptating chains

    NASA Astrophysics Data System (ADS)

    Żurek, S.; Drzewiński, A.; van Leeuwen, J. M. J.

    2011-05-01

    Voltage-driven translocation is modeled with the Rubinstein-Duke rules for hopping reptons in one- and two-dimensional lattices. The chain is driven through the pore by a bias potential promoting the transition of stored length in one direction. Coupling states give a semi-periodicity of the process that enables us to relate the properties to the stationary state of the master equation. The exact solution for short chains and Monte Carlo simulations for longer chains are used to calculate displacements, velocities and the translocation time.

  17. The NFL-TBS.40-63 anti-glioblastoma peptide enters selectively in glioma cells by endocytosis.

    PubMed

    Lépinoux-Chambaud, Claire; Eyer, Joël

    2013-10-01

    Glioblastoma are the most frequent and aggressive tumour of the nervous system despite surgical resection associated with chemotherapy and radiotherapy. Recently, we showed that the NFL-TBS.40-63 peptide corresponding to the sequence of a tubulin-binding site of neurofilaments, enters selectively in glioblastoma cells where it blocks microtubule polymerization, inhibits their proliferation, and reduces tumour development in rats bearing glioblastoma (Bocquet et al., 2009; Berges et al., 2012a). Here, we characterized the molecular mechanism responsible for the uptake of NFL-TBS.40-63 peptide by glioblastoma cells. Unlike other cell penetrating peptides (CPPs), which use a balance between endocytosis and direct translocation, the NFL-TBS.40-63 peptide is unable to translocate directly through the membrane when incubated with giant plasma membrane vesicles. Then, using a panel of markers and inhibitors, flow cytometry and confocal microscopy investigations showed that the uptake occurs mainly through endocytosis. Moreover, glycosaminoglycans and αVβ3 integrins are not involved in the NFL-TBS.40-63 peptide recognition and internalization by glioblastoma cells. Finally, the signalling of tyrosine kinase receptors is involved in the peptide uptake, especially via EGFR overexpressed in tumour cells, indicating that the uptake of NFL-TBS.40-63 peptide by glioblastoma cells is related to their abnormally high proliferative activity. PMID:23603097

  18. Problem-Elephant Translocation: Translocating the Problem and the Elephant?

    PubMed Central

    Fernando, Prithiviraj; Leimgruber, Peter; Prasad, Tharaka; Pastorini, Jennifer

    2012-01-01

    Human-elephant conflict (HEC) threatens the survival of endangered Asian elephants (Elephas maximus). Translocating “problem-elephants” is an important HEC mitigation and elephant conservation strategy across elephant range, with hundreds translocated annually. In the first comprehensive assessment of elephant translocation, we monitored 16 translocations in Sri Lanka with GPS collars. All translocated elephants were released into national parks. Two were killed within the parks where they were released, while all the others left those parks. Translocated elephants showed variable responses: “homers” returned to the capture site, “wanderers” ranged widely, and “settlers” established home ranges in new areas soon after release. Translocation caused wider propagation and intensification of HEC, and increased elephant mortality. We conclude that translocation defeats both HEC mitigation and elephant conservation goals. PMID:23236404

  19. Nuclear envelope-associated endosomes deliver surface proteins to the nucleus.

    PubMed

    Chaumet, Alexandre; Wright, Graham D; Seet, Sze Hwee; Tham, Keit Min; Gounko, Natalia V; Bard, Frederic

    2015-01-01

    Endocytosis directs molecular cargo along three main routes: recycling to the cell surface, transport to the Golgi apparatus or degradation in endolysosomes. Pseudomonas exotoxin A (PE) is a bacterial protein that typically traffics to the Golgi and then the endoplasmic reticulum before translocating to the cytosol. Here we show that a substantial fraction of internalized PE is also located in nuclear envelope-associated endosomes (NAE), which display limited mobility, exhibit a propensity to undergo fusion and readily discharge their contents into the nuclear envelope. Electron microscopy and protein trapping in the nucleus indicate that NAE mediate PE transfer into the nucleoplasm. RNAi screening further revealed that NAE-mediated transfer depends on the nuclear envelope proteins SUN1 and SUN2, as well as the Sec61 translocon complex. These data reveal a novel endosomal route from the cell surface to the nucleoplasm that facilitates the accumulation of extracellular and cell surface proteins in the nucleus. PMID:26356418

  20. Translocation (Y;12) in lipoma.

    PubMed

    Liang, Cher-Wei; Mariño-Enríquez, Adrian; Johannessen, Catherine; Hornick, Jason L; Dal Cin, Paola

    2011-01-01

    Lipomas are the most common benign mesenchymal neoplasm in adults, and have been extensively characterized at the cytogenetic level. Chromosomal aberrations have been observed in the majority of lipomas, two-thirds of which involve chromosomal region 12q14.3. To date, structural rearrangements have been reported affecting every chromosome except chromosome Y. Here we report a case of a lipoma that shows a novel apparently balanced translocation involving chromosomes Y and 12. Fluorescence in situ hybridization using a break-apart HMGA2 in-house probe set detected a single signal on the normal chromosome 12 but not on either the derivative chromosome Y or 12, indicating a cryptic loss of 12q14.3, where HMGA2 is mapped. Immunohistochemical studies, however, revealed overexpression of HMGA2 with nuclear expression in the majority of tumor cells, whereas MDM2 and CDK4 were negative. The overexpression of HMGA2 may be caused by a cryptic chromosomal aberration affecting either the cytogenetically unaltered HMGA2 allele or HMGA2 regulators elsewhere. The current case broadens our knowledge about the translocation partners of HMGA2 in lipomas and highlights the biological complexity in regulating HMGA2 expression. PMID:21356192

  1. Simulations of Polymer Translocation

    NASA Astrophysics Data System (ADS)

    Vocks, H.

    2008-07-01

    Transport of molecules across membranes is an essential mechanism for life processes. These molecules are often long, and the pores in the membranes are too narrow for the molecules to pass through as a single unit. In such circumstances, the molecules have to squeeze -- i.e., translocate -- themselves through the pores. DNA, RNA and proteins are such naturally occuring long molecules in a variety of biological processes. Understandably, the process of translocation has been an active topic of current research: not only because it is a cornerstone of many biological processes, but also due to its relevance for practical applications. Translocation is a complicated process in living organisms -- the presence of chaperone molecules, pH, chemical potential gradients, and assisting molecular motors strongly influence its dynamics. Consequently, the translocation process has been empirically studied in great variety in biological literature. Study of translocation as a biophysical process is more recent. Herein, the polymer is simplified to a sequentially connected string of N monomers as it passes through a narrow pore on a membrane. The quantities of interest are the typical time scale for the polymer to leave a confining cell (the ``escape of a polymer from a vesicle'' time scale), and the typical time scale the polymer spends in the pore (the ``dwell'' time scale) as a function of N and other parameters like membrane thickness, membrane adsorption, electrochemical potential gradient, etc. Our research is focused on computer simulations of translocation. Since our main interest is in the scaling properties, we use a highly simplified description of the translocation process. The polymer is described as a self-avoiding walk on a lattice, and its dynamics consists of single-monomer jumps from one lattice site to another neighboring one. Since we have a very efficient program to simulate such polymer dynamics, which we decribe in Chapter 2, we can perform long

  2. Small noncleaved B cell Burkitt-like lymphoma with chromosome t(8;14) translocation and Epstein-Barr virus nuclear-associated antigen in a homosexual man with acquired immune deficiency syndrome.

    PubMed

    Petersen, J M; Tubbs, R R; Savage, R A; Calabrese, L C; Proffitt, M R; Manolova, Y; Manolov, G; Shumaker, A; Tatsumi, E; McClain, K

    1985-01-01

    This case report describes new manifestations of the acquired immune deficiency syndrome (AIDS) in a promiscuous homosexual man. Investigation of upper gastrointestinal bleeding in the patient lead to discovery of a high-grade, small, noncleaved cell (Burkitt-like) gastroduodenal lymphoma with visceral and extralymphatic extension. Specific phenotyping of the lymphoma revealed that it was a monoclonal B cell lymphoma of mu kappa isotype. An in vitro cell line was established that was Epstein-Barr virus nuclear-associated antigen-positive. The lymphoma cells displayed a t(8;14) translocation similar to endemic African Burkitt lymphoma. Epstein-Barr virus genomes were identified in the lymphoma and an axillary lymph node biopsy specimen by molecular hybridization. These data strongly suggest that Epstein-Barr virus actively infected this patient. However, he showed normal Epstein-Barr virus-specific serologic responses, indicating an immune defect against the virus. PMID:2981469

  3. MicroRNA-21 Promotes Proliferation of Fibroblast-Like Synoviocytes through Mediation of NF-κB Nuclear Translocation in a Rat Model of Collagen-Induced Rheumatoid Arthritis

    PubMed Central

    Xian, Pei-Feng; Yang, Lu; Wang, Sheng-Xu

    2016-01-01

    MicroRNA-21 (miR-21) is overexpressed in patients with rheumatoid arthritis (RA). This study was designed to investigate the effect and mechanism of miR-21 on cell proliferation in fibroblast-like synoviocytes (FLS) of RA. FLS were primary-cultured from a rat RA model. RA-FLS and normal FLS were infected with lentivirus (anti-miR-21 or pro-miR-21) for overexpression or downregulation of miR-21, respectively. The effects of miR-21 overexpression or inhibition on nucleoprotein NF-κB levels and FLS cell proliferation were evaluated by western blotting and MTT assays. The effects of an inhibitor of NF-κB nuclear translocation (BAY 11-7082) were also evaluated. The results showed that the levels of miR-21 and nucleoprotein NF-κB were increased in FLS of RA model rats compared to the control group. Downregulation of miR-21 in RA FLS led to a significant decrease in nucleoprotein NF-κB levels and cell proliferation rates compared to the antinegative control (NC) group. However, miR-21 overexpression in normal FLS resulted in a significant increase of nucleoprotein NF-κB levels and cell proliferation rates compared to the pro-NC group. The effects of miR-21 overexpression were reversed by BAY 11-7082. We concluded that upregulated miR-21 in FLS in RA model rats may promote cell proliferation by facilitating NF-κB nuclear translocation, thus affecting the NF-κB pathway. PMID:27429986

  4. Synucleins Regulate the Kinetics of Synaptic Vesicle Endocytosis

    PubMed Central

    Vargas, Karina J.; Makani, Sachin; Davis, Taylor; Westphal, Christopher H.; Castillo, Pablo E.

    2014-01-01

    Genetic and pathological studies link α-synuclein to the etiology of Parkinson's disease (PD), but the normal function of this presynaptic protein remains unknown. α-Synuclein, an acidic lipid binding protein, shares high sequence identity with β- and γ-synuclein. Previous studies have implicated synucleins in synaptic vesicle (SV) trafficking, although the precise site of synuclein action continues to be unclear. Here we show, using optical imaging, electron microscopy, and slice electrophysiology, that synucleins are required for the fast kinetics of SV endocytosis. Slowed endocytosis observed in synuclein null cultures can be rescued by individually expressing mouse α-, β-, or γ-synuclein, indicating they are functionally redundant. Through comparisons to dynamin knock-out synapses and biochemical experiments, we suggest that synucleins act at early steps of SV endocytosis. Our results categorize α-synuclein with other familial PD genes known to regulate SV endocytosis, implicating this pathway in PD. PMID:25009269

  5. Oncogene Translocations and NHL

    Cancer.gov

    A colloboration with several large population-based cohorts to determine whether the prevalence or level of t14;18 is associated with risk of NHL and to investigate the clonal relationship between translocation-bearing cells and subsequent tumors

  6. PKM2 Thr454 phosphorylation increases its nuclear translocation and promotes xenograft tumor growth in A549 human lung cancer cells.

    PubMed

    Yu, Zhenhai; Huang, Liangqian; Qiao, Pengyun; Jiang, Aifang; Wang, Li; Yang, Tingting; Tang, Shengjian; Zhang, Wei; Ren, Chune

    2016-05-13

    Pyruvate kinase M2 (PKM2) is a key enzyme of glycolysis which is highly expressed in many tumor cells, and plays an important role in the Warburg effect. In previous study, we found PIM2 phosphorylates PKM2 at Thr454 residue (Yu, etl 2013). However, the functions of PKM2 Thr454 modification in cancer cells still remain unclear. Here we find PKM2 translocates into the nucleus after Thr454 phosphorylation. Replacement of wild type PKM2 with a mutant (T454A) enhances mitochondrial respiration, decreases pentose phosphate pathway, and enhances chemosensitivity in A549 cells. In addition, the mutant (T454A) PKM2 reduces xenograft tumor growth in nude mice. These findings demonstrate that PKM2 T454 phosphorylation is a potential therapeutic target in lung cancer. PMID:27045080

  7. Translocation and dissemination to target neurons of botulinum neurotoxin type B in the mouse intestinal wall.

    PubMed

    Connan, Chloé; Varela-Chavez, Carolina; Mazuet, Christelle; Molgó, Jordi; Haustant, Georges Michel; Disson, Olivier; Lecuit, Marc; Vandewalle, Alain; Popoff, Michel R

    2016-02-01

    Botulinum neurotoxins (BoNTs) are responsible for severe flaccid paralysis (botulism), which in most cases enter the organism via the digestive tract and then disseminate into the blood or lymph circulation to target autonomic and motor nerve endings. The passage way of BoNTs alone or in complex forms with associated nontoxic proteins through the epithelial barrier of the digestive tract still remains unclear. Here, we show using an in vivo model of mouse ligated intestinal loop that BoNT/B alone or the BoNT/B C-terminal domain of the heavy chain (HCcB), which interacts with cell surface receptors, translocates across the intestinal barrier. The BoNT/B or HCcB translocation through the intestinal barrier occurred via an endocytosis-dependent mechanism within 10-20 min, because Dynasore, a potent endocytosis inhibitor, significantly prevented BoNT/B as well as HCcB translocation. We also show that HCcB or BoNT/B specifically targets neuronal cells and neuronal extensions in the intestinal submucosa and musculosa expressing synaptotagmin, preferentially cholinergic neurons and to a lower extent other neuronal cell types, notably serotonergic neurons. Interestingly, rare intestinal epithelial cells accumulated HCcB suggesting that distinct cell types of the intestinal epithelium, still undefined, might mediate efficient translocation of BoNT/B. PMID:26294282

  8. Initiation of synapse formation by Wnt-induced MuSK endocytosis

    PubMed Central

    Gordon, Laura R.; Gribble, Katherine D.; Syrett, Camille M.; Granato, Michael

    2012-01-01

    In zebrafish, the MuSK receptor initiates neuromuscular synapse formation by restricting presynaptic growth cones and postsynaptic acetylcholine receptors (AChRs) to the center of skeletal muscle cells. Increasing evidence suggests a role for Wnts in this process, yet how muscle cells respond to Wnt signals is unclear. Here, we show that in vivo, wnt11r and wnt4a initiate MuSK translocation from muscle membranes to recycling endosomes and that this transition is crucial for AChR accumulation at future synaptic sites. Moreover, we demonstrate that components of the planar cell polarity pathway colocalize to recycling endosomes and that this localization is MuSK dependent. Knockdown of several core components disrupts MuSK translocation to endosomes, AChR localization and axonal guidance. We propose that Wnt-induced trafficking of the MuSK receptor to endosomes initiates a signaling cascade to align pre- with postsynaptic elements. Collectively, these findings suggest a general mechanism by which Wnt signals shape synaptic connectivity through localized receptor endocytosis. PMID:22318632

  9. Retrovirus Entry by Endocytosis and Cathepsin Proteases

    PubMed Central

    Kubo, Yoshinao; Hayashi, Hideki; Matsuyama, Toshifumi; Sato, Hironori; Yamamoto, Naoki

    2012-01-01

    Retroviruses include infectious agents inducing severe diseases in humans and animals. In addition, retroviruses are widely used as tools to transfer genes of interest to target cells. Understanding the entry mechanism of retroviruses contributes to developments of novel therapeutic approaches against retrovirus-induced diseases and efficient exploitation of retroviral vectors. Entry of enveloped viruses into host cell cytoplasm is achieved by fusion between the viral envelope and host cell membranes at either the cell surface or intracellular vesicles. Many animal retroviruses enter host cells through endosomes and require endosome acidification. Ecotropic murine leukemia virus entry requires cathepsin proteases activated by the endosome acidification. CD4-dependent human immunodeficiency virus (HIV) infection is thought to occur via endosomes, but endosome acidification is not necessary for the entry whereas entry of CD4-independent HIVs, which are thought to be prototypes of CD4-dependent viruses, is low pH dependent. There are several controversial results on the retroviral entry pathways. Because endocytosis and endosome acidification are complicatedly controlled by cellular mechanisms, the retrovirus entry pathways may be different in different cell lines. PMID:23304142

  10. Endocytosis of Gene Delivery Vectors: From Clathrin-dependent to Lipid Raft-mediated Endocytosis

    PubMed Central

    El-Sayed, Ayman; Harashima, Hideyoshi

    2013-01-01

    The ideal nonviral vector delivers its nucleic acid cargo to a specific intracellular target. Vectors enter cells mainly through endocytosis and are distributed to various intracellular organelles. Recent advances in microscopy, lipidomics, and proteomics confirm that the cell membrane is composed of clusters of lipids, organized in the form of lipid raft domains, together with non-raft domains that comprise a generally disordered lipid milieu. The binding of a nonviral vector to either region can determine the pathway for its endocytic uptake and subsequent intracellular itinerary. Given this model of the cell membrane structure, endocytic pathways should be reclassified in relation to lipid rafts. In this review, we attempt to assess the currently recognized endocytic pathways in mammalian cells. The endocytic pathways are classified in relation to the membrane regions that make up the primary endocytic vesicles. This review covers the well-recognized clathrin-mediated endocytosis (CME), phagocytosis, and macropinocytosis in addition to the less addressed pathways that take place in lipid rafts. These include caveolae-mediated, flotillin-dependent, GTPase regulator associated with focal adhesion kinase-1 (GRAF1)-dependent, adenosine diphosphate-ribosylation factor 6 (Arf6)-dependent, and RhoA-dependent endocytic pathways. We summarize the regulators associated with each uptake pathway and methods for interfering with these regulators are discussed. The fate of endocytic vesicles resulting from each endocytic uptake pathway is highlighted. PMID:23587924

  11. Chikusetsusaponin IVa methyl ester induces cell cycle arrest by the inhibition of nuclear translocation of β-catenin in HCT116 cells

    SciTech Connect

    Lee, Kyung-Mi; Yun, Ji Ho; Lee, Dong Hwa; Park, Young Gyun; Son, Kun Ho; Nho, Chu Won; Kim, Yeong Shik

    2015-04-17

    We demonstrate that chikusetsusaponin IVa methyl ester (CME), a triterpenoid saponin from the root of Achyranthes japonica, has an anticancer activity. We investigate its molecular mechanism in depth in HCT116 cells. CME reduces the amount of β-catenin in nucleus and inhibits the binding of β-catenin to specific DNA sequences (TCF binding elements, TBE) in target gene promoters. Thus, CME appears to decrease the expression of cell cycle regulatory proteins such as Cyclin D1, as a representative target for β-catenin, as well as CDK2 and CDK4. As a result of the decrease of the cell cycle regulatory proteins, CME inhibits cell proliferation by arresting the cell cycle at the G0/G1 phase. Therefore, we suggest that CME as a novel Wnt/β-catenin inhibitor can be a putative agent for the treatment of colorectal cancers. - Highlights: • CME inhibits cell proliferation in HCT116 cells. • CME increases cell cycle arrest at G0/G1 phase and apoptosis. • CME attenuates cyclin D1 and regulates cell cycle regulatory proteins. • CME inhibits β-catenin translocation to nucleus.

  12. Omega-3 fatty acid concentrate from Dunaliella salina possesses anti-inflammatory properties including blockade of NF-κB nuclear translocation.

    PubMed

    Chitranjali, T; Anoop Chandran, P; Muraleedhara Kurup, G

    2015-02-01

    The health benefits of omega-3 polyunsaturated fatty acids (ω-3 PUFA), mainly eicosapentaenoic acid (EPA 20:5) and docosahexaenoic acid (DHA, 22:6), have been long known. Although various studies have demonstrated the health benefits of ω-3 PUFA, the mechanisms of action of ω-3 PUFAs are still not completely understood. While the major commercial source is marine fish oil, in this study we suggest the marine micro algae, Dunaliella salina as an alternate source of omega-3 fatty acids. Treatment with this algal omega-3 fatty acid concentrate (Ds-ω-3 FA) resulted in significant down-regulation of LPS-induced production of TNF-α and IL-6 by peripheral blood mononuclear cells (PBMCs). The concentrate was also found to be a potent blocker of cyclooxygenase (COX-2) and matrix metalloproteinase (MMP-2 and MMP-9) expression. The present study reveals the anti-inflammatory properties of Ds-ω-3 FA concentrate including the inhibition of NF-κB translocation. PMID:25391558

  13. Fumaric Acid Esters Do Not Reduce Inflammatory NF-κB/p65 Nuclear Translocation, ICAM-1 Expression and T-Cell Adhesiveness of Human Brain Microvascular Endothelial Cells.

    PubMed

    Haarmann, Axel; Nehen, Mathias; Deiß, Annika; Buttmann, Mathias

    2015-01-01

    Dimethyl fumarate (DMF) is approved for disease-modifying treatment of patients with relapsing-remitting multiple sclerosis. Animal experiments suggested that part of its therapeutic effect is due to a reduction of T-cell infiltration of the central nervous system (CNS) by uncertain mechanisms. Here we evaluated whether DMF and its primary metabolite monomethyl fumarate (MMF) modulate pro-inflammatory intracellular signaling and T-cell adhesiveness of nonimmortalized single donor human brain microvascular endothelial cells at low passages. Neither DMF nor MMF at concentrations of 10 or 50 µM blocked the IL-1β-induced nuclear translocation of NF-κB/p65, whereas the higher concentration of DMF inhibited the nuclear entry of p65 in human umbilical vein endothelium cultured in parallel. DMF and MMF also did not alter the IL-1β-stimulated activation of p38 MAPK in brain endothelium. Furthermore, neither DMF nor MMF reduced the basal or IL-1β-inducible expression of ICAM-1. In accordance, both fumaric acid esters did not reduce the adhesion of activated Jurkat T cells to brain endothelium under basal or inflammatory conditions. Therefore, brain endothelial cells probably do not directly mediate a potential blocking effect of fumaric acid esters on the inflammatory infiltration of the CNS by T cells. PMID:26287168

  14. Lef1 Contributes to the Differentiation of Bulge Stem Cells by Nuclear Translocation and Cross-Talk with the Notch Signaling Pathway

    PubMed Central

    Zhang, Yi; Yu, Jin; Shi, Chunying; Huang, Yaqin; Wang, Yun; Yang, Tian; Yang, Jin

    2013-01-01

    Lymphoid enhancer binding factor-1 (Lef1) is an essential regulatory protein in the Wnt signal pathway, which controls cell growth and differentiation. Investigators in the field of skin biology have confirmed that multipotent bulge stem cells (BSCs) are responsible for hair follicle development and regeneration. However, the role of Lef1 remains poorly understood. In this study, we investigated the pattern of Lef1 expression at different stages of the hair growth cycle. Lef1 was strongly expressed during anagen but attenuated in both catagen- and telogen-phase hair follicles in vivo. When stem cells were induced to differentiate toward a hair fate in a co-culture system, Lef1 was notably up-regulated and accumulated in the nucleus, appearing to activate the target protein c-myc and jagged1. Simultaneously, the Wnt and Notch signaling pathways were co-activated, as confirmed by the increased expression of β-catenin and notch1. Plasmids expressing Lef1 and ΔNLef1, a construct in which the β-catenin-binding domain of Lef1 was deleted, were used to evaluate the effects of Lef1 on stem cell differentiation. Lef1 overexpression promoted bulge stem cell differentiation toward a hair fate, which was accompanied by the subsequent migration of β-catenin into the nucleus, whereas no changes were observed in the control group. Taken together, our results demonstrate that Lef1 plays an important role in bulge stem cell differentiation, promoting β-catenin translocation into the nucleus, activating downstream signaling molecules, eventually causing hair follicle bulge stem cells to adopt the hair fate. PMID:23630438

  15. Herpes simplex virus 2 modulates apoptosis and stimulates NF-{kappa}B nuclear translocation during infection in human epithelial HEp-2 cells

    SciTech Connect

    Yedowitz, Jamie C.; Blaho, John A. . E-mail: john.blaho@mssm.edu

    2005-11-25

    Virus-mediated apoptosis is well documented in various systems, including herpes simplex virus 1 (HSV-1). HSV-2 is closely related to HSV-1 but its apoptotic potential during infection has not been extensively scrutinized. We report that (i) HEp-2 cells infected with HSV-2(G) triggered apoptosis, assessed by apoptotic cellular morphologies, oligosomal DNA laddering, chromatin condensation, and death factor processing when a translational inhibitor (CHX) was added at 3 hpi. Thus, HSV-2 induced apoptosis but was unable to prevent the process from killing cells. (ii) Results from a time course of CHX addition experiment indicated that infected cell protein produced between 3 and 5 hpi, termed the apoptosis prevention window, are required for blocking virus-induced apoptosis. This corresponds to the same prevention time frame as reported for HSV-1. (iii) Importantly, CHX addition prior to 3 hpi led to less apoptosis than that at 3 hpi. This suggests that proteins produced immediately upon infection are needed for efficient apoptosis induction by HSV-2. This finding is different from that observed previously with HSV-1. (iv) Infected cell factors produced during the HSV-2(G) prevention window inhibited apoptosis induced by external TNF{alpha} plus cycloheximide treatment. (v) NF-{kappa}B translocated to nuclei and its presence in nuclei correlated with apoptosis prevention during HSV-2(G) infection. (vi) Finally, clinical HSV-2 isolates induced and prevented apoptosis in HEp-2 cells in a manner similar to that of laboratory strains. Thus, while laboratory and clinical HSV-2 strains are capable of modulating apoptosis in human HEp-2 cells, the mechanism of HSV-2 induction of apoptosis differs from that of HSV-1.

  16. Distinct Functions of Endophilin Isoforms in Synaptic Vesicle Endocytosis

    PubMed Central

    Zhang, Jifeng; Tan, Minghui; Yin, Yichen; Ren, Bingyu; Jiang, Nannan; Guo, Guoqing; Chen, Yuan

    2015-01-01

    Endophilin isoforms perform distinct characteristics in their interactions with N-type Ca2+ channels and dynamin. However, precise functional differences for the endophilin isoforms on synaptic vesicle (SV) endocytosis remain unknown. By coupling RNA interference and electrophysiological recording techniques in cultured rat hippocampal neurons, we investigated the functional differences of three isoforms of endophilin in SV endocytosis. The results showed that the amplitude of normalized evoked excitatory postsynaptic currents in endophilin1 knockdown neurons decreased significantly for both single train and multiple train stimulations. Similar results were found using endophilin2 knockdown neurons, whereas endophilin3 siRNA exhibited no change compared with control neurons. Endophilin1 and endophilin2 affected SV endocytosis, but the effect of endophilin1 and endophilin2 double knockdown was not different from that of either knockdown alone. This result suggested that endophilin1 and endophilin2 functioned together but not independently during SV endocytosis. Taken together, our results indicate that SV endocytosis is sustained by endophilin1 and endophilin2 isoforms, but not by endophilin3, in primary cultured hippocampal neurons. PMID:26682072

  17. Vesicle formation and endocytosis: function, machinery, mechanisms, and modeling.

    PubMed

    Parkar, Nihal S; Akpa, Belinda S; Nitsche, Ludwig C; Wedgewood, Lewis E; Place, Aaron T; Sverdlov, Maria S; Chaga, Oleg; Minshall, Richard D

    2009-06-01

    Vesicle formation provides a means of cellular entry for extracellular substances and for recycling of membrane constituents. Mechanisms governing the two primary endocytic pathways (i.e., caveolae- and clathrin-mediated endocytosis, as well as newly emerging vesicular pathways) have become the focus of intense investigation to improve our understanding of nutrient, hormone, and drug delivery, as well as opportunistic invasion of pathogens. In this review of endocytosis, we broadly discuss the structural and signaling proteins that compose the molecular machinery governing endocytic vesicle formation (budding, invagination, and fission from the membrane), with some regard for the specificity observed in certain cell types and species. Important biochemical functions of endocytosis and diseases caused by their disruption also are discussed, along with the structures of key components of endocytic pathways and their known mechanistic contributions. The mechanisms by which principal components of the endocytic machinery are recruited to the plasma membrane, where they interact to induce vesicle formation, are discussed, together with computational approaches used to simulate simplified versions of endocytosis with the hope of clarifying aspects of vesicle formation that may be difficult to determine experimentally. Finally, we pose several unanswered questions intended to stimulate further research interest in the cell biology and modeling of endocytosis. PMID:19113823

  18. Vesicle Formation and Endocytosis: Function, Machinery, Mechanisms, and Modeling

    PubMed Central

    Parkar, Nihal S.; Akpa, Belinda S.; Nitsche, Ludwig C.; Wedgewood, Lewis E.; Place, Aaron T.; Sverdlov, Maria S.; Chaga, Oleg

    2009-01-01

    Abstract Vesicle formation provides a means of cellular entry for extracellular substances and for recycling of membrane constituents. Mechanisms governing the two primary endocytic pathways (i.e., caveolae- and clathrin-mediated endocytosis, as well as newly emerging vesicular pathways) have become the focus of intense investigation to improve our understanding of nutrient, hormone, and drug delivery, as well as opportunistic invasion of pathogens. In this review of endocytosis, we broadly discuss the structural and signaling proteins that compose the molecular machinery governing endocytic vesicle formation (budding, invagination, and fission from the membrane), with some regard for the specificity observed in certain cell types and species. Important biochemical functions of endocytosis and diseases caused by their disruption also are discussed, along with the structures of key components of endocytic pathways and their known mechanistic contributions. The mechanisms by which principal components of the endocytic machinery are recruited to the plasma membrane, where they interact to induce vesicle formation, are discussed, together with computational approaches used to simulate simplified versions of endocytosis with the hope of clarifying aspects of vesicle formation that may be difficult to determine experimentally. Finally, we pose several unanswered questions intended to stimulate further research interest in the cell biology and modeling of endocytosis. Antioxid. Redox Signal. 11, 1301–1312. PMID:19113823

  19. Crosslinking-Induced Endocytosis of Acetylcholine Receptors by Quantum Dots

    PubMed Central

    Geng, Lin; Peng, H. Benjamin

    2014-01-01

    In a majority of patients with myasthenia gravis (MG), anti-acetylcholine receptor (AChR) antibodies target postsynaptic AChR clusters and thus compromise the membrane integrity of neuromuscular junctions (NMJs) and lead to muscle weakness. Antibody-induced endocytosis of AChRs in the postsynaptic membrane represents the initial step in the pathogenesis of MG; however, the molecular mechanisms underlying AChR endocytosis remain largely unknown. Here, we developed an approach to mimic the pathogenic antibodies for inducing the crosslinking and internalization of AChRs from the postsynaptic membrane. Using biotin-α-bungarotoxin and quantum dot (QD)-streptavidin, cell-surface and internalized AChRs could be readily distinguished by comparing the size, fluorescence intensity, trajectory, and subcellular localization of the QD signals. QD-induced AChR endocytosis was mediated by clathrin-dependent and caveolin-independent mechanisms, and the trafficking of internalized AChRs in the early endosomes required the integrity of microtubule structures. Furthermore, activation of the agrin/MuSK (muscle-specific kinase) signaling pathway strongly suppressed QD-induced internalization of AChRs. Lastly, QD-induced AChR crosslinking potentiated the dispersal of aneural AChR clusters upon synaptic induction. Taken together, our results identify a novel approach to study the mechanisms of AChR trafficking upon receptor crosslinking and endocytosis, and demonstrate that agrin-MuSK signaling pathways protect against crosslinking-induced endocytosis of AChRs. PMID:24587270

  20. Myoferlin is critical for endocytosis in endothelial cells

    PubMed Central

    Bernatchez, Pascal N.; Sharma, Arpeeta; Kodaman, Pinar

    2009-01-01

    Myoferlin is a member of the ferlin family of proteins that promotes endomembrane fusion with the plasma membrane in muscle cells and endothelial cells. In addition, myoferlin is necessary for the surface expression of vascular endothelial growth factor receptor 2 through the formation of a protein complex with dynamin-2 (Dyn-2). Since Dyn-2 is necessary for the fission of endocytic vesicles from the plasma membrane, we tested the hypothesis that myoferlin may regulates aspects of receptor-dependent endocytosis. Here we show that myoferlin gene silencing decreases both clathrin and caveolae/raft-dependent endocytosis, whereas ectopic myoferlin expression in COS-7 cells increases endocytosis by up to 125%. Interestingly, we have observed that inhibition of Dyn-2 activity or caveolin-1 (Cav-1) expression impairs endocytosis as well as membrane resealing after injury, indicating that Dyn-2 and Cav-1 also participate in both membrane fission and fusion processes. Mechanistically, myoferlin partially colocalizes with Dyn-2 and Cav-1 and forms a protein complex with Cav-1 solubilized from tissue extracts. Together, these data describe a new role for myoferlin in receptor-dependent endocytosis and an overlapping role for myoferlin-Dyn-2-Cav-1 protein complexes in membrane fusion and fission events. PMID:19494235

  1. Ankyrin-G Inhibits Endocytosis of Cadherin Dimers.

    PubMed

    Cadwell, Chantel M; Jenkins, Paul M; Bennett, Vann; Kowalczyk, Andrew P

    2016-01-01

    Dynamic regulation of endothelial cell adhesion is central to vascular development and maintenance. Furthermore, altered endothelial adhesion is implicated in numerous diseases. Therefore, normal vascular patterning and maintenance require tight regulation of endothelial cell adhesion dynamics. However, the mechanisms that control junctional plasticity are not fully understood. Vascular endothelial cadherin (VE-cadherin) is an adhesive protein found in adherens junctions of endothelial cells. VE-cadherin mediates adhesion through trans interactions formed by its extracellular domain. Trans binding is followed by cis interactions that laterally cluster the cadherin in junctions. VE-cadherin is linked to the actin cytoskeleton through cytoplasmic interactions with β- and α-catenin, which serve to increase adhesive strength. Furthermore, p120-catenin binds to the cytoplasmic tail of cadherin and stabilizes it at the plasma membrane. Here we report that induced cis dimerization of VE-cadherin inhibits endocytosis independent of both p120 binding and trans interactions. However, we find that ankyrin-G, a protein that links membrane proteins to the spectrin-actin cytoskeleton, associates with VE-cadherin and inhibits its endocytosis. Ankyrin-G inhibits VE-cadherin endocytosis independent of p120 binding. We propose a model in which ankyrin-G associates with and inhibits the endocytosis of VE-cadherin cis dimers. Our findings support a novel mechanism for regulation of VE-cadherin endocytosis through ankyrin association with cadherin engaged in lateral interactions. PMID:26574545

  2. Within-Range Translocations and Their Consequences in European Larch

    PubMed Central

    Wagner, Stefanie; Liepelt, Sascha; Gerber, Sophie; Petit, Rémy J.

    2015-01-01

    In contrast to biological invasions, translocations of individuals within a species range are understudied, due to difficulties in systematically detecting them. This results in limited knowledge about the corresponding processes and uncertainties regarding the status of extant populations. European larch, a forest tree whose fragmented native distribution is restricted to the Alps and to other Central European mountains, has been massively planted for at least 300 years. Here we focus on the genetic characterization of translocations having taken place within its native range. Microsatellite variation at 13 nuclear loci and sequence data of two mitochondrial DNA fragments were analyzed on the basis of a comprehensive range-wide population sample. Two complementary methods (Geneclass and Structure) were used to infer translocation events based on nuclear data whereas mitochondrial data were used for validation of these inferences. Using Geneclass, we found translocation events in a majority of populations. Additional cases of translocation and many instances of admixture were identified using Structure, thanks to the clear-cut ancestral genetic structure detected in this species. In particular, a strong divide between Alpine and Central European populations, also apparent at mitochondrial markers, helped uncover details on translocation events and related processes. Translocations and associated admixture events were found to be heterogeneously distributed across the species range, with a particularly high frequency in Central Europe. Furthermore, translocations frequently involved multiple geographic sources, some of which were over-represented. Our study illustrates the importance of range-wide investigations for tracing translocations back to their origins and for revealing some of their consequences. It provides some first clues for developing suitable conservation and management strategies. PMID:26000791

  3. Tissue-type plasminogen activator induces synaptic vesicle endocytosis in cerebral cortical neurons.

    PubMed

    Yepes, M; Wu, F; Torre, E; Cuellar-Giraldo, D; Jia, D; Cheng, L

    2016-04-01

    The release of the serine proteinase tissue-type plasminogen activator (tPA) from the presynaptic terminal of cerebral cortical neurons plays a central role in the development of synaptic plasticity, adaptation to metabolic stress and neuronal survival. Our earlier studies indicate that by inducing the recruitment of the cytoskeletal protein βII-spectrin and voltage-gated calcium channels to the active zone, tPA promotes Ca(2+)-dependent translocation of synaptic vesicles (SVs) to the synaptic release site where they release their load of neurotransmitters into the synaptic cleft. Here we used a combination of in vivo and in vitro experiments to investigate whether this effect leads to depletion of SVs in the presynaptic terminal. Our data indicate that tPA promotes SV endocytosis via a mechanism that does not require the conversion of plasminogen into plasmin. Instead, we show that tPA induces calcineurin-mediated dynamin I dephosphorylation, which is followed by dynamin I-induced recruitment of the actin-binding protein profilin II to the presynaptic membrane, and profilin II-induced F-actin formation. We report that this tPA-induced sequence of events leads to the association of newly formed SVs with F-actin clusters in the endocytic zone. In summary, the data presented here indicate that following the exocytotic release of neurotransmitters tPA activates the mechanism whereby SVs are retrieved from the presynaptic membrane and endocytosed to replenish the pool of vesicles available for a new cycle of exocytosis. Together, these results indicate that in murine cerebral cortical neurons tPA plays a central role coupling SVs exocytosis and endocytosis. PMID:26820595

  4. Induction of intranuclear membranes by overproduction of Opi1p and Scs2p, regulators for yeast phospholipid biosynthesis, suggests a mechanism for Opi1p nuclear translocation.

    PubMed

    Masuda, Miki; Oshima, Ayaka; Noguchi, Tetsuko; Kagiwada, Satoshi

    2016-03-01

    In the yeast Saccharomyces cerevisiae, the expression of phospholipid biosynthetic genes is suppressed by the Opi1p negative regulator. Opi1p enters into the nucleoplasm from the nuclear membrane to suppress the gene expression under repressing conditions. The binding of Opi1p to the nuclear membrane requires an integral membrane protein, Scs2p and phosphatidic acid (PA). Although it is demonstrated that the association of Opi1p with membranes is affected by PA levels, how Opi1p dissociates from Scs2p is unknown. Here, we found that fluorescently labelled Opi1p accumulated on a perinuclear region in an Scs2p-dependent manner. Electron microscopic analyses indicated that the perinuclear region consists of intranuclear membranes, which may be formed by the invagination of the nuclear membrane due to the accumulation of Opi1p and Scs2p in a restricted area. As expected, localization of Opi1p and Scs2p in the intranuclear membranes was detected by immunoelectron microscopy. Biochemical analysis showed that Opi1p recovered in the membrane fraction was detergent insoluble while Scs2p was soluble, implying that Opi1p behaves differently from Scs2p in the fraction. We hypothesize that Opi1p dissociates from Scs2p after targeting to the nuclear membrane, making it possible to be released from the membrane quickly when PA levels decrease. PMID:26590299

  5. Is lipid translocation involved during endo- and exocytosis?

    PubMed

    Devaux, P F

    2000-05-01

    Stimulation of the aminophospholipid translocase, responsible for the transport of phosphatidylserine and phosphatidylethanolamine from the outer to the inner leaflet of the plasma membrane, provokes endocytic-like vesicles in erythrocytes and stimulates endocytosis in K562 cells. In this article arguments are given which support the idea that the active transport of lipids could be the driving force involved in membrane folding during the early step of endocytosis. The model is sustained by experiments on shape changes of pure lipid vesicles triggered by a change in the proportion of inner and outer lipids. It is shown that the formation of microvesicles with a diameter of 100-200 nm caused by the translocation of plasma membrane lipids implies a surface tension in the whole membrane. It is likely that cytoskeleton proteins and inner organelles prevent a real cell from undergoing overall shape changes of the type seen with giant unilamellar vesicles. Another hypothesis put forward in this article is the possible implication of the phospholipid 'scramblase' during exocytosis which could favor the unfolding of microvesicles. PMID:10865135

  6. Nuclear translocation of the 1,25D{sub 3}-MARRS (membrane associated rapid response to steroids) receptor protein and NF{kappa}B in differentiating NB4 leukemia cells

    SciTech Connect

    Wu, Wenqing; Beilhartz, Greg; Roy, Yvette; Richard, Cynthia L.; Curtin, Maureen; Brown, Lauren; Cadieux, Danielle; Coppolino, Marc; Farach-Carson, Mary C.; Nemere, Ilka; Meckling, Kelly A.

    2010-04-15

    1,25 Dihydroxyvitamin D{sub 3} (1,25D{sub 3}) primes NB4 promyelocytic leukemia cells to differentiate along the monocyte/macrophage lineage through a non-genomic mechanism. Here we show that NB4 cells express high levels of the recently identified membrane receptor for 1,25D{sub 3}, which is a distinct gene product from the classical nuclear vitamin D receptor. This 57 kDa protein, named 1,25D{sub 3}-MARRS (Membrane Activated Rapid Response to Steroids)/ERp57/PIA3 appears to associate in a complex with the transcription factor, nuclear factor kappa B (NF{kappa}B). In unstimulated cells, 1,25D{sub 3}-MARRS can be co-immunoprecipitated with antibodies directed at NF{kappa}B, and NF{kappa}B is co-precipitated when antibodies against 1,25D{sub 3}-MARRS or ERp57 are used. Confocal microscopy and subcellular fractionation studies demonstrate that both 1,25D{sub 3}-MARRS and NF{kappa}B begin translocating to the nucleus within minutes of co-stimulation with 1,25D{sub 3} and phorbol ester. The predominant nuclear localization of both proteins precedes the expression of the monocyte/macrophage phenotype and suggests that this event may be critical to the differentiation pathway. This suggests a role for 1,25D{sub 3}-MARRS in the nucleus as a regulator of gene expression. Here it may also regulate the activity of NF{kappa}B and other factors with which it may be interacting.

  7. Endocytosis and exocytosis of nanoparticles in mammalian cells

    PubMed Central

    Oh, Nuri; Park, Ji-Ho

    2014-01-01

    Engineered nanoparticles that can be injected into the human body hold tremendous potential to detect and treat complex diseases. Understanding of the endocytosis and exocytosis mechanisms of nanoparticles is essential for safe and efficient therapeutic application. In particular, exocytosis is of significance in the removal of nanoparticles with drugs and contrast agents from the body, while endocytosis is of great importance for the targeting of nanoparticles in disease sites. Here, we review the recent research on the endocytosis and exocytosis of functionalized nanoparticles based on various sizes, shapes, and surface chemistries. We believe that this review contributes to the design of safe nanoparticles that can efficiently enter and leave human cells and tissues. PMID:24872703

  8. Endocytosis and Intracellular Trafficking of Human Natural Killer Cell Receptors

    PubMed Central

    Masilamani, Madhan; Peruzzi, Giovanna; Borrego, Francisco; Coligan, John E.

