Science.gov

Sample records for endophytic actinomycetes isolated

  1. Diversity, bioactivities, and metabolic potentials of endophytic actinomycetes isolated from traditional medicinal plants in Sichuan, China.

    PubMed

    Qiu, Peng; Feng, Zhi-Xiang; Tian, Jie-Wei; Lei, Zu-Chao; Wang, Lei; Zeng, Zhi-Gang; Chu, Yi-Wen; Tian, Yong-Qiang

    2015-12-01

    The present study was designed to determine the taxonomic diversity and metabolic activity of the actinomycetes community, including 13 traditional medicinal plants collected in Sichuan province, China, using multiple approaches such as morphological and molecular identification methods, bioactivity assays, and PCR screening for genes involved in antibiotics biosynthesis. 119 endophytic actinomycetes were recovered; 80 representative strains were chosen for 16S rRNA gene partial sequence analyses, with 66 of them being affiliated to genus Streptomyces and the remaining 14 strains being rare actinomycetes. Antimicrobial tests showed that 12 (15%) of the 80 endophytic actinomycetes displayed inhibitory effects against at least one indicator pathogens, which were all assigned to the genus Streptomyces. In addition, 87.5% and 58.8% of the isolates showed anticancer and anti-diabetic activities, respectively. Meanwhile, the anticancer activities of the isolates negatively correlated with their anti-diabetic activities. Based on the results of PCR screening, five genes, PKS-I, PKS-II, NRPS, ANSA, and oxyB, were detected in 55.0%, 58.8%, 90.0%, 18.8% and 8.8% of the 80 actinomycetes, respectively. In conclusion, the PCR screening method employed in the present study was conducive for screening and selection of potential actinomycetes and predicting potential secondary metabolites, which could overcome the limitations of traditional activity screening models. PMID:26721714

  2. Phytohabitans kaempferiae sp. nov., an endophytic actinomycete isolated from the leaf of Kaempferia larsenii.

    PubMed

    Niemhom, Nantawan; Chutrakul, Chanikul; Suriyachadkun, Chanwit; Thawai, Chitti

    2016-08-01

    A novel endophytic actinomycete, designated strain KK1-3T, which formed single spores and long chains of spores (more than 10 spores) was isolated from surface-sterilized Kaempferia larsenii leaf collected from Ubon Ratchathani province, Thailand. The isolate contained l-lysine, meso-diaminopimelic acid and hydroxyl diaminopimelic acid in the cell-wall peptidoglycan. The whole-cell sugars included glucose, mannose, rhamnose, ribose, galactose and xylose. The characteristic phospholipids were phosphatidylethanolamine, phosphatidylmethylethanolamine, phosphatidylglycerol, diphosphatidylglycerol, phosphatidylinositol and phosphoglycolipids. The predominant menaquinones were MK-10(H8), MK-10(H6) and MK-10(H4). The predominant cellular fatty acids were anteiso-C17 : 0 and iso-C16 : 0. The G+C content of the genomic DNA was 71 mol%. Phylogenetic analysis using 16S rRNA gene sequences revealed that strain KK1-3T should be classified as representing a member of the genus Phytohabitans. The similarity values of sequences between this strain and those of the closely related species, Phytohabitans houttuyneae K11-0057T (99.0 %), Phytohabitans suffuscus K07-0523T (98.9 %), Phytohabitans flavus K09-0627T (98.6 %) and Phytohabitans rumicisK11-0047T (98.1 %) were observed. The DNA-DNA hybridization result and some physiological and biochemical properties indicated that KK1-3T could be readily distinguished from its closest phylogenetic relatives. On the basis of these phenotypic and genotypic data, this strain represents a novel species, for which the name Phytohabitans kaempferiae sp. nov. is proposed. The type strain is strain KK1-3T (=BCC 66360T =NBRC 110005T). PMID:27126122

  3. Actinoallomurus bryophytorum sp. nov., an endophytic actinomycete isolated from moss (Bryophyta).

    PubMed

    Li, Chuang; Wang, Haiyan; Jin, Pinjiao; Zheng, Weijia; Chu, Liyang; Liu, Chongxi; Li, Jiansong; Xiang, Wensheng; Wang, Xiangjing

    2015-08-01

    A novel endophytic actinomycete, strain NEAU-TX1-15(T), was isolated from moss, collected from Wuchang, Heilongjiang province, north China. A polyphasic taxonomic study was carried out to establish the status of strain NEAU-TX1-15(T). Morphological and chemotaxonomic properties of strain NEAU-TX1-15(T) are consistent with the description of the genus Actinoallomurus. Strain NEAU-TX1-15(T) was observed to form short spiral or looped spore chains on aerial hyphae. The cell wall peptidoglycan was found to contain lysine and meso-diaminopimelic acid. The major menaquinones were identified as MK-9(H6) and MK-9(H8). The only phospholipid identified was phosphatidylglycerol. The major fatty acid was identified as iso-C16:0. Analysis of the 16S rRNA gene sequence supports the assignment of the novel strain to the genus Actinoallomurus, as it exhibits 99.2 % gene sequence similarity to that of Actinoallomurus yoronensis NBRC 103686(T). However, the low level of DNA-DNA relatedness allowed the strain to be differentiated from its close relative. Moreover, strain NEAU-TX1-15(T) could also be differentiated from A. yoronensis NBRC 103686(T) and other Actinoallomurus species showing high 16S rRNA gene sequence similarity (>98.0 %) by cultural and physiological characteristics. Therefore, the combination of phenotypic and chemotaxonomic data, and the DNA-DNA hybridization value, indicated that strain NEAU-TX1-15(T) represents a novel species of the genus Actinoallomurus for which the name Actinoallomurus bryophytorum sp. nov. is proposed. The type strain is NEAU-TX1-15(T) (=CGMCC 4.7200(T) = JCM 30340(T)). PMID:26033369

  4. Streptomyces bryophytorum sp. nov., an endophytic actinomycete isolated from moss (Bryophyta).

    PubMed

    Li, Chuang; Jin, Pinjiao; Liu, Chongxi; Ma, Zhaoxu; Zhao, Junwei; Li, Jiansong; Wang, Xiangjing; Xiang, Wensheng

    2016-09-01

    A novel endophytic actinomycete, designated strain NEAU-HZ10(T) was isolated from moss and characterised using a polyphasic approach. The strain was found to have morphological and chemotaxonomic characteristics typical of the genus Streptomyces. Strain NEAU-HZ10(T) formed grayish aerial mycelia, which differentiated into straight to flexuous chains of cylindrical spores. The cell wall peptidoglycan was found to contain LL-diaminopimelic acid. Predominant menaquinones were identified as MK-9(H6) and MK-9(H8). The polar lipid profile was found to consist of phosphatidylethanolamine, phosphatidylinositol and two unidentified phospholipids. The major fatty acids were identified as iso-C16:0, anteiso-C15:0 and C16:0. 16S rRNA gene sequence similarity studies showed that strain NEAU-HZ10(T) belongs to the genus Streptomyces and exhibits high sequence similarity to Streptomyces cocklensis DSM 42063(T) (98.9 %). Phylogenetic analysis based on the 16S rRNA gene sequence indicated that strain NEAU-HZ10(T) clustered with S. cocklensis DSM 42063(T), Streptomyces yeochonensis CGMCC 4.1882(T) (98.7 %), Streptomyces paucisporeus CGMCC 4.2025(T) (98.4 %) and Streptomyces yanglinensis CGMCC 4.2023(T) (98.1 %). However, a combination of DNA-DNA hybridisation results and some phenotypic characteristics indicated that strain NEAU-HZ10(T) can be distinguished from its phylogenetically closely related strains. Therefore, it is proposed that strain NEAU-HZ10(T) represents a novel species of the genus Streptomyces for which the name Streptomyces bryophytorum sp. nov. is proposed. The type strain is NEAU-HZ10(T) (= CGMCC 4.7151(T) = DSM 42138(T)). PMID:27263023

  5. Isolation, abundance and phylogenetic affiliation of endophytic actinomycetes associated with medicinal plants and screening for their in vitro antimicrobial biosynthetic potential.

    PubMed

    Passari, Ajit K; Mishra, Vineet K; Saikia, Ratul; Gupta, Vijai K; Singh, Bhim P

    2015-01-01

    Microorganisms associated with medicinal plants are of interest as the producers of important bioactive compounds. To date, the diversity of culturable endophytic actinomycetes associated with medicinal plants is in its initial phase of exploration. In this study, 42 endophytic actinomycetes were isolated from different organs of seven selected medicinal plants. The highest number of isolates (n = 22, 52.3%) of actinomycetes was isolated from roots, followed by stems (n = 9, 21.4%), leaves (n = 6, 14.2%), flowers (n = 3, 7.1%), and petioles (n = 2, 4.7%). The genus Streptomyces was the most dominant among the isolates (66.6%) in both the locations (Dampa TRF and Phawngpuii NP, Mizoram, India). From a total of 42 isolates, 22 isolates were selected for further studies based on their ability to inhibit one of the tested human bacterial or fungal pathogen. Selected isolates were identified based on 16S rRNA gene analysis and subsequently the isolates were grouped to four different genera; Streptomyces, Brevibacterium, Microbacterium, and Leifsonia. Antibiotic sensitivity assay was performed to understand the responsible antimicrobials present in the isolates showing the antimicrobial activities and revealed that the isolates were mostly resistant to penicillin G and ampicillin. Further, antimicrobial properties and antibiotic sensitivity assay in combination with the results of amplification of biosynthetic genes polyketide synthase (PKS-I) and non-ribosomal peptide synthetase (NRPS) showed that the endophytic actinomycetes associated with the selected medicinal plants have broad-spectrum antimicrobial activity. This is the first report of the isolation of Brevibacterium sp., Microbacterium sp., and Leifsonia xyli from endophytic environments of medicinal plants, Mirabilis jalapa and Clerodendrum colebrookianum. Our results emphasize that endophytic actinomycetes associated with medicinal plants are an unexplored resource for the discovery of biologically active

  6. Isolation, abundance and phylogenetic affiliation of endophytic actinomycetes associated with medicinal plants and screening for their in vitro antimicrobial biosynthetic potential

    PubMed Central

    Passari, Ajit K.; Mishra, Vineet K.; Saikia, Ratul; Gupta, Vijai K.; Singh, Bhim P.

    2015-01-01

    Microorganisms associated with medicinal plants are of interest as the producers of important bioactive compounds. To date, the diversity of culturable endophytic actinomycetes associated with medicinal plants is in its initial phase of exploration. In this study, 42 endophytic actinomycetes were isolated from different organs of seven selected medicinal plants. The highest number of isolates (n = 22, 52.3%) of actinomycetes was isolated from roots, followed by stems (n = 9, 21.4%), leaves (n = 6, 14.2%), flowers (n = 3, 7.1%), and petioles (n = 2, 4.7%). The genus Streptomyces was the most dominant among the isolates (66.6%) in both the locations (Dampa TRF and Phawngpuii NP, Mizoram, India). From a total of 42 isolates, 22 isolates were selected for further studies based on their ability to inhibit one of the tested human bacterial or fungal pathogen. Selected isolates were identified based on 16S rRNA gene analysis and subsequently the isolates were grouped to four different genera; Streptomyces, Brevibacterium, Microbacterium, and Leifsonia. Antibiotic sensitivity assay was performed to understand the responsible antimicrobials present in the isolates showing the antimicrobial activities and revealed that the isolates were mostly resistant to penicillin G and ampicillin. Further, antimicrobial properties and antibiotic sensitivity assay in combination with the results of amplification of biosynthetic genes polyketide synthase (PKS-I) and non-ribosomal peptide synthetase (NRPS) showed that the endophytic actinomycetes associated with the selected medicinal plants have broad-spectrum antimicrobial activity. This is the first report of the isolation of Brevibacterium sp., Microbacterium sp., and Leifsonia xyli from endophytic environments of medicinal plants, Mirabilis jalapa and Clerodendrum colebrookianum. Our results emphasize that endophytic actinomycetes associated with medicinal plants are an unexplored resource for the discovery of biologically active

  7. Complete genome sequence of Kibdelosporangium phytohabitans KLBMP 1111(T), a plant growth promoting endophytic actinomycete isolated from oil-seed plant Jatropha curcas L.

    PubMed

    Qin, Sheng; Feng, Wei-Wei; Xing, Ke; Bai, Juan-Luan; Yuan, Bo; Liu, Wei-Jie; Jiang, Ji-Hong

    2015-12-20

    Kibdelosporangium phytohabitans KLBMP 1111(T) is a plant growth promoting endophytic actinomycete isolated from the oil-seed plant Jatropha curcas L. collected from dry-hot valley, in Sichuan, China. The complete genome sequence of this actinomycete consists of one chromosome (11,759,770bp) with no plasmid. From the genome, we identified gene clusters responsible for polyketide and nonribosomal peptide synthesis of natural products, and genes related to the plant growth promoting, such as zeatin, 1-aminocyclopropane-1-carboxylate deaminase (ACCD) and siderophore. The complete genome information may be useful to understand the beneficial interactions between K. phytohabitans KLBMP 1111(T) and host plants. PMID:26516119

  8. Plantactinosporasoyae sp. nov., an endophytic actinomycete isolated from soybean root [Glycine max (L.) Merr].

    PubMed

    Guo, Xiaowei; Guan, Xuejiao; Liu, Chongxi; Jia, Feiyu; Li, Jiansong; Li, Jinmeng; Jin, Pinjiao; Li, Wenchao; Wang, Xiangjing; Xiang, Wensheng

    2016-07-01

    A novel actinomycete, designated strain NEAU-gxj3T, was isolated from soybean root [Glycine max (L.) Merr.] collected from Harbin, Heilongjiang Province, China, and characterized using a polyphasic approach. The 16S rRNA gene sequence of strain NEAU-gxj3T showed highest similarity to those of Micromonospora equina Y22T (98.2 %) and Plantactinospora endophytica YIM 68255T (98.0 %). Phylogenetic analysis based on the 16S rRNA gene and gyrB gene demonstrated that the isolate clustered with the members of the genus Plantactinospora. The chemotaxonomic properties of strain NEAU-gxj3Twere also consistent with those of members of the genus Plantactinospora. The cell wall contained meso-diaminopimelic acid and whole-cell sugars were xylose, glucose and galactose. The predominant menaquinones were MK-10(H6), MK-9(H8), MK-10(H2) and MK-10(H4). The polar lipid profile consisted of diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylinositol and phosphatidylinositol mannoside. The major fatty acids were identified as anteiso-C17 : 0, iso-C16 : 0, iso-C15 : 0 and C15 : 0. A combination of DNA-DNA hybridization result and some phenotypic characteristics indicated that strain NEAU-gxj3Tcould be differentiated clearly from its closest phylogenetic relatives. Therefore, the strain is concluded to represent a novel species of the genus Plantactinospora, for which the name Plantactinospora soyae sp. nov. is proposed. The type strain is NEAU-gxj3T (=CGMCC 4.7221T=DSM 46832T). PMID:27089547

  9. Nonomuraea syzygii sp. nov., an endophytic actinomycete isolated from the roots of a jambolan plum tree (Syzygium cumini L. Skeels).

    PubMed

    Rachniyom, Hathairat; Matsumoto, Atsuko; Indananda, Chantra; Duangmal, Kannika; Takahashi, Yoko; Thamchaipenet, Arinthip

    2015-04-01

    A novel endophytic actinomycete, designated strain GKU 164(T), was isolated from the roots of a jambolan plum tree (Syzygium cumini L. Skeels), collected at Khao Khitchakut National Park, Chantaburi province, Thailand. Phylogenetic analysis based on 16S rRNA gene sequences indicated that the strain formed a distinct clade within the genus Nonomuraea , and was most closely related to Nonomuraea monospora PT708(T) (98.77% 16S rRNA gene sequence similarity) and Nonomuraea thailandensis KC-061(T) (98.73%). Strain GKU 164(T) formed a branched substrate and aerial hyphae that generated single spores with rough surfaces. The cell wall contained meso-diaminopimelic acid. The whole-cell sugars were madurose, galactose, mannose, ribose, rhamnose and glucose. The N-acyl type of muramic acid was acetyl. The predominant menaquinone was MK-9(H4) with minor amounts of MK-9(H6), MK-9(H2) and MK-9(H0). The phospholipid profile contained diphosphatidylglycerol, phosphatidylethanolamine, hydroxy-phosphatidylethanolamine, phosphatidylglycerol, phosphatidylinositol, phosphatidylinositolmannosides, phosphatidylmonomethylethanolamine, hydroxy-phosphatidylmonomethylethanolamine, an unidentified aminophosphoglycolipid and four unknown phospholipids. The major fatty acids were iso-C(16 : 0) and 10-methyl C(17 : 0). The genomic DNA G+C content was 70.4 mol%. Significant differences in the morphological, chemotaxonomical, and biochemical data together with DNA-DNA relatedness values between strain GKU 164(T) and type strains of closely related species, clearly demonstrated that strain GKU 164(T) represents a novel species of the genus Nonomuraea , for which the name Nonomuraea syzygii sp. nov. is proposed. The type strain is GKU 164(T) ( = BCC 70457(T) = NBRC 110400(T)). PMID:25634947

  10. Microbispora sp. LGMB259 endophytic actinomycete isolated from Vochysia divergens (Pantanal, Brazil) producing β-carbolines and indoles with biological activity.

    PubMed

    Savi, Daiani C; Shaaban, Khaled A; Vargas, Nathalia; Ponomareva, Larissa V; Possiede, Yvelise M; Thorson, Jon S; Glienke, Chirlei; Rohr, Jürgen

    2015-03-01

    Endophytic actinomycetes encompass bacterial groups that are well known for the production of a diverse range of secondary metabolites. Vochysia divergens is a medicinal plant, common in the "Pantanal" region (Brazil) and was focus of many investigations, but never regarding its community of endophytic symbionts. During a screening program, an endophytic strain isolated from the V. divergens, was investigated for its potential to show biological activity. The strain was characterized as Microbispora sp. LGMB259 by spore morphology and molecular analyze using nucleotide sequence of the 16S rRNA gene. Strain LGMB259 was cultivated in R5A medium producing metabolites with significant antibacterial activity. The strain produced 4 chemically related β-carbolines, and 3 Indoles. Compound 1-vinyl-β-carboline-3-carboxylic acid displayed potent activity against the Gram-positive bacterial strains Micrococcus luteus NRRL B-2618 and Kocuria rosea B-1106, and was highly active against two human cancer cell lines, namely the prostate cancer cell line PC3 and the non-small-cell lung carcinoma cell line A549, with IC50 values of 9.45 and 24.67 µM, respectively. 1-Vinyl-β-carboline-3-carboxylic acid also showed moderate activity against the yeast Saccharomyces cerevisiae ATCC204508, as well as the phytopathogenic fungi Phyllosticta citricarpa LGMB06 and Colletotrichum gloeosporioides FDC83. PMID:25385358

  11. Microbispora sp. LGMB259 Endophytic Actinomycete Isolated from Vochysia divergens (Pantanal, Brazil) Producing β-Carbolines and Indoles with Biological Activity

    PubMed Central

    Savi, Daiani C.; Shaaban, Khaled A.; Vargas, Nathalia; Ponomareva, Larissa V.; Possiede, Yvelise M.; Thorson, Jon S.; Glienke, Chirlei; Rohr, Jürgen

    2014-01-01

    Endophytic actinomycetes encompass bacterial groups that are well known for the production of a diverse range of secondary metabolites. Vochysia divergens is a medicinal plant, common in the “Pantanal” region (Brazil) and was focus of many investigations, but never regarding its community of endophytic symbionts. During a screening program, an endophytic strain isolated from the V. divergens, was investigated for its potential to show biological activity. The strain was characterized as Microbispora sp. LGMB259 by spore morphology and molecular analyze using nucleotide sequence of the 16S rRNA gene. Strain LGMB259 was cultivated in R5A medium producing metabolites with significant antibacterial activity. The strain produced 4 chemically related β-carbolines, and 3 Indoles. Compound 1-Vinyl-β-carboline-3-carboxylic acid displayed potent activity against the Gram-positive bacterial strains Micrococcus luteus NRRL B-2618 and Kocuria rosea B-1106, and was highly active against two human cancer cell lines, namely the prostate cancer cell line PC3 and the non-small-cell lung carcinoma cell line A549, with IC50 values of 9.45 and 24.67 µM, respectively. 1-Vinyl-β-carboline-3-carboxylic acid also showed moderate activity against the yeast Saccharomyces cerevisiae ATCC204508, as well as the phytopathogenic fungiPhyllosticta citricarpa LGMB06 and Colletotrichum gloeosporioides FDC83. PMID:25385358

  12. Biocontrol of Rhizoctonia solani damping-off and promotion of tomato plant growth by endophytic actinomycetes isolated from native plants of Algerian Sahara.

    PubMed

    Goudjal, Yacine; Toumatia, Omrane; Yekkour, Amine; Sabaou, Nasserdine; Mathieu, Florence; Zitouni, Abdelghani

    2014-01-20

    Thirty-four endophytic actinomycetes were isolated from the roots of native plants of the Algerian Sahara. Morphological and chemical studies showed that twenty-nine isolates belonged to the Streptomyces genus and five were non-Streptomyces. All isolates were screened for their in vitro antifungal activity against Rhizoctonia solani. The six that had the greatest pathogen inhibitory capacities were subsequently tested for their in vivo biocontrol potential on R. solani damping-off in sterilized and non-sterilized soils, and for their plant-growth promoting activities on tomato seedlings. In both soils, coating tomato seeds with antagonistic isolates significantly reduced (P<0.05) the severity of damping-off of tomato seedlings. Among the isolates tested, the strains CA-2 and AA-2 exhibited the same disease incidence reduction as thioperoxydicarbonic diamide, tetramethylthiram (TMTD) and no significant differences (P<0.05) were observed. Furthermore, they resulted in a significant increase in the seedling fresh weight, the seedling length and the root length of the seed-treated seedlings compared to the control. The taxonomic position based on 16S rDNA sequence analysis and phylogenetic studies indicated that the strains CA-2 and AA-2 were related to Streptomyces mutabilis NBRC 12800(T) (100% of similarity) and Streptomyces cyaneofuscatus JCM 4364(T) (100% of similarity), respectively. PMID:23920229

  13. Continuing hunt for endophytic actinomycetes as a source of novel biologically active metabolites.

    PubMed

    Masand, Meeta; Jose, Polpass Arul; Menghani, Ekta; Jebakumar, Solomon Robinson David

    2015-12-01

    Drug-resistant pathogens and persistent agrochemicals mount the detrimental threats against human health and welfare. Exploitation of beneficial microorganisms and their metabolic inventions is most promising way to tackle these two problems. Since the successive discoveries of penicillin and streptomycin in 1940s, numerous biologically active metabolites have been discovered from different microorganisms, especially actinomycetes. In recent years, actinomycetes that inhabit unexplored environments have received significant attention due to their broad diversity and distinctive metabolic potential with medical, agricultural and industrial importance. In this scenario, endophytic actinomycetes that inhabit living tissues of plants are emerging as a potential source of novel bioactive compounds for the discovery of drug leads. Also, endophytic actinomycetes are considered as bio-inoculants to improve crop performance through organic farming practices. Further efforts on exploring the endophytic actinomycetes associated with the plants warrant the likelihood of discovering new taxa and their metabolites with novel chemical structures and biotechnological importance. This mini-review highlights the recent achievements in isolation of endophytic actinomycetes and an assortment of bioactive compounds. PMID:26410426

  14. Effects of plant stress signal molecules on the production of wilforgine in an endophytic actinomycete isolated from Tripterygium wilfordii Hook.f.

    PubMed

    Miao, Guo-peng; Zhu, Chuan-shu; Feng, Jun-tao; Han, Li-rong; Zhang, Xing

    2015-04-01

    The endophytic actinomycete F4-20 was isolated from Tripterygium wilfordii Hook.f. and was confirmed to produce wilforgine, a secondary metabolite discovered in its host. F4-20 showed a close phylogenetic relationship to Streptomyces species. To seek elicitors that may enhance the production of wilforgine in F4-20, four plant stress molecules were applied to the in vitro liquid cultures. Results showed that methyl jasmonate (MeJA), salicylic acid (SA), and hydrogen peroxide (H2O2) inhibited bacterial growth, whereas glutathione (GSH) treatment significantly increased bacterial growth. The wilforgine contents in the mycelia of F4-20 were reduced by MeJA and GSH but were induced by SA and H2O2. When added in the end of the culture period (7 day), 1 mM SA and 5 mM H2O2 resulted in 69.35 ± 1.71 and 71.80 ± 3.35 µg/g DW of wilforgine production, 1.55 and 1.60 fold to that of control (44.83 ± 1.35 µg/g DW), respectively. Though this improved production was about 6.5 times lower than that of the natural root (454.00 µg/g dry root bark), it provided an alternative method for the production of valuable plant secondary metabolites. PMID:25523369

  15. Micromonospora taraxaci sp. nov., a novel endophytic actinomycete isolated from dandelion root (Taraxacum mongolicum Hand.-Mazz.).

    PubMed

    Zhao, Junwei; Guo, Lifeng; He, Hairong; Liu, Chongxi; Zhang, Yuejing; Li, Chuang; Wang, Xiangjing; Xiang, Wensheng

    2014-10-01

    A novel actinomycete, designated strain NEAU-P5(T), was isolated from dandelion root (Taraxacum mongolicum Hand.-Mazz.). Strain NEAU-P5(T) showed closest 16S rRNA gene sequence similarity to Micromonospora chokoriensis 2-19/6(T) (99.5%), and phylogenetically clustered with Micromonospora violae NEAU-zh8(T) (99.3%), M. saelicesensis Lupac 09(T) (99.0%), M. lupini Lupac 14N(T) (98.8%), M. zeae NEAU-gq9(T) (98.4%), M. jinlongensis NEAU-GRX11(T) (98.3%) and M. zamorensis CR38(T) (97.9%). Phylogenetic analysis based on the gyrB gene sequence also indicated that the isolate clustered with the above type strains except M. violae NEAU-zh8(T). The cell-wall peptidoglycan consisted of meso-diaminopimelic acid and glycine. The major menaquinones were MK-9(H8), MK-9(H6) and MK-10(H2). The phospholipid profile contained diphosphatidylglycerol, phosphatidylethanolamine and phosphatidylinositol. The major fatty acids were C(16:0), iso-C(15:0) and C(17:0). Furthermore, some physiological and biochemical properties and low DNA-DNA relatedness values enabled the strain to be differentiated from members of closely related species. Therefore, it is proposed that strain NEAU-P5(T) represents a novel species of the genus Micromonospora, for which the name Micromonospora taraxaci sp. nov. is proposed. The type strain is NEAU-P5(T) (=CGMCC 4.7098(T) = DSM 45885(T)). PMID:25082023

  16. Antimicrobial biosynthetic potential and genetic diversity of endophytic actinomycetes associated with medicinal plants.

