Science.gov

Sample records for endogenous cannabinoid receptor

  1. Cannabinoids, cannabinoid receptors and tinnitus.

    PubMed

    Smith, Paul F; Zheng, Yiwen

    2016-02-01

    One hypothesis suggests that tinnitus is a form of sensory epilepsy, arising partly from neuronal hyperactivity in auditory regions of the brain such as the cochlear nucleus and inferior colliculus. Although there is currently no effective drug treatment for tinnitus, anti-epileptic drugs are used in some cases as a potential treatment option. There is increasing evidence to suggest that cannabinoid drugs, i.e. cannabinoid receptor agonists, can also have anti-epileptic effects, at least in some cases and in some parts of the brain. It has been reported that cannabinoid CB1 receptors and the endogenous cannabinoid, 2-arachidonylglycerol (2-AG), are expressed in the cochlear nucleus and that they are involved in the regulation of plasticity. This review explores the question of whether cannabinoid receptor agonists are likely to be pro- or anti-epileptic in the cochlear nucleus and therefore whether cannabinoids and Cannabis itself are likely to make tinnitus better or worse. PMID:26433054

  2. Anandamide, an endogenous cannabimimetic eicosanoid, binds to the cloned human cannabinoid receptor and stimulates receptor-mediated signal transduction.

    PubMed Central

    Felder, C C; Briley, E M; Axelrod, J; Simpson, J T; Mackie, K; Devane, W A

    1993-01-01

    Arachidonylethanolamide (anandamide), a candidate endogenous cannabinoid ligand, has recently been isolated from porcine brain and displayed cannabinoid-like binding activity to synaptosomal membrane preparations and mimicked cannabinoid-induced inhibition of the twitch response in isolated murine vas deferens. In this study, anandamide and several congeners were evaluated as cannabinoid agonists by examining their ability to bind to the cloned cannabinoid receptor, inhibit forskolin-stimulated cAMP accumulation, inhibit N-type calcium channels, and stimulate one or more functional second messenger responses. Synthetic anandamide, and all but one congener, competed for [3H]CP55,940 binding to plasma membranes prepared from L cells expressing the rat cannabinoid receptor. The ability of anandamide to activate receptor-mediated signal transduction was evaluated in Chinese hamster ovary (CHO) cells expressing the human cannabinoid receptor (HCR, termed CHO-HCR cells) and compared to control CHO cells expressing the muscarinic m5 receptor (CHOm5 cells). Anandamide inhibited forskolin-stimulated cAMP accumulation in CHO-HCR cells, but not in CHOm5 cells, and this response was blocked with pertussis toxin. N-type calcium channels were inhibited by anandamide and several active congeners in N18 neuroblastoma cells. Anandamide stimulated arachidonic acid and intracellular calcium release in both CHOm5 and CHO-HCR cells and had no effect on the release of inositol phosphates or phosphatidylethanol, generated after activation of phospholipase C and D, respectively. Anandamide appears to exhibit the essential criteria required to be classified as a cannabinoid/anandamide receptor agonist and shares similar nonreceptor effects on arachidonic acid and intracellular calcium release as other cannabinoid agonists. PMID:8395053

  3. Endogenous cannabinoids induce fever through the activation of CB1 receptors

    PubMed Central

    Fraga, D; Zanoni, CIS; Rae, GA; Parada, CA; Souza, GEP

    2009-01-01

    Background and purpose: The effects of centrally administered cannabinoids on body core temperature (Tc) and the contribution of endogenous cannabinoids to thermoregulation and fever induced by lipopolysaccharide (LPS) (Sigma Chem. Co., St. Louis, MO, USA) were investigated. Experimental approach: Drug-induced changes in Tc of male Wistar rats were recorded over 6 h using a thermistor probe (Yellow Springs Instruments 402, Dayton, OH, USA) inserted into the rectum. Key results: Injection of anandamide [(arachidonoylethanolamide (AEA); Tocris, Ellisville, MO, USA], 0.01–1 µg i.c.v. or 0.1–100 ng intra-hypothalamic (i.h.), induced graded increases in Tc (peaks 1.5 and 1.6°C at 4 h after 1 µg i.c.v. or 10 ng i.h.). The effect of AEA (1 µg, i.c.v.) was preceded by decreases in tail skin temperature and heat loss index (values at 1.5 h: vehicle 0.62, AEA 0.48). Bell-shaped curves were obtained for the increase in Tc induced by the fatty acid amide hydrolase inhibitor [3-(3-carbamoylphenyl)phenyl] N-cyclohexylcarbamate (Cayman Chemical Co., Ann Arbor, MI, USA) (0.001–1 ng i.c.v.; peak 1.9°C at 5 h after 0.1 ng) and arachidonyl-2-chloroethylamide (ACEA; Tocris) (selective CB1 agonist; 0.001–1 µg i.c.v.; peak 1.4°C 5 h after 0.01 µg), but (R,S)-(+)-(2-Iodo-5-nitrobenzoyl)-[1-(1-methyl-piperidin-2-ylmethyl)-1H-indole-3-yl] methanone (Tocris) (selective CB2 agonist) had no effect on Tc. AEA-induced fever was unaffected by i.c.v. pretreatment with 6-Iodo-2-methyl-1-[2-(4-morpholinyl)ethyl]-1H-indole-3-yl](4-methoxyphenyl) methanone (Tocris) (selective CB2 antagonist), but reduced by i.c.v. pretreatment with N-(piperidin-1-yl)-5-(4-iodophenyl)-1-(2,4-dichlorophenyl)-4-methyl-1H-pyrazole-3-carboxamide (AM251; Tocris) (selective CB1 antagonist). AM251 also reduced the fever induced by ACEA or LPS. Conclusions and implications: The endogenous cannabinoid AEA induces an integrated febrile response through activation of CB1 receptors. Endocannabinoids participate in

  4. Endogenous cannabinoid signaling through the CB1 receptor is essential for cerebellum-dependent discrete motor learning.

    PubMed

    Kishimoto, Yasushi; Kano, Masanobu

    2006-08-23

    Cannabinoids exert their psychomotor actions through the CB1 cannabinoid receptor in the brain. Genetic deletion of CB1 in mice causes various symptoms, including changes in locomotor activity, increased ring catalepsy, supraspinal hypoalgesia, and impaired memory extinction. Although the cerebellar cortex contains the highest level of CB1, severe cerebellum-related functional deficits have not been reported in CB1 knock-out mice. To clarify the roles of CB1 in cerebellar function, we subjected CB1 knock-out mice to a delay version of classical eyeblink conditioning. This paradigm is a test for cerebellum-dependent discrete motor learning, in which conditioned stimulus (CS) (352 ms tone) and unconditioned stimulus (US) (100 ms periorbital electrical shock) are coterminated. We found that delay eyeblink conditioning performance was severely impaired in CB1 knock-out mice. In contrast, they exhibited normal performance in a trace version of eyeblink conditioning with 500 ms stimulus-free interval intervened between the CS offset and the US onset. This paradigm is a test for hippocampus-dependent associative learning. Sensitivity of CB1 knock-out mice to CS or US was normal, suggesting that impaired delay eyeblink conditioning is attributable to defects in association of responses to CS and US. We also found that intraperitoneal injection of the CB1 antagonist SR141716A [N-piperidino-5-(4-chlorophenyl)-1-(2,4-dichlorophenyl)-4-methyl-3-pyrazole carboxamide] to wild-type mice caused severe impairment in acquisition but not extinction of delay eyeblink conditioning. SR141716A treatment had no effect on trace eyeblink conditioning with a 500 or 750 ms trace interval. These results indicate that endogenous cannabinoid signaling through CB1 is essential for cerebellum-dependent discrete motor learning, especially for its acquisition. PMID:16928872

  5. Endogenous cannabinoids revisited: a biochemistry perspective.

    PubMed

    Fonseca, B M; Costa, M A; Almada, M; Correia-da-Silva, G; Teixeira, N A

    2013-01-01

    Marijuana is the most commonly used illegal drug, particularly in Western societies. The discovery of an endogenous cannabinoid system (ECS) highlighted new molecules in various physiological processes. The ECS consists of G-protein-coupled cannabinoid receptors that can be activated by small lipid mediators, termed endocannabinoids (eCBs) and cannabis-derived drugs, plus the associated biochemical machinery (precursors, synthesis and degradative enzymes, and transporters). Several biochemical, pharmacological and physiological studies have shown that endocannabinoid system elements are widely distributed throughout the body, with regional variations and organ-specific actions. This review portrays the endocannabinoid "family" on new studies concerning eCB storage, release and functional roles and on the growing importance of its bioactive metabolites. Those findings reinforce and confirm the importance of ECS. Strategies for manipulating the system for the treatment of human disease will require a thorough understanding of the roles of the different eCBs and their sources. PMID:23474290

  6. Inhibition of leukocyte function and interleukin-2 gene expression by 2-methylarachidonyl-(2'-fluoroethyl)amide, a stable congener of the endogenous cannabinoid receptor ligand anandamide

    SciTech Connect

    Kaplan, Barbara L.F.; Ouyang Yanli; Herring, Amy; Yea, Sung Su; Razdan, Raj; Kaminski, Norbert E. . E-mail: kamins11@msu.edu

    2005-06-01

    Arachidonylethanolamide (anandamide, AEA) has been identified as an endogenous ligand for cannabinoid receptors CB1 and CB2. Characterization of the direct cannabimimetic actions of anandamide has been hampered by its short duration of action and rapid degradation in in vivo and in vitro systems to arachidonic acid, a precursor in the biosynthesis of a broad range of biologically active molecules. In the present studies, we utilized 2-methylarachidonyl-(2'-fluoroethyl)amide (F-Me-AEA), an analog of anandamide resistant to enzymatic degradation, to determine whether F-Me-AEA modulated T cell function similar to that of plant-derived cannabinoids. Indeed, F-Me-AEA at low micromolar concentrations exhibited a marked inhibition of phorbol ester plus calcium ionophore (PMA/Io)-induced IL-2 protein secretion and steady state mRNA expression. Likewise, a modest suppression of the mixed lymphocyte response was observed in the presence of F-Me-AEA indicating an alteration in T cell responsiveness to allogeneic MHC class II antigens. F-Me-AEA was also found to modestly inhibit forskolin-stimulated adenylate cyclase activity in thymocytes and splenocytes, a hallmark of cannabinoid receptor agonists. Further characterization of the influence of F-Me-AEA on the cAMP signaling cascade revealed an inhibition of CREB-1/ATF-1 phosphorylation and subsequently, an inhibition of CRE DNA binding activity. Characterization of nuclear binding proteins further revealed that NF-AT and, to a lesser extent, NF-{kappa}B DNA binding activities were also suppressed. These studies demonstrate that F-Me-AEA modulates T cell function in a similar manner to plant-derived and endogenous cannabinoids and therefore can be utilized as an amidase- and hydrolysis-resistant endogenous cannabinoid.

  7. Cannabinoid receptors in invertebrates.

    PubMed

    McPartland, J M; Agraval, J; Gleeson, D; Heasman, K; Glass, M

    2006-03-01

    Two cannabinoid receptors, CB1 and CB2, are expressed in mammals, birds, reptiles, and fish. The presence of cannabinoid receptors in invertebrates has been controversial, due to conflicting evidence. We conducted a systematic review of the literature, using expanded search parameters. Evidence presented in the literature varied in validity, ranging from crude in vivo behavioural assays to robust in silico ortholog discovery. No research existed for several clades of invertebrates; we therefore tested for cannabinoid receptors in seven representative species, using tritiated ligand binding assays with [3H]CP55,940 displaced by the CB1-selective antagonist SR141716A. Specific binding of [3H]CP55,940 was found in neural membranes of Ciona intestinalis (Deuterstoma, a positive control), Lumbricusterrestris (Lophotrochozoa), and three ecdysozoans: Peripatoides novae-zealandiae (Onychophora), Jasus edwardi (Crustacea) and Panagrellus redivivus (Nematoda); the potency of displacement by SR141716A was comparable to measurements on rat cerebellum. No specific binding was observed in Actinothoe albocincta (Cnidaria) or Tethya aurantium (Porifera). The phylogenetic distribution of cannabinoid receptors may address taxonomic questions; previous studies suggested that the loss of CB1 was a synapomorphy shared by ecdysozoans. Our discovery of cannabinoid receptors in some nematodes, onychophorans, and crustaceans does not contradict the Ecdysozoa hypothesis, but gives it no support. We hypothesize that cannabinoid receptors evolved in the last common ancestor of bilaterians, with secondary loss occurring in insects and other clades. Conflicting data regarding Cnidarians precludes hypotheses regarding the last common ancestor of eumetazoans. No cannabinoid receptors are expressed in sponges, which probably diverged before the origin of the eumetazoan ancestor. PMID:16599912

  8. Endogenous cannabinoid receptor CB1 activation promotes vascular smooth-muscle cell proliferation and neointima formation

    PubMed Central

    Molica, Filippo; Burger, Fabienne; Thomas, Aurélien; Staub, Christian; Tailleux, Anne; Staels, Bart; Pelli, Graziano; Zimmer, Andreas; Cravatt, Benjamin; Matter, Christian M.; Pacher, Pal; Steffens, Sabine

    2013-01-01

    Percutaneous transluminal angioplasty is frequently used in patients with severe arterial narrowing due to atherosclerosis. However, it induces severe arterial injury and an inflammatory response leading to restenosis. Here, we studied a potential activation of the endocannabinoid system and the effect of FA amide hydrolase (FAAH) deficiency, the major enzyme responsible for endocannabinoid anandamide degradation, in arterial injury. We performed carotid balloon injury in atherosclerosis-prone apoE knockout (apoE−/−) and apoE−/−FAAH−/− mice. Anandamide levels were systemically elevated in apoE−/− mice after balloon injury. ApoE−/−FAAH−/− mice had significantly higher baseline anandamide levels and enhanced neointima formation compared with apoE−/− controls. The latter effect was inhibited by treatment with CB1 antagonist AM281. Similarly, apoE−/− mice treated with AM281 had reduced neointimal areas, reduced lesional vascular smooth-muscle cell (SMC) content, and proliferating cell counts. The lesional macrophage content was unchanged. In vitro proliferation rates were significantly reduced in CB1−/− SMCs or when treating apoE−/− or apoE−/−FAAH−/− SMCs with AM281. Macrophage in vitro adhesion and migration were marginally affected by CB1 deficiency. Reendothelialization was not inhibited by treatment with AM281. In conclusion, endogenous CB1 activation contributes to vascular SMC proliferation and neointima formation in response to arterial injury. PMID:23479425

  9. Cannabinoids.

    PubMed

    Grotenhermen, Franjo

    2005-10-01

    Since the discovery of an endogenous cannabinoid system, research into the pharmacology and therapeutic potential of cannabinoids has steadily increased. Two subtypes of G-protein coupled cannabinoid receptors, CB(1) and CB(1), have been cloned and several putative endogenous ligands (endocannabinoids) have been detected during the past 15 years. The main endocannabinoids are arachidonoyl ethanolamide (anandamide) and 2-arachidonoyl glycerol (2-AG), derivatives of arachidonic acid, that are produced "on demand" by cleavage of membrane lipid precursors. Besides phytocannabinoids of the cannabis plant, modulators of the cannabinoid system comprise synthetic agonists and antagonists at the CB receptors and inhibitors of endocannabinoid degradation. Cannabinoid receptors are distributed in the central nervous system and many peripheral tissues, including immune system, reproductive and gastrointestinal tracts, sympathetic ganglia, endocrine glands, arteries, lung and heart. There is evidence for some non-receptor dependent mechanisms of cannabinoids and for endocannabinoid effects mediated by vanilloid receptors. Properties of CB receptor agonists that are of therapeutic interest include analgesia, muscle relaxation, immunosuppression, anti-inflammation, antiallergic effects, improvement of mood, stimulation of appetite, antiemesis, lowering of intraocular pressure, bronchodilation, neuroprotection and antineoplastic effects. The current main focus of clinical research is their efficacy in chronic pain and neurological disorders. CB receptor antagonists are under investigation for medical use in obesity and nicotine addiction. Additional potential was proposed for the treatment of alcohol and heroine dependency, schizophrenia, conditions with lowered blood pressure, Parkinson's disease and memory impairment in Alzheimer's disease. PMID:16266285

  10. The Cannabinoid Acids, Analogs and Endogenous Counterparts

    PubMed Central

    Burstein, Sumner H.

    2015-01-01

    The cannabinoid acids are a structurally heterogeneous group of compounds some of which are endogenous molecules and others that are metabolites of phytocannabinoids. The prototypic endogenous substance is N-arachidonoyl glycine (NAgly) that is closely related in structure to the cannabinoid agonist anandamide. The most studied phytocannabinoid is Δ9–THC-11-oic acid, the principal metabolite of Δ9–THC. Both types of acids have in common several biological actions such as low affinity for CB1, anti-inflammatory activity and analgesic properties. This suggests that there may be similarities in their mechanism of action, a point that is discussed in this review. Also presented are reports on analogs of the acids that provide opportunities for the development of novel therapeutic agents, such as ajulemic acid. PMID:24731541

  11. Immunoactive effects of cannabinoids: considerations for the therapeutic use of cannabinoid receptor agonists and antagonists.

    PubMed

    Greineisen, William E; Turner, Helen

    2010-05-01

    The active constituents of Cannabis sativa have been used for centuries as recreational drugs and medicinal agents. Today, marijuana is the most prevalent drug of abuse in the United States and, conversely, therapeutic use of marijuana constituents are gaining mainstream clinical and political acceptance. Given the documented contributions of endocannabinoid signaling to a range of physiological systems, including cognitive function, and the control of eating behaviors, it is unsurprising that cannabinoid receptor agonists and antagonists are showing significant clinical potential. In addition to the neuroactive effects of cannabinoids, an emerging body of data suggests that both endogenous and exogenous cannabinoids are potently immunoactive. The central premise of this review article is that the immunological effects of cannabinoids should be considered in the context of each prescribing decision. We present evidence that the immunological effects of cannabinoid receptor agonists and antagonists are highly relevant to the spectrum of disorders for which cannabinoid therapeutics are currently offered. PMID:20219697

  12. Cannabinoid receptor localization in brain

    SciTech Connect

    Herkenham, M.; Lynn, A.B.; Little, M.D.; Johnson, M.R.; Melvin, L.S.; de Costa, B.R.; Rice, K.C. )

    1990-03-01

    (3H)CP 55,940, a radiolabeled synthetic cannabinoid, which is 10-100 times more potent in vivo than delta 9-tetrahydrocannabinol, was used to characterize and localize a specific cannabinoid receptor in brain sections. The potencies of a series of natural and synthetic cannabinoids as competitors of (3H)CP 55,940 binding correlated closely with their relative potencies in several biological assays, suggesting that the receptor characterized in our in vitro assay is the same receptor that mediates behavioral and pharmacological effects of cannabinoids, including human subjective experience. Autoradiography of cannabinoid receptors in brain sections from several mammalian species, including human, reveals a unique and conserved distribution; binding is most dense in outflow nuclei of the basal ganglia--the substantia nigra pars reticulata and globus pallidus--and in the hippocampus and cerebellum. Generally high densities in forebrain and cerebellum implicate roles for cannabinoids in cognition and movement. Sparse densities in lower brainstem areas controlling cardiovascular and respiratory functions may explain why high doses of delta 9-tetrahydrocannabinol are not lethal.

  13. The endogenous cannabinoid system protects against colonic inflammation.

    PubMed

    Massa, Federico; Marsicano, Giovanni; Hermann, Heike; Cannich, Astrid; Monory, Krisztina; Cravatt, Benjamin F; Ferri, Gian-Luca; Sibaev, Andrei; Storr, Martin; Lutz, Beat

    2004-04-01

    Excessive inflammatory responses can emerge as a potential danger for organisms' health. Physiological balance between pro- and anti-inflammatory processes constitutes an important feature of responses against harmful events. Here, we show that cannabinoid receptors type 1 (CB1) mediate intrinsic protective signals that counteract proinflammatory responses. Both intrarectal infusion of 2,4-dinitrobenzene sulfonic acid (DNBS) and oral administration of dextrane sulfate sodium induced stronger inflammation in CB1-deficient mice (CB1(-/-)) than in wild-type littermates (CB1(+/+)). Treatment of wild-type mice with the specific CB1 antagonist N-(piperidino-1-yl)-5-(4-chlorophenyl)-1-(2,4-dichlorophenyl)-4-methyl-pyrazole-3-carboxamide (SR141716A) mimicked the phenotype of CB1(-/-) mice, showing an acute requirement of CB1 receptors for protection from inflammation. Consistently, treatment with the cannabinoid receptor agonist R(-)-7-hydroxy-Delta(6)-tetra-hydrocannabinol-dimethylheptyl (HU210) or genetic ablation of the endocannabinoid-degrading enzyme fatty acid amide hydrolase (FAAH) resulted in protection against DNBS-induced colitis. Electrophysiological recordings from circular smooth muscle cells, performed 8 hours after DNBS treatment, revealed spontaneous oscillatory action potentials in CB1(-/-) but not in CB1(+/+) colons, indicating an early CB1-mediated control of inflammation-induced irritation of smooth muscle cells. DNBS treatment increased the percentage of myenteric neurons expressing CB1 receptors, suggesting an enhancement of cannabinoid signaling during colitis. Our results indicate that the endogenous cannabinoid system represents a promising therapeutic target for the treatment of intestinal disease conditions characterized by excessive inflammatory responses. PMID:15085199

  14. Cannabinoid receptor type-1: breaking the dogmas

    PubMed Central

    Busquets Garcia, Arnau; Soria-Gomez, Edgar; Bellocchio, Luigi; Marsicano, Giovanni

    2016-01-01

    The endocannabinoid system (ECS) is abundantly expressed in the brain. This system regulates a plethora of physiological functions and is composed of cannabinoid receptors, their endogenous ligands (endocannabinoids), and the enzymes involved in the metabolism of endocannabinoids. In this review, we highlight the new advances in cannabinoid signaling, focusing on a key component of the ECS, the type-1 cannabinoid receptor (CB 1). In recent years, the development of new imaging and molecular tools has demonstrated that this receptor can be distributed in many cell types (e.g., neuronal or glial cells) and intracellular compartments (e.g., mitochondria). Interestingly, cellular and molecular effects are differentially mediated by CB 1 receptors according to their specific localization (e.g., glutamatergic or GABAergic neurons). Moreover, this receptor is expressed in the periphery, where it can modulate periphery-brain connections. Finally, the better understanding of the CB 1 receptor structure led researchers to propose interesting and new allosteric modulators. Thus, the advances and the new directions of the CB 1 receptor field will provide new insights and better approaches to profit from its interesting therapeutic profile. PMID:27239293

  15. TRP Channel Cannabinoid Receptors in Skin Sensation, Homeostasis, and Inflammation

    PubMed Central

    2015-01-01

    In the skin, cannabinoid lipids, whether of endogenous or exogenous origin, are capable of regulating numerous sensory, homeostatic, and inflammatory events. Although many of these effects are mediated by metabotropic cannabinoid receptors, a growing body of evidence has revealed that multiple members of the transient receptor potential (TRP) ion channel family can act as “ionotropic cannabinoid receptors”. Furthermore, many of these same TRP channels are intimately involved in cutaneous processes that include the initiation of pain, temperature, and itch perception, the maintenance of epidermal homeostasis, the regulation of hair follicles and sebaceous glands, and the modulation of dermatitis. Ionotropic cannabinoid receptors therefore represent potentially attractive targets for the therapeutic use of cannabinoids to treat sensory and dermatological diseases. Furthermore, the interactions between neurons and other cell types that are mediated by cutaneous ionotropic cannabinoid receptors are likely to be recapitulated during physiological and pathophysiological processes in the central nervous system and elsewhere, making the skin an ideal setting in which to dissect general complexities of cannabinoid signaling. PMID:24915599

  16. A runner's high depends on cannabinoid receptors in mice.

    PubMed

    Fuss, Johannes; Steinle, Jörg; Bindila, Laura; Auer, Matthias K; Kirchherr, Hartmut; Lutz, Beat; Gass, Peter

    2015-10-20

    Exercise is rewarding, and long-distance runners have described a runner's high as a sudden pleasant feeling of euphoria, anxiolysis, sedation, and analgesia. A popular belief has been that endogenous endorphins mediate these beneficial effects. However, running exercise increases blood levels of both β-endorphin (an opioid) and anandamide (an endocannabinoid). Using a combination of pharmacologic, molecular genetic, and behavioral studies in mice, we demonstrate that cannabinoid receptors mediate acute anxiolysis and analgesia after running. We show that anxiolysis depends on intact cannabinoid receptor 1 (CB1) receptors on forebrain GABAergic neurons and pain reduction on activation of peripheral CB1 and CB2 receptors. We thus demonstrate that the endocannabinoid system is crucial for two main aspects of a runner's high. Sedation, in contrast, was not influenced by cannabinoid or opioid receptor blockage, and euphoria cannot be studied in mouse models. PMID:26438875

  17. Evaluation of the endogenous cannabinoid system in mediating the behavioral effects of dipyrone (metamizol) in mice.

    PubMed

    Schlosburg, Joel E; Radanova, Lilyana; Di Marzo, Vincenzo; Imming, Peter; Lichtman, Aron H

    2012-10-01

    Dipyrone is a common nonopioid analgesic and antipyretic, which, in many countries, is available over the counter and is more widely used than paracetamol or aspirin. However, the exact mechanisms by which dipyrone acts remain inconclusive. Two novel arachidonoyl-conjugated metabolites are formed in mice following the administration of dipyrone that are dependent on the activity of fatty acid amide hydrolase (FAAH), which also represents the major catabolic enzyme of the endogenous cannabinoid ligand anandamide. These arachidonoyl metabolites not only inhibit cyclooxygenase (COX-1/COX-2) but also bind to cannabinoid receptors at low micromolar concentrations. The relative contributions of cannabinoid receptors and FAAH in the overall behavioral response to dipyrone remain untested. Accordingly, the two primary objectives of the present study were to determine whether the behavioral effects of dipyrone would (a) be blocked by cannabinoid receptor antagonists and (b) occur in FAAH mice. Here, we report that thermal antinociceptive, hypothermic, and locomotor suppressive actions of dipyrone are mediated by a noncannabinoid receptor mechanism of action and occurred after acute or repeated administration irrespective of FAAH. These findings indicate that FAAH-dependent arachidonoyl metabolites and cannabinoid receptors are not requisites by which dipyrone exerts these pharmacological effects under noninflammatory conditions. PMID:22954646

  18. Characterization of the intrinsic activity for a novel class of cannabinoid receptor ligands: Indole Quinuclidine analogues

    PubMed Central

    Franks, Lirit N.; Ford, Benjamin M.; Madadi, Nikhil R.; Penthala, Narsimha R.; Crooks, Peter A.; Prather, Paul L.

    2014-01-01

    Our laboratory recently reported that a group of novel indole quinuclidine analogues bind with nanomolar affinity to cannabinoid type-1 and type-2 receptors. This study characterized the intrinsic activity of these compounds by determining whether they exhibit agonist, antagonist, or inverse agonist activity at cannabinoid type-1 and/or type-2 receptors. Cannabinoid receptors activate Gi/Go-proteins that then proceed to inhibit activity of the downstream intracellular effector adenylyl cyclase. Therefore, intrinsic activity was quantified by measuring the ability of compounds to modulate levels of intracellular cAMP in intact cells. Concerning cannabinoid type-1 receptors endogenously expressed in Neuro2A cells, a single analogue exhibited agonist activity, while eight acted as neutral antagonists and two possessed inverse agonist activity. For cannabinoid type-2 receptors stably expressed in CHO cells, all but two analogues acted as agonists; these two exceptions exhibited inverse agonist activity. Confirming specificity at cannabinoid type-1 receptors, modulation of adenylyl cyclase activity by all proposed agonists and inverse agonists was blocked by co-incubation with the neutral cannabinoid type-1 antagonist O-2050. All proposed cannabinoid type-1 receptor antagonists attenuated adenylyl cyclase modulation by cannabinoid agonist CP-55,940. Specificity at cannabinoid type-2 receptors was confirmed by failure of all compounds to modulate adenylyl cyclase activity in CHO cells devoid of cannabinoid type-2 receptors. Further characterization of select analogues demonstrated concentration-dependent modulation of adenylyl cyclase activity with potencies similar to their respective affinities for cannabinoid receptors. Therefore, indole quinuclidines are a novel structural class of compounds exhibiting high affinity and a range of intrinsic activity at cannabinoid type-1 and type-2 receptors. PMID:24858620

  19. Cannabinoid-receptor expression in human leukocytes.

    PubMed

    Bouaboula, M; Rinaldi, M; Carayon, P; Carillon, C; Delpech, B; Shire, D; Le Fur, G; Casellas, P

    1993-05-15

    Marijuana and many of its constituent cannabinoids influence the central nervous system (CNS), probably through the cannabinoid receptor, which has recently been cloned in rat and human. While numerous reports have also described effects of cannabinoids on the immune system, the observation of both mRNA and cannabinoid receptor has hitherto been exclusively confined to the brain, a reported detection in the testis being the sole example of its presence at the periphery. Here we report the expression of the cannabinoid receptor on human immune tissues using a highly sensitive polymerase-chain-reaction-based method for mRNA quantification. We show that, although present in a much lower abundance than in brain, cannabinoid receptor transcripts are found in human spleen, tonsils and peripheral blood leukocytes. The distribution pattern displays important variations of the mRNA level for the cannabinoid receptor among the main human blood cell subpopulations. The rank order of mRNA levels in these cells is B cells > natural killer cells > or = polymorphonuclear neutrophils > or = T8 cells > monocytes > T4 cells. Cannabinoid-receptor mRNA, which is also found in monocytic, as well as T and B leukemia cell lines but not in Jurkat cells, presents a great diversity of expression on these cells as well, B-cell lines expressing a much higher level than T-cell lines. The cannabinoid receptor PCR products from leukocytes and brain are identical both in size and sequence suggesting a strong similarity between central and peripheral cannabinoid receptors. The expression of this receptor was demonstrated on membranes of the myelomonocytic U937 cells using the synthetic cannabinoid [3H]CP-55940 as ligand. The Kd determined from Scatchard analysis was 0.1 nM and the Bmax for membranes was 525 fmol/mg protein. The demonstration of cannabinoid-receptor expression at both mRNA and protein levels on human leukocytes provides a molecular basis for cannabinoid action on these cells. PMID

  20. Attenuation of Experimental Autoimmune Hepatitis by Exogenous and Endogenous Cannabinoids: Involvement of Regulatory T Cells

    PubMed Central

    Hegde, Venkatesh L.; Hegde, Shweta; Cravatt, Benjamin F.; Hofseth, Lorne J.; Nagarkatti, Mitzi; Nagarkatti, Prakash S.

    2009-01-01

    Immune-mediated liver diseases including autoimmune and viral hepatitis are a major health problem worldwide. Natural cannabinoids such as Δ9-tetrahydrocannabinol (THC) effectively modulate immune cell function, and they have shown therapeutic potential in treating inflammatory diseases. We investigated the effects of THC in a murine model of concanavalin A (ConA)-induced hepatitis. Intraperitoneal administration of THC after ConA challenge inhibited hepatitis as shown by significant decrease in liver enzymes and reduced liver tissue injury. Furthermore, THC treatment resulted in significant suppression of crucial inflammatory cytokines in ConA-induced hepatitis. It is noteworthy that THC treatment in ConA-injected mice led to significant increase in absolute number of Forkhead helix transcription factor p3+ T regulatory cells in liver. We were surprised to find that select cannabinoid receptor (CB1 or CB2) agonists were not able to block hepatitis either independently or in combination. However, CB1/CB2 mixed agonists were able to efficiently attenuate hepatitis similar to THC. The modulatory effect of THC in ConA-induced hepatitis was reversed by both CB1 and CB2 antagonists. We also observed that endogenous cannabinoid anandamide was able to reduce hepatitis by suppressing cytokine levels. In addition, deficiency or inhibition of endocannabinoid hydrolyzing enzyme fatty acid amide hydrolase (FAAH), which leads to increased levels of endogenous cannabinoids, resulted in decreased liver injury upon ConA challenge. Our data demonstrate that targeting cannabinoid receptors using exogenous or endogenous cannabinoids and use of FAAH inhibitors may constitute novel therapeutic modalities to treat immune-mediated liver inflammation. PMID:18388242

  1. Cannabinoid ligand-receptor signaling in the mouse uterus.

    PubMed Central

    Das, S K; Paria, B C; Chakraborty, I; Dey, S K

    1995-01-01

    Using RNA (Northern) blot hybridization and reverse transcription-PCR, we demonstrate that the brain-type cannabinoid receptor (CB1-R) mRNA, but not the spleen-type cannabinoid receptor (CB2-R) mRNA, is expressed in the mouse uterus and that this organ has the capacity to synthesize the putative endogenous cannabinoid ligand, anandamide (arachidonylethanolamide). The psychoactive cannabinoid component of marijuana--delta 9-tetrahydrocannabinol (THC)--or anandamide, but not the inactive and nonpsychoactive cannabidiol (CBD), inhibited forskolin-stimulated cyclic AMP formation in the mouse uterus, which was prevented by pertussis toxin pretreatment. These results suggest that uterine CB1-R is coupled to inhibitory guanine nucleotide-binding protein and is biologically active. Autoradiographic studies identified ligand binding sites ([3H]anandamide) in the uterine epithelium and stromal cells, suggesting that these cells are perhaps the targets for cannabinoid action. Scatchard analysis of the binding of [3H]WIN 55212-2, another cannabinoid receptor ligand, showed a single class of high-affinity binding sites in the endometrium with an apparent Kd of 2.4 nM and Bmax of 5.4 x 10(9) molecules per mg of protein. The gene encoding lactoferrin is an estrogen-responsive gene in the mouse uterus that was rapidly and transiently up-regulated by THC, but not by CBD, in ovariectomized mice in the absence of ovarian steroids. This effect, unlike that of 17 beta-estradiol (E2), was not influenced by a pure antiestrogen, ICI 182780, suggesting that the THC-induced uterine lactoferrin gene expression does not involve estrogen receptors. We propose that the uterus is a new target for cannabinoid ligand-receptor signaling. Images Fig. 1 Fig. 3 Fig. 4 Fig. 5 PMID:7753807

  2. Role of the endogenous cannabinoid system in nicotine addiction: novel insights.

    PubMed

    Gamaleddin, Islam Hany; Trigo, Jose M; Gueye, Aliou B; Zvonok, Alexander; Makriyannis, Alexandros; Goldberg, Steven R; Le Foll, Bernard

    2015-01-01

    Several lines of evidence have shown that the endogenous cannabinoids are implicated in several neuropsychiatric diseases. Notably, preclinical and human clinical studies have shown a pivotal role of the cannabinoid system in nicotine addiction. The CB1 receptor inverse agonist/antagonist rimonabant (also known as SR141716) was effective to decrease nicotine-taking and nicotine-seeking in rodents, as well as the elevation of dopamine induced by nicotine in brain reward area. Rimonabant has been shown to improve the ability of smokers to quit smoking in randomized clinical trials. However, rimonabant was removed from the market due to increased risk of psychiatric side-effects observed in humans. Recently, other components of the endogenous cannabinoid system have been explored. Here, we present the recent advances on the understanding of the role of the different components of the cannabinoid system on nicotine's effects. Those recent findings suggest possible alternative ways of modulating the cannabinoid system that could have implication for nicotine dependence treatment. PMID:25859226

  3. Role of the Endogenous Cannabinoid System in Nicotine Addiction: Novel Insights

    PubMed Central

    Gamaleddin, Islam Hany; Trigo, Jose M.; Gueye, Aliou B.; Zvonok, Alexander; Makriyannis, Alexandros; Goldberg, Steven R.; Le Foll, Bernard

    2015-01-01

    Several lines of evidence have shown that the endogenous cannabinoids are implicated in several neuropsychiatric diseases. Notably, preclinical and human clinical studies have shown a pivotal role of the cannabinoid system in nicotine addiction. The CB1 receptor inverse agonist/antagonist rimonabant (also known as SR141716) was effective to decrease nicotine-taking and nicotine-seeking in rodents, as well as the elevation of dopamine induced by nicotine in brain reward area. Rimonabant has been shown to improve the ability of smokers to quit smoking in randomized clinical trials. However, rimonabant was removed from the market due to increased risk of psychiatric side-effects observed in humans. Recently, other components of the endogenous cannabinoid system have been explored. Here, we present the recent advances on the understanding of the role of the different components of the cannabinoid system on nicotine’s effects. Those recent findings suggest possible alternative ways of modulating the cannabinoid system that could have implication for nicotine dependence treatment. PMID:25859226

  4. Cannabinoid Receptor Activation Shifts Temporally Engendered Patterns of Dopamine Release

    PubMed Central

    Oleson, Erik B; Cachope, Roger; Fitoussi, Aurelie; Tsutsui, Kimberly; Wu, Sharon; Gallegos, Jacqueline A; Cheer, Joseph F

    2014-01-01

    The ability to discern temporally pertinent environmental events is essential for the generation of adaptive behavior in conventional tasks, and our overall survival. Cannabinoids are thought to disrupt temporally controlled behaviors by interfering with dedicated brain timing networks. Cannabinoids also increase dopamine release within the mesolimbic system, a neural pathway generally implicated in timing behavior. Timing can be assessed using fixed-interval (FI) schedules, which reinforce behavior on the basis of time. To date, it remains unknown how cannabinoids modulate dopamine release when responding under FI conditions, and for that matter, how subsecond dopamine release is related to time in these tasks. In the present study, we hypothesized that cannabinoids would accelerate timing behavior in an FI task while concurrently augmenting a temporally relevant pattern of dopamine release. To assess this possibility, we measured subsecond dopamine concentrations in the nucleus accumbens while mice responded for food under the influence of the cannabinoid agonist WIN 55 212-2 in an FI task. Our data reveal that accumbal dopamine concentrations decrease proportionally to interval duration—suggesting that dopamine encodes time in FI tasks. We further demonstrate that WIN 55 212-2 dose-dependently increases dopamine release and accelerates a temporal behavioral response pattern in a CB1 receptor-dependent manner—suggesting that cannabinoid receptor activation modifies timing behavior, in part, by augmenting time-engendered patterns of dopamine release. Additional investigation uncovered a specific role for endogenous cannabinoid tone in timing behavior, as elevations in 2-arachidonoylglycerol, but not anandamide, significantly accelerated the temporal response pattern in a manner akin to WIN 55 212-2. PMID:24345819

  5. Reducing cannabinoid abuse and preventing relapse by enhancing endogenous brain levels of kynurenic acid.

    PubMed

    Justinova, Zuzana; Mascia, Paola; Wu, Hui-Qiu; Secci, Maria E; Redhi, Godfrey H; Panlilio, Leigh V; Scherma, Maria; Barnes, Chanel; Parashos, Alexandra; Zara, Tamara; Fratta, Walter; Solinas, Marcello; Pistis, Marco; Bergman, Jack; Kangas, Brian D; Ferré, Sergi; Tanda, Gianluigi; Schwarcz, Robert; Goldberg, Steven R

    2013-11-01

    In the reward circuitry of the brain, α-7-nicotinic acetylcholine receptors (α7nAChRs) modulate effects of Δ(9)-tetrahydrocannabinol (THC), marijuana's main psychoactive ingredient. Kynurenic acid (KYNA) is an endogenous negative allosteric modulator of α7nAChRs. Here we report that the kynurenine 3-monooxygenase (KMO) inhibitor Ro 61-8048 increases brain KYNA levels and attenuates cannabinoid-induced increases in extracellular dopamine in reward-related brain areas. In the self-administration model of drug abuse, Ro 61-8048 reduced the rewarding effects of THC and the synthetic cannabinoid WIN 55,212-2 in squirrel monkeys and rats, respectively, and it also prevented relapse to drug-seeking induced by reexposure to cannabinoids or cannabinoid-associated cues. The effects of enhancing endogenous KYNA levels with Ro 61-8048 were prevented by positive allosteric modulators of α7nAChRs. Despite a clear need, there are no medications approved for treatment of marijuana dependence. Modulation of KYNA offers a pharmacological strategy for achieving abstinence from marijuana and preventing relapse. PMID:24121737

  6. GPR55: a new member of the cannabinoid receptor clan?

    PubMed

    Pertwee, R G

    2007-12-01

    In this issue of the British Journal of Pharmacology, Ryberg et al. present convincing in vitro evidence that the orphan GPCR, GPR55, is a cannabinoid receptor. GPR55 was activated by a range of plant, synthetic and endogenous cannabinoids and blocked by the non-psychoactive phytocannabinoid, cannabidiol. Their experiments have revealed several differences between the pharmacology of GPR55 and the established cannabinoid CB1 and CB2 receptors. For example, the CB1 receptor antagonist, AM251, activated GPR55 and the main psychoactive constituent of cannabis, Delta9-tetrahydrocannabinol, displayed greater efficacy at GPR55 than at CB1 or CB2 receptors. They also compared the distribution of GPR55 and CB1 mRNA in mouse and report that GPR55 couples to Galpha13, that it is activated by virodhamine, palmitoylethanolamide and oleoylethanolamide, and that virodhamine displays relatively high efficacy as a GPR55 agonist. Still to be identified are the main roles played by GPR55 in health and disease and any potential therapeutic benefits of activating or blocking this receptor. PMID:17876300

  7. Interaction between Cannabinoid System and Toll-Like Receptors Controls Inflammation.

    PubMed

    McCoy, Kathleen L

    2016-01-01

    Since the discovery of the endocannabinoid system consisting of cannabinoid receptors, endogenous ligands, and biosynthetic and metabolizing enzymes, interest has been renewed in investigating the promise of cannabinoids as therapeutic agents. Abundant evidence indicates that cannabinoids modulate immune responses. An inflammatory response is triggered when innate immune cells receive a danger signal provided by pathogen- or damage-associated molecular patterns engaging pattern-recognition receptors. Toll-like receptor family members are prominent pattern-recognition receptors expressed on innate immune cells. Cannabinoids suppress Toll-like receptor-mediated inflammatory responses. However, the relationship between the endocannabinoid system and innate immune system may not be one-sided. Innate immune cells express cannabinoid receptors and produce endogenous cannabinoids. Hence, innate immune cells may play a role in regulating endocannabinoid homeostasis, and, in turn, the endocannabinoid system modulates local inflammatory responses. Studies designed to probe the interaction between the innate immune system and the endocannabinoid system may identify new potential molecular targets in developing therapeutic strategies for chronic inflammatory diseases. This review discusses the endocannabinoid system and Toll-like receptor family and evaluates the interaction between them. PMID:27597805

  8. Interaction between Cannabinoid System and Toll-Like Receptors Controls Inflammation

    PubMed Central

    2016-01-01

    Since the discovery of the endocannabinoid system consisting of cannabinoid receptors, endogenous ligands, and biosynthetic and metabolizing enzymes, interest has been renewed in investigating the promise of cannabinoids as therapeutic agents. Abundant evidence indicates that cannabinoids modulate immune responses. An inflammatory response is triggered when innate immune cells receive a danger signal provided by pathogen- or damage-associated molecular patterns engaging pattern-recognition receptors. Toll-like receptor family members are prominent pattern-recognition receptors expressed on innate immune cells. Cannabinoids suppress Toll-like receptor-mediated inflammatory responses. However, the relationship between the endocannabinoid system and innate immune system may not be one-sided. Innate immune cells express cannabinoid receptors and produce endogenous cannabinoids. Hence, innate immune cells may play a role in regulating endocannabinoid homeostasis, and, in turn, the endocannabinoid system modulates local inflammatory responses. Studies designed to probe the interaction between the innate immune system and the endocannabinoid system may identify new potential molecular targets in developing therapeutic strategies for chronic inflammatory diseases. This review discusses the endocannabinoid system and Toll-like receptor family and evaluates the interaction between them. PMID:27597805

  9. Targeting the endocannabinoid system with cannabinoid receptor agonists: pharmacological strategies and therapeutic possibilities.

    PubMed

    Pertwee, Roger G

    2012-12-01

    Human tissues express cannabinoid CB(1) and CB(2) receptors that can be activated by endogenously released 'endocannabinoids' or exogenously administered compounds in a manner that reduces the symptoms or opposes the underlying causes of several disorders in need of effective therapy. Three medicines that activate cannabinoid CB(1)/CB(2) receptors are now in the clinic: Cesamet (nabilone), Marinol (dronabinol; Δ(9)-tetrahydrocannabinol (Δ(9)-THC)) and Sativex (Δ(9)-THC with cannabidiol). These can be prescribed for the amelioration of chemotherapy-induced nausea and vomiting (Cesamet and Marinol), stimulation of appetite (Marinol) and symptomatic relief of cancer pain and/or management of neuropathic pain and spasticity in adults with multiple sclerosis (Sativex). This review mentions several possible additional therapeutic targets for cannabinoid receptor agonists. These include other kinds of pain, epilepsy, anxiety, depression, Parkinson's and Huntington's diseases, amyotrophic lateral sclerosis, stroke, cancer, drug dependence, glaucoma, autoimmune uveitis, osteoporosis, sepsis, and hepatic, renal, intestinal and cardiovascular disorders. It also describes potential strategies for improving the efficacy and/or benefit-to-risk ratio of these agonists in the clinic. These are strategies that involve (i) targeting cannabinoid receptors located outside the blood-brain barrier, (ii) targeting cannabinoid receptors expressed by a particular tissue, (iii) targeting upregulated cannabinoid receptors, (iv) selectively targeting cannabinoid CB(2) receptors, and/or (v) adjunctive 'multi-targeting'. PMID:23108552

  10. Targeting the endocannabinoid system with cannabinoid receptor agonists: pharmacological strategies and therapeutic possibilities

    PubMed Central

    Pertwee, Roger G.