    2009-01-01

    Natural killer (NK) cells play a vital role in the defense against viral infections and tumor development. NK cell function is primarily regulated by the sum of signals from a broad array of activation and inhibitory receptors. Key to generating the input level of either activating or inhibitory signals is the maintenance of receptor expression levels on the cell surface. Although the mechanisms of endocytosis and trafficking for some cell surface receptors, such as transferrin receptor, and certain immune receptors, are very well known, that is not the situation for receptors expressed by NK cells. Recent studies have uncovered that endocytosis and trafficking routes characteristic for specific activation and inhibitory receptors can regulate the functional responses of NK cells. In this review, we summarize the current knowledge of receptor endocytosis and trafficking, and integrate this with our current understanding of NK cell receptor trafficking. PMID:19719476

  9. Phosphoinositides, kinases and adaptors coordinating endocytosis in Trypanosoma brucei

    PubMed Central

    Manna, Paul T; Field, Mark C

    2015-01-01

    In the kinetoplastid parasite Trypanosoma brucei clathrin-mediated endocytosis is essential for survival and aids immune evasion in the mammalian host. The formation of endocytic clathrin coated vesicles in T. brucei is via a unique mechanism owing to an evolutionarily recent loss of the adaptor protein (AP)2 complex, a central hub in endocytic vesicle assembly. Despite this loss, recent studies examining endocytic clathrin coat assembly have highlighted a high degree of conservation between trypanosomes and their mammalian hosts. In particular phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) and its putative effectors, TbCALM and TbEpsinR, are central to clathrin-mediated endocytosis in the trypanosome, just as they are in animal cells. In addition to providing insights into the cell biology of T. brucei, these studies also suggest an ancient, possibly pan-eukaryotic connection between PtdIns(4,5)P2 and endocytosis. PMID:27064836

  10. Imaging the Dynamics of Endocytosis in Live Mammalian Tissues

    PubMed Central

    Weigert, Roberto

    2014-01-01

    In mammalian cells, endocytosis plays a pivotal role in regulating several basic cellular functions. Up to now, the dynamics and the organization of the endocytic pathways have been primarily investigated in reductionist model systems such as cell and organ cultures. Although these experimental models have been fully successful in unraveling the endocytic machinery at a molecular level, our understanding of the regulation and the role of endocytosis in vivo has been limited. Recently, advancements in intravital microscopy have made it possible to extend imaging in live animals to subcellular structures, thus revealing new aspects of the molecular machineries regulating membrane trafficking that were not previously appreciated in vitro. Here, we focus on the use of intravital microscopy to study endocytosis in vivo, and discuss how this approach will allow addressing two fundamental questions: (1) how endocytic processes are organized in mammalian tissues, and (2) how they contribute to organ physiopathology. PMID:24691962

  11. Multiscale Modeling of Virus Entry via Receptor-Mediated Endocytosis

    NASA Astrophysics Data System (ADS)

    Liu, Jin

    2012-11-01

    Virus infections are ubiquitous and remain major threats to human health worldwide. Viruses are intracellular parasites and must enter host cells to initiate infection. Receptor-mediated endocytosis is the most common entry pathway taken by viruses, the whole process is highly complex and dictated by various events, such as virus motions, membrane deformations, receptor diffusion and ligand-receptor reactions, occurring at multiple length and time scales. We develop a multiscale model for virus entry through receptor-mediated endocytosis. The binding of virus to cell surface is based on a mesoscale three dimensional stochastic adhesion model, the internalization (endocytosis) of virus and cellular membrane deformation is based on the discretization of Helfrich Hamiltonian in a curvilinear space using Monte Carlo method. The multiscale model is based on the combination of these two models. We will implement this model to study the herpes simplex virus entry into B78 cells and compare the model predictions with experimental measurements.

  12. SUMOylation of Syntaxin1A regulates presynaptic endocytosis

    PubMed Central

    Craig, Tim J.; Anderson, Dina; Evans, Ashley J.; Girach, Fatima; Henley, Jeremy M.

    2015-01-01

    Neurotransmitter release from the presynaptic terminal is under very precise spatial and temporal control. Following neurotransmitter release, synaptic vesicles are recycled by endocytosis and refilled with neurotransmitter. During the exocytosis event leading to release, SNARE proteins provide most of the mechanical force for membrane fusion. Here, we show one of these proteins, Syntaxin1A, is SUMOylated near its C-terminal transmembrane domain in an activity-dependent manner. Preventing SUMOylation of Syntaxin1A reduces its interaction with other SNARE proteins and disrupts the balance of synaptic vesicle endo/exocytosis, resulting in an increase in endocytosis. These results indicate that SUMOylation regulates the emerging role of Syntaxin1A in vesicle endocytosis, which in turn, modulates neurotransmitter release and synaptic function. PMID:26635000

  13. Membrane Translocation and Organelle-Selective Delivery Steered by Polymeric Zwitterionic Nanospheres.

    PubMed

    Morimoto, Nobuyuki; Wakamura, Masaru; Muramatsu, Kanna; Toita, Sayaka; Nakayama, Masafumi; Shoji, Wataru; Suzuki, Makoto; Winnik, Françoise M

    2016-04-11

    The majority of nanoparticles designed for cellular delivery of drugs and imaging agents enter the cell via endocytotic pathways leading to their entrapment in endosomes that present a robust barrier to further trafficking of the nanoparticles within the cells. A few materials, such as the cell penetrating peptides (CPPs), are known to enter cells not only via endocytosis, but also via translocation through the cell membrane into the cytoplasm, successfully bypassing the endosomes. We report here that random copolymers of 3-dimethyl(methacryloyloxyethyl)ammonium propanesulfonate and poly(ethylene glycol) methacrylate, p(DMAPS-ran-PEGMA), are internalized in cells primarily via translocation through the cell membrane rather than endocytosis. The properties of the polymers and their modes of uptake were investigated systematically by dynamic light scattering, confocal fluorescence microscopy, and flow cytometry. Using specific inhibitors of the cellular uptake machinery in a human cervical carcinoma cell line (HeLa), we show that these nontoxic synthetic polyzwitterions exist in cell media as self-assembled nanospheres that unravel as they adsorb on the plasma membrane and translocate through it. Conjugates of p(DMAPS-ran-PEGMA) with rhodamine B were delivered selectively to the mitochondria, whereas doxorubicin (Dox)-p(DMAPS-ran-PEGMA) conjugates were accumulated in both the nucleus and the mitochondria, effectively inducing apoptosis in HeLa cells. These findings suggest that the noncytotoxic and readily synthesized p(DMAPS-ran-PEGMA) can find applications as bioimaging tools and drug nanocarriers. PMID:26938047

  14. Inhibition of Epithelial CC-Family Chemokine Synthesis by the Synthetic Chalcone DMPF-1 via Disruption of NF-κB Nuclear Translocation and Suppression of Experimental Asthma in Mice

    PubMed Central

    Rajajendram, Revathee; Tham, Chau Ling; Akhtar, Mohamad Nadeem; Sulaiman, Mohd Roslan; Israf, Daud Ahmad

    2015-01-01

    Asthma is associated with increased pulmonary inflammation and airway hyperresponsiveness. The interaction between airway epithelium and inflammatory mediators plays a key role in the pathogenesis of asthma. In vitro studies evaluated the inhibitory effects of 3-(2,5-dimethoxyphenyl)-1-(5-methylfuran-2-yl)prop-2-en-1-one (DMPF-1), a synthetic chalcone analogue, upon inflammation in the A549 lung epithelial cell line. DMPF-1 selectively inhibited TNF-α-stimulated CC chemokine secretion (RANTES, eotaxin-1, and MCP-1) without any effect upon CXC chemokine (GRO-α and IL-8) secretion. Western blot analysis further demonstrated that the inhibitory activity resulted from disruption of p65NF-κB nuclear translocation without any effects on the mitogen-activated protein kinase (MAPK) pathway. Treatment of ovalbumin-sensitized and ovalbumin-challenged BALB/c mice with DMPF-1 (0.2–100 mg/kg) demonstrated significant reduction in the secretion and gene expression of CC chemokines (RANTES, eotaxin-1, and MCP-1) and Th2 cytokines (IL-4, IL-5, and IL-13). Furthermore, DMPF-1 treatment inhibited eosinophilia, goblet cell hyperplasia, peripheral blood total IgE, and airway hyperresponsiveness in ovalbumin-sensitized and ovalbumin-challenged mice. In conclusion, these findings demonstrate the potential of DMPF-1, a nonsteroidal compound, as an antiasthmatic agent for further pharmacological evaluation. PMID:26300589

  15. Intense Resistance Exercise Promotes the Acute and Transient Nuclear Translocation of Small Ubiquitin-Related Modifier (SUMO)-1 in Human Myofibres.

    PubMed

    Gehlert, Sebastian; Klinz, Franz Josef; Willkomm, Lena; Schiffer, Thorsten; Suhr, Frank; Bloch, Wilhelm

    2016-01-01

    Protein sumoylation is a posttranslational modification triggered by cellular stress. Because general information concerning the role of small ubiquitin-related modifier (SUMO) proteins in adult skeletal muscle is sparse, we investigated whether SUMO-1 proteins will be subjected to time-dependent changes in their subcellular localization in sarcoplasmic and nuclear compartments of human type I and II skeletal muscle fibers in response to acute stimulation by resistance exercise (RE). Skeletal muscle biopsies were taken at baseline (PRE), 15, 30, 60, 240 min and 24 h post RE from 6 male subjects subjected to a single bout of one-legged knee extensions. SUMO-1 localization was determined via immunohistochemistry and confocal laser microscopy. At baseline SUMO-1 was localized in perinuclear regions of myonuclei. Within 15 and up to 60 min post exercise, nuclear SUMO-1 localization was significantly increased (p < 0.01), declining towards baseline levels within 240 min post exercise. Sarcoplasmic SUMO-1 localization was increased at 15 min post exercise in type I and up to 30 min post RE in type II myofibres. The changing localization of SUMO-1 proteins acutely after intense muscle contractions points to a role for SUMO proteins in the acute regulation of the skeletal muscle proteome after exercise. PMID:27136539

  16. Intense Resistance Exercise Promotes the Acute and Transient Nuclear Translocation of Small Ubiquitin-Related Modifier (SUMO)-1 in Human Myofibres

    PubMed Central

    Gehlert, Sebastian; Klinz, Franz Josef; Willkomm, Lena; Schiffer, Thorsten; Suhr, Frank; Bloch, Wilhelm

    2016-01-01

    Protein sumoylation is a posttranslational modification triggered by cellular stress. Because general information concerning the role of small ubiquitin-related modifier (SUMO) proteins in adult skeletal muscle is sparse, we investigated whether SUMO-1 proteins will be subjected to time-dependent changes in their subcellular localization in sarcoplasmic and nuclear compartments of human type I and II skeletal muscle fibers in response to acute stimulation by resistance exercise (RE). Skeletal muscle biopsies were taken at baseline (PRE), 15, 30, 60, 240 min and 24 h post RE from 6 male subjects subjected to a single bout of one-legged knee extensions. SUMO-1 localization was determined via immunohistochemistry and confocal laser microscopy. At baseline SUMO-1 was localized in perinuclear regions of myonuclei. Within 15 and up to 60 min post exercise, nuclear SUMO-1 localization was significantly increased (p < 0.01), declining towards baseline levels within 240 min post exercise. Sarcoplasmic SUMO-1 localization was increased at 15 min post exercise in type I and up to 30 min post RE in type II myofibres. The changing localization of SUMO-1 proteins acutely after intense muscle contractions points to a role for SUMO proteins in the acute regulation of the skeletal muscle proteome after exercise. PMID:27136539

  17. Bladder Uptake of Liposomes after Intravesical Administration Occurs by Endocytosis

    PubMed Central

    Rajaganapathy, Bharathi Raja; Chancellor, Michael B.; Nirmal, Jayabalan; Dang, Loan; Tyagi, Pradeep

    2015-01-01

    Liposomes have been used therapeutically and as a local drug delivery system in the bladder. However, the exact mechanism for the uptake of liposomes by bladder cells is unclear. In the present study, we investigated the role of endocytosis in the uptake of liposomes by cultured human UROtsa cells of urothelium and rat bladder. UROtsa cells were incubated in serum-free media with liposomes containing colloidal gold particles for 2 h either at 37°C or at 4°C. Transmission Electron Microscopy (TEM) images of cells incubated at 37°C found endocytic vesicles containing gold inside the cells. In contrast, only extracellular binding was noticed in cells incubated with liposomes at 4°C. Absence of liposome internalization at 4°C indicates the need of energy dependent endocytosis as the primary mechanism of entry of liposomes into the urothelium. Flow cytometry analysis revealed that the uptake of liposomes at 37°C occurs via clathrin mediated endocytosis. Based on these observations, we propose that clathrin mediated endocytosis is the main route of entry for liposomes into the urothelial layer of the bladder and the findings here support the usefulness of liposomes in intravesical drug delivery. PMID:25811468

  18. Revisiting the Endocytosis of the M2 Muscarinic Acetylcholine Receptor

    PubMed Central

    Ockenga, Wymke; Tikkanen, Ritva

    2015-01-01

    The agonist-induced endocytosis of the muscarinic acetylcholine receptor M2 is different from that of the other members of the muscarinic receptor family. The uptake of the M2 receptor involves the adapter proteins of the β-arrestin family and the small GTPase ADP-ribosylation factor 6. However, it has remained inconclusive if M2 endocytosis is dependent on clathrin or the large GTPase dynamin. We here show by means of knocking down the clathrin heavy chain that M2 uptake upon agonist stimulation requires clathrin. The expression of various dominant-negative dynamin-2 mutants and the use of chemical inhibitors of dynamin function revealed that dynamin expression and membrane localization as such appear to be necessary for M2 endocytosis, whereas dynamin GTPase activity is not required for this process. Based on the data from the present and from previous studies, we propose that M2 endocytosis takes place by means of an atypical clathrin-mediated pathway that may involve a specific subset of clathrin-coated pits/vesicles. PMID:25985102

  19. Role of turgor pressure in endocytosis in fission yeast

    PubMed Central

    Basu, Roshni; Munteanu, Emilia Laura; Chang, Fred

    2014-01-01

    Yeast and other walled cells possess high internal turgor pressure that allows them to grow and survive in the environment. This turgor pressure, however, may oppose the invagination of the plasma membrane needed for endocytosis. Here we study the effects of turgor pressure on endocytosis in the fission yeast Schizosaccharomyces pombe by time-lapse imaging of individual endocytic sites. Decreasing effective turgor pressure by addition of sorbitol to the media significantly accelerates early steps in the endocytic process before actin assembly and membrane ingression but does not affect the velocity or depth of ingression of the endocytic pit in wild-type cells. Sorbitol also rescues endocytic ingression defects of certain endocytic mutants and of cells treated with a low dose of the actin inhibitor latrunculin A. Endocytosis proceeds after removal of the cell wall, suggesting that the cell wall does not contribute mechanically to this process. These studies suggest that endocytosis is governed by a mechanical balance between local actin-dependent inward forces and opposing forces from high internal turgor pressure on the plasma membrane. PMID:24403609

  20. Human podocytes perform polarized, caveolae-dependent albumin endocytosis

    PubMed Central

    Dobrinskikh, Evgenia; Okamura, Kayo; Kopp, Jeffrey B.; Doctor, R. Brian

    2014-01-01

    The renal glomerulus forms a selective filtration barrier that allows the passage of water, ions, and small solutes into the urinary space while restricting the passage of cells and macromolecules. The three layers of the glomerular filtration barrier include the vascular endothelium, glomerular basement membrane (GBM), and podocyte epithelium. Podocytes are capable of internalizing albumin and are hypothesized to clear proteins that traverse the GBM. The present study followed the fate of FITC-labeled albumin to establish the mechanisms of albumin endocytosis and processing by podocytes. Confocal imaging and total internal reflection fluorescence microscopy of immortalized human podocytes showed FITC-albumin endocytosis occurred preferentially across the basal membrane. Inhibition of clathrin-mediated endocytosis and caveolae-mediated endocytosis demonstrated that the majority of FITC-albumin entered podocytes through caveolae. Once internalized, FITC-albumin colocalized with EEA1 and LAMP1, endocytic markers, and with the neonatal Fc receptor, a marker for transcytosis. After preloading podocytes with FITC-albumin, the majority of loaded FITC-albumin was lost over the subsequent 60 min of incubation. A portion of the loss of albumin occurred via lysosomal degradation as pretreatment with leupeptin, a lysosomal protease inhibitor, partially inhibited the loss of FITC-albumin. Consistent with transcytosis of albumin, preloaded podocytes also progressively released FITC-albumin into the extracellular media. These studies confirm the ability of podocytes to endocytose albumin and provide mechanistic insight into cellular mechanisms and fates of albumin handling in podocytes. PMID:24573386

  1. High-density lipoprotein endocytosis in endothelial cells

    PubMed Central

    Fruhwürth, Stefanie; Pavelka, Margit; Bittman, Robert; Kovacs, Werner J; Walter, Katharina M; Röhrl, Clemens; Stangl, Herbert

    2013-01-01

    AIM: To describe the way stations of high-density lipoprotein (HDL) uptake and its lipid exchange in endothelial cells in vitro and in vivo. METHODS: A combination of fluorescence microscopy using novel fluorescent cholesterol surrogates and electron microscopy was used to analyze HDL endocytosis in great detail in primary human endothelial cells. Further, HDL uptake was quantified using radio-labeled HDL particles. To validate the in vitro findings mice were injected with fluorescently labeled HDL and particle uptake in the liver was analyzed using fluorescence microscopy. RESULTS: HDL uptake occurred via clathrin-coated pits, tubular endosomes and multivesicular bodies in human umbilical vein endothelial cells. During uptake and resecretion, HDL-derived cholesterol was exchanged at a faster rate than cholesteryl oleate, resembling the HDL particle pathway seen in hepatic cells. In addition, lysosomes were not involved in this process and thus HDL degradation was not detectable. In vivo, we found HDL mainly localized in mouse hepatic endothelial cells. HDL was not detected in parenchymal liver cells, indicating that lipid transfer from HDL to hepatocytes occurs primarily via scavenger receptor, class B, type I mediated selective uptake without concomitant HDL endocytosis. CONCLUSION: HDL endocytosis occurs via clathrin-coated pits, tubular endosomes and multivesicular bodies in human endothelial cells. Mouse endothelial cells showed a similar HDL uptake pattern in vivo indicating that the endothelium is one major site of HDL endocytosis and transcytosis. PMID:24340136

  2. Cell adhesion defines the topology of endocytosis and signaling

    PubMed Central

    Grossier, Jean-Philippe; Xouri, Georgia; Goud, Bruno; Schauer, Kristine

    2014-01-01

    Preferred sites of endocytosis have been observed in various cell types, but whether they occur randomly or are linked to cellular cues is debated. Here, we quantified the sites of endocytosis of transferrin (Tfn) and epidermal growth factor (EGF) in cells whose adhesion geometry was defined by micropatterns. 3D probabilistic density maps revealed that Tfn was enriched in adhesive sites during uptake, whereas EGF endocytosis was restricted to the dorsal cellular surface. This spatial separation was not due to distributions of corresponding receptors but was regulated by uptake mechanisms. Asymmetric uptake of Tfn resulted from the enrichment of clathrin and adaptor protein 2 at adhesive areas. Asymmetry in EGF uptake was strongly dependent on the actin cytoskeleton and led to asymmetry in EGF receptor activation. Mild alteration of actin dynamics abolished asymmetry in EGF uptake and decreased EGF-induced downstream signaling, suggesting that cellular adhesion cues influence signal propagation. We propose that restriction of endocytosis at distinct sites allows cells to sense their environment in an “outside-in” mechanism. PMID:24366944

  3. Constitutive Endocytosis of VEGFR2 Protects the Receptor against Shedding.

    PubMed

    Basagiannis, Dimitris; Christoforidis, Savvas

    2016-08-01

    VEGFR2 plays a fundamental role in blood vessel formation and in life threatening diseases, such as cancer angiogenesis and cardiovascular disorders. Although inactive growth factor receptors are mainly localized at the plasma membrane, VEGFR2 undergoes constitutive endocytosis (in the absence of ligand) and recycling. Intriguingly, the significance of these futile transport cycles of VEGFR2 remains unclear. Here we found that, unexpectedly, the function of constitutive endocytosis of VEGFR2 is to protect the receptor against plasma membrane cleavage (shedding), thereby preserving the functional state of the receptor until the time of activation by VEGF. Inhibition of constitutive endocytosis of VEGFR2, by interference with the function of clathrin, dynamin, or Rab5, increases dramatically the cleavage/shedding of VEGFR2. Shedding of VEGFR2 produces an N-terminal soluble fragment (100 kDa, s100), which is released in the extracellular space, and a residual C-terminal part (130 kDa, p130) that remains integrated at the plasma membrane. The released soluble fragment (s100) co-immunoprecipitates with VEGF, in line with the topology of the VEGF-binding domain at the N terminus of VEGFR2. Increased shedding of VEGFR2 (via inhibition of constitutive endocytosis) results in reduced response to VEGF, consistently with the loss of the VEGF-binding domain from the membrane remnant of VEGFR2. These data suggest that constitutive internalization of VEGFR2 protects the receptor against shedding and provides evidence for an unprecedented mechanism via which endocytosis can regulate the fate and activity of growth factor receptors. PMID:27298320

  4. Osmotic induction of fluid-phase endocytosis in onion epidermal cells.

    PubMed

    Oparka, K J; Prior, D A; Harris, N

    1990-03-01

    A transient plasmolysis/deplasmolysis (plasmolytic cycle) of onion epidermal cells has been shown to induce the formation of fluid-phase endocytic vesicles. Plasmolysis in the presence of the membrane-impermeant fluorescent probes Lucifer Yellow CH (LYCH) and Cascade Blue hydrazide resulted in the uptake of these probes by fluid-phase endocytosis. Following deplasmolysis, many of the dye-containing vesicles left their parietal positions within the cell and underwent vigorous streaming in the cytoplasm. Vesicles were observed to move within transvacuolar strands and their movements were recorded over several hours by video-microscopy. Within 2 h of deplasmolysis several of the larger endocytic vesicles had clustered around the nuclear membrane, apparently lodged in the narrow zone of cytoplams surrounding the nucleus. In further experiments LYCH was endocytically loaded into the cells during the first plasmolytic cycle and Cascade Blue subsequently loaded during a second plasmolytic cycle. This resulted in the introduction of two populations of endocytic vesicles into the cells, each containing a different probe. Both sets of vesicles underwent cytoplasmic streaming. The data are discussed in the light of previous observations of fluid-phase endocytosis in plant cells. PMID:24202101

  5. Macrophage Receptor with Collagenous Structure (MARCO) Is Processed by either Macropinocytosis or Endocytosis-Autophagy Pathway

    PubMed Central

    Hirano, Seishiro; Kanno, Sanae

    2015-01-01

    The Macrophage Receptor with COllagenous structure (MARCO) protein is a plasma membrane receptor for un-opsonized or environmental particles on phagocytic cells. Here, we show that MARCO was internalized either by ruffling of plasma membrane followed by macropinocytosis or by endocytosis followed by fusion with autophagosome in CHO-K1 cells stably transfected with GFP-MARCO. The macropinocytic process generated large vesicles when the plasma membrane subsided. The endocytosis/autophagosome (amphisome) generated small fluorescent puncta which were visible in the presence of glutamine, chloroquine, bafilomycin, ammonia, and other amines. The small puncta, but not the large vesicles, co-localized with LC3B and lysosomes. The LC3-II/LC3-I ratio increased in the presence of glutamine, ammonia, and chloroquine in various cells. The small puncta trafficked between the peri-nuclear region and the distal ends of cells back and forth at rates of up to 2–3 μm/sec; tubulin, but not actin, regulated the trafficking of the small puncta. Besides phagocytosis MARCO, an adhesive plasma membrane receptor, may play a role in incorporation of various extracellular materials into the cell via both macropinocytic and endocytic pathways. PMID:26545255

  6. Age-Related Nuclear Translocation of P2X6 Subunit Modifies Splicing Activity Interacting with Splicing Factor 3A1

    PubMed Central

    Díaz-Hernández, Juan Ignacio; Sebastián-Serrano, Álvaro; Gómez-Villafuertes, Rosa

    2015-01-01

    P2X receptors are ligand-gated ion channels sensitive to extracellular nucleotides formed by the assembling of three equal or different P2X subunits. In this work we report, for the first time, the accumulation of the P2X6 subunit inside the nucleus of hippocampal neurons in an age-dependent way. This location is favored by its anchorage to endoplasmic reticulum through its N-terminal domain. The extracellular domain of P2X6 subunit is the key to reach the nucleus, where it presents a speckled distribution pattern and is retained by interaction with the nuclear envelope protein spectrin α2. The in vivo results showed that, once inside the nucleus, P2X6 subunit interacts with the splicing factor 3A1, which ultimately results in a reduction of the mRNA splicing activity. Our data provide new insights into post-transcriptional regulation of mRNA splicing, describing a novel mechanism that could explain why this process is sensitive to changes that occur with age. PMID:25874565

  7. Interaction of /sup 125/I-labeled botulinum neurotoxins with nerve terminals. II. Autoradiographic evidence for its uptake into motor nerves by acceptor-mediated endocytosis

    SciTech Connect

    Black, J.D.; Dolly, J.O.

    1986-01-01

    Using pharmacological and autoradiographic techniques it has been shown that botulinum neurotoxin (BoNT) is translocated across the motor nerve terminal membrane to reach a postulated intraterminal target. In the present study, the nature of this uptake process was investigated using electron microscopic autoradiography. It was found that internalization is acceptor-mediated and that binding to specific cell surface acceptors involves the heavier chain of the toxin. In addition, uptake was shown to be energy and temperature-dependent and to be accelerated by nerve stimulation, a treatment which also shortens the time course of the toxin-induced neuroparalysis. These results, together with the observation that silver grains were often associated with endocytic structures within the nerve terminal, suggested that acceptor-mediated endocytosis is responsible for toxin uptake. Possible recycling of BoNT acceptors (an important aspect of acceptor-mediated endocytosis of toxins) at motor nerve terminals was indicated by comparing the extent of labeling in the presence and absence of metabolic inhibitors. On the basis of these collective results, it is concluded that BoNT is internalized by acceptor-mediated endocytosis and, hence, the data support the proposal that this toxin inhibits release of acetylcholine by interaction with an intracellular target.

  8. A Bcl-xL-Drp1 complex regulates synaptic vesicle membrane dynamics during endocytosis

    PubMed Central

    Li, Hongmei; Alavian, Kambiz N.; Lazrove, Emma; Mehta, Nabil; Jones, Adrienne; Zhang, Ping; Licznerski, Pawel; Graham, Morven; Uo, Takuma; Guo, Junhua; Rahner, Christoph; Duman, Ronald S.; Morrison, Richard S.; Jonas, Elizabeth A.

    2013-01-01

    Following exocytosis, the rate of recovery of neurotransmitter release is determined by vesicle retrieval from the plasma membrane and by recruitment of vesicles from reserve pools within the synapse, the latter of which is dependent on mitochondrial ATP. The Bcl-2 family protein Bcl-xL, in addition to its role in cell death, regulates neurotransmitter release and recovery in part by increasing ATP availability from mitochondria. We now find, however, that, Bcl-xL directly regulates endocytotic vesicle retrieval in hippocampal neurons through protein/protein interaction with components of the clathrin complex. Our evidence suggests that, during synaptic stimulation, Bcl-xL translocates to clathrin-coated pits in a calmodulin-dependent manner and forms a complex of proteins with the GTPase Drp1, Mff and clathrin. Depletion of Drp1 produces misformed endocytotic vesicles. Mutagenesis studies suggest that formation of the Bcl-xL-Drp1 complex is necessary for the enhanced rate of vesicle endocytosis produced by Bcl-xL, thus providing a mechanism for presynaptic plasticity. PMID:23792689

  9. Fenofibrate-induced nuclear translocation of FoxO3A triggers Bim-mediated apoptosis in glioblastoma cells in vitro

    PubMed Central

    Wilk, Anna; Urbanska, Katarzyna; Grabacka, Maja; Mullinax, Jennifer; Marcinkiewicz, Cezary; Impastato, David; Estrada, John J.; Reiss, Krzysztof

    2012-01-01

    Anti-neoplastic potential of calorie restriction or ligand-induced activation of peroxisome proliferator activated receptors (PPARs) has been demonstrated in multiple studies; however, mechanism(s) by which tumor cells respond to these stimuli remain to be elucidated. One of the potent agonists of PPARα, fenofibrate, is a commonly used lipid-lowering drug with low systemic toxicity. Fenofibrate-induced PPARα transcriptional activity is expected to shift energy metabolism from glycolysis to fatty acid β-oxidation, which in the long-term, could target weak metabolic points of glycolysis-dependent glioblastoma cells. The results of this study demonstrate that 25 μM fenofibrate can effectively repress malignant growth of primary glial tumor cells and glioblastoma cell lines. This cytostatic action involves G1 arrest accompanied by only a marginal level of apoptotic cell death. Although the cells treated with 25 μM fenofibrate remain arrested, the cells treated with 50 μM fenofibrate undergo massive apoptosis, which starts after 72 h of the treatment. This delayed apoptotic event was preceded by FoxO3A nuclear accumulation, FoxO3A phosphorylation on serine residue 413, its elevated transcriptional activity and expression of FoxO-dependent apoptotic protein, Bim. siRNA-mediated inhibition of FoxO3A attenuated fenofibrate-induced apoptosis, indicating a direct involvement of this transcription factor in the fenofibrate action against glioblastoma. These properties of fenofibrate, coupled with its low systemic toxicity, make it a good candidate in support of conventional therapies against glial tumors. PMID:22732497

  10. Berberine activates Nrf2 nuclear translocation and inhibits apoptosis induced by high glucose in renal tubular epithelial cells through a phosphatidylinositol 3-kinase/Akt-dependent mechanism.

    PubMed

    Zhang, Xiuli; Liang, Dan; Lian, Xu; Jiang, Yan; He, Hui; Liang, Wei; Zhao, Yue; Chi, Zhi-Hong

    2016-06-01

    Apoptosis of tubular epithelial cells is a major feature of diabetic kidney disease, and hyperglycemia triggers the generation of free radicals and oxidant stress in tubular cells. Berberine (BBR) is identified as a potential anti-diabetic herbal medicine due to its beneficial effects on insulin sensitivity, glucose metabolism and glycolysis. In this study, the underlying mechanisms involved in the protective effects of BBR on high glucose-induced apoptosis were explored using cultured renal tubular epithelial cells (NRK-52E cells) and human kidney proximal tubular cell line (HK-2 cells). We identified the pivotal role of phosphatidylinositol 3-kinase (PI3K)/Akt in BBR cellular defense mechanisms and revealed the novel effect of BBR on nuclear factor (erythroid-derived 2)-related factor-2 (Nrf2) and heme oxygenase (HO)-1 in NRK-52E and HK-2 cells. BBR attenuated reactive oxygen species production, antioxidant defense (GSH and SOD) and oxidant-sensitive proteins (Nrf2 and HO-1), which also were blocked by LY294002 (an inhibitor of PI3K) in HG-treated NRK-52E and HK-2 cells. Furthermore, BBR improved mitochondrial function by increasing mitochondrial membrane potential. BBR-induced anti-apoptotic function was demonstrated by decreasing apoptotic proteins (cytochrome c, Bax, caspase3 and caspase9). All these findings suggest that BBR exerts the anti-apoptosis effects through activation of PI3K/Akt signal pathways and leads to activation of Nrf2 and induction of Nrf2 target genes, and consequently protecting the renal tubular epithelial cells from HG-induced apoptosis. PMID:26979714

  11. Endoplasmic reticulum stress contributes to acetylcholine receptor degradation by promoting endocytosis in skeletal muscle cells.

    PubMed

    Du, Ailian; Huang, Shiqian; Zhao, Xiaonan; Zhang, Yun; Zhu, Lixun; Ding, Ji; Xu, Congfeng

    2016-01-15

    After binding by acetylcholine released from a motor neuron, a nicotinic acetylcholine receptor at the neuromuscular junction produces a localized end-plate potential, which leads to muscle contraction. Improper turnover and renewal of acetylcholine receptors contributes to the pathogenesis of myasthenia gravis. In the present study, we demonstrate that endoplasmic reticulum (ER) stress contributes to acetylcholine receptor degradation in C2C12 myocytes. We further show that ER stress promotes acetylcholine receptor endocytosis and lysosomal degradation, which was dampened by blocking endocytosis or treating with lysosome inhibitor. Knockdown of ER stress proteins inhibited acetylcholine receptor endocytosis and degradation, while rescue assay restored its endocytosis and degradation, confirming the effects of ER stress on promoting endocytosis-mediated degradation of junction acetylcholine receptors. Thus, our studies identify ER stress as a factor promoting acetylcholine receptor degradation through accelerating endocytosis in muscle cells. Blocking ER stress and/or endocytosis might provide a novel therapeutic approach for myasthenia gravis. PMID:26711579

  12. USP17 is required for clathrin mediated endocytosis of epidermal growth factor receptor

    PubMed Central

    Jaworski, Jakub; de la Vega, Michelle; Fletcher, Sarah J.; McFarlane, Cheryl; Greene, Michelle K.; Smyth, Andrew W.; Van Schaeybroeck, Sandra; Johnston, James A.; Scott, Christopher J.; Rappoport, Joshua Z.; Burrows, James F.

    2014-01-01

    Previously we have shown that expression of the deubiquitinating enzyme USP17 is required for cell proliferation and motility. More recently we reported that USP17 deubiquitinates RCE1 isoform 2 and thus regulates the processing of ‘CaaX’ motif proteins. Here we now show that USP17 expression is induced by epidermal growth factor and that USP17 expression is required for clathrin mediated endocytosis of epidermal growth factor receptor. In addition, we show that USP17 is required for the endocytosis of transferrin, an archetypal substrate for clathrin mediated endocytosis, and that USP17 depletion impedes plasma membrane recruitment of the machinery required for clathrin mediated endocytosis. Thus, our data reveal that USP17 is necessary for epidermal growth factor receptor and transferrin endocytosis via clathrin coated pits, indicate this is mediated via the regulation of the recruitment of the components of the endocytosis machinery and suggest USP17 may play a general role in receptor endocytosis. PMID:25026282

  13. Genomic Comparison of Translocating and Non-Translocating Escherichia coli

    PubMed Central

    Bachmann, Nathan L.; Katouli, Mohammad; Polkinghorne, Adam

    2015-01-01

    Translocation of E. coli across the gut epithelium can result in fatal sepsis in post-surgical patients. In vitro and in vivo experiments have identified the existence of a novel pathotype of translocating E. coli (TEC) that employs an unknown mechanism for translocating across epithelial cells to the mesenteric lymph nodes and the blood stream in both humans and animal models. In this study the genomes of four TEC strains isolated from the mesenteric lymph nodes of a fatal case of hospitalised patient (HMLN-1), blood of pigs after experimental shock (PC-1) and after non-lethal haemorrhage in rats (KIC-1 and KIC-2) were sequenced in order to identify the genes associated with their adhesion and/or translocation. To facilitate the comparison, the genomes of a non-adhering, non-translocating E. coli (46–4) and adhering but non-translocating E. coli (73–89) were also sequenced and compared. Whole genome comparison revealed that three (HMLN-1, PC-1 and KIC-2) of the four TEC strains carried a genomic island that encodes a Type 6 Secretion System that may contribute to adhesion of the bacteria to gut epithelial cells. The human TEC strain HMLN-1 also carried the invasion ibeA gene, which was absent in the animal TEC strains and is likely to be associated with host-specific translocation. Phylogenetic analysis revealed that the four TEC strains were distributed amongst three distinct E. coli phylogroups, which was supported by the presence of phylogroup specific fimbriae gene clusters. The genomic comparison has identified potential genes that can be targeted with knock-out experiments to further characterise the mechanisms of E. coli translocation. PMID:26317913

  14. Abdominal radiation causes bacterial translocation

    SciTech Connect

    Guzman-Stein, G.; Bonsack, M.; Liberty, J.; Delaney, J.P.

    1989-02-01

    The purpose of this study was to determine if a single dose of radiation to the rat abdomen leads to bacterial translocation into the mesenteric lymph nodes (MLN). A second issue addressed was whether translocation correlates with anatomic damage to the mucosa. The radiated group (1100 cGy) which received anesthesia also was compared with a control group and a third group which received anesthesia alone but no abdominal radiation. Abdominal radiation lead to 100% positive cultures of MLN between 12 hr and 4 days postradiation. Bacterial translocation was almost nonexistent in the control and anesthesia group. Signs of inflammation and ulceration of the intestinal mucosa were not seen until Day 3 postradiation. Mucosal damage was maximal by Day 4. Bacterial translocation onto the MLN after a single dose of abdominal radiation was not apparently dependent on anatomical, histologic damage of the mucosa.

  15. Structural insights into ribosome translocation.

    PubMed

    Ling, Clarence; Ermolenko, Dmitri N

    2016-09-01

    During protein synthesis, tRNA and mRNA are translocated from the A to P to E sites of the ribosome thus enabling the ribosome to translate one codon of mRNA after the other. Ribosome translocation along mRNA is induced by the universally conserved ribosome GTPase, elongation factor G (EF-G) in bacteria and elongation factor 2 (EF-2) in eukaryotes. Recent structural and single-molecule studies revealed that tRNA and mRNA translocation within the ribosome is accompanied by cyclic forward and reverse rotations between the large and small ribosomal subunits parallel to the plane of the intersubunit interface. In addition, during ribosome translocation, the 'head' domain of small ribosomal subunit undergoes forward- and back-swiveling motions relative to the rest of the small ribosomal subunit around the axis that is orthogonal to the axis of intersubunit rotation. tRNA/mRNA translocation is also coupled to the docking of domain IV of EF-G into the A site of the small ribosomal subunit that converts the thermally driven motions of the ribosome and tRNA into the forward translocation of tRNA/mRNA inside the ribosome. Despite recent and enormous progress made in the understanding of the molecular mechanism of ribosome translocation, the sequence of structural rearrangements of the ribosome, EF-G and tRNA during translocation is still not fully established and awaits further investigation. WIREs RNA 2016, 7:620-636. doi: 10.1002/wrna.1354 For further resources related to this article, please visit the WIREs website. PMID:27117863

  16. Targeted gene delivery via N-acetylglucosamine receptor mediated endocytosis.

    PubMed

    Singh, Bijay; Maharjan, Sushila; Kim, You-Kyoung; Jiang, Tai; Islam, Mohammad Ariful; Kang, Sang-Kee; Cho, Myung-Haing; Choi, Yun-Jaie; Cho, Chong-Su

    2014-11-01

    Receptor-mediated endocytosis is a promising approach of gene delivery into the target cells via receptor-ligand interaction. Vimentins at the cell surface are recently known to bind N-acetylglucosamine (GlcNAc) residue, therefore, the cell surfaces of vimentin-expressing cells could be targeted by using the GlcNAc residue as a specific ligand for receptor-mediated gene delivery. Here, we have developed polymeric gene delivery vectors, based on poly(ethylene oxide)(PEO) and poly(aspartamide), namely poly[(aspartamide)(diethylenetriamine)]-b-[PEO-(GlcNAc)] (PADPG) and poly[(aspartamide)(diethylenetriamine)]-b-[PEO] (PADP) to elucidate the efficiency of GlcNAc ligand for gene delivery through receptor mediated endocytosis. To determine the efficiency of these polymeric vectors for specific gene delivery, the DNA condensation ability of PADPG and PADP and the subsequent formation of polymeric nanoparticles were confirmed by gel retardation assay and transmission electron microscopy respectively. Both PADPG and PADP had lower cytotoxicity than polyethylenimine 25 K (PEI 25 K). However, their transfection efficiency was comparatively lower than PEI 25 K due to hydrophilic property of PEO in the vectors. To observe the stability of polymeric nanoparticles, the transfection of PADPG and PADP was carried out in the presence of serum. Favorably, the interfering effect of serum on the transfection efficiency of PADPG and PADP was also very low. Finally, when the cell specificity of these polymeric vectors was investigated, PADPG had high gene transfection in vimentin-expressing cells than vimentin-deficiency cells. The high transfection efficiency of PADPG was attributed to the GlcNAc in the polymeric vector which interact specifically with vimentin in the cells for the receptor-mediated endocytosis. The competitive inhibition assay further proved the receptor-mediated endocytosis of PADPG. Thus, this study demonstrates that conjugation of GlcNAc is an effective and rational

  17. Mechanism of α-1 antitrypsin endocytosis by lung endothelium

    PubMed Central

    Sohrab, Sadaf; Petrusca, Daniela N.; Lockett, Angelia D.; Schweitzer, Kelly S.; Rush, Natalia I.; Gu, Yuan; Kamocki, Krzysztof; Garrison, Jana; Petrache, Irina

    2009-01-01

    The integrity of lung alveoli is maintained by proper circulating levels of α-1 antitrypsin (A1AT). Next to cigarette smoking, A1AT deficiency is a major risk factor for lung emphysema development. We recently reported that in addition to neutralizing neutrophil elastases in the extracellular compartment, A1AT is internalized by lung endothelial cells and inhibits apoptosis. We hypothesized that the intracellular uptake of A1AT by endothelial cells may be required for its protective function; therefore, we studied the mechanisms of A1AT internalization by primary rat lung microvascular endothelial cells and the effect of cigarette smoke on this process both in vitro and in vivo (in mice). Purified A1AT was taken up intracellularly by endothelial cells in a time-dependent, dose-dependent, and conformer-specific manner and was detected in the cytoplasm of endothelial cells of nondiseased human lung sections. Despite a critical role for caveoli in endothelial cell endocytosis in general, specific inhibition of clathrin-mediated, but not caveoli-mediated, endocytosis profoundly decreased A1AT internalization and reversed the A1AT’s antiapoptotic action. Further more, A1AT associated with clathrin heavy chains, but not with caveolin-1 in the plasma membrane fraction of endothelial cells. Interestingly, cigarette smoke exposure significantly inhibited A1AT uptake both in endothelial cells and in the mouse lung and altered the intracellular distribution of clathrin heavy chains. Our results suggest that clathrin-mediated endocytosis regulates A1AT intracellular function in the lung endothelium and may be an important determinant of the serpin’s protection against developing cigarette smoke-induced emphysema. Sohrab, S., Petrusca, D. N., Lockett, A. D., Schweitzer, K. S., Rush, N. I., Gu, Y., Kamocki, K., Garrison, J., Petrache, I. Mechanism of α-1 antitrypsin endocytosis by lung endothelium. PMID:19423638

  18. Statin-sensitive endocytosis of albumin by glomerular podocytes.

    PubMed

    Eyre, Jeanette; Ioannou, Kyriakos; Grubb, Blair D; Saleem, Moin A; Mathieson, Peter W; Brunskill, Nigel J; Christensen, Erik I; Topham, Peter S

    2007-02-01

    Glomerular podocytes are critical regulators of glomerular permeability via the slit diaphragm and may play a role in cleaning the glomerular filter. Whether podocytes are able to endocytose proteins is uncertain. We studied protein endocytosis in conditionally immortalized mouse and human podocytes using FITC-albumin by direct quantitative assay and by fluorescence microscopy and electron microscopy in mouse podocytes. Furthermore, in vivo uptake was studied in human, rat, and mouse podocytes. Both mouse and human podocytes displayed specific one-site binding for FITC-albumin with K(d) of 0.91 or 0.44 mg/ml and B(max) of 3.15 or 0.81 microg/mg cell protein, respectively. In addition, they showed avid endocytosis of FITC-albumin with K(m) of 9.48 or 4.5 mg/ml and V(max) of 474.3 or 97.4 microg.mg cell protein(-1).h(-1), respectively. Immunoglobulin and transferrin were inefficient competitors of this process, indicating some specificity for albumin. Accumulation of endocytosed albumin could be demonstrated in intracellular vesicles by fluorescence confocal microscopy and electron microscopy. Endocytosis was sensitive to pretreatment with simvastatin. In vivo accumulation of albumin was found in all three species but was most pronounced in the rat. We conclude that podocytes are able to endocytose protein in a statin-sensitive manner. This function is likely to be highly significant in health and disease. In addition, protein endocytosis by podocytes may represent a useful, measurable phenotypic characteristic against which potentially injurious or beneficial interventions can be assessed. PMID:17032937

  19. Signaling induced by hop/STI-1 depends on endocytosis

    SciTech Connect

    Americo, Tatiana A.; Chiarini, Luciana B.; Linden, Rafael . E-mail: rlinden@biof.ufrj.br

    2007-06-29

    The co-chaperone hop/STI-1 is a ligand of the cell surface prion protein (PrP{sup C}), and their interaction leads to signaling and biological effects. Among these, hop/STI-1 induces proliferation of A172 glioblastoma cells, dependent on both PrP{sup C} and activation of the Erk pathway. We tested whether clathrin-mediated endocytosis affects signaling induced by hop/STI-1. Both hyperosmolarity induced by sucrose and monodansyl-cadaverine blocked Erk activity induced by hop/STI-1, without affecting the high basal Akt activity typical of A172. The endocytosis inhibitors also affected the sub-cellular distribution of phosphorylated Erk, consistent with blockade of the latter's activity. The data indicate that signaling induced by hop/STI-1 depends on endocytosis. These findings are consistent with a role of sub-cellular trafficking in signal transduction following engagement by PrP{sup C} by ligands such as hop/STI-1, and may help help unravel both the functions of the prion protein, as well as possible loss-of-function components of prion diseases.