    PubMed

    Gohain, Anwesha; Gogoi, Animesh; Debnath, Rajal; Yadav, Archana; Singh, Bhim P; Gupta, Vijai K; Sharma, Rajeev; Saikia, Ratul

    2015-10-01

    Endophytic actinomycetes are one of the primary groups that share symbiotic relationships with medicinal plants and are key reservoir of biologically active compounds. In this study, six selective medicinal plants were targeted for the first time for endophytic actinomycetes isolation from Gibbon Wild Life Sanctuary, Assam, India, during winter and summer and 76 isolates were obtained. The isolates were found to be prevalent in roots followed by stem and leaves. 16S rRNA gene sequence analysis revealed 16 genera, including rare genera, Verrucosispora, Isoptericola and Kytococcus, which have never been previously reported as endophytic. The genus Streptomyces (66%) was dominant in both seasons. Shannon's diversity index showed that Azadirachta indica (1.49), Rauwolfia serpentina (1.43) and Emblica officinalis (1.24) were relatively good habitat for endophytic actinomycetes. Antimicrobial strains showed prevalence of polyketide synthase (PKS) type-II (85%) followed by PKS type-I (14%) encoded in the genomes. Expression studies showed 12-fold upregulation of PKSII gene in seventh day of incubation for Streptomyces antibioticus (EAAG90). Our results emphasize that the actinomycetes assemblages within plant tissue exhibited biosynthetic systems encoding for important biologically active compounds. PMID:26347302

  17. Biosynthetic Potential of Phylogenetically Unique Endophytic Actinomycetes from Tropical Plants▿ †

    PubMed Central

    Janso, Jeffrey E.; Carter, Guy T.

    2010-01-01

    The culturable diversity of endophytic actinomycetes associated with tropical, native plants is essentially unexplored. In this study, 123 endophytic actinomycetes were isolated from tropical plants collected from several locations in Papua New Guinea and Mborokua Island, Solomon Islands. Isolates were found to be prevalent in roots but uncommon in leaves. Initially, isolates were dereplicated to the strain level by ribotyping. Subsequent characterization of 105 unique strains by 16S rRNA gene sequence analysis revealed that 17 different genera were represented, and rare genera, such as Sphaerisporangium and Planotetraspora, which have never been previously reported to be endophytic, were quite prevalent. Phylogenetic analyses grouped many of the strains into clades distinct from known genera within Thermomonosporaceae and Micromonosporaceae, indicating that they may be unique genera. Bioactivity testing and liquid chromatography-mass spectrometry (LC-MS) profiling of crude fermentation extracts were performed on 91 strains. About 60% of the extracts exhibited bioactivity or displayed LC-MS profiles with spectra indicative of secondary metabolites. The biosynthetic potential of 29 nonproductive strains was further investigated by the detection of putative polyketide synthase (PKS) and nonribosomal peptide synthetase (NRPS) genes. Despite their lack of detectable secondary metabolite production in fermentation, most were positive for type I (66%) and type II (79%) PKS genes, and all were positive for NRPS genes. These results suggest that tropical plants from New Guinea and the adjacent archipelago are hosts to unique endophytic actinomycetes that possess significant biosynthetic potential. PMID:20472734

  18. Endophytic Actinomycetes: A Novel Source of Potential Acyl Homoserine Lactone Degrading Enzymes

    PubMed Central

    Chankhamhaengdecha, Surang; Hongvijit, Suphatra; Srichaisupakit, Akkaraphol; Charnchai, Pattra; Panbangred, Watanalai

    2013-01-01

    Several Gram-negative pathogenic bacteria employ N-acyl-L-homoserine lactone (HSL) quorum sensing (QS) system to control their virulence traits. Degradation of acyl-HSL signal molecules by quorum quenching enzyme (QQE) results in a loss of pathogenicity in QS-dependent organisms. The QQE activity of actinomycetes in rhizospheric soil and inside plant tissue was explored in order to obtain novel strains with high HSL-degrading activity. Among 344 rhizospheric and 132 endophytic isolates, 127 (36.9%) and 68 (51.5%) of them, respectively, possessed the QQE activity. The highest HSL-degrading activity was at 151.30 ± 3.1 nmole/h/mL from an endophytic actinomycetes isolate, LPC029. The isolate was identified as Streptomyces based on 16S  rRNA gene sequence similarity. The QQE from LPC029 revealed HSL-acylase activity that was able to cleave an amide bond of acyl-side chain in HSL substrate as determined by HPLC. LPC029 HSL-acylase showed broad substrate specificity from C6- to C12-HSL in which C10HSL is the most favorable substrate for this enzyme. In an in vitro pathogenicity assay, the partially purified HSL-acylase efficiently suppressed soft rot of potato caused by Pectobacterium carotovorum ssp. carotovorum as demonstrated. To our knowledge, this is the first report of HSL-acylase activity derived from an endophytic Streptomyces. PMID:23484156

  19. Isolation of cellulolytic actinomycetes from marine sediments

    SciTech Connect

    Veiga, M.; Esparis, A.; Fabregas, J.

    1983-07-01

    The cellulolytic activity of 36 actinomycetes strains isolated from marine sediments was investigated by the cellulose-azure method. Approximately 50% of the isolates exhibited various degrees of cellulolytic activity. 13 references.

  20. In Vitro and In Vivo Plant Growth Promoting Activities and DNA Fingerprinting of Antagonistic Endophytic Actinomycetes Associates with Medicinal Plants.

    PubMed

    Passari, Ajit Kumar; Mishra, Vineet Kumar; Gupta, Vijai Kumar; Yadav, Mukesh Kumar; Saikia, Ratul; Singh, Bhim Pratap

    2015-01-01

    Endophytic actinomycetes have shown unique plant growth promoting as well as antagonistic activity against fungal phytopathogens. In the present study forty-two endophytic actinomycetes recovered from medicinal plants were evaluated for their antagonistic potential and plant growth-promoting abilities. Twenty-two isolates which showed the inhibitory activity against at least one pathogen were subsequently tested for their plant-growth promoting activities and were compared genotypically using DNA based fingerprinting, including enterobacterial repetitive intergenic consensus (ERIC) and BOX repetitive elements. Genetic relatedness based on both ERIC and BOX-PCR generates specific patterns corresponding to particular genotypes. Exponentially grown antagonistic isolates were used to evaluate phosphate solubilization, siderophores, HCN, ammonia, chitinase, indole-3-acetic acid production, as well as antifungal activities. Out of 22 isolates, the amount of indole-3-acetic acid (IAA) ranging between 10-32 μg/ml was produced by 20 isolates and all isolates were positive for ammonia production ranging between 5.2 to 54 mg/ml. Among 22 isolates tested, the amount of hydroxamate-type siderophores were produced by 16 isolates ranging between 5.2 to 36.4 μg/ml, while catechols-type siderophores produced by 5 isolates ranging from 3.2 to 5.4 μg/ml. Fourteen isolates showed the solubilisation of inorganic phosphorous ranging from 3.2 to 32.6 mg/100ml. Chitinase and HCN production was shown by 19 and 15 different isolates, respectively. In addition, genes of indole acetic acid (iaaM) and chitinase (chiC) were successively amplified from 20 and 19 isolates respectively. The two potential strains Streptomyces sp. (BPSAC34) and Leifsonia xyli (BPSAC24) were tested in vivo and improved a range of growth parameters in chilli (Capsicum annuum L.) under greenhouse conditions. This study is the first published report that actinomycetes can be isolated as endophytes from within these

  1. In Vitro and In Vivo Plant Growth Promoting Activities and DNA Fingerprinting of Antagonistic Endophytic Actinomycetes Associates with Medicinal Plants

    PubMed Central

    Passari, Ajit Kumar; Mishra, Vineet Kumar; Gupta, Vijai Kumar; Yadav, Mukesh Kumar; Saikia, Ratul; Singh, Bhim Pratap

    2015-01-01

    Endophytic actinomycetes have shown unique plant growth promoting as well as antagonistic activity against fungal phytopathogens. In the present study forty-two endophytic actinomycetes recovered from medicinal plants were evaluated for their antagonistic potential and plant growth-promoting abilities. Twenty-two isolates which showed the inhibitory activity against at least one pathogen were subsequently tested for their plant-growth promoting activities and were compared genotypically using DNA based fingerprinting, including enterobacterial repetitive intergenic consensus (ERIC) and BOX repetitive elements. Genetic relatedness based on both ERIC and BOX-PCR generates specific patterns corresponding to particular genotypes. Exponentially grown antagonistic isolates were used to evaluate phosphate solubilization, siderophores, HCN, ammonia, chitinase, indole-3-acetic acid production, as well as antifungal activities. Out of 22 isolates, the amount of indole-3-acetic acid (IAA) ranging between 10–32 μg/ml was produced by 20 isolates and all isolates were positive for ammonia production ranging between 5.2 to 54 mg/ml. Among 22 isolates tested, the amount of hydroxamate-type siderophores were produced by 16 isolates ranging between 5.2 to 36.4 μg/ml, while catechols-type siderophores produced by 5 isolates ranging from 3.2 to 5.4 μg/ml. Fourteen isolates showed the solubilisation of inorganic phosphorous ranging from 3.2 to 32.6 mg/100ml. Chitinase and HCN production was shown by 19 and 15 different isolates, respectively. In addition, genes of indole acetic acid (iaaM) and chitinase (chiC) were successively amplified from 20 and 19 isolates respectively. The two potential strains Streptomyces sp. (BPSAC34) and Leifsonia xyli (BPSAC24) were tested in vivo and improved a range of growth parameters in chilli (Capsicum annuum L.) under greenhouse conditions. This study is the first published report that actinomycetes can be isolated as endophytes from within these

  2. Biogenic gold nanotriangles from Saccharomonospora sp., an endophytic actinomycetes of Azadirachta indica A. Juss.

    NASA Astrophysics Data System (ADS)

    Verma, Vijay C.; Anand, Swechha; Ulrichs, Christian; Singh, Santosh K.

    2013-04-01

    Microbial biofabrication is emerging as eco-friendly, simpler, and reproducible alternative to chemical synthesis of metals and semiconductor nanoparticles, allowing generation of rare geometrical forms such as nanotriangles and nanoprisms. Highly confined nanostructures like triangles/prisms are interesting class of nanoparticles due to their unique optical properties exploitable in biomedical diagnostics and biosensors. Here, we report for the first time a single-step biological protocol for the synthesis of gold nanotriangles using extract of endophytic actinomycetes Saccharomonospora sp., isolated from surface sterilized root tissues of Azadirachta indica A. Juss., when incubated with an aqueous solution of chloroaurate ions (AuCl- 4/1 mM). Thin, flat occasionally prismatic gold nanotriangles were produced when aqueous chloroaurate ions reacted with the cell-free extract as well as with the biomass of endophytic Saccharomonospora. It was evidenced from sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis that proteins of 42 and 50 kD were involved in biosynthesis as well as in stabilization of the nanoparticles. The particle growth process was monitored by UV-vis spectroscopy, and the morphological characterization was carried out by transmission electron microscopy and atomic force microscopy together with X-ray powder diffractions. Although the exact mechanism for this shape-oriented synthesis is not clear so far, the possibility of achieving nanoparticle shape control in a microbial system is exciting.

  3. Evaluation of antimicrobial activity of the endophytic actinomycete R18(6) against multiresistant Gram-negative bacteria.

    PubMed

    Carvalho, Tiele; Van Der Sand, Sueli

    2016-03-01

    Endophytic actinomycetes are promising sources of antimicrobial substances. This study evaluates the activity of metabolites produced by the endophytic actinomycete R18(6) against Gram-negative bacteria multiresistant to antimicrobials. R18(6) isolate was grown in submerged cultures under different conditions: carbon source, temperature, pH and incubation time to optimize antimicrobials production. The actinomycete grown in base medium supplemented with 1% glucose, pH 6.5 and incubation at 30 ºC for 96 h with shaking at 100 rpm, exhibited the highest activity against the used Gram-negative bacteria. Minimum inhibitory concentration (MIC) of the crude extract produced by the microorganism varied between 1/32 and 1/256. It had bactericide or bacteriostatic activity, depending on the Gram-negative organism. The active extract was stable at high temperatures, and unstable in medium containing proteolytic enzymes. Micromorphology of R18(6) was investigated by optical and scan microscopy, revealing that it was morphologically similar to the genusStreptomyces. PMID:26871499

  4. Spoxazomicins A-C, novel antitrypanosomal alkaloids produced by an endophytic actinomycete, Streptosporangium oxazolinicum K07-0460(T).

    PubMed

    Inahashi, Yuki; Iwatsuki, Masato; Ishiyama, Aki; Namatame, Miyuki; Nishihara-Tsukashima, Aki; Matsumoto, Atsuko; Hirose, Tomoyasu; Sunazuka, Toshiaki; Yamada, Haruki; Otoguro, Kazuhiko; Takahashi, Yōko; Omura, Satoshi; Shiomi, Kazuro

    2011-04-01

    Three novel antitrypanosomal alkaloids, named spoxazomicins A-C, were isolated by silica gel column chromatography and HPLC from the culture broth of a new endophytic actinomycete species, Streptosporangium oxazolinicum K07-0460(T). The structures of the spoxazomicins were elucidated by NMR and X-ray crystal analyses and shown to be new types of pyochelin family antibiotic. Spoxazomicin A showed potent and selective antitrypanosomal activity with an IC₅₀ value of 0.11 μg ml⁻¹ in vitro without cytotoxicity against MRC-5 cells (IC₅₀=27.8 μg ml⁻¹). PMID:21386848

  5. Pseudonocardia antimicrobica sp. nov., a novel endophytic actinomycete associated with Artemisia annua L. (sweet wormwood).

    PubMed

    Zhao, Guo-Zhen; Li, Jie; Qin, Yu-Li; Miao, Cui-Ping; Wei, Da-Qiao; Zhang, Si; Xu, Li-Hua; Li, Wen-Jun

    2012-09-01

    A Gram-reaction-positive, non-motile, endophytic actinomycete, designated strain YIM 63235(T), was isolated from the surface-sterilized stems of Artemisia annua L., and characterized to determine its taxonomic position. The strain YIM 63235(T) formed well-differentiated aerial and substrate mycelia on media tested. The phylogenetic tree based on 16S rRNA gene sequences showed that the new isolate formed a distinct lineage within the genus Pseudonocardia, and the strain YIM 63235(T) was closely related to Pseudonocardia parietis 04-St-002(T) (99.1%). However, DNA-DNA relatedness demonstrated that strain YIM 63235(T) was distinct from the closest phylogenetic neighbor. The chemotaxonomic properties of strain YIM 63235(T) were consistent with those of the genus Pseudonocardia: the diagnostic diamino acid of the cell-wall peptidoglycan was meso-diaminopimelic acid and MK-8(H(4)) was the predominant menaquinone. The major fatty acids were iso-C(16:0) and iso-C(16:1) H. The DNA G+C content of strain YIM 63235(T) was 71.0 mol%. On the basis of the phenotypic and phylogenetic distinctiveness, the novel isolate was identified as representing a novel species of the genus Pseudonocardia, for which the name Pseudonocardia antimicrobica sp. nov. (type strain YIM 63235(T) =CCTCC AA 208080(T)=DSM 45303(T)) is proposed. PMID:22805759

  6. Rare actinomycetes Nocardia caishijiensis and Pseudonocardia carboxydivorans as endophytes, their bioactivity and metabolites evaluation.

    PubMed

    Tanvir, Rabia; Sajid, Imran; Hasnain, Shahida; Kulik, Andreas; Grond, Stephanie

    2016-04-01

    Two strains identified as Nocardia caishijiensis (SORS 64b) and Pseudonocardia carboxydivorans (AGLS 2) were isolated as endophytes from Sonchus oleraceus and Ageratum conyzoides respectively. The analysis of their extracts revealed them to be strongly bioactive. The N. caishijiensis extract gave an LC50 of 570 μg/ml(-1) in the brine shrimp cytotoxicity assay and an EC50 of 0.552 μg/ml(-1) in the DPPH antioxidant assay. Antimicrobial activity was observed against Methicillin resistant Staphlococcus aureus (MRSA) and Escherichia coli ATCC 25922 (14 mm), Klebsiella pneumoniae ATCC 706003 (13 mm), S. aureus ATCC 25923 (11 mm) and Candida tropicalis (20 mm). For the extract of P. carboxydivorans the EC50 was 0.670 μg/ml(-1) and it was observed to be more bioactive against Bacillus subtilis DSM 10 ATCC 6051 (21 mm), C. tropicalis (20 mm), S. aureus ATCC 25923 (17 mm), MRSA (17 mm), E. coli K12 (W1130) (16 mm) and Chlorella vulgaris (10 mm). The genotoxicity testing revealed a 20 mm zone of inhibition against the polA mutant strain E. coli K-12 AB 3027 suggesting damage to the DNA and polA genes. The TLC and bioautography screening revealed a diversity of active bands of medium polar and nonpolar compounds. Metabolite analysis by HPLC-DAD via UV/vis spectral screening suggested the possibility of stenothricin and bagremycin A in the mycelium extract of N. caishijiensis respectively. In the broth and mycelium extract of P. carboxydivorans borrelidin was suggested along with α-pyrone. The HPLC-MS revealed bioactive long chained amide derivatives such as 7-Octadecenamide, 9, 12 octadecandienamide. This study reports the rare actinomycetes N. caishijiensis and P. carboxydivorans as endophytes and evaluates their bioactive metabolites. PMID:26946375

  7. Antimicrobial potential of Actinomycetes species isolated from marine environment

    PubMed Central

    Valli, S; Suvathi, Sugasini S; Aysha, OS; Nirmala, P; Vinoth, Kumar P; Reena, A

    2012-01-01

    Objective To evaluate the antimicrobial activity of Actinomycetes species isolated from marine environment. Methods Twenty one strains of Actinomycetes were isolated from samples of Royapuram, Muttukadu, Mahabalipuram sea shores and Adyar estuary. Preliminary screening was done using cross-streak method against two gram-positive and eight gram-negative bacteria. The most potent strains C11 and C12 were selected from which antibacterial substances were extracted. The antibacterial activities of the extracts were performed using Kirby-Bauer disc diffusion method. Molecular identification of those isolates was done. Results All those twenty one isolates were active against at least one of the test organisms. Morphological characters were recorded. C11 showed activity against Staphylococcus species (13.0±0.5 mm), Vibrio harveyi (11.0±0.2 mm), Pseudomonas species (12.0±0.3 mm). C12 showed activity against Staphylococcus species (16.0±0.4 mm), Bacillus subtilis (11.0±0.2 mm), Vibrio harveyi (9.0±0.1 mm), Pseudomonas species (10.0±0.2 mm). 16S rRNA pattern strongly suggested that C11 and C12 strains were Streptomyces species. Conclusions The results of the present investigation reveal that the marine Actinomycetes from coastal environment are the potent source of novel antibiotics. Isolation, characterization and study of Actinomycetes can be useful in discovery of novel species of Actinomycetes. PMID:23569952

  8. Comparative analysis of chemical constituents, antimicrobial and antioxidant activities of ethylacetate extracts of Polygonum cuspidatum and its endophytic actinomycete, Streptomyces sp. A0916.

    PubMed

    Wang, Lei; Qiu, Peng; Long, Xiu-Feng; Zhang, Shuai; Zeng, Zhi-Gang; Tian, Yong-Qiang

    2016-02-01

    The present study investigated the chemical composition of ethylacetate extracts from an endophytic actinomycete Streptomyces sp. A0916 and its host Polygonum cuspidatum. A comparative analysis of the antimicrobial and antioxidant properties of the extracts was also conducted. 32 compounds of P. cuspidatum and 23 compounds of Streptomyces sp. A0916 were isolated and identified by GC/MS. Antimicrobial activities of the extracts were evaluated using eight microbial strains (3 Gram-positive bacteria, 3 Gram-negative bacteria, and 2 fungi). The Streptomyces sp. A0916 extracts showed a wide range of antimicrobial activities and presented greater antimicrobial effectiveness than the P. cuspidatum extracts. The minimum inhibitory concentration (MIC) of Streptomyces sp. A0916 extracts against the ampicillin-resistant strain Enterococcus faecium SIIA843 was 32 μg·mL(-1). Furthermore, the extracts had greater antimicrobial effect against Gram-positive bacteria than Gram-negative bacteria. Finally, the antioxidant activity of the Streptomyces sp. A0916 extracts was equal to that of the P. cuspidatum extracts. In conclusion, our results suggest that the endophytic actinomycetes of the medicinal plants are an important source of bioactive substances. PMID:26968677

  9. Antibiotics production by an actinomycete isolated from the termite gut.

    PubMed

    Matsui, Toru; Tanaka, Junichi; Namihira, Tomoyuki; Shinzato, Naoya

    2012-12-01

    As well as the search for new antibiotics, a new resource or strains for the known antibiotics is also important. Microbial symbionts in the gut of termites could be regarded as one of the feasible resource for such purpose. In this study, antibiotic-producing actinomycetes were screened from symbionts of the termite gut. 16SrRNA sequence analysis for the 10 isolates revealed that they belong to actinomycetes such as Streptomyces sp., Kitasatospora sp., and Mycobacterium sp. A culture broth from one of the isolate, namely strain CA1, belonging to the genera Streptomyces exhibited antagonistic activity against actinomycetes (Micrococcus spp.), gram-positive bacteria (Bacillus spp.), and yeast (Candida spp.). The structures of 2 compounds isolated from the culture broth of the strain CA1 were identified as those of actinomycin X2 and its analog, D. This study is the first to report that some symbionts of the termite gut are antibiotic-producing actinomycetes, and suggest that the termite gut is a feasible resource for bioprospecting. PMID:22359219

  10. Isolation and screening of endophytes from the rhizomes of some Zingiberaceae plants for L-asparaginase production.

    PubMed

    Krishnapura, Prajna Rao; Belur, Prasanna D

    2016-04-01

    Endophytes are described as microorganisms that colonize the internal tissues of healthy plants without causing any disease. Endophytes isolated from medicinal plants have been attracting considerable attention due to their high biodiversity and their predicted potential to produce a plethora of novel compounds. In this study, an attempt was made to isolate endophytes from rhizomes of five medicinal plants of Zingiberaceae family, and to screen the endophytes for L-asparaginase activity. In total, 50 endophytes (14 bacteria, 22 actinomycetes, and 14 fungi) were isolated from Alpinia galanga, Curcuma amada, Curcuma longa, Hedychium coronarium, and Zingiber officinale; of these, 31 endophytes evidenced positive for L-asparaginase production. All the L-asparaginase-positive isolates showed L-asparaginase activity in the range of 54.17-155.93 U/mL in unoptimized medium. An endophytic fungus isolated from Curcuma amada, identified as Talaromyces pinophilus, was used for further experiments involving studies on the effect of certain nutritional and nonnutritional factors on L-asparaginase production in submerged fermentation. Talaromyces pinophilus initially gave an enzyme activity of 108.95 U/mL, but gradually reduced to 80 U/mL due to strain degeneration. Perhaps this is the first report ever on the production of L-asparaginase from endophytes isolated from medicinal plants of Zingiberaceae family. PMID:25830659

  11. Isolation and evaluation of proteolytic actinomycete isolates as novel inducers of pearl millet downy mildew disease protection.

    PubMed

    Jogaiah, Sudisha; Kurjogi, Mahantesh; Govind, Sharathchandra Ramasandra; Huntrike, Shekar Shetty; Basappa, Vedamurthy Ankala; Tran, Lam-Son Phan

    2016-01-01

    Native endophytic actinomycetes isolated from pearl millet roots were examined for their efficacy to protect pearl millet against downy mildew. Nineteen of 39 isolates were found to be proteolytic, of which 7 strains could directly suppress the sporangium formation of Sclerospora graminicola, the pearl millet downy mildew pathogen. Thus, mycelial suspensions containing either spores or cell-free extract of these 7 isolates were used for seed-coating and -soaking treatments to test for their induction of downy mildew resistance. Results indicated that seed-coating overall provided better protection to downy mildew than seed-soaking. In both treatments, the tested isolates demonstrated differential abilities in downy mildew disease protection, with Streptomyces griseus SJ_UOM-07-09 and Streptosporangium roseum SJ_UOM-18-09 showing the highest protection rates. Additionally, the levels of disease protection conferred by the actinomycetes were just slightly lower than that of the systemic fungicide Apron, suggesting their effectiveness. Further studies revealed that the more rapid root colonization by SJ_UOM-18-09 resulted in faster and higher induced resistance in comparison with SJ_UOM-07-09 under greenhouse conditions, indicating that SJ_UOM-18-09 was superior than SJ_UOM-07-09 in inducing resistance. Results from this study provide comprehensive information on biocontrol functions of SJ_UOM- 18-09 with great potential to control downy mildew disease in pearl millet. PMID:27499196

  12. Isolation and evaluation of proteolytic actinomycete isolates as novel inducers of pearl millet downy mildew disease protection

    PubMed Central

    Jogaiah, Sudisha; Kurjogi, Mahantesh; Govind, Sharathchandra Ramasandra; Huntrike, Shekar Shetty; Basappa, Vedamurthy Ankala; Tran, Lam-Son Phan

    2016-01-01

    Native endophytic actinomycetes isolated from pearl millet roots were examined for their efficacy to protect pearl millet against downy mildew. Nineteen of 39 isolates were found to be proteolytic, of which 7 strains could directly suppress the sporangium formation of Sclerospora graminicola, the pearl millet downy mildew pathogen. Thus, mycelial suspensions containing either spores or cell-free extract of these 7 isolates were used for seed-coating and -soaking treatments to test for their induction of downy mildew resistance. Results indicated that seed-coating overall provided better protection to downy mildew than seed-soaking. In both treatments, the tested isolates demonstrated differential abilities in downy mildew disease protection, with Streptomyces griseus SJ_UOM-07-09 and Streptosporangium roseum SJ_UOM-18-09 showing the highest protection rates. Additionally, the levels of disease protection conferred by the actinomycetes were just slightly lower than that of the systemic fungicide Apron, suggesting their effectiveness. Further studies revealed that the more rapid root colonization by SJ_UOM-18-09 resulted in faster and higher induced resistance in comparison with SJ_UOM-07-09 under greenhouse conditions, indicating that SJ_UOM-18-09 was superior than SJ_UOM-07-09 in inducing resistance. Results from this study provide comprehensive information on biocontrol functions of SJ_UOM- 18-09 with great potential to control downy mildew disease in pearl millet. PMID:27499196

  13. [Isolation and antimicrobial activities of actinomycetes from vermicompost].