    2012-01-01

    Human tissues express cannabinoid CB1 and CB2 receptors that can be activated by endogenously released ‘endocannabinoids’ or exogenously administered compounds in a manner that reduces the symptoms or opposes the underlying causes of several disorders in need of effective therapy. Three medicines that activate cannabinoid CB1/CB2 receptors are now in the clinic: Cesamet (nabilone), Marinol (dronabinol; Δ9-tetrahydrocannabinol (Δ9-THC)) and Sativex (Δ9-THC with cannabidiol). These can be prescribed for the amelioration of chemotherapy-induced nausea and vomiting (Cesamet and Marinol), stimulation of appetite (Marinol) and symptomatic relief of cancer pain and/or management of neuropathic pain and spasticity in adults with multiple sclerosis (Sativex). This review mentions several possible additional therapeutic targets for cannabinoid receptor agonists. These include other kinds of pain, epilepsy, anxiety, depression, Parkinson's and Huntington's diseases, amyotrophic lateral sclerosis, stroke, cancer, drug dependence, glaucoma, autoimmune uveitis, osteoporosis, sepsis, and hepatic, renal, intestinal and cardiovascular disorders. It also describes potential strategies for improving the efficacy and/or benefit-to-risk ratio of these agonists in the clinic. These are strategies that involve (i) targeting cannabinoid receptors located outside the blood-brain barrier, (ii) targeting cannabinoid receptors expressed by a particular tissue, (iii) targeting upregulated cannabinoid receptors, (iv) selectively targeting cannabinoid CB2 receptors, and/or (v) adjunctive ‘multi-targeting’. PMID:23108552

  11. Ligands for cannabinoid receptors, promising anticancer agents.

    PubMed

    Nikan, Marjan; Nabavi, Seyed Mohammad; Manayi, Azadeh

    2016-02-01

    Cannabinoid compounds are unique to cannabis and provide some interesting biological properties. These compounds along with endocannabinoids, a group of neuromodulator compounds in the body especially in brain, express their effects by activation of G-protein-coupled cannabinoid receptors, CB1 and CB2. There are several physiological properties attributed to the endocannabinoids including pain relief, enhancement of appetite, blood pressure lowering during shock, embryonic development, and blocking of working memory. On the other hand, activation of endocannabinoid system may be suppresses evolution and progression of several types of cancer. According to the results of recent studies, CB receptors are over-expressed in cancer cell lines and application of multiple cannabinoid or cannabis-derived compounds reduce tumor size through decrease of cell proliferation or induction of cell cycle arrest and apoptosis along with desirable effect on decrease of tumor-evoked pain. Therefore, modulation of endocannabinoid system by inhibition of fatty acid amide hydrolase (FAAH), the enzyme, which metabolized endocannabinoids, or application of multiple cannabinoid or cannabis-derived compounds, may be appropriate for the treatment of several cancer subtypes. This review focuses on how cannabinoid affect different types of cancers. PMID:26764235

  12. Functional CB1 cannabinoid receptors in human vascular endothelial cells.

    PubMed Central

    Liu, J; Gao, B; Mirshahi, F; Sanyal, A J; Khanolkar, A D; Makriyannis, A; Kunos, G

    2000-01-01

    Cannabinoid CB1 receptor mRNA was detected using reverse transcription-polymerase chain reaction (RT-PCR) in endothelial cells from human aorta and hepatic artery and in the ECV304 cell line derived from human umbilical vein endothelial cells. CB1 receptor-binding sites were detected by the high-affinity antagonist radioligand [(125)I]AM-251. In ECV304 cells, both the highly potent synthetic cannabinoid agonist HU-210 and the endogenous ligand anandamide induce activation of mitogen-activated protein (MAP) kinase, and the effect of HU-210 was completely blocked, whereas the effect of anandamide was partially inhibited by SR141716A, a selective CB1 receptor antagonist. Transfection of ECV304 cells with CB1 receptor antisense, but not sense, oligonucleotides caused the same pattern of inhibition as SR141716A. This provides more definitive evidence for the involvement of CB1 receptors in MAP kinase activation and suggests that anandamide may also activate MAP kinase via an additional, CB1 receptor-independent, SR141716A-resistant mechanism. The MAP kinase activation by anandamide in ECV304 cells requires genistein-sensitive tyrosine kinases and protein kinase C (PKC), and anandamide also activates p38 kinase and c-Jun kinase. These findings indicate that CB1 receptors located in human vascular endothelium are functionally coupled to the MAP kinase cascade. Activation of protein kinase cascades by anandamide may be involved in the modulation of endothelial cell growth and proliferation. PMID:10698714

  13. Peripheral cannabinoid receptor, CB2, regulates bone mass

    PubMed Central

    Ofek, Orr; Karsak, Meliha; Leclerc, Nathalie; Fogel, Meirav; Frenkel, Baruch; Wright, Karen; Tam, Joseph; Attar-Namdar, Malka; Kram, Vardit; Shohami, Esther; Mechoulam, Raphael; Zimmer, Andreas; Bab, Itai

    2006-01-01

    The endogenous cannabinoids bind to and activate two G protein-coupled receptors, the predominantly central cannabinoid receptor type 1 (CB1) and peripheral cannabinoid receptor type 2 (CB2). Whereas CB1 mediates the cannabinoid psychotropic, analgesic, and orectic effects, CB2 has been implicated recently in the regulation of liver fibrosis and atherosclerosis. Here we show that CB2-deficient mice have a markedly accelerated age-related trabecular bone loss and cortical expansion, although cortical thickness remains unaltered. These changes are reminiscent of human osteoporosis and may result from differential regulation of trabecular and cortical bone remodeling. The CB2–/– phenotype is also characterized by increased activity of trabecular osteoblasts (bone-forming cells), increased osteoclast (the bone-resorbing cell) number, and a markedly decreased number of diaphyseal osteoblast precursors. CB2 is expressed in osteoblasts, osteocytes, and osteoclasts. A CB2-specific agonist that does not have any psychotropic effects enhances endocortical osteoblast number and activity and restrains trabecular osteoclastogenesis, apparently by inhibiting proliferation of osteoclast precursors and receptor activator of NF-κB ligand expression in bone marrow-derived osteoblasts/stromal cells. The same agonist attenuates ovariectomy-induced bone loss and markedly stimulates cortical thickness through the respective suppression of osteoclast number and stimulation of endocortical bone formation. These results demonstrate that the endocannabinoid system is essential for the maintenance of normal bone mass by osteoblastic and osteoclastic CB2 signaling. Hence, CB2 offers a molecular target for the diagnosis and treatment of osteoporosis, the most prevalent degenerative disease in developed countries. PMID:16407142

  14. A runner’s high depends on cannabinoid receptors in mice

    PubMed Central

    Fuss, Johannes; Steinle, Jörg; Bindila, Laura; Auer, Matthias K.; Kirchherr, Hartmut; Lutz, Beat; Gass, Peter

    2015-01-01

    Exercise is rewarding, and long-distance runners have described a runner’s high as a sudden pleasant feeling of euphoria, anxiolysis, sedation, and analgesia. A popular belief has been that endogenous endorphins mediate these beneficial effects. However, running exercise increases blood levels of both β-endorphin (an opioid) and anandamide (an endocannabinoid). Using a combination of pharmacologic, molecular genetic, and behavioral studies in mice, we demonstrate that cannabinoid receptors mediate acute anxiolysis and analgesia after running. We show that anxiolysis depends on intact cannabinoid receptor 1 (CB1) receptors on forebrain GABAergic neurons and pain reduction on activation of peripheral CB1 and CB2 receptors. We thus demonstrate that the endocannabinoid system is crucial for two main aspects of a runner's high. Sedation, in contrast, was not influenced by cannabinoid or opioid receptor blockage, and euphoria cannot be studied in mouse models. PMID:26438875

  15. Effects of cannabinoids and their receptors on viral infections.

    PubMed

    Tahamtan, Alireza; Tavakoli-Yaraki, Masoumeh; Rygiel, Tomasz P; Mokhtari-Azad, Talat; Salimi, Vahid

    2016-01-01

    Cannabinoids, the active ingredient in marijuana, and their derivatives have received remarkable attention in the last two decades because they can affect tumor growth and metastasis. There is a large body of evidence from in vivo and in vitro models showing that cannabinoids and their receptors influence the immune system, viral pathogenesis, and viral replication. The present study reviews current insights into the role of cannabinoids and their receptors on viral infections. The results reported here indicate that cannabinoids and their receptors have different sequels for viral infection. Although activation or inhibition of cannabinoid receptors in the majority of viral infections are proper targets for development of safe and effective treatments, caution is required before using pharmaceutical cannabinoids as a treatment agent for patients with viral infections. PMID:26059175

  16. Plant-Derived and Endogenous Cannabinoids in Epilepsy.

    PubMed

    Verrotti, Alberto; Castagnino, Miriam; Maccarrone, Mauro; Fezza, Filomena

    2016-05-01

    Cannabis is one of the oldest psychotropic drugs and its anticonvulsant properties have been known since the last century. The aim of this reveiw was to analyze the efficacy of cannabis in the treatment of epilepsy in adults and children. In addition, a description of the involvement of the endocannabinoid system in epilepsy is given in order to provide a biochemical background to the effects of endogenous cannabinoids in our body. General tolerability and adverse events associated with cannabis treatment are also investigated. Several anecdotal reports and clinical trials suggest that in the human population cannabis has anticonvulsant properties and could be effective in treating partial epilepsies and generalized tonic-clonic seizures, still known as "grand mal." They are based, among other factors, on the observation that in individuals who smoke marijuana to treat epilepsy, cessation of cannabis use precipitates the re-emergence of convulsive seizures, whereas resuming consumption of this psychotropic drug controls epilepsy in a reproducible manner. In conclusion, there is some anecdotal evidence for the potential efficacy of cannabis in treating epilepsy. Though there has been an increased effort by patients with epilepsy, their caregivers, growers, and legislators to legalize various forms of cannabis, there is still concern about its efficacy, relative potency, availability of medication-grade preparations, dosing, and potential short- and long-term side effects, including those on prenatal and childhood development. PMID:26892745

  17. The discovery of a cannabinoid receptor

    SciTech Connect

    Devane, W.A.

    1989-01-01

    A tritiated form of CP-55,940, a Pfizer cannabinoid analog that is 20- to 100-fold more potent than {Delta}{sup 9}-tetrahydrocannabinol in various in vivo and in vitro models of cannabimimetric activity, was used as the tool with which to probe for a cannabinoid receptor in rat cortical membranes. The bound and free ligand were successfully separated using a centrifugation assay. Specific binding was saturable, rapidly attained, and completely reversible. The K{sub D}'s derived from kinetic analysis of binding agreed well with the K{sub D}'s derived from saturation and displacement analysis. The ({sup 3}H)CP-55,940 binding site exhibited high affinity with a K{sub D} of 68 pM as determined by LIGAND analysis of homologous displacement studies. The ability of other cannabinoid drugs to displace ({sup 3}H)CP-55,940 binding correlated well with the potency of these drugs in in vivo and in vitro models of cannabimimetic activity. The K{sub i} of {Delta}{sup 9}-THC was 1.6 nM. Cannabidiol and cannabigerol, which both lack psychoactivity in man, displaced specific binding by less than 50% at 1 {mu}M.

  18. Dynamic changes of the endogenous cannabinoid and opioid mesocorticolimbic systems during adolescence: THC effects

    PubMed Central

    Ellgren, M.; Artmann, A.; Tkalych, O.; Gupta, A.; Hansen, H.S.; Hansen, S.H.; Devi, L.A.; Hurd, Y.L.

    2008-01-01

    Adolescence is a critical phase of active brain development often characterized by the initiation of marijuana (Cannabis sativa) use. Limited information is known regarding the endogenous cannabinoid system of the adolescent brain as well as related neurotransmitters that appear sensitive to cannabis exposure. We recently observed that adult rats pre-exposed to Δ-9-tetrahydrocannabinol (THC) during adolescence self-administered higher amounts of heroin and had selective impairments of the enkephalin opioid system within the nucleus accumbens (NAc) implicated in reward-related behavior. To explore the ontogeny of the cannabinoid and opioid neuronal systems in association with adolescence THC exposure, rats were examined at different adolescent stages during an intermittent THC paradigm (1.5 mg/kg i.p. every third day) from postnatal days (PNDs) 28–49. Rat brains were examined 24 hours after injection at PND 29 (early adolescence), PND 38 (mid adolescence) and PND 50 (late adolescence) and analyzed for endocannabinoids (anandamide and 2-arachidonoylglycerol), Met-enkephalin, cannabinoid CB1 receptors and µ opioid receptors (µOR) in the NAc, caudate-putamen and prefrontal cortex (PFC). Of the markers studied, the endocannabinoid levels had the most robust alterations throughout adolescence and were specific to the PFC and NAc. Normal correlations between anandamide and 2-arachidonoylglycerol concentrations in the NAc (positive) and PFC (negative) were reversed by THC. Other significant THC-induced effects were confined to the NAc — increased anandamide, decreased Met-enkephalin and decreased µORs. These findings emphasize the dynamic nature of the mesocorticolimbic endocannabinoid system during adolescence and the selective mesocorticolimbic disturbance as a consequence of adolescent cannabis exposure. PMID:18674887

  19. CB2 Cannabinoid Receptor As Potential Target against Alzheimer's Disease

    PubMed Central

    Aso, Ester; Ferrer, Isidro

    2016-01-01

    The CB2 receptor is one of the components of the endogenous cannabinoid system, a complex network of signaling molecules and receptors involved in the homeostatic control of several physiological functions. Accumulated evidence suggests a role for CB2 receptors in Alzheimer's disease (AD) and indicates their potential as a therapeutic target against this neurodegenerative disease. Levels of CB2 receptors are significantly increased in post-mortem AD brains, mainly in microglia surrounding senile plaques, and their expression levels correlate with the amounts of Aβ42 and β-amyloid plaque deposition. Moreover, several studies on animal models of AD have demonstrated that specific CB2 receptor agonists, which are devoid of psychoactive effects, reduce AD-like pathology, resulting in attenuation of the inflammation associated with the disease but also modulating Aβ and tau aberrant processing, among other effects. CB2 receptor activation also improves cognitive impairment in animal models of AD. This review discusses available data regarding the role of CB2 receptors in AD and the potential usefulness of specific agonists of these receptors against AD. PMID:27303261

  20. International Union of Basic and Clinical Pharmacology. LXXIX. Cannabinoid Receptors and Their Ligands: Beyond CB1 and CB2

    PubMed Central

    Howlett, A. C.; Abood, M. E.; Alexander, S. P. H.; Di Marzo, V.; Elphick, M. R.; Greasley, P. J.; Hansen, H. S.; Kunos, G.; Mackie, K.; Mechoulam, R.; Ross, R. A.

    2010-01-01

    There are at least two types of cannabinoid receptors (CB1 and CB2). Ligands activating these G protein-coupled receptors (GPCRs) include the phytocannabinoid Δ9-tetrahydrocannabinol, numerous synthetic compounds, and endogenous compounds known as endocannabinoids. Cannabinoid receptor antagonists have also been developed. Some of these ligands activate or block one type of cannabinoid receptor more potently than the other type. This review summarizes current data indicating the extent to which cannabinoid receptor ligands undergo orthosteric or allosteric interactions with non-CB1, non-CB2 established GPCRs, deorphanized receptors such as GPR55, ligand-gated ion channels, transient receptor potential (TRP) channels, and other ion channels or peroxisome proliferator-activated nuclear receptors. From these data, it is clear that some ligands that interact similarly with CB1 and/or CB2 receptors are likely to display significantly different pharmacological profiles. The review also lists some criteria that any novel “CB3” cannabinoid receptor or channel should fulfil and concludes that these criteria are not currently met by any non-CB1, non-CB2 pharmacological receptor or channel. However, it does identify certain pharmacological targets that should be investigated further as potential CB3 receptors or channels. These include TRP vanilloid 1, which possibly functions as an ionotropic cannabinoid receptor under physiological and/or pathological conditions, and some deorphanized GPCRs. Also discussed are 1) the ability of CB1 receptors to form heteromeric complexes with certain other GPCRs, 2) phylogenetic relationships that exist between CB1/CB2 receptors and other GPCRs, 3) evidence for the existence of several as-yet-uncharacterized non-CB1, non-CB2 cannabinoid receptors; and 4) current cannabinoid receptor nomenclature. PMID:21079038

  1. Cannabinoid Receptor 1 Gene Association With Nicotine Dependence

    PubMed Central

    Chen, Xiangning; Williamson, Vernell S.; An, Seon-Sook; Hettema, John M.; Aggen, Steven H.; Neale, Michael C.; Kendler, Kenneth S.

    2009-01-01

    Context The endogenous cannabinoid system has been implicated in drug addiction in animal models. The cannabinoid receptor 1 (CNR1) gene is 1 of the 2 receptors expressed in the brain. It has been reported to be associated with alcoholism and multiple drug abuse and dependence. Objective To test the hypothesis that the CNR1 gene is associated with nicotine dependence. Design Genotype-phenotype association study. Ten single-nucleotide polymorphisms were genotyped in the CNR1 gene in 2 independent samples. For the first sample (n=688), a 3-group case-control design was used to test allele association with smoking initiation and nicotine dependence. For the second sample (n = 961), association was assessed with scores from the Fagerström Test for Nicotine Dependence (FTND). Settings Population samples selected from the Mid-Atlantic Twin Registry. Participants White patients aged 18 to 65 years who met the criteria of inclusion. Main Outcome Measures Fagerström Tolerance Questionnaire and FTND scores. Results Significant single-marker and haplotype associations were found in both samples, and the associations were female specific. Haplotype 1-1-2 of markers rs2023239-rs12720071-rs806368 was associated with nicotine dependence and FTND score in the 2 samples (P<.001 and P = .009, respectively). Conclusion Variants and haplotypes in the CNR1 gene may alter the risk for nicotine dependence, and the associations are likely sex specific. PMID:18606954

  2. Endocannabinoid tone versus constitutive activity of cannabinoid receptors

    PubMed Central

    Howlett, Allyn C; Reggio, Patricia H; Childers, Steven R; Hampson, Robert E; Ulloa, Nadine M; Deutsch, Dale G

    2011-01-01

    This review evaluates the cellular mechanisms of constitutive activity of the cannabinoid (CB) receptors, its reversal by inverse agonists, and discusses the pitfalls and problems in the interpretation of the research data. The notion is presented that endogenously produced anandamide (AEA) and 2-arachidonoylglycerol (2-AG) serve as autocrine or paracrine stimulators of the CB receptors, giving the appearance of constitutive activity. It is proposed that one cannot interpret inverse agonist studies without inference to the receptors' environment vis-à-vis the endocannabinoid agonists which themselves are highly lipophilic compounds with a preference for membranes. The endocannabinoid tone is governed by a combination of synthetic pathways and inactivation involving transport and degradation. The synthesis and degradation of 2-AG is well characterized, and 2-AG has been strongly implicated in retrograde signalling in neurons. Data implicating endocannabinoids in paracrine regulation have been described. Endocannabinoid ligands can traverse the cell's interior and potentially be stored on fatty acid-binding proteins (FABPs). Molecular modelling predicts that the endocannabinoids derived from membrane phospholipids can laterally diffuse to enter the CB receptor from the lipid bilayer. Considering that endocannabinoid signalling to CB receptors is a much more likely scenario than is receptor activation in the absence of agonist ligands, researchers are advised to refrain from assuming constitutive activity except for experimental models known to be devoid of endocannabinoid ligands. LINKED ARTICLES This article is part of a themed issue on Cannabinoids in Biology and Medicine. To view the other articles in this issue visit http://dx.doi.org/10.1111/bph.2011.163.issue-7 PMID:21545414

  3. Lasting impacts of prenatal cannabis exposure and the role of endogenous cannabinoids in the developing brain

    PubMed Central

    Wu, Chia-Shan; Jew, Christopher P; Lu, Hui-Chen

    2011-01-01

    Cannabis is the most commonly used illicit substance among pregnant women. Human epidemiological and animal studies have found that prenatal cannabis exposure influences brain development and can have long-lasting impacts on cognitive functions. Exploration of the therapeutic potential of cannabis-based medicines and synthetic cannabinoid compounds has given us much insight into the physiological roles of endogenous ligands (endocannabinoids) and their receptors. In this article, we examine human longitudinal cohort studies that document the long-term influence of prenatal exposure to cannabis, followed by an overview of the molecular composition of the endocannabinoid system and the temporal and spatial changes in their expression during brain development. How endocannabinoid signaling modulates fundamental developmental processes such as cell proliferation, neurogenesis, migration and axonal pathfinding are also summarized. PMID:22229018

  4. Emerging strategies for exploiting cannabinoid receptor agonists as medicines.

    PubMed

    Pertwee, Roger G

    2009-02-01

    Medicines that activate cannabinoid CB(1) and CB(2) receptor are already in the clinic. These are Cesamet (nabilone), Marinol (dronabinol; Delta(9)-tetrahydrocannabinol) and Sativex (Delta(9)-tetrahydrocannabinol with cannabidiol). The first two of these medicines can be prescribed to reduce chemotherapy-induced nausea and vomiting. Marinol can also be prescribed to stimulate appetite, while Sativex is prescribed for the symptomatic relief of neuropathic pain in adults with multiple sclerosis and as an adjunctive analgesic treatment for adult patients with advanced cancer. One challenge now is to identify additional therapeutic targets for cannabinoid receptor agonists, and a number of potential clinical applications for such agonists are mentioned in this review. A second challenge is to develop strategies that will improve the efficacy and/or the benefit-to-risk ratio of a cannabinoid receptor agonist. This review focuses on five strategies that have the potential to meet either or both of these objectives. These are strategies that involve: (i) targeting cannabinoid receptors located outside the blood-brain barrier; (ii) targeting cannabinoid receptors expressed by a particular tissue; (iii) targeting up-regulated cannabinoid receptors; (iv) targeting cannabinoid CB(2) receptors; or (v) 'multi-targeting'. Preclinical data that justify additional research directed at evaluating the clinical importance of each of these strategies are also discussed. PMID:19226257

  5. Emerging strategies for exploiting cannabinoid receptor agonists as medicines

    PubMed Central

    Pertwee, Roger G

    2009-01-01

    Medicines that activate cannabinoid CB1 and CB2 receptor are already in the clinic. These are Cesamet® (nabilone), Marinol® (dronabinol; Δ9-tetrahydrocannabinol) and Sativex® (Δ9-tetrahydrocannabinol with cannabidiol). The first two of these medicines can be prescribed to reduce chemotherapy-induced nausea and vomiting. Marinol® can also be prescribed to stimulate appetite, while Sativex® is prescribed for the symptomatic relief of neuropathic pain in adults with multiple sclerosis and as an adjunctive analgesic treatment for adult patients with advanced cancer. One challenge now is to identify additional therapeutic targets for cannabinoid receptor agonists, and a number of potential clinical applications for such agonists are mentioned in this review. A second challenge is to develop strategies that will improve the efficacy and/or the benefit-to-risk ratio of a cannabinoid receptor agonist. This review focuses on five strategies that have the potential to meet either or both of these objectives. These are strategies that involve: (i) targeting cannabinoid receptors located outside the blood-brain barrier; (ii) targeting cannabinoid receptors expressed by a particular tissue; (iii) targeting up-regulated cannabinoid receptors; (iv) targeting cannabinoid CB2 receptors; or (v) ‘multi-targeting’. Preclinical data that justify additional research directed at evaluating the clinical importance of each of these strategies are also discussed. PMID:19226257

  6. Cannabinoids mediate analgesia largely via peripheral type 1 cannabinoid receptors in nociceptors

    PubMed Central

    Agarwal, Nitin; Pacher, Pal; Tegeder, Irmgard; Amaya, Fumimasa; Constantin, Cristina E; Brenner, Gary J; Rubino, Tiziana; Michalski, Christoph W; Marsicano, Giovanni; Monory, Krisztina; Mackie, Ken; Marian, Claudiu; Batkai, Sandor; Parolaro, Daniela; Fischer, Michael J; Reeh, Peter; Kunos, George; Kress, Michaela; Lutz, Beat; Woolf, Clifford J; Kuner, Rohini

    2008-01-01

    Although endocannabinoids constitute one of the first lines of defense against pain, the anatomical locus and the precise receptor mechanisms underlying cannabinergic modulation of pain are uncertain. Clinical exploitation of the system is severely hindered by the cognitive deficits, memory impairment, motor disturbances and psychotropic effects resulting from the central actions of cannabinoids. We deleted the type 1 cannabinoid receptor (CB1) specifically in nociceptive neurons localized in the peripheral nervous system of mice, preserving its expression in the CNS, and analyzed these genetically modified mice in preclinical models of inflammatory and neuropathic pain. The nociceptor-specific loss of CB1 substantially reduced the analgesia produced by local and systemic, but not intrathecal, delivery of cannabinoids. We conclude that the contribution of CB1-type receptors expressed on the peripheral terminals of nociceptors to cannabinoid-induced analgesia is paramount, which should enable the development of peripherally acting CB1 analgesic agonists without any central side effects. PMID:17558404

  7. Pharmacology of cannabinoids.

    PubMed

    Grotenhermen, Franjo

    2004-01-01

    Dronabinol (Delta 9-tetrahydocannabinol, THC), the main source of the pharmacological effects caused by the use of cannabis, is an agonist to both the CB1 and the CB2 subtype of cannabinoid receptors. It is available on prescription in several countries. The non-psychotropic cannabidiol (CBD), some analogues of natural cannabinoids and their metabolites, antagonists at the cannabinoid receptors and modulators of the endogenous cannabinoid system are also promising candidates for clinical research and therapeutic uses. Cannabinoid receptors are distributed in the central nervous system and many peripheral tissues including spleen, leukocytes; reproductive, urinary and gastrointestinal tracts; endocrine glands, arteries and heart. Five endogenous cannabinoids have been detected so far, of whom anandamide and 2-arachidonylglycerol are best characterized. There is evidence that besides the two cannabinoid receptor subtypes cloned so far additional cannabinoid receptor subtypes and vanilloid receptors are involved in the complex physiological functions of the cannabinoid system that include motor coordination, memory procession, control of appetite, pain modulation and neuroprotection. Strategies to modulate their activity include inhibition of re-uptake into cells and inhibition of their degradation to increase concentration and duration of action. Properties of cannabinoids that might be of therapeutic use include analgesia, muscle relaxation, immunosuppression, anti-inflammation, anti-allergic effects, sedation, improvement of mood, stimulation of appetite, anti-emesis, lowering of intraocular pressure, bronchodilation, neuroprotection and antineoplastic effects. PMID:15159677

  8. Cannabinoid pharmacology: the first 66 years

    PubMed Central

    Pertwee, Roger G

    2006-01-01

    Research into the pharmacology of individual cannabinoids that began in the 1940s, several decades after the presence of a cannabinoid was first detected in cannabis, is concisely reviewed. Also described is how this pharmacological research led to the discovery of cannabinoid CB1 and CB2 receptors and of endogenous ligands for these receptors, to the development of CB1- and CB2-selective agonists and antagonists and to the realization that the endogenous cannabinoid system has significant roles in both health and disease, and that drugs which mimic, augment or block the actions of endogenously released cannabinoids must have important therapeutic applications. Some goals for future research are identified. PMID:16402100

  9. Genetic variability in the human cannabinoid receptor 1 is associated with resting state EEG theta power in humans.

    PubMed

    Heitland, I; Kenemans, J L; Böcker, K B E; Baas, J M P

    2014-11-01

    It has long been postulated that exogenous cannabinoids have a profound effect on human cognitive functioning. These cannabinoid effects are thought to depend, at least in parts, on alterations of phase-locking of local field potential neuronal firing. The latter can be measured as activity in the theta frequency band (4-7Hz) by electroencephalogram. Theta oscillations are supposed to serve as a mechanism in neural representations of behaviorally relevant information. However, it remains unknown whether variability in endogenous cannabinoid activity is involved in theta rhythms and therefore, may serve as an individual differences index of human cognitive functioning. To clarify this issue, we recorded resting state EEG activity in 164 healthy human subjects and extracted EEG power across frequency bands (δ, θ, α, and β). To assess variability in the endocannabinoid system, two genetic polymorphisms (rs1049353, rs2180619) within the cannabinoid receptor 1 (CB1) were determined in all participants. As expected, we observed significant effects of rs1049353 on EEG power in the theta band at frontal, central and parietal electrode regions. Crucially, these effects were specific for the theta band, with no effects on activity in the other frequency bands. Rs2180619 showed no significant associations with theta power after Bonferroni correction. Taken together, we provide novel evidence in humans showing that genetic variability in the cannabinoid receptor 1 is associated with resting state EEG power in the theta frequency band. This extends prior findings of exogenous cannabinoid effects on theta power to the endogenous cannabinoid system. PMID:25116250

  10. Endogenous and Synthetic Cannabinoids as Therapeutics in Retinal Disease

    PubMed Central

    Kokona, Despina; Georgiou, Panagiota-Christina; Kounenidakis, Mihalis; Kiagiadaki, Foteini; Thermos, Kyriaki

    2016-01-01

    The functional significance of cannabinoids in ocular physiology and disease has been reported some decades ago. In the early 1970s, subjects who smoked Cannabis sativa developed lower intraocular pressure (IOP). This led to the isolation of phytocannabinoids from this plant and the study of their therapeutic effects in glaucoma. The main treatment of this disease to date involves the administration of drugs mediating either the decrease of aqueous humour synthesis or the increase of its outflow and thus reduces IOP. However, the reduction of IOP is not sufficient to prevent visual field loss. Retinal diseases, such as glaucoma and diabetic retinopathy, have been defined as neurodegenerative diseases and characterized by ischemia-induced excitotoxicity and loss of retinal neurons. Therefore, new therapeutic strategies must be applied in order to target retinal cell death, reduction of visual acuity, and blindness. The aim of the present review is to address the neuroprotective and therapeutic potential of cannabinoids in retinal disease. PMID:26881135

  11. Endogenous and Synthetic Cannabinoids as Therapeutics in Retinal Disease.

    PubMed

    Kokona, Despina; Georgiou, Panagiota-Christina; Kounenidakis, Mihalis; Kiagiadaki, Foteini; Thermos, Kyriaki

    2016-01-01

    The functional significance of cannabinoids in ocular physiology and disease has been reported some decades ago. In the early 1970s, subjects who smoked Cannabis sativa developed lower intraocular pressure (IOP). This led to the isolation of phytocannabinoids from this plant and the study of their therapeutic effects in glaucoma. The main treatment of this disease to date involves the administration of drugs mediating either the decrease of aqueous humour synthesis or the increase of its outflow and thus reduces IOP. However, the reduction of IOP is not sufficient to prevent visual field loss. Retinal diseases, such as glaucoma and diabetic retinopathy, have been defined as neurodegenerative diseases and characterized by ischemia-induced excitotoxicity and loss of retinal neurons. Therefore, new therapeutic strategies must be applied in order to target retinal cell death, reduction of visual acuity, and blindness. The aim of the present review is to address the neuroprotective and therapeutic potential of cannabinoids in retinal disease. PMID:26881135

  12. The preimplantation mouse embryo is a target for cannabinoid ligand-receptor signaling.

    PubMed Central

    Paria, B C; Das, S K; Dey, S K

    1995-01-01

    Using a reverse transcription-coupled PCR, we demonstrated that both brain and spleen type cannabinoid receptor (CB1-R and CB2-R, respectively) mRNAs are expressed in the preimplantation mouse embryo. The CB1-R mRNA expression was coincident with the activation of the embryonic genome late in the two-cell stage, whereas the CB2-R mRNA was present from the one-cell through the blastocyst stages. The major psychoactive component of marijuana (-)-delta-9-tetrahydrocannabinol [(-)-THC] inhibited forskolin-stimulated cAMP generation in the blastocyst, and this inhibition was prevented by pertussis toxin. However, the inactive cannabinoid cannabidiol (CBD) failed to influence this response. These results suggest that cannabinoid receptors in the embryo are coupled to inhibitory guanine nucleotide binding proteins. Further, the oviduct and uterus exhibited the enzymatic capacity to synthesize the putative endogenous cannabinoid ligand arachidonylethanolamide (anandamide). Synthetic and natural cannabinoid agonists [WIN 55,212-2, CP 55,940, (-)-THC, and anandamide], but not CBD or arachidonic acid, arrested the development of two-cell embryos primarily between the four-cell and eight-cell stages in vitro in a dose-dependent manner. Anandamide also interfered with the development of eight-cell embryos to blastocysts in culture. The autoradiographic studies readily detected binding of [3H]anandamide in embryos at all stages of development. Positive signals were present in one-cell embryos and all blastomeres of two-cell through four-cell embryos. However, most of the binding sites in eight-cell embryos and morulae were present in the outer cells. In the blastocyst, these signals were primarily localized in the mural trophectoderm with low levels of signals in the polar trophectoderm, while little or no signals were noted in inner cell mass cells.These results establish that the preimplantation mouse embryo is a target for cannabinoid ligands. Consequently, many of the

  13. Cannabinoids inhibit cholinergic contraction in human airways through prejunctional CB1 receptors

    PubMed Central

    Grassin-Delyle, S; Naline, E; Buenestado, A; Faisy, C; Alvarez, J-C; Salvator, H; Abrial, C; Advenier, C; Zemoura, L; Devillier, P

    2014-01-01

    Background and Purpose Marijuana smoking is widespread in many countries, and the use of smoked synthetic cannabinoids is increasing. Smoking a marijuana joint leads to bronchodilation in both healthy subjects and asthmatics. The effects of Δ9-tetrahydrocannabinol and synthetic cannabinoids on human bronchus reactivity have not previously been investigated. Here, we sought to assess the effects of natural and synthetic cannabinoids on cholinergic bronchial contraction. Experimental Approach Human bronchi isolated from 88 patients were suspended in an organ bath and contracted by electrical field stimulation (EFS) in the presence of the phytocannabinoid Δ9-tetrahydrocannabinol, the endogenous 2-arachidonoylglycerol, the synthetic dual CB1 and CB2 receptor agonists WIN55,212-2 and CP55,940, the synthetic, CB2-receptor-selective agonist JWH-133 or the selective GPR55 agonist O-1602. The receptors involved in the response were characterized by using selective CB1 and CB2 receptor antagonists (SR141716 and SR144528 respectively). Key Results Δ9-tetrahydrocannabinol, WIN55,212-2 and CP55,940 induced concentration-dependent inhibition of cholinergic contractions, with maximum inhibitions of 39, 76 and 77% respectively. JWH-133 only had an effect at high concentrations. 2-Arachidonoylglycerol and O-1602 were devoid of any effect. Only CB1 receptors were involved in the response because the effects of cannabinoids were antagonized by SR141716, but not by SR144528. The cannabinoids did not alter basal tone or contractions induced by exogenous Ach. Conclusions and Implications Activation of prejunctional CB1 receptors mediates the inhibition of EFS-evoked cholinergic contraction in human bronchus. This mechanism may explain the acute bronchodilation produced by marijuana smoking. PMID:24467410

  14. Update on the Role of Cannabinoid Receptors after Ischemic Stroke

    PubMed Central

    Capettini, Luciano S. A.; Savergnini, Silvia Q.; da Silva, Rafaela F.; Stergiopulos, Nikos; Santos, Robson A. S.; Mach, François; Montecucco, Fabrizio

    2012-01-01

    Cannabinoids are considered as key mediators in the pathophysiology of inflammatory diseases, including atherosclerosis. In particular, they have been shown to reduce the ischemic injury after acute cardiovascular events, such as acute myocardial infarction and ischemic stroke. These protective and anti-inflammatory properties on peripheral tissues and circulating inflammatory have been demonstrated to involve their binding with both selective cannabinoid type 1 (CB1) and type 2 (CB2) transmembrane receptors. On the other hands, the recent discoveries of novel different classes of cannabinoids and receptors have increased the complexity of this system in atherosclerosis. Although only preliminary data have been reported on the activities of novel cannabinoid receptors, several studies have already investigated the role of CB1 and CB2 receptors in ischemic stroke. While CB1 receptor activation has been shown to directly reduce atherosclerotic plaque inflammation, controversial data have been shown on neurotransmission and neuroprotection after stroke. Given its potent anti-inflammatory activities on circulating leukocytes, the CB2 activation has been proven to produce protective effects against acute poststroke inflammation. In this paper, we will update evidence on different cannabinoid-triggered avenues to reduce inflammation and neuronal injury in acute ischemic stroke. PMID:22577257

  15. Cannabinoid receptor signaling in progenitor/stem cell proliferation and differentiation.

    PubMed

    Galve-Roperh, Ismael; Chiurchiù, Valerio; Díaz-Alonso, Javier; Bari, Monica; Guzmán, Manuel; Maccarrone, Mauro

    2013-10-01

    Cannabinoids, the active components of cannabis (Cannabis sativa) extracts, have attracted the attention of human civilizations for centuries, much earlier than the discovery and characterization of their substrate of action, the endocannabinoid system (ECS). The latter is an ensemble of endogenous lipids, their receptors [in particular type-1 (CB1) and type-2 (CB2) cannabinoid receptors] and metabolic enzymes. Cannabinoid signaling regulates cell proliferation, differentiation and survival, with different outcomes depending on the molecular targets and cellular context involved. Cannabinoid receptors are expressed and functional from the very early developmental stages, when they regulate embryonic and trophoblast stem cell survival and differentiation, and thus may affect the formation of manifold adult specialized tissues derived from the three different germ layers (ectoderm, mesoderm and endoderm). In the ectoderm-derived nervous system, both CB1 and CB2 receptors are present in neural progenitor/stem cells and control their self-renewal, proliferation and differentiation. CB1 and CB2 show opposite patterns of expression, the former increasing and the latter decreasing along neuronal differentiation. Recently, endocannabinoid (eCB) signaling has also been shown to regulate proliferation and differentiation of mesoderm-derived hematopoietic and mesenchymal stem cells, with a key role in determining the formation of several cell types in peripheral tissues, including blood cells, adipocytes, osteoblasts/osteoclasts and epithelial cells. Here, we will review these new findings, which unveil the involvement of eCB signaling in the regulation of progenitor/stem cell fate in the nervous system and in the periphery. The developmental regulation of cannabinoid receptor expression and cellular/subcellular localization, together with their role in progenitor/stem cell biology, may have important implications in human health and disease. PMID:24076098

  16. Inhibitory effect of salvinorin A, from Salvia divinorum, on ileitis-induced hypermotility: cross-talk between κ-opioid and cannabinoid CB1 receptors

    PubMed Central

    Capasso, R; Borrelli, F; Cascio, M G; Aviello, G; Huben, K; Zjawiony, J K; Marini, P; Romano, B; Di Marzo, V; Capasso, F; Izzo, A A

    2008-01-01

    Background and purpose: Salvinorin A, the active component of the hallucinogenic herb Salvia divinorum, inhibits intestinal motility through activation of κ-opioid receptors (KORs). However, this compound may have target(s) other than the KORs in the inflamed gut. Because intestinal inflammation upregulates cannabinoid receptors and endogenous cannabinoids, in the present study we investigated the possible involvement of the endogenous cannabinoid system in salvinorin A-induced delay in motility in the inflamed gut. Experimental approach: Motility in vivo was measured by evaluating the distribution of a fluorescent marker along the small intestine; intestinal inflammation was induced by the irritant croton oil; direct or indirect activity at cannabinoid receptors was evaluated by means of binding, enzymic and cellular uptake assays. Key results: Salvinorin A as well as the KOR agonist U-50488 reduced motility in croton oil treated mice. The inhibitory effect of both salvinorin A and U-50488 was counteracted by the KOR antagonist nor-binaltorphimine and by the cannabinoid CB1 receptor antagonist rimonabant. Rimonabant, however, did not counteract the inhibitory effect of salvinorin A on motility in control mice. Binding experiments showed very weak affinity of salvinorin A for cannabinoid CB1 and CB2 and no inhibitory effect on 2-arachidonoylglycerol and anandamide hydrolysis and cellular uptake. Conclusions and implications: The inhibitory effect of salvinorin A on motility reveals a functional interaction between cannabinoid CB1 receptors and KORs in the inflamed—but not in the normal—gut in vivo. PMID:18622408

  17. Oxidation of the Endogenous Cannabinoid Arachidonoyl Ethanolamide by the Cytochrome P450 Monooxygenases: Physiological and Pharmacological Implications

    PubMed Central

    Walker, Vyvyca J.; Hollenberg, Paul F.

    2010-01-01

    Arachidonoyl ethanolamide (anandamide) is an endogenous amide of arachidonic acid and an important signaling mediator of the endocannabinoid system. Given its numerous roles in maintaining normal physiological function and modulating pathophysiological responses throughout the body, the endocannabinoid system is an important pharmacological target amenable to manipulation directly by cannabinoid receptor ligands or indirectly by drugs that alter endocannabinoid synthesis and inactivation. The latter approach has the possible advantage of more selectivity, thus there is the potential for fewer untoward effects like those that are traditionally associated with cannabinoid receptor ligands. In that regard, inhibitors of the principal inactivating enzyme for anandamide, fatty acid amide hydrolase (FAAH), are currently in development for the treatment of pain and inflammation. However, several pathways involved in anandamide synthesis, metabolism, and inactivation all need to be taken into account when evaluating the effects of FAAH inhibitors and similar agents in preclinical models and assessing their clinical potential. Anandamide undergoes oxidation by several human cytochrome P450 (P450) enzymes, including CYP3A4, CYP4F2, CYP4X1, and the highly polymorphic CYP2D6, forming numerous structurally diverse lipids, which are likely to have important physiological roles, as evidenced by the demonstration that a P450-derived epoxide of anandamide is a potent agonist for the cannabinoid receptor 2. The focus of this review is to emphasize the need for a better understanding of the P450-mediated pathways of the metabolism of anandamide, because these are likely to be important in mediating endocannabinoid signaling as well as the pharmacological responses to endocannabinoid-targeting drugs. PMID:20133390

  18. Endothelial atypical cannabinoid receptor: do we have enough evidence?

    PubMed Central

    Bondarenko, Alexander I

    2014-01-01

    Cannabinoids and their synthetic analogues affect a broad range of physiological functions, including cardiovascular variables. Although direct evidence is still missing, the relaxation of a vast range of vascular beds induced by cannabinoids is believed to involve a still unidentified non-CB1, non-CB2 Gi/o protein-coupled receptor located on endothelial cells, the so called endothelial cannabinoid receptor (eCB receptor). Evidence for the presence of an eCB receptor comes mainly from vascular relaxation studies, which commonly employ pertussis toxin as an indicator for GPCR-mediated signalling. In addition, a pharmacological approach is widely used to attribute the relaxation to eCB receptors. Recent findings have indicated a number of GPCR-independent targets for both agonists and antagonists of the presumed eCB receptor, warranting further investigations and cautious interpretation of the vascular relaxation studies. This review will provide a brief historical overview on the proposed novel eCB receptor, drawing attention to the discrepancies between the studies on the pharmacological profile of the eCB receptor and highlighting the Gi/o protein-independent actions of the eCB receptor inhibitors widely used as selective compounds. As the eCB receptor represents an attractive pharmacological target for a number of cardiovascular abnormalities, defining its molecular identity and the extent of its regulation of vascular function will have important implications for drug discovery. This review highlights the need to re-evaluate this subject in a thoughtful and rigorous fashion. More studies are needed to differentiate Gi/o protein-dependent endothelial cannabinoid signalling from that involving the classical CB1 and CB2 receptors as well as its relevance for pathophysiological conditions. PMID:25073723

  19. Type 1 cannabinoid receptor ligands display functional selectivity in a cell culture model of striatal medium spiny projection neurons.

    PubMed

    Laprairie, Robert B; Bagher, Amina M; Kelly, Melanie E M; Dupré, Denis J; Denovan-Wright, Eileen M

    2014-09-01

    Modulation of type 1 cannabinoid receptor (CB1) activity has been touted as a potential means of treating addiction, anxiety, depression, and neurodegeneration. Different agonists of CB1 are known to evoke varied responses in vivo. Functional selectivity is the ligand-specific activation of certain signal transduction pathways at a receptor that can signal through multiple pathways. To understand cannabinoid-specific functional selectivity, different groups have examined the effect of individual cannabinoids on various signaling pathways in heterologous expression systems. In the current study, we compared the functional selectivity of six cannabinoids, including two endocannabinoids (2-arachidonyl glycerol (2-AG) and anandamide (AEA)), two synthetic cannabinoids (WIN55,212-2 and CP55,940), and two phytocannabinoids (cannabidiol (CBD) and Δ(9)-tetrahydrocannabinol (THC)) on arrestin2-, Gα(i/o)-, Gβγ-, Gα(s)-, and Gα(q)-mediated intracellular signaling in the mouse STHdh(Q7/Q7) cell culture model of striatal medium spiny projection neurons that endogenously express CB1. In this system, 2-AG, THC, and CP55,940 were more potent mediators of arrestin2 recruitment than other cannabinoids tested. 2-AG, AEA, and WIN55,212-2, enhanced Gα(i/o) and Gβγ signaling, with 2-AG and AEA treatment leading to increased total CB1 levels. 2-AG, AEA, THC, and WIN55,212-2 also activated Gα(q)-dependent pathways. CP55,940 and CBD both signaled through Gα(s). CP55,940, but not CBD, activated downstream Gα(s) pathways via CB1 targets. THC and CP55,940 promoted CB1 internalization and decreased CB1 protein levels over an 18-h period. These data demonstrate that individual cannabinoids display functional selectivity at CB1 leading to activation of distinct signaling pathways. To effectively match cannabinoids with therapeutic goals, these compounds must be screened for their signaling bias. PMID:25037227

  20. Cannabinoid receptor signaling induces proliferation but not neurogenesis in the mouse olfactory epithelium.

    PubMed

    Hutch, Chelsea R; Hegg, Colleen C

    2016-01-01

    The olfactory epithelium actively generates neurons through adulthood, and this neurogenesis is tightly regulated by multiple factors that are not fully defined. Here, we examined the role of cannabinoids in the regulation of neurogenesis in the mouse olfactory epithelium. In vivo proliferation and cell lineage studies were performed in mice (C57BL/6 and cannabinoid type 1 and 2 receptor deficient strains) treated with cannabinoids directly (WIN 55,212-2 or 2-arachidonylglycerol ether) or indirectly via inhibition of cannabinoid hydrolytic enzymes. Cannabinoids increased proliferation in neonatal and adult mice, and had no effect on proliferation in cannabinoid type 1 and 2 receptor deficient adult mice. Pretreatment with the cannabinoid type1 receptor antagonist AM251 decreased cannabinoid-induced proliferation in adult mice. Despite a cannabinoid-induced increase in proliferation, there was no change in newly generated neurons or non-neuronal cells 16 d post-treatment. However, cannabinoid administration increased apoptotic cell death at 72 hours post-treatment and by 16 d the level of apoptosis dropped to control levels. Thus, cannabinoids induce proliferation, but do not induce neurogenesis nor non-neuronal cell generation. Cannabinoid receptor signaling may regulate the balance of progenitor cell survival and proliferation in adult mouse olfactory epithelium. PMID:27606334

  1. Prospects for Creation of Cardioprotective Drugs Based on Cannabinoid Receptor Agonists.

    PubMed

    Maslov, Leonid N; Khaliulin, Igor; Zhang, Yi; Krylatov, Andrey V; Naryzhnaya, Natalia V; Mechoulam, Raphael; De Petrocellis, Luciano; Downey, James M

    2016-05-01

    Cannabinoids can mimic the infarct-reducing effect of early ischemic preconditioning, delayed ischemic preconditioning, and ischemic postconditioning against myocardial ischemia/reperfusion. They do this primarily through both CB1 and CB2 receptors. Cannabinoids are also involved in remote preconditioning of the heart. The cannabinoid receptor ligands also exhibit an antiapoptotic effect during ischemia/reperfusion of the heart. The acute cardioprotective effect of cannabinoids is mediated by activation of protein kinase C, extracellular signal-regulated kinase, and p38 kinase. The delayed cardioprotective effect of cannabinoid anandamide is mediated via stimulation of phosphatidylinositol-3-kinase-Akt signaling pathway and enhancement of heat shock protein 72 expression. The delayed cardioprotective effect of another cannabinoid, Δ9-tetrahydrocannabinol, is associated with augmentation of nitric oxide (NO) synthase expression, but data on the involvement of NO synthase in the acute cardioprotective effect of cannabinoids are contradictory. The adenosine triphosphate-sensitive K(+)channel is involved in the synthetic cannabinoid HU-210-induced cardiac resistance to ischemia/reperfusion injury. Cannabinoids inhibit Na(+)/Ca(2+)exchange via peripheral cannabinoid receptor (CB2) activation that may also be related to the antiapoptotic and cardioprotective effects of cannabinoids. The cannabinoid receptor agonists should be considered as prospective group of compounds for creation of drugs that are able to protect the heart against ischemia-reperfusion injury in the clinical setting. PMID:26487546

  2. The role of the endogenous cannabinoid system in drug addiction.

    PubMed

    Parolaro, D; Rubino, T

    2008-04-01

    This review aims to present the more recent knowledge on the role of the endocannabinoid system in drug addiction. For a long time, dopamine has been consistently associated with the reinforcing effects of most drugs of abuse but, recently, pharmacological evidence points to the possibility that pharmacological management of the endocannabinoid system might not only block the direct reinforcing effect of cannabis, opioids, nicotine and ethanol, but also prevent the relapse to various drugs of abuse including opioids, cocaine, nicotine, alcohol and amphetamine. Preclinical and clinical studies suggest that the manipulation of the endocannabinoid system through the CB(1) receptor antagonist SR-141716A (rimonabant) might constitute a new therapeutical strategy for treating addiction across different classes of abused drugs. PMID:18560613

  3. Failure to extinguish fear and genetic variability in the human cannabinoid receptor 1.

    PubMed

    Heitland, I; Klumpers, F; Oosting, R S; Evers, D J J; Leon Kenemans, J; Baas, J M P

    2012-01-01

    Failure to extinguish fear can lead to persevering anxiety and has been postulated as an important mechanism in the pathogenesis of human anxiety disorders. In animals, it is well documented that the endogenous cannabinoid system has a pivotal role in the successful extinction of fear, most importantly through the cannabinoid receptor 1. However, no human studies have reported a translation of this preclinical evidence yet. Healthy medication-free human subjects (N=150) underwent a fear conditioning and extinction procedure in a virtual reality environment. Fear potentiation of the eyeblink startle reflex was measured to assess fear-conditioned responding, and subjective fear ratings were collected. Participants were genotyped for two polymorphisms located within the promoter region (rs2180619) and the coding region (rs1049353) of cannabinoid receptor 1. As predicted from the preclinical literature, acquisition and expression of conditioned fear did not differ between genotypes. Crucially, whereas both homozygote (G/G, N=23) and heterozygote (A/G, N=68) G-allele carriers of rs2180619 displayed robust extinction of fear, extinction of fear-potentiated startle was absent in A/A homozygotes (N=51). Additionally, this resistance to extinguish fear left A/A carriers of rs2180619 with significantly higher levels of fear-potentiated startle at the end of the extinction training. No effects of rs1049353 genotype were observed regarding fear acquisition and extinction. These results suggest for the first time involvement of the human endocannabinoid system in fear extinction. Implications are that genetic variability in this system may underlie individual differences in anxiety, rendering cannabinoid receptor 1 a potential target for novel pharmacological treatments of anxiety disorders. PMID:23010766

  4. Cannabinoid CB1 Receptor Activation Mediates the Opposing Effects of Amphetamine on Impulsive Action and Impulsive Choice

    PubMed Central

    Wiskerke, Joost; Stoop, Nicky; Schetters, Dustin; Schoffelmeer, Anton N. M.; Pattij, Tommy

    2011-01-01

    It is well known that acute challenges with psychostimulants such as amphetamine affect impulsive behavior. We here studied the pharmacology underlying the effects of amphetamine in two rat models of impulsivity, the 5-choice serial reaction time task (5-CSRTT) and the delayed reward task (DRT), providing measures of inhibitory control, an aspect of impulsive action, and impulsive choice, respectively. We focused on the role of cannabinoid CB1 receptor activation in amphetamine-induced impulsivity as there is evidence that acute challenges with psychostimulants activate the endogenous cannabinoid system, and CB1 receptor activity modulates impulsivity in both rodents and humans. Results showed that pretreatment with either the CB1 receptor antagonist/inverse agonist SR141716A or the neutral CB1 receptor antagonist O-2050 dose-dependently improved baseline inhibitory control in the 5-CSRTT. Moreover, both compounds similarly attenuated amphetamine-induced inhibitory control deficits, suggesting that CB1 receptor activation by endogenously released cannabinoids mediates this aspect of impulsive action. Direct CB1 receptor activation by Δ9-Tetrahydrocannabinol (Δ9-THC) did, however, not affect inhibitory control. Although neither SR141716A nor O-2050 affected baseline impulsive choice in the DRT, both ligands completely prevented amphetamine-induced reductions in impulsive decision making, indicating that CB1 receptor activity may decrease this form of impulsivity. Indeed, acute Δ9-THC was found to reduce impulsive choice in a CB1 receptor-dependent way. Together, these results indicate an important, though complex role for cannabinoid CB1 receptor activity in the regulation of impulsive action and impulsive choice as well as the opposite effects amphetamine has on both forms of impulsive behavior. PMID:22016780

  5. Evaluation of Phytocannabinoids from High Potency Cannabis sativa using In Vitro Bioassays to Determine Structure-Activity Relationships for Cannabinoid Receptor 1 and Cannabinoid Receptor 2

    PubMed Central

    Husni, Afeef S.; McCurdy, Christopher R.; Radwan, Mohamed M.; Ahmed, Safwat A.; Slade, Desmond; Ross, Samir A.; ElSohly, Mahmoud A.; Cutler, Stephen J.