  20. Nodal-mediated epigenesis requires dynamin-mediated endocytosis

    PubMed Central

    Ertl, Robin P.; Robertson, Anthony J.; Saunders, Diane; Coffman, James A.

    2011-01-01

    Nodal proteins are diffusible morphogens that drive pattern formation via short-range feedback activation coupled to long-range Lefty-mediated inhibition. In the sea urchin embryo, specification of the secondary (oral-aboral) axis occurs via zygotic expression of nodal, which is localized to the prospective oral ectoderm at early blastula stage. In mid-blastula stage embryos treated with low micromolar nickel or zinc, nodal expression expands progressively beyond the confines of this localized domain to encompass the entire equatorial circumference of the embryo, producing radialized embryos lacking an oral-aboral axis. RNAseq analysis of embryos treated with nickel, zinc or cadmium (which does not radialize embryos) showed that several genes involved in endocytosis were similarly perturbed by nickel and zinc but not cadmium. Inhibiting dynamin, a GTPase required for receptor-mediated endocytosis, phenocopies the effects of nickel and zinc, suggesting that dynamin-mediated endocytosis is required as a sink to limit the range of Nodal signaling. PMID:21337468

  1. Cholesterol Regulates Multiple Forms of Vesicle Endocytosis at a Mammalian Central Synapse

    PubMed Central

    Yue, Hai-Yuan; Xu, Jianhua

    2015-01-01

    Endocytosis in synapses sustains neurotransmission by recycling vesicle membrane and maintaining the homeostasis of synaptic membrane. A role of membrane cholesterol in synaptic endocytosis remains controversial because of conflicting observations, technical limitations in previous studies, and potential interference from nonspecific effects after cholesterol manipulation. Furthermore, it is unclear whether cholesterol participates in distinct forms of endocytosis that function under different activity levels. In this study, applying the whole-cell membrane capacitance measurement to monitor endocytosis in real time at the rat calyx of Held terminals, we found that disrupting cholesterol with dialysis of cholesterol oxidase (COase) or methyl-β-cyclodextrin (MCD) impaired three different forms of endocytosis, i.e., slow endocytosis, rapid endocytosis, and endocytosis of the retrievable membrane that exists at the surface before stimulation. The effects were observed when disruption of cholesterol was mild enough not to change Ca2+ channel current or vesicle exocytosis, indicative of stringent cholesterol requirement in synaptic endocytosis. Extracting cholesterol with high concentrations of MCD reduced exocytosis, mainly by decreasing the readily releasable pool (RRP) and the vesicle replenishment after RRP depletion. Our study suggests that cholesterol is an important, universal regulator in multiple forms of vesicle endocytosis at mammalian central synapses. PMID:25893258

  2. Glycosaminoglycans are required for translocation of amphipathic cell-penetrating peptides across membranes.

    PubMed

    Pae, Janely; Liivamägi, Laura; Lubenets, Dmitri; Arukuusk, Piret; Langel, Ülo; Pooga, Margus

    2016-08-01

    Cell-penetrating peptides (CPPs) are considered as one of the most promising tools to mediate the cellular delivery of various biologically active compounds that are otherwise cell impermeable. CPPs can internalize into cells via two different pathways - endocytosis and direct translocation across the plasma membrane. In both cases, the initial step of internalization requires interactions between CPPs and different plasma membrane components. Despite the extensive research, it is not yet fully understood, which of these cell surface molecules mediate the direct translocation of CPPs across the plasma- and endosomal membrane. In the present study we used giant plasma membrane vesicles (GPMVs) as a model membrane system to elucidate the specific molecular mechanisms behind the internalization and the role of cell surface glycosaminoglycans (GAGs) in the translocation of four well-known CPPs, classified as cationic (nona-arginine, Tat peptide) and amphipathic (transportan and TP10). We demonstrate here that GAGs facilitate the translocation of amphipathic CPPs, but not the internalization of cationic CPPs; and that the uptake is not mediated by a specific GAG class, but rather the overall amount of these polysaccharides is crucial for the internalization of amphipathic peptides. PMID:27117133

  3. Critical determinants of uptake and translocation of nanoparticles by the human pulmonary alveolar epithelium.

    PubMed

    Thorley, Andrew J; Ruenraroengsak, Pakatip; Potter, Thomas E; Tetley, Teresa D

    2014-11-25

    The ability to manipulate the size and surface properties of nanomaterials makes them a promising vector for improving drug delivery and efficacy. Inhalation is a desirable route of administration as nanomaterials preferentially deposit in the alveolar region, a large surface area for drug absorption. However, as yet, the mechanisms by which particles translocate across the alveolar epithelial layer are poorly understood. Here we show that human alveolar type I epithelial cells internalize nanoparticles, whereas alveolar type II epithelial cells do not, and that nanoparticles translocate across the epithelial monolayer but are unable to penetrate the tight junctions between cells, ruling out paracellular translocation. Furthermore, using siRNA, we demonstrate that 50 nm nanoparticles enter largely by passive diffusion and are found in the cytoplasm, whereas 100 nm nanoparticles enter primarily via clathrin- and also caveolin-mediated endocytosis and are found in endosomes. Functionalization of nanoparticles increases their uptake and enhances binding of surfactant which further promotes uptake. Thus, we demonstrate that uptake and translocation across the pulmonary epithelium is controlled by alveolar type I epithelial cells, and furthermore, we highlight a number of factors that should be considered when designing new nanomedicines in order to improve drug delivery to the lung. PMID:25360809

  4. Critical Determinants of Uptake and Translocation of Nanoparticles by the Human Pulmonary Alveolar Epithelium

    PubMed Central

    2015-01-01

    The ability to manipulate the size and surface properties of nanomaterials makes them a promising vector for improving drug delivery and efficacy. Inhalation is a desirable route of administration as nanomaterials preferentially deposit in the alveolar region, a large surface area for drug absorption. However, as yet, the mechanisms by which particles translocate across the alveolar epithelial layer are poorly understood. Here we show that human alveolar type I epithelial cells internalize nanoparticles, whereas alveolar type II epithelial cells do not, and that nanoparticles translocate across the epithelial monolayer but are unable to penetrate the tight junctions between cells, ruling out paracellular translocation. Furthermore, using siRNA, we demonstrate that 50 nm nanoparticles enter largely by passive diffusion and are found in the cytoplasm, whereas 100 nm nanoparticles enter primarily via clathrin- and also caveolin-mediated endocytosis and are found in endosomes. Functionalization of nanoparticles increases their uptake and enhances binding of surfactant which further promotes uptake. Thus, we demonstrate that uptake and translocation across the pulmonary epithelium is controlled by alveolar type I epithelial cells, and furthermore, we highlight a number of factors that should be considered when designing new nanomedicines in order to improve drug delivery to the lung. PMID:25360809

  5. Fast, Temperature-Sensitive and Clathrin-Independent Endocytosis at Central Synapses.

    PubMed

    Delvendahl, Igor; Vyleta, Nicholas P; von Gersdorff, Henrique; Hallermann, Stefan

    2016-05-01

    The fusion of neurotransmitter-filled vesicles during synaptic transmission is balanced by endocytotic membrane retrieval. Despite extensive research, the speed and mechanisms of synaptic vesicle endocytosis have remained controversial. Here, we establish low-noise time-resolved membrane capacitance measurements that allow monitoring changes in surface membrane area elicited by single action potentials and stronger stimuli with high-temporal resolution at physiological temperature in individual bona-fide mature central synapses. We show that single action potentials trigger very rapid endocytosis, retrieving presynaptic membrane with a time constant of 470 ms. This fast endocytosis is independent of clathrin but mediated by dynamin and actin. In contrast, stronger stimuli evoke a slower mode of endocytosis that is clathrin, dynamin, and actin dependent. Furthermore, the speed of endocytosis is highly temperature dependent with a Q10 of ∼3.5. These results demonstrate that distinct molecular modes of endocytosis with markedly different kinetics operate at central synapses. PMID:27146271

  6. Downside risk of wildlife translocation.

    PubMed

    Chipman, R; Slate, D; Rupprecht, C; Mendoza, M

    2008-01-01

    Translocation has been used successfully by wildlife professionals to enhance or reintroduce populations of rare or extirpated wildlife, provide hunting or wildlife viewing opportunities, farm wild game, and reduce local human-wildlife conflicts. However, accidental and intentional translocations may have multiple unintended negative consequences, including increased stress and mortality of relocated animals, negative impacts on resident animals at release sites, increased conflicts with human interests, and the spread of diseases. Many wildlife professionals now question the practice of translocation, particularly in light of the need to contain or eliminate high profile, economically important wildlife diseases and because using this technique may jeopardize international wildlife disease management initiatives to control rabies in raccoons, coyotes, and foxes in North America. Incidents have been documented where specific rabies variants (Texas gray fox, canine variant in coyotes, and raccoon) have been moved well beyond their current range as a result of translocation, including the emergence of raccoon rabies in the eastern United States. Here, we review and discuss the substantial challenges of curtailing translocation in the USA, focusing on movement of animals by the public, nuisance wildlife control operators, and wildlife rehabilitators. PMID:18634483

  7. Nitrative DNA damage induced by multi-walled carbon nanotube via endocytosis in human lung epithelial cells

    SciTech Connect

    Guo, Feiye; Ma, Ning; Horibe, Yoshiteru; Kawanishi, Shosuke; Murata, Mariko; Hiraku, Yusuke

    2012-04-15

    Carbon nanotube (CNT) has a promising usage in the field of material science for industrial purposes because of its unique physicochemical property. However, intraperitoneal administration of CNT was reported to cause mesothelioma in experimental animals. Chronic inflammation may contribute to carcinogenesis induced by fibrous materials. 8-Nitroguanine is a mutagenic DNA lesion formed during inflammation and may play a role in CNT-induced carcinogenesis. In this study, we examined 8-nitroguanine formation in A549 human lung alveolar epithelial cells treated with multi-walled CNT (MWCNT) by fluorescent immunocytochemistry. Both MWCNTs with diameter of 20–30 nm (CNT20) and 40–70 nm (CNT40) significantly induced 8-nitroguanine formation at 5 and 10 μg/ml (p < 0.05), which persisted for 24 h, although there was no significant difference in DNA-damaging abilities of these MWCNTs. MWCNTs significantly induced the expression of inducible nitric oxide synthase (iNOS) for 24 h (p < 0.05). MWCNTs also significantly increased the level of nitrite, a hydrolysis product of oxidized NO, in the culture supernatant at 4 and 8 h (p < 0.05). MWCNT-induced 8-nitroguanine formation and iNOS expression were largely suppressed by inhibitors of iNOS (1400 W), nuclear factor-κB (Bay11-7082), actin polymerization (cytochalasin D), caveolae-mediated endocytosis (methyl-β-cyclodextrin, MBCD) and clathrin-mediated endocytosis (monodansylcadaverine, MDC). Electron microscopy revealed that MWCNT was mainly located in vesicular structures in the cytoplasm, and its cellular internalization was reduced by MBCD and MDC. These results suggest that MWCNT is internalized into cells via clathrin- and caveolae-mediated endocytosis, leading to inflammatory reactions including iNOS expression and resulting nitrative DNA damage, which may contribute to carcinogenesis. Highlights: ►Multi-walled carbon nanotube (MWCNT) caused DNA damage in A549 cells. ►MWCNT formed 8-nitroguanine, a DNA lesion

  8. Antioxidant-induced modification of INrf2 cysteine 151 and PKC-δ-mediated phosphorylation of Nrf2 serine 40 are both required for stabilization and nuclear translocation of Nrf2 and increased drug resistance

    PubMed Central

    Niture, Suryakant K.; Jain, Abhinav K.; Jaiswal, Anil K.

    2009-01-01

    Summary Antioxidants cause dissociation of nuclear factor erythroid 2-related factor 2 (Nrf2) from inhibitor of Nrf2 (INrf2) and so Nrf2:INrf2 can serve as a sensor of oxidative stress. Nrf2 translocates to the nucleus, binds to antioxidant response element (ARE) and activates defensive gene expression, which protects cells. Controversies exist regarding the role of antioxidant-induced modification of INrf2 cysteine 151 or protein kinase C (PKC)-mediated phosphorylation of Nrf2 serine 40 in the release of Nrf2 from INrf2. In addition, the PKC isoform that phosphorylates Nrf2S40 remains unknown. Here, we demonstrate that antioxidant-induced PKC-δ-mediated phosphorylation of Nrf2S40 leads to release of Nrf2 from INrf2. This was evident from specific chemical inhibitors of PKC isoenzymes in reporter assays, in vitro kinase assays with purified Nrf2 and PKC isoenzymes, in vivo analysis with dominant-negative mutants and siRNA against PKC isoforms, use of PKC-δ+/+ and PKC-δ–/– cells, and use of Nrf2S40 phospho-specific antibody. The studies also showed that antioxidant-induced INrf2C151 modification was insufficient for the dissociation of Nrf2 from INrf2. PKC-δ-mediated Nrf2S40 phosphorylation was also required. Nrf2 and mutant Nrf2S40A both bind to INrf2. However, antioxidant treatment led to release of Nrf2 but not Nrf2S40A from INrf2. In addition, Nrf2 and mutant Nrf2S40A both failed to dissociate from mutant INrf2C151A. Furthermore, antioxidant-induced ubiquitylation of INrf2 in PKC-δ+/+ and PKC-δ–/– cells occurred, but Nrf2 failed to be released in PKC-δ–/– cells. The antioxidant activation of Nrf2 reduced etoposide-mediated DNA fragmentation and promoted cell survival in PKC-δ+/+ but not in PKC-δ–/– cells. These data together demonstrate that both modification of INrf2C151 and PKC-δ-mediated phosphorylation of Nrf2S40 play crucial roles in Nrf2 release from INrf2, antioxidant induction of defensive gene expression, promoting cell

  9. Protein translocation: what's the problem?

    PubMed Central

    Corey, Robin A.; Allen, William J.; Collinson, Ian

    2016-01-01

    We came together in Leeds to commemorate and celebrate the life and achievements of Prof. Stephen Baldwin. For many years we, together with Sheena Radford and Roman Tuma (colleagues also of the University of Leeds), have worked together on the problem of protein translocation through the essential and ubiquitous Sec system. Inspired and helped by Steve we may finally be making progress. My seminar described our latest hypothesis for the molecular mechanism of protein translocation, supported by results collected in Bristol and Leeds on the tractable bacterial secretion process–commonly known as the Sec system; work that will be published elsewhere. Below is a description of the alternative and contested models for protein translocation that we all have been contemplating for many years. This review will consider their pros and cons. PMID:27284038

  10. Protein translocation: what's the problem?

    PubMed

    Corey, Robin A; Allen, William J; Collinson, Ian

    2016-06-15

    We came together in Leeds to commemorate and celebrate the life and achievements of Prof. Stephen Baldwin. For many years we, together with Sheena Radford and Roman Tuma (colleagues also of the University of Leeds), have worked together on the problem of protein translocation through the essential and ubiquitous Sec system. Inspired and helped by Steve we may finally be making progress. My seminar described our latest hypothesis for the molecular mechanism of protein translocation, supported by results collected in Bristol and Leeds on the tractable bacterial secretion process-commonly known as the Sec system; work that will be published elsewhere. Below is a description of the alternative and contested models for protein translocation that we all have been contemplating for many years. This review will consider their pros and cons. PMID:27284038

  11. The mechanics of ribosomal translocation.

    PubMed

    Achenbach, John; Nierhaus, Knud H

    2015-07-01

    The ribosome translates the sequence of codons of an mRNA into the corresponding sequence of amino acids as it moves along the mRNA with a codon-step width of about 10 Å. The movement of the million-dalton complex ribosome is triggered by the universal elongation factor G (EF2 in archaea and eukaryotes) and is termed translocation. Unraveling the molecular details of translocation is one of the most challenging tasks of current ribosome research. In the last two years, enormous progress has been obtained by highly-resolved X-ray and cryo-electron microscopic structures as well as by sophisticated biochemical approaches concerning the trigger and control of the movement of the tRNA2·mRNA complex inside the ribosome during translocation. This review inspects and surveys these achievements. PMID:25514765

  12. Partners with reciprocal translocations: genetic counseling for the 'double translocation'.

    PubMed

    Cook, L; Hartsfield, J K; Vance, G H

    1998-05-01

    SV at age 2 years presented with multiple congenital anomalies including an absent left kidney, anal stenosis, vertebral abnormalities, partial sacral agenesis, microcephaly, dysmorphic facial features, growth deficiency, and developmental delay. She was found to have a complex chromosomal rearrangement derived from balanced translocations in each parent. PMID:9660061

  13. TRIM72 modulates caveolar endocytosis in repair of lung cells.

    PubMed

    Nagre, Nagaraja; Wang, Shaohua; Kellett, Thomas; Kanagasabai, Ragu; Deng, Jing; Nishi, Miyuki; Shilo, Konstantin; Oeckler, Richard A; Yalowich, Jack C; Takeshima, Hiroshi; Christman, John; Hubmayr, Rolf D; Zhao, Xiaoli

    2016-03-01

    Alveolar epithelial and endothelial cell injury is a major feature of the acute respiratory distress syndrome, in particular when in conjunction with ventilation therapies. Previously we showed [Kim SC, Kellett T, Wang S, Nishi M, Nagre N, Zhou B, Flodby P, Shilo K, Ghadiali SN, Takeshima H, Hubmayr RD, Zhao X. Am J Physiol Lung Cell Mol Physiol 307: L449-L459, 2014.] that tripartite motif protein 72 (TRIM72) is essential for amending alveolar epithelial cell injury. Here, we posit that TRIM72 improves cellular integrity through its interaction with caveolin 1 (Cav1). Our data show that, in primary type I alveolar epithelial cells, lack of TRIM72 led to significant reduction of Cav1 at the plasma membrane, accompanied by marked attenuation of caveolar endocytosis. Meanwhile, lentivirus-mediated overexpression of TRIM72 selectively increases caveolar endocytosis in rat lung epithelial cells, suggesting a functional association between these two. Further coimmunoprecipitation assays show that deletion of either functional domain of TRIM72, i.e., RING, B-box, coiled-coil, or PRY-SPRY, abolishes the physical interaction between TRIM72 and Cav1, suggesting that all theoretical domains of TRIM72 are required to forge a strong interaction between these two molecules. Moreover, in vivo studies showed that injurious ventilation-induced lung cell death was significantly increased in knockout (KO) TRIM72(KO) and Cav1(KO) lungs compared with wild-type controls and was particularly pronounced in double KO mutants. Apoptosis was accompanied by accentuation of gross lung injury manifestations in the TRIM72(KO) and Cav1(KO) mice. Our data show that TRIM72 directly and indirectly modulates caveolar endocytosis, an essential process involved in repair of lung epithelial cells through removal of plasma membrane wounds. Given TRIM72's role in endomembrane trafficking and cell repair, we consider this molecule an attractive therapeutic target for patients with injured lungs. PMID

  14. Plasmolipin—a new player in endocytosis and epithelial development

    PubMed Central

    Le Guelte, Armelle; Macara, Ian G

    2015-01-01

    Polarized vesicle sorting is essential not only for epithelial cell function but also for cell polarization and tissue morphogenesis. Endocytosis is a key determinant of the surface abundance of plasma membrane proteins and is highly regulated. In an important recent paper, Rodríguez-Fraticelli et al (4) identify a new player in apical endocytosis—a previously uncharacterized protein called Plasmolipin. They report not only its mechanism of action through binding to an epsin, but also highlight an essential role in regulating Notch signaling, which controls epithelial differentiation. PMID:25825384

  15. Clathrin-mediated endocytosis in budding yeast at a glance.

    PubMed

    Lu, Rebecca; Drubin, David G; Sun, Yidi

    2016-04-15

    Clathrin-mediated endocytosis is an essential cellular process that involves the concerted assembly and disassembly of many different proteins at the plasma membrane. In yeast, live-cell imaging has shown that the spatiotemporal dynamics of these proteins is highly stereotypical. Recent work has focused on determining how the timing and functions of endocytic proteins are regulated. In this Cell Science at a Glance article and accompanying poster, we review our current knowledge of the timeline of endocytic site maturation and discuss recent works focusing on how phosphorylation, ubiquitylation and lipids regulate various aspects of the process. PMID:27084361

  16. 3D view of chromosomes, DNA damage, and translocations.

    PubMed

    Schwartz, Michal; Hakim, Ofir

    2014-04-01

    The cell nucleus is a busy and organized organelle. In this megalopolis made of billions of nucleotides, protein factors find their target loci to exert nuclear functions such as transcription and replication. Remarkably, despite the lack of internal membrane barrier, the interlinked and tightly regulated nuclear processes occur in spatially organized fashion. These processes can lead to double-strand breaks (DSBs) that compromise the integrity of the genome. Moreover, in some cells like lymphocytes, DNA damage is also targeted within the context of immunoglobulin gene recombination. If not repaired correctly, DSBs can cause chromosomal rearrangements, including translocations which are etiological in numerous tumors. Therefore, the chromosomal locations of DSBs, as well as their spatial positioning, are important contributors to formation of chromosomal translocations at specific genomic loci. To obtain a mechanistic understanding of chromosomal translocations these parameters should be accounted for in a global and integrative fashion. In this review we will discuss recent findings addressing how genome architecture, DNA damage, and repair contribute to the genesis of chromosomal translocations. PMID:24632298

  17. Bacterial translocation in experimental uremia.

    PubMed

    de Almeida Duarte, Joãn Bosco; de Aguilar-Nascimento, José Eduardo; Nascimento, Mariana; Nochi, Rubens Jardim

    2004-08-01

    The aim of this study was to investigate whether or not experimental uremia would induce bacterial translocation. Forty male Wistar rats were randomized into two groups: uremic (n = 20) and control (n = 20). Under anesthesia, the upper and lower left renal poles and the marginal lateral parenchyma were excised in uremic group. Seven days later, in a second operation, the liver, spleen and the mesenteric lymph nodes (MLN) were excised and cultured. Blood samples were sent for biochemical analysis (BUN, creatinine, sodium and potassium) and cultured. Specimens of the jejunum (1 cm below the Treitz angle) and ileum (1 cm above the ileocecal valve) were collected and sent for histological examination and scored for the degree of inflammation of the mucosa using a classification proposed by Chiu et al. in 1970. Uremic rats presented higher BUN, creatinine and potassium than controls. Bacterial translocation was more frequent in uremic than in control animals (8/20 (40%) vs. 1/20 (5%); p = 0.02). Translocation in uremic rats was observed mainly at the MLN (all eight cases). Both at the jejunum (uremic = 3 [0-5] vs. control = 2 [0-4]; p = 0.04) and the ileum (uremic - 2 [0-5] vs. control = 0 [0-3]; p = 0.01), inflammation score was higher in uremic rats than in controls. The intestinal mucosa barrier is impaired and bacterial translocation occurs in experimental uremia. PMID:15497213

  18. Receptor-mediated endocytosis and brain delivery of therapeutic biologics.

    PubMed

    Xiao, Guangqing; Gan, Liang-Shang

    2013-01-01

    Transport of macromolecules across the blood-brain-barrier (BBB) requires both specific and nonspecific interactions between macromolecules and proteins/receptors expressed on the luminal and/or the abluminal surfaces of the brain capillary endothelial cells. Endocytosis and transcytosis play important roles in the distribution of macromolecules. Due to the tight junction of BBB, brain delivery of traditional therapeutic proteins with large molecular weight is generally not possible. There are multiple pathways through which macromolecules can be taken up into cells through both specific and nonspecific interactions with proteins/receptors on the cell surface. This review is focused on the current knowledge of receptor-mediated endocytosis/transcytosis and brain delivery using the Angiopep-2-conjugated system and the molecular Trojan horses. In addition, the role of neonatal Fc receptor (FcRn) in regulating the efflux of Immunoglobulin G (IgG) from brain to blood, and approaches to improve the pharmacokinetics of therapeutic biologics by generating Fc fusion proteins, and increasing the pH dependent binding affinity between Fc and FcRn, are discussed. PMID:23840214

  19. Dysferlin is essential for endocytosis in the sea star oocyte

    PubMed Central

    Oulhen, Nathalie; Onorato, Thomas M.; Ramos, Isabela; Wessel, Gary M.

    2014-01-01

    Dysferlin is a calcium-binding transmembrane protein involved in membrane fusion and membrane repair. In humans, mutations in the dysferlin gene are associated with muscular dystrophy. In this study, we isolated plasma membrane-enriched fractions from full-grown immature oocytes of the sea star, and identified dysferlin by mass spectrometry analysis. The full-length dysferlin sequence is highly conserved between human and the sea star. We learned that in the sea star Patiria miniata, dysferlin RNA and protein are expressed from oogenesis to gastrulation. Interestingly, the protein is highly enriched in the plasma membrane of oocytes. Injection of a morpholino against dysferlin leads to a decrease of endocytosis in oocytes, and to a developmental arrest during gastrulation. These results suggest that dysferlin is critical for normal endocytosis during oogenesis and for embryogenesis in the sea star and that this animal may be a useful model for studying the relationship of dysferlin structure as it relates to its function. PMID:24368072

  20. The architectural relationship of components controlling mast cell endocytosis

    PubMed Central

    Cleyrat, Cédric; Darehshouri, Anza; Anderson, Karen L.; Page, Christopher; Lidke, Diane S.; Volkmann, Niels; Hanein, Dorit; Wilson, Bridget S.

    2013-01-01

    Summary Eukaryotic cells use multiple routes for receptor internalization. Here, we examine the topographical relationships of clathrin-dependent and clathrin-independent endocytic structures on the plasma membranes of leukemia-derived mast cells. The high affinity IgE receptor (FcεRI) utilizes both pathways, whereas transferrin receptor serves as a marker for the classical clathrin-mediated endocytosis pathway. Both receptors were tracked by live-cell imaging in the presence or absence of inhibitors that established their differential dependence on specific endocytic adaptor proteins. The topology of antigen-bound FcεRI, clathrin, dynamin, Arf6 and Eps15-positive structures were analyzed by 2D and 3D immunoelectron microscopy techniques, revealing their remarkable spatial relationships and unique geometry. We conclude that the mast cell plasma membrane has multiple specialized domains for endocytosis. Their close proximity might reflect shared components, such as lipids and adaptor proteins, that facilitate inward membrane curvature. Intersections between these specialized domains might represent sorting stations that direct cargo to specific endocytic pathways. PMID:23986485

  1. Transferrin: Endocytosis and Cell Signaling in Parasitic Protozoa.

    PubMed

    Reyes-López, Magda; Piña-Vázquez, Carolina; Serrano-Luna, Jesús

    2015-01-01

    Iron is the fourth most abundant element on Earth and the most abundant metal in the human body. This element is crucial for life because almost all organisms need iron for several biological activities. This is the case with pathogenic organisms, which are at the vanguard in the battle with the human host for iron. The latest regulates Fe concentration through several iron-containing proteins, such as transferrin. The transferrin receptor transports iron to each cell that needs it and maintains it away from pathogens. Parasites have developed several strategies to obtain iron as the expression of specific transferrin receptors localized on plasma membrane, internalized through endocytosis. Signal transduction pathways related to the activation of the receptor have functional importance in proliferation. The study of transferrin receptors and other proteins with action in the signaling networks is important because these proteins could be used as therapeutic targets due to their specificity or to differences with the human counterpart. In this work, we describe proteins that participate in signal transduction processes, especially those that involve transferrin endocytosis, and we compare these processes with those found in T. brucei, T. cruzi, Leishmania spp., and E. histolytica parasites. PMID:26090431

  2. Membrane Mechanics of Endocytosis in Cells with Turgor

    PubMed Central

    Dmitrieff, Serge; Nédélec, François

    2015-01-01

    Endocytosis is an essential process by which cells internalize a piece of plasma membrane and material from the outside. In cells with turgor, pressure opposes membrane deformations, and increases the amount of force that has to be generated by the endocytic machinery. To determine this force, and calculate the shape of the membrane, we used physical theory to model an elastic surface under pressure. Accurate fits of experimental profiles are obtained assuming that the coated membrane is highly rigid and preferentially curved at the endocytic site. The forces required from the actin machinery peaks at the onset of deformation, indicating that once invagination has been initiated, endocytosis is unlikely to stall before completion. Coat proteins do not lower the initiation force but may affect the process by the curvature they induce. In the presence of isotropic curvature inducers, pulling the tip of the invagination can trigger the formation of a neck at the base of the invagination. Hence direct neck constriction by actin may not be required, while its pulling role is essential. Finally, the theory shows that anisotropic curvature effectors stabilize membrane invaginations, and the loss of crescent-shaped BAR domain proteins such as Rvs167 could therefore trigger membrane scission. PMID:26517669

  3. Rapid endocytosis is triggered upon imbibition in Arabidopsis seeds.

    PubMed

    Pagnussat, Luciana; Burbach, Christian; Baluška, František; de la Canal, Laura

    2012-03-01

    During seed imbibition and embryo activation, rapid change from a metabolically resting state to the activation of diverse extracellular and/or membrane bound molecules is essential and, hence, endocytosis could be activated too. In fact, we have documented endocytic internalization of the membrane impermeable endocytic tracer FM4-64 already upon 30 min of imbibition of Arabidopsis seeds. This finding suggest that endocytosis is activated early during seed imbibition in Arabidopsis. Immunolocalization of rhamnogalacturonan-II (RG-II) complexed with boron showed that whereas this pectin is localized only in the cell walls of dry seed embryos, it starts to be intracellular once the imbibition started. Brefeldin A (BFA) exposure resulted in recruitment of the intracellular RG-II pectin complexes into the endocytic BFA-induced compartments, confirming the endocytic origin of the RG-II signal detected intracellularly. Finally, germination was significantly delayed when Arabidopsis seeds were germinated in the presence of inhibitors of endocytic pathways, suggesting that trafficking of extracellular molecules might play an important role in the overcome of germination. This work constitutes the first demonstration of endocytic processes during germination and opens new perspectives about the role of the extracellular matrix and membrane components in seed germination. PMID:22476454

  4. Rapid endocytosis is triggered upon imbibition in Arabidopsis seeds

    PubMed Central

    Pagnussat, Luciana; Burbach, Christian; Baluška, František; de la Canal, Laura

    2012-01-01

    During seed imbibition and embryo activation, rapid change from a metabolically resting state to the activation of diverse extracellular and/or membrane bound molecules is essential and, hence, endocytosis could be activated too. In fact, we have documented endocytic internalization of the membrane impermeable endocytic tracer FM4–64 already upon 30 min of imbibition of Arabidopsis seeds. This finding suggest that endocytosis is activated early during seed imbibition in Arabidopsis. Immunolocalization of rhamnogalacturonan-II (RG-II) complexed with boron showed that whereas this pectin is localized only in the cell walls of dry seed embryos, it starts to be intracellular once the imbibition started. Brefeldin A (BFA) exposure resulted in recruitment of the intracellular RG-II pectin complexes into the endocytic BFA-induced compartments, confirming the endocytic origin of the RG-II signal detected intracellularly. Finally, germination was significantly delayed when Arabidopsis seeds were germinated in the presence of inhibitors of endocytic pathways, suggesting that trafficking of extracellular molecules might play an important role in the overcome of germination. This work constitutes the first demonstration of endocytic processes during germination and opens new perspectives about the role of the extracellular matrix and membrane components in seed germination. PMID:22476454

  5. Receptor-Mediated Endocytosis and Brain Delivery of Therapeutic Biologics

    PubMed Central

    Xiao, Guangqing

    2013-01-01

    Transport of macromolecules across the blood-brain-barrier (BBB) requires both specific and nonspecific interactions between macromolecules and proteins/receptors expressed on the luminal and/or the abluminal surfaces of the brain capillary endothelial cells. Endocytosis and transcytosis play important roles in the distribution of macromolecules. Due to the tight junction of BBB, brain delivery of traditional therapeutic proteins with large molecular weight is generally not possible. There are multiple pathways through which macromolecules can be taken up into cells through both specific and nonspecific interactions with proteins/receptors on the cell surface. This review is focused on the current knowledge of receptor-mediated endocytosis/transcytosis and brain delivery using the Angiopep-2-conjugated system and the molecular Trojan horses. In addition, the role of neonatal Fc receptor (FcRn) in regulating the efflux of Immunoglobulin G (IgG) from brain to blood, and approaches to improve the pharmacokinetics of therapeutic biologics by generating Fc fusion proteins, and increasing the pH dependent binding affinity between Fc and FcRn, are discussed. PMID:23840214

  6. Transferrin: Endocytosis and Cell Signaling in Parasitic Protozoa

    PubMed Central

    Serrano-Luna, Jesús

    2015-01-01

    Iron is the fourth most abundant element on Earth and the most abundant metal in the human body. This element is crucial for life because almost all organisms need iron for several biological activities. This is the case with pathogenic organisms, which are at the vanguard in the battle with the human host for iron. The latest regulates Fe concentration through several iron-containing proteins, such as transferrin. The transferrin receptor transports iron to each cell that needs it and maintains it away from pathogens. Parasites have developed several strategies to obtain iron as the expression of specific transferrin receptors localized on plasma membrane, internalized through endocytosis. Signal transduction pathways related to the activation of the receptor have functional importance in proliferation. The study of transferrin receptors and other proteins with action in the signaling networks is important because these proteins could be used as therapeutic targets due to their specificity or to differences with the human counterpart. In this work, we describe proteins that participate in signal transduction processes, especially those that involve transferrin endocytosis, and we compare these processes with those found in T. brucei, T. cruzi, Leishmania spp., and E. histolytica parasites. PMID:26090431

  7. Effects of Endosomal Photodamage on Membrane Recycling and Endocytosis

    PubMed Central

    Kessel, David; Santiago, Ann Marie; Andrzejak, Michelle

    2011-01-01

    The flux of receptor-independent endocytosis can be estimated by addition of wortmannin to cell cultures. Membrane influx is unaffected but traffic out of late endosomes is impaired, resulting in a substantial enlargement of these organelles. Using the 1c1c7 murine hepatoma, we investigated the effect of endosomal photodamage on this endocytic pathway. We previously reported that photodamage catalyzed by the lysosomal photosensitizer NPe6 prevented wortmannin-induced endosomal swelling, indicating an earlier block in the process. In this study, we show that endosomal photodamage, initiated by photodamage from an asymmetrically-substituted porphine or a phthalocyanine, also prevents wortmannin-induced endosomal swelling, even when the PDT dose is insufficient to cause endosomal disruption. As the PDT dose is increased, endosomal breakage occurs, as does apoptosis and cell death. Very high PDT doses result in necrosis. We propose that photodamage to endosomes results in alterations in the endosomal structure such that influx of new material is inhibited and receptor-independent endocytosis is prevented. In an additional series of studies, we found that the swollen late endosomes induced by wortmannin are unable to retain previously accumulated fluorescent probes or photosensitizers. PMID:21208213

  8. Lysosomal Trafficking of TGFBIp via Caveolae-Mediated Endocytosis

    PubMed Central

    Choi, Seung-il; Maeng, Yong-Sun; Kim, Tae-im; Lee, Yangsin; Kim, Yong-Sun; Kim, Eung Kweon

    2015-01-01

    Transforming growth factor-beta-induced protein (TGFBIp) is ubiquitously expressed in the extracellular matrix (ECM) of various tissues and cell lines. Progressive accumulation of mutant TGFBIp is directly involved in the pathogenesis of TGFBI-linked corneal dystrophy. Recent studies reported that mutant TGFBIp accumulates in cells; however, the trafficking of TGFBIp is poorly understood. Therefore, we investigated TGFBIp trafficking to determine the route of its internalization and secretion and to elucidate its roles in the pathogenesis of granular corneal dystrophy type 2 (GCD2). Our data indicate that newly synthesized TGFBIp was secreted via the endoplasmic reticulum/Golgi-dependent secretory pathway, and this secretion was delayed in the corneal fibroblasts of patients with GCD2. We also found that TGFBIp was internalized by caveolae-mediated endocytosis, and the internalized TGFBIp accumulated after treatment with bafilomycin A1, an inhibitor of lysosomal degradation. In addition, the proteasome inhibitor MG132 inhibits the endocytosis of TGFBIp. Co-immunoprecipitation revealed that TGFBIp interacted with integrin αVβ3. Moreover, treatment with arginine-glycine-aspartic acid (RGD) tripeptide suppressed the internalization of TGFBIp. These insights on TGFBIp trafficking could lead to the identification of novel targets and the development of new therapies for TGFBI-linked corneal dystrophy. PMID:25853243

  9. Bile acids reduce endocytosis of high-density lipoprotein (HDL) in HepG2 cells.

    PubMed

    Röhrl, Clemens; Eigner, Karin; Fruhwürth, Stefanie; Stangl, Herbert

    2014-01-01

    High-density lipoprotein (HDL) transports lipids to hepatic cells and the majority of HDL-associated cholesterol is destined for biliary excretion. Cholesterol is excreted into the bile directly or after conversion to bile acids, which are also present in the plasma as they are effectively reabsorbed through the enterohepatic cycle. Here, we provide evidence that bile acids affect HDL endocytosis. Using fluorescent and radiolabeled HDL, we show that HDL endocytosis was reduced in the presence of high concentrations of taurocholate, a natural non-cell-permeable bile acid, in human hepatic HepG2 and HuH7 cells. In contrast, selective cholesteryl-ester (CE) uptake was increased. Taurocholate exerted these effects extracellularly and independently of HDL modification, cell membrane perturbation or blocking of endocytic trafficking. Instead, this reduction of endocytosis and increase in selective uptake was dependent on SR-BI. In addition, cell-permeable bile acids reduced HDL endocytosis by farnesoid X receptor (FXR) activation: chenodeoxycholate and the non-steroidal FXR agonist GW4064 reduced HDL endocytosis, whereas selective CE uptake was unaltered. Reduced HDL endocytosis by FXR activation was independent of SR-BI and was likely mediated by impaired expression of the scavenger receptor cluster of differentiation 36 (CD36). Taken together we have shown that bile acids reduce HDL endocytosis by transcriptional and non-transcriptional mechanisms. Further, we suggest that HDL endocytosis and selective lipid uptake are not necessarily tightly linked to each other. PMID:25010412

  10. A Critical Reassessment of Penetratin Translocation Across Lipid Membranes

    PubMed Central

    Bárány-Wallje, Elsa; Keller, Sandro; Serowy, Steffen; Geibel, Sebastian; Pohl, Peter; Bienert, Michael; Dathe, Margitta

    2005-01-01

    Penetratin is a short, basic cell-penetrating peptide able to induce cellular uptake of a vast variety of large, hydrophilic cargos. We have reassessed the highly controversial issue of direct permeation of the strongly cationic peptide across negatively charged lipid membranes. Confocal laser scanning microscopy on rhodamine-labeled giant vesicles incubated with carboxyfluorescein-labeled penetratin yielded no evidence of transbilayer movement, in contradiction to previously reported results. Confocal fluorescence spectroscopy on black lipid membranes confirmed this finding, which was also not affected by application of a transmembrane electric potential difference. A novel dialysis assay based on tryptophan absorbance and fluorescence spectroscopy demonstrated that the permeability of small and large unilamellar vesicles to penetratin is <10−13 m/s. Taken together, the results show that penetratin is not capable of overcoming model membrane systems irrespective of the bilayer curvature or the presence of a transmembrane voltage. Thus, direct translocation across the hydrophobic core of the plasma membrane cannot account for the efficient uptake of penetratin into live cells, which is in accord with recent in vitro studies underlining the importance of endocytosis in the internalization process of cationic cell-penetrating peptides. PMID:16040762

  11. Adapting for endocytosis: roles for endocytic sorting adaptors in directing neural development

    PubMed Central

    Yap, Chan Choo; Winckler, Bettina

    2015-01-01

    Proper cortical development depends on the orchestrated actions of a multitude of guidance receptors and adhesion molecules and their downstream signaling. The levels of these receptors on the surface and their precise locations can greatly affect guidance outcomes. Trafficking of receptors to a particular surface locale and removal by endocytosis thus feed crucially into the final guidance outcomes. In addition, endocytosis of receptors can affect downstream signaling (both quantitatively and qualitatively) and regulated endocytosis of guidance receptors is thus an important component of ensuring proper neural development. We will discuss the cell biology of regulated endocytosis and the impact on neural development. We focus our discussion on endocytic accessory proteins (EAPs) (such as numb and disabled) and how they regulate endocytosis and subsequent post-endocytic trafficking of their cognate receptors (such as Notch, TrkB, β-APP, VLDLR, and ApoER2). PMID:25904845

  12. Size and shape effects on receptor-mediated endocytosis of nanoparticles

    NASA Astrophysics Data System (ADS)

    Li, Xinlei

    2012-01-01

    We present a thermodynamic approach to elucidate the effects of the size and shape of nanoparticles (NPs) on endocytosis. It is found that endocytosis needs to surmount a thermodynamic energy barrier and has a minimum radius of NPs for endocytosis. Through referring to the concept of "diffusion length of receptors," we obtain a simple and analytical expression for the optimal size of NPs. Furthermore, a phase diagram has been constructed, which can clarify the interrelated effects of the radius and the aspect ratio of NPs. We can identify from the phase the relation between the geometry of NP and its endocytosis rate. The theoretical results are in good agreement with the experimental observations and reveal physical mechanisms involved in the effects of the size and shape of NPs on endocytosis, which implies that these studies may provide useful guidance to the conscious design of NPs for diagnostic agents and drug delivery applications.

  13. Tubular proteinuria in patients with HNF1α mutations: HNF1α drives endocytosis in the proximal tubule.

    PubMed

    Terryn, Sara; Tanaka, Karo; Lengelé, Jean-Philippe; Olinger, Eric; Dubois-Laforgue, Danièle; Garbay, Serge; Kozyraki, Renata; Van Der Smissen, Patrick; Christensen, Erik I; Courtoy, Pierre J; Bellanné-Chantelot, Christine; Timsit, José; Pontoglio, Marco; Devuyst, Olivier

    2016-05-01

    Hepatocyte nuclear factor 1α (HNF1α) is a transcription factor expressed in the liver, pancreas, and proximal tubule of the kidney. Mutations of HNF1α cause an autosomal dominant form of diabetes mellitus (MODY-HNF1A) and tubular dysfunction. To gain insights into the role of HNF1α in the proximal tubule, we analyzed Hnf1a-deficient mice. Compared with wild-type littermates, Hnf1a knockout mice showed low-molecular-weight proteinuria and a 70% decrease in the uptake of β2-microglobulin, indicating a major endocytic defect due to decreased expression of megalin/cubilin receptors. We identified several binding sites for HNF1α in promoters of Lrp2 and Cubn genes encoding megalin and cubilin, respectively. The functional interaction of HNF1α with these promoters was shown in C33 epithelial cells lacking endogenous HNF1α. Defective receptor-mediated endocytosis was confirmed in proximal tubule cells from these knockout mice and could be rescued by transfection of wild-type but not mutant HNF1α. Transfection of human proximal tubule HK2 cells with HNF1α was able to upregulate megalin and cubilin expression and to increase endocytosis of albumin. Low-molecular-weight proteinuria was consistently detected in individuals with HNF1A mutations compared with healthy controls and patients with non-MODY-HNF1A diabetes mellitus. Thus, HNF1α plays a key role in the constitutive expression of megalin and cubilin, hence regulating endocytosis in the proximal tubule of the kidney. These findings provide new insight into the renal phenotype of individuals with mutations of HNF1A. PMID:27083284

  14. Myosin light chain kinase facilitates endocytosis of synaptic vesicles at hippocampal boutons.

    PubMed

    Li, Lin; Wu, Xiaomei; Yue, Hai-Yuan; Zhu, Yong-Chuan; Xu, Jianhua

    2016-07-01

    At nerve terminals, endocytosis efficiently recycles vesicle membrane to maintain synaptic transmission under different levels of neuronal activity. Ca(2+) and its downstream signal pathways are critical for the activity-dependent regulation of endocytosis. An activity- and Ca(2+) -dependent kinase, myosin light chain kinase (MLCK) has been reported to regulate vesicle mobilization, vesicle cycling, and motility in different synapses, but whether it has a general contribution to regulation of endocytosis at nerve terminals remains unknown. We investigated this issue at rat hippocampal boutons by imaging vesicle endocytosis as the real-time retrieval of vesicular synaptophysin tagged with a pH-sensitive green fluorescence protein. We found that endocytosis induced by 200 action potentials (5-40 Hz) was slowed by acute inhibition of MLCK and down-regulation of MLCK with RNA interference, while the total amount of vesicle exocytosis and somatic Ca(2+) channel current did not change with MLCK down-regulation. Acute inhibition of myosin II similarly impaired endocytosis. Furthermore, down-regulation of MLCK prevented depolarization-induced phosphorylation of myosin light chain, an effect shared by blockers of Ca(2+) channels and calmodulin. These results suggest that MLCK facilitates vesicle endocytosis through activity-dependent phosphorylation of myosin downstream of Ca(2+) /calmodulin, probably as a widely existing mechanism among synapses. Our study suggests that MLCK is an important activity-dependent regulator of vesicle recycling in hippocampal neurons, which are critical for learning and memory. The kinetics of vesicle membrane endocytosis at nerve terminals has long been known to depend on activity and Ca(2+) . This study provides evidence suggesting that myosin light chain kinase increases endocytosis efficiency at hippocampal neurons by mediating Ca(2+) /calmodulin-dependent phosphorylation of myosin. The authors propose that this signal cascade may serve as

  15. Arf6-Dependent Intracellular Trafficking of Pasteurella multocida Toxin and pH-Dependent Translocation from Late Endosomes

    PubMed Central

    Repella, Tana L.; Ho, Mengfei; Chong, Tracy P. M.; Bannai, Yuka; Wilson, Brenda A.

