Science.gov

Sample records for endogenous morphine levels

  1. The Role of Endogenous D2 Receptor Levels in Morphine Addiction: A Correlative Study of Morphine Place Conditioning and In Vivo [3H]-Raclopride Binding

    SciTech Connect

    Khan, N.; Gatley, S.

    2004-01-01

    Dopamine is a neurotransmitter that has a wide array of effects on an individual’s mental state. It is vital in the regulation of motor skills and in generating the effects of substance abuse. This study examined the dopamine D2 receptors found in the striatum of the brain. The impetus for investigating this receptor lies in the perception that it plays an influential role in drug addiction. It has been conjectured on the basis of human PET studies that possession of low levels of D2 receptors will heighten an individual’s susceptibility to drug addiction. However, an alternative explanation of low D2 receptor levels in drug dependent individuals is that these levels are a consequence of drug abuse. To understand this phenomenon, the present study employed the paradigm of conditioned place preference (CPP). In CPP, individuals of an out-bred mouse strain are observed to spend time in environments where they had previously been exposed to a drug that is abused by humans. The drug chosen for our studies was morphine because it has been previously shown to generate a robust place preference in mice and is a prototypic abused drug in humans. D2 receptor levels were quantified using an in vivo binding study involving [3H]raclopride, a radioactive compound that binds to D2 receptors. The results showed a significant place preference for morphine following the conditioning procedure. Additionally, data from the binding analysis agreed with previous studies that the striatum contains high levels of D2 receptors. However, there was no consistent relationship between the extent of morphine CPP and D2 receptor levels as revealed by [3H]-RAC binding. This finding does not support the hypothesis that low levels of D2 receptors predispose a mouse to easy morphine conditioning. Further experiments are required to determine the ability to generalize our findings to other species and other drugs of abuse.

  2. Endogenous Cholinergic Neurotransmission Contributes to Behavioral Sensitization to Morphine

    PubMed Central

    Bajic, Dusica; Soiza-Reilly, Mariano; Spalding, Allegra L.; Berde, Charles B.; Commons, Kathryn G.

    2015-01-01

    Neuroplasticity in the mesolimbic dopaminergic system is critical for behavioral adaptations associated with opioid reward and addiction. These processes may be influenced by cholinergic transmission arising from the laterodorsal tegmental nucleus (LDTg), a main source of acetylcholine to mesolimbic dopaminergic neurons. To examine this possibility we asked if chronic systemic morphine administration affects expression of genes in ventral and ventrolateral periaqueductal gray at the level of the LDTg using rtPCR. Specifically, we examined gene expression changes in the area of interest using Neurotransmitters and Receptors PCR array between chronic morphine and saline control groups. Analysis suggested that chronic morphine administration led to changes in expression of genes associated, in part, with cholinergic neurotransmission. Furthermore, using a quantitative immunofluorescent technique, we found that chronic morphine treatment produced a significant increase in immunolabeling of the cholinergic marker (vesicular acetylcholine transporter) in neurons of the LDTg. Finally, systemic administration of the nonselective and noncompetitive neuronal nicotinic antagonist mecamylamine (0.5 or 2 mg/kg) dose-dependently blocked the expression, and to a lesser extent the development, of locomotor sensitization. The same treatment had no effect on acute morphine antinociception, antinociceptive tolerance or dependence to chronic morphine. Taken together, the results suggest that endogenous nicotinic cholinergic neurotransmission selectively contributes to behavioral sensitization to morphine and this process may, in part, involve cholinergic neurons within the LDTg. PMID:25647082

  3. Parkinson's disease, L-DOPA, and endogenous morphine: a revisit.

    PubMed

    Stefano, George B; Mantione, Kirk J; Králíčková, Milena; Ptacek, Radek; Kuzelova, Hana; Esch, Tobias; Kream, Richard M

    2012-08-01

    Clinical observations stemming from widespread employment of restorative L-3,4-dihydroxyphenylalanine (L-DOPA) therapy for management of dyskinesia in Parkinson's Disease (PD) patients implicate a regulatory role for endogenous morphine in central nervous system dopamine neurotransmission. Reciprocally, it appears that restorative L-DOPA administration has provided us with a compelling in vivo pharmacological model for targeting peripheral sites involved in endogenous morphine expression in human subjects. The biological activities underlying endogenous morphine expression and its interaction with its major precursor dopamine strongly suggest that endogenous morphine systems are reciprocally dysregulated in PD. These critical issues are examined from historical and current perspectives within our short review. PMID:22847214

  4. Endogenous morphine: up-to-date review 2011.

    PubMed

    Stefano, G B; Ptáček, R; Kuželová, H; Kream, R M

    2012-01-01

    Positive evolutionary pressure has apparently preserved the ability to synthesize chemically authentic morphine, albeit in homeopathic concentrations, throughout animal phyla. Despite the establishment of a progressively rigorous and mechanistically focused historical literature extending from the mid 1970s to the mid 1980s that supported the expression of chemically authentic morphine by animal cellular and organ systems, prejudicial scepticism and early dismissal by scientists and clinicians most often obscured widespread acceptance of the biological importance and medical implications of endogenous morphine. The current critical paper presents and evaluates key recent coordinated studies in endogenous morphine research, highlighting those that have advanced our understanding of the functional roles of cognate alkaloid-selective μ(3) and μ(4) opiate receptors. We propose that the expression of endogenous morphine by animal and human cells is designed to mediate homeopathic regulation of metabolic activity via activation of cognate μ(3) and μ(4) receptors that serve as transductive conduits for shortcircuit Ca(++) fluxes. The implications of endogenous morphine coupling to nitric oxide regulation of mitochondrial function, with special reference to the cardiovascular system, are now formulated after many years of neglect. PMID:22578954

  5. Co-morbidity and self medication in schizophrenia: involvement of endogenous morphine signaling mechanisms.

    PubMed

    Kream, Richard M; Kuzelova, Hana; Kralickova, Milena; Ptacek, Radek; Stefano, George B

    2012-10-01

    For over 30 years, empirical studies have demonstrated expression of chemically authentic morphine by diverse animal tissues and organs systems. De novo biosynthesis of endogenous morphine by animal cells displays striking similarities to the multi-enzyme mediated biosynthetic pathway previously characterized in great biochemical and molecular detail in opium poppy (Papaver somniferum). The committed enzyme step within this pathway involves an asymmetric Pictet-Spengler condensation of dopamine (DA) and 3,4 dihydroxyphenylacetaldehyde (DOPAL), the oxidation product of L- 3,4-dihydroxyphenylalanine (L-DOPA), to form the essential intermediate precursor tetrahydropapaveroline (THP). We have hypothesized that endogenous morphine is synthesized within peripheral sites via conversion of THP in a regulated biosynthetic pathway, or conversely, THP may be directly transported into the CNS and converted to endogenous morphine within a similar biosynthetic pathway. The fundamental chemical relationship of the prototype catecholamine DA and its immediate precursor L-DOPA to endogenous morphine expression indicates a novel reciprocally interactive mechanism that links catecholamine and "morphinergic" pathways in the activation and inhibition of key physiological responses, including higher order neural integration. Dysregulation of interactive DAergic and "morphinergic" signaling pathways within CNS foci may contribute to the etiological factors driving co-morbid behavioral syndromes in major psychiatric disorders. Our short review is designed to provide insights on comorbidity and self-medication in schizophrenia from a novel perspective involving endogenous morphine signaling mechanisms. PMID:22876887

  6. Nicotine, alcohol and cocaine coupling to reward processes via endogenous morphine signaling: the dopamine-morphine hypothesis.

    PubMed

    Stefano, George B; Bianchi, Enrica; Guarna, Massimo; Fricchione, Gregory L; Zhu, Wei; Cadet, Patrick; Mantione, Kirk J; Casares, Federico M; Kream, Richard M; Esch, Tobias

    2007-06-01

    Pleasure is described as a state or feeling of happiness and satisfaction resulting from an experience that one enjoys. We examine the neurobiological factors underlying reward processes and pleasure phenomena. With regard to possible negative effects of pleasure, we focus on addiction and motivational toxicity. Pleasure can serve cognition, productivity and health, but simultaneously promotes addiction and other negative behaviors. It is a complex neurobiological phenomenon, relying on reward circuitry or limbic activity. These processes involve dopaminergic signaling. Moreover, nicotine, cocaine and alcohol appear to exert their pleasure providing action via endogenous morphinergic mechanisms. Natural rewarding activities are necessary for survival and appetitive motivation, usually governing beneficial biological behaviors like eating, sex and reproduction. Social contacts can further facilitate the positive effects exerted by pleasurable experiences. However, artificial stimulants can be detrimental, since flexibility and normal control of behavior are deteriorated. Additionally, addictive drugs are capable of directly acting on reward pathways, now, in part, via endogenous morphine processes. PMID:17534245

  7. Evidence for a role of endogenous neurotensin in the development of sensitization to the locomotor stimulant effect of morphine.

    PubMed

    Lévesque, Karine; Lamarche, Caroline; Rompré, Pierre-Paul

    2008-10-10

    This experiment was aimed at exploring the role of endogenous neurotensin in the development of sensitization to the locomotor stimulant effect of morphine. During the induction phase (Days 1, 3, 5 and 7), male Long-Evans adult rats were treated with the neurotensin antagonist SR-48692 (160, 320 or 640 microg/kg, i.p.) or its vehicle, followed by morphine (5.0 mg/kg, i.p.) or its vehicle, and their locomotor activity (ambulatory, non-ambulatory and vertical activity) was measured for 2 h. One week after the last injection, each group received a single injection of morphine (2.5 mg/kg, i.p.) and their locomotor activity was again measured for 2 h (sensitization test, day 14). Results show that SR-48692 alone did not change locomotion. Morphine stimulated locomotor activity, an effect that was stronger on day 7 than on day 1. The two higher doses of SR-48692 attenuated the acute stimulant effect of morphine and prevented the observed increase from day 1 to day 7. The sensitization test on day 14 showed that rats pre-treated with morphine alone displayed significantly stronger ambulatory and vertical activity than vehicle pre-treated rats, a sensitization effect that was attenuated by SR-48692. The present results suggest that endogenous neurotensin contributes to the acute locomotor stimulant effect of morphine and to the induction of its sensitization. PMID:18706409

  8. Mapping of endogenous morphine-like compounds in the adult mouse brain: Evidence of their localization in astrocytes and GABAergic cells.

    PubMed

    Laux, Alexis; Muller, Arnaud H; Miehe, Monique; Dirrig-Grosch, Sylvie; Deloulme, Jean Christophe; Delalande, François; Stuber, Denise; Sage, Dominique; Van Dorsselaer, Alain; Poisbeau, Pierrick; Aunis, Dominique; Goumon, Yannick

    2011-08-15

    Endogenous morphine, morphine-6-glucuronide, and codeine, which are structurally identical to vegetal alkaloids, can be synthesized by mammalian cells from dopamine. However, the role of brain endogenous morphine and its derivative compounds is a matter of debate, and knowledge about its distribution is lacking. In this study, by using a validated antibody, we describe a precise mapping of endogenous morphine-like compounds (morphine and/or its glucuronides and/or codeine) in the mouse brain. First, a mass spectrometry approach confirmed the presence of morphine and codeine in mouse brain, but also, of morphine-6-glucuronide and morphine-3-glucuronide representing two metabolites of morphine. Second, light microscopy allowed us to observe immunopositive cell somas and cytoplasmic processes throughout the mouse brain. Morphine-like immunoreactivity was present in various structures including the hippocampus, olfactory bulb, band of Broca, basal ganglia, and cerebellum. Third, by using confocal microscopy and immunofluroscence co-localization, we characterized cell types containing endogenous opiates. Interestingly, we observed that morphine-like immunoreactivity throughout the encephalon is mainly present in γ-aminobutyric acid (GABA)ergic neurons. Astrocytes were also labeled throughout the entire brain, in the cell body, in the cytoplasmic processes, and in astrocytic feet surrounding blood vessels. Finally, ultrastructural localization of morphine-like immunoreactivity was determined by electron microscopy and showed the presence of morphine-like label in presynaptic terminals in the cerebellum and postsynaptic terminals in the rest of the mouse brain. In conclusion, the presence of endogenous morphine-like compounds in brain regions not usually involved in pain modulation opens the exciting opportunity to extend the role and function of endogenous alkaloids far beyond their analgesic functions. PMID:21456021

  9. Nociceptin levels in the cerebrospinal fluid of chronic pain patients with or without intrathecal administration of morphine.

    PubMed

    Raffaeli, William; Samolsky Dekel, Boaz Gedaliahu; Landuzzi, Daniela; Caminiti, Alessandro; Righetti, Donatella; Balestri, Marco; Montanari, Francesco; Romualdi, Patrizia; Candeletti, Sanzio

    2006-10-01

    The neuropeptide nociceptin/orphanin FQ (N/OFQ) is the endogenous ligand for the opioid-like receptor ORL-1 and is thought to be involved in pain transmission and modulation. Human studies have not yet defined its role in pain patients. The aims of this study were 1) to verify the presence of N/OFQ in the cerebrospinal fluid (CSF) of human controls and patients with chronic noncancer pain, including those treated with intrathecally administered morphine, and 2) to determine whether pain or treatment with long-term intrathecal morphine influences its levels. The CSF of 27 patients (nine controls and 18 with chronic noncancer pain, of whom 12 were treated chronically with intrathecally administered morphine and six were opioid naïve) was analyzed, blindly, with radioimmunoassay methods. N/OFQ was detected in all patients. Mean CSF concentrations were lowest in the morphine-treated group and highest in the untreated chronic pain patients (12.06+/-1.19 and 57.41+/-10.06 fmol/ml, respectively), and the difference between the morphine-treated group and controls was statistically significant (44.72+/-13.56 fmol/ml, P<0.05). The presence of N/OFQ peptide in human CSF may correlate with biological activities that are influenced by different pain states and long-term intrathecal-morphine treatment. Further studies should verify whether the determination of this peptide CSF level may provide information on opioid treatment efficacy and on the presence of opioid tolerance. PMID:17000354

  10. Modulation of morphine antinociception in the mouse by endogenous nitric oxide.

    PubMed Central

    Brignola, G; Calignano, A; Di Rosa, M

    1994-01-01

    1. L-Arginine (100-1000 mg kg-1) administered orally (p.o.) or intraperitoneally (i.p.), but not intracerebroventricularly (i.c.v., 0.08 mg per mouse), reduced the antinociceptive effect of morphine (0.5-10 mg kg-1 s.c.) assessed in mice using three different tests: hot plate, tail-flick and acetic acid-induced writhing. D-Arginine (up to 1000 mg kg-1 p.o. or i.p.) was ineffective. 2. NG-Monomethyl-L-arginine (L-NMMA, 5-50 mg kg-1 i.p.) and NG-nitro-L-arginine methyl ester (L-NAME, 5- 30 mg kg-1 i.p.), but not NG-nitro-D-arginine methyl ester (D-NAME, 30 mg kg-1 i.p.), reversed in all assays the effect of L-arginine on morphine-induced antinociception. 3. Morphine (10 mg kg-1 s.c.), L-arginine (1000 mg kg-1 p.o.) or L-NAME (30 mg kg-1 i.p.), either alone or in combination, did not produce changes in locomotor activity or sensorimotor performance of animals. 4. These results suggest that the L-arginine-nitric oxide pathway plays a modulating role in the morphine-sensitive nociceptive processes. PMID:7889294

  11. Stereospecific effects of morphine on plasma opioid peptide levels and nociception in dogs

    SciTech Connect

    Adams, M.L.; Morris, D.L.; Dewey, W.L.

    1986-03-05

    ..beta..-endorphin, (met)enkephalin, and (leu)enkephalin were quantitated in canine plasma by radioimmunoassay (RIA) after extraction of the peptides on Sep Pak C18 cartridges. Plasma samples were taken one hour after a 10 mg/kg s.c. injection of (-)-morphine SO/sub 4/ or (+)-morphine HBr. Antinociception, measured by a dog tail-flick test, and morphine-induced emesis, salivation, diarrhea, and ataxia were quantitated before sampling. Control levels for each dog were taken one week earlier at the same time of day after saline injections. Antinociception, morphine signs, and opioid peptide levels in plasma were significantly increased by (-)-morphine. Antinociception increased from zero to 83.54 +/- 11.0%. The number of morphine signs increased from zero to 2.9 +/- 0.28 per dog. ..beta..-endorphin levels increased from 44.52 +/- 4.25 to 90.6 +/- 7.38 pg/ml; (met)enkephalin levels increased from 253.56 +/- 22.04 to 497.1 +/- 58.12 pg/ml; (leu)-enkephalin increased from 141.65 +/- 12.9 to 313.24 +/- 35.95 pg/ml. None of these effects were observed in the dogs that received (+)-morphine. The conclude that morphine stereospecifically inhibits nociception, induces observable signs, and increases plasma opioid peptide levels in dogs.

  12. Naloxone-precipitated morphine withdrawal increases pontine glutamate levels in the rat.

    PubMed

    Zhang, T; Feng, Y; Rockhold, R W; Ho, I K

    1994-01-01

    Extracellular fluid (ECF) levels of glutamate (Glu) and aspartate (Asp) were measured in the locus coeruleus (LC) during morphine withdrawal by using microdialysis in conscious morphine-dependent Sprague-Dawley rats. Guide cannulae were implanted chronically and rats were given intracerebroventricular (i.c.v.) infusions of morphine (26 nmol/1 microliters/hr) or saline (1 microliters/hr) for 3 days. Microdialysis probes (2 mm tip) were inserted into the LC 24 hr before precipitation of withdrawal by i.c.v. injection of naloxone (12 or 48 nmol/5 microliters). Behavioral evidence of withdrawal (teeth-chattering, wet-dog shakes, etc.) was detected following naloxone challenge in morphine, but not in saline-infused rats. Increases (P < 0.01) in ECF levels of Glu (and Asp, to a lesser degree) were noted after naloxone-precipitated withdrawal only in the morphine group. The ECF Glu levels in the LC increased from 9.6 +/- 2.7 to 15.5 +/- 5.0 microM following 12 nmol/5 microliters naloxone, and from 9.5 +/- 1.9 to 20.5 +/- 3.3 microM following 48 nmol/5 microliters naloxone, before and in the first 15 min sample after the precipitation of withdrawal in the morphine-dependent rats, respectively. These results provide direct evidence to support the role of excitatory amino acids within the LC in morphine withdrawal. PMID:7912397

  13. Delay of Morphine Tolerance by Palmitoylethanolamide

    PubMed Central

    Di Cesare Mannelli, Lorenzo; Corti, Francesca; Micheli, Laura; Zanardelli, Matteo; Ghelardini, Carla

    2015-01-01

    In spite of the potency and efficacy of morphine, its clinical application for chronic persistent pain is limited by the development of tolerance to the antinociceptive effect. The cellular and molecular mechanisms underlying morphine tolerance are complex and still unclear. Recently, the activation of glial cells and the release of glia-derived proinflammatory mediators have been suggested to play a role in the phenomenon. N-Palmitoylethanolamine (PEA) is an endogenous compound with antinociceptive effects able to reduce the glial activation. On this basis, 30 mg kg−1 PEA was subcutaneously daily administered in morphine treated rats (10 mg kg−1 intraperitoneally, daily). PEA treatment significantly attenuated the development of tolerance doubling the number of days of morphine antinociceptive efficacy in comparison to the vehicle + morphine group. PEA prevented both microglia and astrocyte cell number increase induced by morphine in the dorsal horn; on the contrary, the morphine-dependent increase of spinal TNF-α levels was not modified by PEA. Nevertheless, the immunohistochemical analysis revealed significantly higher TNF-α immunoreactivity in astrocytes of PEA-protected rats suggesting a PEA-mediated decrease of cytokine release from astrocyte. PEA intervenes in the nervous alterations that lead to the lack of morphine antinociceptive effects; a possible application of this endogenous compound in opioid-based therapies is suggested. PMID:25874232

  14. Cytochrome P450 3A Enzymes Catalyze the O6-Demethylation of Thebaine, a Key Step in Endogenous Mammalian Morphine Biosynthesis.

    PubMed

    Kramlinger, Valerie M; Alvarado Rojas, Mónica; Kanamori, Tatsuyuki; Guengerich, F Peter

    2015-08-14

    Morphine, first characterized in opium from the poppy Papaver somniferum, is one of the strongest known analgesics. Endogenous morphine has been identified in several mammalian cells and tissues. The synthetic pathway of morphine in the opium poppy has been elucidated. The presence of common intermediates in plants and mammals suggests that biosynthesis occurs through similar pathways (beginning with the amino acid L-tyrosine), and the pathway has been completely delineated in plants. Some of the enzymes in the mammalian pathway have been identified and characterized. Two of the latter steps in the morphine biosynthesis pathway are demethylation of thebaine at the O(3)- and the O(6)-positions, the latter of which has been difficult to demonstrate. The plant enzymes responsible for both the O(3)-demethylation and the O(6)-demethylation are members of the Fe(II)/α-ketoglutarate-dependent dioxygenase family. Previous studies showed that human cytochrome P450 (P450) 2D6 can catalyze thebaine O(3)-demethylation. We report that demethylation of thebaine at the O(6)-position is selectively catalyzed by human P450s 3A4 and 3A5, with the latter being more efficient, and rat P450 3A2. Our results do not support O(6)-demethylation of thebaine by an Fe(II)/α-ketoglutarate-dependent dioxygenase. In rat brain microsomes, O(6)-demethylation was inhibited by ketoconazole, but not sulfaphenazole, suggesting that P450 3A enzymes are responsible for this activity in the brain. An alternate pathway to morphine, oripavine O(6)-demethylation, was not detected. The major enzymatic steps in mammalian morphine synthesis have now been identified. PMID:26157146

  15. Morphine Produces Immunosuppressive Effects in Nonhuman Primates at the Proteomic and Cellular Levels*

    PubMed Central

    Brown, Joseph N.; Ortiz, Gabriel M.; Angel, Thomas E.; Jacobs, Jon M.; Gritsenko, Marina; Chan, Eric Y.; Purdy, David E.; Murnane, Robert D.; Larsen, Kay; Palermo, Robert E.; Shukla, Anil K.; Clauss, Theresa R.; Katze, Michael G.; McCune, Joseph M.; Smith, Richard D.

    2012-01-01

    Morphine has long been known to have immunosuppressive properties in vivo, but the molecular and immunologic changes induced by it are incompletely understood. To explore how these changes interact with lentiviral infections in vivo, animals from two nonhuman primate species (African green monkeys and pigtailed macaques) were provided morphine and studied using a systems biology approach. Biological specimens were obtained from multiple sources (e.g. lymph node, colon, cerebrospinal fluid, and peripheral blood) before and after the administration of morphine (titrated up to a maximum dose of 5 mg/kg over a period of 20 days). Cellular immune, plasma cytokine, and proteome changes were measured and morphine-induced changes in these parameters were assessed on an interorgan, interindividual, and interspecies basis. In both species, morphine was associated with decreased levels of Ki-67+ T-cell activation but with only minimal changes in overall T-cell counts, neutrophil counts, and NK cell counts. Although changes in T-cell maturation were observed, these varied across the various tissue/fluid compartments studied. Proteomic analysis revealed a morphine-induced suppressive effect in lymph nodes, with decreased abundance of protein mediators involved in the functional categories of energy metabolism, signaling, and maintenance of cell structure. These findings have direct relevance for understanding the impact of heroin addiction and the opioids used to treat addiction as well as on the potential interplay between opioid abuse and the immunological response to an infective agent. PMID:22580588

  16. Effect of Genistein on reproductive parameter and serum nitric oxide levels in morphine-treated mice

    PubMed Central

    Jalili, Cyrus; Ahmadi, Sharareh; Roshankhah, Shiva; Salahshoor, MohammadReza

    2016-01-01

    Background: The predominant phytoestrogen in soy and derived products is the isoflavone Genistein. Genistein has antioxidant properties. Morphine is a main psychoactive chemical in opium that can increase the generation of free radicals and therefore it could adversely affects the spermatogenesis. Objective: The main goal was to investigate whether the Genistein could protect morphine adverse effects on sperm cells viability, count, motility, and testis histology and testosterone hormone and nitric oxide in blood serum. Materials and Methods: In this study, various doses of Genistein (0, 1, 2, and 3 mg/kg) and Genistein plus morphine (0, 1, 2, and 3 mg/kg) were administered interaperitoneally to 48 male mice for 30 consequent days. These mice were randomly assigned to 8 groups (n=6) and sperm parameters (sperm cells viability, count, motility and morphology), testis weight and histology, testosterone hormone (ELISA method), FSH and LH hormones (immunoradiometry) and serum nitric oxide (griess assay) were analyzed and compared. Results: The results indicated that morphine administration significantly decreased testosterone (0.03 ng/mg) LH and FSH level, histological parameters, count, viability (55.3%), morphology and motility of sperm cells (1%), testis weight (0.08 gr) and increase nitric oxide compared to saline group (p=0.00). However, administration of Genistein and Genistein plus morphine significantly boosted motility, morphology, count, viability of sperm cells, seminiferous tubules diameter, germinal thickness, testosterone, LH and FSH while decrease nitric oxide level in all groups compared to morphine group (p<0.025). Conclusion: It seems that Genistein administration could increase the quality of spermatozoa and prevent morphine- induced adverse effects on sperm parameters. PMID:27200423

  17. Post-mortem levels and tissue distribution of codeine, codeine-6-glucuronide, norcodeine, morphine and morphine glucuronides in a series of codeine-related deaths.

    PubMed

    Frost, Joachim; Løkken, Trine Nordgård; Helland, Arne; Nordrum, Ivar Skjåk; Slørdal, Lars

    2016-05-01

    This article presents levels and tissue distribution of codeine, codeine-6-glucuronide (C6G), norcodeine, morphine and the morphine metabolites morphine-3-glucuronide (M3G) and morphine-6-glucuronide (M6G) in post-mortem blood (peripheral and heart blood), vitreous fluid, muscle, fat and brain tissue in a series of 23 codeine-related fatalities. CYP2D6 genotype is also determined and taken into account. Quantification of codeine, C6G, norcodeine, morphine, M3G and M6G was performed with a validated solid phase extraction LC-MS method. The series comprise 19 deaths (83%) attributed to mixed drug intoxication, 4 deaths (17%) attributed to other causes of death, and no cases of unambiguous monointoxication with codeine. The typical peripheral blood concentration pattern in individual cases was C6G≫codeine≫norcodeine>morphine, and M3G>M6G>morphine. In matrices other than blood, the concentration pattern was similar, although in a less systematic fashion. Measured concentrations were generally lower in matrices other than blood, especially in brain and fat, and in particular for the glucuronides (C6G, M3G and M6G) and, to some extent, morphine. In brain tissue, the presumed active moieties morphine and M6G were both below the LLOQ (0.0080mg/L and 0.058mg/L, respectively) in a majority of cases. In general, there was a large variability in both measured concentrations and calculated blood/tissue concentration ratios. There was also a large variability in calculated ratios of morphine to codeine, C6G to codeine and norcodeine to codeine in all matrices, and CYP2D6 genotype was not a reliable predictor of these ratios. The different blood/tissue concentration ratios showed no systematic relationship with the post-mortem interval. No coherent degradation or formation patterns for codeine, morphine, M3G and M6G were observed upon reanalysis in peripheral blood after storage. PMID:26986973

  18. Morphine Produces Immunosuppressive Effects in Non-human Primates at the Proteomic and Cellular Levels

    SciTech Connect

    Brown, Joseph N.; Ortiz, Gabriel M.; Angel, Thomas E.; Jacobs, Jon M.; Gritsenko, Marina A.; Chan, Eric Y.; Purdy, David E.; Murnane, Robert D.; Larsen, Kay; Palermo, Robert E.; Shukla, Anil K.; Clauss, Therese RW; Katze, Michael G.; McCune, Joseph M.; Smith, Richard D.

    2012-05-11

    Morphine has long been known to have immunosuppressive properties in vivo, but the molecular and immunologic changes induced by it are incompletely understood. As a prelude to understanding how these changes might interact with lentiviral infection in vivo, animals from two non-human primate (NHP) species [African green monkey (AGMs) and pigtailed macaque (PTs)] were provided morphine and studied using a systems biology approach. Biological specimens were obtained from multiple sources (e.g., lymph node, colon, cerebrospinal fluid (CSF), and peripheral blood) before and after the administration of morphine (titrated up to a maximum dose of 5 mg/kg over a period of 20 days). Cellular immune, plasma cytokine, and proteome changes were measured and morphine-induced changes in these parameters were assessed on an inter-organ, inter-individual, and inter-species basis. In both species, morphine was associated with decreased levels of (Ki-67+) T cell activation but with only minimal changes in overall T cell counts, neutrophil counts, and NK cells counts. While changes in T cell maturation were observed, these varied across the various tissue/fluid compartments studied. Proteomic analysis revealed a morphine-induced suppressive effect in the lymph node, with decreased abundance of protein mediators involved in the functional categories of energy metabolism, signaling, and maintenance of cell structure. These findings have relevance for understanding the impact of heroin addiction and the opioids used to treat addiction as well as on the interplay between opioid abuse and the response to infection with agents such as the human immunodeficiency virus, type 1 (HIV).

  19. Acute intermittent morphine increases preprodynorphin and kappa opioid receptor mRNA levels in the rat brain.

    PubMed

    Wang, X M; Zhou, Y; Spangler, R; Ho, A; Han, J S; Kreek, M J

    1999-03-20

    We determined the effects of morphine on mRNA levels for the opioid ligands preprodynorphin (PPD) and preproenkephalin (PPE) and the kappa opioid receptor (KOR). Rats received six injections of morphine (6.25 mg/kg/injection) every 2 h, and were sacrificed 30 min later. mRNA levels were measured in brain tissue after removal of the cortex, cerebellum and brainstem. There were increases in PPD and KOR mRNA levels (P<0.05 and P<0.005, respectively), with no alteration of PPE. These alterations in the kappa/dynorphin system may counter morphine-induced effects on the brain. PMID:10095091

  20. Low dose morphine adjuvant therapy for enhanced efficacy of antipsychotic drug action: potential involvement of endogenous morphine in the pathophysiology of schizophrenia.

    PubMed

    Stefano, George B; Králíčková, Milena; Ptacek, Radek; Kuzelova, Hana; Esch, Tobias; Kream, Richard M

    2012-07-01

    Major thematic threads linking extensive preclinical and clinical efforts have established a working mechanistic scheme whereby atypical antipsychotic drugs ameliorate negative DSM IV diagnostic criteria by effecting relatively potent blockade of serotonin (5-HT)(2A) receptors coupled with weaker antagonism of dopamine D(2) receptors in frontal cortical areas. These contentions are more or less supported by in vitro binding experiments employing cloned receptors on cultured cells, although significant functional involvement of 5-HT(2C) receptors has also been proposed. It is interesting that a key statistical analysis indicates a major shift in usage back to typical antipsychotic agents for management of schizophrenia from 1995-2008, whereas off-label usage of atypical antipsychotic agents was markedly increased or expanded for bipolar affective disorder. Importantly, meta-analyses generally did not support efficacy differences between the other atypical antipsychotics compared with the older typical agents. A critical examination of putative functional linkages of morphine and its type-selective mu opioid receptor to higher order cortical regulation of cognitive processes may provide novel insights into human behavioral processes that are severely impaired in schizophrenia spectrum disorders. PMID:22739740

  1. Morphine modulates mouse hippocampal progenitor cell lineages by up-regulating miR-181a level

    PubMed Central

    Xu, Chi; Zhang, Yue; Zheng, Hui; Loh, Horace H.; Law, Ping-Yee

    2014-01-01

    The mechanism by which addictive drugs such as morphine regulate adult neurogenesis remains elusive. We now demonstrate that morphine can regulate neurogenesis by control of miR-181a and subsequent hippocampal neural progenitor cell (hNPC) lineages. In the presence of morphine, hNPCs preferentially differentiated into astrocytes, an effect blocked by the specific μ-opioid receptor antagonist, Cys2-Tyr3-Orn5-Pen7-amide. This effect was mediated by the Prox1/Notch1 pathway as demonstrated by an increase in Notch1 level in the morphine- but not fentanyl-treated hNPCs, and blocked by over-expression of Notch1 siRNA. Over-expression of Prox1 siRNA up-regulated Notch1 level and potentiated the morphine-induced lineage changes. Prox1 transcript level was regulated by direct interaction between miR-181a and its 3′UTR sequence. In vitro and in vivo treatment with morphine resulted in an increase in miR-181a level in hNPCs and mouse hippocampi, respectively. Over-expression of miR-181a mimics reduced Prox1 levels, increased Notch1 levels and enhanced hNPCs differentiation into astrocytes. Meanwhile, over-expression of the miR-181a inhibitor raised Prox1 levels, decreased Notch1 levels and subsequently blocked the morphine-induced lineage changes. Thus, by modulating Prox1/Notch1 activities via miR-181a, morphine influences the fate of differentiating hNPCs differentiation and therefore the ultimate quantities of mature neurons and astrocytes. PMID:24964978

  2. Morphine Rectal

    MedlinePlus

    Rectal morphine is used to relieve moderate to severe pain. Morphine is in a class of medications called opiate ( ... Rectal morphine comes as a suppository to insert in the rectum. It is usually inserted every 4 hours. Use ...

  3. Altering dietary levels of protein or vitamins and minerals does not modify morphine-induced analgesia in male rats.

    PubMed

    Kanarek, R B; D'Anci, K E; Przypek, J M; Mathes, W F

    1999-02-01

    Previous research has demonstrated that chronic intake of nutritive sweet solutions, but not nonnutritive sweet solutions, enhances morphine's analgesic potency. To separate out the effects of sweet taste from other changes in dietary intake, which result when rats consume a sucrose solution, the effects of altering dietary levels of protein, or vitamins and minerals on morphine-induced analgesia were examined. In Experiment 1, 40 male Long-Evans rats were fed standard chow or a semipurified diet containing either 10, 20, or 40% protein. Three weeks later, antinociceptive responses to morphine were examined using the tail flick procedure. Tail flick latencies were measured immediately prior to and 30, 60, and 90 min after the administration of morphine sulfate (0.0, 1.25, 2.5, and 5.0 mg/kg, SC). At all three measurement times, antinociceptive responses increased directly as a function of the dose of morphine, but did not differ as a function of diet. In Experiment 2, 24 rats were maintained on either standard laboratory chow or semipurified diets containing 20% protein and either 100% or 25% of the recommended levels of vitamins and minerals for 3 weeks. Tail flick latencies were measured immediately prior to and 30 min after injections (SC) of 2.5 mg/kg morphine sulfate. This procedure was repeated until a cumulative dose of 10.0 mg/kg was obtained. Tail flick latencies increased significantly as a function of drug dose, but did not differ across dietary conditions. These results demonstrate that the increase in morphine-induced analgesia seen in rats consuming a sucrose solution is not due to alterations in either protein or micronutrient intake. PMID:9972684

  4. Plasma malondialdehyde levels and opiate withdrawal signs observed in rats treated with morphine plus naloxone: effects of alpha-lipoic acid administration.

    PubMed

    Pinelli, Arnaldo; Cighetti, Giuliana; Trivulzio, Silvio

    2008-08-01

    A number of experimental studies have found that reactive oxygen species are involved during morphine treatment or withdrawal. The aims of this study were to analyse whether morphine administration and/or removal are related to peroxide generation and/or signs of withdrawal in rats, and whether the changes in antioxidant status induced by the administration of an antioxidant may modify peroxide levels and behavioural signs. We injected morphine or morphine and naloxone into rats and evaluated the plasma levels of peroxide malondialdehyde (MDA) and the appearance of withdrawal signs. We also investigated the effects on these parameters induced by the administration of the antioxidant alpha-lipoic acid (LA). Morphine treatment increased MDA levels. Abrupt naloxone-induced morphine withdrawal caused a further and significant increase in MDA, and the appearance of withdrawal signs such as abnormal fecal excretion, shortened latency times and jumping. The administration of LA lowered MDA levels in the rats treated with morphine or morphine plus naloxone, and also decreased MDA values and abstinence signs in the animals treated with morphine plus naloxone. The effects of LA were attributed to its capacity to scavenge peroxides and interfere with the biogenesis of the arachidonic acid metabolites involved in the expression of abstinence symptoms. PMID:18705754

  5. Pain Levels Within 24 Hours After UFE: A Comparison of Morphine and Fentanyl Patient-Controlled Analgesia

    SciTech Connect

    Kim, Hyun S. Czuczman, Gregory J.; Nicholson, Wanda K.; Pham, Luu D.; Richman, Jeffrey M.

    2008-11-15

    The purpose of this study was to assess the presence and severity of pain levels during 24 h after uterine fibroid embolization (UFE) for symptomatic leiomyomata and compare the effectiveness and adverse effects of morphine patient-controlled analgesia (PCA) versus fentanyl PCA. We carried out a prospective, nonrandomized study of 200 consecutive women who received UFE and morphine or fentanyl PCA after UFE. Pain perception levels were obtained on a 0-10 scale for the 24-h period after UFE. Linear regression methods were used to determine pain trends and differences in pain trends between two groups and the association between pain scores and patient covariates. One hundred eighty-five patients (92.5%) reported greater-than-baseline pain after UFE, and 198 patients (99%) required IV opioid PCA. One hundred thirty-six patients (68.0%) developed nausea during the 24-h period. Seventy-two patients (36%) received morphine PCA and 128 (64%) received fentanyl PCA, without demographic differences. The mean dose of morphine used was 33.8 {+-} 26.7 mg, while the mean dose of fentanyl was 698.7 {+-} 537.4 {mu}g. Using this regimen, patients who received morphine PCA had significantly lower pain levels than those who received fentanyl PCA (p < 0.0001). We conclude that patients develop pain requiring IV opioid PCA within 24 h after UFE. Morphine PCA is more effective in reducing post-uterine artery embolization pain than fentanyl PCA. Nausea is a significant adverse effect from opioid PCA.

  6. Morphine Oral

    MedlinePlus

    ... relieve moderate to severe pain. Morphine extended-release tablets and capsules are only used to relieve severe ( ... use of other pain medications. Morphine extended-release tablets and capsules should not be used to treat ...

  7. Preventive Effect of Central Administration of Venlafaxine on Morphine Physical Dependence, Nociception, and Blood Cortisol Level in Rat

    PubMed Central

    Motaghinejad, Majid; Ebrahimzadeh, Andia; Shabab, Behnaz

    2014-01-01

    Background: Chronic abuse of opiates induces dependency, but the neurobiological mechanisms of this event remain unclear. The aim of this study was to evaluate the effects of intracerebroventricular of venlafaxine on the morphine dependence and pain perception. Methods: A total of 80 adult male rats were divided into two major groups: (1) 40 of them was divided into groups of positive control (morphine dependent) negative control (received saline) and morphine dependent groups under treatment by central administration of venlafaxine at various dosages (25, 50, or 100 μg), after drug treatment total withdrawal index (TWI), latency time of withdrawal syndrome expression and blood cortisol as marker of anxiety were measured and compared with positive control and negative control. (2) Forty rats were grouped in control; indometacin treated (5 mg/kg) and grouped which received central administration of venlafaxine at three doses (25, 50, or 100 μg) and then pain perception and expression was assessed in the writhing test (acetic acid induced abdominal constriction), tail flick, and hot plate test. Results: Central administration of three doses (25, 50, or 100 μg,) of venlafaxine attenuates TWI to 47 ± 1.2, 38 ± 1.5, and 23 ± 1.1 and decrease blood cortisol level to 14 ± 1, 13.75 ± 0.5, and 12.5 ± 0.8, this decreases was significant in comparison with the positive control group (P < 0.05). Central administration of venlafaxine at mentioned doses significantly attenuates pain response with 37%, 24%, and 20% inhibition in writhing test, 69%, 34%, and 23% inhibition in hot plate test, and 29%, 23%, and 15% inhibition in tail flick test in comparison with control group (P < 0.05). Conclusions: This study suggested that central administration of venlafaxine attenuated morphine withdrawal index and can be effective in modulation of pain that was induced by morphine dependency. PMID:25538838

  8. Optogenetic elevation of endogenous glucocorticoid level in larval zebrafish

    PubMed Central

    De Marco, Rodrigo J.; Groneberg, Antonia H.; Yeh, Chen-Min; Castillo Ramírez, Luis A.; Ryu, Soojin

    2013-01-01

    The stress response is a suite of physiological and behavioral processes that help to maintain or reestablish homeostasis. Central to the stress response is the hypothalamic-pituitary-adrenal (HPA) axis, as it releases crucial hormones in response to stress. Glucocorticoids (GCs) are the final effector hormones of the HPA axis, and exert a variety of actions under both basal and stress conditions. Despite their far-reaching importance for health, specific GC effects have been difficult to pin-down due to a lack of methods for selectively manipulating endogenous GC levels. Hence, in order to study stress-induced GC effects, we developed a novel optogenetic approach to selectively manipulate the rise of GCs triggered by stress. Using this approach, we could induce both transient hypercortisolic states and persistent forms of hypercortisolaemia in freely behaving larval zebrafish. Our results also established that transient hypercortisolism leads to enhanced locomotion shortly after stressor exposure. Altogether, we present a highly specific method for manipulating the gain of the stress axis with high temporal accuracy, altering endocrine and behavioral responses to stress as well as basal GC levels. Our study offers a powerful tool for the analysis of rapid (non-genomic) and delayed (genomic) GC effects on brain function and behavior, feedbacks within the stress axis and developmental programming by GCs. PMID:23653595

  9. Prohormone convertase 2 (PC2) null mice have increased mu opioid receptor levels accompanied by altered morphine-induced antinociception, tolerance and dependence.

    PubMed

    Lutfy, K; Parikh, D; Lee, D L; Liu, Y; Ferrini, M G; Hamid, A; Friedman, T C

    2016-08-01

    Chronic morphine treatment increases the levels of prohormone convertase 2 (PC2) in brain regions involved in nociception, tolerance and dependence. Thus, we tested if PC2 null mice exhibit altered morphine-induced antinociception, tolerance and dependence. PC2 null mice and their wild-type controls were tested for baseline hot plate latency, injected with morphine (1.25-10mg/kg) and tested for antinociception 30min later. For tolerance studies, mice were tested in the hot plate test before and 30min following morphine (5mg/kg) on day 1. Mice then received an additional dose so that the final dose of morphine was 10mg/kg on this day. On days 2-4, mice received additional doses of morphine (20, 40 and 80mg/kg on days 1, 2, 3, and 4, respectively). On day 5, mice were tested in the hot plate test before and 30min following morphine (5mg/kg). For withdrawal studies, mice were treated with the escalating doses of morphine (10, 20, 40 and 80mg/kg) for 4days, implanted with a morphine pellet on day 5 and 3 days later injected with naloxone (1mg/kg) and signs of withdrawal were recorded. Morphine dose-dependently induced antinociception and the magnitude of this response was greater in PC2 null mice. Tolerance to morphine was observed in wild-type mice and this phenomenon was blunted in PC2 null mice. Withdrawal signs were also reduced in PC2 null mice. Immunohistochemical studies showed up-regulation of the mu opioid receptor (MOP) protein expression in the periaqueductal gray area, ventral tegmental area, lateral hypothalamus, medial hypothalamus, nucleus accumbens, and somatosensory cortex in PC2 null mice. Likewise, naloxone specific binding was increased in the brains of these mice compared to their wild-type controls. The results suggest that the PC2-derived peptides may play a functional role in morphine-induced antinociception, tolerance and dependence. Alternatively, lack of opioid peptides led to up-regulation of the MOP and altered morphine

  10. Endogenous L-Carnosine Level in Diabetes Rat Cardiac Muscle

    PubMed Central

    Liu, Yali; Su, Dan; Zhang, Ling; Wei, Shaofeng; Liu, Kuangyi; Peng, Mi; Li, Hanyun; Song, Yonggui

    2016-01-01

    A novel method for quantitation of cardiac muscle carnosine levels using HPLC-UV is described. In this simple and reliable method, carnosine from the rat cardiac muscle and the internal standard, thymopentin, were extracted by protein precipitation with acetonitrile. The method was linear up to 60.96 μg·mL−1 for L-carnosine. The calibration curve was linear in concentration ranges from 0.5 to 60.96 μg·mL−1. The relative standard deviations obtained for intra- and interday precision were lower than 12% and the recoveries were higher than 90% for both carnosine and internal standard. We successfully applied this method to the analysis of endogenous carnosine in cardiac muscle of the diabetes rats and healthy control rats. The concentration of carnosine was significantly lower in the diabetes rats group, compared to that in the healthy control rats. These results support the usefulness of this method as a means of quantitating carnosine and illustrate the important role of L-carnosine in cardiac muscle. PMID:27190533

  11. Endogenous L-Carnosine Level in Diabetes Rat Cardiac Muscle.

    PubMed

    Liu, Yali; Su, Dan; Zhang, Ling; Wei, Shaofeng; Liu, Kuangyi; Peng, Mi; Li, Hanyun; Song, Yonggui

    2016-01-01

    A novel method for quantitation of cardiac muscle carnosine levels using HPLC-UV is described. In this simple and reliable method, carnosine from the rat cardiac muscle and the internal standard, thymopentin, were extracted by protein precipitation with acetonitrile. The method was linear up to 60.96 μg·mL(-1) for L-carnosine. The calibration curve was linear in concentration ranges from 0.5 to 60.96 μg·mL(-1). The relative standard deviations obtained for intra- and interday precision were lower than 12% and the recoveries were higher than 90% for both carnosine and internal standard. We successfully applied this method to the analysis of endogenous carnosine in cardiac muscle of the diabetes rats and healthy control rats. The concentration of carnosine was significantly lower in the diabetes rats group, compared to that in the healthy control rats. These results support the usefulness of this method as a means of quantitating carnosine and illustrate the important role of L-carnosine in cardiac muscle. PMID:27190533

  12. Role of prolactin in the modulation of NK and LAK cell activity after short- or long-term morphine administration in neoplastic patients.

    PubMed

    Provinciali, M; Di Stefano, G; Stronati, S; Raffaeli, W; Pari, G; Fabris, N

    1996-10-01

    In a previous work we demonstrated that chronic in vivo antalgic therapy of cancer patients with morphine reduced the endogenous cytotoxic activity of natural killer (NK) cells, while increasing the development of lymphokine activated killer (LAK) cell cytotoxicity. In order to investigate the mechanisms by which morphine affects NK and LAK cell function further, we evaluated the modulation exerted by short- or long-term morphine administration on either NK/LAK cell cytotoxicities or plasma levels of prolactin (PRL) and other immunomodulating neurohormones. An intravenous morphine injection (10 mg) significantly increased the plasma levels of PRL, reduced the cytotoxic activity of NK cells, and increased the development of LAK cell activity 30 min after drug injection in neoplastic patients. The administration of bromocriptine before the injection of morphine prevented both PRL augmentation and the increase in LAK cell activation, although it did not prevent the inhibition of NK cytotoxicity. The chronic oral administration of morphine (90 +/- 30 mg/day for 1 month) also resulted in higher PRL levels; the NK and LAK cell activities were, respectively, lower than or higher than those found in neoplastic patients untreated with morphine. The plasma levels of thyrotropin (TSH), adrenocorticotropic hormone (ACTH) and cortisol were not significantly modified in either short- or long-term experiments. The absolute number and the percentages of lymphocyte populations, as well as the percentage of IL-2 receptors, were not modified after short-term morphine administration whereas little changes of T lymphocyte populations and NK cell number were observed after oral treatment with morphine. In vitro morphine did not affect the development of LAK cell activity. In conclusion, our findings indicate that morphine reduces NK cytotoxicity and increases the development of LAK cell cytotoxicity after short- and long-term administration. The effect of morphine on LAK cell activation

  13. Attenuation of Withdrawal Signs, Blood Cortisol, and Glucose Level with Various Dosage Regimens of Morphine after Precipitated Withdrawal Syndrome in Mice.

