Science.gov

Sample records for endogenous opioid involvement

  1. Neurobiological mechanisms involved in nicotine dependence and reward: participation of the endogenous opioid system

    PubMed Central

    Berrendero, Fernando; Robledo, Patricia; Trigo, José Manuel; Martín-García, Elena; Maldonado, Rafael

    2010-01-01

    Nicotine is the primary component of tobacco that maintains the smoking habit and develops addiction. The adaptive changes of nicotinic acetylcholine receptors produced by repeated exposure to nicotine play a crucial role in the establishment of dependence. However, other neurochemical systems also participate in the addictive effects of nicotine including glutamate, cannabinoids, GABA and opioids. This review will cover the involvement of these neurotransmitters in nicotine addictive properties, with a special emphasis on the endogenous opioid system. Thus, endogenous enkephalins and beta-endorphins acting on mu-opioid receptors are involved in nicotine rewarding effects, whereas opioid peptides derived from prodynorphin participate in nicotine aversive responses. An upregulation of mu-opioid receptors has been reported after chronic nicotine treatment that could counteract the development of nicotine tolerance, whereas the downregulation induced on kappa-opioid receptors seems to facilitate nicotine tolerance. Endogenous enkephalins acting on mu-opioid receptors also play a role in the development of physical dependence to nicotine. In agreement with these actions of the endogenous opioid system, the opioid antagonist naltrexone has shown to be effective for smoking cessation in certain subpopulations of smokers. PMID:20170672

  2. Endogenous opioids and reward.

    PubMed

    Van Ree, J M; Niesink, R J; Van Wolfswinkel, L; Ramsey, N F; Kornet, M M; Van Furth, W R; Vanderschuren, L J; Gerrits, M A; Van den Berg, C L

    2000-09-29

    The discovery of endogenous opioids has markedly influenced the research on the biology of addiction and reward brain processes. Evidence has been presented that these brain substances modulate brain stimulation reward, self-administration of different drugs of abuse, sexual behaviour and social behaviour. There appears to be two different domains in which endogenous opioids, present in separate and distinct brain regions, are involved. One is related to the modulation of incentive motivational processes and the other to the performance of certain behaviours. It is concluded that endogenous opioids may play a role in the vulnerability to certain diseases, such as addiction and autism, but also when the disease is present, such as alcoholism. PMID:11033317

  3. Involvement of the endogenous opioid system in the psychopharmacological actions of ethanol: the role of acetaldehyde

    PubMed Central

    Font, Laura; Luján, Miguel Á.; Pastor, Raúl

    2013-01-01

    Significant evidence implicates the endogenous opioid system (EOS) (opioid peptides and receptors) in the mechanisms underlying the psychopharmacological effects of ethanol. Ethanol modulates opioidergic signaling and function at different levels, including biosynthesis, release, and degradation of opioid peptides, as well as binding of endogenous ligands to opioid receptors. The role of β-endorphin and µ-opioid receptors (OR) have been suggested to be of particular importance in mediating some of the behavioral effects of ethanol, including psychomotor stimulation and sensitization, consumption and conditioned place preference (CPP). Ethanol increases the release of β-endorphin from the hypothalamic arcuate nucleus (NArc), which can modulate activity of other neurotransmitter systems such as mesolimbic dopamine (DA). The precise mechanism by which ethanol induces a release of β-endorphin, thereby inducing behavioral responses, remains to be elucidated. The present review summarizes accumulative data suggesting that the first metabolite of ethanol, the psychoactive compound acetaldehyde, could participate in such mechanism. Two lines of research involving acetaldehyde are reviewed: (1) implications of the formation of acetaldehyde in brain areas such as the NArc, with high expression of ethanol metabolizing enzymes and presence of cell bodies of endorphinic neurons and (2) the formation of condensation products between DA and acetaldehyde such as salsolinol, which exerts its actions via OR. PMID:23914161

  4. Microwave-induced post-exposure hyperthermia: Involvement of endogenous opioids and serotonin

    SciTech Connect

    Lai, H.; Chou, C.K.; Guy, A.W.; Horita, A.

    1984-08-01

    Acute exposure to pulsed microwaves (2450 MHz, 1 mW/ cm/sup 2/, SAR 0.6 W/kg, 2-..mu..s pulses, 500 pulses/s) induces a transient post-exposure hyperthermia in the rat. The hyperthermia was attenuated by treatment with either the narcotic antagonist naltrexone or one of the serotonin antagonists cinanserin, cyproheptadine, or metergoline. It was not affected, however, by treatment with the peripheral serotonin antagonist xylamidine nor the dopamine antagonist haloperidol. It thus appears that both endogenous opioids and central serotonin are involved. It is proposed that pulsed microwaves activate endogenous opioid systems, and that they in turn activate a serotonergic mechanism that induces the rise in body temperature.

  5. Distinct roles of exogenous opioid agonists and endogenous opioid peptides in the peripheral control of neuropathy-triggered heat pain

    PubMed Central

    Labuz, Dominika; Celik, Melih Ö.; Zimmer, Andreas; Machelska, Halina

    2016-01-01

    Neuropathic pain often results from peripheral nerve damage, which can involve immune response. Local leukocyte-derived opioid peptides or exogenous opioid agonists inhibit neuropathy-induced mechanical hypersensitivity in animal models. Since neuropathic pain can also be augmented by heat, in this study we investigated the role of opioids in the modulation of neuropathy-evoked heat hypersensitivity. We used a chronic constriction injury of the sciatic nerve in wild-type and opioid peptide-knockout mice, and tested opioid effects in heat and mechanical hypersensitivity using Hargreaves and von Frey tests, respectively. We found that although perineural exogenous opioid agonists, including peptidergic ligands, were effective, the endogenous opioid peptides β-endorphin, Met-enkephalin and dynorphin A did not alleviate heat hypersensitivity. Specifically, corticotropin-releasing factor, an agent triggering opioid peptide secretion from leukocytes, applied perineurally did not attenuate heat hypersensitivity in wild-type mice. Exogenous opioids, also shown to release opioid peptides via activation of leukocyte opioid receptors, were equally analgesic in wild-type and opioid peptide-knockout mice, indicating that endogenous opioids do not contribute to exogenous opioid analgesia in heat hypersensitivity. Furthermore, exogenously applied opioid peptides were ineffective as well. Conversely, opioid peptides relieved mechanical hypersensitivity. Thus, both opioid type and sensory modality may determine the outcome of neuropathic pain treatment. PMID:27605249

  6. Distinct roles of exogenous opioid agonists and endogenous opioid peptides in the peripheral control of neuropathy-triggered heat pain.

    PubMed

    Labuz, Dominika; Celik, Melih Ö; Zimmer, Andreas; Machelska, Halina

    2016-01-01

    Neuropathic pain often results from peripheral nerve damage, which can involve immune response. Local leukocyte-derived opioid peptides or exogenous opioid agonists inhibit neuropathy-induced mechanical hypersensitivity in animal models. Since neuropathic pain can also be augmented by heat, in this study we investigated the role of opioids in the modulation of neuropathy-evoked heat hypersensitivity. We used a chronic constriction injury of the sciatic nerve in wild-type and opioid peptide-knockout mice, and tested opioid effects in heat and mechanical hypersensitivity using Hargreaves and von Frey tests, respectively. We found that although perineural exogenous opioid agonists, including peptidergic ligands, were effective, the endogenous opioid peptides β-endorphin, Met-enkephalin and dynorphin A did not alleviate heat hypersensitivity. Specifically, corticotropin-releasing factor, an agent triggering opioid peptide secretion from leukocytes, applied perineurally did not attenuate heat hypersensitivity in wild-type mice. Exogenous opioids, also shown to release opioid peptides via activation of leukocyte opioid receptors, were equally analgesic in wild-type and opioid peptide-knockout mice, indicating that endogenous opioids do not contribute to exogenous opioid analgesia in heat hypersensitivity. Furthermore, exogenously applied opioid peptides were ineffective as well. Conversely, opioid peptides relieved mechanical hypersensitivity. Thus, both opioid type and sensory modality may determine the outcome of neuropathic pain treatment. PMID:27605249

  7. Tobacco/Nicotine and Endogenous Brain Opioids

    PubMed Central

    Xue, Yue; Domino, Edward F.

    2008-01-01

    Smoking is a major public health problem with devastating health consequences. Although many cigarette smokers are able to quit, equal numbers of others cannot! Standard medications to assist in smoking cessation, such as nicotine replacement therapies and bupropion, are ineffective in many remaining smokers. Recent developments in the neurobiology of nicotine dependence have identified several neurotransmitter systems that may contribute to the process of smoking maintenance and relapse. These include: especially dopamine, but also norepinephrine, 5-hydroxytryptamine, acetylcholine, endogenous opioids, gamma-aminobutyric acid (GABA), glutamate, and endocannabinoids. The present review examines the limited contribution of the endogenous opioid system to the complex effects of nicotine/tobacco smoking. PMID:18215788

  8. Endogenous opioids and excessive alcohol consumption.

    PubMed Central

    Gianoulakis, C

    1993-01-01

    Alcohol is one of the most popular drugs of abuse in our society, and alcoholism is an important cause of absenteeism at work and a major health and social problem. Ethanol induces a number of effects, such as disinhibition, a feeling of general well-being, tolerance and physical dependence. Since there are no specific receptors with which ethanol interacts, it has been proposed that ethanol exerts its effects by altering the activity of a number of neuronal and neuroendocrine systems. Studies have indicated that alcohol influences the activity of the dopaminergic, serotonergic and opioidergic systems. The implication of the endogenous opioid system in mediating some of the effects of ethanol is indicated by the observations that some of the behavioral and pharmacological effects of ethanol are similar to those of the opiates. Indeed, injections of small amounts of morphine increased ethanol consumption, while the administration of naltrexone decreased ethanol consumption among rats and other experimental animals, in a number of experimental paradigms, suggesting that endogenous opioids may play an important role in controlling voluntary ethanol consumption. This paper reviews studies of the effects of ethanol on the activity of the endogenous opioid system and on the importance of endogenous opioids in controlling alcohol consumption. PMID:7690585

  9. Sensitization to the behavioural effects of cocaine: alterations in tyrosine hydroxylase or endogenous opioid mRNAs are not necessarily involved.

    PubMed

    Alvarez Fischer, D; Schäfer, M K; Ferger, B; Gross, S; Westermann, R; Weihe, E; Kuschinsky, K

    2001-03-01

    After repeated administration of cocaine at intervals, sensitization phenomena can be observed, so that its behavioural effects are enhanced. Since this phenomenon is long-lasting, it was of interest to study which persistent alterations in the activity of dopaminergic neurones or of endogenous opioid systems downstream of dopaminergic synapses in the basal ganglia are involved in the sensitization. Cocaine (10 mg/kg i.p.) was administered to rats on days 1, 3, 5 and 7 and saline on days 2, 4 and 6 ("repeated cocaine"), or saline was injected on days 1-6 and cocaine on day 7 ("acute cocaine"), or saline was injected on days 1-7 ("saline group"). The "repeated cocaine" schedule led to a significant sensitization to the locomotor activation produced by cocaine on day 7 or on day 17, 10 days after the end of sensitization protocol. Microdialysis in the nucleus accumbens which was performed after administration of cocaine (10 mg/kg i.p.) on day 7, or after an administration of the same dose 10 days after the last administration of cocaine, respectively, revealed significant acute increases of extracellular dopamine to about 200% of basal values. These increases were similar in "acute cocaine" and in "repeated cocaine" animals both after 7 days and after 17 days. For in situ hybridization studies, rats were sacrificed on day 7, 4.5 h after the last cocaine or saline administration. The mRNA for tyrosine hydroxylase (TH) in substantia nigra + ventral tegmental area was significantly elevated to about 140% of saline controls both in the "repeated cocaine" and the "acute cocaine" group as compared with the "saline group". In contrast, there were no differences between the three groups in the mRNAs of preprodynorphin or preproenkephalin levels measured in the nucleus accumbens (core and shell). These results suggest that sensitization phenomena to cocaine are not necessarily connected with alterations in the dopaminergic activity in the mesolimbic system or in the

  10. Central antinociception induced by ketamine is mediated by endogenous opioids and μ- and δ-opioid receptors.

    PubMed

    Pacheco, Daniela da Fonseca; Romero, Thiago Roberto Lima; Duarte, Igor Dimitri Gama

    2014-05-01

    It is generally believed that NMDA receptor antagonism accounts for most of the anesthetic and analgesic effects of ketamine, however, it interacts at multiple sites in the central nervous system, including NMDA and non-NMDA glutamate receptors, nicotinic and muscarinic cholinergic receptors, and adrenergic and opioid receptors. Interestingly, it was shown that at supraspinal sites, ketamine interacts with the μ-opioid system and causes supraspinal antinociception. In this study, we investigated the involvement of endogenous opioids in ketamine-induced central antinociception. The nociceptive threshold for thermal stimulation was measured in Swiss mice using the tail-flick test. The drugs were administered via the intracerebroventricular route. Our results demonstrated that the opioid receptor antagonist naloxone, the μ-opioid receptor antagonist clocinnamox and the δ-opioid receptor antagonist naltrindole, but not the κ-opioid receptor antagonist nor-binaltorphimine, antagonized ketamine-induced central antinociception in a dose-dependent manner. Additionally, the administration of the aminopeptidase inhibitor bestatin significantly enhanced low-dose ketamine-induced central antinociception. These data provide evidence for the involvement of endogenous opioids and μ- and δ-opioid receptors in ketamine-induced central antinociception. In contrast, κ-opioid receptors not appear to be involved in this effect. PMID:24675031

  11. Endogenous opioids: opposing stress with a cost

    PubMed Central

    Van Bockstaele, Elisabeth

    2015-01-01

    The stress response is characterized by the coordinated engagement of central and peripheral neural systems in response to life-threatening challenges. It has been conserved through evolution and is essential for survival. However, the frequent or continual elicitation of the stress response by repeated or chronic stress, respectively, results in the dysfunction of stress response circuits, ultimately leading to stress-related pathology. In an effort to best respond to stressors, yet at the same time maintain homeostasis and avoid dysfunction, stress response systems are finely balanced and co-regulated by neuromodulators that exert opposing effects. These opposing systems serve to restrain certain stress response systems and promote recovery. However, the engagement of opposing systems comes with the cost of alternate dysfunctions. This review describes, as an example of this dynamic, how endogenous opioids function to oppose the effects of the major stress neuromediator, corticotropin-releasing hormone, and promote recovery from a stress response and how these actions can both protect and be hazardous to health. PMID:26097731

  12. Endogenous opioid peptides as neurotransmitters in the rat hippocampus

    SciTech Connect

    Neumaier, J.F.

    1989-01-01

    The role of endogenous opioid peptides as neurotransmitters in the rat hippocampus was investigated by using extracellular recording and radioligand binding techniques in the hippocampal slice preparation. Synaptic conductances from endogenously released opioid peptides have been difficult to detect. This problem was approach by designing a novel assay of opioid peptide release, in which release was detected by measuring binding competition between endogenous opioids and added radioligand. Membrane depolarization displaced ({sup 3}H)-diprenorphine binding in a transient, calcium-dependent, and peptidase-sensitive manner. Autoradiographic localization of the sites of ({sup 3}H)-diprenorphine binding displacement showed that significant opioid peptide release and receptor occupancy occurred in each major subregion of the hippocampal slices. This assay method can not be used to define optimal electrical stimulation conditions for releasing endogenous opioids. The binding displacement method was extended to the study of the sigma receptor. Depolarization of hippocampal slices was found to reduce the binding of the sigma-selective radioligand ({sup 3}H)-ditolylguanidine in a transient and calcium-dependent manner with no apparent direct effects on sigma receptor affinity.

  13. Blockade of endogenous opioid neurotransmission enhances acquisition of conditioned fear in humans.

    PubMed

    Eippert, Falk; Bingel, Ulrike; Schoell, Eszter; Yacubian, Juliana; Büchel, Christian

    2008-05-21

    The endogenous opioid system is involved in fear learning in rodents, as opioid agonists attenuate and opioid antagonists facilitate the acquisition of conditioned fear. It has been suggested that an opioidergic signal, which is engaged through conditioning and acts inhibitory on unconditioned stimulus input, is the source of these effects. To clarify whether blockade of endogenous opioid neurotransmission enhances acquisition of conditioned fear in humans, and to elucidate the neural underpinnings of such an effect, we used functional magnetic resonance imaging in combination with behavioral recordings and a double-blind pharmacological intervention. All subjects underwent the same classical fear-conditioning paradigm, but subjects in the experimental group received the opioid antagonist naloxone before and during the experiment, in contrast to subjects in the control group, who received saline. Blocking endogenous opioid neurotransmission with naloxone led to more sustained responses to the unconditioned stimulus across trials, evident in both behavioral and blood oxygen level-dependent responses in pain responsive cortical regions. This effect was likely caused by naloxone blocking conditioned responses in a pain-inhibitory circuit involving opioid-rich areas such as the rostral anterior cingulate cortex, amygdala, and periaqueductal gray. Most importantly, naloxone enhanced the acquisition of fear on the behavioral level and changed the activation profile of the amygdala: whereas the control group showed rapidly decaying conditioned responses across trials, the naloxone group showed sustained conditioned responses in the amygdala. Together, these results demonstrate that in humans the endogenous opioid system has an inhibitory role in the acquisition of fear. PMID:18495880

  14. Borderline Personality Disorder: A Dysregulation of the Endogenous Opioid System?

    ERIC Educational Resources Information Center

    Bandelow, Borwin; Schmahl, Christian; Falkai, Peter; Wedekind, Dirk

    2010-01-01

    The neurobiology of borderline personality disorder (BPD) remains unclear. Dysfunctions of several neurobiological systems, including serotoninergic, dopaminergic, and other neurotransmitter systems, have been discussed. Here we present a theory that alterations in the sensitivity of opioid receptors or the availability of endogenous opioids…

  15. Borderline personality disorder: a dysregulation of the endogenous opioid system?

    PubMed

    Bandelow, Borwin; Schmahl, Christian; Falkai, Peter; Wedekind, Dirk

    2010-04-01

    The neurobiology of borderline personality disorder (BPD) remains unclear. Dysfunctions of several neurobiological systems, including serotoninergic, dopaminergic, and other neurotransmitter systems, have been discussed. Here we present a theory that alterations in the sensitivity of opioid receptors or the availability of endogenous opioids constitute part of the underlying pathophysiology of BPD. The alarming symptoms and self-destructive behaviors of the affected patients may be explained by uncontrollable and unconscious attempts to stimulate their endogenous opioid system (EOS) and the dopaminergic reward system, regardless of the possible harmful consequences. Neurobiological findings that support this hypothesis are reviewed: Frantic efforts to avoid abandonment, frequent and risky sexual contacts, and attention-seeking behavior may be explained by attempts to make use of the rewarding effects of human attachment mediated by the EOS. Anhedonia and feelings of emptiness may be an expression of reduced activity of the EOS. Patients with BPD tend to abuse substances that target mu-opioid receptors. Self-injury, food restriction, aggressive behavior, and sensation seeking may be interpreted as desperate attempts to artificially set the body to survival mode in order to mobilize the last reserves of the EOS. BPD-associated symptoms, such as substance abuse, anorexia, self-injury, depersonalization, and sexual overstimulation, can be treated successfully with opioid receptor antagonists. An understanding of the neurobiology of BPD may help in developing new treatments for patients with this severe disorder. PMID:20438240

  16. Food cravings, endogenous opioid peptides, and food intake: a review.

    PubMed

    Mercer, M E; Holder, M D

    1997-12-01

    Extensive research indicates a strong relationship between endogenous opioid peptides (EOPs) and food intake. In the present paper, we propose that food cravings act as an intervening variable in this opioid-ingestion link. Specifically, we argue that altered EOP activity may elicit food cravings which in turn may influence food consumption. Correlational support for this opioidergic theory of food cravings is provided by examining various clinical conditions (e.g. pregnancy, menstruation, bulimia, stress, depression) which are associated with altered EOP levels, intensified food cravings, and increased food intake. PMID:9468764

  17. Opioid glycopeptide analgesics derived from endogenous enkephalins and endorphins

    PubMed Central

    Li, Yingxue; Lefever, Mark R; Muthu, Dhanasekaran; Bidlack, Jean M; Bilsky, Edward J; Polt, Robin

    2012-01-01

    Over the past two decades, potent and selective analgesics have been developed from endogenous opioid peptides. Glycosylation provides an important means of modulating interaction with biological membranes, which greatly affects the pharmacodynamics and pharmacokinetics of the resulting glycopeptide analogues. Furthermore, manipulation of the membrane affinity allows penetration of cellular barriers that block efficient drug distribution, including the blood–brain barrier. Extremely potent and selective opiate agonists have been developed from endogenous peptides, some of which show great promise as drug candidates. PMID:22300099

  18. Endogenous opioids: The downside of opposing stress

    PubMed Central

    Valentino, Rita J.; Van Bockstaele, Elisabeth

    2014-01-01

    Our dynamic environment regularly exposes us to potentially life-threatening challenges or stressors. To answer these challenges and maintain homeostasis, the stress response, an innate coordinated engagement of central and peripheral neural systems is initiated. Although essential for survival, the inappropriate initiation of the stress response or its continuation after the stressor is terminated has pathological consequences that have been linked to diverse neuropsychiatric and medical diseases. Substantial individual variability exists in the pathological consequences of stressors. A theme of this Special Issue is that elucidating the basis of individual differences in resilience or its flipside, vulnerability, will greatly advance our ability to prevent and treat stress-related diseases. This can be approached by studying individual differences in “pro-stress” mediators such as corticosteroids or the hypothalamic orchestrator of the stress response, corticotropin-releasing factor. More recently, the recognition of endogenous neuromodulators with “anti-stress” activity that have opposing actions or that restrain stress-response systems suggests additional bases for individual differences in stress pathology. These “anti-stress” neuromodulators offer alternative strategies for manipulating the stress response and its pathological consequences. This review uses the major brain norepinephrine system as a model stress-response system to demonstrate how co-regulation by opposing pro-stress (corticotropin-releasing factor) and anti-stress (enkephalin) neuromodulators must be fine-tuned to produce an adaptive response to stress. The clinical consequences of tipping this fine-tuned balance in the direction of either the pro- or anti-stress systems are emphasized. Finally, that each system provides multiple points at which individual differences could confer stress vulnerability or resilience is discussed. PMID:25506603

  19. Stress-induced analgesia and endogenous opioid peptides: the importance of stress duration.

    PubMed

    Parikh, Drupad; Hamid, Abdul; Friedman, Theodore C; Nguyen, Khanh; Tseng, Andy; Marquez, Paul; Lutfy, Kabirullah

    2011-01-15

    Stress is known to elicit pain relief, a phenomenon referred to as stress-induced analgesia. Based on stress parameters, opioid and non-opioid intrinsic pain inhibitory systems can be activated. In the present study, we assessed whether changing the duration of stress would affect the involvement of endogenous opioids in antinociception elicited by swim in warm water (32 °C), known to be opioid-mediated. Using mice lacking beta-endorphin, enkephalins or dynorphins and their respective wild-type littermates, we assessed the role of each opioid peptide in antinociception induced by a short (3 min) vs. long (15 min) swim. Mice were tested for baseline hot plate latency, exposed to swim (3 or 15 min) in warm water (32 °C) and then tested for antinociception at 5, 15 and 30 min. Our results revealed that both swim paradigms induced significant antinociception in wild-type mice. However, the short swim failed to induce antinociception in beta-endorphin-deficient mice, illustrating that beta-endorphin is important in this form of stress-induced antinociception. On the other hand, antinociception elicited by the long swim was only slightly reduced in beta-endorphin-deficient mice despite pretreatment with naloxone, a non-selective opioid receptor antagonist, significantly attenuated the antinociception elicited by the long swim. Nevertheless, a delayed hyperalgesic response developed in mice lacking beta-endorphin following exposure to either swim paradigm. On the other hand, mice lacking enkephalins or dynorphins and their respective wild-type littermates expressed a comparable antinociceptive response and did not exhibit the delayed hyperalgesic response. Together, our results suggest that the endogenous opioid peptide beta-endorphin not only mediates antinociception induced by the short swim but also prevents the delayed hyperalgesic response elicited by either swim paradigm. PMID:21044625

  20. Stress-induced analgesia and endogenous opioid peptides: the importance of stress duration

    PubMed Central

    Parikh, Drupad; Hamid, Abdul; Friedman, Theodore C.; Nguyen, Khanh; Tseng, Andy; Marquez, Paul; Lutfy, Kabirullah

    2010-01-01

    Stress is known to elicit pain relief, a phenomenon referred to as stress-induced analgesia. Based on stress parameters, opioid and non-opioid intrinsic pain inhibitory systems can be activated. In the present study, we assessed whether changing the duration of stress would affect the involvement of endogenous opioids in antinociception elicited by swim in warm water (32°C), known to be opioid-mediated. Using mice lacking beta-endorphin, enkephalins or dynorphins and their respective wild-type littermates, we assessed the role of each opioid peptide in antinociception induced by a short (3 min) vs. long (15 min) swim. Mice were tested for baseline hot plate latency, exposed to swim (3 or 15 min) in warm water (32°C) and then tested for antinociception at 5, 15 and 30 min. Our results revealed that both swim paradigms induced significant antinociception in wild-type mice. However, the short swim failed to induce antinociception in beta-endorphin-deficient mice, illustrating that beta-endorphin is important in this form of stress-induced antinociception. On the other hand, antinociception elicited by the long swim was only slightly reduced in beta-endorphin-deficient mice despite pretreatment with naloxone, a non-selective opioid receptor antagonist, significantly attenuated the antinociception elicited by the long swim. Nevertheless, a delayed hyperalgesic response developed in mice lacking beta-endorphin following exposure to either swim paradigm. On the other hand, mice lacking enkephalins or dynorphins and their respective wild-type littermates expressed a comparable antinociceptive response and did not exhibit the delayed hyperalgesic response. Together, our results suggest that the endogenous opioid peptide beta-endorphin not only mediates antinociception induced by the short swim but also prevents the delayed hyperalgesic response elicited by either swim paradigm. PMID:21044625

  1. Involvement of opioid peptides in the regulation of reproduction in the prawn Penaeus indicus

    NASA Astrophysics Data System (ADS)

    Sreenivasula Reddy, P.

    The possible involvement of an endogenous opioid system in the regulation of ovarian development in the prawn Penaeus indicus was investigated. Injection of leucine-enkephalin significantly increased the ovarian index and oocyte diameter in a dose-dependent manner. In contrast, injection of methionine-enkephalin significantly decreased the ovarian index and oocyte diameters. These results provide evidence to support the hypothesis that an opioid system is involved in the regulation of reproduction in crustaceans.

  2. Opposite role of delta 1- and delta 2-opioid receptors activated by endogenous or exogenous opioid agonists on the endogenous cholecystokinin system: further evidence for delta-opioid receptor heterogeneity.

    PubMed

    Noble, F; Fournie-Zaluski, M C; Roques, B P

    1996-12-01

    Using the mouse caudate-putamen, where delta-opioid receptor subtypes have been shown to regulate adenylyl cyclase activity, we show in this study that endogenous enkephalins inhibit enzyme activity through activation of delta 1- and delta 2-opioid receptors. Thus, naltriben or 7-benzylidenenaltrexone as well as the delta-selective antagonist naltrindole (mixed delta 1 and delta 2 antagonist) antagonized inhibition of adenylyl cyclase activity induced by methionine- or leucine-enkephalin, while the micro-antagonist D-Phe-Cys-Tyr-D-Trp-Orn-Thr-Pen-Thr-NH2 (CTOP) was without effect. Furthermore, we have previously shown that activation of delta-opioid receptors increases cholecystokinin release in the central nervous system, resulting in a potentiation of micro-opioid antinociceptive responses, and the respective role of delta 1- and delta 2-opioid receptors in this facilitatory effect has now been evaluated. Activation of delta 2-opioid receptors, either by endogenous enkephalins protected from catabolism by the complete enkephalin-degrading enzyme inhibitor N-((R,S)-2-benzyl-3((S)(2-amino-4-methyl-thio) butyldithio)-1-oxopropyl)-L-phenyl-alanine benzyl ester (RB 101), or by the delta 2-selective agonist Tyr-D-Ser(O-tert-butyl)-Gly-Phe-Leu-Thr(O-tert-butyl) (BUBU), potentiated micro-opioid antinociceptive responses in the hot-plate test in mice. This effect was antagonized by a selective cholecystokinin-A antagonist. Activation of delta 1-opioid receptors by endogenous opioid peptides decreased the micro-opioid responses. These results suggest that stimulation of delta 2-opioid receptors potentiates micro-opioid analgesia in the hot-plate test in mice through an increase in endogenous cholecystokinin release, while activation of delta 1-opioid receptors could decrease it. Thus, the pre-existing physiological balance between opioid and cholecystokinin systems seems to be modulated in opposite directions depending on whether delta 1- or delta 2-opioid receptors are

  3. Opioid neurotransmission in the post-ictal analgesia: involvement of mu(1)-opioid receptor.

    PubMed

    Coimbra, N C; Freitas, R L; Savoldi, M; Castro-Souza, C; Segato, E N; Kishi, R; Weltson, A; Resende, G C

    2001-06-01

    Pentylenetetrazol (PTZ), a non-competitive antagonist that blocks GABA-mediated Cl(-) flux, was used in the present work to induce seizures in animals. The aim of this work is to study the neurochemical basis of the antinociception induced by convulsions elicited by peripheral administration of PTZ (64 mg/kg). The analgesia was measured by the tail-flick test, in eight rats per group. Convulsions were followed by significative increase in the tail-flick latencies (TFL), for at least 120 min of the post-ictal period. Peripheral administration of naltrexone (5 mg/kg, 10 mg/kg and 20 mg/kg) caused a significant decrease in the TFL in seizing animals, as compared to controls. These data were corroborated with peripheral administration of naloxonazine (10 mg/kg and 20 mg/kg), a mu(1)-opioid blocker, in the same doses used for non-specific antagonist. These results indicate that endogenous opioids may be involved in the post-ictal analgesia. The involvement of mu(1)-opioid receptor was also considered. PMID:11382405

  4. Endogenous opioids and feeding behavior: A decade of further progress (2004-2014). A Festschrift to Dr. Abba Kastin.

    PubMed

    Bodnar, Richard J

    2015-10-01

    Functional elucidation of the endogenous opioid system temporally paralleled the creation and growth of the journal, Peptides, under the leadership of its founding editor, Dr. Abba Kastin. He was prescient in publishing annual and uninterrupted reviews on Endogenous Opiates and Behavior that served as a microcosm for the journal under his stewardship. This author published a 2004 review, "Endogenous opioids and feeding behavior: a thirty-year historical perspective", summarizing research in this field between 1974 and 2003. The present review "closes the circle" by reviewing the last 10 years (2004-2014) of research examining the role of endogenous opioids and feeding behavior. The review summarizes effects upon ingestive behavior following administration of opioid receptor agonists, in opioid receptor knockout animals, following administration of general opioid receptor antagonists, following administration of selective mu, delta, kappa and ORL-1 receptor antagonists, and evaluating opioid peptide and opioid receptor changes in different food intake models. PMID:25843025

  5. Endogenous opioids mediate the sexual inhibition but not the drug hypersensitivity induced by sexual satiation in male rats.

    PubMed

    Garduño-Gutiérrez, René; Guadarrama-Bazante, Lorena; León-Olea, Martha; Rodríguez-Manzo, Gabriela

    2013-06-01

    Ejaculation promotes endogenous opioid release. Copulation to exhaustion produces several enduring behavioral and physiological changes, among which a long-lasting sexual behavior inhibition and generalized drug hypersensitivity are the most conspicuous. Because copulation to exhaustion involves multiple successive ejaculations, in this work we hypothesized that the endogenous opioids released by multiple ejaculations during the copulation to exhaustion process might mediate the abovementioned sexual satiation-induced changes. To test this hypothesis, sexually experienced male rats were injected with the opioid receptor antagonist naltrexone before copulation to exhaustion and were tested for sexual behavior or drug hypersensitivity 24 h later. The latter was assessed by the appearance of the flat body posture sign of the serotonergic syndrome, in response to doses of the 5-hydroxytryptamine-1A (5-HT1A) receptor agonist 8-hydroxy-2-di-n-propylamino-tetralin (8-OH-DPAT), lower than those normally inducing this sign. The effect of administering naltrexone to already sexually exhausted animals (i.e., 24 h after the sexual satiation process) on both responses was also tested. Results showed that endogenous opioids mediate the establishment and maintenance of the long-lasting sexual behavior inhibition but not the drug hypersensitivity (to 8-OH-DPAT) characteristic of sexually exhausted male rats. It is concluded that although both phenomena appear as a consequence of copulation to satiation and follow a same time course of recovery, they are produced by distinct mechanisms. PMID:23544597

  6. Single housing during early adolescence causes time-, area- and peptide-specific alterations in endogenous opioids of rat brain

    PubMed Central

    Granholm, L; Roman, E; Nylander, I

    2015-01-01

    BACKGROUND AND PURPOSE A number of experimental procedures require single housing to assess individual behaviour and physiological responses to pharmacological treatments. The endogenous opioids are closely linked to social interaction, especially early in life, and disturbance in the social environment may affect opioid peptides and thereby confound experimental outcome. The aim of the present study was to examine time-dependent effects of single housing on opioid peptides in rats. EXPERIMENTAL APPROACH Early adolescent Sprague Dawley rats (post-natal day 22) were subjected to either prolonged (7 days) or short (30 min) single housing. Several brain regions were dissected and immunoreactive levels of Met-enkephalin-Arg6Phe7 (MEAP), dynorphin B and nociception/orphanin FQ, as well as serum corticosterone were measured using RIA. KEY RESULTS Prolonged single housing reduced immunoreactive MEAP in hypothalamus, cortical regions, amygdala, substantia nigra and periaqueductal grey. Short single housing resulted in an acute stress response as indicated by high levels of corticosterone, accompanied by elevated immunoreactive nociceptin/orphanin FQ in medial prefrontal cortex, nucleus accumbens and amygdala. Neither short nor prolonged single housing affected dynorphin B. CONCLUSIONS AND IMPLICATIONS Disruption in social environmental conditions of rats, through single housing during early adolescence, resulted in time-, area- and peptide-specific alterations in endogenous opioids in the brain. These results provide further evidence for an association between early life social environment and opioids. Furthermore, the results have implications for experimental design; in any pharmacological study involving opioid peptides, it is important to distinguish between effects induced by housing and treatment. LINKED ARTICLES This article is part of a themed section on Opioids: New Pathways to Functional Selectivity. To view the other articles in this section visit http

  7. Interacting Effects of Trait Anger and Acute Anger Arousal on Pain: The Role of Endogenous Opioids

    PubMed Central

    Bruehl, Stephen; Burns, John W.; Chung, Ok Yung; Chont, Melissa

    2011-01-01

    Objective Elevated trait anger (TRANG; heightened propensity to experience anger) is associated with greater pain responsiveness, possibly via associations with deficient endogenous opioid analgesia. This study tested whether acute anger arousal moderates the impact of TRANG on endogenous opioid analgesia. Methods 94 chronic low back pain participants (LBP) and 85 healthy controls received opioid blockade (8mg naloxone) or placebo in randomized, counterbalanced order in separate sessions. Participants were randomly assigned to undergo either a 5-minute anger recall interview (ARI) or neutral control interview (NCI) across both drug conditions. Immediately following the assigned interview, participants engaged sequentially in finger pressure and ischemic forearm pain tasks. Opioid blockade effects were derived (blockade minus placebo condition pain ratings) to index opioid antinociceptive function. Results Placebo condition TRANG × Interview interactions (p’s<.05) indicated that TRANG was hyperalgesic only in the context of acute anger arousal (ARI condition; p’s<.05). Blockade effect analyses suggested these hyperalgesic effects were related to deficient opioid analgesia. Significant TRANG × Interview interactions (p’s<.05) for both pain tasks indicated that elevated TRANG was associated with smaller blockade effects (less endogenous opioid analgesia) only in the ARI condition (p’s<.05). Results for ischemic task VAS intensity blockade effects suggested that associations between TRANG and impaired opioid function were most evident in LBP participants when experiencing anger (Type × Interview × TRANG Interaction; p<.05). Conclusions Results indicate that hyperalgesic effects of TRANG are most prominent when acute anger is aroused, and suggest that endogenous opioid mechanisms contribute. PMID:21862829

  8. Endogenous Opioid Activity in the Anterior Cingulate Cortex Is Required for Relief of Pain

    PubMed Central

    Navratilova, Edita; Xie, Jennifer Yanhua; Meske, Diana; Qu, Chaoling; Morimura, Kozo; Okun, Alec; Arakawa, Naohisa; Ossipov, Michael; Fields, Howard L.

    2015-01-01

    Pain is aversive, and its relief elicits reward mediated by dopaminergic signaling in the nucleus accumbens (NAc), a part of the mesolimbic reward motivation pathway. How the reward pathway is engaged by pain-relieving treatments is not known. Endogenous opioid signaling in the anterior cingulate cortex (ACC), an area encoding pain aversiveness, contributes to pain modulation. We examined whether endogenous ACC opioid neurotransmission is required for relief of pain and subsequent downstream activation of NAc dopamine signaling. Conditioned place preference (CPP) and in vivo microdialysis were used to assess negative reinforcement and NAc dopaminergic transmission. In rats with postsurgical or neuropathic pain, blockade of opioid signaling in the rostral ACC (rACC) inhibited CPP and NAc dopamine release resulting from non-opioid pain-relieving treatments, including peripheral nerve block or spinal clonidine, an α2-adrenergic agonist. Conversely, pharmacological activation of rACC opioid receptors of injured, but not pain-free, animals was sufficient to stimulate dopamine release in the NAc and produce CPP. In neuropathic, but not sham-operated, rats, systemic doses of morphine that did not affect withdrawal thresholds elicited CPP and NAc dopamine release, effects that were prevented by blockade of ACC opioid receptors. The data provide a neural explanation for the preferential effects of opioids on pain affect and demonstrate that engagement of NAc dopaminergic transmission by non-opioid pain-relieving treatments depends on upstream ACC opioid circuits. Endogenous opioid signaling in the ACC appears to be both necessary and sufficient for relief of pain aversiveness. PMID:25948274

  9. Examining the Role of Endogenous Opioids in Learned Odor-Stroke Associations in Infant Rats

    PubMed Central

    Roth, Tania L.; Sullivan, Regina M.

    2006-01-01

    Maternal touch profoundly regulates infant neural and behavioral development, and supports learned odor associations necessary for infant attachment. Endogenous opioids are well characterized to mediate the calming and analgesic properties of maternal touch; yet their role in learned odor-touch associations is unknown. We administered naltrexone, an opioid receptor antagonist, before or immediately following classical conditioning with peppermint odor and tactile stimulation (stroking) in rat neonates. Results indicate odor-stroke conditioning produces odor preferences facilitated by endogenous opioids during acquisition and memory consolidation. These results provide additional evidence for the modulatory role of opioids in neonate learning and memory. Disturbances to this system may alter the impact of touch on infant development, particularly in the realm of learning necessary for attachment. PMID:16381030

  10. Role of endogenous opioid peptides in the pathogenesis of motion sickness

    SciTech Connect

    Yasnetsov, V.V.; Il'ina, S.L.; Karsanova, S.K.; Medvedev, O.S.; Mokrousova, A.V.; Sabaev, V.V.; Shashkov, V.A.; Tigranyan, R.A.; Vakulina, O.P

    1986-01-01

    This paper examines the pathogenesis of motion sickness and the role of the various neurochemical systems of the body in the genesis of the condition. It has been shown that the endogenous opioid system participates in the genesis of several pathological processes; this was the motivation for the study. The plasma beta-endorphin level was determined in samples from 19 clinically healthy males. Considering the positive prophylactic and therapeutic effect of naloxone against motion sickness it can be postulated that endogenous opioid peptides participate in the genesis of the vestibulo-autonomic disorders in motion sickness.

  11. Downregulation of the endogenous opioid peptides in the dorsal striatum of human alcoholics

    PubMed Central

    Sarkisyan, Daniil; Hussain, Muhammad Z.; Watanabe, Hiroyuki; Kononenko, Olga; Bazov, Igor; Zhou, Xingwu; Yamskova, Olga; Krishtal, Oleg; Karpyak, Victor M.; Yakovleva, Tatiana; Bakalkin, Georgy

    2015-01-01

    The endogenous opioid peptides dynorphins and enkephalins may be involved in brain-area specific synaptic adaptations relevant for different stages of an addiction cycle. We compared the levels of prodynorphin (PDYN) and proenkephalin (PENK) mRNAs (by qRT-PCR), and dynorphins and enkephalins (by radioimmunoassay) in the caudate nucleus and putamen between alcoholics and control subjects. We also evaluated whether PDYN promoter variant rs1997794 associated with alcoholism affects PDYN expression. Postmortem specimens obtained from 24 alcoholics and 26 controls were included in final statistical analysis. PDYN mRNA and Met-enkephalin-Arg-Phe, a marker of PENK were downregulated in the caudate of alcoholics, while PDYN mRNA and Leu-enkephalin-Arg, a marker of PDYN were decreased in the putamen of alcoholics carrying high risk rs1997794 C allele. Downregulation of opioid peptides in the dorsal striatum may contribute to development of alcoholism including changes in goal directed behavior and formation of a compulsive habit in alcoholics. PMID:26029055

  12. Neuropeptide Regulation of Fear and Anxiety: Implications of Cholecystokinin, Endogenous Opioids, and Neuropeptide Y

    PubMed Central

    Bowers, Mallory E.; Choi, Dennis C.; Ressler, Kerry J.

    2012-01-01

    The neural circuitry of fear likely underlies anxiety and fear-related disorders such as specific and social phobia, panic disorder, and posttraumatic stress disorder. The primary pharmacological treatments currently utilized for these disorders include benzodiazepines, which act on the GABAergic receptor system, and antidepressants, which modulate the monamine systems. However, recent work on the regulation of fear neural circuitry suggests that specific neuropeptide modulation of this system is of critical importance. Recent reviews have examined the roles of the hypothalamic-pituitary-adrenal axis neuropeptides as well as the roles of neurotrophic factors in regulating fear. The present review, instead, will focus on three neuropeptide systems which have received less attention in recent years but which are clearly involved in regulating fear and its extinction. The endogenous opioid system, particularly activating the μ opioid receptors, has been demonstrated to regulate fear expression and extinction, possibly through functioning as an error signal within the amygdala to mark unreinforced conditioned stimuli. The cholecystokinin (CCK) system initially led to much excitement through its potential role in panic disorder. More recent work in the CCK neuropeptide pathway suggests that it may act in concordance with the endogenous cannabinoid system in the modulation of fear inhibition and extinction. Finally, older as well as very recent data suggests that neuropeptide Y (NPY) may play a very interesting role in counteracting stress effects, enhancing extinction, and enhancing resilience in fear and stress preclinical models. Future work in understanding the mechanisms of neuropeptide functioning, particularly within well-known behavioral circuits, are likely to provide fascinating new clues into the understanding of fear behavior as well as suggesting novel therapeutics for treating disorders of anxiety and fear dysregulation. PMID:22429904

  13. Social touch modulates endogenous μ-opioid system activity in humans.

    PubMed

    Nummenmaa, Lauri; Tuominen, Lauri; Dunbar, Robin; Hirvonen, Jussi; Manninen, Sandra; Arponen, Eveliina; Machin, Anna; Hari, Riitta; Jääskeläinen, Iiro P; Sams, Mikko

    2016-09-01

    In non-human primates, opioid-receptor blockade increases social grooming, and the endogenous opioid system has therefore been hypothesized to support maintenance of long-term relationships in humans as well. Here we tested whether social touch modulates opioidergic activation in humans using in vivo positron emission tomography (PET). Eighteen male participants underwent two PET scans with [11C]carfentanil, a ligand specific to μ-opioid receptors (MOR). During the social touch scan, the participants lay in the scanner while their partners caressed their bodies in a non-sexual fashion. In the baseline scan, participants lay alone in the scanner. Social touch triggered pleasurable sensations and increased MOR availability in the thalamus, striatum, and frontal, cingulate, and insular cortices. Modulation of activity of the opioid system by social touching might provide a neurochemical mechanism reinforcing social bonds between humans. PMID:27238727

  14. The endogenous opioid system in cocaine addiction: what lessons have opioid peptide and receptor knockout mice taught us?