    2011-01-01

    The potent mitogenic toxin from Pasteurella multocida (PMT) is the major virulence factor associated with a number of epizootic and zoonotic diseases caused by infection with this respiratory pathogen. PMT is a glutamine-specific protein deamidase that acts on its intracellular G-protein targets to increase intracellular calcium, cytoskeletal, and mitogenic signaling. PMT enters cells through receptor-mediated endocytosis and then translocates into the cytosol through a pH-dependent process that is inhibited by NH4Cl or bafilomycin A1. However, the detailed mechanisms that govern cellular entry, trafficking, and translocation of PMT remain unclear. Co-localization studies described herein revealed that while PMT shares an initial entry pathway with transferrin (Tfn) and cholera toxin (CT), the trafficking pathways of Tfn, CT, and PMT subsequently diverge, as Tfn is trafficked to recycling endosomes, CT is trafficked retrograde to the ER, and PMT is trafficked to late endosomes. Our studies implicate the small regulatory GTPase Arf6 in the endocytic trafficking of PMT. Translocation of PMT from the endocytic vesicle occurs through a pH-dependent process that is also dependent on both microtubule and actin dynamics, as evidenced by inhibition of PMT activity in our SRE-based reporter assay, with nocodazole and cytochalasin D, respectively, suggesting that membrane translocation and cytotoxicity of PMT is dependent on its transfer to late endosomal compartments. In contrast, disruption of Golgi-ER trafficking with brefeldin A increased PMT activity, suggesting that inhibiting PMT trafficking to non-productive compartments that do not lead to translocation, while promoting formation of an acidic tubulovesicle system more conducive to translocation, enhances PMT translocation and activity. PMID:22053287

  16. Antiport mediated rounding and endocytosis are enhanced by sulphate.

    PubMed

    Sit, K H; Bay, B H; Wong, K P

    1991-01-01

    Rapid cell detachment concomitant with the flat-to-round (FTR) change that is mediated by an upshifted Na+/H+ antiporter via HCO3(-)-dependent H+ pumping, is significantly enhanced by the addition of Na2SO4 (FTR + SO4): (1) a faster and greater reduction in cell surface area and perimeter, and (2) a higher level of macromolecular internalization which is also amiloride sensitive. At a fixed 1 mg/ml extracellular FITC-dextran (FDx) concentration, the intracellular FDx load is similar irrespective of the particle size, in the range from 4400 to 2 million mol.wt which is a 455-fold diversity. This is inconsistent with entry via limited sized portals which would discriminate against the larger molecular weight species, such as the 2 million mol.wt species that measures up to 5 microns in width. Two million mol.wt FDx loads linearly in direct proportion to the extracellular FDx concentration, simulating simple diffusion. Large-channel endocytosis is considered to be a characteristic of specialized cell types such as phagocytes and macrophages. However, the antiporter mediated endocytosis (AME) shown here is demonstrated in two different cell types which are not known for their endocytic prowess, viz. epitheloid human Chang liver cells (ATCC CCL 13) and human lung fibroblasts (ATCC CCL 202). The rounded cells with internalized FDx start reverting back to their flat and protracted form upon flooding with warm growth medium, a round-to-flat (RTF) change. However the cell surface reversion is not associated with efflux of FDx which are sorted out into 'granular patches', the later stage endosomes without membrane outlines in AME. FDx-loaded cells grow as well as trypsinized cells without FDx loaing and they maintain a significant FDx load even after nearly 4 cell divisions. Toad sperms internalized into Chang cells via antiporter activation are also sorted into granular patches. AME provides (a) distinctive access to large particles, simulating small ion influx, and (b) an

  17. Agonist-induced changes in RalA activities allows the prediction of the endocytosis of G protein-coupled receptors.

    PubMed

    Zheng, Mei; Zhang, Xiaohan; Guo, Shuohan; Zhang, Xiaowei; Min, Chengchun; Cheon, Seung Hoon; Oak, Min-Ho; Kim, Young Ran; Kim, Kyeong-Man

    2016-01-01

    GTP binding proteins are classified into two families: heterotrimeric large G proteins which are composed of three subunits, and one subunit of small G proteins. Roles of small G proteins in the intracellular trafficking of G protein-coupled receptors (GPCRs) were studied. Among various small G proteins tested, GTP-bound form (G23V) of RalA inhibited the internalization of dopamine D2 receptor independently of the previously reported downstream effectors of RalA, such as Ral-binding protein 1 and PLD. With high affinity for GRK2, active RalA inhibited the GPCR endocytosis by sequestering the GRK2 from receptors. When it was tested for several GPCRs including an endogenous GPCR, lysophosphatidic acid receptor 1, agonist-induced conversion of GTP-bound to GDP-bound RalA, which presumably releases the sequestered GRK2, was observed selectively with the GPCRs which have tendency to undergo endocytosis. Conversion of RalA from active to inactive state occurred by translocation of RGL, a guanine nucleotide exchange factor, from the plasma membrane to cytosol as a complex with Gβγ. These results suggest that agonist-induced Gβγ-mediated conversion of RalA from the GTP-bound form to the GDP-bound form could be a mechanism to facilitate agonist-induced internalization of GPCRs. PMID:26477566

  18. Suitability of amphibians and reptiles for translocation.

    PubMed

    Germano, Jennifer M; Bishop, Phillip J

    2009-02-01

    Translocations are important tools in the field of conservation. Despite increased use over the last few decades, the appropriateness of translocations for amphibians and reptiles has been debated widely over the past 20 years. To provide a comprehensive evaluation of the suitability of amphibians and reptiles for translocation, we reviewed the results of amphibian and reptile translocation projects published between 1991 and 2006. The success rate of amphibian and reptile translocations reported over this period was twice that reported in an earlier review in 1991. Success and failure rates were independent of the taxonomic class (Amphibia or Reptilia) released. Reptile translocations driven by human-wildlife conflict mitigation had a higher failure rate than those motivated by conservation, and more recent projects of reptile translocations had unknown outcomes. The outcomes of amphibian translocations were significantly related to the number of animals released, with projects releasing over 1000 individuals being most successful. The most common reported causes of translocation failure were homing and migration of introduced individuals out of release sites and poor habitat. The increased success of amphibian and reptile translocations reviewed in this study compared with the 1991 review is encouraging for future conservation projects. Nevertheless, more preparation, monitoring, reporting of results, and experimental testing of techniques and reintroduction questions need to occur to improve translocations of amphibians and reptiles as a whole. PMID:19143783

  19. Linkage map construction involving a reciprocal translocation.

    PubMed

    Farré, A; Benito, I Lacasa; Cistué, L; de Jong, J H; Romagosa, I; Jansen, J

    2011-03-01

    This paper is concerned with a novel statistical-genetic approach for the construction of linkage maps in populations obtained from reciprocal translocation heterozygotes of barley (Hordeum vulgare L.). Using standard linkage analysis, translocations usually lead to 'pseudo-linkage': the mixing up of markers from the chromosomes involved in the translocation into a single linkage group. Close to the translocation breakpoints recombination is severely suppressed and, as a consequence, ordering markers in those regions is not feasible. The novel strategy presented in this paper is based on (1) disentangling the "pseudo-linkage" using principal coordinate analysis, (2) separating individuals into translocated types and normal types and (3) separating markers into those close to and those more distant from the translocation breakpoints. The methods make use of a consensus map of the species involved. The final product consists of integrated linkage maps of the distal parts of the chromosomes involved in the translocation. PMID:21153624

  20. TFE3-Fusion Variant Analysis Defines Specific Clinicopathologic Associations Among Xp11 Translocation Cancers.

    PubMed

    Argani, Pedram; Zhong, Minghao; Reuter, Victor E; Fallon, John T; Epstein, Jonathan I; Netto, George J; Antonescu, Cristina R

    2016-06-01

    Xp11 translocation cancers include Xp11 translocation renal cell carcinoma (RCC), Xp11 translocation perivascular epithelioid cell tumor (PEComa), and melanotic Xp11 translocation renal cancer. In Xp11 translocation cancers, oncogenic activation of TFE3 is driven by the fusion of TFE3 with a number of different gene partners; however, the impact of individual fusion variant on specific clinicopathologic features of Xp11 translocation cancers has not been well defined. In this study, we analyze 60 Xp11 translocation cancers by fluorescence in situ hybridization using custom bacterial artificial chromosome probes to establish their TFE3 fusion gene partner. In 5 cases RNA sequencing was also used to further characterize the fusion transcripts. The 60 Xp11 translocation cancers included 47 Xp11 translocation RCC, 8 Xp11 translocation PEComas, and 5 melanotic Xp11 translocation renal cancers. A fusion partner was identified in 53/60 (88%) cases, including 18 SFPQ (PSF), 16 PRCC, 12 ASPSCR1 (ASPL), 6 NONO, and 1 DVL2. We provide the first morphologic description of the NONO-TFE3 RCC, which frequently demonstrates subnuclear vacuoles leading to distinctive suprabasal nuclear palisading. Similar subnuclear vacuolization was also characteristic of SFPQ-TFE3 RCC, creating overlapping features with clear cell papillary RCC. We also describe the first RCC with a DVL2-TFE3 gene fusion, in addition to an extrarenal pigmented PEComa with a NONO-TFE3 gene fusion. Furthermore, among neoplasms with the SFPQ-TFE3, NONO-TFE3, DVL2-TFE3, and ASPL-TFE3 gene fusions, the RCCs are almost always PAX8 positive, cathepsin K negative by immunohistochemistry, whereas the mesenchymal counterparts (Xp11 translocation PEComas, melanotic Xp11 translocation renal cancers, and alveolar soft part sarcoma) are PAX8 negative, cathepsin K positive. These findings support the concept that despite an identical gene fusion, the RCCs are distinct from the corresponding mesenchymal neoplasms, perhaps due to

  1. Endocytosis of simian virus 40 into the endoplasmic reticulum

    SciTech Connect

    Kartenbeck, J.; Stukenbrok, H.; Helenius, A. )

    1989-12-01

    The endocytosis of SV-40 into CV-1 cells we studied using biochemical and ultrastructural techniques. The half-time of binding of ({sup 35}S)methionine-radiolabeled SV-40 to CV-1 cells was 25 min. Most of the incoming virus particles remained undegraded for several hours. Electron microscopy showed that some virus entered the endosomal/lysosomal pathway via coated vesicles, while the majority were endocytosed via small uncoated vesicles. After infection at high multiplicity, one third of total cell-associated virus was observed to enter the ER, starting 1-2 h after virus application. The viruses were present in large, tubular, smooth membrane networks generated as extentions of the ER. The results describe a novel and unique membrane transport pathway that allows endocytosed viral particles to be targeted from the plasma membrane to the ER.

  2. Developmental Function of Nm23/awd - A Mediator of Endocytosis

    PubMed Central

    Nallamothu, Gouthami; Dammai, Vincent; Hsu, Tien

    2009-01-01

    The metastasis suppressor gene Nm23 is highly conserved from yeast to human, implicating a critical developmental function. Studies in cultured mammalian cells have identified several potential functions, but many have not been directly verified in vivo. Here we summarize the studies on the Drosophila homologue of the Nm23 gene, named abnormal wing discs (awd), which shares 78% amino acid identity with the human Nm23-H1 and H2 isoforms. These studies confirmed that awd gene encodes a nucleoside diphosphate kinase, and provided strong evidence of a role for awd in regulating cell differentiation and motility via regulation of growth factor receptor signaling. The latter function is mainly mediated by control of endocytosis. This review provides a historical account of the discovery and subsequent analyses of the awd gene. We will also discuss the possible molecular function of the Awd protein that underlies the endocytic function. PMID:19373545

  3. Molecular Mechanisms of B Cell Antigen Gathering and Endocytosis.

    PubMed

    Hoogeboom, Robbert; Tolar, Pavel

    2016-01-01

    Generation of high-affinity, protective antibodies requires B cell receptor (BCR) signaling, as well as antigen internalization and presentation to helper T cells. B cell antigen internalization is initiated by antigen capture, either from solution or from immune synapses formed on the surface of antigen-presenting cells, and proceeds via clathrin-dependent endocytosis and intracellular routing to late endosomes. Although the components of this pathway are still being discovered, it has become clear that antigen internalization is actively regulated by BCR signaling at multiple steps and, vice versa, that localization of the BCR along the endocytic pathway modulates signaling. Accordingly, defects in BCR internalization or trafficking contribute to enhanced B cell activation in models of autoimmune diseases and in B cell lymphomas. In this review, we discuss how BCR signaling complexes regulate each of the steps of this endocytic process and why defects along this pathway manifest as hyperactive B cell responses in vivo. PMID:26336965

  4. Iterative endocytosis of transferrin by K562 cells.

    PubMed Central

    Young, S P; Bomford, A

    1994-01-01

    The effect of iron on the exocytosis of transferrin by K562 cells was studied by first allowing the cells to endocytose apotransferrin or diferric transferrin. Subsequent release of the apotransferrin was very rapid with a t 1/2 of 3.01 min, compared with 5.5 min for diferric transferrin. Release of apotransferrin was slowed by the weak base methylamine, t 1/2 8.0 min, but the effect of this agent was substantially greater when iron-transferrin was used, t 1/2 18.65 min, suggesting that methylamine affects both iron removal and receptor recycling. Release of iron-transferrin could be accelerated to a rate comparable with that of apotransferrin by addition of the permeant iron-chelator desferrioxamine. The difference in the rates of release of different forms of the protein could be explained by the re-endocytosis of the iron-rich protein, a process detected by the accelerated release of transferrin when the cells were washed in medium at pH 5.5 containing an iron-chelator or treated with a protease-containing medium to digest transferrin accessible at the cell surface. It appears that in cells incubated under control conditions, re-endocytosis of transferrin, which is incompletely depleted of iron, occurs and that a transferrin molecule may make two passes through the cell before all the iron is removed. This mechanism helps to explain why very little iron-transferrin is released from cells and why the efficiency of the iron uptake process is so high. PMID:8129715

  5. Ezetimibe-sensitive cholesterol uptake by NPC1L1 protein does not require endocytosis

    PubMed Central

    Johnson, Tory A.; Pfeffer, Suzanne R.

    2016-01-01

    Human NPC1L1 protein mediates cholesterol absorption in the intestine and liver and is the target of the drug ezetimibe, which is used to treat hypercholesterolemia. Previous studies concluded that NPC1L1-GFP protein trafficking is regulated by cholesterol binding and that ezetimibe blocks NPC1L1-GFP function by inhibiting its endocytosis. We used cell surface biotinylation to monitor NPC1L1-GFP endocytosis and show that ezetimibe does not alter the rate of NPC1L1-GFP endocytosis in cultured rat hepatocytes grown under normal growth conditions. As expected, NPC1L1-GFP endocytosis depends in part on C-terminal, cytoplasmically oriented sequences, but endocytosis does not require cholesterol binding to NPC1L1’s N-terminal domain. In addition, two small- molecule inhibitors of general (and NPC1L1-GFP) endocytosis failed to inhibit the ezetimibe-sensitive uptake of [3H]cholesterol from taurocholate micelles. These experiments demonstrate that cholesterol uptake by NPC1L1 does not require endocytosis; moreover, ezetimibe interferes with NPC1L1’s cholesterol adsorption activity without blocking NPC1L1 internalization in RH7777 cells. PMID:27075173

  6. Notch1 endocytosis is induced by ligand and is required for signal transduction.

    PubMed

    Chapman, G; Major, J A; Iyer, K; James, A C; Pursglove, S E; Moreau, J L M; Dunwoodie, S L

    2016-01-01

    The Notch signalling pathway is widely utilised during embryogenesis in situations where cell-cell interactions are important for cell fate specification and differentiation. DSL ligand endocytosis into the ligand-expressing cell is an important aspect of Notch signalling because it is thought to supply the force needed to separate the Notch heterodimer to initiate signal transduction. A functional role for receptor endocytosis during Notch signal transduction is more controversial. Here we have used live-cell imaging to examine trafficking of the Notch1 receptor in response to ligand binding. Contact with cells expressing ligands induced internalisation and intracellular trafficking of Notch1. Notch1 endocytosis was accompanied by transendocytosis of ligand into the Notch1-expressing signal-receiving cell. Ligand caused Notch1 endocytosis into SARA-positive endosomes in a manner dependent on clathrin and dynamin function. Moreover, inhibition of endocytosis in the receptor-expressing cell impaired ligand-induced Notch1 signalling. Our findings resolve conflicting observations from mammalian and Drosophila studies by demonstrating that ligand-dependent activation of Notch1 signalling requires receptor endocytosis. Endocytosis of Notch1 may provide a force on the ligand:receptor complex that is important for potent signal transduction. PMID:26522918

  7. Ezetimibe-sensitive cholesterol uptake by NPC1L1 protein does not require endocytosis.

    PubMed

    Johnson, Tory A; Pfeffer, Suzanne R

    2016-06-01

    Human NPC1L1 protein mediates cholesterol absorption in the intestine and liver and is the target of the drug ezetimibe, which is used to treat hypercholesterolemia. Previous studies concluded that NPC1L1-GFP protein trafficking is regulated by cholesterol binding and that ezetimibe blocks NPC1L1-GFP function by inhibiting its endocytosis. We used cell surface biotinylation to monitor NPC1L1-GFP endocytosis and show that ezetimibe does not alter the rate of NPC1L1-GFP endocytosis in cultured rat hepatocytes grown under normal growth conditions. As expected, NPC1L1-GFP endocytosis depends in part on C-terminal, cytoplasmically oriented sequences, but endocytosis does not require cholesterol binding to NPC1L1's N-terminal domain. In addition, two small- molecule inhibitors of general (and NPC1L1-GFP) endocytosis failed to inhibit the ezetimibe-sensitive uptake of [(3)H]cholesterol from taurocholate micelles. These experiments demonstrate that cholesterol uptake by NPC1L1 does not require endocytosis; moreover, ezetimibe interferes with NPC1L1's cholesterol adsorption activity without blocking NPC1L1 internalization in RH7777 cells. PMID:27075173

  8. A role for the dynamin-like protein Vps1 during endocytosis in yeast.

    PubMed

    Smaczynska-de Rooij, Iwona I; Allwood, Ellen G; Aghamohammadzadeh, Soheil; Hettema, Ewald H; Goldberg, Martin W; Ayscough, Kathryn R

    2010-10-15

    Dynamins are a conserved family of proteins involved in membrane fusion and fission. Although mammalian dynamins are known to be involved in several membrane-trafficking events, the role of dynamin-1 in endocytosis is the best-characterised role of this protein family. Despite many similarities between endocytosis in yeast and mammalian cells, a comparable role for dynamins in yeast has not previously been demonstrated. The reported lack of involvement of dynamins in yeast endocytosis has raised questions over the general applicability of the current yeast model of endocytosis, and has also precluded studies using well-developed methods in yeast, to further our understanding of the mechanism of dynamin function during endocytosis. Here, we investigate the yeast dynamin-like protein Vps1 and demonstrate a transient burst of localisation to sites of endocytosis. Using live-cell imaging of endocytic reporters in strains lacking vps1, and also electron microscopy and biochemical approaches, we demonstrate a role for Vps1 in facilitating endocytic invagination. Vps1 mutants were generated, and analysis in several assays reveals a role for the C-terminal self-assembly domain in endocytosis but not in other membrane fission events with which Vps1 has previously been associated. PMID:20841380

  9. A role for the dynamin-like protein Vps1 during endocytosis in yeast

    PubMed Central

    Rooij, Iwona I. Smaczynska-de; Allwood, Ellen G.; Aghamohammadzadeh, Soheil; Hettema, Ewald H.; Goldberg, Martin W.; Ayscough, Kathryn R.

    2010-01-01

    Dynamins are a conserved family of proteins involved in membrane fusion and fission. Although mammalian dynamins are known to be involved in several membrane-trafficking events, the role of dynamin-1 in endocytosis is the best-characterised role of this protein family. Despite many similarities between endocytosis in yeast and mammalian cells, a comparable role for dynamins in yeast has not previously been demonstrated. The reported lack of involvement of dynamins in yeast endocytosis has raised questions over the general applicability of the current yeast model of endocytosis, and has also precluded studies using well-developed methods in yeast, to further our understanding of the mechanism of dynamin function during endocytosis. Here, we investigate the yeast dynamin-like protein Vps1 and demonstrate a transient burst of localisation to sites of endocytosis. Using live-cell imaging of endocytic reporters in strains lacking vps1, and also electron microscopy and biochemical approaches, we demonstrate a role for Vps1 in facilitating endocytic invagination. Vps1 mutants were generated, and analysis in several assays reveals a role for the C-terminal self-assembly domain in endocytosis but not in other membrane fission events with which Vps1 has previously been associated. PMID:20841380

  10. Clathrin- and Dynamin-Independent Endocytosis of FGFR3 – Implications for Signalling

    PubMed Central

    Haugsten, Ellen Margrethe; Zakrzewska, Malgorzata; Brech, Andreas; Pust, Sascha; Olsnes, Sjur; Sandvig, Kirsten; Wesche, Jørgen

    2011-01-01

    Endocytosis of tyrosine kinase receptors can influence both the duration and the specificity of the signal emitted. We have investigated the mechanisms of internalization of fibroblast growth factor receptor 3 (FGFR3) and compared it to that of FGFR1 which is internalized predominantly through clathrin-mediated endocytosis. Interestingly, we observed that FGFR3 was internalized at a slower rate than FGFR1 indicating that it may use a different endocytic mechanism than FGFR1. Indeed, after depletion of cells for clathrin, internalization of FGFR3 was only partly inhibited while endocytosis of FGFR1 was almost completely abolished. Similarly, expression of dominant negative mutants of dynamin resulted in partial inhibition of the endocytosis of FGFR3 whereas internalization of FGFR1 was blocked. Interfering with proposed regulators of clathrin-independent endocytosis such as Arf6, flotillin 1 and 2 and Cdc42 did not affect the endocytosis of FGFR1 or FGFR3. Furthermore, depletion of clathrin decreased the degradation of FGFR1 resulting in sustained signalling. In the case of FGFR3, both the degradation and the signalling were only slightly affected by clathrin depletion. The data indicate that clathrin-mediated endocytosis is required for efficient internalization and downregulation of FGFR1 while FGFR3, however, is internalized by both clathrin-dependent and clathrin-independent mechanisms. PMID:21779335

  11. Ultrasound Microbubble Treatment Enhances Clathrin-Mediated Endocytosis and Fluid-Phase Uptake through Distinct Mechanisms

    PubMed Central

    Fekri, Farnaz; Delos Santos, Ralph Christian; Karshafian, Raffi

    2016-01-01

    Drug delivery to tumors is limited by several factors, including drug permeability of the target cell plasma membrane. Ultrasound in combination with microbubbles (USMB) is a promising strategy to overcome these limitations. USMB treatment elicits enhanced cellular uptake of materials such as drugs, in part as a result of sheer stress and formation of transient membrane pores. Pores formed upon USMB treatment are rapidly resealed, suggesting that other processes such as enhanced endocytosis may contribute to the enhanced material uptake by cells upon USMB treatment. How USMB regulates endocytic processes remains incompletely understood. Cells constitutively utilize several distinct mechanisms of endocytosis, including clathrin-mediated endocytosis (CME) for the internalization of receptor-bound macromolecules such as Transferrin Receptor (TfR), and distinct mechanism(s) that mediate the majority of fluid-phase endocytosis. Tracking the abundance of TfR on the cell surface and the internalization of its ligand transferrin revealed that USMB acutely enhances the rate of CME. Total internal reflection fluorescence microscopy experiments revealed that USMB treatment altered the assembly of clathrin-coated pits, the basic structural units of CME. In addition, the rate of fluid-phase endocytosis was enhanced, but with delayed onset upon USMB treatment relative to the enhancement of CME, suggesting that the two processes are distinctly regulated by USMB. Indeed, vacuolin-1 or desipramine treatment prevented the enhancement of CME but not of fluid phase endocytosis upon USMB, suggesting that lysosome exocytosis and acid sphingomyelinase, respectively, are required for the regulation of CME but not fluid phase endocytosis upon USMB treatment. These results indicate that USMB enhances both CME and fluid phase endocytosis through distinct signaling mechanisms, and suggest that strategies for potentiating the enhancement of endocytosis upon USMB treatment may improve targeted

  12. Ultrasound Microbubble Treatment Enhances Clathrin-Mediated Endocytosis and Fluid-Phase Uptake through Distinct Mechanisms.

    PubMed

    Fekri, Farnaz; Delos Santos, Ralph Christian; Karshafian, Raffi; Antonescu, Costin N

    2016-01-01

    Drug delivery to tumors is limited by several factors, including drug permeability of the target cell plasma membrane. Ultrasound in combination with microbubbles (USMB) is a promising strategy to overcome these limitations. USMB treatment elicits enhanced cellular uptake of materials such as drugs, in part as a result of sheer stress and formation of transient membrane pores. Pores formed upon USMB treatment are rapidly resealed, suggesting that other processes such as enhanced endocytosis may contribute to the enhanced material uptake by cells upon USMB treatment. How USMB regulates endocytic processes remains incompletely understood. Cells constitutively utilize several distinct mechanisms of endocytosis, including clathrin-mediated endocytosis (CME) for the internalization of receptor-bound macromolecules such as Transferrin Receptor (TfR), and distinct mechanism(s) that mediate the majority of fluid-phase endocytosis. Tracking the abundance of TfR on the cell surface and the internalization of its ligand transferrin revealed that USMB acutely enhances the rate of CME. Total internal reflection fluorescence microscopy experiments revealed that USMB treatment altered the assembly of clathrin-coated pits, the basic structural units of CME. In addition, the rate of fluid-phase endocytosis was enhanced, but with delayed onset upon USMB treatment relative to the enhancement of CME, suggesting that the two processes are distinctly regulated by USMB. Indeed, vacuolin-1 or desipramine treatment prevented the enhancement of CME but not of fluid phase endocytosis upon USMB, suggesting that lysosome exocytosis and acid sphingomyelinase, respectively, are required for the regulation of CME but not fluid phase endocytosis upon USMB treatment. These results indicate that USMB enhances both CME and fluid phase endocytosis through distinct signaling mechanisms, and suggest that strategies for potentiating the enhancement of endocytosis upon USMB treatment may improve targeted

  13. Problems with mitigation translocation of herpetofauna.

    PubMed

    Sullivan, Brian K; Nowak, Erika M; Kwiatkowski, Matthew A

    2015-02-01

    Mitigation translocation of nuisance animals is a commonly used management practice aimed at resolution of human-animal conflict by removal and release of an individual animal. Long considered a reasonable undertaking, especially by the general public, it is now known that translocated subjects are negatively affected by the practice. Mitigation translocation is typically undertaken with individual adult organisms and has a much lower success rate than the more widely practiced conservation translocation of threatened and endangered species. Nonetheless, the public and many conservation practitioners believe that because population-level conservation translocations have been successful that mitigation translocation can be satisfactorily applied to a wide variety of human-wildlife conflict situations. We reviewed mitigation translocations of reptiles, including our own work with 3 long-lived species (Gila monsters [Heloderma suspectum], Sonoran desert tortoises [Gopherus morafkai], and western diamond-backed rattlesnakes [Crotalus atrox]). Overall, mitigation translocation had a low success rate when judged either by effects on individuals (in all studies reviewed they exhibited increased movement or increased mortality) or by the success of the resolution of the human-animal conflict (translocated individuals often returned to the capture site). Careful planning and identification of knowledge gaps are critical to increasing success rates in mitigation translocations in the face of increasing pressure to find solutions for species threatened by diverse anthropogenic factors, including climate change and exurban and energy development. PMID:25040040

  14. Plasma membrane translocation of a protein needle based on a triple-stranded β-helix motif.

    PubMed

    Sanghamitra, Nusrat J M; Inaba, Hiroshi; Arisaka, Fumio; Ohtan Wang, Dan; Kanamaru, Shuji; Kitagawa, Susumu; Ueno, Takafumi

    2014-10-01

    Plasma membrane translocation is challenging due to the barrier of the cell membrane. Contrary to the synthetic cell-penetrating materials, tailed bacteriophages use cell-puncturing protein needles to puncture the cell membranes as an initial step of the DNA injection process. Cell-puncturing protein needles are thought to remain functional in the native phages. In this paper, we found that a bacteriophage T4 derived protein needle of 16 nm length spontaneously translocates through the living cell membrane. The β-helical protein needle (β-PN) internalizes into human red blood cells that lack endocytic machinery. By comparing the cellular uptake of β-PNs with modified surface charge, it is shown that the uptake efficiency is maximum when it has a negative charge corresponding to a zeta potential value of -16 mV. In HeLa cells, uptake of β-PN incorporates endocytosis independent mechanisms with partial macropinocytosis dependence. The endocytosis dependence of the uptake increases when the surface charges of β-PNs are modified to positive or negative. Thus, these results suggest that natural DNA injecting machinery can serve as an inspiration to design new class of cell-penetrating materials with a tailored mechanism. PMID:25082560

  15. Visualization of clathrin-mediated endocytosis in live Drosophila egg chambers

    PubMed Central

    Jha, Anupma; Traub, Linton M.

    2015-01-01

    Summary In oviparous animals, clathrin-dependent endocytosis is often critical to stockpile a necessary supply of yolk within the maturing oocyte, which enables subsequent embryonic development. In the physically linked chains of maturing egg chambers within the Drosophila melanogaster ovary, a distinct, morphologically discernable, subset undergoes a massive burst clathrin-mediated endocytosis to accumulate yolk in a process termed vitellogenesis. Here, we describe how to prepare isolated ovaries to follow endocytosis, and detail approaches to follow live uptake of soluble reporters into vitellogenic Drosophila egg chambers. PMID:24947394

  16. [Molecular physiology of receptor mediated endocytosis and its role in overcoming multidrug resistance].

    PubMed

    Severin, E S; Posypanova, G A

    2011-06-01

    Receptor-mediated endocytosis plays important role in the selective uptake of proteins at the plasma membrane of eukaryotic cells. Endocytosis regulates many processes of cell signalling by controlling the number of functional receptors on the cell surface. The article reviews the mechanism of clathrin-dependent endocytosis and the possibility of using this phenomenon for the targeted delivery of drugs. Use of certain proteins as targeting component of drug delivery systems can significantly improve the selectivity of this drug, as well as to overcome the multidrug resistance of cells resulting from the activity of the ABC-transporters. PMID:21874867

  17. Bulk-like endocytosis plays an important role in the recycling of insulin granules in pancreatic beta cells.

    PubMed

    Wen, Du; Xue, Yanhong; Liang, Kuo; Yuan, Tianyi; Lu, Jingze; Zhao, Wei; Xu, Tao; Chen, Liangyi

    2012-08-01

    Although bulk endocytosis has been found in a number of neuronal and endocrine cells, the molecular mechanism and physiological function of bulk endocytosis remain elusive. In pancreatic beta cells, we have observed bulk-like endocytosis evoked both by flash photolysis and trains of depolarization. Bulk-like endocytosis is a clathrin-independent process that is facilitated by enhanced extracellular Ca(2+) entry and suppressed by the inhibition of dynamin function. Moreover, defects in bulk-like endocytosis are accompanied by hyperinsulinemia in primary beta cells dissociated from diabetic KKAy mice, which suggests that bulk-like endocytosis plays an important role in maintaining the exo-endocytosis balance and beta cell secretory capability. PMID:22729398

  18. Enhancement of saporin cytotoxicity by Gypsophila saponins--more than stimulation of endocytosis.

    PubMed

    Weng, A; Bachran, C; Fuchs, H; Krause, E; Stephanowitz, H; Melzig, M F

    2009-10-30

    Saporin is a type I ribosome-inactivating protein with N-glycosidase activity. It removes adenine residues from the 28S ribosomal RNA resulting in inhibition of protein synthesis. Recently we have shown that saporin exerts no cytotoxicity on seven human cell lines. However, the combination of saporin with a special mixture of Gypsophila saponins (Soapwort saponins) from Gypsophila paniculata L. (baby's breath) rendered saporin to a potent cytotoxin comparable to viscumin, a highly toxic type II ribosome-inactivating protein. In this study we investigated whether the enhancement of the saporin-cytotoxicity by Gypsophila saponins is mediated by a saponin-triggered modulation of endocytosis, exocytosis or impaired degradation processes of his-tagged saporin ((his)saporin) in ECV-304 cells. For this purpose (his)saporin was labelled with tritium and cytotoxicity of the toxin alone and in combination with Gypsophila saponins was scrutinized. The transport and degradation processes of (his)saporin were not different in Gypsophila saponin-treated and control cells. However, after ultracentrifugation of a post-nuclear supernatant the amount of cytosolic (his)saporin was significantly higher in saponin-treated cells than in cells, which were only incubated with (his)saporin. This indicates a saponin mediated endosomal escape of saporin. PMID:19615984

  19. Sensing the delivery and endocytosis of nanoparticles using magneto-photo-acoustic imaging

    PubMed Central

    Qu, M.; Mehrmohammadi, M.; Emelianov, S.Y.

    2015-01-01

    Many biomedical applications necessitate a targeted intracellular delivery of the nanomaterial to specific cells. Therefore, a non-invasive and reliable imaging tool is required to detect both the delivery and cellular endocytosis of the nanoparticles. Herein, we demonstrate that magneto-photo-acoustic (MPA) imaging can be used to monitor the delivery and to identify endocytosis of magnetic and optically absorbing nanoparticles. The relationship between photoacoustic (PA) and magneto-motive ultrasound (MMUS) signals from the in vitro samples were analyzed to identify the delivery and endocytosis of nanoparticles. The results indicated that during the delivery of nanoparticles to the vicinity of the cells, both PA and MMUS signals are almost linearly proportional. However, accumulation of nanoparticles within the cells leads to nonlinear MMUS-PA relationship, due to non-linear MMUS signal amplification. Therefore, through longitudinal MPA imaging, it is possible to monitor the delivery of nanoparticles and identify the endocytosis of the nanoparticles by living cells. PMID:26640773

  20. Tubular endocytosis drives remodelling of the apical surface during epithelial morphogenesis in Drosophila.

    PubMed

    Fabrowski, Piotr; Necakov, Aleksandar S; Mumbauer, Simone; Loeser, Eva; Reversi, Alessandra; Streichan, Sebastian; Briggs, John A G; De Renzis, Stefano

    2013-01-01

    During morphogenesis, remodelling of cell shape requires the expansion or contraction of plasma membrane domains. Here we identify a mechanism underlying the restructuring of the apical surface during epithelial morphogenesis in Drosophila. We show that the retraction of villous protrusions and subsequent apical plasma membrane flattening is an endocytosis-driven morphogenetic process. Quantitation of endogenously tagged GFP::Rab5 dynamics reveals a massive increase in apical endocytosis that correlates with changes in apical morphology. This increase is accompanied by the formation of tubular plasma membrane invaginations that serve as platforms for the de novo generation of Rab5-positive endosomes. We identify the Rab5-effector Rabankyrin-5 as a regulator of this pathway and demonstrate that blocking dynamin activity results in the complete inhibition of tubular endocytosis, in the disappearance of Rab5 endosomes, and in the inhibition of surface flattening. These data collectively demonstrate a requirement for endocytosis in morphogenetic remodelling during epithelial development. PMID:23921440

  1. ALG-2 interacting protein-X (Alix) is essential for clathrin-independent endocytosis and signaling

    PubMed Central

    Mercier, Vincent; Laporte, Marine H.; Destaing, Olivier; Blot, Béatrice; Blouin, Cédric M.; Pernet-Gallay, Karin; Chatellard, Christine; Saoudi, Yasmina; Albiges-Rizo, Corinne; Lamaze, Christophe; Fraboulet, Sandrine; Petiot, Anne; Sadoul, Rémy

    2016-01-01

    The molecular mechanisms and the biological functions of clathrin independent endocytosis (CIE) remain largely elusive. Alix (ALG-2 interacting protein X), has been assigned roles in membrane deformation and fission both in endosomes and at the plasma membrane. Using Alix ko cells, we show for the first time that Alix regulates fluid phase endocytosis and internalization of cargoes entering cells via CIE, but has no apparent effect on clathrin mediated endocytosis or downstream endosomal trafficking. We show that Alix acts with endophilin-A to promote CIE of cholera toxin and to regulate cell migration. We also found that Alix is required for fast endocytosis and downstream signaling of the interleukin-2 receptor giving a first indication that CIE is necessary for activation of at least some surface receptors. In addition to characterizing a new function for Alix, our results highlight Alix ko cells as a unique tool to unravel the biological consequences of CIE. PMID:27244115

  2. Recording the dynamic endocytosis of single gold nanoparticles by AFM-based force tracing

    NASA Astrophysics Data System (ADS)

    Ding, Bohua; Tian, Yongmei; Pan, Yangang; Shan, Yuping; Cai, Mingjun; Xu, Haijiao; Sun, Yingchun; Wang, Hongda

    2015-04-01

    We utilized force tracing to directly record the endocytosis of single gold nanoparticles (Au NPs) with different sizes, revealing the size-dependent endocytosis dynamics and the crucial role of membrane cholesterol. The force, duration and velocity of Au NP invagination are accurately determined at the single-particle and microsecond level unprecedentedly.We utilized force tracing to directly record the endocytosis of single gold nanoparticles (Au NPs) with different sizes, revealing the size-dependent endocytosis dynamics and the crucial role of membrane cholesterol. The force, duration and velocity of Au NP invagination are accurately determined at the single-particle and microsecond level unprecedentedly. Electronic supplementary information (ESI) available: Details of the experimental procedures and the results of the control experiments. See DOI: 10.1039/c5nr01020a

  3. Endocytosis is required for synaptic activity-dependent release of amyloid-β in vivo

    PubMed Central

    Cirrito, John R.; Kang, Jae-Eun; Lee, Jiyeon; Stewart, Floy R.; Verges, Deborah K.; Silverio, Luz M.; Bu, Guojun; Mennerick, Steven; Holtzman, David M.

    2008-01-01

    Aggregation of amyloid-β (Aβ) peptide into soluble and insoluble forms within the brain extracellular space is central to the pathogenesis of Alzheimer’s disease. Full length amyloid precursor protein (APP) is endocytosed from the cell surface into endosomes where it is cleaved to produce Aβ. Aβ is subsequently released into the brain interstitial fluid (ISF). We hypothesized that synaptic transmission results in more APP endocytosis, thereby increasing Aβ generation and release into the ISF. We found that inhibition of clathrin-mediated endocytosis immediately lowers ISF Aβ levels in vivo. Two distinct methods which increased synaptic transmission resulted in an elevation of ISF Aβ levels. Inhibition of endocytosis, however, prevented the activity-dependent increase in Aβ. We estimate that ~70% of ISF Aβ arises from endocytosis-associated mechanisms with the vast majority of this pool also dependent on synaptic activity. These findings have implications for AD pathogenesis and may provide insights into therapeutic intervention. PMID:18400162

  4. Sugar-induced endocytosis of plant 7TM-RGS proteins

    PubMed Central

    Phan, Nguyen; Urano, Daisuke; Srba, Miroslav; Fischer, Lukas; Jones, Alan M.