    PubMed

    Motaghinejad, Majid; Sadeghi-Hashjin, Goudarz; Koohi, Mohammad Kazem; Karimian, Seyed Morteza

    2016-01-01

    Morphine withdrawal usually results in unsuccessful outcomes. Despite partial benefits from alternative substances such as methadone, its use may not lead to the desired result due to the lack of mental tranquility during the withdrawal period. In this study, by means of an animal model, morphine itself was used to manage morphine dependence. Forty mice were divided into 5 groups, in which 4 groups became dependent by increasing daily doses of morphine for 7 days (15-45 mg/kg). Afterwards, the animals received morphine for 14 days by either of the following regimens: Once daily 45 mg/kg (positive controls)Increasing the interval (each time 6 hours longer than the previous interval)Irregular interval in every 36, 12 and 24 hours until the 21(th) day12, 24, 36 hours decreasing doses (each time 2.5 mg/kg less than the former dosage). Negative controls received saline solution only. On day 22, total withdrawal index (TWI) was determined by injecting 3 mg/kg of naloxone. Thereafter, blood samples were taken for the measurement of cortisol and glucose levels. TWI significantly decreased in all test groups in comparison with the positive control animals (P<0.001). Cortisol levels significantly decreased when either the dosage or the administration frequencies were decreased on a regular and gradual basis (P<0.005). Blood glucose levels significantly decreased in animals that received decreasing doses of morphine (P<0.005). This study suggests that no other measures may be required in clinical practice except for changing the dosage regimen of morphine for the cessation of self-administration. PMID:26722146

  14. Effect of Moderate Exercise on Serum Interferon-Gamma and Interleukin-17 Levels in the Morphine Withdrawal Period

    PubMed Central

    Heidarianpour, Ali; Vahidian Rezazadeh, Majid; Zamani, Alireza

    2016-01-01

    Background Drug addiction triggers the infliction of a variety of diseases. Various subjects have indicated that during the withdrawal syndrome period, the immune system is weakened. Objectives This study aimed to investigate the changes in serum levels of interferon-gamma (IFN-γ) and interleukin-17 (IL-17) during the morphine withdrawal syndrome induced by 8 weeks of moderate exercise and their effects on the immune system function. Materials and Methods Twenty-four male Wistar rats (220 ± 10 g) were divided into four groups (n = 6): healthy control (HC), addicted control (AC), healthy trained (HT), and addicted trained (AT) groups. AC and AT groups were made addicted to morphine sulfate (0.4 mg/mL) in 21 days. To ensure their dependence on morphine, naloxone (3 mg/kg, i.p.) was injected into the body of a number of the rats. HT and AT groups were made to run on a treadmill 5 days per week for 8 weeks while time and speed gradually increased. Both prior to the exercises and 24 hours after the last training session, blood samples were collected from all the animals, and serum IFN-γ and IL-17 serum levels were measured using the ELISA method. This research was performed at the Bu-Ali Sina University, Hamadan, Iran. Results After 8 weeks of exercise, a significant increase was observed in the serum IFN-γ level in the HT group (251.17 ± 13.045) in comparison with the HC group (234 ± 12.884) (P = 0.045). Furthermore, the serum IFN-γ level in the AT group (218.33 ± 5.164) in comparison to the AC group (190.67 ± 8.477) showed a significant increase (P = 0.000). In addition, the serum level of IFN-γ in the HT group showed a significant increase compared to the AT group (P = 0.000). After 8 weeks of exercise, there was a significant decrease in the serum IL-17 level in the HT group (22.67 ± 4.46) compared with the HC group (38.17 ± 7.68) (P = 0.005). In addition, a significant decrease was observed in serum IL-17 in the AT group (42.17 ± 7.41) in comparison

  15. Multiple levels paravertebral block versus morphine patient-controlled analgesia for postoperative analgesia following breast cancer surgery with unilateral lumpectomy, and axillary lymph nodes dissection

    PubMed Central

    Fallatah, Summayah; Mousa, WF

    2016-01-01

    Background: Postoperative pain after breast cancer surgery is not uncommon. Narcotic based analgesia is commonly used for postoperative pain management. However, the side-effects and complications of systemic narcotics is a significant disadvantage. Different locoregional anesthetic techniques have been tried including, single and multiple levels paravertebral block (PVB), which seems to have a significant reduction in immediate postoperative pain with fewer side-effects. The aim of this study was to compare unilateral multiple level PVB versus morphine patient-controlled analgesia (PCA) for pain relief after breast cancer surgery with unilateral lumpectomy and axillary lymph nodes dissection. Materials and Methods: Forty patients scheduled for breast cancer surgery were randomized to receive either preoperative unilateral multiple injections PVB at five thoracic dermatomes (group P, 20 patients) or postoperative intravenous PCA with morphine (group M, 20 patients) for postoperative pain control. Numerical pain scale, mean arterial pressure, heart rate, Time to first analgesic demand, 24-h morphine consumption side-effects and length of hospital stay were recorded. Results: PVB resulted in a significantly more postoperative analgesia, maintained hemodynamic, more significant reduction in nausea and vomiting, and shorter hospital stay compared with PCA patients. Conclusion: Multiple levels PVB is an effective regional anesthetic technique for postoperative pain management, it provides superior analgesia with less narcotics consumption, and fewer side-effects compared with PCA morphine for patients with breast cancer who undergo unilateral lumpectomy, with axillary lymph nodes dissection. PMID:26955304

  16. Hypothalamic-pituitary-adrenal activity and pro-opiomelanocortin mRNA levels in the hypothalamus and pituitary of the rat are differentially modulated by acute intermittent morphine with or without water restriction stress.

    PubMed

    Zhou, Y; Spangler, R; Maggos, C E; Wang, X M; Han, J S; Ho, A; Kreek, M J

    1999-11-01

    Acute administration of morphine stimulates the secretion of hypothalamic-pituitary-adrenal (HPA) hormones, ACTH, beta-endorphin and corticosterone in the rat. In this study we investigated the effects of repeated multiple-dose morphine on HPA activity under two different conditions: without or with water restriction stress. Rats received six intermittent injections of morphine (6.25 mg/kg per injection, s.c.) every 2 h and were killed 30 min after the last injection. The results were as follows. (1) Morphine significantly elevated plasma ACTH and corticosterone levels; water restriction also significantly increased ACTH secretion, but with no significant increase of plasma corticosterone levels. In contrast, rats treated with morphine under the water restriction condition failed to show any increases of either ACTH or corticosterone levels. (2) Morphine did not change pro-opiomelanocortin (POMC) mRNA levels in the anterior pituitary; whereas water restriction significantly increased the POMC mRNA levels. The water restriction-induced increases of POMC mRNA in the anterior pituitary were absent in the rats which received morphine. (3) Morphine significantly increased POMC mRNA levels in the hypothalamus; water restriction had no effect. The morphine-induced increases in POMC mRNA in the hypothalamus were absent in the rat under the water restriction condition. These findings, that the effects of morphine on HPA activation or POMC mRNA expression depend on the presence of stress, suggest a counter-regulatory role of opiates on a stress response and opioid gene expression. PMID:10556776

  17. Exogenous and Endogenous Determinants of Blood Trihalomethane Levels after Showering

    PubMed Central

    Backer, Lorraine C.; Lan, Qing; Blount, Benjamin C.; Nuckols, J.R.; Branch, Robert; Lyu, Christopher W.; Kieszak, Stephanie M.; Brinkman, Marielle C.; Gordon, Sydney M.; Flanders, W. Dana; Romkes, Marjorie; Cantor, Kenneth P.

    2008-01-01

    Background We previously conducted a study to assess whether household exposures to tap water increased an individual’s internal dose of trihalomethanes (THMs). Increases in blood THM levels among subjects who showered or bathed were variable, with increased levels tending to cluster in two groups. Objectives Our goal was to assess the importance of personal characteristics, previous exposures, genetic polymorphisms, and environmental exposures in determining THM concentrations in blood after showering. Methods One hundred study participants completed a health symptom questionnaire, a 48-hr food and water consumption diary, and took a 10-min shower in a controlled setting. We examined THM levels in blood samples collected at baseline and 10 and 30 min after the shower. We assessed the significance of personal characteristics, previous exposures to THMs, and specific gene polymorphisms in predicting postshower blood THM concentrations. Results We did not observe the clustering of blood THM concentrations observed in our earlier study. We found that environmental THM concentrations were important predictors of blood THM concentrations immediately after showering. For example, the chloroform concentration in the shower stall air was the most important predictor of blood chloroform levels 10 min after the shower (p < 0.001). Personal characteristics, previous exposures to THMs, and specific polymorphisms in CYP2D6 and GSTT1 genes were significant predictors of both baseline and postshowering blood THM concentrations as well as of changes in THM concentrations associated with showering. Conclusion The inclusion of information about individual physiologic characteristics and environmental measurements would be valuable in future studies to assess human health effects from exposures to THMs in tap water. PMID:18197300

  18. Effects of morphine on the disposition of ampicillin in mice.

    PubMed Central

    Garty, M; Hurwitz, A

    1985-01-01

    Morphine raised the levels of intravenously administered ampicillin in the plasma of mice. Despite higher ampicillin levels in plasma after administration of morphine, levels of this antibiotic in bile and urine were not elevated. After ligation of the common bile duct, ampicillin levels in plasma were elevated. Morphine caused a further rise in drug levels in plasma of duct-ligated mice. Ampicillin levels in plasma were higher in mice made anephric by prolonged ligation of their external urethras. In such animals, morphine also caused ampicillin levels in plasma to be even higher. These experiments suggest that morphine impairs both renal and hepatobiliary elimination of ampicillin. These effects of morphine were completely reversed by naloxone. In contrast to effects on intravenously administered ampicillin, morphine markedly reduced drug levels in plasma when ampicillin was given by gastric intubation. This resulted from delayed absorption because of retardation of gastric emptying by morphine. PMID:4073871

  19. Morphine withdrawal dramatically reduces lymphocytes in morphine-dependent macaques.

    PubMed

    Weed, Michael R; Carruth, Lucy M; Adams, Robert J; Ator, Nancy A; Hienz, Robert D

    2006-09-01

    The immune effects of chronic opiate exposure and/or opiate withdrawal are not well understood. The results of human studies with opiate abusers are variable and may not be able to control for important factors such as subjects' drug histories, health and nutritional status. Nonhuman primate models are necessary to control these important factors. A model of opiate dependence in macaques was developed to study the effects of opiate dependence and withdrawal on measures of immune function. Four pigtailed macaques drank a mixture of morphine (20 mg/kg/session) and orange-flavored drink every 6 h for several months. During stable morphine dependence, absolute numbers of neutrophils, monocytes and lymphocytes did not change relative to pre-morphine levels. However, there was a significant decrease in the absolute number and percentage of natural killer (NK) cells in morphine dependence. Either precipitated withdrawal or abstinence for 24 h resulted in behavioral withdrawal signs in all animals. Absolute lymphocyte counts decreased and absolute netrophil counts increased significantly in withdrawal, relative to levels during morphine dependence. Lymphocyte subset (CD4+, CD8+, CD20+) cells were also decreased in absolute numbers with little change in their percentage distributions. There was, however, a significant increase in the percentage of NK cells in withdrawal relative to levels during morphine dependence. This study demonstrates the usefulness of voluntary oral self-dosing procedures for maintaining morphine dependence in nonhuman primates and demonstrates that the morphine withdrawal syndrome includes large alterations in blood parameters of immune system function, including nearly 50% reduction in numbers of CD4+, CD8+ and CD20+ cells. PMID:18040802

  20. A ghrelin receptor (GHS-R1A) antagonist attenuates the rewarding properties of morphine and increases opioid peptide levels in reward areas in mice.

    PubMed

    Engel, Jörgen A; Nylander, Ingrid; Jerlhag, Elisabet

    2015-12-01

    Gut-brain hormones such as ghrelin have recently been suggested to have a role in reward regulation. Ghrelin was traditionally known to regulate food intake and body weight homoeostasis. In addition, recent work has pin-pointed that this peptide has a novel role in drug-induced reward, including morphine-induced increase in the extracellular levels of accumbal dopamine in rats. Herein the effect of the ghrelin receptor (GHS-R1A) antagonist, JMV2959, on morphine-induced activation of the mesolimbic dopamine system was investigated in mice. In addition, the effects of JMV2959 administration on opioid peptide levels in reward related areas were investigated. In the present series of experiment we showed that peripheral JMV2959 administration, at a dose with no effect per se, attenuates the ability of morphine to cause locomotor stimulation, increase the extracellular levels of accumbal dopamine and to condition a place preference in mice. JMV2959 administration significantly increased tissue levels of Met-enkephalin-Arg(6)Phe(7) in the ventral tegmental area, dynorphin B in hippocampus and Leu-enkephalin-Arg(6) in striatum. We therefore hypothesise that JMV2959 prevents morphine-induced reward via stimulation of delta receptor active peptides in striatum and ventral tegmental areas. In addition, hippocampal peptides that activate kappa receptor may be involved in JMV2959׳s ability to regulate memory formation of reward. Given that development of drug addiction depends, at least in part, of the effects of addictive drugs on the mesolimbic dopamine system the present data suggest that GHS-R1A antagonists deserve to be elucidated as novel treatment strategies of opioid addiction. PMID:26508707

  1. Effect of environmental enrichment on physical and psychological dependence signs and voluntary morphine consumption in morphine-dependent and morphine-withdrawn rats.

    PubMed

    Hammami-Abrand Abadi, Arezoo; Miladi-Gorji, Hossein; Bigdeli, Imanollah

    2016-04-01

    This study was designed to examine the effect of environmental enrichment during morphine dependency and withdrawal on the severity of naloxone-precipitated withdrawal signs, anxiety, and depressive-like behaviors and voluntary morphine consumption in morphine-dependent rats. The rats were injected with bi-daily doses (10 mg/kg, 12 h intervals) of morphine for 14 days following rearing in a standard environment (SE) or enriched environment (EE) during the development of morphine dependence and withdrawal. Then, rats were tested for withdrawal signs after naloxone injection, anxiety (the elevated plus maze) and depression-related behavior (sucrose preference test), and voluntary consumption of morphine using a two-bottle choice paradigm, in morphine-dependent and morphine-withdrawn rats. The results showed that EE decreased naloxone-precipitated withdrawal signs, but not anxiety or sucrose preference during dependence on morphine. The EE-withdrawn rats showed an increase in the elevated plus maze open arm time and entries and higher levels of sucrose preference than SE rats. Voluntary consumption of morphine was lower in the EE-withdrawn rats than in the SE groups in the second period of drug intake. Thus, exposure to EE reduced the severity of morphine dependence and voluntary consumption of morphine, alongside reductions in anxiety and depression-related behavior in morphine-withdrawn rats. PMID:26397757

  2. Pleiotrophin modulates morphine withdrawal but has no effects on morphine-conditioned place preference.

    PubMed

    Gramage, Esther; Vicente-Rodríguez, Marta; Herradón, Gonzalo

    2015-09-14

    Pleiotrophin (PTN) is a neurotrophic factor with important functions in addiction and neurodegenerative disorders. Morphine administration induces an increase in the expression of PTN and Midkine (MK), the only other member of this family of cytokines, in brain areas related with the addictive effects of drug of abuse, like the Ventral Tegmental Area or the hippocampus. In spite of previous studies showing that PTN modulates amphetamine and ethanol rewarding effects, and that PTN is involved in morphine-induced analgesia, it was still unknown if the rewarding effects of morphine may be regulated by endogenous PTN. Thus, we aim to study the role of PTN in the reward and physical dependence induced by morphine. We used the Conditioned Place Preference (CPP) paradigm in PTN genetically deficient (PTN-/-) and wild type (WT) mice to assess the rewarding effects of morphine in absence of endogenous PTN. Second, to study if PTN may be involved in morphine physical dependence, naloxone-precipitated withdrawal syndrome was induced in PTN-/- and WT morphine dependent mice. Although the increase in the time spent in the morphine-paired compartment after conditioning tended to be more pronounced in PTN-/- mice, statistical significance was not achieved. The data suggest that PTN does not exert an important role in morphine reward. However, our results clearly indicate that PTN-/- mice develop a more severe withdrawal syndrome than WT mice, characterized as a significant increase in the time standing and in the total incidences of forepaw licking, forepaw tremors, wet dog shake and writhing. The data presented here suggest that PTN is a novel genetic factor that plays a role in morphine withdrawal syndrome. PMID:26222257

  3. Endogenous GABA levels in the pontine reticular formation are greater during wakefulness than during REM sleep

    PubMed Central

    Vanini, Giancarlo; Wathen, Bradley L.; Lydic, Ralph; Baghdoyan, Helen A.

    2011-01-01

    Studies using drugs that increase or decrease GABAergic transmission suggest that GABA in the pontine reticular formation (PRF) promotes wakefulness and inhibits rapid eye movement (REM) sleep. Cholinergic transmission in the PRF promotes REM sleep, and levels of endogenous acetylcholine (ACh) in the PRF are significantly greater during REM sleep than during wakefulness or non-REM (NREM) sleep. No previous studies have determined whether levels of endogenous GABA in the PRF vary as a function of sleep and wakefulness. This study tested the hypothesis that GABA levels in cat PRF are greatest during wakefulness and lowest during REM sleep. Extracellular GABA levels were measured during wakefulness, NREM sleep, REM sleep, and the REM sleep-like state (REMNeo) caused by microinjecting neostigmine into the PRF. GABA levels varied significantly as a function of sleep and wakefulness, and decreased significantly below waking levels during REM sleep (−42%) and REMNeo (−63%). The decrease in GABA levels during NREM sleep (22% below waking levels) was not statistically significant. Compared to NREM sleep, GABA levels decreased significantly during REM sleep (−27%) and REMNeo (−52%). Comparisons of REM sleep and REMNeo revealed no differences in GABA levels or cortical EEG power. GABA levels did not vary significantly as a function of dialysis site within the PRF. The inverse relationship between changes in PRF levels of GABA and ACh during REM sleep indicates that low GABAergic tone combined with high cholinergic tone in the PRF contributes to the generation of REM sleep. PMID:21325533

  4. Dietary Fat, Fiber, and Carbohydrate Intake and Endogenous Hormone Levels in Premenopausal Women

    PubMed Central

    Cui, Xiaohui; Rosner, Bernard; Willett, Walter C; Hankinson, Susan E

    2011-01-01

    The authors conducted a cross-sectional study to investigate the associations of fat, fiber and carbohydrate intake with endogenous estrogen, androgen, and insulin-like growth factor (IGF) levels among 595 premenopausal women. Overall, no significant associations were found between dietary intake of these macronutrients and plasma sex steroid hormone levels. Dietary fat intake was inversely associated with IGF-I and IGF-binding protein 3 (IGFBP-3) levels. When substituting 5% of energy from total fat for the equivalent amount of energy from carbohydrate or protein intake, the plasma levels of IGF-I and IGFBP-3 were 2.8% (95% confidence interval [CI] 0.3, 5.3) and 1.6% (95% CI 0.4, 2.8) lower, respectively. Animal fat, saturated fat and monounsaturated fat intakes also were inversely associated with IGFBP-3 levels (P < 0.05). Carbohydrates were positively associated with plasma IGF-I level. When substituting 5% of energy from carbohydrates for the equivalent amount of energy from fat or protein intake, the plasma IGF-I level was 2.0% (95% CI 0.1, 3.9%) higher. No independent associations between fiber intake and hormone levels were observed. The results suggest that a low-fat/high-fiber or carbohydrate diet is not associated with endogenous levels of sex steroid hormones, but it may modestly increase IGF-I and IGFBP-3 levels among premenopausal women. PMID:21761370

  5. Mycobacterium tuberculosis has diminished capacity to counteract redox stress induced by elevated levels of endogenous superoxide

    PubMed Central

    Tyagi, Priyanka; Dharmaraja, Allimuthu T.; Bhaskar, Ashima; Chakrapani, Harinath; Singh, Amit

    2015-01-01

    Mycobacterium tuberculosis (Mtb) has evolved protective and detoxification mechanisms to maintain cytoplasmic redox balance in response to exogenous oxidative stress encountered inside host phagocytes. In contrast, little is known about the dynamic response of this pathogen to endogenous oxidative stress generated within Mtb. Using a noninvasive and specific biosensor of cytoplasmic redox state of Mtb, we for first time discovered a surprisingly high sensitivity of this pathogen to perturbation in redox homeostasis induced by elevated endogenous reactive oxygen species (ROS). We synthesized a series of hydroquinone-based small molecule ROS generators and found that ATD-3169 permeated mycobacteria to reliably enhance endogenous ROS including superoxide radicals. When Mtb strains including multidrug-resistant (MDR) and extensively drug-resistant (XDR) patient isolates were exposed to this compound, a dose-dependent, long-lasting, and irreversible oxidative shift in intramycobacterial redox potential was detected. Dynamic redox potential measurements revealed that Mtb had diminished capacity to restore cytoplasmic redox balance in comparison with Mycobacterium smegmatis (Msm), a fast growing nonpathogenic mycobacterial species. Accordingly, Mtb strains were extremely susceptible to inhibition by ATD-3169 but not Msm, suggesting a functional linkage between dynamic redox changes and survival. Microarray analysis showed major realignment of pathways involved in redox homeostasis, central metabolism, DNA repair, and cell wall lipid biosynthesis in response to ATD-3169, all consistent with enhanced endogenous ROS contributing to lethality induced by this compound. This work provides empirical evidence that the cytoplasmic redox poise of Mtb is uniquely sensitive to manipulation in steady-state endogenous ROS levels, thus revealing the importance of targeting intramycobacterial redox metabolism for controlling TB infection. PMID:25819161

  6. Mycobacterium tuberculosis has diminished capacity to counteract redox stress induced by elevated levels of endogenous superoxide.

    PubMed

    Tyagi, Priyanka; Dharmaraja, Allimuthu T; Bhaskar, Ashima; Chakrapani, Harinath; Singh, Amit

    2015-07-01

    Mycobacterium tuberculosis (Mtb) has evolved protective and detoxification mechanisms to maintain cytoplasmic redox balance in response to exogenous oxidative stress encountered inside host phagocytes. In contrast, little is known about the dynamic response of this pathogen to endogenous oxidative stress generated within Mtb. Using a noninvasive and specific biosensor of cytoplasmic redox state of Mtb, we for first time discovered a surprisingly high sensitivity of this pathogen to perturbation in redox homeostasis induced by elevated endogenous reactive oxygen species (ROS). We synthesized a series of hydroquinone-based small molecule ROS generators and found that ATD-3169 permeated mycobacteria to reliably enhance endogenous ROS including superoxide radicals. When Mtb strains including multidrug-resistant (MDR) and extensively drug-resistant (XDR) patient isolates were exposed to this compound, a dose-dependent, long-lasting, and irreversible oxidative shift in intramycobacterial redox potential was detected. Dynamic redox potential measurements revealed that Mtb had diminished capacity to restore cytoplasmic redox balance in comparison with Mycobacterium smegmatis (Msm), a fast growing nonpathogenic mycobacterial species. Accordingly, Mtb strains were extremely susceptible to inhibition by ATD-3169 but not Msm, suggesting a functional linkage between dynamic redox changes and survival. Microarray analysis showed major realignment of pathways involved in redox homeostasis, central metabolism, DNA repair, and cell wall lipid biosynthesis in response to ATD-3169, all consistent with enhanced endogenous ROS contributing to lethality induced by this compound. This work provides empirical evidence that the cytoplasmic redox poise of Mtb is uniquely sensitive to manipulation in steady-state endogenous ROS levels, thus revealing the importance of targeting intramycobacterial redox metabolism for controlling TB infection. PMID:25819161

  7. Effects of morphine and naloxone on feline colonic transit

    SciTech Connect

    Krevsky, B.; Libster, B.; Maurer, A.H.; Chase, B.J.; Fisher, R.S.

    1989-01-01

    The effects of endogenous and exogenous opioid substances on feline colonic transit were evaluated using colonic transit scintigraphy. Naloxone accelerated emptying of the cecum and ascending colon, and filling of the transverse colon. Endogenous opioid peptides thus appear to play a significant role in the regulation of colonic transit. At a moderate dose of morphine cecum and ascending colon transit was accelerated, while at a larger dose morphine had no effect. Since naloxone, a relatively nonspecific opioid antagonist, and morphine, a principally mu opioid receptor agonist, both accelerate proximal colonic transit, a decelerating role for at least one of the other opioid receptors is inferred.

  8. Endogenous oxytocin levels are associated with the perception of emotion in dynamic body expressions in schizophrenia.

    PubMed

    Strauss, Gregory P; Keller, William R; Koenig, James I; Sullivan, Sara K; Gold, James M; Buchanan, Robert W

    2015-03-01

    Lower endogenous oxytocin levels have been associated with impaired social cognition in schizophrenia, particularly facial affect identification. Little is known about the relationship between oxytocin and other forms of emotion perception. In the current study, 41 individuals with schizophrenia (SZ) and 22 demographically matched healthy controls (CN) completed a forced-choice affective body expression classification task. Stimuli included dynamic videos of male and female actors portraying 4 discrete emotions: happiness, sadness, anger, and neutral. Plasma oxytocin levels were determined via radioimmunoassay. Results indicated that SZ had significantly higher plasma oxytocin concentrations than CN. SZ were also less accurate at identifying expressions of happiness and sadness; however, there were no group differences for anger or neutral stimuli. A group×sex interaction was also present, such that female CN were more accurate than male CN, whereas male SZ were more accurate than female SZ. Higher endogenous oxytocin levels were associated with better total recognition in both SZ and CN; this association was specific to females in SZ. Findings indicate that sex plays an important role in identifying emotional expressions in body gestures in SZ, and that individual differences in endogenous oxytocin predict emotion perception accuracy. PMID:25620121

  9. Endogenous Oxytocin Levels Are Associated with the Perception of Emotion in Dynamic Body Expressions in Schizophrenia

    PubMed Central

    Strauss, Gregory P.; Keller, William R.; Koenig, James I.; Sullivan, Sara K.; Gold, James M.; Buchanan, Robert W.

    2015-01-01

    Lower endogenous oxytocin levels have been associated with impaired social cognition in schizophrenia, particularly facial affect identification. Little is known about the relationship between oxytocin and other forms of emotion perception. In the current study, 41 individuals with schizophrenia (SZ) and 22 demographically matched healthy controls (CN) completed a forced-choice affective body expression classification task. Stimuli included dynamic videos of male and female actors portraying 4 discrete emotions: happiness, sadness, anger, and neutral. Plasma oxytocin levels were determined via radioimmunoassay. Results indicated that SZ had significantly higher plasma oxytocin concentrations than CN. SZ were also less accurate at identifying expressions of happiness and sadness; however, there were no group differences for anger or neutral stimuli. A group x sex interaction was also present, such that female CN were more accurate than male CN, whereas male SZ were more accurate than female SZ. Higher endogenous oxytocin levels were associated with better total recognition in both SZ and CN; this association was specific to females in SZ. Findings indicate that sex plays an important role in identifying emotional expressions in body gestures in SZ, and that individual differences in endogenous oxytocin predict emotion perception accuracy. PMID:25620121

  10. The combination of mitragynine and morphine prevents the development of morphine tolerance in mice.

    PubMed

    Fakurazi, Sharida; Rahman, Shamima Abdul; Hidayat, Mohamad Taufik; Ithnin, Hairuszah; Moklas, Mohamad Aris Mohd; Arulselvan, Palanisamy

    2013-01-01

    Mitragynine (MG) is the major active alkaloid found in Mitragyna speciosa Korth. In the present study, we investigated the enhancement of analgesic action of MG when combined with morphine and the effect of the combination on the development of tolerance towards morphine. Mice were administered intraperitoneally with a dose of MG (15 and 25 mg/kg b.wt) combined with morphine (5 mg/kg b.wt) respectively for 9 days. The antinociceptive effect was evaluated by a hot plate test. The protein expression of cyclic adenosine monophosphate (cAMP) and cAMP response element binding (CREB) was analyzed by immunoblot. Toxicological parameters especially liver and kidney function tests were assessed after the combination treatment with MG and morphine. The concurrent administration of MG and morphine showed significant (p < 0.05) increase in latency time when compared to morphine alone group and the outstanding analgesic effects in the combination regimens were maintained until day 9. For the protein expression, there was a significant increment of cAMP and CREB levels (p < 0.05) in group treated with 5 mg/kg morphine but there was no significant change of these protein expressions when MG was combined with morphine. There was a significant changes in toxicological parameters of various treated groups. The combination treatment of MG and morphine effectively reduce the tolerance due to the chronic administration of morphine. PMID:23292329

  11. Morphine: Myths and Reality

    MedlinePlus

    ... and Families Take the Quiz Morphine: Myths and Reality February, 2013 The mere mention of “Morphine” can ... due to misinformation and lack of training. The reality is that Morphine (and other opiates that work ...

  12. Morphine effects on gentamicin disposition and toxicity in mice.

    PubMed

    Hurwitz, A; Garty, M; Ben-Zvi, Z

    1988-05-01

    Morphine has been shown to reduce renal and hepatic clearance of several xenobiotics in rodents. After iv administration of gentamicin, 10 to 30 mg/kg, its plasma levels were elevated in mice given morphine, 20 mg/kg sc. Plasma clearance of gentamicin was nearly halved by morphine, due primarily to lowering of the elimination constant of gentamicin from 0.03 to 0.02 min-1 (p less than 0.01). Morphine also significantly reduced urine levels of gentamicin and urine volume. In mice given naloxone, 2 mg/kg sc, morphine did not significantly raise plasma levels of gentamicin nor reduce its elimination into urine. Mice were made tolerant by morphine administration for 9 days at ascending doses to 100 mg/kg twice daily. An acute challenge with morphine, 20 mg/kg, was less effective in raising plasma levels of gentamicin or lowering its urinary elimination in tolerant mice than after chronic saline treatment. Partial tolerance to acutely administered morphine and reversal of morphine effects by naloxone suggest opioid receptor-mediated reduction of glomerular filtration by morphine in mice. Despite marked elevation of plasma gentamicin levels in morphine-treated mice, narcotic administration did not significantly increase the acute toxicity of a single dose of gentamicin. LD50 of acutely administered iv gentamicin was 51.6 mg/kg after saline and 45.3 mg/kg after treatment with morphine, 20 mg/kg sc. However, this dose of morphine enhanced the lethality of intravenously infused gentamicin. Morphine administration significantly reduced the dose of infused gentamicin needed to achieve the critical lethal plasma level. PMID:3368920

  13. Repeated immobilization stress alters rat hippocampal and prefrontal cortical morphology in parallel with endogenous agmatine and arginine decarboxylase levels

    PubMed Central

    Zhu, Meng-Yang; Wang, Wei-Ping; Huang, Jingjing; Feng, Yang-Zheng; Regunathan, Soundar; Bissette, Garth

    2008-01-01

    Agmatine, an endogenous amine derived from decarboxylation of L-arginine catalyzed by arginine decarboxylase, has been proposed as a neurotransmitter or neuromodulator in the brain. In the present study we examined whether agmatine has neuroprotective effects against repeated immobilization-induced morphological changes in brain tissues and possible effects of immobilization stress on endogenous agmatine levels and arginine decarboxylase expression in rat brains. Sprague-Dawley rats were subjected to two hour immobilization stress daily for seven days. This paradigm significantly increased plasma corticosterone levels, and the glutamate efflux in the hippocampus as measured by in vivo microdialysis. Immunohistochemical staining with β-tubulin III showed that repeated immobilization caused marked morphological alterations in the hippocampus and medial prefrontal cortex that were prevented by simultaneous treatment with agmatine (50 mg/kg/day, i.p.). Likewise, endogenous agmatine levels measured by high performance liquid chromatography in the prefrontal cortex, hippocampus, striatum and hypothalamus were significantly increased by immobilization, as compared to controls. The increased endogenous agmatine levels, ranging from 92% to 265% of controls, were accompanied by a significant increase of arginine decarboxylase protein levels in the same regions. These results demonstrate that administration of exogenous agmatine protects the hippocampus and medial prefrontal cortex against neuronal insults caused by repeated immobilization. The parallel increase in endogenous brain agmatine and arginine decarboxylase protein levels triggered by repeated immobilization indicates that the endogenous agmatine system may play an important role in adaptation to stress as a potential neuronal self-protection mechanism. PMID:18832001

  14. Reducing cannabinoid abuse and preventing relapse by enhancing endogenous brain levels of kynurenic acid.

    PubMed

    Justinova, Zuzana; Mascia, Paola; Wu, Hui-Qiu; Secci, Maria E; Redhi, Godfrey H; Panlilio, Leigh V; Scherma, Maria; Barnes, Chanel; Parashos, Alexandra; Zara, Tamara; Fratta, Walter; Solinas, Marcello; Pistis, Marco; Bergman, Jack; Kangas, Brian D; Ferré, Sergi; Tanda, Gianluigi; Schwarcz, Robert; Goldberg, Steven R

    2013-11-01

    In the reward circuitry of the brain, α-7-nicotinic acetylcholine receptors (α7nAChRs) modulate effects of Δ(9)-tetrahydrocannabinol (THC), marijuana's main psychoactive ingredient. Kynurenic acid (KYNA) is an endogenous negative allosteric modulator of α7nAChRs. Here we report that the kynurenine 3-monooxygenase (KMO) inhibitor Ro 61-8048 increases brain KYNA levels and attenuates cannabinoid-induced increases in extracellular dopamine in reward-related brain areas. In the self-administration model of drug abuse, Ro 61-8048 reduced the rewarding effects of THC and the synthetic cannabinoid WIN 55,212-2 in squirrel monkeys and rats, respectively, and it also prevented relapse to drug-seeking induced by reexposure to cannabinoids or cannabinoid-associated cues. The effects of enhancing endogenous KYNA levels with Ro 61-8048 were prevented by positive allosteric modulators of α7nAChRs. Despite a clear need, there are no medications approved for treatment of marijuana dependence. Modulation of KYNA offers a pharmacological strategy for achieving abstinence from marijuana and preventing relapse. PMID:24121737

  15. Endogenous cortisol level interacts with noradrenergic activation in the human amygdala.

    PubMed

    van Stegeren, Anda H; Wolf, Oliver T; Everaerd, Walter; Scheltens, Philip; Barkhof, Frederik; Rombouts, Serge A R B

    2007-01-01

    Animal studies show that high cortisol levels exert their effect on stressful task performance via modulation of the amygdala. Availability of noradrenaline in this brain region appears to be a critical prerequisite for this effect. This relationship between noradrenaline and cortisol is explained by an animal model where the amygdala constitutes a crucial region for this interaction. In humans this model has not been extensively tested so far. In a previously reported study human subjects (aged 20.93+/-2.38) were scanned using fMRI when watching sets of emotional and neutral pictures after taking the beta-adrenergic antagonist propranolol or placebo. Stimulus sets consisted of 92 pictures, divided in four emotional categories that ranged from neutral scenes of domestic objects (CAT1) to extremely negative scenes of mutilation or accidents (CAT4). Confrontation with arousing emotional pictures, accompanied by increased noradrenaline levels, evoked increased amygdala activation under placebo but not under betablocker condition. This new and additional analysis of this data set was carried out to determine the effect of differential endogenous cortisol levels on amygdala activation. Cortisol levels during scanning were determined using salivary samples and subjects were post hoc divided in a High (n=14) and Low cortisol group (n=14). When subjects were watching emotional stimuli, presumably associated with enhanced noradrenaline (NA) levels, amygdala activation was contrasted between the two cortisol groups. We hypothesized that emotional stimuli would elicit more amygdala activation in the High than in the Low cortisol group. Here we demonstrate indeed a significant interaction effect of the endogenous cortisol level with increasing activation in the amygdala under placebo but not under betablocker condition, thereby extending the rodent based model of a synergistic effect of the two stress hormones to the human. PMID:16884932

  16. Endogenous galectin-3 expression levels modulate immune responses in galectin-3 transgenic mice.

    PubMed

    Chaudhari, Aparna D; Gude, Rajiv P; Kalraiya, Rajiv D; Chiplunkar, Shubhada V

    2015-12-01

    Galectin-3 (Gal-3), a β-galactoside-binding mammalian lectin, is involved in cancer progression and metastasis. However, there is an unmet need to identify the underlying mechanisms of cancer metastasis mediated by endogenous host galectin-3. Galectin-3 is also known to be an important regulator of immune responses. The present study was aimed at analysing how expression of endogenous galectin-3 regulates host immunity and lung metastasis in B16F10 murine melanoma model. Transgenic Gal-3(+/-) (hemizygous) and Gal-3(-/-) (null) mice exhibited decreased levels of Natural Killer (NK) cells and lower NK mediated cytotoxicity against YAC-1 tumor targets, compared to Gal-3(+/+) (wild-type) mice. On stimulation, Gal-3(+/-) and Gal-3(-/-) mice splenocytes showed increased T cell proliferation than Gal-3(+/+) mice. Intracellular calcium flux was found to be lower in activated T cells of Gal-3(-/-) mice as compared to T cells from Gal-3(+/+) and Gal-3(+/-) mice. In Gal-3(-/-) mice, serum Th1, Th2 and Th17 cytokine levels were found to be lowest, exhibiting dysregulation of pro-inflammatory and anti-inflammatory cytokines balance. Marked decrease in serum IFN-γ levels and splenic IFN-γR1 (IFN-γ Receptor 1) expressing T and NK cell percentages were observed in Gal-3(-/-) mice. On recombinant IFN-γ treatment of splenocytes in vitro, Suppressor of Cytokine Signaling (SOCS) 1 and SOCS3 protein expression was higher in Gal-3(-/-) mice compared to that in Gal-3(+/+) and Gal-3(+/-) mice; suggesting possible attenuation of Signal Transducer and Activator of Transcription (STAT) 1 mediated IFN-γ signaling in Gal-3(-/-) mice. The ability of B16F10 melanoma cells to form metastatic colonies in the lungs of Gal-3(+/+) and Gal-3(-/-) mice remained comparable, whereas it was found to be reduced in Gal-3(+/-) mice. Our data indicates that complete absence of endogenous host galectin-3 facilitates lung metastasis of B16F10 cells in mice, which may be contributed by dysregulated immune

  17. DETECTION OF ENDOGENOUS TISSUE FACTOR LEVELS IN PLASMA USING THE CALIBRATED AUTOMATED THROMBOGRAM ASSAY

    PubMed Central

    Ollivier, Veronique; Wang, Jianguo; Manly, David; Machlus, Kellie R.; Wolberg, Alisa S.; Jandrot-Perrus, Martine; Mackman, Nigel

    2009-01-01

    Summary Background The calibrated automated thrombogram (CAT) assay measures thrombin generation in plasma. Objective Use the CAT assay to detect endogenous tissue factor (TF) in recalcified platelet-rich plasma (PRP) and platelet-free plasma (PFP). Methods Blood from healthy volunteers was collected into citrate and incubated at 37°C with or without lipopolysaccharide (LPS) for 5 hours. PRP and PFP were prepared and clotting was initiated by recalcification. Thrombin generation was measured using the CAT assay. Results The lag time (LT) was significantly shortened in PRP prepared from LPS-treated blood compared with untreated blood (10 ± 3 min versus 20 ± 6 min), and this change was reversed by the addition of inactivated human factor VIIa. LPS stimulation did not change the peak thrombin. Similar results were observed in PFP (21 ± 4 min versus 35 ± 5 min). LPS stimulation also significantly reduced the LT of PRP and PFP derived from blood containing citrate and a factor XIIa inhibitor. Finally, a low concentration of exogenous TF shortened the LT of PFP prepared from unstimulated, citrated blood without affecting the peak thrombin. Conclusion Changes in LT in the CAT assay can be used to monitor levels of endogenous TF in citrated plasma. PMID:19345399

  18. Mice with neuropathic pain exhibit morphine tolerance due to a decrease in the morphine concentration in the brain.

    PubMed

    Ochiai, Wataru; Kaneta, Mitsumasa; Nagae, Marina; Yuzuhara, Ami; Li, Xin; Suzuki, Haruka; Hanagata, Mika; Kitaoka, Satoshi; Suto, Wataru; Kusunoki, Yoshiki; Kon, Risako; Miyashita, Kazuhiko; Masukawa, Daiki; Ikarashi, Nobutomo; Narita, Minoru; Suzuki, Tsutomu; Sugiyama, Kiyoshi

    2016-09-20

    The chronic administration of morphine to patients with neuropathic pain results in the development of a gradual tolerance to morphine. Although the detailed mechanism of this effect has not yet been elucidated, one of the known causes is a decrease in μ-opioid receptor function with regard to the active metabolite of morphine, M-6-G(morphine-6-glucuronide), in the ventrotegmental area of the midbrain. In this study, the relationship between the concentration of morphine in the brain and its analgesic effect was examined after the administration of morphine in the presence of neuropathic pain. Morphine was orally administered to mice with neuropathic pain, and the relationship between morphine's analgesic effect and its concentration in the brain was analysed. In addition, the expression levels of the conjugation enzyme, UGT2B (uridine diphosphate glucuronosyltransferase), which has morphine as its substrate, and P-gp, which is a transporter involved in morphine excretion, were examined. In mice with neuropathic pain, the concentration of morphine in the brain was significantly decreased, and a correlation was found between this decrease and the decrease in the analgesic effect. It was considered possible that this decrease in the brain morphine concentration may be due to an increase in the expression level of P-gp in the small intestine and to an increase in the expression level and binding activity of UGT2B in the liver. The results of this study suggest the possibility that a sufficient analgesic effect may not be obtained when morphine is administered in the presence of neuropathic pain due to a decrease in the total amount of morphine and M-6-G that reach the brain. PMID:27102159

  19. Endogenous estimation of safety coefficient for optimal design of biochemical reactors at industrial level

    NASA Astrophysics Data System (ADS)

    Siontorou, Christina G.; Karydi, Angeliki

    2012-12-01

    This work deals with the endogenous estimation of the Safety Coefficient Ge = Vd/Vm, where Vd is the design volume and Vm is the mean volume of liquid of a biochemical reactor operating at industrial level. The Vd-value is estimated through Monte Carlo simulation while Vm-value is obtained by means of material balances and biochemical kinetics. A case example on waste water biological treatment is presented, referring to a well-mixed bioreactor followed by a clarifier. The Ge-values finally estimated are in the lower part of the (exogenously determined) region as suggested in the relevant technical literature, implying a significant saving of investment capital, which forms the principle component of fixed cost. Similar applications are also mentioned in brief.

  20. Morphine tolerance offers protection from radiogenic performance deficits

    SciTech Connect

    Mickley, G.A.; Stevens, K.E.; Burrows, J.M.; White, G.A.; Gibbs, G.L.

    1983-02-01

    When rats are exposed to a sufficiently large dose of ionizing radiation they exhibit lethargy, hypokinesia, and deficits in performance. These and other behavioral changes parallel those often observed in this species after a large dose of morphine. Since the release of endogenous opiates has been implicated in some stress reactions, we sought to determine if they might play a part in radiogenic behavioral deficits. Rats were trained to criterion on a signaled avoidance task. Some subjects were then implanted with a pellet containing 75 mg of morphine. Other animals received placebo implants. Over a number of days, morphine tolerance was evaluated by measurement of body temperature changes. Prior to 2500 rad /sup 60/Co exposure or sham irradiation, morphine (or placebo) pellets were removed. Twenty-four hours later rats were retested to assess their performance on the avoidance task. Morphine-tolerant subjects performed significantly better than the irradiated placebo-implanted group and no differently than morphine-tolerant/sham-irradiated animals. Morphine tolerance seems to provide a degree of behavioral radiation resistance. These data are consistent with the hypothesis that endogenous opiate hyperexcretion may play some part in the behavioral deficits often observed after irradiation.

  1. Stress antagonizes morphine-induced analgesia in rats

    NASA Technical Reports Server (NTRS)

    Vernikos, J.; Shannon, L.; Heybach, J. P.

    1981-01-01

    Exposure to restraint stress resulted in antagonism of the analgesic effect of administered morphine in adult male rats. This antagonism of morphine-induced analgesia by restraint stress was not affected by adrenalectomy one day prior to testing, suggesting that stress-induced secretion of corticosteroids is not critical to this antagonism. In addition, parenteral administration of exogenous adrenocorticotropin (ACTH) mimicked the effect of stress in antagonizing morphine's analgesic efficacy. The hypothesis that ACTH is an endogenous opiate antagonist involved in modulating pain sensitivity is supported.

  2. Cognitive function and endogenous cytokine levels in children with chronic hepatitis C.

    PubMed

    Abu Faddan, N H; Shehata, G A; Abd Elhafeez, H A; Mohamed, A O; Hassan, H S; Abd El Sameea, F

    2015-08-01

    Little is known about how hepatitis C (HCV) infection affects cognitive function in children. The aim of the study was to assess the impact of HCV infection on cognitive function of children with normal liver functions and their relationships to endogenous IFN-α, IL-6 and TNF-α. IFN-α, IL-6 and TNF-α were measured and the Arabic version of the Stanford-Binet test used to assess cognitive functions in 35 children with HCV infection and 23 controls. Serum levels of IL-6 and IFN-α were significantly higher in patients compared to controls. There was a significant effect on vocabulary, comprehension, and abstract visual reasoning, quantitative reasoning and bead memory tests, as well as total short-term memory and intelligence quotient in patients compared to controls. There was a significant positive correlation between IFN-α and IL-6. Also there were significant negative correlations between IFN-α and Abstract visual reasoning test, Quantitative reasoning test, Bead memory test, Total short-term memory and Intelligence quotient; and between IL-6 and Abstract visual reasoning test, Quantitative reasoning test and Intelligence quotient. There was no significant correlation between TNF-α and any of the cognitive functions. Cytokine levels were not related to demographic characteristics of the patients or viral load (PCR). Children with chronic hepatitis C infection in its early stages showed signs of cognitive impairment, with the memory tasks being mostly affected. There was a significant correlation between endogenous cytokines and cognitive impairment in these children. Further studies are needed to define the effect of successful antiviral treatment. PMID:25496114

  3. The Effect of Acute and Chronic Morphine on Some Blood Biochemical Parameters in an Inflammatory Condition in Gonadectomized Male Rats

    PubMed Central

    Chahkandi, Mohadeseh; Askari, Nayerreh; Asadikaram, Gholamreza

    2015-01-01

    Background Opiates affect blood factors as well as pain and inflammation in a gender-dependent manner. The aim of the present study was to evaluate the effects of morphine on serum glucose, cholesterol, triglycerides, and urea in gonadectomized and inflammation conditions. Methods Animals were divided as follows: control group, carrageenan and chronic morphine recipients, acute morphine recipients, chronic morphine recipients, carrageenan recipients, acute morphine and carrageenan recipients, gonadectomized group, gonadectomized recipients of carrageenan, gonadectomized recipients of morphine, gonadectomized recipients of chronic morphine, gonadectomized recipients of carrageenan and chronic morphine, gonadectomized recipients of acute morphine and carrageenan. Findings Our results have shown that acute and chronic morphine elevates blood glucose level in the acute and chronic morphine group. Cholesterol level has shown to be increasing in the morphine and carrageenan recipient group compared with a group which merely received morphine. Triglyceride has shown to be decreasing in acute and chronic morphine recipient group compared with control group. A significant increase in serum urea was observed in acute and chronic morphine recipients compared with the carrageenan recipient group. Conclusion Morphine alters the serum glucose, cholesterol, triglyceride, and urea in the normal and inflammatory conditions differently, hence, this finding should be considered in the patients who use morphine as a relief of pain, especially in an inflammatory condition. PMID:26885349

  4. Stress and opioids: role of opioids in modulating stress-related behavior and effect of stress on morphine conditioned place preference.