    PubMed Central

    Yoo, Ji Hoon; Kitchen, Ian; Bailey, Alexis

    2012-01-01

    Cocaine addiction has become a major concern in the UK as Britain tops the European ‘league table’ for cocaine abuse. Despite its devastating health and socio-economic consequences, no effective pharmacotherapy for treating cocaine addiction is available. Identifying neurochemical changes induced by repeated drug exposure is critical not only for understanding the transition from recreational drug use towards compulsive drug abuse but also for the development of novel targets for the treatment of the disease and especially for relapse prevention. This article focuses on the effects of chronic cocaine exposure and withdrawal on each of the endogenous opioid peptides and receptors in rodent models. In addition, we review the studies that utilized opioid peptide or receptor knockout mice in order to identify and/or clarify the role of different components of the opioid system in cocaine-addictive behaviours and in cocaine-induced alterations of brain neurochemistry. The review of these studies indicates a region-specific activation of the µ-opioid receptor system following chronic cocaine exposure, which may contribute towards the rewarding effect of the drug and possibly towards cocaine craving during withdrawal followed by relapse. Cocaine also causes a region-specific activation of the κ-opioid receptor/dynorphin system, which may antagonize the rewarding effect of the drug, and at the same time, contribute to the stress-inducing properties of the drug and the triggering of relapse. These conclusions have important implications for the development of effective pharmacotherapy for the treatment of cocaine addiction and the prevention of relapse. PMID:22428846

  15. Blunted Endogenous Opioid Release Following an Oral Amphetamine Challenge in Pathological Gamblers

    PubMed Central

    Mick, Inge; Myers, Jim; Ramos, Anna C; Stokes, Paul R A; Erritzoe, David; Colasanti, Alessandro; Gunn, Roger N; Rabiner, Eugenii A; Searle, Graham E; Waldman, Adam D; Parkin, Mark C; Brailsford, Alan D; Galduróz, José C F; Bowden-Jones, Henrietta; Clark, Luke; Nutt, David J; Lingford-Hughes, Anne R

    2016-01-01

    Pathological gambling is a psychiatric disorder and the first recognized behavioral addiction, with similarities to substance use disorders but without the confounding effects of drug-related brain changes. Pathophysiology within the opioid receptor system is increasingly recognized in substance dependence, with higher mu-opioid receptor (MOR) availability reported in alcohol, cocaine and opiate addiction. Impulsivity, a risk factor across the addictions, has also been found to be associated with higher MOR availability. The aim of this study was to characterize baseline MOR availability and endogenous opioid release in pathological gamblers (PG) using [11C]carfentanil PET with an oral amphetamine challenge. Fourteen PG and 15 healthy volunteers (HV) underwent two [11C]carfentanil PET scans, before and after an oral administration of 0.5 mg/kg of d-amphetamine. The change in [11C]carfentanil binding between baseline and post-amphetamine scans (ΔBPND) was assessed in 10 regions of interest (ROI). MOR availability did not differ between PG and HV groups. As seen previously, oral amphetamine challenge led to significant reductions in [11C]carfentanil BPND in 8/10 ROI in HV. PG demonstrated significant blunting of opioid release compared with HV. PG also showed blunted amphetamine-induced euphoria and alertness compared with HV. Exploratory analysis revealed that impulsivity positively correlated with caudate baseline BPND in PG only. This study provides the first evidence of blunted endogenous opioid release in PG. Our findings are consistent with growing evidence that dysregulation of endogenous opioids may have an important role in the pathophysiology of addictions. PMID:26552847

  16. Blunted Endogenous Opioid Release Following an Oral Amphetamine Challenge in Pathological Gamblers.

    PubMed

    Mick, Inge; Myers, Jim; Ramos, Anna C; Stokes, Paul R A; Erritzoe, David; Colasanti, Alessandro; Gunn, Roger N; Rabiner, Eugenii A; Searle, Graham E; Waldman, Adam D; Parkin, Mark C; Brailsford, Alan D; Galduróz, José C F; Bowden-Jones, Henrietta; Clark, Luke; Nutt, David J; Lingford-Hughes, Anne R

    2016-06-01

    Pathological gambling is a psychiatric disorder and the first recognized behavioral addiction, with similarities to substance use disorders but without the confounding effects of drug-related brain changes. Pathophysiology within the opioid receptor system is increasingly recognized in substance dependence, with higher mu-opioid receptor (MOR) availability reported in alcohol, cocaine and opiate addiction. Impulsivity, a risk factor across the addictions, has also been found to be associated with higher MOR availability. The aim of this study was to characterize baseline MOR availability and endogenous opioid release in pathological gamblers (PG) using [(11)C]carfentanil PET with an oral amphetamine challenge. Fourteen PG and 15 healthy volunteers (HV) underwent two [(11)C]carfentanil PET scans, before and after an oral administration of 0.5 mg/kg of d-amphetamine. The change in [(11)C]carfentanil binding between baseline and post-amphetamine scans (ΔBPND) was assessed in 10 regions of interest (ROI). MOR availability did not differ between PG and HV groups. As seen previously, oral amphetamine challenge led to significant reductions in [(11)C]carfentanil BPND in 8/10 ROI in HV. PG demonstrated significant blunting of opioid release compared with HV. PG also showed blunted amphetamine-induced euphoria and alertness compared with HV. Exploratory analysis revealed that impulsivity positively correlated with caudate baseline BPND in PG only. This study provides the first evidence of blunted endogenous opioid release in PG. Our findings are consistent with growing evidence that dysregulation of endogenous opioids may have an important role in the pathophysiology of addictions. PMID:26552847

  17. Truncated mu opioid GPCR variant involvement in opioid-dependent and opioid-independent pain modulatory systems within the CNS.

    PubMed

    Marrone, Gina F; Grinnell, Steven G; Lu, Zhigang; Rossi, Grace C; Le Rouzic, Valerie; Xu, Jin; Majumdar, Susruta; Pan, Ying-Xian; Pasternak, Gavril W

    2016-03-29

    The clinical management of severe pain depends heavily on opioids acting through mu opioid receptors encoded by the Oprm1 gene, which undergoes extensive alternative splicing. In addition to generating a series of prototypic seven transmembrane domain (7TM) G protein-coupled receptors (GPCRs), Oprm1 also produces a set of truncated splice variants containing only six transmembrane domains (6TM) through which selected opioids such as IBNtxA (3'-iodobenzoyl-6β-naltrexamide) mediate a potent analgesia without many undesirable effects. Although morphine analgesia is independent of these 6TM mu receptor isoforms, we now show that the selective loss of the 6TM variants in a knockout model eliminates the analgesic actions of delta and kappa opioids and of α2-adrenergic compounds, but not cannabinoid, neurotensin, or muscarinic drugs. These observations were confirmed by using antisense paradigms. Despite their role in analgesia, loss of the 6TM variants were not involved with delta opioid-induced seizure activity, aversion to the kappa drug U50, 488H, or α2-mediated hypolocomotion. These observations support the existence of parallel opioid and nonopioid pain modulatory systems and highlight the ability to dissociate unwanted delta, kappa1, and α2 actions from analgesia. PMID:26976581

  18. Evidence of CNIH3 involvement in opioid dependence

    PubMed Central

    Nelson, Elliot C.; Agrawal, Arpana; Heath, Andrew C.; Bogdan, Ryan; Sherva, Richard; Zhang, Bo; Al-Hasani, Ream; Bruchas, Michael R.; Chou, Yi-Ling; Demers, Catherine H.; Carey, Caitlin E.; Conley, Emily D.; Fakira, Amanda K.; Farrer, Lindsay A.; Goate, Alison; Gordon, Scott; Henders, Anjali K.; Hesselbrock, Victor; Kapoor, Manav; Lynskey, Michael T.; Madden, Pamela A.F.; Moron, Jose A.; Rice, John P.; Saccone, Nancy L.; Schwab, Sibylle G.; Shand, Fiona L.; Todorov, Alexandre A.; Wallace, Leanne; Wang, Ting; Wray, Naomi R.; Zhou, Xin; Degenhardt, Louisa; Martin, Nicholas G.; Hariri, Ahmad R.; Kranzler, Henry R.; Gelernter, Joel; Bierut, Laura J.; Clark, David J.; Montgomery, Grant W.

    2015-01-01

    Opioid dependence, a severe addictive disorder and major societal problem, has been demonstrated to be moderately heritable. We conducted a genome-wide association study in Comorbidity and Trauma Study data comparing opioid dependent daily injectors (N=1167) with opioid misusers who never progressed to daily injection (N=161). The strongest associations, observed for CNIH3 SNPs, were confirmed in two independent samples, the Yale-Penn genetic studies of opioid, cocaine, and alcohol dependence and the Study of Addiction: Genetics and Environment, which both contain non-dependent opioid misusers and opioid dependent individuals. Meta-analyses found 5 genome-wide significant CNIH3 SNPs. The A allele of rs10799590, the most highly associated SNP, was robustly protective [p=4.30E-9; OR 0.64 (95%CI 0.55 – 0.74)]. Epigenetic annotation predicts that this SNP is functional in fetal brain. Neuroimaging data from the Duke Neurogenetics Study (N=312) provide evidence of this SNP’s in vivo functionality; rs10799590 A allele carriers displayed significantly greater right amygdala habituation to threat-related facial expressions, a phenotype associated with resilience to psychopathology. Computational genetic analyses of physical dependence on morphine across 23 mouse strains yielded significant correlations for haplotypes in CNIH3 and functionally-related genes. These convergent findings support CNIH3 involvement in the pathophysiology of opioid dependence complementing prior studies implicating the AMPA glutamate system. PMID:26239289

  19. Evidence of CNIH3 involvement in opioid dependence.

    PubMed

    Nelson, E C; Agrawal, A; Heath, A C; Bogdan, R; Sherva, R; Zhang, B; Al-Hasani, R; Bruchas, M R; Chou, Y-L; Demers, C H; Carey, C E; Conley, E D; Fakira, A K; Farrer, L A; Goate, A; Gordon, S; Henders, A K; Hesselbrock, V; Kapoor, M; Lynskey, M T; Madden, P A F; Moron, J A; Rice, J P; Saccone, N L; Schwab, S G; Shand, F L; Todorov, A A; Wallace, L; Wang, T; Wray, N R; Zhou, X; Degenhardt, L; Martin, N G; Hariri, A R; Kranzler, H R; Gelernter, J; Bierut, L J; Clark, D J; Montgomery, G W

    2016-05-01

    Opioid dependence, a severe addictive disorder and major societal problem, has been demonstrated to be moderately heritable. We conducted a genome-wide association study in Comorbidity and Trauma Study data comparing opioid-dependent daily injectors (N=1167) with opioid misusers who never progressed to daily injection (N=161). The strongest associations, observed for CNIH3 single-nucleotide polymorphisms (SNPs), were confirmed in two independent samples, the Yale-Penn genetic studies of opioid, cocaine and alcohol dependence and the Study of Addiction: Genetics and Environment, which both contain non-dependent opioid misusers and opioid-dependent individuals. Meta-analyses found five genome-wide significant CNIH3 SNPs. The A allele of rs10799590, the most highly associated SNP, was robustly protective (P=4.30E-9; odds ratio 0.64 (95% confidence interval 0.55-0.74)). Epigenetic annotation predicts that this SNP is functional in fetal brain. Neuroimaging data from the Duke Neurogenetics Study (N=312) provide evidence of this SNP's in vivo functionality; rs10799590 A allele carriers displayed significantly greater right amygdala habituation to threat-related facial expressions, a phenotype associated with resilience to psychopathology. Computational genetic analyses of physical dependence on morphine across 23 mouse strains yielded significant correlations for haplotypes in CNIH3 and functionally related genes. These convergent findings support CNIH3 involvement in the pathophysiology of opioid dependence, complementing prior studies implicating the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) glutamate system. PMID:26239289

  20. Supraspinal peroxynitrite modulates pain signaling by suppressing the endogenous opioid pathway.

    PubMed

    Little, Joshua W; Chen, Zhoumou; Doyle, Timothy; Porreca, Frank; Ghaffari, Mahsa; Bryant, Leesa; Neumann, William L; Salvemini, Daniela

    2012-08-01

    Peroxynitrite (PN, ONOO(-)) is a potent oxidant and nitrating agent that contributes to pain through peripheral and spinal mechanisms, but its supraspinal role is unknown. We present evidence here that PN in the rostral ventromedial medulla (RVM) is essential for descending nociceptive modulation in rats during inflammatory and neuropathic pain through PN-mediated suppression of opioid signaling. Carrageenan-induced thermal hyperalgesia was associated with increased 3-nitrotyrosine (NT), a PN biomarker, in the RVM. Furthermore, intra-RVM microinjections of the PN decomposition catalyst Fe(III)-5,10,15,20-tetrakis(N-methyl-pyridinium-4-yl)porphyrin (FeTMPyP(5+)) dose-dependently reversed this thermal hyperalgesia. These effects of FeTMPyP(5+) were abrogated by intra-RVM naloxone, implicating potential interplay between PN and opioids. In support, we identified NT colocalization with the endogenous opioid enkephalin (ENK) in the RVM during thermal hyperalgesia, suggesting potential in situ interactions. To address the functional significance of such interactions, we exposed methionine-enkephalin (MENK) to PN and identified the major metabolite, 3-nitrotyrosine-methionine-sulfoxide (NSO)-MENK, using liquid chromatography-mass spectrometry. Next, we isolated, purified, and tested NSO-MENK for opioid receptor binding affinity and analgesic effects. Compared to MENK, this NSO-MENK metabolite lacked appreciable binding affinity for δ, μ, and κ opioid receptors. Intrathecal injection of NSO-MENK in rats did not evoke antinociception, suggesting that PN-mediated chemical modifications of ENK suppress opioid signaling. When extended to chronic pain, intra-RVM FeTMPyP(5+) produced naloxone-sensitive reversal of mechanical allodynia in rats following chronic constriction injury of the sciatic nerve. Collectively, our data reveal the central role of PN in RVM descending facilitation during inflammatory and neuropathic pain potentially through anti-opioid activity. PMID

  1. Sensory Neuropeptides and Endogenous Opioids Expression in Human Dental Pulp with Asymptomatic Inflammation: In Vivo Study

    PubMed Central

    Chavarria-Bolaños, Daniel; Flores-Reyes, Hector; Lombana-Sanchez, Nelson; Cerda-Cristerna, Bernardino; Pozos-Guillen, Amaury

    2015-01-01

    Purpose. This study quantified the expression of substance P (SP), calcitonin gene-related peptide (CGRP), β-endorphins (β-End), and methionine-enkephalin (Met-Enk) in human dental pulp following orthodontic intrusion. Methods. Eight patients were selected according to preestablished inclusion criteria. From each patient, two premolars (indicated for extraction due to orthodontic reasons) were randomly assigned to two different groups: the asymptomatic inflammation group (EXPg), which would undergo controlled intrusive force for seven days, and the control group (CTRg), which was used to determine the basal levels of each substance. Once extracted, dental pulp tissue was prepared to determine the expression levels of both neuropeptides and endogenous opioids by radioimmunoassay (RIA). Results. All samples from the CTRg exhibited basal levels of both neuropeptides and endogenous opioids. By day seven, all patients were asymptomatic, even when all orthodontic-intrusive devices were still active. In the EXPg, the SP and CGRP exhibited statistically significant different levels. Although none of the endogenous opioids showed statistically significant differences, they all expressed increasing trends in the EXPg. Conclusions. SP and CGRP were identified in dental pulp after seven days of controlled orthodontic intrusion movement, even in the absence of pain. PMID:26538838

  2. Involvement of μ-opioid receptors in antinociceptive action of botulinum toxin type A.

    PubMed

    Drinovac, V; Bach-Rojecky, L; Matak, I; Lacković, Z

    2013-07-01

    Botulinum toxin A (BTX-A) is approved for treatment of chronic migraine and has been investigated in various other painful conditions. Recent evidence demonstrated retrograde axonal transport and suggested the involvement of CNS in antinociceptive effect of BTX-A. However, the mechanism of BTX-A central antinociceptive action is unknown. In this study we investigated the potential role of opioid receptors in BTX-A's antinociceptive activity. In formalin-induced inflammatory pain we assessed the effect of opioid antagonists on antinociceptive activity of BTX-A. Naltrexone was injected subcutaneously (0.02-2 mg/kg) or intrathecally (0.07 μg/10 μl-350 μg/10 μl), while selective μ-antagonist naloxonazine was administered intraperitoneally (5 mg/kg) prior to nociceptive testing. The influence of naltrexone (2 mg/kg s.c.) on BTX-A antinociceptive activity was examined additionally in an experimental neuropathy induced by partial sciatic nerve transection. To investigate the effects of naltrexone and BTX-A on neuronal activation in spinal cord, c-Fos expression was immunohistochemically examined in a model of formalin-induced pain. Antinociceptive effects of BTX-A in formalin and sciatic nerve transection-induced pain were prevented by non-selective opioid antagonist naltrexone. Similarly, BTX-A-induced pain reduction was abolished by low dose of intrathecal naltrexone and by selective μ-antagonist naloxonazine. BTX-A-induced decrease in dorsal horn c-Fos expression was prevented by naltrexone. Prevention of BTX-A effects on pain and c-Fos expression by opioid antagonists suggest that the central antinociceptive action of BTX-A might be associated with the activity of endogenous opioid system (involving μ-opioid receptor). These results provide first insights into the mechanism of BTX-A's central antinociceptive activity. PMID:23499661

  3. Endogenous opioids modify dyspnoea during treadmill exercise in patients with COPD.

    PubMed

    Mahler, D A; Murray, J A; Waterman, L A; Ward, J; Kraemer, W J; Zhang, X; Baird, J C

    2009-04-01

    Exogenous opioid drugs, such as morphine, relieve breathlessness. The present study hypothesis was that endogenous opioids, released during the stress of exercise, modify dyspnoea in patients with chronic obstructive pulmonary disease. After familiarisation, patients performed an incremental treadmill exercise test followed by constant work on the treadmill for 10 min. At subsequent visits (2 to 3 days apart), patients received two puffs of albuterol, had a catheter placed in an arm vein for removal of blood to measure beta-endorphin immunoreactivity, received normal saline or 10 mg of naloxone intravenously in randomised order, and then performed high-intensity constant work rate exercise on the treadmill. The mean+/-sd age of the 17 patients (eight females and nine males) was 63+/-7 yrs, and post-bronchodilator forced expiratory volume in one second was 50+/-17% predicted. In both conditions, beta-endorphin levels increased three-fold from rest to end-exercise. The regression slope of breathlessness as a function of oxygen consumption (primary outcome), mean ratings of breathlessness throughout exercise and peak ratings of breathlessness were significantly higher with naloxone than normal saline. There were no differences in physiological responses throughout exercise between conditions. In conclusion, endogenous opioids modify dyspnoea during treadmill exercise in patients with chronic obstructive pulmonary disease by apparent alteration of central perception. PMID:19213787

  4. Possible role of a dysregulation of the endogenous opioid system in antisocial personality disorder.

    PubMed

    Bandelow, Borwin; Wedekind, Dirk

    2015-11-01

    Around half the inmates in prison institutions have antisocial personality disorder (ASPD). A recent theory has proposed that a dysfunction of the endogenous opioid system (EOS) underlies the neurobiology of borderline personality disorder (BPD). In the present theoretical paper, based on a comprehensive database and hand search of the relevant literature, this hypothesis is extended to ASPD, which may be the predominant expression of EOS dysfunction in men, while the same pathology underlies BPD in women. According to evidence from human and animal studies, the problematic behaviours of persons with antisocial, callous, or psychopathic traits may be seen as desperate, unconscious attempts to stimulate their deficient EOS, which plays a key role in brain reward circuits. If the needs of this system are not being met, the affected persons experience dysphoric mood, discomfort, or irritability, and strive to increase binding of endogenous opioids to receptors by using the rewarding effects of aggression by exertion of physical or manipulative power on others, by abusing alcohol or substances that have the reward system as target, by creating an "endorphin rush" by self-harm, by increasing the frequency of their sexual contacts, or by impulsive actions and sensation seeking. Symptoms associated with ASPD can be treated with opioid antagonists like naltrexone, naloxone, or nalmefene. PMID:26250442

  5. Release of endogenous opioids from duodenal enteroendocrine cells requires Trpm5

    PubMed Central

    Kokrashvili, Zaza; Rodriguez, Deniliz; Yevshayeva, Valeriya; Zhou, Hang; Margolskee, Robert F

    2009-01-01

    Background & Aims Enteroendocrine cells, the largest and most diverse population of mammalian endocrine cells, comprise a number of different cell types in the gut mucosa that produce, store, and secrete small molecules, peptides and/or larger proteins that regulate many aspects of gut physiology. Little is known about less-typical endocrine cells in the intestinal mucosa that do not contain secretory granules, such as brush or caveolated cells. We studied a subset of these enteroendocrine cells in duodenum that produce several peptides, including endogenous opioids, and that also express the Trpm5 cation channel. Methods We studied expression patterns of Trpm5 and other molecules by immunohistochemical and ELISA analyses of intestinal tissues from transgenic mice that express green fluorescent protein from theTrpm5 promoter, as well as wild-type and Trpm5-null mice. Results We describe a type of enteroendocrine cell in mouse duodenum that is defined by the presence of the Trpm5, that does not contain typical secretory granules, yet expresses endogenous opioids (β-endorphin and Met-enkephalin) and uroguanylin in apical compartments close to the lumen of the gut. Conclusion Solitary chemosensory cells that co-express β-endorphin, Met-enkephalin, uroguanylin and Trpm5 exist in mouse duodenum. These cells are likely to secrete the bioactive peptides into the intestinal lumen in response to dietary factors; release of the opioid peptides requires the Trpm5 ion channel. PMID:19272386

  6. Effects of genetic deletion of endogenous opioid system components on the reinstatement of cocaine-seeking behavior in mice.

    PubMed

    Gutiérrez-Cuesta, Javier; Burokas, Aurelijus; Mancino, Samantha; Kummer, Sami; Martín-García, Elena; Maldonado, Rafael

    2014-12-01

    The repeated cycles of cessation of consumption and relapse remain the major clinical concern in treating drug addiction. The endogenous opioid system is a crucial component of the reward circuit that participates in the adaptive changes leading to relapse in the addictive processes. We have used genetically modified mice to evaluate the involvement of μ-opioid receptor (MOR) and δ-opioid receptor (DOR) and their main endogenous ligands, the enkephalins derived from proenkephalin (PENK) and prodynorphin (PDYN), in the reinstatement of cocaine-seeking behavior. Constitutive knockout mice of MOR, DOR, PENK, and PDYN, and their wild-type littermates were trained to self-administer cocaine or to seek for palatable food, followed by a period of extinction and finally tested on a cue-induced reinstatement of seeking behavior. The four lines of knockout mice acquired operant cocaine self-administration behavior, although DOR and PENK knockout mice showed less motivation for cocaine than wild-type littermates. Moreover, cue-induced relapse was significantly decreased in MOR and DOR knockout mice. In contrast, PDYN knockout mice showed a slower extinction and increased relapse than wild-type littermates. C-Fos expression analysis revealed differential activation in brain areas related with memory and reward in these knockout mice. No differences were found in any of the four genotypes in operant responding to obtain palatable food, indicating that the changes revealed in knockout mice were not due to unspecific deficit in operant performance. Our results indicate that MOR, DOR, and PDYN have a differential role in cue-induced reinstatement of cocaine-seeking behavior. PMID:24943644

  7. Differential involvement of the opioid receptor antagonist naloxone in motivational and hedonic aspects of reward.

    PubMed

    Schneider, Miriam; Heise, Verena; Spanagel, Rainer

    2010-04-01

    In the present study dose-dependent effects of the opioid receptor antagonist naloxone were investigated on the rewarding effects of sweetened condensed milk (SCM) in four behavioral paradigms addressing hedonic, consummatory as well as motivational aspects of a reward: odour-conditioned pleasure attenuation of the acoustic startle response (PAS), conditioned place preference (CPP), voluntary consumption in a limited access paradigm, as well as break point determination in a progressive ratio (PR) task. A dose-dependent reduction in reward-related behavior was observed in all paradigms, with exception of the break point in the PR task, which was not affected by naloxone at all. CPP for SCM was only affected by the highest dose of naloxone. The present results indicate that naloxone is more effective in suppressing the hedonic than motivational aspects of reward, further supporting the involvement of the endogenous opioid system in the mediation of hedonic properties of food reward. PMID:20035797

  8. Role of renal nerves in excretory responses to exogenous and endogenous opioid peptides.

    PubMed

    Kapusta, D R; Jones, S Y; Kopp, U C; Dibona, G F

    1989-03-01

    The present study was designed to investigate opioid peptide-mediated changes in renal function in conscious Sprague-Dawley rats after administration of the native opioid agonist methionine enkephalin (ME), its synthetic analog D-Ala2-methionine enkephalinamide (DALA) and the opioid antagonist naloxone. Intravenous infusion of DALA (25 micrograms/kg/min) and ME (75 micrograms/kg/min) produced no changes in mean arterial pressure, heart rate, glomerular filtration rate or effective renal plasma flow in rats with intact or bilaterally denervated kidneys. In contrast, i.v. infusion of these opioid agonists produced differing effects on the renal excretion of water and sodium; DALA produced an increase in urinary flow rate and sodium excretion and ME produced a decrease in these parameters. Changes in renal sympathetic nerve activity were not involved in producing these effects as supported by measurements of renal sympathetic nerve activity and the finding that prior bilateral renal denervation did not alter the renal responses to either agonist. The renal excretory responses to both DALA and ME infusion were prevented by pretreatment with the opioid receptor antagonist naloxone, thus suggesting an opioid receptor-mediated effect of both agonists. Intravenous bolus injections of naloxone alone produced a dose-dependent diuresis and natriuresis without producing changes in systemic or renal hemodynamics or renal sympathetic nerve activity. These studies, therefore, provide evidence that the administration of opioid receptor agonists and antagonists produce changes in the renal excretion of water and sodium via an action on renal tubular reabsorptive mechanisms which are independent of changes in systemic or renal hemodynamics or renal sympathetic nerve activity.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:2703962

  9. Opioid modulation of immunocompetence: Receptor characterization and second messenger involvement

    SciTech Connect

    Hemmick, L.M.

    1989-01-01

    The purpose of this thesis was to examine the effects of opioids on several indices of immunocompetence, determined the receptor specificity of these effects, and ascertain whether the actions of opioids on lymphocytes could be correlated with activation of second messenger systems. By measuring {sup 45}Ca{sup 2+} uptake into lymphocytes, it was demonstrated that {beta}-endorphin 1-31 ({beta}-END 1-31) enhanced rat thymocyte Ca{sup 2+} uptake in response to concanavalin A (Con A) but not phytohemagglutinin (PHA). Related opioid peptides and alkaloids were unable to mimic the effect, and naloxone did not block it, suggesting that {beta}-END 1-31 acted by binding to specific, non-opioid receptors on the thymocytes. Rat splenocyte Con A-stimulated Ca{sup 2+} uptake was not affected by {beta}-END 1-31. {beta}-END 1-31 did not affect basal Ca{sup 2+} uptake by either cell type. Using ({sup 3}H)thymidine uptake as an index of lymphocyte proliferation, {beta}-END 1-31 and several related opioid peptides reversed prostaglandin E{sub 1} (PGE{sub 1}) suppression of rat lymph node cell Con A- and PHA-stimulated proliferation. Naloxone did not block the reversal. {beta}-END 1-31 was unable to reverse forskolin and cholera toxin suppression of proliferation, indicating that the lowering of cyclic AMP levels was not the mechanism involved. Verapamil inhibition of proliferation was also not reversed by {beta}-END 1-31, suggesting that promotion of Ca{sup 2+} influx was not a major mechanism involved.

  10. Partial characterization of a novel endogenous opioid in human cerebrospinal fluid

    SciTech Connect

    Miller, B.E.; Lipman, J.J.; Byrne, W.L.

    1987-12-07

    Human cerebrospinal fluid (CSF) contains many uncharacterized endogenous opioids, in addition to the known enkephalins, endorphins, and dynorphins. These opioids may be separated by gel filtration chromatography and identified by radioreceptor assay for opioid activity. One region of the chromatographic elution profile, designated Peak B has previously been shown to be related to the pain status of chronic pain patients. The authors now report that human Peak B isolated from the CSF of pain-free elective surgery patients is present at a typical concentration equivalent in activity to 1.4 pmol of morphine sulfate per ml of CSF measured by radioreceptor assay. At a dose of 0.06 and 0.12 pmol morphine sulfate equivalents of CSF (MSE), injected into the cerebroventricular system of the mouse, Peak B produced an antinociceptive effect, the intensity and duration of which was dose-dependent and which was antagonized by naloxone. The mouse vas deferens (MVD) preparation was inhibited by Peak B in a manner that was sensitive to antagonism by naloxone only at low (< 1.0 ..mu..M) but not at higher (>6.0 ..mu..M) concentrations of the antagonist. Peak B activity in the MVD assay was unaffected by treatment with trypsin or ..cap alpha..-chymotrypsin. 32 references, 4 figures, 1 table.

  11. Partial characterization of a novel endogenous opioid in human cerebrospinal fluid.

    PubMed

    Miller, B E; Lipman, J J; Byrne, W L

    1987-12-01

    Human cerebrospinal fluid (CSF) contains many uncharacterized endogenous opioids, in addition to the known enkephalins, endorphins, and dynorphins. These opioids may be separated by gel filtration chromatography and identified by radioreceptor assay for opioid activity. One region of the chromatographic elution profile, designated "Peak B" has previously been shown to be related to the pain status of chronic pain patients. We now report that human Peak B isolated from the CSF of pain-free elective surgery patients is present at a typical concentration equivalent in activity to 1.4 pmol of morphine sulfate per ml of CSF measured by radioreceptor assay. At a dose of 0.06 and 0.12 pmol morphine sulfate equivalents of CSF (MSE), injected into the cerebroventricular system of the mouse, Peak B produced an antinociceptive effect, the intensity and duration of which was dose-dependent and which was antagonized by naloxone. The mouse vas deferens (MVD) preparation was inhibited by Peak B in a manner that was sensitive to antagonism by naloxone only at low (less than 1.0 microM) but not at higher (greater than 6.0 microM) concentrations of the antagonist. Peak B activity in the MVD assay was unaffected by treatment with trypsin or alpha-chymotrypsin. PMID:3683089

  12. The effects of estrogen and progestin on endogenous opioid activity in oophorectomized women.

    PubMed

    Shoupe, D; Montz, F J; Lobo, R A

    1985-01-01

    Sex steroids may modulate the secretion of beta-endorphin (beta-EP). Naloxone (Nal), an opioid antagonist, has been used as a probe of central opioid activity. Nal-evoked responses of PRL and LH were evaluated in the midluteal (ML) and late follicular (LF) phases of ovulatory women (Pre) and compared to responses of oophorectomized women before and after the administration of conjugated estrogens (CE) and again after CE and progestin administration. In the ML and LF phases, serum LH increased significantly (P less than 0.05 and P less than 0.01, respectively) during Nal infusion for 4 h, while PRL did not change. In oophorectomized women, there were no significant changes in LH or PRL during Nal infusion. After 3 weeks of CE treatment (1.25 mg daily), LH increased during Nal infusion (P less than 0.05), as did PRL (P less than 0.01). After treatment with CE and medroxyprogesterone acetate (MPA), LH and PRL both increased (P less than 0.05 and P less than 0.01, respectively). The area under the LH curve during Nal infusion after CE and MPA treatment was greater than that after CE alone. Both of these responses were comparable to those of the LF and ML phases of Pre women. During Nal infusion, LH pulse frequency increased in the ML compared to the LF phase of the cycle and, in oophorectomized women, was greater after CE and CE with MPA treatment compared to pretreatment values (P less than 0.05). LH amplitudes during Nal infusion were highest in the ML phase and after CE and MPA treatment in oophorectomized women, and these LH amplitudes were similar. No correlation was found between peripheral plasma beta-EP and Nal-evoked LH responses. No differences were evident in plasma beta-EP levels between Pre and oophorectomized women. In conclusion, 1) endogenous opioid activity is low in oophorectomized women; 2) treatment with estrogen increases opioid activity, and the addition of a progestin increases this activity further; and 3) these data support the contention that

  13. Endogenous opioid system influences depressive reactions to socially painful targeted rejection life events.

    PubMed

    Slavich, George M; Tartter, Molly A; Brennan, Patricia A; Hammen, Constance

    2014-11-01

    Although exposure to a recent major life event is one of the strongest known risk factors for depression, many people who experience such stress do not become depressed. Moreover, the biological mechanisms underlying differential emotional reactions to social adversity remain largely unknown. To investigate this issue, we examined whether the endogenous opioid system, which is known to influence sensitivity to physical pain, is also implicated in differential risk for depression following socially painful targeted rejection versus non-targeted rejection life events. Adolescents (n=420) enrolled in a large longitudinal birth cohort study had their recent stress exposure and current mental health status assessed using self-report and interview-based methods. Participants were also genotyped for the A118G polymorphism in the μ-opioid receptor gene (OPRM1, rs1799971), which has been found to influence neural and psychological responses to rejection, likely by affecting opioid receptor expression and signaling efficiency. As hypothesized, G allele carriers, who are known to exhibit less opioid receptor expression and signaling efficiency, were more severely depressed and twice as likely to meet criteria for major depressive disorder following a recent targeted rejection major life event (e.g., being broken up with, getting fired) relative to A/A homozygotes who experienced such stress. However, A118G genotype did not moderate the effects of other similarly severe major life events on depression. These data thus elucidate a biological pathway that may specifically influence sensitivity to social pain and rejection, which in turn has implications for understanding differential risk for depression and several other social stress-related disorders. PMID:25086307

  14. Endogenous opioids and attenuated hypothalamic-pituitary-adrenal axis responses to immune challenge in pregnant rats.

    PubMed

    Brunton, Paula J; Meddle, Simone L; Ma, Shuaike; Ochedalski, Tomasz; Douglas, Alison J; Russell, John A

    2005-05-25

    In late pregnant rats, the hypothalamic-pituitary-adrenal (HPA) axis is hyporesponsive to psychogenic stressors. Here, we investigated attenuated HPA responses to an immune challenge and a role for endogenous opioids. ACTH and corticosterone were assayed in blood samples from virgin and 21 d pregnant rats before and after endotoxin [lipopolysaccharide (LPS); 1 microg/kg, i.v.], interleukin-1beta (IL-1beta; 500 ng/kg, i.v.), or vehicle. In virgins, plasma ACTH concentrations increased 1 h after LPS and 15 min after IL-1beta, as did corticosterone, with no responses in pregnant rats. In situ hybridization revealed increased corticotrophin releasing hormone (CRH) mRNA expression in the dorsomedial parvocellular paraventricular nucleus (pPVN) and increased anterior pituitary pro-opiomelanocortin mRNA expression 4 h after IL-1beta in virgins; these responses were absent in pregnant rats. In contrast, immunocytochemistry showed that Fos expression was similarly increased in the nucleus tractus solitarius (NTS) A2 region in virgin and pregnant rats 90 min and 4 h after IL-1beta. Naloxone pretreatment (5 mg/kg, i.v.) restored ACTH and pPVN CRH mRNA responses after IL-1beta in pregnant rats but reduced the CRH mRNA response in virgins without affecting ACTH. Proenkephalin-A and mu-opioid receptor mRNA expression in the NTS was significantly increased in the pregnant rats, indicating upregulated brainstem opioid mechanisms. IL-1beta increased noradrenaline release in the PVN of virgin, but not pregnant, rats. However, naloxone infused directly into the PVN increased noradrenaline release after IL-1beta in pregnant rats. Thus, the HPA axis responses to immune signals are suppressed in pregnancy at the level of pPVN CRH neurons through an opioid mechanism, possibly acting by preterminal autoinhibition of NTS projections to the pPVN. PMID:15917452

  15. Endogenous Opioid Antagonism in Physiological Experimental Pain Models: A Systematic Review

    PubMed Central

    Werner, Mads U.; Pereira, Manuel P.; Andersen, Lars Peter H.; Dahl, Jørgen B.

    2015-01-01

    Opioid antagonists are pharmacological tools applied as an indirect measure to detect activation of the endogenous opioid system (EOS) in experimental pain models. The objective of this systematic review was to examine the effect of mu-opioid-receptor (MOR) antagonists in placebo-controlled, double-blind studies using ʻinhibitoryʼ or ʻsensitizingʼ, physiological test paradigms in healthy human subjects. The databases PubMed and Embase were searched according to predefined criteria. Out of a total of 2,142 records, 63 studies (1,477 subjects [male/female ratio = 1.5]) were considered relevant. Twenty-five studies utilized ʻinhibitoryʼ test paradigms (ITP) and 38 studies utilized ʻsensitizingʼ test paradigms (STP). The ITP-studies were characterized as conditioning modulation models (22 studies) and repetitive transcranial magnetic stimulation models (rTMS; 3 studies), and, the STP-studies as secondary hyperalgesia models (6 studies), ʻpainʼ models (25 studies), summation models (2 studies), nociceptive reflex models (3 studies) and miscellaneous models (2 studies). A consistent reversal of analgesia by a MOR-antagonist was demonstrated in 10 of the 25 ITP-studies, including stress-induced analgesia and rTMS. In the remaining 14 conditioning modulation studies either absence of effects or ambiguous effects by MOR-antagonists, were observed. In the STP-studies, no effect of the opioid-blockade could be demonstrated in 5 out of 6 secondary hyperalgesia studies. The direction of MOR-antagonist dependent effects upon pain ratings, threshold assessments and somatosensory evoked potentials (SSEP), did not appear consistent in 28 out of 32 ʻpainʼ model studies. In conclusion, only in 2 experimental human pain models, i.e., stress-induced analgesia and rTMS, administration of MOR-antagonist demonstrated a consistent effect, presumably mediated by an EOS-dependent mechanisms of analgesia and hyperalgesia. PMID:26029906

  16. Toll like receptor (TLR)-4 as a regulator of peripheral endogenous opioid-mediated analgesia in inflammation

    PubMed Central

    2014-01-01

    Background Leukocytes containing opioid peptides locally control inflammatory pain. In the early phase of complete Freund’s adjuvant (CFA)-induced hind paw inflammation, formyl peptides (derived e.g. from Mycobacterium butyricum) trigger the release of opioid peptides from neutrophils contributing to tonic basal antinociception. In the later phase we hypothesized that toll-like-receptor-(TLR)-4 activation of monocytes/macrophages triggers opioid peptide release and thereby stimulates peripheral opioid-dependent antinociception. Results In Wistar rats with CFA hind paw inflammation in the later inflammatory phase (48–96 h) systemic leukocyte depletion by cyclophosphamide (CTX) or locally injected naloxone (NLX) further decreased mechanical and thermal nociceptive thresholds. In vitro β-endorphin (β-END) content increased during human monocyte differentiation as well as in anti-inflammatory CD14+CD16- or non-classical M2 macrophages. Monocytes expressing TLR4 dose-dependently released β-END after stimulation with lipopolysaccharide (LPS) dependent on intracellular calcium. Despite TLR4 expression proinflammatory M1 and anti-inflammatory M2 macrophages only secreted opioid peptides in response to ionomycin, a calcium ionophore. Intraplantar injection of LPS as a TLR4 agonist into the inflamed paw elicited an immediate opioid- and dose-dependent antinociception, which was blocked by TAK-242, a small-molecule inhibitor of TLR4, or by peripheral applied NLX. In the later phase LPS lowered mechanical and thermal nociceptive thresholds. Furthermore, local peripheral TLR4 blockade worsened thermal and mechanical nociceptive pain thresholds in CFA inflammation. Conclusion Endogenous opioids from monocytes/macrophages mediate endogenous antinociception in the late phase of inflammation. Peripheral TLR4 stimulation acts as a transient counter-regulatory mechanism for inflammatory pain in vivo, and increases the release of opioid peptides from monocytes in vitro. TLR4

  17. Pain-Related Effects of Trait Anger Expression: Neural Substrates and the Role of Endogenous Opioid Mechanisms

    PubMed Central

    Bruehl, Stephen; Burns, John W.; Chung, Ok Y.; Chont, Melissa

    2009-01-01

    Literature is reviewed indicating that greater tendency to manage anger via direct verbal or physical expression (trait anger-out) is associated with increased acute and chronic pain responsiveness. Neuroimaging data are overviewed supporting overlapping neural circuits underlying regulation of both pain and anger, consisting of brain regions including the rostral anterior cingulate cortex, orbitofrontal cortex, anterior insula, amygdala, and periaqueductal gray. These circuits provide a potential neural basis for observed positive associations between anger-out and pain responsiveness. The role of endogenous opioids in modulating activity in these interlinked brain regions is explored, and implications for understanding pain-related effects of anger-out are described. An opioid dysfunction hypothesis is presented in which inadequate endogenous opioid inhibitory activity in these brain regions contributes to links between trait anger-out and pain. A series of studies is presented that supports the opioid dysfunction hypothesis, further suggesting that gender and genetic factors may moderate these effects. Finally, possible implications of interactions between trait anger-out and state behavioral anger expression on endogenous opioid analgesic activity are described. PMID:19146872

  18. Dynamic changes of the endogenous cannabinoid and opioid mesocorticolimbic systems during adolescence: THC effects

    PubMed Central

    Ellgren, M.; Artmann, A.; Tkalych, O.; Gupta, A.; Hansen, H.S.; Hansen, S.H.; Devi, L.A.; Hurd, Y.L.

    2008-01-01

    Adolescence is a critical phase of active brain development often characterized by the initiation of marijuana (Cannabis sativa) use. Limited information is known regarding the endogenous cannabinoid system of the adolescent brain as well as related neurotransmitters that appear sensitive to cannabis exposure. We recently observed that adult rats pre-exposed to Δ-9-tetrahydrocannabinol (THC) during adolescence self-administered higher amounts of heroin and had selective impairments of the enkephalin opioid system within the nucleus accumbens (NAc) implicated in reward-related behavior. To explore the ontogeny of the cannabinoid and opioid neuronal systems in association with adolescence THC exposure, rats were examined at different adolescent stages during an intermittent THC paradigm (1.5 mg/kg i.p. every third day) from postnatal days (PNDs) 28–49. Rat brains were examined 24 hours after injection at PND 29 (early adolescence), PND 38 (mid adolescence) and PND 50 (late adolescence) and analyzed for endocannabinoids (anandamide and 2-arachidonoylglycerol), Met-enkephalin, cannabinoid CB1 receptors and µ opioid receptors (µOR) in the NAc, caudate-putamen and prefrontal cortex (PFC). Of the markers studied, the endocannabinoid levels had the most robust alterations throughout adolescence and were specific to the PFC and NAc. Normal correlations between anandamide and 2-arachidonoylglycerol concentrations in the NAc (positive) and PFC (negative) were reversed by THC. Other significant THC-induced effects were confined to the NAc — increased anandamide, decreased Met-enkephalin and decreased µORs. These findings emphasize the dynamic nature of the mesocorticolimbic endocannabinoid system during adolescence and the selective mesocorticolimbic disturbance as a consequence of adolescent cannabis exposure. PMID:18674887

  19. Endogenous Opioid Signaling in the Medial Prefrontal Cortex is Required for the Expression of Hunger-Induced Impulsive Action.

    PubMed

    Selleck, Ryan A; Lake, Curtis; Estrada, Viridiana; Riederer, Justin; Andrzejewski, Matthew; Sadeghian, Ken; Baldo, Brian A

    2015-09-01

    Opioid transmission and dysregulated prefrontal cortex (PFC) activity have both been implicated in the inhibitory-control deficits associated with addiction and binge-type eating disorders. What remains unknown, however, is whether endogenous opioid transmission within the PFC modulates inhibitory control. Here, we compared intra-PFC opioid manipulations with a monoamine manipulation (d-amphetamine), in two sucrose-reinforced tasks: progressive ratio (PR), which assays the motivational value of an incentive, and differential reinforcement of low response rates (DRLs), a test of inhibitory control. Intra-PFC methylnaloxonium (M-NX, a limited diffusion opioid antagonist) was given to rats in a 'low-drive' condition (2-h food deprivation), and also after a motivational shift to a 'high-drive' condition (18-h food deprivation). Intra-PFC DAMGO (D-[Ala2,N-MePhe4, Gly-ol]-enkephalin; a μ-opioid agonist) and d-amphetamine were also tested in both tasks, under the low-drive condition. Intra-PFC M-NX nearly eliminated impulsive action in DRL engendered by hunger, at a dose (1 μg) that significantly affected neither hunger-induced PR enhancement nor hyperactivity. At a higher dose (3 μg), M-NX eliminated impulsive action and returned PR breakpoint to low-drive levels. Conversely, intra-PFC DAMGO engendered 'high-drive-like' effects: enhancement of PR and impairment of DRL performance. Intra-PFC d-amphetamine failed to produce effects in either task. These results establish that endogenous PFC opioid transmission is both necessary and sufficient for the expression of impulsive action in a high-arousal, high-drive appetitive state, and that PFC-based opioid systems enact functionally unique effects on food impulsivity and motivation relative to PFC-based monoamine systems. Opioid antagonists may represent effective treatments for a range of psychiatric disorders with impulsivity features. PMID:25865930

  20. Involvement of multiple µ-opioid receptor subtypes on the presynaptic or postsynaptic inhibition of spinal pain transmission.

    PubMed

    Mizoguchi, Hirokazu; Takagi, Hirokazu; Watanabe, Chizuko; Yonezawa, Akihiko; Sato, Takumi; Sakurada, Tsukasa; Sakurada, Shinobu

    2014-01-01

    The involvement of the μ-opioid receptor subtypes on the presynaptic or postsynaptic inhibition of spinal pain transmission was characterized in ddY mice using endomorphins. Intrathecal treatment with capsaicin, N-methyl-d-aspartate (NMDA) or substance P elicited characteristic nociceptive behaviors that consisted primarily of vigorous biting and/or licking with some scratching. Intrathecal co-administration of endogenous μ-opioid peptide endomorphin-1 or endomorphin-2 resulted in a potent antinociceptive effect against the nociceptive behaviors induced by capsaicin, NMDA or substance P, which was eliminated by i.t. co-administration of the μ-opioid receptor antagonist D-Phe-Cys-Tyr-D-Trp-Orn-Thr-Pen-Thr-NH2 (CTOP). The antinociceptive effect of endomorphin-1 was significantly suppressed by i.t.-co-administration of the μ2-opioid receptor antagonist Tyr-D-Pro-Trp-Phe-NH2 (D-Pro2-endomorphin-1) but not the μ1-opioid receptor antagonist Tyr-D-Pro-Phe-Phe-NH2 (D-Pro2-endomorphin-2) on capsaicin- or NMDA-elicited nociceptive behaviors. In contrast, the antinociceptive effect of endomorphin-2 was significantly suppressed by i.t.-co-administration of D-Pro2-endomorphin-2 but not D-Pro2-endomorphin-1 on capsaicin-, NMDA- or substance P-elicited nociceptive behaviors. Interestingly, regarding substance P-elicited nociceptive behaviors, the antinociceptive effect of endomorphin-1 was significantly suppressed by i.t.-co-administration of another μ2-opioid receptor antagonist, Tyr-D-Pro-Trp-Gly-NH2 (D-Pro2-Tyr-W-MIF-1), but not D-Pro2-endomorphin-1 or D-Pro2-endomorphin-2. The present results suggest that the multiple μ-opioid receptor subtypes are involved in the presynaptic or postsynaptic inhibition of spinal pain transmission. PMID:24512946

  1. Involvement of peripheral mu opioid receptors in scratching behavior in mice.

    PubMed

    Yamamoto, Atsuki; Sugimoto, Yukio

    2010-12-15

    Pruritus is a common adverse effect of opioid treatment. However, the mechanism by which pruritus is induced by opioid administration is unclear. In this study, we examined the effects of the intradermal injection of loperamide, a peripherally restricted opioid receptor agonist, on the itch sensation. When injected intradermally into the rostral part of the back in mice, loperamide elicited scratching behavior. We also examined the effects of the selective mu opioid receptor agonist [d-Ala², N-Me-Phe⁴, Gly⁵-ol]-enkephalin acetate (DAMGO), the selective delta opioid receptor agonist [d-Pen(2,5)]-enkephalin (DPDPE), and the selective kappa opioid receptor agonist U-50488H on scratching behavior in mice in order to determine which subtype is involved in opioid-induced pruritus. Following intradermal injection into the rostral part of the back in mice, DAMGO elicited scratching behavior, while DPDPE and U-50488H did not. This suggests that peripheral mu opioid activation elicits the itch sensation. Next, we focused on the treatment of opioid-induced itch sensation without central adverse effects. Naloxone methiodide is a peripherally restricted opioid receptor antagonist. In the present study, naloxone methiodide significantly suppressed scratching behavior induced by loperamide and DAMGO. These findings suggest that mu opioid receptors play a primary role in peripheral pruritus and that naloxone methiodide may represent a possible remedy for opioid-induced itching. PMID:20863827

  2. Involvement of kappa type opioids on ethanol drinking

    SciTech Connect

    Sandi, C.; Borrell, J.; Guaza, C.