    2014-01-01

    Cannabis has been around for thousands of years and has been used recreationally, medicinally, and for fiber. Over 500 compounds have been isolated from Cannabis sativa with approximately 105 being cannabinoids. Of those 105 compounds, Δ9-tetrahydrocannabinol has been determined as the primary constituent, which is also responsible for the psychoactivity associated with Cannabis. Cannabinoid receptors belong to the large superfamily of G protein-coupled receptors. Targeting the cannabinoid receptors has the potential to treat a variety of conditions such as pain, neurodegeneration, appetite, immune function, anxiety, cancer, and others. Developing in vitro bioassays to determine binding and functional activity of compounds has the ability to lead researchers to develop a safe and effective drug that may target the cannabinoid receptors. Using radioligand binding and functional bioassays, a structure-activity relationship for major and minor cannabinoids was developed. PMID:25419092

  6. Evaluation of Phytocannabinoids from High Potency Cannabis sativa using In Vitro Bioassays to Determine Structure-Activity Relationships for Cannabinoid Receptor 1 and Cannabinoid Receptor 2.

    PubMed

    Husni, Afeef S; McCurdy, Christopher R; Radwan, Mohamed M; Ahmed, Safwat A; Slade, Desmond; Ross, Samir A; ElSohly, Mahmoud A; Cutler, Stephen J

    2014-09-01

    Cannabis has been around for thousands of years and has been used recreationally, medicinally, and for fiber. Over 500 compounds have been isolated from Cannabis sativa with approximately 105 being cannabinoids. Of those 105 compounds, Δ(9)-tetrahydrocannabinol has been determined as the primary constituent, which is also responsible for the psychoactivity associated with Cannabis. Cannabinoid receptors belong to the large superfamily of G protein-coupled receptors. Targeting the cannabinoid receptors has the potential to treat a variety of conditions such as pain, neurodegeneration, appetite, immune function, anxiety, cancer, and others. Developing in vitro bioassays to determine binding and functional activity of compounds has the ability to lead researchers to develop a safe and effective drug that may target the cannabinoid receptors. Using radioligand binding and functional bioassays, a structure-activity relationship for major and minor cannabinoids was developed. PMID:25419092

  7. Discovery of cannabinoid-1 receptor antagonists by virtual screening.

    PubMed

    Lee, Gil Nam; Kim, Kwang Rok; Ahn, Sung-Hoon; Bae, Myung Ae; Kang, Nam Sook

    2010-09-01

    In this work, we tried to find a new scaffold for a CB1 receptor antagonist using virtual screening. We first analyzed structural features for the known cannabinoid-1 receptor antagonists and, then, we built pharmacophore models using the HipHop concept and carried out a docking study based on our homology CB1 receptor 3D structure. The most active compound, including thiazole-4-one moiety, showed an activity value of 125 nM IC(50), with a good PK profile. PMID:20667724

  8. Monoglyceride lipase deficiency causes desensitization of intestinal cannabinoid receptor type 1 and increased colonic μ-opioid receptor sensitivity

    PubMed Central

    Taschler, U; Eichmann, T O; Radner, F P W; Grabner, G F; Wolinski, H; Storr, M; Lass, A; Schicho, R; Zimmermann, R

    2015-01-01

    Background and Purpose Monoglyceride lipase (MGL) degrades 2-arachidonoyl glycerol (2-AG), an endogenous agonist of cannabinoid receptors (CB1/2). Because the CB1 receptor is involved in the control of gut function, we investigated the effects of pharmacological inhibition and genetic deletion of MGL on intestinal motility. Furthermore, we determined whether defective 2-AG degradation affects μ-opioid receptorreceptor) signalling, a parallel pathway regulating gut motility. Experimental Approach Gut motility was investigated by monitoring Evans Blue transit and colonic bead propulsion in response to MGL inhibition and CB1 receptor or μ receptor stimulation. Ileal contractility was investigated by electrical field stimulation. CB1 receptor expression in ileum and colon was assessed by immunohistochemical analyses. Key Results Pharmacological inhibition of MGL slowed down whole gut transit in a CB1 receptor-dependent manner. Conversely, genetic deletion of MGL did not affect gut transit despite increased 2-AG levels. Notably, MGL deficiency caused complete insensitivity to CB1 receptor agonist-mediated inhibition of whole gut transit and ileal contractility suggesting local desensitization of CB1 receptors. Accordingly, immunohistochemical analyses of myenteric ganglia of MGL-deficient mice revealed that CB1 receptors were trapped in endocytic vesicles. Finally, MGL-deficient mice displayed accelerated colonic propulsion and were hypersensitive to μ receptor agonist-mediated inhibition of colonic motility. This phenotype was reproduced by chronic pharmacological inhibition of MGL. Conclusion and Implications Constantly elevated 2-AG levels induce severe desensitization of intestinal CB1 receptors and increased sensitivity to μ receptor-mediated inhibition of colonic motility. These changes should be considered when cannabinoid-based drugs are used in the therapy of gastrointestinal diseases. PMID:26075589

  9. CB2 Cannabinoid Receptors as a Therapeutic Target—What Does the Future Hold?

    PubMed Central

    Dhopeshwarkar, Amey

    2014-01-01

    The past decades have seen an exponential rise in our understanding of the endocannabinoid system, comprising CB1 and CB2 cannabinoid receptors, endogenous cannabinoids (endocannabinoids), and the enzymes that synthesize and degrade endocannabinoids. The primary focus of this review is the CB2 receptor. CB2 receptors have been the subject of considerable attention, primarily due to their promising therapeutic potential for treating various pathologies while avoiding the adverse psychotropic effects that can accompany CB1 receptor–based therapies. With the appreciation that CB2-selective ligands show marked functional selectivity, there is a renewed opportunity to explore this promising area of research from both a mechanistic as well as a therapeutic perspective. In this review, we summarize our present knowledge of CB2 receptor signaling, localization, and regulation. We discuss the availability of genetic tools (and their limitations) to study CB2 receptors and also provide an update on preclinical data on CB2 agonists in pain models. Finally, we suggest possible reasons for the failure of CB2 ligands in clinical pain trials and offer possible ways to move the field forward in a way that can help reconcile the inconsistencies between preclinical and clinical data. PMID:25106425

  10. Opportunistic activation of TRP receptors by endogenous lipids: Exploiting lipidomics to understand TRP receptor cellular communication

    PubMed Central

    Bradshaw, Heather B.; Raboune, Siham; Hollis, Jennifer L.

    2012-01-01

    Transient receptor potential channels (TRPs) form a large family of ubiquitous non-selective cation channels that function as cellular sensors and in many cases regulate intracellular calcium. Identification of the endogenous ligands that activate these TRP receptors is still under intense investigation with the majority of these channels still remaining “orphans”. That these channels respond to a variety of external stimuli (e.g. plant-derived lipids, changes in temperature, and changes in pH) provides a framework for their abilities as cellular sensors, however, the mechanism of direct activation is still under much debate and research. In the cases where endogenous ligands (predominately lipids) have shown direct activation of a channel, multiple ligands have been shown to activate the same channel suggesting that these receptors are “promiscuous” in nature. Lipidomics of a growing class of endogenous lipids, N-acyl amides, the most famous of which is N-arachidonoyl ethanolamine (the endogenous cannabinoid, Anandamide) is providing a novel set of ligands that have been shown to activate some members of the TRP family and have the potential to deorphanize many more. Here it is argued that activation of TRPV receptors, a subset of the larger family of TRPs, by multiple endogenous lipids that are structurally analogous is a model system to drive our understanding that many TRP receptors are not promiscuous, but are more characteristically “opportunistic” in nature; exploiting the structural similarity and biosynthesis of a narrow range of analogous endogenous lipids. In addition, this manuscript will compare the activation properties of TRPC5 to the activity profile of an “orphan” lipid, N-palmitoyl glycine; further demonstrating that lipidomics aimed at expanding our knowledge of the family of N-acyl amides has the potential to provide novel avenues of research for TRP receptors. PMID:23178153

  11. Cannabinoid receptor 2: potential role in immunomodulation and neuroinflammation.

    PubMed

    Rom, Slava; Persidsky, Yuri

    2013-06-01

    An accumulating body of evidence suggests that endocannabinoids and cannabinoid receptors type 1 and 2 (CB(1), CB(2)) play a significant role in physiologic and pathologic processes, including cognitive and immune functions. While the addictive properties of marijuana, an extract from the Cannabis plant, are well recognized, there is growing appreciation of the therapeutic potential of cannabinoids in multiple pathologic conditions involving chronic inflammation (inflammatory bowel disease, arthritis, autoimmune disorders, multiple sclerosis, HIV-1 infection, stroke, Alzheimer's disease to name a few), mainly mediated by CB(2) activation. Development of CB(2) agonists as therapeutic agents has been hampered by the complexity of their intracellular signaling, relative paucity of highly selective compounds and insufficient data regarding end effects in the target cells and organs. This review attempts to summarize recent advances in studies of CB(2) activation in the setting of neuroinflammation, immunomodulation and HIV-1 infection. PMID:23471521

  12. 3′-Functionalized Adamantyl Cannabinoid Receptor Probes

    PubMed Central

    Ogawa, Go; Tius, Marcus A.; Zhou, Han; Nikas, Spyros P.; Halikhedkar, Aneetha; Mallipeddi, Srikrishnan; Makriyannis, Alexandros

    2015-01-01

    The aliphatic side chain plays a pivotal role in determining the cannabinergic potency of tricyclic classical cannabinoids, and we have previously shown that this chain could be substituted successfully by adamantyl or other polycyclic groups. In an effort to explore the pharmacophoric features of these conformationally fixed groups, we have synthesized a series of analogues in which the C3 position is substituted directly with an adamantyl group bearing functionality at one of the tertiary carbon atoms. These substituents included the electrophilic isothiocyanate and photoactivatable azido groups, both of which are capable of covalent attachment with the target protein. Our results show that substitution at the 3′-adamantyl position can lead to ligands with improved affinities and CB1/CB2 selectivities. Our work has also led to the development of two successful covalent probes with high affinities for both cannabinoid receptors, namely, the electrophilic isothiocyanate AM994 and the photoactivatable aliphatic azido AM993 analogues. PMID:25760146

  13. Cannabinoid receptor 2: Potential role in immunomodulation and neuroinflammation Review

    PubMed Central

    Rom, Slava; Persidsky, Yuri

    2013-01-01

    An accumulating body of evidence suggests that endocannabinoids and cannabinoid receptors type 1 and 2 (CB1, CB2) play a significant role in physiologic and pathologic processes, including cognitive and immune functions. While the addictive properties of marijuana, an extract from the Cannabis plant, are well recognized, there is growing appreciation of the therapeutic potential of cannabinoids in multiple pathologic conditions involving chronic inflammation (inflammatory bowel disease, arthritis, autoimmune disorders, multiple sclerosis, HIV-1 infection, stroke, Alzheimer’s disease to name a few), mainly mediated by CB2 activation. Development of CB2 agonists as therapeutic agents has been hampered by the complexity of their intracellular signaling, relative paucity of highly selective compounds and insufficient data regarding end effects in the target cells and organs. This review attempts to summarize recent advances in studies of CB2 activation in the setting of neuroinflammation, immunomodulation and HIV-1 infection. PMID:23471521

  14. Cytotoxicity of synthetic cannabinoids on primary neuronal cells of the forebrain: the involvement of cannabinoid CB{sub 1} receptors and apoptotic cell death

    SciTech Connect

    Tomiyama, Ken-ichi; Funada, Masahiko

    2014-01-01

    The abuse of herbal products containing synthetic cannabinoids has become an issue of public concern. The purpose of this paper was to evaluate the acute cytotoxicity of synthetic cannabinoids on mouse brain neuronal cells. Cytotoxicity induced by synthetic cannabinoid (CP-55,940, CP-47,497, CP-47,497-C8, HU-210, JWH-018, JWH-210, AM-2201, and MAM-2201) was examined using forebrain neuronal cultures. These synthetic cannabinoids induced cytotoxicity in the forebrain cultures in a concentration-dependent manner. The cytotoxicity was suppressed by preincubation with the selective CB{sub 1} receptor antagonist AM251, but not with the selective CB{sub 2} receptor antagonist AM630. Furthermore, annexin-V-positive cells were found among the treated forebrain cells. Synthetic cannabinoid treatment induced the activation of caspase-3, and preincubation with a caspase-3 inhibitor significantly suppressed the cytotoxicity. These synthetic cannabinoids induced apoptosis through a caspase-3-dependent mechanism in the forebrain cultures. Our results indicate that the cytotoxicity of synthetic cannabinoids towards primary neuronal cells is mediated by the CB{sub 1} receptor, but not by the CB{sub 2} receptor, and further suggest that caspase cascades may play an important role in the apoptosis induced by these synthetic cannabinoids. In conclusion, excessive synthetic cannabinoid abuse may present a serious acute health concern due to neuronal damage or deficits in the brain. - Highlights: • Synthetic cannabinoids (classical cannabinoids, non-classical cannabinoids, and aminoalkylindole derivatives) induce cytotoxicity in mouse forebrain cultures. • Synthetic cannabinoid-induced cytotoxicity towards forebrain cultures is mediated by the CB{sub 1} receptor, but not by the CB{sub 2} receptor, and involves caspase-dependent apoptosis. • A high concentration of synthetic cannabinoids may be toxic to neuronal cells that express CB{sub 1} receptors.

  15. SGIP1 alters internalization and modulates signaling of activated cannabinoid receptor 1 in a biased manner.

    PubMed

    Hájková, Alena; Techlovská, Šárka; Dvořáková, Michaela; Chambers, Jayne Nicole; Kumpošt, Jiří; Hubálková, Pavla; Prezeau, Laurent; Blahos, Jaroslav

    2016-08-01

    Many diseases of the nervous system are accompanied by alterations in synaptic functions. Synaptic plasticity mediated by the endogenous cannabinoid system involves the activation of the cannabinoid receptor 1 (CB1R). The principles of CB1R signaling must be understood in detail for its therapeutic exploration. We detected the Src homology 3-domain growth factor receptor-bound 2-like (endophilin) interacting protein 1 (SGIP1) as a novel CB1R partner. SGIP1 is functionally linked to clathrin-mediated endocytosis and its overexpression in animals leads to an energy regulation imbalance resulting in obesity. We report that SGIP1 prevents the endocytosis of activated CB1R and that it alters signaling via the CB1R in a biased manner. CB1R mediated G-protein activation is selectively influenced by SGIP1, β-arrestin associated signaling is changed profoundly, most likely as a consequence of the prevention of the receptor's internalization elicited by SGIP1. PMID:26970018

  16. Biased Agonism and Biased Allosteric Modulation at the CB1 Cannabinoid Receptor.

    PubMed

    Khajehali, Elham; Malone, Daniel T; Glass, Michelle; Sexton, Patrick M; Christopoulos, Arthur; Leach, Katie

    2015-08-01

    CB1 cannabinoid receptors (CB1Rs) are attractive therapeutic targets for numerous central nervous system disorders. However, clinical application of cannabinoid ligands has been hampered owing to their adverse on-target effects. Ligand-biased signaling from, and allosteric modulation of, CB1Rs offer pharmacological approaches that may enable the development of improved CB1R drugs, through modulation of only therapeutically desirable CB1R signaling pathways. There is growing evidence that CB1Rs are subject to ligand-biased signaling and allosterism. Therefore, in the present study, we quantified ligand-biased signaling and allosteric modulation at CB1Rs. Cannabinoid agonists displayed distinct biased signaling profiles at CB1Rs. For instance, whereas 2-arachidonylglycerol and WIN55,212-2 [(R)-(+)-[2,3-dihydro-5-methyl-3-(4-morpholinylmethyl)pyrrolo[1,2,3-de]-1,4-benzoxazin-6-yl]-1-napthalenylmethanone] showed little preference for inhibition of cAMP and phosphorylation of extracellular signal-regulated kinase 1/2 (pERK1/2), N-arachidonoylethanolamine (anandamide), methanandamide, CP55940 [2-[(1R,2R,5R)-5-hydroxy-2-(3-hydroxypropyl)cyclohexyl]-5-(2-methyloctan-2-yl)phenol], and HU-210 [11-hydroxy-Δ(8)-THC-dimethylheptyl] were biased toward cAMP inhibition. The small-molecule allosteric modulator Org27569 [5-chloro-3-ethyl-1H-indole-2-carboxylic acid [2-(4-piperidin-1-yl-phenyl)ethyl]amide] displayed biased allosteric effects by blocking cAMP inhibition mediated by all cannabinoid ligands tested, at the same time having little or no effect on ERK1/2 phosphorylation mediated by a subset of these ligands. Org27569 also displayed negative binding cooperativity with [(3)H]SR141716A [5-(4-chlorophenyl)-1-(2,4-dichloro-phenyl)-4-methyl-N-(piperidin-1-yl)-1H-pyrazole-3-carboxamide]; however, it had minimal effects on binding of cannabinoid agonists. Furthermore, we highlight the need to validate the reported allosteric effects of the endogenous ligands lipoxin A4 and

  17. Medicinal Chemistry of Cannabinoids

    PubMed Central

    Vemuri, V Kiran; Makriyannis, A

    2015-01-01

    The endocannabinoid system comprises the two well characterized Gi/o-protein coupled receptors (cannabinoid receptor 1 (CB1) and CB2), their endogenous lipid ligands, and the enzymes involved in their biosynthesis and biotransformation. Drug discovery efforts relating to the endocannabinoid system have been focused mainly on the two cannabinoid receptors and the two endocannabinoid deactivating enzymes fatty acid amide hydrolase (FAAH) and monoacylglycerol lipase (MGL). This review provides an overview of cannabinergic agents used in drug research and those being explored clinically. PMID:25801236

  18. MicroRNA let-7d is a target of cannabinoid CB1 receptor and controls cannabinoid signaling.

    PubMed

    Chiarlone, Anna; Börner, Christine; Martín-Gómez, Laura; Jiménez-González, Ada; García-Concejo, Adrián; García-Bermejo, María L; Lorente, Mar; Blázquez, Cristina; García-Taboada, Elena; de Haro, Amador; Martella, Elisa; Höllt, Volker; Rodríguez, Raquel; Galve-Roperh, Ismael; Kraus, Jürgen; Guzmán, Manuel

    2016-09-01

    Cannabinoid CB1 receptor, the molecular target of endocannabinoids and cannabis active components, is one of the most abundant metabotropic receptors in the brain. Cannabis is widely used for both recreational and medicinal purposes. Despite the ever-growing fundamental roles of microRNAs in the brain, the possible molecular connections between the CB1 receptor and microRNAs are surprisingly unknown. Here, by using reporter gene constructs that express interaction sequences for microRNAs in human SH-SY5Y neuroblastoma cells, we show that CB1 receptor activation enhances the expression of several microRNAs, including let-7d. This was confirmed by measuring hsa-let-7d expression levels. Accordingly, knocking-down CB1 receptor in zebrafish reduced dre-let-7d levels, and knocking-out CB1 receptor in mice decreased mmu-let-7d levels in the cortex, striatum and hippocampus. Conversely, knocking-down let-7d increased CB1 receptor mRNA expression in zebrafish, SH-SY5Y cells and primary striatal neurons. Likewise, in primary striatal neurons chronically exposed to a cannabinoid or opioid agonist, a let-7d-inhibiting sequence facilitated not only cannabinoid or opioid signaling but also cannabinoid/opioid cross-signaling. Taken together, these findings provide the first evidence for a bidirectional link between the CB1 receptor and a microRNA, namely let-7d, and thus unveil a new player in the complex process of cannabinoid action. PMID:27179908

  19. Mead ethanolamide, a novel eicosanoid, is an agonist for the central (CB1) and peripheral (CB2) cannabinoid receptors.

    PubMed

    Priller, J; Briley, E M; Mansouri, J; Devane, W A; Mackie, K; Felder, C C

    1995-08-01

    The recently discovered endogenous agonist for the cannabinoid receptor, anandamide (arachidonylethanolamide), can be formed enzymatically by the condensation of arachidonic acid with ethanolamine. 5Z,8Z,11Z-Eicosatrienoic acid (mead acid) has been found to substitute for arachidonic acid in the sn-2 position of phospholipids and accumulate during periods of dietary fatty acid deprivation in rats. In the present study, the chemically synthesized ethanolamide of mead acid was evaluated as a potential agonist at the two known subtypes of cannabinoid receptor: CB1 (central) and CB2 (peripheral). This compound was equipotent to anandamide in competing with [3H]CP55,940 binding to plasma membranes prepared from L cells expressing the human CB1 receptor and from ATt-20 cells expressing the human CB2 receptor. Mead ethanolamide was also equipotent to anandamide in inhibiting forskolin-stimulated cAMP accumulation in cells expressing the CB1 receptor. It inhibited N-type calcium currents with a lower potency than anandamide. Mead and arachidonic acid were equally efficacious as substrates for the enzymatic synthesis of their respective ethanolamides in rat and adult human hippocampal P2 membranes. Palmitic acid was not an effective substrate for the enzymatic synthesis of palmitoyl ethanolamide. Mead ethanolamide exhibits several characteristics of a novel agonist to CB1 and CB2 receptors and may represent another candidate endogenous ligand for the CB1 receptor. Due to the anticonvulsant properties of GABA and the positional similarity of L-serine to ethanolamine in membrane phospholipids, these compounds were synthetically coupled to arachidonic acid, and their resulting arachidonamides were tested as potential cannabinoid agonists. The arachidonamides of GABA and L-serine were inactive in both binding and functional assays at the CB1 receptor. PMID:7651362

  20. A frequent polymorphism in the coding exon of the human cannabinoid receptor (CNR1) gene.

    PubMed

    Gadzicki, D; Müller-Vahl, K; Stuhrmann, M

    1999-08-01

    The central cannabinoid receptor (CB1) mediates the pharmacological activities of cannabis, the endogenous agonist anandamide and several synthetic agonists. The cloning of the human cannabinoid receptor (CNR1) gene facilitates molecular genetic studies in disorders like Gilles de la Tourette syndrome (GTS), obsessive compulsive disorder (OCD), Parkinsons disease, Alzheimers disease or other neuro psychiatric or neurological diseases, which may be predisposed or influenced by mutations or variants in the CNR1 gene. We detected a frequent silent mutation (1359G-->A) in codon 453 (Thr) of the CNR1 gene that turned out to be a common polymorphism in the German population. Allele frequencies of this polymorphism are 0.76 and 0.24, respectively. We developed a simple and rapid polymerase chain reaction (PCR)-based assay by artificial creation of a Msp I restriction site in amplified wild-type DNA (G-allele), which is destroyed by the silent mutation (A-allele). The intragenic CNR1 polymorphism 1359(G/A) should be useful for association studies in neuro psychiatric disorders which may be related to anandamide metabolism disturbances. PMID:10441206

  1. Interactions between cannabinoid receptor agonists and mu opioid receptor agonists in rhesus monkeys discriminating fentanyl.

    PubMed

    Maguire, David R; France, Charles P

    2016-08-01

    Cannabinoid receptor agonists such as delta-9-tetrahydrocannabinol (Δ(9)-THC) enhance some (antinociceptive) but not other (positive reinforcing) effects of mu opioid receptor agonists, suggesting that cannabinoids might be combined with opioids to treat pain without increasing, and possibly decreasing, abuse. The degree to which cannabinoids enhance antinociceptive effects of opioids varies across drugs insofar as Δ(9)-THC and the synthetic cannabinoid receptor agonist CP55940 increase the potency of some mu opioid receptor agonists (e.g., fentanyl) more than others (e.g., nalbuphine). It is not known whether interactions between cannabinoids and opioids vary similarly for other (abuse-related) effects. This study examined whether Δ(9)-THC and CP55940 differentially impact the discriminative stimulus effects of fentanyl and nalbuphine in monkeys (n=4) discriminating 0.01mg/kg of fentanyl (s.c.) from saline. Fentanyl (0.00178-0.0178mg/kg) and nalbuphine (0.01-0.32mg/kg) dose-dependently increased drug-lever responding. Neither Δ(9)-THC (0.032-1.0mg/kg) nor CP55940 (0.0032-0.032mg/kg) enhanced the discriminative stimulus effects of fentanyl or nalbuphine; however, doses of Δ(9)-THC and CP55940 that shifted the nalbuphine dose-effect curve markedly to the right and/or down were less effective or ineffective in shifting the fentanyl dose-effect curve. The mu opioid receptor antagonist naltrexone (0.032mg/kg) attenuated the discriminative stimulus effects of fentanyl and nalbuphine similarly. These data indicate that the discriminative stimulus effects of nalbuphine are more sensitive to attenuation by cannabinoids than those of fentanyl. That the discriminative stimulus effects of some opioids are more susceptible to modification by drugs from other classes has implications for developing maximally effective therapeutic drug mixtures with reduced abuse liability. PMID:27184925

  2. Cannabinoid receptor-independent actions of the aminoalkylindole WIN 55,212-2 on trigeminal sensory neurons

    PubMed Central

    Price, Theodore J; Patwardhan, Amol; Akopian, Armen N; Hargreaves, Kenneth M; Flores, Christopher M

    2004-01-01

    The prototypical aminoalkylindole cannabinoid WIN 55,212-2 (WIN-2) has been shown to produce antihyperalgesia through a peripheral mechanism of action. However, it is not known whether WIN-2 exerts this action directly via cannabinoid receptors located on primary afferents or if other, perhaps indirect or noncannabinoid, mechanisms are involved. To address this question, we have examined the specific actions of WIN-2 on trigeminal ganglion (TG) neurons in vitro by quantifying its ability to modulate the evoked secretion of the proinflammatory neuropeptide CGRP as well as the inflammatory mediator-induced generation of cAMP. WIN-2 evoked CGRP release from TG neurons in vitro (EC50=26 μM) in a concentration- and calcium-dependent manner, which was mimicked by the cannabinoid receptor-inactive enantiomer WIN 55,212-3 (WIN-3). Moreover, WIN-2-evoked CGRP release was attenuated by the nonselective cation channel blocker ruthenium red but not by the vanilloid receptor type 1 (TRPV1) antagonist capsazepine, suggesting that, unlike certain endogenous and synthetic cannabinoids, WIN-2 is not a TRPV1 agonist but rather acts at an as yet unidentified cation channel. The inhibitory effects of WIN-2 on TG neurons were also examined. WIN-2 neither inhibited capsaicin-evoked CGRP release nor did it inhibit forskolin-, isoproteranol- or prostaglandin E2-stimulated cAMP accumulation. On the other hand, WIN-2 significantly inhibited (EC50=1.7 μM) 50 mM K+-evoked CGRP release by approximately 70%. WIN-2 inhibition of 50 mM K+-evoked CGRP release was not reversed by antagonists of cannabinoid type 1 (CB1) receptor, but was mimicked in magnitude and potency (EC50=2.7 μM) by its cannabinoid-inactive enantiomer WIN-3. These findings indicate that WIN-2 exerts both excitatory and inhibitory effects on TG neurons, neither of which appear to be mediated by CB1, CB2 or TRPV1 receptors, but by a novel calcium-dependent mechanism. The ramifications of these results are discussed in relation

  3. Detecting constitutive activity and protean agonism at cannabinoid-2 receptor.

    PubMed

    Beltramo, Massimiliano; Brusa, Rossella; Mancini, Isabella; Scandroglio, Paola

    2010-01-01

    Since the cannabinoid system is involved in regulating several physiological functions such as locomotor activity, cognition, nociception, food intake, and inflammatory reaction, it has been the subject of intense study. Research on the pharmacology of this system has enormously progressed in the last 20years. One intriguing aspect that emerged from this research is that cannabinoid receptors (CBs) express a high level of constitutive activity. Investigation on this particular aspect of receptor pharmacology has largely focused on CB1, the CB subtype highly expressed in several brain regions. More recently, research on constitutive activity on the other CB subtype, CB2, was stimulated by the increasing interest on its potential as target for the treatment of various pathologies (e.g., pain and inflammation). There are several possible implications of constitutive activity on the therapeutic action of both agonists and antagonists, and consequently, it is important to have valuable methods to study this aspect of CB2 pharmacology. In the present chapter, we describe three methods to study constitutive activity at CB2: two classical methods relying on the detection of changes in cAMP level and GTPγS binding and a new one based on cell impedance measurement. In addition, we also included a section on detection of protean agonism, which is an interesting pharmacological phenomenon strictly linked to constitutive activity. PMID:21036225

  4. Cannabinoid receptor signaling regulates liver development and metabolism.

    PubMed

    Liu, Leah Y; Alexa, Kristen; Cortes, Mauricio; Schatzman-Bone, Stephanie; Kim, Andrew J; Mukhopadhyay, Bani; Cinar, Resat; Kunos, George; North, Trista E; Goessling, Wolfram

    2016-02-15

    Endocannabinoid (EC) signaling mediates psychotropic effects and regulates appetite. By contrast, potential roles in organ development and embryonic energy consumption remain unknown. Here, we demonstrate that genetic or chemical inhibition of cannabinoid receptor (Cnr) activity disrupts liver development and metabolic function in zebrafish (Danio rerio), impacting hepatic differentiation, but not endodermal specification: loss of cannabinoid receptor 1 (cnr1) and cnr2 activity leads to smaller livers with fewer hepatocytes, reduced liver-specific gene expression and proliferation. Functional assays reveal abnormal biliary anatomy and lipid handling. Adult cnr2 mutants are susceptible to hepatic steatosis. Metabolomic analysis reveals reduced methionine content in Cnr mutants. Methionine supplementation rescues developmental and metabolic defects in Cnr mutant livers, suggesting a causal relationship between EC signaling, methionine deficiency and impaired liver development. The effect of Cnr on methionine metabolism is regulated by sterol regulatory element-binding transcription factors (Srebfs), as their overexpression rescues Cnr mutant liver phenotypes in a methionine-dependent manner. Our work describes a novel developmental role for EC signaling, whereby Cnr-mediated regulation of Srebfs and methionine metabolism impacts liver development and function. PMID:26884397

  5. Cannabinoid receptor 1 signaling in cardiovascular regulating nuclei in the brainstem: A review

    PubMed Central

    Ibrahim, Badr M.; Abdel-Rahman, Abdel A.

    2013-01-01

    Cannabinoids elicit complex hemodynamic responses in experimental animals that involve both peripheral and central sites. Centrally administered cannabinoids have been shown to predominantly cause pressor response. However, very little is known about the mechanism of the cannabinoid receptor 1 (CB1R)-centrally evoked pressor response. In this review, we provided an overview of the contemporary knowledge regarding the cannabinoids centrally elicited cardiovascular responses and the possible underlying signaling mechanisms. The current review focuses on the rostral ventrolateral medulla (RVLM) as the primary brainstem nucleus implicated in CB1R-evoked pressor response. PMID:25685481

  6. Structure of a cannabinoid receptor and functional expression of the cloned cDNA.

    PubMed

    Matsuda, L A; Lolait, S J; Brownstein, M J; Young, A C; Bonner, T I

    1990-08-01

    Marijuana and many of its constituent cannabinoids influence the central nervous system (CNS) in a complex and dose-dependent manner. Although CNS depression and analgesia are well documented effects of the cannabinoids, the mechanisms responsible for these and other cannabinoid-induced effects are not so far known. The hydrophobic nature of these substances has suggested that cannabinoids resemble anaesthetic agents in their action, that is, they nonspecifically disrupt cellular membranes. Recent evidence, however, has supported a mechanism involving a G protein-coupled receptor found in brain and neural cell lines, and which inhibits adenylate cyclase activity in a dose-dependent, stereoselective and pertussis toxin-sensitive manner. Also, the receptor is more responsive to psychoactive cannabinoids than to non-psychoactive cannabinoids. Here we report the cloning and expression of a complementary DNA that encodes a G protein-coupled receptor with all of these properties. Its messenger RNA is found in cell lines and regions of the brain that have cannabinoid receptors. These findings suggest that this protein is involved in cannabinoid-induced CNS effects (including alterations in mood and cognition) experienced by users of marijuana. PMID:2165569

  7. Cannabinoid Receptor–Interacting Protein 1a Modulates CB1 Receptor Signaling and Regulation

    PubMed Central

    Smith, Tricia H.; Blume, Lawrence C.; Straiker, Alex; Cox, Jordan O.; David, Bethany G.; McVoy, Julie R. Secor; Sayers, Katherine W.; Poklis, Justin L.; Abdullah, Rehab A.; Egertová, Michaela; Chen, Ching-Kang; Mackie, Ken; Elphick, Maurice R.; Howlett, Allyn C.

    2015-01-01

    Cannabinoid CB1 receptors (CB1Rs) mediate the presynaptic effects of endocannabinoids in the central nervous system (CNS) and most behavioral effects of exogenous cannabinoids. Cannabinoid receptor–interacting protein 1a (CRIP1a) binds to the CB1R C-terminus and can attenuate constitutive CB1R-mediated inhibition of Ca2+ channel activity. We now demonstrate cellular colocalization of CRIP1a at neuronal elements in the CNS and show that CRIP1a inhibits both constitutive and agonist-stimulated CB1R-mediated guanine nucleotide–binding regulatory protein (G-protein) activity. Stable overexpression of CRIP1a in human embryonic kidney (HEK)-293 cells stably expressing CB1Rs (CB1-HEK), or in N18TG2 cells endogenously expressing CB1Rs, decreased CB1R-mediated G-protein activation (measured by agonist-stimulated [35S]GTPγS (guanylyl-5′-[O-thio]-triphosphate) binding) in both cell lines and attenuated inverse agonism by rimonabant in CB1-HEK cells. Conversely, small-interfering RNA–mediated knockdown of CRIP1a in N18TG2 cells enhanced CB1R-mediated G-protein activation. These effects were not attributable to differences in CB1R expression or endocannabinoid tone because CB1R levels did not differ between cell lines varying in CRIP1a expression, and endocannabinoid levels were undetectable (CB1-HEK) or unchanged (N18TG2) by CRIP1a overexpression. In CB1-HEK cells, 4-hour pretreatment with cannabinoid agonists downregulated CB1Rs and desensitized agonist-stimulated [35S]GTPγS binding. CRIP1a overexpression attenuated CB1R downregulation without altering CB1R desensitization. Finally, in cultured autaptic hippocampal neurons, CRIP1a overexpression attenuated both depolarization-induced suppression of excitation and inhibition of excitatory synaptic activity induced by exogenous application of cannabinoid but not by adenosine A1 agonists. These results confirm that CRIP1a inhibits constitutive CB1R activity and demonstrate that CRIP1a can also inhibit agonist

  8. Cannabinoids suppress inflammatory and neuropathic pain by targeting α3 glycine receptors

    PubMed Central

    Xiong, Wei; Cui, Tanxing; Cheng, Kejun; Yang, Fei; Chen, Shao-Rui; Willenbring, Dan; Guan, Yun; Pan, Hui-Lin; Ren, Ke; Xu, Yan

    2012-01-01

    Certain types of nonpsychoactive cannabinoids can potentiate glycine receptors (GlyRs), an important target for nociceptive regulation at the spinal level. However, little is known about the potential and mechanism of glycinergic cannabinoids for chronic pain treatment. We report that systemic and intrathecal administration of cannabidiol (CBD), a major nonpsychoactive component of marijuana, and its modified derivatives significantly suppress chronic inflammatory and neuropathic pain without causing apparent analgesic tolerance in rodents. The cannabinoids significantly potentiate glycine currents in dorsal horn neurons in rat spinal cord slices. The analgesic potency of 11 structurally similar cannabinoids is positively correlated with cannabinoid potentiation of the α3 GlyRs. In contrast, the cannabinoid analgesia is neither correlated with their binding affinity for CB1 and CB2 receptors nor with their psychoactive side effects. NMR analysis reveals a direct interaction between CBD and S296 in the third transmembrane domain of purified α3 GlyR. The cannabinoid-induced analgesic effect is absent in mice lacking the α3 GlyRs. Our findings suggest that the α3 GlyRs mediate glycinergic cannabinoid-induced suppression of chronic pain. These cannabinoids may represent a novel class of therapeutic agents for the treatment of chronic pain and other diseases involving GlyR dysfunction. PMID:22585736

  9. Cannabinoid receptor signalling in neurodegenerative diseases: a potential role for membrane fluidity disturbance

    PubMed Central

    Maccarrone, M; Bernardi, G; Agrò, A Finazzi; Centonze, D

    2011-01-01

    Type-1 cannabinoid receptor (CB1) is the most abundant G-protein-coupled receptor (GPCR) in the brain. CB1 and its endogenous agonists, the so-called ‘endocannabinoids (eCBs)’, belong to an ancient neurosignalling system that plays important functions in neurodegenerative and neuroinflammatory disorders like Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis and multiple sclerosis. For this reason, research on the therapeutic potential of drugs modulating the endogenous tone of eCBs is very intense. Several GPCRs reside within subdomains of the plasma membranes that contain high concentrations of cholesterol: the lipid rafts. Here, the hypothesis that changes in membrane fluidity alter function of the endocannabinoid system, as well as progression of particular neurodegenerative diseases, is described. To this end, the impact of membrane cholesterol on membrane properties and hence on neurodegenerative diseases, as well as on CB1 signalling in vitro and on CB1-dependent neurotransmission within the striatum, is discussed. Overall, present evidence points to the membrane environment as a critical regulator of signal transduction triggered by CB1, and calls for further studies aimed at better clarifying the contribution of membrane lipids to eCBs signalling. The results of these investigations might be exploited also for the development of novel therapeutics able to combat disorders associated with abnormal activity of CB1. LINKED ARTICLES This article is part of a themed issue on Cannabinoids in Biology and Medicine. To view the other articles in this issue visit http://dx.doi.org/10.1111/bph.2011.163.issue-7 PMID:21323908

  10. Dual intracellular signaling pathways mediated by the human cannabinoid CB1 receptor.

    PubMed

    Calandra, B; Portier, M; Kernéis, A; Delpech, M; Carillon, C; Le Fur, G; Ferrara, P; Shire, D

    1999-06-25

    It has long been established that the cannabinoid CB1 receptor transduces signals through a pertussis toxin-sensitive Gi/Go inhibitory pathway. Although there have been reports that the cannabinoid CB1 receptor can also mediate an increase in cyclic AMP levels, in most cases the presence of an adenylyl cyclase costimulant or the use of very high amounts of agonist was necessary. Here, we present evidence for dual coupling of the cannabinoid CB receptor to the classical pathway and to a pertussis toxin-insensitive adenylyl cyclase stimulatory pathway initiated with low quantities of agonist in the absence of any costimulant. Treatment of Chinese hamster ovary (CHO) cells expressing the cannabinoid CB1 receptor with the cannabinoid CP 55,940, {(-)-cis-3-[2-hydroxy-4-(1,1-dimethylheptyl)phenyl]-trans-4-(3-hyd roxypropyl) cyclohexan-1-ol} resulted in cyclic AMP accumulation in a dose-response manner, an accumulation blocked by the cannabinoid CB1 receptor-specific antagonist SR 141716A, {N-(piperidin-1-yl)-5-(4-chlorophenyl)-1-(2,4-dichlorophenyl)-4-me thyl-1H-pyrazole-3-carboxamide hydrochloride}. In CHO cells coexpressing the cannabinoid CB1 receptor and a cyclic AMP response element (CRE)-luciferase reporter gene system, CP 55,940 induced luciferase expression by a pathway blocked by the protein kinase A inhibitor N-[2-(p-bromocinnamylamino)ethyl]-5-isoquinolinesulfonamide hydrochloride (H-89). Under the same conditions the peripheral cannabinoid CB2 receptor proved to be incapable of inducing cAMP accumulation or luciferase activity. This incapacity allowed us to study the luciferase activation mediated by CB /CB2 chimeric constructs, from which we determined that the first and second internal loop regions of the cannabinoid CB1 receptor were involved in transducing the pathway leading to luciferase gene expression. PMID:10422789

  11. Interaction between the cholecystokinin and endogenous cannabinoid systems in cued fear expression and extinction retention.

    PubMed

    Bowers, Mallory E; Ressler, Kerry J

    2015-02-01

    Post-traumatic stress disorder (PTSD) is thought to develop, in part, from improper inhibition of fear. Accordingly, one of the most effective treatment strategies for PTSD is exposure-based psychotherapy. Ideally, neuroscience would inform adjunct therapies that target the neurotransmitter systems involved in extinction processes. Separate studies have implicated the cholecystokinin (CCK) and endocannabinoid systems in fear; however, there is a high degree of anatomical colocalization between the cannabinoid 1 receptor (Cnr1) and CCK in the basolateral amygdala (BLA), a brain region critical for emotion regulation. Although most research has focused on GABA and GABAergic plasticity as the mechanism by which Cnr1 mediates fear inhibition, we hypothesize that a functional interaction between Cnr1 and CCKB receptor (CCKBR) is critical for fear extinction processes. In this study, systemic pharmacological manipulation of the cannabinoid system modulated cued fear expression in C57BL/6J mice after consolidation of auditory fear conditioning. Knockout of the CCKBR, however, had no effect on fear- or anxiety-like behaviors. Nonetheless, administration of a Cnr1 antagonist increased freezing behavior during a cued fear expression test in wild-type subjects, but had no effect on freezing behavior in CCKBR knockout littermates. In addition, we found that Cnr1-positive fibers form perisomatic clusters around CCKBR-positive cell bodies in the BLA. These CCKBR-positive cells comprise a molecularly heterogenous population of excitatory and inhibitory neurons. These findings provide novel evidence that Cnr1 contributes to cued fear expression via an interaction with the CCK system. Dysfunctional Cnr1-CCKBR interactions might contribute to the etiology of, or result from, fear-related psychiatric disease. PMID:25176168

  12. Antinociceptive effects induced through the stimulation of spinal cannabinoid type 2 receptors in chronically inflamed mice.

    PubMed

    Curto-Reyes, Verdad; Boto, Tamara; Hidalgo, Agustín; Menéndez, Luis; Baamonde, Ana

    2011-10-01

    The stimulation of spinal cannabinoid type 2 (CB(2)) receptors is a suitable strategy for the alleviation of experimental pain symptoms. Several reports have described the up-regulation of spinal cannabinoid CB(2) receptors in neuropathic settings together with the analgesic effects derived from their activation. Besides, we have recently reported in two murine bone cancer models that the intrathecal administration of cannabinoid CB(2) receptor agonists completely abolishes hyperalgesia and allodynia, whereas spinal cannabinoid CB(2) receptor expression remains unaltered. The present experiments were designed to measure the expression of spinal cannabinoid CB(2) receptors as well as the analgesic efficacy derived from their stimulation in mice chronically inflamed by the intraplantar injection of complete Freund's adjuvant 1 week before. Both spinal cannabinoid CB(2) receptors mRNA measured by real-time PCR and cannabinoid CB(2) receptor protein levels measured by western blot remained unaltered in inflamed mice. Besides, the intrathecal (i.t.) administration of the cannabinoid CB(2) receptor agonists AM1241, (R,S)-3-(2-Iodo-5-nitrobenzoyl)-1-(1-methyl-2-piperidinylmethyl)-1H-indole, (0.03-1 μg) and JWH 133, (6aR,10aR)-3-(1,1-Dimethylbutyl)-6a,7,10,10a-tetrahydro-6,6,9-trimethyl-6H-dibenzo[b,d]pyran, (3-30 μg) dose-dependently blocked inflammatory thermal hyperalgesia and mechanical allodynia. The analgesic effects induced by both agonists were counteracted by the coadministration of the selective cannabinoid CB(2) receptor antagonist SR144528, 5-(4-chloro-3-methylphenyl)-1-[(4-methylphenyl)methyl]-N-[(1S,2S,4R)-1,3,3-trimethylbicyclo[2.2.1]hept-2-yl]-1H-pyrazole-3-carboxamide, (5 μg) but not by the cannabinoid CB(1) receptor antagonist AM251, N-(Piperidin-1-yl)-5-(4-iodophenyl)-1-(2,4-dichlorophenyl)-4-methyl-1H-pyrazole-3-carboxamide, (10 μg). The effects induced by AM1241 were also inhibited by the coadministration of the opioid receptor antagonist, naloxone

  13. Chronic activation of CB2 cannabinoid receptors in the hippocampus increases excitatory synaptic transmission

    PubMed Central

    Kim, Jimok; Li, Yong

    2015-01-01

    The roles of CB1 cannabinoid receptors in regulating neuronal activity have been extensively characterized. Although early studies show that CB1 receptors are present in the nervous system and CB2 cannabinoid receptors are in the immune system, recent evidence indicates that CB2 receptors are also expressed in the brain. Activation or blockade of CB2 receptors in vivo induces neuropsychiatric effects, but the cellular mechanisms of CB2 receptor function are unclear. The aim of this study is to determine how activation of CB2 receptors present in the hippocampus regulates synaptic function. Here, we show that when organotypic cultures of rodent hippocampal slices were treated with a CB2 receptor agonist (JWH133 or GP1a) for 7–10 days, quantal glutamate release became more frequent and spine density was increased via extracellular signal-regulated kinases. Chronic intraperitoneal injection of JWH133 into mice also increased excitatory synaptic transmission. These effects were blocked by a CB2 receptor antagonist (SR144528) or absent from hippocampal slices of CB2 receptor knock-out mice. This study reveals a novel cellular function of CB2 cannabinoid receptors in the hippocampus and provides insights into how cannabinoid receptor subtypes diversify the roles of cannabinoids in the brain. PMID:25504573

  14. Identification of receptors for pig endogenous retrovirus

    PubMed Central

    Ericsson, Thomas A.; Takeuchi, Yasuhiro; Templin, Christian; Quinn, Gary; Farhadian, Shelli F.; Wood, James C.; Oldmixon, Beth A.; Suling, Kristen M.; Ishii, Jennifer K.; Kitagawa, Yoshinori; Miyazawa, Takayuki; Salomon, Daniel R.; Weiss, Robin A.; Patience, Clive

    2003-01-01

    Xenotransplantation of porcine tissues has the potential to treat a wide variety of major health problems including organ failure and diabetes. Balanced against the potential benefits of xenotransplantation, however, is the risk of human infection with a porcine microorganism. In particular, the transmission of porcine endogenous retrovirus (PERV) is a major concern [Chapman, L. E. & Bloom, E. T. (2001) J. Am. Med. Assoc. 285, 2304–2306]. Here we report the identification of two, sequence-related, human proteins that act as receptors for PERV-A, encoded by genes located on chromosomes 8 and 17. We also describe homologs from baboon and porcine cells that also are active as receptors. Conversely, activity could not be demonstrated with a syntenic murine receptor homolog. Sequence analysis indicates that PERV-A receptors [human PERV-A receptor (HuPAR)-1, HuPAR-2, baboon PERV-A receptor 2, and porcine PERV-A receptor] are multiple membrane-spanning proteins similar to receptors for other gammaretroviruses. Expression is widespread in human tissues including peripheral blood mononuclear cells, but their biological functions are unknown. The identification of the PERV-A receptors opens avenues of research necessary for a more complete assessment of the retroviral risks of pig to human xenotransplantation. PMID:12740431

  15. Cardiorespiratory Anomalies in Mice Lacking CB1 Cannabinoid Receptors

    PubMed Central

    Bastianini, Stefano; Cohen, Gary; Lo Martire, Viviana; Mazza, Roberta; Pagotto, Uberto; Quarta, Carmelo; Zoccoli, Giovanna

    2014-01-01

    Cannabinoid type 1 (CB1) receptors are expressed in the nervous and cardiovascular systems. In mice, CB1 receptor deficiency protects from metabolic consequences of a high-fat diet (HFD), increases sympathetic activity to brown fat, and entails sleep anomalies. We investigated whether sleep-wake and diet-dependent cardiorespiratory control is altered in mice lacking CB1 receptors. CB1 receptor knock-out (KO) and intact wild-type (WT) mice were fed standard diet or a HFD for 3 months, and implanted with a telemetric arterial pressure transducer and electrodes for sleep scoring. Sleep state was assessed together with arterial pressure and heart rate (home cage), or breathing (whole-body plethysmograph). Increases in arterial pressure and heart rate on passing from the light (rest) to the dark (activity) period in the KO were significantly enhanced compared with the WT. These increases were unaffected by cardiac (β1) or vascular (α1) adrenergic blockade. The breathing rhythm of the KO during sleep was also more irregular than that of the WT. A HFD increased heart rate, impaired cardiac vagal modulation, and blunted the central autonomic cardiac control during sleep. A HFD also decreased cardiac baroreflex sensitivity in the KO but not in the WT. In conclusion, we performed the first systematic study of cardiovascular function in CB1 receptor deficient mice during spontaneous wake-sleep behavior, and demonstrated that CB1 receptor KO alters cardiorespiratory control particularly in the presence of a HFD. The CB1 receptor signaling may thus play a role in physiological cardiorespiratory regulation and protect from some adverse cardiovascular consequences of a HFD. PMID:24950219

  16. Optimization of cAMP fluorescence dataset from ACTOne cannabinoid receptor 1 cell line.

    PubMed

    Presley, Chaela S; Abidi, Ammaar H; Moore, Bob M

    2016-06-01

    The ACTOne cannabinoid receptor 1 functional system is comprised of transfected HEK cells with the parental cyclic nucleotide gated channel (CNG) co-transfected with cannabinoid receptor 1 (CB1). The ACTOne CB1 cell line was evaluated for cAMP driven fluorescence by optimizing experimental conditions for sensitivity to forskolin and CP 55,940, reading time point, reliability of cell passage number, and pertussis inactivation of Gi/o. PMID:27115025

  17. Optimization of cAMP fluorescence dataset from ACTOne cannabinoid receptor 1 cell line

    PubMed Central

    Presley, Chaela S.; Abidi, Ammaar H.; Moore, Bob M.