    PubMed

    Bali, Anjana; Randhawa, Puneet Kaur; Jaggi, Amteshwar Singh

    2015-04-01

    Research studies have defined the important role of endogenous opioids in modulating stress-associated behavior. The release of β-endorphins in the amygdala in response to stress helps to cope with a stressor by inhibiting the over-activation of HPA axis. Administration of mu opioid agonists reduces the risk of developing post-traumatic stress disorder (PTSD) following a traumatic event by inhibiting fear-related memory consolidation. Similarly, the release of endogenous enkephalin and nociceptin in the basolateral amygdala and the nucleus accumbens tends to produce the anti-stress effects. An increase in dynorphin levels during prolonged exposure to stress may produce learned helplessness, dysphoria and depression. Stress also influences morphine-induced conditioned place preference (CPP) depending upon the intensity and duration of the stressor. Acute stress inhibits morphine CPP, while chronic stress potentiates CPP. The development of dysphoria due to increased dynorphin levels may contribute to chronic stress-induced potentiation of morphine CPP. The activation of ERK/cyclic AMP responsive element-binding (CREB) signaling in the mesocorticolimbic area, glucocorticoid receptors in the basolateral amygdala, and norepinephrine and galanin system in the nucleus accumbens may decrease the acute stress-induced inhibition of morphine CPP. The increase in dopamine levels in the nucleus accumbens and augmentation of GABAergic transmission in the median prefrontal cortex may contribute in potentiating morphine CPP. Stress exposure reinstates the extinct morphine CPP by activating the orexin receptors in the nucleus accumbens, decreasing the oxytocin levels in the lateral septum and amygdala, and altering the GABAergic transmission (activation of GABAA and inactivation of GABAB receptors). The present review describes these varied interactions between opioids and stress along with the possible mechanism. PMID:25636946

  5. Morphine treatment selectively regulates expression of rat pituitary POMC and the prohormone convertases PC1/3 and PC2

    PubMed Central

    Anghel, Adrian; Paez Espinosa, Enma V.; Stuart, Ronald C.; Lutfy, Kabirullah; Nillni, Eduardo A.; Friedman, Theodore C.

    2013-01-01

    The prohormone convertases, PC1/3 and PC2 are thought to be responsible for the activation of many prohormones through processing including the endogenous opioid peptides. We propose that maintenance of hormonal homeostasis can be achieved, in part, via alterations in levels of these enzymes that control the ratio of active hormone to prohormone. In order to test the hypothesis that exogenous opioids regulate the endogenous opioid system and the enzymes responsible for their biosynthesis, we studied the effect of short-term morphine or naltrexone treatment on pituitary PC1/3 and PC2 as well as on the level of pro-opiomelanocortin (POMC), the precursor gene for the biosynthesis of the endogenous opioid peptide, beta-endorphin. Using ribonuclease protection assays, we observed that morphine down-regulated and naltrexone up-regulated rat pituitary PC1/3 and PC2 mRNA. Immunofluorescence and Western blot analysis confirmed that the protein levels changed in parallel with the changes in mRNA levels and were accompanied by changes in the levels of phosphorylated cyclic-AMP response element binding protein. We propose that the alterations of the prohormone processing system may be a compensatory mechanism in response to an exogenous opioid ligand whereby the organism tries to restore its homeostatic hormonal milieu following exposure to the opioid, possibly by regulating the levels of multiple endogenous opioid peptides and other neuropeptides in concert. PMID:23891651

  6. Influence of short-term silicon application on endogenous physiohormonal levels of Oryza sativa L. under wounding stress.

    PubMed

    Kim, Yoon-Ha; Khan, Abdul Latif; Hamayun, Muhammad; Kang, Sang Mo; Beom, Yoon Jung; Lee, In-Jung

    2011-12-01

    The current study was conducted in order to investigate the short-term effects (6, 12, and 24 h) of silicon (Si) on the endogenous hormonal composition of rice (Oryza sativa L. cv. Dongjin-beyo), with and without wounding stress. Si applied in different concentrations (0.5, 1.0, and 2.0 mM) significantly promoted shoot length, plant biomass, and chlorophyll content of rice plants. Plants treated with different concentrations of sole Si for 6, 12, and 24 h had higher endogenous jasmonic acid contents than control. However, a combined application of wounding stress and Si induced a significantly small quantity of endogenous jasmonic acid as compared with control. On the contrary, endogenous salicylic acid level was significantly higher in sole Si-treated plants, while after wounding stress, a similar trend was observed yet again. After 6, 12, and 24 h of Si applications, with and without wounding stress, ethylene levels were significantly lower in comparison to their respective controls. The findings of the present study perpetrate the beneficial role of Si on the growth and development of rice plant by relieving physical injury and stress. Si also affects endogenous jasmonic acid and ethylene levels, while an inverse correlation exists between jasmonic acid and salicylic acid under wounding stress conditions. PMID:21465280

  7. Endogenous hormone levels affect the regeneration ability of callus derived from different organs in barley.

    PubMed

    Hisano, Hiroshi; Matsuura, Takakazu; Mori, Izumi C; Yamane, Miki; Sato, Kazuhiro

    2016-02-01

    Hordeum vulgare (barley) is an important agricultural crop worldwide. A simple and efficient transformation system is needed to analyze the functions of barley genes and generate lines with improved agronomic traits. Currently, Golden Promise and Igri are the most amenable barley cultivars for stable transformation. Here we evaluated the regeneration ratios and endogenous hormone levels of calli derived from various malting barley cultivars, including Golden Promise, Haruna Nijo, and Morex. We harvested samples not only from immature embryos, but also from different explants of juvenile plants, cotyledons, coleoptiles, and roots. The callus properties differed among genotypes and explant types. Calli derived from the immature embryos of Golden Promise, which showed the highest ratio of regeneration of green shoots, had the highest contents of indoleacetic acid, trans-zeatin, and cis-zeatin. By contrast, calli derived from the cotyledons of Morex and the immature embryos of Haruna Nijo had elevated levels of salicylic acid and abscisic acid, respectively. We thus propose that the former phytohormones are positively associated with the regeneration ability of callus but the later phytohormones are negatively associated. PMID:26735586

  8. Effect of chronic morphine administration on circulating dendritic cells in SIV-infected rhesus macaques.

    PubMed

    Cornwell, William D; Wagner, Wendeline; Lewis, Mark G; Fan, Xiaoxuan; Rappaport, Jay; Rogers, Thomas J

    2016-06-15

    We studied the effect of chronic morphine administration on the circulating dendritic cell population dynamics associated with SIV infection using rhesus macaques. Animals were either first infected with SIV and then given chronic morphine, or visa versa. SIV infection increased the numbers of myeloid DCs (mDCs), but morphine treatment attenuated this mDC expansion. In contrast, morphine increased the numbers of plasmacytoid DCs (pDCs) in SIV-infected animals. Finally, chronic morphine administration (no SIV) transiently increased the numbers of circulating pDCs. These results show that chronic morphine induces a significant alteration in the available circulating levels of critical antigen-presenting cells. PMID:27235346

  9. Identification of endogenously S-nitrosylated proteins in Arabidopsis plantlets: effect of cold stress on cysteine nitrosylation level.

    PubMed

    Puyaubert, Juliette; Fares, Abasse; Rézé, Nathalie; Peltier, Jean-Benoît; Baudouin, Emmanuel

    2014-02-01

    S-nitrosylation is a nitric oxide (NO)-based post-translational modification regulating protein function and signalling. We used a combination between the biotin switch method and labelling with isotope-coded affinity tag to identify endogenously S-nitrosylated peptides in Arabidopsis thaliana proteins extracted from plantlets. The relative level of S-nitrosylation in the identified peptides was compared between unstressed and cold-stress seedlings. We thereby detected 62 endogenously nitrosylated peptides out of which 20 are over-nitrosylated following cold exposure. Taken together these data provide a new repertoire of endogenously S-nitrosylated proteins in Arabidopsis with cysteine S-nitrosylation site. Furthermore they highlight the quantitative modification of the S-nitrosylation status of specific cysteine following cold stress. PMID:24388526

  10. An Engineered Endomorphin-2 Gene for Morphine Withdrawal Syndrome

    PubMed Central

    Wu, Fei-xiang; He, Yan; Di, Hui-ting; Sun, Yu-ming; Pan, Rui-rui; Yu, Wei-feng; Liu, Renyu

    2016-01-01

    An optimal therapeutics to manage opioid withdrawal syndrome is desired for opioid addiction treatment. Down-regulation of endogenous endomorphin-2 (EM2) level in the central nervous system after continuous morphine exposure was observed, which suggested that increase of EM2 could be an alternative novel method for opioid dependence. As a short peptide, the short half-life of EM2 limits its clinical usage through conventional administration. In the present study, we engineered an EM2 gene using a signal peptide of mouse growth factor for an out-secretory expression of EM2 and an adenovirus as a vector, which ultimately sustained the release of EM-2. After administration of the adenovirus in central nervous system, a sustained increase of EM2 level in the cerebral spinal fluid (CSF) was observed along with a reduction of morphine withdrawal syndrome. These findings suggest that the engineered EM2 gene delivered to the central nervous system could be a novel therapeutics for withdrawal syndrome in opioid dependent subjects. PMID:27003293

  11. Effect of morphine on PC12 cells with molecular radar

    NASA Astrophysics Data System (ADS)

    Shi, Chen; Yu, Xiaoli; Lu, Jiuyi; Zhang, Chunyang; Jin, Lei; Ma, Hui; Zhang, Dacheng; Chen, Die Yan

    2000-10-01

    Molecular Radar (MR) is a new method to detect biological processes in living cells at the level of molecular, it is also the newest means to get intracellular information. In this paper we study the effect of morphine on PC12 cells using MR. The results show that the effect of morphine on PC12 cells is time- and concentration-dependent. Morphine treating for short time induces the increase and fluctuation of intracellular (CA2+), while morphine treating for long time induces chromatin condensation, loss of mitochondria membrane potential apoptosis.

  12. Metabolism and pharmacokinetics of morphine in neonates: A review

    PubMed Central

    Pacifici, Gian Maria

    2016-01-01

    Morphine is an agonist of the µ and k receptors, whose activation results in analgesia. Morphine-like agonists act through the µ opioid receptors to cause pain relief, sedation, euphoria and respiratory depression. Morphine is glucuronidated and sulfated at positions 3 and 6; the plasma concentration ratios correlate positively with birth weight, which probably reflects increased liver weight with increasing birth weight. Moreover, morphine clearance correlates positively with gestational age and birth weight. Steady-state morphine plasma concentrations are achieved after 24-48 hours of infusion, but the glucuronide metabolite plasma concentrations do not reach steady state before 60 hours. The morphine-3-glucuronide metabolite has lower clearance, a shorter half-life and a smaller distribution volume compared with the morphine-6 metabolite, which is the most active morphine-like agonist. Ordinary doses cause constipation, urinary retention and respiratory depression. Neonatal pain relief may require a blood level of approximately 120 ng/ml, whereas lower levels (20-40 ng/ml) seem adequate for children. A bibliographic search was performed using the PubMed database and the keywords “morphine metabolism neonate” and “morphine pharmacokinetics neonate”. The initial and final cutoff points were January 1990 and September 2015, respectively. The results indicate that morphine is extensively glucuronidated and sulfated at positions 3 and 6, and that the glucuronidation rate is lower in younger neonates compared with older infants. Although much is known about morphine in neonates, further research will be required to ensure that recommended therapeutic doses for analgesia in neonates are evidence based.

  13. The effect of different durations of morphine exposure on mesencephalic dopaminergic neurons in morphine dependent rats.

    PubMed

    Shi, Weibo; Ma, Chunling; Qi, Qian; Liu, Lizhe; Bi, Haitao; Cong, Bin; Li, Yingmin

    2015-12-01

    Mesencephalic dopaminergic neurons are heavily involved in the development of drug dependence. Thyrosine hydroxylase (TH), the rate-limiting enzyme in dopamine synthesis, plays an important role in the survival of dopaminergic neurons. Therefore, this study investigated TH changes in dopaminergic neurons of the ventral tegmental area (VTA) and substantia nigra (SN), as well as the morphine effects on dopaminergic neurons induced by different durations of morphine dependence. Models of morphine dependence were established in rats, and paraffin-embedded sections, immunohistochemistry and western blotting were used to observe the changes in the expression of TH protein. Fluoro-Jade B staining was used to detect degeneration and necrosis, and terminal deoxynucleotidyl transferase-mediated dUTP nick-end-labeling (TUNEL) detected the apoptosis of mesencephalic dopaminergic nerve cells. Immunohistochemistry and western blotting showed that the number of TH positive cells and the protein levels in the VTA and SN were significantly decreased in the rats with a long period of morphine dependency. With prolonged morphine exposure, the dopaminergic nerve cells in the VTA and SN showed degeneration and necrosis, while apoptotic cells were not observed. The number of VTA and SN dopaminergic nerve cells decreased with increasing periods of morphine dependence, which was most likely attributable to the degeneration and necrosis of nerve cells induced by morphine toxicity. PMID:26386147

  14. Release of prostaglandins from the isolated frog ventricle and associated changes in endogenous cyclic nucleotide levels.

    PubMed Central

    Flitney, F W; Singh, J

    1980-01-01

    1. A study has been made of the decline in contractility and some associated metabolic changes which occur in the isolated frog ventricle during the development of hypodynamic depression. 2. The release of two identified prostaglandins (PG), E1 and E2, together with several as yet unknown prostaglandin-related substances (PRS), accompanies the development of hypodynamic depression. There is a close correlation between the extent to which the isometric twitch is depressed and the quantity of prostaglandin released into the superfusate. 3. Fractionation of extracts of 'used' superfusates, using preparative-scale thin-layer chromatography, revealed the presence of six major components, four of which (PGE1 and PGE2 and two unidentified components) were found to be cardioactive and potentiated contraction when tested subsequently on hypodynamic preparations. 4. Two agents which influence prostaglandin biosynthesis, arachidonic acid and indomethacin, are found to affect both the rate at which the hypodynamic state develops and the extent to which the 'steady-state' twitch tension is depressed, in a dose-dependent manner. Indomethacin, a PG-synthetase inhibitor, accelerates the decay and depresses the final 'steady-state' tension attained, whereas arachidonic acid, the principal precursor for prostaglandin biosynthesis, has the converse effects. 5. Measurements of endogenous 3'5'-cyclic nucleotide levels reveal a time-dependent decrease in intracellular adenosine 3'5'-cyclic monophosphate (3'5'-cyclic AMP) and a concomitant increase in guanosine 3'5' cyclic monophosphate (3'5'-cyclic GMP). The decline in isometric twitch tension is paralleled almost exactly by an equivalent reduction in the ratio 3'5'-cyclic AMP: 3'5'-cyclic GMP. 6. Superfusion of isolated ventricles with Ringer solution containing exogenous, lipid-soluble derivatives of 3'5'-cyclic AMP and 3'5'-cyclic GMP affects both the rate of decline of the isometric twitch and the steady-state tension ultimately

  15. Treatment Response in Kawasaki Disease Is Associated with Sialylation Levels of Endogenous but Not Therapeutic Intravenous Immunoglobulin G

    PubMed Central

    Ogata, Shohei; Shimizu, Chisato; Franco, Alessandra; Touma, Ranim; Kanegaye, John T.; Choudhury, Biswa P.; Naidu, Natasha N.; Kanda, Yutaka; Hoang, Long T.; Hibberd, Martin L.; Tremoulet, Adriana H.; Varki, Ajit; Burns, Jane C.

    2013-01-01

    Objectives Although intravenous immunoglobulin (IVIG) is highly effective in Kawasaki disease (KD), mechanisms are not understood and 10-20% of patients are treatment-resistant, manifesting a higher rate of coronary artery aneurysms. Murine models suggest that α2-6-linked sialic acid (α2-6Sia) content of IVIG is critical for suppressing inflammation. However, pro-inflammatory states also up-regulate endogenous levels of β-galactoside:α2-6 sialyltransferase-I (ST6Gal-I), the enzyme that catalyzes addition of α2-6Sias to N-glycans. We asked whether IVIG failures correlated with levels of α2-6Sia on infused IVIG or on the patient’s own endogenous IgG. Methods We quantified levels of α2-6Sia in infused IVIG and endogenous IgG from 10 IVIG-responsive and 10 resistant KD subjects using multiple approaches. Transcript levels of ST6GAL1, in patient whole blood and B cell lines were evaluated by RT-PCR. Plasma soluble (s)ST6Gal-I levels were measured by ELISA. Results There was no consistent difference in median sialylation levels of infused IVIG between groups. However, α2-6Sia levels in endogenous IgG, ST6GAL1 transcript levels, and ST6Gal-I protein in serum from IVIG-resistant KD subjects were lower than in responsive subjects at both pre-treatment and one-year time points (p <0.001, respectively). Conclusions Our data indicate sialylation levels of therapeutic IVIG are unrelated to treatment response in KD. Rather, lower sialylation of endogenous IgG and lower blood levels of ST6GALI mRNA and ST6Gal-I enzyme predict therapy resistance. These differences were stable over time, suggesting a genetic basis. Because IVIG-resistance increases risk of coronary artery aneurysms, our findings have important implications for the identification and treatment of such individuals. PMID:24324693

  16. Morphine: Myths and Reality

    MedlinePlus

    ... ve heard that Morphine has lots of side effects, and I feel bad enough already.” All opiates can cause nausea, drowsiness and constipation. However, all side effects will generally stop after a few days, as ...

  17. UV-B irradiation alleviates the deterioration of cold-stored mangoes by enhancing endogenous nitric oxide levels.

    PubMed

    Ruan, Jiazhao; Li, Mengya; Jin, Haihong; Sun, Lina; Zhu, Yun; Xu, Maojun; Dong, Jufang

    2015-02-15

    Effects of UV-B radiation on chilling injury, ripening and endogenous nitric oxide (NO) levels in mango fruit were evaluated. Chilling injury index, ion leakage, and malondialdehyde (MDA) content of the fruit pretreated with 5kJm(-2) UV-B for 4h were significantly lower than those of the control during fruit ripening at ambient temperature following cold storage at 6°C for 10days. Fruit firmness of the mangoes irradiated with UV-B was significantly higher than the control during the ripening period. Endogenous NO levels of the UV-B-irradiated fruit were rapidly increased after UV-B treatment. Pre-treatment of mangoes with the NO specific scavenger, not only abolished UV-B-triggered NO accumulation, but also suppressed the UV-B-reduced chilling injury, oxidative damage, and ripening delay of the fruit. Together, the results suggest that UV-B treatment may enhance chilling tolerance and delay fruit ripening of mangoes by triggering endogenous NO generation in the fruit. PMID:25236246

  18. Effect of CPPU on Carbohydrate and Endogenous Hormone Levels in Young Macadamia Fruit

    PubMed Central

    Lu, Chaozhong; Lin, Wenqiu; Zou, Minghong; Zhang, Hanzhou; Wan, Jifeng; Huang, Xuming

    2016-01-01

    N-(2-Chloro-4-pyridyl)-N′-phenylurea (CPPU) is a highly active cytokinin-like plant growth regulator that promotes chlorophyll biosynthesis, cell division, and cell expansion. It also increases fruit set and accelerates fruit enlargement. However, there has been no report about the effect of CPPU on fruit development and its physiological mechanism in macadamia. In this study, we investigated the effect of CPPU treatment at early fruit development via foliar spray or raceme soaking at 20 mg·L-1 on fruit set and related physiology in macadamia. Changes in carbohydrate contents and endogenous hormones in leaves, bearing shoots and fruit were also examined. Results showed that CPPU significantly reduced young fruit drop and delayed the wave of fruit drop by 1–2 weeks. The treatment significantly decreased the contents of total soluble sugars and starch in the leaves, but increased them in the bearing shoots and total soluble sugars in the husk (pericarp) and seeds. These findings suggested that CPPU promoted carbohydrate mobilization from the leaves to the fruit. In addition, CPPU increased the contents of indole-3-acetic acid (IAA), gibberellin acid (GA3), and zeatin riboside (ZR) and decreased the abscisic acid (ABA) in the husk. Therefore, CPPU treatment reduced the early fruit drop by increasing carbohydrate availability and by modifying the balance among endogenous hormones. PMID:27387814

  19. Comparative analysis of endogenous hormones level in two soybean (Glycine max L.) lines differing in waterlogging tolerance.

    PubMed

    Kim, Yoon-Ha; Hwang, Sun-Joo; Waqas, Muhammad; Khan, Abdul L; Lee, Joon-Hee; Lee, Jeong-Dong; Nguyen, Henry T; Lee, In-Jung

    2015-01-01

    Waterlogged condition due to flooding is one of the major abiotic stresses that drastically affect the soybean growth and yield around the world. As a result, many breeders have focused on the development of waterlogging tolerance in soybean varieties, and thus, several tolerant varieties were developed. However, the physiological mechanism of waterlogging tolerance is not yet fully understood. We particularly studied the endogenous hormones regulation during waterlogging in two contrasting soybean genotypes. According to our results, adventitious roots were better developed in the waterlogging tolerant line (WTL) than in the waterlogging susceptible line (WSL). Endogenous hormones also showed significant differences between WTL and WSL. The ethylene production ratio was higher in WTL than in WSL, and methionine was higher in WTL than in WSL. Other endogenous abscisic acid (ABA) contents were lower in WTL than in WSL. Conversely, gibberellic acid (GA) showed a tendency to be high in WTL, especially the levels of the bioactive GA4. The ratio of total GA and ABA was significantly higher in WTL than in WSL. Anatomical study of the root revealed that aerenchyma cells in the stele were better developed in WTL than in WSL. PMID:26442028

  20. Comparative analysis of endogenous hormones level in two soybean (Glycine max L.) lines differing in waterlogging tolerance

    PubMed Central

    Kim, Yoon-Ha; Hwang, Sun-Joo; Waqas, Muhammad; Khan, Abdul L.; Lee, Joon-Hee; Lee, Jeong-Dong; Nguyen, Henry T.; Lee, In-Jung

    2015-01-01

    Waterlogged condition due to flooding is one of the major abiotic stresses that drastically affect the soybean growth and yield around the world. As a result, many breeders have focused on the development of waterlogging tolerance in soybean varieties, and thus, several tolerant varieties were developed. However, the physiological mechanism of waterlogging tolerance is not yet fully understood. We particularly studied the endogenous hormones regulation during waterlogging in two contrasting soybean genotypes. According to our results, adventitious roots were better developed in the waterlogging tolerant line (WTL) than in the waterlogging susceptible line (WSL). Endogenous hormones also showed significant differences between WTL and WSL. The ethylene production ratio was higher in WTL than in WSL, and methionine was higher in WTL than in WSL. Other endogenous abscisic acid (ABA) contents were lower in WTL than in WSL. Conversely, gibberellic acid (GA) showed a tendency to be high in WTL, especially the levels of the bioactive GA4. The ratio of total GA and ABA was significantly higher in WTL than in WSL. Anatomical study of the root revealed that aerenchyma cells in the stele were better developed in WTL than in WSL. PMID:26442028

  1. Assaying estrogenicity by quantitating the expression levels of endogenous estrogen-regulated genes.

    PubMed Central

    Jørgensen, M; Vendelbo, B; Skakkebaek, N E; Leffers, H

    2000-01-01

    Scientific evidence suggests that humans and wildlife species may experience adverse health consequences from exposure to environmental chemicals that interact with the endocrine system. Reliable short-term assays are needed to identify hormone-disrupting chemicals. In this study we demonstrate that the estrogenic activity of a chemical can be evaluated by assaying induction or repression of endogenous estrogen-regulated "marker genes" in human breast cancer MCF-7 cells. We included four marker genes in the assay--pS2, transforming growth factor beta3 (TGFbeta3), monoamine oxidase A, and [alpha]1-antichymotrypsin--and we evaluated estrogenic activity for 17beta-estradiol (E(2)), diethylstilbestrol, [alpha]-zearalanol, nonylphenol, genistein, methoxychlor, endosulphan, o,p-DDE, bisphenol A, dibutylphthalate, 4-hydroxy tamoxifen, and ICI 182.780. All four marker genes responded strongly to the three high-potency estrogens (E(2), diethylstilbestrol, and [alpha]-zearalanol), whereas the potency of the other chemicals was 10(3)- to 10(6)-fold lower than that of E(2). There were some marker gene-dependent differences in the relative potencies of the tested chemicals. TGFbeta3 was equally sensitive to the three high-potency estrogens, whereas the sensitivity to [alpha]-zearalanol was approximately 10-fold lower than the sensitivity to E(2) and diethylstilbestrol when assayed with the other three marker genes. The potency of nonylphenol was equal to that of genistein when assayed with pS2 and TGFbeta3, but 10- to 100-fold higher/lower with monoamine oxidase A and [alpha]1-antichymotrypsin, respectively. The results are in agreement with results obtained by other methods and suggest that an assay based on endogenous gene expression may offer an attractive alternative to other E-SCREEN methods. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 Figure 8 Figure 9 PMID:10811566

  2. Light Inhibition of Shoot Regeneration Is Regulated by Endogenous Abscisic Acid Level in Calli Derived from Immature Barley Embryos.

    PubMed

    Rikiishi, Kazuhide; Matsuura, Takakazu; Ikeda, Yoko; Maekawa, Masahiko

    2015-01-01

    Shoot regeneration in calli derived from immature barley embryos is regulated by light conditions during the callus-induction period. Barley cultivars Kanto Nijo-5 (KN5) and K-3 (K3) showed lower efficiency of shoot regeneration in a 16-h photoperiod during callus-induction than those in continuous darkness, whereas shoot regeneration was enhanced in cultures under a 16-h photoperiod in Golden Promise (GP) and Lenins (LN). These cultivars were classified as photo-inhibition type (KN5 and K3) or photo-induction type (GP and LN) according to their response to light. Contents of endogenous plant hormones were determined in calli cultured under a 16-h photoperiod and continuous darkness. In photo-inhibition type, higher accumulation of abscisic acid (ABA) was detected in calli cultured under a 16-h photoperiod, whereas calli showed lower levels of endogenous ABA in continuous darkness. However, cultivars of photo-induction type showed lower levels of ABA in calli cultured under both light conditions, similarly to photo-inhibition type in continuous darkness. Exogenous ABA inhibited the callus growth and shoot regeneration independent of light conditions in all cultivars. In photo-inhibition type, lower levels of endogenous ABA induced by ABA biosynthesis inhibitor, fluridone, reduced the photo-inhibition of shoot regeneration. Expression of ABA biosynthesis gene, HvNCED1, in calli was regulated by the light conditions. Higher expression was observed in calli cultured under a 16-h photoperiod. These results indicate that ABA biosynthesis could be activated through the higher expression of HvNCED1 in a 16-h photoperiod and that the higher accumulations of ABA inhibit shoot regeneration in the photo-inhibition type cultivars. PMID:26670930

  3. Light Inhibition of Shoot Regeneration Is Regulated by Endogenous Abscisic Acid Level in Calli Derived from Immature Barley Embryos

    PubMed Central

    Rikiishi, Kazuhide; Matsuura, Takakazu; Ikeda, Yoko; Maekawa, Masahiko

    2015-01-01

    Shoot regeneration in calli derived from immature barley embryos is regulated by light conditions during the callus-induction period. Barley cultivars Kanto Nijo-5 (KN5) and K-3 (K3) showed lower efficiency of shoot regeneration in a 16-h photoperiod during callus-induction than those in continuous darkness, whereas shoot regeneration was enhanced in cultures under a 16-h photoperiod in Golden Promise (GP) and Lenins (LN). These cultivars were classified as photo-inhibition type (KN5 and K3) or photo-induction type (GP and LN) according to their response to light. Contents of endogenous plant hormones were determined in calli cultured under a 16-h photoperiod and continuous darkness. In photo-inhibition type, higher accumulation of abscisic acid (ABA) was detected in calli cultured under a 16-h photoperiod, whereas calli showed lower levels of endogenous ABA in continuous darkness. However, cultivars of photo-induction type showed lower levels of ABA in calli cultured under both light conditions, similarly to photo-inhibition type in continuous darkness. Exogenous ABA inhibited the callus growth and shoot regeneration independent of light conditions in all cultivars. In photo-inhibition type, lower levels of endogenous ABA induced by ABA biosynthesis inhibitor, fluridone, reduced the photo-inhibition of shoot regeneration. Expression of ABA biosynthesis gene, HvNCED1, in calli was regulated by the light conditions. Higher expression was observed in calli cultured under a 16-h photoperiod. These results indicate that ABA biosynthesis could be activated through the higher expression of HvNCED1 in a 16-h photoperiod and that the higher accumulations of ABA inhibit shoot regeneration in the photo-inhibition type cultivars. PMID:26670930

  4. Interaction of prenatal stress and morphine alters prolactin and seizure in rat pups.

    PubMed

    Saboory, Ehsan; Ebrahimi, Loghman; Roshan-Milani, Shiva; Hashemi, Paria

    2015-10-01

    Prenatal exposure to stress and morphine has complicated effects on epileptic seizure. In the present study, effect of prenatal forced-swim stress and morphine co-administration on pentylenetetrazol (PTZ) induced epileptic behaviors and prolactin blood level (PBL) was investigated in rat offspring. Pregnant Wistar rats were divided to four groups of control-saline, control-morphine, stressed-saline and stressed-morphine. In the stressed group, pregnant rats were placed in 25°C water on gestation days 17, 18 and 19 (GD17, GD18 and GD19) for 30 min. In the morphine/saline group, pregnant rats received morphine (10, 12 and 15 mg/kg, IP, on GD17, GD18 and GD19, respectively) or saline (1 ml, IP). In the morphine/saline-stressed group, the rats received morphine or saline and then exposed to stress. On postnatal days 6 and 15 (P6 and P15), blood samples were obtained and PBL was determined. At P15 and P25, the rest of the pups was injected with PTZ to induce seizure. Then, epileptic behaviors of each rat were observed individually. Latency of first convulsion decreased in control-morphine and stressed-saline groups while increased in stressed-morphine rats compared to control-saline group on P15 (P=0.04). Number of tonic-clonic seizures significantly increased in control-morphine and stressed-saline rats compared to control-saline group at P15 (P=0.02). PBL increased in stressed-saline, control-morphine and stress-morphine groups compared to control-saline rats. It can be concluded that prenatal exposure of rats to forced-swim stress and morphine changed their susceptibility to PTZ-induced seizure and PBL during infancy and prepubertal period. Co-administration of morphine attenuated effect of stress on epileptic behaviors. PMID:26056076

  5. Endogenous cholinergic tone modulates spontaneous network level neuronal activity in primary cortical cultures grown on multi-electrode arrays

    PubMed Central

    2013-01-01

    Background Cortical cultures grown long-term on multi-electrode arrays (MEAs) are frequently and extensively used as models of cortical networks in studies of neuronal firing activity, neuropharmacology, toxicology and mechanisms underlying synaptic plasticity. However, in contrast to the predominantly asynchronous neuronal firing activity exhibited by intact cortex, electrophysiological activity of mature cortical cultures is dominated by spontaneous epileptiform-like global burst events which hinders their effective use in network-level studies, particularly for neurally-controlled animat (‘artificial animal’) applications. Thus, the identification of culture features that can be exploited to produce neuronal activity more representative of that seen in vivo could increase the utility and relevance of studies that employ these preparations. Acetylcholine has a recognised neuromodulatory role affecting excitability, rhythmicity, plasticity and information flow in vivo although its endogenous production by cortical cultures and subsequent functional influence upon neuronal excitability remains unknown. Results Consequently, using MEA electrophysiological recording supported by immunohistochemical and RT-qPCR methods, we demonstrate for the first time, the presence of intrinsic cholinergic neurons and significant, endogenous cholinergic tone in cortical cultures with a characterisation of the muscarinic and nicotinic components that underlie modulation of spontaneous neuronal activity. We found that tonic muscarinic ACh receptor (mAChR) activation affects global excitability and burst event regularity in a culture age-dependent manner whilst, in contrast, tonic nicotinic ACh receptor (nAChR) activation can modulate burst duration and the proportion of spikes occurring within bursts in a spatio-temporal fashion. Conclusions We suggest that the presence of significant endogenous cholinergic tone in cortical cultures and the comparability of its modulatory effects

  6. Quantitative analysis of the endogenous GHB level in the hair of the Chinese population using GC/MS/MS.

    PubMed

    Shi, Yan; Cui, Xiaopei; Shen, Min; Xiang, Ping

    2016-04-01

    Endogenous production complicates interpretation when gamma-hydroxybutyrate (GHB) is measured in hair for forensic purposes. A method capable of quantifying the endogenous concentration of GHB in human head hair was developed and validated using GC/MS/MS. Hair was digested under alkaline conditions (1 mol/L NaOH, 90 °C 10 min), and GHB-d6 was used as an internal standard. Before derivatization with BSTFA and ethyl acetate, a liquid-liquid extraction with ethyl acetate under acidic conditions was performed. GHB-TMS derivatives were detected using GC/MS/MS in the multiple-reaction monitoring mode. This method exhibited good linearity (y = 0.018x + 0.038, R(2) = 0.9998), and the limit of detection was 0.02 ng/mg. The extraction recoveries were more than 60%, and the inter-day and intra-day relative standard deviations (RSD) were less than 15%. This method has been applied for the analysis of the endogenous GHB in hair samples from 66 drug-free Chinese donors. The mean measured concentration for 0-3 cm hair was 1.93 ± 1.40 ng/mg (n = 66), and extreme values were in the range of 0.28-4.91 ng/mg. The mean male endogenous GHB level was 2.95 ng/mg (0.92-4.91 ng/mg, n = 35), while the mean female level was 0.77 ng/mg (0.28-1.95 ng/mg, n = 31). This method was applied to a forensic case for the determination of GHB in hair samples but it is hard to make a reasonable "cut off" in hair. The solution is to use each subject as his own control. PMID:26807994

  7. Endogenous ROS levels in C. elegans under exogenous stress support revision of oxidative stress theory of life-history tradeoffs

    PubMed Central

    2014-01-01

    Background The oxidative stress theory of life-history tradeoffs states that oxidative stress caused by damaging free radicals directly underpins tradeoffs between reproduction and longevity by altering the allocation of energetic resources between these tasks. We test this theory by characterizing the effects of exogenous oxidative insult and its interaction with thermal stress and diet quality on a suite of life-history traits and correlations in Caenorhabditis elegans nematodes. We also quantify demographic aging rates and endogenous reactive oxygen species (ROS) levels in live animals. Results Our findings indicate a tradeoff between investment in reproduction and antioxidant defense (somatic maintenance) consistent with theoretical predictions, but correlations between standard life-history traits yield little evidence that oxidative stress generates strict tradeoffs. Increasing oxidative insult, however, shows a strong tendency to uncouple positive phenotypic correlations and, in particular, to reduce the correlation between reproduction and lifespan. We also found that mild oxidative insult results in lower levels of endogenous ROS accompanied by hormetic changes in lifespan, demographic aging, and reproduction that disappear in combined-stress treatments--consistent with the oxidative stress theory of aging. Conclusions Our findings demonstrate that oxidative stress is a direct contributor to life-history trait variation and that traditional tradeoffs are not necessary to invoke oxidative stress as a mediator of relationships between life-history traits, supporting previous calls for revisions to theory. PMID:25056725

  8. Estimating Endogenous Dopamine Levels at D2 and D3 Receptors in Humans using the Agonist Radiotracer [11C]-(+)-PHNO

    PubMed Central

    Caravaggio, Fernando; Nakajima, Shinichiro; Borlido, Carol; Remington, Gary; Gerretsen, Philip; Wilson, Alan; Houle, Sylvain; Menon, Mahesh; Mamo, David; Graff-Guerrero, Ariel

    2014-01-01

    Using positron emission tomography (PET) and an acute dopamine depletion challenge it is possible to estimate endogenous dopamine levels occupying dopamine D2/3 receptors (D2/3R) in humans in vivo. Our group has developed [11C]-(+)-PHNO, the first agonist radiotracer with preferential in vivo affinity for D3R. Thus, the use of [11C]-(+)-PHNO offers the novel possibility of (i) estimating in vivo endogenous dopamine levels at D2/3R using an agonist radiotracer, and (ii) estimating endogenous dopamine levels at D3R in extrastriatal regions such as the substantia nigra, hypothalamus, and ventral pallidum. Ten healthy participants underwent a [11C]-(+)-PHNO PET scan under baseline conditions and another under acute endogenous dopamine depletion achieved via oral administration of alpha-methyl-para-tyrosine (64 mg/kg). [11C]-(+)-PHNO binding was sensitive to acute dopamine depletion, allowing in vivo estimates of endogenous dopamine in D2R-rich regions (caudate and putamen), mixed D2/3R-rich regions (ventral striatum and globus pallidus), and extrastriatal D3R-rich regions (hypothalamus and ventral pallidum). Dopamine depletion decreased self-reported vigor, which was correlated with the reduction in dopamine levels in the globus pallidus. [11C]-(+)-PHNO is a suitable radiotracer for use in estimating endogenous dopamine levels at D2R and D3R in neuropsychiatric populations. PMID:24874713

  9. Endogenous testosterone level and testosterone supplementation therapy in chronic obstructive pulmonary disease (COPD): a systematic review and meta-analysis

    PubMed Central

    Atlantis, Evan; Fahey, Paul; Cochrane, Belinda; Wittert, Gary; Smith, Sheree

    2013-01-01

    Objective Low testosterone level may be a reversible risk factor for functional disability and deterioration in patients with chronic obstructive pulmonary disease (COPD). We sought to systematically assess the endogenous testosterone levels and effect of testosterone therapy on exercise capacity and health-related quality of life (HRQoL) outcomes in COPD patients, as well as to inform guidelines and practice. Design Systematic review and meta-analysis. Data sources We searched PubMed, Scopus, Cochrane Library, CINAHL, Health Source Nursing and PsychINFO and the reference lists of retrieved articles published before May 2012. Inclusion criteria Observational studies on endogenous testosterone levels in people with chronic lung disease compared with controls, or randomised controlled trials (RCTs) on testosterone therapy for exercise capacity and/or HRQoL outcomes in COPD patients were eligible. Data extraction and analysis Data on the mean difference in endogenous total testosterone (TT) values, and the mean difference in exercise capacity and HRQoL values were extracted and pooled using random effects meta-analysis. Results Nine observational studies in 2918 men with COPD reported consistently lower levels of TT compared with controls (weighted mean difference was –3.21 nmol/L (95% CI −5.18 to −1.23)). Six RCTs in 287 participants yielded five studies on peak muscle strength and peak cardiorespiratory fitness outcomes (peak oxygen uptake (VO2) and workload) and three studies on HRQoL outcomes. Testosterone therapies significantly improved peak muscle strength (standardised mean difference (SMD) was 0.31 (95% CI 0.05 to 0.56)) and peak workload (SMD was 0.27 (95% CI 0.01 to 0.52)) compared with control conditions (all but one used placebo), but not peak VO2 (SMD was 0.21 (95% CI −0.15 to 0.56)) or HRQoL (SMD was –0.03 (95% CI −0.32 to 0.25)). Conclusions Men with COPD have clinically relevant lower than normal TT levels. Insufficient evidence from

  10. Effect of morphine on sympathetic nerve activity in humans

    NASA Technical Reports Server (NTRS)

    Carter, Jason R.; Sauder, Charity L.; Ray, Chester A.

    2002-01-01

    There are conflicting reports for the role of endogenous opioids on sympathetic and cardiovascular responses to exercise in humans. A number of studies have utilized naloxone (an opioid-receptor antagonist) to investigate the effect of opioids during exercise. In the present study, we examined the effect of morphine (an opioid-receptor agonist) on sympathetic and cardiovascular responses at rest and during isometric handgrip (IHG). Eleven subjects performed 2 min of IHG (30% maximum) followed by 2 min of postexercise muscle ischemia (PEMI) before and after systemic infusion of morphine (0.075 mg/kg loading dose + 1 mg/h maintenance) or placebo (saline) in double-blinded experiments on separate days. Morphine increased resting muscle sympathetic nerve activity (MSNA; 17 +/- 2 to 22 +/- 2 bursts/min; P < 0.01) and increased mean arterial pressure (MAP; 87 +/- 2 to 91 +/- 2 mmHg; P < 0.02), but it decreased heart rate (HR; 61 +/- 4 to 59 +/- 3; P < 0.01). However, IHG elicited similar increases for MSNA, MAP, and HR between the control and morphine trial (drug x exercise interaction = not significant). Moreover, responses to PEMI were not different. Placebo had no effect on resting, IHG, and PEMI responses. We conclude that morphine modulates cardiovascular and sympathetic responses at rest but not during isometric exercise.

  11. Enhancement of Cisplatin Nephrotoxicity by Morphine and Its Attenuation by the Opioid Antagonist Naltrexone.

    PubMed

    Aminian, Atefeh; Javadi, Shiva; Rahimian, Reza; Dehpour, Ahmad Reza; Asadi Amoli, Fahimeh; Moghaddas, Payman; Ejtemaei Mehr, Shahram

    2016-07-01

    Nephrotoxicity is a major side effect of cisplatin, a widely used chemotherapy agent. Morphine and other opioids are also used extensively in different types of cancer for the clinical management of pain associated with local or metastatic neoplastic lesions. In addition to its analgesic effects, morphine has also been reported to possess potential immunomodulatory and antioxidant properties. Herein, we investigated the effects of morphine in a rat model of cisplatin-induced nephrotoxicity. Following administration of a single dose of cisplatin (5 mg/kg), animals received intraperitoneal injections of morphine (5 mg/kg/day) and/or naltrexone (20 mg/kg/day), an opioid antagonist, for 5 days. Cisplatin-induced nephrotoxicity was detected by a significant increase in plasma urea and creatinine levels in addition to alterations in kidney tissue morphology. Levels of TNF-α and IL-1β were significantly increased in the renal tissue in cisplatin group. Moreover, glutathione (GSH) concentration and superoxide dismutase activity were significantly reduced in renal tissue in cisplatin group compared with control animals. Treatment with morphine aggravated the deleterious effects of cisplatin at clinical, biochemical and histopathological levels; whereas naltrexone diminished the detrimental effects of morphine in animals receiving morphine and cisplatin. Morphine or naltrexone alone had no effect on the mentioned parameters. Our findings indicate that concomitant treatment with morphine might intensify cisplatin-induced renal damage in rats. These findings suggest that morphine and other opioids should be administered cautiously in patients receiving cisplatin chemotherapy. PMID:27424012

  12. Neighborhood Socioeconomic Status During Childhood Versus Puberty in Relation to Endogenous Sex Hormone Levels in Adult Women

    PubMed Central

    Bleil, Maria E.; Appelhans, Bradley M.; Latham, Melissa D.; Irving, Michelle A.; Gregorich, Steven E.; Adler, Nancy E.; Cedars, Marcelle I.

    2015-01-01

    Background Socioeconomic adversity in early life is related to cardiovascular risk in adulthood; however, no studies have examined whether such adversity may be related to endogenous sex hormones—which are themselves associated with cardiovascular outcomes—or whether the timing of adversity exposures (childhood versus puberty) matters. Objective The goal of the current study was to separately examine neighborhood socioeconomic status (SES) during periods of childhood and puberty in relation to adulthood levels of endogenous sex hormones (estradiol [E2], testosterone), sex hormone binding globulin (SHBG), and a derived index of bioavailable testosterone (free androgen index [FAI]). Methods In a sample of 143 premenopausal women (mean age 36.8 [SD = 5.5]; 51.7% White, 32.2% African American, 5.6% Latina, 7.0% Chinese, and 3.5% Filipina), retrospective reports of residential address information in designated periods of childhood and puberty was used to derive U.S. census-based neighborhood SES composite scores characterizing the socioeconomic environments of women during these periods. Results In covariate-adjusted analyses, higher neighborhood SES in puberty predicted higher levels of SHBG in adulthood, but neighborhood SES during childhood did not (standardized regression coefficient = .24, p = .01 vs. standardized regression coefficient = .04, p = .75, respectively). Neighborhood SES was not predictive of other hormones (E2, testosterone, and FAI). Discussion The current findings suggest that puberty may be a time of particular vulnerability to the effects of neighborhood SES on SHBG levels, which have been previously linked to cardiovascular risk factor profiles and atherosclerotic disease progression. PMID:25932699

  13. Endogenous Histamine and Cortisol Levels in Subjects with Different Histamine N-Methyltransferase C314T Genotypes

    PubMed Central

    Hon, Yuen Yi; Jusko, William J.; Zhou, Hong-Hao; Chen, Guo-Lin; Guo, Dong; Zhou, Gan; Spratlin, Vicky E.; Jann, Michael W.

    2014-01-01

    Background Histamine N-methyltransferase (HNMT) catalyzes the methylation of histamine and plays an important role in histamine biotransformation in bronchial epithelium. Enzymatic activity of HNMT has been shown to be regulated by genetic factors, including polymorphisms in the HNMT gene. In this pilot study we determined endogenous levels of histamine and Cortisol in plasma and whole blood samples from subjects with different genotypes for the HNMT C314T polymorphism, and investigated whether these parameters differed between individuals with the HNMT CC genotype and those with the CT genotype. Methods Blood samples were collected from 48 unrelated volunteers (36 males, 12 females), aged 21-40 years, who participated in the study. PCR-restriction fragment length polymorphism analysis was used to determine HNMTC314T genotypes. Erythrocyte HNMT activity was determined as well as plasma and whole blood levels of histamine and Cortisol. Two-group comparisons of the various parameters were analyzed by Blocked Wilcoxon test and Wilcoxon Rank Sum test as appropriate. Results Thirty-seven subjects (24 Caucasians, three African Americans, one Middle Eastern, five Indians, three Chinese, and one Filipino) were found to have the homozygous CC genotype. Ten subjects (eight Caucasians, one Middle Eastern, and one Chinese) were heterozygous and one individual (Pakistani) was homozygous for the variant 314T allele. The frequency of HNMT CT heterozygotes in the small Caucasian cohort was 0.125. Median enzyme activity was significantly lower in subjects with the heterozygous CT genotype than in those with the homozygous CC genotype (485 vs 631 U/mL of red blood cells; p = 0.023). A broad range of histamine levels in plasma and whole blood was observed for all subjects. Whereas the median plasma histamine level was found to be higher in heterozygotes for the wild-type 314C allele than homozygotes (3.32 vs 2.30 nmol/L; p = 0.021), there was no difference between the two groups in

  14. Tolerance to hyperthermia produced by morphine in rat.

    PubMed

    Mucha, R F; Kalant, H; Kim, C

    1987-01-01

    The present study addressed the prevailing notion that the rat develops tolerance only to the hypothermic effect of morphine and not to its hyperthermic effect. Rectal temperatures were measured at different intervals after various test doses of morphine in rats that had been rendered tolerant to morphine antinociception, by daily intraperitoneal injections of 0, 20, or 200 mg/kg morphine, and dependent, as seen by naloxone-produced loss of body weight. The well-known tolerance to the hypothermic effect was confirmed by changes in the dose-response curves for latency to peak hyperthermic response. In the falling arm of the test dose time/effect curve, consistent, clear decreases in morphine hyperthermia were seen. These decreases were proportional to the chronic treatment dose, and occurred in a normal test environment, where acute hypothermic effects were produced by morphine at short test intervals, and in a warm test environment, where no hypothermia was seen. Similar effects were noted when the data were analyzed in terms of area under the time/effect curve for hyperthermia. In the morphine-treated animals, decreased hyperthermia was seen despite serum morphine levels at the time of testing being up to twice as high as those in control rats. It was concluded that substantial tolerance develops to hyperthermia produced by opiates in rats. The previous difficulty in seeing this effect is discussed in regard to the probability that, in naive rats, the effect of morphine shortly after administration of a test dose reflects a summation of two opposing, acute thermic effects. The findings challenge the view that tolerance develops only to the depressant, and not to the excitatory, effects of opiates. PMID:3114798

  15. Endogenous testosterone levels are associated with neural activity in men with schizophrenia during facial emotion processing.