    PubMed

    Wang, Xue-jun; Yan, Shuang-lin; Min, Chang-li; Yang, Yan

    2015-02-01

    In this paper, actinomycetes were isolated from vermicompost by tablet coating method. Antimicrobial activities of actinomycetes were measured by the agar block method. Strains with high activity were identified based on morphology and biochemical characteristics, as well as 16S rDNA gene sequence analysis. The results showed that 26 strains of actinomycetes were isolated, 16 of them had antimicrobial activities to the test strains which accounts for 61.54% of all strains. Among the 16 strains, the strain QYF12 and QYF22 had higher antimicrobial activity to Micrococcus luteus, with a formed inhibition zone of 27 mm and 31 mm, respectively. While the strain QYF26 had higher antimicrobial activity to Bacillus subtilis, and the inhibition zone diameter was 21 mm. Based on the identification of strains with high activity, the strain QYF12 was identified as Streptomyces chartreusis, the strain QYF22 was S. ossamyceticus and the strain QYF26 was S. gancidicus. This study provided a theoretical basis for further separate antibacterial product used for biological control. PMID:26137678

  14. Trehangelins A, B and C, novel photo-oxidative hemolysis inhibitors produced by an endophytic actinomycete, Polymorphospora rubra K07-0510.

    PubMed

    Nakashima, Takuji; Okuyama, Ryuki; Kamiya, Yoshiyuki; Matsumoto, Atsuko; Iwatsuki, Masato; Inahashi, Yuki; Yamaji, Kenzaburo; Takahashi, Yōko; Ōmura, Satoshi

    2013-06-01

    Three new natural products, designated trehangelins A, B and C, were isolated by solvent extraction, silica gel and octadecylsilyl silica gel column chromatographies and subsequent preparative HPLC from the cultured broth of an endophytic actinomycete strain, Polymorphospora rubra K07-0510. The trehangelins consisted of a trehalose moiety and two angelic acid moieties. Trehangelins A (IC50 value, 0.1 mg ml(-1)) and C (IC50 value, 0.4 mg ml(-1)), with symmetric structures, showed potent inhibitory activity against hemolysis of red blood cells induced by light-activated pheophorbide a. However, trehangelin B, with an asymmetric structure, displayed only a slight inhibition (IC50 value, 1.0 mg ml(-1)). PMID:23591606

  15. ISOLATION AND DIVERSITY OF ACTINOMYCETES IN THE CHESAPEAKE BAY

    EPA Science Inventory

    Chesapeake Bay was investigated as a source of actinomycetes to creen for production of novel bioactive compounds. he presence of relatively large populations of actinoplanetes, chemotype IID actinomycetes in Chesapeake Bay sediment samples indicates that is an eminently suitable...

  16. Antimicrobial activity of endophytic fungi isolated from Swietenia macrophylla leaves.

    PubMed

    Ibrahim, Darah; Lee, Chong Chai; Sheh-Hong, Lim

    2014-02-01

    The endophytic fungi isolated from leaves of Swietenia macrophylla of different ages were examined for antimicrobial activity. The agar plug diffusion assay was used for primary screening, followed by the disc diffusion method. A total of 461 filamentous endophytic fungi were isolated and cultured to examine their antimicrobial properties. In the primary screen, 315 isolates (68.3%) exhibited activity against at least one of the test pathogenic microorganisms. The percentage of isolates exhibiting antimicrobial activity increased with leaf age. Endophytic fungal assemblages, as well as those isolates exhibiting antimicrobial properties appeared to increase with leaf age. The main antimicrobial compounds were produced extracellularly by the endophytic fungi. The results suggest that healthy leaves at older stages of growth can be a potential source for the isolation of endophytic fungi with antimicrobial properties. PMID:24689302

  17. Isolation of Mutants of the Nitrogen-Fixing Actinomycete Frankia

    PubMed Central

    Kakoi, Kentaro; Yamaura, Masatoshi; Kamiharai, Toshihito; Tamari, Daiki; Abe, Mikiko; Uchiumi, Toshiki; Kucho, Ken-Ichi

    2014-01-01

    Frankia is a nitrogen (N)-fixing multicellular actinomycete which establishes root-nodule symbiosis with actinorhizal plants. Several aspects of Frankia N fixation and symbiosis are distinct, but genes involved in the specific features are largely unknown because of the lack of an efficient mutant screening method. In this study, we isolated mutants of Frankia sp. strain CcI3 using hyphae fragments mutagenized by chemical mutagens. Firstly, we isolated uracil auxotrophs as gain-of-function mutants resistant to 5-fluoroorotic acid (5-FOA). We obtained seven 5-FOA resistant mutants, all of which required uracil for growth. Five strains carried a frame shift mutation in orotidine-5′-phosphate decarboxylase gene and two carried an amino acid substitution in the orotate phosphoribosyltransferase gene. Secondly, we isolated mutants showing loss-of-function phenotypes. Mutagenized hyphae were fragmented by ultrasound and allowed to multiply at their tips. Hyphae were fragmented again and short fragments were enriched by filtration through 5 μm pores filters. Next-generation and Sanger sequencing revealed that colonies formed from the short hyphae fragments consisted of cells with an identical genotype. From the mutagenized colony population, we isolated three pigmentation mutants and a mutant with reduced N-fixation activity. These results indicate that our procedure is useful for the isolation of loss-of-function mutants using hyphae of Frankia. PMID:24389412

  18. Isolation of mutants of the nitrogen-fixing actinomycete Frankia.

    PubMed

    Kakoi, Kentaro; Yamaura, Masatoshi; Kamiharai, Toshihito; Tamari, Daiki; Abe, Mikiko; Uchiumi, Toshiki; Kucho, Ken-Ichi

    2014-01-01

    Frankia is a nitrogen (N)-fixing multicellular actinomycete which establishes root-nodule symbiosis with actinorhizal plants. Several aspects of Frankia N fixation and symbiosis are distinct, but genes involved in the specific features are largely unknown because of the lack of an efficient mutant screening method. In this study, we isolated mutants of Frankia sp. strain CcI3 using hyphae fragments mutagenized by chemical mutagens. Firstly, we isolated uracil auxotrophs as gain-of-function mutants resistant to 5-fluoroorotic acid (5-FOA). We obtained seven 5-FOA resistant mutants, all of which required uracil for growth. Five strains carried a frame shift mutation in orotidine-5'-phosphate decarboxylase gene and two carried an amino acid substitution in the orotate phosphoribosyltransferase gene. Secondly, we isolated mutants showing loss-of-function phenotypes. Mutagenized hyphae were fragmented by ultrasound and allowed to multiply at their tips. Hyphae were fragmented again and short fragments were enriched by filtration through 5 μm pores filters. Next-generation and Sanger sequencing revealed that colonies formed from the short hyphae fragments consisted of cells with an identical genotype. From the mutagenized colony population, we isolated three pigmentation mutants and a mutant with reduced N-fixation activity. These results indicate that our procedure is useful for the isolation of loss-of-function mutants using hyphae of Frankia. PMID:24389412

  19. Isolation and characterization of actinomycete antagonists of a fungal root pathogen.

    PubMed

    Crawford, D L; Lynch, J M; Whipps, J M; Ousley, M A

    1993-11-01

    By use of selective media, 267 actinomycete strains were isolated from four rhizosphere-associated and four non-rhizosphere-associated British soils. Organic media with low nutrient concentrations were found to be best for isolating diverse actinomycetes while avoiding contamination and overgrowth of isolation media by eubacteria and fungi. While all isolates grew well at pHs 6.5 to 8.0, a few were unable to grow at pH 6.0 and a significant number failed to grow at pH 5.5. Eighty-two selected isolates were screened for in vitro antagonism towards Pythium ultimum by use of a Difco cornmeal agar assay procedure. Five isolates were very strong antagonists of the fungus, four were strong antagonists, and ten others were weakly antagonistic. The remaining isolates showed no antagonism by this assay. Additional studies showed that several of the P. ultimum antagonists also strongly inhibited growth of other root-pathogenic fungi. Twelve isolates showing antifungal activity in the in vitro assay were also tested for their effects on the germination and short-term growth of lettuce plants in glasshouse pot studies in the absence of pathogens. None of the actinomycetes prevented seed germination, although half of the isolates retarded seed germination and outgrowth of the plants by 1 to 3 days. During 18-day growth experiments, biomass yields of some actinomycete-inoculated plants were reduced in comparison with untreated control plants, although all plants appeared healthy and well rooted. None of the actinomycetes significantly enhanced plant growth over these short-term experiments. For some, but not all, actinomycetes, some correlations between delayed seed germination and reduced 18-day plant biomass yields were seen. For others, plant biomass yields were not reduced despite an actinomycete-associated delay in seed germination and plant outgrowth. Preliminary glasshouse experiments indicated that some of the actinomycetes protect germinating lettuce seeds against

  20. Isolation and Characterization of Actinomycete Antagonists of a Fungal Root Pathogen †

    PubMed Central

    Crawford, Don L.; Lynch, James M.; Whipps, John M.; Ousley, Margaret A.

    1993-01-01

    By use of selective media, 267 actinomycete strains were isolated from four rhizosphere-associated and four non-rhizosphere-associated British soils. Organic media with low nutrient concentrations were found to be best for isolating diverse actinomycetes while avoiding contamination and overgrowth of isolation media by eubacteria and fungi. While all isolates grew well at pHs 6.5 to 8.0, a few were unable to grow at pH 6.0 and a significant number failed to grow at pH 5.5. Eighty-two selected isolates were screened for in vitro antagonism towards Pythium ultimum by use of a Difco cornmeal agar assay procedure. Five isolates were very strong antagonists of the fungus, four were strong antagonists, and ten others were weakly antagonistic. The remaining isolates showed no antagonism by this assay. Additional studies showed that several of the P. ultimum antagonists also strongly inhibited growth of other root-pathogenic fungi. Twelve isolates showing antifungal activity in the in vitro assay were also tested for their effects on the germination and short-term growth of lettuce plants in glasshouse pot studies in the absence of pathogens. None of the actinomycetes prevented seed germination, although half of the isolates retarded seed germination and outgrowth of the plants by 1 to 3 days. During 18-day growth experiments, biomass yields of some actinomycete-inoculated plants were reduced in comparison with untreated control plants, although all plants appeared healthy and well rooted. None of the actinomycetes significantly enhanced plant growth over these short-term experiments. For some, but not all, actinomycetes, some correlations between delayed seed germination and reduced 18-day plant biomass yields were seen. For others, plant biomass yields were not reduced despite an actinomycete-associated delay in seed germination and plant outgrowth. Preliminary glasshouse experiments indicated that some of the actinomycetes protect germinating lettuce seeds against

  1. Isolation and identification of actinomycetes from a compost-amended soil with potential as biocontrol agents.

    PubMed

    Cuesta, Gonzalo; García-de-la-Fuente, Rosana; Abad, Manuel; Fornes, Fernando

    2012-03-01

    The search for new biocontrol strategies to inhibit the growth of phytopathogenic microorganisms has become widely widespread due to environmental concerns. Among actinomycetes, Streptomyces species have been extensively studied since they have been recognized as important sources of antibiotics. Actinomycete strains were isolated from a calcareous soil, 2 two-phase olive mill waste ('alperujo') composts, and the compost-amended soil by using selective media, and they were then co-cultured with 5 phytopathogenic fungi and 1 bacterium to perform an in vitro antagonism assay. Forty-nine actinomycete strains were isolated, 12 of them showing a great antagonistic activity towards the phytopathogenic microorganisms tested. Isolated strains were identified by 16S rDNA sequence analysis and phenotypic procedures. Eleven isolates concerned the genus Streptomyces and 1 actinomycete with chitinolytic activity belonged to the genus Lechevalieria. PMID:21190787

  2. Diversity of actinomycetes isolated from subseafloor sediments after prolonged low-temperature storage.

    PubMed

    Ulanova, Dana; Goo, Kian-Sim

    2015-05-01

    Subseafloor sediments present an untapped source of novel bacterial species with industrially important bioactivities. Subseafloor core samples collected during the Integrated Ocean Drilling Program Expeditions 315, 316, and 331 and stored in Kochi Core Center at -80 °C for 1 to 4 years were used for cultivation-based study of viable actinomycetes. In total, more than 100 actinomycete-like colonies were isolated from two deep-frozen subseafloor sediment samples. Isolated actinomycetes showed close similarity to known Actinotalea, Dietzia, Gordonia, Isoptericola, Microbacterium, Nocardia, Rhodococcus, Pseudonocardia, Streptomyces, and Tsukamurella species and were halotolerant. Bioactivity assays revealed that two of the isolates were producing potent antibacterial compound(s) and one isolate was having antifungal activity. Our study demonstrated that deep-frozen subseafloor core samples could be a potential source of viable actinomycetes, which may be used in drug discovery. PMID:25381631

  3. A novel method to scale up fungal endophyte isolations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Estimations of species diversity are influenced by sampling intensity which in turn is influenced by methodology. For fungal endophyte diversity studies, the methodology includes surface-sterilization prior to isolation of endophytes. Surface-sterilization is an essential component of fungal endophy...

  4. Streptomyces aidingensis sp. nov., an actinomycete isolated from lake sediment.

    PubMed

    Xia, Zhan-Feng; Ruan, Ji-Sheng; Huang, Ying; Zhang, Li-Li

    2013-09-01

    A novel actinomycete strain, designated TRM 46012(T), was isolated from sediment of Aiding Lake in Tulufan Basin (42° 64' N 89° 26' E), north-west China. The strain was aerobic and Gram-staining-positive with an optimum NaCl concentration for growth of 0-5% (w/v). The isolate had sparse aerial mycelium and produced bud-shaped spores at the end of the aerial mycelium on ISP medium 4. The isolate contained ll-diaminopimelic acid as the diagnostic diamino acid and ribose as the major whole-cell sugar. The polar lipids were diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, phosphatidylcholine, phosphatidylinositol, phosphatidylinositol mannoside, one unidentified phospholipid and three unidentified glycolipids. The predominant menaquinones were MK-9(H₆), MK-9(H₈) and MK-9(H₄). The major fatty acids were iso-C(16:0), anteiso-C(17:0) and anteiso-C(15:0). The G+C content of the DNA was 74.4 mol%. Phylogenetic analysis showed that strain TRM 46012(T) had 16S rRNA gene sequence similarity of 95.7% with the most closely related species with a validly published name, Streptomyces cheonanensis, and it could be distinguished from all species in the genus Streptomyces by using the data from this polyphasic taxonomic study. On the basis of these data, strain TRM 46012(T) should be designated as a representative of a novel species of the genus Streptomyces, for which the name Streptomyces aidingensis sp. nov. is proposed. The type strain is TRM 46012(T) ( =CGMCC 4.5739(T) =NBRC 108211(T)). PMID:23456804

  5. Streptomyces lopnurensis sp. nov., an actinomycete isolated from soil.

    PubMed

    Zheng, Bei; Han, Xiao-Xue; Xia, Zhan-Feng; Wan, Chuan-Xing; Zhang, Li-Li

    2014-12-01

    A novel actinomycete, designated strain TRM 49590(T), was isolated from a soil sample from Lop Nur in Xinjiang Province, China. Strain TRM 49590(T) was aerobic, Gram-staining-positive, with an optimum NaCl concentration for growth of 1.5 % (w/v) and an optimum temperature for growth of 28-37 °C. The aerial mycelium was sparse, cylindrical and smooth-surfaced with irregular branches on ISP medium 4. The whole-cell sugars of strain TRM 49590(T) were ribose and glucose. The diagnostic diamino acid contained ll-diaminopimelic acid. The predominant menaquinones were MK-9(H6) and MK-9(H8), with MK-9(H4) and MK-10(H6) present in smaller amounts. The major fatty acids were iso-C16 : 0, anteiso-C15 : 0 and anteiso-C17 : 0. The G+C content of the genomic DNA was 62.2 mol%. The major polar lipids were diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylcholine, phosphatidylinositol and phosphatidylinositol mannoside. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain TRM 49590(T) belongs to the genus Streptomyces with a sequence similarity of 97.16 % with the most closely related species Streptomyces sodiiphilus. Based on these observations, strain TRM 49590(T) is proposed to represent a novel species of the genus Streptomyces for which the name Streptomyces lopnurensis sp. nov. is suggested. The type strain is TRM 49590(T) ( = CCTCC AA 2013018(T) = NRRL B59109(T)). PMID:25253072

  6. Actinomycetes for Marine Drug Discovery Isolated from Mangrove Soils and Plants in China

    PubMed Central

    Hong, Kui; Gao, An-Hui; Xie, Qing-Yi; Gao, Hao; Zhuang, Ling; Lin, Hai-Peng; Yu, Hai-Ping; Li, Jia; Yao, Xin-Sheng; Goodfellow, Michael; Ruan, Ji-Sheng

    2009-01-01

    The mangrove ecosystem is a largely unexplored source for actinomycetes with the potential to produce biologically active secondary metabolites. Consequently, we set out to isolate, characterize and screen actinomycetes from soil and plant material collected from eight mangrove sites in China. Over 2,000 actinomycetes were isolated and of these approximately 20%, 5%, and 10% inhibited the growth of Human Colon Tumor 116 cells, Candida albicans and Staphylococcus aureus, respectively, while 3% inhibited protein tyrosine phosphatase 1B (PTP1B), a protein related to diabetes. In addition, nine isolates inhibited aurora kinase A, an anti-cancer related protein, and three inhibited caspase 3, a protein related to neurodegenerative diseases. Representative bioactive isolates were characterized using genotypic and phenotypic procedures and classified to thirteen genera, notably to the genera Micromonospora and Streptomyces. Actinomycetes showing cytotoxic activity were assigned to seven genera whereas only Micromonospora and Streptomyces strains showed anti-PTP1B activity. We conclude that actinomycetes isolated from mangrove habitats are a potentially rich source for the discovery of anti-infection and anti-tumor compounds, and of agents for treating neurodegenerative diseases and diabetes. PMID:19370169

  7. Phycicoccus badiiscoriae sp. nov., a novel actinomycete isolated from scoria.

    PubMed

    Lee, Soon Dong

    2013-03-01

    An actinomycete strain, designated Sco-B23(T), was isolated from a brown-coloured layer of scoria collected near Darangshi Oreum (a small mountain) in Jeju, Republic of Korea. Cells of the organism were Gram-positive, non-endospore-forming, non-motile cocci and grew at 20-35 °C, at pH 5.1-11.1 and with 0-1 % (w/v) NaCl. Colonies were circular, translucent and moderate yellow in colour with entire margins. On the basis of 16S rRNA gene sequence analysis, the isolate belonged to the genus Phycicoccus and formed a monophyletic line between a Phycicoccus bigeumensis-Phycicoccus dokdonensis cluster and a Phycicoccus aerophilus-Phycicoccus ginsenosidimutans cluster. Levels of 16S rRNA gene sequence similarity between strain Sco-B23(T) and the type strains of Phycicoccus species were: P. bigeumensis (98.8 %), P. dokdonensis (98.7 %), P. aerophilus (97.7 %), P. ginsenosidimutans (97.7 %), P. cremeus (96.9 %) and P. jejuensis (96.5 %). Chemotaxonomic analyses showed that the isolate possessed meso-diaminopimelic acid as the diamino acid of the peptidoglycan, MK-8(H4) as the predominant menaquinone, a polar lipid profile including diphosphatidylglycerol, phosphatidylinositol, phosphatidylinositol mannoside, an unknown phospholipid and two unknown lipids, predominant fatty acids represented by iso-C15 : 0, C17 : 1cis9, iso-C16 : 0 and iso-C14 : 0, and DNA G+C content of 69.7 mol%. DNA-DNA relatedness between strain Sco-B23(T) and the close relatives within the genus Phycicoccus was below 18.1 %. On the basis of phenotypic features and DNA-DNA hybridization data, strain Sco-B23(T) represents a novel species of the genus Phycicoccus, for which the name Phycicoccus badiiscoriae sp. nov. is proposed. The type strain is Sco-B23(T) ( = KCTC 19807(T)  = KACC 15111(T)  = NBRC 107918(T)). PMID:22685104

  8. Actinomycetes from the South China Sea sponges: isolation, diversity, and potential for aromatic polyketides discovery

    PubMed Central

    Sun, Wei; Zhang, Fengli; He, Liming; Karthik, Loganathan; Li, Zhiyong

    2015-01-01

    Marine sponges often harbor dense and diverse microbial communities including actinobacteria. To date no comprehensive investigation has been performed on the culturable diversity of the actinomycetes associated with South China Sea sponges. Structurally novel aromatic polyketides were recently discovered from marine sponge-derived Streptomyces and Saccharopolyspora strains, suggesting that sponge-associated actinomycetes can serve as a new source of aromatic polyketides. In this study, a total of 77 actinomycete strains were isolated from 15 South China Sea sponge species. Phylogenetic characterization of the isolates based on 16S rRNA gene sequencing supported their assignment to 12 families and 20 genera, among which three rare genera (Marihabitans, Polymorphospora, and Streptomonospora) were isolated from marine sponges for the first time. Subsequently, β-ketoacyl synthase (KSα) gene was used as marker for evaluating the potential of the actinomycete strains to produce aromatic polyketides. As a result, KSα gene was detected in 35 isolates related to seven genera (Kocuria, Micromonospora, Nocardia, Nocardiopsis, Saccharopolyspora, Salinispora, and Streptomyces). Finally, 10 strains were selected for small-scale fermentation, and one angucycline compound was detected from the culture extract of Streptomyces anulatus strain S71. This study advanced our knowledge of the sponge-associated actinomycetes regarding their diversity and potential in producing aromatic polyketides. PMID:26483773

  9. Biodiversity, Anti-Trypanosomal Activity Screening, and Metabolomic Profiling of Actinomycetes Isolated from Mediterranean Sponges.

    PubMed

    Cheng, Cheng; MacIntyre, Lynsey; Abdelmohsen, Usama Ramadan; Horn, Hannes; Polymenakou, Paraskevi N; Edrada-Ebel, RuAngelie; Hentschel, Ute

    2015-01-01

    Marine sponge-associated actinomycetes are considered as promising sources for the discovery of novel biologically active compounds. In the present study, a total of 64 actinomycetes were isolated from 12 different marine sponge species that had been collected offshore the islands of Milos and Crete, Greece, eastern Mediterranean. The isolates were affiliated to 23 genera representing 8 different suborders based on nearly full length 16S rRNA gene sequencing. Four putatively novel species belonging to genera Geodermatophilus, Microlunatus, Rhodococcus and Actinomycetospora were identified based on a 16S rRNA gene sequence similarity of < 98.5% to currently described strains. Eight actinomycete isolates showed bioactivities against Trypanosma brucei brucei TC221 with half maximal inhibitory concentration (IC50) values <20 μg/mL. Thirty four isolates from the Milos collection and 12 isolates from the Crete collection were subjected to metabolomic analysis using high resolution LC-MS and NMR for dereplication purposes. Two isolates belonging to the genera Streptomyces (SBT348) and Micromonospora (SBT687) were prioritized based on their distinct chemistry profiles as well as their anti-trypanosomal activities. These findings demonstrated the feasibility and efficacy of utilizing metabolomics tools to prioritize chemically unique strains from microorganism collections and further highlight sponges as rich source for novel and bioactive actinomycetes. PMID:26407167

  10. Biodiversity, Anti-Trypanosomal Activity Screening, and Metabolomic Profiling of Actinomycetes Isolated from Mediterranean Sponges

    PubMed Central

    Cheng, Cheng; MacIntyre, Lynsey; Abdelmohsen, Usama Ramadan; Horn, Hannes; Polymenakou, Paraskevi N.; Edrada-Ebel, RuAngelie; Hentschel, Ute

    2015-01-01

    Marine sponge–associated actinomycetes are considered as promising sources for the discovery of novel biologically active compounds. In the present study, a total of 64 actinomycetes were isolated from 12 different marine sponge species that had been collected offshore the islands of Milos and Crete, Greece, eastern Mediterranean. The isolates were affiliated to 23 genera representing 8 different suborders based on nearly full length 16S rRNA gene sequencing. Four putatively novel species belonging to genera Geodermatophilus, Microlunatus, Rhodococcus and Actinomycetospora were identified based on a 16S rRNA gene sequence similarity of < 98.5% to currently described strains. Eight actinomycete isolates showed bioactivities against Trypanosma brucei brucei TC221 with half maximal inhibitory concentration (IC50) values <20 μg/mL. Thirty four isolates from the Milos collection and 12 isolates from the Crete collection were subjected to metabolomic analysis using high resolution LC-MS and NMR for dereplication purposes. Two isolates belonging to the genera Streptomyces (SBT348) and Micromonospora (SBT687) were prioritized based on their distinct chemistry profiles as well as their anti-trypanosomal activities. These findings demonstrated the feasibility and efficacy of utilizing metabolomics tools to prioritize chemically unique strains from microorganism collections and further highlight sponges as rich source for novel and bioactive actinomycetes. PMID:26407167

  11. Diversity of actinomycetes isolated from Challenger Deep sediment (10,898 m) from the Mariana Trench.

    PubMed

    Pathom-Aree, Wasu; Stach, James E M; Ward, Alan C; Horikoshi, Koki; Bull, Alan T; Goodfellow, Michael

    2006-06-01

    Thirty-eight actinomycetes were isolated from sediment collected from the Mariana Trench (10,898 m) using marine agar and media selective for actinomycetes, notably raffinose-histidine agar. The isolates were assigned to the class Actinobacteria using primers specific for members of this taxon. The phylogenetic analysis based on 16S rRNA gene sequencing showed that the isolates belonged to the genera Dermacoccus, Kocuria, Micromonospora, Streptomyces, Tsukamurella and Williamsia. All of the isolates were screened for genes encoding nonribosomal peptide and polyketide synthetases. Nonribosomal peptide synthetase sequences were detected in more than half of the isolates and polyketide synthases type I (PKS-I) were identified in five out of 38 strains. The Streptomyces isolates produced several unusual secondary metabolites, including a PKS-I associated product. In initial testing for piezotolerance, the Dermacoccus strain MT1.1 grew at elevated hydrostatic pressures. PMID:16538400

  12. Molecular, chemical and biological screening of soil actinomycete isolates in seeking bioactive peptide metabolites

    PubMed Central

    Imanparast, Somaye; Mohammadipanah, Fatemeh

    2015-01-01

    Background and Objective: Due to the evolution of multidrug-resistant strains, screening of natural resources, especially actinomycetes, for new therapeutic agents discovery has become the interests of researchers. In this study, molecular, chemical and biological screening of soil actinomycetes was carried out in order to search for peptide-producing actinomycetes. Materials and Methods: 60 actinomycetes were isolated from soils of Iran. The isolates were subjected to molecular screening for detection NRPS (non-ribosomal peptide synthetases) gene. Phylogenic identification of NRPS containing isolates was performed. Chemical screening of the crude extracts was performed using chlorine o-dianisidine as peptide detector reagent and bioactivity of peptide producing strains was determined by antimicrobial bioassay. High pressure liquid chromatography- mass spectrometry (HPLC-MS) with UV-visible spectroscopy was performed for detection of the metabolite diversity in selected strain. Results: Amplified NRPS adenylation gene (700 bp) was detected among 30 strains. Phylogenic identification of these isolates showed presence of rare actinomycetes genera among the isolates and 10 out of 30 strains were subjected to chemical screening. Nocardia sp. UTMC 751 showed antimicrobial activity against bacterial and fungal test pathogens. HPLC-MS and UV-visible spectroscopy results from the crude extract showed that this strain has probably the ability to produce new metabolites. Conclusion: By application of a combined approach, including molecular, chemical and bioactivity analysis, a promising strain of Nocardia sp. UTMC 751 was obtained. This strain had significant activity against Staphylococcus aureus and Pseudomonas aeruginosa. Strain Nocardia sp. UTMC 751 produce five unknown and most probably new metabolites with molecular weights of 274.2, 390.3, 415.3, 598.4 and 772.5. This strain had showed 99% similarity to Nocardia ignorata DSM 44496 T. PMID:26644870