    2016-01-01

    The ACTOne cannabinoid receptor 1 functional system is comprised of transfected HEK cells with the parental cyclic nucleotide gated channel (CNG) co-transfected with cannabinoid receptor 1 (CB1). The ACTOne CB1 cell line was evaluated for cAMP driven fluorescence by optimizing experimental conditions for sensitivity to forskolin and CP 55,940, reading time point, reliability of cell passage number, and pertussis inactivation of Gi/o. PMID:27115025

  18. Pharmacological Characterization of GPR55, A Putative Cannabinoid Receptor

    PubMed Central

    Sharir, Haleli; Abood, Mary E.

    2010-01-01

    GPR55 has recently attracted much attention as another member of the cannabinoid family, potentially explaining physiological effects that are non-CB1/CB2 mediated. However, the data gathered so far are conflicting with respect to its pharmacology. We review the primary literature to date on GPR55, describing its discovery, structure, pharmacology and potential physiological functions. The CB1 receptor antagonist/inverse agonist AM251 has been shown to be a GPR55 agonist in all reports in which it was evaluated, as has the lysophospholipid, lysophosphatidylinositol (LPI). Whether GPR55 responds to the endocannabinoid ligands anandamide and 2-arachidonylglycerol and the phytocannabinoids, delta-9-tetrahydrocannabidiol and cannabidiol, is cell-type and tissue-dependent. GPR55 has been shown to utilize Gq, G12, or G13 for signal transduction; RhoA and phospholipase C are activated. Experiments with mice in which GPR55 has been inactivated reveal a role for this receptor in neuropathic and inflammatory pain as well as in bone physiology. Thus delineating the pharmacology of this receptor and the discovery of selective agonists and antagonists merits further study and could lead to new therapeutics. PMID:20298715

  19. The cannabinoid CB1 receptor antagonist SR141716A (Rimonabant) enhances the metabolic benefits of long-term treatment with oleoylethanolamide in Zucker rats.

    PubMed

    Serrano, Antonia; Del Arco, Ignacio; Javier Pavón, Francisco; Macías, Manuel; Perez-Valero, Vidal; Rodríguez de Fonseca, Fernando

    2008-01-01

    Anandamide and oleoylethanolamide (OEA) are lipid mediators that regulate feeding and lipid metabolism. While anandamide, a cannabinoid CB1 receptor agonist, promotes feeding and lipogenesis, oleoylethanolamide, an endogenous agonist of peroxisome proliferator activated receptor alpha (PPAR-alpha), decreases food intake and activates lipid mobilization and oxidation. The treatment with a cannabinoid CB1 receptor antagonist results in reduction of body weight gain and cholesterol in obese humans and rodents. In the present study, we show the benefits of the treatment of obese Zucker rats with a combination of a cannabinoid CB1 receptor antagonist (Rimonabant) and oleoylethanolamide. This combinational therapy improved the separate effects of Rimonabant and OEA, and resulted in marked decreases on feeding, body weight gain, and plasma cholesterol levels. Additionally, the treatment with both drugs reduced the hepatic steatosis observed in Zucker rats, decreasing liver fat deposits and damage, as revealed by the levels of alanine aminotransferase activity in serum. The combined treatment inhibits the expression of stearoyl coenzyme-A desaturase-1 (SCD-1), a pivotal enzyme in lipid biosynthesis and triglyceride mobilization that is linked to obesity phenotypes. These results support the use of combined therapies with cannabinoid CB1 receptor antagonists and PPAR-alpha agonists for the treatment of obesity associated with dyslipemia. PMID:17467748

  20. The role of cannabinoid 1 receptor expressing interneurons in behavior

    PubMed Central

    Brown, Jacquelyn A.; Horváth, Szatmár; Garbett, Krassimira; Schmidt, Martin J.; Everheart, Monika; Gellért, Levente; Ebert, Philip; Mirnics, Károly

    2013-01-01

    Schizophrenia is a devastating neurodevelopmental disorder that affects approximately 1% of the population. Reduced expression of the 67-kD a protein isoform of glutamic acid decarboxylase (GAD67), is a hallmark of the disease, and is encoded by the GAD1 gene. In schizophrenia, GAD67 downregulation occurs in multiple interneuronal subpopulations, including the cannabinoid receptor type 1 positive (CNR1+) cells, but the functional consequences of these disturbances are not well understood. To investigate the role of the CNR1-positive GABA-ergic interneurons in behavioral and molecular processes, we employed a novel, miRNA-mediated transgenic mouse approach. We silenced the Gad1 transcript using a miRNA engineered to specifically target Gad1 mRNA under the control of Cnr1 bacterial artificial chromosome. Behavioral characterization of our transgenic mice showed elevated and persistent conditioned fear associated with an auditory cue and a significantly altered response to an amphetamine challenge. These deficits could not be attributed to sensory deficits or changes in baseline learning and memory. Furthermore, HPLC analyses revealed that Cnr1/Gad1 mice have enhanced serotonin levels, but not dopamine levels in response to amphetamine. Our findings demonstrate that dysfunction of a small subset of interneurons can have a profound effect on behavior and that the GABA-ergic, monoamine, and cannabinoid systems are functionally interconnected. The results also suggest that understanding the function of various interneuronal subclasses might be essential to develop knowledge-based treatment strategies for various mental disorders including schizophrenia and substance abuse. PMID:24239560

  1. CB2 cannabinoid receptor agonist enantiomers HU-433 and HU-308: An inverse relationship between binding affinity and biological potency

    PubMed Central

    Smoum, Reem; Baraghithy, Saja; Chourasia, Mukesh; Breuer, Aviva; Mussai, Naama; Attar-Namdar, Malka; Kogan, Natalya M.; Raphael, Bitya; Bolognini, Daniele; Cascio, Maria G.; Marini, Pietro; Pertwee, Roger G.; Shurki, Avital; Mechoulam, Raphael; Bab, Itai

    2015-01-01

    Activation of the CB2 receptor is apparently an endogenous protective mechanism. Thus, it restrains inflammation and protects the skeleton against age-related bone loss. However, the endogenous cannabinoids, as well as Δ9-tetrahydrocannabinol, the main plant psychoactive constituent, activate both cannabinoid receptors, CB1 and CB2. HU-308 was among the first synthetic, selective CB2 agonists. HU-308 is antiosteoporotic and antiinflammatory. Here we show that the HU-308 enantiomer, designated HU-433, is 3–4 orders of magnitude more potent in osteoblast proliferation and osteoclast differentiation culture systems, as well as in mouse models, for the rescue of ovariectomy-induced bone loss and ear inflammation. HU-433 retains the HU-308 specificity for CB2, as shown by its failure to bind to the CB1 cannabinoid receptor, and has no activity in CB2-deficient cells and animals. Surprisingly, the CB2 binding affinity of HU-433 in terms of [3H]CP55,940 displacement and its effect on [35S]GTPγS accumulation is substantially lower compared with HU-308. A molecular-modeling analysis suggests that HU-433 and -308 have two different binding conformations within CB2, with one of them possibly responsible for the affinity difference, involving [35S]GTPγS and cAMP synthesis. Hence, different ligands may have different orientations relative to the same binding site. This situation questions the usefulness of universal radioligands for comparative binding studies. Moreover, orientation-targeted ligands have promising potential for the pharmacological activation of distinct processes. PMID:26124120

  2. CB2 cannabinoid receptor agonist enantiomers HU-433 and HU-308: An inverse relationship between binding affinity and biological potency.

    PubMed

    Smoum, Reem; Baraghithy, Saja; Chourasia, Mukesh; Breuer, Aviva; Mussai, Naama; Attar-Namdar, Malka; Kogan, Natalya M; Raphael, Bitya; Bolognini, Daniele; Cascio, Maria G; Marini, Pietro; Pertwee, Roger G; Shurki, Avital; Mechoulam, Raphael; Bab, Itai

    2015-07-14

    Activation of the CB2 receptor is apparently an endogenous protective mechanism. Thus, it restrains inflammation and protects the skeleton against age-related bone loss. However, the endogenous cannabinoids, as well as Δ(9)-tetrahydrocannabinol, the main plant psychoactive constituent, activate both cannabinoid receptors, CB1 and CB2. HU-308 was among the first synthetic, selective CB2 agonists. HU-308 is antiosteoporotic and antiinflammatory. Here we show that the HU-308 enantiomer, designated HU-433, is 3-4 orders of magnitude more potent in osteoblast proliferation and osteoclast differentiation culture systems, as well as in mouse models, for the rescue of ovariectomy-induced bone loss and ear inflammation. HU-433 retains the HU-308 specificity for CB2, as shown by its failure to bind to the CB1 cannabinoid receptor, and has no activity in CB2-deficient cells and animals. Surprisingly, the CB2 binding affinity of HU-433 in terms of [(3)H]CP55,940 displacement and its effect on [(35)S]GTPγS accumulation is substantially lower compared with HU-308. A molecular-modeling analysis suggests that HU-433 and -308 have two different binding conformations within CB2, with one of them possibly responsible for the affinity difference, involving [(35)S]GTPγS and cAMP synthesis. Hence, different ligands may have different orientations relative to the same binding site. This situation questions the usefulness of universal radioligands for comparative binding studies. Moreover, orientation-targeted ligands have promising potential for the pharmacological activation of distinct processes. PMID:26124120

  3. Presynaptic TRPV1 vanilloid receptor function is age- but not CB1 cannabinoid receptor-dependent in the rodent forebrain.

    PubMed

    Köles, László; Garção, Pedro; Zádori, Zoltán S; Ferreira, Samira G; Pinheiro, Bárbara S; da Silva-Santos, Carla S; Ledent, Catherine; Köfalvi, Attila

    2013-08-01

    Neocortical and striatal TRPV1 (vanilloid or capsaicin) receptors (TRPV1Rs) are excitatory ligand-gated ion channels, and are implicated in psychiatric disorders. However, the purported presynaptic neuromodulator role of TRPV1Rs in glutamatergic, serotonergic or dopaminergic terminals of the rodent forebrain remains little understood. With the help of patch-clamp electrophysiology and neurochemical approaches, we mapped the age-dependence of presynaptic TRPV1R function, and furthermore, we aimed at exploring whether the presence of CB1 cannabinoid receptors (CB1Rs) influences the function of the TRPV1Rs, as both receptor types share endogenous ligands. We found that the major factor which affects presynaptic TRPV1R function is age: by post-natal day 13, the amplitude of capsaicin-induced release of dopamine and glutamate is halved in the rat striatum, and two weeks later, capsaicin already loses its effect. However, TRPV1R receptor function is not enhanced by chemical or genetic ablation of the CB1Rs in dopaminergic, glutamatergic and serotonergic terminals of the mouse brain. Altogether, our data indicate a possible neurodevelopmental role for presynaptic TRPV1Rs in the rodent brain, but we found no cross-talk between TRPV1Rs and CB1Rs in the same nerve terminal. PMID:23831917

  4. Minireview: From the Bench, Toward the Clinic: Therapeutic Opportunities for Cannabinoid Receptor Modulation

    PubMed Central

    Picone, Robert P.

    2015-01-01

    The effects of cannabinoids have been known for centuries and over the past several decades two G protein-coupled receptors, CB1 and CB2, that are responsible for their activity have been identified. Endogenous lipid-derived cannabinergic agents have been found, biosynthetic and catabolic machinery has been characterized, and synthetic agents have been designed to modulate these receptors. Selective agents including agonists, antagonists, inverse agonists, and novel allosteric modulators targeting either CB1 or CB2 have been developed to inhibit or augment their basal tone. As a result, the role these receptors play in human physiology and their potential therapeutic applications in disease states are being elucidated. The CB1 receptor, although ubiquitous, is densely expressed in the brain, and CB2 is largely found on cells of immune origin. This minireview highlights the role of CB1 in excitotoxic assaults in the brain and its potential to limit addiction liability. In addition, it will examine the relationship between receptor activity and stimulation of insulin release from pancreatic β-cells, insulin resistance, and feeding behavior leading toward obesity. The roles of CB2 in the neuropathology of amyotrophic lateral sclerosis and in the central manifestations of chronic HIV infection potentially converge at inflammatory cell activation, thereby providing an opportunity for intervention. Last, CB2 modulation is discussed in the context of an experimental model of postmenopausal osteoporosis. Achieving exquisite receptor selectivity and elucidating the mechanisms underlying receptor inhibition and activation will be essential for the development of the next generation of cannabinergic-based therapeutic agents. PMID:25866875

  5. Permanent Suppression of Cortical Oscillations in Mice After Adolescent Exposure to Cannabinoids: Receptor Mechanisms

    PubMed Central

    Raver, Sylvina M.; Keller, Asaf

    2014-01-01

    Marijuana use in adolescence, but not adulthood, may permanently impair cognitive functioning and increase the risk of developing schizophrenia. Cortical oscillations are patterns of neural network activity implicated in cognitive processing, and are abnormal in patients with schizophrenia. We have recently reported that cortical oscillations are suppressed in adult mice that were treated, in adolescence but not adulthood, with the cannabinoids WIN55,212-2 (WIN) or Δ9tetrahydrocannabinol (THC). WIN and THC are cannabinoid types 1 and 2 receptor (CB1R & CB2R) agonists, and also have activity at non-cannabinoid receptor targets. However, as acute WIN and THC administration can suppress oscillations through CB1Rs, we hypothesize that a similar mechanism underlies the permanent suppression of oscillations by repeated cannabinoid exposure in adolescence. Here we test the prediction that cannabinoid exposure in adolescence permanently suppresses cortical oscillations by acting through CB1Rs, and that these suppressive effects can be antagonized by a CB1R antagonist. We treated adolescent mice with various cannabinoid compounds, and pharmacologically-evoked oscillations in vitro in adult mice. We find that WIN exposure for six days in early adolescence suppresses oscillations preferentially in adult medial prefrontal cortex (mPFC) via CB1Rs, and that a similar CB1R mechanism accounts for the suppressive effects of long-term (20 day) adolescent THC in adult somatosensory cortex (SCx). Unexpectedly, we also find that CB2Rs may be involved in the suppression of oscillations in both mPFC and SCx by long-term adolescent cannabinoid exposure, and that non-cannabinoid receptors may also contribute to oscillation suppression in adult mPFC. These findings represent a novel attempt to antagonize the effects of adolescent cannabinoid exposure on neural network activity, and reveal the contribution of non-CB1R targets to the suppression of cortical oscillations. PMID:25036610

  6. Stress-induced sensitization of cortical adrenergic receptors following a history of cannabinoid exposure

    PubMed Central

    Reyes, B.A.S.; Szot, P.; Sikkema, C.; Cathel, A. M.; Kirby, L.G.; Van Bockstaele, E.J.

    2014-01-01

    The cannabinoid receptor agonist, WIN 55,212-2, increases extracellular norepinephrine levels in the rat frontal cortex under basal conditions, likely via desensitization of inhibitory α2-adrenergic receptors located on norepinephrine terminals. Here, the effect of WIN 55,212-2 on stress-induced norepinephrine release was assessed in the medial prefrontal cortex (mPFC), in adult male Sprague-Dawley rats using in vivo microdialysis. Systemic administration of WIN 55,212-2 thirty minutes prior to stressor exposure prevented stress-induced cortical norepinephrine release induced by a single exposure to swim when compared to vehicle. To further probe cortical cannabinoid-adrenergic interactions, postsynaptic α2-adrenergic receptor (AR)-mediated responses were assessed in mPFC pyramidal neurons using electrophysiological analysis in an in vitro cortical slice preparation. We confirm prior studies showing that clonidine increases cortical pyramidal cell excitability and that this was unaffected by exposure to acute stress. WIN 55,212-2, via bath application, blocked postsynaptic α2-AR mediated responses in cortical neurons irrespective of exposure to stress. Interestingly, stress exposure prevented the desensitization of α2-AR mediated responses produced by a history of cannabinoid exposure. Together, these data indicate the stress-dependent nature of cannabinoid interactions via both pre- and postsynaptic ARs. In summary, microdialysis data indicate that cannabinoids restrain stress-induced cortical NE efflux. Electrophysiology data indicate that cannabinoids also restrain cortical cell excitability under basal conditions; however, stress interferes with these CB1-α2 AR interactions, potentially contributing to over-activation of pyramidal neurons in mPFC. Overall, cannabinoids are protective of the NE system and cortical excitability but stress can derail this protective effect, potentially contributing to stress-related psychopathology. These data add to the

  7. Simultaneous HPLC-APCI-MS/MS quantification of endogenous cannabinoids and glucocorticoids in hair.

    PubMed

    Mwanza, Christopher; Chen, Zheng; Zhang, Quan; Chen, Shenghuo; Wang, Weiwen; Deng, Huihua

    2016-08-15

    Hair matrix could retrospectively record association of endogenous cannabinoids (e.g. 2-arachidonoyl glycerol, 2-AG and N-arachidonoyl-ethanolamine, AEA) and glucocorticoids (e.g. cortisol and cortisone) in a myriad of physiological functions. However, depending on the extraction conditions, the spontaneous isomerization of 2-AG to 1-arachidonoylglycerol (1-AG) and the possible rearrangement of O-arachidonoyl ethanolamine (OAEA) to AEA in various sample matrices could be major obstacles encountered in the detection of both 2-AG and AEA. This study aimed to develop a novel method for simultaneous quantification of 2-AG, AEA, cortisol and cortisone in hair. Methanol was used as the incubation solution and an acidic mixture of deionized water and methanol were utilized as mobile phase in order to avert possible rearrangements of both OAEA and 2-AG. The analyses were performed on a high-performance liquid chromatography tandem mass spectrometer with atmosphere pressure chemical ionization in positive mode. The method showed good linearity in the range of 3.0-250pg/mg for AEA, 15.0-1250pg/mg for 2-AG and 1-250pg/mg for cortisol and cortisone. Limit of detection was 1.5pg/mg for AEA, 6.0pg/mg for 2-AG and 0.5pg/mg for cortisol and cortisone. For all four analytes, intra and inter-day coefficients of variation were less than 20% and recovery above 90%. Population analyses in 473 hair samples established that 2-AG was significantly correlated with AEA. 2-AG was significantly and positively correlated with cortisol and cortisone. There was a significant positive correlation of AEA with cortisol, but not with cortisone. Obese participants showed a significantly higher concentration of cortisone and 2-AG. Males showed significantly higher 2-AG and cortisone levels but significantly lower AEA levels than females. PMID:27318292

  8. Cytotoxicity of synthetic cannabinoids found in "Spice" products: the role of cannabinoid receptors and the caspase cascade in the NG 108-15 cell line.

    PubMed

    Tomiyama, Kenichi; Funada, Masahiko

    2011-11-10

    The worldwide distribution of "Spice" that contains synthetic cannabinoids with a pharmacological activity similar to Δ⁹-tetrahydrocannabinol has been reported. In the current study, we evaluated the cytotoxicity of the synthetic cannabinoids, CP-55,940, CP-47,497 and CP-47,497-C8 towards NG 108-15 cells and investigated their mechanism of cytotoxicity. CP-55,940, CP-47,497 and CP-47,497-C8 were all cytotoxic for NG 108-15 cells in a concentration-dependent manner. The cytotoxicity of these synthetic cannabinoids was suppressed by preincubation with the selective CB₁ receptor antagonist AM251, but not with the selective CB₂ receptor antagonist AM630. Preincubation with a caspase-3 inhibitor significantly suppressed the cytotoxicity of these synthetic cannabinoids for NG 108-15 cells. Induction of apoptosis by these cannabinoids was also confirmed by staining of the cells with annexin V. Our results indicate that the cytotoxicity of synthetic cannabinoids towards NG 108-15 cells is mediated by the CB₁ receptor, but not by the CB₂ receptor, and further suggest that caspase-cascades may play an important role in the apoptosis induced by these synthetic cannabinoids. PMID:21907772

  9. Astroglial type-1 cannabinoid receptor (CB1): A new player in the tripartite synapse.

    PubMed

    Oliveira da Cruz, J F; Robin, L M; Drago, F; Marsicano, G; Metna-Laurent, M

    2016-05-26

    The endocannabinoid system is an important regulator of physiological functions. In the brain, this control is mainly exerted through the type-1-cannabinoid (CB1) receptors. CB1 receptors are abundant at neuron terminals where their stimulation inhibits neurotransmitter release. However, CB1 receptors are also expressed in astrocytes and recent studies showed that astroglial cannabinoid signaling is a key element of the tripartite synapse. In this review we discuss the different mechanisms by which astroglial CB1 receptors control synaptic transmission and plasticity. The recent involvement of astroglial CB1 receptors in the effects of cannabinoids on memory highlights their key roles in cognitive processes and further indicates that astrocytes are central active elements of high-order brain functions. PMID:25967266

  10. Cannabinoid Receptor Interacting Protein (CRIP1a) attenuates CB1R signaling in neuronal cells

    PubMed Central

    Bass, Caroline E.; Selley, Dana E.; Howlett, Allyn C.

    2014-01-01

    CB1 cannabinoid receptors (CB1R) are one of the most abundantly expressed G protein coupled receptors (GPCR) in the CNS and regulate diverse neuronal functions. The identification of GPCR interacting proteins has provided additional insight into the fine-tuning and regulation of numerous GPCRs. The Cannabinoid Receptor Interacting Protein 1a (CRIP1a) binds to the distal carboxy terminus of CB1R, and has been shown to alter CB1R-mediated neuronal function [1]. The mechanisms by which CRIP1a regulates CB1R activity have not yet been identified; therefore the focus of this investigation is to examine the cellular effects of CRIP1a on CB1R signaling using neuronal N18TG2 cells stably transfected with CRIP1a over-expressing and CRIP1a knockdown constructs. Modulation of endogenous CRIP1a expression did not alter total levels of CB1R, ERK, or forskolin-activated adenylyl cyclase activity. When compared to WT cells, CRIP1a over-expression reduced basal phosphoERK levels, whereas depletion of CRIP1a augmented basal phosphoERK levels. Stimulation of phosphoERK by the CB1R agonists WIN55212-2, CP55940 or methanandamide was unaltered in CRIP1a over-expressing clones compared with WT. However, CRIP1a knockdown clones exhibited enhanced ERK phosphorylation efficacy in response to CP55940. In addition, CRIP1a knockdown clones displayed a leftward shift in CP55940-mediated inhibition of forskolin-stimulated cAMP accumulation. CB1R-mediated Gi3 and Go activation by CP99540 was attenuated by CRIP1a over-expression, but robustly enhanced in cells depleted of CRIP1a. Conversely, CP55940-mediated Gi1 and Gi2 activation was significant enhanced in cells over-expressing CRIP1a, but not in cells deficient of CRIP1a. These studies suggest a mechanism by which endogenous levels of CRIP1a modulate CB1R-mediated signal transduction by facilitating a Gi/o-protein subtype preference for Gi1 and Gi2, accompanied by an overall suppression of G-protein-mediated signaling in neuronal cells. PMID

  11. The CB2 cannabinoid receptor-selective agonist O-3223 reduces pain and inflammation without apparent cannabinoid behavioral effects.

    PubMed

    Kinsey, Steven G; Mahadevan, Anu; Zhao, Bingjun; Sun, Hang; Naidu, Pattipati S; Razdan, Raj K; Selley, Dana E; Imad Damaj, M; Lichtman, Aron H

    2011-01-01

    Although Δ(9)-tetrahydrocannabinol (THC) and other mixed CB(1)/CB(2) receptor agonists are well established to elicit antinociceptive effects, their psychomimetic actions and potential for abuse have dampened enthusiasm for their therapeutic development. Conversely, CB(2) receptor-selective agonists have been shown to reduce pain and inflammation, without eliciting apparent cannabinoid behavioral effects. In the present study, we developed a novel ethyl sulfonamide THC analog, O-3223, and compared its pharmacological effects to those of the potent, mixed CB(1)/CB(2) receptor agonist, CP55,940, in a battery of preclinical pain models. Competitive cannabinoid receptor binding experiments revealed that O-3223 was approximately 80-fold more selective for CB(2) than CB(1) receptors. Additionally, O-3223 behaved as a full CB(2) receptor agonist in [(35)S]GTPγS binding. O-3223 reduced nociceptive behavior in both phases of the formalin test, reduced thermal hyperalgesia in the chronic constriction injury of the sciatic nerve (CCI) model, and reduced edema and thermal hyperalgesia elicited by intraplantar injection of LPS. These effects were blocked by pretreatment with the CB(2) receptor-selective antagonist SR144528, but not by the CB(1) receptor antagonist, rimonabant. Unlike CP55,940, O-3223 did not elicit acute antinociceptive effects in the hot-plate test, hypothermia, or motor disturbances, as assessed in the rotarod test. These data indicate that the CB(2) receptor-selective agonist, O-3223, reduces inflammatory and neuropathic nociception, without affecting basal nociception or eliciting overt behavioral effects. Moreover, this compound can serve as a template to develop new CB(2) receptor agonists with increased receptor selectivity and increased potency in treating inflammatory and neuropathic pain. PMID:20849866

  12. Cannabinoid Receptors Are Overexpressed in CLL but of Limited Potential for Therapeutic Exploitation

    PubMed Central

    Le, Trang; Gruber, Michaela; Pausz, Clemens; Staber, Philipp; Jäger, Ulrich; Vanura, Katrina

    2016-01-01

    The cannabinoid receptors 1 and 2 (CNR1&2) are overexpressed in a variety of malignant diseases and cannabinoids can have noteworthy impact on tumor cell viability and tumor growth. Patients diagnosed with chronic lymphocytic leukemia (CLL) present with very heterogeneous disease characteristics translating into highly differential risk properties. To meet the urgent need for refinement in risk stratification at diagnosis and the search for novel therapies we studied CNR expression and response to cannabinoid treatment in CLL. Expression levels of CNR1&2 were determined in 107 CLL patients by real-time PCR and analyzed with regard to prognostic markers and survival. Cell viability of primary CLL cells was determined in suspension and co-culture after incubation in increasing cannabinoid concentrations under normal and reduced serum conditions and in combination with fludarabine. Impact of cannabinoids on migration of CLL cells towards CXCL12 was determined in transwell plates. We found CNR1&2 to be overexpressed in CLL compared to healthy B-cells. Discriminating between high and low expressing subgroups, only high CNR1 expression was associated with two established high risk markers and conferred significantly shorter overall and treatment free survival. Viability of CLL primary cells was reduced in a dose dependent fashion upon incubation with cannabinoids, however, healthy cells were similarly affected. Under serum reduced conditions, no significant differences were observed within suspension and co-culture, respectively, however, the feeder layer contributed significantly to the survival of CLL cells compared to suspension culture conditions. No significant differences were observed when treating CLL cells with cannabinoids in combination with fludarabine. Interestingly, biologic activity of cannabinoids was independent of both CNR1&2 expression. Finally, we did not observe an inhibition of CXCL12-induced migration by cannabinoids. In contrast to other tumor

  13. Cannabinoids as therapeutic agents in cancer: current status and future implications

    PubMed Central

    Ganju, Ramesh K.

    2014-01-01

    The pharmacological importance of cannabinoids has been in study for several years. Cannabinoids comprise of (a) the active compounds of the Cannabis sativa plant, (b) endogenous as well as (c) synthetic cannabinoids. Though cannabinoids are clinically used for anti-palliative effects, recent studies open a promising possibility as anti-cancer agents. They have been shown to possess anti-proliferative and anti-angiogenic effects in vitro as well as in vivo in different cancer models. Cannabinoids regulate key cell signaling pathways that are involved in cell survival, invasion, angiogenesis, metastasis, etc. There is more focus on CB1 and CB2, the two cannabinoid receptors which are activated by most of the cannabinoids. In this review article, we will focus on a broad range of cannabinoids, their receptor dependent and receptor independent functional roles against various cancer types with respect to growth, metastasis, energy metabolism, immune environment, stemness and future perspectives in exploring new possible therapeutic opportunities. PMID:25115386

  14. Cannabinoids as therapeutic agents in cancer: current status and future implications.

    PubMed

    Chakravarti, Bandana; Ravi, Janani; Ganju, Ramesh K

    2014-08-15

    The pharmacological importance of cannabinoids has been in study for several years. Cannabinoids comprise of (a) the active compounds of the Cannabis sativa plant, (b) endogenous as well as (c) synthetic cannabinoids. Though cannabinoids are clinically used for anti-palliative effects, recent studies open a promising possibility as anti-cancer agents. They have been shown to possess anti-proliferative and anti-angiogenic effects in vitro as well as in vivo in different cancer models. Cannabinoids regulate key cell signaling pathways that are involved in cell survival, invasion, angiogenesis, metastasis, etc. There is more focus on CB1 and CB2, the two cannabinoid receptors which are activated by most of the cannabinoids. In this review article, we will focus on a broad range of cannabinoids, their receptor dependent and receptor independent functional roles against various cancer types with respect to growth, metastasis, energy metabolism, immune environment, stemness and future perspectives in exploring new possible therapeutic opportunities. PMID:25115386

  15. Cannabinoid receptor-interacting protein Crip1a modulates CB1 receptor signaling in mouse hippocampus.

    PubMed

    Guggenhuber, Stephan; Alpar, Alan; Chen, Rongqing; Schmitz, Nina; Wickert, Melanie; Mattheus, Tobias; Harasta, Anne E; Purrio, Martin; Kaiser, Nadine; Elphick, Maurice R; Monory, Krisztina; Kilb, Werner; Luhmann, Heiko J; Harkany, Tibor; Lutz, Beat; Klugmann, Matthias

    2016-05-01

    The cannabinoid type 1 receptor (Cnr1, CB1R) mediates a plethora of physiological functions in the central nervous system as a presynaptic modulator of neurotransmitter release. The recently identified cannabinoid receptor-interacting protein 1a (Cnrip1a, CRIP1a) binds to the C-terminal domain of CB1R, a region known to be important for receptor desensitization and internalization. Evidence that CRIP1a and CB1R interact in vivo has been reported, but the neuroanatomical distribution of CRIP1a is unknown. Moreover, while alterations of hippocampal CRIP1a levels following limbic seizures indicate a role in controlling excessive neuronal activity, the physiological function of CRIP1a in vivo has not been investigated. In this study, we analyzed the spatial distribution of CRIP1a in the hippocampus and examined CRIP1a as a potential modulator of CB1R signaling. We found that Cnrip1a mRNA is co-expressed with Cnr1 mRNA in pyramidal neurons and interneurons of the hippocampal formation. CRIP1a protein profiles were largely segregated from CB1R profiles in mossy cell terminals but not in hippocampal CA1 region. CB1R activation induced relocalization to close proximity with CRIP1a. Adeno-associated virus-mediated overexpression of CRIP1a specifically in the hippocampus revealed that CRIP1a modulates CB1R activity by enhancing cannabinoid-induced G protein activation. CRIP1a overexpression extended the depression of excitatory currents by cannabinoids in pyramidal neurons of the hippocampus and diminished the severity of chemically induced acute epileptiform seizures. Collectively, our data indicate that CRIP1a enhances hippocampal CB1R signaling in vivo. PMID:25772509

  16. A potential role for cannabinoid receptors in the therapeutic action of fenofibrate.

    PubMed

    Priestley, Richard S; Nickolls, Sarah A; Alexander, Stephen P H; Kendall, David A

    2015-04-01

    Cannabinoids are reported to have actions through peroxisome proliferator-activated receptors (PPARs), which led us to investigate PPAR agonists for activity at the cannabinoid receptors. Radio-ligand binding and functional assays were conducted using human recombinant cannabinoid type 1 (CB1) or cannabinoid type 2 (CB2) receptors, as well as the guinea pig isolated ileum, using the full agonist CP55940 as a positive control. The PPAR-α agonist fenofibrate exhibited submicromolar affinity for both receptors (pKi CB1, 6.3 ± 0.1; CB2, 7.7 ± 0.1). Functionally, fenofibrate acted as an agonist at the CB2 receptor (pEC50, 7.7 ± 0.1) and a partial agonist at the CB1 receptor, although with a decrease in functional response at higher concentrations, producing bell-shaped concentration-response curves. High concentrations of fenofibrate were able to increase the dissociation rate constant for [(3)H]-CP55940 at the CB1 receptor, (kfast without: 1.2 ± 0.2/min; with: 3.8 ± 0.1 × 10(-2)/min) and decrease the maximal response to CP55940 (Rmax, 86 ± 2%), which is consistent with a negative allosteric modulator. Fenofibrate also reduced electrically induced contractions in isolated guinea pig ileum via CB1 receptors (pEC50, 6.0 ± 0.4). Fenofibrate is thus identified as an example of a new class of cannabinoid receptor ligand and allosteric modulator, with the potential to interact therapeutically with cannabinoid receptors in addition to its primary PPAR target. PMID:25550466

  17. Permanent suppression of cortical oscillations in mice after adolescent exposure to cannabinoids: receptor mechanisms.

    PubMed

    Raver, Sylvina M; Keller, Asaf

    2014-11-01

    Marijuana use in adolescence, but not adulthood, may permanently impair cognitive functioning and increase the risk of developing schizophrenia. Cortical oscillations are patterns of neural network activity implicated in cognitive processing, and are abnormal in patients with schizophrenia. We have recently reported that cortical oscillations are suppressed in adult mice that were treated with the cannabinoids WIN55,212-2 (WIN) or Δ(9)tetrahydrocannabinol (THC) in adolescence, but not adulthood. WIN and THC are cannabinoid-1 (CB1R) and CB2R agonists, and also have activity at non-cannabinoid receptor targets. However, as acute WIN and THC administration can suppress oscillations through CB1Rs, we hypothesize that a similar mechanism underlies the permanent suppression of oscillations by repeated cannabinoid exposure in adolescence. Here we test the prediction that cannabinoid exposure in adolescence permanently suppresses cortical oscillations by acting through CB1Rs, and that these suppressive effects can be antagonized by a CB1R antagonist. We treated adolescent mice with various cannabinoid compounds, and pharmacologically-evoked oscillations in local field potentials (LFPs) in vitro in adults. We find that WIN exposure for six days in early adolescence suppresses oscillations preferentially in adult medial prefrontal cortex (mPFC) via CB1Rs, and that a similar CB1R mechanism accounts for the suppressive effects of long-term (20 day) adolescent THC in adult somatosensory cortex (SCx). Unexpectedly, we also find that CB2Rs may be involved in the suppression of oscillations in both mPFC and SCx by long-term adolescent cannabinoid exposure, and that non-cannabinoid receptors may also contribute to oscillation suppression in adult mPFC. These findings represent a novel attempt to antagonize the effects of adolescent cannabinoid exposure on neural network activity, and reveal the contribution of non-CB1R targets to the suppression of cortical oscillations. PMID

  18. Bioactivation pathways of the cannabinoid receptor 1 antagonist rimonabant.

    PubMed

    Bergström, Moa Andresen; Isin, Emre M; Castagnoli, Neal; Milne, Claire E

    2011-10-01

    In the present work, the characterization of the biotransformation and bioactivation pathways of the cannabinoid receptor 1 antagonist rimonabant (Acomplia) is described. Rimonabant was approved in Europe in 2006 for the treatment of obesity but was withdrawn in 2008 because of a significant drug-related risk of serious psychiatric disorders. The aim of the present work is to characterize the biotransformation and potential bioactivation pathways of rimonabant in vitro in human and rat liver microsomes. The observation of a major iminium ion metabolite led us to perform reactive metabolite trapping, covalent binding to proteins, and time-dependent inhibition of cytochrome P450 3A4 studies. The major biotransformation pathways were oxidative dehydrogenation of the piperidinyl ring to an iminium ion, hydroxylation of the 3 position of the piperidinyl ring, and cleavage of the amide linkage. In coincubations with potassium cyanide, three cyanide adducts were detected. A high level of covalent binding of rimonabant in human liver microsomes was observed (920 pmol equivalents/mg protein). In coincubations with potassium cyanide and methoxylamine, the covalent binding was reduced by approximately 40 and 30%, respectively, whereas GSH had no significant effect on covalent binding levels. Rimonabant was also found to inhibit cytochrome P450 3A4 irreversibly in a time-dependent manner. In view of these findings, it is noteworthy that, to date, no toxicity findings related to the formation of reactive metabolites from rimonabant have been reported. PMID:21733882

  19. Novel Adamantyl Cannabinoids as CB1 Receptor Probes

    PubMed Central

    Thakur, Ganesh A.; Bajaj, Shama; Paronis, Carol; Peng, Yan; Bowman, Anna L.; Barak, Lawrence S.; Caron, Marc G.; Parrish, Demon; Deschamps, Jeffrey R.; Makriyannis, Alexandros

    2013-01-01

    In previous studies compound 1 (AM411), a 3-(1-adamantyl) analog of the phytocannabinoid (−)-Δ8-tetrahydrocannabinol (Δ8-THC) was shown to have improved affinity and selectivity for the CB1 receptor. In this work, we further explored the role of the 1-adamantyl group at the C-3 position in a series of tricyclic cannabinoid analogs modified at the 9-northern aliphatic hydroxyl (NAH) position. Of these, 9-hydroxymethyl hexahydrocannabinol 11 (AM4054) exhibited high CB1 affinity and full agonist profile. In the cAMP assay, the 11-hydroxymethyl cannabinol analog 24 (AM4089) had a partial agonist profile, with high affinity and moderate selectivity for rCB1 over hCB2. In vivo results in rat models of hypothermia and analgesia were congruent with in vitro data. Our in vivo data indicates that 3-(1-adamantyl) substitution, within NAH cannabinergics, imparts improved pharmacological profiles when compared to the corresponding, traditionally used, 3-dimethylheptyl analogs and identifies 11 and 24 as a potential useful in vivo CB1 cannabinergic probes. PMID:23621789

  20. CB2 Cannabinoid Receptor Knockout in Mice Impairs Contextual Long-Term Memory and Enhances Spatial Working Memory

    PubMed Central

    Li, Yong; Kim, Jimok

    2016-01-01

    Neurocognitive effects of cannabinoids have been extensively studied with a focus on CB1 cannabinoid receptors because CB1 receptors have been considered the major cannabinoid receptor in the nervous system. However, recent discoveries of CB2 cannabinoid receptors in the brain demand accurate determination of whether and how CB2 receptors are involved in the cognitive effects of cannabinoids. CB2 cannabinoid receptors are primarily involved in immune functions, but also implicated in psychiatric disorders such as schizophrenia and depression. Here, we examined the effects of CB2 receptor knockout in mice on memory to determine the roles of CB2 receptors in modulating cognitive function. Behavioral assays revealed that hippocampus-dependent, long-term contextual fear memory was impaired whereas hippocampus-independent, cued fear memory was normal in CB2 receptor knockout mice. These mice also displayed enhanced spatial working memory when tested in a Y-maze. Motor activity and anxiety of CB2 receptor knockout mice were intact when assessed in an open field arena and an elevated zero maze. In contrast to the knockout of CB2 receptors, acute blockade of CB2 receptors by AM603 in C57BL/6J mice had no effect on memory, motor activity, or anxiety. Our results suggest that CB2 cannabinoid receptors play diverse roles in regulating memory depending on memory types and/or brain areas. PMID:26819779

  1. β-caryophyllene ameliorates cisplatin-induced nephrotoxicity in a cannabinoid 2 receptor-dependent manner

    PubMed Central

    Horváth, Béla; Mukhopadhyay, Partha; Kechrid, Malek; Patel, Vivek; Tanashian, Galin; Wink, David A.; Gertsch, Jürg; Pacher, Pál

    2012-01-01

    (E)-β-caryophyllene (BCP) is a natural sequiterpene found in many essential oils of spice (best known for contributing to the spiciness of black pepper) and food plants with recognized anti-inflammatory properties. Recently it was shown that BCP is a natural agonist of endogenous cannabinoid 2 (CB2) receptors, which are expressed in immune cells and mediate anti-inflammatory effects. In this study we aimed to test the effects of BCP in a clinically relevant murine model of nephropathy (induced by the widely used antineoplastic drug cisplatin) in which the tubular injury is largely dependent on inflammation and oxidative/nitrative stress. β-caryophyllene dose-dependently ameliorated cisplatin-induced kidney dysfunction, morphological damage, and renal inflammatory response (chemokines MCP-1 and MIP-2, cytokines TNF-α and IL-1β, adhesion molecule ICAM-1, and neutrophil and macrophage infiltration). It also markedly mitigated oxidative/nitrative stress (NOX-2, NOX-4 expression, 4-HNE and 3-NT content) and cell death. The protective effects of BCP against biochemical and histological markers of nephropathy were absent in CB2 knockout mice. Thus, BCP may be an excellent therapeutic agent to prevent cisplatin-induced nephrotoxicity through a CB2 receptor dependent pathway. Given the excellent safety profile of BCP in humans it has tremendous therapeutic potential in multitude of diseases associated with inflammation and oxidative stress. PMID:22326488

  2. Involvement of cannabinoid receptors in infrasonic noise-induced neuronal impairment.

    PubMed

    Ma, Lei; He, Hua; Liu, Xuedong; Zhang, Guangyun; Li, Li; Yan, Song; Li, Kangchu; Shi, Ming

    2015-08-01

    Excessive exposure to infrasound, a kind of low-frequency but high-intensity sound noise generated by heavy transportations and machineries, can cause vibroacoustic disease which is a progressive and systemic disease, and finally results in the dysfunction of central nervous system. Our previous studies have demonstrated that glial cell-mediated inflammation may contribute to infrasound-induced neuronal impairment, but the underlying mechanisms are not fully understood. Here, we show that cannabinoid (CB) receptors may be involved in infrasound-induced neuronal injury. After exposure to infrasound at 16 Hz and 130 dB for 1-14 days, the expression of CB receptors in rat hippocampi was gradually but significantly decreased. Their expression levels reached the minimum after 7- to 14-day exposure during which the maximum number of apoptotic cells was observed in the CA1. 2-Arachidonoylglycerol (2-AG), an endogenous agonist for CB receptors, reduced the number of infrasound-triggered apoptotic cells, which, however, could be further increased by CB receptor antagonist AM251. In animal behavior performance test, 2-AG ameliorated the infrasound-impaired learning and memory abilities of rats, whereas AM251 aggravated the infrasound-impaired learning and memory abilities of rats. Furthermore, the levels of proinflammatory cytokines tumor necrosis factor alpha and interleukin-1β in the CA1 were upregulated after infrasound exposure, which were attenuated by 2-AG but further increased by AM251. Thus, our results provide the first evidence that CB receptors may be involved in infrasound-induced neuronal impairment possibly by affecting the release of proinflammatory cytokines. PMID:26058582

  3. Inhibition of exocytotic noradrenaline release by presynaptic cannabinoid CB1 receptors on peripheral sympathetic nerves.

    PubMed Central

    Ishac, E. J.; Jiang, L.; Lake, K. D.; Varga, K.; Abood, M. E.; Kunos, G.

    1996-01-01

    1. Activation of CB1 receptors by plant cannabinoids or the endogenous ligand, anandamide, causes hypotension via a sympathoinhibitory action in anaesthetized rats. In mouse isolated vas deferens, activation of CB1 receptors inhibits the electrically evoked twitch response. To determine if these effects are related to presynaptic inhibition of noradrenaline (NA) release, we examined the effects of delta 9-tetrahydrocannabinol (delta 9-THC), anandamide and the CB1 antagonist, SR141716A, on exocytotic NA release in rat isolated atria and vasa deferentia. 2. In isolated atria and vasa deferentia preloaded with [3H]-NA, electrical field stimulation caused [3H]-NA release, which was abolished by tetrodotoxin 0.5 microM and concentration-dependently inhibited by delta 9-THC or anandamide, 0.3-10 microM. The inhibitory effect of delta 9-THC and anandamide was competitively antagonized by SR 141716A, 1-10 microM. 3. Tyramine, 1 microM, also induced [3H]-NA release, which was unaffected by tetrodotoxin, delta 9-THC or anandamide in either atria or vasa deferentia. 4. CB1 receptor mRNA is present in the superior cervical ganglion, as well as in whole brain, cerebellum, hypothalamus, spleen, and vas deferens and absent in medulla oblongata and atria, as demonstrated by reverse transcription-polymerase chain reaction. There was no evidence of the presence of CB1A receptor mRNA in ganglia, brain, or cerebellum. These results suggest that activation of presynaptic CB1 receptors located on peripheral sympathetic nerve terminals mediate sympathoinhibitory effects in vitro and in vivo. Images Figure 5 Figure 6 PMID:8864538

  4. Synthetic cannabinoids: In silico prediction of the cannabinoid receptor 1 affinity by a quantitative structure-activity relationship model.

    PubMed

    Paulke, Alexander; Proschak, Ewgenij; Sommer, Kai; Achenbach, Janosch; Wunder, Cora; Toennes, Stefan W

    2016-03-14

    The number of new synthetic psychoactive compounds increase steadily. Among the group of these psychoactive compounds, the synthetic cannabinoids (SCBs) are most popular and serve as a substitute of herbal cannabis. More than 600 of these substances already exist. For some SCBs the in vitro cannabinoid receptor 1 (CB1) affinity is known, but for the majority it is unknown. A quantitative structure-activity relationship (QSAR) model was developed, which allows the determination of the SCBs affinity to CB1 (expressed as binding constant (Ki)) without reference substances. The chemically advance template search descriptor was used for vector representation of the compound structures. The similarity between two molecules was calculated using the Feature-Pair Distribution Similarity. The Ki values were calculated using the Inverse Distance Weighting method. The prediction model was validated using a cross validation procedure. The predicted Ki values of some new SCBs were in a range between 20 (considerably higher affinity to CB1 than THC) to 468 (considerably lower affinity to CB1 than THC). The present QSAR model can serve as a simple, fast and cheap tool to get a first hint of the biological activity of new synthetic cannabinoids or of other new psychoactive compounds. PMID:26795018

  5. Evidence for the putative cannabinoid receptor, GPR55, mediated inhibitory effects on intestinal contractility in mice

    PubMed Central

    Ross, Gracious R; Lichtman, Aron; Dewey, William L; Akbarali, Hamid I

    2012-01-01

    Background Cannabinoids inhibit intestinal motility via presynaptic cannabinoid receptor type I(CB1) in enteric neurons while cannabinoid receptor type II (CB2) receptors are located mainly in immune cells. The recently deorphanized G-protein-coupled receptor, GPR55, has been proposed to be the “third” cannabinoid receptor. Although gene expression of GPR55 is evident in the gut, functional evidence for GPR55 in the gut is unknown. In this study, we tested the hypothesis that GPR55 activation inhibits neurogenic contractions in the gut. Methods We assessed the inhibitory effect of the atypical cannabinoid O-1602, a GPR55 agonist, in mouse colon. Isometric tension recordings in colonic tissue strips were used from either wild type, GPR55−/− or CB1−/−/CB2−/−knock-out mice. Results O-1602 inhibited the electrical field-induced contractions in the colon strips from wild type and CB1−/−/CB2−/− in a concentration–dependent manner, suggesting a non-CB1/CB2-receptor mediated prejunctional effect. The concentration–dependent response of O-1602 was significantly inhibited in GPR55−/− mice. O-1602 did not relax colonic strips pre-contracted with high K+ (80 mmol/l), indicating no involvement of Ca2+ channel blockade in O-1602–induced relaxation. However, 10 μmol/l O-1602 partially inhibited the exogenous acetylcholine (10 μmol/l) –induced contractions. Moreover, we also assessed the inhibitory effects of JWH 015, a CB2/GPR55 agonist on neurogenic contractions of mouse ileum. Surprisingly, the effects of JWH015 were independent of the known cannabinoid receptors. Conclusion These findings taken together suggest that activation of GPR55 leads to inhibition of neurogenic contractions in the gut, and are predominantly prejunctional. PMID:22759743

  6. Comparison of the pharmacology and signal transduction of the human cannabinoid CB1 and CB2 receptors.

    PubMed

    Felder, C C; Joyce, K E; Briley, E M; Mansouri, J; Mackie, K; Blond, O; Lai, Y; Ma, A L; Mitchell, R L

    1995-09-01

    The recently cloned CB2 cannabinoid receptor subtype was stably transfected into AtT-20 and Chinese hamster ovary cells to compare the binding and signal transduction properties of this receptor with those of the CB1 receptor subtype. The binding of [3H]CP 55,940 to both CB1 and CB2 was of similar high affinity (2.6 and 3.7 nM, respectively) and saturable. In competitive binding experiments, (-)-delta 9-tetrahydrocannabinol and CP 55,940 were equipotent at the CB1 and CB2 receptors, but WIN 55212-2 and cannabinol bound with higher affinity to the CB2 than the CB1 receptor. HU 210 had a higher affinity for the CB1 receptor. Anandamide, a recently identified endogenous cannabinoid agonist, was essentially equipotent at both receptor subtypes. The structurally related fatty acid ethanolamides dihomo-gamma-linolenylethanolamide and mead ethanolamide also bound with relatively equal affinity to both receptors, but adrenylethanolamide had a higher affinity for the CB1 receptor. The rank order of potency and efficacy for binding of the selected agonists to the CB1 and CB2 receptors was mimicked in functional inhibition of cAMP accumulation experiments for all compounds tested. Both CB1 and CB2 receptors couple to the inhibition of cAMP accumulation that was pertussis toxin sensitive. SR141716A, a CB1 receptor antagonist, was a poor antagonist at the CB2 receptor in both binding and functional inhibition of cAMP accumulation experiments. When expressed in AtT-20 cells, the CB1 receptor mediated an inhibition of Q-type calcium channels and an activation of inward rectifying potassium channels. In contrast, the CB2 receptor did not modulate the activity of either channel under identical assay conditions. Similar to results obtained for CB1 receptor, the CB2 receptor did not couple to the activation of phospholipases A2, C, or D or to the mobilization of intracellular Ca2+. Except for its inability to couple to the modulation of Q-type calcium channels or inwardly rectifying

  7. Selective Cannabinoid Receptor-1 Agonists Regulate Mast Cell Activation in an Oxazolone-Induced Atopic Dermatitis Model

    PubMed Central

    Nam, Gaewon; Jeong, Se Kyoo; Park, Bu Man; Lee, Sin Hee; Kim, Hyun Jong; Hong, Seung-Phil; Kim, Beomjoon

    2016-01-01

    Background Many inflammatory mediators, including various cytokines (e.g. interleukins and tumor necrosis factor [TNF]), inflammatory proteases, and histamine are released following mast cell activation. However, the endogenous modulators for mast cell activation and the underlying mechanism have yet to be elucidated. Endogenous cannabinoids such as palmitoylethanolamide (PEA) and N-arachidonoylethanolamine (anandamide or AEA), were found in peripheral tissues and have been proposed to possess autacoid activity, implying that cannabinoids may downregulate mast cell activation and local inflammation. Objective In order to investigate the effect of cannabinoid receptor-1 (CB1R) agonists on mast cell activation, AEA-derived compounds were newly synthesized and evaluated for their effect on mast cell activation. Methods The effects of selected compounds on FcεRI-induced histamine and β-hexosaminidase release were evaluated in a rat basophilic leukemia cell line (RBL-2H3). To further investigate the inhibitory effects of CB1R agonist in vivo, an oxazolone-induced atopic dermatitis mouse model was exploited. Results We found that CB1R inhibited the release of inflammatory mediators without causing cytotoxicity in RBL-2H3 cells and that CB1R agonists markedly and dose-dependently suppressed mast cell proliferation indicating that CB1R plays an important role in modulating antigen-dependent immunoglobulin E (IgE)-mediated mast cell activation. We also found that topical application of CB1R agonists suppressed the recruitment of mast cells into the skin and reduced the level of blood histamine. Conclusion Our results indicate that CB1R agonists down-regulate mast cell activation and may be used for relieving inflammatory symptoms mediated by mast cell activation, such as atopic dermatitis, psoriasis, and contact dermatitis. PMID:26848215

  8. Cannabinoids and the gastrointestinal tract

    PubMed Central

    PERTWEE, R

    2001-01-01

    found to induce "withdrawal" contractions in cannabinoid tolerant guinea pig ileal MPLM. Further research is required to investigate the role both of endogenous cannabinoid receptor agonists and of non-CB1 cannabinoid receptors in the gastrointestinal tract. The extent to which the effects on gastrointestinal function of cannabinoid receptor agonists or antagonists/inverse agonists can be exploited therapeutically has yet to be investigated as has the extent to which these drugs can provoke unwanted effects in the gastrointestinal tract when used for other therapeutic purposes.