    PubMed

    Ji, Ellen; Weickert, Cynthia Shannon; Lenroot, Rhoshel; Catts, Stanley V; Vercammen, Ans; White, Christopher; Gur, Raquel E; Weickert, Thomas W

    2015-06-01

    Growing evidence suggests that testosterone may play a role in the pathophysiology of schizophrenia given that testosterone has been linked to cognition and negative symptoms in schizophrenia. Here, we determine the extent to which serum testosterone levels are related to neural activity in affective processing circuitry in men with schizophrenia. Functional magnetic resonance imaging was used to measure blood-oxygen-level-dependent signal changes as 32 healthy controls and 26 people with schizophrenia performed a facial emotion identification task. Whole brain analyses were performed to determine regions of differential activity between groups during processing of angry versus non-threatening faces. A follow-up ROI analysis using a regression model in a subset of 16 healthy men and 16 men with schizophrenia was used to determine the extent to which serum testosterone levels were related to neural activity. Healthy controls displayed significantly greater activation than people with schizophrenia in the left inferior frontal gyrus (IFG). There was no significant difference in circulating testosterone levels between healthy men and men with schizophrenia. Regression analyses between activation in the IFG and circulating testosterone levels revealed a significant positive correlation in men with schizophrenia (r=.63, p=.01) and no significant relationship in healthy men. This study provides the first evidence that circulating serum testosterone levels are related to IFG activation during emotion face processing in men with schizophrenia but not in healthy men, which suggests that testosterone levels modulate neural processes relevant to facial emotion processing that may interfere with social functioning in men with schizophrenia. PMID:25796490

  16. High levels of endogenous lipid mediators (N-acylethanolamines) in women with chronic widespread pain during acute tissue trauma

    PubMed Central

    Ghafouri, Bijar; Ghafouri, Nazdar; Gerdle, Björn

    2016-01-01

    Although chronic widespread musculoskeletal pain is a significant health problem, the molecular mechanisms involved in developing and maintaining chronic widespread musculoskeletal pain are poorly understood. Central sensitization mechanisms maintained by stimuli from peripheral tissues such as muscle have been suggested. Lipid mediators with anti-inflammatory characteristics such as endogenous ligands of peroxisome proliferator activating receptor-α, oleoylethanolamide, and palmitoylethanolamide are suggested to regulate nociceptive transmission from peripheral locations on route towards the central nervous system. This case–control study investigates the levels of anti-inflammatory lipids in microdialysis samples collected during the first 2 h after microdialysis probe insertion and explores the association of these lipids with different pain characteristics in women with chronic widespread musculoskeletal pain (n = 17) and female healthy controls (n = 19). The levels of oleoylethanolamide, palmitoylethanolamide, and stearoylethanolamide were determined. During sampling of dialysate, pain ratings were conducted using a numeric rating scale. Pain thresholds were registered from upper and lower parts of the body. Oleoylethanolamide and stearoylethanolamide levels were significantly higher (p ≤ 0.05) in chronic widespread musculoskeletal pain at all time points. Numeric rating scale correlated with levels of stearoylethanolamide in chronic widespread musculoskeletal pain. Higher levels of lipid mediators could reflect an altered tissue reactivity in response to microdialysis probe insertion in chronic widespread musculoskeletal pain. PMID:27531672

  17. High levels of endogenous lipid mediators (N-acylethanolamines) in women with chronic widespread pain during acute tissue trauma.

    PubMed

    Stensson, Niclas; Ghafouri, Bijar; Ghafouri, Nazdar; Gerdle, Björn

    2016-01-01

    Although chronic widespread musculoskeletal pain is a significant health problem, the molecular mechanisms involved in developing and maintaining chronic widespread musculoskeletal pain are poorly understood. Central sensitization mechanisms maintained by stimuli from peripheral tissues such as muscle have been suggested. Lipid mediators with anti-inflammatory characteristics such as endogenous ligands of peroxisome proliferator activating receptor-α, oleoylethanolamide, and palmitoylethanolamide are suggested to regulate nociceptive transmission from peripheral locations on route towards the central nervous system. This case-control study investigates the levels of anti-inflammatory lipids in microdialysis samples collected during the first 2 h after microdialysis probe insertion and explores the association of these lipids with different pain characteristics in women with chronic widespread musculoskeletal pain (n = 17) and female healthy controls (n = 19). The levels of oleoylethanolamide, palmitoylethanolamide, and stearoylethanolamide were determined. During sampling of dialysate, pain ratings were conducted using a numeric rating scale. Pain thresholds were registered from upper and lower parts of the body. Oleoylethanolamide and stearoylethanolamide levels were significantly higher (p ≤ 0.05) in chronic widespread musculoskeletal pain at all time points. Numeric rating scale correlated with levels of stearoylethanolamide in chronic widespread musculoskeletal pain. Higher levels of lipid mediators could reflect an altered tissue reactivity in response to microdialysis probe insertion in chronic widespread musculoskeletal pain. PMID:27531672

  18. Protective effect of crocin on liver toxicity induced by morphine

    PubMed Central

    Salahshoor, Mohammad Reza; khashiadeh, Mojtaba; Roshankhah, Shiva; Kakabaraei, Seyran; Jalili, Cyrus

    2016-01-01

    Crocin, a bioactive molecule of saffron can be purely isolated from the saffron extract. It has different pharmacological effects such as antioxidant and anticancer activities. Morphine is an opioid analgesic drug. It is mainly metabolized in liver and causes devastating effects. It can increase the generation of free radicals. This study was designed to evaluate the protective role of crocin against morphine-induced toxicity in the mouse liver. In this study, various doses of crocin (12.5, 25 and 50 mg/kg) and crocin plus morphine were administered interaperitoneally once daily to 48 male mice for 20 consecutive days. These mice were randomly assigned to 8 groups of 6 each. The liver weight and histology, aspartate amino transferase, alanine aminotransferase, alkaline phosphatase (ALP) and serum nitric oxide levels were studied. The results indicated that morphine administration significantly decreased liver weight and increased the mean diameter of hepatocyte, central hepatic vein diameters, liver enzyme levels, and blood serum nitric oxide level compared to saline group (P<0.05). However, crocin administration significantly boosted liver weight and decreased the mean diameter of hepatocyte, central hepatic vein, liver enzymes and nitric oxide levels in all groups compared to the group received morphine alone (P<0.05). It seems that crocin administration could protect the liver damage induced by morphine. The antioxidant effect of crocin may be a major reason for its positive impact on liver parameters. PMID:27168751

  19. Protective effect of crocin on liver toxicity induced by morphine.

    PubMed

    Salahshoor, Mohammad Reza; Khashiadeh, Mojtaba; Roshankhah, Shiva; Kakabaraei, Seyran; Jalili, Cyrus

    2016-01-01

    Crocin, a bioactive molecule of saffron can be purely isolated from the saffron extract. It has different pharmacological effects such as antioxidant and anticancer activities. Morphine is an opioid analgesic drug. It is mainly metabolized in liver and causes devastating effects. It can increase the generation of free radicals. This study was designed to evaluate the protective role of crocin against morphine-induced toxicity in the mouse liver. In this study, various doses of crocin (12.5, 25 and 50 mg/kg) and crocin plus morphine were administered interaperitoneally once daily to 48 male mice for 20 consecutive days. These mice were randomly assigned to 8 groups of 6 each. The liver weight and histology, aspartate amino transferase, alanine aminotransferase, alkaline phosphatase (ALP) and serum nitric oxide levels were studied. The results indicated that morphine administration significantly decreased liver weight and increased the mean diameter of hepatocyte, central hepatic vein diameters, liver enzyme levels, and blood serum nitric oxide level compared to saline group (P<0.05). However, crocin administration significantly boosted liver weight and decreased the mean diameter of hepatocyte, central hepatic vein, liver enzymes and nitric oxide levels in all groups compared to the group received morphine alone (P<0.05). It seems that crocin administration could protect the liver damage induced by morphine. The antioxidant effect of crocin may be a major reason for its positive impact on liver parameters. PMID:27168751

  20. Sex differences in the serum level of endogenous ligands for estrogen receptor β in the elderly population

    PubMed Central

    Kobayashi, Miyuki; Sugiyama, Nobuhiro; Sasayama, Daimei; Sasamoto, Hidehiko; Miyashiro, Yoshimichi; Arima, Kunimasa; Washizuka, Shinsuke

    2016-01-01

    Animal studies suggest that estrogen receptor β (ERβ)-agonists, but not ERα-agonists, are antidepressants. Several endogenous ligands for ERβ have been proposed, including 5α-androstane-3β, 17β-diol (3βAdiol), Androstenediol (Δ5-diol), and 7α-hydroxydehydroepiandrosterone (7α-OH-DHEA). The aim of this study was to determine the serum and salivary levels of natural ERβ ligands in men and women with and without past depressive episodes in the elderly population. DHEA (a precursor of 3βAdiol, Δ5-diol, and 7α-OH-DHEA), 17β-estradiol (E2), and cortisol (F) were also measured. Samples were collected from 51 subjects and liquid chromatography tandem mass spectrometry was used for measurement. Comparisons were made between groups based on sex and depression history. E2, 3βAdiol, and Δ5-diol levels were significantly lower in women than in men regardless of depression history. There were no significant differences between men and women in DHEA or 7α-OH-DHEA levels. DHEA was significantly lower in women with depression than in women without depression. Reduced DHEA levels may be related to depression vulnerability in women. Further studies are needed to determine the mechanism underlying sex differences in the prevalence of depression and increased risk of depression during menopause. Not only E2 but also two other estrogenic steroids (3βAdiol and Δ5-diol) should be involved in these studies. PMID:27165125

  1. Sex differences in the serum level of endogenous ligands for estrogen receptor β in the elderly population.

    PubMed

    Kobayashi, Miyuki; Sugiyama, Nobuhiro; Sasayama, Daimei; Sasamoto, Hidehiko; Miyashiro, Yoshimichi; Arima, Kunimasa; Washizuka, Shinsuke

    2016-01-01

    Animal studies suggest that estrogen receptor β (ERβ)-agonists, but not ERα-agonists, are antidepressants. Several endogenous ligands for ERβ have been proposed, including 5α-androstane-3β, 17β-diol (3βAdiol), Androstenediol (Δ5-diol), and 7α-hydroxydehydroepiandrosterone (7α-OH-DHEA). The aim of this study was to determine the serum and salivary levels of natural ERβ ligands in men and women with and without past depressive episodes in the elderly population. DHEA (a precursor of 3βAdiol, Δ5-diol, and 7α-OH-DHEA), 17β-estradiol (E2), and cortisol (F) were also measured. Samples were collected from 51 subjects and liquid chromatography tandem mass spectrometry was used for measurement. Comparisons were made between groups based on sex and depression history. E2, 3βAdiol, and Δ5-diol levels were significantly lower in women than in men regardless of depression history. There were no significant differences between men and women in DHEA or 7α-OH-DHEA levels. DHEA was significantly lower in women with depression than in women without depression. Reduced DHEA levels may be related to depression vulnerability in women. Further studies are needed to determine the mechanism underlying sex differences in the prevalence of depression and increased risk of depression during menopause. Not only E2 but also two other estrogenic steroids (3βAdiol and Δ5-diol) should be involved in these studies. PMID:27165125

  2. Mitragynine Attenuates Withdrawal Syndrome in Morphine-Withdrawn Zebrafish

    PubMed Central

    Khor, Beng-Siang; Amar Jamil, Mohd Fadzly; Adenan, Mohamad Ilham; Chong Shu-Chien, Alexander

    2011-01-01

    A major obstacle in treating drug addiction is the severity of opiate withdrawal syndrome, which can lead to unwanted relapse. Mitragynine is the major alkaloid compound found in leaves of Mitragyna speciosa, a plant widely used by opiate addicts to mitigate the harshness of drug withdrawal. A series of experiments was conducted to investigate the effect of mitragynine on anxiety behavior, cortisol level and expression of stress pathway related genes in zebrafish undergoing morphine withdrawal phase. Adult zebrafish were subjected to two weeks chronic morphine exposure at 1.5 mg/L, followed by withdrawal for 24 hours prior to tests. Using the novel tank diving tests, we first showed that morphine-withdrawn zebrafish display anxiety-related swimming behaviors such as decreased exploratory behavior and increased erratic movement. Morphine withdrawal also elevated whole-body cortisol levels, which confirms the phenotypic stress-like behaviors. Exposing morphine-withdrawn fish to mitragynine however attenuates majority of the stress-related swimming behaviors and concomitantly lower whole-body cortisol level. Using real-time PCR gene expression analysis, we also showed that mitragynine reduces the mRNA expression of corticotropin releasing factor receptors and prodynorphin in zebrafish brain during morphine withdrawal phase, revealing for the first time a possible link between mitragynine's ability to attenuate anxiety during opiate withdrawal with the stress-related corticotropin pathway. PMID:22205946

  3. Mitragynine attenuates withdrawal syndrome in morphine-withdrawn zebrafish.

    PubMed

    Khor, Beng-Siang; Jamil, Mohd Fadzly Amar; Adenan, Mohamad Ilham; Shu-Chien, Alexander Chong

    2011-01-01

    A major obstacle in treating drug addiction is the severity of opiate withdrawal syndrome, which can lead to unwanted relapse. Mitragynine is the major alkaloid compound found in leaves of Mitragyna speciosa, a plant widely used by opiate addicts to mitigate the harshness of drug withdrawal. A series of experiments was conducted to investigate the effect of mitragynine on anxiety behavior, cortisol level and expression of stress pathway related genes in zebrafish undergoing morphine withdrawal phase. Adult zebrafish were subjected to two weeks chronic morphine exposure at 1.5 mg/L, followed by withdrawal for 24 hours prior to tests. Using the novel tank diving tests, we first showed that morphine-withdrawn zebrafish display anxiety-related swimming behaviors such as decreased exploratory behavior and increased erratic movement. Morphine withdrawal also elevated whole-body cortisol levels, which confirms the phenotypic stress-like behaviors. Exposing morphine-withdrawn fish to mitragynine however attenuates majority of the stress-related swimming behaviors and concomitantly lower whole-body cortisol level. Using real-time PCR gene expression analysis, we also showed that mitragynine reduces the mRNA expression of corticotropin releasing factor receptors and prodynorphin in zebrafish brain during morphine withdrawal phase, revealing for the first time a possible link between mitragynine's ability to attenuate anxiety during opiate withdrawal with the stress-related corticotropin pathway. PMID:22205946

  4. Absence of aryl hydrocarbon receptors increases endogenous kynurenic acid levels and protects mouse brain against excitotoxic insult and oxidative stress.

    PubMed

    García-Lara, Lucia; Pérez-Severiano, Francisca; González-Esquivel, Dinora; Elizondo, Guillermo; Segovia, José

    2015-09-01

    L-kynurenine (Kyn) is a key element of tryptophan metabolism; it is enzymatically converted by kynurenine aminotransferase II (KAT II) to kynurenic acid (KYNA), which acts as an antagonist to the NMDA receptor-glycine site. Kyn is also an endogenous ligand of the aryl hydrocarbon receptor (AhR), a transcription factor that regulates the expression of a diverse set of genes. KYNA levels are reduced in several regions of the brain of Huntington's disease (HD) patients. The present work uses an AhR-null mouse and age-matched wild-type mice to determine the effect of the absence of AhR on KYNA availability. We found that, in AhR-null mice, there is an increase of KYNA levels in specific brain areas associated with higher expression of KAT II. Moreover, we induced an excitotoxic insult by intrastriatal administration of quinolinic acid, a biochemical model of HD, in both AhR-null and wild-type mice to evaluate the neurological damage as well as the oxidative stress caused by the lesion. The present work demonstrates that, in specific brain regions of AhR-null mice, the levels of KYNA are increased and that this induces a neuroprotective effect against neurotoxic insults. Moreover, AhR-null mice also show improved motor performance in the rotarod test, indicating a constitutive protection of striatal tissue. PMID:26013807

  5. Endogenous cortisol levels are associated with an imbalanced striatal sensitivity to monetary versus non-monetary cues in pathological gamblers

    PubMed Central

    Li, Yansong; Sescousse, Guillaume; Dreher, Jean-Claude

    2014-01-01

    Pathological gambling is a behavioral addiction characterized by a chronic failure to resist the urge to gamble. It shares many similarities with drug addiction. Glucocorticoid hormones including cortisol are thought to play a key role in the vulnerability to addictive behaviors, by acting on the mesolimbic reward pathway. Based on our previous report of an imbalanced sensitivity to monetary versus non-monetary incentives in the ventral striatum of pathological gamblers (PGs), we investigated whether this imbalance was mediated by individual differences in endogenous cortisol levels. We used functional magnetic resonance imaging (fMRI) and examined the relationship between cortisol levels and the neural responses to monetary versus non-monetary cues, while PGs and healthy controls were engaged in an incentive delay task manipulating both monetary and erotic rewards. We found a positive correlation between cortisol levels and ventral striatal responses to monetary versus erotic cues in PGs, but not in healthy controls. This indicates that the ventral striatum is a key region where cortisol modulates incentive motivation for gambling versus non-gambling related stimuli in PGs. Our results extend the proposed role of glucocorticoid hormones in drug addiction to behavioral addiction, and help understand the impact of cortisol on reward incentive processing in PGs. PMID:24723862

  6. Pseudomonas aeruginosa virulence expression is directly activated by morphine and is capable of causing lethal gut derived sepsis in mice during chronic morphine administration

    PubMed Central

    Babrowski, Trissa; Holbrook, Christopher; Moss, Jonathan; Gottlieb, Lawrence; Valuckaite, Vesta; Zaborin, Alexander; Poroyko, Valeriy; Liu, Donald C.; Zaborina, Olga; Alverdy, John C.

    2011-01-01

    OBJECTIVE This study was designed to examine the effect of morphine administration on the intestinal mucus barrier and determine its direct effect on the virulence and lethality of Pseudomonas aeruginosa, one of the most frequent pathogens to colonize the gut of critically ill patients. SUMMARY BACKGROUND DATA Surgical injury is associated with significant exposure of host tissues to morphine from both endogenous release as well as its use as a potent analgesic agent. Morphine use in surgical patients exposed to extreme physiologic stress is well established to result in increased infection risk. Although morphine is a known immunosuppressant, whether it directly induces virulence expression and lethality in microbes that colonize the human gut remains unknown. METHODS Mice were implanted with a slow release morphine or placebo pellet with and without intestinal inoculation of P. aeruginosa created by direct cecal injection. Mucus production and epithelial integrity was assessed in cecal tissue via Alcian Blue staining and histological analysis. In vivo and in vitro P. aeruginosa virulence expression was examined using reporter strains tagged to the epithelial barrier disrupting protein PA-I lectin. P. aeruginosa chemotaxis toward morphine was also assayed in vitro. Finally the direct effect of morphine to induce PA-I lectin expression was determined in the absence and presence of methylnaltrexone, a mu opioid receptor antagonist. RESULTS Mice intestinally inoculated with P. aeruginosa and implanted with a morphine pellet demonstrated significant suppression of intestinal mucus, disrupted intestinal epithelium and enhanced mortality whereas exposure of mice to either systemic morphine or intestinal P. aeruginosa alone enhanced intestinal mucus without mortality suggesting a shift in P. aeruginosa during morphine exposure to a mucus suppressing, barrier disrupting, and lethal phenotype. Direct exposure of P. aeruginosa to morphine in vitro confirmed that morphine

  7. Combined morphine-bupivacaine caudals for reconstructive penile surgery in children: systemic absorption of morphine and postoperative analgesia.

    PubMed

    Wolf, A R; Hughes, D; Hobbs, A J; Prys-Roberts, C

    1991-02-01

    We wished to determine if the addition of a small dose of morphine (0.05 mg.kg-1) to a caudal solution of 0.25% bupivacaine could extend the duration of analgesia after major reconstructive penile surgery and also to measure the systemic absorption of morphine after caudal injection. Thirty children undergoing reconstructive penile surgery received a caudal injection of 0.25% bupivacaine 0.75 ml.kg-1 with or without morphine 0.05 mg.kg-1. All patients awoke pain-free, but eight of the fifteen patients receiving bupivacaine alone required supplementary injections of opioid postoperatively, whereas none of the patients receiving the bupivacaine-morphine mixture required additional opioids. The incidence of side-effects was similar for the two groups. Morphine was absorbed rapidly after caudal injection to reach a peak plasma level of 21.2 (+/- 4.8) ng.ml-1 at ten minutes and then fell to 10.1 (+/- 3.8) ng.ml-1 at one hour and 4.1 (+/- 2.6) ng.ml-1 at three hours. These levels are low compared with plasma levels associated with systemic analgesia. We conclude that the extended duration of analgesia from morphine 0.05 mg/kg given caudally is due at least in part to specific spinal analgesia. PMID:2012289

  8. Endogenous salicylic acid levels correlate with accumulation of pathogenesis-related proteins and virus resistance in tobacco

    SciTech Connect

    Yalpani, N.; Shulaev, V.; Raskin, I. )

    1993-07-01

    Salicylic acid (SA) is hypothesized to be an endogenous regulator of local and systemic disease resistance and an inducer of pathogenesis-related (PR) proteins among plants. High levels of PR proteins have been observed in an uninoculated amphidiploid hybrid of Nicotiana glutinosa [times] N. debneyi, which is highly resistant to tobacco mosaic virus (TMV). Fluoresence, UV, and mass spectral analysis established that the levels of SA in healthy N. glutinosa [times] N. debneyi leaves were 30 times greater than in N. tabacum [open quotes]Xanthi-nc[close quotes] tobacco, which does not constitutively express PR proteins and is less resistant to TMV. Upon TMV-inoculation SA levels increased at least 70-fold leaves of Xanthi-nc but role only slightly in the hybrid. Phloem exudates of N. glutinosa [times] N. debneyi contained at least 500 times more SA than those of Xanthi-nc. SA treatment caused the appearance of PR-1 protein in Xanthi-nc but did not affect constitutively high levels of PR-1 protein in N. glutinosa [times] N. debneyi. In contrast to Xanthi-nc tobacco, TMV-inoculated N. glutinosa [times] N. debneyi kept at 32 C accumulated more than 0.5 [mu]g SA/g fresh weight, maintained high levels of PR proteins, and developed a hypersensitive response to TMV. PR proteins have previously been shown to accumulate in the lower leaves of healthy, flowering Xanthi-nc tobacco, which exhibited increased resistance to TMV. These developmentally induced increases in resistance and PR-1 proteins positively correlated with tissue levels of SA. These results affirm the regulatory role of SA in disease resistance and PR protein production. 31 refs., 9 figs., 1 tab.

  9. A Nascent Peptide Signal Responsive to Endogenous Levels of Polyamines Acts to Stimulate Regulatory Frameshifting on Antizyme mRNA*

    PubMed Central

    Yordanova, Martina M.; Wu, Cheng; Andreev, Dmitry E.; Sachs, Matthew S.; Atkins, John F.

    2015-01-01

    The protein antizyme is a negative regulator of cellular polyamine concentrations from yeast to mammals. Synthesis of functional antizyme requires programmed +1 ribosomal frameshifting at the 3′ end of the first of two partially overlapping ORFs. The frameshift is the sensor and effector in an autoregulatory circuit. Except for Saccharomyces cerevisiae antizyme mRNA, the frameshift site alone only supports low levels of frameshifting. The high levels usually observed depend on the presence of cis-acting stimulatory elements located 5′ and 3′ of the frameshift site. Antizyme genes from different evolutionary branches have evolved different stimulatory elements. Prior and new multiple alignments of fungal antizyme mRNA sequences from the Agaricomycetes class of Basidiomycota show a distinct pattern of conservation 5′ of the frameshift site consistent with a function at the amino acid level. As shown here when tested in Schizosaccharomyces pombe and mammalian HEK293T cells, the 5′ part of this conserved sequence acts at the nascent peptide level to stimulate the frameshifting, without involving stalling detectable by toe-printing. However, the peptide is only part of the signal. The 3′ part of the stimulator functions largely independently and acts at least mostly at the nucleotide level. When polyamine levels were varied, the stimulatory effect was seen to be especially responsive in the endogenous polyamine concentration range, and this effect may be more general. A conserved RNA secondary structure 3′ of the frameshift site has weaker stimulatory and polyamine sensitizing effects on frameshifting. PMID:25998126

  10. Mercury interferes with endogenous antioxidant levels in Yukon River subsistence-fed sled dogs

    NASA Astrophysics Data System (ADS)

    Dunlap, Kriya L.; Reynolds, Arleigh J.; Gerlach, S. Craig; Duffy, Lawrence K.

    2011-10-01

    Before adopting modern corn-and-grain-based western processed diets, circumpolar people had a high fat and protein subsistence diet and exhibited a low incidence of obesity, diabetes and cardiovascular disease. Some health benefits are attributable to a subsistence diet that is rich in omega-3 fatty acids and antioxidants. Pollution, both global and local, is a threat to wild foods, as it introduces contaminants into the food system. Northern indigenous people and their sled dogs are exposed to a variety of contaminants, including mercury, that accumulate in the fish and game that they consume. The sled dogs in Alaskan villages are maintained on the same subsistence foods as their human counterparts, primarily salmon, and therefore they can be used as a food systems model for researching the impact of changes in dietary components. In this study, the antioxidant status and mercury levels were measured for village sled dogs along the Yukon River. A reference kennel, maintained on a nutritionally balanced commercial diet, was also measured for comparison. Total antioxidant status was inversely correlated with the external stressor mercury.

  11. Radiosensitizing Effects of Ectopic miR-101 on Non-Small-Cell Lung Cancer Cells Depend on the Endogenous miR-101 Level

    SciTech Connect

    Chen, Susie; Wang Hongyan; Ng, Wooi Loon; Curran, Walter J.; Wang Ya

    2011-12-01

    Purpose: Previously, we showed that ectopic miR-101 could sensitize human tumor cells to radiation by targeting ATM and DNA-PK catalytic subunit (DNA-PKcs) to inhibit DNA repair, as the endogenous miR-101 levels are low in tumors in general. However, the heterogeneity of human cancers may result in an exception. The purpose of this study was to test the hypothesis that a few tumor cell lines with a high level of endogenous miR-101 would prove less response to ectopic miR-101. Methods and Materials: Fourteeen non-small-cell lung cancer (NSCLC) cell lines and one immortalized non-malignant lung epithelial cell line (NL20) were used for comparing endogenous miR-101 levels by real-time reverse transcription-polymerase chain reaction. Based on the different miR-101 levels, four cell lines with different miR-101 levels were chosen for transfection with a green fluorescent protein-lentiviral plasmid encoding miR-101. The target protein levels were measured by using Western blotting. The radiosensitizing effects of ectopic miR-101 on these NSCLC cell lines were determined by a clonogenic assay and xenograft mouse model. Results: The endogenous miR-101 level was similar or lower in 13 NSCLC cell lines but was 11-fold higher in one cell line (H157) than in NL20 cells. Although ectopic miR-101 efficiently decreased the ATM and DNA-PKcs levels and increased the radiosensitization level in H1299, H1975, and A549 cells, it did not change the levels of the miR-101 targets or radiosensitivity in H157 cells. Similar results were observed in xenograft mice. Conclusions: A small number of NSCLC cell lines could have a high level of endogenous miR-101. The ectopic miR-101 was able to radiosensitize most NSCLC cells, except for the NSCLC cell lines that had a much higher endogenous miR-101 level. These results suggest that when we choose one miRNA as a therapeutic tool, the endogenous level of the miRNA in each tumor should be considered.

  12. Sensitivity of quantitative sensory models to morphine analgesia in humans

    PubMed Central

    Olesen, Anne Estrup; Brock, Christina; Sverrisdóttir, Eva; Larsen, Isabelle Myriam; Drewes, Asbjørn Mohr

    2014-01-01

    Introduction Opioid analgesia can be explored with quantitative sensory testing, but most investigations have used models of phasic pain, and such brief stimuli may be limited in the ability to faithfully simulate natural and clinical painful experiences. Therefore, identification of appropriate experimental pain models is critical for our understanding of opioid effects with the potential to improve treatment. Objectives The aim was to explore and compare various pain models to morphine analgesia in healthy volunteers. Methods The study was a double-blind, randomized, two-way crossover study. Thirty-nine healthy participants were included and received morphine 30 mg (2 mg/mL) as oral solution or placebo. To cover both tonic and phasic stimulations, a comprehensive multi-modal, multi-tissue pain-testing program was performed. Results Tonic experimental pain models were sensitive to morphine analgesia compared to placebo: muscle pressure (F=4.87, P=0.03), bone pressure (F=3.98, P=0.05), rectal pressure (F=4.25, P=0.04), and the cold pressor test (F=25.3, P<0.001). Compared to placebo, morphine increased tolerance to muscle stimulation by 14.07%; bone stimulation by 9.72%; rectal mechanical stimulation by 20.40%, and reduced pain reported during the cold pressor test by 9.14%. In contrast, the more phasic experimental pain models were not sensitive to morphine analgesia: skin heat, rectal electrical stimulation, or rectal heat stimulation (all P>0.05). Conclusion Pain models with deep tonic stimulation including C fiber activation and and/or endogenous pain modulation were more sensitive to morphine analgesia. To avoid false negative results in future studies, we recommend inclusion of reproducible tonic pain models in deep tissues, mimicking clinical pain to a higher degree. PMID:25525384

  13. Effect of prenatal forced-swim stress and morphine co-administration on pentylentetrazol-induced epileptic behaviors in infant and prepubertal rats.

    PubMed

    Ebrahimi, Loghman; Saboory, Ehsan; Roshan-Milani, Shiva; Hashemi, Paria

    2014-09-01

    Prenatal exposure to stress and morphine has complicated effects on epileptic seizure. Many reports have shown an interaction between morphine- and stress-induced behavioral changes in adult rats. In the present study, effect of prenatal forced-swim stress and morphine co-administration on pentylentetrazole (PTZ)-induced epileptic behaviors was investigated in rat offspring to address effect of the interaction between morphine and stress. Pregnant rats were divided to four groups of control-saline, control-morphine, stressed-saline and stressed-morphine. In the stressed group, the rats were placed in 25 °C water on 17-19 days of pregnancy. In the morphine/saline group, the rats received morphine/saline on the same days. In the morphine/saline-stressed group, they were exposed to stress and received morphine/saline simultaneously. On postnatal day 15 (P15), blood samples were collected to determine corticosterone (COS) level. On P15 and P25, PTZ was injected to the rest of pups to induce seizure. Then, epileptic behaviors of each rat were individually observed. Latency of tonic-colonic seizures decreased in control-morphine and stressed-saline groups while increasing in stressed-morphine rats compared to control-saline group on P15. Duration of tonic-colonic seizures significantly increased in control-morphine and stressed-saline rats compared to stressed-morphine and control-saline rats on P15, but not P25. COS levels increased in stressed-saline group but decreased in control-morphine group compared to control-saline rats. Body weight was significantly higher in morphine groups than saline treated rats. Prenatal exposure to forced-swim stress potentiated PTZ-induced seizure in the offspring rats. Co-administration of morphine attenuated effect of stress on body weight, COS levels, and epileptic behaviors. PMID:24464467

  14. Attenuation of morphine tolerance by minocycline and pentoxifylline in naive and neuropathic mice.

    PubMed

    Mika, Joanna; Wawrzczak-Bargiela, Agnieszka; Osikowicz, Maria; Makuch, Wioletta; Przewlocka, Barbara

    2009-01-01

    We have previously demonstrated that glial inhibitors reduce the development of allodynia and hyperalgesia, potentiating the effect of a single morphine dose in a neuropathic pain model. This study explores the effects of two glial activation inhibitors, minocycline and pentoxifylline, on the development of tolerance to morphine in naive and chronic constriction injury (CCI)-exposed mice. Administration of morphine to naive (20 mg/kg; i.p.) and CCI-exposed mice (40 mg/kg; i.p.) twice daily resulted in tolerance to its anti-nociceptive effect after 6 days. Injections of morphine were combined with minocycline (30 mg/kg, i.p.) or pentoxifylline (20 mg/kg, i.p.) administered as two preemptive doses before first morphine administration in naive or pre-injury in CCI-exposed mice, and repeated twice daily 30 min before each morphine administration. With treatment, development of morphine tolerance was delayed by 5 days (from 6 to 11 days), as measured by the tail-flick test in naive and by tail-flick, von Frey, and cold plate tests in CCI-exposed mice. Western blot analysis of CD11b/c and GFAP protein demonstrated that minocycline and pentoxifylline, at doses delaying development of tolerance to morphine analgesia, significantly diminished the morphine-induced increase in CD11b/c protein level. We found that repeated systemic administration of glial inhibitors significantly delays development of morphine tolerance by attenuating the level of this microglial marker under normal and neuropathic pain conditions. Our results support the idea that targeting microglial activation during morphine therapy/treatment is a novel and clinically promising method for enhancing morphine's analgesic effects, especially in neuropathic pain. PMID:18684397

  15. Morphine-6beta-glucuronide modulates the expression of inducible nitric oxide synthase.

    PubMed

    Lysle, D T; Carrigan, K A

    2001-08-01

    The immunomodulatory effects of morphine are well established; however, suprisingly little is known about the immunomodulatory properties of the major metabolites of morphine. The present study tests the hypothesis that expression of inducible nitric oxide synthase (iNOS) is modulated by the administration of the morphine metabolite, morphine-6beta-glucuronide. The initial study using rats shows that morphine-6beta-glucuronide administration (0, 1.0, 3.163, 10 mg/kg s.c.) results in a pronounced reduction in lipopolysaccharide (LPS)-induced expression of iNOS (inducible nitricoxide synthease) in spleen, lung, and liver tissue as measured by western blotting. Morphine-6beta-glucuronide also produces a reduction in the level of plasma nitrite/nitrate, the more stable end-product of nitric oxide degradation. In a subsequent study, administration of the opioid receptor antagonist, naltrexone (0.1 mg/kg) prior to the injection of morphine-6beta-glucuronide (10 mg/kg) blocks the morphine-6beta-glucuronide induced reduction of iNOS expression and plasma nitrite/nitrite levels indicating that the effect is mediated via the opioid-receptor. This study provides the first evidence that morphine-6beta-glucuronide alters the expression of iNOS. PMID:11580103

  16. [Opium (heroin * morphine)].

    PubMed

    Hiramatsu, Masayuki

    2010-08-01

    The number of people dependent on opiate drugs, including heroin, is still high, and these abused drugs are major social issues, both in the social science and medically. The mechanisms of physical dependence and withdrawal symptoms in laboratory animals are becoming clear; however, no useful method to detoxify abusers with opioid dependence in clinical situation has been established, and alternative therapy with methadone, used in Europe and America, cannot be used in Japan. Here, I will outline the global trend of opium abuse, including heroin and morphine, and summarize the problems of heroin abuse. PMID:20715484

  17. Pain control with morphine: Evaluation of prescriptions for oral morphine for outpatients at King Faisal Specialist Hospital and Research Centre.

    PubMed

    Nuessle, S; Gray, A; Lambert, G; Boyar, A; Ba-Hatheq, A; Adloni, S; Al Khayyal, M

    1996-07-01

    With the rapid improvement in living standards and health care delivery in Saudi Arabia, people are expected to live longer, patterns of illness will change, and the chronic illnesses which now dominate medical care in the West will develop here. Among these is cancer, which is already the third most common cause of death in Bahrain and Kuwait. Many cancer patients experience considerable distress, particularly pain. Management of symptoms in advanced cancer is now a medical and nursing specialty called palliative care. The most common and most feared symptom in advanced cancer is pain, which can only be effectively relieved with morphine in 60% of such patients. Prescribing narcotics such as morphine for cancer pain in Saudi Arabia has been severely restricted legally because of the fear of addiction, but there is no evidence that the medicinal use of morphine for treating cancer pain causes addiction. This paper describes a review carried out at King Faisal Specialist Hospital and Research Center, one of the few centers in the Kingdom that can prescribe morphine to outpatients, to review the appropriateness and effectiveness of morphine usage, and to monitor any misuse. The review confirms that morphine usage was appropriate and effective, but that procurement of adequate narcotic supplies from year to year causes severe problems due to the stringency of both national and international regulations. Also, better monitoring of patients on morphine and recording of their level of pain control is required. In general, this survey shows that morphine usage in this hospital is appropriate and that limitations on supplies could be improved by changes to the Ministry of Health regulations. PMID:17372444

  18. The effect of Gly-Gln [ß-endorphin30-31] on morphine-evoked serotonin and GABA efflux in the nucleus accumbens of conscious rats.

    PubMed

    Basaran, Nesrin F; Buyukuysal, R Levent; Sertac Yilmaz, M; Aydin, Sami; Cavun, Sinan; Millington, William R

    2016-08-01

    Glycyl-L-glutamine (Gly-Gln; β-endorphin30-31) is an endogenous dipeptide synthesized through the post-translational processing of β-endorphin1-31. Central Gly-Gln administration inhibits the rewarding properties of morphine and attenuates morphine tolerance, dependence and withdrawal although it does not interfere with morphine analgesia. In an earlier study, we found that Gly-Gln inhibits morphine-induced dopamine efflux in the nucleus accumbens (NAc), consistent with its ability to inhibit morphine reward. To further investigate the mechanism responsible for its central effects we tested whether i.c.v. Gly-Gln administration influences the rise in extracellular serotonin and GABA concentrations evoked by morphine in the NAc. Conscious rats were treated with Gly-Gln (100nmol/5μl) or saline i.c.v. followed, 2min later, by morphine (2.5mg/kg) or saline i.p. and extracellular serotonin and GABA concentrations were analyzed by microdialysis and HPLC. Morphine administration increased extracellular serotonin and GABA concentrations significantly within 20min, as shown previously. Unexpectedly, Gly-Gln also increased extracellular serotonin concentrations significantly in control animals. Combined treatment with Gly-Gln+morphine also elevated extracellular serotonin concentrations although the magnitude of the response did not differ significantly from the effect of Gly-Gln or morphine, given alone suggesting that Gly-Gln suppressed morphine induced serotonin efflux. Gly-Gln abolished the morphine-induced rise in extracellular GABA concentrations but had no effect on extracellular GABA when given alone to otherwise untreated animals. These data show that Gly-Gln stimulates NAc serotonin efflux and, together with earlier studies, support the hypothesis that Gly-Gln inhibits the rewarding effects of morphine by modulating morphine induced dopamine, GABA and serotonin efflux in the NAc. PMID:26861257

  19. Elevated levels of N-lauroylethanolamine, an endogenous constituent of desiccated seeds, disrupt normal root development in Arabidopsis thaliana seedlings

    NASA Technical Reports Server (NTRS)

    Blancaflor, Elison B.; Hou, Guichuan; Chapman, Kent D.

    2003-01-01

    N-Acylethanolamines (NAEs) are prevalent in desiccated seeds of various plant species, and their levels decline substantially during seed imbibition and germination. Here, seeds of Arabidopsis thaliana (L.) Heynh. were germinated in, and seedlings maintained on, micromolar concentrations of N-lauroylethanolamine (NAE 12:0). NAE 12:0 inhibited root elongation, increased radial swelling of root tips, and reduced root hair numbers in a highly selective and concentration-dependent manner. These effects were reversible when seedlings were transferred to NAE-free medium. Older seedlings (14 days old) acclimated to exogenous NAE by increased formation of lateral roots, and generally, these lateral roots did not exhibit the severe symptoms observed in primary roots. Cells of NAE-treated primary roots were swollen and irregular in shape, and in many cases showed evidence, at the light- and electron-microscope levels, of improper cell wall formation. Microtubule arrangement was disrupted in severely distorted cells close to the root tip, and endoplasmic reticulum (ER)-localized green fluorescent protein (mGFP5-ER) was more abundant, aggregated and distributed differently in NAE-treated root cells, suggesting disruption of proper cell division, endomembrane organization and vesicle trafficking. These results suggest that NAE 12:0 likely influences normal cell expansion in roots by interfering with intracellular membrane trafficking to and/or from the cell surface. The rapid metabolism of NAEs during seed imbibition/germination may be a mechanism to remove this endogenous class of lipid mediators to allow for synchronized membrane reorganization associated with cell expansion.

  20. Postmortem redistribution of the heroin metabolites morphine and morphine-3-glucuronide in rabbits over 24 h.

    PubMed

    Maskell, Peter D; Albeishy, Mohammed; De Paoli, Giorgia; Wilson, Nathan E; Seetohul, L Nitin

    2016-03-01

    The interpretation of postmortem drug levels is complicated by changes in drug blood levels in the postmortem period, a phenomena known as postmortem drug redistribution. We investigated the postmortem redistribution of the heroin metabolites morphine and morphine-3-glucuronide in a rabbit model. Heroin (1 mg/kg) was injected into anesthetised rabbit; after 1 h, an auricular vein blood sample was taken and the rabbit was euthanised. Following death rabbits were placed in a supine position at room temperature and divided into three groups namely (1) immediate autopsy, (2) autopsy after 30 minutes and (3) autopsy 24 h after death. Various samples which included femoral blood, cardiac blood, lung, liver, kidney, vitreous humour, subcutaneous and abdominal fat, liver, bone marrow and skeletal muscle were taken. The samples were analysed with a validated LC-MS/MS method. It was observed that within minutes there was a significant increase in free morphine postmortem femoral blood concentration compared to the antemortem sample (0.01 ± 0.01 to 0.05 ± 0.02 mg/L).Various other changes in free morphine and metabolite concentrations were observed during the course of the experiment in various tissues. Principal component analysis was used to investigate possible correlations between free morphine in the various samples. Some correlations were observed but gave poor predictions (>20 % error) when back calculating. The results suggest that rabbits are a good model for further studies of postmortem redistribution but that further study and understanding of the phenomena is required before accurate predictions of the blood concentration at the time of death are possible. PMID:25863436

  1. Age- and Strain- Dependent Influences of Morphine on Mouse Social Investigation Behavior

    PubMed Central

    Kennedy, Bruce C.; Panksepp, Jules B.; Wong, Jenny C.; Krause, Emily J.; Lahvis, Garet P.

    2011-01-01

    Opioid-coded neural circuits play a substantial role in how individuals respond to drugs of abuse, and most individuals begin using such drugs during adolescence and within a social context. Several studies indicate that adolescent mice exhibit a heightened sensitivity to the effects of morphine, the prototypical opiate drug, when compared with adults, but it is unclear whether these developmental differences are related to aspects of motivated behavior. Moreover, exposure to opioids within the rodent brain can alter the expression of social behavior, yet little is known about whether this relationship changes as a function of development or genetic variation. In this study, we conducted a series of experiments to characterize the relationship between genetic background, adolescent development and morphine-induced changes in mouse social investigation (SI). At two time-points during adolescent development (postnatal day [PD] 25 and 45), social interactions of test mice of the gregarious C57BL/6J (B6) strain were more tolerant to the suppressive effects of morphine (ED50 = 0.97 and 2.17 mg/kg morphine, respectively) than test mice from the less social BALB/cJ (BALB) strain (ED50 = 0.61 and 0.91 mg/kg morphine, respectively). By contrast, this strain-dependent difference was not evident among adult mice on PD 90 (ED50 = 1.07 and 1.41 mg/kg morphine for BALB and B6 mice, respectively). An additional experiment demonstrated that the ability of morphine to alter social responsiveness was not directly related to drug-induced changes in locomotor behavior. Finally, administration of morphine to stimulus mice on PD 25 reduced social interaction of test mice only when individuals were from the B6 genetic background. Overall, these results indicate that alterations in endogenous opioid systems are related to changes in SI that occur during adolescence and that morphine administration may mimic the rewarding nature of SI. PMID:21358324

  2. Proteome Analysis of Rat Hippocampus Following Morphine-induced Amnesia and State-dependent Learning

    PubMed Central

    Jafarinejad-Farsangi, Saeideh; Farazmand, Ali; Rezayof, Ameneh; Darbandi, Niloufar

    2015-01-01

    Morphine’s effects on learning and memory processes are well known to depend on synaptic plasticity in the hippocampus. Whereas the role of the hippocampus in morphine-induced amnesia and state-dependent learning is established, the biochemical and molecular mechanisms underlying these processes are poorly understood. The present study intended to investigate whether administration of morphine can change the expression level of rat hippocampal proteins during learning of a passive avoidance task. A step-through type passive avoidance task was used for the assessment of memory retention. To identify the complex pattern of protein expression induced by morphine, we compared rat hippocampal proteome either in morphine-induced amnesia or in state-dependent learning by two-dimensional gel electerophoresis and combined mass spectrometry (MS and MS/MS). Post-training administration of morphine decreased step-through latency. Pre-test administration of morphine induced state-dependent retrieval of the memory acquired under post-training morphine influence. In the hippocampus, a total of 18 proteins were identified whose MASCOT (Modular Approach to Software Construction Operation and Test) scores were inside 95% confidence level. Of these, five hippocampal proteins altered in morphine-induced amnesia and ten proteins were found to change in the hippocampus of animals that had received post-training and pre-test morphine. These proteins show known functions in cytoskeletal architecture, cell metabolism, neurotransmitter secretion and neuroprotection. The findings indicate that the effect of morphine on memory formation in passive avoidance learning has a morphological correlate on the hippocampal proteome level. In addition, our proteomicscreensuggests that morphine induces memory impairment and state-dependent learning through modulating neuronal plasticity. PMID:25901168

  3. Gene Expression Profile of Calcium/Calmodulin-Dependent Protein Kinase IIα in Rat's Hippocampus during Morphine Withdrawal

    PubMed Central

    Ahmadi, Shamseddin; Amiri, Shahin; Rafieenia, Fatemeh; Rostamzadeh, Jalal

    2013-01-01

    Introduction Calcium/calmodulin-dependent protein kinase II (CaMKII) which is highly expressed in the hippocampus is known to play a pivotal role in reward-related memories and morphine dependence. Methods In the present study, repeated morphine injections once daily for 7 days was done to induce morphine tolerance in male Wistar rats, after which gene expression profile of α-isoform of CaMKII (CaMKIIα) in the hippocampus was evaluated upon discontinuation of morphine injection over 21 days of morphine withdrawal. Control groups received saline for 7 consecutive days. For gene expression study, rats’ brains were removed and the hippocampus was dissected in separate groups on days 1, 3, 7, 14, and 21 since discontinuation of of morphine injection. A semi-quantitative RT-PCR method was used to evaluate the gene expression profile. Results Tolerance to morphine was verified by a significant decrease in morphine analgesia in a hotplate test on day 8 (one day after the final repeated morphine injections). Results showed that gene expression of CaMKIIα at mRNA level on day 1, 3, 7, 14 and 21 of morphine withdrawal was significantly altered as compared to the saline control group. Post hoc Tukey's test revealed a significantly enhanced CaMKIIα gene expression on day 14. Discussion It can be concluded that CaMKIIα gene expression during repeated injections of morphine is increased and this increase continues up to 14 days of withdrawal then settles at a new set point. Therefore, the strong morphine reward-related memory in morphine abstinent animals may, at least partly be attributed to, the up-regulation of CaMKIIα in the hippocampus over 14 days of morphine withdrawal. PMID:25337341

  4. Glutathione Sulfinamide Serves as a Selective, Endogenous Biomarker for Nitroxyl Following Exposure to Therapeutic Levels of Donors

    PubMed Central

    Johnson, Gail M.; Chozinski, Tyler J.; Gallagher, Elyssia S.; Aspinwall, Craig A.; Miranda, Katrina M.