    2013-01-01

    Plant cells use sugars mainly as a source or store of energy and carbon skeletons for anabolic reactions and for osmotic regulation. The perception of sugars and their responses are rather complex including the heterotrimeric G protein pathway and a seven-transmembrane RGS molecule. Previously, we found that endocytosis of the 7TM-RGS leads to sustained activation of the G protein pathway in the genetic model Arabidopsis. Here we show that other plants possess similar endocytosis systems of the 7TM-RGS proteins. A phosphorylation site essential for the endocytosis is well conserved in land plant 7TM-RGS proteins. In addition, conifer and tobacco 7TM-RGS proteins are internalized in response to sugar. These results indicate a universal mechanism to activate G signaling by endocytosis in plant cells that have 7TM-RGS proteins. PMID:23154506

  5. A luminescent assay for real-time measurements of receptor endocytosis in living cells.

    PubMed

    Robers, Matthew B; Binkowski, Brock F; Cong, Mei; Zimprich, Chad; Corona, Cesear; McDougall, Mark; Otto, George; Eggers, Christopher T; Hartnett, Jim; Machleidt, Thomas; Fan, Frank; Wood, Keith V

    2015-11-15

    Ligand-mediated endocytosis is a key autoregulatory mechanism governing the duration and intensity of signals emanating from cell surface receptors. Due to the mechanistic complexity of endocytosis and its emerging relevance in disease, simple methods capable of tracking this dynamic process in cells have become increasingly desirable. We have developed a bioluminescent reporter technology for real-time analysis of ligand-mediated receptor endocytosis using genetic fusions of NanoLuc luciferase with various G-protein-coupled receptors (GPCRs). This method is compatible with standard microplate formats, which should decrease work flows for high-throughput screens. This article also describes the application of this technology to endocytosis of epidermal growth factor receptor (EGFR), demonstrating potential applicability of the method beyond GPCRs. PMID:26278171

  6. ALG-2 interacting protein-X (Alix) is essential for clathrin-independent endocytosis and signaling.

    PubMed

    Mercier, Vincent; Laporte, Marine H; Destaing, Olivier; Blot, Béatrice; Blouin, Cédric M; Pernet-Gallay, Karin; Chatellard, Christine; Saoudi, Yasmina; Albiges-Rizo, Corinne; Lamaze, Christophe; Fraboulet, Sandrine; Petiot, Anne; Sadoul, Rémy

    2016-01-01

    The molecular mechanisms and the biological functions of clathrin independent endocytosis (CIE) remain largely elusive. Alix (ALG-2 interacting protein X), has been assigned roles in membrane deformation and fission both in endosomes and at the plasma membrane. Using Alix ko cells, we show for the first time that Alix regulates fluid phase endocytosis and internalization of cargoes entering cells via CIE, but has no apparent effect on clathrin mediated endocytosis or downstream endosomal trafficking. We show that Alix acts with endophilin-A to promote CIE of cholera toxin and to regulate cell migration. We also found that Alix is required for fast endocytosis and downstream signaling of the interleukin-2 receptor giving a first indication that CIE is necessary for activation of at least some surface receptors. In addition to characterizing a new function for Alix, our results highlight Alix ko cells as a unique tool to unravel the biological consequences of CIE. PMID:27244115

  7. Bradykinin Release Avoids High Molecular Weight Kininogen Endocytosis

    PubMed Central

    Nascimento, Fabio D.; Souza, Daianne S. P.; Araujo, Mariana S.; Souza, Sinval E. G.; Sampaio, Misako U.; Nader, Helena B.; Tersariol, Ivarne L. S.; Motta, Guacyara

    2015-01-01

    Human H-kininogen (120 kDa) plays a role in many pathophysiological processes and interacts with the cell surface through protein receptors and proteoglycans, which mediate H-kininogen endocytosis. In the present work we demonstrate that H-kininogen containing bradykinin domain is internalized and different endogenous kininogenases are present in CHO-K1 cells. We used CHO-K1 (wild type) and CHO-745 (mutant deficient in proteoglycans biosynthesis) cell lines. H-kininogen endocytosis was studied using confocal microscopy, and its hydrolysis by cell lysate fraction was determined by immunoblotting. Bradykinin release was also measured by radioimmunoassay. H-kininogen interaction with the cell surface of CHO-745 cells resulted in bradykinin release by serine proteases. In CHO-K1 cells, which produce heparan and chondroitin sulfate proteoglycans, internalization of H-kininogen through its bradykinin domain can occur on lipid raft domains/caveolae. Nevertheless bradykinin-free H-kininogen was not internalized by CHO-K1 cells. The H-kininogen present in acidic endosomal vesicles in CHO-K1 was approximately 10-fold higher than the levels in CHO-745. CHO-K1 lysate fractions were assayed at pH 5.5 and intact H-kininogen was totally hydrolyzed into a 62 kDa fragment. By contrast, at an assay pH 7.4, the remained fragments were 115 kDa, 83 kDa, 62 kDa and 48 kDa in size. The antipain-Sepharose chromatography separated endogenous kininogenases from CHO-K1 lysate fraction. No difference was detected in the assays at pH 5.5 or 7.4, but the proteins in the fraction bound to the resin released bradykinin from H-kininogen. However, the proteins in the unbound fraction cleaved intact H-kininogen at other sites but did not release bradykinin. H-kininogen can interact with extravascular cells, and is internalized dependent on its bradykinin domain and cell surface proteoglycans. After internalization, H-kininogen is proteolytically processed by intracellular kininogenases. The present

  8. Actin-Based Feedback Circuits in Cell Migration and Endocytosis

    NASA Astrophysics Data System (ADS)

    Wang, Xinxin

    In this thesis, we study the switch and pulse functions of actin during two important cellular processes, cell migration and endocytosis. Actin is an abundant protein that can polymerize to form a dendritic network. The actin network can exert force to push or bend the cell membrane. During cell migration, the actin network behaves like a switch, assembling mostly at one end or at the other end. The end with the majority of the actin network is the leading edge, following which the cell can persistently move in the same direction. The other end, with the minority of the actin network, is the trailing edge, which is dragged by the cell as it moves forward. When subjected to large fluctuations or external stimuli, the leading edge and the trailing edge can interchange and change the direction of motion, like a motion switch. Our model of the actin network in a cell reveals that mechanical force is crucial for forming the motion switch. We find a transition from single state symmetric behavior to switch behavior, when tuning parameters such as the force. The model is studied by both stochastic simulations, and a set of rate equations that are consistent with the simulations. Endocytosis is a process by which cells engulf extracellular substances and recycle the cell membrane. In yeast cells, the actin network is transiently needed to overcome the pressure difference across the cell membrane caused by turgor pressure. The actin network behaves like a pulse, which assembles and then disassembles within about 30 seconds. Using a stochastic model, we reproduce the pulse behaviors of the actin network and one of its regulatory proteins, Las17. The model matches green fluorescence protein (GFP) experiments for wild-type cells. The model also predicts some phenotypes that modify or diminish the pulse behavior. The phenotypes are verified with both experiments performed at Washington University and with other groups' experiments. We find that several feedback mechanisms are

  9. Different dynamin blockers interfere with distinct phases of synaptic endocytosis during stimulation in motoneurones

    PubMed Central

    Linares-Clemente, Pedro; Rozas, José L; Mircheski, Josif; García-Junco-Clemente, Pablo; Martínez-López, José A; Nieto-González, José L; Vázquez, M Eugenio; Pintado, C Oscar; Fernández-Chacón, Rafael

    2015-01-01

    Key points Neurotransmitter release requires a tight coupling between synaptic vesicle exocytosis and endocytosis with dynamin being a key protein in that process. We used imaging techniques to examine the time course of endocytosis at mouse motor nerve terminals expressing synaptopHluorin, a genetically encoded reporter of the synaptic vesicle cycle. We separated two sequential phases of endocytosis taking place during the stimulation train: early and late endocytosis. Freshly released synaptic vesicle proteins are preferentially retrieved during the early phase, which is very sensitive to dynasore, an inhibitor of dynamin GTPase activity. Synaptic vesicle proteins pre-existing at the plasma membrane before the stimulation are preferentially retrieved during the late phase, which is very sensitive to myristyl trimethyl ammonium bromide (MitMAB), an inhibitor of the dynamin–phospholipid interaction. Abstract Synaptic endocytosis is essential at nerve terminals to maintain neurotransmitter release by exocytosis. Here, at the neuromuscular junction of synaptopHluorin (spH) transgenic mice, we have used imaging to study exo- and endocytosis occurring simultaneously during nerve stimulation. We observed two endocytosis components, which occur sequentially during stimulation. The early component of endocytosis apparently internalizes spH molecules freshly exocytosed. This component was sensitive to dynasore, a blocker of dynamin 1 GTPase activity. In contrast, this early component was resistant to myristyl trimethyl ammonium bromide (MiTMAB), a competitive agent that blocks dynamin binding to phospholipid membranes. The late component of endocytosis is likely to internalize spH molecules that pre-exist at the plasma membrane before stimulation starts. This component was blocked by MiTMAB, perhaps by impairing the binding of dynamin or other key endocytic proteins to phospholipid membranes. Our study suggests the co-existence of two sequential synaptic endocytosis

  10. Haloarchaeal Protein Translocation via the Twin Arginine Translocation Pathway

    SciTech Connect

    Pohlschroder Mechthild

    2009-02-03

    Protein transport across hydrophobic membranes that partition cellular compartments is essential in all cells. The twin arginine translocation (Tat) pathway transports proteins across the prokaryotic cytoplasmic membranes. Distinct from the universally conserved Sec pathway, which secretes unfolded proteins, the Tat machinery is unique in that it secretes proteins in a folded conformation, making it an attractive pathway for the transport and secretion of heterologously expressed proteins that are Sec-incompatible. During the past 7 years, the DOE-supported project has focused on the characterization of the diversity of bacterial and archaeal Tat substrates as well as on the characterization of the Tat pathway of a model archaeon, Haloferax volcanii, a member of the haloarchaea. We have demonstrated that H. volcanii uses this pathway to transport most of its secretome.

  11. CD82 endocytosis and cholesterol-dependent reorganization of tetraspanin webs and lipid rafts

    PubMed Central

    Xu, Congfeng; Zhang, Yanhui H.; Thangavel, Muthusamy; Richardson, Mekel M.; Liu, Li; Zhou, Bin; Zheng, Yi; Ostrom, Rennolds S.; Zhang, Xin A.

    2009-01-01

    Tetraspanin CD82 suppresses cell migration, tumor invasion, and tumor metastasis. To determine the mechanism by which CD82 inhibits motility, most studies have focused on the cell surface CD82, which forms tetraspanin-enriched microdomains (TEMs) with other transmembrane proteins, such as integrins. In this study, we found that CD82 undergoes endocytosis and traffics to endosomes and lysosomes. To determine the endocytic mechanism of CD82, we demonstrated that dynamin and clathrin are not essential for CD82 internalization. Depletion or sequestration of sterol in the plasma membrane markedly inhibited the endocytosis of CD82. Despite the demand on Cdc42 activity, CD82 endocytosis is distinct from macropinocytosis and the documented dynamin-independent pinocytosis. As a TEM component, CD82 reorganizes TEMs and lipid rafts by redistributing cholesterol into these membrane microdomains. CD82-containing TEMs are characterized by the cholesterol-containing microdomains in the extreme light- and intermediate-density fractions. Moreover, the endocytosis of CD82 appears to alleviate CD82-mediated inhibition of cell migration. Taken together, our studies demonstrate that lipid-dependent endocytosis drives CD82 trafficking to late endosomes and lysosomes, and CD82 reorganizes TEMs and lipid rafts through redistribution of cholesterol.—Xu, C., Zhang, Y. H., Thangavel, M., Richardson, M. M., Liu, L., Zhou, B., Zheng, Y., Ostrom, R. S., Zhang, X. A. CD82 endocytosis and cholesterol-dependent reorganization of tetraspanin webs and lipid rafts. PMID:19497983

  12. Quantification of endocytosis using a folate functionalized silica hollow nanoshell platform.

    PubMed

    Sandoval, Sergio; Mendez, Natalie; Alfaro, Jesus G; Yang, Jian; Aschemeyer, Sharraya; Liberman, Alex; Trogler, William C; Kummel, Andrew C

    2015-08-01

    A quantification method to measure endocytosis was designed to assess cellular uptake and specificity of a targeting nanoparticle platform. A simple N -hydroxysuccinimide ester conjugation technique to functionalize 100-nm hollow silica nanoshell particles with fluorescent reporter fluorescein isothiocyanate and folate or polyethylene glycol (PEG) was developed. Functionalized nanoshells were characterized using scanning electron microscopy and transmission electron microscopy and the maximum amount of folate functionalized on nanoshell surfaces was quantified with UV-Vis spectroscopy. The extent of endocytosis by HeLa cervical cancer cells and human foreskin fibroblast (HFF-1) cells was investigated in vitro using fluorescence and confocal microscopy. A simple fluorescence ratio analysis was developed to quantify endocytosis versus surface adhesion. Nanoshells functionalized with folate showed enhanced endocytosis by cancer cells when compared to PEG functionalized nanoshells. Fluorescence ratio analyses showed that 95% of folate functionalized silica nanoshells which adhered to cancer cells were endocytosed, while only 27% of PEG functionalized nanoshells adhered to the cell surface and underwent endocytosis when functionalized with 200 and 900  μg , respectively. Additionally, the endocytosis of folate functionalized nanoshells proved to be cancer cell selective while sparing normal cells. The developed fluorescence ratio analysis is a simple and rapid verification/validation method to quantify cellular uptake between datasets by using an internal control for normalization. PMID:26315280

  13. Endocytosis of Seven-Transmembrane RGS Protein Activates G- protein Coupled Signaling in Arabidopsis

    PubMed Central

    Urano, Daisuke; Phan, Nguyen; Jones, Janice C.; Yang, Jing; Huang, Jirong; Grigston, Jeffrey; Taylor, J. Philip; Jones, Alan M.

    2012-01-01

    Signal transduction typically begins by ligand-dependent activation of a concomitant partner which is otherwise in its resting state. However, in cases where signal activation is constitutive by default, the mechanism of regulation is unknown. The Arabidopsis thaliana heterotrimeric Gα protein self-activates without accessory proteins, and is kept in its resting state by the negative regulator, AtRGS1 (Regulator of G protein Signaling 1), which is the prototype of a seven transmembrane receptor fused with an RGS domain. Endocytosis of AtRGS1 by ligand-dependent endocytosis physically uncouples the GTPase accelerating activity of AtRGS1 from the Gα protein, permitting sustained activation. Phosphorylation of AtRGS1 by AtWNK8 kinase causes AtRGS1 endocytosis, required both for G protein-mediated sugar signaling and cell proliferation. In animals, receptor endocytosis results in signal desensitization, whereas in plants, endocytosis results in signal activation. These findings reveal how different organisms rearrange a regulatory system to result in opposite outcomes using similar phosphorylation-dependent endocytosis. PMID:22940907

  14. ‘Delayed’ endocytosis is regulated by extracellular Ca2+ in snake motor boutons

    PubMed Central

    Teng, Haibing; Wilkinson, Robert S

    2003-01-01

    When cooled below ≈7 °C, recently endocytosed vesicles in the motor terminals of the garter snake fail to shed their clathrin coats. Perhaps as a result, the terminals complete only about one-half of the compensatory endocytosis expected after a given period of stimulation. Upon return to room temperature (RT), endocytosis resumes immediately and is complete within minutes. This ‘delayed’ endocytosis following release from cold block provides an opportunity to study clathrin-dependent endocytotic mechanisms in temporal isolation from those events, such as Ca2+ entry and consequent exocytosis, that are normally associated with the activation of nerve terminals. We have taken advantage of clathrin decoating blockade to examine the rate, temperature dependence and extracellular Ca2+ dependence of endocytosis at the snake nerve-muscle synapse. Endocytosis was fast at RT (complete in < 1 min) and markedly faster still at 35 °C. Moreover, the rate of endocytosis varied significantly with change in [Ca2+]o; the rate at 7.2 mM (single exponential time constant, ≈3 s) was approximately double that at 0 mM (single exponential time constant, ≈7 s). Thus, membrane retrieval via clathrin is rapid and, due to its dependence on [Ca2+]o, potentially regulated by changes in the milieu of the synaptic cleft during neural activity. PMID:12813154

  15. PAK1 translocates into nucleus in response to prolactin but not to estrogen.

    PubMed

    Oladimeji, Peter; Diakonova, Maria

    2016-04-22

    Tyrosyl phosphorylation of the p21-activated serine-threonine kinase 1 (PAK1) has an essential role in regulating PAK1 functions in breast cancer cells. We previously demonstrated that PAK1 serves as a common node for estrogen (E2)- and prolactin (PRL)-dependent pathways. We hypothesize herein that intracellular localization of PAK1 is affected by PRL and E2 treatments differently. We demonstrate by immunocytochemical analysis that PAK1 nuclear translocation is ligand-dependent: only PRL but not E2 stimulated PAK1 nuclear translocation. Tyrosyl phosphorylation of PAK1 is essential for this nuclear translocation because phospho-tyrosyl-deficient PAK1 Y3F mutant is retained in the cytoplasm in response to PRL. We confirmed these data by Western blot analysis of subcellular fractions. In 30 min of PRL treatment, only 48% of pTyr-PAK1 is retained in the cytoplasm of PAK1 WT clone while 52% re-distributes into the nucleus and pTyr-PAK1 shuttles back to the cytoplasm by 60 min of PRL treatment. In contrast, PAK1 Y3F is retained in the cytoplasm. E2 treatment causes nuclear translocation of neither PAK1 WT nor PAK1 Y3F. Finally, we show by an in vitro kinase assay that PRL but not E2 stimulates PAK1 kinase activity in the nuclear fraction. Thus, PAK1 nuclear translocation is ligand-dependent: PRL activates PAK1 and induces translocation of activated pTyr-PAK1 into nucleus while E2 activates pTyr-PAK1 only in the cytoplasm. PMID:27003261

  16. Coupling between endocytosis and sphingosine kinase 1 recruitment.

    PubMed

    Shen, Hongying; Giordano, Francesca; Wu, Yumei; Chan, Jason; Zhu, Chen; Milosevic, Ira; Wu, Xudong; Yao, Kai; Chen, Bo; Baumgart, Tobias; Sieburth, Derek; De Camilli, Pietro

    2014-07-01

    Genetic studies have suggested a functional link between cholesterol/sphingolipid metabolism and endocytic membrane traffic. Here we show that perturbing the cholesterol/sphingomyelin balance in the plasma membrane results in the massive formation of clusters of narrow endocytic tubular invaginations positive for N-BAR proteins. These tubules are intensely positive for sphingosine kinase 1 (SPHK1). SPHK1 is also targeted to physiologically occurring early endocytic intermediates, and is highly enriched in nerve terminals, which are cellular compartments specialized for exo/endocytosis. Membrane recruitment of SPHK1 involves a direct, curvature-sensitive interaction with the lipid bilayer mediated by a hydrophobic patch on the enzyme's surface. The knockdown of SPHKs results in endocytic recycling defects, and a mutation that disrupts the hydrophobic patch of Caenorhabditis elegans SPHK fails to rescue the neurotransmission defects in loss-of-function mutants of this enzyme. Our studies support a role for sphingosine phosphorylation in endocytic membrane trafficking beyond the established function of sphingosine-1-phosphate in intercellular signalling. PMID:24929359

  17. Casein Kinase 1 Promotes Initiation of Clathrin-Mediated Endocytosis

    PubMed Central

    Peng, Yutian; Grassart, Alexandre; Lu, Rebecca; Wong, Catherine C. L.; Yates, John; Barnes, Georjana; Drubin, David G.

    2014-01-01

    Summary In budding yeast, over 60 proteins functioning in at least 5 modules are recruited to endocytic sites with predictable order and timing. However, how sites of clathrin-mediated endocytosis are initiated and stabilized is not well understood. Here, the casein kinase 1 (CK1) Hrr25 is shown to be an endocytic protein and to be among the earliest proteins to appear at endocytic sites. Hrr25 absence or overexpression decreases or increases the rate of endocytic site initiation, respectively. Ede1, an early endocytic Eps15-like protein important for endocytic initiation, is an Hrr25 target and is required for Hrr25 recruitment to endocytic sites. Hrr25 phosphorylation of Ede1 is required for Hrr25-Ede1 interaction and promotes efficient initiation of endocytic sites. These observations indicate that Hrr25 kinase and Ede1 cooperate to initiate and stabilize endocytic sites. Analysis of the mammalian homologs CK1δ/ε suggests a conserved role for these protein kinases in endocytic site initiation and stabilization. PMID:25625208

  18. Casein kinase 1 promotes initiation of clathrin-mediated endocytosis.

    PubMed

    Peng, Yutian; Grassart, Alexandre; Lu, Rebecca; Wong, Catherine C L; Yates, John; Barnes, Georjana; Drubin, David G

    2015-01-26

    In budding yeast, over 60 proteins functioning in at least five modules are recruited to endocytic sites with predictable order and timing. However, how sites of clathrin-mediated endocytosis are initiated and stabilized is not well understood. Here, the casein kinase 1 (CK1) Hrr25 is shown to be an endocytic protein and to be among the earliest proteins to appear at endocytic sites. Hrr25 absence or overexpression decreases or increases the rate of endocytic site initiation, respectively. Ede1, an early endocytic Eps15-like protein important for endocytic initiation, is an Hrr25 target and is required for Hrr25 recruitment to endocytic sites. Hrr25 phosphorylation of Ede1 is required for Hrr25-Ede1 interaction and promotes efficient initiation of endocytic sites. These observations indicate that Hrr25 kinase and Ede1 cooperate to initiate and stabilize endocytic sites. Analysis of the mammalian homologs CK1δ/ε suggests a conserved role for these protein kinases in endocytic site initiation and stabilization. PMID:25625208

  19. Quantifying endocytosis in vivo using intravital two-photon microscopy.

    PubMed

    Sandoval, Ruben M; Molitoris, Bruce A

    2008-01-01

    The recent introduction of multiphoton microscopy coupled with advances in optics, computer sciences, designer fluorophores, molecular labeling, and previously developed physiologic approaches have empowered investigators to quantitatively study the cell-specific dynamic events, such as endocytosis, within a functioning organ with subcellular resolution. This rapidly emerging field of investigation, with superior spatial and temporal resolution and high sensitivity, enables investigators to track molecules and determine their mode of cellular uptake, intracellular trafficking, and metabolism in a cell-specific fashion in complex heterogeneous organs such as the kidney with repeated determinations possible over a prolonged period of time. This approach is enhanced by the ability to obtain and quantify volumetric data with using up to three different fluorophores simultaneously. We have utilized this intravital approach to understand and quantify kidney proximal tubule cell uptake and intracellular distribution and metabolism of fluorescently labeled molecules, including folic acid, gentamicin, and small interfering ribonucleic acid (siRNA). Limitations of this technique include tissue penetration, which is the major barrier to successful clinical utilization of this technology. However, its use in preclinical animal models offers new insight into physiologic processes and the pathophysiology and treatment of disease processes. PMID:18369960

  20. Endocytosis and transcytosis of albumin gold through mice peritoneal mesothelium.

    PubMed

    Gotloib, L; Shostak, A

    1995-05-01

    The present transmission electron microscopy (TEM) study was designed to investigate whether mesothelial cells of mice diaphragmatic, parietal and mesenteric peritoneum are actively coupled to the mechanisms involved in the transerosal absorption of albumin gold complexes (Alb-Au). Five albino mice were injected intraperitoneally with 0.5 ml of a suspension of Alb-Au. In three animals, in vivo fixation was done 10 minutes after injection of Alb-Au, whereas in the remaining two, fixation was performed 45 minutes after injection of the tracer. At both time intervals, a substantial part of Alb-Au complexes was observed within plasmalemmal and coated vesicles, mainly attached to the luminal aspect of the internal luminal membranes. The amount of Alb-Au contained in plasmalemmal vesicles was significantly higher than that detected in intermesothelial junctions. Plasmalemmal vesicles were observed discharging Alb-Au complexes in the submesothelial interstitium, showing a significantly higher proportion of the tracer associated with non-junctional areas. Evidence presented in this study supports the idea of local degradation of Alb-Au in mesothelial cells after endocytosis, and that of a continuously transcytotic mechanism transporting polymerized albumin across the mesothelial layer. In this sense, transcytotic vesicles could represent the large pore equivalent. PMID:7637257

  1. Coupling between endocytosis and sphingosine kinase I recruitment

    PubMed Central

    Shen, Hongying; Giordano, Francesca; Wu, Yumei; Chan, Jason; Zhu, Chen; Milosevic, Ira; Wu, Xudong; Yao, Kai; Chen, Bo; Baumgart, Tobias; Sieburth, Derek; De Camilli, Pietro

    2014-01-01

    Genetic studies have suggested a functional link between cholesterol/sphingolipid metabolism and endocytic membrane traffic. Here we show that perturbing the cholesterol/sphingomyelin balance in the plasma membrane results in the massive formation of clusters of narrow endocytic tubular invaginations positive for N-BAR proteins. These tubules are intensely positive for sphingosine kinase 1 (SPHK1). SPHK1 is also targeted to physiologically occurring early endocytic intermediates, and is highly enriched in nerve terminals, cellular compartments specialized for exo-endocytosis. Membrane recruitment of SPHK1 involves a direct, curvature-sensitive interaction with the lipid bilayer mediated by a hydrophobic patch on the enzyme’s surface. The knockdown of SPHKs results in endocytic recycling defects, and a mutation that disrupts the hydrophobic patch of C. elegans SPHK fails to rescue the neurotransmission defects in loss-of-function mutants of this enzyme. Our studies support a role of sphingosine phosphorylation in endocytic membrane trafficking beyond the established function of sphingosine-1-phosphate in intercellular signaling. PMID:24929359

  2. A Yeast t-SNARE Involved in Endocytosis

    PubMed Central

    Séron, Karin; Tieaho, Ville; Prescianotto-Baschong, Cristina; Aust, Thomas; Blondel, Marie-Odile; Guillaud, Philippe; Devilliers, Ginette; Rossanese, Olivia W.; Glick, Benjamin S.; Riezman, Howard; Keränen, Sirkka; Haguenauer-Tsapis, Rosine

    1998-01-01

    The ORF YOL018c (TLG2) of Saccharomyces cerevisiae encodes a protein that belongs to the syntaxin protein family. The proteins of this family, t-SNAREs, are present on target organelles and are thought to participate in the specific interaction between vesicles and acceptor membranes in intracellular membrane trafficking. TLG2 is not an essential gene, and its deletion does not cause defects in the secretory pathway. However, its deletion in cells lacking the vacuolar ATPase subunit Vma2p leads to loss of viability, suggesting that Tlg2p is involved in endocytosis. In tlg2Δ cells, internalization was normal for two endocytic markers, the pheromone α-factor and the plasma membrane uracil permease. In contrast, degradation of α-factor and uracil permease was delayed in tlg2Δ cells. Internalization of positively charged Nanogold shows that the endocytic pathway is perturbed in the mutant, which accumulates Nanogold in primary endocytic vesicles and shows a greatly reduced complement of early endosomes. These results strongly suggest that Tlg2p is a t-SNARE involved in early endosome biogenesis. PMID:9763449

  3. A yeast t-SNARE involved in endocytosis.

    PubMed

    Séron, K; Tieaho, V; Prescianotto-Baschong, C; Aust, T; Blondel, M O; Guillaud, P; Devilliers, G; Rossanese, O W; Glick, B S; Riezman, H; Keränen, S; Haguenauer-Tsapis, R

    1998-10-01

    The ORF YOL018c (TLG2) of Saccharomyces cerevisiae encodes a protein that belongs to the syntaxin protein family. The proteins of this family, t-SNAREs, are present on target organelles and are thought to participate in the specific interaction between vesicles and acceptor membranes in intracellular membrane trafficking. TLG2 is not an essential gene, and its deletion does not cause defects in the secretory pathway. However, its deletion in cells lacking the vacuolar ATPase subunit Vma2p leads to loss of viability, suggesting that Tlg2p is involved in endocytosis. In tlg2Delta cells, internalization was normal for two endocytic markers, the pheromone alpha-factor and the plasma membrane uracil permease. In contrast, degradation of alpha-factor and uracil permease was delayed in tlg2Delta cells. Internalization of positively charged Nanogold shows that the endocytic pathway is perturbed in the mutant, which accumulates Nanogold in primary endocytic vesicles and shows a greatly reduced complement of early endosomes. These results strongly suggest that Tlg2p is a t-SNARE involved in early endosome biogenesis. PMID:9763449

  4. Ouabain uptake by endocytosis in isolated guinea pig atria

    SciTech Connect

    Nunez-Duran, H.; Riboni, L.; Ubaldo, E.; Kabela, E.; Barcenas-Ruiz, L. Instituto Nacional de Cardiologia, Mexico DF )

    1988-10-01

    Mammalian cells specifically internalize some molecular species through receptor-mediated endocytosis (RME). The authors have used four different experimental protocols to investigate whether ouabain enters cardiac cells of guinea pig atrium through this pathway. First, by electron microscope morphometry the authors found that ouabain increased endocytic vesicles in atrial cells. Second, by scintillation counting they found that ({sup 3}H)ouabain uptake by the tissue is decreased by three treatments that decrease RME, i.e., NH{sub 4}Cl, trifluoperazine, and 16 mM (K{sup +}){sub 0}. Third, by radioautography at the electron microscope level, they checked that in preceding experiments ({sup 3}H)ouabain was washed out of plasma membrane after 60-min rinse and interiorized into the cardiac cells. Fourth, isometric tension recordings showed that the positive inotropic effect of ouabain was diminished in the presence of inhibitors, whereas that of a hydrophobic analogue, ouabagenin, was not affected. These results suggest that ouabain enters cardiac cells through RME and also that an intracellular site may, at least in part, be responsible for its inotropic effect.

  5. Phosphorus Compounds in Translocating Phloem

    PubMed Central

    Bieleski, R. L.

    1969-01-01

    Phosphate-32P was introduced into a turnip leaf, and 3 hr later, the vascular bundles were stripped from the petiole and their phosphate ester pattern was studied. The pattern did not alter along their length and was like that of other tissues. Pumpkin leaves were painted with phosphate-32P; and later, the petioles were cut, the sieve tube exudates were collected and their phosphate ester patterns were studied. Exudates collected after 10 min had a high proportion of their 32P present in Pi and nucleoside triphosphates, while exudates collected after long translocation times (4-22 hr) had a lower proportion in these, and a higher proportion in hexose monophosphates and UDP glucose. In general, the ester patterns were like those of other tissues. The results indicate that sieve tubes are metabolically active, and that Pi is the primary form in which phosphorus moves in the phloem. Images PMID:16657091

  6. DNA translocation through graphene nanopores.

    PubMed

    Merchant, Christopher A; Healy, Ken; Wanunu, Meni; Ray, Vishva; Peterman, Neil; Bartel, John; Fischbein, Michael D; Venta, Kimberly; Luo, Zhengtang; Johnson, A T Charlie; Drndić, Marija

    2010-08-11

    We report on DNA translocations through nanopores created in graphene membranes. Devices consist of 1-5 nm thick graphene membranes with electron-beam sculpted nanopores from 5 to 10 nm in diameter. Due to the thin nature of the graphene membranes, we observe larger blocked currents than for traditional solid-state nanopores. However, ionic current noise levels are several orders of magnitude larger than those for silicon nitride nanopores. These fluctuations are reduced with the atomic-layer deposition of 5 nm of titanium dioxide over the device. Unlike traditional solid-state nanopore materials that are insulating, graphene is an excellent electrical conductor. Use of graphene as a membrane material opens the door to a new class of nanopore devices in which electronic sensing and control are performed directly at the pore. PMID:20698604

  7. Recruitment of endocytosis in sonopermeabilization-mediated drug delivery: a real-time study.

    PubMed

    Derieppe, Marc; Rojek, Katarzyna; Escoffre, Jean-Michel; de Senneville, Baudouin Denis; Moonen, Chrit; Bos, Clemens

    2015-07-01

    Microbubbles (MBs) in combination with ultrasound (US) can enhance cell membrane permeability, and have the potential to facilitate the cellular uptake of hydrophilic molecules. However, the exact mechanism behind US- and MB-mediated intracellular delivery still remains to be fully understood. Among the proposed mechanisms are formation of transient pores and endocytosis stimulation. In our study, we investigated whether endocytosis is involved in US- and MB-mediated delivery of small molecules. Dynamic fluorescence microscopy was used to investigate the effects of endocytosis inhibitors on the pharmacokinetic parameters of US- and MB-mediated uptake of SYTOX Green, a 600 Da hydrophilic model drug. C6 rat glioma cells, together with SonoVue(®) MBs, were exposed to 1.4 MHz US waves at 0.2 MPa peak-negative pressure. Collection of the signal intensity in each individual nucleus was monitored during and after US exposure by a fibered confocal fluorescence microscope designed for real-time imaging. Exposed to US waves, C6 cells pretreated with chlorpromazine, an inhibitor of clathrin-mediated endocytosis, showed up to a 2.5-fold significant increase of the uptake time constant, and a 1.1-fold increase with genistein, an inhibitor of caveolae-mediated endocytosis. Both inhibitors slowed down the US-mediated uptake of SYTOX Green. With C6 cells and our experimental settings, these quantitative data indicate that endocytosis plays a role in sonopermeabilization-mediated delivery of small molecules with a more predominant contribution of clathrin-mediated endocytosis. PMID:26118644

  8. Recruitment of endocytosis in sonopermeabilization-mediated drug delivery: a real-time study

    NASA Astrophysics Data System (ADS)

    Derieppe, Marc; Rojek, Katarzyna; Escoffre, Jean-Michel; de Senneville, Baudouin Denis; Moonen, Chrit; Bos, Clemens

    2015-07-01

    Microbubbles (MBs) in combination with ultrasound (US) can enhance cell membrane permeability, and have the potential to facilitate the cellular uptake of hydrophilic molecules. However, the exact mechanism behind US- and MB-mediated intracellular delivery still remains to be fully understood. Among the proposed mechanisms are formation of transient pores and endocytosis stimulation. In our study, we investigated whether endocytosis is involved in US- and MB-mediated delivery of small molecules. Dynamic fluorescence microscopy was used to investigate the effects of endocytosis inhibitors on the pharmacokinetic parameters of US- and MB-mediated uptake of SYTOX Green, a 600 Da hydrophilic model drug. C6 rat glioma cells, together with SonoVue® MBs, were exposed to 1.4 MHz US waves at 0.2 MPa peak-negative pressure. Collection of the signal intensity in each individual nucleus was monitored during and after US exposure by a fibered confocal fluorescence microscope designed for real-time imaging. Exposed to US waves, C6 cells pretreated with chlorpromazine, an inhibitor of clathrin-mediated endocytosis, showed up to a 2.5-fold significant increase of the uptake time constant, and a 1.1-fold increase with genistein, an inhibitor of caveolae-mediated endocytosis. Both inhibitors slowed down the US-mediated uptake of SYTOX Green. With C6 cells and our experimental settings, these quantitative data indicate that endocytosis plays a role in sonopermeabilization-mediated delivery of small molecules with a more predominant contribution of clathrin-mediated endocytosis.

  9. β-Hydroxybutyrate supports synaptic vesicle cycling but reduces endocytosis and exocytosis in rat brain synaptosomes.

    PubMed

    Hrynevich, Sviatlana V; Waseem, Tatyana V; Hébert, Audrey; Pellerin, Luc; Fedorovich, Sergei V

    2016-02-01

    The ketogenic diet is used as a prophylactic treatment for different types of brain diseases, such as epilepsy or Alzheimer's disease. In such a diet, carbohydrates are replaced by fats in everyday food, resulting in an elevation of blood-borne ketone bodies levels. Despite clinical applications of this treatment, the molecular mechanisms by which the ketogenic diet exerts its beneficial effects are still uncertain. In this study, we investigated the effect of replacing glucose by the ketone body β-hydroxybutyrate as the main energy substrate on synaptic vesicle recycling in rat brain synaptosomes. First, we observed that exposing presynaptic terminals to nonglycolytic energy substrates instead of glucose did not alter the plasma membrane potential. Next, we found that synaptosomes were able to maintain the synaptic vesicle cycle monitored with the fluorescent dye acridine orange when glucose was replaced by β-hydroxybutyrate. However, in presence of β-hydroxybutyrate, synaptic vesicle recycling was modified with reduced endocytosis. Replacing glucose by pyruvate also led to a reduced endocytosis. Addition of β-hydroxybutyrate to glucose-containing incubation medium was without effect. Reduced endocytosis in presence of β-hydroxybutyrate as sole energy substrate was confirmed using the fluorescent dye FM2-10. Also we found that replacement of glucose by ketone bodies leads to inhibition of exocytosis, monitored by FM2-10. However this reduction was smaller than the effect on endocytosis under the same conditions. Using both acridine orange in synaptosomes and the genetically encoded sensor synaptopHluorin in cortical neurons, we observed that replacing glucose by β-hydroxybutyrate did not modify the pH gradient of synaptic vesicles. In conclusion, the nonglycolytic energy substrates β-hydroxybutyrate and pyruvate are able to support synaptic vesicle recycling. However, they both reduce endocytosis. Reduction of both endocytosis and exocytosis together with

  10. Regulation of clathrin coat assembly by Eps15 homology domain–mediated interactions during endocytosis

    PubMed Central

    Suzuki, Ryohei; Toshima, Junko Y.; Toshima, Jiro

    2012-01-01

    Clathrin-mediated endocytosis involves a coordinated series of molecular events regulated by interactions among a variety of proteins and lipids through specific domains. One such domain is the Eps15 homology (EH) domain, a highly conserved protein–protein interaction domain present in a number of proteins distributed from yeast to mammals. Several lines of evidence suggest that the yeast EH domain–containing proteins Pan1p, End3p, and Ede1p play important roles during endocytosis. Although genetic and cell-biological studies of these proteins suggested a role for the EH domains in clathrin-mediated endocytosis, it was unclear how they regulate clathrin coat assembly. To explore the role of the EH domain in yeast endocytosis, we mutated those of Pan1p, End3p, or Ede1p, respectively, and examined the effects of single, double, or triple mutation on clathrin coat assembly. We found that mutations of the EH domain caused a defect of cargo internalization and a delay of clathrin coat assembly but had no effect on assembly of the actin patch. We also demonstrated functional redundancy among the EH domains of Pan1p, End3p, and Ede1p for endocytosis. Of interest, the dynamics of several endocytic proteins were differentially affected by various EH domain mutations, suggesting functional diversity of each EH domain. PMID:22190739

  11. A Wiskott-Aldrich syndrome protein is involved in endocytosis in Aspergillus nidulans.

    PubMed

    Hoshi, Hiro-Omi; Zheng, Lu; Ohta, Akinori; Horiuchi, Hiroyuki

    2016-09-01

    Endocytosis is vital for hyphal tip growth in filamentous fungi and is involved in the tip localization of various membrane proteins. To investigate the function of a Wiskott-Aldrich syndrome protein (WASP) in endocytosis of filamentous fungi, we identified a WASP ortholog-encoding gene, wspA, in Aspergillus nidulans and characterized it. The wspA product, WspA, localized to the tips of germ tubes during germination and actin rings in the subapical regions of mature hyphae. wspA is essential for the growth and functioned in the polarity establishment and maintenance during germination of conidia. We also investigated its function in endocytosis and revealed that endocytosis of SynA, a synaptobrevin ortholog that is known to be endocytosed at the subapical regions of hyphal tips in A. nidulans, did not occur when wspA expression was repressed. These results suggest that WspA plays roles in endocytosis at hyphal tips and polarity establishment during germination. PMID:26927610

  12. Pak1 phosphorylation enhances cortactin-N-WASP interaction in clathrin-caveolin-independent endocytosis.

    PubMed

    Grassart, Alexandre; Meas-Yedid, Vannary; Dufour, Alexandre; Olivo-Marin, Jean-Christophe; Dautry-Varsat, Alice; Sauvonnet, Nathalie

    2010-08-01

    Growing evidence indicates that kinases are central to the regulation of endocytic pathways. Previously, we identified p21-activated kinase 1 (Pak1) as the first specific regulator of clathrin- and caveolae-independent endocytosis used by the interleukin 2 receptor subunit (IL-2R). Here, we address the mechanism by which Pak1 regulates IL-2Rbeta endocytosis. First, we show that Pak1 phosphorylates an activator of actin polymerization, cortactin, on its serine residues 405 and 418. Consistently, we observe a specific inhibition of IL-2Rbeta endocytosis when cells overexpress a cortactin, wherein these serine residues have been mutated. In addition, we show that the actin polymerization enhancer, neuronal Wiskott-Aldrich syndrome protein (N-WASP), is involved in IL-2Rbeta endocytosis. Strikingly, we find that Pak1 phosphorylation of cortactin on serine residues 405 and 418 increases its association with N-WASP. Thus, Pak1, by controlling the interaction between cortactin and N-WASP, could regulate the polymerization of actin during clathrin-independent endocytosis. PMID:20444238

  13. Zinc-regulated ubiquitin conjugation signals endocytosis of the yeast ZRT1 zinc transporter.

    PubMed Central

    Gitan, R S; Eide, D J

    2000-01-01

    The yeast ZRT1 zinc transporter is regulated by zinc at both transcriptional and post-translational levels. At the post-translational level, zinc inactivates ZRT1 by inducing the removal of the protein from the plasma membrane by endocytosis. The zinc transporter is subsequently degraded in the vacuole. This regulatory system allows for the rapid shut off of zinc uptake activity in cells exposed to high zinc concentrations, thereby preventing overaccumulation of this potentially toxic metal. In this report, we examine the role of ubiquitin conjugation in this process. First, we show that ZRT1 is ubiquitinated shortly after zinc treatment and before endocytosis. Secondly, mutations in various components of the ubiquitin conjugation pathway, specifically the RSP5 ubiquitin-protein ligase and the UBC4 and UBC5 ubiquitin conjugating enzymes, inhibit both ubiquitination and endocytosis. Finally, mutation of a specific lysine residue in ZRT1 blocks both ubiquitination and endocytosis. This critical lysine, Lys-195, is located in a cytoplasmic loop region of the protein and may be the residue to which ubiquitin is attached. These results demonstrate that ubiquitin conjugation is a critical step in the signal transduction pathway that controls the rate of ZRT1 endocytosis in response to zinc. PMID:10677350

  14. Pan1 regulates transitions between stages of clathrin-mediated endocytosis

    PubMed Central

    Bradford, Mary Katherine; Whitworth, Karen; Wendland, Beverly

    2015-01-01

    Endocytosis is a well-conserved process by which cells invaginate small portions of the plasma membrane to create vesicles containing extracellular and transmembrane cargo proteins. Dozens of proteins and hundreds of specific binding interactions are needed to coordinate and regulate these events. Saccharomyces cerevisiae is a powerful model system with which to study clathrin-mediated endocytosis (CME). Pan1 is believed to be a scaffolding protein due to its interactions with numerous proteins that act throughout the endocytic process. Previous research characterized many Pan1 binding interactions, but due to Pan1's essential nature, the exact mechanisms of Pan1's function in endocytosis have been difficult to define. We created a novel Pan1-degron allele, Pan1-AID, in which Pan1 can be specifically and efficiently degraded in <1 h upon addition of the plant hormone auxin. The loss of Pan1 caused a delay in endocytic progression and weakened connections between the coat/actin machinery and the membrane, leading to arrest in CME. In addition, we determined a critical role for the central region of Pan1 in endocytosis and viability. The regions important for endocytosis and viability can be separated, suggesting that Pan1 may have a distinct role in the cell that is essential for viability. PMID:25631817

  15. Endocytosis of the Anthrax Toxin Is Mediated by Clathrin, Actin and Unconventional Adaptors

    PubMed Central

    Abrami, Laurence; Bischofberger, Mirko; Kunz, Béatrice; Groux, Romain; van der Goot, F. Gisou

    2010-01-01

    The anthrax toxin is a tripartite toxin, where the two enzymatic subunits require the third subunit, the protective antigen (PA), to interact with cells and be escorted to their cytoplasmic targets. PA binds to cells via one of two receptors, TEM8 and CMG2. Interestingly, the toxin times and triggers its own endocytosis, in particular through the heptamerization of PA. Here we show that PA triggers the ubiquitination of its receptors in a β-arrestin-dependent manner and that this step is required for clathrin-mediated endocytosis. In addition, we find that endocytosis is dependent on the heterotetrameric adaptor AP-1 but not the more conventional AP-2. Finally, we show that endocytosis of PA is strongly dependent on actin. Unexpectedly, actin was also found to be essential for efficient heptamerization of PA, but only when bound to one of its 2 receptors, TEM8, due to the active organization of TEM8 into actin-dependent domains. Endocytic pathways are highly modular systems. Here we identify some of the key players that allow efficient heptamerization of PA and subsequent ubiquitin-dependent, clathrin-mediated endocytosis of the anthrax toxin. PMID:20221438

  16. Characterization of endocytosis and exocytosis of cationic nanoparticles in airway epithelium cells

    NASA Astrophysics Data System (ADS)

    Youta Dombu, Christophe; Kroubi, Maya; Zibouche, Rima; Matran, Regis; Betbeder, Didier

    2010-09-01

    A major challenge of drug delivery using colloids via the airway is to understand the mechanism implied in their interactions with epithelial cells. The purpose of this work was to characterize the process of endocytosis and exocytosis of cationic nanoparticles (NPs) made of maltodextrin which were developed as a delivery system for antigens in vaccine applications. Confocal microscopy demonstrated that these NP are rapidly endocytosed after as little as 3 min incubation, and that the endocytosis was also faster than NP binding since most of the NPs were found in the middle of the cells around the nuclei. A saturation limit was observed after a 40 min incubation, probably due to an equilibrium becoming established between endocytosis and exocytosis. Endocytosis was dramatically reduced at 4 °C compared with 37 °C, or by NaN3 treatment, both results suggesting an energy dependent process. Protamine pretreatment of the cells inhibited NPs uptake and we found that clathrin pathway is implied in their endocytosis. Cholesterol depletion increased NP uptake by 300% and this phenomenon was explained by the fact that cholesterol depletion totally blocked NP exocytosis. These results suggest that these cationic NPs interact with anionic sites, are quickly endocytosed via the clathrin pathway and that their exocytosis is cholesterol dependent, and are similar to those obtained in other studies with viruses such as influenza.