 PMID:11358910

  9. Cannabinoid receptor 1-expressing neurons in the nucleus accumbens.

    PubMed

    Winters, Bradley D; Krüger, Juliane M; Huang, Xiaojie; Gallaher, Zachary R; Ishikawa, Masago; Czaja, Krzysztof; Krueger, James M; Huang, Yanhua H; Schlüter, Oliver M; Dong, Yan

    2012-10-01

    Endocannabinoid signaling critically regulates emotional and motivational states via activation of cannabinoid receptor 1 (CB1) in the brain. The nucleus accumbens (NAc) functions to gate emotional and motivational responses. Although expression of CB1 in the NAc is low, manipulation of CB1 signaling within the NAc triggers robust emotional/motivational alterations related to drug addiction and other psychiatric disorders, and these effects cannot be exclusively attributed to CB1 located at afferents to the NAc. Rather, CB1-expressing neurons in the NAc, although sparse, appear to be critical for emotional and motivational responses. However, the cellular properties of these neurons remain largely unknown. Here, we generated a knock-in mouse line in which CB1-expressing neurons expressed the fluorescent protein td-Tomato (tdT). Using these mice, we demonstrated that tdT-positive neurons within the NAc were exclusively fast-spiking interneurons (FSIs). These FSIs were electrically coupled with each other, and thus may help synchronize populations/ensembles of NAc neurons. CB1-expressing FSIs also form GABAergic synapses on adjacent medium spiny neurons (MSNs), providing feed-forward inhibition of NAc output. Furthermore, the membrane excitability of tdT-positive FSIs in the NAc was up-regulated after withdrawal from cocaine exposure, an effect that might increase FSI-to-MSN inhibition. Taken together with our previous findings that the membrane excitability of NAc MSNs is decreased during cocaine withdrawal, the present findings suggest that the basal functional output of the NAc is inhibited during cocaine withdrawal by multiple mechanisms. As such, CB1-expressing FSIs are targeted by cocaine exposure to influence the overall functional output of the NAc. PMID:23012412

  10. [Progress in study on endocannabinoids and cannabinoid receptors in the treatment for neuropathic pain].

    PubMed

    Liu, Peng; Zhang, Wei; Zhang, Shaobo; Zhang, Yibao; Wang, Jing

    2016-08-01

    Endocannabinoids and cannabinoid receptors are expressed in various central pain modulation regions. They maintain in dynamic changes in the expression level and distribution under different pathological and physiological conditions. These changes possess advantage as well as disadvantage. Exogenous administration of endocannabinoids exerts analgesic effect in different pain models, which is mainly mediated by the cannabinoid CB1 and CB2 receptors. Inhibition of enzymes for degrading endocannabinoids in different pain models also shows analgesic effect due to the increased local levels of endocannabinoids. PMID:27600019

  11. Cannabinoid receptor agonists reduce the short-term mitochondrial dysfunction and oxidative stress linked to excitotoxicity in the rat brain.

    PubMed

    Rangel-López, E; Colín-González, A L; Paz-Loyola, A L; Pinzón, E; Torres, I; Serratos, I N; Castellanos, P; Wajner, M; Souza, D O; Santamaría, A

    2015-01-29

    The endocannabinoid system (ECS) is involved in a considerable number of physiological processes in the Central Nervous System. Recently, a modulatory role of cannabinoid receptors (CBr) and CBr agonists on the reduction of the N-methyl-d-aspartate receptor (NMDAr) activation has been demonstrated. Quinolinic acid (QUIN), an endogenous analog of glutamate and excitotoxic metabolite produced in the kynurenine pathway (KP), selectively activates NMDAr and has been shown to participate in different neurodegenerative disorders. Since the early pattern of toxicity exerted by this metabolite is relevant to explain the extent of damage that it can produce in the brain, in this work we investigated the effects of the synthetic CBr agonist WIN 55,212-2 (WIN) and other agonists (anandamide or AEA, and CP 55,940 or CP) on early markers of QUIN-induced toxicity in rat striatal cultured cells and rat brain synaptosomes. WIN, AEA and CP exerted protective effects on the QUIN-induced loss of cell viability. WIN also preserved the immunofluorescent signals for neurons and CBr labeling that were decreased by QUIN. The QUIN-induced early mitochondrial dysfunction, lipid peroxidation and reactive oxygen species (ROS) formation were also partially or completely prevented by WIN pretreatment, but not when this CBr agonist was added simultaneously with QUIN to brain synaptosomes. These findings support a neuroprotective and modulatory role of cannabinoids in the early toxic events elicited by agents inducing excitotoxic processes. PMID:25446347

  12. What We Know and Don’t Know About the Cannabinoid Receptor 2 (CB2)

    PubMed Central

    Malfitano, Anna Maria; Basu, Sreemanti; Maresz, Katarzyna; Bifulco, Maurizio; Dittel, Bonnie N.

    2015-01-01

    It well appreciated that the endocannabinoid system can regulate immune responses via the cannabinoid receptor 2 (CB2), which is primarily expressed by cells of the hematopoietic system. The endocannabinoid system is composed of receptors, ligands and enzymes controlling the synthesis and degradation of endocannabinoids. Along with endocannabinoids, both plant-derived and synthetic cannabinoids have been shown to bind to and signal through CB2 via G proteins leading to both inhibitory and stimulatory signals depending on the biological process. Because no cannabinoid ligand has been identified that only binds to CB2, the generation of mice deficient in CB2 has greatly expanded our knowledge of how CB2 contributes to immune cell development and function in health and disease. In regards to humans, genetic studies have associated CB2 with a variety of human diseases. Here, we review the endocannabinoid system with an emphasis on CB2 and its role in the immune system. PMID:24877594

  13. (+)-Cannabidiol analogues which bind cannabinoid receptors but exert peripheral activity only.

    PubMed

    Fride, Ester; Feigin, Cfir; Ponde, Datta E; Breuer, Aviva; Hanus, Lumír; Arshavsky, Nina; Mechoulam, Raphael

    2004-12-15

    Delta9-Tetrahydrocannabinol (Delta9-THC) and (-)-cannabidiol are major constituents of the Cannabis sativa plant with different pharmacological profiles: (-)-Delta9-tetrahydrocannabinol, but not (-)-cannabidiol, activates cannabinoid CB1 and CB2 receptors and induces psychoactive and peripheral effects. We have tested a series of (+)-cannabidiol derivatives, namely, (+)-cannabidiol-DMH (DMH-1,1-dimethylheptyl-), (+)-7-OH-cannabidiol-DMH, (+)-7-OH- cannabidiol, (+)-7-COOH- cannabidiol and (+)-7-COOH-cannabidiol-DMH, for central and peripheral (intestinal, antiinflammatory and peripheral pain) effects in mice. Although all (+)-cannabidiols bind to cannabinoid CB1 and CB2 receptors, only (+)-7-OH-cannabidiol-DMH was centrally active, while all (+)-cannabidiol analogues completely arrested defecation. The effects of (+)-cannabidiol-DMH and (+)-7-OH-cannabidiol-DMH were partially antagonized by the cannabinoid CB1 receptor antagonist N-(piperidiny-1-yl)-5-(4-chlorophenyl)-1-(2,4-dichlorophenyl)-4-methyl-1H-pyrazole-3-carboxamide (SR141716), but not by the cannabinoid CB2 receptor antagonist N-[-(1S)-endo-1,3,3-trimethil bicyclo [2.2.1] heptan-2-yl-5-(4-chloro-3-methylphenyl)-1-(4-methylbenzyl)-pyrazole-3-carboxamide (SR144528), and had no effect on CB1(-/-) receptor knockout mice. (+)-Cannabidiol-DMH inhibited the peripheral pain response and arachidonic-acid-induced inflammation of the ear. We conclude that centrally inactive (+)-cannabidiol analogues should be further developed as antidiarrheal, antiinflammatory and analgesic drugs for gastrointestinal and other peripheral conditions. PMID:15588739

  14. Muscarinic M1 receptor and cannabinoid CB1 receptor do not modulate paraoxon-induced seizures

    PubMed Central

    Kow, Rebecca L; Cheng, Eugene M; Jiang, Kelly; Le, Joshua H; Stella, Nephi; Nathanson, Neil M

    2015-01-01

    One of the major signs of severe organophosphate poisoning is seizures. Previous studies have shown that both muscarinic agonist- and organophosphate-induced seizures require activation of muscarinic acetylcholine receptors in the central nervous system. Seizures induced by the muscarinic agonist pilocarpine require the M1 receptor and are modulated by cannabinoid CB1 receptors. In this study, we determined whether M1 and CB1 receptors also regulated seizures induced by the organophosphate paraoxon. We found no differences in seizures induced by paraoxon in wild-type (WT) and M1 knockout (KO) mice, indicating that in contrast to pilocarpine seizures, M1 receptors are not required for paraoxon seizures. Furthermore, we found that pilocarpine administration resulted in seizure-independent activation of ERK in the hippocampus in a M1 receptor-dependent manner, while paraoxon did not induce seizure-independent activation of ERK in the mouse hippocampus. This shows that pilocarpine and paraoxon activated M1 receptors in the hippocampus to different extents. There were no differences in seizures induced by paraoxon in WT and CB1 KO mice, and neither CB1 agonist nor antagonist administration had significant effects on paraoxon seizures, indicating that, in contrast to pilocarpine seizures, paraoxon seizures are not modulated by CB1 receptors. These results demonstrate that there are fundamental molecular differences in the regulation of seizures induced by pilocarpine and paraoxon. PMID:25692018

  15. Establishment of recombinant cannabinoid receptor assays and characterization of several natural and synthetic ligands.

    PubMed

    Geiger, Sarah; Nickl, Kathrin; Schneider, Erich H; Seifert, Roland; Heilmann, Jörg

    2010-08-01

    Cannabinoid receptors (CBR) are important drug targets for the treatment of various inflammatory, metabolic and neurological diseases. Therefore, sensitive test systems for the assessment of ligands are needed. In this study, a steady-state GTPase assay for human CBR subtypes 1 and 2 was developed to characterize the pharmacological property of ligands at a very proximal point of the signal transduction cascade. Establishing these in vitro test sytems, we studied cell or tissue membranes heterogenously or endogenously expressing CBR, such as CBR-infected Human Embryonic Kidney (HEK) 293 cells, rat cerebellum and spleen cells. The lack of effects in the GTPase assay and in [(35)S]GTPgammaS binding experiments in these expression system, directed us to use Spodoptera frugiperda (Sf9) cells. Co-expressing CBR, different Galpha-subunits, Gbetagamma heterodimer, and RGS (Regulator of G-protein signaling)-proteins in Sf9 cell membranes greatly improved the sensitivity of the assay, with highest GTPase activation in the CBR + Galpha(i2) + Gbeta(1)gamma(2) + RGS4 system. We examined exogenous and endogenous standard ligands as well as secondary metabolites as Delta(9)-tetrahydrocannabinol (Delta(9)-THC), dodeca-2E,4E-dienoic acid isobutylamide, an alkylamide from Echinacea purpurea, and an E. purpurea hexane extract according their agonistic and antagonistic properties. The suitability of the assay for screening procedures was also proven by detecting the activity of Delta(9)-THC in a matrix of other less active compounds (Delta(9)-THC-free Cannabis sativa extract). In conclusion, we have developed highly sensitive test systems for the analysis of CBR ligands. PMID:20617431

  16. Opposite function of dopamine D1 and NMDA receptors in striatal cannabinoid-mediated signaling

    PubMed Central

    Daigle, Tanya L.; Wetsel, William C.; Caron, Marc G.

    2011-01-01

    It is well established that the cannabinoid and dopamine systems interact at various levels to regulate basal ganglia function. While it is well known that acute administration of cannabinoids to mice can modify dopamine-dependent behaviors, an understanding of the intraneuronal signaling pathways employed by these agents in the striatum is not well understood. Here we use knockout (KO) mouse models to examine the regulation of striatal ERK1/2 signaling by behaviorally relevant doses of cannabinoids. This cellular pathway has been implicated as a central mediator of drug reward and synaptic plasticity. In C57BL/6J mice, acute administration of cannabinoid agonists, HU-210 and Δ9-THC, promotes a dose- and time-dependent decrease in the phosphorylation of ERK1/2 in dorsal striatum. Co-administration of the CB1 cannabinoid receptor (CB1R) antagonist AM251 with HU-210 prevents ERK1/2 inactivation, indicating a requirement for activation of this receptor. In dopamine D1 receptor (D1R) KO animals treated with HU-210, the magnitude of the HU-210-dependent decrease in striatal ERK1/2 signaling is greater than in wild-type controls. In contrast, the HU-210 administration to NMDA receptor knockdown mice (NR1-Kd) was ineffective at promoting striatal ERK1/2 inactivation. Genetic deletion of other potential ERK1/2 mediators, the dopamine D2 receptors (D2R)s or βarrestin-1 or -2, did not affect HU-210-induced modulation of ERK1/2 signaling in the striatum. These results support the hypothesis that dopamine D1 receptors and NMDA receptors act in an opposite manner to regulate striatal CB1R signal transduction. PMID:22034973

  17. Enkephalin levels and the number of neuropeptide Y-containing interneurons in the hippocampus are decreased in female cannabinoid-receptor 1 knock-out mice.

    PubMed

    Rogers, Sophie A; Kempen, Tracey A Van; Pickel, Virginia M; Milner, Teresa A

    2016-05-01

    Drug addiction requires learning and memory processes that are facilitated by activation of cannabinoid-1 (CB1) and opioid receptors in the hippocampus. This involves activity-dependent synaptic plasticity that is partially regulated by endogenous opioid (enkephalin and dynorphin) and non-opioid peptides, specifically cholecystokinin, parvalbumin and neuropeptide Y, the neuropeptides present in inhibitory interneurons that co-express CB1 or selective opioid receptors. We tested the hypothesis that CB1 receptor expression is a determinant of the availability of one or more of these peptide modulators in the hippocampus. This was achieved by quantitatively analyzing the immunoperoxidase labeling for each of these neuropeptide in the dorsal hippocampus of female wild-type (CB1+/+) and cannabinoid receptor 1 knockout (CB1-/-) C57/BL6 mice. The levels of Leu(5)-enkephalin-immunoreactivity were significantly reduced in the hilus of the dentate gyrus and in stratum lucidum of CA3 in CB1-/- mice. Moreover, the numbers of neuropeptide Y-immunoreactive interneurons in the dentate hilus were significantly lower in the CB1-/- compared to wild-type mice. However, CB1+/+ and CB1-/- mice did not significantly differ in expression levels of either dynorphin or cholecystokinin, and showed no differences in numbers of parvalbumin-containing interneurons. These findings suggest that the cannabinoid and opioid systems have a nuanced, regulatory relationship that could affect the balance of excitation and inhibition in the hippocampus and thus processes such as learning that rely on this balance. PMID:27012427

  18. The role of cannabinoids in adult neurogenesis.

    PubMed

    Prenderville, Jack A; Kelly, Áine M; Downer, Eric J

    2015-08-01

    The processes underpinning post-developmental neurogenesis in the mammalian brain continue to be defined. Such processes involve the proliferation of neural stem cells and neural progenitor cells (NPCs), neuronal migration, differentiation and integration into a network of functional synapses within the brain. Both intrinsic (cell signalling cascades) and extrinsic (neurotrophins, neurotransmitters, cytokines, hormones) signalling molecules are intimately associated with adult neurogenesis and largely dictate the proliferative activity and differentiation capacity of neural cells. Cannabinoids are a unique class of chemical compounds incorporating plant-derived cannabinoids (the active components of Cannabis sativa), the endogenous cannabinoids and synthetic cannabinoid ligands, and these compounds are becoming increasingly recognized for their roles in neural developmental processes. Indeed, cannabinoids have clear modulatory roles in adult neurogenesis, probably through activation of both CB1 and CB2 receptors. In recent years, a large body of literature has deciphered the signalling networks involved in cannabinoid-mediated regulation of neurogenesis. This timely review summarizes the evidence that the cannabinoid system is intricately associated with neuronal differentiation and maturation of NPCs and highlights intrinsic/extrinsic signalling mechanisms that are cannabinoid targets. Overall, these findings identify the central role of the cannabinoid system in adult neurogenesis in the hippocampus and the lateral ventricles and hence provide insight into the processes underlying post-developmental neurogenesis in the mammalian brain. PMID:25951750

  19. The role of cannabinoids in adult neurogenesis

    PubMed Central

    Prenderville, Jack A; Kelly, Áine M; Downer, Eric J

    2015-01-01

    The processes underpinning post-developmental neurogenesis in the mammalian brain continue to be defined. Such processes involve the proliferation of neural stem cells and neural progenitor cells (NPCs), neuronal migration, differentiation and integration into a network of functional synapses within the brain. Both intrinsic (cell signalling cascades) and extrinsic (neurotrophins, neurotransmitters, cytokines, hormones) signalling molecules are intimately associated with adult neurogenesis and largely dictate the proliferative activity and differentiation capacity of neural cells. Cannabinoids are a unique class of chemical compounds incorporating plant-derived cannabinoids (the active components of Cannabis sativa), the endogenous cannabinoids and synthetic cannabinoid ligands, and these compounds are becoming increasingly recognized for their roles in neural developmental processes. Indeed, cannabinoids have clear modulatory roles in adult neurogenesis, probably through activation of both CB1 and CB2 receptors. In recent years, a large body of literature has deciphered the signalling networks involved in cannabinoid-mediated regulation of neurogenesis. This timely review summarizes the evidence that the cannabinoid system is intricately associated with neuronal differentiation and maturation of NPCs and highlights intrinsic/extrinsic signalling mechanisms that are cannabinoid targets. Overall, these findings identify the central role of the cannabinoid system in adult neurogenesis in the hippocampus and the lateral ventricles and hence provide insight into the processes underlying post-developmental neurogenesis in the mammalian brain. PMID:25951750

  20. Evaluation of the In Vivo and Ex Vivo Binding of Novel BC1 Cannabinoid Receptor Radiotracers

    SciTech Connect

    Miller, A.; Gatley, J.; Gifford, A.

    2002-01-01

    The primary active ingredient of marijuana, 9-tetrahydrocannabinol, exerts its psychoactive effects by binding to cannabinoid CB1 receptors. These receptors are found throughout the brain with high concentrations in the hippocampus and cerebellum. The current study was conducted to evaluate the binding of a newly developed putative cannabinoid antagonist, AM630, and a classical cannabinoid 8-tetrahydrocannabinol as potential PET and/or SPECT imaging agents for brain CB1 receptors. For both of these ligands in vivo and ex vivo studies in mice were conducted. AM630 showed good overall brain uptake (as measure by %IA/g) and a moderately rapid clearance from the brain with a half-clearance time of approximately 30 minutes. However, AM630 did not show selective binding to CB1 cannabinoid receptors. Ex vivo autoradiography supported the lack of selective binding seen in the in vivo study. Similar to AM630, 8-tetrahydrocanibol also failed to show selective binding to CB1 receptor rich brain areas. The 8-tetrahydrocanibol showed moderate overall brain uptake and relatively slow brain clearance as compared to AM630. Further studies were done with AM2233, a cannabinoid ligand with a similar structure as AM630. These studies were done to develop an ex vivo binding assay to quantify the displacement of [131I]AM2233 binding by other ligands in Swiss-Webster and CB1 receptor knockout mice. By developing this assay we hoped to determine the identity of an unknown binding site for AM2233 present in the hippocampus of CB1 knockout mice. Using an approach based on incubation of brain slices prepared from mice given intravenous [131I]AM2233 in either the presence or absence of AM2233 (unlabelled) it was possible to demonstrate a significant AM2233-displacable binding in the Swiss-Webster mice. Future studies will determine if this assay is appropriate for identifying the unknown binding site for AM2233 in the CB1 knockout mice.

  1. Deficits in Sensory-Specific Devaluation Task Performance Following Genetic Deletions of Cannabinoid (CB1) Receptor

    ERIC Educational Resources Information Center

    Crombag, Hans S.; Johnson, Alexander W.; Zimmer, Anne M.; Zimmer, Andreas; Holland, Peter C.

    2010-01-01

    Cannabinoid CB1 receptor is abundantly expressed throughout the CNS and is implicated in numerous physiological and behavioral functions, including appetite and feeding. In the present study, wild-type and CB1 heterozygous and homozygous knockout mice were tested on an instrumental outcome-selective devaluation task to assess changes in acquired…

  2. Differential Effects of Cannabinoid Receptor Agonist on Social Discrimination and Contextual Fear in Amygdala and Hippocampus

    ERIC Educational Resources Information Center

    Segev, Amir; Akirav, Irit

    2011-01-01

    We examined whether the cannabinoid receptor agonist WIN55,212-2 (WIN; 5 [mu]g/side) microinjected into the hippocampus or the amygdala would differentially affect memory processes in a neutral vs. an aversive task. In the aversive contextual fear task, WIN into the basolateral amygdala impaired fear acquisition/consolidation, but not retrieval.…

  3. CB1 Cannabinoid Receptors Modulate Kinase and Phosphatase Activity during Extinction of Conditioned Fear in Mice

    ERIC Educational Resources Information Center

    Kamprath, Kornelia; Hermann, Heike; Lutz, Beat; Marsicano, Giovanni; Cannich, Astrid; Wotjak, Carsten T.

    2004-01-01

    Cannabinoid receptors type 1 (CB1) play a central role in both short-term and long-term extinction of auditory-cued fear memory. The molecular mechanisms underlying this function remain to be clarified. Several studies indicated extracellular signal-regulated kinases (ERKs), the phosphatidylinositol 3-kinase with its downstream effector AKT, and…

  4. Genetic Variations in the Human Cannabinoid Receptor Gene Are Associated with Happiness

    PubMed Central

    Matsunaga, Masahiro; Isowa, Tokiko; Yamakawa, Kaori; Fukuyama, Seisuke; Shinoda, Jun; Yamada, Jitsuhiro; Ohira, Hideki

    2014-01-01

    Happiness has been viewed as a temporary emotional state (e.g., pleasure) and a relatively stable state of being happy (subjective happiness level). As previous studies demonstrated that individuals with high subjective happiness level rated their current affective states more positively when they experience positive events, these two aspects of happiness are interrelated. According to a recent neuroimaging study, the cytosine to thymine single-nucleotide polymorphism of the human cannabinoid receptor 1 gene is associated with sensitivity to positive emotional stimuli. Thus, we hypothesized that our genetic traits, such as the human cannabinoid receptor 1 genotypes, are closely related to the two aspects of happiness. In Experiment 1, 198 healthy volunteers were used to compare the subjective happiness level between cytosine allele carriers and thymine-thymine carriers of the human cannabinoid receptor 1 gene. In Experiment 2, we used positron emission tomography with 20 healthy participants to compare the brain responses to positive emotional stimuli of cytosine allele carriers to that of thymine-thymine carriers. Compared to thymine-thymine carriers, cytosine allele carriers have a higher subjective happiness level. Regression analysis indicated that the cytosine allele is significantly associated with subjective happiness level. The positive mood after watching a positive film was significantly higher for the cytosine allele carriers compared to the thymine-thymine carriers. Positive emotion-related brain region such as the medial prefrontal cortex was significantly activated when the cytosine allele carriers watched the positive film compared to the thymine-thymine carriers. Thus, the human cannabinoid receptor 1 genotypes are closely related to two aspects of happiness. Compared to thymine-thymine carriers, the cytosine allele carriers of the human cannabinoid receptor 1 gene, who are sensitive to positive emotional stimuli, exhibited greater magnitude

  5. LiCABEDS II. Modeling of ligand selectivity for G-protein-coupled cannabinoid receptors.

    PubMed

    Ma, Chao; Wang, Lirong; Yang, Peng; Myint, Kyaw Z; Xie, Xiang-Qun

    2013-01-28

    The cannabinoid receptor subtype 2 (CB2) is a promising therapeutic target for blood cancer, pain relief, osteoporosis, and immune system disease. The recent withdrawal of Rimonabant, which targets another closely related cannabinoid receptor (CB1), accentuates the importance of selectivity for the development of CB2 ligands in order to minimize their effects on the CB1 receptor. In our previous study, LiCABEDS (Ligand Classifier of Adaptively Boosting Ensemble Decision Stumps) was reported as a generic ligand classification algorithm for the prediction of categorical molecular properties. Here, we report extension of the application of LiCABEDS to the modeling of cannabinoid ligand selectivity with molecular fingerprints as descriptors. The performance of LiCABEDS was systematically compared with another popular classification algorithm, support vector machine (SVM), according to prediction precision and recall rate. In addition, the examination of LiCABEDS models revealed the difference in structure diversity of CB1 and CB2 selective ligands. The structure determination from data mining could be useful for the design of novel cannabinoid lead compounds. More importantly, the potential of LiCABEDS was demonstrated through successful identification of newly synthesized CB2 selective compounds. PMID:23278450

  6. A restricted population of CB1 cannabinoid receptors with neuroprotective activity

    PubMed Central

    Chiarlone, Anna; Bellocchio, Luigi; Blázquez, Cristina; Resel, Eva; Soria-Gómez, Edgar; Cannich, Astrid; Ferrero, José J.; Sagredo, Onintza; Benito, Cristina; Romero, Julián; Sánchez-Prieto, José; Lutz, Beat; Fernández-Ruiz, Javier; Galve-Roperh, Ismael; Guzmán, Manuel

    2014-01-01

    The CB1 cannabinoid receptor, the main molecular target of endocannabinoids and cannabis active components, is the most abundant G protein-coupled receptor in the mammalian brain. Of note, CB1 receptors are expressed at the synapses of two opposing (i.e., GABAergic/inhibitory and glutamatergic/excitatory) neuronal populations, so the activation of one and/or another receptor population may conceivably evoke different effects. Despite the widely reported neuroprotective activity of the CB1 receptor in animal models, the precise pathophysiological relevance of those two CB1 receptor pools in neurodegenerative processes is unknown. Here, we first induced excitotoxic damage in the mouse brain by (i) administering quinolinic acid to conditional mutant animals lacking CB1 receptors selectively in GABAergic or glutamatergic neurons, and (ii) manipulating corticostriatal glutamatergic projections remotely with a designer receptor exclusively activated by designer drug pharmacogenetic approach. We next examined the alterations that occur in the R6/2 mouse, a well-established model of Huntington disease, upon (i) fully knocking out CB1 receptors, and (ii) deleting CB1 receptors selectively in corticostriatal glutamatergic or striatal GABAergic neurons. The data unequivocally identify the restricted population of CB1 receptors located on glutamatergic terminals as an indispensable player in the neuroprotective activity of (endo)cannabinoids, therefore suggesting that this precise receptor pool constitutes a promising target for neuroprotective therapeutic strategies. PMID:24843137

  7. Two Affinity Sites of the Cannabinoid Subtype 2 Receptor Identified by a Novel Homogeneous Binding Assay.

    PubMed

    Martínez-Pinilla, Eva; Rabal, Obdulia; Reyes-Resina, Irene; Zamarbide, Marta; Navarro, Gemma; Sánchez-Arias, Juan A; de Miguel, Irene; Lanciego, José L; Oyarzabal, Julen; Franco, Rafael

    2016-09-01

    Endocannabinoids act on G protein-coupled receptors that are considered potential targets for a variety of diseases. There are two different cannabinoid receptor types: ligands for cannabinoid type 2 receptors (CB2Rs) show more promise than those for cannabinoid type 1 receptors (CB1Rs) because they lack psychotropic actions. However, the complex pharmacology of these receptors, coupled with the lipophilic nature of ligands, is delaying the translational success of medications targeting the endocannabinoid system. We here report the discovery and synthesis of a fluorophore-conjugated CB2R-selective compound, CM-157 (3-[[4-[2-tert-butyl-1-(tetrahydropyran-4-ylmethyl)benzimidazol-5-yl]sulfonyl-2-pyridyl]oxy]propan-1-amine), which was useful for pharmacological characterization of CB2R by using a time-resolved fluorescence resonance energy transfer assay. This methodology does not require radiolabeled compounds and may be undertaken in homogeneous conditions and in living cells (i.e., without the need to isolate receptor-containing membranes). The affinity of the labeled compound was similar to that of the unlabeled molecule. Time-resolved fluorescence resonance energy transfer assays disclosed a previously unreported second affinity site and showed conformational changes in CB2R forming receptor heteromers with G protein-coupled receptor GPR55, a receptor for l-α-lysophosphatidylinositol. The populations displaying subnanomolar and nanomolar affinities were undisclosed in competitive assays using a well known cannabinoid receptor ligand, AM630 (1-[2-(morpholin-4-yl)ethyl]-2-methyl-3-(4-methoxybenzoyl)-6-iodoindole), and TH-chrysenediol, not previously tested on binding to cannabinoid receptors. Variations in binding parameters upon formation of dimers with GPR55 may reflect decreases in binding sites or alterations of the quaternary structure of the macromolecular G protein-coupled receptor complexes. In summary, the homogeneous binding assay described here may

  8. Therapeutic potential of cannabinoid-based drugs.

    PubMed

    Klein, Thomas W; Newton, Catherine A

    2007-01-01

    Cannabinoid-based drugs modeled on cannabinoids originally isolated from marijuana are now known to significantly impact the functioning of the endocannabinoid system of mammals. This system operates not only in the brain but also in organs and tissues in the periphery including the immune system. Natural and synthetic cannabinoids are tricyclic terpenes, whereas the endogenous physiological ligands are eicosanoids. Several receptors for these compounds have been extensively described, CB1 and CB2, and are G protein-coupled receptors; however, cannabinoid-based drugs are also demonstrated to function independently of these receptors. Cannabinoids regulate many physiological functions and their impact on immunity is generally antiinflammatory as powerful modulators of the cytokine cascade. This anti-inflammatory potency has led to the testing of these drugs in chronic inflammatory laboratory paradigms and even in some human diseases. Psychoactive and nonpsychoactive cannabinoid-based drugs such as Delta9-tetrahydrocannabinol, cannabidiol, HU-211, and ajulemic acid have been tested and found moderately effective in clinical trials of multiple sclerosis, traumatic brain injury, arthritis, and neuropathic pain. Furthermore, although clinical trials are not yet reported, preclinical data with cannabinoid-based drugs suggest efficacy in other inflammatory diseases such as inflammatory bowel disease, Alzheimer's disease, atherosclerosis, and osteoporosis. PMID:17713029

  9. Regulation of MMP-9 by a WIN-Binding Site in the Monocyte-Macrophage System Independent from Cannabinoid Receptors

    PubMed Central

    Tauber, Svantje; Paulsen, Katrin; Wolf, Susanne; Synwoldt, Peggy; Pahl, Andreas; Schneider-Stock, Regine; Ullrich, Oliver

    2012-01-01

    The cannabinoid system is known to be involved in the regulation of inflammatory processes. Therefore, drugs targeting cannabinoid receptors are considered as candidates for anti-inflammatory and tissue protective therapy. We demonstrated that the prototypical cannabinoid agonist R(+)WIN55,212-2 (WIN) reduced the secretion of matrix metalloproteinase-9 (MMP-9) in a murine model of cigarette-smoke induced lung inflammation. In experiments using primary cells and cell lines of the monocyte-macrophage-system we found that binding of the cannabinoid-receptor agonist WIN to a stereo-selective, specific binding site in cells of the monocyte-macrophage-system induced a significant down-regulation of MMP-9 secretion and disturbance of intracellular processing, which subsequently down-regulated MMP-9 mRNA expression via a ERK1/2-phosphorylation-dependent pathway. Surprisingly, the anti-inflammatory effect was independent from classical cannabinoid receptors. Our experiments supposed an involvement of TRPV1, but other yet unidentified sites are also possible. We conclude that cannabinoid-induced control of MMP-9 in the monocyte-macrophage system via a cannabinoid-receptor independent pathway represents a general option for tissue protection during inflammation, such as during lung inflammation and other diseases associated with inflammatory tissue damage. PMID:23139770

  10. Small Molecules from Nature Targeting G-Protein Coupled Cannabinoid Receptors: Potential Leads for Drug Discovery and Development.

    PubMed

    Sharma, Charu; Sadek, Bassem; Goyal, Sameer N; Sinha, Satyesh; Kamal, Mohammad Amjad; Ojha, Shreesh

    2015-01-01

    The cannabinoid molecules are derived from Cannabis sativa plant which acts on the cannabinoid receptors types 1 and 2 (CB1 and CB2) which have been explored as potential therapeutic targets for drug discovery and development. Currently, there are numerous cannabinoid based synthetic drugs used in clinical practice like the popular ones such as nabilone, dronabinol, and Δ(9)-tetrahydrocannabinol mediates its action through CB1/CB2 receptors. However, these synthetic based Cannabis derived compounds are known to exert adverse psychiatric effect and have also been exploited for drug abuse. This encourages us to find out an alternative and safe drug with the least psychiatric adverse effects. In recent years, many phytocannabinoids have been isolated from plants other than Cannabis. Several studies have shown that these phytocannabinoids show affinity, potency, selectivity, and efficacy towards cannabinoid receptors and inhibit endocannabinoid metabolizing enzymes, thus reducing hyperactivity of endocannabinoid systems. Also, these naturally derived molecules possess the least adverse effects opposed to the synthetically derived cannabinoids. Therefore, the plant based cannabinoid molecules proved to be promising and emerging therapeutic alternative. The present review provides an overview of therapeutic potential of ligands and plants modulating cannabinoid receptors that may be of interest to pharmaceutical industry in search of new and safer drug discovery and development for future therapeutics. PMID:26664449

  11. Regulation of MMP-9 by a WIN-binding site in the monocyte-macrophage system independent from cannabinoid receptors.

    PubMed

    Tauber, Svantje; Paulsen, Katrin; Wolf, Susanne; Synwoldt, Peggy; Pahl, Andreas; Schneider-Stock, Regine; Ullrich, Oliver

    2012-01-01

    The cannabinoid system is known to be involved in the regulation of inflammatory processes. Therefore, drugs targeting cannabinoid receptors are considered as candidates for anti-inflammatory and tissue protective therapy. We demonstrated that the prototypical cannabinoid agonist R(+)WIN55,212-2 (WIN) reduced the secretion of matrix metalloproteinase-9 (MMP-9) in a murine model of cigarette-smoke induced lung inflammation. In experiments using primary cells and cell lines of the monocyte-macrophage-system we found that binding of the cannabinoid-receptor agonist WIN to a stereo-selective, specific binding site in cells of the monocyte-macrophage-system induced a significant down-regulation of MMP-9 secretion and disturbance of intracellular processing, which subsequently down-regulated MMP-9 mRNA expression via a ERK1/2-phosphorylation-dependent pathway. Surprisingly, the anti-inflammatory effect was independent from classical cannabinoid receptors. Our experiments supposed an involvement of TRPV1, but other yet unidentified sites are also possible. We conclude that cannabinoid-induced control of MMP-9 in the monocyte-macrophage system via a cannabinoid-receptor independent pathway represents a general option for tissue protection during inflammation, such as during lung inflammation and other diseases associated with inflammatory tissue damage. PMID:23139770

  12. Small Molecules from Nature Targeting G-Protein Coupled Cannabinoid Receptors: Potential Leads for Drug Discovery and Development

    PubMed Central

    Sharma, Charu; Sadek, Bassem; Goyal, Sameer N.; Sinha, Satyesh; Ojha, Shreesh

    2015-01-01

    The cannabinoid molecules are derived from Cannabis sativa plant which acts on the cannabinoid receptors types 1 and 2 (CB1 and CB2) which have been explored as potential therapeutic targets for drug discovery and development. Currently, there are numerous cannabinoid based synthetic drugs used in clinical practice like the popular ones such as nabilone, dronabinol, and Δ9-tetrahydrocannabinol mediates its action through CB1/CB2 receptors. However, these synthetic based Cannabis derived compounds are known to exert adverse psychiatric effect and have also been exploited for drug abuse. This encourages us to find out an alternative and safe drug with the least psychiatric adverse effects. In recent years, many phytocannabinoids have been isolated from plants other than Cannabis. Several studies have shown that these phytocannabinoids show affinity, potency, selectivity, and efficacy towards cannabinoid receptors and inhibit endocannabinoid metabolizing enzymes, thus reducing hyperactivity of endocannabinoid systems. Also, these naturally derived molecules possess the least adverse effects opposed to the synthetically derived cannabinoids. Therefore, the plant based cannabinoid molecules proved to be promising and emerging therapeutic alternative. The present review provides an overview of therapeutic potential of ligands and plants modulating cannabinoid receptors that may be of interest to pharmaceutical industry in search of new and safer drug discovery and development for future therapeutics. PMID:26664449

  13. Nicotine reinforcement is reduced by cannabinoid CB1 receptor blockade in the ventral tegmental area.

    PubMed

    Simonnet, Amelie; Cador, Martine; Caille, Stephanie

    2013-11-01

    Cannabinoid type 1 (CB1) receptors control the motivational properties and reinforcing effects of nicotine. Indeed, peripheral administration of a CB1 receptor antagonist dramatically decreases both nicotine taking and seeking. However, the neural substrates through which the cannabinoid CB1 receptors regulate the voluntary intake of nicotine remain to be elucidated. In the present study, we sought to determine whether central injections of a CB1 receptor antagonist delivered either into the ventral tegmental area (VTA) or the nucleus accumbens (NAC) may alter nicotine intravenous self-administration (IVSA). Rats were first trained to self-administer nicotine (30 μg/kg/0.1 ml). The effect of central infusions of the CB1 antagonist AM 251 (0, 1 and 10 μg/0.5 μl/side) on nicotine-taking behavior was then tested. Intra-VTA infusions of AM 251 dose dependently reduced IVSA with a significant decrease for the dose 10 μg/0.5 μl/side. Moreover, operant responding for water was unaltered by intra-VTA AM 251 at the same dose. Surprisingly, intra-NAC delivery of AM 251 did not alter nicotine behavior at all. These data suggest that in rats chronically exposed to nicotine IVSA, the cannabinoid CB1 receptors located in the VTA rather than in the NAC specifically control nicotine reinforcement and, subsequently, nicotine-taking behavior. PMID:22784230

  14. Primary Macrophage Chemotaxis Induced by Cannabinoid Receptor 2 Agonists Occurs Independently of the CB2 Receptor

    PubMed Central

    Taylor, Lewis; Christou, Ivy; Kapellos, Theodore S.; Buchan, Alice; Brodermann, Maximillian H.; Gianella-Borradori, Matteo; Russell, Angela; Iqbal, Asif J.; Greaves, David R.

    2015-01-01

    Activation of CB2 has been demonstrated to induce directed immune cell migration. However, the ability of CB2 to act as a chemoattractant receptor in macrophages remains largely unexplored. Using a real-time chemotaxis assay and a panel of chemically diverse and widely used CB2 agonists, we set out to examine whether CB2 modulates primary murine macrophage chemotaxis. We report that of 12 agonists tested, only JWH133, HU308, L-759,656 and L-759,633 acted as macrophage chemoattractants. Surprisingly, neither pharmacological inhibition nor genetic ablation of CB2 had any effect on CB2 agonist-induced macrophage chemotaxis. As chemotaxis was pertussis toxin sensitive in both WT and CB2-/- macrophages, we concluded that a non-CB1/CB2, Gi/o-coupled GPCR must be responsible for CB2 agonist-induced macrophage migration. The obvious candidate receptors GPR18 and GPR55 could not mediate JWH133 or HU308-induced cytoskeletal rearrangement or JWH133-induced β-arrestin recruitment in cells transfected with either receptor, demonstrating that neither are the unidentified GPCR. Taken together our results conclusively demonstrate that CB2 is not a chemoattractant receptor for murine macrophages. Furthermore we show for the first time that JWH133, HU308, L-759,656 and L-759,633 have off-target effects of functional consequence in primary cells and we believe that our findings have wide ranging implications for the entire cannabinoid field. PMID:26033291

  15. Impaired Excitatory Neurotransmission in the Urinary Bladder from the Obese Zucker Rat: Role of Cannabinoid Receptors

    PubMed Central

    Blaha, Igor; Recio, Paz; Martínez, María Pilar; López-Oliva, María Elvira; Ribeiro, Ana S. F.; Agis-Torres, Ángel; Martínez, Ana Cristina; Benedito, Sara; García-Sacristán, Albino; Fernandes, Vítor S.; Hernández, Medardo

    2016-01-01

    Metabolic syndrome (MS) is a known risk factor for lower urinary tract symptoms. This study investigates whether functional and expression changes of cannabinoid CB1 and CB2 receptors are involved in the bladder dysfunction in an obese rat model with insulin resistance. Bladder samples from obese Zucker rat (OZR) and their respective controls lean Zucker rat (LZR) were processed for immunohistochemistry and western blot for studying the cannabinoid receptors expression. Detrusor smooth muscle (DSM) strips from LZR and OZR were also mounted in myographs for isometric force recordings. Neuronal and smooth muscle CB1 and CB2 receptor expression and the nerve fiber density was diminished in the OZR bladder. Electrical field stimulation (EFS) and acetylcholine (ACh) induced frequency- and concentration-dependent contractions of LZR and OZR DSM. ACh contractile responses were similar in LZR and OZR. EFS-elicited contractions, however, were reduced in OZR bladder. Cannabinoid receptor agonists and antagonists failed to modify the DSM basal tension in LZR and OZR In LZR bladder, EFS responses were inhibited by ACEA and SER-601, CB1 and CB2 receptor agonists, respectively, these effects being reversed by ACEA plus the CB1 antagonist, AM-251 or SER-601 plus the CB2 antagonist, AM-630. In OZR bladder, the inhibitory action of ACEA on nerve-evoked contractions was diminished, whereas that SER-601 did not change EFS responses. These results suggest that a diminished function and expression of neuronal cannabinoid CB1 and CB2 receptors, as well as a lower nerve fiber density is involved in the impaired excitatory neurotransmission of the urinary bladder from the OZR. PMID:27285468

  16. Impact of Efficacy at the μ-Opioid Receptor on Antinociceptive Effects of Combinations of μ-Opioid Receptor Agonists and Cannabinoid Receptor Agonists

    PubMed Central

    Maguire, David R.

    2014-01-01

    Cannabinoid receptor agonists, such as Δ9-tetrahydrocannabinol (Δ9-THC), enhance the antinociceptive effects of μ-opioid receptor agonists, which suggests that combining cannabinoids with opioids would improve pain treatment. Combinations with lower efficacy agonists might be preferred and could avoid adverse effects associated with large doses; however, it is unclear whether interactions between opioids and cannabinoids vary across drugs with different efficacy. The antinociceptive effects of μ-opioid receptor agonists alone and in combination with cannabinoid receptor agonists were studied in rhesus monkeys (n = 4) using a warm water tail withdrawal procedure. Etorphine, fentanyl, morphine, buprenorphine, nalbuphine, Δ9-THC, and CP 55,940 (2-[(1R,2R,5R)-5-hydroxy-2-(3-hydroxypropyl) cyclohexyl]-5-(2-methyloctan-2-yl)phenol) each increased tail withdrawal latency. Pretreatment with doses of Δ9-THC (1.0 mg/kg) or CP 55,940 (0.032 mg/kg) that were ineffective alone shifted the fentanyl dose-effect curve leftward 20.6- and 52.9-fold, respectively, and the etorphine dose-effect curve leftward 12.4- and 19.6-fold, respectively. Δ9-THC and CP 55,940 shifted the morphine dose-effect curve leftward only 3.4- and 7.9-fold, respectively, and the buprenorphine curve only 5.4- and 4.1-fold, respectively. Neither Δ9-THC nor CP 55,940 significantly altered the effects of nalbuphine. Cannabinoid receptor agonists increase the antinociceptive potency of higher efficacy opioid receptor agonists more than lower efficacy agonists; however, because much smaller doses of each drug can be administered in combinations while achieving adequate pain relief and that other (e.g., abuse-related) effects of opioids do not appear to be enhanced by cannabinoids, these results provide additional support for combining opioids with cannabinoids to treat pain. PMID:25194020

  17. The role of cannabinoid receptors and the endocannabinoid system in mantle cell lymphoma and other non-Hodgkin lymphomas.

    PubMed

    Wasik, Agata M; Christensson, Birger; Sander, Birgitta

    2011-11-01

    The initiating oncogenic event in mantle cell lymphoma (MCL) is the translocation of cyclin D1, t(11;14)(q13;q32). However, other genetic aberrations are necessary for an overt lymphoma to arise. Like other B cell lymphomas, MCL at some points during the oncogenesis is dependent on interactions with other cells and factors in the microenvironment. The G protein coupled receptors cannabinoid receptors 1 and 2 (CB1 and CB2) are expressed at low levels on non-malignant lymphocytes and at higher levels in MCL and other lymphoma subtypes. In this review we give an overview of what is known on the role of the cannabinoid receptors and their ligands in lymphoma as compared to non-malignant T and B lymphocytes. In MCL cannabinoids mainly reduce cell proliferation and induce cell death. Importantly, our recent findings demonstrate that cannabinoids may induce either apoptosis or another type of programmed cell death, cytoplasmic vacuolation/paraptosis in MCL. The signalling to death has been partly characterized. Even though cannabinoid receptors seem to be expressed in many other types of B cell lymphoma, the functional role of cannabinoid receptor targeting is yet largely unknown. In non-malignant B and T lymphocytes, cannabinoid receptors are up-regulated in response to antigen receptor signalling or CD40. For T lymphocytes IL-4 has also a crucial role in transcriptional regulation of CB1. In lymphocytes, cannabinoid act in several ways - by affecting cell migration, cytokine response, at high doses inhibit cell proliferation and inducing cell death. The possible role for the endocannabinoid system in the immune microenvironment of lymphoma is discussed. PMID:22024769

  18. Prolonged Monoacylglycerol Lipase Blockade Causes Equivalent Cannabinoid Receptor Type 1 Receptor–Mediated Adaptations in Fatty Acid Amide Hydrolase Wild-Type and Knockout Mice

    PubMed Central

    Kinsey, Steven G.; Ignatowska-Jankowska, Bogna; Ramesh, Divya; Abdullah, Rehab A.; Tao, Qing; Booker, Lamont; Long, Jonathan Z.; Selley, Dana E.; Cravatt, Benjamin F.; Lichtman, Aron H.