    1988-01-01

    The effects of the administration of the kappa agonist dynorphin/sub 1/..sqrt../sub 17/ andor the kappa antagonist MR-2266-BS on ethanol preference was investigated using a paradigm by which rats develop alcohol preference. Administration of dynorphin shortly before or after the conditioning session (forced ethanol exposure) failed to affect later ethanol preference. However, dynorphin treatment prior to the first choice session reduced ethanol preference during the three consecutive testing days. This effect was reversed by the simultaneous administration of the kappa antagonist MR-2266-BS. The results of the present study provide further support for evidence of the involvement of dynorphinergic systems on drinking behavior and suggest that kappa-type opioid mechanisms may be involved in the consumption and development of preference to ethanol in rats. 32 references, 3 figures, 2 tables

  3. Endogenous opiates and behavior: 2014.

    PubMed

    Bodnar, Richard J

    2016-01-01

    This paper is the thirty-seventh consecutive installment of the annual review of research concerning the endogenous opioid system. It summarizes papers published during 2014 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides, opioid receptors, opioid agonists and opioid antagonists. The particular topics that continue to be covered include the molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors related to behavior (endogenous opioids and receptors), and the roles of these opioid peptides and receptors in pain and analgesia (pain and analgesia); stress and social status (human studies); tolerance and dependence (opioid mediation of other analgesic responses); learning and memory (stress and social status); eating and drinking (stress-induced analgesia); alcohol and drugs of abuse (emotional responses in opioid-mediated behaviors); sexual activity and hormones, pregnancy, development and endocrinology (opioid involvement in stress response regulation); mental illness and mood (tolerance and dependence); seizures and neurologic disorders (learning and memory); electrical-related activity and neurophysiology (opiates and conditioned place preferences (CPP)); general activity and locomotion (eating and drinking); gastrointestinal, renal and hepatic functions (alcohol and drugs of abuse); cardiovascular responses (opiates and ethanol); respiration and thermoregulation (opiates and THC); and immunological responses (opiates and stimulants). This paper is the thirty-seventh consecutive installment of the annual review of research concerning the endogenous opioid system. It summarizes papers published during 2014 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides, opioid receptors, opioid agonists and opioid antagonists. The particular topics that continue to be covered include the molecular

  4. Endogenous opioid regulation of stress-induced oxytocin release within the hypothalamic paraventricular nucleus is reversed in late pregnancy: a microdialysis study.

    PubMed

    Wigger, A; Neumann, I D

    2002-01-01

    Oxytocin secretion into blood in response to swim stress is differentially regulated by endogenous opioids in virgin and pregnant rats. Here, the influence of endogenous opioids on oxytocin release within the hypothalamic paraventricular and supraoptic nuclei was investigated using microdialysis in virgin and pregnant (day 19-21) rats. Rats fitted with a U-shaped microdialysis probe 3 days before testing were injected with naloxone (5 mg/kg body weight, s.c.) or vehicle (sterile saline) and, 3 min later, were forced to swim (10 min at 19 degrees C). Within the paraventricular nucleus, basal and stimulated oxytocin release did not significantly differ between vehicle-treated virgin and pregnant rats. After naloxone, local oxytocin release in response to swimming was lowered in virgin rats (P<0.01), whereas it was further increased in pregnant rats (P<0.01). Within the supraoptic nucleus, basal oxytocin release was significantly lower in pregnant compared to virgin rats (P<0.01). Forced swimming induced a similar rise in intranuclear oxytocin release in both vehicle-treated virgin and pregnant rats, but peak levels were still higher in the virgin controls. In contrast to the paraventricular nucleus, naloxone did not alter swim-induced oxytocin release within the supraoptic nucleus either in virgin or pregnant rats. Vasopressin release in the paraventricular nucleus was also increased by forced swimming but there was no effect of pregnancy or naloxone on it. In summary, in pregnancy, basal and stress-induced oxytocin release within the paraventricular nucleus was not changed, whereas it was blunted within the supraoptic nucleus. Further, within the paraventricular nucleus the excitatory effect of endogenous opioids on local oxytocin release seen in virgins was switched into an inhibitory action in pregnancy. In contrast, endogenous opioids were evidently not involved in the regulation of swim-induced oxytocin release within the supraoptic nucleus either in virgin or

  5. Electroacupuncture suppresses capsaicin-induced secondary hyperalgesia through an endogenous spinal opioid mechanism

    PubMed Central

    Kim, Hee Young; Wang, Jigong; Lee, Inhyung; Kim, Hee Kee; Chung, Kyungsoon; Chung, Jin Mo

    2009-01-01

    Central sensitization, caused either by tissue inflammation or peripheral nerve injury, plays an important role in persistent pain. An animal model of capsaicin-induced pain has well-defined peripheral and central sensitization components, thus is useful for studying the analgesic effect on two separate components. The focus of this study is to examine the analgesic effects of electroacupuncture (EA) on capsaicin-induced secondary hyperalgesia, which represents central sensitization. Capsaicin (0.5%, 10 μl) was injected into the plantar side of the left hind paw, and foot withdrawal thresholds in response to von Frey stimuli (mechanical sensitivity) were determined for both primary and secondary hyperalgesia in rats. EA (2 Hz, 3 mA) was applied to various pairs of acupoints, GB30-GB34, BL40-BL60, GV2-GV6, LI3-LI6 and SI3-TE8, for 30 min under isofluraine anesthesia and then the effect of EA on mechanical sensitivity of paw was determined. EA applied to the ipsilateral SI3-TE8, but none the other acupoints, significantly reduced capsaicin-induced secondary hyperalgesia but not primary hyperalgesia. EA analgesic effect was inhibited by a systemic non-specific opioid receptor (OR) antagonist or an intrathecal μ- or δ-OR antagonist. EA analgesic effect was not affected by an intrathecal κ-OR antagonist or systemic adrenergic receptor antagonist. This study demonstrates that EA produces a stimulation point specific analgesic effect on capsaicin-induced secondary hyperalgesia (central sensitization), mediated by activating endogenous spinal μ and δ opioid receptors. PMID:19646817

  6. Building up analgesia in humans via the endogenous μ-opioid system by combining placebo and active tDCS: a preliminary report.

    PubMed

    DosSantos, Marcos F; Martikainen, Ilkka K; Nascimento, Thiago D; Love, Tiffany M; DeBoer, Misty D; Schambra, Heidi M; Bikson, Marom; Zubieta, Jon-Kar; DaSilva, Alexandre F

    2014-01-01

    Transcranial Direct Current Stimulation (tDCS) is a method of non-invasive brain stimulation that has been frequently used in experimental and clinical pain studies. However, the molecular mechanisms underlying tDCS-mediated pain control, and most important its placebo component, are not completely established. In this pilot study, we investigated in vivo the involvement of the endogenous μ-opioid system in the global tDCS-analgesia experience. Nine healthy volunteers went through positron emission tomography (PET) scans with [11C]carfentanil, a selective μ-opioid receptor (MOR) radiotracer, to measure the central MOR activity during tDCS in vivo (non-displaceable binding potential, BPND)--one of the main analgesic mechanisms in the brain. Placebo and real anodal primary motor cortex (M1/2mA) tDCS were delivered sequentially for 20 minutes each during the PET scan. The initial placebo tDCS phase induced a decrease in MOR BPND in the periaqueductal gray matter (PAG), precuneus, and thalamus, indicating activation of endogenous μ-opioid neurotransmission, even before the active tDCS. The subsequent real tDCS also induced MOR activation in the PAG and precuneus, which were positively correlated to the changes observed with placebo tDCS. Nonetheless, real tDCS had an additional MOR activation in the left prefrontal cortex. Although significant changes in the MOR BPND occurred with both placebo and real tDCS, significant analgesic effects, measured by improvements in the heat and cold pain thresholds, were only observed after real tDCS, not the placebo tDCS. This study gives preliminary evidence that the analgesic effects reported with M1-tDCS, can be in part related to the recruitment of the same endogenous MOR mechanisms induced by placebo, and that such effects can be purposely optimized by real tDCS. PMID:25029273

  7. Parent and Metabolite Opioid Drug Concentrations in Unintentional Deaths Involving Opioid and Benzodiazepine Combinations.

    PubMed

    Fields, Marcia D; Abate, Marie A; Hu, Lan; Long, D Leann; Blommel, Matthew L; Haikal, Nabila A; Kraner, James C

    2015-07-01

    Effects of benzodiazepines on postmortem opioid parent and parent/metabolite blood concentration ratios were determined for fentanyl-, hydrocodone-, methadone-, or oxycodone-related accidental deaths. These opioids are partially metabolized by the CYP3A4 enzyme system, which is also affected by diazepam and alprazolam. Opioid/metabolite combinations examined were as follows: fentanyl/norfentanyl, hydrocodone/dihydrocodeine, methadone/EDDP, and oxycodone/oxymorphone. Parent opioid concentrations were analyzed for 877 deaths. Parent/metabolite concentration ratios were analyzed for 349 deaths, excluding cases with co-intoxicants present known to interfere with opioid elimination. Alprazolam in combination with diazepam significantly decreased median hydrocodone concentrations by 48% (p = 0.01) compared to hydrocodone alone. The methadone parent/metabolite concentration ratio was reduced by 35% in the presence of diazepam compared to methadone alone (p = 0.03). Benzodiazepines did not statistically significantly affect fentanyl or oxycodone concentrations. Possible factors affecting opioid concentrations and possible toxicity development, including any differential effects on specific opioids, should continue to be explored. PMID:26223761

  8. Anger regulation style, anger arousal and acute pain sensitivity: evidence for an endogenous opioid “triggering” model

    PubMed Central

    Burns, John W.; Bruehl, Stephen; Chont, Melissa

    2014-01-01

    Findings suggest that greater tendency to express anger is associated with greater sensitivity to acute pain via endogenous opioid system dysfunction, but past studies have not addressed the role of anger arousal. We used a 2 × 2 factorial design with Drug Condition (placebo or opioid blockade with naltrexone) crossed with Task Order (anger-induction/pain-induction or pain-induction/anger-induction), and with continuous Anger-out Subscale scores. Drug × Task Order × Anger-out Subscale interactions were tested for pain intensity during a 4-min ischemic pain task performed by 146 healthy people. A significant Drug × Task Order × Anger-out Subscale interaction was dissected to reveal different patterns of pain intensity changes during the pain task for high anger-out participants who underwent pain-induction prior to anger-induction compared to those high in anger-out in the opposite order. Namely, when angered prior to pain, high anger-out participants appeared to exhibit low pain intensity under placebo that was not shown by high anger-out participants who received naltrexone. Results hint that people with a pronounced tendency to express anger may suffer from inadequate opioid function under simple pain-induction, but may experience analgesic benefit to some extent from the opioid triggering properties of strong anger arousal. PMID:23624641

  9. Imaging endogenous opioid peptide release with [11C]carfentanil and [3H]diprenorphine: influence of agonist-induced internalization

    PubMed Central

    Quelch, Darren R; Katsouri, Loukia; Nutt, David J; Parker, Christine A; Tyacke, Robin J

    2014-01-01

    Understanding the cellular processes underpinning the changes in binding observed during positron emission tomography neurotransmitter release studies may aid translation of these methodologies to other neurotransmitter systems. We compared the sensitivities of opioid receptor radioligands, carfentanil, and diprenorphine, to amphetamine-induced endogenous opioid peptide (EOP) release and methadone administration in the rat. We also investigated whether agonist-induced internalization was involved in reductions in observed binding using subcellular fractionation and confocal microscopy. After radioligand administration, significant reductions in [11C]carfentanil, but not [3H]diprenorphine, uptake were observed after methadone and amphetamine pretreatment. Subcellular fractionation and in vitro radioligand binding studies showed that amphetamine pretreatment only decreased total [11C]carfentanil binding. In vitro saturation binding studies conducted in buffers representative of the internalization pathway suggested that μ-receptors are significantly less able to bind the radioligands in endosomal compared with extracellular compartments. Finally, a significant increase in μ-receptor-early endosome co-localization in the hypothalamus was observed after amphetamine and methadone treatment using double-labeling confocal microscopy, with no changes in δ- or κ-receptor co-localization. These data indicate carfentanil may be superior to diprenorphine when imaging EOP release in vivo, and that alterations in the ability to bind internalized receptors may be a predictor of ligand sensitivity to endogenous neurotransmitter release. PMID:25005876

  10. Cannabidiol and endogenous opioid peptide-mediated mechanisms modulate antinociception induced by transcutaneous electrostimulation of the peripheral nervous system.

    PubMed

    Gonçalves, Thais Cristina Teixeira; Londe, Anna Karla; Albano, Rafael Isaac Pires; de Araújo Júnior, Artur Teixeira; de Aguiar Azeredo, Mariana; Biagioni, Audrey Francisco; Vasconcellos, Thiago Henrique Ferreira; Dos Reis Ferreira, Célio Marcos; Teixeira, Dulcinéa Gonçalves; de Souza Crippa, José Alexandre; Vieira, Débora; Coimbra, Norberto Cysne

    2014-12-15

    Transcutaneous electrical nerve stimulation (TENS) is a non-pharmacological therapy for the treatment of pain. The present work investigated the effect of cannabidiol, naloxone and diazepam in combination with 10 Hz and 150 Hz TENS. Male Wistar rats were submitted to the tail-flick test (baseline), and each rodent received an acute administration (intraperitoneal) of naloxone (3.0mg/kg), diazepam (1.5mg/kg) or cannabidiol (0.75 mg/kg, 1.5mg/kg, 3.0mg/kg, 4.5mg/kg, 6.0mg/kg and 12.0mg/kg); 10 min after the acute administration, 10 Hz or 150 Hz TENS or a sham procedure was performed for 30 min. Subsequently, tail-flick measures were recorded over a 90-min period, at 5-min intervals. 10 Hz TENS increased the nociceptive threshold during the 90-min period. This antinociceptive effect was reversed by naloxone pre-treatment, was not altered by diazepam pre-treatment and was abolished by cannabidiol pre-treatment (1.5mg/kg). Moreover, 150 Hz TENS increased tail-flick latencies by 35 min post-treatment, which was partially inhibited by naloxone pre-treatment and totally inhibited by cannabidiol (1.5mg/kg). These data suggest the involvement of the endogenous opioid system and the cannabinoid-mediated neuromodulation of the antinociception induced by transcutaneous electrostimulation at 10 Hz and 150 Hz TENS. PMID:25282545

  11. Involvement of endogenous opiates in regulation of gastric emptying of fat test meals in mice

    SciTech Connect

    Fioramonti, J.; Fargeas, M.J.; Bueno, L.

    1988-08-01

    The role of endogenous opioids and cholecystokinin (CCK) in gastric emptying was investigated in mice killed 30 min after gavage with /sup 51/Cr-radiolabeled liquid meals. The meals consisted of 0.5 ml of milk or one of five synthetic meals containing arabic gum, glucose and/or arachis oil and/or casein. Naloxone (0.1 mg/kg sc) significantly (P less than 0.01) accelerated gastric emptying of milk and meals containing fat but did not modify gastric emptying of nonfat meals. The CCK antagonist asperlicin (0.1 mg/kg ip) increased by 25% gastric emptying of milk. The gastric emptying of meals containing glucose and casein but not fat was reduced after administration of the COOH-terminal octapeptide of cholecystokinin (CCK-8, 4 micrograms/kg ip). This decrease was antagonized by both asperlicin (10 mg/kg ip) and naloxone (0.1 mg/kg sc). Intracerebroventricular (icv) administration of an opiate antagonist that poorly crosses the blood-brain barrier, methyl levallorphan (10 micrograms/kg), did not modify gastric emptying of milk but accelerated it when peripherally administered (0.1 mg/kg sc). Similarly, asperlicin (icv) administered at a dose of 1 mg/kg did not affect milk emptying. These results indicate that endogenous opiates are involved at peripheral levels in the regulation of gastric emptying of fat meals only and that such regulation involves release of CCK.

  12. Post-ictal analgesia: involvement of opioid, serotoninergic and cholinergic mechanisms.

    PubMed

    Coimbra, N C; Castro-Souza, C; Segato, E N; Nora, J E; Herrero, C F; Tedeschi-Filho, W; Garcia-Cairasco, N

    2001-01-12

    The neural mechanisms involved in post-ictal analgesia remain to be elucidated. Pentylenetetrazol (PTZ) is used experimentally to induce seizure in animal subjects. This non-competitive antagonist blocks GABA-mediated Cl(-) flux. The aim of this work is to study the neurochemical basis of the antinociception induced by convulsions elicited by peripheral administration of PTZ (64 mg/kg). The analgesia was measured by the tail-flick test, in eight rats per group. Convulsions were followed by significant increase in the tail-flick latencies (TFL), at least for 30 min of the post-ictal period. Peripheral administration of naloxone (5 mg/kg and 10 mg/kg), atropine (1 mg/kg and 5 mg/kg), methysergide (1 mg/kg and 5 mg/kg) and ketanserine (1 mg/kg and 2 mg/kg) caused a significant decrease in the TFL in seizing animals, as compared to controls. However, while naloxone antagonized analgesia 15 and 25 min post convulsions, the other drugs caused a blockade of the post-ictal analgesia in a relatively greater period of time. These results indicate that endogenous opioids, serotonin and acetylcholine may be involved in post-ictal analgesia. PMID:11150491

  13. Evidence for the involvement of opioid neuropeptides in the adherence and migration of immunocompetent invertebrate hemocytes.

    PubMed Central

    Stefano, G B; Leung, M K; Zhao, X H; Scharrer, B

    1989-01-01

    Evidence for the participation of opioid neuropeptides in immunoregulatory activities, especially cellular adherence and migration, has been obtained in representatives of two phyla of invertebrates, the mollusc Mytilus edulis and the insect Leucophaea maderae. The injection of a synthetic analog of [Met]enkephalin [( D-Ala2,Met5]enkephalinamide, DAMA; 10(-6) M) had a stimulatory, naloxone-reversible effect on the directed migration of immunocompetent hemocytes. Incubation of hemolymph in the presence of exogenous or endogenous opioid material significantly enhanced the adherence of hemocytes on albumin-coated slides as demonstrated by use of indirect Zeiss-Zonax reflectance computer analysis. Conversely, hemocyte adherence was markedly reduced by the addition of naloxone (10(-8) M) to the incubation medium, either alone or in combination with DAMA. The antagonistic effects of naloxone on the stimulatory activities of opioids indicate that, like those previously reported in mammals, they are receptor-mediated. The presence of an endogenous [Met]enkephalin-like material was demonstrated in cell-free hemolymph as well as sequestered hemocytes by use of high-pressure liquid chromatography and radioimmunoassay. These results demonstrate that the capacity of immunocytes to release and respond to opioid neuropeptide messengers is not restricted to mammalian organisms but was developed early in the course of evolution. Images PMID:2536172

  14. Sympathetic activation triggers endogenous opioid release and analgesia within peripheral inflamed tissue.

    PubMed

    Binder, Waltraud; Mousa, Shaaban A; Sitte, Nicolle; Kaiser, Myriam; Stein, Christoph; Schäfer, Michael

    2004-07-01

    Stress induces analgesia by mechanisms within and outside the brain. Here we show that the sympathetic nervous system is an essential trigger of intrinsic opioid analgesia within peripheral injured tissue. Noradrenaline, injected directly into inflamed hind paws of male Wistar rats, produced dose-dependent antinociception, reversible by alpha(1)-, alpha(2)- and beta(2)-antagonists. alpha(1)-, alpha(2)- and beta(2)-adrenergic receptors were demonstrated on beta-endorphin-containing immune cells and noradrenaline induced adrenergic receptor-specific release of beta-endorphin from immune cell suspensions. This antinociceptive effect of noradrenaline was reversed by micro - and delta-opioid antagonists as well as by anti-beta-endorphin. Stress-induced peripheral analgesia was abolished by chemical sympathectomy and by adrenergic antagonists. These findings indicate that sympathetic neuron-derived noradrenaline stimulates adrenergic receptors on inflammatory cells to release beta-endorphin, which induces analgesia via activation of peripheral opioid receptors. PMID:15245482

  15. The diverse clinical uses of opioid receptor drugs.

    PubMed

    Howland, Robert H

    2010-05-01

    Opioid receptors are widely distributed throughout the nervous system. In addition to their central role in brain pathways mediating pain, endogenous opioid peptides function as neuromodulators and opioid systems are involved in many physiological functions. Opioid receptor drugs, including methadone (Dolophine), buprenorphine (Buprenex, Subutex), naltrexone (Revia), naloxone (Narcan), and buprenorphine/naloxone (Suboxone), are the focus of this article. This class of drugs is likely to be further developed for the treatment of addictions and mood disorders. PMID:20415289

  16. Avoiding Opioids and Their Harmful Side Effects in the Postoperative Patient: Exogenous Opioids, Endogenous Endorphins, Wellness, Mood, and Their Relation to Postoperative Pain

    PubMed Central

    Parsa, Fereydoun D

    2016-01-01

    Prescribed opioids are routinely used for many postoperative patients. However, these medications have daunting adverse effects on the body's innate pain management system - the action of the beta-endorphins. The prescribed opioids not only severely impair the function of the mu-opioid receptors, but also inhibit the release of beta-endorphin. This is unfortunate, because beta-endorphin appears to be a much more potent agonist of the mu-opioid receptor than opioids. In addition, beta-endorphin indirectly elevates dopamine, a neurotransmitter related to feelings of euphoria. Therefore, by prescribing opioids, practitioners may inadvertently prolong and increase the overall intensity of the postoperative patients' pain as well as herald anhedonia. This article highlights the relationships between prescribed (exogenous) opioids, beta-endorphins, mu-opioid receptors, wellness, mood, and postoperative pain. The role of patient education, opioid alternatives, and additional recommendations regarding pain control in the postoperative patient are also discussed. PMID:27011886

  17. Avoiding Opioids and Their Harmful Side Effects in the Postoperative Patient: Exogenous Opioids, Endogenous Endorphins, Wellness, Mood, and Their Relation to Postoperative Pain.

    PubMed

    Stephan, Bradley C; Parsa, Fereydoun D

    2016-03-01

    Prescribed opioids are routinely used for many postoperative patients. However, these medications have daunting adverse effects on the body's innate pain management system - the action of the beta-endorphins. The prescribed opioids not only severely impair the function of the mu-opioid receptors, but also inhibit the release of beta-endorphin. This is unfortunate, because beta-endorphin appears to be a much more potent agonist of the mu-opioid receptor than opioids. In addition, beta-endorphin indirectly elevates dopamine, a neurotransmitter related to feelings of euphoria. Therefore, by prescribing opioids, practitioners may inadvertently prolong and increase the overall intensity of the postoperative patients' pain as well as herald anhedonia. This article highlights the relationships between prescribed (exogenous) opioids, beta-endorphins, mu-opioid receptors, wellness, mood, and postoperative pain. The role of patient education, opioid alternatives, and additional recommendations regarding pain control in the postoperative patient are also discussed. PMID:27011886

  18. Poisoning deaths involving opioid analgesics - New York State, 2003-2012.

    PubMed

    Sharp, Mark J; Melnik, Thomas A

    2015-04-17

    Deaths involving opioid analgesics have increased dramatically in the United States. Approximately 4,000 such deaths were documented in 1999, increasing to 16,235 in 2013, reflecting a nearly quadrupled death rate from 1.4 to 5.1 deaths per 100,000. To investigate this increase in New York state, trends in poisoning deaths involving opioid analgesics from 2003 to 2012 were examined. Data sources used were New York state vital statistics multiple-cause-of-death data, consisting of data from both the New York City (NYC)* and non-NYC reporting jurisdictions, as well as statewide Medicaid enrollment data. Deaths involving opioid analgesics increased both in number and as a percentage of all drug poisoning deaths, and rates were highest among men, whites, persons aged 45-64 years, persons residing outside of NYC, and Medicaid enrollees. The analysis found that, in 2012, 70.7% of deaths involving opioid analgesics also involved at least one other drug, most frequently a benzodiazepine. These results underscore the potential to mitigate the trend of increasing opioid analgesic-related mortality through initiatives such as New York state's Internet System for Tracking Over-Prescribing (I-STOP) law,† which took effect on August 27, 2013. Provisions under I-STOP include the requirements that providers consult the Prescription Monitoring Program (PMP) Registry when writing prescriptions for controlled substances, and that they use electronic prescribing. PMID:25879895

  19. Asymmetry of the Endogenous Opioid System in the Human Anterior Cingulate: a Putative Molecular Basis for Lateralization of Emotions and Pain

    PubMed Central

    Watanabe, Hiroyuki; Fitting, Sylvia; Hussain, Muhammad Z.; Kononenko, Olga; Iatsyshyna, Anna; Yoshitake, Takashi; Kehr, Jan; Alkass, Kanar; Druid, Henrik; Wadensten, Henrik; Andren, Per E.; Nylander, Ingrid; Wedell, Douglas H.; Krishtal, Oleg; Hauser, Kurt F.; Nyberg, Fred; Karpyak, Victor M.; Yakovleva, Tatjana; Bakalkin, Georgy

    2015-01-01

    Lateralization of the processing of positive and negative emotions and pain suggests an asymmetric distribution of the neurotransmitter systems regulating these functions between the left and right brain hemispheres. By virtue of their ability to selectively mediate euphoria, dysphoria, and pain, the μ-, δ-, and κ-opioid receptors and their endogenous ligands may subserve these lateralized functions. We addressed this hypothesis by comparing the levels of the opioid receptors and peptides in the left and right anterior cingulate cortex (ACC), a key area for emotion and pain processing. Opioid mRNAs and peptides and 5 “classical” neurotransmitters were analyzed in postmortem tissues from 20 human subjects. Leu-enkephalin-Arg (LER) and Met-enkephalin-Arg-Phe, preferential δ-/μ- and κ-/μ-opioid agonists, demonstrated marked lateralization to the left and right ACC, respectively. Dynorphin B (Dyn B) strongly correlated with LER in the left, but not in the right ACC suggesting different mechanisms of the conversion of this κ-opioid agonist to δ-/μ-opioid ligand in the 2 hemispheres; in the right ACC, Dyn B may be cleaved by PACE4, a proprotein convertase regulating left–right asymmetry formation. These findings suggest that region-specific lateralization of neuronal networks expressing opioid peptides underlies in part lateralization of higher functions, including positive and negative emotions and pain in the human brain. PMID:23960211

  20. [Endogenous opioid system in the realization of the analgesic effect of alpha-tocopherol in reference to algomenorrhea].

    PubMed

    Kryzhanovskiĭ, G N; Bakuleva, L P; Luzina, N L; Vinogradov, V A; Iarygin, K N

    1988-02-01

    Beta-endorphin-like immunoreactivity was studied in 7 patients with algomenorrhea during pain attack and 15 minutes after alpha-tocopherol administration with a therapeutic aim (till the analgetic effect was reached). There was an increase in beta-endorphin-like immunoreactivity after alpha-tocopherol administration. Naloxone administration to 9 patients with algomenorrhea of various etiology resumed the pain. The effect of alpha-tocopherol application for pain relief depended on the pathogenesis of algomenorrhea. At the same time naloxone administration failed to resume the pain in patients, in whom alpha-tocopherol had a strong analgetic effect. It is assumed that the endogenous opioid system participates in alpha-tocopherol effect on pain relief in patients with algomenorrhea. PMID:2964879

  1. Strategies to Improve Bioavailability and In Vivo Efficacy of the Endogenous Opioid Peptides Endomorphin-1 and Endomorphin-2.

    PubMed

    De Marco, Rossella; Janecka, Anna

    2015-01-01

    Morphine and the other alkaloids found in the opium poppy plant still represent the preferred therapeutic tools to treat severe pain in first aid protocols, as well as chronic pain. The use of the opiate alkaloids is accompanied by several unwanted side effects; additionally, some forms of pain are resistant to standard treatments (e.g. neuropathic pain from cancer). For these reasons, there is currently renewed interest in the design and assay of modified versions of the potent endogenous opioid peptides endomorphin-1 and endomorphin-2. This review presents a selection of the strategies directed at preparing highly stable peptidomimetics of the endomorphins, and of the strategies aimed at improving central nervous system bioavailability, for which increased in vivo antinociceptive efficacy was clearly demonstrated. PMID:26279081

  2. Apparent involvement of opioid peptides in stress-induced enhancement of tumor growth.

    PubMed

    Lewis, J W; Shavit, Y; Terman, G W; Nelson, L R; Gale, R P; Liebeskind, J C

    1983-01-01

    Exposure to stress has been associated with alterations in both immune function and tumor development in man and laboratory animals. In the present study, we investigated the effect of a particular type of inescapable footshock stress, known to cause an opioid mediated form of analgesia, on survival time of female Fischer 344 rats injected with a mammary ascites tumor. Rats subjected to inescapable footshock manifested an enhanced tumor growth indicated by a decreased survival time and decreased percent survival. This tumor enhancing effect of stress was prevented by the opiate antagonist, naltrexone, suggesting a role for endogenous opioid peptides in this process. In the absence of stress, naltrexone did not affect tumor growth. PMID:6686324

  3. Nicotine-specific and non-specific effects of cigarette smoking on endogenous opioid mechanisms.

    PubMed

    Nuechterlein, Emily B; Ni, Lisong; Domino, Edward F; Zubieta, Jon-Kar

    2016-08-01

    This study investigates differences in μ-opioid receptor mediated neurotransmission in healthy controls and overnight-abstinent smokers, and potential effects of the OPRM1 A118G genotype. It also examines the effects of smoking denicotinized (DN) and average nicotine (N) cigarettes on the μ-opioid system. Positron emission tomography with (11)C-carfentanil was used to determine regional brain μ-opioid receptor (MOR) availability (non-displaceable binding potential, BPND) in a sample of 19 male smokers and 22 nonsmoking control subjects. Nonsmokers showed greater MOR BPND than overnight abstinent smokers in the basal ganglia and thalamus. BPND in the basal ganglia was negatively correlated with baseline craving levels and Fagerström scores. Interactions between group and genotype were seen in the nucleus accumbens bilaterally and the amygdala, with G-allele carriers demonstrating lower BPND in these regions, but only among smokers. After smoking the DN cigarette, smokers showed evidence of MOR activation in the thalamus and nucleus accumbens. No additional activation was observed after the N cigarette, with a mean effect of increases in MOR BPND (i.e., deactivation) with respect to the DN cigarette effects in the thalamus and left amygdala. Changes in MOR BPND were related to both Fagerström scores and changes in craving. This study showed that overnight-abstinent smokers have lower concentrations of available MORs than controls, an effect that was related to both craving and the severity of addiction. It also suggests that nicotine non-specific elements of the smoking experience have an important role in regulating MOR-mediated neurotransmission, and in turn modulating withdrawal-induced craving ratings. PMID:27095017

  4. Involvement of endogenous neuromedin U and neuromedin S in thermoregulation.

    PubMed

    Nakahara, Keiko; Akagi, Ai; Shimizu, Seiya; Tateno, Satoshi; Qattali, Abdul Wahid; Mori, Kenji; Miyazato, Mikiya; Kangawa, Kenji; Murakami, Noboru

    2016-02-19

    We investigated the possible involvement of neuromedin U (NMU) and neuromedin S (NMS) in thermoregulation in rats. Intracerebroventricular (icv) injection of NMU or NMS increased the back surface temperature (BS-T) in a dose-dependent manner during both the light and dark periods. Pre-treatment with the β3 blocker SR59230A, and the cyclooxygenase blocker indomethacin, inhibited the increase in BS-T induced by NMS. Icv injection of NMS and NMU increased the expression of mRNAs for prostaglandin E synthase and cyclooxygenase 2 (COX2) in the hypothalamus, and that of mRNA for uncoupling protein 1 (UCP1) in the brown adipose tissue. Comparison of thermogenesis in terms of body temperature under normal and cold conditions revealed that NMS-KO and double-KO mice had a significantly low BS-T during the active phase, whereas NMU-KO mice did not. Exposure to low temperature decreased the BS temperature in all KO mice, but BS-T was lower in NMS-KO and double-KO mouse than in NMU-KO mice. Calorie and oxygen consumption was also significantly lower in all KO mice than in wild-type mice during the dark period. These results suggest that NMU and NMS are involved in thermoregulation via the prostaglandin E2 and β3 adrenergic receptors, but that endogenous NMS might play a more predominant role than NMU. PMID:26826380

  5. Endogenous opioids regulate glucocorticoid-dependent stress-coping strategies in mice.

    PubMed

    Szklarczyk, Klaudia; Korostynski, Michal; Golda, Slawomir; Piechota, Marcin; Ficek, Joanna; Przewlocki, Ryszard

    2016-08-25

    Coping skills are essential in determining the outcomes of aversive life events. Our research was aimed to elucidate the molecular underpinnings of different coping styles in two inbred mouse strains, C57BL/6J and SWR/J. We compared the influence of a preceding stressor (0.5h of restraint) on behavioral and gene expression profiles between these two strains. The C57BL/6J strain exhibited increased conditioned fear and high immobility (passive coping). Oppositely, the SWR/J mice demonstrated low freezing and immobility, low post-restraint anxiety and considerable struggling during the forced swim test (active coping). Gene profiling in the amygdala revealed transcriptional patterns that were related to the differential stress reactivity, such as the activation of glucocorticoid-dependent genes specifically in the C57BL/6J mice. Post-restraint blood sampling for corticosterone levels confirmed the association of hypothalamic-pituitary-adrenal (HPA) activation with a passive coping style. Pharmacological tools were used to modulate the stress-coping strategies. The blockade of opioid receptors (ORs) before the aversive event caused transcriptional and neuroendocrine changes in the SWR/J mice that were characteristic of the passive coping strategy. We found that treatment with a glucocorticoid receptor (GR) agonist (dexamethasone (DEX), 4mg/kg) impaired the consolidation of fear memory in the C57BL/6J mice and that this effect was reversed by OR blockade (naltrexone (NTX), 2mg/kg). In parallel, a glucocorticoid receptor antagonist (mifepristone (MIF), 20mg/kg) reversed the effect of morphine (20mg/kg) on conditioned fear in the C57BL/6J mice. Our results suggest that in mice, stress-coping strategies are determined by opioid-dependent mechanisms that modulate activity of the HPA axis. PMID:27235740

  6. Involvement of Endogenous Enkephalins and β-Endorphin in Feeding and Diet-Induced Obesity

    PubMed Central

    Mendez, Ian A; Ostlund, Sean B; Maidment, Nigel T; Murphy, Niall P

    2015-01-01

    Studies implicate opioid transmission in hedonic and metabolic control of feeding, although roles for specific endogenous opioid peptides have barely been addressed. Here, we studied palatable liquid consumption in proenkephalin knockout (PENK KO) and β-endorphin-deficient (BEND KO) mice, and how the body weight of these mice changed during consumption of an energy-dense highly palatable ‘cafeteria diet'. When given access to sucrose solution, PENK KOs exhibited fewer bouts of licking than wild types, even though the length of bouts was similar to that of wild types, a pattern that suggests diminished food motivation. Conversely, BEND KOs did not differ from wild types in the number of licking bouts, even though these bouts were shorter in length, suggesting that they experienced the sucrose as being less palatable. In addition, licking responses in BEND, but not PENK, KO mice were insensitive to shifts in sucrose concentration or hunger. PENK, but not BEND, KOs exhibited lower baseline body weights compared with wild types on chow diet and attenuated weight gain when fed cafeteria diet. Based on this and related findings, we suggest endogenous enkephalins primarily set a background motivational tone regulating feeding behavior, whereas β-endorphin underlies orosensory reward in high need states or when the stimulus is especially valuable. Overall, these studies emphasize complex interplays between endogenous opioid peptides targeting μ-receptors, such as enkephalins and endorphins, underlying the regulation of feeding and body weight that might explain the poor efficacy of drugs that generally target μ-opioid receptors in the long-term control of appetite and body weight. PMID:25754760

  7. An opioid growth factor regulates the replication of microorganisms.

    PubMed

    Zagon, I S; McLaughlin, P J

    1992-01-01

    An opioid growth factor (OGF), [Met5]-enkephalin, interacts with the zeta (zeta) opioid receptor to modulate development of eukaryotes. We have found that [Met5]-enkephalin, an endogenous opioid peptide serves to inhibit the growth of S. aureus. This effect on growth involves cell proliferative events and is under tonic control, since potent opioid antagonists accelerate cell replication. Both the OGF and zeta opioid receptor were associated with these microorganisms. Other opioid receptors (mu, delta and kappa) were not detected. OGF also controlled the growth of other bacteria: P. aeruginosa and S. marcesans. These results indicate that OGF and its receptor, known to be important in the regulation of mammalian development, also function in the growth of simple unicellular organisms. We suggest that the endogenous opioid system related to growth originated billions of years ago. PMID:1313136

  8. A genetic polymorphism of the endogenous opioid dynorphin modulates monetary reward anticipation in the corticostriatal loop.

    PubMed

    Votinov, Mikhail; Pripfl, Juergen; Windischberger, Christian; Kalcher, Klaudius; Zimprich, Alexander; Zimprich, Fritz; Moser, Ewald; Lamm, Claus; Sailer, Uta

    2014-01-01

    The dynorphin/κ-opioid receptor (KOP-R) system has been shown to play a role in different types of behavior regulation, including reward-related behavior and drug craving. It has been shown that alleles with 3 or 4 repeats (HH genotype) of the variable nucleotide tandem repeat (68-bp VNTR) functional polymorphism of the prodynorphin (PDYN) gene are associated with higher levels of dynorphin peptides than alleles with 1 or 2 repeats (LL genotype). We used fMRI on N = 71 prescreened healthy participants to investigate the effect of this polymorphism on cerebral activation in the limbic-corticostriatal loop during reward anticipation. Individuals with the HH genotype showed higher activation than those with the LL genotype in the medial orbitofrontal cortex (mOFC) when anticipating a possible monetary reward. In addition, the HH genotype showed stronger functional coupling (as assessed by effective connectivity analyses) of mOFC with VMPFC, subgenual anterior cingulate cortex, and ventral striatum during reward anticipation. This hints at a larger sensitivity for upcoming rewards in individuals with the HH genotype, resulting in a higher motivation to attain these rewards. These findings provide first evidence in humans that the PDYN polymorphism modulates neural processes associated with the anticipation of rewards, which ultimately may help to explain differences between genotypes with respect to addiction and drug abuse. PMID:24587148

  9. Endogenous Opioid-Masked Latent Pain Sensitization: Studies from Mouse to Human

    PubMed Central

    Dahl, Jørgen B.; Werner, Marianne; Taylor, Bradley K.; Werner, Mads U.

    2015-01-01

    Following the resolution of a severe inflammatory injury in rodents, administration of mu-opioid receptor inverse agonists leads to reinstatement of pain hypersensitivity. The mechanisms underlying this form of latent pain sensitization (LS) likely contribute to the development of chronic pain, but LS has not yet been demonstrated in humans. Using a C57BL/6 mouse model of cutaneous mild heat injury (MHI) we demonstrated a dose-dependent reinstatement of pain sensitization, assessed as primary (P < 0.001) and secondary hyperalgesia (P < 0.001) by naloxone (0.3–10 mg/kg), 168 hrs after the induction of MHI. Forward-translating the dose data to a human MHI model (n = 12) we could show that LS does indeed occur after naloxone 2 mg/kg, 168 hrs after a MHI. Our previous unsuccessful efforts to demonstrate unmasking of LS in humans are thus likely explained by an insufficient naloxone dose (0.021 mg/kg). However, while LS was consistently demonstrated in 21/24 mice, LS was only seen in 4/12 subjects. This difference is likely due to selection bias since the C57BL/6 mouse strain exhibits markedly enhanced pain sensitivity in assays of acute thermal nociception. Future exploratory studies in humans should prioritize inclusion of “high-sensitizers” prone to develop LS and use post-surgical models to elucidate markers of vulnerability to chronic postsurgical pain. Trial Registration EudraCT 2012-005663-27 PMID:26305798

  10. Identification of endogenous opioid receptor components in rat brain using a monoclonal antibody

    SciTech Connect

    Bero, L.A.; Roy, S.; Lee, N.M.

    1988-11-01

    A monoclonal antibody generated against the tertiary structure of a partially purified opioid binding protein was used to probe the structure of the dynorphin and beta-endorphin receptors. The Fab fragment 3B4F11 inhibited completely the binding of 125I-beta-endorphin and (3H)dynorphin to rat brain P2 membranes with IC50 values of 26 ng/ml and 40 ng/ml, respectively. To explore further the interaction of 3B4F11 with the beta-endorphin receptor, the effect of the Fab fragment on 125I-beta-endorphin cross-linking to rat brain membranes was examined. 125I-beta-endorphin was covalently bound to three major species of approximate molecular weights 108,000, 73,000, and 49,000. The delta-selective ligand D-Pen2, D-pen5enkephalin was least effective at inhibiting the cross-linking of beta-endorphin, whereas the micro-selective ligand Tyr-D-Ala-Gly-NMe-Phe-Gly-ol and kappa-selective ligand U50488 inhibited beta-endorphin cross-linking to the 108,000 and 73,000 Da species. Both 3B4F11 and beta-endorphin prevented the covalent binding of 125I-beta-endorphin to all three labeled species. These findings suggest that micro and kappa receptor types might have some structural similarities, whereas the delta receptor type might differ in molecular size. In addition, the micro, kappa, and delta ligands might have different primary sequences, whereas their tertiary structures might share regions of molecular homology with all three receptor constituents labeled by 125I-beta-endorphin. 3B4F11 will be a valuable tool for the purification and isolation of the several components of the beta-endorphin receptor complex.

  11. Characteristics and Functional Roles of Opioids Originally Present in Vivo.

    PubMed

    Ozaki, Masanobu

    2016-01-01

    The characteristics and functional roles of opioids originally present in vivo (endogenous opioids) in guinea-pig ileum were investigated. The release of endogenous opioids was determined by the inhibitory twitch response evoked by 0.1 Hz stimulation after 10 Hz stimulation (post-tetanic twitch inhibition). The effects of peptidase inhibitors increased the post-tetanic twitch inhibition, prevented by β-funaltrexamine and nor-binaltorphimine, which are selective μ- and κ-opioid receptor subtype antagonists, respectively. Dopamine receptor antagonists (haloperidol, sultopride and domperidone) increased the post-tetanic twitch inhibition. These results suggest that dopamine receptors are involved in modulation of the ileal opioid system, so as to diminish endogenous opioid release by tetanic stimulation, and dopamine antagonists increase the opioid action, that might depend more on the increased release of endogenous opioids. The post-tetanic twitch inhibition was inhibited by adrenalectomy, and showed the supersensitivity of the opioid receptors, resulting from a decrease of endogenous opioids by adrenalectomy. These findings suggest that the increase in morphine-analgesia by adrenalectomy was due to this process. In the presence of naloxone, an opioid antagonist, an increase in basal tension after tetanic stimulation (10 Hz stimulation) (post-tetanic contraction) was observed, and was blocked by spantide, a substance P antagonist, and indomethacin, a prostaglandins-biosynthesis inhibitor. This contraction increased with morphine or peptidase inhibitor exposure, depending on the length of time the ileum was exposed to the morphine or peptidase inhibitor. Post-tetanic contraction might be a useful indicator of the formation of physical dependence to morphine or endogenous opioids in the ileum. PMID:27040344

  12. Parent and Metabolite Opioid Drug Concentrations in Unintentional Deaths Involving Opioid and Benzodiazepine Combinations*†‡

    PubMed Central

    Fields, Marcia D.; Abate, Marie A.; Hu, Lan; Long, D. Leann; Blommel, Matthew L.; Haikal, Nabila A.; Kraner, James C.

    2016-01-01

    Effects of benzodiazepines on postmortem opioid parent and parent/metabolite blood concentration ratios were determined for fentanyl-, hydrocodone-, methadone-, or oxycodone-related accidental deaths. These opioids are partially metabolized by the CYP3A4 enzyme system, which is also affected by diazepam and alprazolam. Opioid/metabolite combinations examined were as follows: fentanyl/norfentanyl, hydrocodone/dihydrocodeine, methadone/EDDP, and oxycodone/oxymorphone. Parent opioid concentrations were analyzed for 877 deaths. Parent/metabolite concentration ratios were analyzed for 349 deaths, excluding cases with co-intoxicants present known to interfere with opioid elimination. Alprazolam in combination with diazepam significantly decreased median hydrocodone concentrations by 48% (p = 0.01) compared to hydrocodone alone. The methadone parent/metabolite concentration ratio was reduced by 35% in the presence of diazepam compared to methadone alone (p = 0.03). Benzodiazepines did not statistically significantly affect fentanyl or oxycodone concentrations. Possible factors affecting opioid concentrations and possible toxicity development, including any differential effects on specific opioids, should continue to be explored. PMID:26223761

  13. Opioid receptor types involved in the development of nicotine physical dependence in an invertebrate (Planaria) model.