  13. Vincamine-producing endophytic fungus isolated from Vinca minor.

    PubMed

    Yin, Hong; Sun, Yu-Hong

    2011-06-15

    Vinca minor is a plant containing the alkaloid vincamine, which is used in the pharmaceutical industry as a cerebral stimulant and vasodilator. The objective of this study was to determine whether endophytic fungi isolated from V. minor produce vincamine. Primary screening was carried out using Dragendorff's and Mayer's reactions, and strain re-selection was made by thin-layer chromatography (TLC) and high-performance liquid chromatography (HPLC) to identify the fermentation products of the selected strain. We isolated 10 endophytic fungal strains from V. minor. An extract from one (Vm-J2), showed positive reactions with both Dragendorff's and Mayer's reagents. The strain had a component with the same TLC R(f) value and HPLC retention time as authentic vincamine. Therefore, the fungus appeared to produce the same bioactive ingredient, vincamine, as the host plant. The prospect of using endophytic fungi to produce the phytoactive compound by fungal fermentation is discussed. PMID:21315568

  14. Characterization of cellulases of fungal endophytes isolated from Espeletia spp.

    PubMed

    Cabezas, Luisa; Calderon, Carolina; Medina, Luis Miguel; Bahamon, Isabela; Cardenas, Martha; Bernal, Adriana Jimena; Gonzalez, Andrés; Restrepo, Silvia

    2012-12-01

    Endophytes are microorganisms that asymptomatically invade plant tissues. They can stimulate plant growth and/or provide defense against pathogen attacks through the production of secondary metabolites. Most endophyte species are still unknown, and because they may have several applications, the study of their metabolic capabilities is essential. We characterized 100 endophytes isolated from Espeletia spp., a genus unique to the paramo ecosystem, an extreme environment in the Andean mountain range. We evaluated the cellulolytic potential of these endophytes on the saccharification of the oil palm empty fruit bunch (OPEFB). The total cellulolytic activity was measured for each endophyte on filter paper (FPA). In addition, the specific carboxymethyl cellulase (CMCase), exoglucanase, and β-glucosidase activities were determined. We found four fungi positive for cellulases. Of these fungi, Penicillium glabrum had the highest cellulolytic activity after partial purification, with maximal CMCase, exoglucanase and β-glucosidase enzyme activities of 44.5, 48.3, and 0.45 U/ml, respectively. Our data showed that the bioprospection of fungi and the characterization of their enzymes may facilitate the process of biofuel production. PMID:23274988

  15. Chromium(VI) resistance and removal by actinomycete strains isolated from sediments.

    PubMed

    Polti, Marta A; Amoroso, María J; Abate, Carlos M

    2007-03-01

    Forty-one isolated actinomycetes were used to study qualitative and semi-quantitative screening of chromium(VI) resistance. Chromate-removing activity was estimated using the Cr(VI) specific colorimetric reagent 1,5-diphenylcarbazide. Twenty percent of the isolates from El Cadillal (EC) and 14% of isolates from a copper filter plant (CFP) were able to grow at 13 mM of Cr(VI). All isolates from sugar cane (SCP) could grow up to Cr(VI) concentration of 17 mM. EC, CFP and SCP strains were able to remove 24%, 30% and more than 40% of Cr(VI), respectively. The highest and lowest Cr(VI) specific removal values were 75.5 mg g(-1) cell by M3 (CFP), and 1.5 mg g(-1) cell by C35 (EC) strains. Eleven Cr(VI) resistant strains were characterized and identified as species of the genera Streptomyces (10) and Amycolatopsis (1). Differences on actinomycete community composition between contaminated and non-contaminated soil were found. This study showed the potential capacity of actinomycetes as tools for Cr(VI) bioremediation. PMID:17182076

  16. Isolation and in vitro selection of actinomycetes strains as potential probiotics for aquaculture

    PubMed Central

    Bernal, Milagro García; Campa-Córdova, Ángel Isidro; Saucedo, Pedro Enrique; González, Marlen Casanova; Marrero, Ricardo Medina; Mazón-Suástegui, José Manuel

    2015-01-01

    Aim: This study was designed to describe a series of in vitro tests that may aid the discovery of probiotic strains from actinomycetes. Materials and Methods: Actinomycetes were isolated from marine sediments using four different isolation media, followed by antimicrobial activity and toxicity assessment by the agar diffusion method and the hemolysis of human blood cells, respectively. Extracellular enzymatic production was monitored by the hydrolysis of proteins, lipids and carbohydrates. Tolerance to different pH values and salt concentrations was also determined, followed by hydrophobicity analysis and genetic identification of the most promising strains. Results: Five out of 31 isolated strains showed antimicrobial activity against three Vibrio species. Three non-hemolytic strains (N7, RL8 and V4) among these active isolates yielded positive results in hydrophobicity tests and exhibited good growth at salt concentrations ranging from 0% to 10%, except strain RL8, which required a salt concentration >0.6%. Although these strains did not grow at pH<3, they showed different enzymatic activities. Phylogenetic analysis revealed that strains N7 and V4 have more than 99% identity with several Streptomyces species, whereas the closest matches to strain RL8 are Streptomyces panacagri and Streptomyces flocculus, with 98% and 98.2% similarity, respectively. Conclusion: Three actinomycetes strains showing probiotic-like properties were discovered using several in vitro tests that can be easily implemented in different institutions around the world. PMID:27047067

  17. Isolation and identification of fungal endophytes from grasses on the Oregon coast

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fungal endophytes have been shown to improve abiotic and biotic stress response in plants. Grasses growing along the Oregon coast are exposed to harsh conditions and may harbor endophytes that enable them to survive and grow under these conditions. Endophytic fungi were isolated from thirty-four gra...

  18. Isolation and characterization of novel marine-derived actinomycete taxa rich in bioactive metabolites.

    PubMed

    Magarvey, Nathan A; Keller, Jessica M; Bernan, Valerie; Dworkin, Martin; Sherman, David H

    2004-12-01

    A unique selective enrichment procedure has resulted in the isolation and identification of two new genera of marine-derived actinobacteria. Approximately 90% of the microorganisms cultured by using the presented method were from the prospective new genera, a result indicative of its high selectivity. In this study, 102 actinomycetes were isolated from subtidal marine sediments collected from the Bismarck Sea and the Solomon Sea off the coast of Papua New Guinea. A combination of physiological parameters, chemotaxonomic characteristics, distinguishing 16S rRNA gene sequences, and phylogenetic analysis based on 16S rRNA genes provided strong evidence for the two new genera (represented by strains of the PNG1 clade and strain UMM518) within the family Micromonosporaceae. Biological activity testing of fermentation products from the new marine-derived actinomycetes revealed that several had activities against multidrug-resistant gram-positive pathogens, malignant cells, and vaccinia virus replication. PMID:15574955

  19. Isolation and characterization of endophytic streptomycete antagonists of Fusarium wilt pathogen from surface-sterilized banana roots.

    PubMed

    Cao, Lixiang; Qiu, Zhiqi; You, Jianlan; Tan, Hongming; Zhou, Shining

    2005-06-15

    A total of 131 endophytic actinomycete strains were successfully isolated from surface-sterilized banana roots. These isolates belonged to Streptomyces (n=99), Streptoverticillium (n=28), and Streptosporangium (n=2) spp. The remaining 2 isolates were not identified. About 18.3% of the isolates inhibited the growth of pathogenic Fusarium oxysporum f. sp. cubense on banana tissue extract medium. The most frequently isolated Streptomyces sp. strain S96 was similar to Streptomyces griseorubiginosus. About 37.5% of the S. griseorubiginosus strains were antagonistic to F. oxysporum f. sp. cubense. The antagonism of strain S96 was lost when FeCl(3) was introduced into the inhibition zone. In vivo biocontrol assays showed that the disease severity index (DSI) was significantly (P=0.05) reduced and mean fresh weight increased (P=0.001) in plantlets treated with strain S96 compared to those grown in the absence of the biocontrol strain. These findings indicate the potential of developing siderophore-producing Streptomyces endophytes for the biological control of fusarium wilt disease of banana. PMID:15935565

  20. Novel actinomycete and a cyanide-degrading pseudomonad isolated from industrial sludge

    SciTech Connect

    White, J.M.

    1987-01-01

    A novel actinomycete was the predominant filamentous microorganism in bulking activated sludge in a bench-scale reactor treating coke plant wastewater. The bacterium was isolated and identified as an actinomycete that is biochemically and morphologically similar to Amycolatopsis orientalis; however, a lack of DNA homology excludes true relatedness. At present, the isolate (NRRL B 16216) cannot be assigned to the recognized taxa of actinomycetes. Cyanide-degrading microorganisms were selected in chemostats maintained at a low dilution rate for several weeks. Cyanide alone or cyanide plus phenol were fully degraded when equilibrium was achieved, and increasing concentrations of cyanide were degraded until inhibition of cell division resulted in cell washout. An isolated non-fluorescent pseudomonad could be adapted to degrade high concentrations of cyanide and to utilize cyanide-nitrogen when phenol or lactate was the carbon source. Although one-carbon compounds such as methanol and methylamine were growth substrates, cyanide was not utilized as a carbon source. In the absence of cyanide, adaptation was gradually lost. Oxygen consumption of adapted cells was stimulated in the presence of cyanide whereas that of unadapted cells was depressed. Cyanide was degraded by growing or resting cells and by cell-free extracts. Cyanide degrading activity of cell-free extracts, lost upon dialysis, was fully restored with NAD(P)H.

  1. Antimicrobial compounds from endophytic Streptomyces sp. BCC72023 isolated from rice (Oryza sativa L.).

    PubMed

    Supong, Khomsan; Thawai, Chitti; Choowong, Wilunda; Kittiwongwattana, Chokchai; Thanaboripat, Dusanee; Laosinwattana, Chamroon; Koohakan, Prommart; Parinthawong, Nonglak; Pittayakhajonwut, Pattama

    2016-05-01

    An endophytic actinomycete strain BCC72023 was isolated from rice (Oryza sativa L.) and identified as the genus Streptomyces, based on phenotypic, chemotaxonomic and 16S rRNA gene sequence analyses. The strain showed 99.80% similarity compared with Streptomyces samsunensis M1463(T). Chemical investigation led to the isolation of three macrolides, efomycins M (1), G (2) and oxohygrolidin (3), along with two polyethers, abierixin (4) and 29-O-methylabierixin (5). To our knowledge, this is the first report of efomycin M being isolated from a natural source. The compounds were identified using spectroscopic techniques and comparison with previously published data. All compounds exhibited antimalarial activity against the Plasmodium falciparum, K-1 strain, a multidrug-resistant strain, with IC50 values in a range of 1.40-5.23 μg/ml. In addition, these compounds were evaluated for biological activity against Mycobacterium tuberculosis, Bacillus cereus, Colletotrichum gloeosporioides and Colletotrichum capsici, as well as cytotoxicity against both cancerous (MCF-7, KB, NCI-H187) and non-cancerous (Vero) cells. PMID:26809052

  2. Phytoactinopolyspora endophytica gen. nov., sp. nov., a halotolerant filamentous actinomycete isolated from the roots of Glycyrrhiza uralensis F.

    PubMed

    Li, Li; Ma, Jin-Biao; Abdalla Mohamad, Osama; Li, Shan-Hui; Osman, Ghenijan; Li, Yan-Qiong; Guo, Jian-Wei; Hozzein, Wael N; Li, Wen-Jun

    2015-08-01

    A novel endophytic actinomycete, designated strain EGI 60009T, was isolated from the roots of Glycyrrhiza uralensis F. collected from Xinjiang Province, north-west China. The isolate was able to grow in the presence of 0-9% (w/v) NaCl. Strain EGI 60009T had particular morphological properties: the substrate mycelia fragmented into rod-like elements and aerial mycelia differentiated into short spore chains. ll-2, 6-Diaminopimelic acid was the cell-wall diamino acid and rhamnose, galactose and glucose were the cell-wall sugars. MK-9(H4) was the predominant menaquinone. The major fatty acids of strain EGI 60009T were iso-C15 : 0, anteiso-C15 : 0, anteiso-C17 : 0, iso-C17 : 0, iso-C17 : 1 and I/anteiso-C17 : 0 B. Mycolic acids were absent. The DNA G+C content of strain EGI 60009T was 70.4 mol%. Phylogenetic analysis based on the 16S rRNA gene sequence indicated that strain EGI 60009T belongs to the family Jiangellaceae and formed a distinct clade in the phylogenetic tree. 16S rRNA gene sequence similarities between strain EGI 60009T and other members of the genera Jiangella and Haloactinopolyspora were 96.1-96.4 and 95.7-96.0%, respectively. Based on these results and supported by morphological, physiological and chemotaxonomic data and numerous phenotypic differences, a novel species of a new genus, Phytoactinopolyspora endophytica gen. nov., sp. nov., is proposed. The type strain of Phytoactinopolyspora endophytica is EGI 60009T ( = KCTC 29657T = CPCC204078T). PMID:25964514

  3. Isolation of bacterial endophytes from germinated maize kernels.

    PubMed

    Rijavec, Tomaz; Lapanje, Ales; Dermastia, Marina; Rupnik, Maja

    2007-06-01

    The germination of surface-sterilized maize kernels under aseptic conditions proved to be a suitable method for isolation of kernel-associated bacterial endophytes. Bacterial strains identified by partial 16S rRNA gene sequencing as Pantoea sp., Microbacterium sp., Frigoribacterium sp., Bacillus sp., Paenibacillus sp., and Sphingomonas sp. were isolated from kernels of 4 different maize cultivars. Genus Pantoea was associated with a specific maize cultivar. The kernels of this cultivar were often overgrown with the fungus Lecanicillium aphanocladii; however, those exhibiting Pantoea growth were never colonized with it. Furthermore, the isolated bacterium strain inhibited fungal growth in vitro. PMID:17668041

  4. Isolation and Characterisation of Endophytic Nitrogen Fixing Bacteria in Sugarcane

    PubMed Central

    Muangthong, Ampiga; Youpensuk, Somchit; Rerkasem, Benjavan

    2015-01-01

    Endophytic nitrogen fixing bacteria were isolated from the leaves, stems and roots of industrial variety (cv. U-Thong 3; UT3), wild and chewing sugarcane plants grown for 6 weeks in nitrogen (N)-free sand. Eighty nine isolates of endophytic bacteria were obtained on N-free agar. An acetylene reduction assay (ARA) detected nitrogenase activity in all 89 isolates. Three isolates from the chewing (C2HL2, C7HL1 and C34MR1) sugarcane and one isolate from the industrial sugarcane (UT3R1) varieties were characterised, and their responses to different yeast extract concentrations were investigated. Three different responses in nitrogenase activity were observed. Isolates C2HL2 and C7HL1 exhibited major increases with the addition of 0.005% yeast extract, C34MR1 exhibited no response, and UT3R1 exhibited a significant decrease in nitrogenase activity with 0.005% yeast extract. In all the isolates, nitrogenase activity decreased with further increase of the yeast extract to 0.05%. The highest nitrogenase activity was observed in isolates C2HL2 and C7HL1, which had 16S rRNA gene sequences that were closely related to Novosphingobium sediminicola and Ochrobactrum intermedium, respectively. PMID:26868592

  5. Isolation and characterization of potential antibiotic producing actinomycetes from water and sediments of Lake Tana, Ethiopia

    PubMed Central

    Gebreyohannes, Gebreselema; Moges, Feleke; Sahile, Samuel; Raja, Nagappan

    2013-01-01

    Objective To isolate, evaluate and characterize potential antibiotic producing actinomycetes from water and sediments of Lake Tana, Ethiopia. Methods A total of 31 strains of actinomycetes were isolated and tested against Gram positive and Gram negative bacterial strains by primary screening. In the primary screening, 11 promising isolates were identified and subjected to solid state and submerged state fermentation methods to produce crude extracts. The fermented biomass was extracted by organic solvent extraction method and tested against bacterial strains by disc and agar well diffusion methods. The isolates were characterized by using morphological, physiological and biochemical methods. Results The result obtained from agar well diffusion method was better than disc diffusion method. The crude extract showed higher inhibition zone against Gram positive bacteria than Gram negative bacteria. One-way analysis of variance confirmed most of the crude extracts were statistically significant at 95% confidence interval. The minimum inhibitory concentration and minimum bactericidal concentration of crude extracts were 1.65 mg/mL and 3.30 mg/mL against Staphylococcus aureus, and 1.84 mg/mL and 3.80 mg/mL against Escherichia coli respectively. The growth of aerial and substrate mycelium varied in different culture media used. Most of the isolates were able to hydrolysis starch and urea; able to survive at 5% concentration of sodium chloride; optimum temperature for their growth was 30 °C. Conclusions The results of the present study revealed that freshwater actinomycetes of Lake Tana appear to have immense potential as a source of antibacterial compounds. PMID:23730554

  6. Juniperolide A: a new polyketide isolated from a terrestrial actinomycete, Streptomyces sp.

    PubMed

    Raju, Ritesh; Gromyko, Oleksandr; Fedorenko, Viktor; Luzhetskyy, Andriy; Plaza, Alberto; Müller, Rolf

    2012-12-01

    A new linear polyketide, juniperolide A (1), was produced by the terrestrial actinomycete (Lv1-48) isolated from the rhizosphere of the plant Juniperus excelsa. The juniperolide A (1) structure contains a THP unit and a 3-amino-2,3,6-trideoxyhexose as the glycosidic moiety. Mosher's analysis was used for absolute stereochemistry determinations at C-2, C-8, C-20, and C-4', while the relative stereochemistry assignments of the remaining stereocenters were based on ROESY correlations and J-based coupling. PMID:23170775

  7. Presence, molecular characteristics and geosmin producing ability of actinomycetes isolated from South Korean terrestrial and aquatic environments.

    PubMed

    Lee, Gyu-Cheol; Kim, Yun S; Kim, Min-Jeong; Oh, Sung-Ae; Choi, Ilhwan; Choi, Jaewon; Park, Jong-Geun; Chong, Chom-Kyu; Kim, Yong-Yeon; Lee, Kyeunghee; Lee, Chan Hee

    2011-01-01

    The unpleasant odor of drinking water is one of the major problems in many water utilities in the world. Actinomycetes have long been associated with odorous compounds. Considering the paucity of research on Actinomycetes producing odorous compounds in South Korea, presence of Actinomycetes, their molecular characteristics and ability to produce odorous compounds were investigated in this study. Findings confirmed the presence of Actinomycetes in surface soil, sediment, and water samples from four sites: two artificial lakes [Paldang and Cheongpyeong (CP)], and two streams [Gyeongan (GA) and Yangpyeong]. Surface soil and sediment from CP area had the greatest concentration of Actinomycetes (8.2 x 10(7) and 6.8 x 10(6) colony forming units (CFUs)/gram, dry weight, respectively). When water samples are considered, samples from GA had the highest concentration (1.9 x 10(2) CFU/mL). 16S rRNA sequencing and molecular phylogenetic analysis showed that Streptomyces was the dominant genus (64.1%). In addition, the isolated Actinomycetes synthesized 5.4 ng/L geosmin as demonstrated by thermal desorption unit-gas chromatograph/mass spectrometry analysis. PMID:22049774

  8. Siderophore production by actinomycetes isolates from two soil sites in Western Australia.

    PubMed

    Lee, Joanna; Postmaster, Armin; Soon, Hooi Peng; Keast, David; Carson, Kerry C

    2012-04-01

    The actinomycetes are metabolically flexible soil micro-organisms capable of producing a range of compounds of interest, including siderophores. Siderophore production by actinomycetes sampled from two distinct and separate geographical sites in Western Australia were investigated and found to be generally similar in the total percentage of siderophore producers found. The only notable difference was the proportion of isolates producing catechol siderophores with only 3% found in site 1 (from the north-west of Western Australia and reportedly containing 40% magnetite) and 17% in site 2 (a commercial stone fruit orchard in the hills east of Perth with a soil base ranging from sandy loam to laterite). Further detailed characterization of isolates of interest identified a Streptomyces that produced extracellularly excreted enterobactin, the characteristic Enterobacteriaceae siderophore, and also revealed some of the conditions required for enterobactin production. Carriage of the entF gene, which codes for the synthetase responsible for the final assembly of the tri-cyclic structure of enterobactin, was confirmed by PCR in this isolate. Another separate Streptomyces produced a compound that matched the UV/VIS spectra of heterobactin, a siderophore previously only described in Rhodococcus and Nocardia. PMID:22038645

  9. Nonomuraea aegyptia sp. nov., a novel actinomycete isolated from a sand dune.

    PubMed

    Hozzein, Wael N; Goodfellow, Michael

    2007-08-01

    The taxonomic position of an unknown actinomycete isolated from a sand dune soil sample collected at Borg El-Arab in Egypt was established using a combination of genotypic and phenotypic data. Isolate S136(T) had chemotaxonomic and morphological properties consistent with its classification in the genus Nonomuraea and formed a distinct phyletic line in the Nonomuraea 16S rRNA gene tree. It was most closely related to the type strains of Nonomuraea helvata, Nonomuraea kuesteri and Nonomuraea turkmeniaca, sharing 16S rRNA gene similarities with these species of 97.1, 97.2 and 97.3%, respectively. The organism was distinguished from representatives of validly described Nonomuraea species using a range of phenotypic properties. It is apparent that the isolate belongs to a novel Nonomuraea species. The name proposed for this taxon is Nonomuraea aegyptia sp. nov., the type strain is S136(T) (=CGMCC 4.2054(T) = DSM 45082(T)). PMID:17318331

  10. Bioactive isocoumarins isolated from the endophytic fungus Microdochium bolleyi.

    PubMed

    Zhang, Wen; Krohn, Karsten; Draeger, Siegfried; Schulz, Barbara

    2008-06-01

    Three new isocoumarin derivatives ( 2- 4) were isolated together with monocerin ( 1) from Microdochium bolleyi, an endophytic fungus from Fagonia cretica, a herbaceous plant of the semiarid coastal regions of Gomera. Compounds 2 and 3 are both 12-oxo epimers of 1, and 4 is a ring-opened derivative of 1. The structures were elucidated by detailed spectroscopic analysis and comparison with reported data. The absolute configurations were determined by a modified Mosher's method. Compounds 1, 3, and 4 showed good antifungal, antibacterial, and antialgal activities against Microbotryum violaceum, Escherichia coli, Bacillus megaterium, and Chlorella fusca. Compound 2 was moderately antifungal and antialgal. PMID:18510362

  11. Rice bacterial endophytes: isolation of a collection, identification of beneficial strains and microbiome analysis.

    PubMed

    Bertani, Iris; Abbruscato, Pamela; Piffanelli, Pietro; Subramoni, Sujatha; Venturi, Vittorio

    2016-06-01

    Endophytes are harmless or beneficial microorganisms that live inside plants between cells. The relationship they develop with the plant as well as their potential role in plant health is at large unexplored and it is believed that the opportunity to find new and interesting endophytes among the large variety of plants is great. Here, we present the isolation and analysis of a large collection of endophytes from one cultivar of rice grown in Italy. A total 1318 putative endophytes were isolated from roots, leaves and stems from rice grown in submerged and dry conditions and a working collection of 229 isolates was created. Among these, several isolates were confirmed to be endophytes and a few displayed the trait of plant growth promotion. A cultivation independent analysis via 16S rDNA amplicons of the bacterial community of the endosphere was also performed providing information on bacterial diversity in the rice endopshere. PMID:27038229

  12. Lignin-solubilizing ability of actinomycetes isolated from termite (Termitidae) gut. [Streptomyces viridosporus

    SciTech Connect

    Pasti, M.B.; Crawford, D.L. ); Pometto, A.L., III ); Nuti, M.P. )

    1990-07-01

    The lignocellulose-degrading abilities of 11 novel actinomycete strains isolated from termite gut were determined and compared with that of the well-characterized actinomycete, Streptomyces viridosporus T7A. Lignocellulose bioconversion was followed by (i) monitoring the degradation of ({sup 14}C)lignin- and ({sup 14}C)cellulose-labeled phloem of Abies concolor to {sup 14}CO{sub 2} and {sup 14}C-labeled water-soluble products, (ii) determining lignocellulose, lignin, and carbohydrate losses resulting from growth on a lignocellulose substrate prepared from corn stalks (Zea mays), and (iii) quantifying production of a water-soluble lignin degradation intermediate (acid-precipitable polymeric lignin). Of the assays used, total lignocellulose weight loss was most useful in determining overall bioconversion ability but not in identifying the best lignin-solubilizing strains. A screening procedure based on {sup 14}CO{sub 2} evolution from ({sup 14}C-lignin)lignocellulose combined with measurement of acid-precipitable polymeric lignin yield was the most effective in identifying lignin-solubilizing strains. For the termite gut strains, the pH of the medium showed no increase after 3 weeks of growth on lignocellulose. This is markedly different from the pattern observed with S. viridosporus T7A, which raises the medium pH considerably. Production of extracellular peroxidases by the 11 strains and S. viridosporus T7A was followed for 5 days in liquid cultures. On the basis of an increase of specific peroxidase activity in the presence of lignocellulose in the medium, the actinomycetes could be placed into the same three groups.