    2014-01-01

    Complementary genetic and pharmacological approaches to inhibit monoacylglycerol lipase (MAGL) and fatty acid amide hydrolase (FAAH), the primary hydrolytic enzymes of the respective endogenous cannabinoids 2-arachidonoylglycerol (2-AG) and N-arachidonoylethanolamine, enable the exploration of potential therapeutic applications and physiologic roles of these enzymes. Complete and simultaneous inhibition of both FAAH and MAGL produces greatly enhanced cannabimimetic responses, including increased antinociception, and other cannabimimetic effects, far beyond those seen with inhibition of either enzyme alone. While cannabinoid receptor type 1 (CB1) function is maintained following chronic FAAH inactivation, prolonged excessive elevation of brain 2-AG levels, via MAGL inhibition, elicits both behavioral and molecular signs of cannabinoid tolerance and dependence. Here, we evaluated the consequences of a high dose of the MAGL inhibitor JZL184 [4-nitrophenyl 4-(dibenzo[d][1,3]dioxol-5-yl(hydroxy)methyl)piperidine-1-carboxylate; 40 mg/kg] given acutely or for 6 days in FAAH(−/−) and (+/+) mice. While acute administration of JZL184 to FAAH(−/−) mice enhanced the magnitude of a subset of cannabimimetic responses, repeated JZL184 treatment led to tolerance to its antinociceptive effects, cross-tolerance to the pharmacological effects of Δ9-tetrahydrocannabinol, decreases in CB1 receptor agonist–stimulated guanosine 5′-O-(3-[35S]thio)triphosphate binding, and dependence as indicated by rimonabant-precipitated withdrawal behaviors, regardless of genotype. Together, these data suggest that simultaneous elevation of both endocannabinoids elicits enhanced cannabimimetic activity but MAGL inhibition drives CB1 receptor functional tolerance and cannabinoid dependence. PMID:24849924

  19. Rising stars: modulation of brain functions by astroglial type-1 cannabinoid receptors.

    PubMed

    Metna-Laurent, Mathilde; Marsicano, Giovanni

    2015-03-01

    The type-1-cannabinoid (CB1 ) receptor is amongst the most widely expressed G protein-coupled receptors in the brain. In few decades, CB1 receptors have been shown to regulate a large array of functions from brain cell development and survival to complex cognitive processes. Understanding the cellular mechanisms underlying these functions of CB1 is complex due to the heterogeneity of the brain cell types on which the receptor is expressed. Although the large majority of CB1 receptors act on neurons, early studies pointed to a direct control of CB1 receptors over astroglial functions including brain energy supply and neuroprotection. In line with the growing concept of the tripartite synapse highlighting astrocytes as direct players in synaptic plasticity, astroglial CB1 receptor signaling recently emerged as the mediator of several forms of synaptic plasticity associated to important cognitive functions. Here, we shortly review the current knowledge on CB1 receptor-mediated astroglial functions. This functional spectrum is large and most of the mechanisms by which CB1 receptors control astrocytes, as well as their consequences in vivo, are still unknown, requiring innovative approaches to improve this new cannabinoid research field. PMID:25452006

  20. Activation of murine microglial N9 cells is attenuated through cannabinoid receptor CB2 signaling.

    PubMed

    Ma, Lei; Jia, Ji; Liu, Xiangyu; Bai, Fuhai; Wang, Qiang; Xiong, Lize

    2015-02-27

    Inhibition of microglial activation is effective in treating various neurological disorders. Activation of microglial cannabinoid CB2 receptor induces anti-inflammatory effects, and the mechanism, however, is still elusive. Microglia could be activated into the classic activated state (M1 state) or the alternative activated state (M2 state), the former is cytotoxic, and the latter is neurotrophic. In this study, we used lipopolysaccharide (LPS) plus interferon-γ (IFNγ) to activate N9 microglia and hypothesized the pretreatment with cannabinoid CB2 receptor agonist AM1241 attenuates microglial activation by shifting microglial M1 to M2 state. We found that pretreatment with 5 μM AM1241 at 1 h before microglia were exposed to LPS plus IFNγ decreased the expression of inducible nitric oxide synthase (iNOS) and the release of pro-inflammatory factors, increased the expression of arginase 1 (Arg-1) and the release of anti-inflammatory and neurotrophic factors in microglia. However, these effects induced by AM1241 pretreatment were significantly reversed in the presence of 10 μM cannabinoid CB2 receptor antagonist AM630 or 10 μM protein kinase C (PKC) inhibitor chelerythrine. These findings indicated that AM1241 pretreatment attenuates microglial activation by shifting M1 to M2 activated state via CB2 receptor, and the AM1241-induced anti-inflammatory effects may be mediated by PKC. PMID:25637536

  1. Control of spasticity in a multiple sclerosis model using central nervous system-excluded CB1 cannabinoid receptor agonists.

    PubMed

    Pryce, Gareth; Visintin, Cristina; Ramagopalan, Sreeram V; Al-Izki, Sarah; De Faveri, Lia E; Nuamah, Rosamond A; Mein, Charles A; Montpetit, Alexandre; Hardcastle, Alison J; Kooij, Gijs; de Vries, Helga E; Amor, Sandra; Thomas, Sarah A; Ledent, Catherine; Marsicano, Giovanni; Lutz, Beat; Thompson, Alan J; Selwood, David L; Giovannoni, Gavin; Baker, David

    2014-01-01

    The purpose of this study was the generation of central nervous system (CNS)-excluded cannabinoid receptor agonists to test the hypothesis that inhibition of spasticity, due to CNS autoimmunity, could be controlled by affecting neurotransmission within the periphery. Procedures included identification of chemicals and modeling to predict the mode of exclusion; induction and control of spasticity in the ABH mouse model of multiple sclerosis; conditional deletion of CB1 receptor in peripheral nerves; side-effect profiling to demonstrate the mechanism of CNS-exclusion via drug pumps; genome-wide association study in N2(129×ABH) backcross to map polymorphic cannabinoid drug pump; and sequencing and detection of cannabinoid drug-pump activity in human brain endothelial cell lines. Three drugs (CT3, SAB378 and SAD448) were identified that control spasticity via action on the peripheral nerve CB1 receptor. These were peripherally restricted via drug pumps that limit the CNS side effects (hypothermia) of cannabinoids to increase the therapeutic window. A cannabinoid drug pump is polymorphic and functionally lacking in many laboratory (C57BL/6, 129, CD-1) mice used for transgenesis, pharmacology, and toxicology studies. This phenotype was mapped and controlled by 1-3 genetic loci. ABCC1 within a cluster showing linkage is a cannabinoid CNS-drug pump. Global and conditional CB1 receptor-knockout mice were used as controls. In summary, CNS-excluded CB1 receptor agonists are a novel class of therapeutic agent for spasticity. PMID:24121462

  2. Conformationally constrained analogs of BAY 59–3074 as novel cannabinoid receptor ligands

    PubMed Central

    Teng, Heidi; Thakur, Ganesh A.; Makriyannis, Alexandros

    2013-01-01

    To obtain information on the pharmacophoric requirements of the CB1/CB2 partial agonist BAY 59–3074 we have synthesized a series of new conformationally constrained dibenzofuran (4a–d) and dibenzopyran analogs (5). All constrained analogs exhibited reduced binding affinity at both cannabinoid receptor subtypes, suggesting that planar conformations of these ligands are less favored by both receptors. We also found that 4c, 4d, and 5 exhibited 3- to 12-fold selectivity for hCB2 over rCB1 receptors and may serve as new chemotypes for the development of CB2-selective cannabinergics. PMID:21880487

  3. Cannabinoid CB{sub 1} receptor inhibition decreases vascular smooth muscle migration and proliferation

    SciTech Connect

    Rajesh, Mohanraj; Mukhopadhyay, Partha; Hasko, Gyoergy; Pacher, Pal

    2008-12-26

    Vascular smooth muscle proliferation and migration triggered by inflammatory stimuli and chemoattractants such as platelet-derived growth factor (PDGF) are key events in the development and progression of atherosclerosis and restenosis. Cannabinoids may modulate cell proliferation and migration in various cell types through cannabinoid receptors. Here we investigated the effects of CB{sub 1} receptor antagonist rimonabant (SR141716A), which has recently been shown to have anti-atherosclerotic effects both in mice and humans, on PDGF-induced proliferation, migration, and signal transduction of human coronary artery smooth muscle cells (HCASMCs). PDGF induced Ras and ERK 1/2 activation, while increasing proliferation and migration of HCASMCs, which were dose dependently attenuated by CB{sub 1} antagonist, rimonabant. These findings suggest that in addition to improving plasma lipid alterations and decreasing inflammatory cell migration and inflammatory response, CB{sub 1} antagonists may exert beneficial effects in atherosclerosis and restenosis by decreasing vascular smooth muscle proliferation and migration.

  4. Human metabolites of synthetic cannabinoids JWH-018 and JWH-073 bind with high affinity and act as potent agonists at cannabinoid type-2 receptors

    SciTech Connect

    Rajasekaran, Maheswari; Brents, Lisa K.; Franks, Lirit N.; Moran, Jeffery H.; Prather, Paul L.

    2013-06-01

    K2 or Spice is an emerging drug of abuse that contains synthetic cannabinoids, including JWH-018 and JWH-073. Recent reports indicate that monohydroxylated metabolites of JWH-018 and JWH-073 retain high affinity and activity at cannabinoid type-1 receptors (CB{sub 1}Rs), potentially contributing to the enhanced toxicity of K2 compared to marijuana. Since the parent compounds also bind to cannabinoid type-2 receptors (CB{sub 2}Rs), this study investigated the affinity and intrinsic activity of JWH-018, JWH-073 and several monohydroxylated metabolites at human CB{sub 2}Rs (hCB{sub 2}Rs). The affinity of cannabinoids for hCB{sub 2}Rs was determined by competition binding studies employing CHO-hCB{sub 2} membranes. Intrinsic activity of compounds was assessed by G-protein activation and adenylyl cyclase (AC)-inhibition in CHO-hCB{sub 2} cells. JWH-073, JWH-018 and several of their human metabolites exhibit nanomolar affinity and act as potent agonists at hCB{sub 2}Rs. Furthermore, a major omega hydroxyl metabolite of JWH-073 (JWH-073-M5) binds to CB{sub 2}Rs with 10-fold less affinity than the parent molecule, but unexpectedly, is equipotent in regulating AC-activity when compared to the parent molecule. Finally, when compared to CP-55,940 and Δ{sup 9}-tetrahydrocannabinol (Δ{sup 9}-THC), JWH-018, JWH-018-M5 and JWH-073-M5 require significantly less CB{sub 2}R occupancy to produce similar levels of AC-inhibition, indicating that these compounds may more efficiently couple CB{sub 2}Rs to AC than the well characterized cannabinoid agonists examined. These results indicate that JWH-018, JWH-073 and several major human metabolites of these compounds exhibit high affinity and demonstrate distinctive signaling properties at CB{sub 2}Rs. Therefore, future studies examining pharmacological and toxicological properties of synthetic cannabinoids present in K2 products should consider potential actions of these drugs at both CB{sub 1} and CB{sub 2}Rs. - Highlights: • JWH-018

  5. Driving under the influence of synthetic cannabinoid receptor agonist XLR-11.

    PubMed

    Lemos, Nikolas P

    2014-11-01

    The case of a 22-year-old male Caucasian driver is presented. He was involved in a traffic collision. At the roadside, he displayed blank stare and mellow speech with a barely audible voice. A DRE found low body temperature, rigid muscle tone, normal pulse, lack of horizontal and vertical gaze nystagmus, nonconvergence of the eyes, dilated pupil size, and normal Pupillary reaction to light. A standard toxicology DUID protocol was performed on the driver's whole blood including ELISA and GC-MS drug screens with negative results. Additional drug screening was undertaken for bath salts and synthetic cannabinoid receptor agonists by LC-MS/MS by a commercial laboratory and identified the synthetic cannabinoid receptor agonist XLR-11 in the driver's blood. XLR-11 was subsequently quantified at 1.34 ng/mL. This is the first documented case involving a driver operating a motor vehicle under the influence of the synthetic cannabinoid receptor agonist XLR-11. PMID:25088081

  6. Cannabinoid Receptors CB1 and CB2 Modulate the Electroretinographic Waves in Vervet Monkeys

    PubMed Central

    Bouskila, Joseph; Harrar, Vanessa; Javadi, Pasha; Beierschmitt, Amy; Palmour, Roberta; Casanova, Christian; Bouchard, Jean-François; Ptito, Maurice

    2016-01-01

    The expression patterns of the cannabinoid receptor type 1 (CB1R) and the cannabinoid receptor type 2 (CB2R) are well documented in rodents and primates. In vervet monkeys, CB1R is present in the retinal neurons (photoreceptors, horizontal cells, bipolar cells, amacrine cells, and ganglion cells) and CB2R is exclusively found in the retinal glia (Müller cells). However, the role of these cannabinoid receptors in normal primate retinal function remains elusive. Using full-field electroretinography in adult vervet monkeys, we recorded changes in neural activity following the blockade of CB1R and CB2R by the intravitreal administration of their antagonists (AM251 and AM630, resp.) in photopic and scotopic conditions. Our results show that AM251 increases the photopic a-wave amplitude at high flash intensities, whereas AM630 increases the amplitude of both the photopic a- and b-waves. In scotopic conditions, both blockers increased the b-wave amplitude but did not change the a-wave amplitude. These findings suggest an important role of CB1R and CB2R in primate retinal function. PMID:27069692

  7. Development of indole sulfonamides as cannabinoid receptor negative allosteric modulators.

    PubMed

    Greig, Iain R; Baillie, Gemma L; Abdelrahman, Mostafa; Trembleau, Laurent; Ross, Ruth A

    2016-09-15

    Existing CB1 negative allosteric modulators (NAMs) fall into a limited range of structural classes. In spite of the theoretical potential of CB1 NAMs, published in vivo studies have generally not been able to demonstrate the expected therapeutically-relevant CB1-mediated effects. Thus, a greater range of molecular tools are required to allow definitive elucidation of the effects of CB1 allosteric modulation. In this study, we show a novel series of indole sulfonamides. Compounds 5e and 6c (ABD1075) had potencies of 4 and 3nM respectively, and showed good oral exposure and CNS penetration, making them highly versatile tools for investigating the therapeutic potential of allosteric modulation of the cannabinoid system. PMID:27542310

  8. An Endogenous Mammalian Retinoid X Receptor Ligand, At Last!

    PubMed

    de Lera, Ángel R; Krezel, Wojciech; Rühl, Ralph

    2016-05-19

    9-cis-Retinoic acid was identified and claimed to be the endogenous ligand of the retinoid X receptors (RXRs) in 1992. Since then, the endogenous presence of this compound has never been rigorously confirmed. Instead, concerns have been raised by other groups that have reported that 9-cis-retinoic acid is undetectable or that its presence occurs at very low levels. Furthermore, these low levels could not satisfactorily explain the physiological activation of RXR. Alternative ligands, among them various lipids, have also been identified, but also did not fulfill criteria for rigorous endogenous relevance, and their consideration as bona fide endogenous mammalian RXR ligand has likewise been questioned. Recently, novel studies claim that the saturated analogue 9-cis-13,14-dihydroretinoic acid functions as an endogenous physiologically relevant mammalian RXR ligand. PMID:27151148

  9. Cannabinoid, melanocortin and opioid receptor expression on DRD1 and DRD2 subpopulations in rat striatum

    PubMed Central

    Oude Ophuis, Ralph J. A.; Boender, Arjen J.; van Rozen, Andrea J.; Adan, Roger A. H.

    2014-01-01

    The striatum harbors two neuronal populations that enable action selection. One population represents the striatonigral pathway, expresses the dopamine receptor D1 (DRD1) and promotes the execution of motor programs, while the other population represents the striatopallidal pathway, expresses the dopamine receptor D2 (DRD2) and suppresses voluntary activity. The two populations integrate distinct sensorimotor, cognitive, and emotional information streams and their combined activity enables the selection of adaptive behaviors. Characterization of these populations is critical to the understanding of their role in action selection, because it aids the identification of the molecular mechanisms that separate them. To that end, we used fluorescent in situ hybridization to quantify the percentage of striatal cells that (co)express dopaminergic receptors and receptors of the cannabinoid, melanocortin or opioid neurotransmitters systems. Our main findings are that the cannabinoid 1 receptor is equally expressed on both populations with a gradient from dorsal to ventral striatum, that the opioid receptors have a preference for expression with either the DRD1 or DRD2 and that the melanocortin 4 receptor (MC4R) is predominantly expressed in ventral parts of the striatum. In addition, we find that the level of MC4R expression determines its localization to either the DRD1 or the DRD2 population. Thereby, we provide insight into the sensitivity of the two dopaminoceptive populations to these neurotransmitters and progress the understanding of the mechanisms that enable action selection. PMID:24723856

  10. Modulation and functional involvement of CB2 peripheral cannabinoid receptors during B-cell differentiation.

    PubMed

    Carayon, P; Marchand, J; Dussossoy, D; Derocq, J M; Jbilo, O; Bord, A; Bouaboula, M; Galiègue, S; Mondière, P; Pénarier, G; Fur, G L; Defrance, T; Casellas, P

    1998-11-15

    Two subtypes of G-protein-coupled cannabinoid receptors have been identified to date: the CB1 central receptor subtype, which is mainly expressed in the brain, and the CB2 peripheral receptor subtype, which appears particularly abundant in the immune system. We investigated the expression of CB2 receptors in leukocytes using anti-CB2 receptor immunopurified polyclonal antibodies. We showed that peripheral blood and tonsillar B cells were the leukocyte subsets expressing the highest amount of CB2 receptor proteins. Dual-color confocal microscopy performed on tonsillar tissues showed a marked expression of CB2 receptors in mantle zones of secondary follicles, whereas germinal centers (GC) were weakly stained, suggesting a modulation of this receptor during the differentiation stages from virgin B lymphocytes to memory B cells. Indeed, we showed a clear downregulation of CB2 receptor expression during B-cell differentiation both at transcript and protein levels. The lowest expression was observed in GC proliferating centroblasts. Furthermore, we investigated the effect of the cannabinoid agonist CP55,940 on the CD40-mediated proliferation of both virgin and GC B-cell subsets. We found that CP55,940 enhanced the proliferation of both subsets and that this enhancement was blocked by the CB2 receptor antagonist SR 144528 but not by the CB1 receptor antagonist SR 141716. Finally, we observed that CB2 receptors were dramatically upregulated in both B-cell subsets during the first 24 hours of CD40-mediated activation. These data strongly support an involvement of CB2 receptors during B-cell differentiation. PMID:9808554

  11. Cannabinoid receptor trafficking in peripheral cells is dynamically regulated by a binary biochemical switch.

    PubMed

    Kleyer, Jonas; Nicolussi, Simon; Taylor, Peter; Simonelli, Deborah; Furger, Evelyne; Anderle, Pascale; Gertsch, Jürg

    2012-05-15

    The cannabinoid G protein-coupled receptors (GPCRs) CB₁ and CB₂ are expressed in different peripheral cells. Localization of GPCRs in the cell membrane determines signaling via G protein pathways. Here we show that unlike in transfected cells, CB receptors in cell lines and primary human cells are not internalized upon agonist interaction, but move between cytoplasm and cell membranes by ligand-independent trafficking mechanisms. Even though CB receptors are expressed in many cells of peripheral origin they are not always localized in the cell membrane and in most cancer cell lines the ratios between CB₁ and CB₂ receptor gene and surface expression vary significantly. In contrast, CB receptor cell surface expression in HL60 cells is subject to significant oscillations and CB₂ receptors form oligomers and heterodimers with CB₁ receptors, showing synchronized surface expression, localization and trafficking. We show that hydrogen peroxide and other nonspecific protein tyrosine phosphatase inhibitors (TPIs) such as phenylarsine oxide trigger both CB₂ receptor internalization and externalization, depending on receptor localization. Phorbol ester-mediated internalization of CB receptors can be inhibited via this switch. In primary human immune cells hydrogen peroxide and other TPIs lead to a robust internalization of CB receptors in monocytes and an externalization in T cells. This study describes, for the first time, the dynamic nature of CB receptor trafficking in the context of a biochemical switch, which may have implications for studies on the cell-type specific effects of cannabinoids and our understanding of the regulation of CB receptor cell surface expression. PMID:22387618

  12. Neuroprotective effect of endogenous cannabinoids on ischemic brain injury induced by the excess microglia-mediated inflammation

    PubMed Central

    Guo, Shuyun; Liu, Yanwu; Ma, Rui; Li, Jun; Su, Binxiao

    2016-01-01

    Increasing evidence has demonstrated the role of endogenous cannabinoids system (ECS) on protecting brain injury caused by ischemia (IMI). Papers reported that microglia-mediated inflammation has become one of the most pivotal mechanisms for IMI. This study was aimed to investigate the potential roles of ECS on neuron protection under microglia-mediated inflammation. Inflammatory cytokines level both in vitro (BV-2 cells) and in vivo (brain tissue from constructed IMI model and brain-isolated microglia) was detected. ECS levels were detected, and its effects on inflammations was also analyzed. Influence of microglia-mediated inflammation on neuron injury was analyzed. Moreover, the effects of ECS on protecting neuron injury were also analyzed. Our results showed that the levels of inflammatory cytokines including TNFα and IL-1β were higher while IKBα was lower in IMI model brain tissue, brain-isolated microglia and BV-2 cells compared to the control. Inflammation was activated in microglia, as well as the activation of ECS characterized by the increasing level of AEA and 2-AG. Furthermore, the activated microglia-mediated self-inflammation performed harmful influence on neurons via suppressing cell viability and inducing apoptosis. Moreover, ECS functioned as a protector on neuron injury though promoting cell proliferation and suppressing cell apoptosis which were caused by the activated BV-2 cells (LPS induced for 3 h). Our data suggested that ECS may play certain neuroprotective effects on microglia-mediated inflammations-induced IMI through anti-inflammatory function. PMID:27398146

  13. Striatal adenosine-cannabinoid receptor interactions in rats over-expressing adenosine A2A receptors.

    PubMed

    Chiodi, Valentina; Ferrante, Antonella; Ferraro, Luca; Potenza, Rosa Luisa; Armida, Monica; Beggiato, Sarah; Pèzzola, Antonella; Bader, Michael; Fuxe, Kjell; Popoli, Patrizia; Domenici, Maria Rosaria

    2016-03-01

    Adenosine A2A receptors (A2 A Rs) and cannabinoid CB1 receptors (CB1 Rs) are highly expressed in the striatum, where they functionally interact and form A2A /CB1 heteroreceptor complexes. We investigated the effects of CB1 R stimulation in a transgenic rat strain over-expressing A2 A Rs under the control of the neural-specific enolase promoter (NSEA2A rats) and in age-matched wild-type (WT) animals. The effects of the CB1 R agonist WIN 55,212-2 (WIN) were significantly lower in NSEA2A rats than in WT animals, as demonstrated by i) electrophysiological recordings of synaptic transmission in corticostriatal slices; ii) the measurement of glutamate outflow from striatal synaptosomes and iii) in vivo experiments on locomotor activity. Moreover, while the effects of WIN were modulated by both A2 A R agonist (CGS 21680) and antagonists (ZM 241385, KW-6002 and SCH-442416) in WT animals, the A2 A R antagonists failed to influence WIN-mediated effects in NSEA2A rats. The present results demonstrate that in rats with genetic neuronal over-expression of A2 A Rs, the effects mediated by CB1 R activation in the striatum are significantly reduced, suggesting a change in the stoichiometry of A2A and CB1 receptors and providing a strategy to dissect the involvement of A2 A R forming or not forming heteromers in the modulation of striatal functions. These findings add additional evidence for the existence of an interaction between striatal A2 A Rs and CB1 Rs, playing a fundamental role in the regulation of striatal functions. We studied A2A -CB1 receptor interaction in transgenic rats over-expressing adenosine A2A receptors under the control of the neuron-specific enolase promoter (NSEA2A ). In these rats, we demonstrated a reduced effect of the CB1 receptor agonist WIN 55,212-2 in the modulation of corticostriatal synaptic transmission and locomotor activity, while CB1 receptor expression level did not change with respect to WT rats. A reduction in the expression of A2A -CB1

  14. Cannabinoid 1 and transient receptor potential vanilloid 1 receptors discretely modulate evoked glutamate separately from spontaneous glutamate transmission.

    PubMed

    Fawley, Jessica A; Hofmann, Mackenzie E; Andresen, Michael C

    2014-06-11

    Action potentials trigger synaptic terminals to synchronously release vesicles, but some vesicles release spontaneously. G-protein-coupled receptors (GPCRs) can modulate both of these processes. At cranial primary afferent terminals, the GPCR cannabinoid 1 (CB1) is often coexpressed with transient receptor potential vanilloid 1 (TRPV1), a nonselective cation channel present on most afferents. Here we tested whether CB1 activation modulates synchronous, action potential-evoked (eEPSCs) and/or spontaneous (sEPSCs) EPSCs at solitary tract nucleus neurons. In rat horizontal brainstem slices, activation of solitary tract (ST) primary afferents generated ST-eEPSCs that were rapidly and reversibly inhibited from most afferents by activation of CB1 with arachidonyl-2'-chloroethylamide (ACEA) or WIN 55,212-2 [R-(+)-(2,3-dihydro-5-methyl-3-[(4-morpholinyl)methyl]pyrrolo[1,2,3-de]-1,4-benzoxazin-6-yl)(1-naphthalenyl) methanone monomethanesulfonate]. The CB1 antagonist/inverse agonist AM251 [N-1-(2,4-dichlorophenyl)-5-(4-iodophenyl)-4-methyl-N-1-piperidinyl-1H-pyrazole-3-carboxamide] blocked these responses. Despite profound depression of ST-eEPSCs during CB1 activation, sEPSCs in these same neurons were unaltered. Changes in temperature changed sEPSC frequency only from TRPV1(+) afferents (i.e., thermal sEPSC responses only occurred in TRPV1(+) afferents). CB1 activation failed to alter these thermal sEPSC responses. However, the endogenous arachidonate metabolite N-arachidonyldopamine (NADA) promiscuously activated both CB1 and TRPV1 receptors. NADA inhibited ST-eEPSCs while simultaneously increasing sEPSC frequency, and thermally triggered sEPSC increases in neurons with TRPV1(+) afferents. We found no evidence for CB1/TRPV1 interactions suggesting independent regulation of two separate vesicle pools. Together, these data demonstrate that action potential-evoked synchronous glutamate release is modulated separately from TRPV1-mediated glutamate release despite coexistence

  15. Cannabinoid CB2 receptors are involved in the regulation of fibrogenesis during skin wound repair in mice

    PubMed Central

    LI, SHAN-SHAN; WANG, LIN-LIN; LIU, MIN; JIANG, SHU-KUN; ZHANG, MIAO; TIAN, ZHI-LING; WANG, MENG; LI, JIAO-YONG; ZHAO, RUI; GUAN, DA-WEI

    2016-01-01

    Studies have shown that cannabinoid CB2 receptors are involved in wound repair, however, its physiological roles in fibrogenesis remain to be elucidated. In the present study, the capacity of cannabinoid CB2 receptors in the regulation of skin fibrogenesis during skin wound healing was investigated. To assess the function of cannabinoid CB2 receptors, skin excisional BALB/c mice were treated either the cannabinoid CB2 receptor selective agonist, GP1a, or antagonist, AM630. Skin fibrosis was assessed by histological analysis and profibrotic cytokines were determined by immunohistochemistry, immunofluorescence staining, reverse transcription-quantitative polymerase chain reaction and immunoblotting in these animals. GP1a decreased collagen deposition, reduced the levels of transforming growth factor (TGF)-β1, TGF-β receptor I (TβRI) and phosphorylated small mothers against decapentaplegic homolog 3 (P-Smad3), but elevated the expression of its inhibitor, Smad7. By contrast, AM630 increased collagen deposition and the expression levels of TGF-β1, TβRI and P-Smad3. These results indicated that cannabinoid CB2 receptors modulate fibrogenesis and the TGF-β/Smad profibrotic signaling pathway during skin wound repair in the mouse. PMID:26935001

  16. Cannabinoid receptor 1 ligands revisited: Pharmacological assessment in the ACTOne system.

    PubMed

    Presley, Chaela S; Abidi, Ammaar H; Moore, Bob M

    2016-04-01

    In vitro cannabinoid pharmacology has evolved over time from simple receptor binding to include [(35)S]GTPγ, β-arrestin, and cAMP assays. Each assay has benefits and drawbacks; however, no single functional system has been used for high-throughput evaluation of compounds from binding to pharmacological functionality and antagonist assessment in a well-characterized human cell line. In this study, we evaluated and validated one system-ACTOne human embryonic kidney cells transfected with a cyclic nucleotide gated channel and cannabinoid receptor 1 (CB1)-and compared human CB1 affinity, functional, and antagonistic effects on cAMP with previously published results. The study was conducted on a diverse group of CB1 ligands, including endocannabinoids and related compounds, 2-AG, AEA, MAEA, and ACEA, the phytocannabinoid Δ(9) THC, and synthetic cannabinoids CP 55,940, WIN 55,212-2, SR 141716A, CP 945,598, and WIN 55,212-3. Our results were compared with literature values where human CB1 was used for affinity determination and cAMP was used as a functional readout. Here we report the first detailed evaluation of the ACTOne assay for the pharmacological evaluation of CB1 ligands. The results from the study reveal some interesting deviations from previously reported functional activities of the aforementioned ligands. PMID:26772161

  17. Use of Tandem Affinity Chromatography for Purification of Cannabinoid Receptor CB2

    PubMed Central

    Locatelli-Hoops, Silvia C.; Yeliseev, Alexei A.

    2016-01-01

    Tandem affinity purification has been increasingly applied to isolation of recombinant proteins. It relies on two consecutive chromatographic steps that take advantage of the affinity tags placed at opposing ends of the target protein. This allows for efficient removal of contaminating proteins, including products of proteolytic degradation of the fusion that lack either N- or C-terminal tags. Here, we describe the use of two small affinity tags, a poly-histidine tag and a Strep-tag for expression and purification of the human cannabinoid receptor CB2, an integral membrane G protein-coupled receptor. PMID:24943318

  18. The Central Role of Glia in Pathological Pain and the Potential of Targeting the Cannabinoid 2 Receptor for Pain Relief

    PubMed Central

    Wilkerson, Jenny L.; Milligan, Erin D.

    2012-01-01

    Under normal conditions, acute pain processing consists of well-characterized neuronal signaling events. When dysfunctional pain signaling occurs, pathological pain ensues. Glial activation and their released factors participate in the mediation of pathological pain. The use of cannabinoid compounds for pain relief is currently an area of great interest for both basic scientists and physicians. These compounds, bind mainly either the cannabinoid receptor subtype 1 (CB1R) or cannabinoid receptor subtype 2 (CB2R) and are able to modulate pain. Although cannabinoids were initially only thought to modulate pain via neuronal mechanisms within the central nervous system, strong evidence now supports that CB2R cannabinoid compounds are capable of modulating glia, (e.g. astrocytes and microglia) for pain relief. However, the mechanisms underlying cannabinoid receptor-mediated pain relief remain largely unknown. An emerging body of evidence supports that CB2R agonist compounds may prove to be powerful novel therapeutic candidates for the treatment of chronic pain. PMID:22442754

  19. Vasorelaxant effects of oleamide in rat small mesenteric artery indicate action at a novel cannabinoid receptor.

    PubMed

    Hoi, Pui Man; Hiley, C Robin

    2006-03-01

    Oleamide (cis-9-octadecenoamide) exhibits some cannabimimetic responses despite its low affinities at the currently known cannabinoid receptors. Here we have investigated whether or not it is a vasorelaxant in rat small mesenteric arteries. Oleamide elicited vasorelaxation (EC50=1.2+/-0.2 microM, Rmax=99.1+/-3.9%, n=8) which was reduced by endothelial removal. Nitric oxide synthase inhibition reduced the response (EC50=5.3+/-1.6 microM, Rmax=59.2+/-7.7%, n=7; P<0.01) as did blockade of Ca2+-sensitive K+ channels (KCa) with apamin plus charybdotoxin (both 50 nM) (EC50=2.1+/-0.2 microM, Rmax=58.4+/-1.9%, n=5; P<0.05). Desensitisation of vanilloid receptors with capsaicin (10 microM for 30 min) shifted the oleamide concentration-response curve approximately 30-fold to the right (n=7; P<0.01). Pertussis toxin (400 ng ml-1 for 2 h) caused a two-fold shift in the response curve (EC50=2.2+/-0.4 microM, Rmax=66.8+/-4.5%, n=6; P<0.01). Rimonabant (CB1 cannabinoid receptor antagonist; SR141716A; 3 microM) significantly inhibited relaxation induced by oleamide (EC50=3.5+/-0.3 microM, Rmax=75.1+/-1.9%; n=8; P<0.05). In contrast, neither the more selective CB1 receptor antagonist, AM251 (1 microM), nor the CB2 antagonist, SR144528 (1 microM), had significant effects. O-1918 (10 microM), a putative antagonist at a novel endothelial cannabinoid receptor (abnormal-cannabidiol site), markedly reduced the relaxation to oleamide (n=7; P<0.01). It is concluded that oleamide responses in the rat isolated small mesenteric artery are partly dependent on the presence of the endothelium, activation of Ca2+-sensitive K+ channels (KC)) and involve capsaicin-sensitive sensory nerves. Oleamide may share a receptor (sensitive to rimonabant and O-1918, and coupled to KC) and Gi/o) with anandamide in this vessel. This might be distinct from both of the known cannabinoid receptors and the novel abnormal-cannabidiol site. PMID:16415907

  20. Cannabinoid CB2 receptors in the gastrointestinal tract: a regulatory system in states of inflammation

    PubMed Central

    Wright, K L; Duncan, M; Sharkey, K A

    2007-01-01

    The emerging potential for the cannabinoid (CB) system in modulating gastrointestinal inflammation has gained momentum over the last few years. Traditional and anecdotal use of marijuana for gastrointestinal disorders, such as diarrhoea and abdominal cramps is recognized, but the therapeutic benefit of cannabinoids in the 21st century is overshadowed by the psychoactive problems associated with CB1 receptor activation. However, the presence and function of the CB2 receptor in the GI tract, whilst not yet well characterized, holds great promise due to its immunomodulatory roles in inflammatory systems and its lack of psychotropic effects. This review of our current knowledge of CB2 receptors in the gastrointestinal tract highlights its role in regulating abnormal motility, modulating intestinal inflammation and limiting visceral sensitivity and pain. CB2 receptors represent a braking system and a pathophysiological mechanism for the resolution of inflammation and many of its symptoms. CB2 receptor activation therefore represents a very promising therapeutic target in gastrointestinal inflammatory states where there is immune activation and motility dysfunction. PMID:17906675

  1. Modeling, Molecular Dynamics Simulation, and Mutation Validation for Structure of Cannabinoid Receptor 2 Based on Known Crystal Structures of GPCRs

    PubMed Central

    2015-01-01

    The cannabinoid receptor 2 (CB2) plays an important role in the immune system. Although a few of GPCRs crystallographic structures have been reported, it is still challenging to obtain functional transmembrane proteins and high resolution X-ray crystal structures, such as for the CB2 receptor. In the present work, we used 10 reported crystal structures of GPCRs which had high sequence identities with CB2 to construct homology-based comparative CB2 models. We applied these 10 models to perform a prescreen by using a training set consisting of 20 CB2 active compounds and 980 compounds randomly selected from the National Cancer Institute (NCI) database. We then utilized the known 170 cannabinoid receptor 1 (CB1) or CB2 selective compounds for further validation. Based on the docking results, we selected one CB2 model (constructed by β1AR) that was most consistent with the known experimental data, revealing that the defined binding pocket in our CB2 model was well-correlated with the training and testing data studies. Importantly, we identified a potential allosteric binding pocket adjacent to the orthosteric ligand-binding site, which is similar to the reported allosteric pocket for sodium ion Na+ in the A2AAR and the δ-opioid receptor. Our studies in correlation of our data with others suggested that sodium may reduce the binding affinities of endogenous agonists or its analogs to CB2. We performed a series of docking studies to compare the important residues in the binding pockets of CB2 with CB1, including antagonist, agonist, and our CB2 neutral compound (neutral antagonist) XIE35-1001. Then, we carried out 50 ns molecular dynamics (MD) simulations for the CB2 docked with SR144528 and CP55940, respectively. We found that the conformational changes of CB2 upon antagonist/agonist binding were congruent with recent reports of those for other GPCRs. Based on these results, we further examined one known residue, Val1133.32, and predicted two new residues, Phe183 in

  2. Attenuation of cannabinoid-induced inhibition of medullary dorsal horn neurons by a kappa-opioid receptor antagonist

    PubMed Central

    Okada-Ogawa, Akiko; Kurose, Masayuki; Meng, Ian D.

    2010-01-01

    The kappa-opioid receptor (KOR) antagonist norbinaltorphimine (nor-BNI) attenuates behavioral antinociception produced by spinal administration of the cannabinoid receptor agonist delta-9-tetrahydorcannabinol (THC). The present study examined the ability of nor-BNI to prevent cannabinoid-induced inhibition of medullary dorsal horn (MDH) nociceptive neurons and antinociception produced by the cannabinoid agonist WIN 55,212-2 (WIN-2). Extracellular, single unit recordings of lamina I and lamina V MDH neurons was performed in urethane anesthetized rats. Heat-evoked activity was measured before and after local brainstem application of nor-BNI or vehicle followed by WIN-2. In both lamina I and lamina V neurons, prior application of nor-BNI prevented the inhibition of heat-evoked activity by WIN-2. In separate experiments, the contribution of KOR to cannabinoid-induced increases in heat-evoked head withdrawal latencies was assessed in lightly urethane-anesthetized rats. Antinociception produced by intrathecal administration of WIN-2 and THC was attenuated by prior administration of nor-BNI. In contrast, antinociception produced by the cannabinoid CP55940 remained unaffected by prior administration of nor-BNI. These results indicate that cannabinoid inhibition of nociceptive reflexes produced by WIN-2 and THC may result from inhibition of dorsal horn neurons through a KOR-dependent mechanism. PMID:20807519

  3. Celastrol Attenuates Inflammatory and Neuropathic Pain Mediated by Cannabinoid Receptor Type 2

    PubMed Central

    Yang, Longhe; Li, Yanting; Ren, Jie; Zhu, Chenggang; Fu, Jin; Lin, Donghai; Qiu, Yan

    2014-01-01

    Celastrol, a major active ingredient of Chinese herb Tripterygium wilfordii Hook. f. (thunder god vine), has exhibited a broad spectrum of pharmacological activities, including anti-inflammation, anti-cancer and immunosuppression. In the present study, we used animal models of inflammatory pain and neuropathic pain, generated by carrageenan injection and spared nerve injury (SNI), respectively, to evaluate the effect of celastrol and to address the mechanisms underlying pain processing. Intraperitoneal (i.p.) injection of celastrol produced a dose-dependent inhibition of carrageenan-induced edema and allodynia. Real-time PCR analysis showed that celastrol (0.3 mg/kg, i.p.) significantly reduced mRNA expressions of inflammatory cytokines, TNF-α, IL-6, IL-1β, in carrageenan-injected mice. In SNI mice, pain behavior studies showed that celastrol (1 mg/kg, i.p.) effectively prevented the hypersensitivity of mechanical nociceptive response on the third day post-surgery and the seventh day post-surgery. Furthermore, the anti-hyperalgesic effects of celastrol in carrageenan-injected mice and SNI mice were reversed by SR144528 (1 mg/kg, i.p.), a specific cannabinoid receptor-2 (CB2) receptor antagonist, but not by SR141716 (1 mg/kg, i.p.), a specific cannabinoid receptor-1 (CB1) receptor antagonist. Taken together, our results demonstrate the analgesia effects of celastrol through CB2 signaling and propose the potential of exploiting celastrol as a novel candidate for pain relief. PMID:25101848

  4. Protocol to Study β-Arrestin Recruitment by CB1 and CB2 Cannabinoid Receptors.

    PubMed

    Soethoudt, Marjolein; van Gils, Noortje; van der Stelt, Mario; Heitman, Laura H

    2016-01-01

    Cannabinoid CB1 and CB2 receptors are G-protein-coupled receptors (GPCRs) that recruit β-arrestins upon activation by (partial) agonists. β-Arrestin recruitment is induced by phosphorylation of their C-terminal tails, and is associated with the termination of GPCR signaling; yet, it may also activate cellular signaling pathways independent of G-proteins. Here, we describe a detailed protocol to characterize the potency and efficacy of ligands to induce or inhibit β-arrestin recruitment to the human CB1 and CB2 receptors, by using the PathHunter(®) assay. The latter is a cellular assay that can be performed in plates with 384-wells. The PathHunter(®) assay makes use of β-galactosidase complementation, and has a chemiluminescent readout. We used this assay to characterize a set of reference ligands (both agonists and antagonists) on human CB1 and CB2 receptors. PMID:27245896

  5. Contrasting effects of different cannabinoid receptor ligands on mouse ingestive behaviour.

    PubMed

    Grey, Jonathan; Terry, Phil; Higgs, Suzanne

    2012-09-01

    This study characterized the effects of seven diverse cannabinoid receptor agonists (and one antagonist) on ingestive behaviour in nondeprived adult, male CD1 mice. Microstructural analysis of licking for a range of concentrations of condensed milk (10, 15 and 20%) was carried out following administration of vehicle or: Δ⁹-tetrahydrocannabinol (Δ⁹-THC) at 1, 3 or 6 mg/kg; CP55,940 at 10, 30 or 50 µg/kg; Win 55,212-2 at 0.5, 1 or 3 mg/kg; HU-210 at 0.01, 0.03 or 0.1 mg/kg; methanandamide at 1, 3 or 6 mg/kg; arachidonyl-2'-chloroethylamide at 1, 3 or 6 mg/kg and JWH133 at 1, 3 or 6 mg/kg. The cannabinoid receptor antagonist/inverse agonist rimonabant was also tested at 0.3, 1 or 3 mg/kg. Test sessions comprised three 30 s presentations of the milk concentrations separated by 10 s interpresentation intervals. The nonselective CB1 receptor agonists Δ⁹-THC, CP55,940 and Win 55,212-2 increased the number of licks for condensed milk, primarily by a significant increase in bout number. The potent and nonselective CB1 receptor agonist HU-210 and the selective CB1 receptor agonists methanandamide and arachidonyl-2'-chloroethylamide did not significantly affect licking behaviour but did significantly increase the latency to start licking. The CB1 receptor antagonist rimonabant produced effects that were opposite in direction to those produced by Δ⁹-THC, CP55,940 and Win 55,212-2. Finally, the selective CB2 receptor agonist JWH133 had no significant effects on behaviour. These data add to reports that cannabinoid agonists can enhance the appetitive aspects of feeding, but they also demonstrate that not all CB1 receptor agonists do this, and therefore the relationship between action at CB1 receptors and appetitive feeding effects is not straightforward. PMID:22772336

  6. Purification of the endogenous glucocorticoid receptor stabilizing factor

    SciTech Connect

    Meshinchi, S.; Stancato, L.F.; Pratt, W.B. ); Gordon, B.M.; Jones, K.W. )

    1991-09-03

    A ubiquitous, low molecular weight, heat-stable component of cytosol stabilizes the glucocorticoid receptor in its untransformed state in association with hsp90. This heat-stable factor mimics molybdate in its effects on receptor function, and it has the heat stability, charge, and chelation properties of a metal oxyanion. In this paper, the authors describe the further purification of the endogenous factor from rat liver cytosol by anion-exchange HPCL (Ion-110) after prepurification by molecular sieving, cation absorption, and charcoal absorption. Elution of the factor with an isocratic gradient of ammonium bicarbonate results in recovery of all of the bioactivity in a single peak which coelutes with inorganic phosphate and contains all of the endogenous molybdenum. The bioactivity can be separated from inorganic phosphate by chromatography of the partially purified endogenous factor on a metal-chelating column of Chelex-100. The chelating procedure results in complete loss of bioactivity with recovery of 98% of the inorganic phosphate in both the column drop-through and a subsequent 1 M NaCl wash. These observations support the proposal that an endogenous metal can stabilize the binding of hsp90 to the receptor but it is likely that other cytosolic components that are not present in the immunopurified complex must contribute to the stability of the soluble protein-protein complex in cytosol.

  7. Signaling Mechanism of Cannabinoid Receptor-2 Activation-Induced β-Endorphin Release.

    PubMed

    Gao, Fang; Zhang, Ling-Hong; Su, Tang-Feng; Li, Lin; Zhou, Rui; Peng, Miao; Wu, Cai-Hua; Yuan, Xiao-Cui; Sun, Ning; Meng, Xian-Fang; Tian, Bo; Shi, Jing; Pan, Hui-Lin; Li, Man

    2016-08-01

    Activation of cannabinoid receptor-2 (CB2) results in β-endorphin release from keratinocytes, which then acts on primary afferent neurons to inhibit nociception. However, the underlying mechanism is still unknown. The CB2 receptor is generally thought to couple to Gi/o to inhibit cAMP production, which cannot explain the peripheral stimulatory effects of CB2 receptor activation. In this study, we found that in a keratinocyte cell line, the Gβγ subunits from Gi/o, but not Gαs, were involved in CB2 receptor activation-induced β-endorphin release. Inhibition of MAPK kinase, but not PLC, abolished CB2 receptor activation-induced β-endorphin release. Also, CB2 receptor activation significantly increased intracellular Ca(2+). Treatment with BAPTA-AM or thapsigargin blocked CB2 receptor activation-induced β-endorphin release. Using a rat model of inflammatory pain, we showed that the MAPK kinase inhibitor PD98059 abolished the peripheral effect of the CB2 receptor agonist on nociception. We thus present a novel mechanism of CB2 receptor activation-induced β-endorphin release through Gi/o-Gβγ-MAPK-Ca(2+) signaling pathway. Our data also suggest that stimulation of MAPK contributes to the peripheral analgesic effect of CB2 receptor agonists. PMID:26108183

  8. Presynaptic adenosine A2A receptors dampen cannabinoid CB1 receptor-mediated inhibition of corticostriatal glutamatergic transmission

    PubMed Central

    Ferreira, S G; Gonçalves, F Q; Marques, J M; Tomé, Â R; Rodrigues, R J; Nunes-Correia, I; Ledent, C; Harkany, T; Venance, L; Cunha, R A; Köfalvi, A

    2015-01-01

    Background and Purpose Both cannabinoid CB1 and adenosine A2A receptors (CB1 receptors and A2A receptors) control synaptic transmission at corticostriatal synapses, with great therapeutic importance for neurological and psychiatric disorders. A postsynaptic CB1−A2A receptor interaction has already been elucidated, but the presynaptic A2A receptor-mediated control of presynaptic neuromodulation by CB1 receptors remains to be defined. Because the corticostriatal terminals provide the major input to the basal ganglia, understanding the interactive nature of converging neuromodulation on them will provide us with novel powerful tools to understand the physiology of corticostriatal synaptic transmission and interpret changes associated with pathological conditions. Experimental Approach Pharmacological manipulation of CB1 and A2A receptors was carried out in brain nerve terminals isolated from rats and mice, using flow synaptometry, immunoprecipitation, radioligand binding, ATP and glutamate release measurement. Whole-cell patch-clamp recordings were made in horizontal corticostriatal slices. Key Results Flow synaptometry showed that A2A receptors were extensively co-localized with CB1 receptor-immunopositive corticostriatal terminals and A2A receptors co-immunoprecipitated CB1 receptors in these purified terminals. A2A receptor activation decreased CB1 receptor radioligand binding and decreased the CB1 receptor-mediated inhibition of high-K+-evoked glutamate release in corticostriatal terminals. Accordingly, A2A receptor activation prevented CB1 receptor-mediated paired-pulse facilitation and attenuated the CB1 receptor-mediated inhibition of synaptic transmission in glutamatergic synapses of corticostriatal slices. Conclusions and Implications Activation of presynaptic A2A receptors dampened CB1 receptor-mediated inhibition of corticostriatal terminals. This constitutes a thus far unrecognized mechanism to modulate the potent CB1 receptor-mediated presynaptic

  9. The actions of some cannabinoid receptor ligands in the rat isolated mesenteric artery

    PubMed Central

    White, Richard; Robin Hiley, C

    1998-01-01

    The actions of a number of cannabinoid receptor ligands were investigated using the myograph-mounted rat isolated mesenteric artery. Anandamide, CP 55,940, HU-210, palmitoylethanolamide and WIN 55,212-2 all caused concentration-dependent relaxations of methoxamine-precontracted vessels which were not affected by removal of the endothelium.Precontracting vessels with 60 mM KCl instead of methoxamine greatly reduced the vasorelaxant effects of anandamide and palmitoylethanolamide. High K+ solution caused a modest decrease in the relaxant potency of CP 55,940 and HU-210, and had no effect on relaxations induced by WIN 55,212-2.Relaxations of methoxamine-induced tone by anandamide, CP 55,940 and HU-210, but not palmitoylethanolamide and WIN 55,212-2, were attenuated by the cannabinoid receptor antagonist, SR 141716A. Relaxation of vessels contracted with 60 mM KCl by CP 55,940 was also sensitive to SR 141716A.Anandamide and CP 55,940 caused small but concentration-dependent contractions in resting vessels in the absence of extracellular calcium. These were not sensitive to SR 141716A. Palmitoylethanolamide and WIN 55,212-2 produced smaller contractions only at higher concentrations.Anandamide and CP 55,940, but not palmitoylethanolamide and WIN 55,212-2, caused concentration-dependent inhibition of the phasic contractions induced by methoxamine in calcium-free conditions, but only anandamide caused inhibition of contractions to caffeine under such conditions. These inhibitory effects were not antagonised by SR 141716A.The present study provides the first detailed investigation of the actions of cannabinoid agonists on vascular smooth muscle. Our results show that these compounds exert both receptor-dependent and -independent effects on agonist-induced calcium mobilization in the rat isolated mesenteric artery. PMID:9806337

  10. Cannabis and cannabinoids: pharmacology and rationale for clinical use.

    PubMed

    Pertwee, R G

    1999-10-01

    It is now known that there are at least two types of cannabinoid receptors. These are CB1 receptors, present mainly on central and peripheral neurones, and CB2 receptors, present mainly on immune cells. Endogenous cannabinoid receptor agonists ('endocannabinoids') have also been identified. The discovery of this 'endogenous cannabinoid system' has led to the development of selective CB1 and CB2 receptor ligands and fueled renewed interest in the clinical potential of cannabinoids. Two cannabinoid CB1 receptor agonists are already used clinically, as antiemetics or as appetite stimulants. These are D 9 - tetrahydrocannabinol (THC) and nabilone. Other possible uses for CB1 receptor agonists include the suppression of muscle spasm/spasticity associated with multiple sclerosis or spinal cord injury, the relief of chronic pain and the management of glaucoma and bronchial asthma. CB1 receptor antagonists may also have clinical applications, e. g. as appetite suppressants and in the management of schizophrenia or disorders of cognition and memory. So too may CB2 receptor ligands and drugs that activate cannabinoid receptors indirectly by augmenting endocannabinoid levels at cannabinoid receptors. When taken orally, THC seems to undergo variable absorption and to have a narrow 'therapeutic window' (dose range in which it is effective without producing significant unwanted effects). This makes it difficult to predict an oral dose that will be both effective and tolerable to a patient and indicates a need for better cannabinoid formulations and modes of administration. For the therapeutic potential of cannabis or CB1 receptor agonists to be fully exploited, it will be important to establish objectively and conclusively (a) whether these agents have efficacy against selected symptoms that is of clinical significance and, if so, whether the benefits outweigh the risks, (b) whether cannabis has therapeutic advantages over individual cannabinoids, (c) whether there is a need for

  11. Expression, surface immobilization, and characterization of functional recombinant cannabinoid receptor CB2

    PubMed Central

    Locatelli-Hoops, Silvia C.; Gorshkova, Inna; Gawrisch, Klaus; Yeliseev, Alexei A.