    PubMed

    Raffa, Robert B; Baron, Steve; Bhandal, Jaspreet S; Brown, Tevin; Song, Kevin; Tallarida, Christopher S; Rawls, Scott M

    2013-11-01

    Recent data suggest that opioid receptors are involved in the development of nicotine physical dependence in mammals. Evidence in support of a similar involvement in an invertebrate (Planaria) is presented using the selective opioid receptor antagonist naloxone, and the more receptor subtype-selective antagonists CTAP (D-Phe-Cys-Tyr-D-Trp-Arg-Thr-Pen-Thr-NH2) (μ, MOR), naltrindole (δ, DOR), and nor-BNI (norbinaltorphimine) (κ, KOR). Induction of physical dependence was achieved by 60-min pre-exposure of planarians to nicotine and was quantified by abstinence-induced withdrawal (reduction in spontaneous locomotor activity). Known MOR and DOR subtype-selective opioid receptor antagonists attenuated the withdrawal, as did the non-selective antagonist naloxone, but a KOR subtype-selective antagonist did not. An involvement of MOR and DOR, but not KOR, in the development of nicotine physical dependence or in abstinence-induced withdrawal was thus demonstrated in a sensitive and facile invertebrate model. PMID:24084318

  14. Clinically significant drug–drug interactions involving opioid analgesics used for pain treatment in patients with cancer: a systematic review

    PubMed Central

    Kotlinska-Lemieszek, Aleksandra; Klepstad, Pål; Haugen, Dagny Faksvåg

    2015-01-01

    Background Opioids are the most frequently used drugs to treat pain in cancer patients. In some patients, however, opioids can cause adverse effects and drug–drug interactions. No advice concerning the combination of opioids and other drugs is given in the current European guidelines. Objective To identify studies that report clinically significant drug–drug interactions involving opioids used for pain treatment in adult cancer patients. Design and data sources Systematic review with searches in Embase, MEDLINE, and Cochrane Central Register of Controlled Trials from the start of the databases (Embase from 1980) through January 2014. In addition, reference lists of relevant full-text papers were hand-searched. Results Of 901 retrieved papers, 112 were considered as potentially eligible. After full-text reading, 17 were included in the final analysis, together with 15 papers identified through hand-searching of reference lists. All of the 32 included publications were case reports or case series. Clinical manifestations of drug–drug interactions involving opioids were grouped as follows: 1) sedation and respiratory depression, 2) other central nervous system symptoms, 3) impairment of pain control and/or opioid withdrawal, and 4) other symptoms. The most common mechanisms eliciting drug–drug interactions were alteration of opioid metabolism by inhibiting the activity of cytochrome P450 3A4 and pharmacodynamic interactions due to the combined effect on opioid, dopaminergic, cholinergic, and serotonergic activity in the central nervous system. Conclusion Evidence for drug–drug interactions associated with opioids used for pain treatment in cancer patients is very limited. Still, the cases identified in this systematic review give some important suggestions for clinical practice. Physicians prescribing opioids should recognize the risk of drug–drug interactions and if possible avoid polypharmacy. PMID:26396499

  15. Now or Later? An fMRI study of the effects of endogenous opioid blockade on a decision-making network.

    PubMed

    Boettiger, Charlotte A; Kelley, Elizabeth A; Mitchell, Jennifer M; D'Esposito, Mark; Fields, Howard L

    2009-09-01

    Previously, we found that distinct brain areas predict individual selection bias in decisions between small immediate ("Now") and larger delayed rewards ("Later"). Furthermore, such selection bias can be manipulated by endogenous opioid blockade. To test whether blocking endogenous opioids with naltrexone (NTX) alters brain activity during decision-making in areas predicting individual bias, we compared fMRI BOLD signal correlated with Now versus Later decision-making after acute administration of NTX (50 mg) or placebo. We tested abstinent alcoholics and control subjects in a double-blind two-session design. We defined regions of interest (ROIs) centered on activation peaks predicting Now versus Later selection bias. NTX administration significantly increased BOLD signal during decision-making in the right lateral orbital gyrus ROI, an area where enhanced activity during decision-making predicts Later bias. Exploratory analyses identified additional loci where BOLD signal during decision-making was enhanced (left orbitofrontal cortex, left inferior temporal gyrus, and cerebellum) or reduced (right superior temporal pole) by NTX. Additional analyses identified sites, including the right lateral orbital gyrus, in which NTX effects on BOLD signal predicted NTX effects on selection bias. These data agree with opioid receptor expression in human frontal and temporal cortices, and suggest possible mechanisms of NTX's therapeutic effects. PMID:19258022

  16. Now or Later? An fMRI study of the effects of endogenous opioid blockade on a decision-making network

    PubMed Central

    Boettiger, Charlotte A.; Kelley, Elizabeth A.; Mitchell, Jennifer M.; D’Esposito, Mark; Fields, Howard L.

    2009-01-01

    Previously, we found that distinct brain areas predict individual selection bias in decisions between small immediate (“Now”) and larger delayed rewards (“Later”). Furthermore, such selection bias can be manipulated by endogenous opioid blockade. To test whether blocking endogenous opioids with Naltrexone (NTX) alters brain activity during decision-making in areas predicting individual bias, we compared fMRI BOLD signal correlated with Now versus Later decision-making after acute administration of NTX (50 mg) or placebo. We tested abstinent alcoholics and control subjects in a double-blind two-session design. We defined regions of interest (ROI) centered on activation peaks predicting Now versus Later selection bias. NTX administration significantly increased BOLD signal during decision-making in the right lateral orbital gyrus ROI, an area where enhanced activity during decision-making predicts Later bias. Exploratory analyses identified additional loci where BOLD signal during decision-making was enhanced (left orbitofrontal cortex, left inferior temporal gyrus, and cerebellum) or reduced (right superior temporal pole) by NTX. Additional analyses identified sites, including the right lateral orbital gyrus, in which NTX effects on BOLD signal predicted NTX effects on selection bias. These data agree with opioid receptor expression in human frontal and temporal cortices, and suggest possible mechanisms of NTX’s therapeutic effects. PMID:19258022

  17. The panicolytic-like effect of fluoxetine in the elevated T-maze is mediated by serotonin-induced activation of endogenous opioids in the dorsal periaqueductal grey.

    PubMed

    Roncon, Camila M; Biesdorf, Carla; Santana, Rosangela G; Zangrossi, Hélio; Graeff, Frederico G; Audi, Elisabeth A

    2012-04-01

    Serotonin (5-HT), opioids and the dorsal periaqueductal grey (DPAG) have been implicated in the pathophysiology of panic disorder. In order to study 5-HT-opioid interaction, the opioid antagonist naloxone was injected either systemically (1 mg/kg, i.p.) or intra-DPAG (0.2 μg/0.5 μL) to assess its interference with the effect of chronic fluoxetine (10 mg/kg, i.p., daily for 21 days) or of intra-DPAG 5-HT (8 μg/0.5 μL). Drug effects were measured in the one-escape task of the rat elevated T-maze, an animal model of panic. Pretreatment with systemic naloxone antagonized the lengthening of escape latency caused by chronic fluoxetine, considered a panicolytic-like effect that parallels the drug's therapeutic response in the clinics. Pretreatment with naloxone injected intra-DPAG antagonized both the panicolytic effect of chronic fluoxetine as well as that of 5-HT injected intra-DPAG. Neither the performance of the inhibitory avoidance task in the elevated T-maze, a model of generalized anxiety nor locomotion measured in a circular arena was affected by the above drug treatments. These results indicate that the panicolytic effect of fluoxetine is mediated by endogenous opioids that are activated by 5-HT in the DPAG. They also allow reconciliation between the serotonergic and opioidergic hypotheses of panic disorder pathophysiology. PMID:22279131

  18. Human Endogenous Retrovirus Group E and Its Involvement in Diseases

    PubMed Central

    Le Dantec, Christelle; Vallet, Sophie; Brooks, Wesley H.; Renaudineau, Yves

    2015-01-01

    Human endogenous retrovirus group E (HERV-E) elements are stably integrated into the human genome, transmitted vertically in a Mendelian manner, and are endowed with transcriptional activity as alternative promoters or enhancers. Such effects are under the control of the proviral long terminal repeats (LTR) that are organized into three HERV-E phylogenetic subgroups, namely LTR2, LTR2B, and LTR2C. Moreover, HERV-E expression is tissue-specific, and silenced by epigenetic constraints that may be disrupted in cancer, autoimmunity, and human placentation. Interest in HERV-E with regard to these conditions has been stimulated further by concerns regarding the capacity of HERV-E elements to modify the expression of neighboring genes and/or to produce retroviral proteins, including immunosuppressive env peptides, which in turn may induce (auto)-antibody (Ab) production. Finally, better understanding of HERV-E elements may have clinical applications for prevention, diagnosis, prognosis, and therapy. PMID:25785516

  19. Divergent short- and long-term effects of acute stress in object recognition memory are mediated by endogenous opioid system activation.

    PubMed

    Nava-Mesa, Mauricio O; Lamprea, Marisol R; Múnera, Alejandro

    2013-11-01

    Acute stress induces short-term object recognition memory impairment and elicits endogenous opioid system activation. The aim of this study was thus to evaluate whether opiate system activation mediates the acute stress-induced object recognition memory changes. Adult male Wistar rats were trained in an object recognition task designed to test both short- and long-term memory. Subjects were randomly assigned to receive an intraperitoneal injection of saline, 1 mg/kg naltrexone or 3 mg/kg naltrexone, four and a half hours before the sample trial. Five minutes after the injection, half the subjects were submitted to movement restraint during four hours while the other half remained in their home cages. Non-stressed subjects receiving saline (control) performed adequately during the short-term memory test, while stressed subjects receiving saline displayed impaired performance. Naltrexone prevented such deleterious effect, in spite of the fact that it had no intrinsic effect on short-term object recognition memory. Stressed subjects receiving saline and non-stressed subjects receiving naltrexone performed adequately during the long-term memory test; however, control subjects as well as stressed subjects receiving a high dose of naltrexone performed poorly. Control subjects' dissociated performance during both memory tests suggests that the short-term memory test induced a retroactive interference effect mediated through light opioid system activation; such effect was prevented either by low dose naltrexone administration or by strongly activating the opioid system through acute stress. Both short-term memory retrieval impairment and long-term memory improvement observed in stressed subjects may have been mediated through strong opioid system activation, since they were prevented by high dose naltrexone administration. Therefore, the activation of the opioid system plays a dual modulating role in object recognition memory. PMID:24036398

  20. Rapid, Opioid-sensitive Mechanisms Involved in Transient Receptor Potential Vanilloid 1 Sensitization*S⃞

    PubMed Central

    Vetter, Irina; Cheng, Wei; Peiris, Madusha; Wyse, Bruce D.; Roberts-Thomson, Sarah J.; Zheng, Jie; Monteith, Gregory R.; Cabot, Peter J.

    2008-01-01

    TRPV1 is a nociceptive, Ca2+-selective ion channel involved in the development of several painful conditions. Sensitization of TRPV1 responses by cAMP-dependent PKA crucially contributes to the development of inflammatory hyperalgesia. However, the pathways involved in potentiation of TRPV1 responses by cAMP-dependent PKA remain largely unknown. Using HEK cells stably expressing TRPV1 and the μ opioid receptor, we demonstrated that treatment with the adenylate cyclase activator forskolin significantly increased the multimeric TRPV1 species. Pretreatment with the μ opioid receptor agonist morphine reversed this increased TRPV1 multimerization. FRET analysis revealed that treatment with forskolin did not cause multimerization of pre-existing TRPV1 monomers on the plasma membrane and that intracellular pools of TRPV1 exist mostly as monomers in this model. This suggests that increased TRPV1 multimerization occurred from an intracellular store of inactive TRPV1 monomers. Treatment with forskolin also caused an increase in TRPV1 expression on the plasma membrane not resulting from increased TRPV1 expression, and this rapid TRPV1 translocation was inhibited by treatment with morphine. Thus, potentiation of TRPV1 responses by cAMP-dependent PKA involves plasma membrane insertion of functional TRPV1 multimers formed from an intracellular store of inactive TRPV1 monomers. This potentiation occurs rapidly and can be dynamically modulated by activation of the μ opioid receptor under conditions where cAMP levels are raised, such as with inflammation. Increased translocation and multimerization of TRPV1 channels provide a cellular mechanism for finetuning of nociceptive responses that allow for rapid modulation of TRPV1 responses independent of transcriptional changes. PMID:18482991

  1. Fentanyl Law Enforcement Submissions and Increases in Synthetic Opioid-Involved Overdose Deaths - 27 States, 2013-2014.

    PubMed

    Gladden, R Matthew; Martinez, Pedro; Seth, Puja

    2016-01-01

    In March and October 2015, the Drug Enforcement Administration (DEA) and CDC, respectively, issued nationwide alerts identifying illicitly manufactured fentanyl (IMF) as a threat to public health and safety (1,2). IMF is unlawfully produced fentanyl, obtained through illicit drug markets, includes fentanyl analogs, and is commonly mixed with or sold as heroin (1,3,4). Starting in 2013, the production and distribution of IMF increased to unprecedented levels, fueled by increases in the global supply, processing, and distribution of fentanyl and fentanyl-precursor chemicals by criminal organizations (3). Fentanyl is a synthetic opioid 50-100 times more potent than morphine (2).* Multiple states have reported increases in fentanyl-involved overdose (poisoning) deaths (fentanyl deaths) (2). This report examined the number of drug products obtained by law enforcement that tested positive for fentanyl (fentanyl submissions) and synthetic opioid-involved deaths other than methadone (synthetic opioid deaths), which include fentanyl deaths and deaths involving other synthetic opioids (e.g., tramadol). Fentanyl deaths are not reported separately in national data. Analyses also were conducted on data from 27 states(†) with consistent death certificate reporting of the drugs involved in overdoses. Nationally, the number of fentanyl submissions and synthetic opioid deaths increased by 426% and 79%, respectively, during 2013-2014; among the 27 analyzed states, fentanyl submission increases were strongly correlated with increases in synthetic opioid deaths. Changes in fentanyl submissions and synthetic opioid deaths were not correlated with changes in fentanyl prescribing rates, and increases in fentanyl submissions and synthetic opioid deaths were primarily concentrated in eight states (high-burden states). Reports from six of the eight high-burden states indicated that fentanyl-involved overdose deaths were primarily driving increases in synthetic opioid deaths. Increases in

  2. Characterization of opioid peptides and opioid receptors in the brain of jerboa (Jaculus orientalis), a hibernating rodent.

    PubMed

    Bourhim, N; Kabine, M; Elkebbaj, M S

    1997-01-01

    The present study was undertaken to investigate the biochemical characteristics of the opioid receptors and opioid peptides in the jerboa (Jaculus orientalis) brain, a subdesert rodent of Morocco. We have demonstrated the presence of delta, mu, and kappa sites in the jerboa brain. The endogenous opioid peptides methionine-enkephalin, beta-endorphin, and dynorphin were evaluated in different physiological states of the animal (active and hibernating). The circulating methionine-enkephalin in different states of the animal (active, hibernating, exposure to cold conditions, and fasting) was evaluated in the plasma. Our results indicate that the hibernating state the opioid receptors level decreased, whereas the concentration of opioid peptides increased. These findings suggest that both opioid receptors and opioid peptides could be involved in the adaptation of the jerboa to survive under thermal stress. PMID:9365806

  3. Involvement of nitric oxide in the inhibition of bone cancer-induced hyperalgesia through the activation of peripheral opioid receptors in mice.

    PubMed

    Menéndez, Luis; Juárez, Lucía; García, Verónica; Hidalgo, Agustín; Baamonde, Ana

    2007-07-01

    Experiments were designed to elucidate the involvement of nitric oxide (NO) in the antihyperalgesic effect induced by the activation of peripheral mu-opioid receptors on osteosarcoma-induced thermal hyperalgesia in mice. Since this pathway has previously been shown to be involved in the antihyperalgesic effect induced by some drugs--including opiates--on inflammatory pain, experiments were also performed in inflamed mice. The intraplantar administration of loperamide (15 microg) abolishes the thermal hyperalgesia that appears 4 weeks after the intratibial inoculation of NCTC 2472 cells in C3H/HeJ mice. The blockade of this effect by coadministering a peripheral opioid receptor antagonist (naloxone methiodide), a nitric oxide synthase (NOS) inhibitor (L-NMMA), a soluble guanylyl cyclase inhibitor (ODQ), a PKG inhibitor (KT-5823) or a K(+)(ATP)-channel blocker (glibenclamide) shows the involvement of a NO/cGMP/K(+)(ATP)-channel pathway. Accordingly the administration of loperamide produced, in osteosarcoma-bearing mice, an increase in the concentrations of NO metabolites, nitrites and nitrates, extracted from paws. The selective inhibitor of eNOS L-NIO, but not the inhibitors of nNOS (N-omega-propyl-L-arginine) or iNOS (1400w), blocked the effect of loperamide on osteosarcoma-induced hyperalgesia and also the endogenous opioid peripheral hypoalgesia that appears during the initial stages of the development of this osteosarcoma. Although this pathway also participates in the inhibitory effect of loperamide on the thermal hyperalgesia induced by administration of complete Freund's adjuvant, only selective inhibitors of nNOS or iNOS antagonized this effect. Our results demonstrate that the activation of a NO/cGMP/K(+)(ATP)-channel triggered by eNOS participates in the peripheral antihyperalgesic of loperamide on osteosarcoma-induced thermal hyperalgesia. PMID:17543351

  4. Plasma IL-12 levels are suppressed in vivo by stress and surgery through endogenous release of glucocorticoids and prostaglandins but not catecholamines or opioids.

    PubMed

    Shaashua, Lee; Rosenne, Ella; Neeman, Elad; Sorski, Liat; Sominsky, Luba; Matzner, Pini; Page, Gayle G; Ben-Eliyahu, Shamgar

    2014-04-01

    IL-12 is a prominent Th1 differentiator and leukocyte activator. Ample studies showed suppression of IL-12 production by numerous stress factors, including prostaglandins, catecholamines, glucocorticoids, and opioids, but did so in vitro and in the context of artificial leukocyte activation, not simulating the in vivo setting. In a recent study we reported in vivo suppression of plasma IL-12 levels by behavioral stress and surgery. The current study aims to elucidate neuroendocrine mechanisms underlying this phenomenon in naïve F344 rats. To this end, both adrenalectomy and administration of specific antagonists were used, targeting the aforementioned stress factors. The results indicated that corticosterone and prostaglandins are prominent mediators of the IL-12-suppressing effects of stress and surgery, apparently through directly suppressing leukocyte IL-12 production. Following surgery, endogenous prostaglandins exerted their effects mainly through elevating corticosterone levels. Importantly, stress-induced release of epinephrine or opioids had no impact on plasma IL-12 levels, while pharmacological administration of epinephrine reduced plasma IL-12 levels by elevating corticosterone levels. Last, a whole blood in vitro study indicated that prostaglandins and corticosterone, but not epinephrine, suppressed IL-12 production in non-stimulated leukocytes, and only corticosterone did so in the context of CpG-C-induced IL-12 production. Overall, the findings reiterate the notion that results from in vitro or pharmacological in vivo studies cannot indicate the effects of endogenously released stress hormones under stress/surgery conditions. Herein, corticosterone and prostaglandins, but not catecholamines or opioids, were key mediators of the suppressive effect of stress and surgery on in vivo plasma IL-12 levels in otherwise naïve animals. PMID:24636497

  5. Plasma IL-12 levels are suppressed in vivo by stress and surgery through endogenous release of glucocorticoids and prostaglandins but not catecholamines or opioids

    PubMed Central

    Shaashua, Lee; Rosenne, Ella; Neeman, Elad; Sorski, Liat; Sominsky, Luba; Matzner, Pini; Page, Gayle G.; Ben-Eliyahu, Shamgar

    2014-01-01

    IL-12 is a prominent Th1 differentiator and leukocyte activator. Ample studies showed suppression of IL-12 production by numerous stress factors, including prostaglandins, catecholamines, glucocorticoids, and opioids, but did so in vitro and in the context of artificial leukocyte activation, not simulating the in vivo setting. In a recent study we reported in vivo suppression of plasma IL-12 levels by behavioral stress and surgery. The current study aims to elucidate neuroendocrine mechanisms underlying this phenomenon in naïve F344 rats. To this end, both adrenalectomy and administration of specific antagonists were used, targeting the aforementioned stress factors. The results indicated that corticosterone and prostaglandins are prominent mediators of the IL-12-suppressing effects of stress and surgery, apparently through directly suppressing leukocyte IL-12 production. Following surgery, endogenous prostaglandins exerted their effects mainly through elevating corticosterone levels. Importantly, stress-induced release of epinephrine or opioids had no impact on plasma IL-12 levels, while pharmacological administration of epinephrine reduced plasma IL-12 levels by elevating corticosterone levels. Last, a whole blood in vitro study indicated that prostaglandins and corticosterone, but not epinephrine, suppressed IL-12 production in non-stimulated leukocytes, and only corticosterone did so in the context of CpG-C-induced IL-12 production. Overall, the findings reiterate the notion that results from in vitro or pharmacological in vivo studies cannot indicate the effects of endogenously released stress hormones under stress/surgery conditions. Herein, corticosterone and prostaglandins, but not catecholamines or opioids, were key mediators of the suppressive effect of stress and surgery on in vivo plasma IL-12 levels in otherwise naïve animals. PMID:24636497

  6. Antinociceptive action of mitragynine in mice: evidence for the involvement of supraspinal opioid receptors.

    PubMed

    Matsumoto, K; Mizowaki, M; Suchitra, T; Takayama, H; Sakai, S; Aimi, N; Watanabe, H

    1996-01-01

    Mitragynine is a major alkaloidal constituent extracted from the young leaves of Mitragyna speciosa Korth. (Rubiaceae). We investigated an antinociceptive activity of intraperitoneal (i.p.) and intracerebroventricular (i.c.v.) injection of this alkaloid by the tail-pinch and hot-plate tests in mice, and evaluated the mechanisms of the action using naloxone, an opioid receptor antagonist. Mitragynine (5.0-30 mg/kg, i.p. and 1.0-10 micrograms/mouse, i.c.v.) exerted a dose-dependent antinociceptive activity which was maximal at 15-45 min after injection in the tail-pinch and hot-plate tests, but it did not induce a morphine-like behavioral change. the antinociceptive actions of i.p. mitragynine were completely abolished by both s.c. (2 mg/kg) and i.c.v (10 micrograms/mouse) naloxone. The action of i.c.v. mitragynine (10 micrograms/mouse) was also antagonized by i.c.v. naloxone (10 micrograms/mouse). These results indicate that mitragynine itself can induce antinociception by acting in the brain, and that the supraspinal opioid systems are at least partly involved in the antinociceptive action of mitragynine in mice. PMID:8831802

  7. Central non-opioid physiological and pathophysiological effects of dynorphin A and related peptides.

    PubMed Central

    Shukla, V K; Lemaire, S

    1992-01-01

    Dynorphin A (Dyn A) and related opioid peptides derived from prodynorphin possess a high affinity for kappa opioid receptors, but they also bind to other opioid receptors (mu and delta) as well as to some non-opioid receptor sites. Although the physiological role of these peptides is not well established, recent experimental data pinpoint their particular involvement in physiological and pathophysiological conditions that relate to algesia, spinal cord injury and epilepsy. In this paper, we review data which support the concept that the non-opioid behavioral effects of Dyn A and related endogenous peptides which are observed under these conditions are physiologically and pathophysiologically relevant. PMID:1356430

  8. Expression and Localization of Opioid Receptors in Male Germ Cells and the Implication for Mouse Spermatogenesis

    PubMed Central

    Gianzo, Marta; Urizar-Arenaza, Itziar; Casis, Luis; Irazusta, Jon; Subirán, Nerea

    2016-01-01

    The presence of endogenous opioid peptides in different testicular cell types has been extensively characterized and provides evidence for the participation of the opioid system in the regulation of testicular function. However, the exact role of the opioid system during the spermatogenesis has remained controversial since the presence of the mu-, delta- and kappa-opioid receptors in spermatogenic cells was yet to be demonstrated. Through a combination of quantitative real-time PCR, immunofluorescence, immunohistochemistry and flow cytometry approaches, we report for the first time the presence of active mu-, delta- and kappa-opioid receptors in mouse male germ cells. They show an exposition time-dependent response to opioid agonist, hence suggesting their active involvement in spermatogenesis. Our results contribute to understanding the role of the opioid receptors in the spermatogenesis and could help to develop new strategies to employ the opioid system as a biochemical tool for the diagnosis and treatment of male infertility. PMID:27031701

  9. Co-morbidity and self medication in schizophrenia: involvement of endogenous morphine signaling mechanisms.

    PubMed

    Kream, Richard M; Kuzelova, Hana; Kralickova, Milena; Ptacek, Radek; Stefano, George B

    2012-10-01

    For over 30 years, empirical studies have demonstrated expression of chemically authentic morphine by diverse animal tissues and organs systems. De novo biosynthesis of endogenous morphine by animal cells displays striking similarities to the multi-enzyme mediated biosynthetic pathway previously characterized in great biochemical and molecular detail in opium poppy (Papaver somniferum). The committed enzyme step within this pathway involves an asymmetric Pictet-Spengler condensation of dopamine (DA) and 3,4 dihydroxyphenylacetaldehyde (DOPAL), the oxidation product of L- 3,4-dihydroxyphenylalanine (L-DOPA), to form the essential intermediate precursor tetrahydropapaveroline (THP). We have hypothesized that endogenous morphine is synthesized within peripheral sites via conversion of THP in a regulated biosynthetic pathway, or conversely, THP may be directly transported into the CNS and converted to endogenous morphine within a similar biosynthetic pathway. The fundamental chemical relationship of the prototype catecholamine DA and its immediate precursor L-DOPA to endogenous morphine expression indicates a novel reciprocally interactive mechanism that links catecholamine and "morphinergic" pathways in the activation and inhibition of key physiological responses, including higher order neural integration. Dysregulation of interactive DAergic and "morphinergic" signaling pathways within CNS foci may contribute to the etiological factors driving co-morbid behavioral syndromes in major psychiatric disorders. Our short review is designed to provide insights on comorbidity and self-medication in schizophrenia from a novel perspective involving endogenous morphine signaling mechanisms. PMID:22876887

  10. Proteasome involvement in agonist-induced down-regulation of mu and delta opioid receptors.

    PubMed

    Chaturvedi, K; Bandari, P; Chinen, N; Howells, R D

    2001-04-13

    This study investigated the mechanism of agonist-induced opioid receptor down-regulation. Incubation of HEK 293 cells expressing FLAG-tagged delta and mu receptors with agonists caused a time-dependent decrease in opioid receptor levels assayed by immunoblotting. Pulse-chase experiments using [(35)S]methionine metabolic labeling indicated that the turnover rate of delta receptors was accelerated 5-fold following agonist stimulation. Inactivation of functional G(i) and G(o) proteins by pertussis toxin-attenuated down-regulation of the mu opioid receptor, while down-regulation of the delta opioid receptor was unaffected. Pretreatment of cells with inhibitors of lysosomal proteases, calpain, and caspases had little effect on mu and delta opioid receptor down-regulation. In marked contrast, pretreatment with proteasome inhibitors attenuated agonist-induced mu and delta receptor down-regulation. In addition, incubation of cells with proteasome inhibitors in the absence of agonists increased steady-state mu and delta opioid receptor levels. Immunoprecipitation of mu and delta opioid receptors followed by immunoblotting with ubiquitin antibodies suggested that preincubation with proteasome inhibitors promoted accumulation of polyubiquitinated receptors. These data provide evidence that the ubiquitin/proteasome pathway plays a role in agonist-induced down-regulation and basal turnover of opioid receptors. PMID:11152677

  11. Drosophila germline invasion by the endogenous retrovirus gypsy: involvement of the viral env gene.

    PubMed

    Pelisson, A; Mejlumian, L; Robert, V; Terzian, C; Bucheton, A

    2002-10-01

    The endogenous retrovirus gypsy is expressed at high levels in mutant flamenco female flies. Gypsy viral particles extracted from such flies can infect naive flamenco individuals raised in the presence of these extracts mixed into their food. This results in the integration of new proviruses into the germline genome. These proviruses can then increase their copy number by (1) expression in the flamenco female somatic cells, (2) transfer into the oocyte and (3) integration into the genome of the progeny. Surprisingly, unlike the infection observed in the feeding experiments, this strategy of endogenous proviral multiplication does not seem to involve the expression of the viral env gene. PMID:12225916

  12. Ligand requirements for involvement of PKCε in synergistic analgesic interactions between spinal μ and δ opioid receptors

    PubMed Central

    Schuster, D J; Metcalf, M D; Kitto, K F; Messing, R O; Fairbanks, C A; Wilcox, G L

    2015-01-01

    BACKGROUND AND PURPOSE We recently found that PKCε was required for spinal analgesic synergy between two GPCRs, δ opioid receptors and α2A adrenoceptors, co-located in the same cellular subpopulation. We sought to determine if co-delivery of μ and δ opioid receptor agonists would similarly result in synergy requiring PKCε. EXPERIMENTAL APPROACH Combinations of μ and δ opioid receptor agonists were co-administered intrathecally by direct lumbar puncture to PKCε-wild-type (PKCε-WT) and -knockout (PKCε-KO) mice. Antinociception was assessed using the hot-water tail-flick assay. Drug interactions were evaluated by isobolographic analysis. KEY RESULTS All agonists produced comparable antinociception in both PKCε-WT and PKCε-KO mice. Of 19 agonist combinations that produced analgesic synergy, only 3 required PKCε for a synergistic interaction. In these three combinations, one of the agonists was morphine, although not all combinations involving morphine required PKCε. Morphine + deltorphin II and morphine + deltorphin I required PKCε for synergy, whereas a similar combination, morphine + deltorphin, did not. Additionally, morphine + oxymorphindole required PKCε for synergy, whereas a similar combination, morphine + oxycodindole, did not. CONCLUSIONS AND IMPLICATIONS We discovered biased agonism for a specific signalling pathway at the level of spinally co-delivered opioid agonists. As the bias is only revealed by an appropriate ligand combination and cannot be accounted for by a single drug, it is likely that the receptors these agonists act on are interacting with each other. Our results support the existence of μ and δ opioid receptor heteromers at the spinal level in vivo. LINKED ARTICLES This article is part of a themed section on Opioids: New Pathways to Functional Selectivity. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2015.172.issue-2 PMID:24827408

  13. Duration of opioid receptor blockade determines biotherapeutic response.

    PubMed

    McLaughlin, Patricia J; Zagon, Ian S

    2015-10-01

    Historically, studies on endogenous and exogenous opioids and their receptors focused on the mediation of pain, with excess opiate consumption leading to addiction. Opioid antagonists such as naloxone and naltrexone blocked these interactions, and still are widely used to reverse drug and alcohol overdose. Although specific opioid antagonists have been designed for mu, delta, and kappa opioid receptors, the general antagonists remain the most effective. With the discovery of the opioid growth factor (OGF)-OGF receptor (OGFr) axis as a novel biological pathway involved in homeostasis of replicating cells and tissues, the role of opioid receptor antagonists was expanded. An intermittent OGFr blockade by low dosages of naltrexone resulted in depressed cell replication, whereas high (or sustained) dosages of naltrexone that conferred a continuous OGFr blockade resulted in enhanced growth. More than 3 decades of research have confirmed that the duration of opioid receptor blockade, not specifically the dosage, by general opioid antagonists determines the biotherapeutic outcome. Dysregulation of the OGF-OGFr pathway is apparent in a number of human disorders including diabetes, multiple sclerosis, and cancer, and thus opioid antagonist disruption of interaction prevails as a therapeutic intervention. We review evidence that the duration of opioid receptor blockade is correlated with the magnitude and direction of response, and discuss the potential therapeutic effectiveness of continuous receptor blockade for treatment of diabetic complications such as corneal defects and skin wounds, and of intermittent receptor blockade by low dosages of naltrexone for treatment of autoimmune diseases and cancer. PMID:26119823

  14. Enhanced nocturnal melatonin secretion in women with functional secondary amenorrhea: relationship to opioid system and endogenous estrogen levels.

    PubMed

    Okatani, Y; Sagara, Y

    1995-01-01

    The purpose of this study was to evaluate the role of the opioid system and the estrogen environment in the nocturnal secretion of melatonin in women with secondary amenorrhea (SA). Nocturnal melatonin concentrations in patients with SA were significantly higher than in normal women (p < 0.01 vs. women with normal menstrual cycles). There were significant negative correlations between cumulative melatonin levels (between 8 p.m. and 8 a.m.) and serum estradiol-17 beta (r = -0.561, p < 0.01) and between peak serum melatonin values and serum estradiol-17 beta concentrations (r = -0.608, p < 0.01) in SA. Intravenous administration of a conjugated estrogen (Premarin 20 mg) significantly suppressed nocturnal melatonin secretion (p < 0.05), but a continuous intravenous infusion of naloxone (1.6 mg/h from 8 p.m. to 6 a.m.), an opiate antagonist, did not affect nocturnal melatonin secretion in SA. Our findings suggest that elevated nocturnal melatonin secretion may be related to low estrogen levels, but that it is not mediated by the opioid system. PMID:7782049

  15. Endogenous opioids contribute to insensitivity to pain in humans and mice lacking sodium channel Nav1.7.

    PubMed

    Minett, Michael S; Pereira, Vanessa; Sikandar, Shafaq; Matsuyama, Ayako; Lolignier, Stéphane; Kanellopoulos, Alexandros H; Mancini, Flavia; Iannetti, Gian D; Bogdanov, Yury D; Santana-Varela, Sonia; Millet, Queensta; Baskozos, Giorgios; MacAllister, Raymond; Cox, James J; Zhao, Jing; Wood, John N

    2015-01-01

    Loss-of-function mutations in the SCN9A gene encoding voltage-gated sodium channel Nav1.7 cause congenital insensitivity to pain in humans and mice. Surprisingly, many potent selective antagonists of Nav1.7 are weak analgesics. We investigated whether Nav1.7, as well as contributing to electrical signalling, may have additional functions. Here we report that Nav1.7 deletion has profound effects on gene expression, leading to an upregulation of enkephalin precursor Penk mRNA and met-enkephalin protein in sensory neurons. In contrast, Nav1.8-null mutant sensory neurons show no upregulated Penk mRNA expression. Application of the opioid antagonist naloxone potentiates noxious peripheral input into the spinal cord and dramatically reduces analgesia in both female and male Nav1.7-null mutant mice, as well as in a human Nav1.7-null mutant. These data suggest that Nav1.7 channel blockers alone may not replicate the analgesic phenotype of null mutant humans and mice, but may be potentiated with exogenous opioids. PMID:26634308

  16. Endogenous opioids contribute to insensitivity to pain in humans and mice lacking sodium channel Nav1.7

    PubMed Central

    Minett, Michael S.; Pereira, Vanessa; Sikandar, Shafaq; Matsuyama, Ayako; Lolignier, Stéphane; Kanellopoulos, Alexandros H.; Mancini, Flavia; Iannetti, Gian D.; Bogdanov, Yury D.; Santana-Varela, Sonia; Millet, Queensta; Baskozos, Giorgios; MacAllister, Raymond; Cox, James J.; Zhao, Jing; Wood, John N.

    2015-01-01

    Loss-of-function mutations in the SCN9A gene encoding voltage-gated sodium channel Nav1.7 cause congenital insensitivity to pain in humans and mice. Surprisingly, many potent selective antagonists of Nav1.7 are weak analgesics. We investigated whether Nav1.7, as well as contributing to electrical signalling, may have additional functions. Here we report that Nav1.7 deletion has profound effects on gene expression, leading to an upregulation of enkephalin precursor Penk mRNA and met-enkephalin protein in sensory neurons. In contrast, Nav1.8-null mutant sensory neurons show no upregulated Penk mRNA expression. Application of the opioid antagonist naloxone potentiates noxious peripheral input into the spinal cord and dramatically reduces analgesia in both female and male Nav1.7-null mutant mice, as well as in a human Nav1.7-null mutant. These data suggest that Nav1.7 channel blockers alone may not replicate the analgesic phenotype of null mutant humans and mice, but may be potentiated with exogenous opioids. PMID:26634308

  17. Effects of opioid peptides on thermoregulation

    SciTech Connect

    Clark, W.G.

    1981-11-01

    In a given species, injected opioid peptides usually cause changes in temperature similar to those caused by nonpeptide opioids. The main effect in those species most studied, the cat, rat, and mouse, is an increase in the level about which body temperature is regulated; there is a coordinated change in the activity of thermoregulatory effectors such that hyperthermia is produced in both hot and cold environments. Larger doses may depress thermoregulation, thereby causing body temperature to decrease in the cold. Elicitation of different patterns of response over a range of environmental temperatures and studies with naloxone and naltrexone indicate that stimulation of a number of different receptors by both peptide and nonpeptide opioids can evoke thermoregulatory responses. ..beta..-Endorphin is readily antagonized by naloxone whereas methionine-enkephalin can act on naloxone-insensitive receptors. Moreover, synthetic peptide analogs do not necessarily evoke the same response as does the related endogenous peptide. The lack of effect of naloxone on body temperature of subjects housed at usual laboratory temperature or on pyrogen-induced increases in body temperature indicates that an action of endogenous peptides on naloxone-sensitive receptors plays little, if any, role in normal thermoregulation or in fever. However, there is some evidence that such an action may be involved in responses to restraint or ambient temperature-induced stress. Further evaluation of possible physiological roles of endogenous opioid peptides will be facilitated when specific antagonists at other types of opioid receptors become available.

  18. The pharmacological basis of opioids

    PubMed Central

    Ghelardini, Carla; Di Cesare Mannelli, Lorenzo; Bianchi, Enrica

    2015-01-01

    Summary An opioid is a chemical that binds to opioid receptors, which are widely distributed in the central and peripheral nervous system and gastrointestinal tract. The different effects elicited by activation of these receptors are due to their specific neuronal and extraneuronal distribution. The painkiller effect of opioids is induced by the synergy of the two events, namely reduction of pain threshold and emotional detachment from pain. The opioid effects transcending analgesia include sedation, respiratory depression, constipation and a strong sense of euphoria. There are opioid-like substances endogenously produced by the body. Naturally occurring peptides, called enkephalins, have opioid-like activities but are not derived from opium and exert opioid-like effects by interacting with opioid receptors on cell membranes. Yet, animals do contain the same morphine precursors and metabolites as opium poppy and are able to synthesize endogenous morphine alkaloid. Experimental and clinical studies show that opioids, at doses comparable to those of endogenous opioids, can activate pronociceptive systems, leading to pain hypersensitivity and short-term tolerance, a phenomenon encountered in postoperative pain management by acute opioid administration. Whether endogenous opioids play a role in the acute pain necessary to the survival of the individual, remains an open question. PMID:26811699

  19. The pharmacological basis of opioids.

    PubMed

    Ghelardini, Carla; Di Cesare Mannelli, Lorenzo; Bianchi, Enrica

    2015-01-01

    An opioid is a chemical that binds to opioid receptors, which are widely distributed in the central and peripheral nervous system and gastrointestinal tract. The different effects elicited by activation of these receptors are due to their specific neuronal and extraneuronal distribution. The painkiller effect of opioids is induced by the synergy of the two events, namely reduction of pain threshold and emotional detachment from pain. The opioid effects transcending analgesia include sedation, respiratory depression, constipation and a strong sense of euphoria. There are opioid-like substances endogenously produced by the body. Naturally occurring peptides, called enkephalins, have opioid-like activities but are not derived from opium and exert opioid-like effects by interacting with opioid receptors on cell membranes. Yet, animals do contain the same morphine precursors and metabolites as opium poppy and are able to synthesize endogenous morphine alkaloid. Experimental and clinical studies show that opioids, at doses comparable to those of endogenous opioids, can activate pronociceptive systems, leading to pain hypersensitivity and short-term tolerance, a phenomenon encountered in postoperative pain management by acute opioid administration. Whether endogenous opioids play a role in the acute pain necessary to the survival of the individual, remains an open question. PMID:26811699

  20. Involvement of Cholinergic and Opioid System in γ-Terpinene-Mediated Antinociception

    PubMed Central

    Passos, Flávia Franceli de Brito; Lopes, Everton Moraes; de Araújo, Jonas Moura; de Sousa, Damião Pergentino; Veras, Leiz Maria C.; Leite, José Roberto S. A.; Almeida, Fernanda Regina de Castro

    2015-01-01

    The literature shows that the monoterpenes are great candidates for the development of new drugs for the treatment of various pathological processes, including painful conditions. The gamma terpinene (γ-TPN) is a monoterpene present in plant species that have multiple pharmacological properties and has structural similarity to antinociceptive monoterpenes, such as limonene and alpha-phellandrene. The γ-TPN molecular mass was evaluated by mass spectrometry and showed a pseudomolecular ion with m/z 137.0 Da. The animals did not present any signs of acute toxicity at 2 g/kg, p.o. γ-TPN (1.562 to 50 mg/kg, p.o.) showed an antinociceptive effect in the formalin, capsaicin, and glutamate tests. γ-TPN has antinociceptive action when administered by others routes in glutamate test. To eliminate a possible sedative effect of γ-TPN, the open field and rota-rod test were conducted and the γ-TPN did not show muscle relaxant activity or central depressant effect. To investigate the mechanisms of action, the animals were pretreated with naloxone, glibenclamide, atropine, mecamylamine, or L-arginine in the glutamate test. γ-TPN antinociception was inhibited in the presence of naloxone, glibenclamide, atropine, and mecamylamine. The results suggest that the γ-TPN (p.o.) produced antinociceptive effect in models of chemical nociception through the cholinergic and opioid systems involvement. PMID:26170885

  1. Termination of Nociceptive Bahaviour at the End of Phase 2 of Formalin Test is Attributable to Endogenous Inhibitory Mechanisms, but not by Opioid Receptors Activation

    PubMed Central

    Azhdari-Zarmehri, Hassan; Mohammad-Zadeh, Mohammad; Feridoni, Masoud; Nazeri, Masoud

    2014-01-01

    Introduction Formalin injection induces nociceptive bahaviour in phase I and II, with a quiescent phase between them. While active inhibitory mechanisms are proposed to be responsible for initiation of interphase, the exact mechanisms which lead to termination of nociceptive response in phase II are not clear yet. Phase II is a consequence of peripheral and central sensitization processes, which can lead to termination of the noxious stimuli responses; 45-60 minutes after formalin injection via possible recruitment of active inhibitory mechanisms which we have investigated in this study. Methods To test our hypothesis, in the first set of experiments, we evaluated nociceptive response after two consecutive injection of formalin (50µL, 2%), with intervals of 5 or 60 minutes. In the next set, formalin tests were carried out in companion with injection of Naloxone Hydrochloride, a non-selective antagonist of opioid receptors, pre-formalin injection and 30 and 45 minutes post formalin injection. Results While normal nociceptive behaviour was observed in the group receiving one injection of formalin, a diminished response was observed in phases I and II of those receiving consequent injection of formalin, 60 minute after first injection. While second injection of formalin, 5 minute after first injection, had no effect. Administration of naloxone (1mg/kg) decreased nociception in phase 2A; but had no effect on delayed termination of formalin test. Discussion The results of this study suggest the existence of an active inhibitory mechanism, other than the endogenous opioids, that is responsible for termination of nociceptive behaviour at the end of formalin test. PMID:25436084

  2. Involvement of interleukin-1 in glial responses to lipopolysaccharide: endogenous versus exogenous interleukin-1 actions.