  17. ER network homeostasis is critical for plant endosome streaming and endocytosis

    PubMed Central

    Stefano, Giovanni; Renna, Luciana; Lai, YaShiuan; Slabaugh, Erin; Mannino, Nicole; Buono, Rafael A; Otegui, Marisa S; Brandizzi, Federica

    2015-01-01

    Eukaryotic cells internalize cargo at the plasma membrane via endocytosis, a vital process that is accomplished through a complex network of endosomal organelles. In mammalian cells, the ER is in close association with endosomes and regulates their fission. Nonetheless, the physiological role of such interaction on endocytosis is yet unexplored. Here, we probed the existence of ER–endosome association in plant cells and assayed its physiological role in endocytosis. Through live-cell imaging and electron microscopy studies, we established that endosomes are extensively associated with the plant ER, supporting conservation of interaction between heterotypic organelles in evolutionarily distant kingdoms. Furthermore, by analyzing ER–endosome dynamics in genetic backgrounds with defects in ER structure and movement, we also established that the ER network integrity is necessary for homeostasis of the distribution and streaming of various endosome populations as well as for efficient endocytosis. These results support a novel model that endocytosis homeostasis depends on a spatiotemporal control of the endosome dynamics dictated by the ER membrane network. PMID:27462431

  18. HSV-1 Glycoproteins Are Delivered to Virus Assembly Sites Through Dynamin-Dependent Endocytosis.

    PubMed

    Albecka, Anna; Laine, Romain F; Janssen, Anne F J; Kaminski, Clemens F; Crump, Colin M

    2016-01-01

    Herpes simplex virus-1 (HSV-1) is a large enveloped DNA virus that belongs to the family of Herpesviridae. It has been recently shown that the cytoplasmic membranes that wrap the newly assembled capsids are endocytic compartments derived from the plasma membrane. Here, we show that dynamin-dependent endocytosis plays a major role in this process. Dominant-negative dynamin and clathrin adaptor AP180 significantly decrease virus production. Moreover, inhibitors targeting dynamin and clathrin lead to a decreased transport of glycoproteins to cytoplasmic capsids, confirming that glycoproteins are delivered to assembly sites via endocytosis. We also show that certain combinations of glycoproteins colocalize with each other and with the components of clathrin-dependent and -independent endocytosis pathways. Importantly, we demonstrate that the uptake of neutralizing antibodies that bind to glycoproteins when they become exposed on the cell surface during virus particle assembly leads to the production of non-infectious HSV-1. Our results demonstrate that transport of viral glycoproteins to the plasma membrane prior to endocytosis is the major route by which these proteins are localized to the cytoplasmic virus assembly compartments. This highlights the importance of endocytosis as a major protein-sorting event during HSV-1 envelopment. PMID:26459807

  19. Endocytosis of Multiwalled Carbon Nanotubes in Bronchial Epithelial and Mesothelial Cells

    PubMed Central

    Maruyama, Kayo; Matsuda, Yoshikazu; Kobayashi, Shinsuke; Tanaka, Manabu; Aoki, Kaoru; Takanashi, Seiji; Okamoto, Masanori; Kato, Hiroyuki

    2015-01-01

    Bronchial epithelial cells and mesothelial cells are crucial targets for the safety assessment of inhalation of carbon nanotubes (CNTs), which resemble asbestos particles in shape. Intrinsic properties of multiwalled CNTs (MWCNTs) are known to cause potentially hazardous effects on intracellular and extracellular pathways. These interactions alter cellular signaling and affect major cell functions, resulting in cell death, lysosome injury, reactive oxygen species production, apoptosis, and cytokine release. Furthermore, CNTs are emerging as a novel class of autophagy inducers. Thus, in this study, we focused on the mechanisms of MWCNT uptake into the human bronchial epithelial cells (HBECs) and human mesothelial cells (HMCs). We verified that MWCNTs are actively internalized into HBECs and HMCs and were accumulated in the lysosomes of the cells after 24-hour treatment. Next, we determined which endocytosis pathways (clathrin-mediated, caveolae-mediated, and macropinocytosis) were associated with MWCNT internalization by using corresponding endocytosis inhibitors, in two nonphagocytic cell lines derived from bronchial epithelial cells and mesothelioma cells. Clathrin-mediated endocytosis inhibitors significantly suppressed MWCNT uptake, whereas caveolae-mediated endocytosis and macropinocytosis were also found to be involved in MWCNT uptake. Thus, MWCNTs were positively taken up by nonphagocytic cells, and their cytotoxicity was closely related to these three endocytosis pathways. PMID:26090445

  20. An organized co-assembly of clathrin adaptors is essential for endocytosis.

    PubMed

    Skruzny, Michal; Desfosses, Ambroise; Prinz, Simone; Dodonova, Svetlana O; Gieras, Anna; Uetrecht, Charlotte; Jakobi, Arjen J; Abella, Marc; Hagen, Wim J H; Schulz, Joachim; Meijers, Rob; Rybin, Vladimir; Briggs, John A G; Sachse, Carsten; Kaksonen, Marko

    2015-04-20

    Clathrin-mediated endocytosis, the main trafficking route from the plasma membrane to the cytoplasm, is critical to many fundamental cellular processes. Clathrin, coupled to the membrane by adaptor proteins, is thought to play a major structural role in endocytosis by self-assembling into a cage-like lattice around the forming vesicle. Although clathrin adaptors are essential for endocytosis, little is known about their structural role in this process. Here we show that the membrane-binding domains of two conserved clathrin adaptors, Sla2 and Ent1, co-assemble in a PI(4,5)P2-dependent manner to form organized lattices on membranes. We determined the structure of the co-assembled lattice by electron cryo-microscopy and designed mutations that specifically impair the lattice formation in vitro. We show that these mutations block endocytosis in vivo. We suggest that clathrin adaptors not only link the polymerized clathrin to the membrane but also form an oligomeric structure, which is essential for membrane remodeling during endocytosis. PMID:25898165

  1. Rabconnectin-3a Regulates Vesicle Endocytosis and Canonical Wnt Signaling in Zebrafish Neural Crest Migration

    PubMed Central

    Tuttle, Adam M.; Hoffman, Trevor L.; Schilling, Thomas F.

    2014-01-01

    Cell migration requires dynamic regulation of cell–cell signaling and cell adhesion. Both of these processes involve endocytosis, lysosomal degradation, and recycling of ligand–receptor complexes and cell adhesion molecules from the plasma membrane. Neural crest (NC) cells in vertebrates are highly migratory cells, which undergo an epithelial–mesenchymal transition (EMT) to leave the neural epithelium and migrate throughout the body to give rise to many different derivatives. Here we show that the v-ATPase interacting protein, Rabconnectin-3a (Rbc3a), controls intracellular trafficking events and Wnt signaling during NC migration. In zebrafish embryos deficient in Rbc3a, or its associated v-ATPase subunit Atp6v0a1, many NC cells fail to migrate and misregulate expression of cadherins. Surprisingly, endosomes in Rbc3a- and Atp6v0a1-deficient NC cells remain immature but still acidify. Rbc3a loss-of-function initially downregulates several canonical Wnt targets involved in EMT, but later Frizzled-7 accumulates at NC cell membranes, and nuclear B-catenin levels increase. Presumably due to this later Wnt signaling increase, Rbc3a-deficient NC cells that fail to migrate become pigment progenitors. We propose that Rbc3a and Atp6v0a1 promote endosomal maturation to coordinate Wnt signaling and intracellular trafficking of Wnt receptors and cadherins required for NC migration and cell fate determination. Our results suggest that different v-ATPases and associated proteins may play cell-type-specific functions in intracellular trafficking in many contexts. PMID:24802872

  2. Endoplasmic Reticulum Chaperone Protein GRP-78 Mediates Endocytosis of Dentin Matrix Protein 1*S⃞

    PubMed Central

    Ravindran, Sriram; Narayanan, Karthikeyan; Eapen, Asha Sarah; Hao, Jianjun; Ramachandran, Amsaveni; Blond, Sylvie; George, Anne

    2008-01-01

    Dentin matrix protein 1 (DMP1), a phosphorylated protein present in the mineral phase of both vertebrates and invertebrates, is a key regulatory protein during biogenic formation of mineral deposits. Previously we showed that DMP1 is localized in the nuclear compartment of preosteoblasts and preodontoblasts. In the nucleus DMP1 might play an important role in the regulation of genes that control osteoblast or odontoblast differentiation. Here, we show that cellular uptake of DMP1 occurs through endocytosis. Interestingly, this process is initiated by DMP1 binding to the glucose-regulated protein-78 (GRP-78) localized on the plasma membrane of preodontoblast cells. Binding of DMP1 to GRP-78 receptor was determined to be specific and saturable with a binding dissociation constant KD = 85 nm. We further depict a road map for the endocytosed DMP1 and demonstrate that the internalization is mediated primarily by caveolae and that the vesicles containing DMP1 are routed to the nucleus along microtubules. Immunohistochemical analysis and binding studies performed with biotin-labeled DMP1 confirm spatial co-localization of DMP1 and GRP-78 in the preodontoblasts of a developing mouse molar. Co-localization of DMP1 with GRP-78 was also observed in T4-4 preodontoblast cells, dental pulp stem cells, and primary preodontoblasts. By small interfering RNA techniques, we demonstrate that the receptor for DMP1 is GRP-78. Therefore, binding of DMP1 with GRP-78 receptor might be an important mechanism by which DMP1 is internalized and transported to the nucleus during bone and tooth development. PMID:18757373

  3. Phytophthora infestans RXLR-WY Effector AVR3a Associates with Dynamin-Related Protein 2 Required for Endocytosis of the Plant Pattern Recognition Receptor FLS2.

    PubMed

    Chaparro-Garcia, Angela; Schwizer, Simon; Sklenar, Jan; Yoshida, Kentaro; Petre, Benjamin; Bos, Jorunn I B; Schornack, Sebastian; Jones, Alexandra M E; Bozkurt, Tolga O; Kamoun, Sophien

    2015-01-01

    Pathogens utilize effectors to suppress basal plant defense known as PTI (Pathogen-associated molecular pattern-triggered immunity). However, our knowledge of PTI suppression by filamentous plant pathogens, i.e. fungi and oomycetes, remains fragmentary. Previous work revealed that the co-receptor BAK1/SERK3 contributes to basal immunity against the potato pathogen Phytophthora infestans. Moreover BAK1/SERK3 is required for the cell death induced by P. infestans elicitin INF1, a protein with characteristics of PAMPs. The P. infestans host-translocated RXLR-WY effector AVR3a is known to supress INF1-mediated cell death by binding the plant E3 ligase CMPG1. In contrast, AVR3aKI-Y147del, a deletion mutant of the C-terminal tyrosine of AVR3a, fails to bind CMPG1 and does not suppress INF1-mediated cell death. Here, we studied the extent to which AVR3a and its variants perturb additional BAK1/SERK3-dependent PTI responses in N. benthamiana using the elicitor/receptor pair flg22/FLS2 as a model. We found that all tested variants of AVR3a suppress defense responses triggered by flg22 and reduce internalization of activated FLS2. Moreover, we discovered that AVR3a associates with the Dynamin-Related Protein 2 (DRP2), a plant GTPase implicated in receptor-mediated endocytosis. Interestingly, silencing of DRP2 impaired ligand-induced FLS2 internalization but did not affect internalization of the growth receptor BRI1. Our results suggest that AVR3a associates with a key cellular trafficking and membrane-remodeling complex involved in immune receptor-mediated endocytosis. We conclude that AVR3a is a multifunctional effector that can suppress BAK1/SERK3-mediated immunity through at least two different pathways. PMID:26348328

  4. Phytophthora infestans RXLR-WY Effector AVR3a Associates with Dynamin-Related Protein 2 Required for Endocytosis of the Plant Pattern Recognition Receptor FLS2

    PubMed Central

    Chaparro-Garcia, Angela; Schwizer, Simon; Sklenar, Jan; Yoshida, Kentaro; Petre, Benjamin; Bos, Jorunn I. B.; Schornack, Sebastian; Jones, Alexandra M. E.; Bozkurt, Tolga O.; Kamoun, Sophien

    2015-01-01

    Pathogens utilize effectors to suppress basal plant defense known as PTI (Pathogen-associated molecular pattern-triggered immunity). However, our knowledge of PTI suppression by filamentous plant pathogens, i.e. fungi and oomycetes, remains fragmentary. Previous work revealed that the co-receptor BAK1/SERK3 contributes to basal immunity against the potato pathogen Phytophthora infestans. Moreover BAK1/SERK3 is required for the cell death induced by P. infestans elicitin INF1, a protein with characteristics of PAMPs. The P. infestans host-translocated RXLR-WY effector AVR3a is known to supress INF1-mediated cell death by binding the plant E3 ligase CMPG1. In contrast, AVR3aKI-Y147del, a deletion mutant of the C-terminal tyrosine of AVR3a, fails to bind CMPG1 and does not suppress INF1-mediated cell death. Here, we studied the extent to which AVR3a and its variants perturb additional BAK1/SERK3-dependent PTI responses in N. benthamiana using the elicitor/receptor pair flg22/FLS2 as a model. We found that all tested variants of AVR3a suppress defense responses triggered by flg22 and reduce internalization of activated FLS2. Moreover, we discovered that AVR3a associates with the Dynamin-Related Protein 2 (DRP2), a plant GTPase implicated in receptor-mediated endocytosis. Interestingly, silencing of DRP2 impaired ligand-induced FLS2 internalization but did not affect internalization of the growth receptor BRI1. Our results suggest that AVR3a associates with a key cellular trafficking and membrane-remodeling complex involved in immune receptor-mediated endocytosis. We conclude that AVR3a is a multifunctional effector that can suppress BAK1/SERK3-mediated immunity through at least two different pathways. PMID:26348328

  5. Intersubunit movement is required for ribosomal translocation

    PubMed Central

    Horan, Lucas H.; Noller, Harry F.

    2007-01-01

    Translocation of tRNA and mRNA during protein synthesis is believed to be coupled to structural changes in the ribosome. The “ratchet model,” based on cryo-EM reconstructions of ribosome complexes, invokes relative movement of the 30S and 50S ribosomal subunits in this process; however, evidence that directly demonstrates a requirement for intersubunit movement during translocation is lacking. To address this problem, we created an intersubunit disulfide cross-link to restrict potential movement. The cross-linked ribosomes were unable to carry out polypeptide synthesis; this inhibition was completely reversed upon reduction of the disulfide bridge. In vitro assays showed that the cross-linked ribosomes were specifically blocked in elongation factor G-dependent translocation. These findings show that intersubunit movement is required for ribosomal translocation, accounting for the universal two-subunit architecture of ribosomes. PMID:17360328

  6. What Drives the Translocation of Proteins?

    NASA Astrophysics Data System (ADS)

    Simon, Sanford M.; Peskin, Charles S.; Oster, George F.

    1992-05-01

    We propose that protein translocation across membranes is driven by biased random thermal motion. This "Brownian ratchet" mechanism depends on chemical asymmetries between the cis and trans sides of the membrane. Several mechanisms could contribute to rectifying the thermal motion of the protein, such as binding and dissociation of chaperonins to the translocating chain, chain coiling induced by pH and/or ionic gradients, glycosylation, and disulfide bond formation. This helps explain the robustness and promiscuity of these transport systems.

  7. The mechanosensitive APJ internalization via clathrin-mediated endocytosis: A new molecular mechanism of cardiac hypertrophy.

    PubMed

    He, Lu; Chen, Linxi; Li, Lanfang

    2016-05-01

    The G protein-coupled receptor APJ elicits cellular response to diverse extracellular stimulus. Accumulating evidence reveals that APJ receptor plays a prominent role in the cardiomyocyte adapting to hypertrophic stimulation. At present, it remains obscure that the regulatory mechanism of APJ receptor in myocardial hypertrophy. The natural endogenous ligands apelin and Elabela as well as agonists maintain high affinity for the APJ receptor and drive its internalization. Ligand-activated receptor internalization is mainly performed by clathrin-mediated endocytic pathway. Simultaneously, clathrin-mediated endocytosis takes participate in the occurrence and development of cardiac hypertrophy. In this study, we hypothesize that natural ligands and agonists induce the mechanosensitive APJ internalization via clathrin-mediated endocytosis. APJ internalization may contribute to the development of cardiac hypertrophy. The mechanosensitive APJ internalization via clathrin-mediated endocytosis may be a new molecular mechanism of cardiac hypertrophy. PMID:27063076

  8. Drosophila p120-catenin is crucial for endocytosis of the dynamic E-cadherin-Bazooka complex.

    PubMed

    Bulgakova, Natalia A; Brown, Nicholas H

    2016-02-01

    The intracellular functions of classical cadherins are mediated through the direct binding of two catenins: β-catenin and p120-catenin (also known as CTNND1 in vertebrates, and p120ctn in Drosophila). Whereas β-catenin is crucial for cadherin function, the role of p120-catenin is less clear and appears to vary between organisms. We show here that p120-catenin has a conserved role in regulating the endocytosis of cadherins, but that its ancestral role might have been to promote endocytosis, followed by the acquisition of a new inhibitory role in vertebrates. In Drosophila, p120-catenin facilitates endocytosis of the dynamic E-cadherin-Bazooka subcomplex, which is followed by its recycling. The absence of p120-catenin stabilises this subcomplex at the membrane, reducing the ability of cells to exchange neighbours in embryos and expanding cell-cell contacts in imaginal discs. PMID:26698216

  9. Clathrin modulates vesicle scission, but not invagination shape, in yeast endocytosis

    PubMed Central

    Kukulski, Wanda; Picco, Andrea; Specht, Tanja

    2016-01-01

    In a previous paper (Picco et al., 2015), the dynamic architecture of the protein machinery during clathrin-mediated endocytosis was visualized using a new live imaging and particle tracking method. Here, by combining this approach with correlative light and electron microscopy, we address the role of clathrin in this process. During endocytosis, clathrin forms a cage-like coat around the membrane and associated protein components. There is growing evidence that clathrin does not determine the membrane morphology of the invagination but rather modulates the progression of endocytosis. We investigate how the deletion of clathrin heavy chain impairs the dynamics and the morphology of the endocytic membrane in budding yeast. Our results show that clathrin is not required for elongating or shaping the endocytic membrane invagination. Instead, we find that clathrin contributes to the regularity of vesicle scission and thereby to controlling vesicle size. DOI: http://dx.doi.org/10.7554/eLife.16036.001 PMID:27341079

  10. Drosophila p120-catenin is crucial for endocytosis of the dynamic E-cadherin–Bazooka complex

    PubMed Central

    Bulgakova, Natalia A.; Brown, Nicholas H.

    2016-01-01

    ABSTRACT The intracellular functions of classical cadherins are mediated through the direct binding of two catenins: β-catenin and p120-catenin (also known as CTNND1 in vertebrates, and p120ctn in Drosophila). Whereas β-catenin is crucial for cadherin function, the role of p120-catenin is less clear and appears to vary between organisms. We show here that p120-catenin has a conserved role in regulating the endocytosis of cadherins, but that its ancestral role might have been to promote endocytosis, followed by the acquisition of a new inhibitory role in vertebrates. In Drosophila, p120-catenin facilitates endocytosis of the dynamic E-cadherin–Bazooka subcomplex, which is followed by its recycling. The absence of p120-catenin stabilises this subcomplex at the membrane, reducing the ability of cells to exchange neighbours in embryos and expanding cell–cell contacts in imaginal discs. PMID:26698216

  11. Stress and translocation: alterations in the stress physiology of translocated birds.

    PubMed

    Dickens, Molly J; Delehanty, David J; Romero, L Michael

    2009-06-01

    Translocation and reintroduction have become major conservation actions in attempts to create self-sustaining wild populations of threatened species. However, avian translocations have a high failure rate and causes for failure are poorly understood. While 'stress' is often cited as an important factor in translocation failure, empirical evidence of physiological stress is lacking. Here we show that experimental translocation leads to changes in the physiological stress response in chukar partridge, Alectoris chukar. We found that capture alone significantly decreased the acute glucocorticoid (corticosterone, CORT) response, but adding exposure to captivity and transport further altered the stress response axis (the hypothalamic-pituitary-adrenal axis) as evident from a decreased sensitivity of the negative feedback system. Animals that were exposed to the entire translocation procedure, in addition to the reduced acute stress response and disrupted negative feedback, had significantly lower baseline CORT concentrations and significantly reduced body weight. These data indicate that translocation alters stress physiology and that chronic stress is potentially a major factor in translocation failure. Under current practices, the restoration of threatened species through translocation may unwittingly depend on the success of chronically stressed individuals. This conclusion emphasizes the need for understanding and alleviating translocation-induced chronic stress in order to use most effectively this important conservation tool. PMID:19324794

  12. Stress and translocation: alterations in the stress physiology of translocated birds

    PubMed Central

    Dickens, Molly J.; Delehanty, David J.; Romero, L. Michael

    2009-01-01

    Translocation and reintroduction have become major conservation actions in attempts to create self-sustaining wild populations of threatened species. However, avian translocations have a high failure rate and causes for failure are poorly understood. While ‘stress’ is often cited as an important factor in translocation failure, empirical evidence of physiological stress is lacking. Here we show that experimental translocation leads to changes in the physiological stress response in chukar partridge, Alectoris chukar. We found that capture alone significantly decreased the acute glucocorticoid (corticosterone, CORT) response, but adding exposure to captivity and transport further altered the stress response axis (the hypothalamic–pituitary–adrenal axis) as evident from a decreased sensitivity of the negative feedback system. Animals that were exposed to the entire translocation procedure, in addition to the reduced acute stress response and disrupted negative feedback, had significantly lower baseline CORT concentrations and significantly reduced body weight. These data indicate that translocation alters stress physiology and that chronic stress is potentially a major factor in translocation failure. Under current practices, the restoration of threatened species through translocation may unwittingly depend on the success of chronically stressed individuals. This conclusion emphasizes the need for understanding and alleviating translocation-induced chronic stress in order to use most effectively this important conservation tool. PMID:19324794

  13. Ratcheting up protein translocation with anthrax toxin

    PubMed Central

    Feld, Geoffrey K; Brown, Michael J; Krantz, Bryan A

    2012-01-01

    Energy-consuming nanomachines catalyze the directed movement of biopolymers in the cell. They are found both dissolved in the aqueous cytosol as well as embedded in lipid bilayers. Inquiries into the molecular mechanism of nanomachine-catalyzed biopolymer transport have revealed that these machines are equipped with molecular parts, including adjustable clamps, levers, and adaptors, which interact favorably with substrate polypeptides. Biological nanomachines that catalyze protein transport, known as translocases, often require that their substrate proteins unfold before translocation. An unstructured protein chain is likely entropically challenging to bind, push, or pull in a directional manner, especially in a way that produces an unfolding force. A number of ingenious solutions to this problem are now evident in the anthrax toxin system, a model used to study protein translocation. Here we highlight molecular ratchets and current research on anthrax toxin translocation. A picture is emerging of proton-gradient-driven anthrax toxin translocation, and its associated ratchet mechanism likely applies broadly to other systems. We suggest a cyclical thermodynamic order-to-disorder mechanism (akin to a heat-engine cycle) is central to underlying protein translocation: peptide substrates nonspecifically bind to molecular clamps, which possess adjustable affinities; polypeptide substrates compress into helical structures; these clamps undergo proton-gated switching; and the substrate subsequently expands regaining its unfolded state conformational entropy upon translocation. PMID:22374876

  14. Defining chromosomal translocation risks in cancer.

    PubMed

    Hogenbirk, Marc A; Heideman, Marinus R; de Rink, Iris; Velds, Arno; Kerkhoven, Ron M; Wessels, Lodewyk F A; Jacobs, Heinz

    2016-06-28

    Chromosomal translocations are a hallmark of cancer. Unraveling the molecular mechanism of these rare genetic events requires a clear distinction between correlative and causative risk-determinants, where technical and analytical issues can be excluded. To meet this goal, we performed in-depth analyses of publicly available genome-wide datasets. In contrast to several recent reports, we demonstrate that chromosomal translocation risk is causally unrelated to promoter stalling (Spt5), transcriptional activity, or off-targeting activity of the activation-induced cytidine deaminase. Rather, an open chromatin configuration, which is not promoter-specific, explained the elevated translocation risk of promoter regions. Furthermore, the fact that gene size directly correlates with the translocation risk in mice and human cancers further demonstrated the general irrelevance of promoter-specific activities. Interestingly, a subset of translocations observed in cancer patients likely initiates from double-strand breaks induced by an access-independent process. Together, these unexpected and novel insights are fundamental in understanding the origin of chromosome translocations and, consequently, cancer. PMID:27303044

  15. Defining chromosomal translocation risks in cancer

    PubMed Central

    Hogenbirk, Marc A.; Heideman, Marinus R.; de Rink, Iris; Velds, Arno; Kerkhoven, Ron M.; Wessels, Lodewyk F. A.; Jacobs, Heinz

    2016-01-01

    Chromosomal translocations are a hallmark of cancer. Unraveling the molecular mechanism of these rare genetic events requires a clear distinction between correlative and causative risk-determinants, where technical and analytical issues can be excluded. To meet this goal, we performed in-depth analyses of publicly available genome-wide datasets. In contrast to several recent reports, we demonstrate that chromosomal translocation risk is causally unrelated to promoter stalling (Spt5), transcriptional activity, or off-targeting activity of the activation-induced cytidine deaminase. Rather, an open chromatin configuration, which is not promoter-specific, explained the elevated translocation risk of promoter regions. Furthermore, the fact that gene size directly correlates with the translocation risk in mice and human cancers further demonstrated the general irrelevance of promoter-specific activities. Interestingly, a subset of translocations observed in cancer patients likely initiates from double-strand breaks induced by an access-independent process. Together, these unexpected and novel insights are fundamental in understanding the origin of chromosome translocations and, consequently, cancer. PMID:27303044

  16. Driven Polymer Translocation into a Crosslinked Gel

    NASA Astrophysics Data System (ADS)

    Sean, David; Slater, Gary

    2015-03-01

    In a typical polymer translocation setup, a thin membrane is used to separate two chambers and a polyelectrolyte is driven by an electric field to translocate from one side of the membrane to the other via a small nanopore. However, the high translocation rate that results from the forces required to drive this process makes optical and/or electrical analysis of the translocating polymer challenging. Using coarse-grained Langevin Dynamics simulations we investigate how the translocation process can be slowed down by placing a crosslinked gel on the trans-side of the membrane. Since the driving electric field is localized in the neighborhood of the nanopore, electrophoretic migration is only achieved by a ``pushing'' action from the polymer segment residing in the nanopore. For the case of a flexible polymer we find that the polymer fills the gel pores via multiple ``herniation'' processes, whereas for a semi-flexible chain in a tight gel there are no hernias and the polymer follows a smooth curvilinear path. Moreover, for the case of a semi-flexible polymer the gel makes the translocation process more uniform by reducing the acceleration at the end of the process.

  17. Translocation of DNA across bacterial membranes.

    PubMed Central

    Dreiseikelmann, B

    1994-01-01

    DNA translocation across bacterial membranes occurs during the biological processes of infection by bacteriophages, conjugative DNA transfer of plasmids, T-DNA transfer, and genetic transformation. The mechanism of DNA translocation in these systems is not fully understood, but during the last few years extensive data about genes and gene products involved in the translocation processes have accumulated. One reason for the increasing interest in this topic is the discussion about horizontal gene transfer and transkingdom sex. Analyses of genes and gene products involved in DNA transfer suggest that DNA is transferred through a protein channel spanning the bacterial envelope. No common model exists for DNA translocation during phage infection. Perhaps various mechanisms are necessary as a result of the different morphologies of bacteriophages. The DNA translocation processes during conjugation, T-DNA transfer, and transformation are more consistent and may even be compared to the excretion of some proteins. On the basis of analogies and homologies between the proteins involved in DNA translocation and protein secretion, a common basic model for these processes is presented. PMID:7968916

  18. Prominin-2 expression increases protrusions, decreases caveolae and inhibits Cdc42 dependent fluid phase endocytosis

    SciTech Connect

    Singh, Raman Deep Schroeder, Andreas S.; Scheffer, Luana; Holicky, Eileen L.; Wheatley, Christine L.; Marks, David L. Pagano, Richard E.

    2013-05-10

    Highlights: •Prominin-2 expression induced protrusions that co-localized with lipid raft markers. •Prominin-2 expression decreased caveolae, caveolar endocytosis and increased pCav1. •Prominin-2 expression inhibited fluid phase endocytosis by inactivation of Cdc42. •These endocytic effects can be reversed by adding exogenous cholesterol. •Caveolin1 knockdown restored fluid phase endocytosis in Prominin2 expressing cells. -- Abstract: Background: Membrane protrusions play important roles in biological processes such as cell adhesion, wound healing, migration, and sensing of the external environment. Cell protrusions are a subtype of membrane microdomains composed of cholesterol and sphingolipids, and can be disrupted by cholesterol depletion. Prominins are pentaspan membrane proteins that bind cholesterol and localize to plasma membrane (PM) protrusions. Prominin-1 is of great interest as a marker for stem and cancer cells, while Prominin-2 (Prom2) is reportedly restricted to epithelial cells. Aim: To characterize the effects of Prom-2 expression on PM microdomain organization. Methods: Prom2-fluorescent protein was transfected in human skin fibroblasts (HSF) and Chinese hamster ovary (CHO) cells for PM raft and endocytic studies. Caveolae at PM were visualized using transmission electron microscopy. Cdc42 activation was measured and caveolin-1 knockdown was performed using siRNAs. Results: Prom2 expression in HSF and CHO cells caused extensive Prom2-positive protrusions that co-localized with lipid raft markers. Prom2 expression significantly decreased caveolae at the PM, reduced caveolar endocytosis and increased caveolin-1 phosphorylation. Prom2 expression also inhibited Cdc42-dependent fluid phase endocytosis via decreased Cdc42 activation. Effects on endocytosis were reversed by addition of cholesterol. Knockdown of caveolin-1 by siRNA restored Cdc42 dependent fluid phase endocytosis in Prom2-expressing cells. Conclusions: Prom2 protrusions primarily

  19. Rab5 Isoforms Specifically Regulate Different Modes of Endocytosis in Leishmania.

    PubMed

    Rastogi, Ruchir; Verma, Jitender Kumar; Kapoor, Anjali; Langsley, Gordon; Mukhopadhyay, Amitabha

    2016-07-01

    Differential functions of Rab5 isoforms in endocytosis are not well characterized. Here, we cloned, expressed, and characterized Rab5a and Rab5b from Leishmania and found that both of them are localized in the early endosome. To understand the role of LdRab5 isoforms in different modes of endocytosis in Leishmania, we generated transgenic parasites overexpressing LdRab5a, LdRab5b, or their dominant-positive (LdRab5a:Q93L and LdRab5b:Q80L) or dominant-negative mutants (LdRab5a:N146I and LdRab5b:N133I). Using LdRab5a or its mutants overexpressing parasites, we found that LdRab5a specifically regulates the fluid-phase endocytosis of horseradish peroxidase and also specifically induced the transport of dextran-Texas Red to the lysosomes. In contrast, cells overexpressing LdRab5b or its mutants showed that LdRab5b explicitly controls receptor-mediated endocytosis of hemoglobin, and overexpression of LdRab5b:WT enhanced the transport of internalized Hb to the lysosomes in comparison with control cells. To unequivocally demonstrate the role of Rab5 isoforms in endocytosis in Leishmania, we tried to generate null-mutants of LdRab5a and LdRab5b parasites, but both were lethal indicating their essential functions in parasites. Therefore, we used heterozygous LdRab5a(+/-) and LdRab5b(+/-) cells. LdRab5a(+/-) Leishmania showed 50% inhibition of HRP uptake, but hemoglobin endocytosis was uninterrupted. In contrast, about 50% inhibition of Hb endocytosis was observed in LdRab5b(+/-) cells without any significant effect on HRP uptake. Finally, we tried to identify putative LdRab5a and LdRab5b effectors. We found that LdRab5b interacts with clathrin heavy chain and hemoglobin receptor. However, LdRab5a failed to interact with the clathrin heavy chain, and interaction with hemoglobin receptor was significantly less. Thus, our results showed that LdRab5a and LdRab5b differentially regulate fluid phase and receptor-mediated endocytosis in Leishmania. PMID:27226564

  20. PI3K regulates endocytosis after insulin secretion by mediating signaling crosstalk between Arf6 and Rab27a.

    PubMed

    Yamaoka, Mami; Ando, Tomomi; Terabayashi, Takeshi; Okamoto, Mitsuhiro; Takei, Masahiro; Nishioka, Tomoki; Kaibuchi, Kozo; Matsunaga, Kohichi; Ishizaki, Ray; Izumi, Tetsuro; Niki, Ichiro; Ishizaki, Toshimasa; Kimura, Toshihide

    2016-02-01

    In secretory cells, endocytosis is coupled to exocytosis to enable proper secretion. Although endocytosis is crucial to maintain cellular homeostasis before and after secretion, knowledge about secretagogue-induced endocytosis in secretory cells is still limited. Here, we searched for proteins that interacted with the Rab27a GTPase-activating protein (GAP) EPI64 (also known as TBC1D10A) and identified the Arf6 guanine-nucleotide-exchange factor (GEF) ARNO (also known as CYTH2) in pancreatic β-cells. We found that the insulin secretagogue glucose promotes phosphatidylinositol (3,4,5)-trisphosphate (PIP3) generation through phosphoinositide 3-kinase (PI3K), thereby recruiting ARNO to the intracellular side of the plasma membrane. Peripheral ARNO promotes clathrin assembly through its GEF activity for Arf6 and regulates the early stage of endocytosis. We also found that peripheral ARNO recruits EPI64 to the same area and that the interaction requires glucose-induced endocytosis in pancreatic β-cells. Given that GTP- and GDP-bound Rab27a regulate exocytosis and the late stage of endocytosis, our results indicate that the glucose-induced activation of PI3K plays a pivotal role in exocytosis-endocytosis coupling, and that ARNO and EPI64 regulate endocytosis at distinct stages. PMID:26683831

  1. The Ubiquitin-like Protein PLIC-2 Is a Negative Regulator of G Protein-coupled Receptor Endocytosis

    PubMed Central

    N'Diaye, Elsa-Noah; Hanyaloglu, Aylin C.; Kajihara, Kimberly K.; Puthenveedu, Manojkumar A.; Wu, Ping; von Zastrow, Mark

    2008-01-01

    The activity of many signaling receptors is regulated by their endocytosis via clathrin-coated pits (CCPs). For G protein-coupled receptors (GPCRs), recruitment of the adaptor protein arrestin to activated receptors is thought to be sufficient to drive GPCR clustering in CCPs and subsequent endocytosis. We have identified an unprecedented role for the ubiquitin-like protein PLIC-2 as a negative regulator of GPCR endocytosis. Protein Linking IAP to Cytoskeleton (PLIC)-2 overexpression delayed ligand-induced endocytosis of two GPCRs: the V2 vasopressin receptor and β-2 adrenergic receptor, without affecting endocytosis of the transferrin or epidermal growth factor receptor. The closely related isoform PLIC-1 did not affect receptor endocytosis. PLIC-2 specifically inhibited GPCR concentration in CCPs, without affecting membrane recruitment of arrestin-3 to activated receptors or its cellular levels. Depletion of cellular PLIC-2 accelerated GPCR endocytosis, confirming its regulatory function at endogenous levels. The ubiquitin-like domain of PLIC-2, a ligand for ubiquitin-interacting motifs (UIMs), was required for endocytic inhibition. Interestingly, the UIM-containing endocytic adaptors epidermal growth factor receptor protein substrate 15 and Epsin exhibited preferential binding to PLIC-2 over PLIC-1. This differential interaction may underlie PLIC-2 specific effect on GPCR endocytosis. Identification of a negative regulator of GPCR clustering reveals a new function of ubiquitin-like proteins and highlights a cellular requirement for exquisite regulation of receptor dynamics. PMID:18199683

  2. Endocytosis, recycling, and regulated exocytosis of glucose transporter 4.

    PubMed

    Foley, Kevin; Boguslavsky, Shlomit; Klip, Amira

    2011-04-19

    Glucose transporter 4 (GLUT4) is responsible for the uptake of glucose into muscle and adipose tissues. Under resting conditions, GLUT4 is dynamically retained through idle cycling among selective intracellular compartments, from whence it undergoes slow recycling to the plasma membrane (PM). This dynamic retention can be released by command from intracellular signals elicited by insulin and other stimuli, which result in 2-10-fold increases in the surface level of GLUT4. Insulin-derived signals promote translocation of GLUT4 to the PM from a specialized compartment termed GLUT4 storage vesicles (GSV). Much effort has been devoted to the characterization of the intracellular compartments and dynamics of GLUT4 cycling and to the signals by which GLUT4 is sorted into, and recruited from, GSV. This review summarizes our understanding of intracellular GLUT4 traffic during its internalization from the membrane, its slow, constitutive recycling, and its regulated exocytosis in response to insulin. In spite of specific differences in GLUT4 dynamic behavior in adipose and muscle cells, the generalities of its endocytic and exocytic itineraries are consistent and an array of regulatory proteins that regulate each vesicular traffic event emerges from these cell systems. PMID:21405107

  3. Microbiology of bacterial translocation in humans

    PubMed Central

    O'Boyle, C; MacFie, J; Mitchell, C; Johnstone, D; Sagar, P; Sedman, P

    1998-01-01

    Background—Gut translocation of bacteria has been shown in both animal and human studies. Evidence from animal studies that links bacterial translocation to the development of postoperative sepsis and multiple organ failure has yet to be confirmed in humans. 
Aims—To examine the spectrum of bacteria involved in translocation in surgical patients undergoing laparotomy and to determine the relation between nodal migration of bacteria and the development of postoperative septic complications. 
Methods—Mesenteric lymph nodes (MLN), serosal scrapings, and peripheral blood from 448 surgical patients undergoing laparotomy were analysed using standard microbiological techniques. 
Results—Bacterial translocation was identified in 69 patients (15.4%). The most common organism identified was Escherichia coli (54%). Both enteric bacteria, typical of indigenous intestinal flora, and non-enteric bacteria were isolated. Postoperative septic complications developed in 104 patients (23%). Enteric organisms were responsible in 74% of patients. Forty one per cent of patients who had evidence of bacterial translocation developed sepsis compared with 14% in whom no organisms were cultured (p<0.001). Septic morbidity was more frequent when a greater diversity of bacteria resided within the MLN, but this was not statistically significant. 
Conclusion—Bacterial translocation is associated with a significant increase in the development of postoperative sepsis in surgical patients. The organisms responsible for septic morbidity are similar in spectrum to those observed in the mesenteric lymph nodes. These data strongly support the gut origin hypothesis of sepsis in humans. 

 Keywords: bacterial translocation; mesenteric lymph nodes; serosal scrapings; enteric bacteria; postoperative sepsis PMID:9505882

  4. Molecular studies of free and translocation trisomy

    SciTech Connect

    Robinson, W.P.; Bernasconi, F.; Lefort, G.

    1994-09-01

    Twenty cases of trisomy 13 were examined with molecular markers to determine the origin of the extra chromosome. Six cases had translocation trisomy: two de novo rob(13q;14q), one paternally derived rob(13q;14q), two de novo t(13q;13q), and one mosaic de novo t(13q;14q), one paternally derived rob(13q;14q), two de novo t(13q;13q), and one mosaic de novo t(13q;13q)r(13). Eighteen of nineteen informative patients were consistant with a maternal origin of the extra chromosome. Lack of a third allele at any locus in any of the three t(13q;13q) cases indicate that all were most likely isochromosomes of post-meiotic origin. In addition, two free trisomy cases were compatible with a somatic origin. Two mosaic free trisomy-13 cases, however, were both consistent with a maternal meiotic origin. The patient with a paternal inheritance of the translocation chromosome was purely coincidental. Since there is not a significantly increased risk for unbalanced offspring of a t(13;14) carrier and most trisomies are maternal in origin, this result should not be surprising; however it illustrates that one cannot infer the origin of translocation trisomy based on parental origin of the translocation. One balanced (non-trisomic) case with a non-mosaic 45,-13,-13,+t(13;13) karyotype was also investigated and was determined to be a somatic Robertsonian translocation between the maternal and paternal homologs, as has been found for all homologous Robertsonian translocations so far investigated. It is therefore also incorrect to assume in de novo translocation cases that the two involved chromosomes are even from the same parent. We cannot therefore infer anything about the origin of the chromosomes 13 and 14 involved in the two cases with de novo t(13q;14q) plus a maternally derived trisomy 13.

  5. Attachment of cell-binding ligands to arginine-rich cell-penetrating peptides enables cytosolic translocation of complexed siRNA.

    PubMed

    Zeller, Skye; Choi, Chang Seon; Uchil, Pradeep D; Ban, Hong-Seok; Siefert, Alyssa; Fahmy, Tarek M; Mothes, Walther; Lee, Sang-Kyung; Kumar, Priti

    2015-01-22

    Cell-penetrating peptides (CPPs), such as nona-arginine (9R), poorly translocate siRNA into cells. Our studies demonstrate that attaching 9R to ligands that bind cell surface receptors quantitatively increases siRNA uptake and importantly, allows functional delivery of complexed siRNA. The mechanism involved accumulation of ligand-9R:siRNA microparticles on the cell membrane, which induced transient membrane inversion at the site of ligand-9R binding and rapid siRNA translocation into the cytoplasm. siRNA release also occurred late after endocytosis when the ligand was attached to the L isoform of 9R, but not the protease-resistant 9DR, prolonging mRNA knockdown. This critically depended on endosomal proteolytic activity, implying that partial CPP degradation is required for endosome-to-cytosol translocation. The data demonstrate that ligand attachment renders simple polycationic CPPs effective for siRNA delivery by restoring their intrinsic property of translocation. PMID:25544044

  6. Attachment of cell-binding ligands to arginine-rich cell penetrating peptides enables cytosolic translocation of complexed siRNA

    PubMed Central

    Zeller, Skye; Choi, Changseon; Uchil, Pradeep D.; Ban, Hongseok; Siefert, Alyssa; Fahmy, Tarek M.; Mothes, Walther; Lee, Sang Kyung; Kumar, Priti

    2014-01-01

    SUMMARY Cell penetrating peptides (CPPs) like nona-arginine (9R) poorly translocate siRNA into cells. Our studies demonstrate that attaching 9R to ligands that bind cell-surface receptors quantitatively increases siRNA uptake and importantly, allows functional delivery of complexed siRNA. The mechanism involved accumulation of ligand-9R:siRNA microparticles on the cell membrane, which induced transient membrane inversion at the site of ligand-9R binding and rapid siRNA translocation into the cytoplasm. siRNA release also occurred late after endocytosis when the ligand was attached to the L isoform of 9R, but not the protease-resistant 9DR, prolonging mRNA knockdown. This critically depended on endosomal proteolytic activity implying partial CPP degradation is required for endosome to cytosol translocation. The data demonstrate that ligand attachment renders simple polycationic CPPs effective for siRNA delivery by restoring their intrinsic property of translocation. PMID:25544044

  7. The coiled-coil domain of EHD2 mediates inhibition of LeEix2 endocytosis and signaling.

    PubMed

    Bar, Maya; Sharfman, Miya; Schuster, Silvia; Avni, Adi

    2009-01-01

    Endocytosis has been suggested to be crucial for the induction of plant immunity in several cases. We have previously shown that two Arabidopsis proteins, AtEHD1 and AtEHD2, are involved in endocytosis in plant systems. AtEHD2 has an inhibitory effect on endocytosis of transferrin, FM-4-64, and LeEix2. There are many works in mammalian systems detailing the importance of the various domains in EHDs but, to date, the domains of plant EHD2 that are required for its inhibitory activity on endocytosis remained unknown. In this work we demonstrate that the coiled-coil domain of EHD2 is crucial for the ability of EHD2 to inhibit endocytosis in plants, as mutant EHD2 forms lacking the coiled-coil lost the ability to inhibit endocytosis and signaling of LeEix2. The coiled-coil was also required for binding of EHD2 to the LeEix2 receptor. It is therefore probable that binding of EHD2 to the LeEix2 receptor is required for inhibition of LeEix2 internalization. We also show herein that the P-loop of EHD2 is important for EHD2 to function properly. The EH domain of AtEHD2 does not appear to be involved in inhibition of endocytosis. Moreover, AtEHD2 influences actin organization and may exert its inhibitory effect on endocytosis through actin re-distribution. The coiled-coil domain of EHD2 functions in inhibition of endocytosis, while the EH domain does not appear to be involved in inhibition of endocytosis. PMID:19936242

  8. The Coiled-Coil Domain of EHD2 Mediates Inhibition of LeEix2 Endocytosis and Signaling

    PubMed Central

    Bar, Maya; Sharfman, Miya; Schuster, Silvia; Avni, Adi

    2009-01-01

    Endocytosis has been suggested to be crucial for the induction of plant immunity in several cases. We have previously shown that two Arabidopsis proteins, AtEHD1 and AtEHD2, are involved in endocytosis in plant systems. AtEHD2 has an inhibitory effect on endocytosis of transferrin, FM-4-64, and LeEix2. There are many works in mammalian systems detailing the importance of the various domains in EHDs but, to date, the domains of plant EHD2 that are required for its inhibitory activity on endocytosis remained unknown. In this work we demonstrate that the coiled-coil domain of EHD2 is crucial for the ability of EHD2 to inhibit endocytosis in plants, as mutant EHD2 forms lacking the coiled-coil lost the ability to inhibit endocytosis and signaling of LeEix2. The coiled-coil was also required for binding of EHD2 to the LeEix2 receptor. It is therefore probable that binding of EHD2 to the LeEix2 receptor is required for inhibition of LeEix2 internalization. We also show herein that the P-loop of EHD2 is important for EHD2 to function properly. The EH domain of AtEHD2 does not appear to be involved in inhibition of endocytosis. Moreover, AtEHD2 influences actin organization and may exert its inhibitory effect on endocytosis through actin re-distribution. The coiled-coil domain of EHD2 functions in inhibition of endocytosis, while the EH domain does not appear to be involved in inhibition of endocytosis. PMID:19936242

  9. Melatonin enhances mitochondrial ATP synthesis, reduces reactive oxygen species formation, and mediates translocation of the nuclear erythroid 2-related factor 2 resulting in activation of phase-2 antioxidant enzymes (γ-GCS, HO-1, NQO1) in ultraviolet radiation-treated normal human epidermal keratinocytes (NHEK).