  13. Homoharringtonine production by endophytic fungus isolated from Cephalotaxus hainanensis Li.

    PubMed

    Hu, Xiaoping; Li, Wu; Yuan, Mu; Li, Congfa; Liu, Sixin; Jiang, Chunjie; Wu, Yanchun; Cai, Kun; Liu, Yan

    2016-07-01

    Homoharringtonine (HHT), a natural plant alkaloid derived from Cephalotaxus, has demonstrated to have a broad antitumor activity and efficacy in treating human chronic myeloid leukemia. An alternative source is required to substitute for the slow-growing and scarce Cephalotaxus to meet the increasing demand of the drug market. The objective of this study was to screen HHT-producing endophytic fungi from Cephalotaxus hainanensis Li. By screening 213 fungal isolates obtained from the bark parts of Cephalotaxus hainanensis Li, one isolate was found to be capable of biosynthesizing HHT. The fungus was identified as Alternaria tenuissima by morphological characteristics and internal transcribed spacer (ITS) sequence analysis and was named as CH1307. HHT obtained from CH1307 was analyzed through the HPLC and LC-MS/MS and NMR spectroscopy. The extract of the fermentation broth of CH1307 showed antiproliferative activities against K562 (chronic myelocytic leukemia), NB4 (acute promyelocytic leukemia), and HL-60 (promyelocytic leukemia) human cancer cell lines with IC50 values of 67.25 ± 4.26, 65.02 ± 4.75, and 99.23 ± 4.26 μg/mL, respectively. The findings suggest that HHT-producing endophytic fungus, Alternaria tenuissima CH1307 might provide a promising source for the research and application of HHT. PMID:27263005

  14. Isolation and characterization of endophytic bacteria isolated from the leaves of the common bean (Phaseolus vulgaris)

    PubMed Central

    de Oliveira Costa, Leonardo Emanuel; de Queiroz, Marisa Vieira; Borges, Arnaldo Chaer; de Moraes, Celia Alencar; de Araújo, Elza Fernandes

    2012-01-01

    The common bean is one of the most important legumes in the human diet, but little is known about the endophytic bacteria associated with the leaves of this plant. The objective of this study was to characterize the culturable endophytic bacteria of common bean (Phaseolus vulgaris) leaves from three different cultivars (Vermelhinho, Talismã, and Ouro Negro) grown under the same field conditions. The density of endophytic populations varied from 4.5 x 102 to 2.8 x 103 CFU g-1 of fresh weight. Of the 158 total isolates, 36.7% belonged to the Proteobacteria, 32.9% to Firmicutes, 29.7% to Actinobacteria, and 0.6% to Bacteroidetes. The three P. vulgaris cultivars showed class distribution differences among Actinobacteria, Alphaproteobacteria and Bacilli. Based on 16S rDNA sequences, 23 different genera were isolated comprising bacteria commonly associated with soil and plants. The genera Bacillus, Delftia, Methylobacterium, Microbacterium, Paenibacillus, Staphylococcus and Stenotrophomonas were isolated from all three cultivars. To access and compare the community structure, diversity indices were calculated. The isolates from the Talismã cultivar were less diverse than the isolates derived from the other two cultivars. The results of this work indicate that the cultivar of the plant may contribute to the structure of the endophytic community associated with the common bean. This is the first report of endophytic bacteria from the leaves of P. vulgaris cultivars. Future studies will determine the potential application of these isolates in biological control, growth promotion and enzyme production for biotechnology. PMID:24031988

  15. Antimicrobial Activities of Some Actinomycetes Isolated from Different Rhizospheric Soils in Tunisia.

    PubMed

    Trabelsi, Ines; Oves, Daniel; Manteca, Angel; Genilloud, Olga; Altalhi, Abdullah; Nour, Mohamed

    2016-08-01

    Fifty four isolates of actinomycetes were collected from four different rhizospheric soils: 18 strains from palm tree bark and soil, 12 strains from an olive field soil, 9 strains from a coastal forest, and 15 strains from an agriculture soil situated in the Algerian-Tunisian border (Oum Tboul). Based on morphological and cultural characters, the isolates were classified as Streptomyces (42 strains), Micromonospora (4 strains), Pseudonocardia (1 strain), Actinomadura (1 strain), Nocardia (1 strain), and non-Streptomyces (5 strains). More than half of the isolates inhibited at least one tested pathogenic microorganisms in liquid culture. In addition, antimicrobial activities of some strains were tested on solid culture. Several bioactive compounds were identified by liquid chromatography joined with low-resolution mass spectroscopy (LC/MS) and analysed by MEDINA's database and by the dictionary of natural products Chapman & Hall. An interesting chlorinated compound with the molecular formula C20H37ClN2O4, produced by three different strains (SF1, SF2, and SF5), was subject of an attempted purification. However, it was demonstrated using confocal microscopy and LC/MS high resolution that this compound is produced only on solid culture. These three potential antimicrobial isolates showed high similarity with Streptomyces thinghirensis and Streptomyces lienomycini, in terms of morphological characteristics and 16S rRNA gene sequences (bootstrap 97 %). All these findings prove the high antimicrobial diversity of the studied soils. The potential of the selected and other relatively unexplored extreme environments constitute a source of interesting actinomycete strains producing several biologically active secondary metabolites. PMID:27139253

  16. Nocardia pigrifrangens sp. nov., a novel actinomycete isolated from a contaminated agar plate.

    PubMed

    Wang, Liming; Zhang, Yamei; Huang, Ying; Maldonado, Luis A; Liu, Zhiheng; Goodfellow, Michael

    2004-09-01

    A polyphasic study was undertaken to establish the taxonomic position of an actinomycete strain isolated from a contaminated agar plate. The strain, designated 7031T, had morphological and chemotaxonomic properties typical of the genus Nocardia. An almost-complete 16S rRNA gene sequence determined for the strain was aligned with available sequences for nocardiae, and phylogenetic trees were inferred using three tree-generating algorithms. Strain 7031T clustered with the type strains of Nocardia carnea and Nocardia flavorosea, showing low 16S rRNA gene sequence similarities to these species (97.2 and 97.5 %, respectively). The strain was also distinguished from the closest species by a range of phenotypic properties. It is proposed that the strain be recognized as a novel species of Nocardia, Nocardia pigrifrangens sp. nov., the type strain of which is 7031T (= AS 4.1808T = JCM 11884T). PMID:15388728

  17. Amycolatopsis salitolerans sp. nov., a filamentous actinomycete isolated from a hypersaline habitat.

    PubMed

    Guan, Tong-Wei; Xia, Zhan-Feng; Tang, Shu-Kun; Wu, Nan; Chen, Zheng-Jun; Huang, Ying; Ruan, Ji-Sheng; Li, Wen-Jun; Zhang, Li-Li

    2012-01-01

    A novel actinomycete strain, designated TRM F103(T), was isolated from a hypersaline habitat of the Tarim basin in Xinjiang province, north-west China. Phylogenetic analysis based on 16S rRNA gene sequences showed that the isolate belonged to the genus Amycolatopsis and was most closely related to Amycolatopsis halophila YIM 93223(T) (99.3% 16S rRNA gene sequence similarity). However, DNA-DNA relatedness between these two strains, based on triplicate experiments, was only 31.6%. The isolate contained meso-diaminopimelic acid and ribose, glucose and galactose as the major whole-cell sugars. The predominant menaquinone was MK-8(H(4)). The major fatty acids were iso-C(16:0) and C(16:0). The polar lipids were diphosphatidylglycerol, phosphatidylmethylethanolamine, phosphatidylethanolamine and glucosamine-containing phospholipids. The G+C content of the genomic DNA was 66.4 mol%. The phenotypic data clearly distinguished the isolate from its closest relatives. The combined phylogenetic, chemotaxonomic and phenotypic data indicate that the isolate represents a novel species of the genus Amycolatopsis. The proposed name is Amycolatopsis salitolerans sp. nov., with TRM F103(T) (=JCM 15899(T)=CCTCC AB 208326(T)) as the type strain. PMID:21317279

  18. Isolation and identification of bacterial endophytes from pharmaceutical agarwood-producing Aquilaria species

    PubMed Central

    Bhore, Subhash J.; Preveena, Jagadesan; Kandasamy, Kodi I.

    2013-01-01

    Background: Resins and gums are used in traditional medicine and do have potential applications in pharmacy and medicine. Agarwood is the fragrant resinous wood, which is an important commodity from Aquilaria species and has been used as a sedative, analgesic, and digestive in traditional medicine. Endophytic bacteria are potentially important in producing pharmaceutical compounds found in the plants. Hence, it was important to understand which types of endophytic bacteria are associated with pharmaceutical agarwood-producing Aquilaria species. Objective: This study was undertaken to isolate and identify endophytic bacteria associated with agarwood-producing seven (7) Aquilaria species from Malaysia. Materials and Methods: Botanical samples of seven Aquilaria species were collected, and endophytic bacteria were isolated from surface-sterilized-tissue samples. The 16S rRNA gene fragments were amplified using PCR method, and endophytic bacterial isolates (EBIs) were identified based on 16S rRNA gene sequence similarity based method. Results: Culturable, 77 EBIs were analyzed, and results of 16S rRNA gene sequences analysis suggest that 18 different types of endophytic bacteria are associated with (seven) Aquilaria species. From 77 EBIs, majority (36.4%) of the isolates were of Bacillus pumilus. Conclusion: These findings indicate that agarwood-producing Aquilaria species are harboring 18 different types of culturable endophytic bacteria. PMID:23798890

  19. Transformation of 2,4,6-trinitrotoluene (TNT) by actinomycetes isolated from TNT-contaminated and uncontaminated environments

    SciTech Connect

    Pasti-Grigsby, M.B.; Lewis, T.A.; Crawford, D.L.; Crawford, R.L.

    1996-03-01

    Biotransformation of TNT has been reported under both aerobic and anaerobic conditions. Actinomycetes are important decomposers in composts. This study examines the tolerance of acitomycete cultures, isolated from both TNT-contaminated and uncontaminated environments for different concentrations to TNT, determined how selected isolates transform TNT, and examined whether such TNT transformations were constitutive or induced by exposure to TNT. 33 refs., 1 figs., 1 tab.

  20. Heavy metal resistant endophytic fungi isolated from Nypa fruticans in Kuching Wetland National Park

    NASA Astrophysics Data System (ADS)

    Choo, Jenny; Sabri, Nuraini Binti Mohd; Tan, Daniel; Mujahid, Aazani; Müller, Moritz

    2015-06-01

    Heavy metal pollution is an environmental issue globally and the aim of this study was to isolate endophytic fungi from mangrove wetlands of Sarawak to assess and test their ability to grow in the presence of various heavy metals (copper (Cu), zinc (Zn), lead (Pb), and chromium (Cr)). Samples of Nypa fruticans were collected from Kuching Wetland National Park (KWNP) for subsequent endophyte isolation. Ninety-three (93) isolates were obtained and assessed and the most resistant isolates (growing at concentrations up to 1000 ppm) were identified using fungal primers ITS 1 and ITS 4. All of the endophytic fungi were identified to be closely related to Pestalotiopsis sp. and this is to our knowledge the first study reporting the ability of Pestalotiopsis sp. to grow at high concentrations of copper, lead, zinc and chromium. Our results highlight the potential of using endophytic fungi for the treatment of heavy metal pollution, for example as biosorbents.

  1. Fumigaclavine I, a new alkaloid isolated from endophyte Aspergillus terreus.

    PubMed

    Shen, Li; Zhu, Li; Luo, Qian; Li, Xiao-Wen; Xi, Ju-Qun; Kong, Gui-Mei; Song, Yong-Chun

    2015-12-01

    The present study was designed to isolate and purify chemical constituents from solid culture of endophyte Aspergillus terreus LQ, using silica gel column chromatography, gel filtration with Sephadex LH-20, and HPLC. Fumigaclavine I (1), a new alkaloid, was obtained, along with seven known compounds, including fumigaclavine C (2), rhizoctonic acid (3), monomethylsulochrin (4), chaetominine (5), spirotryprostatin A (6), asperfumoid (7), and lumichrome (8). The structure of compound 1 was elucidated by various spectroscopic analyses (UV, MS, 1D and 2D NMR). The in vitro cytotoxicity of compound 1 was determined by MTT assay in human hepatocarcinoma cell line SMMC-7721, showing weaker cytotoxicity, compared with cisplatin, a clinically used cancer chemotherapeutic agent. PMID:26721713

  2. Molecular phylogeny of endophytic isolates of Ampelomyces from Iran based on rDNA ITS sequences.

    PubMed

    Jamali, Samad

    2015-01-01

    During 2012, five isolates of pycnidial fungi were recovered from roots of tomato (Solanum lycopersicum) plants in Iran. Based on morphological characteristics the presence of Ampelomyces was documented. To confirm morphological identification and clarify the placement of endophytic isolates of Ampelomyces, DNA was extracted from isolates using a genomic DNA purification Kit. Region of internal transcribed spacers 1, 2 and 5.8S genes of rDNA were amplified using ITS4 and ITS1 universal primer set. Amplicons were purified, sequenced and submitted to the GenBank. The resulting sequence (600 bp) was submitted to a BLAST search to find most similar sequences in GenBank. The ITS sequences of isolates obtained in Iran were compared to those of other related authentic sequences obtained from GenBank. Iranian endophytic isolates had 100 % similarity of among themselves, while all isolates of Ampelomyces sequences analyzed had an average of 95.2 % (range 87-100 %) similarity. When Ampelomyces ITS sequences were analyzed by both distance-based and maximum parsimony methods, the Ampelomyces isolates were segregate into 11 distinct clades. The ITS sequences of endophytic isolates obtained in Iran were identical with endophytic isolates from other country including USA, Australia, Hungary and Spain. Our analyses of phylogenetic data showed that endophytic isolates from Iran and other countries are distinct group. The high ITS sequence-divergence values and the phylogenetic analysis suggested the isolates of Ampelomyces in the clades are not closely related and indeed a problematic species complex. PMID:25245955

  3. Terrabacter terrae sp. nov., a novel actinomycete isolated from soil in Spain.

    PubMed

    Montero-Barrientos, Marta; Rivas, Raúl; Velázquez, Encarna; Monte, Enrique; Roig, Manuel G

    2005-11-01

    A Gram-positive, aerobic, long-rod-shaped, non-spore-forming bacterium (strain PPLB(T)) was isolated from soil mixed with Iberian pig hair. This actinomycete showed keratinase activity in vitro when chicken feathers were added to the culture medium. Strain PPLB(T) was oxidase-negative and catalase-positive and produced lipase and esterase lipase. This actinomycete grew at 40 degrees C on nutrient agar and in the same medium containing 5 % (w/v) NaCl. Growth was observed with many different carbohydrates as the sole carbon source. On the basis of 16S rRNA gene sequence similarity, strain PPLB(T) was shown to belong to the genus Terrabacter of the family Intrasporangiaceae. Strain PPLB(T) showed 98.8 % 16S rRNA gene sequence similarity to Terrabacter tumescens. Chemotaxonomic data, such as the main ubiquinone (MK-8), the main polar lipids (phosphatidylethanolamine, diphosphatidylglycerol and phosphatidylinositol) and the main fatty acids (i-C(15 : 0), ai-C(15 : 0), i-C(16 : 0) and ai-C(17 : 0)) supported the affiliation of strain PPLB(T) to the genus Terrabacter. The G+C content of the DNA was 71 mol%. The results of DNA-DNA hybridization (36.6 % relatedness between Terrabacter tumescens and strain PPLB(T)) and physiological and biochemical tests suggested that strain PPLB(T) belongs to a novel species of the genus Terrabacter, for which the name Terrabacter terrae sp. nov. is proposed. The type strain is PPLB(T) (=CECT 3379T=LMG 22921T). PMID:16280515

  4. Field studies on two rock phosphate solubilizing actinomycete isolates as biofertilizer sources

    NASA Astrophysics Data System (ADS)

    Mba, Caroline C.

    1994-03-01

    Recently biotechnology is focusing attention on utilization of biological resources to solve a number of environmental problems such as soil fertility management. Results of microbial studies on earthworm compost in the University of Nigeria farm identified a number of rock phosphate solubilizing actinomycetes. Two of these, isclates 02 and 13, were found to be efficient rock phosphate (RP) solubilizers and fast-growing cellulolytic microbes producing extracellular hydrolase enzymes. In this preliminary field study the two microbial isolates were investigated with respect to their effects on the growth of soybean and egusi as well as their effect on the incidence of toxicity of poultry droppings. Application of these isolates in poultry manure-treated field plots, as microbial fertilizers, brought about yield increases of 43% and 17% with soybeans and 19% and 33% with egusi, respectively. Soil properties were also improved. With isolates 02 and 13, the soil available phosphorus increased at the five-leaf stage, while N-fixation in the soil increased by 45% or 11% relative to control. It was further observed that air-dried poultry manure after four days of incubation was still toxic to soybean. The toxic effect of the applied poultry manure was reduced or eliminated with microbial fertilizers 02 or 13, respectively. The beneficial effects of the microbial organic fertilizer are discussed. Justification for more intensive research on rock phosphate organic fertilizer is highlighted.

  5. Millisia brevis gen. nov., sp. nov., an actinomycete isolated from activated sludge foam.

    PubMed

    Soddell, Jacques A; Stainsby, Fiona M; Eales, Kathryn L; Kroppenstedt, Reiner M; Seviour, Robert J; Goodfellow, Michael

    2006-04-01

    The taxonomic position of two mycolic-acid-producing actinomycetes, isolates J81T and J82, which were recovered from activated sludge foam, was clarified. Comparative 16S rRNA gene sequence studies indicated that the organisms formed a distinct lineage within the Corynebacterineae 16S rRNA gene tree. The taxonomic integrity of this group was underpinned by a wealth of phenotypic data, notably characteristic rudimentary right-angled branching. In addition, isolate J81T contained the following: meso-diaminopimelic acid, arabinose and galactose; N-glycolated muramic acid residues; a dihydrogenated menaquinone with eight isoprene units as the predominant isoprenologue; a fatty acid profile rich in oleic and palmitoleic acids and with relatively small proportions of myristic, stearic and tuberculostearic acids; mycolic acids with 44-52 carbons; and diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol, phosphatidylinositol and phosphatidylinositol mannosides as major polar lipids. Strain J81T was found to have a chemotaxonomic profile that serves to distinguish it from representatives of all of the other taxa classified as belonging to the suborder Corynebacterineae. In the light of these data, it is proposed that the two isolates be classified in a novel monospecific genus. The name proposed for this taxon is Millisia brevis gen. nov., sp. nov.; strain J81T (=DSM 44463T = NRRL B-24424T) is the type strain of Millisia brevis. PMID:16585686

  6. Glycomyces tarimensis sp. nov., an actinomycete isolated from a saline-alkali habitat.

    PubMed

    Lv, Ling-Ling; Zhang, Yue-Feng; Zhang, Li-Li

    2015-05-01

    A novel actinomycete strain, designated TRM 45387(T), was isolated from a saline-alkali soil in Xinjiang Province (40° 22' N 79° 08' E), north-west China. The isolate was characterized using a polyphasic approach. 16S rRNA gene sequence analysis indicated that strain TRM 45387(T) belonged to the genus Glycomyces and was closely related to Glycomyces arizonensis DSM 44726(T) (96.59% 16S rRNA gene sequence similarity). The G+C content of the DNA was 71.26 mol%. The isolate contained meso-diaminopimelic acid as the diagnostic diamino acid, and xylose, glucose, galactose, arabinose and ribose as the major whole-cell sugars. The diagnostic phospholipids were diphosphatidylglycerol, phosphatidylglycerol, phosphatidylcholine, phosphatidylethanolamine, phosphatidylinositol and phosphatidylinositolmannosides. The predominant menaquinone was MK-10(H6). The major fatty acids were iso-C16 : 0, anteiso-C17 : 0 and anteiso-C15 : 0. On the basis of the evidence from this polyphasic study, a novel species, Glycomyces tarimensis sp. nov., is proposed. The type strain of Glycomyces tarimensis is TRM 45387(T) ( =CCTCC AA 2014007(T) =JCM 30184(T)). PMID:25713037

  7. Saccharopolyspora halotolerans sp. nov., a halophilic actinomycete isolated from a hypersaline lake.

    PubMed

    Lv, Ling-Ling; Zhang, Yue-Feng; Xia, Zhan-Feng; Zhang, Jing-Jing; Zhang, Li-Li

    2014-10-01

    A novel actinomycete strain, designated TRM 45123(T), was isolated from a hypersaline habitat in Xinjiang Province (40° 20' N 90° 49' E), north-west China. The isolate was characterized using a polyphasic approach. 16S rRNA gene sequence analysis indicated that strain TRM 45123(T) belonged to the genus Saccharopolyspora and was closely related to Saccharopolyspora gloriosae (96.7% similarity). The G+C content of the DNA was 69.07 mol%. The isolate contained meso-diaminopimelic acid as the diagnostic diamino acid, and arabinose and ribose as the major whole-cell sugars. The diagnostic phospholipids were phosphatidylethanolamine, phosphatidylcholine and phosphatidylglycerol. The predominant menaquinone was MK-9(H4). The major fatty acids were iso-C16 : 0, anteiso-C17:0, iso-C15:0 and anteiso-C15:0. On the basis of the evidence from this polyphasic study, a novel species, Saccharopolyspora halotolerans sp. nov., is proposed. The type strain of Saccharopolyspora halotolerans is TRM 45123(T) ( = CCTCC AA 2013006(T) = DSM 45990(T)). PMID:25061064

  8. In Vitro Evaluation of Enzymatic and Antifungal Activities of Soil-Actinomycetes Isolates and Their Molecular Identification by PCR

    PubMed Central

    Keikha, Nasser; Ayatollahi Mousavi, Seyyed Amin; Nakhaei, Ali Reza; Yadegari, Mohammad Hossein; Shahidi Bonjar, Gholam Hossein; Amiri, Somayyeh

    2015-01-01

    Background: Human cutaneous infection caused by a homogeneous group of keratinophilic fungi called dermatophytes. These fungi are the most common infectious agents in humans that are free of any population and geographic area. Microsporum canis is a cause of dermatophytosis (Tinea) in recent years in Iran and atypical strain has been isolated in Iran. Its cases occur sporadically due to M. canis transmission from puppies and cats to humans. Since this pathogenic dermatophyte is eukaryotes, chemical treatment with antifungal drugs may also affect host tissue cells. Objectives: The aim of the current study was to find a new antifungal agent of soil-Actinomycetes from Kerman province against M. canis and Actinomycete isolates were identified by PCR. Materials and Methods: A number of hundred Actinomycete isolated strains were evaluated from soil of Kerman province, for their antagonistic activity against the M. canis. M. canis of the Persian Type Culture Collection (PTCC) was obtained from the Iranian Research Organization for Science and Technology (IROST). Electron microscope studies of these isolates were performed based on the physiological properties of these antagonists including lipase, amylase, protease and chitinase activities according to the relevant protocols and were identified using gene 16SrDNA. Results: In this study the most antagonist of Actinomycete isolates with antifungal activity against M. canis isolates of L1, D5, Ks1m, Km2, Kn1, Ks8 and Ks1 were shown in vitro. Electron microscopic studies showed that some fungal strains form spores, mycelia and spore chain. Nucleotide analysis showed that Ks8 had maximum homology (98%) to Streptomyces zaomyceticus strain xsd08149 and L1 displayed 100% homology to Streptomyces sp. HVG6 using 16SrDNA studies. Conclusions: Our findings showed that Streptomyces has antifungal effects against M. canis. PMID:26060560

  9. An endophytic fungus isolated from finger millet (Eleusine coracana) produces anti-fungal natural products

    PubMed Central

    Mousa, Walaa K.; Schwan, Adrian; Davidson, Jeffrey; Strange, Philip; Liu, Huaizhi; Zhou, Ting; Auzanneau, France-Isabelle; Raizada, Manish N.

    2015-01-01

    Finger millet is an ancient African cereal crop, domesticated 7000 years ago in Ethiopia, reaching India at 3000 BC. Finger millet is reported to be resistant to various fungal pathogens including Fusarium sp. We hypothesized that finger millet may host beneficial endophytes (plant-colonizing microbes) that contribute to the antifungal activity. Here we report the first isolation of endophyte(s) from finger millet. Five distinct fungal species were isolated from roots and predicted taxonomically based on 18S rDNA sequencing. Extracts from three putative endophytes inhibited growth of F. graminearum and three other pathogenic Fusarium species. The most potent anti-Fusarium strain (WF4, predicted to be a Phoma sp.) was confirmed to behave as an endophyte using pathogenicity and confocal microscopy experiments. Bioassay-guided fractionation of the WF4 extract identified four anti-fungal compounds, viridicatol, tenuazonic acid, alternariol, and alternariol monomethyl ether. All the purified compounds caused dramatic breakage of F. graminearum hyphae in vitro. These compounds have not previously been reported to have anti-Fusarium activity. None of the compounds, except for tenuazonic acid, have previously been reported to be produced by Phoma. We conclude that the ancient, disease-tolerant crop, finger millet, is a novel source of endophytic anti-fungal natural products. This paper suggests the value of the crops grown by subsistence farmers as sources of endophytes and their natural products. Application of these natural chemicals to solve real world problems will require further validation. PMID:26539183

  10. An endophytic fungus isolated from finger millet (Eleusine coracana) produces anti-fungal natural products.

    PubMed

    Mousa, Walaa K; Schwan, Adrian; Davidson, Jeffrey; Strange, Philip; Liu, Huaizhi; Zhou, Ting; Auzanneau, France-Isabelle; Raizada, Manish N

    2015-01-01

    Finger millet is an ancient African cereal crop, domesticated 7000 years ago in Ethiopia, reaching India at 3000 BC. Finger millet is reported to be resistant to various fungal pathogens including Fusarium sp. We hypothesized that finger millet may host beneficial endophytes (plant-colonizing microbes) that contribute to the antifungal activity. Here we report the first isolation of endophyte(s) from finger millet. Five distinct fungal species were isolated from roots and predicted taxonomically based on 18S rDNA sequencing. Extracts from three putative endophytes inhibited growth of F. graminearum and three other pathogenic Fusarium species. The most potent anti-Fusarium strain (WF4, predicted to be a Phoma sp.) was confirmed to behave as an endophyte using pathogenicity and confocal microscopy experiments. Bioassay-guided fractionation of the WF4 extract identified four anti-fungal compounds, viridicatol, tenuazonic acid, alternariol, and alternariol monomethyl ether. All the purified compounds caused dramatic breakage of F. graminearum hyphae in vitro. These compounds have not previously been reported to have anti-Fusarium activity. None of the compounds, except for tenuazonic acid, have previously been reported to be produced by Phoma. We conclude that the ancient, disease-tolerant crop, finger millet, is a novel source of endophytic anti-fungal natural products. This paper suggests the value of the crops grown by subsistence farmers as sources of endophytes and their natural products. Application of these natural chemicals to solve real world problems will require further validation. PMID:26539183

  11. Streptomyces synnematoformans sp. nov., a novel actinomycete isolated from a sand dune soil in Egypt.

    PubMed

    Hozzein, Wael N; Goodfellow, Michael

    2007-09-01

    A polyphasic taxonomic study was undertaken to establish the status of a novel actinomycete, strain S155(T), isolated from a sand dune soil in Egypt. The organism formed characteristic synnemata-like structures and exhibited chemical and morphological features consistent with its classification in the genus Streptomyces. An almost-complete 16S rRNA gene sequence of the isolate was compared with corresponding sequences of representative streptomycetes. The 16S rRNA gene sequence data supported the assignment of the strain to the genus Streptomyces and showed that it formed a distinct phyletic line; the organism was most similar to the type strains of Streptomyces ruber (97.0 %), Streptomyces rubiginosus (97.0 %), Streptomyces roseiscleroticus (96.9 %) and Streptomyces thermoalcalitolerans (97.1 %). It was readily distinguished from the type strains of these species using a combination of phenotypic properties. On the basis of these results, strain S155(T) (=CGMCC 4.2055(T) =DSM 41902(T)) is proposed as the type strain of the novel species Streptomyces synnematoformans sp. nov. PMID:17766864

  12. Nocardiopsis arabia sp. nov., a halotolerant actinomycete isolated from a sand-dune soil.

    PubMed

    Hozzein, Wael N; Goodfellow, Michael

    2008-11-01

    The taxonomic status of an unknown actinomycete isolated from a sand-dune soil was established using a polyphasic approach. Isolate S186(T) had chemotaxonomic and morphological properties consistent with its classification in the genus Nocardiopsis, grew on agar plates at NaCl concentrations of up to 15 % (w/v) and formed a distinct phyletic line in the Nocardiopsis 16S rRNA gene sequence tree. Its closest phylogenetic neighbours were Nocardiopsis chromatogenes, Nocardiopsis composta, Nocardiopsis gilva and Nocardiopsis trehalosi, with sequence similarity to the various type strains of 96.9 %, but it was readily distinguished from the type strains of these and related species using a range of phenotypic properties. It is apparent from the genotypic and phenotypic data that strain S186(T) belongs to a novel species of the genus Nocardiopsis, for which the name Nocardiopsis arabia sp. nov. is proposed. The type strain is S186(T) (=CGMCC 4.2057(T) =DSM 45083(T)). PMID:18984686

  13. Actinorugispora endophytica gen. nov., sp. nov., an actinomycete isolated from Daucus carota.

    PubMed

    Liu, Min-Jiao; Zhu, Wen-Yong; Li, Jie; Zhao, Guo-Zhen; Xiong, Zhi; Park, Dong-Jin; Hozzein, Wael N; Kim, Chang-Jin; Li, Wen-Jun

    2015-08-01

    An actinomycete strain, designated YIM 690008T, was isolated from Daucus carota collected from South Korea and its taxonomic position was investigated by using a polyphasic approach. The strain grew well on most media tested and no diffusible pigment was produced. The aerial mycelium formed wrinkled single spores and short spore chains, some of which were branched. The whole-cell hydrolysates contained meso-diaminopimelic acid, glucose, mannose, ribose, galactose and rhamnose. The predominant menaquinones were MK-10(H4), MK-10(H6), MK-10(H8) and MK-10(H2). The polar lipids were diphosphatidylglycerol, phosphatidylcholine, phosphatidylinositol, phosphatidylinositol mannosides, some unknown phospholipids, glycolipids and polar lipids. The major fatty acids were i-C16 : 0, ai-C17 : 0 and C18 : 1ω9c. The DNA G+C content of the genomic DNA was 63.1 mol%. Phylogenetic analysis indicated that the isolate belongs to the family Nocardiopsaceae. However, based on phenotypic, chemotaxonomic and genotypic data, it was concluded that strain YIM 690008T represents a novel genus and novel species of the family Nocardiopsaceae, for which the name Actinorugispora endophytica gen. nov., sp. nov. (type strain YIM 690008T = DSM 46770T = JCM 30099T = KCTC 29480T) is proposed. PMID:25948617

  14. Isolation and bioassay screening of medicinal plant endophytes from eastern Canada.

    PubMed

    Ellsworth, Katelyn T; Clark, Trevor N; Gray, Christopher A; Johnson, John A

    2013-11-01

    Eighty-one distinct fungal endophytes were isolated from 12 traditionally used medicinal plants from New Brunswick, Canada. This is the first report of endophytes from 8 of the 12 host plants. One hundred and sixty-two crude extracts derived from the mycelia and spent fermentation broths of liquid cultures of each endophyte were screened for antibacterial and antifungal activity. Twenty-two extracts were active against Staphylococcus aureus while 30 were active against Pseudomonas aeruginosa. Twelve crude extracts were found to be active against Candida albicans. PMID:24206359

  15. Characterization of Five Fungal Endophytes Producing Cajaninstilbene Acid Isolated from Pigeon Pea [Cajanus cajan (L.) Millsp.