    PubMed

    Molina-Holgado, F; Toulmond, S; Rothwell, N J

    2000-11-01

    Interleukin-1beta (IL-1beta) participates in neuroinflammation and neurodegeneration. Its mechanisms of action are not fully understood, but appear to involve complex interactions between neurons and glia. The objective of this study was to determine the involvement of endogenous IL-1beta in inflammatory responses to LPS in cultured mouse glial cells, and compare this to the effects of exogenous IL-1beta. Activation of primary mixed glial cultures by incubation with LPS (1 microgram/ml, 24 h), caused marked (approximately ten-fold) increases in release of NO, twenty-fold increases in PGE(2) and ninety-fold increases of IL-6 release. Incubation with human recombinant IL-1beta (100 ng/ml) also stimulated NO and IL-6 release to a similar extent to LPS, but IL-1beta (1 or 100 ng/ml) caused only modest increases (approximately seven-fold) in PGE(2) release. Co-incubation with IL-1ra inhibited the effects of LPS on NO release (-65%) and IL-6 production (-30%), but failed to reduce PGE(2) release. These results indicate that exogenous IL-1beta induces release of NO, PGE(2) and IL-6 in mixed glial cultures, and that endogenous IL-1beta mediates inflammatory actions of LPS on NO and to a lesser extent IL-6, but not on PGE(2) release in mixed glial cultures. Indeed endogenous IL-1beta appears to inhibit LPS-induced PGE(2) release. PMID:11063815

  3. In vivo opioid receptor heteromerization: where do we stand?

    PubMed Central

    Massotte, D

    2015-01-01

    Opioid receptors are highly homologous GPCRs that modulate brain function at all levels of neural integration, including autonomous, sensory, emotional and cognitive processing. Opioid receptors functionally interact in vivo, but the underlying mechanisms involving direct receptor–receptor interactions, affecting signalling pathways or engaging different neuronal circuits, remain unsolved. Heteromer formation through direct physical interaction between two opioid receptors or between an opioid receptor and a non-opioid one has been postulated and can be characterized by specific ligand binding, receptor signalling and trafficking properties. However, despite numerous studies in heterologous systems, evidence for physical proximity in vivo is only available for a limited number of opioid heteromers, and their physiopathological implication remains largely unknown mostly due to the lack of appropriate tools. Nonetheless, data collected so far using endogenous receptors point to a crucial role for opioid heteromers as a molecular entity that could underlie human pathologies such as alcoholism, acute or chronic pain as well as psychiatric disorders. Opioid heteromers therefore stand as new therapeutic targets for the drug discovery field. LINKED ARTICLES This article is part of a themed section on Opioids: New Pathways to Functional Selectivity. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2015.172.issue-2 PMID:24666391

  4. Touch Perception Altered by Chronic Pain and by Opioid Blockade.

    PubMed

    Case, Laura K; Čeko, Marta; Gracely, John L; Richards, Emily A; Olausson, Håkan; Bushnell, M Catherine

    2016-01-01

    Touch plays a significant role in human social behavior and social communication, and its rewarding nature has been suggested to involve opioids. Opioid blockade in monkeys leads to increased solicitation and receipt of grooming, suggesting heightened enjoyment of touch. We sought to study the role of endogenous opioids in perception of affective touch in healthy adults and in patients with fibromyalgia, a chronic pain condition shown to involve reduced opioid receptor availability. The pleasantness of touch has been linked to the activation of C-tactile fibers, which respond maximally to slow gentle touch and correlate with ratings of pleasantness. We administered naloxone to patients and healthy controls to directly observe the consequences of µ-opioid blockade on the perceived pleasantness and intensity of touch. We found that at baseline chronic pain patients showed a blunted distinction between slow and fast brushing for both intensity and pleasantness, suggesting reduced C-tactile touch processing. In addition, we found a differential effect of opioid blockade on touch perception in healthy subjects and pain patients. In healthy individuals, opioid blockade showed a trend toward increased ratings of touch pleasantness, while in chronic pain patients it significantly decreased ratings of touch intensity. Further, in healthy individuals, naloxone-induced increase in touch pleasantness was associated with naloxone-induced decreased preference for slow touch, suggesting a possible effect of opioid levels on processing of C-tactile fiber input. These findings suggest a role for endogenous opioids in touch processing, and provide further evidence for altered opioid functioning in chronic pain patients. PMID:27022625

  5. Evidence for involvement of endogenous acetylcholine in emotional-aversive response in the cat.

    PubMed

    Brudzynski, S M; Eckersdorf, B; Golebiewski, H

    1990-01-01

    1. The purpose of the present study was to provide evidence for involvement of endogenous acetylcholine in naturally as well as pharmacologically induced emotional behaviour in the cat. 2. Emotional-aversive responses of 10 cats were naturally evoked by presentation of a dog or the responses were pharmacologically induced by intracerebral injections of cholinomimetics. 3. Naturally evoked emotional behaviour was abolished by i.p. pretreatment with atropine sulfate (1 mg/kg), but not by atropine methyl nitrate, or it was significantly decreased by bilateral intracerebral injection of atropine sulfate (5 micrograms/microliter). 4. On the other hand, intracerebral injections of physostigmine (100 micrograms/microliter), an acetylcholinesterase inhibitor which elevates the level of endogenous acetylcholine, induced the fully developed emotional-aversive response comparable with natural behaviour and with responses induced by carbachol (10 micrograms/microliter). 5. The results demonstrate that the endogenous acetylcholine in the basal forebrain and diencephalic areas play a role in naturally occurring emotional aversive behaviour in cats. PMID:2293258

  6. Antinociceptive effects of maprotiline in a rat model of peripheral neuropathic pain: possible involvement of opioid system

    PubMed Central

    Banafshe, Hamid Reza; Hajhashemi, Valiollah; Minaiyan, Mohsen; Mesdaghinia, Azam; Abed, Alireza

    2015-01-01

    Objective(s): Neuropathic pain remains a clinical problem and is poorly relieved by conventional analgesics. This study was designed to determine whether maprotiline administration was effective in alleviating symptoms of neuropathic pain and whether the antinociceptive effect of maprotiline mediated through the opioid system. Materials and Methods: Neuropathic pain was induced by chronic constriction injury (CCI) of the sciatic nerve in rats, which resulted in thermal hyperalgesia, and mechanical and cold allodynia. Maprotiline (10, 20 and 40 mg/kg, IP) was administered on the 7th and 14th days after surgery. To study the role of the opioid system in the antinociceptive effects of maprotiline, maprotiline (20 mg/kg, IP) was administered in combination with naloxone (1 mg/kg, SC) on the 7th post-surgery day. Behavioral tests were done at 45 min after drug injections on the 7th and 14th days after surgery. Results: Systemic administration of maprotiline blocked heat hyperalgesia, cold allodynia and reduced mechanical allodynia. Also antihyperalgesic effect of maprotiline was reversed by pretreatment with naloxone. Conclusion: Our results suggest that maprotiline can be considered a potential therapeutic for the treatment of neuropathic pain, and the opioid system may be involved in the antihyperalgesic effects of maprotiline. PMID:26557963

  7. Opioid Mechanism Involvement in the Synergism Produced by the Combination of Diclofenac and Caffeine in the Formalin Model

    PubMed Central

    Flores-Ramos, José María; Díaz-Reval, M. Irene

    2013-01-01

    Analgesics can be administered in combination with caffeine for improved analgesic effectiveness in a process known as synergism. The mechanisms by which these combinations produce synergism are not yet fully understood. The aim of this study was to analyze whether the administration of diclofenac combined with caffeine produced antinociceptive synergism and whether opioid mechanisms played a role in this event. The formalin model was used to evaluate the antinociception produced by the oral administration of diclofenac, caffeine, or their combination. Opioid involvement was analyzed through intracerebroventricular (i.c.v.) administration of naloxone followed by the oral administration of the study drugs. Diclofenac presented a dose-dependent effect, with a mean effective dose (ED50) of 6.7 mg/kg. Caffeine presented an analgesic effect with a 17–36% range. The combination of subeffective doses of each of the two drugs presented the greatest synergism with an effect of 57.7 ± 5.6%. The maximal antinociceptive effect was obtained with the combination of 10.0 mg/kg diclofenac and 1.0 mg/kg of caffeine, with an effect of 76.7 ± 5.6%. The i.c.v. administration of naloxone inhibited the effect of diclofenac, both separately and combined. In conclusion, caffeine produces antinociceptive synergism when administered in combination with diclofenac, and this synergism is partially mediated by opioid mechanisms at the central level. PMID:27335871

  8. The antinociceptive effects of ferulic acid on neuropathic pain: involvement of descending monoaminergic system and opioid receptors

    PubMed Central

    Xu, Ying; Lin, Dan; Yu, Xuefeng; Xie, Xupei; Wang, Liqun; Lian, Lejing; Fei, Ning; Chen, Jie; Zhu, Naping; Wang, Gang; Huang, Xianfeng; Pan, Jianchun

    2016-01-01

    Neuropathic pain can be considered as a form of chronic stress that may share common neuropathological mechanism between pain and stress-related depression and respond to similar treatment. Ferulic acid (FA) is a major active component of angelica sinensis and has been reported to exert antidepressant-like effects; however, it remains unknown whether FA ameliorate chronic constriction injury (CCI)-induced neuropathic pain and the involvement of descending monoaminergic system and opioid receptors. Chronic treatment with FA (20, 40 and 80 mg/kg) ameliorated mechanical allodynia and thermal hyperalgesia in von Frey hair and hot plate tasks, accompanied by increasing spinal noradrenaline (NA) and serotonin (5-HT) levels. Subsequent study suggested that treatment of CCI animals with 40 and 80 mg/kg FA also inhibited spinal MAO-A levels. FA's effects on mechanical allodynia or thermal hyperalgesiawas blocked by 6-hydroxydopamine (6-OHDA) or p-chlorophenylalanine (PCPA) via pharmacological depletion of spinal noradrenaline or serotonin. Moreover, the anti-allodynic action of FA on mechanical stimuli was prevented by pre-treatment with beta2-adrenoceptor antagonist ICI 118,551, or by the delta-opioid receptor antagonist naltrindole. While the anti-hyperalgesia on thermal stimuli induced by FA was blocked by pre-treatment with 5-HT1A receptor antagonist WAY-100635, or with the irreversible mu-opioid receptor antagonist beta-funaltrexamine. These results suggest that the effect of FA on neuropathic pain is potentially mediated via amelioration of the descending monoaminergic system that coupled with spinal beta2- and 5-HT1A receptors and the downstream delta- and mu-opioid receptors differentially. PMID:26967251

  9. The antinociceptive effects of ferulic acid on neuropathic pain: involvement of descending monoaminergic system and opioid receptors.

    PubMed

    Xu, Ying; Lin, Dan; Yu, Xuefeng; Xie, Xupei; Wang, Liqun; Lian, Lejing; Fei, Ning; Chen, Jie; Zhu, Naping; Wang, Gang; Huang, Xianfeng; Pan, Jianchun

    2016-04-12

    Neuropathic pain can be considered as a form of chronic stress that may share common neuropathological mechanism between pain and stress-related depression and respond to similar treatment. Ferulic acid (FA) is a major active component of angelica sinensis and has been reported to exert antidepressant-like effects; however, it remains unknown whether FA ameliorate chronic constriction injury (CCI)-induced neuropathic pain and the involvement of descending monoaminergic system and opioid receptors. Chronic treatment with FA (20, 40 and 80 mg/kg) ameliorated mechanical allodynia and thermal hyperalgesia in von Frey hair and hot plate tasks, accompanied by increasing spinal noradrenaline (NA) and serotonin (5-HT) levels. Subsequent study suggested that treatment of CCI animals with 40 and 80 mg/kg FA also inhibited spinal MAO-A levels. FA's effects on mechanical allodynia or thermal hyperalgesiawas blocked by 6-hydroxydopamine (6-OHDA) or p-chlorophenylalanine (PCPA) via pharmacological depletion of spinal noradrenaline or serotonin. Moreover, the anti-allodynic action of FA on mechanical stimuli was prevented by pre-treatment with beta2-adrenoceptor antagonist ICI 118,551, or by the delta-opioid receptor antagonist naltrindole. While the anti-hyperalgesia on thermal stimuli induced by FA was blocked by pre-treatment with 5-HT1A receptor antagonist WAY-100635, or with the irreversible mu-opioid receptor antagonist beta-funaltrexamine. These results suggest that the effect of FA on neuropathic pain is potentially mediated via amelioration of the descending monoaminergic system that coupled with spinal beta2- and 5-HT1A receptors and the downstream delta- and mu-opioid receptors differentially. PMID:26967251

  10. Endogenously produced hydrogen sulfide is involved in porcine oocyte maturation in vitro.

    PubMed

    Nevoral, Jan; Žalmanová, Tereza; Zámostná, Kateřina; Kott, Tomáš; Kučerová-Chrpová, Veronika; Bodart, Jean-Francois; Gelaude, Armance; Procházka, Radek; Orsák, Matyáš; Šulc, Miloslav; Klein, Pavel; Dvořáková, Markéta; Weingartová, Ivona; Víghová, Aurélia; Hošková, Kristýna; Krejčová, Tereza; Jílek, František; Petr, Jaroslav

    2015-12-01

    Hydrogen sulfide, one of three known gasotransmitters, is involved in physiological processes, including reproductive functions. Oocyte maturation and surrounding cumulus cell expansion play an essential role in female reproduction and subsequent embryonic development. Although the positive effects of exogenous hydrogen sulfide on maturing oocytes are well known, the role of endogenous hydrogen sulfide, which is physiologically released by enzymes, has not yet been described in oocytes. In this study, we observed the presence of Cystathionine β-Synthase (CBS), Cystathionine γ-Lyase (CTH) and 3-Mercaptopyruvate Sulfurtransferase (3-MPST), hydrogen sulfide-releasing enzymes, in porcine oocytes. Endogenous hydrogen sulfide production was detected in immature and matured oocytes as well as its requirement for meiotic maturation. Individual hydrogen sulfide-releasing enzymes seem to be capable of substituting for each other in hydrogen sulfide production. However, meiosis suppression by inhibition of all hydrogen sulfide-releasing enzymes is not irreversible and this effect is a result of M-Phase/Maturation Promoting Factor (MPF) and Mitogen-Activated Protein Kinase (MAPK) activity inhibition. Futhermore, cumulus expansion expressed by hyaluronic acid (HA) production is affected by the inhibition of hydrogen sulfide production. Moreover, quality changes of the expanded cumuli are indicated. These results demonstrate hydrogen sulfide involvement in oocyte maturation as well as cumulus expansion. As such, hydrogen sulfide appears to be an important cell messenger during mammalian oocyte meiosis and adequate cumulus expansion. PMID:26456342

  11. Opioid-induced preconditioning: recent advances and future perspectives.

    PubMed

    Peart, Jason N; Gross, Eric R; Gross, Garrett J

    2005-01-01

    Opioids, named by Acheson for compounds with morphine-like actions despite chemically distinct structures, have received much research interest, particularly for their central nervous system (CNS) actions involved in pain management, resulting in thousands of scientific papers focusing on their effects on the CNS and other organ systems. A more recent area which may have great clinical importance concerns the role of opioids, either endogenous or exogenous compounds, in limiting the pathogenesis of ischemia-reperfusion injury in heart and brain. The role of endogenous opioids in hibernation provides tantalizing evidence for the protective potential of opioids against ischemia or hypoxia. Mammalian hibernation, a distinct energy-conserving state, is associated with depletion of energy stores, intracellular acidosis and hypoxia, similar to those which occur during ischemia. However, despite the potentially detrimental cellular state induced with hibernation, the myocardium remains resilient for many months. What accounts for the hypoxia-tolerant state is of great interest. During hibernation, circulating levels of opioid peptides are increased dramatically, and indeed, are considered a "trigger" of hibernation. Furthermore, administration of opioid antagonists can effectively reverse hibernation in mammals. Therefore, it is not surprising that activation of opioid receptors has been demonstrated to preserve cellular status following a hypoxic insult, such as ischemia-reperfusion in many model systems including the intestine [Zhang, Y., Wu, Y.X., Hao, Y.B., Dun, Y. Yang, S.P., 2001. Role of endogenous opioid peptides in protection of ischemic preconditioning in rat small intestine. Life Sci. 68, 1013-1019], skeletal muscle [Addison, P.D., Neligan, P.C., Ashrafpour, H., Khan, A., Zhong, A., Moses, M., Forrest, C.R., Pang, C.Y., 2003. Noninvasive remote ischemic preconditioning for global protection of skeletal muscle against infarction. Am. J. Physiol. Heart Circ

  12. Involvement of Mu Opioid Receptor Signaling in the Protective Effect of Opioid against 6-Hydroxydopamine-Induced SH-SY5Y Human Neuroblastoma Cells Apoptosis

    PubMed Central

    Eftekhar-Vaghefi, Shahrzad; Esmaeili-Mahani, Saeed; Elyasi, Leila; Abbasnejad, Mehdi

    2015-01-01

    Introduction: The neuroprotective role of opioid morphine against 6-hydroxydopamine-induced cell death has been demonstrated. However, the exact mechanism(s) underlying such neuroprotection, especially the role of subtype receptors, has not yet been fully clarified. Methods: Here, we investigated the effects of different opioid agonists on 6-OHDA-induced neurotoxicity in human neuroblastoma SH-SY5Y cell line as an in vitro model of Parkinson’s disease. Cell damage was induced by 150 μM 6-OHDA and the cells viability was examined by MTT assay. Intracellular calcium, reactive oxygen species and mitochondrial membrane potential were assessed by fluorescence spectrophotometry method. Immunoblot technique was used to evaluate cytochrome-c and activated caspase-3 as biochemical markers of apoptosis induction. Results: The data showed that 6-OHDA caused significant cell damage, loss of mitochondrial membrane potential and increase in intracellular reactive oxygen species and calcium levels as well as activated caspase-3 and cytochrome-c release. Incubation of SH-SY5Y cells with μ-opioid agonists, morphine and DAMGO, but not with δ-opioid agonist, DADLE, elicited protective effect and reduced biochemical markers of cell damage and death. Discussion: The results suggest that μ-opioid receptors signaling participate in the opioid neuroprotective effects against 6-OHDA-induced neurotoxicity. PMID:26904174

  13. Involvement of endogenous salicylic acid in iron-deficiency responses in Arabidopsis.

    PubMed

    Shen, Chenjia; Yang, Yanjun; Liu, Kaidong; Zhang, Lei; Guo, Hong; Sun, Tao; Wang, Huizhong

    2016-07-01

    Several phytohormones have been demonstrated to be involved in iron (Fe) homeostasis. We took advantage of a salicylic acid (SA) biosynthesis defective mutant phytoalexin deficient 4 (pad4: T-DNA Salk_089936) to explore the possible effects of endogenous SA on the morphological and physiological responses to Fe deprivation. The morphological and physiological analysis was carried out between Col-0 and the pad4 mutant. Under an Fe-deficiency treatment, Col-0 showed more severe leaf chlorosis and root growth inhibition compared with the pad4 mutant. The soluble Fe concentrations were significantly higher in pad4 than in Col-0 under the Fe-deficiency treatment. Fe deficiency significantly induced SA accumulation in Col-0 and the loss-of-function of PAD4 blocked this process. The requirement of endogenous SA accumulation for Fe-deficiency responses was confirmed using a series of SA biosynthetic mutants and transgenic lines. Furthermore, a comparative RNA sequencing analysis of the whole seedling transcriptomes between Col-0 and the pad4 mutant was also performed. Based on the transcriptome data, the expression levels of many auxin- and ethylene-response genes were altered in pad4 compared with Col-0. Fe deficiency increases SA contents which elevates auxin and ethylene signalling, thereby activating Fe translocation via the bHLH38/39-mediated transcriptional regulation of downstream Fe genes. PMID:27208542

  14. Extended-Release Naltrexone To Prevent Relapse Among Opioid Dependent, Criminal Justice System Involved Adults: Rationale and Design of a Randomized Controlled Effectiveness Trial

    PubMed Central

    Lee, Joshua D.; Friedmann, Peter D.; Boney, Tamara Y.; Hoskinson, Randall A.; McDonald, Ryan; Gordon, Michael; Fishman, Marc; Chen, Donna T.; Bonnie, Richard J.; Kinlock, Timothy W.; Nunes, Edward V.; Cornish, James W.; O’Brien, Charles P.

    2015-01-01

    Background Extended-release naltrexone (XR-NTX, Vivitrol® Alkermes Inc.) is an injectable monthly sustained-release mu opioid receptor antagonist. XR-NTX is a potentially effective intervention for opioid use disorders and as relapse prevention among criminal justice system (CJS) populations. Methods This 5-site open-label randomized controlled effectiveness trial examines whether XR-NTX reduces opioid relapse compared with treatment as usual (TAU) among community dwelling, non-incarcerated volunteers with current or recent CJS involvement. The XR-NTX arm receives 6 monthly XR-NTX injections at Medical Management visits; the TAU group receives referrals to available community treatment options. Assessments occur every 2 weeks during a 24-week treatment phase and at 12- and 18-month follow-ups. The primary outcome is a relapse event, defined as either self-report or urine toxicology evidence of ≥10 days of opioid use in a 28-day (4 week) period, with a positive or missing urine test counted as 5 days of opioid use. Results We describe the rationale, specific aims, and design of the study. Alternative design considerations and extensive secondary aims and outcomes are discussed. Conclusions XR-NTX is a potentially important treatment and relapse prevention option among persons with opioid dependence and CJS involvement. PMID:25602580

  15. Opioid control of gonadotrophin secretion in humans.

    PubMed

    Genazzani, A R; Genazzani, A D; Volpogni, C; Pianazzi, F; Li, G A; Surico, N; Petraglia, F

    1993-11-01

    Hypothalamus-pituitary-axis (HPA) is constantly under the modulatory effect of many substances, such as neurotransmitters, neuromodulators and steroid hormones. Recently, the involvement of endogenous opioid peptides (EOP) in the control of the neuroendocrine mechanism modulating gonadotrophin secretion has been supported by several authors. It has been demonstrated that acute morphine administration decreases luteinizing hormone (LH) plasma levels and this is due to an inhibitory modulation on gonadotrophin releasing hormone discharge from the hypothalamic neurons. EOP are usually increased by stressful situations. In stress-induced amenorrhoea, the presence of low LH plasma levels and an abnormal LH pulsatile secretion has been related to an increased opioid activity, thus supporting the integrative role of opioids between hormonal and neuronal afferences of brain. PMID:8276950

  16. Regulation of μ and δ opioid receptor functions: involvement of cyclin-dependent kinase 5

    PubMed Central

    Beaudry, H; Mercier-Blais, A-A; Delaygue, C; Lavoie, C; Parent, J-L; Neugebauer, W; Gendron, L

    2015-01-01

    Background and Purpose Phosphorylation of δ opioid receptors (DOP receptors) by cyclin-dependent kinase 5 (CDK5) was shown to regulate the trafficking of this receptor. Therefore, we aimed to determine the role of CDK5 in regulating DOP receptors in rats treated with morphine or with complete Freund's adjuvant (CFA). As μ (MOP) and DOP receptors are known to be co-regulated, we also sought to determine if CDK5-mediated regulation of DOP receptors also affects MOP receptor functions. Experimental Approach The role of CDK5 in regulating opioid receptors in CFA- and morphine-treated rats was studied using roscovitine as a CDK inhibitor and a cell-penetrant peptide mimicking the second intracellular loop of DOP receptors (C11-DOPri2). Opioid receptor functions were assessed in vivo in a series of behavioural experiments and correlated by measuring ERK1/2 activity in dorsal root ganglia homogenates. Key Results Chronic roscovitine treatment reduced the antinociceptive and antihyperalgesic effects of deltorphin II (Dlt II) in morphine- and CFA-treated rats respectively. Repeated administrations of C11-DOPri2 also robustly decreased Dlt II-induced analgesia. Interestingly, DAMGO-induced analgesia was significantly increased by roscovitine and C11-DOPri2. Concomitantly, in roscovitine-treated rats the Dlt II-induced ERK1/2 activation was decreased, whereas the DAMGO-induced ERK1/2 activation was increased. An acute roscovitine treatment had no effect on Dlt II- or DAMGO-induced analgesia. Conclusions and Implications Together, our results demonstrate that CDK5 is a key player in the regulation of DOP receptors in morphine- and CFA-treated rats and that the regulation of DOP receptors by CDK5 is sufficient to modulate MOP receptor functions through an indirect process. PMID:25598508

  17. Opioid-Induced Nausea Involves a Vestibular Problem Preventable by Head-Rest

    PubMed Central

    Sağlam, Murat; Schulz, Christian M.; Wagner, Klaus J.; Taki, Masakatsu; Kochs, Eberhard F.; Jahn, Klaus; Brandt, Thomas; Glasauer, Stefan; Schneider, Erich

    2015-01-01

    Background and Aims Opioids are indispensable for pain treatment but may cause serious nausea and vomiting. The mechanism leading to these complications is not clear. We investigated whether an opioid effect on the vestibular system resulting in corrupt head motion sensation is causative and, consequently, whether head-rest prevents nausea. Methods Thirty-six healthy men (26.6±4.3 years) received an opioid remifentanil infusion (45 min, 0.15 μg/kg/min). Outcome measures were the vestibulo-ocular reflex (VOR) gain determined by video-head-impulse-testing, and nausea. The first experiment (n = 10) assessed outcome measures at rest and after a series of five 1-Hz forward and backward head-trunk movements during one-time remifentanil administration. The second experiment (n = 10) determined outcome measures on two days in a controlled crossover design: (1) without movement and (2) with a series of five 1-Hz forward and backward head-trunk bends 30 min after remifentanil start. Nausea was psychophysically quantified (scale from 0 to 10). The third controlled crossover experiment (n = 16) assessed nausea (1) without movement and (2) with head movement; isolated head movements consisting of the three axes of rotation (pitch, roll, yaw) were imposed 20 times at a frequency of 1 Hz in a random, unpredictable order of each of the three axes. All movements were applied manually, passively with amplitudes of about ± 45 degrees. Results The VOR gain decreased during remifentanil administration (p<0.001), averaging 0.92±0.05 (mean±standard deviation) before, 0.60±0.12 with, and 0.91±0.05 after infusion. The average half-life of VOR recovery was 5.3±2.4 min. 32/36 subjects had no nausea at rest (nausea scale 0.00/0.00 median/interquartile range). Head-trunk and isolated head movement triggered nausea in 64% (p<0.01) with no difference between head-trunk and isolated head movements (nausea scale 4.00/7.25 and 1.00/4.5, respectively). Conclusions Remifentanil reversibly

  18. Involvement of opioid receptors in the systemic and peripheral antinociceptive actions of montelukast in the animal models of pain.

    PubMed

    Ghorbanzadeh, Behnam; Mansouri, Mohammad Taghi; Sahraei, Hedayat; Alboghobeish, Soheila

    2016-05-15

    This study aimed to investigate the involvement of opioid receptors in the systemic and peripheral antinociceptive activities of montelukast in different animal models of pain. Rats and mice were injected with montelukast to produce analgesia. The formalin and acetic acid-induced writhing tests were used to assess the nociceptive activity. The results showed that i.p. administration of montelukast (0.3-10mg/kg) dose-dependently reduced flinching behavior in both the first and second phases of formalin test with mean ED50 of 0.55 and 5.31mg/kg, respectively. Also, intraplantar administration of montelukast (3-30μg/paw) produced antinociception against the two phases of formalin assay in a dose-dependent way with mean ED30 of 2.92 and 8.11μg/paw, respectively. Furthermore, pre-treatment with naloxone (a non-selective opioid receptor antagonist) significantly inhibited both the systemic and also peripheral antinociceptive actions of montelukast in formalin test. In writhing test, the results showed that intraperitoneal administration of montelukast (3-10mg/kg) significantly reduced the writhe number induced by acetic acid in mice. Moreover, co-administration of non-effective doses of montelukast (0.3 and 1mg/kg; i.p.) and morphine (0.25mg/kg; i.p.) significantly decreased the writhes number induced by acetic acid. Also, this effect was naloxone-reversible. These findings suggest that the systemic and peripheral antinociception produced by montelukast were mediated through the opioid receptors in central and peripheral nervous systems. Moreover, combination of montelukast and morphine could be noted as a new strategy for pain relief. PMID:26948314

  19. Involvement of the peripheral sensory and sympathetic nervous system in the vascular endothelial expression of ICAM-1 and the recruitment of opioid-containing immune cells to inhibit inflammatory pain.

    PubMed

    Mousa, Shaaban A; Shaqura, Mohammed; Brendl, Ute; Al-Khrasani, Mahmoud; Fürst, Susanna; Schäfer, Michael

    2010-11-01

    Endogenous opioids are known to be released within certain brain areas following stressful stimuli. Recently, it was shown that also leukocytes are a potential source of endogenously released opioid peptides following stress. They activate sensory neuron opioid receptors and result in the inhibition of local inflammatory pain. An important prerequisite for the recruitment of such leukocytes is the expression of intracellular adhesion molecule-1 (ICAM-1) in blood vessels of inflamed tissue. Here, we investigated the contribution of peripheral sensory and/or sympathetic nerves to the enhanced expression of ICAM-1 simultaneously with the increased recruitment of opioid peptide-containing leukocytes to promote the inhibition of inflammatory pain. Selective degeneration of either peripheral sensory or sympathetic nerve fibers by their respective neurotoxins, capsaicin or 6-hydroxydopamime, significantly reduced the subcutaneous immigration of β-endorphin- (END-) and met-enkephalin- (ENK-)-containing polymorphonuclear leukocytes (PMN) (in the early phase) and mononuclear cells (in the late phase) during painful Freund's complete adjuvant (FCA) rat hind paw inflammation. In contrast, this treatment did not alter the percentage of opioid peptide-containing leukocytes in the circulation. Calcitonin gene-related peptide- (CGRP-) and tyrosine hydroxylase- (TH-) immunoreactive (IR) nerve fibers were in close contact to ICAM-1 IR blood vessels within inflamed subcutaneous tissue. The selective degeneration of sensory or sympathetic nerve fibers attenuated the enhanced expression of vascular endothelial ICAM-1 after intraplantar (i.pl.) FCA and abolished endogenous opioid peptide-mediated peripheral analgesia. Our results suggest that, during localized inflammatory pain, peripheral sensory and sympathetic nerve fibers augment the expression of vascular endothelial ICAM-1 simultaneously with the increased recruitment of opioid peptide-containing leukocytes which consequently

  20. Endogenous opiates and behavior: 2004.

    PubMed

    Bodnar, Richard J; Klein, Gad E

    2005-12-01

    This paper is the 27th consecutive installment of the annual review of research concerning the endogenous opioid system, now spanning over 30 years of research. It summarizes papers published during 2004 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides, opioid receptors, opioid agonists and opioid antagonists. The particular topics that continue to be covered include the molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors related to behavior, and the roles of these opioid peptides and receptors in pain and analgesia; stress and social status; tolerance and dependence; learning and memory; eating and drinking; alcohol and drugs of abuse; sexual activity and hormones, pregnancy, development and endocrinology; mental illness and mood; seizures and neurologic disorders; electrical-related activity and neurophysiology; general activity and locomotion; gastrointestinal, renal and hepatic functions; cardiovascular responses; respiration and thermoregulation; and immunological responses. PMID:16039752

  1. Endogenous opiates and behavior: 2013.

    PubMed

    Bodnar, Richard J

    2014-12-01

    This paper is the thirty-sixth consecutive installment of the annual review of research concerning the endogenous opioid system. It summarizes papers published during 2013 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides, opioid receptors, opioid agonists and opioid antagonists. The particular topics that continue to be covered include the molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors related to behavior, and the roles of these opioid peptides and receptors in pain and analgesia; stress and social status; tolerance and dependence; learning and memory; eating and drinking; alcohol and drugs of abuse; sexual activity and hormones, pregnancy, development and endocrinology; mental illness and mood; seizures and neurologic disorders; electrical-related activity and neurophysiology; general activity and locomotion; gastrointestinal, renal and hepatic functions; cardiovascular responses; respiration and thermoregulation; and immunological responses. PMID:25263178

  2. Endogenous opiates and behavior: 2007.

    PubMed

    Bodnar, Richard J

    2008-12-01

    This paper is the thirtieth consecutive installment of the annual review of research concerning the endogenous opioid system. It summarizes papers published during 2007 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides, opioid receptors, opioid agonists and opioid antagonists. The particular topics that continue to be covered include the molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors related to behavior, and the roles of these opioid peptides and receptors in pain and analgesia; stress and social status; tolerance and dependence; learning and memory; eating and drinking; alcohol and drugs of abuse; sexual activity and hormones, pregnancy, development and endocrinology; mental illness and mood; seizures and neurologic disorders; electrical-related activity and neurophysiology; general activity and locomotion; gastrointestinal, renal and hepatic functions; cardiovascular responses; respiration and thermoregulation; and immunological responses. PMID:18851999

  3. Evidence of substance P autocrine circuitry that involves TNF-α, IL-6, and PGE2 in endogenous pyrogen-induced fever.

    PubMed

    Brito, Haissa Oliveira; Barbosa, Felipe L; Reis, Renata Cristiane Dos; Fraga, Daniel; Borges, Beatriz S; Franco, Celia R C; Zampronio, Aleksander Roberto

    2016-04-15

    Substance P (SP) is involved in fever that is induced by lipopolysaccharide (LPS) but not by interleukin-1β or macrophage inflammatory protein-1α. Intracerebroventricular (i.c.v.) administration of the neurokinin-1 (NK1) receptor antagonist SR140333B in rats reduced fever that was induced by an i.c.v. injection of tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), prostaglandin E2 (PGE2), corticotropin-releasing factor (CRF), endothelin-1 (ET-1), and morphine (MOR). Furthermore, an i.c.v. injection of SP induced a febrile response that was inhibited by indomethacin concomitant with an increase in PGE2 levels in cerebrospinal fluid. Lipopolysaccharide and PGE2 caused higher expression and internalization of NK1 receptors in the hypothalamus which were prevented by SR140333B. These data suggest that SP is an important mediator of fever, in which it induces a prostaglandin-dependent response and is released after TNF-α, IL-6, PGE2, CRF, endogenous opioids, and ET-1. PMID:27049554

  4. Opioid intoxication

    MedlinePlus

    ... use of opioid-based drugs. These include morphine, heroin, oxycodone, and synthetic (man-made) opioid narcotics. Prescription ... United States, the most commonly abused opioids are heroin and methadone. People who become addicted to these ...

  5. Opioid intoxication

    MedlinePlus

    Intoxication - opioids ... In the United States, the most commonly abused opioids are heroin and methadone. People who become addicted ... of these drugs. Also, the use of prescription opioids for nonmedical reasons is an extensive and growing ...

  6. Endogenous enzymes involved in the transformation of oleuropein in Spanish table olive varieties.

    PubMed

    Ramírez, Eva; Medina, Eduardo; Brenes, Manuel; Romero, Concepción

    2014-10-01

    The main Spanish table olive varieties supplied by different olive cooperatives were investigated for their polyphenol compositions and the endogenous enzymes involved in their transformations during two growing seasons. Olives of the Manzanilla variety had the highest concentration in total polyphenols, followed by the Hojiblanca and Gordal varieties. The Gordal and Manzanilla cultivars showed the highest polyphenol oxidase activities. The Gordal cultivar presented a greater β-glucosidase and esterase activity than the others. An important influence of pH and temperature on the optimal activity of these enzymes was also observed. The polyphenol oxidase activity increased with temperature, and peroxidase activity was optimal at 35 °C. The β-glucosidase and esterase activities were at their maximum at 30 and 55 °C, respectively. The oxidase and β-glucosidase activities were at their maximum at the pH of the raw fruit. These results will contribute to the knowledge of the enzyme transformation of oleuropein in natural table olives. PMID:25209163

  7. Effects of imipramine treatment on delta-opioid receptors of the rat brain cortex and striatum.

    PubMed

    Varona, Adolfo; Gil, Javier; Saracibar, Gonzalo; Maza, Jose Luis; Echevarria, Enrique; Irazusta, Jon

    2003-01-01

    Imipramine (CAS 113-52-0) is being utilized widely for the treatment of major depression. In recent years, there has been evidence of the involvement of the endogenous opioid system in major depression and its treatment. There is some evidence indicating that opioid receptors could be involved in the antidepressant mechanism of action. Regarding this topic, mood-related behavior of endogenous enkephalins seems to be mediated by delta-opioid receptors. In this work, the effects of subacute (5 day) and chronic (15 day) treatments of imipramine on the density and the affinity of the delta-receptors in the striatum and in the parietal and frontal cortices of the rat brain are described. Studied parameters (Bmax and Kd) were calculated by a saturation binding assay with the delta-opioid agonists [3H]-DPDPE (tyrosyl-2,6-3H(N)-(2-D-penicillamine-5-D-penicillamine)-enkephalin) as specific ligand and DSLET ([D-serine2]-D-leucine-enkephalin-threonine) as non-radioactive competing ligand. It was found that 15 days treatment significantly decreased the delta-opioid receptor density,without changing the affinity, in the frontal cortex of the rat brain. That decrease was confirmed by delta-opioid receptor immunostaining. These results suggest that delta-opioid receptors could play a role in the chronic action mechanism of imipramine. PMID:12608010

  8. Dexmedetomidine induces conditioned place preference in rats: Involvement of opioid receptors.

    PubMed

    Uskur, Tuğçe; Barlas, M Aydın; Akkan, A Gökhan; Shahzadi, Andleeb; Uzbay, Tayfun

    2016-01-01

    Dexmedetomidine (DEX) is an alpha-2 adrenergic agonist drug recently introduced to anesthesia practice. Certain agents used in anesthesia practice have been associated with abuse and addiction problems; however, few studies have investigated the role of DEX on addictive processes. Here, the effects and possible mechanisms of action of DEX on conditioned place preference (CPP), a model used for measuring the rewarding effects of drug abuse in rats, was investigated. The CPP apparatus was considered "biased" as the animals preferred the grid side to the mesh side. Male Wistar albino rats weighing 250-300 g were divided into several groups, including control (saline), morphine (10mg/kg), DEX (2.5-20 μg/kg), naloxone alone (0.5mg/kg) and a combination (0.5mg/kg naloxone plus 20 μg/kg DEX) (n=7-8 for each group). The CPP effects of morphine, DEX, saline and the combination were evaluated. All the drug and saline administrations except naloxone were performed by intraperitoneal (ip) injections. Naloxone was injected subcutaneously (sc) when given alone or in combination with DEX. Morphine (10mg/kg) and DEX (5-20 μg/kg) produced CPP that were statistically significant relative to saline-injected rats. DEX-induced CPP was significantly reversed by pretreatment with naloxone, an opioid antagonist. Naloxone alone treatment did not cause any significant effect on CPP. Our results suggest that DEX produces CPP effects similar to morphine in rats and that opioidergic mechanism may be responsible for DEX-induced CPP. Thus, DEX might have the potential to be addictive, and this possibility should be considered during clinical application of this drug. PMID:26376284

  9. Involvement of GATA transcription factors in the regulation of endogenous bovine interferon-tau gene transcription.

    PubMed

    Bai, Hanako; Sakurai, Toshihiro; Kim, Min-Su; Muroi, Yoshikage; Ideta, Atsushi; Aoyagi, Yoshito; Nakajima, Hiromi; Takahashi, Masashi; Nagaoka, Kentaro; Imakawa, Kazuhiko

    2009-12-01

    Expression of interferon-tau (IFNT), necessary for pregnancy establishment in ruminant ungulates, is regulated in a temporal and spatial manner. However, molecular mechanisms by which IFNT gene transcription is regulated in this manner have not been firmly established. In this study, DNA microarray/RT-PCR analysis between bovine trophoblast CT-1 and Mardin-Darby bovine kidney (MDBK) cells was initially performed, finding that transcription factors GATA2, GATA3, and GATA6 mRNAs were specific to CT-1 cells. These mRNAs were also found in Days 17, 20, and 22 (Day 0 = day of estrus) bovine conceptuses. In examining other bovine cell lines, ovary cumulus granulosa (oCG) and ear fibroblast (EF) cells, GATA2 and GATA3, but not GATA6, were found specific to the bovine trophoblast cells. In transient transfection analyses using the upstream region (-631 to +59 bp) of bovine IFNT gene (bIFNT, IFN-tau-c1), over-expression of GATA2/GATA3 did not affect the transcription of bIFNT-reporter construct in human choriocarcinoma JEG3 cells. Transfection of GATA2, GATA3, ETS2, and/or CDX2, however, was effective in the up-regulation of the bIFNT construct transfected into bovine oCG and EF cells. One Point mutation studies revealed that among six potential GATA binding sites located on the upstream region of the bIFNT gene, the one next to ETS2 site exhibited reduced luciferase activity. In CT-1 cells, endogenous bIFNT gene transcription was up-regulated by over-expression of GATA2 or GATA3, but down-regulated by siRNA specific to GATA2 mRNA. These data suggest that GATA2/3 is involved in trophoblast-specific regulation of bIFNT gene transcription. PMID:19598245

  10. Touch Perception Altered by Chronic Pain and by Opioid Blockade1,2,3

    PubMed Central

    Gracely, John L.; Richards, Emily A.; Olausson, Håkan

    2016-01-01

    Abstract Touch plays a significant role in human social behavior and social communication, and its rewarding nature has been suggested to involve opioids. Opioid blockade in monkeys leads to increased solicitation and receipt of grooming, suggesting heightened enjoyment of touch. We sought to study the role of endogenous opioids in perception of affective touch in healthy adults and in patients with fibromyalgia, a chronic pain condition shown to involve reduced opioid receptor availability. The pleasantness of touch has been linked to the activation of C-tactile fibers, which respond maximally to slow gentle touch and correlate with ratings of pleasantness. We administered naloxone to patients and healthy controls to directly observe the consequences of µ-opioid blockade on the perceived pleasantness and intensity of touch. We found that at baseline chronic pain patients showed a blunted distinction between slow and fast brushing for both intensity and pleasantness, suggesting reduced C-tactile touch processing. In addition, we found a differential effect of opioid blockade on touch perception in healthy subjects and pain patients. In healthy individuals, opioid blockade showed a trend toward increased ratings of touch pleasantness, while in chronic pain patients it significantly decreased ratings of touch intensity. Further, in healthy individuals, naloxone-induced increase in touch pleasantness was associated with naloxone-induced decreased preference for slow touch, suggesting a possible effect of opioid levels on processing of C-tactile fiber input. These findings suggest a role for endogenous opioids in touch processing, and provide further evidence for altered opioid functioning in chronic pain patients. PMID:27022625

  11. Opioid analgesics: does potency matter?

    PubMed

    Passik, Steven D; Webster, Lynn

    2014-01-01

    Prescription opioid analgesics with a wide range of potencies are currently used for the treatment of chronic pain. Yet understanding the clinical relevance and therapeutic consequences of opioid potency remains ill defined. Both patients and clinicians alike have misperceptions about opioid potency, expecting that less-potent opioids will be less effective or fearing that more-potent opioids are more dangerous or more likely to be abused. In this review, common myths about the potency of opioid analgesics will be discussed. Clinicians should understand that pharmacologic potency per se does not necessarily imply more effective analgesia or higher abuse liability. Published dose conversion tables may not accurately calculate the dose for effective and safe rotation from one opioid to another in patients receiving long-term opioid therapy because they are based on limited data that may not apply to chronic pain. Differences in pharmacologic potency are largely accounted for by the actual doses prescribed, according to individualized patient need. Factors for achieving effective analgesia and reducing the risks involved with opioid use include careful medication selection based on patient characteristics, appropriate dosing titration and opioid rotation practices, knowledge of product formulation characteristics (eg, extended release, immediate release, and tamper-resistant features), and an awareness of differences in opioid pharmacokinetics and metabolism. Clinicians should remain vigilant in monitoring patients on any opioid medication, regardless of classification along the opioid potency continuum. PMID:25162606

  12. Role of the mu opioid receptor in opioid modulation of immune function

    PubMed Central

    Ninković, Jana; Roy, Sabita

    2014-01-01

    SUMMARY Endogenous opioids are synthesized in vivo in order to modulate pain mechanisms and inflammatory pathways. Endogenous and exogenous opioids mediate analgesia in response to painful stimuli by binding to opioid receptors on neuronal cells. However, wide distribution of opioid receptors on tissues and organ systems outside the CNS, such as the cells of the immune system, indicate that opioids are capable of exerting additional effects in the periphery, such as immunomodulation. The increased prevalence of infections in opioid abusers based epidemiological studies further highlights the immunosuppressive effects of opioids. In spite of their many debilitating side effects, prescription opioids remain a gold standard for treatment of chronic pain. Therefore, given the prevalence of opioid use and abuse, opioid mediated immune suppression presents a serious concern in our society today. It is imperative to understand the mechanisms by which exogenous opioids modulate immune processes. In this review we will discuss the role of opioid receptors and their ligands in mediating immune suppressive functions. We will summarize recent studies on direct and indirect opioid modulation of the cells of the immune system as well as the role of opioids in exacerbation of certain disease states. PMID:22170499

  13. Peripheral G protein-coupled inwardly rectifying potassium (GIRK) channels are involved in delta opioid receptor-mediated anti-hyperalgesia in rat masseter muscle

    PubMed Central

    Chung, Man-Kyo; Cho, Yi Sul; Bae, Young Chul; Lee, Jongseok; Zhang, Xia; Ro, Jin Y.

    2014-01-01

    Background Although the efficacy of peripherally administered opioid has been demonstrated in preclinical and clinical studies, the underlying mechanisms of its anti-hyperalgesic effects are poorly understood. G protein-coupled inwardly rectifying potassium (GIRK) channels are linked to opioid receptors in the brain. However, the role of peripheral GIRK channels in analgesia induced by peripherally administered opioid, especially in trigeminal system, is not clear. Methods Expression of GIRK subunits in rat trigeminal ganglia (TG) was examined with RT-PCR, western blot and immunohistochemistry. Chemical profiles of GIRK expressing neurons in TG were further characterized. Behavioral and Fos experiments were performed to examine the functional involvement of GIRK channels in delta opioid receptor (DOR)-mediated anti-hyperalgesia under an acute myositis condition. Results TG expressed mRNA and proteins for GIRK1 and GIRK2 subunits. Majority of GIRK1- and GIRK2-expressing neurons were non-peptidergic afferents. Inhibition of peripheral GIRK using Tertiapin-Q (TPQ) attenuated anti-nociceptive effects of peripherally administered DOR agonist, DPDPE, on mechanical hypersensitivity in masseter muscle. Furthermore, TPQ attenuated the suppressive effects of peripheral DPDPE on neuronal activation in the subnucleus caudalis of the trigeminal nucleus (Vc) following masseteric injection of capsaicin. Conclusions Our data indicate that peripheral DOR agonist-induced suppression of mechanical hypersensitivity in the masseter muscle involves the activity of peripheral GIRK channels. These results could provide a rationale for developing a novel therapeutic approach using peripheral GIRK channel openers to mimic or supplement the effects of peripheral opioid agonist. PMID:23740773

  14. Involvement of the kappa-opioid receptor in the anxiogenic-like effect of CP 55,940 in male rats.

    PubMed

    Marín, S; Marco, E; Biscaia, M; Fernández, B; Rubio, M; Guaza, C; Schmidhammer, H; Viveros, M P

    2003-02-01

    We have studied the possible interaction between three selective opioid-receptor antagonists, nor-binaltorphimine (NB: kappa) (5 mg/kg), cyprodime (CY: mu) (10 mg/kg) and naltrindole (NTI: delta) (1 mg/kg), and the cannabinoid receptor agonist CP 55,940, in the modulation of anxiety (plus-maze) and adrenocortical activity (serum corticosterone levels by radioimmunoassay) in male rats. The holeboard was used to evaluate motor activity and directed exploration. CP 55,940 (75 microg/kg, but not 10 microg/kg) induced an anxiogenic-like effect, which was antagonised by NB. The other effects of CP 55,940 (75 microg/kg), a decreased holeboard activity and stimulation of adrenocortical activity, were not antagonised by any of the three opioid receptor antagonists. CY and NTI, when administered alone, induced marked reductions in motor activity, anxiogenic-like effects and stimulation of adrenocortical activity. The selective kappa-opioid receptor antagonist NB, on its own, did not modify the level of anxiety but stimulated adrenocortical activity. We provide the first pharmacological evidence about the involvement of the kappa-opioid receptor in the anxiogenic-like effect of CP 55,940. PMID:12543231

  15. Antinociceptive effects of dehydrocorydaline in mouse models of inflammatory pain involve the opioid receptor and inflammatory cytokines.