    2014-01-01

    Nitroxyl (HNO) donors exhibit promising pharmacological characteristics for treatment of cardiovascular disorders, cancer and alcoholism. However, whether HNO also serves as an endogenous signaling agent is currently unknown, largely due to the inability to selectively and sensitively detect HNO in a cellular environment. Although a number of methods to detect HNO have been developed recently, sensitivity and selectivity against other nitrogen oxides or biological reductants remain problematic. To improve selectivity, the electrophilic nature of HNO has been harnessed to generate modifications of thiols and phosphines that are unique to HNO, especially compared to nitric oxide (NO). Given high bioavailability, glutathione (GSH) is expected to be a major target of HNO. As a result, the putative selective product glutathione sulfinamide (GS(O)NH2) may serve as a high yield biomarker of HNO production. In this work, the formation of GS(O)NH2 following exposure to HNO donors was investigated. Fluorescent labeling followed by separation and detection using capillary zone electrophoresis with laser-induced fluorescence allowed quantitation of GS(O)NH2 with nanomolar sensitivity, even in the presence of GSH and derivatives. Formation of GS(O)NH2 was found to occur exclusively upon exposure of GSH to HNO donors, thus confirming selectively. GS(O)NH2 was detected in the lysate of cells treated with low micromolar concentrations of HNO donors, verifying that this marker has sufficient stability to server as a biomarker of HNO. Additionally, the concentration-dependent formation of GS(O)NH2 in cells treated with an HNO donor suggests that the concentration of GS(O)NH2 can be correlated to intracellular levels of HNO. PMID:25064322

  5. Role of dorsal hippocampal orexin-1 receptors in associating morphine reward with contextual stimuli.

    PubMed

    Riahi, Esmail; Khodagholi, Fariba; Haghparast, Abbas

    2013-08-01

    In this study, we evaluated the role of orexin receptors in the dorsal hippocampus (dHPC) in the development of morphine-induced conditioned place preference (CPP) and modification of hippocampal c-Fos and cyclic AMP response element-binding protein (CREB) levels. Orexin-A (0.5, 5, and 50 pmol) and the orexin-1 receptor antagonist, SB334867 (10, 20, and 40 nmol), were bilaterally infused into the dHPC immediately before conditioning with morphine (0.5 or 7.5 mg/kg) using the CPP task. Western blotting was then used to measure the protein levels of c-Fos, total CREB, and phosphorylated CREB (pCREB) in the hippocampus. Orexin did not enhance the rewarding efficacy of morphine (0.5 mg/kg), but caused a reduction in hippocampal c-Fos. Successful conditioning with morphine (7.5 mg/kg) was associated with increased levels of hippocampal c-Fos and CREB, but with decreased CREB phosphorylation. Intrahippocampal administration of SB334867 before conditioning sessions disrupted the rewarding effect of morphine (7.5 mg/kg) and blocked morphine-induced increases in hippocampal CREB protein levels. The results suggest that orexin signaling within the dHPC is necessary for the development of morphine CPP. Morphine reward is related to altered levels of hippocampal c-Fos and CREB. Inhibition of morphine-induced increases in CREB levels might be the underlying mechanism for the disruption of morphine CPP. PMID:23787292

  6. Estimation of endogenous protein and amino acid ileal losses in weaned piglets by regression analysis using diets with graded levels of casein

    PubMed Central

    2013-01-01

    Background Many studies have investigated endogenous loss of proteins and amino acids (AAs) at the ileal level in growing pigs. However, only a few studies have researched this subject in piglets. Knowledge regarding AA ileal digestibility in piglets would be helpful during the formulation of diets for weaning piglets, rather than just using coefficients obtained in growing pigs. Therefore, in this study, we sought to estimate endogenous protein and AA ileal losses in piglets. Furthermore, apparent and true ileal digestibility (AID and TID) of protein and AAs from casein were measured. Results The average flow of protein was 20.8 g/kg of dry matter intake (DMI). Basal protein loss, as estimated by regression, was 16.9 g/kg DMI. Glutamic acid, arginine, and aspartic acid (2.2, 1.4, and 1.2 g/kg DMI, respectively) were the AAs for which greater losses were seen. The AID of protein and AAs increased as the protein level in the diet increased. A higher increment in AID was observed between diets with 80 and160 g CP/kg of feed; this finding was mainly attributable to increases in glycine and arginine (46.1% and 18%, respectively). The TID of protein was 97.8, and the TID of AAs varied from 93.9 for histidine to 100.2 for phenylalanine. Conclusions The basal endogenous protein loss in piglets was 16.9 g/kg DMI. Endogenous protein was rich in glutamic acid, aspartic acid, and arginine, which represented 32.7% of endogenous protein loss in weaning piglets. The TID of casein was high and varied from 93.0 for histidine to 100.2 for phenylalanine. PMID:24053636

  7. A Conjugate Vaccine Attenuates Morphine- and Heroin-Induced Behavior in Rats

    PubMed Central

    Li, Qian-Qian; Sun, Cheng-Yu; Luo, Yi-Xiao; Xue, Yan-Xue; Meng, Shi-Qiu; Xu, Ling-Zhi; Chen, Na; Deng, Jia-Hui; Zhai, Hai-Feng; Kosten, Thomas R.; Shi, Jie

    2015-01-01

    Background: Currently approved medications for opioid addiction have shown clinical efficacy, but undesired side effects, dependence induced by the medications themselves, and low treatment compliance necessitate the need for novel therapies. Methods: A novel morphine-keyhole limpet hemocyanin conjugate vaccine was synthesized with 6-glutarylmorphine as the hapten and a lengthened linker of 6 carbon atoms. The titer and specificity of the triggered antibody were assessed by enzyme-linked immunosorbent assay. The effects of the vaccine on the morphine-induced elevation of dopamine levels in the nucleus accumbens were determined by high-performance liquid chromatography. The effects of the vaccine on morphine-induced locomotor sensitization and heroin-primed reinstatement of heroin self-administration were also assessed. Results: After subcutaneous administration in rats, the vaccine triggered a high antibody titer, with comparable specificity for morphine, 6-acetylmorphine, and heroin, but no interaction with dissimilar therapeutic opioid compounds, including buprenorphine, naloxone, and nalorphine, was observed. The vaccine significantly prevented the elevation of dopamine levels in the nucleus accumbens induced by a single morphine challenge. Moreover, the vaccine prevented the expression of morphine-induced locomotor sensitization and heroin-primed reinstatement of heroin seeking, suggesting its potential for preventing relapse. Conclusion: These results demonstrate that active immunization with the present vaccine induces a robust morphine/heroin-specific antibody response in rats and attenuates the behavioral effects of morphine and heroin. PMID:25522425

  8. Sink limitation induces the expression of multiple soybean vegetative lipoxygenase mRNAs while the endogenous jasmonic acid level remains low.

    PubMed Central

    Bunker, T W; Koetje, D S; Stephenson, L C; Creelman, R A; Mullet, J E; Grimes, H D

    1995-01-01

    The response of individual members of the lipoxygenase multigene family in soybeans to sink deprivation was analyzed. RNase protection assays indicated that a novel vegetative lipoxygenase gene, vlxC, and three other vegetative lipoxygenase mRNAs accumulated in mature leaves in response to a variety of sink limitations. These data suggest that several members of the lipoxygenase multigene family are involved in assimilate partitioning. The possible involvement of jasmonic acid as a signaling molecule regulating assimilate partitioning into the vegetative storage proteins and lipoxygenases was directly assessed by determining the endogenous level of jasmonic acid in leaves from plants with their pods removed. There was no rise in the level of endogenous jasmonic acid coincident with the strong increase in both vlxC and vegetative storage protein VspB transcripts in response to sink limitation. Thus, expression of the vegetative lipoxygenases and vegetative storage proteins is not regulated by jasmonic acid in sink-limited leaves. PMID:7549487

  9. Inhibition by morphine and morphine-like drugs of nicotine-induced emesis in cats.

    PubMed

    Beleslin, D B; Krstić, S K; Stefanović-Denić, K; Strbac, M; Mićić, D

    1981-05-01

    The effect of morphine, methadone and pethidine injected into the cerebral ventricle of the unanesthetized cat upon emesis produced by nicotine induced similarly was investigated. Morphine and morphine-like drugs depress or abolish the emetic effect of nicotine. The inhibitory effect of morphine, methadone and pethidine is observed after a transient emetic action of these drugs. The emetic and anti-emetic action of morphine, methadone and pethidine can perhaps be ascribed to an agonist/antagonist activity. Further, the possible site of inhibitory action of morphine and morphine-like drugs on the emesis produced by nicotine may be the area postrema of fourth ventricle. PMID:7248811

  10. Effect of the co-administration of glucose with morphine on glucoregulatory hormones and causing of diabetes mellitus in rats

    PubMed Central

    Radahmadi, Maryam; Sharifi, Mohammad Reza; Amini, Masoud; Fesharaki, Mehrafarin

    2016-01-01

    Background: Morphine is related to dysregulation of serum hormone levels. In addition, addict subjects interest to sugar intake. Therefore, this study investigated the effect of co-administration of glucose with Mo on the glucoregulatory hormones and causing of diabetes mellitus in rats. Materials and Methods: Male rats were randomly divided into four groups including, control, morphine, Morphine-Glucose and diabetes groups. Morphine was undergone through doses of 10, 20, 30, 40, 50, and 60 mg/kg, respectively on days 1, 2, 3, 4, 5, and 6. Then, dose of 60 mg/kg was used repeated for 20 extra days. The Morphine-Glucose group received the same doses of morphine plus 1 g/kg glucose per day. Diabetes was induced by intraperitoneal injection of 65 mg/kg streptozotocin. At the end of experiment, the serum insulin, glucagon, growth hormone (GH), cortisol, and glucose levels were measured. The homeostasis model assessment (HOMA) indexes concluding the HOMA-insulin resistance (HOMA-IR) and HOMA-β were evaluated. Results: Morphine insignificantly induced a hyperglycemia condition and insulin resistance. Whereas, the beta-cell functions significantly (P < 0.05) decreased only in morphine group. The co-administration of glucose slightly increased the GH, and increased insulin and cortisol levels significantly (P < 0.05 and P < 0.01; respectively) in the Morphine-Glucose group. Furthermore, the co-administration of glucose with morphine could nearly modulate the morphine effects on body weight, glucose, and glucagon levels. Conclusion: It is probable that the co-administration of glucose with morphine modulate the serum glucose levels by stimulating the beta-cell functions and to increase insulin secretion. PMID:26962523

  11. Reversal of morphine analgesic tolerance by ethanol in the mouse.

    PubMed

    Hull, L C; Gabra, B H; Bailey, C P; Henderson, G; Dewey, W L

    2013-06-01

    The chronic use of opioids in humans, accompanied by the development of tolerance, is a dangerous phenomenon in its own right. However, chronic opioid use is often made more dangerous by the coconsumption of other substances. It has been observed that the blood level of opioids in postmortem analyses of addicts, who consumed ethanol along with the opioid, was much less than that observed in individuals who died from opioids alone. This relationship between ethanol and opioids led us to investigate the hypothesis that ethanol alters tolerance to opioids. In the present study, we report that ethanol significantly and dose-dependently reduced the antinociceptive tolerance produced by morphine and the cross-tolerance between [D-Ala2,N-Me-Phe4,Gly5-ol]-enkephalin (DAMGO) and morphine in the mouse tail-flick test. The reversal of morphine tolerance was partially blocked by both the gamma receptor blocker bicuculline and by the γ-aminobutyric acid (GABA)(B) receptor blocker phaclofen and the administration of both inhibitors completely reversed the effects of ethanol on morphine tolerance. Diazepam, like ethanol, decreased morphine tolerance. However, this inhibition was reversed by the GABA(A) antagonist bicuculline but not by the GABA(B) antagonist phaclofen. These findings have important implications for individuals who abuse opioids and ethanol as well as suggest a mechanism to reduce the amount of opioid needed in chronic pain treatment. PMID:23528610

  12. Reversal of Morphine Analgesic Tolerance by Ethanol in the Mouse

    PubMed Central

    Hull, L. C.; Gabra, B. H.; Bailey, C. P.; Henderson, G.

    2013-01-01

    The chronic use of opioids in humans, accompanied by the development of tolerance, is a dangerous phenomenon in its own right. However, chronic opioid use is often made more dangerous by the coconsumption of other substances. It has been observed that the blood level of opioids in postmortem analyses of addicts, who consumed ethanol along with the opioid, was much less than that observed in individuals who died from opioids alone. This relationship between ethanol and opioids led us to investigate the hypothesis that ethanol alters tolerance to opioids. In the present study, we report that ethanol significantly and dose-dependently reduced the antinociceptive tolerance produced by morphine and the cross-tolerance between [d-Ala2,N-Me-Phe4,Gly5-ol]-enkephalin (DAMGO) and morphine in the mouse tail-flick test. The reversal of morphine tolerance was partially blocked by both the gamma receptor blocker bicuculline and by the γ-aminobutyric acid (GABA)B receptor blocker phaclofen and the administration of both inhibitors completely reversed the effects of ethanol on morphine tolerance. Diazepam, like ethanol, decreased morphine tolerance. However, this inhibition was reversed by the GABAA antagonist bicuculline but not by the GABAB antagonist phaclofen. These findings have important implications for individuals who abuse opioids and ethanol as well as suggest a mechanism to reduce the amount of opioid needed in chronic pain treatment. PMID:23528610

  13. Morphine treatment alters nucleotidase activities in rat blood serum

    PubMed Central

    Rozisky, Joanna Ripoll; Nonose, Yasmine; Laste, Gabriela; dos Santos, Vinicius Souza; de Macedo, Isabel Cristina; Battastini, Ana Maria Oliveira; Caumo, Wolnei; Torres, Iraci LS

    2012-01-01

    Morphine has been widely used in neonatal pain management. However, this treatment may produce adaptive changes in several physiologic systems. Our laboratory has demonstrated that morphine treatment in neonate rats alters nucleoside triphosphate diphosphohydrolase (NTPDase) activity and gene expression in central nervous system structures. Considering the relationship between the opioid and purinergic systems, our aim was to verify whether treatment with morphine from postnatal days 8 (P8) through 14 (P14) at a dose of 5 µg per day alters NTPDase and 5′-nucleotidase activities in rat serum over the short, medium, and long terms. After the in vivo assay, the morphine group showed increased hydrolysis of all nucleotides at P30, and a decrease in adenosine 5′-diphosphate hydrolysis at P60. Moreover, we found that nucleotidase activities change with age; adenosine 5′-triphosphate hydrolysis activity was lower at P16, and adenosine 5′-monophosphate hydrolysis activity was higher at P60. These changes are very important because these enzymes are the main regulators of blood nucleotide levels and, consequently, nucleotide signaling. Our findings showed that in vivo morphine treatment alters nucleotide hydrolysis in rat blood serum, suggesting that purine homeostasis can be influenced by opioid treatment during the neonatal period.

  14. Morphine, morphine-6-glucuronide and morphine-3-glucuronide pharmacokinetics in newborn infants receiving diamorphine infusions.

    PubMed

    Barrett, D A; Barker, D P; Rutter, N; Pawula, M; Shaw, P N

    1996-06-01

    1. The pharmacokinetics of morphine, morphine-6-glucuronide (M6G) and morphine-3-glucuronide (M3G) were studied in 19 ventilated newborn infants (24-41 weeks gestation) who were given a loading dose of 50 micrograms kg-1 or 200 micrograms kg-1 of diamorphine followed by an intravenous infusion of 15 micrograms kg-1 h-1 of diamorphine. Plasma concentrations of morphine, M3G and M6G were measured during the accrual to steady-state and at steady state of the diamorphine infusion. 2. Following both the 50 micrograms kg-1 or 200 micrograms kg-1 loading doses the mean steady-state plasma concentration (+/- s.d.) of morphine, M3G and M6G were 86 +/- 52 ng ml-1, 703 +/- 400 ng ml-1 and 48 +/- 28 ng ml-1 respectively and morphine clearance was found to be 4.6 +/- 3.2 ml min-1 kg-1. 3. M3G formation clearance was estimated to be 2.5 +/- 1.8 ml min-1 kg-1, and the formation clearance of M6G was estimated to be 0.46 +/- 0.32 ml min-1 kg-1. 4. M3G metabolite clearance was 0.46 +/- 0.60 ml min-1 kg-1, the elimination half-life was 11.1 +/- 11.3 h and the volume of distribution was 0.55 +/- 1.13 l kg-1. M6G metabolite clearance was 0.71 +/- 0.36 ml min-1 kg-1, the elimination half-life was 18.2 +/- 13.6 h and the volume of distribution was 1.03 +/- 0.88 l kg-1. 5. No significant effect of the loading dose (50 micrograms kg-1 or 200 micrograms kg-1) on the plasma morphine or metabolite concentrations or their derived pharmacokinetic parameters was found. 6. We were unable to identify correlations between gestational age of the infants and any of the determined pharmacokinetic parameters. 7. M3G: morphine and M6G: morphine steady-state plasma concentration ratios were 11.0 +/- 10.8 and 0.8 +/- 0.8, respectively. 8. The metabolism of morphine in neonates, in terms of the respective contributions of each glucuronide pathway, was similar to that in adults. PMID:8799518

  15. BK channels in microglia are required for morphine-induced hyperalgesia

    PubMed Central

    Hayashi, Yoshinori; Morinaga, Saori; Zhang, Jing; Satoh, Yasushi; Meredith, Andrea L.; Nakata, Takahiro; Wu, Zhou; Kohsaka, Shinichi; Inoue, Kazuhide; Nakanishi, Hiroshi

    2016-01-01

    Although morphine is a gold standard medication, long-term opioid use is associated with serious side effects, such as morphine-induced hyperalgesia (MIH) and anti-nociceptive tolerance. Microglia-to-neuron signalling is critically involved in pain hypersensitivity. However, molecules that control microglial cellular state under chronic morphine treatment remain unknown. Here we show that the microglia-specific subtype of Ca2+-activated K+ (BK) channel is responsible for generation of MIH and anti-nociceptive tolerance. We find that, after chronic morphine administration, an increase in arachidonic acid levels through the μ-opioid receptors leads to the sole activation of microglial BK channels in the spinal cord. Silencing BK channel auxiliary β3 subunit significantly attenuates the generation of MIH and anti-nociceptive tolerance, and increases neurotransmission after chronic morphine administration. Therefore, microglia-specific BK channels contribute to the generation of MIH and anti-nociceptive tolerance. PMID:27241733

  16. BK channels in microglia are required for morphine-induced hyperalgesia.

    PubMed

    Hayashi, Yoshinori; Morinaga, Saori; Zhang, Jing; Satoh, Yasushi; Meredith, Andrea L; Nakata, Takahiro; Wu, Zhou; Kohsaka, Shinichi; Inoue, Kazuhide; Nakanishi, Hiroshi

    2016-01-01

    Although morphine is a gold standard medication, long-term opioid use is associated with serious side effects, such as morphine-induced hyperalgesia (MIH) and anti-nociceptive tolerance. Microglia-to-neuron signalling is critically involved in pain hypersensitivity. However, molecules that control microglial cellular state under chronic morphine treatment remain unknown. Here we show that the microglia-specific subtype of Ca(2+)-activated K(+) (BK) channel is responsible for generation of MIH and anti-nociceptive tolerance. We find that, after chronic morphine administration, an increase in arachidonic acid levels through the μ-opioid receptors leads to the sole activation of microglial BK channels in the spinal cord. Silencing BK channel auxiliary β3 subunit significantly attenuates the generation of MIH and anti-nociceptive tolerance, and increases neurotransmission after chronic morphine administration. Therefore, microglia-specific BK channels contribute to the generation of MIH and anti-nociceptive tolerance. PMID:27241733

  17. Role of CD38, a cyclic ADP-ribosylcyclase, in morphine antinociception and tolerance.

    PubMed

    Hull, Lynn C; Rabender, Christopher; Gabra, Bichoy H; Zhang, Fan; Li, Pin-Lan; Dewey, William L

    2010-09-01

    Our previous studies have demonstrated that an increase in intracellular levels of Ca(2+) in neurons is an important component of both the antinociception produced by morphine and morphine's tolerance. The present study tested the hypothesis that the Ca(2+) signaling second messenger, cyclic ADP-ribose (cADPR), derived from CD38 activation participates in morphine antinociception and tolerance. We first showed that morphine's antinociceptive potency was increased by the intracerebroventricular injection of CD38 substrate beta-NAD(+) in mice. Furthermore, morphine tolerance was reversed by intracerebroventricular administration of each of three different inhibitors of the CD38-cADPR-ryanodine receptor Ca(2+) signaling pathway. These inhibitors were the ADP-ribosylcyclase inhibitor nicotinamide, cADPR analog 8-bromo-cADPR, and a large dose of ryanodine (>50 muM) that blocks the ryanodine receptor. In CD38 gene knockout [CD38(-/-)] mice, the antinociceptive action of morphine was found to be less potent compared with wild-type (WT) mice, as measured by tail-flick response, hypothermia assay, and observations of straub tail. However, there was no difference in locomotor activation between CD38(-/-) and WT animals. It was also found that less tolerance to morphine developed in CD38(-/-) mice compared with WT animals. These results indicate that cADRP-ryanodine receptor Ca(2+) signaling associated with CD38 plays an important role in morphine tolerance. PMID:20551293

  18. Role of calcium in morphine dependence and naloxone-precipitated withdrawal in mice

    PubMed Central

    Seth, Vikas; Upadhyaya, Prerna; Moghe, Vijay; Ahmad, Mushtaq

    2011-01-01

    Purpose To explore the role of calcium in morphine withdrawal syndrome using various agents affecting calcium levels in cytoplasm. Methods Mice were rendered dependent on morphine by subcutaneous injection of morphine, and withdrawal was induced 4 hours later by injecting the opioid antagonist, naloxone. Mice were observed for 30 minutes for signs of withdrawal, ie, characteristic jumping, hyperactivity, urination, and diarrhea. Various calcium channel blockers were injected intraperitoneally 30 minutes before naloxone to evaluate their influence on the severity of the withdrawal syndrome. We also tested the effect of combination levodopa-carbidopa pretreatment and its interaction with a selective alpha-1 blocker, terazosin, on naloxone-precipitated withdrawal in mice acutely dependent on morphine. Results A significant dose-dependent attenuation of naloxone-induced morphine withdrawal syndrome was observed with calcium channel blockers, ie, verapamil 20 mg/kg (P < 0.05) and diltiazem 30 mg/kg (P < 0.01). Combination levodopa-carbidopa pretreatment facilitated the morphine withdrawal syndrome, and this was found to be blocked by terazosin, although not to a statistically significant (P > 0.05) extent. Conclusion The results indicate that calcium plays an important role in the genesis of morphine dependence and withdrawal, and suggest the usefulness of calcium channel blockers in the management of morphine withdrawal syndrome.

  19. Role of CD38, a Cyclic ADP-Ribosylcyclase, in Morphine Antinociception and Tolerance

    PubMed Central

    Hull, Lynn C.; Rabender, Christopher; Gabra, Bichoy H.; Zhang, Fan; Li, Pin-Lan

    2010-01-01

    Our previous studies have demonstrated that an increase in intracellular levels of Ca2+ in neurons is an important component of both the antinociception produced by morphine and morphine's tolerance. The present study tested the hypothesis that the Ca2+ signaling second messenger, cyclic ADP-ribose (cADPR), derived from CD38 activation participates in morphine antinociception and tolerance. We first showed that morphine's antinociceptive potency was increased by the intracerebroventricular injection of CD38 substrate β-NAD+ in mice. Furthermore, morphine tolerance was reversed by intracerebroventricular administration of each of three different inhibitors of the CD38–cADPR–ryanodine receptor Ca2+ signaling pathway. These inhibitors were the ADP–ribosylcyclase inhibitor nicotinamide, cADPR analog 8-bromo-cADPR, and a large dose of ryanodine (>50 μM) that blocks the ryanodine receptor. In CD38 gene knockout [CD38(−/−)] mice, the antinociceptive action of morphine was found to be less potent compared with wild-type (WT) mice, as measured by tail-flick response, hypothermia assay, and observations of straub tail. However, there was no difference in locomotor activation between CD38(−/−) and WT animals. It was also found that less tolerance to morphine developed in CD38(−/−) mice compared with WT animals. These results indicate that cADRP–ryanodine receptor Ca2+ signaling associated with CD38 plays an important role in morphine tolerance. PMID:20551293

  20. Remifentanil produces cross-desensitization and tolerance with morphine on the mu-opioid receptor.

    PubMed

    Nowoczyn, M; Marie, N; Coulbault, L; Hervault, M; Davis, A; Hanouz, J L; Allouche, S

    2013-10-01

    Remifentanil is a powerful mu-opioid (MOP) receptor agonist used in anaesthesia with a very short half-life. However, per-operative perfusion of remifentanil was shown to increase morphine consumption during post-operative period to relieve pain. In the present study, we aimed to describe the cellular mechanisms responsible for this apparent reduction of morphine efficacy. For this purpose, we first examined the pharmacological properties of both remifentanil and morphine at the MOP receptor, endogenously expressed in the human neuroblastoma SH-SY5Y cell line, to regulate adenylyl cyclase and the MAP kinase ERK1/2 pathway, their potency to promote MOP receptor phosphorylation, arrestin 3-CFP (cyan fluorescent protein) recruitment and receptor trafficking during acute and sustained exposure. In the second part of this work, we studied the effects of a prior exposure of remifentanil on morphine-induced inhibition of cAMP accumulation, activation of ERK1/2 and analgesia. We showed that sustained exposure to remifentanil promoted a rapid desensitization of opioid receptors on both signalling pathways and a pretreatment with this agonist reduced signal transduction produced by a second challenge with morphine. While both opioid agonists promoted Ser(375) phosphorylation on MOP receptor, remifentanil induced a rapid internalization of opioid receptors compared to morphine but without detectable arrestin 3-CFP translocation to the plasma membrane in our experimental conditions. Lastly, a cross-tolerance between remifentanil and morphine was observed in mice using the hot plate test. Our in vitro and in vivo data thus demonstrated that remifentanil produced a rapid desensitization and internalization of the MOP receptor that would reduce the anti-nociceptive effects of morphine. PMID:23792280

  1. Ethanol Reversal of Cellular Tolerance to Morphine in Rat Locus Coeruleus Neurons

    PubMed Central

    Llorente, Javier; Withey, Sarah; Rivero, Guadalupe; Cunningham, Margaret; Cooke, Alex; Saxena, Kunal; McPherson, Jamie; Oldfield, Sue; Dewey, William L.; Bailey, Chris P.; Kelly, Eamonn; Henderson, Graeme

    2013-01-01

    Consumption of ethanol is a considerable risk factor for death in heroin overdose. We sought to determine whether a mildly intoxicating concentration of ethanol could alter morphine tolerance at the cellular level. In rat locus coeruleus (LC) neurons, tolerance to morphine was reversed by acute exposure of the brain slice to ethanol (20 mM). Tolerance to the opioid peptide [d-Ala2,N-MePhe4,Gly-ol]-enkephalin was not reversed by ethanol. Previous studies in LC neurons have revealed a role for protein kinase C (PKC)α in μ-opioid receptor (MOPr) desensitization by morphine and in the induction and maintenance of morphine tolerance, but we have been unable to demonstrate that 20 mM ethanol produces significant inhibition of PKCα. The ability of ethanol to reverse cellular tolerance to morphine in LC neurons was absent in the presence of the phosphatase inhibitor okadaic acid, indicating that dephosphorylation is involved. In human embryonic kidney 293 cells expressing the MOPr, ethanol reduced the level of MOPr phosphorylation induced by morphine. Ethanol reversal of tolerance did not appear to result from a direct effect on MOPr since acute exposure to ethanol (20 mM) did not modify the affinity of binding of morphine to the MOPr or the efficacy of morphine for G-protein activation as measured by guanosine 5′-O-(3-[35S]thio)triphosphate binding. Similarly, ethanol did not affect MOPr trafficking. We conclude that acute exposure to ethanol enhances the effects of morphine by reversing the processes underlying morphine cellular tolerance. PMID:23716621

  2. Ethanol Reversal of Tolerance to the Respiratory Depressant Effects of Morphine.

    PubMed

    Hill, Rob; Lyndon, Abi; Withey, Sarah; Roberts, Joanne; Kershaw, Yvonne; MacLachlan, John; Lingford-Hughes, Anne; Kelly, Eamonn; Bailey, Chris; Hickman, Matthew; Henderson, Graeme

    2016-02-01

    Opioids are the most common drugs associated with unintentional drug overdose. Death results from respiratory depression. Prolonged use of opioids results in the development of tolerance but the degree of tolerance is thought to vary between different effects of the drugs. Many opioid addicts regularly consume alcohol (ethanol), and post-mortem analyses of opioid overdose deaths have revealed an inverse correlation between blood morphine and ethanol levels. In the present study, we determined whether ethanol reduced tolerance to the respiratory depressant effects of opioids. Mice were treated with opioids (morphine, methadone, or buprenorphine) for up to 6 days. Respiration was measured in freely moving animals breathing 5% CO2 in air in plethysmograph chambers. Antinociception (analgesia) was measured as the latency to remove the tail from a thermal stimulus. Opioid tolerance was assessed by measuring the response to a challenge dose of morphine (10 mg/kg i.p.). Tolerance developed to the respiratory depressant effect of morphine but at a slower rate than tolerance to its antinociceptive effect. A low dose of ethanol (0.3 mg/kg) alone did not depress respiration but in prolonged morphine-treated animals respiratory depression was observed when ethanol was co-administered with the morphine challenge. Ethanol did not alter the brain levels of morphine. In contrast, in methadone- or buprenorphine-treated animals no respiratory depression was observed when ethanol was co-administered along with the morphine challenge. As heroin is converted to morphine in man, selective reversal of morphine tolerance by ethanol may be a contributory factor in heroin overdose deaths. PMID:26171718

  3. Ethanol Reversal of Tolerance to the Respiratory Depressant Effects of Morphine

    PubMed Central

    Hill, Rob; Lyndon, Abi; Withey, Sarah; Roberts, Joanne; Kershaw, Yvonne; MacLachlan, John; Lingford-Hughes, Anne; Kelly, Eamonn; Bailey, Chris; Hickman, Matthew; Henderson, Graeme

    2016-01-01

    Opioids are the most common drugs associated with unintentional drug overdose. Death results from respiratory depression. Prolonged use of opioids results in the development of tolerance but the degree of tolerance is thought to vary between different effects of the drugs. Many opioid addicts regularly consume alcohol (ethanol), and post-mortem analyses of opioid overdose deaths have revealed an inverse correlation between blood morphine and ethanol levels. In the present study, we determined whether ethanol reduced tolerance to the respiratory depressant effects of opioids. Mice were treated with opioids (morphine, methadone, or buprenorphine) for up to 6 days. Respiration was measured in freely moving animals breathing 5% CO2 in air in plethysmograph chambers. Antinociception (analgesia) was measured as the latency to remove the tail from a thermal stimulus. Opioid tolerance was assessed by measuring the response to a challenge dose of morphine (10 mg/kg i.p.). Tolerance developed to the respiratory depressant effect of morphine but at a slower rate than tolerance to its antinociceptive effect. A low dose of ethanol (0.3 mg/kg) alone did not depress respiration but in prolonged morphine-treated animals respiratory depression was observed when ethanol was co-administered with the morphine challenge. Ethanol did not alter the brain levels of morphine. In contrast, in methadone- or buprenorphine-treated animals no respiratory depression was observed when ethanol was co-administered along with the morphine challenge. As heroin is converted to morphine in man, selective reversal of morphine tolerance by ethanol may be a contributory factor in heroin overdose deaths. PMID:26171718

  4. Minocycline suppresses morphine-induced respiratory depression, suppresses morphine-induced reward, and enhances systemic morphine-induced analgesia

    PubMed Central

    Hutchinson, Mark R.; Northcutt, Alexis L.; Chao, Lindsey W.; Kearney, Jeffrey J.; Zhang, Yingning; Berkelhammer, Debra L.; Loram, Lisa C.; Rozeske, Robert R.; Bland, Sondra T.; Maier, Steven F.; Gleeson, Todd T.; Watkins, Linda R.

    2008-01-01

    Recent data suggest that opioids can activate immune-like cells of the central nervous system (glia). This opioid-induced glial activation is associated with decreased analgesia, owing to the release of proinflammatory mediators. Here we examine in rats whether the putative microglial inhibitor, minocycline, may affect morphine-induced respiratory depression and/or morphine-induced reward (conditioned place preference). Systemic co-administration of minocycline significantly attenuated morphine-induced reductions in tidal volume, minute volume, inspiratory force and expiratory force, but did not affect morphine-induced reductions in respiratory rate. Minocycline attenuation of respiratory depression was also paralleled with significant attenuation by minocycline of morphine-induced reductions in blood oxygen saturation. Minocycline also attenuated morphine conditioned place preference. Minocycline did not simply reduce all actions of morphine, as morphine analgesia was significantly potentiated by minocycline co-administration. Lastly, morphine dose-dependently increased cyclooxygenase-1 gene expression in a rat microglial cell line, an effect that was dose-dependently blocked by minocycline. Together, these data support that morphine can directly activate microglia in a minocycline-suppressible manner and suggest a pivotal role for minocycline-sensitive processes in the mechanisms of morphine-induced respiration depression, reward, and pain modulation. PMID:18706994

  5. Increases of CCK mRNA and peptide in different brain areas following acute and chronic administration of morphine.

    PubMed

    Ding, X Z; Bayer, B M

    1993-10-15

    The present study examined whether either acute or chronic administration of morphine resulted in changes in the content of CCK mRNA and CCK immunoactive peptide in selective areas of the rat brain and spinal cord. Two hours after a single injection of morphine (10 mg/kg, s.c.), CCK mRNA significantly increased in the hypothalamus (0.8-fold) and spinal cord (2-fold) relative to the CCK mRNA content in saline-injected controls. No significant differences in CCK mRNA were observed in the frontal cortex, hippocampus, midbrain or brainstem. There were no significant alterations in CCK immunoreactivity in any brain regions and spinal cord after the acute treatment with morphine. Upon repeated morphine administration, the content of CCK mRNA in both the hypothalamus and the spinal cord was further elevated by at least 3-fold. A significant increase of CCK mRNA content in brain stem (2.8-fold) was also observed following chronic morphine administration. In contrast to the acute exposure to morphine, chronic administration resulted in significant increases in CCK immunoactive peptide in hypothalamus (2.6-fold), spinal cord (2.1-fold) and brainstem (1.6-fold), but not in the other brain areas. These results demonstrate that morphine, especially following repeated administrations, stimulates endogenous CCK biosynthesis in selective brain regions. PMID:8242392

  6. Impact of the Timing of Morphine Administration on Lipopolysaccharide-Mediated Lethal Endotoxic Shock in Mice.

    PubMed

    Fukada, Tomoko; Kato, Hidehito; Ozaki, Makoto; Yagi, Junji

    2016-05-01

    Sepsis is a serious condition related to systemic inflammation, organ dysfunction, and organ failure. It is a subset of the cytokine storm caused by dysregulation of cytokine production. Morphine influences the severity of infection in vivo and in vitro because it regulates cytokine production. We investigated the immunological function of morphine using a mouse model of septic shock. We treated mice with α-galactosylceramide (2 μg/mouse) to induce lethal endotoxic shock following a challenge with lipopolysaccharide (LPS, 1.5 μg/mouse). This model represents acute lung injury and respiratory failure, and reflects the clinical features of severe septic shock. We evaluated the effect of the timing of morphine (0.8 mg/mouse) administration on the survival rate, cytokine production in vivo, and histological changes of mice with LPS-mediated lethal endotoxic shock. Morphine treatment before LPS challenge suppressed lethal endotoxic shock. In contrast, when we administered after LPS, morphine exacerbated lethal endotoxic shock; hematoxylin and eosin staining revealed a marked increase in the accumulation of infiltrates comprising polymorphonuclear leukocytes and mononuclear cells in the lung; and Elastica van Gieson staining revealed the destruction of alveoli. The plasma levels of tumor necrosis factor-α, interferon-γ, monocyte-chemotactic protein-1, and interleukin-12 in the group treated with morphine after LPS challenge were higher than those treated with morphine before LPS challenge. In conclusion, one of the factors that determine whether morphine exacerbates or inhibits infection is the timing of its administration. Morphine treatment before shock improved the survival rate, and morphine treatment after shock decreased the rate of survival. PMID:26682949

  7. The usefulness of cytogenetic parameters, level of p53 protein and endogenous glutathione as intermediate end-points in raw betel-nut genotoxicity.

    PubMed

    Kumpawat, K; Chatterjee, A

    2003-07-01

    Betel-nut (BN) chewing related oral mucosal lesions are potential hazards to a large population worldwide. Genotoxicity of betel alkaloids, polyphenol and tannin fractions have been reported. It has been shown earlier that BN ingredients altered the level of endogenous glutathione (GSH) which could modulate the host susceptibility to the action of other chemical carcinogens. The north-east Indian variety of BN, locally known as 'kwai', is raw, wet and consumed unprocessed with betel-leaf and slaked lime and contains higher alkaloids, polyphenol and tannins as compared to the dried one. Therefore, the purpose of this study was to investigate the extent of DNA damage, pattern of cell kinetics, the level of p53-protein and endogenous GSH in kwai chewers in the tribal population of Meghalaya state in the northeastern region of India with an aim to see whether these end-points could serve as biomarkers of genetic damage of relevance for genotoxic/carcinogenic process. The present data show higher DNA damage, delay in cell kinetics, p53 expression and lower GSH-level in heavy chewers (HC) than nonchewers (NC). The influence of bleomycin (BLM) on chromatid break induction in G2-phase of peripheral blood lymphocytes in NC and HC has been analysed to determine individual susceptibility to carcinogenic assaults. HC showed higher induction of chromatid breaks than NC. Risk assessment in this study suggests an interaction between carcinogen exposure and mutagen sensitivity measures, risk estimates being higher in those individuals who both consume kwai and express sensitivity to free radical oxygen damage in vitro. From this study it seems that besides cytogenetical parameters, the level of endogenous GSH and the level of p53 protein could act as effective biomarkers for kwai chewers. PMID:12929726

  8. Global Changes in the Rat Heart Proteome Induced by Prolonged Morphine Treatment and Withdrawal

    PubMed Central

    Drastichova, Zdenka; Skrabalova, Jitka; Jedelsky, Petr; Neckar, Jan; Kolar, Frantisek; Novotny, Jiri

    2012-01-01

    Morphine belongs among the most commonly used opioids in medical practice due to its strong analgesic effects. However, sustained administration of morphine leads to the development of tolerance and dependence and may cause long-lasting alterations in nervous tissue. Although proteomic approaches enabled to reveal changes in multiple gene expression in the brain as a consequence of morphine treatment, there is lack of information about the effect of this drug on heart tissue. Here we studied the effect of 10-day morphine exposure and subsequent drug withdrawal (3 or 6 days) on the rat heart proteome. Using the iTRAQ technique, we identified 541 proteins in the cytosol, 595 proteins in the plasma membrane-enriched fraction and 538 proteins in the mitochondria-enriched fraction derived from the left ventricles. Altogether, the expression levels of 237 proteins were altered by morphine treatment or withdrawal. The majority of changes (58 proteins) occurred in the cytosol after a 3-day abstinence period. Significant alterations were found in the expression of heat shock proteins (HSP27, α-B crystallin, HSP70, HSP10 and HSP60), whose levels were markedly up-regulated after morphine treatment or withdrawal. Besides that morphine exposure up-regulated MAPK p38 (isoform CRA_b) which is a well-known up-stream mediator of phosphorylation and activation of HSP27 and α-B crystallin. Whereas there were no alterations in the levels of proteins involved in oxidative stress, several changes were determined in the levels of pro- and anti-apoptotic proteins. These data provide a complex view on quantitative changes in the cardiac proteome induced by morphine treatment or withdrawal and demonstrate great sensitivity of this organ to morphine. PMID:23056601

  9. Effects of Met-enkephalin on body temperature of normal and morphine-tolerant rats.

    PubMed

    Ferri, S; Arrigo Reina, R; Santagostino, A; Scoto, G M; Spadaro, C

    1978-07-19

    The endogenous opioid met-enkephalin intraventricularly adminstered to the rat at the dose of 100 microgram raised rectal temperature, whereas 400 microgram of the pentapeptide caused a diphasic effect, i.e., hypothermia followed by hyperthermia. Met-enkephalin was ineffective when administered i.p. The effects on temperature were substantially similar to those elicited, for both routes of administration, by morphine, which may either raise or lower rat temperature depending on the dose. More naloxone was required to antagonize thermic effects of met-enkephalin than morphine. Finally, there was a lack of effects on temperature for met-enkephalin centrally administered to morphine-tolerant animals, thus providing further evidence, in vivo, of cross tolerance between opiates and naturally occurring ligands of opiate receptors. PMID:98798

  10. The effects of morphine treatment on the NCAM and its signaling in the MLDS of rats.

    PubMed

    Cao, Jun Ping; Wang, Hong Jun; Li, Li; Zhang, Su Ming

    2016-10-01

    Prolonged exposure to opiates induces a constellation of neuroadaptations, especially in the mesolimbic dopamine system (MLDS), which leads to alteration in the function of motivational circuitry. The neural cell adhesion molecule (NCAM) mediates cell-cell interactions and plays an important role in processes associated with neural plasticity. Moreover, it has been shown that NCAM were related to risk of alcoholism in human populations. Here, coimmunoprecipitation and western blotting were used to investigate whether morphine treatment induced alteration of the expression of NCAM or its signaling level in MLDS. The rats receiving escalating dose of morphine treatment were divided into three groups: morphine 1d, 3d and 5d group, which were injected subcutaneously with morphine hydrochloride for 1 day, 3 days and 5 days, respectively. Twelve hours after the last injection, animals were sacrificed and the tissues of ventral tegmental area (VTA), prefrontal cortex (PFC) and nucleus accumbens (NAc) were punched out to examine the expression of NCAM or its signaling level. The results showed that morphine treatment had no significant effect on the expression of NCAM, but downregulated the phosphorylation of NCAM-associated focal adhesion kinase (FAK) in the VTA and PFC of rats. In the NAc of rats, however, the expression of NCAM and its signaling were not altered significantly by morphine treatment. These results indicated that the downregulation of NCAM signaling in the VTA and PFC might be involved in the formation of morphine addiction. PMID:26821693

  11. Morphine Inhibited the Rat Neural Stem Cell Proliferation Rate by Increasing Neuro Steroid Genesis.

    PubMed

    Feizy, Navid; Nourazarian, Alireza; Rahbarghazi, Reza; Nozad Charoudeh, Hojjatollah; Abdyazdani, Nima; Montazersaheb, Soheila; Narimani, Mohamadreza

    2016-06-01

    Up to present, a large number of reports unveiled exacerbating effects of both long- and short-term administration of morphine, as a potent analgesic agent, on opium-addicted individuals and a plethora of cell kinetics, although contradictory effect of morphine on different cells have been introduced until yet. To address the potent modulatory effect of morphine on neural multipotent precursors with emphasis on endogenous sex-related neurosteroids biosynthesis, we primed the rat neural stem cells isolated from embryonic rat telencephalon to various concentrations of morphine including 10, 20, 50 and 100 µM alone or in combination with naloxone (100 µM) over period of 72 h. Flow cytometric Ki-67 expression and Annexin-V/PI based necrosis and apoptosis of exposed cells were evaluated. The total content of dihydrotestosterone and estradiol in cell supernatant was measured by ELISA. According on obtained data, both concentration- and time-dependent decrement of cell viability were orchestrated thorough down-regulation of ki-67 and simultaneous up-regulation of Annexin-V. On the other hand, the addition of naloxone (100 µM), as Mu opiate receptor antagonist, could blunt the morphine-induced adverse effects. It also well established that time-course exposure of rat neural stem cells with morphine potently could accelerate the endogenous dihydrotestosterone and estradiol biosynthesis. Interestingly, naloxone could consequently attenuate the enhanced neurosteroidogenesis time-dependently. It seems that our results discover a biochemical linkage between an accelerated synthesis of sex-related steroids and rat neural stem cells viability. PMID:26830291

  12. Attenuation of tolerance to opioid-induced antinociception and protection against morphine-induced decrease of neurofilament proteins by idazoxan and other I2-imidazoline ligands

    PubMed Central

    Boronat, M Assumpció; Olmos, Gabriel; García-Sevilla, Jesús A

    1998-01-01

    Agmatine, the proposed endogenous ligand for imidazoline receptors, has been shown to attenuate tolerance to morphine-induced antinociception (Kolesnikov et al., 1996). The main aim of this study was to assess if idazoxan, an α2-adrenoceptor antagonist that also interacts with imidazoline receptors, could also modulate opioid tolerance in rats and to establish which type of imidazoline receptors (or other receptors) are involved. Antinociceptive responses to opioid drugs were determined by the tail-flick test. The acute administration of morphine (10 mg kg−1, i.p., 30 min) or pentazocine (10 mg kg−1, i.p., 30 min) resulted in marked increases in tail-flick latencies (TFLs). As expected, the initial antinociceptive response to the opiates was lost after chronic (13 days) treatment (tolerance). When idazoxan (10 mg kg−1, i.p.) was given chronically 30 min before the opiates it completely prevented morphine tolerance and markedly attenuated tolerance to pentazocine (TFLs increased by 71–143% at day 13). Idazoxan alone did not modify TFLs. The concurrent chronic administration (10 mg kg−1, i.p., 13 days) of 2-BFI, LSL 60101, and LSL 61122 (valldemossine), selective and potent I2-imidazoline receptor ligands, and morphine (10 mg kg−1, i.p.), also prevented or attenuated morphine tolerance (TFLs increased by 64–172% at day 13). This attenuation of morphine tolerance was still apparent six days after discontinuation of the chronic treatment with LSL 60101-morphine. The acute treatment with these drugs did not potentiate morphine-induced antinociception. These drugs alone did not modify TFLs. Together, these results indicated the specific involvement of I2-imidazoline receptors in the modulation of opioid tolerance. The concurrent chronic (13 days) administration of RX821002 (10 mg kg−1, i.p.) and RS-15385-197 (1 mg kg−1, i.p.), selective α2-adrenoceptor antagonists, and morphine (10 mg kg−1, i.p.), did not

  13. AN IL-1 RECEPTOR ANTAGONIST BLOCKS A MORPHINE-INDUCED ATTENUATION OF LOCOMOTOR RECOVERY AFTER SPINAL CORD INJURY

    PubMed Central

    Hook, Michelle A.; Washburn, Stephanie N.; Moreno, Georgina; Woller, Sarah A.; Puga, Denise; Lee, Kuan H.; Grau, James W.