    PubMed Central

    Zu, Yuan Gang; Fu, Yu Jie; Wang, Wei; Luo, Meng; Efferth, Thomas

    2011-01-01

    Five fungal endophytes (K4, K5, K6, K9, K14) producing Cajaninstilbene acid (CSA, 3-hydroxy-4-prenyl-5-methoxystilbene-2-carboxylic acid) were isolated from the roots of pigeon pea [Cajanus cajan (L.) Millsp.]. CSA is responsible for the prominent pharmacological activities in pigeon pea. The amount of CSA in culture solution varied among the five fungal endophytes. K4 produced the highest levels of CSA (1037.13 µg/L) among the endophytes tested after incubation for five days. Both morphological characteristics and molecular methods were used for species identification of fungal endophytes. The five endophytic isolates were characterized by analyzing the internal transcribed spacer (ITS) rRNA and β-tubulin genes. The K4, K5, K9 and K14 strains isolated from pigeon pea roots were found to be closely related to the species Fusarium oxysporum. K6 was identified as Neonectria macrodidym. The present study is the first report on the isolation and identification of fungal endophytes producing CSA in pigeon pea. The study also provides a scientific base for large scale production of CSA. PMID:22102911

  16. Glycomyces fuscus sp. nov. and Glycomyces albus sp. nov., actinomycetes isolated from a hypersaline habitat.

    PubMed

    Han, Xiao-Xue; Luo, Xiao-Xia; Zhang, Li-Li

    2014-07-01

    Two actinomycete strains, designated TRM 49117(T) and TRM 49136(T), were isolated from a hypersaline habitat in Xinjiang Province, north-west China and were characterized taxonomically by using a polyphasic study. Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain TRM 49117(T) had 93.93% similarity with the type strain Glycomyces halotolerans TRM 40137(T) (GenBank accession no. HQ651156) and TRM 49136(T) had 94.32% similarity with G. halotolerans TRM 40137(T). The 16S rRNA gene sequence similarity between the two new isolates was 93%. The isolates contained meso-diaminopimelic acid as the diagnostic diamino acid and anteiso-C15 : 0, iso-C16 : 0 and anteiso-C17 : 0 as major cellular fatty acids. The predominant menaquinones of the isolates were MK-9(H4) and MK-9(H6). The whole-cell sugar patterns of these strains contained xylose and ribose, and strain TRM 49136(T) also contained arabinose. The polar lipid pattern of strain TRM 49117(T) comprised phosphatidylglycerol, diphosphatidylglycerol, phosphatidylinositol mannosides, phosphatidylcholine, phosphatidylinositol and three additional unknown phospholipids. The polar lipid pattern of strain TRM 49136(T) comprised phosphatidylglycerol, phosphatidylethanolamine, diphosphatidylglycerol, phosphatidylinositol, glycolipids and two phosphoglycolipids of unknown composition. Genotypic and phenotypic data confirmed that strains TRM 49117(T) and TRM 49136(T) represent two novel species, clearly different from related species of the genus Glycomyces, for which the names Glycomyces fuscus sp. nov. (type strain TRM 49117(T) = CCTCC AA 2013003(T) = NRRL B-59998(T) = KACC 17682(T)) and Glycomyces albus sp. nov. (type strain TRM 49136(T) = CCTCC AA 2013004(T) = NRRL B-24927(T) = KACC 17681(T)) are proposed. PMID:24776532

  17. Culturable bacterial endophytes isolated from Mangrove tree (Rhizophora apiculata Blume) enhance seedling growth in Rice

    PubMed Central

    Deivanai, Subramanian; Bindusara, Amitraghata Santhanam; Prabhakaran, Guruswamy; Bhore, Subhash Janardhan

    2014-01-01

    Background: Endophytic bacteria do have several potential applications in medicine and in other various sectors of biotechnology including agriculture. Bacterial endophytes need to be explored for their potential applications in agricultural biotechnology. One of the potential applications of bacterial endophytes in agricultural is to enhance the growth of the agricultural crops. Hence, this study was undertaken to explore the plant growth promoting potential application of bacterial endophytes. Objective: The objective of this study was to examine the effect of endophytic bacteria from mangrove tree (Rhizophora apiculata Blume) for their efficacy in promoting seedling growth in rice. Materials and Methods: Eight endophytic bacterial isolates (EBIs) isolated from twig and petiole tissues of the mangrove were identified based on their 16S ribosomal ribonucleic acid (rRNA) gene sequence homology. Separately, surface sterilized paddy seeds were treated with cell-free broth and cell suspension of the EBIs. Rice seedlings were analyzed by various bioassays and data was recorded. Results: The gene sequences of the isolates were closely related to two genera namely, Bacillus and Pantoea. Inoculation of EBIs from R. apiculata with rice seeds resulted in accelerated root and shoot growth with significant increase in chlorophyll content. Among the isolates, Pantoea ananatis (1MSE1) and Bacillus amyloliquefaciens (3MPE1) had shown predominance of activity. Endophytic invasion was recognized by the non-host by rapid accumulation of reactive oxygen species (ROS) and was counteracted by the production of hydrogen peroxide (H2O2) and lipid peroxide. The results demonstrated that EBIs from mangrove tree can increase the fitness of the rice seedlings under controlled conditions. Conclusion: These research findings could be useful to enhance the seedling growth and could serve as foundation in further research on enhancing the growth of the rice crop using endophytic bacteria. PMID

  18. Diversity and antimicrobial activities of endophytic fungi isolated from Myrcia Sellowiana in Tocantins, Brazil

    Technology Transfer Automated Retrieval System (TEKTRAN)

    One hundred forty six isolates of endophytic fungi were recovered from leaves and branches of the medicinal plant, Myrcia sellowiana, in Brazil. All isolates were purified on PDA and the strains were grouped into 51 morphotypes. Each isolate was tested for production of volatiles and agar diffusib...

  19. Antifungal and proteolytic activities of endophytic fungi isolated from Piper hispidum Sw.

    PubMed

    Orlandelli, Ravely Casarotti; de Almeida, Tiago Tognolli; Alberto, Raiani Nascimento; Polonio, Julio Cesar; Azevedo, João Lúcio; Pamphile, João Alencar

    2015-06-01

    Endophytes are being considered for use in biological control, and the enzymes they secrete might facilitate their initial colonization of internal plant tissues and direct interactions with microbial pathogens. Microbial proteases are also biotechnologically important products employed in bioremediation processes, cosmetics, and the pharmaceutical, photographic and food industries. In the present study, we evaluated antagonism and competitive interactions between 98 fungal endophytes and Alternaria alternata, Colletotrichum sp., Phyllosticta citricarpa and Moniliophthora perniciosa. We also examined the proteolytic activities of endophytes grown in liquid medium and conducted cup plate assays. The results showed that certain strains in the assemblage of P. hispidum endophytes are important sources of antifungal properties, primarily Lasiodiplodia theobromae JF766989, which reduced phytopathogen growth by approximately 54 to 65%. We detected 28 endophytes producing enzymatic halos of up to 16.40 mm in diameter. The results obtained in the present study highlight the proteolytic activity of the endophytes Phoma herbarum JF766995 and Schizophyllum commune JF766994, which presented the highest enzymatic halo diameters under at least one culture condition tested. The increased activities of certain isolates in the presence of rice or soy flour as a substrate (with halos up to 17.67 mm in diameter) suggests that these endophytes have the potential to produce enzymes using agricultural wastes. PMID:26273250

  20. Antifungal and proteolytic activities of endophytic fungi isolated from Piper hispidum Sw

    PubMed Central

    Orlandelli, Ravely Casarotti; de Almeida, Tiago Tognolli; Alberto, Raiani Nascimento; Polonio, Julio Cesar; Azevedo, João Lúcio; Pamphile, João Alencar

    2015-01-01

    Endophytes are being considered for use in biological control, and the enzymes they secrete might facilitate their initial colonization of internal plant tissues and direct interactions with microbial pathogens. Microbial proteases are also biotechnologically important products employed in bioremediation processes, cosmetics, and the pharmaceutical, photographic and food industries. In the present study, we evaluated antagonism and competitive interactions between 98 fungal endophytes and Alternaria alternata, Colletotrichum sp., Phyllosticta citricarpa and Moniliophthora perniciosa. We also examined the proteolytic activities of endophytes grown in liquid medium and conducted cup plate assays. The results showed that certain strains in the assemblage of P. hispidum endophytes are important sources of antifungal properties, primarily Lasiodiplodia theobromae JF766989, which reduced phytopathogen growth by approximately 54 to 65%. We detected 28 endophytes producing enzymatic halos of up to 16.40 mm in diameter. The results obtained in the present study highlight the proteolytic activity of the endophytes Phoma herbarum JF766995 and Schizophyllum commune JF766994, which presented the highest enzymatic halo diameters under at least one culture condition tested. The increased activities of certain isolates in the presence of rice or soy flour as a substrate (with halos up to 17.67 mm in diameter) suggests that these endophytes have the potential to produce enzymes using agricultural wastes. PMID:26273250

  1. Isolation and enzyme bioprospection of endophytic bacteria associated with plants of Brazilian mangrove ecosystem.

    PubMed

    Castro, Renata A; Quecine, Maria Carolina; Lacava, Paulo T; Batista, Bruna D; Luvizotto, Danice M; Marcon, Joelma; Ferreira, Anderson; Melo, Itamar S; Azevedo, João L

    2014-01-01

    The mangrove ecosystem is a coastal tropical biome located in the transition zone between land and sea that is characterized by periodic flooding, which confers unique and specific environmental conditions on this biome. In these ecosystems, the vegetation is dominated by a particular group of plant species that provide a unique environment harboring diverse groups of microorganisms, including the endophytic microorganisms that are the focus of this study. Because of their intimate association with plants, endophytic microorganisms could be explored for biotechnologically significant products, such as enzymes, proteins, antibiotics and others. Here, we isolated endophytic microorganisms from two mangrove species, Rhizophora mangle and Avicennia nitida, that are found in streams in two mangrove systems in Bertioga and Cananéia, Brazil. Bacillus was the most frequently isolated genus, comprising 42% of the species isolated from Cananéia and 28% of the species from Bertioga. However, other common endophytic genera such as Pantoea, Curtobacterium and Enterobacter were also found. After identifying the isolates, the bacterial communities were evaluated for enzyme production. Protease activity was observed in 75% of the isolates, while endoglucanase activity occurred in 62% of the isolates. Bacillus showed the highest activity rates for amylase and esterase and endoglucanase. To our knowledge, this is the first reported diversity analysis performed on endophytic bacteria obtained from the branches of mangrove trees and the first overview of the specific enzymes produced by different bacterial genera. This work contributes to our knowledge of the microorganisms and enzymes present in mangrove ecosystems. PMID:25110630

  2. Actinomadura gamaensis sp. nov., a novel actinomycete isolated from soil in Gama, Chad.

    PubMed

    Abagana, Adam Yacoub; Sun, Pengyu; Liu, Chongxi; Cao, Tingting; Zheng, Weiwei; Zhao, Shanshan; Xiang, Wensheng; Wang, Xiangjing

    2016-06-01

    A novel single spore-producing actinomycete, designated strain NEAU-Gz5(T), was isolated from a soil sample from Gama, Chad. A polyphasic taxonomic study was carried out to establish the status of this strain. The diamino acid present in the cell wall is meso-diaminopimelic acid. Glucose, mannose and madurose occur in whole cell hydrolysates. The polar lipids were found to consist of diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylinositol mannoside and an unidentified glycolipid. The predominant menaquinones were identified as MK-9(H8) and MK-9(H6). The predominant cellular fatty acids were found to be C16:0, iso-C15:0, iso-C16:0 and C18:0 10-methyl. Phylogenetic analysis based on the 16S rRNA gene showed that strain NEAU-Gz5(T) belongs to the genus Actinomadura and is closely related to Actinomadura oligospora JCM 10648(T) (ATCC 43269(T); 98.3 % similarity). However, the low level of DNA-DNA relatedness and some different phenotypic characteristics allowed the strain to be distinguished from its close relatives. Therefore, it is concluded that strain NEAU-Gz5(T) represents a novel species of the genus of Actinomadura, for which the name Actinomadura gamaensis sp. nov. is proposed. The type strain is NEAU-Gz5(T) (= CGMCC 4.7301(T) = DSM 100815(T)). PMID:27010208

  3. Micromonospora polyrhachis sp. nov., an actinomycete isolated from edible Chinese black ant (Polyrhachis vicina Roger).

    PubMed

    Xiang, Wensheng; Yu, Chao; Liu, Chongxi; Zhao, Junwei; Yang, Lingyu; Xie, Binjiao; Li, Lei; Hong, Kui; Wang, Xiangjing

    2014-02-01

    A novel actinomycete, designated strain NEAU-ycm2(T), was isolated from edible Chinese black ants (Polyrhachis vicina Roger) and characterized using a polyphasic approach. The organism was found to have morphological and chemotaxonomic characteristics typical of the genus Micromonospora. The 16S rRNA gene sequence of strain NEAU-ycm2(T) showed highest similarity to those of Micromonospora sonneratiae 274745(T) (99.12%), Micromonospora pattaloongensis TJ2-2(T) (98.85%), Micromonospora pisi GUI 15(T) (98.76%), Polymorphospora rubra TT 97-42(T) (98.42%) and Micromonospora eburnea LK2-10(T) (98.21%). Phylogenetic analysis based on the 16S rRNA gene and gyrB gene demonstrated that strain NEAU-ycm2(T) is a member of the genus Micromonospora and supported the close phylogenetic relationship to M. sonneratiae 274745(T), M. pattaloongensis JCM 12833(T) and M. pisi GUI 15(T). Furthermore, a combination of DNA-DNA hybridization and some physiological and biochemical properties indicated that the novel strain could be readily distinguished from its closest phylogenetic relatives. Therefore, it is proposed that NEAU-ycm2(T) represents a novel species of the genus of Micromonospora, for which the name Micromonospora polyrhachis sp. nov. is proposed. The type strain is NEAU-ycm2(T) ( = CGMCC 4.7100(T) = DSM 45886(T)). PMID:24108323

  4. Streptomyces bohaiensis sp. nov., a novel actinomycete isolated from Scomberomorus niphonius in the Bohai Sea.

    PubMed

    Pan, Hua-Qi; Cheng, Juan; Zhang, Dao-Feng; Yu, Su-Ya; Khieu, Thi-Nhan; Son, Chu Ky; Jiang, Zhao; Hu, Jiang-Chun; Li, Wen-Jun

    2015-04-01

    A novel actinomycete strain, designated 11A07(T), was isolated from young Scomberomorus niphonius in the Bohai Sea. Basic local alignment search tool analyses showed that this isolate had the highest 16S rRNA gene sequence similarity of 97.41% with Streptomyces rimosus subsp. paromomycinus DSM 41429(T). Phylogenetic tree revealed that strain 11A07(T) formed a distinct lineage clustered with Streptomyces panacagri Gsoil 519(T), Streptomyces sodiiphilus YIM 80305(T) and Streptomyces albus subsp. albus NRRL B-2365(T) having similarities of 97.30%, 97.10% and 96.83%, respectively. Multilocus sequence analysis further demonstrated that the new isolate was different from the selected representatives of Streptomyces as a separate phylogenetic line. Strain 11A07(T) produced straight or rectiflexibile spore chains with smooth surface, white aerial mycelia and brown diffusible pigments on international streptomyces project 2 medium. Maximum tolerated NaCl concentration for growth was 11.0%. Whole-cell sugars were mannose, ribose, glucose, galactose and xylose. The predominant menaquinones were MK-9(H2), MK-9(H4) and MK-9 (H6). The fatty-acid profile contained iso-C16:0, C18:0 10-methyl (tuberculostearic acid) and anteiso-C17:0 as the major compositions. The polar lipids consisted of diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylinositol, phosphatidylinositol mannoside and an unknown phospholipid. The G+C content of the genomic DNA was 71.4 mol%. These morphological, phenotypic and chemotaxonomic properties showed that strain 11A07(T) could be readily distinguished from the most closely related members of the genus Streptomyces. Thus, based on the polyphasic taxonomic data, strain 11A07(T) (=JCM 19630(T)=CCTCC AA 2013020(T)=KCTC 29263(T)) represents a novel species within the genus Streptomyces, for which the name Streptomyces bohaiensis sp. nov. is proposed. PMID:25269462

  5. Phytoactinopolyspora alkaliphila sp. nov., an alkaliphilic actinomycete isolated from a saline-alkaline soil.

    PubMed

    Zhang, Yong-Guang; Lu, Xin-Hua; Ding, Yan-Bo; Zhou, Xing-Kui; Li, Li; Guo, Jian-Wei; Wang, Hong-Fei; Duan, Yan-Qing; Li, Wen-Jun

    2016-05-01

    An alkaliphilic, filamentous actinomycete, designated EGI 80629T, was isolated from a soil sample of Xinjiang, north-west China. Strain EGI 80629T grew at pH 6.0-11.0 (optimum pH 9.0-10.0) and in the presence of 0-13.0 % NaCl (optimum 3.0-5.0 %). The isolate formed fragmented substrate mycelia, and aerial hyphae with short spore chains with rod-like spores. Whole-cell hydrolysates of the isolate contained ll-diaminopimelic acid as the diagnostic diamino acid, and mannose and rhamnose as diagnostic sugars. The major fatty acids identified were iso-C15 : 0, iso-C16 : 0, anteiso-C15 : 0 and iso-C17 : 0. The predominant menaquinone was MK-9(H4), while the polar lipids were diphosphatidylglycerol, phosphatidylglycerol, two phosphatidylinositol mannosides, five unknown phospholipids, three unknown phosphoglycolipids, one unknown glycolipid, four unknown polar lipids and one unknown aminophospholipid. The G+C content of the genomic DNA was 67.3 mol%. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain EGI 80629T clustered with the genus Phytoactinopolyspora. The 16S rRNA gene sequence similarity between strain EGI 80629T and Phytoactinopolyspora endophytica EGI 60009T was 96.8 %. Based on morphological, chemotaxonomic and phylogenetic characteristics, strain EGI 80629T represents a novel species of the genus Phytoactinopolyspora, for which the name Phytoactinopolyspora alkaliphila sp. nov. is proposed. The type strain is EGI 80629T ( = CGMCC 4.7225T = KCTC 39701T). PMID:26920762

  6. Streptomyces canalis sp. nov., an actinomycete isolated from an alkali-removing canal.

    PubMed

    Xie, Yu-Xuan; Han, Xiao-Xue; Luo, Xiao-Xia; Xia, Zhan-Feng; Wan, Chuan-Xing; Zhang, Li-Li

    2016-08-01

    A novel actinomycete strain, designated TRM 46794-61T, was isolated from an alkali-removing canal in 14th Farms of Xinjiang Production and Construction Corps, north-west China. The isolate contained ll-diaminopimelic acid as the diagnostic diamino acid. The whole-cell sugar patterns of the isolate contained ribose, mannose and glucose. The polar lipids were diphosphatidylglycerol, phosphatidylmethylethanolamine, phosphatidylethanolamine, phosphatidylcholine, phosphatidylinositol, phosphatidylinositol mannoside and two unidentified phospholipids. The predominant menaquinones were MK-9(H2), MK-9(H4), MK-9(H6) and MK-9(H8). The major fatty acids were iso-C16 : 0, anteiso-C17 : 0 and anteiso-C15 : 0. The G+C content of the DNA was 70.4 mol%. Phylogenetic analysis showed that strain TRM 46794-61T had a 16S rRNA gene sequence similarity of 97.6 % with the most closely related species with a validly published name, Streptomyces aidingensis TRM 46012T, and it could be distinguished from all species in the genus Streptomyces based on data from this polyphasic taxonomic study. However, DNA-DNA hybridization studies between strain TRM 46794-61T and S.aidingensis TRM 46012T showed only 45.4 % relatedness. On the basis of these data, strain TRM 46794-61T should be designated as a representative of a novel species of the genus Streptomyces, for which the name Streptomyces canalis sp. nov. is proposed. The type strain is TRM 46794-61T (=CCTCC AA 2015006T=KCTC 39568T). PMID:27217157

  7. Spatial and Temporal Variation in Fungal Endophyte Communities Isolated from Cultivated Cotton (Gossypium hirsutum)

    PubMed Central

    Ek-Ramos, María J.; Zhou, Wenqing; Valencia, César U.; Antwi, Josephine B.; Kalns, Lauren L.; Morgan, Gaylon D.; Kerns, David L.; Sword, Gregory A.