    2013-01-01

    Human peripheral cannabinoid receptor CB2, a G protein-coupled receptor (GPCR) involved in regulation of immune response has become an important target for pharmaceutical drug development. Structural and functional studies on CB2 may benefit from immobilization of the purified and functional receptor onto a suitable surface at a controlled density and, preferably in a uniform orientation. The goal of this project was to develop a generic strategy for preparation of functional recombinant CB2 and immobilization at solid interfaces. Expression of CB2 as a fusion with Rho-tag (peptide composed of the last nine amino acids of rhodopsin) in E. coli was evaluated in terms of protein levels, accessibility of the tag, and activity of the receptor. The structural integrity of CB2 was tested by ligand binding to the receptor solubilized in detergent micelles, captured on tag-specific monoclonal 1D4 antibody-coated resin. Highly pure and functional CB2 was obtained by sequential chromatography on a 1D4- and Ni-NTA- resin and its affinity to the 1D4 antibody characterized by surface plasmon resonance (SPR). Either the purified receptor or fusion CB2 from the crude cell extract was captured onto a 1D4 -coated CM4 chip (Biacore) in a quantitative fashion at uniform orientation as demonstrated by the SPR signal. Furthermore, the accessibility of the extracellular surface of immobilized CB2 and the affinity of interaction with a novel monoclonal antibody NAA-1 was studied by SPR. In summary, we present an integral strategy for purification, surface immobilization, ligand- and antibody binding studies of functional cannabinoid receptor CB2. PMID:23777860

  12. Activation of Cannabinoid Type 2 Receptors Inhibits HIV-1 Envelope Glycoprotein gp120-Induced Synapse Loss

    PubMed Central

    Kim, Hee Jung; Shin, Angela H.

    2011-01-01

    HIV-1 infection of the central nervous system is associated with dendritic and synaptic damage that correlates with cognitive decline in patients with HIV-1-associated dementia (HAD). HAD is due in part to the release of viral proteins from infected cells. Because cannabinoids modulate neurotoxic and inflammatory processes, we investigated their effects on changes in synaptic connections induced by the HIV-1 envelope glycoprotein gp120. Morphology and synapses between cultured hippocampal neurons were visualized by confocal imaging of neurons expressing DsRed2 and postsynaptic density protein 95 fused to green fluorescent protein (PSD95-GFP). Twenty-four-hour treatment with gp120 IIIB decreased the number of PSD95-GFP puncta by 37 ± 4%. The decrease was concentration-dependent (EC50 = 153 ± 50 pM). Synapse loss preceded cell death as defined by retention of DsRed2 fluorescence gp120 activated CXCR4 on microglia to evoke interleukin-1β (IL-1β) release. Pharmacological studies determined that sequential activation of CXCR4, the IL-1β receptor, and the N-methyl-d-aspartate receptor was required. Expression of alternative reading frame polypeptide, which inhibits the ubiquitin ligase murine double minute 2, protected synapses, implicating the ubiquitin-proteasome pathway. Cannabimimetic drugs are of particular relevance to HAD because of their clinical and illicit use in patients with AIDS. The cannabinoid receptor full agonist [(R)-(+)-[2,3-dihydro-5-methyl-3[(4-morpholinyl)methyl]pyrrolo[1,2,3-de]-1,4-benzoxazinyl]-(1-naphthalenyl) methanone mesylate salt] (Win55,212-2) inhibited gp120-induced IL-1β production and synapse in a manner reversed by a cannabinoid type 2 receptor antagonist. In contrast, Win55,212-2 did not inhibit synapse loss elicited by exposure to the HIV-1 protein Tat. These results indicate that cannabinoids prevent the impairment of network function produced by gp120 and, thus, might have therapeutic potential in HAD. PMID:21670103

  13. CB1 cannabinoid receptor enrichment in the ependymal region of the adult human spinal cord.

    PubMed

    Paniagua-Torija, Beatriz; Arevalo-Martin, Angel; Ferrer, Isidro; Molina-Holgado, Eduardo; Garcia-Ovejero, Daniel

    2015-01-01

    Cannabinoids are involved in the regulation of neural stem cell biology and their receptors are expressed in the neurogenic niches of adult rodents. In the spinal cord of rats and mice, neural stem cells can be found in the ependymal region, surrounding the central canal, but there is evidence that this region is largely different in adult humans: lacks a patent canal and presents perivascular pseudorosettes, typically found in low grade ependymomas. Using Laser Capture Microdissection, Taqman gene expression assays and immunohistochemistry, we have studied the expression of endocannabinoid system components (receptors and enzymes) at the human spinal cord ependymal region. We observe that ependymal region is enriched in CB1 cannabinoid receptor, due to high CB1 expression in GFAP+ astrocytic domains. However, in human spinal cord levels that retain central canal patency we found ependymal cells with high CB1 expression, equivalent to the CB1(HIGH) cell subpopulation described in rodents. Our results support the existence of ependymal CB1(HIGH) cells across species, and may encourage further studies on this subpopulation, although only in cases when central canal is patent. In the adult human ependyma, which usually shows central canal absence, CB1 may play a different role by modulating astrocyte functions. PMID:26634814

  14. CB1 cannabinoid receptor enrichment in the ependymal region of the adult human spinal cord

    PubMed Central

    Paniagua-Torija, Beatriz; Arevalo-Martin, Angel; Ferrer, Isidro; Molina-Holgado, Eduardo; Garcia-Ovejero, Daniel

    2015-01-01

    Cannabinoids are involved in the regulation of neural stem cell biology and their receptors are expressed in the neurogenic niches of adult rodents. In the spinal cord of rats and mice, neural stem cells can be found in the ependymal region, surrounding the central canal, but there is evidence that this region is largely different in adult humans: lacks a patent canal and presents perivascular pseudorosettes, typically found in low grade ependymomas. Using Laser Capture Microdissection, Taqman gene expression assays and immunohistochemistry, we have studied the expression of endocannabinoid system components (receptors and enzymes) at the human spinal cord ependymal region. We observe that ependymal region is enriched in CB1 cannabinoid receptor, due to high CB1 expression in GFAP+ astrocytic domains. However, in human spinal cord levels that retain central canal patency we found ependymal cells with high CB1 expression, equivalent to the CB1HIGH cell subpopulation described in rodents. Our results support the existence of ependymal CB1HIGH cells across species, and may encourage further studies on this subpopulation, although only in cases when central canal is patent. In the adult human ependyma, which usually shows central canal absence, CB1 may play a different role by modulating astrocyte functions. PMID:26634814

  15. Receptor subtypes and signal transduction mechanisms contributing to the estrogenic attenuation of cannabinoid-induced changes in energy homeostasis.

    PubMed

    Washburn, Neal; Borgquist, Amanda; Wang, Kate; Jeffery, Garrett S; Kelly, Martin J; Wagner, Edward J

    2013-01-01

    We examined the receptor subtypes and signal transduction mechanisms contributing to the estrogenic modulation of cannabinoid-induced changes in energy balance. Food intake and, in some cases, O2 consumption, CO2 production and the respiratory exchange ratio were evaluated in ovariectomized female guinea pigs treated s.c. with the cannabinoid receptor agonist WIN 55,212-2 or its cremephor/ethanol/0.9% saline vehicle, and either with estradiol benzoate (EB), the estrogen receptor (ER) α agonist PPT, the ERβ agonist DPN, the Gq-coupled membrane ER agonist STX, the GPR30 agonist G-1 or their respective vehicles. Patch-clamp recordings were performed in hypothalamic slices. EB, STX, PPT and G-1 decreased daily food intake. Of these, EB, STX and PPT blocked the WIN 55,212-2-induced increase in food intake within 1-4 h. The estrogenic diminution of cannabinoid-induced hyperphagia correlated with a rapid (within 15 min) attenuation of cannabinoid-mediated decreases in glutamatergic synaptic input onto arcuate neurons, which was completely blocked by inhibition of protein kinase C (PKC) and attenuated by inhibition of protein kinase A (PKA). STX, but not PPT, mimicked this rapid estrogenic effect. However, PPT abolished the cannabinoid-induced inhibition of glutamatergic neurotransmission in cells from animals treated 24 h prior. The estrogenic antagonism of this presynaptic inhibition was observed in anorexigenic proopiomelanocortin neurons. These data reveal that estrogens negatively modulate cannabinoid-induced changes in energy balance via Gq-coupled membrane ER- and ERα-mediated mechanisms involving activation of PKC and PKA. As such, they further our understanding of the pathways through which estrogens act to temper cannabinoid sensitivity in regulating energy homeostasis in females. PMID:22538462

  16. Blockade of Nicotine and Cannabinoid Reinforcement and Relapse by a Cannabinoid CB1-Receptor Neutral Antagonist AM4113 and Inverse Agonist Rimonabant in Squirrel Monkeys.

    PubMed

    Schindler, Charles W; Redhi, Godfrey H; Vemuri, Kiran; Makriyannis, Alexandros; Le Foll, Bernard; Bergman, Jack; Goldberg, Steven R; Justinova, Zuzana

    2016-08-01

    Nicotine, the main psychoactive component of tobacco, and (-)-Δ(9)-tetrahydrocannabinol (THC), the main psychoactive ingredient in cannabis, play major roles in tobacco and marijuana dependence as reinforcers of drug-seeking and drug-taking behavior. Drugs that act as inverse agonists of cannabinoid CB1 receptors in the brain can attenuate the rewarding and abuse-related effects of nicotine and THC, but their clinical use is hindered by potentially serious side effects. The recently developed CB1-receptor neutral antagonists may provide an alternative therapeutic approach to nicotine and cannabinoid dependence. Here we compare attenuation of nicotine and THC reinforcement and reinstatement in squirrel monkeys by the CB1-receptor inverse agonist rimonabant and by the recently developed CB1-receptor neutral antagonist AM4113. Both rimonabant and AM4113 reduced two effects of nicotine and THC that play major roles in tobacco and marijuana dependence: (1) maintenance of high rates of drug-taking behavior, and (2) priming- or cue-induced reinstatement of drug-seeking behavior in abstinent subjects (models of relapse). In contrast, neither rimonabant nor AM4113 modified cocaine-reinforced or food-reinforced operant behavior under similar experimental conditions. However, both rimonabant and AM4113 reduced cue-induced reinstatement in monkeys trained to self-administer cocaine, suggesting the involvement of a common cannabinoid-mediated mechanism in the cue-induced reinstatement for different drugs of abuse. These findings point to CB1-receptor neutral antagonists as a new class of medications for treatment of both tobacco dependence and cannabis dependence. PMID:26888056

  17. Conformational Restriction Leading to a Selective CB2 Cannabinoid Receptor Agonist Orally Active Against Colitis

    PubMed Central

    2014-01-01

    The CB2 cannabinoid receptor has been implicated in the regulation of intestinal inflammation. Following on from the promising activity of a series of 4-oxo-1,4-dihydroquinoline-3-carboxamide, we developed constrained analogues based on a 2H-pyrazolo[4,3-c]quinolin-3(5H)-one scaffold, with improved affinity for the hCB2 receptor and had very high selectivity over the hCB1 receptor. Importantly, the lead of this series (26, hCB2: Ki = 0.39 nM, hCB1: Ki > 3000 nM) was found to protect mice against experimental colitis after oral administration. PMID:25699149

  18. Synthesis, binding studies and molecular modeling of novel cannabinoid receptor ligands.

    PubMed

    Osman, Noha A; Mahmoud, Amr H; Allarà, Marco; Niess, Raimund; Abouzid, Khaled A; Di Marzo, Vincenzo; Abadi, Ashraf H

    2010-12-15

    In the present work, we report upon the design, synthesis and biological evaluation of new anandamide derivatives obtained by modifications of the fatty acyl chain and/or of the ethanolamide 'tail'. The compounds are of the general formula: 6-(substituted-phenyl)/naphthyl-4-oxohex-5-enoic acid N-substituted amide and 7-naphthyl-5-oxohept-6-enoicacid N-substituted amide. The novel compounds had been evaluated for their binding affinity to CB1/CB2 cannabinoid receptors, binding studies showed that some of the newly developed compounds have measurable affinity and selectivity for the CB2 receptor. Compounds XI and XVIII showed the highest binding affinity for CB2 receptor. None of the compounds exhibited inhibitory activity towards anandamide hydrolysis, thus arguing in favor of their enzymatic stability. The structure-activity relationship has been extensively studied through a tailor-made homological model using constrained docking in addition to pharmacophore analysis, both feature and field based. PMID:21074998

  19. Endocannabinoids Stimulate Human Melanogenesis via Type-1 Cannabinoid Receptor*

    PubMed Central

    Pucci, Mariangela; Pasquariello, Nicoletta; Battista, Natalia; Di Tommaso, Monia; Rapino, Cinzia; Fezza, Filomena; Zuccolo, Michela; Jourdain, Roland; Finazzi Agrò, Alessandro; Breton, Lionel; Maccarrone, Mauro

    2012-01-01

    We show that a fully functional endocannabinoid system is present in primary human melanocytes (normal human epidermal melanocyte cells), including anandamide (AEA), 2-arachidonoylglycerol, the respective target receptors (CB1, CB2, and TRPV1), and their metabolic enzymes. We also show that at higher concentrations AEA induces normal human epidermal melanocyte apoptosis (∼3-fold over controls at 5 μm) through a TRPV1-mediated pathway that increases DNA fragmentation and p53 expression. However, at lower concentrations, AEA and other CB1-binding endocannabinoids dose-dependently stimulate melanin synthesis and enhance tyrosinase gene expression and activity (∼3- and ∼2-fold over controls at 1 μm). This CB1-dependent activity was fully abolished by the selective CB1 antagonist SR141716 or by RNA interference of the receptor. CB1 signaling engaged p38 and p42/44 mitogen-activated protein kinases, which in turn activated the cyclic AMP response element-binding protein and the microphthalmia-associated transcription factor. Silencing of tyrosinase or microphthalmia-associated transcription factor further demonstrated the involvement of these proteins in AEA-induced melanogenesis. In addition, CB1 activation did not engage the key regulator of skin pigmentation, cyclic AMP, showing a major difference compared with the regulation of melanogenesis by α-melanocyte-stimulating hormone through melanocortin 1 receptor. PMID:22431736

  20. Understanding Functional Residues of the Cannabinoid CB1 Receptor for Drug Discovery

    PubMed Central

    Shim, Joong-Youn

    2010-01-01

    The brain cannabinoid (CB1) receptor that mediates numerous physiological processes in response to marijuana and other psychoactive compounds is a G protein coupled receptor (GPCR) and shares common structural features with many rhodopsin class GPCRs. For the rational development of therapeutic agents targeting the CB1 receptor, understanding of the ligand-specific CB1 receptor interactions responsible for unique G protein signals is crucial. For a more than a decade, a combination of mutagenesis and computational modeling approaches has been successfully employed to study the ligand-specific CB1 receptor interactions. In this review, after a brief discussion about recent advances in understanding of some structural and functional features of GPCRs commonly applicable to the CB1 receptor, the CB1 receptor functional residues reported from mutational studies are divided into three different types, ligand binding (B), receptor stabilization (S) and receptor activation (A) residues, to delineate the nature of the binding pockets of anandamide, CP55940, WIN55212-2 and SR141716A and to describe the molecular events of the ligand-specific CB1 receptor activation from ligand binding to G protein signaling. Taken these CB1 receptor functional residues, some of which are unique to the CB1 receptor, together with the biophysical knowledge accumulated for the GPCR active state, it is possible to propose the early stages of the CB1 receptor activation process that not only provide some insights into understanding molecular mechanisms of receptor activation but also are applicable for identifying new therapeutic agents by applying the validated structure-based approaches, such as virtual high throughput screening (HTS) and fragment-based approach (FBA). PMID:20370713

  1. Upregulation of Cannabinoid Type 1 Receptors in Dopamine D2 Receptor Knockout Mice Is Reversed by Chronic Forced Ethanol Consumption

    SciTech Connect

    Thanos, P.K.; Wang, G.; Thanos, P.K.; Gopez, V.; Delis, F.; Michaelides, M.; Grand, D.K.; Wang, G.-J.; Kunos, G.; Volkow, N.D.

    2011-01-01

    The anatomical proximity of the cannabinoid type 1 (CNR1/CB1R) and the dopamine D2 receptors (DRD2), their ability to form CB1R-DRD2 heteromers, their opposing roles in locomotion, and their involvement in ethanol's reinforcing and addictive properties prompted us to study the levels and distribution of CB1R after chronic ethanol intake, in the presence and absence of DRD2. We monitored the drinking patterns and locomotor activity of Drd2+/+ and Drd2-/- mice consuming either water or a 20% (v/v) ethanol solution (forced ethanol intake) for 6 months and used the selective CB1 receptor antagonist [{sup 3}H]SR141716A to quantify CB1R levels in different brain regions with in vitro receptor autoradiography. We found that the lack of DRD2 leads to a marked upregulation (approximately 2-fold increase) of CB1R in the cerebral cortex, the caudate-putamen, and the nucleus accumbens, which was reversed by chronic ethanol intake. The results suggest that DRD2-mediated dopaminergic neurotransmission and chronic ethanol intake exert an inhibitory effect on cannabinoid receptor expression in cortical and striatal regions implicated in the reinforcing and addictive properties of ethanol.

  2. Activating Parabrachial Cannabinoid CB1 Receptors Selectively Stimulates Feeding of Palatable Foods in Rats

    PubMed Central

    DiPatrizio, Nicholas V.; Simansky, Kenny J.

    2009-01-01

    The endocannabinoid system is emerging as an integral component in central and peripheral regulation of feeding and energy balance. Our investigation analyzed behavioral roles for cannabinoid mechanisms of the pontine parabrachial nucleus (PBN) in modulating intake of presumably palatable foods containing fat and/or sugar. The PBN serves to gate neurotransmission associated with, but not limited to, the gustatory properties of food. Immunofluorescence and in vitro [35S]GTPγS autoradiography of rat tissue sections containing the PBN revealed the presence of cannabinoid receptors and their functional capability to couple to their G-proteins following incubation with the endocannabinoid, 2-arachidonoyl glycerol (2-AG). The selective cannabinoid 1 receptor (CB1R) antagonist, AM251, prevented the response, demonstrating CB1R mediation of 2-AG induced coupling. Microinfusions of 2-AG into the PBN in behaving rats robustly stimulated feeding of pellets high in content of fat and sucrose (HFS), pure sucrose and pure fat (Crisco®), during the first 30min following infusion. In contrast, 2-AG failed to increase consumption of standard chow, even when the feeding regimen was manipulated to match baseline intakes of HFS. Orexigenic responses to 2-AG were attenuated by AM251, again indicating CB1R mediation of 2-AG actions. Furthermore, responses were regionally specific, as 2-AG failed to alter intake when infused into sites ~500µm caudal to infusions that successfully stimulated feeding. Our data suggest that hedonically-positive sensory properties of food enable endocannabinoids at PBN CB1Rs to initiate increases in eating and more generally, these pathways may serve a larger role in brain functions controlling behavioral responses for natural reward. PMID:18815256

  3. Identification of naphthoylindoles acting on cannabinoid receptors based on their fragmentation patterns under ESI-QTOFMS.

    PubMed

    Sekuła, Karolina; Zuba, Dariusz; Stanaszek, Roman

    2012-05-01

    'Herbal highs' have been advertised as legal and natural substitutes to cannabis, but a detailed examination of these products has revealed that the herbal matrix is laced with synthetic substances that mimic the effects of marijuana. Producers select the ingredients based on the results of scientific studies on the affinities of different chemicals to cannabinoid receptors. Naphthoylindoles have turned out to be the most popular class of substances identified in the products. Legal actions taken in order to tackle the problem of uncontrolled access to one substance have usually resulted in the marketing of derivatives or analogues. In the study, the mass spectral behavior of twelve synthetic cannabinoids from the naphthoylindole family under electrospray ionization (ESI) was investigated. LC-QTOFMS experiments were performed in three modes (low fragmentor voltage, high fragmentor voltage with/without collision energy), and they enabled the identification of protonated molecules and main ions. A general fragmentation pattern under this ionization method was proposed, and mechanisms of ion formation were discussed. The developed procedure allowed the determination of substituent groups of the core naphthoylindole structure and distinction between positional isomers. The obtained results were used for the prediction of the ESI-MS spectra for many naphthoylindoles with a high affinity to cannabinoid receptors. Similarities and differences between ESI-MS and electron impact-MS spectra of naphthoylindoles were discussed. The developed identification process was presented on an example of an analysis of an unknown herbal material, in which JWH-007 was finally identified. Knowledge of the fragmentation mechanisms of naphthoylindoles could also be used by other researchers for identification of unknown substances in this chemical family. PMID:22576877

  4. Looking for the role of cannabinoid receptor heteromers in striatal function.

    PubMed

    Ferré, Sergi; Goldberg, Steven R; Lluis, Carme; Franco, Rafael

    2009-01-01

    The introduction of two concepts, "local module" and "receptor heteromer", facilitates the understanding of the role of interactions between different neurotransmitters in the brain. In artificial cell systems, cannabinoid CB(1) receptors form receptor heteromers with dopamine D2, adenosine A2A and mu opioid receptors. There is indirect but compelling evidence for the existence of the same CB1 receptor heteromers in striatal local modules centered in the dendritic spines of striatal GABAergic efferent neurons, particularly at a postsynaptic location. Their analysis provides new clues for the role of endocannabinoids in striatal function, which cannot only be considered as retrograde signals that inhibit neurotransmitter release. Recent studies using a new method to detect heteromerization of more than two proteins, which consists of sequential BRET-FRET (SRET) analysis, has demonstrated that CB1, D2 and A2A receptors can form heterotrimers in transfected cells. It is likely that functional CB1-A2A-D2 receptor heteromers can be found where they are highly co-expressed, in the dendritic spines of GABAergic enkephalinergic neurons. The functional properties of these multiple receptor heteromers and their role in striatal function need to be determined. PMID:18691604

  5. Clinical Significance of Cannabinoid Receptors CB1 and CB2 Expression in Human Malignant and Benign Thyroid Lesions

    PubMed Central

    Lakiotaki, Eleftheria; Giaginis, Constantinos; Tolia, Maria; Alexandrou, Paraskevi; Delladetsima, Ioanna; Giannopoulou, Ioanna; Kyrgias, George; Patsouris, Efstratios; Theocharis, Stamatios

    2015-01-01

    The endocannabinoid system is comprised of cannabinoid receptors (CB1 and CB2), their endogenous ligands (endocannabinoids), and proteins responsible for their metabolism participate in many different functions indispensable to homeostatic regulation in several tissues, exerting also antitumorigenic effects. The present study aimed to evaluate the clinical significance of CB1 and CB2 expression in human benign and malignant thyroid lesions. CB1 and CB2 proteins' expression was assessed immunohistochemically on paraffin-embedded thyroid tissues obtained from 87 patients with benign (n = 43) and malignant (n = 44) lesions and was statistically analyzed with clinicopathological parameters, follicular cells' proliferative capacity, and risk of recurrence rate estimated according to the American Thyroid Association (ATA) staging system. Enhanced CB1 and CB2 expression was significantly more frequently observed in malignant compared to benign thyroid lesions (p = 0.0010 and p = 0.0005, resp.). Enhanced CB1 and CB2 expression was also significantly more frequently observed in papillary carcinomas compared to hyperplastic nodules (p = 0.0097 and p = 0.0110, resp.). In malignant thyroid lesions, elevated CB2 expression was significantly associated with the presence of lymph node metastases (p = 0.0301). Enhanced CB2 expression was also more frequently observed in malignant thyroid cases with presence of capsular (p = 0.1165), lymphatic (p = 0.1989), and vascular invasion (p = 0.0555), as well as in those with increased risk of recurrence rate (p = 0.1165), at a nonsignificant level though, whereas CB1 expression was not associated with any of the clinicopathological parameters examined. Our data suggest that CB receptors may be involved in malignant thyroid transformation and especially CB2 receptor could serve as useful biomarker and potential therapeutic target in thyroid neoplasia. PMID:26539529

  6. Blockade of cannabinoid 1 receptor improves GLP-1R mediated insulin secretion in mice.

    PubMed

    González-Mariscal, Isabel; Krzysik-Walker, Susan M; Kim, Wook; Rouse, Michael; Egan, Josephine M

    2016-03-01

    The cannabinoid 1 receptor (CB1) is an important regulator of energy metabolism. Reports of in vivo and in vitro studies give conflicting results regarding its role in insulin secretion, possibly due to circulatory factors, such as incretins. We hypothesized that this receptor may be a regulator of the entero-insular axis. We found that despite lower food consumption and lower body weight postprandial GLP-1 plasma concentrations were increased in CB1(-/-) mice compared to CB1(+/+) mice administered a standard diet or high fat/sugar diet. Upon exogenous GLP-1 treatment, CB1(-/-) mice had increased glucose-stimulated insulin secretion. In mouse insulinoma cells, cannabinoids reduced GLP-1R-mediated intracellular cAMP accumulation and subsequent insulin secretion. Importantly, such effects were also evident in human islets, and were prevented by pharmacologic blockade of CB1. Collectively, these findings suggest a novel mechanism in which endocannabinoids are negative modulators of incretin-mediated insulin secretion. PMID:26724516

  7. Peripheral and central CB1 cannabinoid receptors control stress-induced impairment of memory consolidation.

    PubMed

    Busquets-Garcia, Arnau; Gomis-González, Maria; Srivastava, Raj Kamal; Cutando, Laura; Ortega-Alvaro, Antonio; Ruehle, Sabine; Remmers, Floortje; Bindila, Laura; Bellocchio, Luigi; Marsicano, Giovanni; Lutz, Beat; Maldonado, Rafael; Ozaita, Andrés

    2016-08-30

    Stressful events can generate emotional memories linked to the traumatic incident, but they also can impair the formation of nonemotional memories. Although the impact of stress on emotional memories is well studied, much less is known about the influence of the emotional state on the formation of nonemotional memories. We used the novel object-recognition task as a model of nonemotional memory in mice to investigate the underlying mechanism of the deleterious effect of stress on memory consolidation. Systemic, hippocampal, and peripheral blockade of cannabinoid type-1 (CB1) receptors abolished the stress-induced memory impairment. Genetic deletion and rescue of CB1 receptors in specific cell types revealed that the CB1 receptor population specifically in dopamine β-hydroxylase (DBH)-expressing cells is both necessary and sufficient for stress-induced impairment of memory consolidation, but CB1 receptors present in other neuronal populations are not involved. Strikingly, pharmacological manipulations in mice expressing CB1 receptors exclusively in DBH(+) cells revealed that both hippocampal and peripheral receptors mediate the impact of stress on memory consolidation. Thus, CB1 receptors on adrenergic and noradrenergic cells provide previously unrecognized cross-talk between central and peripheral mechanisms in the stress-dependent regulation of nonemotional memory consolidation, suggesting new potential avenues for the treatment of cognitive aspects on stress-related disorders. PMID:27528659

  8. Heteromerization of GPR55 and cannabinoid CB2 receptors modulates signalling

    PubMed Central

    Balenga, N A; Martínez-Pinilla, E; Kargl, J; Schröder, R; Peinhaupt, M; Platzer, W; Bálint, Z; Zamarbide, M; Dopeso-Reyes, I G; Ricobaraza, A; Pérez-Ortiz, J M; Kostenis, E; Waldhoer, M; Heinemann, A; Franco, R

    2014-01-01

    Background and Purpose Heteromerization of GPCRs is key to the integration of extracellular signals and the subsequent cell response via several mechanisms including heteromer-selective ligand binding, trafficking and/or downstream signalling. As the lysophosphatidylinositol GPCR 55 (GPR55) has been shown to affect the function of the cannabinoid receptor subtype 2 (CB2 receptor) in human neutrophils, we investigated the possible heteromerization of CB2 receptors with GPR55. Experimental Approach The direct interaction of human GPR55 and CB2 receptors heterologously expressed in HEK293 cells was assessed by co-immunoprecipitation and bioluminescence resonance energy transfer assays. The effect of cross-talk on signalling was investigated at downstream levels by label-free real-time methods (Epic dynamic mass redistribution and CellKey impedance assays), ERK1/2-MAPK activation and gene reporter assays. Key Results GPR55 and CB2 receptors co-localized on the surface of HEK293 cells, co-precipitated in membrane extracts and formed heteromers in living HEK293 cells. Whereas heteromerization led to a reduction in GPR55-mediated activation of transcription factors (nuclear factor of activated T-cells, NF-κB and cAMP response element), ERK1/2-MAPK activation was potentiated in the presence of CB2 receptors. CB2 receptor-mediated signalling was also affected by co-expression with GPR55. Label-free assays confirmed cross-talk between the two receptors. Conclusions and Implications Heteromers, unique signalling units, form in HEK293 cells expressing GPR55 and CB2 receptors. The signalling by agonists of either receptor was governed (i) by the presence or absence of the partner receptors (with the consequent formation of heteromers) and (ii) by the activation state of the partner receptor. PMID:25048571

  9. Functional Selectivity of CB2 Cannabinoid Receptor Ligands at a Canonical and Noncanonical Pathway.

    PubMed

    Dhopeshwarkar, Amey; Mackie, Ken

    2016-08-01

    The CB2 cannabinoid receptor (CB2) remains a tantalizing, but unrealized therapeutic target. CB2 receptor ligands belong to varied structural classes and display extreme functional selectivity. Here, we have screened diverse CB2 receptor ligands at canonical (inhibition of adenylyl cyclase) and noncanonical (arrestin recruitment) pathways. The nonclassic cannabinoid (-)-cis-3-[2-hydroxy-4-(1,1-dimethylheptyl)phenyl]-trans-4-(3-hydroxypropyl)cyclohexanol (CP55940) was the most potent agonist for both pathways, while the classic cannabinoid ligand (6aR,10aR)-3-(1,1-Dimethylbutyl)-6a,7,10,10a-tetrahydro-6,6,9-trimethyl-6H-dibenzo[b,d]pyran JWH133) was the most efficacious agonist among all the ligands profiled in cyclase assays. In the cyclase assay, other classic cannabinoids showed little [(-)-trans-Δ(9)-tetrahydrocannabinol and (-)-(6aR,7,10,10aR)-tetrahydro-6,6,9-trimethyl-3-(1-methyl-1-phenylethyl)-6H-dibenzo[b,d]pyran-1-ol] (KM233) to no efficacy [(6aR,10aR)-1-methoxy-6,6,9-trimethyl-3-(2-methyloctan-2-yl)-6a,7,10,10a-tetrahydrobenzo[c]chromene(L759633) and (6aR,10aR)-3-(1,1-dimethylheptyl)-6a,7,8,9,10,10a-hexahydro-1-methoxy-6,6-dimethyl-9-methylene-6H-dibenzo[b,d]pyran]L759656. Most aminoalkylindoles, including [(3R)-​2,​3-​dihydro-​5-​methyl-​3-​(4-​morpholinylmethyl)pyrrolo[1,​2,​3-​de]-​1,​4-​benzoxazin-​6-​yl]-​1-​naphthalenyl-​methanone,​ monomethanesulfonate (WIN55212-2), were moderate efficacy agonists. The cannabilactone 3-(1,1-dimethyl-heptyl)-1-hydroxy-9-methoxy-benzo(c)chromen-6-one (AM1710) was equiefficacious to CP55940 to inhibit adenylyl cyclase, albeit with lower potency. In the arrestin recruitment assays, all classic cannabinoid ligands failed to recruit arrestins, indicating a bias toward G-protein coupling for this class of compound. All aminoalkylindoles tested, except for WIN55212-2 and (1-​pentyl-​1H-​indol-​3-​yl)(2,​2,​3,​3-​tetramethylcyclopropyl)-​methanone (UR144), failed

  10. Ligand-based virtual screening identifies a family of selective cannabinoid receptor 2 agonists

    PubMed Central

    Gianella-Borradori, Matteo; Christou, Ivy; Bataille, Carole J.R.; Cross, Rebecca L.; Wynne, Graham M.; Greaves, David R.; Russell, Angela J.

    2015-01-01

    The cannabinoid receptor 2 (CB2R) has been linked with the regulation of inflammation, and selective receptor activation has been proposed as a target for the treatment of a range of inflammatory diseases such as atherosclerosis and arthritis. In order to identify selective CB2R agonists with appropriate physicochemical and ADME properties for future evaluation in vivo, we first performed a ligand-based virtual screen. Subsequent medicinal chemistry optimisation studies led to the identification of a new class of selective CB2R agonists. Several examples showed high levels of activity (EC50 < 200 nM) and binding affinity (Ki < 200 nM) for the CB2R, and no detectable activity at the CB1R. The most promising example, DIAS2, also showed favourable in vitro metabolic stability and absorption properties along with a clean selectivity profile when evaluated against a panel of GPCRs and kinases. PMID:25487422

  11. Effect of the cannabinoid receptor-1 antagonist rimonabant on inflammation in mice with diet-induced obesity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We studied whether cannabinoid receptor (CB1) blockade with rimonabant has an anti-inflammatory effect in obese mice, and whether this effect depends on weight loss and/or diet consumption. High-fat diet (HFD)-induced obese mice were treated orally with rimonabant (HFD-R) or vehicle (HFD-V) for 4 we...

  12. Modulation of fear memory by dietary polyunsaturated fatty acids via cannabinoid receptors.

    PubMed

    Yamada, Daisuke; Takeo, Jiro; Koppensteiner, Peter; Wada, Keiji; Sekiguchi, Masayuki

    2014-07-01

    Although the underlying mechanism remains unknown, several studies have suggested benefits of n-3 long-chain polyunsaturated fatty acid (PUFA) for patients with anxiety disorders. Elevated fear is thought to contribute to the pathogenesis of particular anxiety disorders. The aim of the present study was to evaluate whether the dietary n-3 to n-6 PUFA (3:6) ratio influences fear memory. For this purpose, the effects of various dietary 3:6 ratios on fear memory were examined in mice using contextual fear conditioning, and the effects of these diets on central synaptic transmission were examined to elucidate the mechanism of action of PUFA. We found that fear memory correlated negatively with dietary, serum, and brain 3:6 ratios in mice. The low fear memory in mice fed a high 3:6 ratio diet was increased by the cannabinoid CB1 receptor antagonist rimonabant, reaching a level seen in mice fed a low 3:6 ratio diet. The agonist sensitivity of CB1 receptor was enhanced in the basolateral nucleus of the amygdala (BLA) of mice fed a high 3:6 ratio diet, compared with that of mice fed a low 3:6 ratio diet. Similar enhancement was induced by pharmacological expulsion of cholesterol in the neuronal membrane of brain slices from mice fed a low 3:6 ratio diet. CB1 receptor-mediated short-term synaptic plasticity was facilitated in pyramidal neurons of the BLA in mice fed a high 3:6 ratio diet. These results suggest that the ratio of n-3 to n-6 PUFA is a factor regulating fear memory via cannabinoid CB1 receptors. PMID:24518289

  13. Tourette syndrome is not caused by mutations in the central cannabinoid receptor (CNR1) gene.

    PubMed

    Gadzicki, Dorothea; Müller-Vahl, Kirsten R; Heller, Daniela; Ossege, Sebastian; Nöthen, Markus M; Hebebrand, Johannes; Stuhrmann, Manfred

    2004-05-15

    Tourette syndrome (TS) is a complex inherited disorder of unknown aetiology, characterized by multiple motor and vocal tics. Involvement of the central cannabinoid (CB1) system is suggested because of therapeutic effects of marijuana (Cannabis sativa L.) consumption and Delta(9)-tetrahydrocannabinol (-THC) treatment in TS patients. The central cannabinoid receptor (CNR1) gene encoding the CNR1 was considered as a candidate gene for TS and systematically screened by single-strand conformation polymorphism (SSCP) analysis and sequencing. Compared with the published CNR1 sequence, three single base substitutions were identified: 1326T --> A, 1359G --> A, 1419 + 1G --> C. The change at position 1359 is a common polymorphism (1359 G/A) without allelic association with TS. 1326T --> A was present in only one TS patient and is a silent mutation which does not change codon 442 (valine). 1419 + 1G --> C affects the first nucleotide immediately following the coding sequence. It was first detected in three of 40 TS patients and none of 81 healthy controls. This statistically significant association with TS (P = 0.034) could not be confirmed in two subsequent cohorts of 56 TS patients (one heterozygous for 1419 + 1G --> C) and 55 controls and 64 patients and 66 controls (one heterozygous for 1419 + 1G --> C), respectively. Transcript analysis of lymphocyte RNA from 5 1419 + 1G --> C carriers revealed no systematic influence on the expression level of the mutated allele. In addition, segregation analysis of 1419 + 1G --> C in affected families gave evidence that 1419 + 1G --> C does not play a causal role in the aetiology of TS. We conclude that genetic variations of the CNR1 gene are not a plausible explanation for the clinically observed relation between the cannabinoid system and TS. PMID:15108190

  14. Is lipid signaling through cannabinoid 2 receptors part of a protective system?

    PubMed Central

    Pacher, P.; Mechoulam, R.

    2011-01-01

    The mammalian body has a highly developed immune system which guards against continuous invading protein attacks and aims at preventing, attenuating or repairing the inflicted damage. It is conceivable that through evolution analogous biological protective systems have been evolved against non-protein attacks. There is emerging evidence that lipid endocannabinoid signaling through cannabinoid 2 (CB2) receptors may represent an example/part of such a protective system/armamentarium. Inflammation/tissue injury triggers rapid elevations in local endocannabinoid levels, which in turn regulate signaling responses in immune and other cells modulating their critical functions. Changes in endocannabinoid levels and/or CB2 receptor expressions have been reported in almost all diseases affecting humans, ranging from cardiovascular, gastrointestinal, liver, kidney, neurodegenerative, psychiatric, bone, skin, auto-immune, lung disorders to pain and cancer, and modulating CB2 receptor activity holds tremendous therapeutic potential in these pathologies. While CB2 receptor activation in general mediates immunosuppressive effects, which limit inflammation and associated tissue injury in large number of pathological conditions, in some disease states activation of the CB2 receptor may enhance or even trigger tissue damage, which will also be discussed alongside the protective actions of the CB2 receptor stimulation with endocannabinoids or synthetic agonists, and the possible biological mechanisms involved in these effects. PMID:21295074

  15. Synthesis and Biological Evaluation of Thiophene-Based Cannabinoid Receptor Type 2 Radiotracers for PET Imaging

    PubMed Central

    Haider, Ahmed; Müller Herde, Adrienne; Slavik, Roger; Weber, Markus; Mugnaini, Claudia; Ligresti, Alessia; Schibli, Roger; Mu, Linjing; Mensah Ametamey, Simon

    2016-01-01

    Over the past two decades, our understanding of the endocannabinoid system has greatly improved due to the wealth of results obtained from exploratory studies. Currently, two cannabinoid receptor subtypes have been well-characterized. The cannabinoid receptor type 1 (CB1) is widely expressed in the central nervous system, while the levels of the cannabinoid receptor type 2 (CB2) in the brain and spinal cord of healthy individuals are relatively low. However, recent studies demonstrated a CB2 upregulation on activated microglia upon neuroinflammation, an indicator of neurodegeneration. Our research group aims to develop a suitable positron emission tomography (PET) tracer to visualize the CB2 receptor in patients suffering from neurodegenerative diseases. Herein we report two novel thiophene-based 11C-labeled PET ligands designated [11C]AAT-015 and [11C]AAT-778. The reference compounds were synthesized using Gewald reaction conditions to obtain the aminothiophene intermediates, followed by amide formation. Saponification of the esters provided their corresponding precursors. Binding affinity studies revealed Ki-values of 3.3 ± 0.5 nM (CB2) and 1.0 ± 0.2 μM (CB1) for AAT-015. AAT-778 showed similar Ki-values of 4.3 ± 0.7 nM (CB2) and 1.1 ± 0.1 μM (CB1). Radiosynthesis was carried out under basic conditions using [11C]iodomethane as methylating agent. After semi-preparative HPLC purification both radiolabeled compounds were obtained in 99% radiochemical purity and the radiochemical yields ranged from 12 to 37%. Specific activity was between 96 and 449 GBq/μmol for both tracers. In order to demonstrate CB2 specificity of [11C]AAT-015 and [11C]AAT-778, we carried out autoradiography studies using CB2-positive mouse/rat spleen tissues. The obtained results revealed unspecific binding in spleen tissue that was not blocked by an excess of CB2-specific ligand GW402833. For in vivo analysis, [11C]AAT-015 was administered to healthy rats via tail-vein injection

  16. Benzyl-1,2,4-triazoles as CB1 Cannabinoid Receptor Ligands: Preparation and In Vitro Pharmacological Evaluation

    PubMed Central

    Hernandez-Folgado, Laura; Decara, Juan; Rodríguez de Fonseca, Fernando; Goya, Pilar; Jagerovic, Nadine

    2016-01-01

    In a previous study, we have identified 3-alkyl-1,5-diaryl-1H-1,2,4-triazoles to be a novel class of cannabinoid type 1 receptor (CB1R) antagonists. In order to expand the number of cannabinoid ligands with a central 1,2,4-triazole scaffold, we have synthesized a novel series of 1-benzyl-1H-1,2,4-triazoles, and some of them were evaluated by CB1R radioligand binding assays. Compound 12a showed the most interesting pharmacological properties, possessing a CB1R affinity in the nanomolar range. PMID:27127651

  17. The influence of cannabinoids on generic traits of neurodegeneration

    PubMed Central

    Fagan, S G; Campbell, V A

    2014-01-01

    In an increasingly ageing population, the incidence of neurodegenerative disorders such as Alzheimer's disease, Parkinson's disease and Huntington's disease are rising. While the aetiologies of these disorders are different, a number of common mechanisms that underlie their neurodegenerative components have been elucidated; namely neuroinflammation, excitotoxicity, mitochondrial dysfunction and reduced trophic support. Current therapies focus on treatment of the symptoms and attempt to delay the progression of these diseases but there is currently no cure. Modulation of the endogenous cannabinoid system is emerging as a potentially viable option in the treatment of neurodegeneration. Endocannabinoid signalling has been found to be altered in many neurodegenerative disorders. To this end, pharmacological manipulation of the endogenous cannabinoid system, as well as application of phytocannabinoids and synthetic cannabinoids have been investigated. Signalling from the CB1 and CB2 receptors are known to be involved in the regulation of Ca2+ homeostasis, mitochondrial function, trophic support and inflammatory status, respectively, while other receptors gated by cannabinoids such as PPARγ, are gaining interest in their anti-inflammatory properties. Through multiple lines of evidence, this evolutionarily conserved neurosignalling system has shown neuroprotective capabilities and is therefore a potential target for neurodegenerative disorders. This review details the mechanisms of neurodegeneration and highlights the beneficial effects of cannabinoid treatment. Linked ArticlesThis article is part of a themed section on Cannabinoids 2013. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2014.171.issue-6 PMID:24172185

  18. Brain structural and clinical changes after first episode psychosis: Focus on cannabinoid receptor 1 polymorphisms.

    PubMed

    Suárez-Pinilla, Paula; Roiz-Santiañez, Roberto; Ortiz-García de la Foz, Víctor; Guest, Paul C; Ayesa-Arriola, Rosa; Córdova-Palomera, Aldo; Tordesillas-Gutierrez, Diana; Crespo-Facorro, Benedicto

    2015-08-30

    Cannabinoid receptor 1 (CNR1) gene polymorphisms have been associated with central and peripheral effects of cannabis and schizophrenia pathophysiology. Here, we have tested whether three CNR1 variants (rs1049353, rs1535255 and rs2023239) are associated with changes in brain volumes, body mass index (BMI) or psychopathological scores in a 3-year longitudinal study of 65 first-episode psychosis patients. The rs1049353 at-risk allele was significantly associated with a greater reduction of caudate volume, and the rs2023239 T/C polymorphism showed a significant decrease in thalamic volume after the 3-year period. For those who were not cannabis users, the rs1535255 and rs2023239 polymorphisms had effects in lateral ventricle (LV), and LV and white matter, respectively. The rs2023239 variant also was associated with significant improvements in positive and negative symptoms of schizophrenia. There was no significant effect of any of the variants on changes in BMI over the 3-year study. Finally, an interaction between all three polymorphisms was found involving evolution of positive symptoms. These findings suggest that the cannabinoid pathway is associated with schizophrenia evolution over time. However, further studies using larger cohorts are needed to confirm these results. If confirmed, the present findings could lead in subsequent investigations for identification of novel drug targets for improved treatment of patients suffering from schizophrenia. PMID:26071625

  19. Astrocytic expression of cannabinoid type 1 receptor in rat and human sclerotic hippocampi

    PubMed Central

    Meng, Xian-Dong; Wei, Dong; Li, Juan; Kang, Jun-Jun; Wu, Chen; Ma, Lei; Yang, Feng; Zhu, Ge-Min; Ou-Yang, Tang-Peng; Liu, Ying-Ying; Jiang, Wen

    2014-01-01

    Cannabinoid type 1 receptor (CB1R), which is traditionally located on axon terminals, plays an important role in the pathology of epilepsy and neurodegenerative diseases by modulating synaptic transmission. Using the pilocarpine model of chronic spontaneous recurrent seizures, which mimics the main features of mesial temporal lobe epilepsy (TLE) with hippocampal sclerosis (HS) in humans, we examined the expression of CB1R in hippocampal astrocytes of epileptic rats. Furthermore, we also examined the expression of astrocytic CB1R in the resected hippocampi from patients with medically refractory mesial TLE. Using immunofluorescent double labeling, we found increased expression of astrocytic CB1R in hippocampi of epileptic rats, whereas expression of astrocytic CB1R was not detectable in hippocampi of saline treated animals. Furthermore, CB1R was also found in some astrocytes in sclerotic hippocampi in a subset of patients with intractable mesial TLE. Detection with immune electron microscopy showed that the expression of CB1R was increased in astrocytes of epileptic rats and modest levels of CB1R were also found on the astrocytic membrane of sclerotic hippocampi. These results suggest that increased expression of astrocytic CB1R in sclerotic hippocampi might be involved in the cellular basis of the effects of cannabinoids on epilepsy. PMID:25031702

  20. On the effects of CP 55-940 and other cannabinoid receptor agonists in C6 and U373 cell lines.

    PubMed

    Ortega, A; Rangel-López, E; Hidalgo-Miranda, A; Morales, A; Ruiz-García, E; Meneses-García, A; Herrera-Gómez, A; Aguilar-Ponce, J L; González-Herrera, I G; Guevara-Salazar, P; Prospero-García, O; Del Angel, S A

    2015-10-01

    Cannabinoid receptor (CBs) agonists affect the growth of tumor cells via activation of deadly cascades. The spectrum of action of these agents and the precise role of the endocannabinoid system (ECS) on oncogenic processes remain elusive. Herein we compared the effects of synthetic (CP 55-940 and WIN 55,212-2) and endogenous (anandamide or AEA) CBs agonists (10-20 μM) on morphological changes, cell viability, and induction of apoptosis in primary astrocytes and in two glioblastoma cell lines (C6 and U373 cells) in order to characterize their possible differential actions on brain tumor cells. None of the CBs agonist tested induced changes in cell viability or morphology in primary astrocytes. In contrast, CP 55-940 significantly decreased cell viability in C6 and U373 cells at 5 days of treatment, whereas AEA and WIN 55,212-2 moderately decreased cell viability in both cell lines. Treatment of U373 and C6 for 3 and 5 days with AEA or WIN 55,212-2 produced discrete morphological changes in cell bodies, whereas the exposure to CP 55-940 induced soma degradation. CP 55-940 also induced apoptosis in both C6 and U373 cell lines. Our results support a more effective action of CP 55-940 to produce cell death of both cell lines through apoptotic mechanisms. Comparative aspects between cannabinoids with different profiles are necessary for the design of potential treatments against glial tumors. PMID:26255146

  1. Mechanisms of Biased β-Arrestin-Mediated Signaling Downstream from the Cannabinoid 1 Receptor

    PubMed Central

    Delgado-Peraza, Francheska; Ahn, Kwang H.; Nogueras-Ortiz, Carlos; Mungrue, Imran N.; Mackie, Ken; Kendall, Debra A.