    2010-01-01

    Morphine is one of the most commonly prescribed medications for the treatment of chronic pain after a spinal cord injury (SCI). Despite widespread use, however, little is known about the secondary consequences of morphine use after SCI. Unfortunately, our previous studies show that administration of a single dose of morphine, in the acute phase of a moderate spinal contusion injury, significantly attenuates locomotor function, reduces weight gain, and produces symptoms of paradoxical pain (Hook et al., 2009). The current study focused on the cellular mechanisms that mediate these effects. Based on data from other models, we hypothesized that pro-inflammatory cytokines might play a role in the morphine-induced attenuation of function. Experiment 1 confirmed that systemic morphine (20 mg/kg) administered one day after a contusion injury significantly increased expression levels of spinal IL-1β 24 hrs later. Experiment 2 extended these findings, demonstrating that a single dose of morphine (90 µg, i.t.) applied directly onto the spinal cord increased expression levels of spinal IL-1β at both 30 min and 24 hrs after administration. Experiment 3 showed that administration of an interleukin-1 receptor antagonist (IL-1ra, i.t.) prior to intrathecal morphine (90 µg), blocked the adverse effects of morphine on locomotor recovery. Further, pre-treatment with 3 µg IL-1ra prevented the increased expression of at-level neuropathic pain symptoms that was observed 28 days later in the group treated with morphine-alone. However, the IL-1ra also had adverse effects that were independent of morphine. Treatment with the IL-1ra alone undermined recovery of locomotor function, potentiated weight loss and significantly increased tissue loss at the injury site. Overall, these data suggest that morphine disrupts a critical balance in concentrations of pro-inflammatory cytokines in the spinal cord, and this undermines recovery of function. PMID:20974246

  14. RSK2 Signaling in Medial Habenula Contributes to Acute Morphine Analgesia

    PubMed Central

    Darcq, Emmanuel; Befort, Katia; Koebel, Pascale; Pannetier, Solange; Mahoney, Megan K; Gaveriaux-Ruff, Claire; Hanauer, André; Kieffer, Brigitte L

    2012-01-01

    It has been established that mu opioid receptors activate the ERK1/2 signaling cascade both in vitro and in vivo. The Ser/Thr kinase RSK2 is a direct downstream effector of ERK1/2 and has a role in cellular signaling, cell survival growth, and differentiation; however, its role in biological processes in vivo is less well known. Here we determined whether RSK2 contributes to mu-mediated signaling in vivo. Knockout mice for the rsk2 gene were tested for main morphine effects, including analgesia, tolerance to analgesia, locomotor activation, and sensitization to this effect, as well as morphine withdrawal. The deletion of RSK2 reduced acute morphine analgesia in the tail immersion test, indicating a role for this kinase in mu receptor-mediated nociceptive processing. All other morphine effects and adaptations to chronic morphine were unchanged. Because the mu opioid receptor and RSK2 both show high density in the habenula, we specifically downregulated RSK2 in this brain metastructure using an adeno-associated-virally mediated shRNA approach. Remarkably, morphine analgesia was significantly reduced, as observed in the total knockout animals. Together, these data indicate that RSK2 has a role in nociception, and strongly suggest that a mu opioid receptor–RSK2 signaling mechanism contributes to morphine analgesia at the level of habenula. This study opens novel perspectives for both our understanding of opioid analgesia, and the identification of signaling pathways operating in the habenular complex. PMID:22218090

  15. Bergenin decreases the morphine-induced physical dependence via antioxidative activity in mice.

    PubMed

    Yun, Jaesuk; Lee, Yeonju; Yun, Kyunghwa; Oh, Seikwan

    2015-06-01

    Oxidative stress plays a role in the development of physical dependence induced by morphine. Bergenin, a polyphenol found in many Asian, African, and South American medicinal plants, is a potent antinarcotic agent with wide spectrum of pharmacological activities including antioxidant action. In the present study, we observed that bergenin decreased the development of physical dependence induced by morphine in mice and the antioxidant activity of bergenin plays a role in the antinarcotic effects through adapting to morphine-induced oxidative stress in the brain. The naloxone-precipitated withdrawal symptom (jumping frequency) was significantly ameliorated (50% of control group) by administration of bergenin (20 mg/kg) in morphine-treated mice. Furthermore, morphine-induced down-regulation of glutathione (GSH) contents was reversed by bergenin administration in the frontal cortex and liver. Bergenin had no effects on the increased levels of nfr2-dependent antioxidant enzyme HO1 and NQO1 in the frontal cortex, striatum, and liver of morphine-treated mice. However, the morphine-induced increase in nrf2 nuclear translocation in the frontal cortex and striatum was inhibited by bergenin treatment. These results suggest that bergenin has a potential antinarcotic effect via regulation of GSH contents and oxidative stress. PMID:25542428

  16. Morphine, morphine-6-glucuronide and morphine-3-glucuronide pharmacokinetics in newborn infants receiving diamorphine infusions

    PubMed Central

    BARRETT, D. A.; BARKER, D. P.; RUTTER, N.; PAWULA, M.; SHAW, P. N.

    1996-01-01

    1The pharmacokinetics of morphine, morphine-6-glucuronide (M6G) and morphine-3-glucuronide (M3G) were studied in 19 ventilated newborn infants(24–41 weeks gestation) who were given a loading dose of 50 μg kg−1 or 200 μg kg−1 of diamorphine followed by an intravenous infusion of 15 μg kg−1 h−1 of diamorphine. Plasma concentrations of morphine, M3G and M6G were measured during the accrual to steady-state and at steady state of the diamorphine infusion. 2Following both the 50 μg kg−1 or 200 μg kg−1 loading doses the mean steady-state plasma concentration (±s.d.) of morphine, M3G and M6G were 86±52 ng ml−1, 703±400 ng ml−1 and 48±28 ng ml−1 respectively and morphine clearance was found to be 4.6±3.2 ml min−1 kg−1. 3M3G formation clearance was estimated to be 2.5±1.8 ml min−1 kg−1, and the formation clearance of M6G was estimated to be 0.46±0.32 ml min−1 kg−1. 4M3G metabolite clearance was 0.46±0.60 ml min−1 kg−1, the elimination half-life was 11.1±11.3 h and the volume of distribution was 0.55±1.13 l kg−1. M6G metabolite clearance was 0.71±0.36 ml min−1 kg−1, the elimination half-life was 18.2±13.6 h and the volume of distribution was 1.03±0.88 l kg−1. 5No significant effect of the loading dose (50 μg kg−1 or 200 μg kg−1) on the plasma morphine or metabolite concentrations or their derived pharmacokinetic parameters was found. 6We were unable to identify correlations between gestational age of the infants and any of the determined pharmacokinetic parameters. 7M3G:morphine and M6G:morphine steady-state plasma concentration ratios were 11.0±10.8 and 0.8±0.8, respectively. 8The metabolism of morphine in neonates, in terms of the respective contributions of each glucuronide pathway, was similar to that in adults. PMID:8799518

  17. Plasma IL-12 levels are suppressed in vivo by stress and surgery through endogenous release of glucocorticoids and prostaglandins but not catecholamines or opioids.

    PubMed

    Shaashua, Lee; Rosenne, Ella; Neeman, Elad; Sorski, Liat; Sominsky, Luba; Matzner, Pini; Page, Gayle G; Ben-Eliyahu, Shamgar

    2014-04-01

    IL-12 is a prominent Th1 differentiator and leukocyte activator. Ample studies showed suppression of IL-12 production by numerous stress factors, including prostaglandins, catecholamines, glucocorticoids, and opioids, but did so in vitro and in the context of artificial leukocyte activation, not simulating the in vivo setting. In a recent study we reported in vivo suppression of plasma IL-12 levels by behavioral stress and surgery. The current study aims to elucidate neuroendocrine mechanisms underlying this phenomenon in naïve F344 rats. To this end, both adrenalectomy and administration of specific antagonists were used, targeting the aforementioned stress factors. The results indicated that corticosterone and prostaglandins are prominent mediators of the IL-12-suppressing effects of stress and surgery, apparently through directly suppressing leukocyte IL-12 production. Following surgery, endogenous prostaglandins exerted their effects mainly through elevating corticosterone levels. Importantly, stress-induced release of epinephrine or opioids had no impact on plasma IL-12 levels, while pharmacological administration of epinephrine reduced plasma IL-12 levels by elevating corticosterone levels. Last, a whole blood in vitro study indicated that prostaglandins and corticosterone, but not epinephrine, suppressed IL-12 production in non-stimulated leukocytes, and only corticosterone did so in the context of CpG-C-induced IL-12 production. Overall, the findings reiterate the notion that results from in vitro or pharmacological in vivo studies cannot indicate the effects of endogenously released stress hormones under stress/surgery conditions. Herein, corticosterone and prostaglandins, but not catecholamines or opioids, were key mediators of the suppressive effect of stress and surgery on in vivo plasma IL-12 levels in otherwise naïve animals. PMID:24636497

  18. Plasma IL-12 levels are suppressed in vivo by stress and surgery through endogenous release of glucocorticoids and prostaglandins but not catecholamines or opioids

    PubMed Central

    Shaashua, Lee; Rosenne, Ella; Neeman, Elad; Sorski, Liat; Sominsky, Luba; Matzner, Pini; Page, Gayle G.; Ben-Eliyahu, Shamgar

    2014-01-01

    IL-12 is a prominent Th1 differentiator and leukocyte activator. Ample studies showed suppression of IL-12 production by numerous stress factors, including prostaglandins, catecholamines, glucocorticoids, and opioids, but did so in vitro and in the context of artificial leukocyte activation, not simulating the in vivo setting. In a recent study we reported in vivo suppression of plasma IL-12 levels by behavioral stress and surgery. The current study aims to elucidate neuroendocrine mechanisms underlying this phenomenon in naïve F344 rats. To this end, both adrenalectomy and administration of specific antagonists were used, targeting the aforementioned stress factors. The results indicated that corticosterone and prostaglandins are prominent mediators of the IL-12-suppressing effects of stress and surgery, apparently through directly suppressing leukocyte IL-12 production. Following surgery, endogenous prostaglandins exerted their effects mainly through elevating corticosterone levels. Importantly, stress-induced release of epinephrine or opioids had no impact on plasma IL-12 levels, while pharmacological administration of epinephrine reduced plasma IL-12 levels by elevating corticosterone levels. Last, a whole blood in vitro study indicated that prostaglandins and corticosterone, but not epinephrine, suppressed IL-12 production in non-stimulated leukocytes, and only corticosterone did so in the context of CpG-C-induced IL-12 production. Overall, the findings reiterate the notion that results from in vitro or pharmacological in vivo studies cannot indicate the effects of endogenously released stress hormones under stress/surgery conditions. Herein, corticosterone and prostaglandins, but not catecholamines or opioids, were key mediators of the suppressive effect of stress and surgery on in vivo plasma IL-12 levels in otherwise naïve animals. PMID:24636497

  19. Endogenous plasma activated protein C levels and the effect of enoxaparin and drotrecogin alfa (activated) on markers of coagulation activation and fibrinolysis in pulmonary embolism

    PubMed Central

    2011-01-01

    Introduction There are no published data on the status of endogenous activated protein C (APC) in pulmonary embolism (PE), and no data on the effect of drotrecogin alfa (activated) (DAA) given in addition to therapeutic dose enoxaparin. Methods In this double-blind clinical trial, 47 patients with computed tomography (CT)-confirmed acute submassive PE treated with 1 mg/kg body weight of enoxaparin twice daily were randomized to groups receiving a 12-hour intravenous infusion of 6, 12, 18, or 24 μg/kg/hour of DAA or a placebo. Blood samples were drawn before starting DAA infusion, after 4, 8 and 12 hours (at the end of the infusion period), and on treatment days 2, 3, 4, 5 and 6. Results Initial endogenous plasma activated protein C (APC) levels were 0.36 ± 0.48 ng/ml (<0.10 to 1.72 ng/ml) and remained in the same range in the placebo group. APC levels in patients treated with DAA were 13.67 ± 3.57 ng/ml, 32.71 ± 8.76 ng/ml, 36.13 ± 7.60 ng/ml, and 51.79 ± 15.84 ng/ml in patients treated with 6, 12, 18, and 24 μg/kg/hour DAA, respectively. In patients with a D-dimer level >4 mg/L indicating a high level of acute fibrin formation and dissolution, DAA infusion resulted in a more rapid drop in soluble fibrin, D-dimer, and fibrinogen/fibrin degradation products (FDP) levels, compared to enoxaparin alone. There was a parallel decline of soluble fibrin, D-dimer, FDP, and plasmin-plasmin inhibitor complex (PPIC) in response to treatment with enoxaparin ± DAA, with no evidence of a systemic profibrinolytic effect of the treatment. Conclusions In patients with acute submassive PE endogenous APC levels are low. DAA infusion enhances the inhibition of fibrin formation. Trial registration ClinicalTrials.gov: NCT00191724 PMID:21241489

  20. ANDROGENS AND OPIATES: TESTOSTERONE INTERACTION WITH MORPHINE SELF-ADMINISTRATION IN MALE RATS

    PubMed Central

    Cooper, Sarah E.; Wood, Ruth I.

    2016-01-01

    Abuse of anabolic-androgenic steroids (AAS) and opioids intersect in athletics. Evidence from humans and animals suggests that AAS may act in the brain via opioidergic mechanisms, and may potentiate effects of opioids. To determine if AAS enhance motivation for opioid intake, this study treated male rats chronically for 6 weeks with high levels of testosterone (7.5 mg/kg) or vehicle s.c. and tested them for morphine self-administration under fixed (FR) and progressive ratio (PR) schedules. Initially, rats received chronic morphine infusion (16.8–50 mg/kg/day) over 7 days. Subsequently, rats were tested for morphine self-administration (3.2 mg/kg) 6h/day for 3 days under an FR1 schedule, and for 7 days under a PR 9-4 schedule. With FR1, controls self-administered more morphine (95.9±8.5 mg/kg), compared with testosterone-treated rats (63.2±7.2 mg/kg, p<0.05). Under PR, there was no effect of testosterone on morphine intake or operant responding (26.7±5.7 responses vs 30.9±5.9 responses for vehicle; n.s.). To determine if testosterone enhances morphine sedation, additional rats were treated with testosterone or vehicle and evaluated for locomotor behavior and rearing activity over 30 min in response to saline or 10 mg/kg morphine. Morphine inhibited locomotor activity and rearing; testosterone selectively reduced rearing behavior, but did not alter locomotor behavior. These results suggest that testosterone does not increase motivation for morphine. PMID:24488032

  1. D-serine in the midbrain periaqueductal gray contributes to morphine tolerance in rats

    PubMed Central

    Cao, Song; Sun, Mengjie; Li, Youyan

    2016-01-01

    Background The N-methyl-D-aspartate subtype of glutamate receptor plays a critical role in morphine tolerance. D-serine, a co-agonist of N-methyl-D-aspartate receptor, participates in many physiological and pathophysiological processes via regulating N-methyl-D-aspartate receptor activation. The purinergic P2X7 receptor activation can induce the D-serine release in the central nervous system. This study aimed to investigate the role of the ventrolateral midbrain periaqueductal gray D-serine in the mechanism of morphine tolerance in rats. The development of morphine tolerance was induced in normal adult male Sprague–Dawley rats through subcutaneous injection of morphine (10 mg/kg). The analgesic effect of morphine (5 mg/kg, i.p.) was assessed by measuring mechanical withdrawal thresholds in rats with an electronic von Frey anesthesiometer. The D-serine concentration and serine racemase expression levels in the ventrolateral midbrain periaqueductal gray were evaluated through enzyme-linked immunosorbent assay and Western blot analysis, respectively. The effects of intra-ventrolateral midbrain periaqueductal gray injections of the D-serine degrading enzyme D-amino acid oxidase and antisense oligodeoxynucleotide targeting the P2X7 receptor on chronic morphine-treated rats were also explored. Results We found that repeated morphine administrations decreased the antinociceptive potency of morphine evidenced by the percent changes in mechanical pain threshold in rats. By contrast, the D-serine contents and the expression levels of the serine racemase protein were upregulated in the ventrolateral midbrain periaqueductal gray in morphine-tolerant rats. The development of morphine tolerance was markedly alleviated by intra-ventrolateral midbrain periaqueductal gray injections of D-amino acid oxidase or antisense oligodeoxynucleotide targeting the P2X7 receptor. Conclusions Our data indicate that the development of antinociceptive tolerance to morphine is partially

  2. Endogenous ochronosis.

    PubMed

    Turgay, E; Canat, D; Gurel, M S; Yuksel, T; Baran, M F; Demirkesen, C

    2009-12-01

    Endogenous ochronosis or alkaptonuria is a rare, autosomal recessive disease of tyrosine metabolism that is caused by a deficiency of the enzyme homogentisic acid oxidase. The disease results in the accumulation and deposition of homogentisic acid in the cartilage, eyelids, forehead, cheeks, axillae, genital region, buccal mucosa, larynx, tympanic membranes, and tendons. The disease generally presents in adults with arthritis and skin abnormalities; occasionally, involvement of other organs may be seen. A 49-year-old man was referred to our clinic with verrucous lesions on his hands. On physical examination, caviar-like ochronotic papules were found around his eyes and the helix cartilage of his ears, and on the dorsa of both hands. There were brown macules on the sclera (Osler's sign). The patient had arthritis and nephrolithiasis, and a sample of his urine darkened upon standing. Histopathological examination showed deposition of ochronotic pigment. High-dose ascorbic acid was given, and the patient showed improvement on follow-up examination 6 months later. PMID:20055850

  3. Chemical inhibition of potato ABA-8'-hydroxylase activity alters in vitro and in vivo ABA metabolism and endogenous ABA levels but does not affect potato microtuber dormancy duration.

    PubMed

    Suttle, Jeffrey C; Abrams, Suzanne R; De Stefano-Beltrán, Luis; Huckle, Linda L

    2012-09-01

    The effects of azole-type P450 inhibitors and two metabolism-resistant abscisic acid (ABA) analogues on in vitro ABA-8'-hydroxylase activity, in planta ABA metabolism, endogenous ABA content, and tuber meristem dormancy duration were examined in potato (Solanum tuberosum L. cv. Russet Burbank). When functionally expressed in yeast, three potato CYP707A genes were demonstrated to encode enzymatically active ABA-8'-hydroxylases with micromolar affinities for (+)-ABA. The in vitro activity of the three enzymes was inhibited by the P450 azole-type inhibitors ancymidol, paclobutrazol, diniconazole, and tetcyclasis, and by the 8'-acetylene- and 8'-methylene-ABA analogues, with diniconazole and tetcyclasis being the most potent inhibitors. The in planta metabolism of [(3)H](±)-ABA to phaseic acid and dihydrophaseic acid in tuber meristems was inhibited by diniconazole, tetcyclasis, and to a lesser extent by 8'-acetylene- and 8'-methylene-ABA. Continuous exposure of in vitro generated microtubers to diniconazole resulted in a 2-fold increase in endogenous ABA content and a decline in dihydrophaseic acid content after 9 weeks of development. Similar treatment with 8'-acetylene-ABA had no effects on the endogenous contents of ABA or phaseic acid but reduced the content of dihydrophaseic acid. Tuber meristem dormancy progression was determined ex vitro in control, diniconazole-, and 8'-acetylene-ABA-treated microtubers following harvest. Continuous exposure to diniconazole during microtuber development had no effects on subsequent sprouting at any time point. Continuous exposure to 8'-acetylene-ABA significantly increased the rate of microtuber sprouting. The results indicate that, although a decrease in ABA content is a hallmark of tuber dormancy progression, the decline in ABA levels is not a prerequisite for dormancy exit and the onset of tuber sprouting. PMID:22664582

  4. Capillary electrophoresis-mass spectrometry determination of morphine and its isobaric glucuronide metabolites.

    PubMed

    Isbell, Theresa A; Strickland, Erin C; Hitchcock, Jennifer; McIntire, Gregory; Colyer, Christa L

    2015-02-01

    The determination of morphine and its isobaric metabolites morphine-3-beta-d-glucuronide (M3G) and morphine-6-beta-d-glucuronide (M6G) is useful for therapeutic drug monitoring and forensic identification of drug use. In particular, capillary electrophoresis with mass spectrometry (CE-MS) represents an attractive tool for opioid analysis. Whereas volatile background electrolytes in CE often improve electrospray ionization for coupled MS detection, such electrolytes may reduce CE separation efficiency and resolution. To better understand the effects of background electrolyte (BGE) composition on separation efficiency and detection sensitivity, this work compares and contrasts method development for both volatile (ammonium formate and acetate) and nonvolatile (ammonium phosphate and borate) buffers. Peak efficiencies and migration times for morphine and morphine metabolites were optimal with a 25mM ammonium borate buffer (pH=9.5) although greater sensitivities were achieved in the ammonium formate buffer. Optimized CE methods allowed for the resolution of the isobaric morphine metabolites prior to high mass accuracy, electrospray ionization quadrupole time-of-flight (ESI-QTOF) MS detection applicable to the analysis of urine samples in under seven minutes. Urine sample preparation required only a 10-fold dilution with BGE prior to analysis. Limits of detection (LOD) in normal human urine were found to be 1.0μg/mL for morphine and 2.5μg/mL for each of M3G and M6G by CE-ESI-QTOF-MS. These LODs were comparable to those for CE-UV analysis of opioid standards in buffer, whereas CE-ESI-QTOF-MS analysis of opioid standards in buffer yielded LODs an order of magnitude lower. Patient urine samples (N=12) were analyzed by this new CE-ESI-QTOF-MS method and no significant difference in total morphine content relative to prior liquid chromatography-mass spectrometry (LC-MS) results was found as per a paired-t test at the 99% confidence level. Whereas the LC-MS method applied

  5. Self-inhibiting action of nortriptylin's antidepressive effect at high plasma levels: a randomized double-blind study controlled by plasma concentrations in patients with endogenous depression.

    PubMed

    Kragh-Sorensen, P; Hansen, C E; Baastrup, P C; Hvidberg, E F

    1976-02-01

    Below the toxic plasma level of nortriptyline (NT) an upper therapeutic limit has been postulated in patients with endogenous depression. If so the clinical significance is obvious and a double-blind, randomized study was performed in order to solve this problem. Two groups of patients were controlled at different plasma levels (less than 150 ng/ml and less than 180 ng/ml). The degree of depression was rated weekly. Only about one third (n equals 24) of the patients originally included, were carried through the full protocol, the most prominent reason for drop out beeing spontaneous remission during an initial placebo period. After 4 weeks of NT treatment the majority in the high level group was still depressed, but the difference barely significant (P equals 5.5%). However, a randomized reduction of the plasma level among the patients at the high level resulted in a significant correlation to remission. Evaluation of the total material after 6 weeks of NT treatment demonstrated a strong correlation of high plasma level to poor antidepressive effect of NT. No correlation could be obtained between side-effects, which were few, and plasma level. The non-proteinbound fraction in plasma was found to 7% (SD 1.83) by simultaneous determinations of NT in plasma and CSF in 13 patients. The variation in the proteinbinding was not likely to invalidate the over all results based on total NT determination. A therapeutic plasma range of 50-150 ng/ml is recommended. PMID:766041

  6. The efficacy of intrathecal morphine and clonidine in the treatment of pain after spinal cord injury.

    PubMed

    Siddall, P J; Molloy, A R; Walker, S; Mather, L E; Rutkowski, S B; Cousins, M J

    2000-12-01

    We performed a double-blinded, randomized, controlled trial in 15 patients to determine the efficacy of intrathecal morphine or clonidine, alone or combined, in the treatment of neuropathic pain after spinal cord injury. The combination of morphine and clonidine produced significantly more pain relief than placebo 4 h after administration; either morphine or clonidine alone did not produce as much pain relief. In addition, lumbar and cervical cerebrospinal fluid (CSF) concentrations, sampled at these levels at different times after administration were examined for a relationship between pain relief and CSF drug concentration. Lumbar CSF drug concentrations were initially several orders of magnitude larger than those in cervical CSF. After 1-2 h, the concentrations of morphine in cervical CSF markedly exceeded those of clonidine. The concentration of morphine in the cervical CSF and the degree of pain relief correlated significantly. We conclude that intrathecal administration of a mixture of clonidine and morphine is more effective than either drug administered alone and is related to the CSF-borne drug concentration above the level of spinal cord injury. If there is pathology that may restrict CSF flow, consideration should be given to intrathecal administration above the level of spinal cord damage to provide an adequate drug concentration in this region. PMID:11094007

  7. Expression of BDNF and TrkB Phosphorylation in the Rat Frontal Cortex During Morphine Withdrawal are NO Dependent.

    PubMed

    Peregud, Danil I; Yakovlev, Alexander A; Stepanichev, Mikhail Yu; Onufriev, Mikhail V; Panchenko, Leonid F; Gulyaeva, Natalia V

    2016-08-01

    Nitric oxide (NO) mediates pharmacological effects of opiates including dependence and abstinence. Modulation of NO synthesis during the induction phase of morphine dependence affects manifestations of morphine withdrawal syndrome, though little is known about mechanisms underlying this phenomenon. Neurotrophic and growth factors are involved in neuronal adaptation during opiate dependence. NO-dependent modulation of morphine dependence may be mediated by changes in expression and activity of neurotrophic and/or growth factors in the brain. Here, we studied the effects of NO synthesis inhibition during the induction phase of morphine dependence on the expression of brain-derived neurotrophic factor (BDNF), glial-derived neurotrophic factor (GDNF), nerve growth factor (NGF), and insulin-like growth factor 1 (IGF1) as well as their receptors in rat brain regions after spontaneous morphine withdrawal in dependent animals. Morphine dependence in rats was induced within 6 days by 12 injections of morphine in increasing doses (10-100 mg/kg), and NO synthase inhibitor L-N(G)-nitroarginine methyl ester (L-NAME) (10 mg/kg) was given 1 h before each morphine injection. The expression of the BDNF, GDNF, NGF, IGF1, and their receptors in the frontal cortex, striatum, hippocampus, and midbrain was assessed 40 h after morphine withdrawal. L-NAME treatment during morphine intoxication resulted in an aggravation of the spontaneous morphine withdrawal severity. Morphine withdrawal was accompanied by upregulation of BDNF, IGF1, and their receptors TrkB and IGF1R, respectively, on the mRNA level in the frontal cortex, and only BDNF in hippocampus and midbrain. L-NAME administration during morphine intoxication decreased abstinence-induced upregulation of these mRNAs in the frontal cortex, hippocampus and midbrain. L-NAME prevented from abstinence-induced elevation of mature but not pro-form of BDNF polypeptide in the frontal cortex. While morphine abstinence did not affect Trk

  8. Social influences on morphine sensitization in adolescent females.

    PubMed

    Hofford, Rebecca S; Roberts, Kris W; Wellman, Paul J; Eitan, Shoshana

    2010-08-01

    We recently observed that social interactions influence morphine responsiveness in adolescent males. Given sex-related differences in both social interactions and responses to morphine, the present study examines social influences on morphine sensitization in adolescent female mice. Four experimental groups were examined: (1) morphine-treated mice (twice daily, 10-40 mg/kg, s.c.) housed physically and visually separated from saline-treated mice ('morphine only'), (2) morphine-treated mice housed together with saline-treated mice ('morphine cage-mates (of saline)'), (3) saline-treated mice housed together with morphine-treated mice ('saline cage-mates (of morphine)'), and (4) saline-treated mice housed physically and visually separated from morphine-treated mice ('saline only'). Following the treatment period, mice were tested individually for their locomotor response to 20 mg/kg morphine (s.c.). There were no significant differences in morphine-induced hyper-locomotion between saline only and saline cage-mates (of morphine) female adolescent mice. Notably, morphine only mice exhibited significantly greater morphine sensitization as compared to morphine cage-mates (of saline). Thus, this study demonstrates social influences on morphine sensitization in adolescent females. Drug use during early adolescence is a key predictor of later drug abuse and dependence during adulthood. Thus, understanding the specific vulnerabilities to drug use in this age group may represent a first step in helping develop more effective treatment programs. PMID:20456874

  9. Absorption of morphine from a slow-release emulsion used to induce morphine dependence in rats.

    PubMed

    Salem, A; Hope, W

    1998-10-01

    This study was performed to measure absorption of morphine from the injection site following treatment of rats with slow-release emulsions formulated with morphine hydrochloride and morphine base. Samples of emulsion were collected from the injection site of halothane anesthetized animals at 24 and 48 h following emulsion treatment and concentrations of morphine remaining in the emulsion were analyzed using high-performance liquid chromatography (HPLC). In another group of morphine-treated rats, at times equivalent to collecting samples of emulsion, the intensity of naloxone-precipitated withdrawal behaviors was monitored. Both morphine base- and hydrochloride-containing emulsions induced a high degree of physical dependence in animals treated over 48 h. Release of morphine from emulsions containing morphine base was slower than that from the hydrochloride formulations. In the 24-h morphine base-treated animals, approximately 45% was absorbed from the injection site as opposed to 99% in the 24-h morphine hydrochloride-treated animals. These results suggest that morphine base containing emulsions provide a more sustained exposure to the opioid. PMID:10334632

  10. Morphine-induced suppression of conditioned stimulus intake: Effects of stimulus type and insular cortex lesions

    PubMed Central

    Lin, Jian-You; Roman, Christopher; Reilly, Steve

    2009-01-01

    Intake of an unconditionally preferred taste stimulus (e.g., saccharin) is reduced by contingent administration of a drug of abuse (e.g., morphine). We examined the influence of insular cortex (IC) lesions on morphine-induced suppression of an olfactory cue and two taste stimuli with different levels of perceived innate reward value. Two major findings emerged from this study. First, morphine suppressed intake of an aqueous odor as well as each taste stimulus in neurologically intact rats. Second, IC lesions disrupted morphine-induced suppression of the taste stimuli but not the aqueous odor cue. These results indicate that the perceived innate reward value of the CS is not a factor that governs drug-induced intake suppression. PMID:19631620

  11. Effect of photoperiod on the levels of endogenous gibberellins in spinach as measured by combined gas chromatography-selected ion current monitoring

    SciTech Connect

    Metzger, J.D.; Zeevaart, J.A.D.

    1980-11-01

    The changes in the levels of five endogenous gibberellins (GAs) in spinach in relation to photoperiodic treatment have been examined by combined gas chromatography-selected ion current monitoring. Long-day treatment caused a 5-fold decline in the level of GA/sub 19/ while the levels of GA/sub 20/ and GA/sub 29/ increased dramatically during the same period. In absolute terms, the level of GA/sub 20/ increased from 0.8 microgram per 100 grams dry weight in short days to 5.5 micrograms per 100 grams dry weight after 14 long days. The levels of GA/sub 17/ and GA/sub 44/ did not change significantly with long-day treatment. These results are consistent with the hypothesis that GA/sub 19/ is converted to GA/sub 20/ and that this conversion is under photoperiodic control. Since stem growth in spinach is correlated with an increase in the level of GA/sub 20/, one major aspect of photoperiodic control of stem growth might be the availability of GA/sub 20/ through regulation of the conversion of GA/sub 19/ to GA/sub 20/.

  12. Antagonism of κ opioid receptor in the nucleus accumbens prevents the depressive-like behaviors following prolonged morphine abstinence.

    PubMed

    Zan, Gui-Ying; Wang, Qian; Wang, Yu-Jun; Liu, Yao; Hang, Ai; Shu, Xiao-Hong; Liu, Jing-Gen

    2015-09-15

    The association between morphine withdrawal and depressive-like symptoms is well documented, however, the role of dynorphin/κ opioid receptor system and the underlying neural substrates have not been fully understood. In the present study, we found that four weeks morphine abstinence after a chronic escalating morphine regimen significantly induced depressive-like behaviors in mice. Prodynorphin mRNA and protein levels were increased in the nucleus accumbens (NAc) after four weeks of morphine withdrawal. Local injection of κ opioid receptor antagonist nor-Binaltorphimine (norBNI) in the NAc significantly blocked the expression of depressive-like behaviors without influencing general locomotor activity. Thus, the present study extends previous findings by showing that prolonged morphine withdrawal-induced depressive-like behaviors are regulated by dynorphin/κ opioid receptor system, and shed light on the κ opioid receptor antagonists as potential therapeutic agents for the treatment of depressive-like behaviors induced by opiate withdrawal. PMID:26049060

  13. Microinjection of histone deacetylase inhibitor into the ventrolateral orbital cortex potentiates morphine induced behavioral sensitization.

    PubMed

    Wei, Lai; Zhu, Yuan-Mei; Zhang, Yu-Xiang; Liang, Feng; Barry, Devin M; Gao, Hong-Yu; Li, Tao; Huo, Fu-Quan; Yan, Chun-Xia

    2016-09-01

    Accumulating evidence indicates that epigenetic regulation, such as changes in histone modification in reward-related brain regions, contributes to the memory formation of addiction to opiates and psychostimulants. Our recent results suggested that the ventrolateral orbital cortex (VLO) is involved in the memories of stress and drug addiction. Since addiction and stress memories share some common pathways, the present study was designed to investigate the role of histone deacetylase (HDAC) activity in the VLO during morphine induced-behavioral sensitization. Rats received a single exposure to morphine for establishing the behavioral sensitization model. The effect of HDAC activity in the VLO in morphine induced-behavioral sensitization was examined by microinjection of HDAC inhibitor Trichostatin A (TSA). Furthermore, the protein expression levels of extracellular signal-regulated kinase (ERK) and phosphorylated ERK (p-ERK), histone H3 lysine 9 acetylation (aceH3K9) and brain-derived neurotrophic factor (BDNF) in the VLO in morphine-induced behavioral sensitization were examined. The results showed that the bilateral VLO lesions suppressed the expression phase, but not the developmental phase of morphine-induced behavioral sensitization. Microinjection of TSA into the VLO significantly increased both the development and expression phases. Moreover, the protein levels of p-ERK, aceH3K9 and BDNF except ERK in the VLO were significantly upregulated in morphine-treated rats in the expression phase. These effects were further strengthened by intra-VLO injection of TSA. Our findings suggest that HDAC activity in the VLO could potentiate morphine-induced behavioral sensitization. The upregulated expression of p-ERK, aceH3K9 and BDNF in the VLO might be the underlying mechanism of histone acetylation enhancing the morphine-induced behavioral sensitization. PMID:27312092

  14. Basal and morphine-evoked dopaminergic neurotransmission in the nucleus accumbens of MOR- and DOR-knockout mice.

    PubMed

    Chefer, Vladimir I; Kieffer, Brigitte L; Shippenberg, Toni S

    2003-10-01

    Conventional and no net flux microdialysis were used to quantify basal and morphine-induced extracellular dopamine (DA) levels and the basal extraction fraction, which provides an estimate of the rate of DA uptake, in the nucleus accumbens (NAc) of wild-type mice and those with a constitutive deletion of mu (MOR)- or delta (DOR)-opioid receptors. Locomotor activity was assessed in these same animals. No difference between genotypes in basal dialysate DA levels was seen. No net flux studies revealed significant decreases in the DA extraction fraction in both MOR- and DOR-knockout mice, indicating decreased basal DA uptake in both genotypes. Extracellular DA, however, was unchanged. Because extracellular neurotransmitter levels are determined by the dynamics of both release and uptake, these findings provide suggestive evidence that basal DA release is decreased in mutant mice. Systemic administration of morphine significantly increased locomotor activity and dialysate DA levels in wild-type mice. MOR-knockout mice failed to exhibit a behavioural response to morphine. The ability of morphine to increase DA levels, however, was reduced but not prevented. No alteration in the effects of morphine was observed in DOR-knockout mice. These data provide genetic evidence for the existence of tonically active MOR and DOR systems that modulate basal DA neurotransmission in the NAc. Furthermore, they demonstrate that in contrast to the locomotor-activating effects of morphine, a small component of morphine-evoked DA release occurs independently of MOR activation. PMID:14622224

  15. Morphine enhances the release of /sup 3/H-purines from rat brain cerebral cortical prisms

    SciTech Connect

    Wu, P.H.; Phillis, J.W.; Yuen, H.

    1982-10-01

    In vitro experiments have shown that /sup 3/H-purines can be released from /sup 3/H-adenosine preloaded rat brain cortical prisms by a KCl-evoked depolarization. The KCl-evoked release of /sup 3/H-purines is dependent on the concentration of KCl present in the superfusate. At concentrations of 10(-7) approximately 10(-5)M morphine did not influence the basal release of /sup 3/H-purines from the prisms, although it enhanced the KCl-evoked release of /sup 3/H-purines. The enhancement of KCl-evoked /sup 3/H-purine release by morphine was concentration-dependent and was antagonized by naloxone, suggesting the involvement of opiate receptors. Uptake studies with rat brain cerebral cortical synaptosomes show that morphine is a very weak inhibitor of adenosine uptake. Comparisons with dipyridamole, a potent inhibitor of adenosine uptake, suggest that this low level of inhibition of the uptake did not contribute significantly to the release of /sup 3/H-purine by morphine seen in our experiments. It is therefore suggested that morphine enhances KCl-evoked /sup 3/H-purine release by an interaction with opiate receptors and that the resultant increase in extracellular purine (adenosine) levels may account for some of the actions of morphine.

  16. Synthetic substances with morphine-like effect

    PubMed Central

    Braenden, Olav J.; Eddy, Nathan B.; Halbach, H.

    1955-01-01

    For morphine-, morphinan-, pethidine-, methadone-, and dithienyl-butenylamine groups of analgesic compounds a systematic survey is given of how analgesic activity is quantitatively affected by alteration of the chemical constitution. Features common to the structural formulae of substances with morphine-like analgesic effect are pointed out. ImagesFIG. 1FIG. 1(Contd.) PMID:13284565

  17. Long-term exposure to endogenous levels of tributyltin decreases GluR2 expression and increases neuronal vulnerability to glutamate

    SciTech Connect

    Nakatsu, Yusuke; Kotake, Yaichiro Takishita, Tomoko; Ohta, Shigeru

    2009-10-15

    Tributyltin (TBT), an endocrine-disrupting chemical, has been used commercially as a heat stabilizer, agricultural pesticide and component of antifouling paints. In this study, we investigated the effect of long-term exposure to endogenous levels of TBT on neuronal glutamate receptors. Cultured rat cortical neurons were exposed to 1-50 nM TBT for 9 days (from day 2 to day 10 in vitro). The number of neurons was reduced by long-term exposure to 50 nM TBT, but not to 1-20 nM TBT. Long-term exposure to 20 nM TBT decreased the mRNA expression of glutamate receptors NR1, NR2A, GluR1 and GluR2, and increased that of NR2B, GluR3 and GluR4. GluR2 protein was also reduced by long-term exposure to TBT. Because AMPA receptor lacking GluR2 exhibits Ca{sup 2+} permeability, we investigated whether Ca{sup 2+} influx or glutamate toxicity was affected. Indeed, glutamate-induced Ca{sup 2+} influx was increased in TBT-treated neurons. Consistent with this, neurons became more susceptible to glutamate toxicity as a result of long-term exposure to TBT and this susceptibility was abolished by an antagonist of GluR2-lacking AMPA receptor. Thus, it is suggested that long-term exposure to endogenous levels of TBT induces a decrease of GluR2 protein, causing neurons become more susceptible to glutamate toxicity.

  18. Low Endogenous Secretory Receptor for Advanced Glycation End-Products Levels Are Associated With Inflammation and Carotid Atherosclerosis in Prediabetes.

    PubMed

    Di Pino, Antonino; Urbano, Francesca; Zagami, Rose Maria; Filippello, Agnese; Di Mauro, Stefania; Piro, Salvatore; Purrello, Francesco; Rabuazzo, Agata Maria

    2016-04-01

    Pre-diabetes is associated with advanced vascular damage. Our data shows that subjects with pre-diabetes exhibited low esRAGE plasma levels and gene expression, which are inversely related with markers of inflammation and atherosclerotic risk. PMID:26885882

  19. Intrathecal morphine for post-thoracotomy pain.

    PubMed

    Gray, J R; Fromme, G A; Nauss, L A; Wang, J K; Ilstrup, D M

    1986-08-01

    We wished to investigate possible differences in the duration of postoperative analgesia and the incidence of respiratory depression after the intrathecal injection in the lumbar area of 10 micrograms/kg morphine in hypobaric and hyperbaric solution for relief of post-thoracotomy pain. Twenty-nine patients received morphine plus dextrose (hyperbaric) and 21 received morphine in preservative-free normal saline. The duration of analgesia was longer with the morphine in the normal saline group than in the hyperbaric group (P less than 0.04). One patient developed delayed respiratory depression. Our data support the use of morphine in normal saline mixtures for greater duration of analgesia after thoracic operations. PMID:3755305

  20. Endogenous opioids and excessive alcohol consumption.

    PubMed Central

    Gianoulakis, C

    1993-01-01

    Alcohol is one of the most popular drugs of abuse in our society, and alcoholism is an important cause of absenteeism at work and a major health and social problem. Ethanol induces a number of effects, such as disinhibition, a feeling of general well-being, tolerance and physical dependence. Since there are no specific receptors with which ethanol interacts, it has been proposed that ethanol exerts its effects by altering the activity of a number of neuronal and neuroendocrine systems. Studies have indicated that alcohol influences the activity of the dopaminergic, serotonergic and opioidergic systems. The implication of the endogenous opioid system in mediating some of the effects of ethanol is indicated by the observations that some of the behavioral and pharmacological effects of ethanol are similar to those of the opiates. Indeed, injections of small amounts of morphine increased ethanol consumption, while the administration of naltrexone decreased ethanol consumption among rats and other experimental animals, in a number of experimental paradigms, suggesting that endogenous opioids may play an important role in controlling voluntary ethanol consumption. This paper reviews studies of the effects of ethanol on the activity of the endogenous opioid system and on the importance of endogenous opioids in controlling alcohol consumption. PMID:7690585

  1. 21 CFR 862.3640 - Morphine test system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Morphine test system. 862.3640 Section 862.3640....3640 Morphine test system. (a) Identification. A morphine test system is a device intended to measure morphine, an addictive narcotic pain-relieving drug, and its analogs in serum, urine, and gastric...

  2. 21 CFR 862.3640 - Morphine test system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Morphine test system. 862.3640 Section 862.3640....3640 Morphine test system. (a) Identification. A morphine test system is a device intended to measure morphine, an addictive narcotic pain-relieving drug, and its analogs in serum, urine, and gastric...

  3. 21 CFR 862.3640 - Morphine test system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Morphine test system. 862.3640 Section 862.3640....3640 Morphine test system. (a) Identification. A morphine test system is a device intended to measure morphine, an addictive narcotic pain-relieving drug, and its analogs in serum, urine, and gastric...

  4. Jasmonate-Inducible Genes Are Activated in Rice by Pathogen Attack without a Concomitant Increase in Endogenous Jasmonic Acid Levels.

    PubMed

    Schweizer, P.; Buchala, A.; Silverman, P.; Seskar, M.; Raskin, I.; Metraux, J. P.

    1997-05-01

    The possible role of the octadecanoid signaling pathway with jasmonic acid (JA) as the central component in defense-gene regulation of pathogen-attacked rice was studied. Rice (Oryza sativa L.) seedlings were treated with JA or inoculated with the rice blast fungus Magnaporthe grisea (Hebert) Barr., and gene-expression patterns were compared between the two treatments. JA application induced the accumulation of a number of pathogenesis-related (PR) gene products at the mRNA and protein levels, but pathogen attack did not enhance the levels of (-)-JA during the time required for PR gene expression. Pathogen-induced accumulation of PR1-like proteins was reduced in plants treated with tetcyclacis, a novel inhibitor of jasmonate biosynthesis. There was an additive and negative interaction between JA and an elicitor from M. grisea with respect to induction of PR1-like proteins and of an abundant JA-and wound-induced protein of 26 kD, respectively. Finally, activation of the octadecanoid signaling pathway and induction of a number of PR genes by exogenous application of JA did not confer local acquired resistance to rice. The data suggest that accumulation of nonconjugated (-)-JA is not necessary for induction of PR genes and that JA does not orchestrate localized defense responses in pathogen-attacked rice. Instead, JA appears to be embedded in a signaling network with another pathogen-induced pathway(s) and may be required at a certain minimal level for induction of some PR genes. PMID:12223690

  5. Intrathecal Morphine Attenuates Recovery of Function after a Spinal Cord Injury

    PubMed Central

    Moreno, Georgina; Woller, Sarah; Puga, Denise; Hoy, Kevin; Balden, Robyn; Grau, James W.

    2009-01-01

    Abstract Prior work has shown that a high dose (20 mg/kg) of systemic morphine, required to produce significant analgesia in the acute phase of a contusion injury, undermines the long-term health of treated subjects and increases lesion size. Moreover, a single dose of systemic morphine in the early stage of injury (24 h post-injury) led to symptoms of neuropathic pain 3 weeks later, in the chronic phase. The present study examines the locus of the effects using intrathecal morphine administration. Subjects were treated with one of three doses (0, 30, or 90 μg) of intrathecal morphine 24 h after a moderate contusion injury. The 90-μg dose produced significant analgesia when subjects were exposed to noxious stimuli (thermal and incremented shock) below the level of injury. Yet, despite analgesic efficacy, intrathecal morphine significantly attenuated the recovery of locomotor function and increased lesion size rostral to the injury site. A single dose of 30 or 90 μg of intrathecal morphine also decreased weight gain, and more than doubled the incidence of mortality and autophagia when compared to vehicle-treated controls. Morphine is one of the most effective pharmacological agents for the treatment of neuropathic pain and, therefore, is indispensable for the spinally injured. Treatment can, however, adversely affect the recovery process. A morphine-induced attenuation of recovery may result from increases in immune cell activation and, subsequently, pro-inflammatory cytokine concentrations in the contused spinal cord. PMID:19388818

  6. Morphine Suppresses Tumor Angiogenesis through a HIF-1α/p38MAPK Pathway

    PubMed Central

    Koodie, Lisa; Ramakrishnan, Sundaram; Roy, Sabita

    2010-01-01

    Morphine, a highly potent analgesic agent, is frequently prescribed for moderate to severe cancer pain. In this study, morphine was administered at a clinically relevant analgesic dose to assess tumor cell-induced angiogenesis and subcutaneous tumor growth in nude mice using mouse Lewis lung carcinoma cells (LLCs). Implantation of mice with a continuous slow-release morphine pellet achieved morphine plasma levels within 250–400 ng/ml (measured using a radioimmunoassay, Coat-A-Count Serum Morphine) and was sufficient to significantly reduce tumor cell-induced angiogenesis and tumor growth when compared with placebo treatment. Morphometric analysis for blood vessel formation further confirmed that morphine significantly reduced blood vessel density (P < 0.003), vessel branching (P < 0.05), and vessel length (P < 0.002) when compared with placebo treatment. Morphine’s effect was abolished in mice coadministered the classical opioid receptor antagonist, naltrexone, and in mu-opioid receptor knockout mice, supporting the involvement of the classical opioid receptors in vivo. Morphine’s inhibitory effect is mediated through the suppression of the hypoxia-induced mitochondrial p38 mitogen-activated protein kinase (MAPK) pathway. Our results suggest that in vitro morphine treatment of LLCs inhibits the hypoxia-induced nuclear translocation of hypoxia-inducible transcription factor 1α to reduce vascular endothelial growth factor transcription and secretion, in a manner similar to pharmacological blockade with the p38 MAPK-specific inhibitor, SB203585. These studies indicate that morphine, in addition to its analgesic function, may be exploited for its antiangiogenic potential. PMID:20616349

  7. Day-to-day variations during clinical drug monitoring of morphine, morphine-3-glucuronide and morphine-6-glucuronide serum concentrations in cancer patients. A prospective observational study

    PubMed Central

    Klepstad, Pål; Hilton, Priscilla; Moen, Jorunn; Kaasa, Stein; Borchgrevink, Petter C; Zahlsen, Kolbjørn; Dale, Ola

    2004-01-01

    Background The feasibility of drug monitoring of serum concentrations of morphine, morphine-6-glucuronide (M6G) and morphine-3-glucuronide (M3G) during chronic morphine therapy is not established. One important factor relevant to drug monitoring is to what extent morphine, M6G and M3G serum concentrations fluctuate during stable morphine treatment. Methods We included twenty-nine patients admitted to a palliative care unit receiving oral morphine (n = 19) or continuous subcutaneous (sc) morphine infusions (n = 10). Serum concentrations of morphine, M6G and M3G were obtained at the same time on four consecutive days. If readmitted, the patients were followed for another trial period. Day-to-day variations in serum concentrations and ratios were determined by estimating the percent coefficient of variation (CV = (mean/SD) ×100). Results The patients' median morphine doses were 90 (range; 20–1460) mg/24 h and 135 (range; 30–440) mg/24 h during oral and sc administration, respectively. Intraindividual fluctuations of serum concentrations estimated by median coefficients of day-to-day variation were in the oral group for morphine 46%, for M6G 25% and for M3G 18%. The median coefficients of variation were lower in patients receiving continuous sc morphine infusions (morphine 10%, M6G 13%, M3G 9%). Conclusion These findings indicate that serum concentrations of morphine and morphine metabolites fluctuate. The fluctuations found in our study are not explained by changes in morphine doses, administration of other drugs or by time for collection of blood samples. As expected the day-to-day variation was lower in patients receiving continuous sc morphine infusions compared with patients receiving oral morphine. PMID:15461818

  8. Minocycline prevents morphine-induced apoptosis in rat cerebral cortex and lumbar spinal cord: a possible mechanism for attenuating morphine tolerance.