    PubMed

    Yin, Zhi-Yu; Li, Lu; Chu, Shuai-Shuai; Sun, Qing; Ma, Zheng-Liang; Gu, Xiao-Ping

    2016-01-01

    Dehydrocorydaline (DHC) is an alkaloidal component isolated from Rhizoma corydalis. Previous studies have shown that DHC has anti-inflammatory and anti-tumor effects and that it can protect the cardiovascular system. However, there are few studies of the antinociceptive effects of DHC in vivo. This study explored the antinociceptive effects and possible mechanisms of DHC in mice using two inflammatory pain models: the acetic acid-induced writhing test and the formalin paw test. The intraperitoneal administration of DHC (3.6, 6 or 10 mg/kg) showed a dose-dependent antinociceptive effect in the acetic acid-induced writhing test and significantly attenuated the formalin-induced pain responses in mice. The antinociceptive effects of DHC were not associated with changes in the locomotor activity or motor responses of animals, and no obvious acute or chronic toxic effects were observed in the mice. Furthermore, the use of naloxone confirmed the involvement of the opioid receptor in the central antinociceptive effects of DHC. DHC reduced formalin-induced paw edema, which indicated that DHC may produce an anti-inflammatory effect in the periphery. In the formalin test, DHC decreased the expression of caspase 6 (CASP6), TNF-α, IL-1β and IL-6 proteins in the spinal cord. These findings confirm that DHC has antinociceptive effects in mice. PMID:27272194

  16. Antinociceptive effects of dehydrocorydaline in mouse models of inflammatory pain involve the opioid receptor and inflammatory cytokines

    PubMed Central

    Yin, Zhi-Yu; Li, Lu; Chu, Shuai-Shuai; Sun, Qing; Ma, Zheng-Liang; Gu, Xiao-Ping

    2016-01-01

    Dehydrocorydaline (DHC) is an alkaloidal component isolated from Rhizoma corydalis. Previous studies have shown that DHC has anti-inflammatory and anti-tumor effects and that it can protect the cardiovascular system. However, there are few studies of the antinociceptive effects of DHC in vivo. This study explored the antinociceptive effects and possible mechanisms of DHC in mice using two inflammatory pain models: the acetic acid-induced writhing test and the formalin paw test. The intraperitoneal administration of DHC (3.6, 6 or 10 mg/kg) showed a dose-dependent antinociceptive effect in the acetic acid-induced writhing test and significantly attenuated the formalin-induced pain responses in mice. The antinociceptive effects of DHC were not associated with changes in the locomotor activity or motor responses of animals, and no obvious acute or chronic toxic effects were observed in the mice. Furthermore, the use of naloxone confirmed the involvement of the opioid receptor in the central antinociceptive effects of DHC. DHC reduced formalin-induced paw edema, which indicated that DHC may produce an anti-inflammatory effect in the periphery. In the formalin test, DHC decreased the expression of caspase 6 (CASP6), TNF-α, IL-1β and IL-6 proteins in the spinal cord. These findings confirm that DHC has antinociceptive effects in mice. PMID:27272194

  17. Arecoline Induces Neurotoxicity to PC12 Cells: Involvement in ER Stress and Disturbance of Endogenous H2S Generation.

    PubMed

    Jiang, Jia-Mei; Wang, Li; Gu, Hong-Feng; Wu, Keng; Xiao, Fan; Chen, Ying; Guo, Run-Min; Tang, Xiao-Qing

    2016-08-01

    Arecoline is a major alkaloid of areca nut and has been effect on central nervous system. Although arecoline-induced neurotoxicity has been reported, the possible underlying neurotoxic mechanisms have not yet been elucidated. Increasing evidences have shown that both excessive endoplasmic reticulum (ER) stress and disturbance of hydrogen sulfide (H2S) production are involved in the pathophysiology of numerous neurodegenerative diseases. Here, the purpose of present study was to verify whether ER stress and the disturbance of endogenous H2S generation are also involved in arecoline-caused neurotoxicity. We found that treatment of PC12 cells with arecoline induced the down-regulation of cells viability and up-regulation of apoptosis and the activity of caspase-3, indicating the neurotoxic role of arecoline to PC12 cells. In addition, arecoline also increased the expression of Bax (pro-apoptotic protein) and attenuated the expression of Bcl-2 (anti-apoptotic protein) in PC12 cells. Simultaneously, arecoline caused excessive ER stress in PC12 cells, as evidenced by the up-regulations of Glucose-regulated protein 78 (GRP78), CCAAT/enhancer binding protein homologous protein (CHOP), and Cleaved caspase-12 expressions. Notably, the level of H2S in the culture supernatant and the expressions of cystathionine β-synthase and 3-mercaptopyruvate sulfurtransferase (two major enzymes for endogenous H2S generation in PC12 cells) were also reduced by arecoline treatment. These results indicate that arecoline-caused neurotoxicity to PC12 cells is involved in ER stress and disturbance of endogenous H2S generation and suggest that the modulation of ER stress and endogenous H2S generation may be potential therapeutic approach in treatment of arecoline-caused neurotoxicity. PMID:27255601

  18. Characterization of kappa opioid receptor mediated, dynorphin-stimulated [35S]GTPγS binding in mouse striatum for the evaluation of selective KOR ligands in an endogenous setting.

    PubMed

    Zhou, Lei; Stahl, Edward L; Lovell, Kimberly M; Frankowski, Kevin J; Prisinzano, Thomas E; Aubé, Jeffrey; Bohn, Laura M

    2015-12-01

    Differential modulation of kappa opioid receptor (KOR) signaling has been a proposed strategy for developing therapies for drug addiction and depression by either activating or blocking this receptor. Hence, there have been significant efforts to generate ligands with diverse pharmacological properties including partial agonists, antagonists, allosteric modulators as well as ligands that selectively activate some pathways while not engaging others (biased agonists). It is becoming increasingly evident that G protein coupled receptor signaling events are context dependent and that what may occur in cell based assays may not be fully indicative of signaling events that occur in the naturally occurring environment. As new ligands are developed, it is important to assess their signaling capacity in relevant endogenous systems in comparison to the performance of endogenous agonists. Since KOR is considered the cognate receptor for dynorphin peptides we have evaluated the selectivity profiles of dynorphin peptides in wild-type (WT), KOR knockout (KOR-KO), and mu opioid receptor knockout (MOR-KO) mice using [35S]GTPγS binding assay in striatal membrane preparations. We find that while the small molecule KOR agonist U69,593, is very selective for KOR, dynorphin peptides promiscuously stimulate G protein signaling in striatum. Furthermore, our studies demonstrate that norBNI and 5'GNTI are highly nonselective antagonists as they maintain full potency and efficacy against dynorphin signaling in the absence of KOR. Characterization of a new KOR antagonist, which may be more selective than NorBNI and 5'GNTI, is presented using this approach. PMID:26160155

  19. American Society of Addiction Medicine (ASAM) National Practice Guideline for the Use of Medications in the Treatment of Addiction Involving Opioid Use.

    PubMed

    Kampman, Kyle; Jarvis, Margaret

    2015-01-01

    The Centers for Disease Control have recently described opioid use and resultant deaths as an epidemic. At this point in time, treating this disease well with medication requires skill and time that are not generally available to primary care doctors in most practice models. Suboptimal treatment has likely contributed to expansion of the epidemic and concerns for unethical practices. At the same time, access to competent treatment is profoundly restricted because few physicians are willing and able to provide it. This "Practice Guideline" was developed to assist in the evaluation and treatment of opioid use disorder, and in the hope that, using this tool, more physicians will be able to provide effective treatment. Although there are existing guidelines for the treatment of opioid use disorder, none have included all of the medications used at present for its treatment. Moreover, few of the existing guidelines address the needs of special populations such as pregnant women, individuals with co-occurring psychiatric disorders, individuals with pain, adolescents, or individuals involved in the criminal justice system. This Practice Guideline was developed using the RAND Corporation (RAND)/University of California, Los Angeles (UCLA) Appropriateness Method (RAM) - a process that combines scientific evidence and clinical knowledge to determine the appropriateness of a set of clinical procedures. The RAM is a deliberate approach encompassing review of existing guidelines, literature reviews, appropriateness ratings, necessity reviews, and document development. For this project, American Society of Addiction Medicine selected an independent committee to oversee guideline development and to assist in writing. American Society of Addiction Medicine's Quality Improvement Council oversaw the selection process for the independent development committee. Recommendations included in the guideline encompass a broad range of topics, starting with the initial evaluation of the

  20. Differences in the morphine-induced inhibition of small and large intestinal transit: Involvement of central and peripheral μ-opioid receptors in mice.

    PubMed

    Matsumoto, Kenjiro; Umemoto, Hiroyuki; Mori, Tomohisa; Akatsu, Ryuya; Saito, Shinichiro; Tashima, Kimihito; Shibasaki, Masahiro; Kato, Shinichi; Suzuki, Tsutomu; Horie, Syunji

    2016-01-15

    Constipation is the most common side effect of morphine. Morphine acts centrally and on peripheral sites within the enteric nervous system. There are a few comprehensive studies on morphine-induced constipation in the small and large intestine by the activation of central and peripheral μ-opioid receptors. We investigated the differences in the inhibition of the small and large intestinal transit in normal and morphine-tolerant mice. Morphine reduced the geometric center in the fluorescein isothiocyanate-dextran assay and prolonged the bead expulsion time in a dose-dependent manner. The inhibitory effects of morphine were blocked by μ-opioid antagonist β-funaltrexamine, but not by δ- and κ-opioid antagonists. The peripheral opioid receptor antagonist, naloxone methiodide, partially blocked morphine's effect in the small intestine and completely blocked its effect in the large intestine. The intracerebroventricular administration of naloxone significantly reversed the delay of small intestinal transit but did not affect morphine-induced inhibition of large intestinal transit. Naloxone methiodide completely reversed the inhibition of large intestinal transit in normal and morphine-tolerant mice. Naloxone methiodide partially reversed the morphine-induced inhibition of small intestinal transit in normal mice but completely reversed the effects of morphine in tolerant mice. Chronic treatment with morphine results in tolerance to its inhibitory effect on field-stimulated contraction in the isolated small intestine but not in the large intestine. These results suggest that peripheral and central opioid receptors are involved in morphine-induced constipation in the small and large intestine during the early stage of treatment, but the peripheral receptors mainly regulate constipation during long-term morphine treatment. PMID:26712376

  1. {delta}-Opioid receptor-stimulated Akt signaling in neuroblastoma x glioma (NG108-15) hybrid cells involves receptor tyrosine kinase-mediated PI3K activation

    SciTech Connect

    Heiss, Anika; Ammer, Hermann; Eisinger, Daniela A.

    2009-07-15

    {delta}-Opioid receptor (DOR) agonists possess cytoprotective properties, an effect associated with activation of the 'pro-survival' kinase Akt. Here we delineate the signal transduction pathway by which opioids induce Akt activation in neuroblastoma x glioma (NG108-15) hybrid cells. Exposure of the cells to both [D-Pen{sup 2,5}]enkephalin and etorphine resulted in a time- and dose-dependent increase in Akt activity, as measured by means of an activation-specific antibody recognizing phosphoserine-473. DOR-mediated Akt signaling is blocked by the opioid antagonist naloxone and involves inhibitory G{sub i/o} proteins, because pre-treatment with pertussis toxin, but not over-expression of the G{sub q/11} scavengers EBP50 and GRK2-K220R, prevented this effect. Further studies with Wortmannin and LY294002 revealed that phophoinositol-3-kinase (PI3K) plays a central role in opioid-induced Akt activation. Opioids stimulate Akt activity through transactivation of receptor tyrosine kinases (RTK), because pre-treatment of the cells with inhibitors for neurotrophin receptor tyrosine kinases (AG879) and the insulin-like growth factor receptor IGF-1 (AG1024), but not over-expression of the G{beta}{gamma} scavenger phosducin, abolished this effect. Activated Akt translocates to the nuclear membrane, where it promotes GSK3 phosphorylation and prevents caspase-3 cleavage, two key events mediating inhibition of cell apoptosis and enhancement of cell survival. Taken together, these results demonstrate that in NG108-15 hybrid cells DOR agonists possess cytoprotective properties mediated by activation of the RTK/PI3K/Akt signaling pathway.

  2. Downregulation of Endogenous Hydrogen Sulfide Pathway Is Involved in Mitochondrion-Related Endothelial Cell Apoptosis Induced by High Salt

    PubMed Central

    Zong, Yanfang; Huang, Yaqian; Chen, Siyao; Zhu, Mingzhu; Chen, Qinghua; Feng, Shasha; Sun, Yan; Zhang, Qingyou; Tang, Chaoshu; Du, Junbao; Jin, Hongfang

    2015-01-01

    Background. The study aimed to investigate whether endogenous H2S pathway was involved in high-salt-stimulated mitochondria-related vascular endothelial cell (VEC) apoptosis. Methods. Cultured human umbilical vein endothelial cells (HUVECs) were used in the study. H2S content in the supernatant was detected. Western blot was used to detect expression of cystathionine gamma-lyase (CSE), cleaved-caspase-3, and mitochondrial and cytosolic cytochrome c (cytc). Fluorescent probes were used to quantitatively detect superoxide anion generation and measure the in situ superoxide anion generation in HUVEC. Mitochondrial membrane pore opening, mitochondrial membrane potential, and caspase-9 activities were measured. The cell apoptosis was detected by cell death ELISA and TdT-mediated dUTP nick end labeling (TUNEL) methods. Results. High-salt treatment downregulated the endogenous VEC H2S/CSE pathway, in association with increased generation of oxygen free radicals, decreased mitochondrial membrane potential, enhanced the opening of mitochondrial membrane permeability transition pore and leakage of mitochondrial cytc, activated cytoplasmic caspase-9 and caspase-3 and subsequently induced VEC apoptosis. However, supplementation of H2S donor markedly inhibited VEC oxidative stress and mitochondria-related VEC apoptosis induced by high salt. Conclusion. H2S/CSE pathway is an important endogenous defensive system in endothelial cells antagonizing high-salt insult. The protective mechanisms for VEC damage might involve inhibiting oxidative stress and protecting mitochondrial injury. PMID:26078816

  3. Attenuation of Experimental Autoimmune Hepatitis by Exogenous and Endogenous Cannabinoids: Involvement of Regulatory T Cells

    PubMed Central

    Hegde, Venkatesh L.; Hegde, Shweta; Cravatt, Benjamin F.; Hofseth, Lorne J.; Nagarkatti, Mitzi; Nagarkatti, Prakash S.

    2009-01-01

    Immune-mediated liver diseases including autoimmune and viral hepatitis are a major health problem worldwide. Natural cannabinoids such as Δ9-tetrahydrocannabinol (THC) effectively modulate immune cell function, and they have shown therapeutic potential in treating inflammatory diseases. We investigated the effects of THC in a murine model of concanavalin A (ConA)-induced hepatitis. Intraperitoneal administration of THC after ConA challenge inhibited hepatitis as shown by significant decrease in liver enzymes and reduced liver tissue injury. Furthermore, THC treatment resulted in significant suppression of crucial inflammatory cytokines in ConA-induced hepatitis. It is noteworthy that THC treatment in ConA-injected mice led to significant increase in absolute number of Forkhead helix transcription factor p3+ T regulatory cells in liver. We were surprised to find that select cannabinoid receptor (CB1 or CB2) agonists were not able to block hepatitis either independently or in combination. However, CB1/CB2 mixed agonists were able to efficiently attenuate hepatitis similar to THC. The modulatory effect of THC in ConA-induced hepatitis was reversed by both CB1 and CB2 antagonists. We also observed that endogenous cannabinoid anandamide was able to reduce hepatitis by suppressing cytokine levels. In addition, deficiency or inhibition of endocannabinoid hydrolyzing enzyme fatty acid amide hydrolase (FAAH), which leads to increased levels of endogenous cannabinoids, resulted in decreased liver injury upon ConA challenge. Our data demonstrate that targeting cannabinoid receptors using exogenous or endogenous cannabinoids and use of FAAH inhibitors may constitute novel therapeutic modalities to treat immune-mediated liver inflammation. PMID:18388242

  4. Attentional Bias For Prescription Opioid Cues Among Opioid Dependent Chronic Pain Patients

    PubMed Central

    Garland, Eric L.; Froeliger, Brett; Passik, Steven D.; Howard, Matthew O.

    2012-01-01

    Recurrent use of prescription opioid analgesics by chronic pain patients may result in opioid dependence, which involves implicit neurocognitive operations that organize and impel craving states and compulsive drug taking behavior. Prior studies have identified an attentional bias (AB) towards heroin among heroin dependent individuals. The aim of this study was to determine whether opioid-dependent chronic pain patients exhibit an AB towards prescription opioidrelated cues. Opioid-dependent chronic pain patients (n = 32) and a comparison group of non-dependent opioid users with chronic pain (n = 33) completed a dot probe task designed to measure opioid AB. Participants also rated their opioid craving and self-reported arousal associated with opioid-related and neutral images, pain severity, and relief from pain treatments. Repeated-measures ANOVA revealed a significant group (opioid-dependent vs. non-dependent opioid user) × presentation duration (200 ms. vs. 2000 ms.) interaction, such that opioid-dependent individuals evidenced a significant AB towards opioid cues presented for 200 ms but not for cues presented for 2000 ms, whereas non-dependent opioid users did not exhibit a significant mean AB at either stimulus duration. Among opioid-dependent individuals, 200 ms opioid AB was significantly associated with opioid craving, while among non-dependent opioid users, 200 ms opioid AB was significantly associated with relief from pain treatments. Furthermore, dependent and non-dependent opioid users experienced opioid cues as significantly more arousing than neutral cues. Opioid dependence among chronic pain patients appears to involve an automatic AB towards opioid-related cues. When coupled with chronic pain, attentional fixation on opioid cues may promote compulsive drug use and addictive behavior. PMID:22968666

  5. Dynorphin A (1-13) Neurotoxicity In Vitro: Opioid and Non-Opioid Mechanisms in Mouse Spinal Cord Neurons

    PubMed Central

    Hauser, Kurt F.; Foldes, Jane K.; Turbek, Carol S.

    2016-01-01

    Dynorphin A is an endogenous opioid peptide that preferentially activates κ opioid receptors and is antinociceptive at physiological concentrations. Levels of dynorphin A and a major metabolite, dynorphin A (1-13), increase significantly following spinal cord trauma and reportedly contribute to neurodegeneration associated with secondary injury. Interestingly, both κ opioid and N-methyl-D-aspartate (NMDA) receptor antagonists can modulate dynorphin toxicity, suggesting that dynorphin is acting (directly or indirectly) through κ opioid and/or NMDA receptor (NMDAR) types. Despite these findings, few studies have systematically explored dynorphin toxicity at the cellular level in defined populations of neurons co-expressing κ opioid and NMDA receptors. To address this question, we isolated populations of neurons enriched in both κ opioid and NMDA receptors from embryonic mouse spinal cord and examined the effects of dynorphin A (1-13) on intracellular calcium concentration ([Ca2+]i) and neuronal survival in vitro. Time-lapse photography was used to repeatedly follow the same neurons before and during experimental treatments. At micromolar concentrations, dynorphin A (1-13) elevated [Ca2+]i and caused a significant loss of neurons. The excitotoxic effects were prevented by MK-801 (Dizocilpine) (10 μM), 2-amino-5-phosphopentanoic acid (AP-5) (100 μM), or 7-chlorokynurenic acid (100 μM)— suggesting that dynorphin A (1-13) was acting (directly or indirectly) through NMDA receptors. In contrast, co-treatment with (−)-naloxone (3 μM), or the more selective κ opioid receptor antagonist nor-binaltorphimine (3 μM), exacerbated dynorphin A (1-13)-induced neuronal loss; however, cell losses were not enhanced by the inactive stereoisomer (+)-naloxone (3 μM). Neuronal losses were not seen with exposure to the opioid antagonists alone (10 μM). Thus, opioid receptor blockade significantly increased toxicity, but only in the presence of excitotoxic levels of

  6. [Opioid receptors and their selective ligands].

    PubMed

    Piestrzeniewicz, Mariola Katarzyna; Fichna, Jakub; Michna, Jakub; Janecka, Anna

    2006-01-01

    Opioid receptors (micro, delta, and kappa) belong to a large family of G protein-coupled receptors and play an important physiological role. Stimulation of these receptors triggers analgesic effects and affects the function of gastrointestinal tract. The discovery of opioid peptides, which are endogenous ligands of opioid receptors, including delta-selective enkephalins, kappa-selective dynorphins, and micro-selective endomorphins, initiated their structure-activity relationship studies. For the last 30 years, hundreds of analogs of opioid peptides have been synthesized in an effort to obtain the compounds more active, selective, and resistant to biodegradation than the endogenous ligands. Different unnatural amino acids, as well as cyclisation procedures, leading to conformationaly restricted analogs, were employed. All these modifications resulted in obtaining very selective agonists and antagonists with high affinity at micro-, dlta-, and kappa-opioid receptors, which are extremely useful tools in further studies on the pharmacology of opioid receptors in a mammalian organism. PMID:17201067

  7. Opioid Analgesics.

    PubMed

    Jamison, Robert N; Mao, Jianren

    2015-07-01

    Chronic pain is an international health issue of immense importance that is influenced by both physical and psychological factors. Opioids are useful in treating chronic pain but have accompanying complications. It is important for clinicians to understand the basics of opioid pharmacology, the benefits and adverse effects of opioids, and related problematic issues of tolerance, dependence, and opioid-induced hyperalgesia. In this article, the role of psychiatric comorbidity and the use of validated assessment tools to identify individuals who are at the greatest risk for opioid misuse are discussed. Additionally, interventional treatment strategies for patients with chronic pain who are at risk for opioid misuse are presented. Specific behavioral interventions designed to improve adherence with prescription opioids among persons treated for chronic pain, such as frequent monitoring, periodic urine screens, opioid therapy agreements, opioid checklists, and motivational counseling, are also reviewed. Use of state-sponsored prescription drug monitoring programs is also encouraged. Areas requiring additional investigation are identified, and the future role of abuse-deterrent opioids and innovative technology in addressing issues of opioid therapy and pain are presented. PMID:26141334

  8. Involvement of ATP-sensitive potassium channels and the opioid system in the anticonvulsive effect of zolpidem in mice.

    PubMed

    Sheikhi, Mehdi; Shirzadian, Armin; Dehdashtian, Amir; Amiri, Shayan; Ostadhadi, Sattar; Ghasemi, Mehdi; Dehpour, Ahmad Reza

    2016-09-01

    Zolpidem is a hypnotic medication that mainly exerts its function through activating γ-aminobutyric acid (GABA)A receptors. There is some evidence that zolpidem may have anticonvulsive effects. However, the mechanisms underlying this effect have not been elucidated yet. In the present study, we used the pentylentetrazole (PTZ)-induced generalized seizure model in mice to investigate whether zolpidem can affect seizure threshold. We also further evaluated the roles of ATP-sensitive potassium (KATP) channels as well as μ-opioid receptors in the effects of zolpidem on seizure threshold. Our data showed that zolpidem in a dose-dependent manner increased the PTZ-induced seizure threshold. The noneffective (i.e., did not significantly alter the PTZ-induced seizure threshold by itself) doses of KATP channel blocker (glibenclamide) and nonselective opioid receptor antagonist (naloxone) were able to inhibit the anticonvulsive effect of zolpidem. Additionally, noneffective doses of either KATP channel opener (cromakalim) or nonselective μ-opioid receptor agonist (morphine) in combination with a noneffective dose of zolpidem exerted a significant anticonvulsive effect on PTZ-induced seizures in mice. A combination of noneffective doses of naloxone and glibenclamide, which separately did not affect zolpidem effect on seizure threshold, inhibited the anticonvulsive effects of zolpidem. These results suggest a role for KATP channels and the opioid system, alone or in combination, in the anticonvulsive effects of zolpidem. PMID:27521722

  9. Buprenorphine for opioid addiction

    PubMed Central

    Ling, Walter; Mooney, Larissa; Torrington, Matthew

    2014-01-01

    SUMMARY Buprenorphine is a partial opioid agonist of the µ-receptor, and is used as a daily dose sublingual tablet or filmstrip for managing opioid addiction. In the USA, the Drug Addiction Treatment Act of 2000 made buprenorphine the only opioid medication for opioid addiction that can be prescribed in an office-based setting. Owing to its high affinity for the µ-receptor, buprenorphine inhibits the reinforcing effect of exogenous opioids. The ceiling effect of buprenorphine's µ-agonist activity reduces the potential for drug overdose and confers low toxicity even at high doses. Buprenorphine pharmacotherapy has proven to be a treatment approach that supports recovery from addiction while reducing or curtailing the use of opioids. This article examines buprenorphine pharmacotherapy for opioid addiction, focusing on the situation in the USA, and is based on a review of pertinent literature, and the authors’ research and clinical experience. The references in this paper were chosen according to the authors’ judgment of quality and relevance, and with respect to their familiarity and involvement in related research. PMID:24654720

  10. Utility of next-generation RNA-sequencing in identifying chimeric transcription involving human endogenous retroviruses.

    PubMed

    Sokol, Martin; Jessen, Karen Margrethe; Pedersen, Finn Skou

    2016-01-01

    Several studies have shown that human endogenous retroviruses and endogenous retrovirus-like repeats (here collectively HERVs) impose direct regulation on human genes through enhancer and promoter motifs present in their long terminal repeats (LTRs). Although chimeric transcription in which novel gene isoforms containing retroviral and human sequence are transcribed from viral promoters are commonly associated with disease, regulation by HERVs is beneficial in other settings; for example, in human testis chimeric isoforms of TP63 induced by an ERV9 LTR protect the male germ line upon DNA damage by inducing apoptosis, whereas in the human globin locus the γ- and β-globin switch during normal hematopoiesis is mediated by complex interactions of an ERV9 LTR and surrounding human sequence. The advent of deep sequencing or next-generation sequencing (NGS) has revolutionized the way researchers solve important scientific questions and develop novel hypotheses in relation to human genome regulation. We recently applied next-generation paired-end RNA-sequencing (RNA-seq) together with chromatin immunoprecipitation with sequencing (ChIP-seq) to examine ERV9 chimeric transcription in human reference cell lines from Encyclopedia of DNA Elements (ENCODE). This led to the discovery of advanced regulation mechanisms by ERV9s and other HERVs across numerous human loci including transcription of large gene-unannotated genomic regions, as well as cooperative regulation by multiple HERVs and non-LTR repeats such as Alu elements. In this article, well-established examples of human gene regulation by HERVs are reviewed followed by a description of paired-end RNA-seq, and its application in identifying chimeric transcription genome-widely. Based on integrative analyses of RNA-seq and ChIP-seq, data we then present novel examples of regulation by ERV9s of tumor suppressor genes CADM2 and SEMA3A, as well as transcription of an unannotated region. Taken together, this article highlights

  11. The Vomeronasal Organ is not Involved in the Perception of Endogenous Odors

    PubMed Central

    Frasnelli, Johannes; Lundström, Johan N.; Boyle, Julie A.; Katsarkas, Athanasios; Jones-Gotman, Marilyn

    2013-01-01

    Chemosensory-based communication is a vital signaling tool in most species, and evidence has recently emerged in support of the notion that humans also use social chemosignals (so-called pheromones) to communicate. An ongoing controversy does exist, however, concerning the receptor organ through which these chemicals are processed. There is a widespread belief that the vomeronasal organ (VNO) is responsible for processing social chemosignals in humans. Here we demonstrate that functional occlusion of the VNO does not change the percept of, sensitivity toward, or functional neuronal processing of a putative human pheromone. Perithreshold and suprathreshold perception of the endogenous chemical androstadienone (AND) were compared, as were positron emission tomography brain activations evoked by AND when the VNO was either occluded or left open. In addition, we compared sensitivity to AND in subjects with an identifiable VNO to those in whom no VNO could be detected. Thus we could examine the effects of the VNO at several different levels of processing. Occlusion or absence of the VNO did not affect either the perceptual measurements or the functional processing of the putative human pheromone, AND. These results provide strong evidence that the human VNO has no obvious function. Pheromonal communication in humans may be conveyed via the main olfactory system. PMID:20578170

  12. Evaluation of endogenous species involved in brain tumors using multiphoton photoacoustic spectroscopy

    NASA Astrophysics Data System (ADS)

    Dahal, Sudhir; Cullum, Brian M.

    2013-05-01

    It has been shown that using non-resonant multiphoton photoacoustic spectroscopy (NMPPAS), excised brain tumor (grade III astrocytoma) and healthy tissue can be differentiated from each other, even in neighboring biopsy samples[1, 2]. Because of this, this powerful technique offers a great deal of potential for use as a surgical guidance technique for tumor margining with up to cellular level spatial resolution[3]. NMPPAS spectra are obtained by monitoring the non-radiative relaxation pathways via ultrasonic detection, following two-photon excitation with light in the optical diagnostic window (740nm-1100nm). Based upon significant differences in the ratiometric absorption of the tissues following 970nm and 1100nm excitation, a clear classification of the tissue can be made. These differences are the result of variations in composition and oxidation state of certain endogenous biochemical species between healthy and malignant tissues. In this work, NADH, NAD+ and ATP were measured using NMPPAS in model gelatin tissue phantoms to begin to understand which species might be responsible for the observed spectral differences in the tissue. Each species was placed in specific pH environments to provide control over the ratio of oxidized to reduced forms of the species. Ratiometric analyses were then conducted to account for variability caused due to instrumental parameters. This paper will discuss the potential roles of each of the species for tumor determination and their contribution to the spectral signature.

  13. Endogenous nitric oxide accumulation is involved in the antifungal activity of Shikonin against Candida albicans.

    PubMed

    Liao, Zebin; Yan, Yu; Dong, Huaihuai; Zhu, Zhenyu; Jiang, Yuanying; Cao, Yingying

    2016-01-01

    The aim of the present study was to investigate the role of nitric oxide (NO) in the antifungal activity of Shikonin (SK) against Candida albicans (C. albicans) and to clarify the underlying mechanism. The results showed that the NO donors S-nitrosoglutathione (GSNO) and L-arginine could enhance the antifungal activity of SK, whereas the NO production inhibitor Nω-nitro-L-arginine methyl ester (L-NAME) attenuated antifungal action. Using the fluorescent dye 3-amino,4-aminomethyl-2', 7-difluorescein, diacetate (DAF-FM DA), we found that the accumulation of NO in C. albicans was increased markedly by SK in a time- and dose-dependent manner. In addition, the results of real-time reverse transcription-PCR (RT-PCR) demonstrated that the transcription level of YHB1 in C. albicans was greatly increased upon incubation of SK. Consistently, the YHB1-null mutant (yhb1Δ/Δ) exhibited a higher susceptibility to SK than wild-type cells. In addition, although the transcription level of CTA4 in C. albicans was not significantly changed when exposed to SK, the CTA4-null mutant (cta4Δ/Δ) was more susceptible to SK. Collectively, SK is the agent found to execute its antifungal activity directly via endogenous NO accumulation, and NO-mediated damage is related to the suppression of YHB1 and the function of CTA4. PMID:27530748

  14. The opioid receptors as targets for drug abuse medication

    PubMed Central

    Noble, Florence; Lenoir, Magalie; Marie, Nicolas

    2015-01-01

    The endogenous opioid system is largely expressed in the brain, and both endogenous opioid peptides and receptors are present in areas associated with reward and motivation. It is well known that this endogenous system plays a key role in many aspects of addictive behaviours. The present review summarizes the modifications of the opioid system induced by chronic treatment with drugs of abuse reported in preclinical and clinical studies, as well as the action of opioid antagonists and agonists on the reinforcing effects of drugs of abuse, with therapeutic perspectives. We have focused on the effects of chronic psychostimulants, alcohol and nicotine exposure. Taken together, the changes in both opioid peptides and opioid receptors in different brain structures following acute or chronic exposure to these drugs of abuse clearly identify the opioid system as a potential target for the development of effective pharmacotherapy for the treatment of addiction and the prevention of relapse. PMID:25988826

  15. The opioid receptors as targets for drug abuse medication.

    PubMed

    Noble, Florence; Lenoir, Magalie; Marie, Nicolas

    2015-08-01

    The endogenous opioid system is largely expressed in the brain, and both endogenous opioid peptides and receptors are present in areas associated with reward and motivation. It is well known that this endogenous system plays a key role in many aspects of addictive behaviours. The present review summarizes the modifications of the opioid system induced by chronic treatment with drugs of abuse reported in preclinical and clinical studies, as well as the action of opioid antagonists and agonists on the reinforcing effects of drugs of abuse, with therapeutic perspectives. We have focused on the effects of chronic psychostimulants, alcohol and nicotine exposure. Taken together, the changes in both opioid peptides and opioid receptors in different brain structures following acute or chronic exposure to these drugs of abuse clearly identify the opioid system as a potential target for the development of effective pharmacotherapy for the treatment of addiction and the prevention of relapse. PMID:25988826

  16. Differential involvement of ventral tegmental mu, delta and kappa opioid receptors in modulation of basal mesolimbic dopamine release: in vivo microdialysis studies.

    PubMed

    Devine, D P; Leone, P; Pocock, D; Wise, R A

    1993-09-01

    In vivo microdialysis was used to assess the involvement of ventral tegmental area (VTA) mu, delta, and kappa opioid receptors in modulation of basal extracellular ventral striatal dopamine (DA) and DA-metabolite concentrations. Independent groups of chloral hydrate-anesthetized rats were given VTA microinjections of selective opioid agonists, and extracellular ventral striatal DA and DA-metabolite concentrations were assayed using HPLC. VTA microinjections of [D-Ala2, N-Me-Phe4-Gly5-ol]-enkephalin (DAMGO; a mu agonist) and [D-Pen2, D-Pen5]-enkephalin (DDDPE; a delta agonist) each caused dose-orderly increases in ventral striatal DA and DA-metabolite concentrations. The effective concentrations of DPDPE were 100- to 1000-fold higher than the effective concentrations of DAMGO. VTA microinjections of (trans-(dl)-3,4-dichloro-N-methyl-N-[2-(1-pyrrolidinyl)cyclo-hexyl]- benzeneacetamide) methane sulfonate hydrate (U-50,488H); a kappa agonist) failed to alter ventral striatal DA concentrations at any dose tested, but subsequent systemic injections significantly decreased DA and DA-metabolite concentrations. Pretreatment with VTA microinjections of 17-cyclopropylmethyl-6,7-dehydro-4,5-epoxy-3,14-dihydroxy-6,7,2',3'- indolmorphinan hydrochloride (naltrindole; a delta antagonist) (delta antagonist) antagonized VTA DPDPE-mediated increases in ventral striatal DA and DA-metabolite concentrations but failed to antagonize VTA DAMGO-mediated increases. Pretreatment with D-Pen-Cys-Tyr-D-Trp-Orn-Thr-Pen-Thr-NH2 (CTOP; a mu antagonist) antagonized VTA DAMGO-mediated increases but failed to antagonize VTA DPDPE-mediated increases. Thus both mu and delta receptor agonist appear capable of increasing ventral striatal DA and DA-metabolite concentrations through selective actions on their preferred class of opioid receptors in the VTA. The increases in ventral striatal DA and DA-metabolite concentrations that are seen after systemic treatment with kappa opioid agonists appear not to

  17. N-METHYL-d-ASPARTATE RECEPTORS AND LARGE CONDUCTANCE CALCIUM-SENSITIVE POTASSIUM CHANNELS INHIBIT THE RELEASE OF OPIOID PEPTIDES THAT INDUCE μ-OPIOID RECEPTOR INTERNALIZATION IN THE RAT SPINAL CORD

    PubMed Central

    SONG, B.; MARVIZÓN, J. C. G.

    2006-01-01

    Endogenous opioids in the spinal cord play an important role in nociception, but the mechanisms that control their release are poorly understood. To simultaneously detect all opioids able to activate the μ-opioid receptor, we measured μ-opioid receptor internalization in rat spinal cord slices stimulated electrically or chemically to evoke opioid release. Electrical stimulation of the dorsal horn in the presence of peptidase inhibitors produced μ-opioid receptor internalization in half of the μ-opioid receptor neurons. This internalization was rapidly abolished by N-methyl-d-aspartate (IC50=2 μM), and N-methyl-d-aspartate antagonists prevented this effect. μ-Opioid receptor internalization evoked by high K+ or veratridine was also inhibited by N-methyl-d-aspartate receptor activation. N-methyl-d-aspartate did not affect μ-opioid receptor internalization induced by exogenous endomorphins, confirming that the effect of N-methyl-d-aspartate was on opioid release. We hypothesized that this inhibition was mediated by large conductance Ca2+-sensitive K+ channels BK(Ca2+). Indeed, inhibition by N-methyl-d-aspartate was prevented by tetraethylammonium and by the selective BK(Ca2+) blockers paxilline, penitrem A and verruculogen. Paxilline did not increase μ-opioid receptor internalization in the absence of N-methyl-d-aspartate, indicating that it does not produce an increase in opioid release unrelated to the inhibition by N-methyl-d-aspartate. The BK(Ca2+) involved appears to be a subtype with slow association kinetics for iberiotoxin, which was effective only with long incubations. The BK(Ca2+) opener NS-1619 also inhibited the evoked μ-opioid receptor internalization, and iberiotoxin prevented this effect. We concluded that Ca2+ influx through N-methyl-d-aspartate receptors causes the opening of BK(Ca2+) and hyperpolarization in opioid-containing dorsal horn neurons, resulting in the inhibition of opioid release. Since μ-opioid receptors in the dorsal horn

  18. N-methyl-D-aspartate receptors and large conductance calcium-sensitive potassium channels inhibit the release of opioid peptides that induce mu-opioid receptor internalization in the rat spinal cord.

    PubMed

    Song, B; Marvizón, J C G

    2005-01-01

    Endogenous opioids in the spinal cord play an important role in nociception, but the mechanisms that control their release are poorly understood. To simultaneously detect all opioids able to activate the mu-opioid receptor, we measured mu-opioid receptor internalization in rat spinal cord slices stimulated electrically or chemically to evoke opioid release. Electrical stimulation of the dorsal horn in the presence of peptidase inhibitors produced mu-opioid receptor internalization in half of the mu-opioid receptor neurons. This internalization was rapidly abolished by N-methyl-D-aspartate (IC50=2 microM), and N-methyl-D-aspartate antagonists prevented this effect. mu-Opioid receptor internalization evoked by high K+ or veratridine was also inhibited by N-methyl-D-aspartate receptor activation. N-methyl-D-aspartate did not affect mu-opioid receptor internalization induced by exogenous endomorphins, confirming that the effect of N-methyl-D-aspartate was on opioid release. We hypothesized that this inhibition was mediated by large conductance Ca2+-sensitive K+ channels BK(Ca2+). Indeed, inhibition by N-methyl-D-aspartate was prevented by tetraethylammonium and by the selective BK(Ca2+) blockers paxilline, penitrem A and verruculogen. Paxilline did not increase mu-opioid receptor internalization in the absence of N-methyl-D-aspartate, indicating that it does not produce an increase in opioid release unrelated to the inhibition by N-methyl-d-aspartate. The BK(Ca2+) involved appears to be a subtype with slow association kinetics for iberiotoxin, which was effective only with long incubations. The BK(Ca2+) opener NS-1619 also inhibited the evoked mu-opioid receptor internalization, and iberiotoxin prevented this effect. We concluded that Ca2+ influx through N-methyl-D-aspartate receptors causes the opening of BK(Ca2+) and hyperpolarization in opioid-containing dorsal horn neurons, resulting in the inhibition of opioid release. Since mu-opioid receptors in the dorsal horn

  19. Involvement of μ- and δ-opioid receptor function in the rewarding effect of (±)-pentazocine.

    PubMed

    Mori, Tomohisa; Itoh, Toshimasa; Yoshizawa, Kazumi; Ise, Yuya; Mizuo, Keisuke; Saeki, Tomoya; Komiya, Sachiko; Masukawa, Daiki; Shibasaki, Masahiro; Suzuki, Tsutomu

    2015-07-01

    Most opioid receptor agonists have abuse potential, and the rewarding effects of opioids can be reduced in the presence of pain. While each of the enantiomers of pentazocine has a differential pharmacologic profile, (±)-pentazocine has been used clinically for the treatment of pain. However, little information is available regarding which components of pentazocine are associated with its rewarding effects, and whether the (±)-pentazocine-induced rewarding effects can be suppressed under pain. Therefore, the present study was performed to investigate the effects of pain on the acquisition of the rewarding effects of (±)-pentazocine, and to examine the mechanism of the rewarding effects of (±)-pentazocine using the conditioned place preference paradigm. (±)-Pentazocine and (-)-pentazocine, but not (+)-pentazocine, produced significant rewarding effects. Even though the rewarding effects induced by (±)-pentazocine were significantly suppressed under pain induced by formalin, accompanied by increase of preprodynorphin mRNA levels in the nucleus accumbens, a high dose of (±)-pentazocine produced significant rewarding effects under pain. In the normal condition, (±)-pentazocine-induced rewarding effects were blocked by a low dose of naloxone, whereas the rewarding effects induced by high doses of pentazocine under pain were suppressed by naltrindole (a δ-opioid receptor antagonist). Interestingly, (±)-pentazocine did not significantly affect dopamine levels in the nucleus accumbens. These findings suggest that the rewarding effects of (-)-pentazocine may contribute to the abuse potential of (±)-pentazocine through μ- as well as δ-opioid receptors, without robust activation of the mesolimbic dopaminergic system. We also found that neural adaptations can reduce the abuse potential of (±)-pentazocine under pain. PMID:25065832

  20. Lack of Specific Involvement of (+)-Naloxone and (+)-Naltrexone on the Reinforcing and Neurochemical Effects of Cocaine and Opioids.

    PubMed

    Tanda, Gianluigi; Mereu, Maddalena; Hiranita, Takato; Quarterman, Juliana C; Coggiano, Mark; Katz, Jonathan L

    2016-10-01

    Effective medications for drug abuse remain a largely unmet goal in biomedical science. Recently, the (+)-enantiomers of naloxone and naltrexone, TLR4 antagonists, have been reported to attenuate preclinical indicators of both opioid and stimulant abuse. To further examine the potential of these compounds as drug-abuse treatments, we extended the previous assessments to include a wider range of doses and procedures. We report the assessment of (+)-naloxone and (+)-naltrexone on the acute dopaminergic effects of cocaine and heroin determined by in vivo microdialysis, on the reinforcing effects of cocaine and the opioid agonist, remifentanil, tested under intravenous self-administration procedures, as well as the subjective effects of cocaine determined by discriminative-stimulus effects in rats. Pretreatments with (+)-naloxone or (+)-naltrexone did not attenuate, and under certain conditions enhanced the stimulation of dopamine levels produced by cocaine or heroin in the nucleus accumbens shell. Furthermore, although an attenuation of either cocaine or remifentanil self-administration was obtained at the highest doses of (+)-naloxone and (+)-naltrexone, those doses also attenuated rates of food-maintained behaviors, indicating a lack of selectivity of TLR4 antagonist effects for behaviors reinforced with drug injections. Drug-discrimination studies failed to demonstrate a significant interaction of (+)-naloxone with subjective effects of cocaine. The present studies demonstrate that under a wide range of doses and experimental conditions, the TLR4 antagonists, (+)-naloxone and (+)-naltrexone, did not specifically block neurochemical or behavioral abuse-related effects of cocaine or opioid agonists. PMID:27296151

  1. American Society of Addiction Medicine (ASAM) National Practice Guideline for the Use of Medications in the Treatment of Addiction Involving Opioid Use

    PubMed Central

    Kampman, Kyle; Jarvis, Margaret

    2015-01-01

    The Centers for Disease Control have recently described opioid use and resultant deaths as an epidemic. At this point in time, treating this disease well with medication requires skill and time that are not generally available to primary care doctors in most practice models. Suboptimal treatment has likely contributed to expansion of the epidemic and concerns for unethical practices. At the same time, access to competent treatment is profoundly restricted because few physicians are willing and able to provide it. This “Practice Guideline” was developed to assist in the evaluation and treatment of opioid use disorder, and in the hope that, using this tool, more physicians will be able to provide effective treatment. Although there are existing guidelines for the treatment of opioid use disorder, none have included all of the medications used at present for its treatment. Moreover, few of the existing guidelines address the needs of special populations such as pregnant women, individuals with co-occurring psychiatric disorders, individuals with pain, adolescents, or individuals involved in the criminal justice system. This Practice Guideline was developed using the RAND Corporation (RAND)/University of California, Los Angeles (UCLA) Appropriateness Method (RAM) – a process that combines scientific evidence and clinical knowledge to determine the appropriateness of a set of clinical procedures. The RAM is a deliberate approach encompassing review of existing guidelines, literature reviews, appropriateness ratings, necessity reviews, and document development. For this project, American Society of Addiction Medicine selected an independent committee to oversee guideline development and to assist in writing. American Society of Addiction Medicine's Quality Improvement Council oversaw the selection process for the independent development committee. Recommendations included in the guideline encompass a broad range of topics, starting with the initial evaluation of

  2. The evolution of vertebrate opioid receptors

    PubMed Central

    Stevens, Craig W.

    2011-01-01

    The proteins that mediate the analgesic and other effects of opioid drugs and endogenous opioid peptides are known as opioid receptors. Opioid receptors consist of a family of four closely-related proteins belonging to the large superfamily of G-protein coupled receptors. The three types of opioid receptors shown unequivocally to mediate analgesia in animal models are the mu (MOR), delta (DOR), and kappa (KOR) opioid receptor proteins. The role of the fourth member of the opioid receptor family, the nociceptin or orphanin FQ receptor (ORL), is not as clear as hyperalgesia, analgesia, and no effect was reported after administration of ORL agonists. There are now cDNA sequences for all four types of opioid receptors that are expressed in the brain of six species from three different classes of vertebrates. This review presents a comparative analysis of vertebrate opioid receptors using bioinformatics and data from recent human genome studies. Results indicate that opioid receptors arose by gene duplication, that there is a vector of opioid receptor divergence, and that MOR shows evidence of rapid evolution. PMID:19273128

  3. Opioid profiles of Cys2-containing enkephalin analogues.

    PubMed

    Pencheva, Nevena; Milanov, Peter; Vezenkov, Lubomir; Pajpanova, Tamara; Naydenova, Emilia

    2004-09-13

    To elucidate the structural features determining delta-opioid receptor properties of enkephalin analogues containing Cys(O2NH2) in position 2, a series of Cys2-containing derivatives were synthesized and tested for their effectiveness in depressing electrically evoked contractions of the mouse vas deferens (predominantly enkephalin-selective delta-opioid receptors) and the guinea-pig ileum (mu- and kappa-opioid receptors). The peptidase resistance of the compounds was also tested. The ratio IC50 in the guinea-pig ileum/IC50 in the mouse vas deferens, indicating selectivity for delta-opioid receptors, was high for Cys(O2NH2)2-containing analogues and especially for [Cys(O2NH2)2, Leu5]enkephalin, which was about seven times more selective than delta-opioid receptor selective ligand cyclic [D-Pen2, D-Pen5]enkephalin (DPDPE). The dissociation constant (KA) and relative efficacy (e(rel)) of the compounds in the mouse-isolated vas deferens were determined using explicit formulae derived by fitting of the data points with two-parametric hyperbolic function. The obtained values for KA and e(rel) suggest that: (i) incorporation of Cys(O2NH2)2 in the molecule of [Leu5]enkephalin highly increases the efficacy and does not change significantly the affinity of the respective analogues to delta-opioid receptors; [Cys(O2NH2)2, Leu5]enkephalin has higher affinity than DPDPE, but is less resistant to enzyme degradation; the effect of this modification on the efficacy is decreased when methionine is in position 5; (ii) D-configuration of Cys(O2NH2)2-containing analogues increases their peptidase resistance, but reduces efficacy and affinity of the peptides towards delta-opioid receptors; (iii) the substitution of Cys(O2NH2) with Hcy(O2NH2) reduces the efficacy, affinity and potency of the respective analogues and maintains their sensitivity to endogenous peptidases; (iv) the substitution of the sulfonamide group with benzyl group in the molecule of Cys in position 2 decreases their

  4. Involvement of opioid system in antidepressant-like effect of the cannabinoid CB1 receptor inverse agonist AM-251 after physical stress in mice.