    2013-01-01

    Studies of fungi in upland cotton (Gossypium hirsutum) cultivated in the United States have largely focused on monitoring and controlling plant pathogens. Given increasing interest in asymptomatic fungal endophytes as potential biological control agents, surveys are needed to better characterize their diversity, distribution patterns and possible applications in integrated pest management. We sampled multiple varieties of cotton in Texas, USA and tested for temporal and spatial variation in fungal endophyte diversity and community composition, as well as for differences associated with organic and conventional farming practices. Fungal isolates were identified by morphological and DNA identification methods. We found members of the genera Alternaria, Colletotrichum and Phomopsis, previously isolated as endophytes from other plant species. Other recovered species such as Drechslerella dactyloides (formerly Arthrobotrys dactyloides) and Exserohilum rostratum have not, to our knowledge, been previously reported as endophytes in cotton. We also isolated many latent pathogens, but some species such as Alternaria tennuissima, Epicoccum nigrum, Acremonium alternatum, Cladosporium cladosporioides, Chaetomium globosum and Paecilomyces sp., are known to be antagonists against plant pathogens, insects and nematode pests. We found no differences in endophyte species richness or diversity among different cotton varieties, but did detect differences over time and in different plant tissues. No consistent patterns of community similarity associated with variety, region, farming practice, time of the season or tissue type were observed regardless of the ecological community similarity measurements used. Results indicated that local fungal endophyte communities may be affected by both time of the year and plant tissue, but the specific community composition varies across sites. In addition to providing insights into fungal endophyte community structure, our survey provides

  8. Isolation and characterization of endophytic bacteria from the nickel hyperaccumulator plant Alyssum bertolonii.

    PubMed

    Barzanti, Rita; Ozino, Francesca; Bazzicalupo, Marco; Gabbrielli, Roberto; Galardi, Francesca; Gonnelli, Cristina; Mengoni, Alessio

    2007-02-01

    We report the isolation and characterization of endophytic bacteria, endemic to serpentine outcrops of Central Italy, from a nickel hyperaccumulator plant, Alyssum bertolonii Desv. (Brassicaceae). Eighty-three endophytic bacteria were isolated from roots, stems, and leaves of A. bertolonii and classified by restriction analysis of 16S rDNA (ARDRA) and partial 16S rDNA sequencing in 23 different taxonomic groups. All isolates were then screened for siderophore production and for resistance to heavy metals. One isolate representative of each ARDRA group was then tested for plant tissue colonization ability in sterile culture. Obtained results pointed out that, despite the high concentration of heavy metals present in its tissues, A. bertolonii harbors an endophytic bacterial flora showing a high genetic diversity as well as a high level of resistance to heavy metals that could potentially help plant growth and Ni hyperaccumulation. PMID:17264998

  9. Bacterial Endophytes Isolated from Plants in Natural Oil Seep Soils with Chronic Hydrocarbon Contamination

    PubMed Central

    Lumactud, Rhea; Shen, Shu Yi; Lau, Mimas; Fulthorpe, Roberta

    2016-01-01

    The bacterial endophytic communities of four plants growing abundantly in soils highly contaminated by hydrocarbons were analyzed through culturable and culture-independent means. Given their tolerance to the high levels of petroleum contamination at our study site, we sought evidence that Achillea millefolium, Solidago canadensis, Trifolium aureum, and Dactylis glomerata support high levels of hydrocarbon degrading endophytes. A total of 190 isolates were isolated from four plant species. The isolates were identified by partial 16S rDNA sequence analysis, with class Actinobacteria as the dominant group in all species except S. canadensis, which was dominated by Gammaproteobacteria. Microbacterium foliorum and Plantibacter flavus were present in all the plants, with M. foliorum showing predominance in D. glomerata and both endophytic bacterial species dominated T. aureum. More than 50% of the isolates demonstrated degradative capabilities for octanol, toluene, naphthalene, kerosene, or motor oil based on sole carbon source growth screens involving the reduction of tetrazolium dye. P. flavus isolates from all the sampled plants showed growth on all the petroleum hydrocarbons (PHCs) substrates tested. Mineralization of toluene and naphthalene was confirmed using gas-chromatography. 16S based terminal restriction fragment length polymorphism analysis revealed significant differences between the endophytic bacterial communities showing them to be plant host specific at this site. To our knowledge, this is the first account of the degradation potential of bacterial endophytes in these commonly occurring pioneer plants that were not previously known as phytoremediating plants. PMID:27252685

  10. Intraspecific variation in Burkholderia caledonica: Europe vs. Africa and soil vs. endophytic isolates.

    PubMed

    Verstraete, Brecht; Peeters, Charlotte; van Wyk, Braam; Smets, Erik; Dessein, Steven; Vandamme, Peter

    2014-05-01

    The best-known interaction between bacteria and plants is the Rhizobium-legume symbiosis, but other bacteria-plant interactions exist, such as between Burkholderia and Rubiaceae (coffee family). A number of bacterial endophytes in Rubiaceae are closely related to the soil bacterium Burkholderia caledonica. This intriguing observation is explored by investigating isolates from different geographic regions (Western Europe vs. sub-Saharan Africa) and from different niches (free-living bacteria in soil vs. endophytic bacteria in host plants). The multilocus sequence analysis shows five clades, of which clade 1 with two basal isolates deviates from the rest and is therefore not considered further. All other isolates belong to the species B. caledonica, but two genetically different groups are identified. Group A holds only European isolates and group B holds isolates from Africa, with the exception of one European isolate. Although the European and African isolates are considered one species, some degree of genetic differentiation is evident. Endophytic isolates of B. caledonica are found in certain members of African Rubiaceae, but only in group B. Within this group, the endophytes cannot be distinguished from the soil isolates, which indicates a possible exchange of bacteria between soil and host plant. PMID:24433672

  11. Saccharopolyspora lacisalsi sp. nov., a novel halophilic actinomycete isolated from a salt lake in Xinjiang, China.

    PubMed

    Guan, Tong-Wei; Wu, Nan; Xia, Zhan-Feng; Ruan, Ji-Sheng; Zhang, Xiao-Ping; Huang, Ying; Zhang, Li-Li

    2011-05-01

    A novel actinomycete strain, designated TRM 40133(T), was isolated from a hypersaline habitat of Tarim basin in Xinjiang Province, north-west China. Its taxonomic status was determined using a polyphasic approach. Phylogenetic analysis based on an almost-complete 16S rRNA gene sequence of the strain showed that it formed a well-seperated sub-branch within the radiation of the genus Saccharopolyspora. The highest levels of 16S rRNA gene sequence similarity was found between the strain TRM 40133(T) and Saccharopolyspora qijiaojingensis YIM 91168(T) (96.5%). The chemotaxonomic characteristics of the isolate are typical for the genus Saccharopolyspora. It contained meso-DAP as the diagnostic diamino acid. Whole cell hydrolysate contained arabinose, xylose, ribose and glucose. The diagnostic phospholipids were phosphatidylcholine, phosphatidylglycerol, phosphatidylinositol and two unknown phospholipids. The main menaquinone was MK-9(H(6)) and MK-9(H(4)). No mycolic acid was detected. The predominant cellular fatty acids were iso-C(16:0) and anteiso-C(17:0). The G+C content of the genomic DNA was 68.2 mol%. In addition, the strain TRM 40133(T) had a phenotypic profile that readily distinguished it from the recognized representatives of the genus Saccharopolyspora. The strain TRM 40133(T) therefore represents a novel species of the genus Saccharopolyspora, for which the name Saccharopolyspora lacisalsi sp. nov. is proposed. The type strain is TRM 40133(T) (=KCTC 19987(T) =CCTCC AA 2010012(T)). PMID:21461999

  12. Isolation and characterization of endophytic colonizing bacteria from agronomic crops and prairie plants.

    PubMed

    Zinniel, Denise K; Lambrecht, Pat; Harris, N Beth; Feng, Zhengyu; Kuczmarski, Daniel; Higley, Phyllis; Ishimaru, Carol A; Arunakumari, Alahari; Barletta, Raúl G; Vidaver, Anne K

    2002-05-01

    Endophytic bacteria reside within plant hosts without causing disease symptoms. In this study, 853 endophytic strains were isolated from aerial tissues of four agronomic crop species and 27 prairie plant species. We determined several phenotypic properties and found approximately equal numbers of gram-negative and gram-positive isolates. In a greenhouse study, 28 of 86 prairie plant endophytes were found to colonize their original hosts at 42 days postinoculation at levels of 3.5 to 7.7 log(10) CFU/g (fresh weight). More comprehensive colonization studies were conducted with 373 corn and sorghum endophytes. In growth room studies, none of the isolates displayed pathogenicity, and 69 of the strains were recovered from corn or sorghum seedlings at levels of 8.3 log(10) CFU/plant or higher. Host range greenhouse studies demonstrated that 26 of 29 endophytes were recoverable from at least one host other than corn and sorghum at levels of up to 5.8 log(10) CFU/g (fresh weight). Long-range dent corn greenhouse studies and field trials with 17 wild-type strains and 14 antibiotic-resistant mutants demonstrated bacterial persistence at significant average colonization levels ranging between 3.4 and 6.1 log(10) CFU/g (fresh weight) up to 78 days postinoculation. Three prairie and three agronomic endophytes exhibiting the most promising levels of colonization and an ability to persist were identified as Cellulomonas, Clavibacter, Curtobacterium, and Microbacterium isolates by 16S rRNA gene sequence, fatty acid, and carbon source utilization analyses. This study defines for the first time the endophytic nature of Microbacterium testaceum. These microorganisms may be useful for biocontrol and other applications. PMID:11976089

  13. Streptomonospora algeriensis sp. nov., a halophilic actinomycete isolated from soil in Algeria.

    PubMed

    Meklat, Atika; Bouras, Noureddine; Riba, Amar; Zitouni, Abdelghani; Mathieu, Florence; Rohde, Manfred; Schumann, Peter; Spröer, Cathrin; Klenk, Hans-Peter; Sabaou, Nasserdine

    2014-08-01

    A halophilic actinomycete strain, designated H27(T), was isolated from a soil sample collected from a hypersaline habitat in Djelfa Province (North-Central Algeria), and then investigated using a polyphasic taxonomic approach. The strain was observed to produce poor aerial mycelium, which formed short chains of oval to cylindrical-shaped spores at maturity, and non fragmented substrate mycelium. The optimum NaCl concentration for growth was found to be 10-15 % (w/v) and the optimum growth temperature and pH were found to be 28-37 °C and 6-7, respectively. The diagnostic diamino acid in the cell-wall peptidoglycan was identified as meso-diaminopimelic acid. The predominant menaquinones of strain H27(T) were identified as MK-11 (H4) and MK-10 (H6). The major fatty acids were found to be iso-C16:0, anteiso-C17:0, 10 methyl C17:0 and 10 methyl C16:0. The diagnostic phospholipids detected were phosphatidylethanolamine, diphosphatidylglycerol, phosphatidylglycerol, phosphatidylcholine and phosphatidylinositol. The chemotaxonomic properties of strain H27(T) are consistent with those shared by members of the genus Streptomonospora. 16S rRNA gene sequence analysis indicated that strain H27(T) is most closely related to Streptomonospora alba DSM 44588(T) (98.8 %) and Streptomonospora flavalba DSM 45155(T) (98.7 %) whereas the DNA-DNA relatedness values between strain H27(T) and the two type strains were 17.1 and 57.9 %, respectively. Based on the combined genotypic and phenotypic evidence, it is proposed that strain H27(T) should be classified as representative of a novel species, for which the name Streptomonospora algeriensis sp. nov. is proposed. The type strain is H27(T) (=DSM 45604(T) =CCUG 63369(T) =MTCC 11563(T)). PMID:24858572

  14. Actinopolyspora righensis sp. nov., a novel halophilic actinomycete isolated from Saharan soil in Algeria.

    PubMed

    Meklat, Atika; Bouras, Noureddine; Zitouni, Abdelghani; Mathieu, Florence; Lebrihi, Ahmed; Schumann, Peter; Spröer, Cathrin; Klenk, Hans-Peter; Sabaou, Nasserdine

    2013-09-01

    A novel halophilic actinomycete strain, H23(T), was isolated from a Saharan soil sample collected in Djamâa (Oued Righ region), El-Oued province, South Algeria. Strain H23(T) was identified as a member of the genus Actinopolyspora by a polyphasic approach. Phylogenetic analysis showed that strain H23(T) had 16S rRNA gene sequence similarities ranging from 97.8 % (Actinopolyspora xinjiangensis TRM 40136(T)) to 94.8 % (Actinopolyspora mortivallis DSM 44261(T)). The strain grew optimally at pH 6.0-7.0, 28-32 °C and in the presence of 15-25 % (w/v) NaCl. The substrate mycelium was well developed and fragmented with age. The aerial mycelium produced long, straight or flexuous spore chains with non-motile, smooth-surfaced and rod-shaped spores. Strain H23(T) had MK-10 (H4) and MK-9 (H4) as the predominant menaquinones. The whole micro-organism hydrolysates mainly consisted of meso-diaminopimelic acid, galactose and arabinose. The diagnostic phospholipid detected was phosphatidylcholine. The major cellular fatty acids were anteiso-C17:0 (37.4 %), iso-C17:0 (14.8 %), iso-C15:0 (14.2 %), and iso-C16:0 (13.9 %). The genotypic and phenotypic data show that the strain represents a novel species of the genus Actinopolyspora, for which the name Actinopolyspora righensis sp. nov. is proposed, with the type strain H23(T) (=DSM 45501(T) = CCUG 63368(T) = MTCC 11562(T)). PMID:23754661

  15. Nonomuraea indica sp. nov., novel actinomycetes isolated from lime-stone open pit mine, India.

    PubMed

    Quadri, Syed Raziuddin; Tian, Xin-Peng; Zhang, Jing; Li, Jie; Nie, Guo-Xing; Tang, Shu-Kun; Al Ruwaili, Jamal; Agsar, Dayanand; Li, Wen-Jun; Dastager, Syed G

    2015-08-01

    A Gram-positive, aerobic, nonmotile actinomycete strain designated DRQ-2(T) was isolated from the soil sample collected from lime-stone open pit mine from the Gulbarga region, Karnataka province, India. Strain DRQ-2(T) was identified as a member of the genus Nonomuraea by a polyphasic approach. Strain DRQ-2(T) could be differentiated from other members of the genus Nonomuraea on the basis of physiology and 16S rRNA gene sequence analysis. The 16S rRNA gene sequence similarity of strain DRQ-2(T) showed highest sequence similarity to Nonomuraea muscovyensis DSM 45913(T) (99.1%), N. salmonea DSM 43678(T) (98.2%) and N. maheshkhaliensis JCM 13929(T) with 98.0%, respectively. Chemotaxonomic properties showing predominant menaquinones of MK-9 (H4), MK-9(H2) and MK-9(H6), major polar lipids comprised diphosphatidylglycerol, phosphatidylmono methyl ethanolamine (PME), phosphatidylethanolamine (PE), hydroxy-PME (OH-PME), hydroxy PE (OH-PEE), phosphatidylglycerol (PG), ninhydrin-positive phosphoglycolipid and unknown phospholipid, fatty acids with major amounts of i-C16:0, ai-C15:0 and ai-C17:0 supported allocation of the strain to the genus Nonomuraea. Results of DNA-DNA hybridization and physiological tests allowed genotypic and phenotypic differentiation of strain DRQ-2(T) from closely related species. The genomic DNA G+C content of the organism was 72.5 mol%. On the basis of phenotypic, chemotypic and molecular characteristics, strain DRQ-2(T) represents a novel species of the genus Nonomuraea, for which the name N. indica sp. nov. is proposed, with type strain DRQ-2(T) (=NCIM 5480(T)= CCTCC AA 209050(T)). PMID:25783226

  16. Streptomyces tyrosinilyticus sp. nov., a novel actinomycete isolated from river sediment.

    PubMed

    Zhao, Junwei; Guo, Lifeng; Liu, Chongxi; Bai, Lu; Han, Chuanyu; Li, Jiansong; Xiang, Wensheng; Wang, Xiangjing

    2015-09-01

    A novel actinomycete, designated strain NEAU-Jh3-20(T), was isolated from river sediment collected from South river in Jilin Province, north China and characterized using a polyphasic approach. Phylogenetic analysis, based on 16S rRNA gene sequences, indicated that strain NEAU-Jh3-20(T) should be assigned to the genus Streptomyces and forms a distinct branch with its closest neighbour Streptomyces vitaminophilus DSM 41686(T)(97.09%). Moreover, key morphological and chemotaxonomic properties also confirmed the affiliation of strain NEAU-Jh3-20(T) to the genus Streptomyces. The cell wall contained ll-diaminopimelic acid and the whole-cell hydrolysates were glucose and ribose. The phospholipids were diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylinositol, phosphatidylinositol mannosides and an unidentified phospholipid. The predominant menaquinones were MK-9(H8) and MK-9(H6). The major fatty acids were C16 : 0, C18 : 0, anteiso-C15 : 0 and anteiso-C17 : 0. The DNA G+C content was 72.2 mol%. A combination of DNA-DNA hybridization results and some phenotypic characteristics demonstrated that strain NEAU-Jh3-20(T) could be distinguished from its closest phylogenetic relative. Therefore, it is proposed that strain NEAU-Jh3-20(T) represents a novel species of the genus Streptomyces, for which the name Streptomyces tyrosinilyticus sp. nov. is proposed. The type strain is NEAU-Jh3-20(T) ( = CGMCC 4.7201(T)= DSM 42170(T)). PMID:26297662

  17. Streptomyces gilvifuscus sp. nov., an actinomycete that produces antibacterial compounds isolated from soil.

    PubMed

    Nguyen, uan Manh; Kim, Jaisoo

    2015-10-01

    This study describes a novel actinomycete, designated T113T, which was isolated from forest soil in Pyeongchang-gun, Republic of Korea, and is an aerobic, Gram-stain-positive actinobacterium that forms flexibilis chains of smooth, elliptical or short rod-shaped spores. The results of 16S rRNA sequence analysis indicated that strain T113T exhibited high levels of similarity to previously characterized species of the genus Streptomyces (98.19–98.89 %, respectively). However, the results of phylogenetic and DNA–DNA hybridization analyses confirmed that the organism represented a novel member of the genus Streptomyces. Furthermore, using chemotaxonomic and phenotypic analyses it was demonstrated that the strain exhibited characteristics similar to those of other members of the genus Streptomyces. The primary cellular fatty acids expressed by this strain included anteiso-C15 : 0, anteiso-C17 : 0, iso-C15 : 0 and iso-C16 : 0. While diphosphatidylglycerol and phosphatidylethanolamine were the predominant lipids expressed by strain T113T, moderate amounts of phosphatidylinositol and phosphatidylinositol mannoside were also detected. Whole-cell hydrolysates contained glucose and ribose, and the predominant menaquinone detected was MK-9 (H6); however, moderate amounts of MK-9 (H8) and trace amounts of MK-10 (H2) and MK-10 (H4) were also detected. We therefore propose that strain T113T be considered as representing a novel species of the genus Streptomyces and propose the name Streptomyces gilvifuscus sp. nov. for this species, with strain T113T ( = KEMB 9005-213T = KACC 18248T = NBRC 110904T) being the type strain. PMID:26297131

  18. Streptomyces formicae sp. nov., a novel actinomycete isolated from the head of Camponotus japonicus Mayr.

    PubMed

    Bai, Lu; Liu, Chongxi; Guo, Lifeng; Piao, Chenyu; Li, Zhilei; Li, Jiansong; Jia, Feiyu; Wang, Xiangjing; Xiang, Wensheng

    2016-02-01

    During a screening for novel and biotechnologically useful actinobacteria in insects, a novel actinomycete with antifungal activity, designated strain 1H-GS9(T), was isolated from the head of a Camponotus japonicus Mayr ant, which were collected from Northeast Agricultural University (Harbin, Heilongjiang, China). Strain 1H-GS9(T) was characterised using a polyphasic approach. The organism was found to have morphological and chemotaxonomic characteristics typical of members of the genus Streptomyces. 16S rRNA gene sequence similarity studies showed that strain 1H-GS9(T) belongs to the genus Streptomyces with high sequence similarities to Streptomyces scopuliridis DSM 41917(T) (98.8 %) and Streptomyces mauvecolor JCM 5002(T) (98.6 %). However, phylogenetic analysis based on the 16S rRNA gene sequence indicated that it forms a monophyletic clade with Streptomyces kurssanovii JCM 4388(T) (98.6 %), Streptomyces xantholiticus JCM 4282(T) (98.6 %) and Streptomyces peucetius JCM 9920(T) (98.5 %). Thus, a combination of DNA-DNA hybridization experiments and phenotypic tests were carried out between strain 1H-GS9(T) and the above-mentioned five strains, which further clarified their relatedness and demonstrated that strain 1H-GS9(T) could be distinguished from these strains. Therefore, the strain is concluded to represent a novel species of the genus Streptomyces, for which the name Streptomyces formicae sp. nov. is proposed. The type strain is 1H-GS9(T) (=CGMCC 4.7277(T) = DSM 100524(T)). PMID:26608172

  19. Nocardia halotolerans sp. nov., a halotolerant actinomycete isolated from saline soil.

    PubMed

    Moshtaghi Nikou, Mahdi; Ramezani, Mohaddaseh; Ali Amoozegar, Mohammad; Rasooli, Mehrnoosh; Harirchi, Sharareh; Shahzadeh Fazeli, Seyed Abolhasan; Schumann, Peter; Spröer, Cathrin; Ventosa, Antonio

    2015-09-01

    A novel halotolerant actinomycete, strain Chem15(T), was isolated from soil around Inche-Broun hypersaline wetland; its taxonomic position was determined based on a polyphasic approach. Strain Chem15(T) was strictly aerobic and tolerated NaCl up to 12.5%. The optimum temperature and pH for growth were 28-30 °C and pH 7.0-7.5, respectively. The cell wall of strain Chem15(T) contained meso-diaminopimelic acid as diamino acid and galactose, arabinose and ribose as whole-cell sugars. The major phospholipids were diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, phosphatidylinositol and phosphatidylinositol mannosides. The cellular fatty acids profile consisted of C16 : 0, iso-C18 : 0, C18 : 0 10-methyl and C18 : 1ω9c, and the major respiratory quinone was MK-8(H4cycl). The G+C content of the genomic DNA was 68.0 mol%. The novel strain constituted a distinct phyletic line within the genus Nocardia, based on 16S rRNA gene sequence analysis, and was closely associated with Nocardia sungurluensis DSM 45714(T) and Nocardia alba DSM 44684(T) (98.2 and 98.1% 16S rRNA gene sequence similarity, respectively). However DNA-DNA relatedness and phenotypic data demonstrated that strain Chem15(T) was clearly different from closely related species of the genus Nocardia. It is concluded that the organism should be classified as a representative of a novel species of the genus Nocardia, for which the name Nocardia halotolerans sp. nov. is proposed. The type strain is Chem15(T) ( = IBRC-M 10490(T) = LMG 28544(T)). PMID:26297293

  20. Actinocorallia lasiicapitis sp. nov., an actinomycete isolated from the head of an ant (Lasius fuliginosus L.).

    PubMed

    Liu, Chongxi; Li, Yao; Ye, Lan; Zhao, Junwei; Piao, Chenyu; Li, Zhilei; Li, Jiansong; Xiang, Wensheng; Wang, Xiangjing

    2016-06-01

    A novel actinomycete, designated strain 3H-GS17T, was isolated from the head of an ant (Lasius fuliginosus L.) and characterized using a polyphasic approach. 16S rRNA gene sequence similarity studies showed that strain 3H-GS17T belongs to the genus Actinocorallia with high sequence similarity to Actinocorallia glomerata JCM 9376T (98.13 %) and Actinocorallia longicatena JCM 9377T (97.64 %). The chemotaxonomic properties of strain 3H-GS17T were also consistent with those of members of the genus Actinocorallia. The cell wall contained meso-diaminopimelic acid and whole-cell sugars were ribose, mannose, glucose, galactose and madurose. The predominant menaquinones were MK-9(H4), MK-9(H6) and MK-9(H8). The phospholipid profile consisted of diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylinositol and phosphatidylinositol mannoside. The major fatty acids were C16 : 0 and C18 : 1ω7с. A combination of DNA-DNA hybridization experiments and phenotypic tests were carried out between strain 3H-GS17T and its closely related strains, which further clarified their relatedness and demonstrated that 3H-GS17T could be distinguished from these strains. Therefore, strain 3H-GS17T is concluded to represent a novel species of the genus Actinocorallia, for which the name Actinocorallia lasiicapitis sp. nov. is proposed. The type strain is 3H-GS17T (=DSM 100595T=CGMCC 4.7282T). PMID:26944933

  1. Saccharopolyspora ghardaiensis sp. nov., an extremely halophilic actinomycete isolated from Algerian Saharan soil.

    PubMed

    Meklat, Atika; Bouras, Noureddine; Zitouni, Abdelghani; Sabaou, Nasserdine; Mathieu, Florence; Schumann, Peter; Spröer, Cathrin; Klenk, Hans-Peter

    2014-04-01

    A novel halophilic actinomycete, strain designated H53(T), was isolated from a Saharan soil sample collected from Chaâbet Ntissa, Béni-isguen, Ghardaïa (South of Algeria) and was characterized taxonomically by means of polyphasic approach. Optimal growth was found to occur at 30-35 °C, pH 6-7 and in the presence of 15-25% (w/v) NaCl. The strain was observed to produce abundant aerial mycelium, which formed long chains of rod-shaped spores at maturity, and well developed and fragmented substrate mycelium. The cell wall was determined to contain meso-diaminopimelic acid; the diagnostic whole-cell sugars were arabinose and galactose. The predominant menaquinones were found to be MK-9(H₄) and MK-9(H₆). The predominant cellular fatty acids were determined to be iso- and anteiso-C17:0, iso-C15:0, and cis9 iso-C17:1. The diagnostic phospholipid detected was phosphatidylcholine. The morphological and chemotaxonomic characteristics of the strain were consistent with those of members of the genus Saccharopolyspora. Phylogenetic analyses on the basis of the 16S ribosomal RNA (rRNA) gene sequence showed that this strain formed a distinct phyletic line within the radiation of the genus Saccharopolyspora. The 16S rRNA sequence similarities between strain H53(T) and other members of the genus Saccharopolyspora ranged from 92.1 to 94.3%. The DNA G+C content of strain H53(T) was 72.6%. The genotypic and phenotypic data showed that the strain H53(T) represents a novel species of the genus Saccharopolyspora, for which the name Saccharopolyspora ghardaiensis sp. nov. is proposed, with the type strain H53(T) (=DSM 45606(T)=CCUG 63370(T)=CECT 8304(T)). PMID:24346634

  2. Gymnemagenin-producing endophytic fungus isolated from a medicinal plant Gymnema sylvestre R.Br.

    PubMed

    Parthasarathy, Ramalingam; Sathiyabama, Muthukrishnan

    2014-03-01

    Gymnema sylvestre is a plant containing the triterpenoid gymnemagenin, which is used in the pharmaceutical industry as an antidiabetic agent. The objective of this study was to determine whether endophytic fungi, isolated from G. sylvestre, produce gymnemagenin. We isolated an endophytic fungal strain from the leaves of G. sylvestre which produces gymnemagenin in the medium. The fungus was identified as Penicillium oxalicum based on morphological and molecular methods. The strain had a component with the same TLC Rf value and HPLC retention time as authentic gymnemagenin. The presence of gymnemagenin was further confirmed by FTIR, UV, and (1)H NMR analyses. PMID:24497046

  3. Endophytic Fungi Isolated from Coleus amboinicus Lour Exhibited Antimicrobial Activity

    PubMed Central

    Astuti, Puji; Sudarsono, Sudarsono; Nisak, Khoirun; Nugroho, Giri Wisnu

    2014-01-01

    Purpose: Coleus amboinicus is a medicinal plant traditionally used to treat various diseases such as throat infection, cough and fever, diarrhea, nasal congestion and digestive problems. The plant was explored for endophytic fungi producing antimicrobial agents. Methods: Screening for endophytic fungi producing antimicrobial agents was conducted using agar plug method and antimicrobial activity of promising ethyl acetate extracts was determined by disc diffusion assay. Thin layer chromatography (TLC) - bioautography was performed to localize the bioactive components within the extract. TLC visualization detection reagents were used to preliminary analyze phytochemical groups of the bioactive compounds. Results: Three endophytic fungi were obtained, two of them showed promising potential. Agar diffusion method showed that endophytic fungi CAL-2 exhibited antimicrobial activity against P. aeruginosa, B. subtilis, S. aureus and S. thypi, whilst CAS-1 inhibited the growth of B. subtilis. TLC bioautography of ethyl acetate extract of CAL-2 revealed at least three bands exhibited antimicrobial activity and at least two bands showed inhibition of B. subtilis growth. Preliminary analysis of the crude extracts suggests that bioactive compounds within CAL-2 extract are terpenoids, phenolics and phenyl propanoid compounds whilst the antimicrobial agents within CAS-1 extract are terpenoids, propylpropanoids, alkaloids or heterocyclic nitrogen compounds. Conclusion: These data suggest the potential of endophytic fungi of C. amboinicus as source for antimicrobial agents. PMID:25671195

  4. Actinopolyspora saharensis sp. nov., a novel halophilic actinomycete isolated from a Saharan soil of Algeria.

    PubMed

    Meklat, Atika; Bouras, Noureddine; Zitouni, Abdelghani; Mathieu, Florence; Lebrihi, Ahmed; Schumann, Peter; Spröer, Cathrin; Klenk, Hans-Peter; Sabaou, Nasserdine

    2013-04-01

    A novel halophilic actinomycete, strain H32(T), was isolated from a Saharan soil sample collected in El-Oued province, south Algeria. The isolate was characterized by means of polyphasic taxonomy. Optimal growth was determined to occur at 28-32 °C, pH 6.0-7.0 and in the presence of 15-25 % (w/v) NaCl. The strain was observed to produce abundant aerial mycelium, which formed long chains of rod-shaped spores at maturity, and fragmented substrate mycelium. The cell wall was determined to contain meso-diaminopimelic acid and the characteristic whole-cell sugars were arabinose and galactose. The predominant menaquinones were found to be MK-10(H4) and MK-9(H4). The predominant cellular fatty acids were determined to be anteiso C17:0, iso-C15:0 and iso-C16:0. The diagnostic phospholipid detected was phosphatidylcholine. Phylogenetic analyses based on the 16S rRNA gene sequence showed that this strain formed a distinct phyletic line within the radiation of the genus Actinopolyspora. The 16S rRNA gene sequence similarity indicated that strain H32(T) was most closely related to 'Actinopolyspora algeriensis' DSM 45476(T) (98.8 %) and Actinopolyspora halophila DSM 43834(T) (98.5 %). Furthermore, the result of DNA-DNA hybridization between strain H32(T) and the type strains 'A. algeriensis' DSM 45476(T), A. halophila DSM 43834(T) and Actinopolyspora mortivallis DSM 44261(T) demonstrated that this isolate represents a different genomic species in the genus Actinopolyspora. Moreover, the physiological and biochemical data allowed the differentiation of strain H32(T) from its closest phylogenetic neighbours. Therefore, it is proposed that strain H32(T) represents a novel species of the genus Actinopolyspora, for which the name Actinopolyspora saharensis sp. nov. is proposed. The type strain is H32(T) (=DSM 45459(T)=CCUG 62966(T)). PMID:23196893

  5. Molecular analysis of endophytic bacteria from the genus Bacillus isolated from tropical maize (Zea mays L.)

    PubMed Central

    Figueiredo, José Edson Fontes; Gomes, Eliane Aparecida; Guimarães, Claudia Teixeira; de Paula Lana, Ubiraci Gomes; Teixeira, Marta Aparecida; Lima, Guilherme Vitor Corrêa; Bressan, Wellington

    2009-01-01

    Endophytic bacteria play an important role in agriculture by improving plant performance and adaptation against biotic and abiotic stresses. In the present study molecular methods were used for identifying Bacillus endophytic bacteria isolated from Brazilian sweet corn. SDS-PAGE of whole-cell protein extract of forty-two isolates revealed a high number of scrutinable bands. Twenty-four isolates were identified in nine different groups of duplicated bacteria and eighteen were identified as unique. Some high-accumulated polipeptides with variable length were observed in almost isolates. Partial sequencing of 16S ribosomal gene revealed that all isolates are Bacillus sp. and among thirteen isolates with similar protein profiles, two were different strains. Among the forty-two isolates identified by rDNA sequencing, Bacillus subitilis and B. pumilus were the most frequenty species (15 and 12 isolates, respectively) followed by B. licheniformes (7 isolates), B. cereus (5 isolates) and B. amiloliquefascens (3 isolates). According to present results, SDS-PAGE technique could be used as a fast and cheap first tool for identifying inter-specific variation in maize endophytic bacterial collections while rDNA sequencing could be applied for analyzing intra-specific variation among isolates with similar protein profile as well as for taxonomic studies. PMID:24031395

  6. Detoxification of Atrazine by Endophytic Streptomyces sp. Isolated from Sugarcane and Detection of Nontoxic Metabolite.