    PubMed

    Hassanzadeh, Kambiz; Habibi-asl, Bohlool; Farajnia, Safar; Roshangar, Leila

    2011-05-01

    Tolerance to the chronic administration of opioids such as morphine reduces the utility of these drugs in pain management. Despite significant investigation, the precise cellular mechanisms underlying opioid tolerance and dependence remain elusive. It has been indicated that tolerance to the analgesic effect of morphine is associated with apoptosis in the central nervous system. The aim of this study was to examine the effects of the intracerebroventricular (icv) administration of minocycline (a second-generation tetracycline) on morphine-induced apoptosis in the cerebral cortex and lumbar spinal cord of rats after morphine-induced tolerance. Different groups of rats received either morphine (ip) and distilled water (icv) or morphine and different doses of minocycline (icv) or minocycline alone once per day. The terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL) method was used to analyze apoptosis. The anti-apoptotic factors, Bcl-2 and HSP 70 and the pro-apoptotic element caspase-3 were evaluated by immunoblotting. The results indicated that minocycline attenuated the number of apoptotic cells in both the cerebral cortex and lumbar spinal cord. Immunoblotting findings showed that the amounts of anti-apoptotic agents (Bcl-2 and HSP 70) were greater in the treatment groups than in the controls in both regions. Although minocycline did not change the level of caspase-3 at the doses used with morphine but the minocycline treated rats showed a significantly lower increase in caspase-3 activity than did in the control. In conclusion, minocycline decreased the number of TUNEL-positive cells and increased the amount of anti-apoptotic factors (Bcl-2 and HSP 70), but did not change the caspase-3 content. PMID:20711699

  9. Lesions of nucleus accumbens affect morphine-induced release of ascorbic acid and GABA but not of glutamate in rats.

    PubMed

    Sun, Ji Y; Yang, Jing Y; Wang, Fang; Wang, Jian Y; Song, Wu; Su, Guang Y; Dong, Ying X; Wu, Chun F

    2011-10-01

    Our previous studies have shown that local perfusion of morphine causes an increase of extracellular ascorbic acid (AA) levels in nucleus accumbens (NAc) of freely moving rats. Lines of evidence showed that glutamatergic and GABAergic were associated with morphine-induced effects on the neurotransmission of the brain, especially on the release of AA. In the present study, the effects of morphine on the release of extracellular AA, γ-aminobutyric acid (GABA) and glutamate (Glu) in the NAc following bilateral NAc lesions induced by kainic acid (KA) were studied by using the microdialysis technique, coupled to high performance liquid chromatography with electrochemical detection (HPLC-ECD) and fluorescent detection (HPLC-FD). The results showed that local perfusion of morphine (100 µM, 1 mM) in NAc dose-dependently increased AA and GABA release, while attenuated Glu release in the NAc. Naloxone (0.4 mM) pretreated by local perfusion to the NAc, significantly blocked the effects of morphine. After NAc lesion by KA (1 µg), morphine-induced increase in AA and GABA were markedly eliminated, while decrease in Glu was not affected. The loss effect of morphine on AA and GABA release after KA lesion could be recovered by GABA agonist, musimol. These results indicate that morphine-induced AA release may be mediated at least by µ-opioid receptor. Moreover, this effect of morphine possibly depend less on the glutamatergic afferents, but more on the GABAergic circuits within this nucleus. Finally, AA release induced by local perfusion of morphine may be GABA-receptor mediated and synaptically localized in the NAc. PMID:20731632

  10. Morphine modulates doxorubicin uptake and improves efficacy of chemotherapy in an intracranial xenograft model of human glioblastoma.

    PubMed

    da Ros, Martina; Iorio, Anna Lisa; Consolante, Dario; Cardile, Francesco; Muratori, Monica; Fantappiè, Ornella; Lucchesi, Maurizio; Guidi, Milena; Pisano, Claudio; Sardi, Iacopo

    2016-01-01

    Morphine may alter the permeability of Blood-Brain Barrier (BBB), enhancing the access of molecules normally unable to cross it, as Doxorubicin (Dox). In addition, morphine seems to mediate the uptake of Dox into the brain by its reduced efflux mediated by P-glycoprotein (P-gp). We evaluated the antitumor efficacy of Dox plus morphine treatment by an orthotopic glioblastoma xenograft model. Foxn1 mice were injected with U87MG-luc cells in the left lobe of the brain and treated with Dox (5 mg/kg and 2.5 mg/kg, weekly) with or without morphine pretreatment (10 mg/kg, weekly). Bioluminescence imaging (BLI) was used to monitoring tumor growth and response to therapy. Additionally, we investigated the role of morphine on the uptake of Dox by MDCKII cells transfected with human MDR1 gene encoding for P-gp. The data demonstrate that only Dox 5 mg/kg determined a significant tumor regression while the lower dose (2.5 mg/kg) was not effective. However, if combined with morphine, the group treated with Dox 2.5 mg/kg showed a decreasing tumor growth. The average BLI for Dox 2.5 mg/kg plus morphine was 5 fold lower than Dox 2.5 mg/kg alone (P=0.0053) and 8 fold lower than vehicle (P=0.0004). Additionally, Dox increased in MDCKII-P-gp transfected cells only in the presence of morphine with a significantly higher level comparing control group (3.84) vs Dox plus morphine group (12.29, P<0.05). Our results indicate that Dox alone and in combination with morphine appear to be effective in controlling the growth of glioblastoma in a xenograft mouse model. PMID:27152241

  11. The role of spinal nitric oxide and glutamate in nociceptive behaviour evoked by high-dose intrathecal morphine in rats.

    PubMed

    Watanabe, Chizuko; Sakurada, Tsukasa; Okuda, Kazuhiro; Sakurada, Chikai; Ando, Ryuichiro; Sakurada, Shinobu

    2003-12-01

    Injection of high-dose of morphine into the spinal lumbar intrathecal (i.t.) space of rats elicits a nociceptive behavioural syndrome characterized by periodic bouts of spontaneous agitation and severe vocalization. The induced behavioural response such as vocalization and agitation was observed dose-dependently by i.t. administration of morphine (125-500 nmol). Pretreatment with naloxone (s.c. and i.t.), an opioid receptor antagonist, failed to reverse the morphine-induced behavioural response. The excitatory effect of morphine was inhibited dose-dependently by pretreatment with 3-((+)2-carboxy-piperazin-4-yl)-propyl-1-phosphonic acid (CPP), a competitive N-methyl-D-aspartate (NMDA) receptor antagonist and MK-801, a non-competitive NMDA receptor antagonist. The non-selective nitric oxide (NO) synthase inhibitor N(G)-nitro L-arginine methyl ester (L-NAME) inhibited dose-dependently the behavioural response to high-dose i.t. morphine (500 nmol), whereas D-NAME was without affecting the response to high-dose i.t. morphine. In the present study, we measured NO metabolites (nitrite/nitrate) in the extracellular fluid of rat dorsal spinal cord using in vivo microdialysis. The i.t. injection of morphine (500 nmol) evoked significant increases in NO metabolites and glutamate from the spinal cord. Not only NO metabolites but also glutamate released by high-dose morphine were reduced significantly by pretreatment with L-NAME (400 nmol). Pretreatment with CPP and MK-801 showed a significant reduction of the NO metabolites and glutamate levels elevated by high-dose i.t. morphine. These results suggest that the excitatory action of high-dose i.t. morphine may be mediated by an NMDA-NO cascade in the spinal cord. PMID:14659510

  12. Morphine modulates doxorubicin uptake and improves efficacy of chemotherapy in an intracranial xenograft model of human glioblastoma

    PubMed Central

    da Ros, Martina; Iorio, Anna Lisa; Consolante, Dario; Cardile, Francesco; Muratori, Monica; Fantappiè, Ornella; Lucchesi, Maurizio; Guidi, Milena; Pisano, Claudio; Sardi, Iacopo

    2016-01-01

    Morphine may alter the permeability of Blood-Brain Barrier (BBB), enhancing the access of molecules normally unable to cross it, as Doxorubicin (Dox). In addition, morphine seems to mediate the uptake of Dox into the brain by its reduced efflux mediated by P-glycoprotein (P-gp). We evaluated the antitumor efficacy of Dox plus morphine treatment by an orthotopic glioblastoma xenograft model. Foxn1 mice were injected with U87MG-luc cells in the left lobe of the brain and treated with Dox (5 mg/kg and 2.5 mg/kg, weekly) with or without morphine pretreatment (10 mg/kg, weekly). Bioluminescence imaging (BLI) was used to monitoring tumor growth and response to therapy. Additionally, we investigated the role of morphine on the uptake of Dox by MDCKII cells transfected with human MDR1 gene encoding for P-gp. The data demonstrate that only Dox 5 mg/kg determined a significant tumor regression while the lower dose (2.5 mg/kg) was not effective. However, if combined with morphine, the group treated with Dox 2.5 mg/kg showed a decreasing tumor growth. The average BLI for Dox 2.5 mg/kg plus morphine was 5 fold lower than Dox 2.5 mg/kg alone (P=0.0053) and 8 fold lower than vehicle (P=0.0004). Additionally, Dox increased in MDCKII-P-gp transfected cells only in the presence of morphine with a significantly higher level comparing control group (3.84) vs Dox plus morphine group (12.29, P<0.05). Our results indicate that Dox alone and in combination with morphine appear to be effective in controlling the growth of glioblastoma in a xenograft mouse model. PMID:27152241

  13. Enhanced nocturnal melatonin secretion in women with functional secondary amenorrhea: relationship to opioid system and endogenous estrogen levels.

    PubMed

    Okatani, Y; Sagara, Y

    1995-01-01

    The purpose of this study was to evaluate the role of the opioid system and the estrogen environment in the nocturnal secretion of melatonin in women with secondary amenorrhea (SA). Nocturnal melatonin concentrations in patients with SA were significantly higher than in normal women (p < 0.01 vs. women with normal menstrual cycles). There were significant negative correlations between cumulative melatonin levels (between 8 p.m. and 8 a.m.) and serum estradiol-17 beta (r = -0.561, p < 0.01) and between peak serum melatonin values and serum estradiol-17 beta concentrations (r = -0.608, p < 0.01) in SA. Intravenous administration of a conjugated estrogen (Premarin 20 mg) significantly suppressed nocturnal melatonin secretion (p < 0.05), but a continuous intravenous infusion of naloxone (1.6 mg/h from 8 p.m. to 6 a.m.), an opiate antagonist, did not affect nocturnal melatonin secretion in SA. Our findings suggest that elevated nocturnal melatonin secretion may be related to low estrogen levels, but that it is not mediated by the opioid system. PMID:7782049

  14. Effects of Fentanyl and Morphine on Shivering During Spinal Anesthesia in Patients Undergoing Endovenous Ablation of Varicose Veins.

    PubMed

    Onk, Didem; Akarsu Ayazoğlu, Tülin; Kuyrukluyıldız, Ufuk; Aksüt, Mehmet; Bedir, Zehra; Küpeli, İlke; Onk, Oruç Alper; Alagöl, Ayşin

    2016-01-01

    BACKGROUND We sought to investigate the effect of morphine and fentanyl on shivering when used adjunctively with bupivacaine during spinal anesthesia in patients undergoing varicose vein surgery on an outpatient basis. MATERIAL AND METHODS The study included a total of 90 patients, aged 25-45 years, ASA I-II, scheduled to undergo endovenous laser ablation under spinal anesthesia for lower extremity venous insufficiency/varicose vein disease. Patients were randomly allocated into 3 groups: Group M (morphine group) received 5 mg 0.5% hyperbaric bupivacaine + 0.1 mg morphine, Group F (fentanyl group) received 5 mg 0.5% hyperbaric bupivacaine + 25 µg fentanyl, and Group C (control group) received 5 mg 0.5% hyperbaric bupivacaine + physiologic saline. The level of sensory blockade was assessed with pin-prick test and the level of motor blockade was assessed with Bromage scale at 5-min intervals. Shivering grade and time to first postoperative analgesic requirement was recorded. RESULTS Level and time of sensory block showed a slight but insignificant increase in the Morphine Group and Fentanyl Group. Time of postoperative analgesic requirement was significantly longer in patients who received morphine (p<0.05). Shivering was significantly less common in patients who received morphine and fentanyl than in patients who are in the Control Group (p<0.02). CONCLUSIONS Morphine or fentanyl may be used as adjunctives to spinal anesthesia to prevent shivering in patients undergoing venous surgery. PMID:26871238

  15. The α1 adrenoceptors in ventrolateral orbital cortex contribute to the expression of morphine-induced behavioral sensitization in rats.

    PubMed

    Wei, Lai; Zhu, Yuan-Mei; Zhang, Yu-Xiang; Liang, Feng; Li, Teng; Gao, Hong-Yu; Huo, Fu-Quan; Yan, Chun-Xia

    2016-01-01

    The aim of the present study was to investigate the effect of microinjection of benoxathian, selective α1 adrenoceptor antagonist, into the ventrolateral orbital cortex (VLO) on morphine-induced behavioral sensitization and its underlying molecular mechanism in rats. A single morphine treatment protocol was used in establishing the behavioral sensitization model. The effect of bilateral intra-VLO benoxathian injection on locomotor activity was examined and the protein expression levels of α1 adrenoceptors and activation of extracellular signal-regulated kinase (ERK) in the VLO were detected after locomotor test. The results showed that a single injection of morphine could induce behavioral sensitization by a low challenge dosage of morphine after a 7-days drug free period. Benoxathian significantly suppressed the expression but not the development of morphine-induced behavioral sensitization. Morphine treatment significantly elicited ERK phosphorylation and downregulated the expression level of α1 adrenoceptors in the VLO. In addition, intra-VLO benoxathian injection enhanced the expression levels of α1 adrenoceptors and phosphorylated ERK. These results suggest that α1 adrenoceptors in the VLO are involved in regulating the expression of morphine-induced behavioral sensitization. The effect of decreased locomotor activity by blocking α1 adrenoceptors might be associated with activation of ERK in the VLO. PMID:26520466

  16. Effects of Fentanyl and Morphine on Shivering During Spinal Anesthesia in Patients Undergoing Endovenous Ablation of Varicose Veins

    PubMed Central

    Onk, Didem; Ayazoğlu, Tülin Akarsu; Kuyrukluyıldız, Ufuk; Aksüt, Mehmet; Bedir, Zehra; Küpeli, İlke; Onk, Oruç Alper; Alagöl, Ayşin

    2016-01-01

    Background We sought to investigate the effect of morphine and fentanyl on shivering when used adjunctively with bupivacaine during spinal anesthesia in patients undergoing varicose vein surgery on an outpatient basis. Material/Methods The study included a total of 90 patients, aged 25–45 years, ASA I–II, scheduled to undergo endovenous laser ablation under spinal anesthesia for lower extremity venous insufficiency/varicose vein disease. Patients were randomly allocated into 3 groups: Group M (morphine group) received 5 mg 0.5% hyperbaric bupivacaine + 0.1 mg morphine, Group F (fentanyl group) received 5 mg 0.5% hyperbaric bupivacaine + 25 μg fentanyl, and Group C (control group) received 5 mg 0.5% hyperbaric bupivacaine + physiologic saline. The level of sensory blockade was assessed with pin-prick test and the level of motor blockade was assessed with Bromage scale at 5-min intervals. Shivering grade and time to first postoperative analgesic requirement was recorded. Results Level and time of sensory block showed a slight but insignificant increase in the Morphine Group and Fentanyl Group. Time of postoperative analgesic requirement was significantly longer in patients who received morphine (p<0.05). Shivering was significantly less common in patients who received morphine and fentanyl than in patients who are in the Control Group (p<0.02). Conclusions Morphine or fentanyl may be used as adjunctives to spinal anesthesia to prevent shivering in patients undergoing venous surgery. PMID:26871238

  17. An improved extraction method for the HPLC determination of morphine and its metabolites in plasma.

    PubMed

    Pawula, M; Barrett, D A; Shaw, P N

    1993-01-01

    A new, simple and rapid extraction procedure coupled with a combined coulometric-fluorescence HPLC assay is described for the simultaneous determination of morphine (M) and morphine-3-glucuronide (M3G), morphine-6-glucuronide (M6G), and normorphine (NM) in plasma. The effect of concentration and pH of selected ion-pairing agents on the extraction of these compounds from plasma by solid-phase extraction was investigated. The extraction procedure was optimized in terms of recovery, reproducibility and lack of interference from endogenous materials. The optimized method uses tetrabutylammonium hydrogen sulphate (TBAHS) at pH 10 followed by separation on a single C18 solid-phase extraction cartridge. For routine analysis the procedure provides high and reproducible recoveries over a concentration range of 1.0-1000 ng ml-1 for morphine, M6G and normorphine and 20-1000 ng ml-1 for M3G. The method was used successfully to analyse plasma samples from a pharmacokinetic study in which sheep had received an intravenous dose of 0.015 mg kg-1 of M6G. PMID:8357878

  18. Effects of stress and. beta. -funal trexamine pretreatment on morphine analgesia and opioid binding in rats

    SciTech Connect

    Adams, J.U.; Andrews, J.S.; Hiller, J.M.; Simon, E.J.; Holtzman, S.G.

    1987-12-28

    This study was essentially an in vivo protection experiment designed to test further the hypothesis that stress induces release of endogenous opiods which then act at opioid receptors. Rats that were either subjected to restraint stress for 1 yr or unstressed were injected ICV with either saline or 2.5 ..mu..g of ..beta..-funaltrexamine (..beta..-FNA), an irreversible opioid antagonist that alkylates the mu-opioid receptor. Twenty-four hours later, subjects were tested unstressed for morphine analgesia or were sacrificed and opioid binding in brain was determined. (/sup 3/H)D-Ala/sup 2/NMePhe/sup 4/-Gly/sup 5/(ol)enkephalin (DAGO) served as a specific ligand for mu-opioid receptors, and (/sup 3/H)-bremazocine as a general ligand for all opioid receptors. Rats injected with saline while stressed were significantly less sensitive to the analgesic action of morphine 24 hr later than were their unstressed counterparts. ..beta..-FNA pretreatment attenuated morphine analgesia in an insurmountable manner. Animals pretreated with ..beta..-FNA while stressed were significantly more sensitive to the analgesic effect of morphine than were animals that received ..beta..-FNA while unstressed. ..beta..-FNA caused small and similar decreases in (/sup 3/H)-DAGO binding in brain of both stressed and unstressed animals. 35 references, 2 figures, 2 tables.

  19. Comparison of the levels of six endogenous gibberellins in roots and shoots of spinach in relation to photoperiod

    SciTech Connect

    Metzger, J.D.; Zeevaart, J.A.D.

    1980-10-01

    This communication describes the distribution of gibberellins (GAs) in roots and shoots of spinach in relation to photoperiod. From previous work shoots were known to contain GA/sub 53/, GA/sub 44/, GA/sub 19/, GA/sub 17/, GA/sub 20/, and GA/sub 29/. We now show by combined gas chromatography-mass spectrometry that roots contain gas chromatography-selected ion current monitoring. Neither GA/sub 17/ nor GA/sub 20/ were detected in root extracts. Analysis by the d-5 corn bioassay also showed no effect of photoperiodic treatment on the levels of GA-like substances in root extracts. Both phloem and xylem exudates had patterns of GA-like activity similar to those found in shoots and roots, respectively. Moreover, foliar application of (/sup 3/H)GA/sub 20/ resulted in the transport of label from the shoot to the roots. Over half of the label in the roots represented unmetabolized (/sup 3/H)GA/sub 20/, indicating that part of the GA/sub 20/ in the phloem is transported to the roots. Consequently, if GA/sub 20/ is made in, or transported to the roots, it is rapidly metabolized in that organ. This is a clear indication that regulation of GA metabolism is greatly different in roots and shoots.

  20. A spatial econometric panel data examination of endogenous versus exogenous interaction in Chinese province-level patenting

    NASA Astrophysics Data System (ADS)

    LeSage, James P.; Sheng, Yuxue

    2014-07-01

    We examine the provincial-level relationship between domestic Chinese intellectual property (IP) and knowledge stocks using a space-time panel model and data set covering monthly patent activity over the period 2002-2010. The goal of the modeling exercise is to explore the elasticity response of IP to knowledge stocks classified by type of creator (universities and research institutes, enterprises, and individuals). A focus is on spatial and time dependence in the relationship between knowledge stocks and IP, which implies spatial spillovers and diffusion over time. Many past studies of regional knowledge production have focused on patent applications as a proxy for regional output from the knowledge production process. However, this ignores the distinction between patent applications and patents granted, with the latter reflecting a decision and ability to convert knowledge produced into IP. This study differs in its focus on the regional relation between IP and knowledge stocks and the space-time dynamics of these. Using patents granted as a proxy for IP, and past patent applications as a proxy for regional knowledge stocks, allows us to explore the implied quality of knowledge production by various types of creators. Because Chinese patent applications have grown by 22 %, questions have been raised about the quantity versus quality of these applications. Our findings shed light on this issue.

  1. Morphine-theophylline interaction: antagonism or facilitation?

    PubMed Central

    Brailowsky, S.; Guerrero-Muñoz, F.; Luján, M.; Shkurovich, M.

    1981-01-01

    1 Morphine-theophylline interactions were investigated in both acute and narcotic-dependent preparations, in vitro and in vivo, using four different experimental models: LD50 doses of morphine and naloxone in the mouse; naloxone-induced contractions in the electrically-stimulated and opiate-dependent isolated ileum of the guinea-pig; naloxone-induced jumps in the mouse; an calcium uptake in synaptosomal preparations. 2 The LD50 of morphine was significantly increased by theophylline. 3 The lethal effect of theophylline was potentiated by pretreatment of the animals with naloxone. 4 Theophylline displayed protective effects in the inhibitory response to morphine and antagonism to the withdrawal response induced by naloxone in the electrically-stimulated isolated ileum of the guinea-pig. 5 The number of jumps induced by naloxone in morphine-dependent mice was significantly diminished by theophylline. 6 The inhibitory effect of morphine on the synaptosomal uptake of calcium was decreased by theophylline. 7 The effects of both morphine and theophylline on the cyclic nucleotides and the possible role of calcium in these actions are discussed. PMID:7272590

  2. Effect of morphine on synaptosomal Ca++ uptake.

    PubMed

    Guerrero-Munoz, F; Cerreta, K V; Guerrero, M L; Way, E L

    1979-04-01

    The effect of morphine on the uptake of 45Ca++ was studied in synaptosomes from mouse brain using two procedures, centrifugation and filtration. The addition of morphine (1.7 x 10(-7) or 3.4 x 10(-7) M) reduced 45CA++ uptake by either technique, although the basal 45Ca++ uptake by the filtration method was approximately 7-fold higher than that by the centrifugation procedure. Similar effects were obtained after acute morphine treatment with 10 mg/kg s.c. Previous naloxone in vitro treatment (1.9 x 10(-8) M) or in vivo administration (2 mg/kg s.c.) reversed the morphine inhibition of the 45Ca++ uptake. On the other hand, after the animal was rendered tolerant and dependent by morphine pellet implantation, an enhancement of the synaptosomal 45Ca++ uptake was observed. It is concluded that changes in Ca++ fluxes in synaptosomes observed after acute and chronic morphine treatment may be involved with morphine pharmacological action related with analgesia, tolerance and physical dependence. PMID:571016

  3. Effect of dietary protein level on nitrogen utilization and ruminal influx of endogenous urea nitrogen in growing animals

    SciTech Connect

    Bunting, L.D.

    1987-01-01

    Three experiments were conducted to evaluate the impact of ruminal influx of blood urea nitrogen (BUN) on intestinal protein supply and nitrogen (N) metabolism in growing animals at both excess and growth-limiting protein intake. In Experiment 1, wether lambs were given diets, either high or low in protein, containing 25% cottonseed hulls and 75% corn-soybean meal hourly in 24 equal portions. Single injections of /sup 14/C- and /sup 15/N-urea, and /sup 15/N-ammonium sulfate (AS) were made into the BUN and ruminal ammonia N (RAN) pools, respectively, to measure rate of flux through, and transfer of N between these and the bacterial N pool. In Experiment 2, beef calves were given HP and LP diets containing 30% cottonseed hulls and 70% corn-soybean meal every 4 h in 6 equal portions. Single injections of /sup 15/N-urea and /sup 15/N-AS were made into the BUN and RAN pools, respectively, to measure rate of flux through, and transfer of N between these and the bacterial N pool. Abomasal N flow was 24% greater than intake in LP and 29% less than intake in HP. An inverse relationship may exist between level of N intake and rate of influx of BUN into the rumen. In Experiment 3 ruminal fluid samples were obtained. With HP, BUN-derived /sup 15/N-ammonia appeared to rapidly equilibrate with RAN in the primary digesta mass. In contrast, with LP, there appeared to be an enrichment gradient for both RAN and bacterial N, declining from the rumen wall toward the center of the digesta mass, suggesting that bacteria at or near the rumen wall may preferentially utilized some BUN-derived ammonia N entering through the rumen wall.

  4. Photoaffinity labeling of opioid receptor with morphine-7,8-oxide (morphine epoxide)

    SciTech Connect

    Takayanagi, I.; Shibata, R.; Miyata, N.; Hirobe, M.

    1982-05-01

    The opioid receptor mediating inhibitory action of morphine in the electrically stimulated guinea pig ileum was irreversibly photoinactivated by morphine epoxide (3 X 10(-6) M). Morphine epoxide (up to 3 X 10(-5) M) did not influence the responses of rat vas deferens (epsilon-receptor) or rabbit vas deferens (kappa-receptor) to electrical stimulation. Effective concentrations of morphine epoxide were much lower in the guinea pig ileum (mu-receptor) than in the mouse vas deference (delta-receptor). The inhibitory action of (Met)-enkephalin on the twitch responses of the rat vas deferens and mouse vas deferens to electrical stimulation were not influenced after irradiation in the presence of morphine epoxide (3 X 10(-6) M). Therefore, morphine epoxide is probably a useful probe for photoaffinity labeling of the mu-receptor in vitro.

  5. Cardiac adverse effects of naloxone-precipitated morphine withdrawal on right ventricle: Role of corticotropin-releasing factor (CRF) 1 receptor

    SciTech Connect

    Navarro-Zaragoza, J.; Martínez-Laorden, E.; Mora, L.; Hidalgo, J.; Milanés, M.V.; Laorden, M.L.

    2014-02-15

    Opioid addiction is associated with cardiovascular disease. However, mechanisms linking opioid addiction and cardiovascular disease remain unclear. This study investigated the role of corticotropin-releasing factor (CRF) 1 receptor in mediating somatic signs and the behavioural states produced during withdrawal from morphine dependence. Furthermore, it studied the efficacy of CRF1 receptor antagonist, CP-154,526 to prevent the cardiac sympathetic activity induced by morphine withdrawal. In addition, tyrosine hydroxylase (TH) phosphorylation pathways were evaluated. Like stress, morphine withdrawal induced an increase in the hypothalamic–pituitary–adrenal (HPA) axis activity and an enhancement of noradrenaline (NA) turnover. Pre-treatment with CRF1 receptor antagonist significantly reduced morphine withdrawal-induced increases in plasma adrenocorticotropic hormone (ACTH) levels, NA turnover and TH phosphorylation at Ser31 in the right ventricle. In addition, CP-154,526 reduced the phosphorylation of extracellular signal-regulated kinase (ERK) after naloxone-precipitated morphine withdrawal. In addition, CP-154,526 attenuated the increases in body weight loss during morphine treatment and suppressed some of morphine withdrawal signs. Altogether, these results support the idea that cardiac sympathetic pathways are activated in response to naloxone-precipitated morphine withdrawal suggesting that treatment with a CRF1 receptor antagonist before morphine withdrawal would prevent the development of stress-induced behavioural and autonomic dysfunction in opioid addicts. - Highlights: • Morphine withdrawal caused an increase in myocardial sympathetic activity. • ERK regulates TH phosphorylation after naloxone-induced morphine withdrawal. • CRF1R is involved in cardiac adaptive changes during morphine dependence.

  6. RACK1 promotes maintenance of morphine-associated memory via activation of an ERK-CREB dependent pathway in hippocampus

    PubMed Central

    Liu, Litao; Zhu, Jiejun; Zhou, Liming; Wan, Lihong

    2016-01-01

    Existence of long-term drug-associated memories may be a crucial factor in drug cravings and relapse. RACK1 plays a critical role in morphine-induced reward. In the present study, we used conditioned place preference (CPP) to assess the acquisition and maintenance of morphine conditioned place preference memory. The hippocampal protein level of RACK1 and synaptic quantitation were evaluated by Western blotting, immunohistochemistry and electron microscopy, respectively. Additionally, shRACK1 (shGnb2l1) was used to silence RACK1 in vivo to evaluate the role and the underlying mechanism of RACK1 in maintenance of morphine CPP memory. We found that morphine induced CPP was maintained for at least 7 days after the last morphine treatment, which indicated a positive correlation with hippocampal RACK1 level, and was accompanied simultaneously by increases in the synapse density and hippocampal expression of synaptophysin (SYP), phosphorylation of extracellular signal-regulated kinase1/2 (pERK1/2) and the phosphorylation of cyclic adenosine monophosphate response element-binding (pCREB). ShGnb2l1 icv injection significantly suppressed the expression of all above proteins, decreased the synapse density in the hippocampus and attenuated the acquisition and maintenance of morphine CPP. Our present study highlights that RACK1 plays an important role in the maintenance of morphine CPP, likely via activation of ERK-CREB pathway in hippocampus. PMID:26830449

  7. Distribution in cerebrospinal fluid, blood, and lymph of epidurally injected morphine and inulin in dogs

    SciTech Connect

    Durant, P.A.; Yaksh, T.L.

    1986-06-01

    We describe procedures for catheterizing the epidural space, the azygos vein, and the thoracic lymph duct of dogs without using fluoroscopy. The success rates of the procedures were 100, 80, and 50%, respectively (n = 10). To assess the validity of the model, /sup 3/H-morphine and unlabeled morphine (2 mg) were injected epidurally in ten dogs. Lumbar cerebrospinal fluid (CSF), azygos venous blood, arterial blood, and lymph were sampled before and 5, 20, 60, 120, 180, 240, 300 and 360 min after injection. During the first 20 min, morphine levels in the azygos vein were about three and ten times greater than arterial and lymphatic levels, respectively (n = 3; P less than 0.01). Morphine levels were significantly greater in the azygos vein (n = 8) and the femoral artery (n = 10) during the first 20 and 60 min than they were later, respectively (P less than 0.05). In the lymph (n = 5), the levels of morphine at 60 min were statistically greater (P less than 0.05) than levels at 4, 5, and 6 hr. At no time were the concurrent arterial and lymph levels different from each other. In the lumbar CSF, the morphine peak concentration was reached 5-60 min after epidural injection and ranged between 5 and 93 micrograms/ml. In the CSF, the levels of morphine were significantly greater during the first 20 min than later (n = 7; P less than 0.05). The washout of the lumbar CSF curve for morphine appeared to be fitted by a two-compartment open model. The t1/2-alpha and t1/2-beta values were 14.7 +/- 7.2 min and 106 +/- 45 min, respectively (mean +/- SD). Cumulative percentages of the epidural dose of morphine passed into the azygos system within the first 5, 20, 60, and 120 min after injection were calculated to be 4.0 +/- 2.1, 23.5 +/- 14.6, 49.2 +/- 34.2, and 55.9 +/- 35.3, respectively (mean +/- SD; n = 8).

  8. Combined effects of endogenous sex hormone levels and mammographic density on postmenopausal breast cancer risk: results from the Breakthrough Generations Study

    PubMed Central

    Schoemaker, M J; Folkerd, E J; Jones, M E; Rae, M; Allen, S; Ashworth, A; Dowsett, M; Swerdlow, A J

    2014-01-01

    Background: Mammographic density and sex hormone levels are strong risk factors for breast cancer, but it is unclear whether they represent the same aetiological entity or are independent risk factors. Methods: Within the Breakthrough Generations Study cohort, we conducted a case–control study of 265 postmenopausal breast cancer cases and 343 controls with prediagnostic mammograms and blood samples. Plasma was assayed for oestradiol, testosterone and sex hormone-binding globulin (SHBG) concentrations and mammographic density assessed by Cumulus. Results: Oestradiol and testosterone were negatively and SHBG positively associated with percentage density and absolute dense area, but after adjusting for body mass index the associations remained significant only for SHBG. Breast cancer risk was independently and significantly positively associated with percentage density (P=0.002), oestradiol (P=0.002) and testosterone (P=0.007) levels. Women in the highest tertile of both density and sex hormone level were at greatest risk, with an odds ratio of 7.81 (95% confidence interval (CI): 2.89–21.1) for oestradiol and 4.57 (95% CI: 1.75–11.9) for testosterone and high density compared with those who were in the lowest tertiles. The cumulative risk of breast cancer in the highest oestradiol and density tertiles, representing 8% of controls, was estimated as 12.8% at ages 50–69 years and 19.4% at ages 20–79 years, and in the lowest tertiles was 1.7% and 4.3%, respectively. Associations of breast cancer risk with tertiles of mammographic dense area were less strong than for percentage density. Conclusions: Endogenous sex hormone levels and mammographic density are independent risk factors for postmenopausal breast cancer, which in combination can identify women who might benefit from increased frequency of screening and chemoprophylaxis. PMID:24518596

  9. Endomorphin analog analgesics with reduced abuse liability, respiratory depression, motor impairment, tolerance, and glial activation relative to morphine.

    PubMed

    Zadina, James E; Nilges, Mark R; Morgenweck, Jenny; Zhang, Xing; Hackler, Laszlo; Fasold, Melita B

    2016-06-01

    Opioids acting at the mu opioid receptor (MOR) are the most effective analgesics, however adverse side effects severely limit their use. Of particular importance, abuse liability results in major medical, societal, and economic problems, respiratory depression is the cause of fatal overdoses, and tolerance complicates treatment and increases the risk of side effects. Motor and cognitive impairment are especially problematic for older adults. Despite the host of negative side effects, opioids such as morphine are commonly used for acute and chronic pain conditions. Separation of analgesia from unwanted effects has long been an unmet goal of opioid research. Novel MOR agonist structures may prove critical for greater success. Here we tested metabolically stable analogs of the endomorphins, endogenous opioids highly selective for the MOR. Compared to morphine, the analogs showed dramatically improved analgesia-to-side-effect ratios. At doses providing equal or greater antinociception than morphine in the rat, the analogs showed reduced a) respiratory depression, b) impairment of motor coordination, c) tolerance and hyperalgesia, d) glial p38/CGRP/P2X7 receptor signaling, and e) reward/abuse potential in both conditioned place preference and self-administration tests. Differential effects on glial activation indicate a mechanism for the relative lack of side effects by the analogs compared to morphine. The results suggest that endomorphin analogs described here could provide gold standard pain relief mediated by selective MOR activation, but with remarkably safer side effect profiles compared to opioids like morphine. PMID:26748051

  10. Analgesic Effects of Paracetamol and Morphine After Elective Laparotomy Surgeries

    PubMed Central

    Alimian, Mahzad; Pournajafian, Alireza; Kholdebarin, Alireza; Ghodraty, Mohammadreza; Rokhtabnak, Faranak; Yazdkhasti, Payman

    2014-01-01

    Background: Opioids have been traditionally used for postoperative pain control, but they have some unpleasant side effects such as respiratory depression or nausea. Some other analgesic drugs like non-steroidal anti-inflammatory drugs (NSAIDs) are also being used for pain management due to their fewer side effects. Objectives: The aim of our study was to compare the analgesic effects of paracetamol, an intravenous non-opioid analgesic and morphine infusion after elective laparotomy surgeries. Patients and Methods: This randomized clinical study was performed on 157 ASA (American Society of Anesthesiology) I-II patients, who were scheduled for elective laparotomy. These patients were managed by general anesthesia with TIVA technique in both groups and 150 patients were analyzed. Paracetamol (4 g/24 hours) in group 1 and morphine (20 mg/24 hours) in group 2 were administered by infusion pump after surgery. Postoperative pain evaluation was performed by visual analog scale (VAS) during several hours postoperatively. Meperidine was administered for patients complaining of pain with VAS > 3 and repeated if essential. Total doses of infused analgesics, were recorded following the surgery and compared. Analysis was performed on the basis of VAS findings and meperidine consumption. Results: There were no differences in demographic data between two groups. Significant difference in pain score was found between the two groups, in the first eight hours following operation (P value = 0.00), but not after 12 hours (P = 0.14) .The total dose of rescue drug (meperidine) and number of doses injected showed a meaningful difference between the two groups (P = 0.00). Also nausea, vomiting and itching showed a significant difference between the two groups and patients in morphine group, experienced higher levels of them. Conclusions: Paracetamol is not enough for postoperative pain relief in the first eight hour postoperatively, but it can reduce postoperative opioid need and is

  11. Small intestinal amyogenesia and dysmyogenesia induced by morphine and loperamide.

    PubMed

    Sarna, S K; Otterson, M F

    1990-02-01

    We studied the effects of morphine and loperamide on small bowel myoelectric and contractile activity in 12 conscious dogs. After initially producing premature migrating myoelectric complexes, both substances destabilized and obliterated electrical control activity (ECA). The obliteration of ECA occurred mainly in the proximal half of the small intestine. During ECA obliteration, the base line was almost flat at the usual amplification. At higher amplification, the base line exhibited irregular low level fluctuations that could not be related to electrical response activity (ERA) bursts or contractions. The mean time lag for obliteration of ECA in the proximal small intestine decreased at higher doses of morphine infusion. During the destabilization and obliteration of ECA, contractions and ERA bursts occurred in unusual patterns. The ERA bursts and contractions were generally discoordinated. However, in the proximal small intestine some contractions migrated rapidly and uninterrupted at 32 +/- 7 cm/s over long distances (124 +/- 24 cm). ECA destabilization and obliteration were reversed in approximately 15-30 min after the ingestion of a meal or intravenous administration of atropine, hexamethonium, or naloxone. We conclude that during the absence or destabilization of ECA, the ERA bursts and contractions occur in an uncontrolled manner. These two states were called "amyogenesia" and "dysmyogenesia," respectively. The unusual patterns of contractions during small intestinal amyogenesia and dysmyogenesia may be one of the factors in delayed intestinal transit produced by morphine and loperamide. PMID:1968317

  12. Analgesic and thermic effects, and cerebrospinal fluid and plasma pharmacokinetics, of intracerebroventricularly administered morphine in normal and sensitized rats.

    PubMed

    Bhargava, H N; Villar, V M; Cortijo, J; Morcillo, E J

    1998-02-01

    The relationship between asthma and opioids has barely been investigated. This study examines whether active sensitization of rats changes the analgesic and thermic effects of intracerebroventricular morphine or the pharmacokinetics of the drug. Morphine (5, 10 and 20 microg) was given intracerebroventricularly to sensitized (active immunization to ovalbumin and Al(OH)3 then airway challenge with ovalbumin after 12 days) and normal (i.e. non-sensitized) male Sprague-Dawley rats. The tail-flick latencies and changes in colon temperature were determined before morphine injection and at 30 min intervals for a period of 300 min afterwards. Results were expressed as the area under the time-response curve. The analgesic and hyperthermic response to morphine for sensitized rats was less than that obtained for normal rats. Cerebrospinal fluid and blood samples were collected periodically for a period of 240 min and morphine levels were determined by a highly sensitive radioimmunoassay. The pharmacokinetic parameters half-life, terminal elimination rate constant and the mean residence time were determined in both cerebrospinal fluid and plasma by non-compartmental analysis. The area under the cerebrospinal fluid concentration-time curve from time zero to infinity was higher for sensitized rats than for normal rats for all three doses of morphine but these differences did not correspond with similar changes in pharmacological responses. In conclusion, the attenuated analgesic and thermic responses to intracerebroventricular morphine in the sensitized rats might be a result of pharmacodynamic alterations rather than to pharmacokinetic changes. PMID:9530988

  13. Development of a Medium-Throughput Targeted LCMS Assay to Detect Endogenous Cellular Levels of Malonyl-CoA to Screen Fatty Acid Synthase Inhibitors.

    PubMed

    Hopcroft, Philip J; Fisher, David I

    2016-02-01

    The fatty acid synthase (FAS) enzyme in mammalian cells is a large multidomain protein responsible for de novo synthesis of fatty acids. The steps catalyzed by FAS involve the condensation of acetyl-CoA and malonyl-CoA moieties in the presence of NADPH until palmitate is formed. Inhibition of FAS causes an accumulation of intracellular malonyl-CoA, as this metabolite is essentially committed to fatty acid synthesis once formed. Detection of intracellular metabolites for screening can be problematic due to a lack of appropriate tools, but here we describe a targeted liquid chromatography-mass spectroscopy (LCMS) method to directly measure endogenous levels of malonyl-CoA to drive a drug development structure-activity relationship (SAR) screening cascade. Our process involves preparation of samples at 96-well scale, normalization postpermeabilization via use of a whole-well imaging platform, and the LCMS detection methodology. The assay is amenable to multiplexing cellular endpoints, has a typical Z' of >0.6, and has high reproducibility of EC50 values. PMID:26586251

  14. Endogenous Levels of Circulating Androgens and Risk of Crohn's Disease and Ulcerative Colitis Among Women: A Nested Case–Control Study from the Nurses' Health Study Cohorts

    PubMed Central

    Ananthakrishnan, Ashwin N.; Konijeti, Gauree G.; Higuchi, Leslie M.; Fuchs, Charles S.; Richter, James M.; Tworoger, Shelley S.; Hankinson, Susan E.; Chan, Andrew T.

    2015-01-01

    Background: Androgens, which are known to be altered by exogenous hormone use, have recently been linked to alterations of the gut microbiome and mucosal immune function. No study has evaluated the association between circulating levels of androgens and risk of Crohn's disease (CD) and ulcerative colitis (UC). Methods: We conducted a nested case–control study of women enrolled in the Nurses' Health Study and Nurses' Health Study II who provided a blood specimen. Cases of CD and UC were each matched to 2 controls. Prediagnosis plasma levels of dehydroepiandrosterone sulfate, testosterone, and sex hormone–binding globulin were measured. We examined the association of each analyte with risk of CD or UC using conditional logistic regression models. Results: Compared with women in the lowest quintile of testosterone, the multivariable-adjusted odds ratios for CD were 0.86 (95% confidence interval, 0.39–1.90) for women in the second quintile, 0.49 (95% confidence interval, 0.21–1.15) for the third quartile, 0.22 (0.08–0.65) for the fourth quintile, and 0.39 (95% confidence interval, 0.16–0.99) for the highest quintile (Plinear trend = 0.004). In contrast, we did not observe a consistent association between prediagnostic testosterone and risk of UC (Plinear trend = 0.84). We also did not observe any association between plasma levels of sex hormone–binding globulin or dehydroepiandrosterone sulfate and risk of UC or CD (all Plinear trends > 0.10). Conclusions: Among women, prediagnostic circulating testosterone is associated with a lower risk of CD but not UC. Further studies to understand the biological mechanisms by which endogenous androgens may mediate the etiopathogenesis of CD are warranted. PMID:25844961

  15. Modulation of opiate-related signaling molecules in morphine-dependent conditioned behavior: conditioned place preference to morphine induces CREB phosphorylation.

    PubMed

    Morón, José A; Gullapalli, Srinivas; Taylor, Chirisse; Gupta, Achla; Gomes, Ivone; Devi, Lakshmi A

    2010-03-01

    Opiate addiction is a chronic, relapsing behavioral disorder where learned associations that develop between the abused opiate and the environment in which it is consumed are brought about through Pavlovian (classical) conditioning processes. However, the signaling mechanisms/pathways regulating the mechanisms that underlie the responses to opiate-associated cues or the development of sensitization as a consequence of repeated context-independent administration of opiates are unknown. In this study we examined the phosphorylation levels of various classic signaling molecules in brain regions implicated in addictive behaviors after acute and repeated morphine administration. An unbiased place conditioning protocol was used to examine changes in phosphorylation that are associated with (1) the expression of the rewarding effects of morphine and (2) the sensitization that develops to this effect. We also examined the effects of a delta-receptor antagonist on morphine-induced conditioned behavior and on the phosphorylation of classic signaling molecules in view of data showing that blockade of delta-opioid receptor (deltaOR) prevents the development of sensitization to the rewarding effects of morphine. We find that CREB phosphorylation is specifically induced upon the expression of a sensitized response to morphine-induced conditioned behavior in brain areas related to memory consolidation, such as the hippocampus and cortex. A similar effect is also observed, albeit to a lesser extent, in the case of the GluR1 subunit of AMPA glutamate receptor. These increases in the phosphorylation levels of CREB and pGluR1 are significantly blocked by pretreatment with a deltaOR antagonist. These results indicate a critical role for phospho-CREB, AMPA, and deltaOR activities in mediating the expression of a sensitized response to morphine-dependent conditioned behavior. PMID:19956087

  16. Morphine is an arteriolar vasodilator in man

    PubMed Central

    Afshari, Reza; Maxwell, Simon R J; Webb, David J; Bateman, D Nicholas

    2009-01-01

    AIM The mechanisms of action of morphine on the arterial system are not well understood. The aim was to report forearm vascular responses, and their mediation, to intra-arterial morphine in healthy subjects. METHODS Three separate protocols were performed: (i) dose ranging; (ii) acute tolerance; (iii) randomized crossover mechanistic study on forearm blood flow (FBF) responses to intrabrachial infusion of morphine using venous occlusion plethysmography. Morphine was infused either alone (study 1 and 2), or with an antagonist: naloxone, combined histamine-1 and histamine-2 receptor blockade or during a nitric oxide clamp. RESULTS Morphine caused an increase in FBF at doses of 30 µg min−1[3.25 (0.26) ml min−1 100 ml−1][mean (SEM)] doubling at 100 µg min−1 to 5.23 (0.53) ml min−1 100 ml−1. Acute tolerance was not seen to 50 µg min−1 morphine, with increased FBF [3.96 (0.35) ml min−1 100 ml−1] (P = 0.003), throughout the 30-min infusion period. Vasodilatation was abolished by pretreatment with antihistamines (P = 0.008) and the nitric oxide clamp (P < 0.001), but not affected by naloxone. The maximum FBF with pretreatment with combined H1/H2 blockade was 3.06 (0.48) and 2.90 (0.17) ml min−1 100 ml−1 after 30 min, whereas with morphine alone it reached 4.3 (0.89) ml min−1 100 ml−1. CONCLUSIONS Intra-arterial infusion of morphine into the forearm circulation causes vasodilatation through local histamine-modulated nitric oxide release. Opioid receptor mechanisms need further exploration. PMID:19371311

  17. A Single-Dose Intra-Articular Morphine plus Bupivacaine versus Morphine Alone following Knee Arthroscopy: A Systematic Review and Meta-Analysis

    PubMed Central

    Wang, Yi-lun; Li, Yu-sheng; Wei, Jie; Li, Hui; Yang, Tuo; Yang, Tu-bao; Lei, Guang-hua

    2015-01-01

    Objectives The purpose of this study was to compare the efficacy and safety of a single-dose intra-articular morphine plus bupivacaine versus morphine alone in patients undergoing arthroscopic knee surgery. Methods Randomized controlled trials comparing a combination of morphine and bupivacaine with morphine alone injected intra-articularly in the management of pain after knee arthrocopic surgery were retrieved (up to August 10, 2014) from MEDLINE, the Cochrane Library and Embase databases. The weighted mean difference (WMD), relative risk (RR) and their corresponding 95% confidence intervals (CIs) were calculated using RevMan statistical software. Results Thirteen randomized controlled trials were included. Statistically significant differences were observed with regard to the VAS values during the immediate period (0-2h) (WMD -1.16; 95% CI -2.01 to -0.31; p = 0.007) and the time to first request for rescue analgesia (WMD = 2.05; 95% CI 0.19 to 3.92; p = 0.03). However, there was no significant difference in the VAS pain score during the early period (2-6h) (WMD -0.36; 95% CI -1.13 to 0.41; p = 0.35), the late period (6-48h) (WMD 0.11; 95% CI -0.40 to 0.63; p = 0.67), and the number of patients requiring supplementary analgesia (RR = 0.78; 95% CI 0.57 to 1.05; p = 0.10). In addition, systematic review showed that intra-articular morphine plus bupivacaine would not increase the incidence of adverse effects compared with morphine alone. Conclusion The present study suggested that the administration of single-dose intra-articular morphine plus bupivacaine provided better pain relief during the immediate period (0-2h), and lengthened the time interval before the first request for analgesic rescue without increasing the short-term side effects when compared with morphine alone. Level of Evidence Level I, meta-analysis of Level I studies. PMID:26474401

  18. Morphine and microRNA Activity: Is There a Relation with Addiction?

    PubMed Central

    Rodríguez, Raquel E.