    PubMed

    Ostadhadi, Sattar; Haj-Mirzaian, Arya; Nikoui, Vahid; Kordjazy, Nastaran; Dehpour, Ahmad-Reza

    2016-02-01

    Cannabinoid inverse agonists possess antidepressant-like properties, but the mechanism of this action is unknown. Numerous studies have reported the interaction between opioid and cannabinoid pathways. In this study, acute foot-shock stress was used in mice to investigate the involvement of the opioid pathway in the antidepressant-like effect of the cannabinoid CB1 receptor inverse agonist AM-251. Stress was induced by intermittent foot-shock stimulation for 30 min. Then, using the forced swimming test (FST) and tail suspension test (TST), the immobility time was measured. Results show that the immobility time was significantly prolonged in animals subjected to foot-shock stress, compared with non-stressed controls (P < 0.01). Also, the serum corticosterone level was significantly increased after stress induction (P < 0.001). Administration of AM-251 (0.5 and 0.3 mg/kg, intraperitoneally (i.p.)), significantly decreased the immobility time of stressed mice in the FST (P < 0.001 and P < 0.01, respectively) and TST (P < 0.01 and P < 0.05, respectively). The lowest dose of AM-251 (0.1 mg/kg), naltrexone (0.3 mg/kg), and morphine (1.0 mg/kg) did not show any significant effect on stressed animals (P > 0.05). Co-administration of AM-251 with sub-effective dose of naltrexone decreased the effective dose of this cannabinoid inverse agonist, to 0.1 mg/kg (P < 0.01). On the other hand, administration of the sub-effective dose of morphine reversed the anti-immobility effect of AM-251 (0.5 mg/kg; P < 0.001). In conclusion, the present study for the first time reveals the possible role of opioid signalling in the antidepressant-like properties of AM-251 in a foot-shock stress model. PMID:26609670

  5. Endogenous Opiates and Behavior: 2006

    PubMed Central

    Bodnar, Richard J.

    2009-01-01

    This paper is the twenty-ninth consecutive installment of the annual review of research concerning the endogenous opioid system, now spanning thirty years of research. It summarizes papers published during 2006 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides, opioid receptors, opioid agonists and opioid antagonists. The particular topics that continue to be covered include the molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors related to behavior (Section 2), and the roles of these opioid peptides and receptors in pain and analgesia (Section 3); stress and social status (Section 4); tolerance and dependence (Section 5); learning and memory (Section 6); eating and drinking (Section 7); alcohol and drugs of abuse (Section 8); sexual activity and hormones, pregnancy, development and endocrinology (Section 9); mental illness and mood (Section 10); seizures and neurological disorders (Section 11); electrical-related activity and neurophysiology (Section 12); general activity and locomotion (Section 13); gastrointestinal, renal and hepatic functions (Section 14); cardiovascular responses (Section 15); respiration and thermoregulation (Section 16); and immunological responses (Section 17). PMID:17949854

  6. Endogenous opiates and behavior: 2012.

    PubMed

    Bodnar, Richard J

    2013-12-01

    This paper is the thirty-fifth consecutive installment of the annual review of research concerning the endogenous opioid system. It summarizes papers published during 2012 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides, opioid receptors, opioid agonists and opioid antagonists. The particular topics that continue to be covered include the molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors related to behavior (Section 2), and the roles of these opioid peptides and receptors in pain and analgesia (Section 3); stress and social status (Section 4); tolerance and dependence (Section 5); learning and memory (Section 6); eating and drinking (Section 7); alcohol and drugs of abuse (Section 8); sexual activity and hormones, pregnancy, development and endocrinology (Section 9); mental illness and mood (Section 10); seizures and neurologic disorders (Section 11); electrical-related activity and neurophysiology (Section 12); general activity and locomotion (Section 13); gastrointestinal, renal and hepatic functions (Section 14); cardiovascular responses (Section 15); respiration and thermoregulation (Section 16); and immunological responses (Section 17). PMID:24126281

  7. Endogenous opiates and behavior: 2009.

    PubMed

    Bodnar, Richard J

    2010-12-01

    This paper is the 32nd consecutive installment of the annual review of research concerning the endogenous opioid system. It summarizes papers published during 2009 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides, opioid receptors, opioid agonists and opioid antagonists. The particular topics that continue to be covered include the molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors related to behavior (Section 2), and the roles of these opioid peptides and receptors in pain and analgesia (Section 3); stress and social status (Section 4); tolerance and dependence (Section 5); learning and memory (Section 6); eating and drinking (Section 7); alcohol and drugs of abuse (Section 8); sexual activity and hormones, pregnancy, development and endocrinology (Section 9); mental illness and mood (Section 10); seizures and neurologic disorders (Section 11); electrical-related activity and neurophysiology (Section 12); general activity and locomotion (Section 13); gastrointestinal, renal and hepatic functions (Section 14); cardiovascular responses (Section 15); respiration and thermoregulation (Section 16); and immunological responses (Section 17). PMID:20875476

  8. Endogenous opiates and behavior: 2005.

    PubMed

    Bodnar, Richard J; Klein, Gad E

    2006-12-01

    This paper is the 28th consecutive installment of the annual review of research concerning the endogenous opioid system, now spanning over a quarter-century of research. It summarizes papers published during 2005 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides, opioid receptors, opioid agonists and opioid antagonists. The particular topics that continue to be covered include the molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors related to behavior (Section 2), and the roles of these opioid peptides and receptors in pain and analgesia (Section 3); stress and social status (Section 4); tolerance and dependence (Section 5); learning and memory (Section 6); eating and drinking (Section 7); alcohol and drugs of abuse (Section 8); sexual activity and hormones, pregnancy, development and endocrinology (Section 9); mental illness and mood (Section 10); seizures and neurologic disorders (Section 11); electrical-related activity, neurophysiology and transmitter release (Section 12); general activity and locomotion (Section 13); gastrointestinal, renal and hepatic functions (Section 14); cardiovascular responses (Section 15); respiration and thermoregulation (Section 16); immunological responses (Section 17). PMID:16973239

  9. Endogenous opiates and behavior: 2008.

    PubMed

    Bodnar, Richard J

    2009-12-01

    This paper is the 31st consecutive installment of the annual review of research concerning the endogenous opioid system. It summarizes papers published during 2008 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides, opioid receptors, opioid agonists and opioid antagonists. The particular topics that continue to be covered include the molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors related to behavior (Section 2), and the roles of these opioid peptides and receptors in pain and analgesia (Section 3); stress and social status (Section 4); tolerance and dependence (Section 5); learning and memory (Section 6); eating and drinking (Section 7); alcohol and drugs of abuse (Section 8); sexual activity and hormones, pregnancy, development and endocrinology (Section 9); mental illness and mood (Section 10); seizures and neurologic disorders (Section 11); electrical-related activity and neurophysiology (Section 12); general activity and locomotion (Section 13); gastrointestinal, renal and hepatic functions (Section 14); cardiovascular responses (Section 15); respiration and thermoregulation (Section 16); and immunological responses (Section 17). PMID:19793543

  10. Endogenous opiates and behavior: 2010.

    PubMed

    Bodnar, Richard J

    2011-12-01

    This paper is the thirty-third consecutive installment of the annual review of research concerning the endogenous opioid system. It summarizes papers published during 2010 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides, opioid receptors, opioid agonists and opioid antagonists. The particular topics that continue to be covered include the molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors related to behavior (Section 2), and the roles of these opioid peptides and receptors in pain and analgesia (Section 3); stress and social status (Section 4); tolerance and dependence (Section 5); learning and memory (Section 6); eating and drinking (Section 7); alcohol and drugs of abuse (Section 8); sexual activity and hormones, pregnancy, development and endocrinology (Section 9); mental illness and mood (Section 10); seizures and neurologic disorders (Section 11); electrical-related activity and neurophysiology (Section 12); general activity and locomotion (Section 13); gastrointestinal, renal and hepatic functions (Section 14); cardiovascular responses (Section 15); respiration (Section 16); and immunological responses (Section 17). PMID:21983105

  11. Endogenous opiates and behavior: 2006.

    PubMed

    Bodnar, Richard J

    2007-12-01

    This paper is the 29th consecutive installment of the annual review of research concerning the endogenous opioid system, now spanning 30 years of research. It summarizes papers published during 2006 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides, opioid receptors, opioid agonists and opioid antagonists. The particular topics that continue to be covered include the molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors related to behavior (Section 2), and the roles of these opioid peptides and receptors in pain and analgesia (Section 3); stress and social status (Section 4); tolerance and dependence (Section 5); learning and memory (Section 6); eating and drinking (Section 7); alcohol and drugs of abuse (Section 8); sexual activity and hormones, pregnancy, development and endocrinology (Section 9); mental illness and mood (Section 10); seizures and neurological disorders (Section 11); electrical-related activity and neurophysiology (Section 12); general activity and locomotion (Section 13); gastrointestinal, renal and hepatic functions (Section 14); cardiovascular responses (Section 15); respiration and thermoregulation (Section 16); and immunological responses (Section 17). PMID:17949854

  12. Endogenous opiates and behavior: 2011.

    PubMed

    Bodnar, Richard J

    2012-12-01

    This paper is the thirty-fourth consecutive installment of the annual review of research concerning the endogenous opioid system. It summarizes papers published during 2011 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides, opioid receptors, opioid agonists and opioid antagonists. The particular topics that continue to be covered include the molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors related to behavior (Section 2), and the roles of these opioid peptides and receptors in pain and analgesia (Section 3); stress and social status (Section 4); tolerance and dependence (Section 5); learning and memory (Section 6); eating and drinking (Section 7); alcohol and drugs of abuse (Section 8); sexual activity and hormones, pregnancy, development and endocrinology (Section 9); mental illness and mood (Section 10); seizures and neurologic disorders (Section 11); electrical-related activity and neurophysiology (Section 12); general activity and locomotion (Section 13); gastrointestinal, renal and hepatic functions (Section 14); cardiovascular responses (Section 15); respiration (Section 16); and immunological responses (Section 17). PMID:23041439

  13. Endogenous opiates and behavior: 2002.

    PubMed

    Bodnar, Richard J; Hadjimarkou, Maria M

    2003-08-01

    This paper is the twenty-fifth consecutive installment of the annual review of research concerning the endogenous opioid system, now spanning over a quarter-century of research. It summarizes papers published during 2002 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides, opioid receptors, opioid agonists and opioid antagonists. The particular topics that continue to be covered include the molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors related to behavior (Section 2), and the roles of these opioid peptides and receptors in pain and analgesia (Section 3); stress and social status (Section 4); tolerance and dependence (Section 5); learning and memory (Section 6); eating and drinking (Section 7); alcohol and drugs of abuse (Section 8); sexual activity and hormones, pregnancy, development and endocrinology (Section 9); mental illness and mood (Section 10); seizures and neurologic disorders (Section 11); electrical-related activity and neurophysiology (Section 12); general activity and locomotion (Section 13); gastrointestinal, renal and hepatic functions (Section 14); cardiovascular responses (Section 15); respiration and thermoregulation (Section 16); and immunological responses (Section 17). PMID:14612197

  14. Endogenous opiates and behavior: 2003.

    PubMed

    Bodnar, Richard J; Klein, Gad E

    2004-12-01

    This paper is the 26th consecutive installment of the annual review of research concerning the endogenous opioid system, now spanning over a quarter-century of research. It summarizes papers published during 2003 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides, opioid receptors, opioid agonists and opioid antagonists. The particular topics that continue to be covered include the molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors related to behavior (Section 2), and the roles of these opioid peptides and receptors in pain and analgesia (Section 3); stress and social status (Section 4); tolerance and dependence (Section 5); learning and memory (Section 6); eating and drinking (Section 7); alcohol and drugs of abuse (Section 8); sexual activity and hormones, pregnancy, development and endocrinology (Section 9); mental illness and mood (Section 10); seizures and neurologic disorders (Section 11); electrical-related activity and neurophysiology (Section 12); general activity and locomotion (Section 13); gastrointestinal, renal and hepatic functions (Section 14); cardiovascular responses (Section 15); respiration and thermoregulation (Section 16); and immunological responses (Section 17). PMID:15572211

  15. Comparing analgesia and μ-opioid receptor internalization produced by intrathecal enkephalin

    PubMed Central

    Chen, Wenling; Song, Bingbing; Lao, Lijun; Pérez, Orlando A.; Kim, Woojae; Marvizón, Juan Carlos G.

    2007-01-01

    Summary Opioid receptors in the spinal cord produce strong analgesia, but the mechanisms controlling their activation by endogenous opioids remain unclear. We have previously shown in spinal cord slices that peptidases preclude μ-opioid receptor (MOR) internalization by opioids. Our present goals were to investigate whether enkephalin-induced analgesia is also precluded by peptidases, and whether it is mediated by MORs or δ-opioid receptors (DORs). Tail-flick analgesia and MOR internalization were measured in rats injected intrathecally with Leu-enkephalin and peptidase inhibitors. Without peptidase inhibitors, Leu-enkephalin produced neither analgesia nor MOR internalization at doses up to 100 nmol, whereas with peptidase inhibitors it produced analgesia at 0.3 nmol and MOR internalization at 1 nmol. Leu-enkephalin was ten times more potent to produce analgesia than to produce MOR internalization, suggesting that DORs were involved. Selective MOR or DOR antagonists completely blocked the analgesia elicited by 0.3 nmol Leu-enkephalin (a dose that produced little MOR internalization), indicating that it involved these two receptors, possibly by an additive or synergistic interaction. The selective MOR agonist endomorphin-2 produced analgesia even in the presence of a DOR antagonist, but at doses substantially higher than Leu-enkephalin. Unlike Leu-enkephalin, endomorphin-2 had the same potencies to induce analgesia and MOR internalization. We concluded that low doses of enkephalins produce analgesia by activating both MORs and DORs. Analgesia can also be produced exclusively by MORs at higher agonist doses. Since peptidases prevent the activation of spinal opioid receptors by enkephalins, the coincident release of opioids and endogenous peptidase inhibitors may be required for analgesia. PMID:17845806

  16. Opioid receptors in the gastrointestinal tract

    PubMed Central

    Holzer, Peter

    2011-01-01

    Opium is arguably one of the oldest herbal medicines, being used as analgesic, sedative and antidiarrheal drug for thousands of years. These effects mirror the actions of the endogenous opioid system and are mediated by the principal μ-, κ- and δ-opioid receptors. In the gut, met-enkephalin, leu-enkephalin, β-endorphin and dynorphin occur in both neurons and endocrine cells. When released, opioid peptides activate opioid receptors on the enteric circuitry controlling motility and secretion. As a result, inhibition of gastric emptying, increase in sphincter tone, induction of stationary motor patterns and blockade of peristalsis ensue. Together with inhibition of ion and fluid secretion, these effects cause constipation, one of the most frequent and troublesome adverse reactions of opioid analgesic therapy. Although laxatives are most frequently used to ameliorate opioid-induced bowel dysfunction, their efficacy is unsatisfactory. Specific antagonism of peripheral opioid receptors is a more rational approach. This goal is addressed by the use of opioid receptor antagonists with limited absorption such as oral prolonged-release naloxone and opioid receptor antagonists that do not penetrate the blood-brain barrier such as methylnaltrexone and alvimopan. Preliminary evidence indicates that peripherally restricted opioid receptor antagonists may act as prokinetic drugs in their own right. PMID:19345246

  17. Mu Opioid Receptor Binding Correlates with Nicotine Dependence and Reward in Smokers

    PubMed Central

    Brasic, James R.; Contoreggi, Carlo; Cascella, Nicola; Mackowick, Kristen M.; Taylor, Richard; Rousset, Olivier; Willis, William; Huestis, Marilyn A.; Concheiro, Marta; Wand, Gary; Wong, Dean F.; Volkow, Nora D.

    2014-01-01

    The rewarding effects of nicotine are associated with activation of nicotine receptors. However, there is increasing evidence that the endogenous opioid system is involved in nicotine's rewarding effects. We employed PET imaging with [11C]carfentanil to test the hypotheses that acute cigarette smoking increases release of endogenous opioids in the human brain and that smokers have an upregulation of mu opioid receptors (MORs) when compared to nonsmokers. We found no significant changes in binding potential (BPND) of [11C]carfentanil between the placebo and the active cigarette sessions, nor did we observe differences in MOR binding between smokers and nonsmokers. Interestingly, we showed that in smokers MOR availability in bilateral superior temporal cortices during the placebo condition was negatively correlated with scores on the Fagerström Test for Nicotine Dependence (FTND). Also in smokers, smoking-induced decreases in [11C]carfentanil binding in frontal cortical regions were associated with self-reports of cigarette liking and wanting. Although we did not show differences between smokers and nonsmokers, the negative correlation with FTND corroborates the role of MORs in superior temporal cortices in nicotine addiction and provides preliminary evidence of a role of endogenous opioid signaling in frontal cortex in nicotine reward. PMID:25493427

  18. Heat stroke: opioid-mediated mechanisms.

    PubMed

    Romanovsky, A A; Blatteis, C M

    1996-12-01

    In our previous study in guinea pigs, intensive and prolonged intraperitoneal heating (IPH) caused heat stroke characterized by high mortality and accompanied by two paradoxical phenomena: ear skin vasoconstriction at a high body temperature (Tb) (hyperthermia-induced vasoconstriction) and a post-IPH Tb fall at an ambient temperature (Ta) below thermoneutrality (hyperthermia-induced hypothermia). In this study, we tested the hypothesis that the mechanisms of the two phenomena involve endogenous opioid agonists. Experiments were conducted in 24 unanesthetized, lightly restrained guinea pigs, each chronically implanted with an intraperitoneal thermode and intrahypothalamic thermocouple. The thermoregulatory effects of a wide-spectrum opioid-receptor antagonist, naltrexone (NTX; 50 or 0 mumol/kg sc), were studied in IPH-induced heat stroke and under normal conditions. IPH was accomplished by perfusing (50 ml/min; 80 min) water (45 degrees C) through the thermode. Ta was maintained at approximately 24 degrees C. Skin vasodilation occurred at the onset of IPH but later changed to vasoconstriction despite high Tb and continuing IPH. IPH-induced hyperthermia (1.8 +/- 0.1 degrees C) was followed by a post-IPH Tb fall (-5.1 +/- 0.7 degree C; calculated for the survivors only). The 48-h mortality rate was 50%. NTX prevented the hyperthermia-induced vasoconstriction and attenuated the hyperthermia-induced hypothermia (-1.8 +/- 0.4 degree C). None of the NTX-treated animals died. The effects of NTX on Tb regulation under normal conditions were minor. These results indicate that the phenomena of both hyperthermia-induced vasoconstriction and hyperthermia-induced hypothermia are opioid dependent. The latter is speculated to reflect opioid-mediated inhibition of metabolism; the former is thought to result from opioid-induced hemodynamic alterations. Because both phenomena did not occur in the NTX-treated survivors, the skin vasoconstriction at high Tb and the posthyperthermia Tb

  19. The role of δ-opioid receptors in learning and memory underlying the development of addiction

    PubMed Central

    Klenowski, Paul; Morgan, Michael; Bartlett, Selena E

    2015-01-01

    Opioids are important endogenous ligands that exist in both invertebrates and vertebrates and signal by activation of opioid receptors to produce analgesia and reward or pleasure. The μ-opioid receptor is the best known of the opioid receptors and mediates the acute analgesic effects of opiates, while the δ-opioid receptor (DOR) has been less well studied and has been linked to effects that follow from chronic use of opiates such as stress, inflammation and anxiety. Recently, DORs have been shown to play an essential role in emotions and increasing evidence points to a role in learning actions and outcomes. The process of learning and memory in addiction has been proposed to involve strengthening of specific brain circuits when a drug is paired with a context or environment. The DOR is highly expressed in the hippocampus, amygdala, striatum and other basal ganglia structures known to participate in learning and memory. In this review, we will focus on the role of the DOR and its potential role in learning and memory underlying the development of addiction. LINKED ARTICLES This article is part of a themed section on Opioids: New Pathways to Functional Selectivity. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2015.172.issue-2 PMID:24641428

  20. Role of preoptic opioid receptors in the body temperature reduction during hypoxia.

    PubMed

    Scarpellini, Carolina da Silveira; Gargaglioni, Luciane H; Branco, Luis G S; Bícego, Kênia C

    2009-08-25

    Evidence indicates that endogenous opioids play a role in body temperature (Tb) regulation in mammals but no data exist about the involvement of the specific opioid receptors, mu, kappa and delta, in the reduction of Tb induced by hypoxia. Thus, we investigated the participation of these opioid receptors in the anteroventral preoptic region (AVPO) in hypoxic decrease of Tb. To this end, Tb of unanesthetized Wistar rats was monitored by temperature data loggers before and after intra-AVPO microinjection of the selective kappa-opioid receptor antagonist nor-binaltorphimine dihydrochloride (nor-BNI; 0.1 and 1.0 microg/100 nL/animal), the selective mu-opioid receptor antagonist D-Phe-Cys-Tyr-D-Trp-Arg-Thr-Pen-Thr-NH2 cyclic (CTAP; 0.1 and 1.0 microg/100 nL/animal), and the selective delta-opioid receptor antagonist Naltrindole (0.06 and 0.6 microg/100 nL/animal) or saline (vehicle, 100 nL/animal), during normoxia and hypoxia (7% inspired O2). Under normoxia, no effect of opioid antagonists on Tb was observed. Hypoxia induced Tb to reduce in vehicle group, a response that was inhibited by the microinjection intra-AVPO of nor-BNI. In contrast, CTAP and Naltrindole did not change Tb during hypoxia but caused a longer latency for the return of Tb to the normoxic values just after low O2 exposure. Our results indicate the kappa-opioid receptor in the AVPO is important for the reduction of Tb during hypoxia while the mu and delta receptors are involved in the increase of Tb during normoxia post-hypoxia. PMID:19545549

  1. Opioid Use Disorders.

    PubMed

    Sharma, Bikash; Bruner, Ann; Barnett, Gabrielle; Fishman, Marc

    2016-07-01

    Opioid use and addiction in adolescents and young adults is a health problem of epidemic proportions, with devastating consequences for youth and their families. Opioid overdose is a life-threatening emergency that should be treated with naloxone, and respiratory support if necessary. Overdose should always be an opportunity to initiate addiction treatment. Detoxification is often a necessary, but never sufficient, component of treatment for OUDs. Treatment for OUDs is effective but treatment capacity is alarmingly limited and under-developed. Emerging consensus supports the incorporation of relapse prevention medications such as buprenorphine and extended release naltrexone into comprehensive psychosocial treatment including counseling and family involvement. PMID:27338968

  2. The role of the opioid system in binge eating disorder.

    PubMed

    Giuliano, Chiara; Cottone, Pietro

    2015-12-01

    Binge eating disorder is characterized by excessive, uncontrollable consumption of palatable food within brief periods of time. Excessive intake of palatable food is thought to be driven by hedonic, rather than energy homeostatic, mechanisms. However, reward processing does not only comprise consummatory actions; a key component is represented by the anticipatory phase directed at procuring the reward. This phase is highly influenced by environmental food-associated stimuli, which can robustly enhance the desire to eat even in the absence of physiological needs. The opioid system (endogenous peptides and their receptors) has been strongly linked to the rewarding aspects of palatable food intake, and perhaps represents the key system involved in hedonic overeating. Here we review evidence suggesting that the opioid system can also be regarded as one of the systems that regulates the anticipatory incentive processes preceding binge eating hedonic episodes. PMID:26499083

  3. Adjuncts to opioid therapy.

    PubMed

    Goldstein, Frederick J

    2002-09-01

    ) involved in treating patients with unresolved pain recognize this to be an extraordinary and delicate time. It is when patients are likely to request physicians to provide some method to accelerate their death. Thus, inadequate analgesia can become a suicidogen, ie, any factor that causes a patient to want to commit suicide. Incorporation of adjuncts to opioid therapy can serve to lessen pain and improve quality of life for a suffering patient. PMID:12356036

  4. Libidibia ferrea Mature Seeds Promote Antinociceptive Effect by Peripheral and Central Pathway: Possible Involvement of Opioid and Cholinergic Receptors

    PubMed Central

    Sawada, Luis Armando; Monteiro, Vanessa Sâmia da Conçeição; Rabelo, Guilherme Rodrigues; Dias, Germana Bueno; Da Cunha, Maura; do Nascimento, José Luiz Martins; Bastos, Gilmara de Nazareth Tavares

    2014-01-01

    Libidibia ferrea (LF) is a medicinal plant that holds many pharmacological properties. We evaluated the antinociceptive effect in the LF aqueous seed extract and Lipidic Portion of Libidibia ferrea (LPLF), partially elucidating their mechanisms. Histochemical tests and Gas chromatography of the LPLF were performed to characterize its fatty acids. Acetic acid-induced abdominal constriction, formalin-induced pain, and hot-plate test in mice were employed in the study. In all experiments, aqueous extract or LPLF was administered systemically at the doses of 1, 5, and 10 mg/kg. LF aqueous seed extract and LPLF demonstrated a dose-dependent antinociceptive effect in all tests indicating both peripheral anti-inflammatory and central analgesia properties. Also, the use of atropine (5 mg/kg), naloxone (5 mg/kg) in the abdominal writhing test was able to reverse the antinociceptive effect of the LPLF, indicating that at least one of LF lipids components is responsible for the dose related antinociceptive action in chemical and thermal models of nociception in mice. Together, the present results suggested that Libidibia ferrea induced antinociceptive activity is possibly related to its ability to inhibit opioid, cholinergic receptors, and cyclooxygenase-2 pathway, since its main component, linoleic acid, has been demonstrated to produce such effect in previous studies. PMID:24860820

  5. Expression of corticotropin-releasing factor in inflamed tissue is required for intrinsic peripheral opioid analgesia.

    PubMed Central

    Schafer, M; Mousa, S A; Zhang, Q; Carter, L; Stein, C

    1996-01-01

    Immune cell-derived opioid peptides can activate opioid receptors on peripheral sensory nerves to inhibit inflammatory pain. The intrinsic mechanisms triggering this neuroimmune interaction are unknown. This study investigates the involvement of endogenous corticotropin-releasing factor (CRF) and interleukin-1beta (IL-1). A specific stress paradigm, cold water swim (CWS), produces potent opioid receptor-specific antinociception in inflamed paws of rats. This effect is dose-dependently attenuated by intraplantar but not by intravenous alpha-helical CRF. IL-1 receptor antagonist is ineffective. Similarly, local injection of antiserum against CRF, but not to IL-1, dose-dependently reverses this effect. Intravenous anti-CRF is only inhibitory at 10(4)-fold higher concentrations and intravenous CRF does not produce analgesia. Pretreatment of inflamed paws with an 18-mer 3'-3'-end inverted CRF-antisense oligodeoxynucleotide abolishes CWS-induced antinociception. The same treatment significantly reduces the amount of CRF extracted from inflamed paws and the number of CRF-immunostained cells without affecting gross inflammatory signs. A mismatch oligodeoxynucleotide alters neither the CWS effect nor CRF immunoreactivity. These findings identify locally expressed CRF as the predominant agent to trigger opioid release within inflamed tissue. Endogenous IL-1, circulating CRF or antiinflammatory effects, are not involved. Thus, an intact immune system plays an essential role in pain control, which is important for the understanding of pain in immunosuppressed patients with cancer or AIDS. Images Fig. 4 PMID:8650225

  6. Identification of BC005512 as a DNA Damage Responsive Murine Endogenous Retrovirus of GLN Family Involved in Cell Growth Regulation

    PubMed Central

    Wu, Yuanfeng; Qi, Xinming; Gong, Likun; Xing, Guozhen; Chen, Min; Miao, Lingling; Yao, Jun; Suzuki, Takayoshi; Furihata, Chie; Luan, Yang; Ren, Jin

    2012-01-01

    Genotoxicity assessment is of great significance in drug safety evaluation, and microarray is a useful tool widely used to identify genotoxic stress responsive genes. In the present work, by using oligonucleotide microarray in an in vivo model, we identified an unknown gene BC005512 (abbreviated as BC, official full name: cDNA sequence BC005512), whose expression in mouse liver was specifically induced by seven well-known genotoxins (GTXs), but not by non-genotoxins (NGTXs). Bioinformatics revealed that BC was a member of the GLN family of murine endogenous retrovirus (ERV). However, the relationship to genotoxicity and the cellular function of GLN are largely unknown. Using NIH/3T3 cells as an in vitro model system and quantitative real-time PCR, BC expression was specifically induced by another seven GTXs, covering diverse genotoxicity mechanisms. Additionally, dose-response and linear regression analysis showed that expression level of BC in NIH/3T3 cells strongly correlated with DNA damage, measured using the alkaline comet assay,. While in p53 deficient L5178Y cells, GTXs could not induce BC expression. Further functional studies using RNA interference revealed that down-regulation of BC expression induced G1/S phase arrest, inhibited cell proliferation and thus suppressed cell growth in NIH/3T3 cells. Together, our results provide the first evidence that BC005512, a member from GLN family of murine ERV, was responsive to DNA damage and involved in cell growth regulation. These findings could be of great value in genotoxicity predictions and contribute to a deeper understanding of GLN biological functions. PMID:22514700

  7. Anticonvulsant effects of aerial parts of Passiflora incarnata extract in mice: involvement of benzodiazepine and opioid receptors

    PubMed Central

    Nassiri-Asl, Marjan; Shariati-Rad, Schwann; Zamansoltani, Farzaneh

    2007-01-01

    Background Passion flower (Passiflora incarnata) is used in traditional medicine of Europe and South America to treat anxiety, insomnia and seizure. Recently, it has shown antianxiety and sedative effects in human. Methods In this study, anticonvulsant effects of hydro- alcoholic extract of Passiflora, Pasipay, were examined by using pentylentetrazole model (PTZ) on mice. Pasipay, diazepam, and normal saline were injected intraperitoneally at the doses 0.4–0.05 mg/kg, 0.5–1 mg/kg and 10 ml/kg respectively 30 minutes before PTZ (90 mg/kg, i.p). The time taken before the onset of clonic convulsions, the duration of colonic convulsions, and the percentage of seizure and mortality protection were recorded. For investigating the mechanism of Pasipay, flumazenil (2 mg/kg, i.p) and naloxone (5 mg/kg, i.p) were also injected 5 minutes before Pasipay. Results An ED50 value of Pasipay in the PTZ model was 0.23 mg/kg (%95 CL: 0.156, 0.342). Pasipay at the dose of 0.4 mg/kg prolonged the onset time of seizure and decreased the duration of seizures compared to saline group (p < 0.001). At the dose of 0.4 mg/kg, seizure and mortality protection percent were 100%. Flumazenil and naloxone could suppress anticonvulsant effects of Pasipay. Conclusion It seems that Pasipay could be useful for treatment absence seizure and these effects may be related to effect of it on GABAergic and opioid systems. More studies are needed in order to investigate its exact mechanism. PMID:17686156

  8. Current State of Opioid Therapy and Abuse.

    PubMed

    Manchikanti, Laxmaiah; Kaye, Adam M; Kaye, Alan D

    2016-05-01

    Currently, there is growing tension between the twin challenges of opioid therapy for chronic pain and adverse consequences of abuse, leading to multiple complications including respiratory failure and death. The recent data from Centers for Disease Control and Prevention (CDC) have shown continued escalation of prescription opioid use with opioid overdose deaths topping all previous estimations. Numerous policy initiatives, advisories, and guidelines have been advanced through the years to control the opioid epidemic. The strategies to prevent opioid abuse and to maintain opioid therapy when medically necessary fall into primary and secondary prevention categories. The primary prevention category is extremely crucial, since it involves education of primary care providers and patients at the starting point of opioid therapy. The education of surgeons and other prescribers is as crucial as the education of primary care physicians. PMID:27048483

  9. Effects of loperamide and other opioid-related substances on the transcriptional regulation of the rat pro-opiomelanocortin gene in AtT20 cells.

    PubMed

    Nomura, A; Iwasaki, Y; Aoki, Y; Yamamori, E; Mutsuga, N; Yoshida, M; Asai, M; Oiso, Y; Saito, H

    2001-08-01

    Although opioid peptides are involved in the regulation of the hypothalamic-pituitary-adrenal axis, their role in pro-opiomelanocortin (POMC) gene expression at the pituitary level is not known. We therefore examined the effects of opioid receptor agonists, including recently discovered endogenous opioid peptides, on POMC gene expression using the AtT20PL cell line, a subclone of AtT20 in which the rat POMC 5'-promoter-luciferase fusion gene was stably incorporated. The endogenous mu-opioid receptor agonists endomorphin 1 and 2 had no effect on either basal or corticotropin-stimulating-hormone-induced POMC expression. This was also the case with the delta-agonist BUBUC, the kappa-agonist U50488H and the orphan receptor agonist orphanin FQ. In contrast, the synthetic mu-agonist loperamide significantly inhibited basal and yet enhanced cAMP-induced POMC expression. The inhibitory effect of loperamide was mimicked by the calmodulin antagonist W7 and antagonized by the calcium channel blocker nifedipine, whereas neither the inhibitory nor the enhancing effect of loperamide was influenced by the opioid antagonist naloxone. These results suggest that the synthetic mu-agonist loperamide has a modulatory effect on the 5'-promoter activity of the POMC gene. This effect does not seem to be mediated through the classical mu-opioid receptor but rather in part through a calcium/calmodulin-related mechanism. PMID:11474216

  10. Relaxation Training and Opioid Inhibition of Blood Pressure Response to Stress.

    ERIC Educational Resources Information Center

    McCubbin, James A.; And Others

    1996-01-01

    Sought to determine the role of endogenous opioid mechanisms in the circulatory effects of relaxation training. Subjects were 32 young men with mildly elevated casual arterial pressure. Assessed opioid mechanisms by examining the effects of opioid receptor blockade with naltrexone on acute cardiovascular reactivity to laboratory stress before and…

  11. Opioid-induced constipation.

    PubMed

    Gyawali, Bishal; Hayashi, Naomi; Tsukuura, Hiroaki; Honda, Kazunori; Shimokata, Tomoya; Ando, Yuichi

    2015-01-01

    Opioid-induced constipation (OIC) is a very troublesome, difficult to manage and a nearly universal complication of chronic opioid use to control pain associated with advanced illness. Some studies have reported that OIC is so intolerable in some patients that they skip their opioid medications and bear pain instead of OIC. Laxatives have commonly been used as a prophylaxis and treatment of OIC but they are frequently ineffective because the commonly available laxatives do not target the underlying mechanism of OIC, which is the blockade of peripheral mu-receptors. Recently, there have been a number of advances in the treatment of OIC, which any physician involved with opioid-prescribing discipline should be aware of. This review will update the new options and strategies available for treating OIC along with the relevant clinical trials. Finally, this review also provides a recommendation on the preferred way to approach a patient with OIC in the modern era as well as highlight on the importance of doctor-patient communication in this setting. PMID:26061717

  12. Evidence for altered opioid activity in patients with cancer.

    PubMed Central

    Lissoni, P.; Barni, S.; Paolorossi, F.; Crispino, S.; Rovelli, F.; Ferri, L.; Delitala, G.; Tancini, G.

    1987-01-01

    Endogenous opioid peptides have been shown to be involved in the regulation of tumour growth. At present, however, no data are available about the secretion of opioid peptides in cancer patients. To draw some preliminary conclusions on opioid brain function in human neoplasms, we evaluated hypophyseal hormone responses to the administration of a met-enkephalin analogue, FK 33-824. The study included 14 patients affected by early or advanced neoplastic disease, 12 healthy subjects and 7 patients with a chronic medical illness other than cancer. FK 33-824 was given intravenously at a dose of 0.3 mg. Venous blood samples were collected at zero time, and 30, 60 and 120 min after drug administration. In each sample, PRL, GH, LH, cortisol and beta-endorphin levels were measured by RIA. In all normal subjects and in patients with non-neoplastic chronic illness, FK 33-824 induced a rise in PRL and GH levels, and a decrease in LH, cortisol and beta-endorphin. A normal endocrine response to FK 33-824 was seen in our cancer patient only, while in the other cases with tumour no hormonal changes or a paradoxical response were seen after FK 33-824. Based on the fact that an abnormal endocrine response to FK 33-824 has been described in hypothalamic-pituitary disorders, in which anomalous brain opioid activity has been demonstrated, these results suggest the existence of an altered function of the opioid system in cancer patients, the clinical importance of which remains to be determined. PMID:2963662

  13. Does the kappa opioid receptor system contribute to pain aversion?

    PubMed Central

    Cahill, Catherine M.; Taylor, Anna M. W.; Cook, Christopher; Ong, Edmund; Morón, Jose A.; Evans, Christopher J.

    2014-01-01

    The kappa opioid receptor (KOR) and the endogenous peptide-ligand dynorphin have received significant attention due the involvement in mediating a variety of behavioral and neurophysiological responses, including opposing the rewarding properties of drugs of abuse including opioids. Accumulating evidence indicates this system is involved in regulating states of motivation and emotion. Acute activation of the KOR produces an increase in motivational behavior to escape a threat, however, KOR activation associated with chronic stress leads to the expression of symptoms indicative of mood disorders. It is well accepted that KOR can produce analgesia and is engaged in chronic pain states including neuropathic pain. Spinal studies have revealed KOR-induced analgesia in reversing pain hypersensitivities associated with peripheral nerve injury. While systemic administration of KOR agonists attenuates nociceptive sensory transmission, this effect appears to be a stress-induced effect as anxiolytic agents, including delta opioid receptor agonists, mitigate KOR agonist-induced analgesia. Additionally, while the role of KOR and dynorphin in driving the dysphoric and aversive components of stress and drug withdrawal has been well characterized, how this system mediates the negative emotional states associated with chronic pain is relatively unexplored. This review provides evidence that dynorphin and the KOR system contribute to the negative affective component of pain and that this receptor system likely contributes to the high comorbidity of mood disorders associated with chronic neuropathic pain. PMID:25452729

  14. Brain opioid and nociceptin receptors are involved in regulation of bombesin-induced activation of central sympatho-adrenomedullary outflow in the rat.

    PubMed

    Yawata, Toshio; Higashi, Youichirou; Shimizu, Takahiro; Shimizu, Shogo; Nakamura, Kumiko; Taniuchi, Keisuke; Ueba, Tetsuya; Saito, Motoaki

    2016-01-01

    Previously, we reported that central administration of bombesin, a stress-related peptide, elevated plasma levels of catecholamines (noradrenaline and adrenaline) in the rat. The sympatho-adrenomedullary system, which is an important component of stress responses, can be regulated by the central opioid system. In the present study, therefore, we examined the roles of brain opioid receptor subtypes (µ, δ, and κ) and nociceptin receptors, originally identified as opioid-like orphan receptors, in the bombesin-induced activation of central sympatho-adrenomedullary outflow using anesthetized male Wistar rats. Intracerebroventricularly (i.c.v.) administered bombesin-(1 nmol/animal) induced elevation of plasma catecholamines was significantly potentiated by pretreatment with naloxone (300 and 1000 µg/animal, i.c.v.), a non-selective antagonist for µ-, δ-, and κ-opioid receptors. Pretreatment with cyprodime (100 µg/animal, i.c.v.), a selective antagonist for µ-opioid receptors, also potentiated the bombesin-induced responses. In contrast, pretreatment with naltrindole (100 µg/animal, i.c.v.) or nor-binaltorphimine (100 µg/animal, i.c.v.), a selective antagonist for δ- or κ-opioid receptors, significantly reduced the elevation of bombesin-induced catecholamines. In addition, pretreatment with JTC-801 (30 and 100 µg/animal, i.c.v.) or J-113397 (100 µg/animal, i.c.v.), which are selective antagonists for nociceptin receptors, also reduced the bombesin-induced responses. These results suggest that brain µ-opioid receptors play a suppressive role and that brain δ-, κ-opioid, and nociceptin receptors play a facilitative role in the bombesin-induced elevation of plasma catecholamines in the rat. Thus, in the brain, these receptors could play differential roles in regulating the activation of central sympatho-adrenomedullary outflow. PMID:26427671

  15. Determination of the amino acid residue involved in [3H]beta-funaltrexamine covalent binding in the cloned rat mu-opioid receptor.

    PubMed

    Chen, C; Yin, J; Riel, J K; DesJarlais, R L; Raveglia, L F; Zhu, J; Liu-Chen, L Y

    1996-08-30

    We previously demonstrated that [3H]beta-funaltrexamine ([3H]beta-FNA) labeled the rat mu opioid receptor expressed in Chinese hamster ovary cells with high specificity, and [3H]beta-FNA-labeled receptors migrated as one broad band with a mass of 80 kDa. In this study, we determined the region and then the amino acid residue of the mu receptor involved in the covalent binding of [3H]beta-FNA. [3H]beta-FNA-labeled receptors were solubilized and purified to approximately 10% purity by immunoaffinity chromatography with antibodies against a C-terminal domain peptide. The site of covalent bond formation was determined to be within Ala206-Met243 by CNBr cleavage of partially purified labeled mu receptors and determinations of sizes of labeled receptor fragments. The amino acid residue of beta-FNA covalent incorporation was then determined by site-directed mutagenesis studies within this region. Mutation of Lys233 to Ala, Arg, His, and Leu completely eliminated covalent binding of [3H]beta-FNA, although these mutants bound beta-FNA with high affinity. Mutations of other amino acid residues did not affect covalent binding of [3H]beta-FNA. These results indicate that [3H]beta-FNA binds covalently to Lys233. Since [3H]beta-FNA is a rigid molecule, the information will be very useful for molecular modeling of interaction between morphinans and the mu receptor. PMID:8702924

  16. δ-Ctenitoxin-Pn1a, a Peptide from Phoneutria nigriventer Spider Venom, Shows Antinociceptive Effect Involving Opioid and Cannabinoid Systems, in Rats.

    PubMed

    Emerich, Bruna Luiza; Ferreira, Renata C M; Cordeiro, Marta N; Borges, Márcia Helena; Pimenta, Adriano M C; Figueiredo, Suely G; Duarte, Igor Dimitri G; de Lima, Maria Elena

    2016-04-01

    PnTx4(6-1), henceforth renamed δ-Ctenitoxin-Pn1a (δ-CNTX-Pn1a), a peptide from Phoneutria nigriventer spider venom, initially described as an insect toxin, binds to site 3 of sodium channels in nerve cord synaptosomes and slows down sodium current inactivation in isolated axons in cockroaches (Periplaneta americana). δ-CNTX-Pn1a does not cause any apparent toxicity to mice, when intracerebroventricularly injected (30 μg). In this study, we evaluated the antinociceptive effect of δ-CNTX-Pn1a in three animal pain models and investigated its mechanism of action in acute pain. In the inflammatory pain model, induced by carrageenan, δ-CNTX-Pn1a restored the nociceptive threshold of rats, when intraplantarly injected, 2 h and 30 min after carrageenan administration. Concerning the neuropathic pain model, δ-CNTX-Pn1a, when intrathecally administered, reversed the hyperalgesia evoked by sciatic nerve constriction. In the acute pain model, induced by prostaglandin E₂, intrathecal administration of δ-CNTX-Pn1a caused a dose-dependent antinociceptive effect. Using antagonists of the receptors, we showed that the antinociceptive effect of δ-CNTX-Pn1a involves both the cannabinoid system, through CB₁ receptors, and the opioid system, through μ and δ receptors. Our data show, for the first time, that δ-Ctenitoxin-Pn1a is able to induce antinociception in inflammatory, neuropathic and acute pain models. PMID:27077886

  17. Possible Involvement of µ Opioid Receptor in the Antidepressant-Like Effect of Shuyu Formula in Restraint Stress-Induced Depression-Like Rats

    PubMed Central

    Wang, Fu-rong; Qiao, Ming-qi; Xue, Ling; Wei, Sheng

    2015-01-01

    Recently μ opioid receptor (MOR) has been shown to be closely associated with depression. Here we investigated the action of Shuyu, a Chinese herbal prescription, on repeated restraint stress induced depression-like rats, with specific attention to the role of MOR and the related signal cascade. Our results showed that repeated restraint stress caused significant depressive-like behaviors, as evidenced by reduced body weight gain, prolonged duration of immobility in forced swimming test, and decreased number of square-crossings and rearings in open field test. The stress-induced depression-like behaviors were relieved by Shuyu, which was accompanied by decreased expression of MOR in hippocampus. Furthermore, Shuyu upregulated BDNF protein expression, restored the activity of CREB, and stimulated MEK and ERK phosphorylation in hippocampus of stressed rats. More importantly, MOR is involved in the effects of Shuyu on these depression-related signals, as they can be strengthened by MOR antagonist CTAP. Collectively, these data indicated that the antidepressant-like properties of Shuyu are associated with MOR and the corresponding CREB, BDNF, MEK, and ERK signal pathway. Our study supports clinical use of Shuyu as an effective treatment of depression and also suggests that MOR might be a target for treatment of depression and developing novel antidepressants. PMID:25821488

  18. δ-Ctenitoxin-Pn1a, a Peptide from Phoneutria nigriventer Spider Venom, Shows Antinociceptive Effect Involving Opioid and Cannabinoid Systems, in Rats

    PubMed Central

    Emerich, Bruna Luiza; Ferreira, Renata C. M.; Cordeiro, Marta N.; Borges, Márcia Helena; Pimenta, Adriano M. C.; Figueiredo, Suely G.; Duarte, Igor Dimitri G.; de Lima, Maria Elena

    2016-01-01

    PnTx4(6-1), henceforth renamed δ-Ctenitoxin-Pn1a (δ-CNTX-Pn1a), a peptide from Phoneutria nigriventer spider venom, initially described as an insect toxin, binds to site 3 of sodium channels in nerve cord synaptosomes and slows down sodium current inactivation in isolated axons in cockroaches (Periplaneta americana). δ-CNTX-Pn1a does not cause any apparent toxicity to mice, when intracerebroventricularly injected (30 μg). In this study, we evaluated the antinociceptive effect of δ-CNTX-Pn1a in three animal pain models and investigated its mechanism of action in acute pain. In the inflammatory pain model, induced by carrageenan, δ-CNTX-Pn1a restored the nociceptive threshold of rats, when intraplantarly injected, 2 h and 30 min after carrageenan administration. Concerning the neuropathic pain model, δ-CNTX-Pn1a, when intrathecally administered, reversed the hyperalgesia evoked by sciatic nerve constriction. In the acute pain model, induced by prostaglandin E2, intrathecal administration of δ-CNTX-Pn1a caused a dose-dependent antinociceptive effect. Using antagonists of the receptors, we showed that the antinociceptive effect of δ-CNTX-Pn1a involves both the cannabinoid system, through CB1 receptors, and the opioid system, through μ and δ receptors. Our data show, for the first time, that δ-Ctenitoxin-Pn1a is able to induce antinociception in inflammatory, neuropathic and acute pain models. PMID:27077886

  19. Blockade of opioid receptors in anterior cingulate cortex disrupts ethanol-seeking behavior in mice.

    PubMed

    Gremel, Christina M; Young, Emily A; Cunningham, Christopher L

    2011-06-01

    The anterior cingulate cortex (ACC) and opioid receptors have been suggested to play a role in attributing incentive motivational properties to drug-related cues. We examined whether blockade of ACC opioid receptors would reduce cue-induced ethanol-seeking behavior in mice. We show that intra-ACC opioid receptor blockade disrupted expression of an ethanol-induced conditioned place preference, suggesting that endogenous opioid modulation in the ACC may be critical for maintaining the cue's conditioned rewarding effects. PMID:21219940

  20. Differential regulation of hippocampal progenitor proliferation by opioid receptor antagonists in running and non-running spontaneously hypertensive rats.