    PubMed

    Kleszczyński, Konrad; Zillikens, Detlef; Fischer, Tobias W

    2016-09-01

    Melatonin is an ubiquitous molecule with a variety of functions including potent antioxidative properties. Due to its lipophilic character, it easily crosses cellular and intracellular membranes and reaches all subcellular organelles. Because of its ability to scavenge free radicals, melatonin protects against oxidative stress, for example, induced by ultraviolet radiation (UVR). Here, we investigated, in a dose-dependent (0, 10, 25, and 50 mJ/cm(2) ) and time-dependent (0, 4, 24, 48 hr post-UVR) manner, whether melatonin prevents the UVR-mediated alterations in ATP synthesis and the generation of reactive oxygen species (ROS) in normal human epidermal keratinocytes (NHEK). Additionally, we evaluated the molecular mechanism of action of melatonin with regard to activation of phase-2 antioxidative enzymes via nuclear erythroid 2-related factor (Nrf2). We found that (i) melatonin counteracted UVR-induced alterations in the ATP synthesis and reduced free radical formation; (ii) melatonin induced the translocation of Nrf2 transcription factor from the cytosol into the nucleus resulting in, (iii) melatonin enhanced gene expression of phase-2 antioxidative enzymes including γ-glutamylcysteine synthetase (γ-GCS), heme oxygenase-1 (HO-1), and NADPH: quinone dehydrogenase-1 (NQO1) representing an elevated antioxidative response of keratinocytes. These results suggest that melatonin not only directly scavenges ROS, but also significantly induces the activation of phase-2 antioxidative enzymes via the Nrf2 pathway uncovering a new action mechanism that supports the ability of keratinocytes to protect themselves from UVR-mediated oxidative stress. PMID:27117941

  10. GPR158, an orphan member of G protein-coupled receptor Family C: glucocorticoid-stimulated expression and novel nuclear role.

    PubMed

    Patel, Nitin; Itakura, Tatsuo; Gonzalez, Jose M; Schwartz, Stephen G; Fini, M Elizabeth

    2013-01-01

    Members of the large G protein-coupled receptor (GPCR) clan are implicated in many physiological and disease processes, making them important therapeutic drug targets. In the present study, we follow up on results of a pilot study suggesting a functional relationship between glucocorticoid (GC)-induced ocular hypertension and GPR158, one of three orphan members of the GPCR Family C. GC treatment increases levels of GPR158 mRNA and protein through transcriptional mechanisms, in cultured trabecular meshwork (TBM) cells derived from the eye's aqueous outflow pathway. Like treatment with GCs, transient overexpression of GPR158 stimulates cell proliferation, while siRNA knockdown of endogenous GPR158 has the opposite effect. Both endogenous and overexpressed GPR158 show an unusual subcellular localization pattern, being found almost entirely in the nucleus. However, when cells are treated with inhibitors of clathrin-mediated endocytosis, GPR158 is shifted to the plasma membrane. Mutation of a bipartite nuclear localization signal (NLS) in the 8(th) helix also shifts GPR158 out of the nucleus, but in this case the protein is found in vesicles localized in the cytoplasm. These results suggest that newly synthesized GPR158 first traffics to the plasma membrane, where it rapidly undergoes endocytosis and translocation to the nucleus. Significantly, mutation of the NLS abrogates GPR158-mediated enhancement of cell proliferation, indicating a functional requirement for nuclear localization. GPR158 overexpression upregulates levels of the cell cycle regulator cyclin D1, but mutation of the NLS reverses this. Overexpression of GPR158 enhances the barrier function of a TBM cell monolayer, which is associated with an increase in the levels of tight junction proteins ZO-1 and occludin, similar to reported studies on GC treatment. Regulated paracellular permeability controls aqueous outflow facility in vivo. Since GCs stimulate GPR158 expression, the result is consistent with a

  11. GPR158, an Orphan Member of G Protein-Coupled Receptor Family C: Glucocorticoid-Stimulated Expression and Novel Nuclear Role

    PubMed Central

    Patel, Nitin; Itakura, Tatsuo; Gonzalez, Jose M.; Schwartz, Stephen G.; Fini, M. Elizabeth

    2013-01-01

    Members of the large G protein-coupled receptor (GPCR) clan are implicated in many physiological and disease processes, making them important therapeutic drug targets. In the present study, we follow up on results of a pilot study suggesting a functional relationship between glucocorticoid (GC)-induced ocular hypertension and GPR158, one of three orphan members of the GPCR Family C. GC treatment increases levels of GPR158 mRNA and protein through transcriptional mechanisms, in cultured trabecular meshwork (TBM) cells derived from the eye's aqueous outflow pathway. Like treatment with GCs, transient overexpression of GPR158 stimulates cell proliferation, while siRNA knockdown of endogenous GPR158 has the opposite effect. Both endogenous and overexpressed GPR158 show an unusual subcellular localization pattern, being found almost entirely in the nucleus. However, when cells are treated with inhibitors of clathrin-mediated endocytosis, GPR158 is shifted to the plasma membrane. Mutation of a bipartite nuclear localization signal (NLS) in the 8th helix also shifts GPR158 out of the nucleus, but in this case the protein is found in vesicles localized in the cytoplasm. These results suggest that newly synthesized GPR158 first traffics to the plasma membrane, where it rapidly undergoes endocytosis and translocation to the nucleus. Significantly, mutation of the NLS abrogates GPR158-mediated enhancement of cell proliferation, indicating a functional requirement for nuclear localization. GPR158 overexpression upregulates levels of the cell cycle regulator cyclin D1, but mutation of the NLS reverses this. Overexpression of GPR158 enhances the barrier function of a TBM cell monolayer, which is associated with an increase in the levels of tight junction proteins ZO-1 and occludin, similar to reported studies on GC treatment. Regulated paracellular permeability controls aqueous outflow facility in vivo. Since GCs stimulate GPR158 expression, the result is consistent with a role

  12. Stochastic resonance during a polymer translocation process.

    PubMed

    Mondal, Debasish; Muthukumar, M

    2016-04-14

    We have studied the occurrence of stochastic resonance when a flexible polymer chain undergoes a single-file translocation through a nano-pore separating two spherical cavities, under a time-periodic external driving force. The translocation of the chain is controlled by a free energy barrier determined by chain length, pore length, pore-polymer interaction, and confinement inside the donor and receiver cavities. The external driving force is characterized by a frequency and amplitude. By combining the Fokker-Planck formalism for polymer translocation and a two-state model for stochastic resonance, we have derived analytical formulas for criteria for emergence of stochastic resonance during polymer translocation. We show that no stochastic resonance is possible if the free energy barrier for polymer translocation is purely entropic in nature. The polymer chain exhibits stochastic resonance only in the presence of an energy threshold in terms of polymer-pore interactions. Once stochastic resonance is feasible, the chain entropy controls the optimal synchronization conditions significantly. PMID:27083746

  13. Stochastic resonance during a polymer translocation process

    NASA Astrophysics Data System (ADS)

    Mondal, Debasish; Muthukumar, M.

    2016-04-01

    We have studied the occurrence of stochastic resonance when a flexible polymer chain undergoes a single-file translocation through a nano-pore separating two spherical cavities, under a time-periodic external driving force. The translocation of the chain is controlled by a free energy barrier determined by chain length, pore length, pore-polymer interaction, and confinement inside the donor and receiver cavities. The external driving force is characterized by a frequency and amplitude. By combining the Fokker-Planck formalism for polymer translocation and a two-state model for stochastic resonance, we have derived analytical formulas for criteria for emergence of stochastic resonance during polymer translocation. We show that no stochastic resonance is possible if the free energy barrier for polymer translocation is purely entropic in nature. The polymer chain exhibits stochastic resonance only in the presence of an energy threshold in terms of polymer-pore interactions. Once stochastic resonance is feasible, the chain entropy controls the optimal synchronization conditions significantly.

  14. Long-term potentiation decay and memory loss are mediated by AMPAR endocytosis.

    PubMed

    Dong, Zhifang; Han, Huili; Li, Hongjie; Bai, Yanrui; Wang, Wei; Tu, Man; Peng, Yan; Zhou, Limin; He, Wenting; Wu, Xiaobin; Tan, Tao; Liu, Mingjing; Wu, Xiaoyan; Zhou, Weihui; Jin, Wuyang; Zhang, Shu; Sacktor, Todd Charlton; Li, Tingyu; Song, Weihong; Wang, Yu Tian

    2015-01-01

    Long-term potentiation (LTP) of synaptic strength between hippocampal neurons is associated with learning and memory, and LTP dysfunction is thought to underlie memory loss. LTP can be temporally and mechanistically classified into decaying (early-phase) LTP and nondecaying (late-phase) LTP. While the nondecaying nature of LTP is thought to depend on protein synthesis and contribute to memory maintenance, little is known about the mechanisms and roles of decaying LTP. Here, we demonstrated that inhibiting endocytosis of postsynaptic α-amino-3-hydroxy-5-methyl-isoxazole-4-propionic acid receptors (AMPARs) prevents LTP decay, thereby converting it into nondecaying LTP. Conversely, restoration of AMPAR endocytosis by inhibiting protein kinase Mζ (PKMζ) converted nondecaying LTP into decaying LTP. Similarly, inhibition of AMPAR endocytosis prolonged memory retention in normal animals and reduced memory loss in a murine model of Alzheimer's disease. These results strongly suggest that an active process that involves AMPAR endocytosis mediates the decay of LTP and that inhibition of this process can prolong the longevity of LTP as well as memory under both physiological and pathological conditions. PMID:25437879

  15. Dynamin 2–dependent endocytosis is required for normal megakaryocyte development in mice

    PubMed Central

    Bender, Markus; Giannini, Silvia; Grozovsky, Renata; Jönsson, Terese; Christensen, Hilary; Pluthero, Fred G.; Ko, Amy; Mullally, Ann; Kahr, Walter H. A.; Hoffmeister, Karin M.

    2015-01-01

    Dynamins are highly conserved large GTPases (enzymes that hydrolyze guanosine triphosphate) involved in endocytosis and vesicle transport, and mutations in the ubiquitous and housekeeping dynamin 2 (DNM2) have been associated with thrombocytopenia in humans. To determine the role of DNM2 in thrombopoiesis, we generated Dnm2fl/fl Pf4-Cre mice specifically lacking DNM2 in the megakaryocyte (MK) lineage. Dnm2fl/fl Pf4-Cre mice had severe macrothrombocytopenia with moderately accelerated platelet clearance. Dnm2-null bone marrow MKs had altered demarcation membrane system formation in vivo due to defective endocytic pathway, and fetal liver–derived Dnm2-null MKs formed proplatelets poorly in vitro, showing that DNM2-dependent endocytosis plays a major role in MK membrane formation and thrombopoiesis. Endocytosis of the thrombopoietin receptor Mpl was impaired in Dnm2-null platelets, causing constitutive phosphorylation of the tyrosine kinase JAK2 and elevated circulating thrombopoietin levels. MK-specific DNM2 deletion severely disrupted bone marrow homeostasis, as reflected by marked expansion of hematopoietic stem and progenitor cells, MK hyperplasia, myelofibrosis, and consequent extramedullary hematopoiesis and splenomegaly. Taken together, our data demonstrate that unrestrained MK growth and proliferation results in rapid myelofibrosis and establishes a previously unrecognized role for DNM2-dependent endocytosis in megakaryopoiesis, thrombopoiesis, and bone marrow homeostasis. PMID:25468568

  16. Endocytosis and Endosomal Trafficking of DNA After Gene Electrotransfer In Vitro

    PubMed Central

    Rosazza, Christelle; Deschout, Hendrik; Buntz, Annette; Braeckmans, Kevin; Rols, Marie-Pierre; Zumbusch, Andreas

    2016-01-01

    DNA electrotransfer is a successful technique for gene delivery into cells and represents an attractive alternative to virus-based methods for clinical applications including gene therapy and DNA vaccination. However, little is currently known about the mechanisms governing DNA internalization and its fate inside cells. The objectives of this work were to investigate the role of endocytosis and to quantify the contribution of different routes of cellular trafficking during DNA electrotransfer. To pursue these objectives, we performed flow cytometry and single-particle fluorescence microscopy experiments using inhibitors of endocytosis and endosomal markers. Our results show that ~50% of DNA is internalized by caveolin/raft-mediated endocytosis, 25% by clathrin-mediated endocytosis, and 25% by macropinocytosis. During active transport, DNA is routed through multiple endosomal compartments with, in the hour following electrotransfer, 70% found in Rab5 structures, 50% in Rab11-containing organelles and 30% in Rab9 compartments. Later, 60% of DNA colocalizes with Lamp1 vesicles. Because these molecular markers can overlap while following organelles through several steps of trafficking, the percentages do not sum up to 100%. We conclude that electrotransferred DNA uses the classical endosomal trafficking pathways. Our results are important for a generalized understanding of gene electrotransfer, which is crucial for its safe use in clinics. PMID:26859199

  17. Endocytosis and Endosomal Trafficking of DNA After Gene Electrotransfer In Vitro.

    PubMed

    Rosazza, Christelle; Deschout, Hendrik; Buntz, Annette; Braeckmans, Kevin; Rols, Marie-Pierre; Zumbusch, Andreas

    2016-01-01

    DNA electrotransfer is a successful technique for gene delivery into cells and represents an attractive alternative to virus-based methods for clinical applications including gene therapy and DNA vaccination. However, little is currently known about the mechanisms governing DNA internalization and its fate inside cells. The objectives of this work were to investigate the role of endocytosis and to quantify the contribution of different routes of cellular trafficking during DNA electrotransfer. To pursue these objectives, we performed flow cytometry and single-particle fluorescence microscopy experiments using inhibitors of endocytosis and endosomal markers. Our results show that ~50% of DNA is internalized by caveolin/raft-mediated endocytosis, 25% by clathrin-mediated endocytosis, and 25% by macropinocytosis. During active transport, DNA is routed through multiple endosomal compartments with, in the hour following electrotransfer, 70% found in Rab5 structures, 50% in Rab11-containing organelles and 30% in Rab9 compartments. Later, 60% of DNA colocalizes with Lamp1 vesicles. Because these molecular markers can overlap while following organelles through several steps of trafficking, the percentages do not sum up to 100%. We conclude that electrotransferred DNA uses the classical endosomal trafficking pathways. Our results are important for a generalized understanding of gene electrotransfer, which is crucial for its safe use in clinics. PMID:26859199

  18. VAMP4 Is an Essential Cargo Molecule for Activity-Dependent Bulk Endocytosis

    PubMed Central

    Nicholson-Fish, Jessica C.; Kokotos, Alexandros C.; Gillingwater, Thomas H.; Smillie, Karen J.; Cousin, Michael A.

    2015-01-01

    Summary The accurate formation of synaptic vesicles (SVs) and incorporation of their protein cargo during endocytosis is critical for the maintenance of neurotransmission. During intense neuronal activity, a transient and acute accumulation of SV cargo occurs at the plasma membrane. Activity-dependent bulk endocytosis (ADBE) is the dominant SV endocytosis mode under these conditions; however, it is currently unknown how ADBE mediates cargo retrieval. We examined the retrieval of different SV cargo molecules during intense stimulation using a series of genetically encoded pH-sensitive reporters in neuronal cultures. The retrieval of only one reporter, VAMP4-pHluorin, was perturbed by inhibiting ADBE. This selective recovery was confirmed by the enrichment of endogenous VAMP4 in purified bulk endosomes formed by ADBE. VAMP4 was also essential for ADBE, with a cytoplasmic di-leucine motif being critical for this role. Therefore, VAMP4 is the first identified ADBE cargo and is essential for this endocytosis mode to proceed. PMID:26607000

  19. Buckwheat trypsin inhibitor enters Hep G2 cells by clathrin-dependent endocytosis.

    PubMed

    Cui, Xiaodong; Wang, Zhuanhua; Li, Yuying; Li, Chen

    2013-12-01

    Recombinant buckwheat trypsin inhibitor (rBTI) was studied to evaluate if it could enter cancer cells and to determine the mechanism. Fluorescein isothiocyanate-labelled buckwheat trypsin inhibitor (FITC-BTI) entered Hep G2 cells in a concentration-dependent manner. FITC-BTI colocalised with labelled transferrin (Tf) in the punctate structure, implying that rBTI enters Hep G2 cells by clathrin-dependent endocytosis. Incubation of Hep G2 cells with different chemical inhibitors abolished diffuse, but not punctate fluorescence, thus indicating that membrane potential plays a critical role in this process. Impairment of clathrin-mediated endocytosis by RNAi with clathrin heavy chain greatly reduced or completely abolished both diffuse and punctate fluorescence, further supporting a theory of a single route of endocytosis. Consistent with our working hypothesis, Hep G2 cells which were arrested in the M phase did not show any vesicular or diffuse FITC-BTI. We conclude from these results that both endocytosis and membrane potential are required for rBTI entry into Hep G2 cells. PMID:23871004

  20. Defective calmodulin-dependent rapid apical endocytosis in zebrafish sensory hair cell mutants.

    PubMed

    Seiler, C; Nicolson, T

    1999-11-15

    Vertebrate mechanosensory hair cells contain a narrow "pericuticular" zone which is densely populated with small vesicles between the cuticular plate and cellular junctions near the apical surface. The presence of many cytoplasmic vesicles suggests that the apical surface of hair cells has a high turnover rate. The significance of intense membrane trafficking at the apical surface is not known. Using a marker of endocytosis, the styryl dye FM1-43, this report shows that rapid apical endocytosis in zebrafish lateral line sensory hair cells is calcium and calmodulin dependent and is partially blocked by the presence of amiloride and dihydrostreptomycin, known inhibitors of mechanotransduction channels. As seen in lateral line hair cells, sensory hair cells within the larval otic capsule also exhibit rapid apical endocytosis. Defects in internalization of the dye in both lateral line and inner ear hair cells were found in five zebrafish auditory/vestibular mutants: sputnik, mariner, orbiter, mercury, and skylab. In addition, lateral line hair cells in these mutants were not sensitive to prolonged exposure to streptomycin, which is toxic to hair cells. The presence of endocytic defects in the majority of zebrafish mechanosensory mutants points to a important role of apical endocytosis in hair cell function. PMID:10526320

  1. Scavenger receptor-mediated endocytosis by sinusoidal cells in rat bone marrow

    SciTech Connect

    Geoffroy, J.S.

    1987-01-01

    Endocytosis of serum albumin by sinusoidal endothelial cells in rat bone marrow was investigated initially at the ultrastructural level with subsequent biochemical investigation of the specificity mediating this event. Bovine serum albumin adsorbed to 20nm colloidal gold particles (AuBSA) was chosen as the electron microscopic probe. Morphological data strongly suggested that a receptor was involved in uptake of AuBSA. Confirmation of receptor involvement in the uptake of AuBSA by marrow sinusoidal endothelial cells was achieved utilizing an in situ isolated hind limb perfusion protocol in conjunction with unlabeled, radiolabeled, and radio-/colloidal gold labeled probes. The major findings of competition and saturation experiments were: (1) endocytosis of AuBSA was mediated by a receptor for modified/treated serum albumin; (2) endocytosis of formaldehyde-treated serum albumin was mediated by a binding site which may be the same or closely related to the site responsible for the uptake of AuBSA; and (3) endocytosis of native untreated albumin was not mediated by receptor and probably represents fluid-phase pinocitosis.

  2. Live Cell Imaging of the Endocytosis and the Intracellular Trafficking of Multifunctional Lipid Nanoparticles

    SciTech Connect

    Zhang, Tieqiao; Danthi, S. N.; Xie, Jianwu; Hu, Dehong; Lu, H. Peter; Li, King H.

    2006-12-01

    Artificial lipid nanoparticles have drawn great attention due to their potential in medicine. Linked with targeting ligands, they can be used as probes and/or gene delivery vectors for specific types of target cells. Therefore, they are very promising agents in early detection, diagnosis and treatment of cancers and other genetic diseases. However, there are several barriers blocking the applications. Controlling the cellular uptake of the lipid nanoparticles is an important technical challenge to overcome. Understanding the mechanism of the endocytosis and the following intracellular trafficking is very important for improving the design and therefore the efficiency as a drug delivery system. By using fluorescence microscopy methods, we studied the endocytosis of lipid nanoparticles by live M21 cells. The movements of the nanoparticles inside the cell were quantitatively characterized and classified based on the diffusion behavior. The trajectories of nanoparticles movement over the cell membrane revealed hop-diffusion behavior prior to the endocytosis. Fast movement in large steps is observed in intracellular trafficking and is attributed to active movement along microtubule. These observations help to understand the mechanism of the endocytosis and the pathway of the particles in cells.

  3. Silence of synaptotagmin I in INS-1 cells inhibits fast exocytosis and fast endocytosis

    SciTech Connect

    Xiong Xiong; Zhou Keming; Wu Zhengxing . E-mail: xutao@ibp.ac.cn; Xu Tao . E-mail: ibbwuzx@mail.hust.edu.cn

    2006-08-18

    Synaptotagmin I (Syt I) is a Ca{sup 2+} sensor for triggering fast synchronized release of neurotransmitters. However, controversy remains whether Syt I is also obligatory for the exocytosis and endocytosis of larger dense core vesicles (LDCVs) in endocrine cells. In this study, we used a short hairpin RNA (shRNA) to silence the expression of Syt I and investigated the roles of Syt I on exocytosis and endocytosis in INS-1 cells. Our results demonstrated that expression of Syt I is remarkably reduced by the Syt I gene targeting shRNA. Using high-time resolution capacitance measurement, we found that the silence of Syt I decreased the calcium sensitivity of fusion of insulin granules and therefore reduced the exocytotic burst triggered by step-like [Ca{sup 2+}] {sub i} elevation. In addition, the occurrence frequency and amplitude of fast endocytosis were remarkably reduced in the silenced cells. We conclude that Syt I not only participates in the Ca{sup 2+}-sensing of LDCV fusion with plasmalemma, but also plays a crucial role in fast endocytosis in INS-1 cells.

  4. Polarized Exocytosis Induces Compensatory Endocytosis by Sec4p-Regulated Cortical Actin Polymerization.

    PubMed

    Johansen, Jesper; Alfaro, Gabriel; Beh, Christopher T

    2016-08-01

    Polarized growth is maintained by both polarized exocytosis, which transports membrane components to specific locations on the cell cortex, and endocytosis, which retrieves these components before they can diffuse away. Despite functional links between these two transport pathways, they are generally considered to be separate events. Using live cell imaging, in vivo and in vitro protein binding assays, and in vitro pyrene-actin polymerization assays, we show that the yeast Rab GTPase Sec4p couples polarized exocytosis with cortical actin polymerization, which induces endocytosis. After polarized exocytosis to the plasma membrane, Sec4p binds Las17/Bee1p (yeast Wiskott-Aldrich Syndrome protein [WASp]) in a complex with Sla1p and Sla2p during actin patch assembly. Mutations that inactivate Sec4p, or its guanine nucleotide exchange factor (GEF) Sec2p, inhibit actin patch formation, whereas the activating sec4-Q79L mutation accelerates patch assembly. In vitro assays of Arp2/3-dependent actin polymerization established that GTPγS-Sec4p overrides Sla1p inhibition of Las17p-dependent actin nucleation. These results support a model in which Sec4p relocates along the plasma membrane from polarized sites of exocytic vesicle fusion to nascent sites of endocytosis. Activated Sec4p then promotes actin polymerization and triggers compensatory endocytosis, which controls surface expansion and kinetically refines cell polarization. PMID:27526190

  5. Kainate receptor activation induces glycine receptor endocytosis through PKC deSUMOylation.

    PubMed

    Sun, Hao; Lu, Li; Zuo, Yong; Wang, Yan; Jiao, Yingfu; Zeng, Wei-Zheng; Huang, Chao; Zhu, Michael X; Zamponi, Gerald W; Zhou, Tong; Xu, Tian-Le; Cheng, Jinke; Li, Yong

    2014-01-01

    Surface expression and regulated endocytosis of glycine receptors (GlyRs) play a critical function in balancing neuronal excitability. SUMOylation (SUMO modification) is of critical importance for maintaining neuronal function in the central nervous system. Here we show that activation of kainate receptors (KARs) causes GlyR endocytosis in a calcium- and protein kinase C (PKC)-dependent manner, leading to reduced GlyR-mediated synaptic activity in cultured spinal cord neurons and the superficial dorsal horn of rat spinal cord slices. This effect requires SUMO1/sentrin-specific peptidase 1 (SENP1)-mediated deSUMOylation of PKC, indicating that the crosstalk between KARs and GlyRs relies on the SUMOylation status of PKC. SENP1-mediated deSUMOylation of PKC is involved in the kainate-induced GlyR endocytosis and thus plays an important role in the anti-homeostatic regulation between excitatory and inhibitory ligand-gated ion channels. Altogether, we have identified a SUMOylation-dependent regulatory pathway for GlyR endocytosis, which may have important physiological implications for proper neuronal excitability. PMID:25236484

  6. AMPA Receptor Endocytosis in Rat Perirhinal Cortex Underlies Retrieval of Object Memory

    ERIC Educational Resources Information Center

    Cazakoff, Brittany N.; Howland, John G.

    2011-01-01

    Mechanisms consistent with long-term depression in the perirhinal cortex (PRh) play a fundamental role in object recognition memory; however, whether AMPA receptor endocytosis is involved in distinct phases of recognition memory is not known. To address this question, we used local PRh infusions of the cell membrane-permeable Tat-GluA2[subscript…

  7. Timely Endocytosis of Cytokinetic Enzymes Prevents Premature Spindle Breakage during Mitotic Exit

    PubMed Central

    Onishi, Masayuki; Yeong, Foong May

    2016-01-01

    Cytokinesis requires the spatio-temporal coordination of membrane deposition and primary septum (PS) formation at the division site to drive acto-myosin ring (AMR) constriction. It has been demonstrated that AMR constriction invariably occurs only after the mitotic spindle disassembly. It has also been established that Chitin Synthase II (Chs2p) neck localization precedes mitotic spindle disassembly during mitotic exit. As AMR constriction depends upon PS formation, the question arises as to how chitin deposition is regulated so as to prevent premature AMR constriction and mitotic spindle breakage. In this study, we propose that cells regulate the coordination between spindle disassembly and AMR constriction via timely endocytosis of cytokinetic enzymes, Chs2p, Chs3p, and Fks1p. Inhibition of endocytosis leads to over accumulation of cytokinetic enzymes during mitotic exit, which accelerates the constriction of the AMR, and causes spindle breakage that eventually could contribute to monopolar spindle formation in the subsequent round of cell division. Intriguingly, the mitotic spindle breakage observed in endocytosis mutants can be rescued either by deleting or inhibiting the activities of, CHS2, CHS3 and FKS1, which are involved in septum formation. The findings from our study highlight the importance of timely endocytosis of cytokinetic enzymes at the division site in safeguarding mitotic spindle integrity during mitotic exit. PMID:27447488

  8. An endocytosis pathway initiated through neuropilin-1 and regulated by nutrient availability

    PubMed Central

    Pang, Hong-Bo; Braun, Gary B.; Friman, Tomas; Aza-Blanc, Pedro; Ruidiaz, Manuel E.; Sugahara, Kazuki N.; Teesalu, Tambet; Ruoslahti, Erkki

    2014-01-01

    Neuropilins (NRPs) are trans-membrane receptors involved in axon guidance and vascular development. Many growth factors and other signaling molecules bind to NRPs through a C-terminal, basic sequence motif (C-end Rule or CendR motif). Peptides with this motif (CendR peptides) are taken up into cells by endocytosis. Tumor-homing CendR peptides penetrate through tumor tissue and have shown utility in enhancing drug delivery into tumors. Here we show, using RNAi screening and subsequent validation studies, that NRP1-mediated endocytosis of CendR peptides is distinct from known endocytic pathways. Ultrastructurally, CendR endocytosis resembles macropinocytosis, but is mechanistically different. We also show that nutrient-sensing networks such as mTOR signaling regulate CendR endocytosis and subsequent intercellular transport of CendR cargo, both of which are stimulated by nutrient depletion. As CendR is a bulk transport pathway, our results suggest a role for it in nutrient transport; CendR-enhanced drug delivery then makes use of this natural pathway. PMID:25277522

  9. Polarized E-cadherin endocytosis directs actomyosin remodeling during embryonic wound repair

    PubMed Central

    Hunter, Miranda V.; Lee, Donghoon M.; Harris, Tony J.C.

    2015-01-01

    Embryonic epithelia have a remarkable ability to rapidly repair wounds. A supracellular actomyosin cable around the wound coordinates cellular movements and promotes wound closure. Actomyosin cable formation is accompanied by junctional rearrangements at the wound margin. We used in vivo time-lapse quantitative microscopy to show that clathrin, dynamin, and the ADP-ribosylation factor 6, three components of the endocytic machinery, accumulate around wounds in Drosophila melanogaster embryos in a process that requires calcium signaling and actomyosin contractility. Blocking endocytosis with pharmacological or genetic approaches disrupted wound repair. The defect in wound closure was accompanied by impaired removal of E-cadherin from the wound edge and defective actomyosin cable assembly. E-cadherin overexpression also resulted in reduced actin accumulation around wounds and slower wound closure. Reducing E-cadherin levels in embryos in which endocytosis was blocked rescued actin localization to the wound margin. Our results demonstrate a central role for endocytosis in wound healing and indicate that polarized E-cadherin endocytosis is necessary for actomyosin remodeling during embryonic wound repair. PMID:26304727

  10. Polarized Exocytosis Induces Compensatory Endocytosis by Sec4p-Regulated Cortical Actin Polymerization

    PubMed Central

    Johansen, Jesper; Alfaro, Gabriel; Beh, Christopher T.

    2016-01-01

    Polarized growth is maintained by both polarized exocytosis, which transports membrane components to specific locations on the cell cortex, and endocytosis, which retrieves these components before they can diffuse away. Despite functional links between these two transport pathways, they are generally considered to be separate events. Using live cell imaging, in vivo and in vitro protein binding assays, and in vitro pyrene-actin polymerization assays, we show that the yeast Rab GTPase Sec4p couples polarized exocytosis with cortical actin polymerization, which induces endocytosis. After polarized exocytosis to the plasma membrane, Sec4p binds Las17/Bee1p (yeast Wiskott—Aldrich Syndrome protein [WASp]) in a complex with Sla1p and Sla2p during actin patch assembly. Mutations that inactivate Sec4p, or its guanine nucleotide exchange factor (GEF) Sec2p, inhibit actin patch formation, whereas the activating sec4-Q79L mutation accelerates patch assembly. In vitro assays of Arp2/3-dependent actin polymerization established that GTPγS-Sec4p overrides Sla1p inhibition of Las17p-dependent actin nucleation. These results support a model in which Sec4p relocates along the plasma membrane from polarized sites of exocytic vesicle fusion to nascent sites of endocytosis. Activated Sec4p then promotes actin polymerization and triggers compensatory endocytosis, which controls surface expansion and kinetically refines cell polarization. PMID:27526190

  11. Polarized E-cadherin endocytosis directs actomyosin remodeling during embryonic wound repair.

    PubMed

    Hunter, Miranda V; Lee, Donghoon M; Harris, Tony J C; Fernandez-Gonzalez, Rodrigo

    2015-08-31

    Embryonic epithelia have a remarkable ability to rapidly repair wounds. A supracellular actomyosin cable around the wound coordinates cellular movements and promotes wound closure. Actomyosin cable formation is accompanied by junctional rearrangements at the wound margin. We used in vivo time-lapse quantitative microscopy to show that clathrin, dynamin, and the ADP-ribosylation factor 6, three components of the endocytic machinery, accumulate around wounds in Drosophila melanogaster embryos in a process that requires calcium signaling and actomyosin contractility. Blocking endocytosis with pharmacological or genetic approaches disrupted wound repair. The defect in wound closure was accompanied by impaired removal of E-cadherin from the wound edge and defective actomyosin cable assembly. E-cadherin overexpression also resulted in reduced actin accumulation around wounds and slower wound closure. Reducing E-cadherin levels in embryos in which endocytosis was blocked rescued actin localization to the wound margin. Our results demonstrate a central role for endocytosis in wound healing and indicate that polarized E-cadherin endocytosis is necessary for actomyosin remodeling during embryonic wound repair. PMID:26304727

  12. Endocytosis and serpentine filopodia drive blebbishield-mediated resurrection of apoptotic cancer stem cells

    PubMed Central

    Jinesh, Goodwin G.; Kamat, Ashish M.

    2016-01-01

    The blebbishield emergency program helps to resurrect apoptotic cancer stem cells (CSCs) themselves. Understanding the mechanisms behind this program is essential to block resurrection of CSCs during cancer therapy. Here we demonstrate that endocytosis drives serpentine filopodia to construct blebbishields from apoptotic bodies and that a VEGF-VEGFR2-endocytosis-p70S6K axis governs subsequent transformation. Disengagement of RalGDS from E-cadherin initiates endocytosis of RalGDS and its novel interaction partners cdc42, VEGFR2, cleaved β-catenin, and PKC-ζ as well as its known interaction partner K-Ras. We also report novel interactions of p45S6K (cleaved p70S6K) and PKM-ζ with PAK-1 filopodia-forming machinery specifically in blebbishields. Thus, a RalGDS-endocytosis-filopodia-VEGFR2-K-Ras-p70S6K axis drives the blebbishield emergency program, and therapeutic targeting of this axis might prevent resurrection of CSCs during cancer therapy. PMID:27226900

  13. The Sla2p talin domain plays a role in endocytosis in Saccharomyces cerevisiae.

    PubMed Central

    Baggett, Jennifer J; D'Aquino, Katharine E; Wendland, Beverly

    2003-01-01

    Clathrin-binding adaptors play critical roles for endocytosis in multicellular organisms, but their roles in budding yeast have remained unclear. To address this question, we created a quadruple mutant yeast strain lacking the genes encoding the candidate clathrin adaptors Yap1801p, Yap1802p, and Ent2p and containing a truncated version of Ent1p, Ent1DeltaCBMp, missing its clathrin-binding motif. This strain was viable and competent for endocytosis, suggesting the existence of other redundant adaptor-like factors. To identify these factors, we mutagenized the quadruple clathrin adaptor mutant strain and selected cells that were viable in the presence of full-length Ent1p, but inviable with only Ent1DeltaCBMp; these strains were named Rcb (requires clathrin binding). One mutant strain, rcb432, contained a mutation in SLA2 that resulted in lower levels of a truncated protein lacking the F-actin binding talin homology domain. Analyses of this sla2 mutant showed that the talin homology domain is required for endocytosis at elevated temperature, that SLA2 exhibits genetic interactions with both ENT1 and ENT2, and that the clathrin adaptors and Sla2p together regulate the actin cytoskeleton and revealed conditions under which Yap1801p and Yap1802p contribute to viability. Together, our data support the view that Sla2p is an adaptor that links actin to clathrin and endocytosis. PMID:14704157

  14. Adaptor Protein 2 Regulates Receptor-Mediated Endocytosis and Cyst Formation in Giardia lamblia

    PubMed Central

    Rivero, Maria R.; Vranych, Cecilia V.; Bisbal, Mariano; Maletto, Belkys A.; Ropolo, Andrea S.; Touz, Maria C.

    2010-01-01

    Synopsis The parasite Giardia lamblia possesses peripheral vacuoles (PVs) that function as both endosomes and lysosomes and are implicated in the adaptation, differentiation, and survival of the parasite in different environments. The mechanisms by which Giardia traffics essential proteins to these organelles and regulates their secretion have important implications in the control of parasite dissemination. In this study, we describe the participation of the heterotetrameric clathrin-adaptor protein gAP2 complex in lysosomal protein trafficking. A specific monoclonal antibody against the medium subunit (gμ2) of gAP2 showed localization of this complex to the PVs, cytoplasm, and plasma membrane in the growing trophozoites. gAP2 also colocalized with clathrin in the PVs, suggesting its involvement in endocytosis. Uptake experiments using standard molecules for the study of endocytosis revealed that gAP2 specifically participated in the endocytosis of LDL. Targeted downregulation of the gene encoding gμ2 in growing and encysting trophozoites resulted in a large decrease in the amount of cell growth and cyst wall formation, suggesting a distinct mechanism in which gAP2 is directly involved in both endocytosis and vesicular trafficking. PMID:20199400

  15. Non-Ligand-Induced Dimerization is Sufficient to Initiate the Signalling and Endocytosis of EGF Receptor

    PubMed Central

    Kourouniotis, George; Wang, Yi; Pennock, Steven; Chen, Xinmei; Wang, Zhixiang

    2016-01-01

    The binding of epidermal growth factor (EGF) to EGF receptor (EGFR) stimulates cell mitogenesis and survival through various signalling cascades. EGF also stimulates rapid EGFR endocytosis and its eventual degradation in lysosomes. The immediate events induced by ligand binding include receptor dimerization, activation of intrinsic tyrosine kinase and autophosphorylation. However, in spite of intensified efforts, the results regarding the roles of these events in EGFR signalling and internalization is still very controversial. In this study, we constructed a chimeric EGFR by replacing its extracellular domain with leucine zipper (LZ) and tagged a green fluorescent protein (GFP) at its C-terminus. We showed that the chimeric LZ-EGFR-GFP was constitutively dimerized. The LZ-EGFR-GFP dimer autophosphorylated each of its five well-defined C-terminal tyrosine residues as the ligand-induced EGFR dimer does. Phosphorylated LZ-EGFR-GFP was localized to both the plasma membrane and endosomes, suggesting it is capable of endocytosis. We also showed that LZ-EGFR-GFP activated major signalling proteins including Src homology collagen-like (Shc), extracellular signal-regulated kinase (ERK) and Akt. Moreover, LZ-EGFR-GFP was able to stimulate cell proliferation. These results indicate that non-ligand induced dimerization is sufficient to activate EGFR and initiate cell signalling and EGFR endocytosis. We conclude that receptor dimerization is a critical event in EGF-induced cell signalling and EGFR endocytosis. PMID:27463710

  16. Lipid rafts-mediated endocytosis and physiology-based cell membrane traffic models of doxorubicin liposomes.

    PubMed

    Li, Yinghuan; Gao, Lei; Tan, Xi; Li, Feiyang; Zhao, Ming; Peng, Shiqi

    2016-08-01

    The clathrin-mediated endocytosis is likely a major mechanism of liposomes' internalization. A kinetic approach was used to assess the internalization mechanism of doxorubicin (Dox) loaded cationic liposomes and to establish physiology-based cell membrane traffic mathematic models. Lipid rafts-mediated endocytosis, including dynamin-dependent or -independent endocytosis of noncaveolar structure, was a dominant process. The mathematic models divided Dox loaded liposomes binding lipid rafts (B) into saturable binding (SB) and nonsaturable binding (NSB) followed by energy-driven endocytosis. The intracellular trafficking demonstrated early endosome-late endosome-lysosome or early/late endosome-cytoplasm-nucleus pathways. The three properties of liposome structures, i.e., cationic lipid, fusogenic lipid, and pegylation, were investigated to compare their contributions to cell membrane and intracellular traffic. The results revealed great contribution of cationic lipid DOTAP and fusogenic lipid DOPE to cell membrane binding and internalization. The valid Dox in the nuclei of HepG2 and A375 cells treated with cationic liposomes containing 40mol% of DOPE were 1.2-fold and 1.5-fold higher than that in the nuclei of HepG2 and A375 cells treated with liposomes containing 20mol% of DOPE, respectively, suggesting the dependence of cell type. This tendency was proportional to the increase of cell-associated total liposomal Dox. The mathematic models would be useful to predict intracellular trafficking of liposomal Dox. PMID:27117641

  17. Flipping the Switch on Clathrin-Mediated Endocytosis using Thermally Responsive Protein Microdomains

    PubMed Central

    Pastuszka, Martha K.; Okamoto, Curtis T.; Hamm-Alvarez, Sarah F.

    2014-01-01

    A ubiquitous approach to study protein function is to knock down activity (gene deletions, siRNA, small molecule inhibitors, etc) and study the cellular effects. Using a new methodology, this manuscript describes how to rapidly and specifically switch off cellular pathways using thermally responsive protein polymers. A small increase in temperature stimulates cytosolic elastin-like polypeptides (ELPs) to assemble microdomains. We hypothesize that ELPs fused to a key effector in a target macromolecular complex will sequester the complex within these microdomains, which will bring the pathway to a halt. To test this hypothesis, we fused ELPs to clathrin-light chain (CLC), a protein associated with clathrin-mediated endocytosis. Prior to thermal stimulation, the ELP fusion is soluble and clathrin-mediated endocytosis remains ‘on.’ Increasing the temperature induces the assembly of ELP fusion proteins into organelle-sized microdomains that switches clathrin-mediated endocytosis ‘off.’ These microdomains can be thermally activated and inactivated within minutes, are reversible, do not require exogenous chemical stimulation, and are specific for components trafficked within the clathrin-mediated endocytosis pathway. This temperature-triggered cell switch system represents a new platform for the temporal manipulation of trafficking mechanisms in normal and disease cell models and has applications for manipulating other intracellular pathways. PMID:25419208

  18. Loss of PiT-1 Results in Abnormal Endocytosis in the Yolk Sac Visceral Endoderm

    PubMed Central

    Wallingford, Mary C.; Giachelli, Cecilia M.

    2014-01-01

    PiT-1 protein is a transmembrane sodium-dependent phosphate (Pi) transporter. PiT-1 knock out (KO) embryos die from largely unknown causes by embryonic day (E) 12.5. We tested the hypothesis that PiT-1 is required for endocytosis in the embryonic yolk sac (YS) visceral endoderm (VE). Here we present data supporting that PiT-1 KO results in a YS remodeling defect and decreased endocytosis in the YS VE. The remodeling defect is not due to an upstream cardiomyocyte requirement for PiT-1, as SM22αCre-specific KO of PiT-1 in the developing heart and the YS mesodermal layer (ME) does not recapitulate the PiT-1 global KO phenotype. Furthermore, we find that high levels of PiT-1 protein localize to the YS VE apical membrane. Together these data support that PiT-1 is likely required in YS VE. During normal development maternal immunoglobulin (IgG) is endocytosed into YS VE and accumulates in the apical side of the VE in a specialized lysosome termed the apical vacuole (AV). We have identified a reduction in PiT-1 KO VE cell height and a striking loss of IgG accumulation in the PiT-1 KO VE. The endocytosis genes Tfeb, Lamtor2 and Snx2 are increased at the RNA level. Lysotracker Red staining reveals a loss of distinct AVs, and yolk sacs incubated ex vivo with phRODO Green Dextran for Endocytosis demonstrate a functional loss of endocytosis. As yolk sac endocytosis is controlled in part by microautophagy, but expression of LC3 had not been examined, we investigated LC3 expression during yolk sac development and found stage-specific LC3 RNA expression that is predominantly from the YS VE layer at E9.5. Normalized LC3-II protein levels are decreased in the PiT-1 KO YS, supporting a requirement for PiT-1 in autophagy in the YS. Therefore, we propose the novel idea that PiT-1 is central to the regulation of endocytosis and autophagy in the YS VE. PMID:25138534

  19. Stochastic resonance during a polymer translocation process

    NASA Astrophysics Data System (ADS)

    Mondal, Debasish; Muthukumar, Murugappan

    We study the translocation of a flexible polymer in a confined geometry subjected to a time-periodic external drive to explore stochastic resonance. We describe the equilibrium translocation process in terms of a Fokker-Planck description and use a discrete two-state model to describe the effect of the external driving force on the translocation dynamics. We observe that no stochastic resonance is possible if the associated free-energy barrier is purely entropic in nature. The polymer chain experiences a stochastic resonance effect only in presence of an energy threshold in terms of polymer-pore interaction. Once stochastic resonance is feasible, the chain entropy controls the optimal synchronization conditions significantly.

  20. DNA nanopore translocation in glutamate solutions

    NASA Astrophysics Data System (ADS)

    Plesa, C.; van Loo, N.; Dekker, C.