    2016-01-01

    Activation of G protein-coupled receptors results in multiple waves of signaling that are mediated by heterotrimeric G proteins and the scaffolding proteins β-arrestin 1/2. Ligands can elicit full or subsets of cellular responses, a concept defined as ligand bias or functional selectivity. However, our current understanding of β-arrestin-mediated signaling is still very limited. Here we provide a comprehensive view of β-arrestin-mediated signaling from the cannabinoid 1 receptor (CB1R). By using a signaling biased receptor, we define the cascades, specific receptor kinases, and molecular mechanism underlying β-arrestin-mediated signaling: We identify the interaction kinetics of CB1R and β-arrestin 1 during their endocytic trafficking as directly proportional to its efficacy. Finally, we demonstrate that signaling results in the control of genes clustered around prosurvival and proapoptotic functions among others. Together, these studies constitute a comprehensive description of β-arrestin-mediated signaling from CB1Rs and suggest modulation of receptor endocytic trafficking as a therapeutic approach to control β-arrestin-mediated signaling. PMID:27009233

  2. Mechanisms of Biased β-Arrestin-Mediated Signaling Downstream from the Cannabinoid 1 Receptor.

    PubMed

    Delgado-Peraza, Francheska; Ahn, Kwang H; Nogueras-Ortiz, Carlos; Mungrue, Imran N; Mackie, Ken; Kendall, Debra A; Yudowski, Guillermo A

    2016-06-01

    Activation of G protein-coupled receptors results in multiple waves of signaling that are mediated by heterotrimeric G proteins and the scaffolding proteins β-arrestin 1/2. Ligands can elicit full or subsets of cellular responses, a concept defined as ligand bias or functional selectivity. However, our current understanding of β-arrestin-mediated signaling is still very limited. Here we provide a comprehensive view of β-arrestin-mediated signaling from the cannabinoid 1 receptor (CB1R). By using a signaling biased receptor, we define the cascades, specific receptor kinases, and molecular mechanism underlying β-arrestin-mediated signaling: We identify the interaction kinetics of CB1R and β-arrestin 1 during their endocytic trafficking as directly proportional to its efficacy. Finally, we demonstrate that signaling results in the control of genes clustered around prosurvival and proapoptotic functions among others. Together, these studies constitute a comprehensive description of β-arrestin-mediated signaling from CB1Rs and suggest modulation of receptor endocytic trafficking as a therapeutic approach to control β-arrestin-mediated signaling. PMID:27009233

  3. Cannabinoid type-1 receptor signaling in central serotonergic neurons regulates anxiety-like behavior and sociability

    PubMed Central

    Häring, Martin; Enk, Vanessa; Aparisi Rey, Alejandro; Loch, Sebastian; Ruiz de Azua, Inigo; Weber, Tillmann; Bartsch, Dusan; Monory, Krisztina; Lutz, Beat

    2015-01-01

    The endocannabinoid (eCB) system possesses neuromodulatory functions by influencing the release of various neurotransmitters, including γ-aminobutyric acid (GABA) and glutamate. A functional interaction between eCBs and the serotonergic system has already been suggested. Previously, we showed that cannabinoid type-1 (CB1) receptor mRNA and protein are localized in serotonergic neurons of the raphe nuclei, implying that the eCB system can modulate serotonergic functions. In order to substantiate the physiological role of the CB1 receptor in serotonergic neurons of the raphe nuclei, we generated serotonergic 5-hydroxytryptamine (5-HT) neuron-specific CB1 receptor-deficient mice, using the Cre/loxP system with a tamoxifen-inducible Cre recombinase under the control of the regulatory sequences of the tryptophan hydroxylase 2 gene (TPH2-CreERT2), thus, restricting the recombination to 5-HT neurons of the central nervous system (CNS). Applying several different behavioral paradigms, we revealed that mice lacking the CB1 receptor in serotonergic neurons are more anxious and less sociable than control littermates. Thus, we were able to show that functional CB1 receptor signaling in central serotonergic neurons modulates distinct behaviors in mice. PMID:26388750

  4. Comparative effects of chlorpyrifos in wild type and cannabinoid Cb1 receptor knockout mice

    SciTech Connect

    Baireddy, Praveena; Liu, Jing; Hinsdale, Myron; Pope, Carey

    2011-11-15

    Endocannabinoids (eCBs) modulate neurotransmission by inhibiting the release of a variety of neurotransmitters. The cannabinoid receptor agonist WIN 55.212-2 (WIN) can modulate organophosphorus (OP) anticholinesterase toxicity in rats, presumably by inhibiting acetylcholine (ACh) release. Some OP anticholinesterases also inhibit eCB-degrading enzymes. We studied the effects of the OP insecticide chlorpyrifos (CPF) on cholinergic signs of toxicity, cholinesterase activity and ACh release in tissues from wild type (+/+) and cannabinoid CB1 receptor knockout (-/-) mice. Mice of both genotypes (n = 5-6/treatment group) were challenged with CPF (300 mg/kg, 2 ml/kg in peanut oil, sc) and evaluated for functional and neurochemical changes. Both genotypes exhibited similar cholinergic signs and cholinesterase inhibition (82-95% at 48 h after dosing) in cortex, cerebellum and heart. WIN reduced depolarization-induced ACh release in vitro in hippocampal slices from wild type mice, but had no effect in hippocampal slices from knockouts or in striatal slices from either genotype. Chlorpyrifos oxon (CPO, 100 {mu}M) reduced release in hippocampal slices from both genotypes in vitro, but with a greater reduction in tissues from wild types (21% vs 12%). CPO had no significant in vitro effect on ACh release in striatum. CPF reduced ACh release in hippocampus from both genotypes ex vivo, but reduction was again significantly greater in tissues from wild types (52% vs 36%). In striatum, CPF led to a similar reduction (20-23%) in tissues from both genotypes. Thus, while CB1 deletion in mice had little influence on the expression of acute toxicity following CPF, CPF- or CPO-induced changes in ACh release appeared sensitive to modulation by CB1-mediated eCB signaling in a brain-regional manner. -- Highlights: Black-Right-Pointing-Pointer C57Bl/6 mice showed dose-related cholinergic toxicity following subcutaneous chlorpyrifos exposure. Black-Right-Pointing-Pointer Wild type and

  5. Synthetic Ligands of Cannabinoid Receptors Affect Dauer Formation in the Nematode Caenorhabditis elegans.

    PubMed

    Reis Rodrigues, Pedro; Kaul, Tiffany K; Ho, Jo-Hao; Lucanic, Mark; Burkewitz, Kristopher; Mair, William B; Held, Jason M; Bohn, Laura M; Gill, Matthew S

    2016-01-01

    Under adverse environmental conditions the nematode Caenorhabditis elegans can enter an alternate developmental stage called the dauer larva. To identify lipophilic signaling molecules that influence this process, we screened a library of bioactive lipids and found that AM251, an antagonist of the human cannabinoid (CB) receptor, suppresses dauer entry in daf-2 insulin receptor mutants. AM251 acted synergistically with glucose supplementation indicating that the metabolic status of the animal influenced the activity of this compound. Similarly, loss of function mutations in the energy-sensing AMP-activated kinase subunit, aak-2, enhanced the dauer-suppressing effects of AM251, while constitutive activation of aak-2 in neurons was sufficient to inhibit AM251 activity. Chemical epistasis experiments indicated that AM251 acts via G-protein signaling and requires the TGF-β ligand DAF-7, the insulin peptides DAF-28 and INS-6, and a functional ASI neuron to promote reproductive growth. AM251 also required the presence of the SER-5 serotonin receptor, but in vitro experiments suggest that this may not be via a direct interaction. Interestingly, we found that other antagonists of mammalian CB receptors also suppress dauer entry, while the nonselective CB receptor agonist, O-2545, not only inhibited the activity of AM251, but also was able to promote dauer entry when administered alone. Since worms do not have obvious orthologs of CB receptors, the effects of synthetic CBs on neuroendocrine signaling in C. elegans are likely to be mediated via another, as yet unknown, receptor mechanism. However, we cannot exclude the existence of a noncanonical CB receptor in C. elegans. PMID:27172180

  6. Synthetic Ligands of Cannabinoid Receptors Affect Dauer Formation in the Nematode Caenorhabditis elegans

    PubMed Central

    Reis Rodrigues, Pedro; Kaul, Tiffany K.; Ho, Jo-Hao; Lucanic, Mark; Burkewitz, Kristopher; Mair, William B.; Held, Jason M.; Bohn, Laura M.; Gill, Matthew S.

    2016-01-01

    Under adverse environmental conditions the nematode Caenorhabditis elegans can enter an alternate developmental stage called the dauer larva. To identify lipophilic signaling molecules that influence this process, we screened a library of bioactive lipids and found that AM251, an antagonist of the human cannabinoid (CB) receptor, suppresses dauer entry in daf-2 insulin receptor mutants. AM251 acted synergistically with glucose supplementation indicating that the metabolic status of the animal influenced the activity of this compound. Similarly, loss of function mutations in the energy-sensing AMP-activated kinase subunit, aak-2, enhanced the dauer-suppressing effects of AM251, while constitutive activation of aak-2 in neurons was sufficient to inhibit AM251 activity. Chemical epistasis experiments indicated that AM251 acts via G-protein signaling and requires the TGF-β ligand DAF-7, the insulin peptides DAF-28 and INS-6, and a functional ASI neuron to promote reproductive growth. AM251 also required the presence of the SER-5 serotonin receptor, but in vitro experiments suggest that this may not be via a direct interaction. Interestingly, we found that other antagonists of mammalian CB receptors also suppress dauer entry, while the nonselective CB receptor agonist, O-2545, not only inhibited the activity of AM251, but also was able to promote dauer entry when administered alone. Since worms do not have obvious orthologs of CB receptors, the effects of synthetic CBs on neuroendocrine signaling in C. elegans are likely to be mediated via another, as yet unknown, receptor mechanism. However, we cannot exclude the existence of a noncanonical CB receptor in C. elegans. PMID:27172180

  7. Decreased Cocaine Motor Sensitization and Self-Administration in Mice Overexpressing Cannabinoid CB2 Receptors

    PubMed Central

    Aracil-Fernández, Auxiliadora; Trigo, José M; García-Gutiérrez, María S; Ortega-Álvaro, Antonio; Ternianov, Alexander; Navarro, Daniela; Robledo, Patricia; Berbel, Pere; Maldonado, Rafael; Manzanares, Jorge

    2012-01-01

    The potential involvement of the cannabinoid CB2 receptors (CB2r) in the adaptive responses induced by cocaine was studied in transgenic mice overexpressing the CB2r (CB2xP) and in wild-type (WT) littermates. For this purpose, the acute and sensitized locomotor responses to cocaine, conditioned place preference, and cocaine intravenous self-administration were evaluated. In addition, we assessed whether CB2r were localized in neurons and/or astrocytes, and whether they colocalized with dopamine D1 and D2 receptors (D1Dr and D2Dr). Dopamine (DA) extracellular levels in the nucleus accumbens (NAcc), and gene expression of tyrosine hydroxylase (TH) and DA transporter (DAT) in the ventral tegmental area (VTA), and μ-opioid and cannabinoid CB1 receptors in the NAcc were also studied in both genotypes. CB2xP mice showed decreased motor response to acute administration of cocaine (10–20 mg/kg) and cocaine-induced motor sensitization compared with WT mice. CB2xP mice presented cocaine-induced conditioned place aversion and self-administered less cocaine than WT mice. CB2r were found in neurons and astrocytes and colocalized with D2Dr in the VTA and NAcc. No significant differences in extracellular DA levels in the NAcc were observed between genotypes after cocaine administration. Under baseline conditions, TH and DAT gene expression was higher and μ-opioid receptor gene expression was lower in CB2xP than in WT mice. However, both genotypes showed similar changes in TH and μ-opioid receptor gene expression after cocaine challenge independently of the pretreatment received. Importantly, the cocaine challenge decreased DAT gene expression to a lesser extent in cocaine-pretreated CB2xP than in cocaine-pretreated WT mice. These results revealed that CB2r are involved in cocaine motor responses and cocaine self-administration, suggesting that this receptor could represent a promising target to develop novel treatments for cocaine addiction. PMID:22414816

  8. Anti-inflammatory effects of cannabinoid CB2 receptor activation in endotoxin-induced uveitis

    PubMed Central

    Toguri, J T; Lehmann, C; Laprairie, R B; Szczesniak, A M; Zhou, J; Denovan-Wright, E M; Kelly, M E M

    2014-01-01

    Background and PurposeCannabinoid CB2 receptors mediate immunomodulation. Here, we investigated the effects of CB2 receptor ligands on leukocyte-endothelial adhesion and inflammatory mediator release in experimental endotoxin-induced uveitis (EIU). Experimental ApproachEIU was induced by intraocular injection of lipopolysaccharide (LPS, 20 ng·μL−1). Effects of the CB2 receptor agonist, HU308 (1.5% topical), the CB2 receptor antagonist, AM630 (2.5 mg·kg−1 i.v.), or a combination of both compounds on leukocyte-endothelial interactions were measured hourly for 6 h in rat iridial vasculature using intravital microscopy. Anti-inflammatory actions of HU308 were compared with those of clinical treatments for uveitis - dexamethasone, prednisolone and nepafenac. Transcription factors (NF-κB, AP-1) and inflammatory mediators (cytokines, chemokines and adhesion molecules) were measured in iris and ciliary body tissue. Key ResultsLeukocyte-endothelium adherence was increased in iridial microvasculature between 4–6 h after LPS. HU308 reduced this effect after LPS injection and decreased pro-inflammatory mediators: TNF-α, IL-1β, IL-6, CCL5 and CXCL2. AM630 blocked the actions of HU-308, and increased leukocyte-endothelium adhesion. HU-308 decreased levels of the transcription factors NF-κB and AP-1, while AM630 increased levels of NF-κB. Topical treatments with dexamethasone, prednisolone or nepafenac, failed to alter leukocyte adhesion or mitigate LPS-induced increases in inflammatory mediators during the 6 h of EIU. Conclusion and ImplicationsActivation of CB2 receptors was anti-inflammatory in a model of acute EIU and involved a reduction in NF-κB, AP-1 and inflammatory mediators. CB2 receptors may be promising drug targets for the development of novel ocular anti-inflammatory agents. Linked ArticlesThis article is part of a themed section on Cannabinoids 2013. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2014

  9. Involvement of cannabinoid CB2 receptor in alcohol preference in mice and alcoholism in humans.

    PubMed

    Ishiguro, H; Iwasaki, S; Teasenfitz, L; Higuchi, S; Horiuchi, Y; Saito, T; Arinami, T; Onaivi, E S

    2007-12-01

    We tested if cannabinoid type 2 receptor (CB2) in the central nervous system plays a role in alcohol abuse/dependence in animal model and then examined an association between the CB2 gene polymorphism and alcoholism in human. Mice experiencing more alcohol preference by drinking showed reduced Cb2 gene expression, whereas mice with little preference showed no changes of it in ventral midbrain. Alcohol preference in conjunction with chronic mild stress were enhanced in mice treated with CB2 agonist JWH015 when subjected to chronic stress, whereas antagonist AM630 prevented development of alcohol preference. There is an association between the Q63R polymorphism of the CB2 gene and alcoholism in a Japanese population (P=0.007; odds ratio 1.25, 95% CI, (1.06-1.47)). CB2 under such environment is associated with the physiologic effects of alcohol and CB2 antagonists may have potential as therapies for alcoholism. PMID:17189959

  10. [Synthetic Cannabinoid Receptor Agonist-Associated Psychotic Disorder: A Case Report].

    PubMed

    Sönmez, İpek; Köşger, Ferdi

    2016-01-01

    Synthetic cannabinoid receptor agonists (SCRA) has become one of the most abused substances, recently. JWH-018 street name known as Bonzai is one of the most abused substances in Turkish Republic of Northern Cyprus. The most common symptoms in cases reported with synthetic cannabis use are agitation, angry, paranoia and reference delusions, disorientation, seizure and nausea. Although the effects are very similar to cannabis, stimulant effects are more likely in SCRA use. In preparations containing SCRA do not contain cannabinidol agent which is reported to reduce the psychotic effects of the cannabis. This may explain the relationship between SCRA and psychotic disorders. We aimed to discuss a brief psychotic disorder associated with SCRA use and treatment which is less reported in the literature in this case report. PMID:27369687

  11. Estrogens and Spermiogenesis: New Insights from Type 1 Cannabinoid Receptor Knockout Mice

    PubMed Central

    Cacciola, Giovanna; Chioccarelli, Teresa; Fasano, Silvia; Pierantoni, Riccardo; Cobellis, Gilda

    2013-01-01

    Spermatogenesis is a complex mechanism which allows the production of male gametes; it consists of mitotic, meiotic, and differentiation phases. Spermiogenesis is the terminal differentiation process during which haploid round spermatids undergo several biochemical and morphological changes, including extensive remodelling of chromatin and nuclear shape. Spermiogenesis is under control of endocrine, paracrine, and autocrine factors, like gonadotropins and testosterone. More recently, emerging pieces of evidence are suggesting that, among these factors, estrogens may have a role. To date, this is a matter of debate and concern because of the agonistic and antagonistic estrogenic effects that environmental chemicals may have on animal and human with damaging outcome on fertility. In this review, we summarize data which fuel this debate, with a particular attention to our recent results, obtained using type 1 cannabinoid receptor knockout male mice as animal model. PMID:24324492

  12. Long-term CB₁ receptor blockade enhances vulnerability to anxiogenic-like effects of cannabinoids.

    PubMed

    Tambaro, Simone; Tomasi, Maria Lauda; Bortolato, Marco

    2013-07-01

    Compelling evidence has documented the anxiolytic and mood-enhancing properties of cannabis. In susceptible users, however, consumption of this drug is conducive to panic, paranoia and dysphoria. We hypothesized that the up-regulation of CB₁ receptors (CB₁Rs) in select brain regions may enhance the vulnerability to cannabinoid-induced anxiety. To test this possibility, we assessed the behavioral impact of a potent cannabinoid agonist (CP55,940; 0.05-0.1 mg/kg, IP) on C57BL/6 male mice, respectively subjected to a prolonged pre-treatment of either the selective CB₁R antagonist/inverse agonist AM251 (1 mg/kg/day IP, for 21 days, followed by a 3-day clearance period before testing) or its vehicle (VEH1). Anxiety-like responses were studied in the novel open field, elevated plus maze (EPM) and social interaction assays. While CP55,940 induced anxiolytic-like effects in the EPM in VEH1-exposed animals, it elicited opposite actions in AM251-exposed mice. In this last group, CP55,940 also reduced rearing and social interaction in comparison to its vehicle (VEH2). The divergent effects of CP55,940 in AM251- and VEH1-pretreated animals were confirmed in 129SvEv mice. Immunoblotting analyses on brain samples of C57BL/6 mice revealed that AM251 pre-treatment caused a significant up-regulation of CB₁R expression in the prefrontal cortex and striatum, but also a down-regulation of these receptors in the hippocampus and midbrain. Notably, CB₁R levels in the prefrontal cortex were negatively correlated with anxiolysis-related indices in the EPM; furthermore, midbrain CB₁R expression was positively correlated with the total duration of social interaction. These results suggest that regional variations in brain CB₁R expression may differentially condition the behavioral effects of cannabinoids with respect to anxiety-related responses. PMID:23462228

  13. The hepatic cannabinoid 1 receptor as a modulator of hepatic energy state and food intake

    PubMed Central

    Cooper, Martin E; Regnell, Simon E

    2014-01-01

    The cannabinoid 1 receptor (CB1R) has a well-established role in appetite regulation. Central CB1R antagonists, notably rimonabant, induced weight loss and improved the metabolic profile in obese individuals, but were discontinued due to psychiatric side-effects. The CB1R is also expressed peripherally, where its effects include promotion of liver fat accumulation, which consumes ATP. Type 2 diabetes in obese subjects is linked to excess liver fat, whilst there is a negative correlation between hepatic ATP content and insulin resistance. A decreased hepatic ATP/AMP ratio increases food intake by signals via the vagus nerve to the brain. The hepatic cannabinoid system is highly upregulated in obesity, and the effects of hepatic CB1R activation include increased activity of lipogenic and gluconeogenic transcription factors. Thus, blockade of hepatic CB1Rs could contribute significantly to the weight-reducing and insulin-sensitizing effects of CB1R antagonists. Additionally, upregulation of the hepatic CB1R may contribute to chronic liver inflammation, fibrosis and cirrhosis from causes including obesity, alcoholism and viral hepatitis. Peripheral CB1R antagonists induce weight loss and metabolic improvements in obese rodents; however, as there is evidence that hepatic CB1Rs are predominately intracellular, due to high intrinsic clearance, many drugs may not effectively block these receptors and therefore have limited efficacy. Hepatoselective CB1R antagonists may be effective at reducing hepatic steatosis, insulin resistance and bodyweight in obese, diabetic patients, with far fewer side-effects than first-generation CB1R antagonists. Additionally, such compounds may be effective in treating inflammatory liver disease, such as non-alcoholic steatohepatitis, reducing the likelihood of disease progression to cirrhosis or cancer. PMID:23452341

  14. The hepatic cannabinoid 1 receptor as a modulator of hepatic energy state and food intake.

    PubMed

    Cooper, Martin E; Regnell, Simon E

    2014-01-01

    The cannabinoid 1 receptor (CB1R) has a well-established role in appetite regulation. Central CB1R antagonists, notably rimonabant, induced weight loss and improved the metabolic profile in obese individuals, but were discontinued due to psychiatric side-effects. The CB1R is also expressed peripherally, where its effects include promotion of liver fat accumulation, which consumes ATP. Type 2 diabetes in obese subjects is linked to excess liver fat, whilst there is a negative correlation between hepatic ATP content and insulin resistance. A decreased hepatic ATP/AMP ratio increases food intake by signals via the vagus nerve to the brain. The hepatic cannabinoid system is highly upregulated in obesity, and the effects of hepatic CB1R activation include increased activity of lipogenic and gluconeogenic transcription factors. Thus, blockade of hepatic CB1Rs could contribute significantly to the weight-reducing and insulin-sensitizing effects of CB1R antagonists. Additionally, upregulation of the hepatic CB1R may contribute to chronic liver inflammation, fibrosis and cirrhosis from causes including obesity, alcoholism and viral hepatitis. Peripheral CB1R antagonists induce weight loss and metabolic improvements in obese rodents; however, as there is evidence that hepatic CB1Rs are predominately intracellular, due to high intrinsic clearance, many drugs may not effectively block these receptors and therefore have limited efficacy. Hepatoselective CB1R antagonists may be effective at reducing hepatic steatosis, insulin resistance and bodyweight in obese, diabetic patients, with far fewer side-effects than first-generation CB1R antagonists. Additionally, such compounds may be effective in treating inflammatory liver disease, such as non-alcoholic steatohepatitis, reducing the likelihood of disease progression to cirrhosis or cancer. PMID:23452341

  15. Type 2 cannabinoid receptor contributes to the physiological regulation of spermatogenesis.

    PubMed

    Di Giacomo, Daniele; De Domenico, Emanuela; Sette, Claudio; Geremia, Raffaele; Grimaldi, Paola

    2016-04-01

    Type 2 cannabinoid receptor (CB2) has been proposed to play a pivotal role in meiotic entry of male germ cells, similar to retinoic acid (RA). In this study, we showed that activation of CB2with the specific agonist JWH133 [3-(1',1'-dimethylbutyl)-1-deoxy-8-THC] (IC5010(-6)M) mimics epigenetic events induced by RA (IC5010(-7)M) in spermatogonia. Both JWH133 and RA treatments stimulate the expression of the meiotic genes c-KitandStra8, by up-regulating H3K4me3 and down-regulating H3K9me2 levels in genomic regions flanking the transcription start site. Moreover, both agents increase the expression ofPrdm9, the gene encoding a meiosis-specific histone, H3K4me3 methyltransferase, which marks hotspots of recombination in prophase I, thus resulting in a global increase in H3K4me3. Notably, prolonged administration of JWH133 to immature 7 dpp CD-1 mice induced an acceleration of the onset of spermatogenesis, whereas the specific CB2antagonist delayed germ cell differentiation. Thus, both hyper- and hypostimulation of CB2disrupted the temporal dynamics of the spermatogenic cycle. These findings highlight the importance of proper CB2signaling for the maintenance of a correct temporal progression of spermatogenesis and suggest a possible adverse effect of cannabis in deregulating this process.-Di Giacomo, D., De Domenico, E., Sette, C., Geremia, R., Grimaldi, P. Type 2 cannabinoid receptor contributes to the physiological regulation of spermatogenesis. PMID:26671998

  16. Cannabinoid receptor 1 gene and irritable bowel syndrome: phenotype and quantitative traits.

    PubMed

    Camilleri, Michael; Kolar, Gururaj J; Vazquez-Roque, Maria I; Carlson, Paula; Burton, Duane D; Zinsmeister, Alan R

    2013-03-01

    Genetic variations in metabolism of endocannabinoids and in CNR1 (gene for cannabinoid 1 receptor) are associated with symptom phenotype, colonic transit, and left colon motility in irritable bowel syndrome (IBS). Our aim was to evaluate associations between two variations in CNR1 genotype (rs806378 and [AAT]n triplets) with symptom phenotype, small bowel and colonic transit, and rectal sensations in 455 patients with IBS and 228 healthy controls. Small bowel and colonic transit were measured by scintigraphy, rectal sensation by isobaric distensions. Associations with genotype were assessed by χ(2) test (symptom phenotype) and ANCOVA (quantitative traits) based on a dominant genetic model. Significant association of CNR1 rs806378 (but not CNR1 [AAT]n) genotype and symptom phenotype was observed (χ(2) P = 0.028). There was significant association of CNR1 rs806378 (P = 0.014; CC vs. CT/TT) with colonic transit in IBS-diarrhea (IBS-D) group; the TT group had the fastest colonic transit at 24 and 48 h. There was significant overall association of CNR1 rs806378 with sensation rating of gas (P = 0.025), but not pain; the strongest associations for gas ratings were in IBS-D (P = 0.002) and IBS-alternating (P = 0.025) subgroups. For CNR1 (AAT)n, gene-by-phenotype interactions were observed for colonic transit at 24 (P = 0.06) and 48 h (P = 0.002) and gas (P = 0.046, highest for IBS-D, P = 0.034), but not pain sensation; the strongest association with transit was in controls, not in IBS. These data support the hypothesis that cannabinoid receptors may play a role in control of colonic transit and sensation in humans and deserve further study as potential mediators or therapeutic targets in lower functional gastrointestinal disorders. PMID:23306084

  17. Evaluation of the specificity of antibodies raised against cannabinoid receptor type 2 in the mouse retina.

    PubMed

    Cécyre, Bruno; Thomas, Sébastien; Ptito, Maurice; Casanova, Christian; Bouchard, Jean-François

    2014-02-01

    Cannabinoid receptors (CB1R and CB2R) are among the most abundant G protein-coupled receptors in the central nervous system. The endocannabinoid system is an attractive therapeutic target for immune system modulation and peripheral pain management. While CB1R is distributed in the nervous system, CB2R has traditionally been associated to the immune system. This dogma is currently a subject of debate since the discovery of CB2R expression in neurons using antibody-based methods. The localization of CB2R in the central nervous system (CNS) could have a significant impact on drug development because it would mean that in addition to its effects on the peripheral pain pathway, CB2R could also mediate some central effects of cannabinoids. In an attempt to clarify the debate over CB2R expression in the CNS, we tested several commercially or academically produced CB2R antibodies using Western blot and immunohistochemistry on retinal tissue obtained from wild-type mice and mice lacking CB2R (cnr2 (-/-) ). One of the antibodies tested exhibited a valuable specificity as it marked a single band near the predicted molecular weight in Western blot and produced no staining in cnr2 (-/-) mice retina sections. The other antibodies tested detected multiple bands in Western blot and labeled unidentified proteins when used with their immunizing peptide or on cnr2 (-/-) retinal sections. We conclude that many commonly used antibodies raised against CB2R are not specific for use in immunohistochemistry, at least in the context of the mouse retina. Moreover, some of them tested presented significant lot-to-lot variability. Hence, caution should be used when interpreting prior and future studies using CB2R antibodies. PMID:24185999

  18. Cannabinoid receptor-specific mechanisms to alleviate pain in sickle cell anemia via inhibition of mast cell activation and neurogenic inflammation

    PubMed Central

    Vincent, Lucile; Vang, Derek; Nguyen, Julia; Benson, Barbara; Lei, Jianxun; Gupta, Kalpna

    2016-01-01

    Sickle cell anemia is a manifestation of a single point mutation in hemoglobin, but inflammation and pain are the insignia of this disease which can start in infancy and continue throughout life. Earlier studies showed that mast cell activation contributes to neurogenic inflammation and pain in sickle mice. Morphine is the common analgesic treatment but also remains a major challenge due to its side effects and ability to activate mast cells. We, therefore, examined cannabinoid receptor-specific mechanisms to mitigate mast cell activation, neurogenic inflammation and hyperalgesia, using HbSS-BERK sickle and cannabinoid receptor-2-deleted sickle mice. We show that cannabinoids mitigate mast cell activation, inflammation and neurogenic inflammation in sickle mice via both cannabinoid receptors 1 and 2. Thus, cannabinoids influence systemic and neural mechanisms, ameliorating the disease pathobiology and hyperalgesia in sickle mice. This study provides ‘proof of principle’ for the potential of cannabinoid/cannabinoid receptor-based therapeutics to treat several manifestations of sickle cell anemia. PMID:26703965

  19. Cannabinoid receptor-specific mechanisms to alleviate pain in sickle cell anemia via inhibition of mast cell activation and neurogenic inflammation.

    PubMed

    Vincent, Lucile; Vang, Derek; Nguyen, Julia; Benson, Barbara; Lei, Jianxun; Gupta, Kalpna

    2016-05-01

    Sickle cell anemia is a manifestation of a single point mutation in hemoglobin, but inflammation and pain are the insignia of this disease which can start in infancy and continue throughout life. Earlier studies showed that mast cell activation contributes to neurogenic inflammation and pain in sickle mice. Morphine is the common analgesic treatment but also remains a major challenge due to its side effects and ability to activate mast cells. We, therefore, examined cannabinoid receptor-specific mechanisms to mitigate mast cell activation, neurogenic inflammation and hyperalgesia, using HbSS-BERK sickle and cannabinoid receptor-2-deleted sickle mice. We show that cannabinoids mitigate mast cell activation, inflammation and neurogenic inflammation in sickle mice via both cannabinoid receptors 1 and 2. Thus, cannabinoids influence systemic and neural mechanisms, ameliorating the disease pathobiology and hyperalgesia in sickle mice. This study provides 'proof of principle' for the potential of cannabinoid/cannabinoid receptor-based therapeutics to treat several manifestations of sickle cell anemia. PMID:26703965

  20. Modulation of breast cancer cell viability by a cannabinoid receptor 2 agonist, JWH-015, is calcium dependent

    PubMed Central

    Hanlon, Katherine E; Lozano-Ondoua, Alysia N; Umaretiya, Puja J; Symons-Liguori, Ashley M; Chandramouli, Anupama; Moy, Jamie K; Kwass, William K; Mantyh, Patrick W; Nelson, Mark A; Vanderah, Todd W

    2016-01-01

    Introduction Cannabinoid compounds, both nonspecific as well as agonists selective for either cannabinoid receptor 1 (CB1) or cannabinoid receptor 2 (CB2), have been shown to modulate the tumor microenvironment by inducing apoptosis in tumor cells in several model systems. The mechanism of this modulation remains only partially delineated, and activity induced via the CB1 and CB2 receptors may be distinct despite significant sequence homology and structural similarity of ligands. Methods The CB2-selective agonist JWH-015 was used to investigate mechanisms downstream of CB2 activation in mouse and human breast cancer cell lines in vitro and in a murine mammary tumor model. Results JWH-015 treatment significantly reduced primary tumor burden and metastasis of luciferase-tagged murine mammary carcinoma 4T1 cells in immunocompetent mice in vivo. Furthermore, JWH-015 reduced the viability of murine 4T1 and human MCF7 mammary carcinoma cells in vitro by inducing apoptosis. JWH-015-mediated reduction of breast cancer cell viability was not dependent on Gαi signaling in vitro or modified by classical pharmacological blockade of CB1, GPR55, TRPV1, or TRPA1 receptors. JWH-015 effects were calcium dependent and induced changes in MAPK/ERK signaling. Conclusion The results of this work characterize the actions of a CB2-selective agonist on breast cancer cells in a syngeneic murine model representing how a clinical presentation of cancer progression and metastasis may be significantly modulated by a G-protein-coupled receptor. PMID:27186076

  1. A Cannabinoid Receptor Agonist N-Arachidonoyl Dopamine Inhibits Adipocyte Differentiation in Human Mesenchymal Stem Cells

    PubMed Central

    Ahn, Seyeon; Yi, Sodam; Seo, Won Jong; Lee, Myeong Jung; Song, Young Keun; Baek, Seung Yong; Yu, Jinha; Hong, Soo Hyun; Lee, Jinyoung; Shin, Dong Wook; Jeong, Lak Shin; Noh, Minsoo

    2015-01-01

    Endocannabinoids can affect multiple cellular targets, such as cannabinoid (CB) receptors, transient receptor potential cation channel, subfamily V, member 1 (TRPV1) and peroxisome proliferator-activated receptor γ (PPARγ). The stimuli to induce adipocyte differentiation in hBM-MSCs increase the gene transcription of the CB1 receptor, TRPV1 and PPARγ. In this study, the effects of three endocannabinoids, N-arachidonoyl ethanolamine (AEA), N-arachidonoyl dopamine (NADA) and 2-arachidonoyl glycerol (2-AG), on adipogenesis in hBM-MSCs were evaluated. The adipocyte differentiation was promoted by AEA whereas inhibited by NADA. No change was observed by the treatment of non-cytotoxic concentrations of 2-AG. The difference between AEA and NADA in the regulation of adipogenesis is associated with their effects on PPARγ transactivation. AEA can directly activate PPARγ. The effect of AEA on PPARγ in hBM-MSCs may prevail over that on the CB1 receptor mediated signal transduction, giving rise to the AEA-induced promotion of adipogenesis. In contrast, NADA had no effect on the PPARγ activity in the PPARγ transactivation assay. The inhibitory effect of NADA on adipogenesis in hBM-MSCs was reversed not by capsazepine, a TRPV1 antagonist, but by rimonabant, a CB1 antagonist/inverse agonist. Rimonabant by itself promoted adipogenesis in hBM-MSCs, which may be interpreted as the result of the inverse agonism of the CB1 receptor. This result suggests that the constantly active CB1 receptor may contribute to suppress the adipocyte differentiation of hBM-MSCs. Therefore, the selective CB1 agonists that are unable to affect cellular PPARγ activity inhibit adipogenesis in hBM-MSCs. PMID:25995819

  2. Cannabinoid CB1 receptor as a target for chlorpyrifos oxon and other organophosphorus pesticides.

    PubMed

    Quistad, Gary B; Nomura, Daniel K; Sparks, Susan E; Segall, Yoffi; Casida, John E

    2002-09-01

    Binding of the endocannabinoid anandamide or of Delta(9)-tetrahydrocannabinol to the agonist site of the cannabinoid receptor (CB1) is commonly assayed with [3H]CP 55,940. Potent long-chain alkylfluorophosphonate inhibitors of agonist binding suggest an additional, important and closely-coupled nucleophilic site, possibly undergoing phosphorylation. We find that the CB1 receptor is also sensitive to inhibition in vitro and in vivo by several organophosphorus pesticides and analogs. Binding of [3H]CP 55,940 to mouse brain CB1 receptor in vitro is inhibited 50% by chlorpyrifos oxon at 14 nM, chlorpyrifos methyl oxon at 64 nM and paraoxon, diazoxon and dichlorvos at 1200-4200 nM. Some 15 other organophosphorus pesticides and analogs are less active in vitro. The plant defoliant tribufos inhibits CB1 in vivo, without cholinergic poisoning signs, by 50% at 50 mg/kg intraperitoneally with a recovery half-time of 3-4 days, indicating covalent derivatization. [3H-ethyl]Chlorpyrifos oxon may be suitable for radiolabeling and characterization of this proposed nucleophilic site. PMID:12243867

  3. Activation of cannabinoid CB1 receptors in the ventral hippocampus improved stress-induced amnesia in rat.

    PubMed

    Mohammadmirzaei, Negin; Rezayof, Ameneh; Ghasemzadeh, Zahra

    2016-09-01

    The ventral hippocampus (VH) has a high distribution of cannabinoid CB1 receptors which are important in modulating stress responses. Stress exposure activates the hypothalamic-pituitary-adrenal axis (HPA) which can impact hippocampal formation to change hippocampus-based memories. The purpose of the present study was to determine the possible role of the VH cannabinoid CB1 receptors in stress-induced amnesia using a step-through passive avoidance procedure in male Wistar rats. In order to induce acute stress, the animals were placed on an elevated platform for different time periods (10, 20 and 30min). Our results indicated that post-training 20 and 30min exposure to stress, but not 10min, induced amnesia. Post-training microinjection of a cannabinoid CB1 receptor agonist, arachydonilcyclopropylamide (ACPA; 2.5-7.5ng/rat) into the VH (intra-VH) induced amnesia. Interestingly, post-training intra-VH microinjection of the same doses of ACPA improved stress-induced amnesia. On the other hand, post-training intra-VH microinjection of a selective CB1 receptor antagonist, AM-251 (20-50ng/rat) with exposure to an ineffective stress (10min) potentiated the effect of stress on memory consolidation and induced amnesia. It should be noted that post-training intra-VH microinjection of the same doses of AM-251 alone had no effect on memory consolidation. Our results revealed that post-training intra-VH microinjection of AM-251, prior to ACPA microinjection, inhibited the reversal effect of ACPA on acute elevated platform stress. Taken together, it can be concluded that exposure to post-training inescapable stress impaired memory consolidation. The impairing effects of stress on memory retrieval may be mediated by the VH cannabinoid CB1 receptors. PMID:27282634

  4. Involvement of PPAR receptors in the anticonvulsant effects of a cannabinoid agonist, WIN 55,212-2.

    PubMed

    Payandemehr, Borna; Ebrahimi, Ali; Gholizadeh, Ramtin; Rahimian, Reza; Varastehmoradi, Bardia; Gooshe, Maziar; Aghaei, Hossein Nayeb; Mousavizadeh, Kazem; Dehpour, Ahmad Reza

    2015-03-01

    Cannabinoid and PPAR receptors show well established interactions in a set of physiological effects. Regarding the seizure-modulating properties of both classes of receptors, the present study aimed to evaluate the roles of the PPAR-gamma, PPAR-alpha and CB1 receptors on the anticonvulsant effects of WIN 55,212-2 (WIN, a non selective cannabinoid agonist). The clonic seizure thresholds after intravenous administration of pentylenetetrazole (PTZ) were assessed in mice weighing 23-30 g. WIN increased the seizure threshold dose dependently. Pretreatment with pioglitazone, as a PPARγ agonist, potentiated the anticonvulsant effects of WIN, while PPARγ antagonist inhibited these anticonvulsant effects partially. On the other hand PPARα antagonist reduced the anticonvulsant effects of WIN significantly. Finally the combination of CB1 antagonist and PPARα antagonist could completely block the anticonvulsant properties of WIN. Taken together, these results show for the first time that a functional interaction exists between cannabinoid and PPAR receptors in the modulation of seizure susceptibility. PMID:25448777

  5. Prospects for cannabinoid therapies in basal ganglia disorders

    PubMed Central

    Fernández-Ruiz, Javier; Moreno-Martet, Miguel; Rodríguez-Cueto, Carmen; Palomo-Garo, Cristina; Gómez-Cañas, María; Valdeolivas, Sara; Guaza, Carmen; Romero, Julián; Guzmán, Manuel; Mechoulam, Raphael; Ramos, José A

    2011-01-01

    Cannabinoids are promising medicines to slow down disease progression in neurodegenerative disorders including Parkinson's disease (PD) and Huntington's disease (HD), two of the most important disorders affecting the basal ganglia. Two pharmacological profiles have been proposed for cannabinoids being effective in these disorders. On the one hand, cannabinoids like Δ9-tetrahydrocannabinol or cannabidiol protect nigral or striatal neurons in experimental models of both disorders, in which oxidative injury is a prominent cytotoxic mechanism. This effect could be exerted, at least in part, through mechanisms independent of CB1 and CB2 receptors and involving the control of endogenous antioxidant defences. On the other hand, the activation of CB2 receptors leads to a slower progression of neurodegeneration in both disorders. This effect would be exerted by limiting the toxicity of microglial cells for neurons and, in particular, by reducing the generation of proinflammatory factors. It is important to mention that CB2 receptors have been identified in the healthy brain, mainly in glial elements and, to a lesser extent, in certain subpopulations of neurons, and that they are dramatically up-regulated in response to damaging stimuli, which supports the idea that the cannabinoid system behaves as an endogenous neuroprotective system. This CB2 receptor up-regulation has been found in many neurodegenerative disorders including HD and PD, which supports the beneficial effects found for CB2 receptor agonists in both disorders. In conclusion, the evidence reported so far supports that those cannabinoids having antioxidant properties and/or capability to activate CB2 receptors may represent promising therapeutic agents in HD and PD, thus deserving a prompt clinical evaluation. LINKED ARTICLES This article is part of a themed issue on Cannabinoids in Biology and Medicine. To view the other articles in this issue visit http://dx.doi.org/10.1111/bph.2011.163.issue-7 PMID:21545415

  6. Human orexin/hypocretin receptors form constitutive homo- and heteromeric complexes with each other and with human CB1 cannabinoid receptors.

    PubMed

    Jäntti, Maria H; Mandrika, Ilona; Kukkonen, Jyrki P

    2014-03-01

    Human OX1 orexin receptors have been shown to homodimerize and they have also been suggested to heterodimerize with CB1 cannabinoid receptors. The latter has been suggested to be important for orexin receptor responses and trafficking. In this study, we wanted to assess the ability of the other combinations of receptors to also form similar complexes. Vectors for expression of human OX1, OX2 and CB1 receptors, C-terminally fused with either Renilla luciferase or GFP(2) green fluorescent protein variant, were generated. The constructs were transiently expressed in Chinese hamster ovary cells, and constitutive dimerization between the receptors was assessed by bioluminescence energy transfer (BRET). Orexin receptor subtypes readily formed homo- and hetero(di)mers, as suggested by significant BRET signals. CB1 receptors formed homodimers, and they also heterodimerized with both orexin receptors. Interestingly, BRET efficiency was higher for homodimers than for almost all heterodimers. This is likely to be due to the geometry of the interaction; the putatively symmetric dimers may place the C-termini in a more suitable orientation in homomers. Fusion of luciferase to an orexin receptor and GFP(2) to CB1 produced more effective BRET than the opposite fusions, also suggesting differences in geometry. Similar was seen for the OX1-OX2 interaction. In conclusion, orexin receptors have a significant propensity to make homo- and heterodi-/oligomeric complexes. However, it is unclear whether this affects their signaling. As orexin receptors efficiently signal via endocannabinoid production to CB1 receptors, dimerization could be an effective way of forming signal complexes with optimal cannabinoid concentrations available for cannabinoid receptors. PMID:24530395

  7. Behavioral effects of the cannabinoid CB1 receptor allosteric modulator ORG27569 in rats

    PubMed Central

    Ding, Yuanyuan; Qiu, Yanyan; Jing, Li; Thorn, David A; Zhang, Yanan; Li, Jun-Xu

    2014-01-01

    The cannabinoid CB1 receptor system is involved in feeding behaviors and the CB1 receptor antagonist SR141716A is an effective antiobesity drug. However, SR141716A also has serious side effects, which prompted the exploration of alternative strategies to modulate this important drug target. Recently a CB1 receptor allosteric modulating site has been discovered and the allosteric modulating activity of several modulators including ORG27569 has been characterized in vitro. Yet, little is known of the in vivo pharmacological effects of ORG27569. This study examined the behavioral pharmacology of ORG27569 in rats. ORG27569 (3.2–10 mg/kg, i.p.) selectively attenuated the hypothermic effects of CB1 receptor agonists CP55940 (0.1–1 mg/kg) and anandamide (3.2–32 mg/kg). In contrast, SR141716A only attenuated the hypothermic effects of CP55940 but not anandamide. SR141716A but not ORG27569 blocked CP55940-induced catalepsy and antinociception. In addition, ORG27569 did not modify SR141716A-elicited grooming and scratching behaviors. In feeding studies, ORG27569 decreased palatable and plain food intake which was partially blocked by CP55940. The hypophagic effect of ORG27569 developed tolerance after 4 days of daily 5.6 mg/kg treatment; however, the effect on body weight gain outlasted the drug treatment for 10 days. These data suggest that ORG27569 may not function as a CB1 receptor allosteric modulator in vivo, although its hypophagic activity still has potential therapeutic utility. PMID:25431655

  8. Cannabinoid type 1 receptor availability in the amygdala mediates threat processing in trauma survivors.

    PubMed

    Pietrzak, Robert H; Huang, Yiyun; Corsi-Travali, Stefani; Zheng, Ming-Qiang; Lin, Shu-fei; Henry, Shannan; Potenza, Marc N; Piomelli, Daniele; Carson, Richard E; Neumeister, Alexander

    2014-10-01

    Attentional bias to threat is a key endophenotype that contributes to the chronicity of trauma-related psychopathology. However, little is known about the neurobiology of this endophenotype and no known in vivo molecular imaging study has been conducted to evaluate candidate receptor systems that may be implicated in this endophenotype or the phenotypic expression of trauma-related psychopathology that comprises threat (ie, re-experiencing, avoidance, and hyperarousal) and loss (ie, emotional numbing, depression/dysphoria, generalized anxiety) symptomatology. Using the radioligand [(11)C]OMAR and positron emission tomography (PET), we evaluated the relationship between in vivo cannabinoid receptor type 1 (CB1) receptor availability in the amygdala, and performance on a dot-probe measure of attentional bias to threat, and clinician interview-based measures of trauma-related psychopathology. The sample comprised adults presenting with a broad spectrum of trauma-related psychopathology, ranging from nontrauma-exposed, psychiatrically healthy adults to trauma-exposed adults with severe trauma-related psychopathology. Results revealed that increased CB1 receptor availability in the amygdala was associated with increased attentional bias to threat, as well as increased severity of threat, but not loss, symptomatology; greater peripheral anandamide levels were associated with decreased attentional bias to threat. A mediation analysis further suggested that attentional bias to threat mediated the relationship between CB1 receptor availability in the amygdala and severity of threat symptomatology. These data substantiate a key role for compromised endocannabinoid function in mediating both the endophenotypic and phenotypic expression of threat symptomatology in humans. They further suggest that novel pharmacotherapies that target the CB1 system may provide a more focused, mechanism-based approach to mitigating this core aspect of trauma-related psychopathology. PMID

  9. Phencyclidine-induced social withdrawal results from deficient stimulation of cannabinoid CB₁ receptors: implications for schizophrenia.

    PubMed

    Seillier, Alexandre; Martinez, Alex A; Giuffrida, Andrea

    2013-08-01

    The neuronal mechanisms underlying social withdrawal, one of the core negative symptoms of schizophrenia, are not well understood. Recent studies suggest an involvement of the endocannabinoid system in the pathophysiology of schizophrenia and, in particular, of negative symptoms. We used biochemical, pharmacological, and behavioral approaches to investigate the role played by the endocannabinoid system in social withdrawal induced by sub-chronic administration of phencyclidine (PCP). Pharmacological enhancement of endocannabinoid levels via systemic administration of URB597, an inhibitor of endocannabinoid degradation, reversed social withdrawal in PCP-treated rats via stimulation of CB1 receptors, but reduced social interaction in control animals through activation of a cannabinoid/vanilloid-sensitive receptor. In addition, the potent CB agonist CP55,940 reversed PCP-induced social withdrawal in a CB₁-dependent manner, whereas pharmacological blockade of CB₁ receptors by either AM251 or SR141716 reduced the time spent in social interaction in control animals. PCP-induced social withdrawal was accompanied by a decrease of anandamide (AEA) levels in the amygdala and prefrontal cortex, and these deficits were reversed by URB597. As CB₁ receptors are predominantly expressed on GABAergic interneurons containing the anxiogenic peptide cholecystokinin (CCK), we also examined whether the PCP-induced social withdrawal resulted from deficient CB₁-mediated modulation of CCK transmission. The selective CCK2 antagonist LY225910 blocked both PCP- and AM251-induced social withdrawal, but not URB597 effect in control rats. Taken together, these findings indicate that AEA-mediated activation of CB₁ receptors is crucial for social interaction, and that PCP-induced social withdrawal results from deficient endocannabinoid transmission. PMID:23563893

  10. Cannabinoid Type 1 Receptor Availability in the Amygdala Mediates Threat Processing in Trauma Survivors

    PubMed Central

    Pietrzak, Robert H; Huang, Yiyun; Corsi-Travali, Stefani; Zheng, Ming-Qiang; Lin, Shu-fei; Henry, Shannan; Potenza, Marc N; Piomelli, Daniele; Carson, Richard E; Neumeister, Alexander

    2014-01-01

    Attentional bias to threat is a key endophenotype that contributes to the chronicity of trauma-related psychopathology. However, little is known about the neurobiology of this endophenotype and no known in vivo molecular imaging study has been conducted to evaluate candidate receptor systems that may be implicated in this endophenotype or the phenotypic expression of trauma-related psychopathology that comprises threat (ie, re-experiencing, avoidance, and hyperarousal) and loss (ie, emotional numbing, depression/dysphoria, generalized anxiety) symptomatology. Using the radioligand [11C]OMAR and positron emission tomography (PET), we evaluated the relationship between in vivo cannabinoid receptor type 1 (CB1) receptor availability in the amygdala, and performance on a dot-probe measure of attentional bias to threat, and clinician interview-based measures of trauma-related psychopathology. The sample comprised adults presenting with a broad spectrum of trauma-related psychopathology, ranging from nontrauma-exposed, psychiatrically healthy adults to trauma-exposed adults with severe trauma-related psychopathology. Results revealed that increased CB1 receptor availability in the amygdala was associated with increased attentional bias to threat, as well as increased severity of threat, but not loss, symptomatology; greater peripheral anandamide levels were associated with decreased attentional bias to threat. A mediation analysis further suggested that attentional bias to threat mediated the relationship between CB1 receptor availability in the amygdala and severity of threat symptomatology. These data substantiate a key role for compromised endocannabinoid function in mediating both the endophenotypic and phenotypic expression of threat symptomatology in humans. They further suggest that novel pharmacotherapies that target the CB1 system may provide a more focused, mechanism-based approach to mitigating this core aspect of trauma-related psychopathology. PMID:24820537