    PubMed

    Persson, Anders I; Naylor, Andrew S; Jonsdottir, Ingibjörg H; Nyberg, Fred; Eriksson, Peter S; Thorlin, Thorleif

    2004-04-01

    Voluntary running in mice and forced treadmill running in rats have been shown to increase the amount of proliferating cells in the hippocampus. Little is known as yet about the mechanisms involved in these processes. It is well known that the endogenous opioid system is affected during running and other forms of physical exercise. In this study, we evaluated the involvement of the endogenous opioids in the regulation of hippocampal proliferation in non-running and voluntary running rats. Nine days of wheel running was compared with non-running in spontaneously hypertensive rats (SHR), a rat strain known to run voluntarily. On the last 2 days of the experimental period all rats received two daily injections of the opioid receptor antagonists naltrexone or naltrindole together with injections of bromodeoxyuridine to label dividing cells. Brain sections from the running rats showed approximately a five-fold increase in newly generated cells in the hippocampus, and this increase was partly reduced by naltrexone but not by naltrindole. By contrast, both naltrexone and naltrindole increased hippocampal proliferation in non-running rats. In non-running rats the administration of naltrexone decreased corticosterone levels and adrenal gland weights, whereas no significant effects on these parameters could be detected for naltrindole. However, adrenal gland weights were increased in naltrexone- but not in naltrindole-administered running rats. In addition, in voluntary running rats there was a three-fold increase in the hippocampal levels of Met-enkephalin-Arg-Phe compared with non-runners, indicating an increase in opioid activity in the hippocampus during running. These data suggest an involvement of endogenous opioids in the regulation of hippocampal proliferation in non-running rats, probably through hypothalamic-pituitary-adrenal axis modulation. During voluntary running in SHR naltrexone altered hippocampal proliferation via as yet unknown mechanisms. PMID:15078558

  1. Regulation and Functional Implications of Opioid Receptor Splicing in Opioid Pharmacology and HIV Pathogenesis.

    PubMed

    Regan, Patrick M; Langford, Dianne; Khalili, Kamel

    2016-05-01

    Despite the identification and characterization of four opioid receptor subtypes and the genes from which they are encoded, pharmacological data does not conform to the predications of a four opioid receptor model. Instead, current studies of opioid pharmacology suggest the existence of additional receptor subtypes; however, no additional opioid receptor subtype has been identified to date. It is now understood that this discrepancy is due to the generation of multiple isoforms of opioid receptor subtypes. While several mechanisms are utilized to generate these isoforms, the primary mechanism involves alternative splicing of the pre-mRNA transcript. Extensive alternative splicing patterns for opioid receptors have since been identified and discrepancies in opioid pharmacology are now partially attributed to variable expression of these isoforms. Recent studies have been successful in characterizing the localization of these isoforms as well as their specificity in ligand binding; however, the regulation of opioid receptor splicing specificity is poorly characterized. Furthermore, the functional significance of individual receptor isoforms and the extent to which opioid- and/or HIV-mediated changes in the opioid receptor isoform profile contributes to altered opioid pharmacology or the well-known physiological role of opioids in the exacerbation of HIV neurocognitive dysfunction is unknown. As such, the current review details constitutive splicing mechanisms as well as the specific architecture of opioid receptor genes, transcripts, and receptors in order to highlight the current understanding of opioid receptor isoforms, potential mechanisms of their regulation and signaling, and their functional significance in both opioid pharmacology and HIV-associated neuropathology. PMID:26529364

  2. Involvement of mu-opioid receptors in antinociception and inhibition of gastrointestinal transit induced by 7-hydroxymitragynine, isolated from Thai herbal medicine Mitragyna speciosa.

    PubMed

    Matsumoto, Kenjiro; Hatori, Yoshio; Murayama, Toshihiko; Tashima, Kimihito; Wongseripipatana, Sumphan; Misawa, Kaori; Kitajima, Mariko; Takayama, Hiromitsu; Horie, Syunji

    2006-11-01

    7-hydroxymitragynine, a constituent of the Thai herbal medicine Mitragyna speciosa, has been found to have a potent opioid antinociceptive effect. In the present study, we investigated the mechanism of antinociception and the inhibitory effect on gastrointestinal transit of 7-hydroxymitragynine, and compared its effects with those of morphine. When administered subcutaneously to mice, 7-hydroxymitragynine produced antinociceptive effects about 5.7 and 4.4 times more potent than those of morphine in the tail-flick (ED50=0.80 mg/kg) and hot-plate (ED50=0.93 mg/kg) tests, respectively. The antinociceptive effect of 7-hydroxymitragynine was significantly blocked by the mu1/mu2-opioid receptor antagonist beta-funaltrexamine hydrochloride (beta-FNA) and the mu1-opioid receptor-selective antagonist naloxonazine in both tests. Thus, 7-hydroxymitragynine acts predominantly on mu-opioid receptors, especially on mu1-opioid receptors. Isolated tissue studies further supported its specificity for the mu-opioid receptors. Further, 7-hydroxymintragynine dose-dependently (ED50=1.19 mg/kg, s.c.) and significantly inhibited gastrointestinal transit in mice, as morphine does. The inhibitory effect was significantly antagonized by beta-FNA pretreatment, but slightly antagonized by naloxonazine. The ED50 value of 7-hydroxymitragynine on gastrointestinal transit was larger than its antinociceptive ED50 value. On the other hand, morphine significantly inhibits gastrointestinal transit at a much smaller dose than its antinociceptive dose. These results suggest that mu-opioid receptor mechanisms mediate the antinociceptive effect and inhibition of gastrointestinal transit. This compound induced more potent antinociceptive effects and was less constipating than morphine. PMID:16978601

  3. Regulation of opioid receptors by cocaine.

    PubMed

    Unterwald, E M

    2001-06-01

    Cocaine is a widely abused psychostimulant. Its direct actions include inhibition of dopamine, serotonin, and norepinephrine reuptake into presynaptic nerve terminals, thereby potentiating the actions of these transmitters in the synapse. A variety of studies have demonstrated that cocaine can also have profound effects on the endogenous opioid system. Compelling evidence points to the importance of mu opioid receptors in human cocaine addiction and craving. Animal studies support these findings and demonstrate that chronic cocaine administration can result in alterations in opioid receptor expression and function as measured by changes in critical signal transduction pathways. This chapter reviews studies on the regulation of opioid receptors as the result of exposure to cocaine. PMID:11458541

  4. Evidences for Chlorogenic Acid--A Major Endogenous Polyphenol Involved in Regulation of Ripening and Senescence of Apple Fruit.

    PubMed

    Xi, Yu; Cheng, Dai; Zeng, Xiangquan; Cao, Jiankang; Jiang, Weibo

    2016-01-01

    To learn how the endogenous polyphenols may play a role in fruit ripening and senescence, apple pulp discs were used as a model to study the influences of chlorogenic acid (CHA, a major polyphenol in apple pulp) on fruit ripening and senescence. Apple ('Golden Delicious') pulp discs prepared from pre-climacteric fruit were treated with 50 mg L(-1) CHA and incubated in flasks with 10 mM MES buffer (pH 6.0, 11% sorbitol). Compared to the control samples, treatment with CHA significantly reduced ethylene production and respiration rate, and enhanced levels of firmness and soluble solids content of the pulp discs during incubation at 25°C. These results suggested that CHA could retard senescence of the apple pulp discs. Proteomics analysis with sodium dodecyl sulfate-polyacrylamide gel electrophoresis and mass spectrometry (MALDI-TOF/TOF) revealed that the expressions of several key proteins correlated to fruit ripening and senescence were affected by the treatment with CHA. Further study showed that treating the pulp discs with CHA remarkably reduced levels of lipoxygenase, β-galactosidase, NADP-malic enzyme, and enzymatic activities of lipoxygenase and UDP-glucose pyrophosphorylase, all of which are known as promoters of fruit ripening and senescence. These results could provide new insights into the functions of endogenous phenolic compounds in fruit ripening and senescence. PMID:26756813

  5. Proviral amplification of the Gypsy endogenous retrovirus of Drosophila melanogaster involves env-independent invasion of the female germline.

    PubMed

    Chalvet, F; Teysset, L; Terzian, C; Prud'homme, N; Santamaria, P; Bucheton, A; Pélisson, A

    1999-05-01

    Gypsy is an infectious endogenous retrovirus of Drosophila melanogaster. The gypsy proviruses replicate very efficiently in the genome of the progeny of females homozygous for permissive alleles of the flamenco gene. This replicative transposition is correlated with derepression of gypsy expression, specifically in the somatic cells of the ovaries of the permissive mothers. The determinism of this amplification was studied further by making chimeric mothers containing different permissive/restrictive and somatic/germinal lineages. We show here that the derepression of active proviruses in the permissive soma is necessary and sufficient to induce proviral insertions in the progeny, even if the F1 flies derive from restrictive germ cells devoid of active proviruses. Therefore, gypsy endogenous multiplication results from the transfer of some gypsy-encoded genetic material from the soma towards the germen of the mother and its subsequent insertion into the chromosomes of the progeny. This transfer, however, is not likely to result from retroviral infection of the germline. Indeed, we also show here that the insertion of a tagged gypsy element, mutant for the env gene, occurs at high frequency, independently of the production of gypsy Env proteins by any transcomplementing helper. The possible role of the env gene for horizontal transfer to new hosts is discussed. PMID:10228177

  6. Evidences for Chlorogenic Acid — A Major Endogenous Polyphenol Involved in Regulation of Ripening and Senescence of Apple Fruit

    PubMed Central

    Xi, Yu; Cheng, Dai; Zeng, Xiangquan; Cao, Jiankang; Jiang, Weibo

    2016-01-01

    To learn how the endogenous polyphenols may play a role in fruit ripening and senescence, apple pulp discs were used as a model to study the influences of chlorogenic acid (CHA, a major polyphenol in apple pulp) on fruit ripening and senescence. Apple (‘Golden Delicious’) pulp discs prepared from pre-climacteric fruit were treated with 50 mg L-1 CHA and incubated in flasks with 10 mM MES buffer (pH 6.0, 11% sorbitol). Compared to the control samples, treatment with CHA significantly reduced ethylene production and respiration rate, and enhanced levels of firmness and soluble solids content of the pulp discs during incubation at 25°C. These results suggested that CHA could retard senescence of the apple pulp discs. Proteomics analysis with sodium dodecyl sulfate-polyacrylamide gel electrophoresis and mass spectrometry (MALDI-TOF/TOF) revealed that the expressions of several key proteins correlated to fruit ripening and senescence were affected by the treatment with CHA. Further study showed that treating the pulp discs with CHA remarkably reduced levels of lipoxygenase, β-galactosidase, NADP-malic enzyme, and enzymatic activities of lipoxygenase and UDP-glucose pyrophosphorylase, all of which are known as promoters of fruit ripening and senescence. These results could provide new insights into the functions of endogenous phenolic compounds in fruit ripening and senescence. PMID:26756813

  7. Immunoreactive opioid peptides in human breast cancer.

    PubMed Central

    Scopsi, L.; Balslev, E.; Brünner, N.; Poulsen, H. S.; Andersen, J.; Rank, F.; Larsson, L. I.

    1989-01-01

    Opioid peptides have a variety of actions on inter alia pituitary hormone secretion and the immune system. Release of endogenous opioids has been found to stimulate growth of experimental breast cancers and opiate receptor blockers have reduced the growth of chemically induced rat breast tumors. Opioid peptides may therefore play a role in human breast cancer. Invasive ductal carcinomas from 61 premenopausal women were immunocytochemically analyzed for the presence of opioid peptide immunoreactivity. Positive staining was unambiguously identified in 34 of the tumors (56%). In addition, a medullary carcinoma was positive. In a smaller series of tumors, opioid peptide immunoreactive cells were detected in both primary tumors and metastases. Positive tumor cells were usually few and scattered. Therefore, underestimates of their true frequency of occurrence are likely to have occurred, making accurate correlations with clinical behavior and estrogen receptor status difficult. No correlations with estrogen receptors were established for the unambiguously opioid peptide-positive tumors. Many of the positive tumors also stained with antibodies to gamma-endorphin and alpha-melanocyte-stimulating hormone, suggesting the presence of proopiomelanocortin-derived peptides in them. However, peptides derived from other opioid precursors also may be present in breast cancer. Images Figure 1 PMID:2464945

  8. Exposure to ethanol on prenatal days 19-20 increases ethanol intake and palatability in the infant rat: involvement of kappa and mu opioid receptors.

    PubMed

    Díaz-Cenzano, Elena; Gaztañaga, Mirari; Gabriela Chotro, M

    2014-09-01

    Prenatal exposure to ethanol on gestation Days 19-20, but not 17-18, increases ethanol acceptance in infant rats. This effect seems to be a conditioned response acquired prenatally, mediated by the opioid system, which could be stimulated by ethanol's pharmacological properties (mu-opioid receptors) or by a component of the amniotic fluid from gestation-day 20 (kappa-inducing factor). The latter option was evaluated administering non-ethanol chemosensory stimuli on gestation Days 19-20 and testing postnatal intake and palatability. However, prenatal exposure to anise or vanilla increased neither intake nor palatability of these tastants on postnatal Day 14. In experiment 2, the role of ethanol's pharmacological effect was tested by administering ethanol and selective antagonists of mu and kappa opioid receptors prenatally. Blocking the mu-opioid receptor system completely reversed the effects on intake and palatability, while antagonizing kappa receptors only partially reduced the effects on palatability. This suggests that the pharmacological effect of ethanol on the fetal mu opioid system is the appetitive reinforcer, which induces the prenatally conditioned preference detected in the preweanling period. PMID:24037591

  9. Prescription Opioids during Pregnancy

    MedlinePlus

    ... brand names ConZip®, Ryzolt®, Ultram®) The street drug heroin also is an opioid. What problems can opioids ... to buy them illegally. People often start using heroin after becoming addicted to prescription opioids. Sometimes opioids ...

  10. The involvement of endogenous dolichol in the formation of lipid-linked precursors of glycoprotein in rat liver

    PubMed Central

    Martin, H. G.; Thorne, Kareen J. I.

    1974-01-01

    Endogenous dolichol was shown to function as a natural acceptor of mannose residues by using regenerating rat liver containing [3H]dolichol. When subcellular fractions from this liver were incubated with GDP-[14C]mannose a double-labelled lipid, which represented 30% of the total [14C]mannolipid, could be isolated. This lipid was shown to be identical with the dolichol phosphate mannose formed from exogenous dolichol phosphate, by chromatography, stability to alkali and by chemical cleavage to mannose and dolichol derivatives. It was formed by the rough endoplasmic reticulum and mitochondria. If it is concerned in glycoprotein synthesis this would suggest that it functions in the formation of both secreted and mitochondrial glycoproteins. When both the dolichol and retinol of rat tissue were radioactive they made similar contributions to the synthesis of the lipid by liver microsomal fractions and intestinal epithelial cells. PMID:4362744

  11. Major Depressive Disorder and Kappa Opioid Receptor Antagonists

    PubMed Central

    Li, Wei; Sun, Huijiao; Chen, Hao; Yang, Xicheng; Xiao, Li; Liu, Renyu; Shao, Liming; Qiu, Zhuibai

    2016-01-01

    Major depressive disorder (MDD) is a common psychiatric disease worldwide. The clinical use of tricyclic antidepressants (TCAs), monoamine oxidase inhibitors (MAOIs) and selective serotonin reuptake inhibitors (SSRIs)/serotonin–norepinephrine reuptake inhibitor (SNRIs) for this condition have been widely accepted, but they were challenged by unacceptable side-effects, potential drug-drug interactions (DDIs) or slow onset/lack of efficacy. The endogenous opioid system is involved in stress and emotion regulatory processes and its role in MDD has been implicated. Although several KOR antagonists including JDTic and PF-04455242 were discontinued in early clinical trials, ALKS 5461 and CERC-501(LY-2456302) survived and entered into Phase-III and Phase-II trials, respectively. Considering the efficacy and safety of early off-label use of buprenorphine in the management of the treatment-resistant depression (TRD), it will be not surprising to predict the potential success of ALKS 5461 (a combination of buprenorphine and ALKS-33) in the near future. Moreover, CERC-501 will be expected to be available as monotherapy or adjuvant therapy with other first-line antidepressants in the treatment of TRD, if ongoing clinical trials continue to provide positive benefit-risk profiles. Emerging new researches might bring more drug candidates targeting the endogenous opioid system to clinical trials to address current challenges in MDD treatment in clinical practice. PMID:27213169

  12. Hypothalamic injection of non-opioid peptides increases gene expression of the opioid enkephalin in hypothalamic and mesolimbic nuclei: Possible mechanism underlying their behavioral effects

    PubMed Central

    Karatayev, Olga; Barson, Jessica R.; Chang, Guo-Qing; Leibowitz, Sarah F.

    2009-01-01

    The peptides galanin (GAL) and orexin (OX) share common features with the opioid enkephalin (ENK) in their relationship to ingestive behavior, stimulating consumption of a fat-rich diet and ethanol when injected into the hypothalamus. Since receptors for GAL and OX are dense in areas where ENK-expressing neurons are concentrated, these non-opioid peptides may exert their effects, in part, through the stimulation of endogenous ENK. This study was conducted to determine whether injection of GAL or OX affects the expression of ENK in hypothalamic and mesolimbic nuclei involved in consummatory behavior. Rats were injected with GAL (1 μg), OX-A (1 μg), or saline vehicle just dorsal to the hypothalamic paraventricular nucleus (PVN). They were sacrificed one hour later for analysis of ENK mRNA levels in the PVN, ventral tegmental area (VTA), central nucleus of the amygdala (CeA), and nucleus accumbens (NAc). Both GAL and OX had similar effects, significantly increasing ENK mRNA expression in each of these areas, except for the NAc. This enhanced ENK expression in the PVN, VTA and CeA was demonstrated with real-time quantitative polymerase chain reaction and confirmed in separate groups using radiolabeled and digoxigenin-labeled in situ hybridization. These findings demonstrate that the non-opioid peptides, GAL or OX, which have similar effects on consummatory behavior, are also similar in their effect on endogenous ENK. In light of published findings showing an opioid antagonist to block GAL- and OX-induced feeding, these results provide additional evidence that ENK is involved in mediating the common behavioral effects of these peptides. PMID:19782113

  13. Low dose morphine adjuvant therapy for enhanced efficacy of antipsychotic drug action: potential involvement of endogenous morphine in the pathophysiology of schizophrenia.

    PubMed

    Stefano, George B; Králíčková, Milena; Ptacek, Radek; Kuzelova, Hana; Esch, Tobias; Kream, Richard M

    2012-07-01

    Major thematic threads linking extensive preclinical and clinical efforts have established a working mechanistic scheme whereby atypical antipsychotic drugs ameliorate negative DSM IV diagnostic criteria by effecting relatively potent blockade of serotonin (5-HT)(2A) receptors coupled with weaker antagonism of dopamine D(2) receptors in frontal cortical areas. These contentions are more or less supported by in vitro binding experiments employing cloned receptors on cultured cells, although significant functional involvement of 5-HT(2C) receptors has also been proposed. It is interesting that a key statistical analysis indicates a major shift in usage back to typical antipsychotic agents for management of schizophrenia from 1995-2008, whereas off-label usage of atypical antipsychotic agents was markedly increased or expanded for bipolar affective disorder. Importantly, meta-analyses generally did not support efficacy differences between the other atypical antipsychotics compared with the older typical agents. A critical examination of putative functional linkages of morphine and its type-selective mu opioid receptor to higher order cortical regulation of cognitive processes may provide novel insights into human behavioral processes that are severely impaired in schizophrenia spectrum disorders. PMID:22739740

  14. 75 years of opioid research: the exciting but vain quest for the Holy Grail

    PubMed Central

    Corbett, Alistair D; Henderson, Graeme; McKnight, Alexander T; Paterson, Stewart J

    2006-01-01

    Over the 75-year lifetime of the British Pharmacological Society there has been an enormous expansion in our understanding of how opioid drugs act on the nervous system, with much of this effort aimed at developing powerful analgesic drugs devoid of the side effects associated with morphine – the Holy Grail of opioid research. At the molecular and cellular level multiple opioid receptors have been cloned and characterised, their potential for oligomerisation determined, a large family of endogenous opioid agonists has been discovered, multiple second messengers identified and our understanding of the adaptive changes to prolonged exposure to opioid drugs (tolerance and physical dependence) enhanced. In addition, we now have greater understanding of the processes by which opioids produce the euphoria that gives rise to the intense craving for these drugs in opioid addicts. In this article, we review the historical pathway of opioid research that has led to our current state of knowledge. PMID:16402099

  15. microRNAs in opioid pharmacology

    PubMed Central

    Hwang, Cheol Kyu; Wagley, Yadav; Law, Ping-Yee; Wei, Li-Na; Loh, Horace H.

    2011-01-01

    MicroRNAs (miRNA), a class of ~22-nucleotide RNA molecules, are important gene regulators that bind to the target sites of mRNAs to inhibit the gene expressions either through translational inhibition or mRNA destabilization. There are growing evidences that miRNAs have played several regulatory roles in opioid pharmacology. Like other research fields such as cancer biology, the area where numerous miRNAs are found to be involved in gene regulation, we assume that in opioid studies including research fields of drug additions and opioid receptor regulation, there may be more miRNAs waiting to be discovered. This review will summarize our current knowledge of miRNA functions on opioids biology and briefly describe future research directions of miRNAs related to opioids. PMID:22068836

  16. Effects of opioid peptides on neural control of renal function in spontaneously hypertensive rats.

    PubMed

    Kapusta, D R; Jones, S Y; DiBona, G F

    1990-06-01

    The aims of the present study were to examine the effects of opioid receptor agonists and antagonists on the renal vascular (renal blood flow) and tubular (urinary sodium excretion) responses to renal nerve stimulation and norepinephrine in anesthetized spontaneously hypertensive rats (SHR). Graded frequency renal nerve stimulation (0.5-4.0 Hz) and doses of norepinephrine (10-80 ng/kg) produced frequency and dose-dependent decreases in renal blood flow. The renal vasoconstrictor responses were not altered by intravenous infusion of the opioid receptor agonists methionine enkephalin (mu and delta, 75 micrograms/kg/min) or U-50488H (kappa, 20 micrograms/kg/min) or administration of the opioid receptor antagonist naloxone (1 mg/kg i.v.). The antinatriuretic response to low frequency (less than 1.0 Hz) electrical renal nerve stimulation was prevented by naloxone but not affected by methionine enkephalin administration without changes in glomerular filtration rate or effective renal plasma flow. These studies suggest that endogenous opioid receptor mechanisms are involved in the increased renal tubular sodium reabsorption response to low frequency renal nerve stimulation but not in the renal vasoconstrictor response to either renal nerve stimulation or norepinephrine. This might occur by facilitation of the renal nerve terminal release, the direct renal tubular action, or both, of norepinephrine to influence renal tubular sodium reabsorption. PMID:2351429

  17. Neuroanatomical and neuropharmacological study of opioid pathways in the mesencephalic tectum: effect of mu(1)- and kappa-opioid receptor blockade on escape behavior induced by electrical stimulation of the inferior colliculus.

    PubMed

    Osaki, M Y; Castellan-Baldan, L; Calvo, F; Carvalho, A D; Felippotti, T T; de Oliveira, R; Ubiali, W A; Paschoalin-Maurin, T; Elias-Filho, D H; Motta, V; da Silva, L A; Coimbra, N C

    2003-12-01

    Deep layers of the superior colliculus (DLSC), the dorsal and ventral periaqueductal gray matter (PAG), and inferior colliculus (IC) are midbrain structures involved in the generation of defensive behavior. beta-Endorphin and Leu-enkephalin are some neurotransmitters that may modulate such behavior in mammals. Light microscopy immunocytochemistry with streptavidin method was used for the localization of the putative cells of defensive behavior with antibodies for endogenous opioids in rat brainstem. Midbrain structures showed positive neurons to beta-endorphin and Leu-enkephalin in similar distributions in the experimental animals, but we also noted the presence of varicose fibers positive to endogenous opioids in the PAG. Neuroanatomical techniques showed varicose fibers from the central nucleus of the inferior colliculus to ventral aspects of the PAG, at more caudal levels. Naloxonazine and nor-binaltorphimine, competitive antagonists that block mu(1)- and kappa-opioid receptors, were then used in the present work to investigate the involvement of opioid peptide neural system in the control of the fear-induced reactions evoked by electrical stimulation of the neural substrates of the inferior colliculus. The fear-like responses were measured by electrical stimulation of the central nucleus of the inferior colliculus, eliciting the escape behavior, which is characterized by vigorous running and jumping. Central administration of opioid antagonists (2.5 microg/0.2 microl and 5.0 microg/0.2 microl) was performed in non-anesthetized animals (Rattus norvegicus), and the behavioral manifestations of fear were registered after 10 min, 2 h, and 24 h of the pretreatment. Naloxonazine caused an increase of the defensive threshold, as compared to control, suggesting an antiaversive effect of the antagonism on mu(1)-opioid receptor. This finding was corroborated with central administration of nor-binaltorphimine, which also induced a decrease of the fear-like responses

  18. Prooxidant DNA breakage induced by caffeic acid in human peripheral lymphocytes: Involvement of endogenous copper and a putative mechanism for anticancer properties

    SciTech Connect

    Bhat, S.H.; Azmi, A.S.; Hadi, S.M. . E-mail: smhadi@vsnl.com

    2007-02-01

    Plant-derived dietary material contains several classes of polyphenols such as flavonoids, curcuminoids, stilbenes and hydroxycinnamic acids. They are recognized as naturally occurring antioxidants but also act as prooxidants catalyzing cellular DNA degradation in the presence of transition metal ions such as copper. Earlier we have shown that the stilbene resveratrol is able to mobilize endogenous copper ions leading to oxidative breakage of cellular DNA. In this paper, we show that caffeic acid (a hydroxycinnamic acid), which is a major constituent of coffee, is also capable of DNA breakage in human peripheral lymphocytes. Incubation of lymphocytes with neocuproine inhibited the DNA degradation confirming that Cu(I) is an intermediate in the DNA cleavage reaction. Further, we have also shown that caffeic acid generates oxidative stress in lymphocytes, which is inhibited by scavengers of reactive oxygen species and neocuproine. These results are in further support of our hypothesis that anticancer mechanism of plant polyphenols involves mobilization of endogenous copper, possibly chromatin bound copper, and the consequent prooxidant action.

  19. Mu opioid receptor in spermatozoa, eggs and larvae of gilthead sea bream (Sparus Aurata) and its involvement in stress related to aquaculture.

    PubMed

    Albrizio, Maria; Guaricci, Antonio C; Milano, Serena; Macrì, Francesco; Aiudi, Giulio

    2014-08-01

    In aquaculture, unfavourable conditions experienced during early development may have strong downstream effects on the adult phenotype and fitness. Sensitivity to stress, leading to disease, reduced growth and mortality, is higher in larvae than in adult fish. In this study, conducted on sea bream (Sparus aurata), we evidenced the presence of the mu opioid receptor in gametes and larvae at different developmental stages. Moreover, we evaluated the possibility of reducing the effects of artificially produced stress, altering temperature, salinity and pH, by naloxone (an opioid antagonist) and calcium. Results evidenced that mu opioid receptor is present in larvae and in gametes of both sexes and that, during larval growth, its expression level changes accordingly; furthermore, naloxone/calcium association is efficacious in increasing the survival period of treated larvae compared to controls. We conclude that in sea bream rearing, the use of naloxone/calcium against stress can improve fish farming techniques by reducing larval mortality and consequently increasing productivity. PMID:24338156

  20. Pleasure-related analgesia activates opioid-insensitive circuits.

    PubMed

    Kut, Elvan; Candia, Victor; von Overbeck, Jan; Pok, Judit; Fink, Daniel; Folkers, Gerd

    2011-03-16

    Recent findings suggest that pain and pleasure share common neurochemical circuits, and studies in animals and humans show that opioid-mediated descending pathways can inhibit or facilitate pain. We explored the role of endogenous opioid neurotransmission in pleasure-related analgesia. μ-Opioidergic activity was blocked with 0.2 mg/kg naloxone to assess its effects on hedonic responses to pleasant emotional pictures (International Affective Picture System) and its modulating effects on heat pain tolerance. Naloxone did not alter subjective and autonomous reactions to pleasure induction or overall mood of participants. In addition, pleasure-related increases in pain tolerance persisted after reversal of endogenous μ-opioidergic neurotransmission. Subjective pain intensity and unpleasantness ratings increased after naloxone administration. These findings suggest that, in addition to opioid-sensitive circuits, mainly opioid-insensitive pain-modulating circuits are activated during pleasure-related analgesia. PMID:21411655

  1. κ-Opioid receptor participates of NSAIDs peripheral antinociception.

    PubMed

    Silva, Lívia Caroline Resende; Castor, Marina Gomes Miranda E; Navarro, Larissa Caldeira; Romero, Thiago Roberto Lima; Duarte, Igor Dimitri Gama

    2016-05-27

    NSAIDs represent some of the most widely prescribed drugs for relief of short-term fever, pain and inflammation. The participation of the opioid system in the peripheral is poorly understood. The aim of this study was evaluate the role of opioid system in the peripheral antinociception by diclofenac and dipyrone. To test this hypothesis, opioid receptor antagonists were evaluated using the rat paw pressure test, in which pain sensitivity is increased by intraplantar injection of prostaglandin E2 (PGE2, 2μg). Diclofenac (20μg/paw) and Dipyrone (40μg/paw) administered locally into the right paw elicited an antinociceptive effect. It was used naloxone (50μg/paw), a non-selective opioid receptor antagonist, which antagonized peripheral antinociception induced by diclofenac and dipyrone. Selectively, it was evaluated the μ-, δ- and κ-opioid receptor antagonists, respectively, clocinnamox (40μg/paw), naltrindole (50μg/paw) and nor-binaltorphimine (20, 40 and 80μg/paw). Our data indicated that only the κ-opioid antagonist was capable to reverse the peripheral antinociception by NSAIDs. The present results provide evidence that the opioid system participated in the diclofenac and dipyrone-induced peripheral antinociception by indirect activation of κ-opioid receptor probable by release of endogenous opioids such as dynorphins. PMID:27091501

  2. Baseline reward circuitry activity and trait reward responsiveness predict expression of opioid analgesia in healthy subjects

    PubMed Central

    Wanigasekera, Vishvarani; Lee, Michael C.; Rogers, Richard; Kong, Yazhuo; Leknes, Siri; Andersson, Jesper; Tracey, Irene

    2012-01-01

    Variability in opioid analgesia has been attributed to many factors. For example, genetic variability of the μ-opioid receptor (MOR)-encoding gene introduces variability in MOR function and endogenous opioid neurotransmission. Emerging evidence suggests that personality trait related to the experience of reward is linked to endogenous opioid neurotransmission. We hypothesized that opioid-induced behavioral analgesia would be predicted by the trait reward responsiveness (RWR) and the response of the brain reward circuitry to noxious stimuli at baseline before opioid administration. In healthy volunteers using functional magnetic resonance imaging and the μ-opioid agonist remifentanil, we found that the magnitude of behavioral opioid analgesia is positively correlated with the trait RWR and predicted by the neuronal response to painful noxious stimuli before infusion in key structures of the reward circuitry, such as the orbitofrontal cortex, nucleus accumbens, and the ventral tegmental area. These findings highlight the role of the brain reward circuitry in the expression of behavioral opioid analgesia. We also show a positive correlation between behavioral opioid analgesia and opioid-induced suppression of neuronal responses to noxious stimuli in key structures of the descending pain modulatory system (amygdala, periaqueductal gray, and rostral–ventromedial medulla), as well as the hippocampus. Further, these activity changes were predicted by the preinfusion period neuronal response to noxious stimuli within the ventral tegmentum. These results support the notion of future imaging-based subject-stratification paradigms that can guide therapeutic decisions. PMID:23045652

  3. Effects of the Mu Opioid Receptor Polymorphism (OPRM1 A118G) on Pain Regulation, Placebo Effects and Associated Personality Trait Measures

    PubMed Central

    Peciña, Marta; Love, Tiffany; Stohler, Christian S; Goldman, David; Zubieta, Jon-Kar

    2015-01-01

    Mu-opioid receptors (MOPRs) are critically involved in the modulation of pain and analgesia, and represent a candidate mechanism for the development of biomarkers of pain conditions and their responses to treatment. To further understand the human implications of genetic variation within the opioid system in pain and opioid-mediated placebo responses, we investigated the association between the functional single-nucleotide polymorphism (SNP) in the μ-opioid receptor gene (OPRM1), A118G, and psychophysical responses, personality traits, and neurotransmitter systems (dopamine (DA), opioid) related to pain and placebo analgesia. OPRM1 G carriers, compared with AA homozygotes, showed an overall reduction of baseline μ-opioid receptor availability in regions implicated in pain and affective regulation. In response to a sustained painful stimulus, we found no effect of A118G on pain-induced endogenous opioid release. Instead, AA homozygotes showed a blunted DA response in the nucleus accumbens (NAc) in response to the pain challenge. After placebo administration, G carriers showed more pronounced mood disturbances and lower placebo-induced μ-opioid system activation in the anterior insula (aINS), the amygdala (AMY), the NAc, the thalamus (THA), and the brainstem, as well as lower levels of DA D2/3 activation in the NAc. At a trait level, G carriers reported higher NEO-Neuroticism scores; a personality trait previously associated with increased pain and lower placebo responses, which were negatively correlated with baseline μ-opioid receptor availability in the aINS and subgenual anterior cingulate cortex (sgACC). Our results demonstrate that the A118G OPRM1 polymorphism contributes to interindividual variations in the function of neurotransmitters responsive to pain (endogenous opioid and dopamine), as well as their regulation through cognitive-emotional influences in the context of therapeutic expectations, the so-called placebo effect. These effects are relevant to

  4. Functional and ultrastructural neuroanatomy of interactive intratectal/tectonigral mesencephalic opioid inhibitory links and nigrotectal GABAergic pathways: involvement of GABAA and mu1-opioid receptors in the modulation of panic-like reactions elicited by electrical stimulation of the dorsal midbrain.

    PubMed

    Ribeiro, S J; Ciscato, J G; de Oliveira, R; de Oliveira, R C; D'Angelo-Dias, R; Carvalho, A D; Felippotti, T T; Rebouças, E C C; Castellan-Baldan, L; Hoffmann, A; Corrêa, S A L; Moreira, J E; Coimbra, N C

    2005-12-01

    In the present study, the functional neuroanatomy of nigrotectal-tectonigral pathways as well as the effects of central administration of opioid antagonists on aversive stimuli-induced responses elicited by electrical stimulation of the midbrain tectum were determined. Central microinjections of naloxonazine, a selective mu(1)-opiod receptor antagonist, in the mesencephalic tectum (MT) caused a significant increase in the escape thresholds elicited by local electrical stimulation. Furthermore, either naltrexone or naloxonazine microinjected in the substantia nigra, pars reticulata (SNpr), caused a significant increase in the defensive thresholds elicited by electrical stimulation of the continuum comprised by dorsolateral aspects of the periaqueductal gray matter (dlPAG) and deep layers of the superior colliculus (dlSC), as compared with controls. These findings suggest an opioid modulation of GABAergic inhibitory inputs controlling the defensive behavior elicited by MT stimulation, in cranial aspects. In fact, iontophoretic microinjections of the neurotracer biodextran into the SNpr, a mesencephalic structure rich in GABA-containing neurons, show outputs to neural substrate of the dlSC/dlPAG involved with the generation and organization of fear- and panic-like reactions. Neurochemical lesion of the nigrotectal pathways increased the sensitivity of the MT to electrical (at alertness, freezing and escape thresholds) and chemical (blockade of GABA(A) receptors) stimulation, suggesting a tonic modulatory effect of the nigrotectal GABAergic outputs on the neural networks of the MT involved with the organization of the defensive behavior and panic-like reactions. Labeled neurons of the midbrain tectum send inputs with varicosities to ipsi and contralateral dlSC/dlPAG and ipsilateral substantia nigra, pars reticulata and compacta, in which the anterograde and retrograde tracing from a single injection indicates that the substantia nigra has reciprocal connections with

  5. Oocytes express an endogenous red fluorescent protein in a stony coral, Euphyllia ancora: a potential involvement in coral oogenesis.

    PubMed

    Shikina, Shinya; Chiu, Yi-Ling; Chung, Yi-Jou; Chen, Chieh-Jhen; Lee, Yan-Horn; Chang, Ching-Fong

    2016-01-01

    To date,the molecular and cellular mechanisms underlying coral sexual reproduction remain largely unknown. We then performed a differential screen to identify genes related to oogenesis in the stony coral Euphyllia ancora. We identified a clone encoding a novel red fluorescent protein cDNA of E. ancora (named EaRFP). Microscopic observation and quantitative RT-PCR revealed that EaRFP is almost exclusively expressed in the ovary of the adult coral. The combination of the ovarian-cell separation method and the RT-PCR analysis revealed that the oocytes, but not the ovarian somatic cells, are the cells expressing EaRFP. Immunohistochemical analysis revealed that the expression of EaRFP starts in the early stage of the oocyte and continues until the maturation period. Furthermore, recombinant EaRFP was shown to possess an H2O2 degradation activity. These results raise the possibility that EaRFP plays a role in protecting the oocytes from oxidative stress from the early to late stages of oogenesis. The present study provides not only the first evidence for the potential involvement of FPs in coral oogenesis but also an insight into a cellular strategy underlying coral sexual reproduction. PMID:27167722

  6. Oocytes express an endogenous red fluorescent protein in a stony coral, Euphyllia ancora: a potential involvement in coral oogenesis

    PubMed Central

    Shikina, Shinya; Chiu, Yi-Ling; Chung, Yi-Jou; Chen, Chieh-Jhen; Lee, Yan-Horn; Chang, Ching-Fong

    2016-01-01

    To date,the molecular and cellular mechanisms underlying coral sexual reproduction remain largely unknown. We then performed a differential screen to identify genes related to oogenesis in the stony coral Euphyllia ancora. We identified a clone encoding a novel red fluorescent protein cDNA of E. ancora (named EaRFP). Microscopic observation and quantitative RT-PCR revealed that EaRFP is almost exclusively expressed in the ovary of the adult coral. The combination of the ovarian-cell separation method and the RT-PCR analysis revealed that the oocytes, but not the ovarian somatic cells, are the cells expressing EaRFP. Immunohistochemical analysis revealed that the expression of EaRFP starts in the early stage of the oocyte and continues until the maturation period. Furthermore, recombinant EaRFP was shown to possess an H2O2 degradation activity. These results raise the possibility that EaRFP plays a role in protecting the oocytes from oxidative stress from the early to late stages of oogenesis. The present study provides not only the first evidence for the potential involvement of FPs in coral oogenesis but also an insight into a cellular strategy underlying coral sexual reproduction. PMID:27167722

  7. Endogenous ochronosis.

    PubMed

    Turgay, E; Canat, D; Gurel, M S; Yuksel, T; Baran, M F; Demirkesen, C

    2009-12-01

    Endogenous ochronosis or alkaptonuria is a rare, autosomal recessive disease of tyrosine metabolism that is caused by a deficiency of the enzyme homogentisic acid oxidase. The disease results in the accumulation and deposition of homogentisic acid in the cartilage, eyelids, forehead, cheeks, axillae, genital region, buccal mucosa, larynx, tympanic membranes, and tendons. The disease generally presents in adults with arthritis and skin abnormalities; occasionally, involvement of other organs may be seen. A 49-year-old man was referred to our clinic with verrucous lesions on his hands. On physical examination, caviar-like ochronotic papules were found around his eyes and the helix cartilage of his ears, and on the dorsa of both hands. There were brown macules on the sclera (Osler's sign). The patient had arthritis and nephrolithiasis, and a sample of his urine darkened upon standing. Histopathological examination showed deposition of ochronotic pigment. High-dose ascorbic acid was given, and the patient showed improvement on follow-up examination 6 months later. PMID:20055850

  8. Kappa Opioids, Salvinorin A and Major Depressive Disorder

    PubMed Central

    Taylor, George T.; Manzella, Francesca

    2016-01-01

    Opioids are traditionally associated with pain, analgesia and drug abuse. It is now clear, however, that the opioids are central players in mood. The implications for mood disorders, particularly clinical depression, suggest a paradigm shift from the monoamine neurotransmitters to the opioids either alone or in interaction with monoamine neurons. We have a special interest in dynorphin, the last of the major endogenous opioids to be isolated and identified. Dynorphin is derived from the Greek word for power, dynamis, which hints at the expectation that the neuropeptide held for its discoverers. Yet, dynorphin and its opioid receptor subtype, kappa, has always taken a backseat to the endogenous b-endorphin and the exogenous morphine that both bind the mu opioid receptor subtype. That may be changing as the dynorphin/ kappa system has been shown to have different, often opposite, neurophysiological and behavioral influences. This includes major depressive disorder (MDD). Here, we have undertaken a review of dynorphin/ kappa neurobiology as related to behaviors, especially MDD. Highlights include the unique features of dynorphin and kappa receptors and the special relation of a plant-based agonist of the kappa receptor salvinorin A. In addition to acting as a kappa opioid agonist, we conclude that salvinorin A has a complex pharmacologic profile, with potential additional mechanisms of action. Its unique neurophysiological effects make Salvinorina A an ideal candidate for MDD treatment research. PMID:26903446

  9. The mechanism of μ-opioid receptor (MOR)-TRPV1 crosstalk in TRPV1 activation involves morphine anti-nociception, tolerance and dependence.

    PubMed

    Bao, Yanju; Gao, Yebo; Yang, Liping; Kong, Xiangying; Yu, Jing; Hou, Wei; Hua, Baojin

    2015-01-01

    Initiated by the activation of various nociceptors, pain is a reaction to specific stimulus modalities. The μ-opioid receptor (MOR) agonists, including morphine, remain the most potent analgesics to treat patients with moderate to severe pain. However, the utility of MOR agonists is limited by the adverse effects associated with the use of these drugs, including analgesic tolerance and physical dependence. A strong connection has been suggested between the expression of the transient receptor potential vanilloid type 1 (TRPV1) ion channel and the development of inflammatory hyperalgesia. TRPV1 is important for thermal nociception induction, and is mainly expressed on sensory neurons. Recent reports suggest that opioid or TRPV1 receptor agonist exposure has contrasting consequences for anti-nociception, tolerance and dependence. Chronic morphine exposure modulates TRPV1 activation and induces the anti-nociception effects of morphine. The regulation of many downstream targets of TRPV1 plays a critical role in this process, including calcitonin gene-related peptide (CGRP) and substance P (SP). Additional factors also include capsaicin treatment blocking the anti-nociception effects of morphine in rats, as well as opioid modulation of TRPV1 responses through the cAMP-dependent PKA pathway and MAPK signaling pathways. Here, we review new insights concerning the mechanism underlying MOR-TRPV1 crosstalk and signaling pathways and discuss the potential mechanisms of morphine-induced anti-nociception, tolerance and dependence associated with the TRPV1 signaling pathway and highlight how understanding these mechanisms might help find therapeutic targets for the treatment of morphine induced antinociception, tolerance and dependence. PMID:26176938

  10. Grain and Bean Lysates Improve Function of Endothelial Progenitor Cells from Human Peripheral Blood: Involvement of the Endogenous Antioxidant Defenses

    PubMed Central

    Lucchesi, Daniela; Russo, Rossella; Gabriele, Morena; Longo, Vincenzo; Del Prato, Stefano; Penno, Giuseppe; Pucci, Laura

    2014-01-01

    effect of lysates on EPCs exposed to oxidative stress through the involvement of antioxidant systems. Lisosan G seems to activate the Nrf-2/ARE pathways. PMID:25329912