    2012-01-01

    When we talk about drug addiction, we are really dealing with an extremely complex system in which there still remain many unknowns and where many empty spaces or missing links are still present. Recent studies have identified changes in the expression profiles of several specific miRNAs which affect the interactions between these molecules and their targets in various illnesses, including addiction, and which may serve as valuable targets for more efficient therapies. In this review, we summarize results which clearly demonstrate that several morphine-related miRNAs have roles in the mechanisms that define addiction. In this regard, morphine has been shown to have an important role in the regulation of different miRNAs, such as miR-let-7 [which works as a mediator of the movement of the mu opioid receptor (MOR) mRNA into P-bodies, leading to translational repression], miR-23b (involved in linking MOR expression and morphine treatment at the post-transcriptional level), and miR-190 (a key post-transcriptional repressor of neurogenic differentiation, NeuroD). Fentanyl increases NeuroD levels by reducing the amount of miR-190, but morphine does not affect the levels of NeuroD. We also discuss the relationship between morphine, miRNAs, and the immune system, based on the discovery that morphine treatment of monocytes led to a decrease in several anti-HIV miRNAs (mir-28, 125b, 150, and 382). This review is centered on miR-133b and its possible involvement in addiction through the effects of morphine. We establish the importance of miR-133b as a regulatory factor by summarizing its activity in different pathological processes, especially cancer. Using the zebrafish as a research model, we discuss the relationship between mir-133b, the dopaminergic system, and morphine, considering: (1) that morphine modulates the expression of miR-133b and of its target transcript Pitx3, (2) the role of the zebrafish mu opioid receptor (zfMOR) in morphine-induced regulation of miR-133b

  19. Baclofen prevents the elevated plus maze behavior and BDNF expression during naloxone precipitated morphine withdrawal in male and female mice.

    PubMed

    Pedrón, Valeria T; Varani, André P; Balerio, Graciela N

    2016-05-01

    In previous studies we have shown that baclofen, a selective GABAB receptor agonist, prevents the somatic expression and reestablishes the dopamine and μ-opioid receptors levels, modified during naloxone-precipitated morphine withdrawal syndrome in male and female mice. There are no previous reports regarding sex differences in the elevated plus maze (EPM) and the expression of BDNF in morphine-withdrawn mice. The present study analyses the behavioral and biochemical variations during morphine withdrawal in mice of both sexes, and whether these variations are prevented with baclofen. Swiss-Webster albino prepubertal mice received morphine (2 mg/kg, i.p.) twice daily, for 9 consecutive days. On the 10th day, one group of morphine-treated mice received naloxone (opioid receptor antagonist; 6 mg/kg, i.p.) 1 h after the last dose of morphine to precipitate withdrawal. A second group received baclofen (2 mg/kg, i.p.) before naloxone administration. The EPM behavior was measured during 15 min after naloxone injection. The expression of BDNF-positive cells was determined by immunohistochemistry. Withdrawn male mice showed a higher percentage of time spent and number of entries to the open arms compared to withdrawn female mice. Baclofen prevented this behavior in both sexes. BDNF expression decreased in the AcbC, BNST, CeC, and CA3 of the hippocampus while increased in the BLA of morphine withdrawn male. Baclofen pretreatment prevented the BDNF expression observed in morphine withdrawn male mice in all the brain areas studied except in the CeC. Baclofen prevention of the EPM behavior associated to morphine withdrawal could be partially related to changes in BDNF expression. PMID:26789010

  20. Morphine

    MedlinePlus

    ... breathing problems or other serious, life-threatening side effects. Tell your doctor if you are taking or plan to take any of the following medications: cimetidine (Tagamet); other narcotic pain medications; medications for anxiety, seizures, depression, mental illness, or nausea; muscle relaxants; ...

  1. Divergent Effect of Dezocine, Morphine and Sufentanil on Intestinal Motor Function in Rats

    PubMed Central

    Bian, Xiaocui; Zhou, Renlong; Yang, Yuting; Li, Peiying; Hang, Yannan; Hu, Youmin; Yang, Liqun; Wen, Daxiang

    2015-01-01

    Background: Opioid induced bowel dysfunction is the most common side effect of preoperatively administrated morphine, fentanyl and its derivative. However, the influence of dezocine on intestinal mobility is rarely reported. This study was designed to investigate the effects of dezocine, morphine and sufentanil on both intestinal smooth muscle contraction and propulsion in rats. Methods: Contractile tension and frequency of isolated rat small intestine smooth muscle were measured using tension transducer after incubation with different concentrations of dezocine, morphine and sufentanil. The propulsive rate of methylene blue in rat intestinal tract was measured 30 minutes after intraperitoneal injection of morphine, sufentanil and dezocine. Percent of change in contractile tension and contraction frequency compared to baseline level were calculated to evaluate muscle contraction. Propulsive rate of methylene blue was calculated as the percentage of methylene blue moving distance in intestinal tract compared to the length of the small intestine. Results: Morphine and sufentanil significantly increased the contractile tension of isolated small intestine smooth muscle at high doses. The contraction frequency did not change significantly among the 3 tested doses. Increasing the dose of dezocine from 1.7 mg.L-1 to 10.2 mg.L-1 did not change either the contractile tension or the contraction frequency. The propulsive rate of methylene blue in intestinal tract was significantly decreased after the treatment with morphine, sufentanil and dezocine (45.6%, 43.7%, and 42.1% respectively) compared to control group(57.1%), while the difference among the 3 drug groups were not significant. Conclusion: Morphine and sufentanil may dose dependently increase the contractile tension and contraction ability of isolated rat small intestine smooth muscle, while dezocine has no significant effect on intestine smooth muscle contraction. However, all these opioids might impair small

  2. Capillary LC-MS2 at the attomole level for monitoring and discovering endogenous peptides in microdialysis samples collected in vivo.

    PubMed

    Haskins, W E; Wang, Z; Watson, C J; Rostand, R R; Witowski, S R; Powell, D H; Kennedy, R T

    2001-11-01

    Fused-silica capillary LC columns (25-microm i.d.) with 3-microm-i.d. integrated electrospray emitters interfaced to a quadrupole ion trap mass spectrometer were evaluated for high-sensitivity LC-MS2. Column preparation involved constructing frits by in situ photopolymerization of glycidyl methacrylate and trimethylolpropane trimethacrylate, preparing the electrospray emitter by pulling the column outlet to a fine tip with a CO2 laser puller, and slurry-packing the column with 5-microm reversed-phase particles. Large-volume injections were facilitated by an automated two-pump system that allowed high-flow rates for sample loading and low-flow rates for elution. Small electrospray emitters, low elution flow rates, and optimization of gradient steepness allowed a detection limit of 4 amol, corresponding to 2 pM for 1.8 microL injected on-column, for a mixture of peptides dissolved in artificial cerebral spinal fluid. The system was coupled on-line to microdialysis sampling and was used to monitor and discover endogenous neuropeptides from the globus pallidus of anesthetized male Sprague-Dawley rats. Time-segmented MS2 scans enabled simultaneous monitoring of Met-enkephalin, Leu-enkephalin, and unknown peptides. Basal dialysate levels of Met-enkephalin and Leu-enkephalin were 60 +/- 30 and 70 +/- 20 pM while K+-stimulated levels were 1,900 +/- 500 and 1,300 +/- 300 pM, respectively (n = 7). Data-dependent and time-segmented MS2 scans revealed several unknown peptides that were present in dialysate. One of the unknowns was identified as peptide I(1-10) (SPQLEDEAKE), a novel product of preproenkephalin A processing, using MS2, MS3, and database searching. PMID:11721892

  3. Modulation by Morphine of Viral Set Point in Rhesus Macaques Infected with Simian Immunodeficiency Virus and Simian-Human Immunodeficiency Virus

    PubMed Central

    Kumar, Rakesh; Torres, Cynthia; Yamamura, Yasuhiro; Rodriguez, Idia; Martinez, Melween; Staprans, Silvija; Donahoe, Robert M.; Kraiselburd, Edmundo; Stephens, Edward B.; Kumar, Anil

    2004-01-01

    Six rhesus macaques were adapted to morphine dependence by injecting three doses of morphine (5 mg/kg of body weight) for a total of 20 weeks. These animals along with six control macaques were infected intravenously with mixture of simian-human immunodeficiency virus KU-1B (SHIVKU-1B), SHIV89.6P, and simian immunodeficiency virus 17E-Fr. Levels of circulating CD4+ T cells and viral loads in the plasma and the cerebrospinal fluid were monitored in these macaques for a period of 12 weeks. Both morphine and control groups showed precipitous loss of CD4+ T cells. However this loss was more prominent in the morphine group at week 2 (P = 0.04). Again both morphine and control groups showed comparable peak plasma viral load at week 2, but the viral set points were higher in the morphine group than that in the control group. Likewise, the extent of virus replication in the cerebral compartment was more pronounced in the morphine group. These results provide a definitive evidence for a positive correlation between morphine and levels of viral replication. PMID:15452267

  4. Endogenous opioids modify dyspnoea during treadmill exercise in patients with COPD.

    PubMed

    Mahler, D A; Murray, J A; Waterman, L A; Ward, J; Kraemer, W J; Zhang, X; Baird, J C

    2009-04-01

    Exogenous opioid drugs, such as morphine, relieve breathlessness. The present study hypothesis was that endogenous opioids, released during the stress of exercise, modify dyspnoea in patients with chronic obstructive pulmonary disease. After familiarisation, patients performed an incremental treadmill exercise test followed by constant work on the treadmill for 10 min. At subsequent visits (2 to 3 days apart), patients received two puffs of albuterol, had a catheter placed in an arm vein for removal of blood to measure beta-endorphin immunoreactivity, received normal saline or 10 mg of naloxone intravenously in randomised order, and then performed high-intensity constant work rate exercise on the treadmill. The mean+/-sd age of the 17 patients (eight females and nine males) was 63+/-7 yrs, and post-bronchodilator forced expiratory volume in one second was 50+/-17% predicted. In both conditions, beta-endorphin levels increased three-fold from rest to end-exercise. The regression slope of breathlessness as a function of oxygen consumption (primary outcome), mean ratings of breathlessness throughout exercise and peak ratings of breathlessness were significantly higher with naloxone than normal saline. There were no differences in physiological responses throughout exercise between conditions. In conclusion, endogenous opioids modify dyspnoea during treadmill exercise in patients with chronic obstructive pulmonary disease by apparent alteration of central perception. PMID:19213787

  5. Role of hippocampal and prefrontal cortical signaling pathways in dextromethorphan effect on morphine-induced memory impairment in rats.

    PubMed

    Ghasemzadeh, Zahra; Rezayof, Ameneh

    2016-02-01

    Evidence suggests that dextromethorphan (DM), an NMDA receptor antagonist, induces memory impairment. Considering that DM is widely used in cough-treating medications, and the co-abuse of DM with morphine has recently been reported, the aims of the present study was (1) to investigate whether there is a functional interaction between morphine and DM in passive avoidance learning and (2) to assess the possible role of the hippocampal and prefrontal cortical (PFC) signaling pathways in the effects of the drugs on memory formation. Our findings indicated that post-training or pre-test administration of morphine (2 and 6 mg/kg) or DM (10-30 mg/kg) impaired memory consolidation and retrieval which was associated with the attenuation of the levels of phosphorylated Ca(2+)/calmodulin-dependent protein kinase II (p-CAMKII) and cAMP responsive element-binding protein (p-CREB) in the targeted sites. Moreover, the memory impairment induced by post-training administration of morphine was reversed by pre-test administration of the same dose of morphine or DM (30 mg/kg), indicating state-dependent learning (SDL) and a cross-SDL between the drugs. It is important to note that the levels of p-CAMKII/CAMKII and p-CREB/CREB in the hippocampus and the PFC increased in drugs-induced SDL. In addition, DM administration potentiated morphine-induced SDL which was related to the enhanced levels of hippocampal and PFC CAMKII-CREB signaling pathways. It can be concluded that there is a relationship between the hippocampus and the PFC in the effect of DM and/or morphine on memory retrieval. Moreover, a cross SDL can be induced between the co-administration of DM and morphine. Interestingly, CAMKII-CREB signaling pathways also mediate the drugs-induced SDL. PMID:26708494

  6. Perinatal undernutrition facilitates morphine sensitization and cross-sensitization to cocaine in adult rats: a behavioral and neurochemical study.

    PubMed

    Velazquez, E E; Valdomero, A; Orsingher, O A; Cuadra, G R

    2010-01-20

    The development of sensitization to the locomotor effects of morphine and cross-sensitization between morphine and cocaine were evaluated in adult rats submitted to a protein malnutrition schedule from the 14th day of gestation up to 30 days of age (D-rats), and compared with well-nourished animals (C-rats). Dose-response curves to morphine-induced locomotor activity (5, 7.5, 10 or 15 mg/kg, i.p., every other day for 5 days) revealed a shift to the left in D-rats compared to C-rats. This implies that D-rats showed behavioral sensitization to the lower dose of morphine used (5 mg/kg), which was ineffective in C-rats. Furthermore, when a cocaine challenge (10 mg/kg, i.p) was given 48 h after the last morphine administration, only D-rats exhibited cross-sensitization in morphine-pretreated animals (7.5 and 10 mg/kg). In order to correlate the differential response observed with the functioning of the mesocorticolimbic dopaminergic system, extracellular dopamine (DA) levels were measured in the nucleus accumbens (core and shell) and the dorsal caudate-putamen. A challenge with cocaine in morphine pre-exposed animals produced an increase in DA release, but only in the nucleus accumbens "core" of D-rats. Similar DA levels were found in the nucleus accumbens "shell" and in the dorsal caudate-putamen of both groups. Finally, these results demonstrate that D-rats had a lower threshold for developing both a progressive behavioral sensitization to morphine and a cross-sensitization to cocaine. In accordance with these behavioral findings, a higher responsiveness of the nucleus accumbens core, expressed by increased DA levels, both basal and after cocaine challenge, was observed in D-rats. PMID:19892003

  7. Nematode endogenous small RNA pathways

    PubMed Central

    Hoogstrate, Suzanne W; Volkers, Rita JM; Sterken, Mark G; Kammenga, Jan E; Snoek, L Basten

    2014-01-01

    The discovery of small RNA silencing pathways has greatly extended our knowledge of gene regulation. Small RNAs have been presumed to play a role in every field of biology because they affect many biological processes via regulation of gene expression and chromatin remodeling. Most well-known examples of affected processes are development, fertility, and maintenance of genome stability. Here we review the role of the three main endogenous small RNA silencing pathways in Caenorhabditis elegans: microRNAs, endogenous small interfering RNAs, and PIWI-interacting RNAs. After providing an entry-level overview on how these pathways function, we discuss research on other nematode species providing insight into the evolution of these small RNA pathways. In understanding the differences between the endogenous small RNA pathways and their evolution, a more comprehensive picture is formed of the functions and effects of small RNAs. PMID:25340013

  8. Involvement of neuropeptide Y in the acute, chronic and withdrawal responses of morphine in nociception in neuropathic rats: behavioral and neuroanatomical correlates.

    PubMed

    Upadhya, Manoj A; Dandekar, Manoj P; Kokare, Dadasaheb M; Singru, Praful S; Subhedar, Nishikant K

    2009-08-01

    Although morphine is a potent antinociceptive agent, its chronic use developed tolerance in neuropathic pain (NP). Furthermore, opioid antagonist naloxone attenuated the antinociceptive effect of neuropeptide Y (NPY). The present study investigated the role of NPY and NPY Y1/Y5 receptors in acute and chronic actions of morphine in neuropathic rats using thermal paw withdrawal test and immunocytochemistry. In acute study, intracerebroventricular (icv) administration of morphine, NPY or NPY Y1/Y5 receptors agonist [Leu(31),Pro(34)]-NPY produced antinociception, whereas selective NPY Y1 receptors antagonist BIBP3226 caused hyperalgesia. While NPY or [Leu(31),Pro(34)]-NPY potentiated, BIBP3226 attenuated morphine induced antinociception. Chronic icv infusion of morphine via osmotic minipumps developed tolerance to its antinociceptive effect, and produced hyperalgesia following withdrawal. However, co-administration of NPY or [Leu(31),Pro(34)]-NPY prevented the development of tolerance and withdrawal hyperalgesia. Sciatic nerve ligation resulted in significant increase in the NPY-immunoreactive (NPY-ir) fibers in ventrolateral periaqueductal gray (VLPAG) and locus coeruleus (LC); fibers in the dorsal part of dorsal raphe nucleus (DRD) did not respond. While chronic morphine treatment significantly reduced NPY-ir fibers in VLPAG and DRD, morphine withdrawal triggered significant augmentation in NPY-immunoreactivity in the VLPAG. NPY-immunoreactivity profile of LC remained unchanged in all the morphine treatment conditions. Furthermore, removal of sciatic nerve ligation reversed the effects of NP, increased pain threshold and restored NPY-ir fiber population in VLPAG. NPY, perhaps acting via Y1/Y5 receptors, might profoundly influence the processing of NP information and interact with the endogenous opioid system primarily within the framework of the VLPAG. PMID:19556004

  9. P-glycoprotein Modulates Morphine Uptake into the CNS: A Role for the Non-steroidal Anti-inflammatory Drug Diclofenac

    PubMed Central

    Sanchez-Covarrubias, Lucy; Slosky, Lauren M.; Thompson, Brandon J.; Zhang, Yifeng; Laracuente, Mei-Li; DeMarco, Kristin M.; Ronaldson, Patrick T.; Davis, Thomas P.

    2014-01-01

    Our laboratory has previously demonstrated that peripheral inflammatory pain (PIP), induced by subcutaneous plantar injection of λ-carrageenan, results in increased expression and activity of the ATP-dependent efflux transporter P-glycoprotein (P-gp) that is endogenously expressed at the blood-brain barrier (BBB). The result of increased P-gp functional expression was a significant reduction in CNS uptake of morphine and, subsequently, reduced morphine analgesic efficacy. A major concern in the treatment of acute pain/inflammation is the potential for drug-drug interactions resulting from P-gp induction by therapeutic agents co-administered with opioids. Such effects on P-gp activity can profoundly modulate CNS distribution of opioid analgesics and alter analgesic efficacy. In this study, we examined the ability of diclofenac, a non-steroidal anti-inflammatory drug (NSAID) that is commonly administered in conjunction with the opioids during pain therapy, to alter BBB transport of morphine via P-gp and whether such changes in P-gp morphine transport could alter morphine analgesic efficacy. Administration of diclofenac reduced paw edema and thermal hyperalgesia in rats subjected to PIP, which is consistent with the known mechanism of action of this NSAID. Western blot analysis demonstrated an increase in P-gp expression in rat brain microvessels not only following PIP induction but also after diclofenac treatment alone. Additionally, in situ brain perfusion studies showed that both PIP and diclofenac treatment alone increased P-gp efflux activity resulting in decreased morphine brain uptake. Critically, morphine analgesia was significantly reduced in animals pretreated with diclofenac (3 h), as compared to animals administered diclofenac and morphine concurrently. These novel findings suggest that administration of diclofenac and P-gp substrate opioids during pain pharmacotherapy may result in a clinically significant drug-drug interaction. PMID:24520393

  10. The bioavailability of morphine applied topically to cutaneous ulcers.

    PubMed

    Ribeiro, Maria D C; Joel, Simon P; Zeppetella, Giovambattista

    2004-05-01

    A number of studies have reported the analgesic effect of morphine when applied topically to painful skin ulcers. It has been suggested that morphine may exert a local action, as opioid receptors have been demonstrated on peripheral nerve terminals. In this study, we investigated the bioavailability of topically applied morphine to cutaneous ulcers. Six hospice inpatients with skin ulcers were given morphine sulfate 10 mg in Intrasite gel topically and morphine sulfate 10 mg subcutaneously over 4 hours, at least 48 hours apart, in randomized order. Morphine, morphine-6-glucuronide (M6G), and morphine-3-glucuronide (M3G) were determined in plasma using a specific HPLC method. In five patients morphine and its metabolites were undetectable when applied topically. In one patient (with the largest ulcer), morphine and M6G were detected. The calculated morphine and M6G bioavailability in this patient were 20% and 21%, respectively. M3G was also detected but was below the lower limit of quantitation. When applied topically to ulcers, morphine was not absorbed in the majority of patients, suggesting any analgesic effect would be mediated locally rather than systemically. However, in ulcers with a large surface area, systemic absorption may occur. PMID:15120772

  11. Morphine epigenomically regulates behavior through alterations in histone H3 lysine 9 dimethylation in the nucleus accumbens.

    PubMed

    Sun, Haosheng; Maze, Ian; Dietz, David M; Scobie, Kimberly N; Kennedy, Pamela J; Damez-Werno, Diane; Neve, Rachael L; Zachariou, Venetia; Shen, Li; Nestler, Eric J

    2012-11-28

    Dysregulation of histone modifying enzymes has been associated with numerous psychiatric disorders. Alterations in G9a (Ehmt2), a histone methyltransferase that catalyzes the euchromatic dimethylation of histone H3 at lysine 9 (H3K9me2), has been implicated recently in mediating neural and behavioral plasticity in response to chronic cocaine administration. Here, we show that chronic morphine, like cocaine, decreases G9a expression, and global levels of H3K9me2, in mouse nucleus accumbens (NAc), a key brain reward region. In contrast, levels of other histone methyltransferases or demethylases, or of other methylated histone marks, were not affected in NAc by chronic morphine. Through viral-mediated gene transfer and conditional mutagenesis, we found that overexpression of G9a in NAc opposes morphine reward and locomotor sensitization and concomitantly promotes analgesic tolerance and naloxone-precipitated withdrawal, whereas downregulation of G9a in NAc enhances locomotor sensitization and delays the development of analgesic tolerance. We identified downstream targets of G9a by providing a comprehensive chromatin immunoprecipitation followed by massively parallel sequencing analysis of H3K9me2 distribution in NAc in the absence and presence of chronic morphine. These data provide novel insight into the epigenomic regulation of H3K9me2 by chronic morphine and suggest novel chromatin-based mechanisms through which morphine-induced addictive-like behaviors arise. PMID:23197736

  12. Morphine epigenomically regulates behavior through alterations in histone H3 lysine 9 dimethylation in the nucleus accumbens

    PubMed Central

    Sun, HaoSheng; Maze, Ian; Dietz, David M.; Scobie, Kimberly N.; Kennedy, Pamela J.; Damez-Werno, Diane; Neve, Rachael L.; Zachariou, Venetia; Shen, Li; Nestler, Eric J.

    2012-01-01

    Dysregulation of histone modifying enzymes has been associated with numerous psychiatric disorders. Alterations in G9a (Ehmt2), a histone methyltransferase that catalyzes the euchromatic dimethylation of histone H3 at lysine 9 (H3K9me2), has recently been implicated in mediating neural and behavioral plasticity in response to chronic cocaine administration. Here, we show that chronic morphine, like cocaine, decreases G9a expression, and global levels of H3K9me2, in mouse nucleus accumbens (NAc), a key brain reward region. In contrast, levels of other histone methyltransferases or demethylases, or of other methylated histone marks, were not affected in NAc by chronic morphine. Through viral-mediated gene transfer and conditional mutagenesis, we found that overexpression of G9a in NAc opposes morphine reward and locomotor sensitization and concomitantly promotes analgesic tolerance and naloxone-precipitated withdrawal, while down-regulation of G9a in NAc enhances locomotor sensitization and delays the development of analgesic tolerance. We identified downstream targets of G9a by providing a comprehensive ChIP-seq analysis of H3K9me2 distribution in NAc in the absence and presence of chronic morphine. These data provide novel insight into the epigenomic regulation of H3K9me2 by chronic morphine, and suggest novel chromatin-based mechanisms through which morphine-induced addictive-like behaviors arise. PMID:23197736

  13. Chemical inhibition of potato ABA 8'-hydroxylase activity alters in vitro and in vivo ABA metabolism and endogenous ABA levels but does not affect potato microtuber dormancy duration

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The effects of azole-type P450 inhibitors and two metabolism-resistant ABA analogs on in vitro ABA 8'-hydroxylase activity, in planta ABA metabolism, endogenous ABA content, and tuber meristem dormancy duration were examined in potato (Solanum tuberosum L. cv. Russet Burbank). When functionally expr...

  14. Differential mRNA Accumulation upon Early Arabidopsis thaliana Infection with ORMV and TMV-Cg Is Associated with Distinct Endogenous Small RNAs Level

    PubMed Central

    Zavallo, Diego; Manacorda, Carlos Augusto; Rodriguez, Maria Cecilia; Asurmendi, Sebastian

    2015-01-01

    Small RNAs (sRNAs) play important roles in plant development and host-pathogen interactions. Several studies have highlighted the relationship between viral infections, endogenous sRNA accumulation and transcriptional changes associated with symptoms. However, few studies have described a global analysis of endogenous sRNAs by comparing related viruses at early stages of infection, especially before viral accumulation reaches systemic tissues. An sRNA high-throughput sequencing of Arabidopsis thaliana leaf samples infected either with Oilseed rape mosaic virus (ORMV) or crucifer-infecting Tobacco mosaic virus (TMV-Cg) with slightly different symptomatology at two early stages of infection (2 and 4dpi) was performed. At early stages, both viral infections strongly alter the patterns of several types of endogenous sRNA species in distal tissues with no virus accumulation suggesting a systemic signaling process foregoing to virus spread. A correlation between sRNAs derived from protein coding genes and the associated mRNA transcripts was also detected, indicating that an unknown recursive mechanism is involved in a regulatory circuit encompassing this sRNA/mRNA equilibrium. This work represents the initial step in uncovering how differential accumulation of endogenous sRNAs contributes to explain the massive alteration of the transcriptome associated with plant-virus interactions. PMID:26237414

  15. Analgesia and decrement in operant performance in socially defeated mice: selective cross-tolerance to morphine and antagonism by naltrexone.

    PubMed

    Miczek, K A; Winslow, J T

    1987-01-01

    During a social confrontation between a resident and an intruder mouse, only the submissive or defeated intruder shows an opioid-mediated analgesia to which tolerance develops. We investigated the altered morphine responsiveness after different kinds of social experiences. Mice were assessed for performance of operant behavior under the control of a fixed ratio schedule of positive reinforcement as well as for the tail flick response to a heat stimulus before and after one or five consecutive social confrontations. The dose-effect curves for morphine's suppression of schedule-controlled behavior were closely similar before and after defeat in a single or in five social confrontations. However, the concurrently measured response to pain in the tail flick assay produced morphine dose-effect curves that were shifted to the right after defeat in one or five social confrontations. Four to six times higher doses of morphine were necessary to produce analgesia in mice that were defeated in five social confrontations. Naltrexone (1 mg/kg, ip) antagonized the suppressive effects of morphine (10 mg/kg, ip) on rate of responding and the analgesic effects. Naltrexone also blocked the development of analgesia in mice that were defeated for the first time in a social confrontation, but did not prevent the suppressive effects on rate of responding. Specific social experiences such as defeat in a social confrontation appear to alter endogenous opioid process that mediate analgesia; these processes differ from those that suppress positively reinforced behavior. The differential development of morphine tolerance to the analgesic effects, but not the rate-decreasing effects as well as the differential naltrexone antagonism of both effects may indicate the involvement of opioid and non-opioid mechanisms. PMID:3114797

  16. Effects of high-dose selegiline on morphine reinforcement and precipitated withdrawal in dependent rats.

    PubMed

    Grasing, K; He, S

    2005-02-01

    Selegiline is an irreversible inhibitor of monoamine oxidase (MAO) with psychostimulant and neuroprotective effects. Several lines of evidence suggest that treatment with selegiline at doses that exceed levels required for inhibition of MAO can produce distinct pharmacologic effects. The purpose of this study was to evaluate the effects of chronic treatment with high-dose selegiline on extinction responding, cue-induced reinstatement, morphine reinforcement and naloxone-precipitated withdrawal. After pretreatment with noncontingent morphine to establish opiate dependence, rats acquired self-administration of 3.2 mg/kg per injection of morphine under a progressive ratio schedule. Daily treatment with saline or 6.4 mg/kg per day of selegiline was then administered over extinction, reinstatement and re-acquisition of morphine self-administration. To enhance or diminish the potential for psychostimulant effects, selegiline was administered either immediately prior to (pre-session) or 1 h following (post-session) extinction, reinstatement and self-administration sessions. Pre-session selegiline decreased the number of ratios completed on days 2, 3 and 4 of extinction, and decreased morphine self-administration during all four re-acquisition sessions. When administered at the same dose level, post-session selegiline decreased responding on the fourth extinction session, and was ineffective in modifying re-acquisition of self-administration. Selegiline administered by either schedule did not modify cue-induced reinstatement. Daily treatment with 6.4 mg/kg per day of selegiline did not modify self-administration of food under a progressive ratio schedule. Acute treatment with single, 6.4 mg/kg doses of selegiline attenuated naloxone-induced increases in ptosis and global withdrawal score, but did not modify any other sign of withdrawal or global withdrawal score calculated without ratings of ptosis. In conclusion, high-dose selegiline can attenuate extinction responding

  17. Enhanced Extracellular Glutamate and Dopamine in the Ventral Pallidum of Alcohol-Preferring AA and Alcohol-Avoiding ANA Rats after Morphine

    PubMed Central

    Kemppainen, Heidi; Nurmi, Harri; Raivio, Noora; Kiianmaa, Kalervo

    2015-01-01

    The purpose of the present study was to investigate the role of ventral pallidal opioidergic mechanisms in the control of ethanol intake by studying the effects of acute administration of morphine on the levels of GABA, glutamate, and dopamine in the ventral pallidum. The study was conducted using the alcohol-preferring Alko Alcohol (AA) and alcohol-avoiding Alko Non-Alcohol (ANA) rat lines that have well-documented differences in their voluntary ethanol intake and brain opioidergic systems. Therefore, examination of neurobiological differences between the lines is supposed to help to identify the neuronal mechanisms underlying ethanol intake, since selection pressure is assumed gradually to lead to enrichment of alleles promoting high or low ethanol intake, respectively. The effects of an acute dose of morphine (1 or 10 mg/kg s.c.) on the extracellular levels of GABA and glutamate in the ventral pallidum were monitored with in vivo microdialysis. The concentrations of GABA and glutamate in the dialyzates were determined with a high performance liquid chromatography system using fluorescent detection, while electrochemical detection was used for dopamine. The levels of glutamate in the rats injected with morphine 1 mg/kg were significantly above the levels found in the controls and in the rats receiving morphine 10 mg/kg. Morphine 10 mg/kg also increased the levels of dopamine. Morphine could not, however, modify the levels of GABA. The rat lines did not differ in any of the effects of morphine. The data suggest that the glutamatergic and dopaminergic systems in the ventral pallidum may mediate some effects of morphine. Since there were no differences between the AA and ANA lines, the basic hypothesis underlying the use of the genetic animal model suggests that the effects of morphine detected probably do not underlie the different intake of ethanol by the lines and contribute to the control of ethanol intake in these animals. PMID:25653621

  18. Morphine delays the onset of action of prasugrel in patients with prior history of ST-elevation myocardial infarction.

    PubMed

    Thomas, Mark R; Morton, Allison C; Hossain, Rashed; Chen, Beining; Luo, Lei; Shahari, Nur Nazihah B Md; Hua, Peng; Beniston, Richard G; Judge, Heather M; Storey, Robert F

    2016-07-01

    Delays in the onset of action of prasugrel during primary percutaneous coronary intervention (PPCI) have been reported and could be related to the effects of morphine on gastric emptying and subsequent intestinal absorption. The study objective was to determine whether morphine delays the onset of action of prasugrel in patients with a prior history of ST-elevation myocardial infarction (STEMI) treated with PPCI. This was a crossover study of 11 aspirin-treated patients with prior history of STEMI treated with PPCI, for which prasugrel and morphine had been previously administered. Patients were randomised to receive either morphine (5 mg) or saline intravenously followed by 60 mg prasugrel. Blood samples were collected before randomised treatment and over 24 hours after prasugrel administration. The inhibitory effects of prasugrel on platelets were determined using the VerifyNow P2Y12 assay and light transmission aggregometry. Plasma levels of prasugrel and prasugrel active metabolite were measured. Platelet reactivity determined by VerifyNow PRU, VerifyNow % Inhibition and LTA was significantly higher at 30-120 minutes (min) when morphine had been co-administered compared to when saline had been co-administered. Morphine, compared to saline, significantly delayed adequate platelet inhibition after prasugrel administration (158 vs 68 min; p = 0.006). Patients with delayed onset of platelet inhibition also had evidence of delayed absorption of prasugrel. In conclusion, prior administration of intravenous morphine significantly delays the onset of action of prasugrel. Intravenous drugs may be necessary to reduce the risk of acute stent thrombosis in morphine-treated STEMI patients undergoing PPCI. PMID:27099137

  19. Synthetic substances with morphine-like effect

    PubMed Central

    Eddy, Nathan B.; Halbach, H.; Braenden, Olav J.

    1957-01-01

    A review of effects in man of morphine-like drugs which have been brought under international narcotics control is presented in the form of individual monographs. These are based on controlled observations with quantitative data and significant reports of results obtained in medical practice. In a summarizing section, the drugs are compared with respect to effectiveness, side-effects and addiction liability. Morphine-like drugs of natural and synthetic origin now cover a wide range of potency (analgesic, antitussive), not necessarily paralleled by incidence of side-effects or addiction liability. PMID:13511135

  20. Morphine Suppresses T helper Lymphocyte Differentiation to Th1 Type Through PI3K/AKT Pathway.

    PubMed

    Mao, Mao; Qian, Yanning; Sun, Jie

    2016-04-01

    To investigate the effect of morphine on T helper lymphocyte differentiation and PI3K/AKT pathway mechanism, CD4+ lymphocytes were treated by phorbol-myristate-acetate (25 ng/ml) (PMA) plus ionomycin (1 μg/ml) in the presence of various concentrations of morphine (25, 50, 100, 200 ng/ml) for 4 h. Th1 and Th2 subsets, supernatant cytokines, and PI3K, AKT, and protein kinase C-theta (PKC-θ) levels were detected. The Th1 cell percentage, Th1-derived cytokines, and ratio of Th1/Th2 decreased in the presence of morphine in a concentration-dependent manner. However, Th2 cell percentage kept stable after morphine treatment. The phosphorylation of PI3K and AKT decreased, but the phosphorylation of PKC-θ did not change in the presence of morphine. The decreased percentage of Th1 cells and ratio of Th1/Th2 was recovered by naloxone concentration-dependently. Morphine can inhibit the differentiation of Th1 lymphocytes and decrease the ratio of Th1/Th2 via the pathway of PI3K/AKT. The effect can be inhibited by naloxone. PMID:26883517

  1. μ Opioid Receptor Expression after Morphine Administration Is Regulated by miR-212/132 Cluster

    PubMed Central

    Garcia-Concejo, Adrian; Jimenez-Gonzalez, Ada; Rodríguez, Raquel E.

    2016-01-01

    Since their discovery, miRNAs have emerged as a promising therapeutical approach in the treatment of several diseases, as demonstrated by miR-212 and its relation to addiction. Here we prove that the miR-212/132 cluster can be regulated by morphine, through the activation of mu opioid receptor (Oprm1). The molecular pathways triggered after morphine administration also induce changes in the levels of expression of oprm1. In addition, miR-212/132 cluster is actively repressing the expression of mu opioid receptor by targeting a sequence in the 3’ UTR of its mRNA. These findings suggest that this cluster is closely related to opioid signaling, and function as a post-transcriptional regulator, modulating morphine response in a dose dependent manner. The regulation of miR-212/132 cluster expression is mediated by MAP kinase pathway, CaMKII-CaMKIV and PKA, through the phosphorylation of CREB. Moreover, the regulation of both oprm1 and of the cluster promoter is mediated by MeCP2, acting as a transcriptional repressor on methylated DNA after prolonged morphine administration. This mechanism explains the molecular signaling triggered by morphine as well as the regulation of the expression of the mu opioid receptor mediated by morphine and the implication of miR-212/132 in these processes. PMID:27380026

  2. Morphine Promotes Tumor Angiogenesis and Increases Breast Cancer Progression

    PubMed Central

    Bimonte, Sabrina; Barbieri, Antonio; Palma, Giuseppe; Luciano, Antonio; Cuomo, Arturo; Arra, Claudio; Izzo, Francesco

    2015-01-01

    Morphine is considered a highly potent analgesic agent used to relieve suffering of patients with cancer. Several in vitro and in vivo studies showed that morphine also modulates angiogenesis and regulates tumour cell growth. Unfortunately, the results obtained by these studies are still contradictory. In order to better dissect the role of morphine in cancer cell growth and angiogenesis we performed in vitro studies on ER-negative human breast carcinoma cells, MDA.MB231 and in vivo studies on heterotopic mouse model of human triple negative breast cancer, TNBC. We demonstrated that morphine in vitro enhanced the proliferation and inhibited the apoptosis of MDA.MB231 cells. In vivo studies performed on xenograft mouse model of TNBC revealed that tumours of mice treated with morphine were larger than those observed in other groups. Moreover, morphine was able to enhance the neoangiogenesis. Our data showed that morphine at clinical relevant doses promotes angiogenesis and increases breast cancer progression. PMID:26064880

  3. The role of morphine glucuronides in cancer pain.

    PubMed

    Mercadante, S

    1999-03-01

    Morphine metabolites are involved in various ways in determining the complex effects of morphine, both favourable and adverse, and may complicate the clinical use of morphine in the treatment of cancer pain. The production and effects of the principal morphine metabolites, morphine-3-glucuronide and morphine-6-glucuronide, in both normal and pathological states have been reviewed in the current literature. Therapeutic implications are also reviewed on the basis of experimental and clinical reports. The presence of these metabolites should be recognized in the chronic treatment of cancer pain with morphine, especially in the presence of renal impairment, and should be considered to have an important influence on opioid responsiveness, defined as a balance between the achievement of an optimal analgesia and the occurrence of adverse effects. PMID:10474692

  4. Effect of morphine and morphine-like drugs on carbachol-induced fighting in cats.

    PubMed

    Krstić, S K; Stefanović-Denić, K; Beleslin, D B

    1982-08-01

    In the present experiments, morphine, methadone or pethidine was injected into the cerebral ventricle of the unanesthetized cat after fighting was induced with carbachol injected previously. The fighting evoked by carbachol was sensitive to the depressant action of morphine or pethidine but not to the depressant effect of methadone. The most likely explanation of the depressant effects of the former compounds is that they act on the postsynaptic receptors of central cholinergic neurons. PMID:6890210

  5. Ellagic acid enhances morphine analgesia and attenuates the development of morphine tolerance and dependence in mice.

    PubMed

    Mansouri, Mohammad Taghi; Naghizadeh, Bahareh; Ghorbanzadeh, Behnam

    2014-10-15

    According to our previous study, ellagic acid has both dose-related central and peripheral antinociceptive effect through the opioidergic and l-arginine-NO-cGMP-ATP sensitive K(+) channel pathways. In the present study, the systemic antinociceptive effects of ellagic acid in animal models of pain, and functional interactions between ellagic acid and morphine in terms of analgesia, tolerance and dependence were investigated. Ellagic acid (1-30mg/kg; i.p.) showed significant and dose-dependent antinociceptive effects in the acetic acid-induced writhing test. Intraperitoneal ellagic acid acutely interacted with morphine analgesia in a synergistic manner in this assay. Ellagic acid (1-10mg/kg; i.p.) also exerted analgesic activity in the hot-plate test. Pre-treatment with naloxone (1mg/kg; i.p.) significantly reversed ellagic acid, morphine as well as ellagic acid-morphine combination-induced antinociceptin in these two tests. More importantly, when co-administered with morphine, ellagic acid (1-10mg/kg) effectively blocked the development of tolerance to morphine analgesia in the hot-plate test. Likewise, ellagic acid dose-dependently prevented naloxone-precipitated withdrawal signs including jumping and weight loss. Ellagic acid treatment (1-30mg/kg; i.p.) had no significant effect on the locomotion activity of animals using open-field task. Therefore, these results showed that ellagic acid has notable systemic antinociceptive activity for both tonic and phasic pain models. Altogether, ellagic acid might be used in pain relief alone or in combination with opioid drugs because of enhancing morphine analgesia and preventing morphine-induced tolerance to analgesia and dependence. PMID:25179576

  6. Nebulized morphine in the palliation of dyspnoea.

    PubMed

    Zeppetella, G

    1997-07-01

    Seventeen terminally ill cancer patients with primary or secondary intrathoracic malignancy complaining of breathlessness were treated with nebulized morphine in doses of 20 mg 4-hourly for 48 h. The effect on dyspnoea was evaluated using the Dyspnoea Assessment Questionnaire. Most patients felt less dyspnoeic after 24 h; the effect was maintained, but not improved upon, after 48 h. PMID:9373577

  7. Optical properties of aqueous morphine solutions

    NASA Astrophysics Data System (ADS)

    Kuznetsov, Pavel E.; Gracheva, Anna A.; Zlobin, Vladimir A.; Nazarov, Georgy V.; Kuznetsova, Nina B.; Rogacheva, Svetlana M.

    2003-10-01

    We have studied morphine action on mobility and structure of water by means of fluorescent investigations and light scattering analysis. Wave-like concentration dependences have been plotted in the both cases. Theoretical description of the discovered effect has been made based on the formalism of N.N.Bogolubov.

  8. Cholinergic mechanisms of analgesia produced by physostigmine, morphine and cold water swimming.

    PubMed

    Romano, J A; Shih, T M

    1983-07-01

    This study concerns the cholinergic involvement in three experimental procedures which produce analgesia. Rats were given one of seven treatments: saline (1.0 ml/kg, i.p.); morphine sulfate (3.5, 6.0 or 9.0 mg/kg, i.p.); physostigmine salicylate (0.65 mg/kg, i.p.); warm water swim (3.5 min at 28 degrees C); and cold water swim (3.5 min at 2 degrees C). Each rat was tested on a hot plate (59.1 degrees C) once prior to and 30 min after treatment. Immediately after the last test the rats were killed with focussed microwave radiation. Levels of acetylcholine (ACh) and choline (Ch) in six brain areas (brain stem, cerebral cortex, hippocampus, midbrain, cerebellum and striatum) were analyzed by gas chromatograph-mass spectrometer. Morphine (9.0 mg/kg), physostigmine and cold water swimming caused significant analgesia. Morphine elevated the levels of ACh in the cerebellum and striatum, cold water swimming--in the cerebellum, striatum and cortex, and physostigmine--in the striatum and hippocampus. Levels of choline were elevated by morphine in the cerebellum, cortex and hippocampus, while cold water swimming elevated levels of choline in the cerebellum, cortex, striatum and hippocampus. Physostigmine did not change levels of choline in any of the brain areas studied. These data suggest that the analgetic effects of morphine or cold water swimming may be mediated by components of the cholinergic system that differ from those involved in the analgetic effects of physostigmine. PMID:6621812

  9. Stability and Analgesic Efficacy of Di-acetyl Morphine (Diamorphine) Compared with Morphine in Implanted Intrathecal Pumps In Vivo.

    PubMed

    Raphael, Jon H; Palfrey, Stephen M; Rayen, Arasu; Southall, Jane L; Labib, Maurad H

    2004-07-01

    The objective of this study was to investigate di-acetyl morphine as an alternative opioid analgesic for use in implanted intrathecal drug delivery systems because of its greater solubility through evaluation of its stability in vivo and analgesic efficacy in the period between pump refills. Contents of intrathecal drug delivery system reservoirs (SynchroMed, Medtronic, Inc., Minneapolis, MN) that had been filled with di-acetyl morphine dissolved in saline (21), bupivacaine (9), or in both bupivacaine and clonidine (19) were sampled in vivo between 1 and 125 days after refill. The samples were assayed for di-acetyl morphine and its breakdown products by micellar electrokinetic capillary chromatography. Prospective daily numerical pain scores between pump refills, using 11-point Likert scales, on 24 patients with implanted SynchroMed pumps (12 delivering di-acetyl morphine in saline, 12 were delivering morphine in saline) were collected. Results showed that di-acetyl morphine immediately started to decay to mono-acetyl morphine in implanted Synchromed pumps with half-life of 50 days. Mono-acetyl morphine decayed to morphine with a maxima estimated at 125 days. There was no clinically significant change in average weekly pain scores for up to ten weeks in either group (range, 2.5 to 2.8 for diamorphine and 2.7 to 3.1 for morphine) (2-way repeated ANOVA, F(9,220) = 0.98, n.s.). We conclude that di-acetyl morphine and its breakdown products, 6 mono-acetyl morphine and morphine, provide similar analgesia to morphine alone when administered by intrathecal pump for a period of at least ten weeks and may be a useful alternative when a more soluble agent is favored. PMID:22151270

  10. The role of the TRPV1 endogenous agonist N-Oleoyldopamine in modulation of nociceptive signaling at the spinal cord level.

    PubMed

    Spicarova, Diana; Palecek, Jiri

    2009-07-01

    Transient receptor potential vanilloid (TRPV1) receptors are abundant in a subpopulation of primary sensory neurons that convey nociceptive information from the periphery to the spinal cord dorsal horn. The TRPV1 receptors are expressed on both the peripheral and central branches of these dorsal root ganglion (DRG) neurons and can be activated by capsaicin, heat, low pH, and also by recently described endogenous lipids. Using patch-clamp recordings from superficial dorsal horn (DH) neurons in acute spinal cord slices, the effect of application of the endogenous TRPV1 agonist N-oleoyldopamine (OLDA) on the frequency of miniature excitatory postsynaptic currents (mEPSCs) was evaluated. A high concentration OLDA (10 microM) solution was needed to increase the mEPSC frequency, whereas low concentration OLDA (0.2 microM) did not evoke any change under control conditions. The increase was blocked by the TRPV1 antagonists SB366791 or BCTC. Application of a low concentration of OLDA evoked an increase in mEPSC frequency after activation of protein kinase C by phorbol ester (PMA) and bradykinin or in slices from animals with peripheral inflammation. Increasing the bath temperature from 24 to 34 degrees C enhanced the basal mEPSC frequency, but the magnitude of changes in the mEPSC frequency induced by OLDA administration was similar at both temperatures. Our results suggest that presumed endogenous agonists of TRPV1 receptors, like OLDA, could have a considerable impact on synaptic transmission in the spinal cord, especially when TRPV1 receptors are sensitized. Spinal TRPV1 receptors could play a pivotal role in modulation of nociceptive signaling in inflammatory pain. PMID:19369364