    2015-08-01

    Nanopore experiments have traditionally been carried out with chloride-based solutions. Here we introduce silver/silver-glutamate-based electrochemistry as an alternative, and study the viscosity, conductivity, and nanopore translocation characteristics of potassium-, sodium-, and lithium-glutamate solutions. We show that it has a linear response at typical voltages and can be used to detect DNA translocations through a nanopore. The glutamate anion also acts as a redox-capable thickening agent, with high-viscosity solutions capable of slowing down the DNA translocation process by up to 11 times, with a corresponding 7 time reduction in signal. These results demonstrate that glutamate can replace chloride as the primary anion in nanopore resistive pulse sensing.

  1. Listeria monocytogenes Internalin B Activates Junctional Endocytosis to Accelerate Intestinal Invasion

    PubMed Central

    Pentecost, Mickey; Kumaran, Jyothi; Ghosh, Partho; Amieva, Manuel R.

    2010-01-01

    Listeria monocytogenes (Lm) uses InlA to invade the tips of the intestinal villi, a location at which cell extrusion generates a transient defect in epithelial polarity that exposes the receptor for InlA, E-cadherin, on the cell surface. As the dying cell is removed from the epithelium, the surrounding cells reorganize to form a multicellular junction (MCJ) that Lm exploits to find its basolateral receptor and invade. By examining individual infected villi using 3D-confocal imaging, we uncovered a novel role for the second major invasin, InlB, during invasion of the intestine. We infected mice intragastrically with isogenic strains of Lm that express or lack InlB and that have a modified InlA capable of binding murine E-cadherin and found that Lm lacking InlB invade the same number of villi but have decreased numbers of bacteria within each infected villus tip. We studied the mechanism of InlB action at the MCJs of polarized MDCK monolayers and find that InlB does not act as an adhesin, but instead accelerates bacterial internalization after attachment. InlB locally activates its receptor, c-Met, and increases endocytosis of junctional components, including E-cadherin. We show that MCJs are naturally more endocytic than other sites of the apical membrane, that endocytosis and Lm invasion of MCJs depends on functional dynamin, and that c-Met activation by soluble InlB or hepatocyte growth factor (HGF) increases MCJ endocytosis. Also, in vivo, InlB applied through the intestinal lumen increases endocytosis at the villus tips. Our findings demonstrate a two-step mechanism of synergy between Lm's invasins: InlA provides the specificity of Lm adhesion to MCJs at the villus tips and InlB locally activates c-Met to accelerate junctional endocytosis and bacterial invasion of the intestine. PMID:20485518

  2. Real-time monitoring of NKCC2 endocytosis by total internal reflection fluorescence (TIRF) microscopy.

    PubMed

    Jaykumar, Ankita Bachhawat; Caceres, Paulo S; Sablaban, Ibrahim; Tannous, Bakhos A; Ortiz, Pablo A

    2016-01-15

    The apical Na-K-2Cl cotransporter (NKCC2) mediates NaCl reabsorption by the thick ascending limb (TAL). The amount of NKCC2 at the apical membrane of TAL cells is determined by exocytic delivery, recycling, and endocytosis. Surface biotinylation allows measurement of NKCC2 endocytosis, but it has low time resolution and does not allow imaging of the dynamic process of endocytosis. We hypothesized that total internal reflection fluorescence (TIRF) microscopy imaging of labeled NKCC2 would allow monitoring of NKCC2 endocytosis in polarized Madin-Darby canine kidney (MDCK) and TAL cells. Thus we generated a NKCC2 construct containing a biotin acceptor domain (BAD) sequence between the transmembrane domains 5 and 6. Once expressed in polarized MDCK or TAL cells, surface NKCC2 was specifically biotinylated by exogenous biotin ligase (BirA). We also demonstrate that expression of a secretory form of BirA in TAL cells induces metabolic biotinylation of NKCC2. Labeling biotinylated surface NKCC2 with fluorescent streptavidin showed that most apical NKCC2 was located within small discrete domains or clusters referred to as "puncta" on the TIRF field. NKCC2 puncta were observed to disappear from the TIRF field, indicating an endocytic event which led to a decrease in the number of surface puncta at a rate of 1.18 ± 0.16%/min in MDCK cells, and a rate 1.09 ± 0.08%/min in TAL cells (n = 5). Treating cells with a cholesterol-chelating agent (methyl-β-cyclodextrin) completely blocked NKCC2 endocytosis. We conclude that TIRF microscopy of labeled NKCC2 allows the dynamic imaging of individual endocytic events at the apical membrane of TAL cells. PMID:26538436

  3. Phosphorylation decreases ubiquitylation of the thiazide-sensitive cotransporter NCC and subsequent clathrin-mediated endocytosis.

    PubMed

    Rosenbaek, Lena L; Kortenoeven, Marleen L A; Aroankins, Takwa S; Fenton, Robert A

    2014-05-01

    The thiazide-sensitive sodium chloride cotransporter, NCC, is the major NaCl transport protein in the distal convoluted tubule (DCT). The transport activity of NCC can be regulated by phosphorylation, but knowledge of modulation of NCC trafficking by phosphorylation is limited. In this study, we generated novel tetracycline-inducible Madin-Darby canine kidney type I (MDCKI) cell lines expressing NCC to examine the role of NCC phosphorylation and ubiquitylation on NCC endocytosis. In MDCKI-NCC cells, NCC was highly glycosylated at molecular weights consistent with NCC monomers and dimers. NCC constitutively cycles to the apical plasma membrane of MDCKI-NCC cells, with 20-30% of the membrane pool of NCC internalized within 30 min. The use of dynasore, PitStop2, methyl-β-cyclodextrin, nystatin, and filipin (specific inhibitors of either clathrin-dependent or -independent endocytosis) demonstrated that NCC is internalized via a clathrin-mediated pathway. Reduction of endocytosis resulted in greater levels of NCC in the plasma membrane. Immunogold electron microscopy confirmed the association of NCC with the clathrin-mediated internalization pathway in rat DCT cells. Compared with controls, inducing phosphorylation of NCC via low chloride treatment or mimicking phosphorylation by replacing Thr-53, Thr-58, and Ser-71 residues with Asp resulted in increased membrane abundance and reduced rates of NCC internalization. NCC ubiquitylation was lowest in the conditions with greatest NCC phosphorylation, thus providing a mechanism for the reduced endocytosis. In conclusion, our data support a model where NCC is constitutively cycled to the plasma membrane, and upon stimulation, it can be phosphorylated to both increase NCC activity and decrease NCC endocytosis, together increasing NaCl transport in the DCT. PMID:24668812

  4. Effect of sulfur dioxide on pulmonary macrophage endocytosis at rest and during exercise

    SciTech Connect

    Skornik, W.A.; Brain, J.D. )

    1990-09-01

    Inhaled SO2 may cause damage by injuring upper airways. To what extent can SO2 also alter pulmonary macrophage function in the parenchyma and what is the impact of exercise We studied the effect of SO2 on pulmonary macrophage endocytosis in resting and in exercising animals by measuring the rates of macrophage endocytosis in situ for 1 h of a test particle of insoluble radioactive colloidal gold (198Au), 1, 24, or 48 h after inhalation exposure to SO2. Resting hamsters exposed for 4 h to 50 ppm SO2 had no significant reduction in macrophage endocytosis compared with air-breathing control hamsters. However, if hamsters were exposed to the same concentration of SO2 while continuously running (40 min at 0.9 km/h), macrophage endocytosis was significantly reduced 1 h after exposure even though the exposure time was only one-sixth as long. Twenty-four hours later, the percentage of gold ingested by pulmonary macrophages remained significantly depressed. By 48 h, the rate had returned to control values. Exercise alone did not affect endocytosis. Hamsters exposed to 50 ppm SO2, with or without exercise, also showed significant reductions in the number of lavaged macrophages. This decrease was greatest and most persistent in the SO2 plus exercise group. These data indicate that even when animals are exposed to water-soluble gases, which are normally removed by the upper airways, exercise can potentiate damage to more peripheral components of the pulmonary defense system such as the macrophage.

  5. Rift Valley Fever Virus Strain MP-12 Enters Mammalian Host Cells via Caveola-Mediated Endocytosis

    PubMed Central

    Harmon, Brooke; Schudel, Benjamin R.; Maar, Dianna; Kozina, Carol; Ikegami, Tetsuro; Tseng, Chien-Te Kent

    2012-01-01

    Rift Valley fever virus (RVFV) is a zoonotic pathogen capable of causing serious morbidity and mortality in both humans and livestock. The lack of efficient countermeasure strategies, the potential for dispersion into new regions, and the pathogenesis in humans and livestock make RVFV a serious public health concern. The receptors, cellular factors, and entry pathways used by RVFV and other members of the family Bunyaviridae remain largely uncharacterized. Here we provide evidence that RVFV strain MP-12 uses dynamin-dependent caveola-mediated endocytosis for cell entry. Caveolae are lipid raft domains composed of caveolin (the main structural component), cholesterol, and sphingolipids. Caveola-mediated endocytosis is responsible for the uptake of a wide variety of host ligands, as well as bacteria, bacterial toxins, and a number of viruses. To determine the cellular entry mechanism of RVFV, we used small-molecule inhibitors, RNA interference (RNAi), and dominant negative (DN) protein expression to inhibit the major mammalian cell endocytic pathways. Inhibitors and RNAi specific for macropinocytosis and clathrin-mediated endocytosis had no effect on RVFV infection. In contrast, inhibitors of caveola-mediated endocytosis, and RNAi targeted to caveolin-1 and dynamin, drastically reduced RVFV infection in multiple cell lines. Expression of DN caveolin-1 also reduced RVFV infection significantly, while expression of DN EPS15, a protein required for the assembly of clathrin-coated pits, and DN PAK-1, an obligate mediator of macropinocytosis, had no significant impact on RVFV infection. These results together suggest that the primary mechanism of RVFV MP-12 uptake is dynamin-dependent, caveolin-1-mediated endocytosis. PMID:22993156

  6. Analyzing disease risks associated with translocations.

    PubMed

    Sainsbury, Anthony W; Vaughan-Higgins, Rebecca J

    2012-06-01

    Translocations of species are expected to be used increasingly to counter the undesirable effects of anthropogenic changes to ecosystems, including loss of species. Methods to assess the risk of disease associated with translocations have been compiled in a comprehensive manual of disease-risk analysis for movement of domestic animals. We used this manual to devise a qualitative method for assessing the probability of the occurrence of disease in wild animals associated with translocations. We adapted the method such that we considered a parasite (any agent of infectious or noninfectious disease) a hazard if it or the host had crossed an ecological or geographical barrier and was novel to the host. We included in our analyses hazards present throughout the translocation pathway derived from the interactions between host immunity and the parasite, the effect of parasites on populations, the effect of noninfectious disease agents, and the effect of stressors on host-parasite interactions. We used the reintroduction of Eurasian Cranes (Grus grus) to England to demonstrate our method. Of the 24 hazards identified, 1 was classified as high risk (coccidia) and 5 were medium risk (highly pathogenic avian influenza virus, Mycobacterium avium, Aspergillus fumigatus, tracheal worms [Syngamus sp. and Cyathostoma sp.], and Tetrameres spp.). Seventeen other hazards were considered low or very low risk. In the absence of better information on the number, identity, distribution, and pathogenicity of parasites of wild animals, there is uncertainty in the risk of disease to translocated animals and recipient populations. Surveys of parasites in source and destination populations and detailed health monitoring after release will improve the information available for future analyses of disease risk. We believe our method can be adapted to assess the risks of disease in other translocated populations. PMID:22533691

  7. Protein Translocation across the Rough Endoplasmic Reticulum

    PubMed Central

    Mandon, Elisabet C.; Trueman, Steven F.; Gilmore, Reid

    2013-01-01

    The rough endoplasmic reticulum is a major site of protein biosynthesis in all eukaryotic cells, serving as the entry point for the secretory pathway and as the initial integration site for the majority of cellular integral membrane proteins. The core components of the protein translocation machinery have been identified, and high-resolution structures of the targeting components and the transport channel have been obtained. Research in this area is now focused on obtaining a better understanding of the molecular mechanism of protein translocation and membrane protein integration. PMID:23251026

  8. What drives the translocation of proteins?

    PubMed Central

    Simon, S M; Peskin, C S; Oster, G F

    1992-01-01

    We propose that protein translocation across membranes is driven by biased random thermal motion. This "Brownian ratchet" mechanism depends on chemical asymmetries between the cis and trans sides of the membrane. Several mechanisms could contribute to rectifying the thermal motion of the protein, such as binding and dissociation of chaperonins to the translocating chain, chain coiling induced by pH and/or ionic gradients, glycosylation, and disulfide bond formation. This helps explain the robustness and promiscuity of these transport systems. Images PMID:1349170

  9. End4p/Sla2p interacts with actin-associated proteins for endocytosis in Saccharomyces cerevisiae.

    PubMed

    Wesp, A; Hicke, L; Palecek, J; Lombardi, R; Aust, T; Munn, A L; Riezman, H

    1997-11-01

    end4-1 was isolated as a temperature-sensitive endocytosis mutant. We cloned and sequenced END4 and found that it is identical to SLA2/MOP2. This gene is required for growth at high temperature, viability in the absence of Abp1p, polarization of the cortical actin cytoskeleton, and endocytosis. We used a mutational analysis of END4 to correlate in vivo functions with regions of End4p and we found that two regions of End4p participate in endocytosis but that the talin-like domain of End4p is dispensable. The N-terminal domain of End4p is required for growth at high temperature, endocytosis, and actin organization. A central coiled-coil domain of End4p is necessary for formation of a soluble sedimentable complex. Furthermore, this domain has an endocytic function that is redundant with the function(s) of ABP1 and SRV2. The endocytic function of Abp1p depends on its SH3 domain. In addition we have isolated a recessive negative allele of SRV2 that is defective for endocytosis. Combined biochemical, functional, and genetic analysis lead us to propose that End4p may mediate endocytosis through interaction with other actin-associated proteins, perhaps Rvs167p, a protein essential for endocytosis. PMID:9362070

  10. Detection of interchromosomal translocations within the Triticeae by RFLP analysis.

    PubMed

    King, I P; Purdie, K A; Liu, C J; Reader, S M; Pittaway, T S; Orford, S E; Miller, T E

    1994-10-01

    Twenty-three wheat/alien addition or substitution lines were screened using restriction fragment length polymorphisms for the presence or absence of 4/5 and 4/7 reciprocal translocations in the alien chromosomes. Such translocations have previously been identified in wheat and rye. Group 4 and group 5 Aegilops umbellulata, Triticum urartu, and Thinopyrum bessarabicum chromosomes were found to carry 4/5 translocations. Evidence for a 4/7 translocation was also found in Secale montanum. The presence of the 4/5 translocations in T. urartu indicates that the translocation predates the polyploidization of wheat. The implications of these results are discussed. PMID:18470131

  11. Endocytosis of secretory granules in mouse pancreatic beta-cells evoked by transient elevation of cytosolic calcium.

    PubMed Central

    Eliasson, L; Proks, P; Ammälä, C; Ashcroft, F M; Bokvist, K; Renström, E; Rorsman, P; Smith, P A

    1996-01-01

    1. To investigate the mechanisms regulating the reuptake of secretory granule membranes following regulated exocytosis, we have monitored changes in cell capacitance in single pancreatic beta-cells. 2. Membrane retrieval (endocytosis) occurred both in a continuous manner and in abrupt steps, corresponding to the simultaneous retrieval of 50-100 granules. The large endocytotic steps were associated with a conductance change of about 1 nS which we attribute to the formation of a fission pore with a pore radius of approximately 1 nm. 3. In some cells, we observed large amplitude capacitance fluctuations, suggesting that aggregates of granules are connected to the plasma membrane by a single pore and are subsequently retrieved as a single unit. 4. Endocytosis was evoked by elevation of cytosolic [Ca2+]i, but once initiated, a sustained increase in [Ca2+]i was not required for endocytosis to continue. 5. The [Ca2+]i dependence of exo- and endocytosis was studied by photorelease of Ca2+ from the 'caged' precursor Ca(2+)-nitrophenyl-EGTA (Ca(2+)-NP-EGTA). Both exo- and endocytosis were initiated at between 0.5 and 2 microM Cai(2+). The rate of endocytosis saturated above 2 microM Cai(2+), whereas exocytosis continued to increase up to 4 microM Cai(2+). The maximum rate of endocytosis was < 25% of that of exocytosis. 6. Unlike exocytosis, endocytosis proceeded equally well in the presence or absence of Mg-ATP. 7. Our data indicate that in the pancreatic beta-cell, exocytosis and endocytosis are regulated by different mechanisms. Images Figure 6 Figure 8 PMID:8799897

  12. Mitochondrial translocation of APE1 relies on the MIA pathway.

    PubMed

    Barchiesi, Arianna; Wasilewski, Michal; Chacinska, Agnieszka; Tell, Gianluca; Vascotto, Carlo

    2015-06-23

    APE1 is a multifunctional protein with a fundamental role in repairing nuclear and mitochondrial DNA lesions caused by oxidative and alkylating agents. Unfortunately, comprehensions of the mechanisms regulating APE1 intracellular trafficking are still fragmentary and contrasting. Recent data demonstrate that APE1 interacts with the mitochondrial import and assembly protein Mia40 suggesting the involvement of a redox-assisted mechanism, dependent on the disulfide transfer system, to be responsible of APE1 trafficking into the mitochondria. The MIA pathway is an import machinery that uses a redox system for cysteine enriched proteins to drive them in this compartment. It is composed by two main proteins: Mia40 is the oxidoreductase that catalyzes the formation of the disulfide bonds in the substrate, while ALR reoxidizes Mia40 after the import. In this study, we demonstrated that: (i) APE1 and Mia40 interact through disulfide bond formation; and (ii) Mia40 expression levels directly affect APE1's mitochondrial translocation and, consequently, play a role in the maintenance of mitochondrial DNA integrity. In summary, our data strongly support the hypothesis of a redox-assisted mechanism, dependent on Mia40, in controlling APE1 translocation into the mitochondrial inner membrane space and thus highlight the role of this protein transport pathway in the maintenance of mitochondrial DNA stability and cell survival. PMID:25956655

  13. Molecular determinants of nucleolar translocation of RNA helicase A

    SciTech Connect

    Liu Zhe; Kenworthy, Rachael; Green, Christopher; Tang, Hengli

    2007-10-15

    RNA helicase A (RHA) is a member of the DEAH-box family of DNA/RNA helicases involved in multiple cellular processes and the life cycles of many viruses. The subcellular localization of RHA is dynamic despite its steady-state concentration in the nucleoplasm. We have previously shown that it shuttles rapidly between the nucleus and the cytoplasm by virtue of a bidirectional nuclear transport domain (NTD) located in its carboxyl terminus. Here, we investigate the molecular determinants for its translocation within the nucleus and, more specifically, its redistribution from the nucleoplasm to nucleolus or the perinucleolar region. We found that low temperature treatment, transcription inhibition or replication of hepatitis C virus caused the intranuclear redistribution of the protein, suggesting that RHA shuttles between the nucleolus and nucleoplasm and becomes trapped in the nucleolus or the perinucleolar region upon blockade of transport to the nucleoplasm. Both the NTD and ATPase activity were essential for RHA's transport to the nucleolus or perinucleolar region. One of the double-stranded RNA binding domains (dsRBD II) was also required for this nucleolar translocation (NoT) phenotype. RNA interference studies revealed that RHA is essential for survival of cultured hepatoma cells and the ATPase activity appears to be important for this critical role.

  14. Effects of particle size and ligand density on the kinetics of receptor-mediated endocytosis of nanoparticles

    NASA Astrophysics Data System (ADS)

    Yuan, Hongyan; Zhang, Sulin

    2010-01-01

    We elucidate, from thermodynamic arguments, the governing factors of receptor-mediated endocytosis of nanoparticles (NPs). We show that the endocytic energetics specifies a minimal particle size and a minimal ligand density below which endocytosis is not possible. Due to the entropic penalty involved in ligand-receptor binding, endocytosis may occur with a large fraction of ligands unbound with receptors. Our analyses suggest that the endocytic time depends interrelatedly on the particle size and ligand density. There exists an optimal condition at which the endocytic time minimizes. These findings may provide valuable guidance to the rational designs of NP-based biomarkers and anticancer bioagents.

  15. Delayed translocation of NGFI-B/RXR in glutamate stimulated neurons allows late protection by 9-cis retinoic acid

    SciTech Connect

    Mathisen, Gro H.; Fallgren, Asa B.; Strom, Bjorn O.; Boldingh Debernard, Karen A.; Mohebi, Beata U.; Paulsen, Ragnhild E.

    2011-10-14

    Highlights: {yields} NGFI-B and RXR translocate out of the nucleus after glutamate treatment. {yields} Arresting NGFI-B/RXR in the nucleus protects neurons from excitotoxicity. {yields} Late protection by 9-cis RA is possible due to a delayed translocation of NGFI-B/RXR. -- Abstract: Nuclear receptor and apoptosis inducer NGFI-B translocates out of the nucleus as a heterodimer with RXR in response to different apoptosis stimuli, and therefore represents a potential pharmacological target. We found that the cytosolic levels of NGFI-B and RXR{alpha} were increased in cultures of cerebellar granule neurons 2 h after treatment with glutamate (excitatory neurotransmitter in the brain, involved in stroke). To find a time-window for potential intervention the neurons were transfected with gfp-tagged expressor plasmids for NGFI-B and RXR. The default localization of NGFI-Bgfp and RXRgfp was nuclear, however, translocation out of the nucleus was observed 2-3 h after glutamate treatment. We therefore hypothesized that the time-window between treatment and translocation would allow late protection against neuronal death. The RXR ligand 9-cis retinoic acid was used to arrest NGFI-B and RXR in the nucleus. Addition of 9-cis retinoic acid 1 h after treatment with glutamate reduced the cytosolic translocation of NGFI-B and RXR{alpha}, the cytosolic translocation of NGFI-Bgfp observed in live neurons, as well as the neuronal death. However, the reduced translocation and the reduced cell death were not observed when 9-cis retinoic acid was added after 3 h. Thus, late protection from glutamate induced death by addition of 9-cis retinoic acid is possible in a time-window after apoptosis induction.

  16. Safety of probiotics: translocation and infection.

    PubMed

    Liong, Min-Tze

    2008-04-01

    The long history of safety has contributed to the acceptance of probiotics as a safe food adjunct. Consequently, many probiotic products and their applications have been granted GRAS (generally regarded as safe) status. However, this classification has been frequently generalized for all probiotic strains regardless of their application. Cases of probiotics from the genera Lactobacillus, Leuconostoc, Pediococcus, Enterococcus, and Bifidobacterium have been isolated from infection sites, leading to the postulation that these probiotics can translocate. Probiotic translocation is difficult to induce in healthy humans, and even if it does occur, detrimental effects are rare. Despite this, various reports have documented health-damaging effects of probiotic translocation in immunocompromised patients. Due to probiotics' high degree of safety and their morphological confusion with other pathogenic bacteria, they are often overlooked as contaminants and are least suspected as pathogens. However, the antibiotic resistance of some strains has increased the complexity of their eradication. Probiotic translocation and infection deserve further investigation and should become a facet of safety assessment so the negative effects of probiotics do not outweigh the benefits. PMID:18366533

  17. Familial cryptic translocation in Angelman syndrome

    SciTech Connect

    Weyerts, L.K.; Wiley, J.E.; Loud, K.M.

    1994-09-01

    The majority of patients with Angelman syndrome have been shown to have a cytogenetic or molecular deletion on the maternally derived chromosome 15. We report on a case of Angelman syndrome in which this deletion occurs as an unbalanced cryptic translocation involving chromosomes 14 and 15. The proband was diagnosed clinically as having Angelman syndrome. Multiple cytogenetic studies were done without detecting any deletion. When DNA probes (Oncor) specific for the Prader Willi/Angelman locus became available, the patient was restudied and found to be deleted for {open_quotes}region A{close_quotes} (D15S11) but not for {open_quotes}region B{close_quotes} (GABRB3). No other abnormality was detected. The proband`s mother was then studied. The chromosome 15 marker probe and D15S11 were detected on different chromosomes. Using alpha-satellite probes, a cryptic 14;15 translocation was uncovered. This balanced translocation was also found to be carried by the sister of the proband. This case, along with a case presented at the 1993 ASHG meeting, illustrates the need for using acrocentric probes when studying Angelman syndrome patients. The proband was studied using additional probes specific for this region and found to be deleted for SNRPN but not for D15S10. The breakpoint of the translocation in this patient delineates the smallest deletion of the Angelman syndrome region reported to date and therefore may represent the specific gene involved.

  18. Investigating binding particles distribution effects on polymer translocation through nanopore

    NASA Astrophysics Data System (ADS)

    Haji Abdolvahab, Rouhollah

    2016-03-01

    Chaperone driven polymer translocation is an important model for biopolymer's translocation in vivo. Binding proteins spatial distribution is a significant factor in calculating the translocation time of the polymer in this type of translocation. Here using a dynamical Monte Carlo simulation we compare the results of the usual uniform distribution with the exponential distribution of different rates for a stiff polymer. Our simulation results show that just by changing the chaperones spatial distribution the translocation time of the biopolymer will change by as large as an order. It can change the translocation regime of the polymer completely from a diffusive to a ballistic one. Although generally increasing the exponential rate and the background concentration will increase the translocation velocity, it is not always true and one should consider both the sequence and the background concentration. We show that the results depend on the sequence and changing the distribution rates for increasing the translocation velocity will change the whole Probability Density Function (PDF) of the polymer translocation time accordance to its sequence. The translocation time sequence dependency will change in the extreme cases e.g. in the high exponential rate. Investigating the binding protein size, λ, also shows the importance of the so called parking lot effect in distribution dependency of the translocation velocity. Although there is not any important dependency for λ = 1, translocation time depends clearly on the chaperone spatial distribution for the case of λ ≥ 2.

  19. The juxtamembrane region of synaptotagmin 1 interacts with dynamin 1 and regulates vesicle fission during compensatory endocytosis in endocrine cells.

    PubMed

    McAdam, Robyn L; Varga, Kelly T; Jiang, Zhongjiao; Young, Fiona B; Blandford, Vanessa; McPherson, Peter S; Gong, Liang-Wei; Sossin, Wayne S

    2015-06-15

    Synaptotagmin 1 (Syt1) is a synaptic vesicle protein that is important for the kinetics of both exocytosis and endocytosis, and is thus a candidate molecule to link these two processes. Although the tandem Ca(2+)-binding C2 domains of Syt1 have important roles in exocytosis and endocytosis, the function of the conserved juxtamembrane (jxm) linker region has yet to be determined. We now demonstrate that the jxm region of Syt1 interacts directly with the pleckstrin homology (PH) domain of the endocytic protein dynamin 1. By using cell-attached capacitance recordings with millisecond time resolution to monitor clathrin-mediated endocytosis of single vesicles in neuroendocrine chromaffin cells, we find that loss of this interaction prolongs the lifetime of the fission pore leading to defects in the dynamics of vesicle fission. These results indicate a previously undescribed interaction between two major regulatory proteins in the secretory vesicle cycle and that this interaction regulates endocytosis. PMID:25964652

  20. Dynamic spectrin/ankyrin-G microdomains promote lateral membrane assembly by opposing endocytosis

    PubMed Central

    Jenkins, Paul M.; He, Meng; Bennett, Vann

    2015-01-01

    Current physical models for plasma membranes emphasize dynamic 10- to 300-nm compartments at thermodynamic equilibrium but subject to thermal fluctuations. However, epithelial lateral membranes contain micrometer-sized domains defined by an underlying membrane skeleton composed of spectrin and its partner ankyrin-G. We demonstrate that these spectrin/ankyrin-G domains exhibit local microtubule-dependent movement on a time scale of minutes and encounter most of the lateral membranes within an hour. Spectrin/ankyrin-G domains exclude clathrin and clathrin-dependent cargo, and inhibit both receptor-mediated and bulk endocytosis. Moreover, inhibition of endocytosis fully restores lateral membrane height in spectrin- or ankyrin-G–depleted cells. These findings support a non-equilibrium cellular-scale model for epithelial lateral membranes, where spectrin/ankyrin-G domains actively patrol the plasma membrane, analogous to “window washers,” and promote columnar morphology by blocking membrane uptake. PMID:26523289

  1. Three-dimensional imaging of single nanotube molecule endocytosis on plasmonic substrates

    NASA Astrophysics Data System (ADS)

    Hong, Guosong; Wu, Justin Z.; Robinson, Joshua T.; Wang, Hailiang; Zhang, Bo; Dai, Hongjie

    2012-02-01

    Investigating the cellular internalization pathways of single molecules or single nano objects is important to understanding cell-matter interactions, and to applications in drug delivery and discovery. Imaging and tracking the motion of single molecules on cell plasma membranes require high spatial resolution in three dimensions. Fluorescence imaging along the axial dimension with nanometre resolution has been highly challenging, but critical to revealing displacements in transmembrane events. Here, utilizing a plasmonic ruler based on the sensitive distance dependence of near-infrared fluorescence enhancement of carbon nanotubes on a gold plasmonic substrate, we probe ~10 nm scale transmembrane displacements through changes in nanotube fluorescence intensity, enabling observations of single nanotube endocytosis in three dimensions. Cellular uptake and transmembrane displacements show clear dependences to temperature and clathrin assembly on cell membrane, suggesting that the cellular entry mechanism for a nanotube molecule is via clathrin-dependent endocytosis through the formation of clathrin-coated pits on the cell membrane.

  2. Endosomes Derived from Clathrin-Independent Endocytosis Serve as Precursors for Endothelial Lumen Formation

    PubMed Central

    Porat-Shliom, Natalie; Weigert, Roberto; Donaldson, Julie G.

    2013-01-01

    Clathrin-independent endocytosis (CIE) is a form of bulk plasma membrane (PM) endocytosis that allows cells to sample and evaluate PM composition. Once in endosomes, the internalized proteins and lipids can be recycled back to the PM or delivered to lysosomes for degradation. Endosomes arising from CIE contain lipid and signaling molecules suggesting that they might be involved in important biological processes. During vasculogenesis, new blood vessels are formed from precursor cells in a process involving internalization and accumulation of endocytic vesicles. Here, we found that CIE has a role in endothelial lumen formation. Specifically, we found that human vascular endothelial cells (HUVECs) utilize CIE for internalization of distinct cargo molecules and that in three-dimensional cultures CIE membranes are delivered to the newly formed lumen. PMID:24282620

  3. Pharmacological inhibitors of exocytosis and endocytosis: novel bullets for old targets.

    PubMed

    Ivanov, Andrei I

    2014-01-01

    Pharmacological inhibitors of vesicle trafficking possess great promise as valuable analytical tools for the study of a variety of biological processes and as potential therapeutic agents to fight microbial infections and cancer. However, many commonly used trafficking inhibitors are characterized by poor selectivity that diminishes their use in solving basic problems of cell biology or drug development. Recent high-throughput chemical screens intensified the search for novel modulators of vesicle trafficking, and successfully identified a number of small molecules that inhibit exocytosis and endocytosis in different types of mammalian cells. This chapter provides a systematic overview of recently discovered inhibitors of vesicle trafficking. It describes cellular effects and mechanisms of action of novel inhibitors of exocytosis and endocytosis. Furthermore, it pays special attention to the selectivity and possible off-target effects of these inhibitors. PMID:24947371

  4. Eph/ephrin molecules—a hub for signaling and endocytosis

    PubMed Central

    Pitulescu, Mara E.; Adams, Ralf H.

    2010-01-01

    The development, homeostasis, and regeneration of complex organ systems require extensive cell–cell communication to ensure that different cells proliferate, migrate, differentiate, assemble, and function in a coordinated and timely fashion. Eph receptor tyrosine kinases and their ephrin ligands are critical regulators of cell contact-dependent signaling and patterning. Eph/ephrin binding can lead to very diverse biological readouts such as adhesion versus repulsion, or increased versus decreased motility. Accordingly, depending on cell type and context, a limited and conserved set of receptor–ligand interactions is translated into a large variety of downstream signaling processes. Recent evidence indicates that the endocytosis of Eph/ephrin molecules, together with the internalization of various associated tissue-specific effectors, might be one of the key principles responsible for such highly diverse and adaptable biological roles. Here, we summarize recent insights into Eph/ephrin signaling and endocytosis in three biological systems; i.e., the brain, intestine, and vasculature. PMID:21078817

  5. Microtubule Motors Power Plasma Membrane Tubulation in Clathrin-Independent Endocytosis

    PubMed Central

    Day, Charles A; Baetz, Nicholas W; Copeland, Courtney A; Kraft, Lewis J; Han, Bing; Tiwari, Ajit; Drake, Kimberly R; De Luca, Heidi; Chinnapen, Daniel J-F; Davidson, Michael W; Holmes, Randall K; Jobling, Michael G; Schroer, Trina A; Lencer, Wayne I; Kenworthy, Anne K

    2015-01-01

    How the plasma membrane is bent to accommodate clathrin-independent endocytosis remains uncertain. Recent studies suggest Shiga and cholera toxin induce membrane curvature required for their uptake into clathrin-independent carriers by binding and cross-linking multiple copies of their glycosphingolipid receptors on the plasma membrane. But it remains unclear if toxin-induced sphingolipid crosslinking provides sufficient mechanical force for deforming the plasma membrane, or if host cell factors also contribute to this process. To test this, we imaged the uptake of cholera toxin B-subunit into surface-derived tubular invaginations. We found that cholera toxin mutants that bind to only one glycosphingolipid receptor accumulated in tubules, and that toxin binding was entirely dispensable for membrane tubulations to form. Unexpectedly, the driving force for tubule extension was supplied by the combination of microtubules, dynein and dynactin, thus defining a novel mechanism for generating membrane curvature during clathrin-independent endocytosis. PMID:25690058

  6. Enhanced endocytosis of nano-curcumin in nasopharyngeal cancer cells: An atomic force microscopy study

    NASA Astrophysics Data System (ADS)

    Prasanth, R.; Nair, Greshma; Girish, C. M.

    2011-10-01

    Recent studies in drug development have shown that curcumin can be a good competent due to its improved anticancer, antioxidant, anti-proliferative, and anti-inflammatory activities. A detailed real time characterization of drug (curcumin)-cell interaction is carried out in human nasopharyngeal cancer cells using atomic force microscopy. Nanocurcumin shows an enhanced uptake over micron sized drugs attributed to the receptor mediated route. Cell membrane stiffness plays a critical role in the drug endocytosis in nasopharyngeal cancer cells.

  7. Role of flotillins in the endocytosis of GPCR in salivary gland epithelial cells.

    PubMed

    Park, Moon-Yong; Kim, Nahyun; Wu, Li-Ling; Yu, Guang-Yan; Park, Kyungpyo

    2016-08-01

    Endocytosis has numerous functions in cellular homeostasis. Defects in the endocytic pathway of receptors may lead to dysfunction of salivary gland secretion. Therefore, elucidating the complex mechanisms of endocytosis may facilitate solutions for disease treatment and prevention. The muscarinic type 3 receptor (M3R), a G-protein-coupled receptor (GPCR) located in the plasma membrane, is involved in numerous physiological activities such as smooth muscle contraction and saliva secretion. M3R enters cells through clathrin-mediated endocytosis (CME), while flotillins (flot-1 and -2), highly conserved proteins residing in lipid-raft microdomains, make use of clathrin-independent endocytosis (CIE) for their internalization. Since these two proteins use two discrete pathways for endocytic entry, the association of flotillins with CME is poorly understood. We examined whether flotillins play a role in CME of M3R using immunoblotting, immunocytochemistry, confocal immunofluorescence microscopy, co-immunoprecipitation, and RNA interference techniques in secretory epithelial cells. Upon stimulation with a cholinergic agonist, M3R, flot-1, and flot-2 each internalized from the plasma membrane into intracellular sites. The addition of chlorpromazine and cytochalasin D, well-known inhibitors of CME, inhibited internalization of M3R via CME. Filipin III and methyl-β-cyclodextrin (mβCD) acting as lipid raft inhibitors disrupted internalization of flot-1/2 via CIE. Interestingly, filipin III and mβCD slightly reduced expression level of M3R whereas chlorpromazine and cytochalasin D did not affect internalization of the flotillin isoforms. M3R and flot-1/2 colocalized and interacted with each other as they entered the cytosol during limited periods of incubation. Moreover, knockdown of flot-1 or -2 by flotillin-specific siRNA prevented internalization and reduced the endocytic efficiency of M3R. Our results suggest that flot-1 and -2 are partially involved in CME of M3R by

  8. Aspergillus nidulans Ambient pH Signaling Does Not Require Endocytosis

    PubMed Central

    Lucena-Agell, Daniel; Galindo, Antonio; Arst, Herbert N.

    2015-01-01

    Aspergillus nidulans (Pal) ambient pH signaling takes place in cortical structures containing components of the ESCRT pathway, which are hijacked by the alkaline pH-activated, ubiquitin-modified version of the arrestin-like protein PalF and taken to the plasma membrane. There, ESCRTs scaffold the assembly of dedicated Pal proteins acting downstream. The molecular details of this pathway, which results in the two-step proteolytic processing of the transcription factor PacC, have received considerable attention due to the key role that it plays in fungal pathogenicity. While current evidence strongly indicates that the pH signaling role of ESCRT complexes is limited to plasma membrane-associated structures where PacC proteolysis would take place, the localization of the PalB protease, which almost certainly catalyzes the first and only pH-regulated proteolytic step, had not been investigated. In view of ESCRT participation, this formally leaves open the possibility that PalB activation requires endocytic internalization. As endocytosis is essential for hyphal growth, nonlethal endocytic mutations are predicted to cause an incomplete block. We used a SynA internalization assay to measure the extent to which any given mutation prevents endocytosis. We show that none of the tested mutations impairing endocytosis to different degrees, including slaB1, conditionally causing a complete block, have any effect on the activation of the pathway. We further show that PalB, like PalA and PalC, localizes to cortical structures in an alkaline pH-dependent manner. Therefore, signaling through the Pal pathway does not involve endocytosis. PMID:25841020

  9. Stimulation of albumin endocytosis by cationized ferritin in cultured aortic smooth muscle cells

    SciTech Connect

    Sprague, E.A.; Kelley, J.L.; Suenram, C.A.; Valente, A.J.; Abreu-Macomber, M.; Schwartz, C.J.

    1985-12-01

    Anionic microdomains within the aortic smooth muscle cell (SMC) surface glycocalyx represent a potential barrier to the endocytosis of anionic plasma proteins. Cultured SMCs exposed briefly to cationized ferritin (CF) exhibit ultrastructural aggregations of surface anionic sites resulting in intervening areas essentially devoid of anionic charge. Preincubation of cultured aortic medial SMCs with 0.2 mg/ml CF for 1 minute at 37 C resulted in a 4-fold increase in binding and a 13-fold increase in internalization of /sup 125/I-human serum albumin (/sup 125/I-HSA) relative to cells pretreated with native ferritin. When both the CF preincubation and the endocytosis were performed at 4 C, the influence of CF was abolished. Studies at 4 C indicated that CF pretreatment of SMC at 37 C induced high affinity (Kd = 1.5 nM) saturable /sup 125/I-HSA binding, in addition to low-affinity nonsaturable binding. These results were further confirmed by binding competition studies using increasing concentrations of unlabeled HSA. In contrast, low-density lipoprotein, a large anionic molecule, failed to compete with /sup 125/I-HSA for binding sites on CF-pretreated SMCs at either 4 or 37 C. Pulse-chase studies at 37 C indicated that 20-30% of internalized /sup 125/I-HSA was degraded, and 40-50% exocytosed within 24 hours in CF-treated cells. CF pretreatment of the SMCs did not significantly enhance the uptake of /sup 14/C-sucrose as a measure of fluid-phase endocytosis at 30 and 60 minutes. The results of these studies emphasize the potentially important regulatory roles of cell-surface anionic charge distribution and cationic molecules in cellular endocytosis.

  10. Contributions of herpes simplex virus type 1 envelope proteins to entry by endocytosis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Herpes simplex virus (HSV) proteins specifically required for endocytic entry but not direct penetration have not been identified. HSVs deleted of gE, gG, gI, gJ, gM, UL45, or Us9 entered cells via either pH-dependent or pH-independent endocytosis and were inactivated by mildly acidic pH. Thus, the ...

  11. Human vascular endothelial cells transport foreign exosomes from cow's milk by endocytosis.

    PubMed

    Kusuma, Rio Jati; Manca, Sonia; Friemel, Taylor; Sukreet, Sonal; Nguyen, Christopher; Zempleni, Janos

    2016-05-15

    Encapsulation of microRNAs in exosomes confers protection against degradation and a vehicle for shuttling of microRNAs between cells and tissues, and cellular uptake by endocytosis. Exosomes can be found in foods including milk. Humans absorb cow's milk exosomes and deliver the microRNA cargo to peripheral tissues, consistent with gene regulation by dietary nucleic acids across species boundaries. Here, we tested the hypothesis that human vascular endothelial cells transport milk exosomes by endocytosis, constituting a step crucial for the delivery of dietary exosomes and their cargo to peripheral tissues. We tested this hypothesis by using human umbilical vein endothelial cells and fluorophore-labeled exosomes isolated from cow's milk. Exosome uptake followed Michaelis-Menten kinetics (Vmax = 0.057 ± 0.004 ng exosome protein × 40,000 cells/h; Km = 17.97 ± 3.84 μg exosomal protein/200 μl media) and decreased by 80% when the incubation temperature was lowered from 37°C to 4°C. When exosome surface proteins were removed by treatment with proteinase K, or transport was measured in the presence of the carbohydrate competitor d-galactose or measured in the presence of excess unlabeled exosomes, transport rates decreased by 45% to 80% compared with controls. Treatment with an inhibitor of endocytosis, cytochalasin D, caused a 50% decrease in transport. When fluorophore-labeled exosomes were administered retro-orbitally, exosomes accumulated in liver, spleen, and lungs in mice. We conclude that human vascular endothelial cells transport bovine exosomes by endocytosis and propose that this is an important step in the delivery of dietary exosomes and their cargo to peripheral tissues. PMID:26984735

  12. Endocytosis of albumin and thyroglobulin at the basolateral membrane of thyrocytes organized in follicles.

    PubMed

    Gire, V; Kostrouch, Z; Bernier-Valentin, F; Rabilloud, R; Munari-Silem, Y; Rousset, B

    1996-02-01

    Serum proteins such as albumin are present inside thyroid follicles in both normal and pathological situations. To analyze the mechanism of entry of these proteins, we investigated the ability of polarized thyrocytes to internalize soluble molecules at their basolateral pole. Experiments were conducted on in vitro reconstituted thyroid follicles using BSA and pig thyroglobulin (Tg) coupled to gold particles for electron microscopy, conjugated to fluorescein for conventional and confocal fluorescence microscopy, or radioiodinated for biochemical measurements. Incubations were carried out at 37 C. BSA and Tg coupled to gold particles were rapidly internalized from the culture medium and sequentially found in small vesicles and early endosomes and in late endosomes and lysosomes. Fluorescence microscope analyses revealed that the majority of cells forming reconstituted thyroid follicles are capable of internalizing BSA and Tg, but that Tg was more efficiently endocytosed than BSA. Using radioiodinated ligands, it was observed that the endocytosis of Tg was 10 times higher than that of BSA. The internalization of [125I]Tg was inhibited by increasing concentrations of unlabeled Tg. In contrast, endocytosis of 125I-labeled BSA was independent of the unlabeled BSA concentration. Experiments performed at 4 C indicated the presence of a basolateral membrane binding activity for [125I]Tg; the Tg concentration that reduced the binding of labeled Tg by 50% ranged from 4-6 microM. These data are evidence of a process of internalization of soluble molecules at the basolateral pole of thyrocytes, with BSA being internalized by fluid phase endocytosis and Tg by selective endocytosis. Our findings explain how serum albumin can enter thyroid follicles and disclose a new cellular handling and transport pathway of Tg. We propose that selective uptake of Tg operating on molecules secreted at the basolateral surface of thyrocytes could control the amount of Tg released in the

  13. Translocation strategies for multiple species depend on interspecific interaction type.

    PubMed

    Plein, Michaela; Bode, Michael; Moir, Melinda L; Vesk, Peter A

    2016-06-01

    Conservation translocations, anthropogenic movements of species to prevent their extinction, have increased substantially over the last few decades. Although multiple species are frequently moved to the same location, current translocation guidelines consider species in isolation. This practice ignores important interspecific interactions and thereby risks transloc