    PubMed

    Mesquini, Josiane A; Sawaya, Alexandra C H F; López, Begonã G C; Oliveira, Valéria M; Miyasaka, Natalia R S

    2015-12-01

    Atrazine is still one of the most used agricultural pesticides worldwide and it has been recognized as a major contaminant of surface and ground water. The aims of this research were to isolate an endophytic microorganism from leaves of sugarcane, evaluate its ability to degrade atrazine, and investigate the formation of metabolites. By sequencing of the 16S rRNA gene, the endophytic isolate atz2 was identified as Streptomyces sp. The reduction in atrazine concentration by Streptomyces sp. atz2 was 98 % and UHPLC-MS/MS analyses showed the appearance of an unknown metabolite observed as m/z 311. Ecotoxicity tests with an aquatic organism, Daphnia similis, confirmed that this metabolite was nontoxic. This mechanism of detoxification of atrazine is different from the ones of other free-living microorganisms that inhabit the soil or rhizosphere. The results show new aspects of atrazine detoxification, highlighting a new role of endophytic bacteria in plants. PMID:26467569

  7. Isolation and identification of a 10-deacetyl baccatin-III-producing endophyte from Taxus wallichiana.

    PubMed

    Li, Yongchao; Yang, Jing; Zhou, Xiuren; Zhao, Wenen; Jian, Zaiyou

    2015-02-01

    Endophytic fungi of inner root bark of Taxus wallichiana var. mairei were investigated in order to find endophytes producing 10-DABIII (10-deacetyl baccatin III). Purified colonies were cultured in potato dextrose broth (PDB), and then the organic extracts from fungi were analyzed with HPLC, LC-MS, and (1)H NMR. Of 102 fungal endophytes isolated from the inner root bark, only one strain named IRB54 can yield 10-DABIII but no taxol and baccatin III. In PDB culture medium, its productivity was 187.564 ug/l. Based on its morphological characteristics and molecular data, the IRB54 strain was identified as Trichoderma sp. The isolation of the fungus IRB54 yielding 10-DABIII will provide an alternative resource to manufacture taxol/taxotere via semi-synthesis and some useful clues for improving the understanding of taxane synthesis evolution. PMID:25475888

  8. Antifungal Metabolites Produced by Chaetomium globosum No.04, an Endophytic Fungus Isolated from Ginkgo biloba.

    PubMed

    Zhang, Guizhen; Zhang, Yanhua; Qin, Jianchun; Qu, Xiaoyan; Liu, Jinliang; Li, Xiang; Pan, Hongyu

    2013-06-01

    The fungal endophyte Chaetomium globosum No.04 was isolated from the medicinal plant Ginkgo biloba. The crude extract of the fungus fermentation were active in the agar-diffusion tests against the phytopathogenic fungi Rhizopus stolonifer and Coniothyrium diplodiella. Further bioassay-guided chemical investigation led to the isolation and purification of six alkaloids and three non-targeted compounds from 50 L fermentation of this endophytic fungus and their structures were elucidated as chaetoglobosin A, C, D, E, G, R (1-6), ergosterol, allantoin and uracil, by means of spectroscopic analysis. Compounds 1-6 showed significant growth inhibitory activity against R. stolonifer and C. diplodiella at a concentration of 20 μg/disc. We present here, for the first time, the potent antifungal activity of chaetoglobosins from endophytic fungi against two important phytopathogenic fungi R. stolonifer and C. diplodiella. PMID:24426105

  9. Phylogenetic diversity of endophytic leaf fungus isolates from the medicinal tree Trichilia elegans (Meliaceae).

    PubMed

    Rhoden, S A; Garcia, A; Rubin Filho, C J; Azevedo, J L; Pamphile, J A

    2012-01-01

    Various types of organisms, mainly fungi and bacteria, live within vegetal organs and tissues, without causing damage to the plant. These microorganisms, which are called endophytes, can be useful for biological control and plant growth promotion; bioactive compounds from these organisms may have medical and pharmaceutical applications. Trichilia elegans (Meliaceae) is a native tree that grows abundantly in several regions of Brazil. Preparations using the leaves, seeds, bark, and roots of many species of the Meliaceae family have been widely used in traditional medicine, and some members of the Trichilia genus are used in Brazilian popular medicine. We assessed the diversity of endophytic fungi from two wild specimens of T. elegans, collected from a forest remnant, by sequencing ITS1-5.8S-ITS2 of rDNA of the isolates. The fungi were isolated and purified; 97 endophytic fungi were found; they were separated into 17 morpho-groups. Of the 97 endophytic fungi, four genera (Phomopsis, Diaporthe, Dothideomycete, and Cordyceps) with 11 morpho-groups were identified. Phomopsis was the most frequent genus among the identified endophytes. Phylogenetic analysis showed two major clades: Sordariomycetes, which includes three genera, Phomopsis, Diaporthe, and Cordyceps, and the clade Dothideomycetes, which was represented by the order Pleosporales. PMID:22782630

  10. Plant growth promotion induced by phosphate solubilizing endophytic Pseudomonas isolates

    PubMed Central

    Oteino, Nicholas; Lally, Richard D.; Kiwanuka, Samuel; Lloyd, Andrew; Ryan, David; Germaine, Kieran J.; Dowling, David N.

    2015-01-01

    The use of plant growth promoting bacterial inoculants as live microbial biofertilizers provides a promising alternative to chemical fertilizers and pesticides. Inorganic phosphate solubilization is one of the major mechanisms of plant growth promotion by plant associated bacteria. This involves bacteria releasing organic acids into the soil which solubilize the phosphate complexes converting them into ortho-phosphate which is available for plant up-take and utilization. The study presented here describes the ability of endophytic bacteria to produce gluconic acid (GA), solubilize insoluble phosphate, and stimulate the growth of Pisum sativum L. plants. This study also describes the genetic systems within three of these endophyte strains thought to be responsible for their effective phosphate solubilizing abilities. The results showed that many of the endophytic strains produced GA (14–169 mM) and have moderate to high phosphate solubilization capacities (~400–1300 mg L−1). When inoculated into P. sativum L. plants grown in soil under soluble phosphate limiting conditions, the endophytes that produced medium-high levels of GA displayed beneficial plant growth promotion effects. PMID:26257721

  11. Genome Sequence of Klebsiella oxytoca SA2, an Endophytic Nitrogen-Fixing Bacterium Isolated from the Pioneer Grass Psammochloa villosa

    PubMed Central

    Chen, Mingyue; Lin, Li; Zhang, Yanming; Sun, Li

    2013-01-01

    Klebsiella oxytoca strain SA2 is an endophytic nitrogen-fixing bacterium isolated from the pioneer grass Psammochloa villosa, which grows in the moving sand dunes of Ordos Plateau, China. The SA2 genome sequence provides the genetic background for understanding its endophytic lifestyle and survival in association with grass in nitrogen-poor environments. PMID:23950120

  12. Genome Sequence of Klebsiella oxytoca SA2, an Endophytic Nitrogen-Fixing Bacterium Isolated from the Pioneer Grass Psammochloa villosa.

    PubMed

    Chen, Mingyue; Lin, Li; Zhang, Yanming; Sun, Li; An, Qianli

    2013-01-01

    Klebsiella oxytoca strain SA2 is an endophytic nitrogen-fixing bacterium isolated from the pioneer grass Psammochloa villosa, which grows in the moving sand dunes of Ordos Plateau, China. The SA2 genome sequence provides the genetic background for understanding its endophytic lifestyle and survival in association with grass in nitrogen-poor environments. PMID:23950120

  13. Whole-Genome Sequence of Enterobacter sp. Strain SST3, an Endophyte Isolated from Jamaican Sugarcane (Saccharum sp.) Stalk Tissue

    PubMed Central

    Gan, Han Ming; McGroty, Sean E.; Chew, Teong Han; Chan, Kok Gan; Buckley, Larry J.; Savka, Michael A.

    2012-01-01

    Enterobacter sp. strain SST3 is an endophytic bacterium isolated from Saccharum spp. Here we present its annotated draft genome that may shed light on its role as a bacterial endophyte of sugarcane. To our knowledge, this is the first genome announcement of a sugarcane-associated bacterium from the genus Enterobacter. PMID:23045495

  14. Genome Sequence of Stenotrophomonas maltophilia RR-10, Isolated as an Endophyte from Rice Root

    PubMed Central

    Zhu, Bo; Liu, He; Tian, Wen-Xiao; Fan, Xiao-Ying; Li, Bin; Zhou, Xue-Ping

    2012-01-01

    Stenotrophomonas maltophilia is an endophyte which plays important roles in agricultural production as a plant growth-promoting bacterium. Here, we present the draft genome sequence of strain RR-10, which was isolated from a rice root in a rice field of China. PMID:22328769

  15. Metabolites from the endophytic fungus Sporormiella minimoides isolated from Hintonia latiflora

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An extract of the solid cultures of Sporormiella minimoides (Sporormiaceae) isolated as an endophytic fungus from Hintonia latiflora (Rubiaceae), yielded three polyketides, 3,6-dimethoxy-8-methyl-1H,6H-benzo[de]isochromene-1,9-dione, 3-hydroxy-1,6,10-trimethoxy-8-methyl-1H,3H-benzo[de]isochromen-9-o...

  16. (+)-Ascosalitoxin and vermelhotin, a calmodulin inhibitor, from an endophytic fungus isolated from Hintonia latiflora

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Chemical investigation of the endophytic fungus 39140-2, isolated from the medicinal plant Hintonia latiflora, yielded the known polyketide vermelhotin (1) and a new salycilic aldehyde derivative, namely 9S,11R-(+)-ascosalitoxin (2). The structure and absolute configuration of the new compound was ...

  17. Acremonium camptosporum isolated as an endophyte of Bursera simaruba from Yucatan Peninsula, Mexico

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This paper draws on morphological and molecular analyses to determinate the systematic position of an interesting endophytic fungus isolated from the leaves of Bursera simaruba, a tree of semideciduous dry tropical forest at El Eden Ecological Reserve. The cultured strain develops the characteristic...

  18. Thermoactinomyces guangxiensis sp. nov., a thermophilic actinomycete isolated from mushroom compost.

    PubMed

    Wu, Hao; Liu, Bin; Pan, Shangli

    2015-09-01

    A novel thermophilic actinomycete, designated strain CD-1(T), was isolated from mushroom compost in Nanning, Guangxi province, China. The strain grew at 37-55 °C (optimum 45-50 °C), pH 6.0-11.0 (optimum pH 7.0-9.0) and with 0-2.0% NaCl (optimum 0-1.0%), formed well-developed white aerial mycelium and pale-yellow vegetative mycelium, and single endospores (0.8-1.0 μm diameter) were borne on long sporophores (2-3 μm length). The endospores were spherical-polyhedron in shape with smooth surface. Based on its phenotypic and phylogenetic characteristics, strain CD-1(T) is affiliated to the genus Thermoactinomyces. It contained meso-diaminopimelic acid as the diagnostic diamino acid; the whole-cell sugars were ribose and glucose. Major fatty acids were iso-C15 :  0, C16 : 0, anteiso-C15  : 0 and iso-C17  : 0. MK-7 was the predominant menaquinone. The polar phospholipids were diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, phosphatidylethanolamine containing hydroxylated fatty acids, ninhydrin-positive glycophospholipid, an unknown phospholipid and glycolipids. The G+C content of the genomic DNA was 48.8%. 16S rRNA gene sequence analysis showed that the organism was closely related to Lihuaxuella thermophila YIM 77831(T) (95.69% sequence similarity), Thermoactinomyces daqus H-18(T) (95.49%), Laceyella putida KCTC 3666(T) (95.05%), Thermoactinomyces vulgaris KCTC 9076(T) (95.01%) and Thermoactinomyces intermedius JCM 3312(T) (94.55%). Levels of DNA-DNA relatedness between strain CD-1T and Lihuaxuella thermophila JCM 18059(T), Thermoactinomyces daqus DSM 45914(T), Laceyella putida JCM 8091(T), Thermoactinomyces vulgaris JCM 3162(T) and Thermoactinomyces intermedius JCM 3312(T) were low (22.8, 33.3, 24.7, 29.4 and 30.0%, respectively). A battery of phenotypic, genotypic and DNA-DNA relatedness data indicated that strain CD-1T represented a novel species of the genus Thermoactinomyces, for which the name Thermoactinomyces guangxiensis sp. nov

  19. Saccharopolyspora subtropica sp. nov., a thermophilic actinomycete isolated from soil of a sugar cane field.

    PubMed

    Wu, Hao; Liu, Bin; Pan, Shangli

    2016-05-01

    A novel thermophilic actinomycete, designated strain T3T, was isolated from a soil sample of a sugar cane field. The strain grew at 25-60 °C (optimum 37-50 °C), at pH 6.0-11.0 (optimum 7.0-9.0) and with 0-12.0 % (w/v) NaCl (optimum 0-7 %). The aerial mycelium was white and the vegetative mycelium was colourless to pale yellow. The substrate mycelium fragmented into rod-shaped elements after 4-5 days at 50 °C. The aerial mycelium formed flexuous chains of 5-20 spores per chain; the oval-shaped spores had spiny surfaces and were non-motile. The organism contained meso-diaminopimelic acid as the diagnostic diamino acid in the cell-wall peptidoglycan. The whole-cell sugars consisted of arabinose, galactose and ribose. The cellular fatty acid profile consisted mainly of anteiso-C17 : 0, iso-C17 : 0 and iso-C16 : 0. The quinone system was composed predominantly of MK-9(H4). The phospholipids detected were diphosphatidylglycerol, phosphatidylcholine, phosphatidylinositol, phosphatidylethanolamine, phosphatidylmethylethanolamine and ninhydrin-positive glycophospholipids. The DNA G+C content of strain T3T was 71.3 mol%. The organism showed a combination of morphological and chemotaxonomic properties typical of members of the genus Saccharopolyspora. In the 16S rRNA gene tree of Saccharopolyspora it formed a distinct phyletic line and was related most closely to Saccharopolyspora thermophila 216T. However, the phenotypic characteristics of strain T3T were significantly different from those of S. thermophila 216T and DNA-DNA hybridization revealed a low level of relatedness (28.6-32.3 %) between them. Based on the phenotypic and phylogenetic data, strain T3T represents a novel species in the genus Saccharopolyspora, for which the name Saccharopolyspora subtropica sp. nov. is proposed. The type strain is T3T ( = DSM 46801T = CGMCC 4.7206T). PMID:26882893

  20. Morphological, Physiological, and Taxonomic Characterization of Actinobacterial Isolates Living as Endophytes of Cacao Pods and Cacao Seeds

    PubMed Central

    Tchinda, Romaric Armel Mouafo; Boudjeko, Thaddée; Simao-Beaunoir, Anne-Marie; Lerat, Sylvain; Tsala, Éric; Monga, Ernest; Beaulieu, Carole

    2016-01-01

    Vascular plants are commonly colonized by endophytic actinobacteria. However, very little is known about the relationship between these microorganisms and cacao fruits. In order to determine the physiological and taxonomic relationships between the members of this community, actinobacteria were isolated from cacao fruits and seeds. Among the 49 isolates recovered, 11 morphologically distinct isolates were selected for further characterization. Sequencing of the 16S rRNA gene allowed the partition of the selected isolates into three phylogenetic clades. Most of the selected endophytic isolates belonged to the Streptomyces violaceusniger clade. Physiological characterization was carried out and a similarity index was used to cluster the isolates. However, clustering based on physiological properties did not match phylogenetic lineages. Isolates were also characterized for traits commonly associated with plant growth-promoting bacteria, including antibiosis and auxin biosynthesis. All isolates exhibited resistance to geldanamycin, whereas only two isolates were shown to produce this antibiotic. Endophytes were inoculated on radish seedlings and most isolates were found to possess plant growth-promoting abilities. These endophytic actinobacteria inhibited the growth of various plant pathogenic fungi and/or bacteria. The present study showed that S. violaceusniger clade members represent a significant part of the actinobacterial community living as endophytes in cacao fruits and seeds. While several members of this clade are known to be geldanamycin producers and efficient biocontrol agents of plant diseases, we herein established the endophytic lifestyle of some of these microorganisms, demonstrating their potential as plant health agents. PMID:26947442

  1. Morphological, Physiological, and Taxonomic Characterization of Actinobacterial Isolates Living as Endophytes of Cacao Pods and Cacao Seeds.

    PubMed

    Tchinda, Romaric Armel Mouafo; Boudjeko, Thaddée; Simao-Beaunoir, Anne-Marie; Lerat, Sylvain; Tsala, Éric; Monga, Ernest; Beaulieu, Carole

    2016-01-01

    Vascular plants are commonly colonized by endophytic actinobacteria. However, very little is known about the relationship between these microorganisms and cacao fruits. In order to determine the physiological and taxonomic relationships between the members of this community, actinobacteria were isolated from cacao fruits and seeds. Among the 49 isolates recovered, 11 morphologically distinct isolates were selected for further characterization. Sequencing of the 16S rRNA gene allowed the partition of the selected isolates into three phylogenetic clades. Most of the selected endophytic isolates belonged to the Streptomyces violaceusniger clade. Physiological characterization was carried out and a similarity index was used to cluster the isolates. However, clustering based on physiological properties did not match phylogenetic lineages. Isolates were also characterized for traits commonly associated with plant growth-promoting bacteria, including antibiosis and auxin biosynthesis. All isolates exhibited resistance to geldanamycin, whereas only two isolates were shown to produce this antibiotic. Endophytes were inoculated on radish seedlings and most isolates were found to possess plant growth-promoting abilities. These endophytic actinobacteria inhibited the growth of various plant pathogenic fungi and/or bacteria. The present study showed that S. violaceusniger clade members represent a significant part of the actinobacterial community living as endophytes in cacao fruits and seeds. While several members of this clade are known to be geldanamycin producers and efficient biocontrol agents of plant diseases, we herein established the endophytic lifestyle of some of these microorganisms, demonstrating their potential as plant health agents. PMID:26947442

  2. Genetic diversity and antimicrobial activity of endophytic Myrothecium spp. isolated from Calophyllum apetalum and Garcinia morella.

    PubMed

    Ruma, Karmakar; Sunil, Kumar; Kini, Kukkundoor R; Prakash, Harischandra Sripathy

    2015-11-01

    Calophyllum apetalum and Garcinia morella, medicinal plants are endemic to Western Ghats, Karnataka, India. Sixteen Myrothecium isolates were obtained from the tissues of bark and twigs of these plants. The purpose of this study was to explore the antimicrobial activity and genetic variability of the endophytic Myrothecium isolates. The antimicrobial activity as well as the genetic diversity of endophytic Myrothecium species was investigated through RAPD, ISSR and ITS sequence analysis. Myrothecium isolates were genotypically compared by RAPD and ISSR techniques, 510 and 189 reproducible polymorphic bands were obtained using 20 RAPD and ten ISSR primers respectively. The isolates grouped into four main clades and subgroups using unweighted pair group method with arithmetic mean cluster analysis. rDNA ITS sequence analysis presented better resolution for characterising the isolates of Myrothecium spp. The clustering patterns of the isolates were almost similar when compared with RAPD and ISSR dendograms. The results signify that RAPD, ISSR and ITS analysis can be employed to distinguish the genetic diversity of the Myrothecium species. The endophytic and pathogenic strains were compared by maximum parsimony, maximum likelihood and neighbour joining methods. One isolate (JX862206) amongst the 16 Myrothecium isolates exhibited potent antibacterial and as well as anti-Candida activity. PMID:26409457

  3. Isolation, Taxonomy, and Antagonistic Properties of Halophilic Actinomycetes in Saharan Soils of Algeria ▿

    PubMed Central

    Meklat, Atika; Sabaou, Nasserdine; Zitouni, Abdelghani; Mathieu, Florence; Lebrihi, Ahmed

    2011-01-01

    The diversity of a population of 52 halophilic actinomycetes was evaluated by a polyphasic approach, which showed the presence of members of the Actinopolyspora, Nocardiopsis, Saccharomonospora, Streptomonospora, and Saccharopolyspora genera. One strain was considered to be a new member of the last genus, and several other strains seemed to be new species. Furthermore, 50% of strains were active against a broad range of indicators and contained genes encoding polyketide synthetases and nonribosomal peptide synthetases. PMID:21764956

  4. Isolation, taxonomy, and antagonistic properties of halophilic actinomycetes in Saharan soils of Algeria.

    PubMed

    Meklat, Atika; Sabaou, Nasserdine; Zitouni, Abdelghani; Mathieu, Florence; Lebrihi, Ahmed

    2011-09-01

    The diversity of a population of 52 halophilic actinomycetes was evaluated by a polyphasic approach, which showed the presence of members of the Actinopolyspora, Nocardiopsis, Saccharomonospora, Streptomonospora, and Saccharopolyspora genera. One strain was considered to be a new member of the last genus, and several other strains seemed to be new species. Furthermore, 50% of strains were active against a broad range of indicators and contained genes encoding polyketide synthetases and nonribosomal peptide synthetases. PMID:21764956

  5. Phylogenetic and chemical diversity of fungal endophytes isolated from Silybum marianum (L) Gaertn. (milk thistle)

    PubMed Central

    Raja, Huzefa A.; Kaur, Amninder; El-Elimat, Tamam; Figueroa, Mario; Kumar, Rahul; Deep, Gagan; Agarwal, Rajesh; Faeth, Stanley H.; Cech, Nadja B.; Oberlies, Nicholas H.

    2015-01-01

    Use of the herb milk thistle (Silybum marianum) is widespread, and its chemistry has been studied for over 50 years. However, milk thistle endophytes have not been studied previously for their fungal and chemical diversity. We examined the fungal endophytes inhabiting this medicinal herb to determine: (1) species composition and phylogenetic diversity of fungal endophytes; (2) chemical diversity of secondary metabolites produced by these organisms; and (3) cytotoxicity of the pure compounds against the human prostate carcinoma (PC-3) cell line. Forty-one fungal isolates were identified from milk thistle comprising 25 operational taxonomic units based on BLAST search via GenBank using published authentic sequences from nuclear ribosomal internal transcribed spacer sequence data. Maximum likelihood analyses of partial 28S rRNA gene showed that these endophytes had phylogenetic affinities to four major classes of Ascomycota, the Dothideomycetes, Sordariomycetes, Eurotiomycetes, and Leotiomycetes. Chemical studies of solid–substrate fermentation cultures led to the isolation of four new natural products. In addition, 58 known secondary metabolites, representing diverse biosynthetic classes, were isolated and characterized using a suite of nuclear magnetic resonance and mass spectrometry techniques. Selected pure compounds were tested against the PC-3 cell line, where six compounds displayed cytotoxicity. PMID:26000195

  6. Morphological and genetic characterization of endophytic bacteria isolated from roots of different maize genotypes.

    PubMed

    Ikeda, Angela Cristina; Bassani, Luciana Lange; Adamoski, Douglas; Stringari, Danyelle; Cordeiro, Vanessa Kava; Glienke, Chirlei; Steffens, Maria Berenice Reynaud; Hungria, Mariangela; Galli-Terasawa, Lygia Vitoria

    2013-01-01

    Maize is one of the most important crops worldwide, and in Brazil, the state of Paraná stands as its largest producer. The crop demands high inputs of N fertilizers, therefore all strategies aiming to optimize the grain production with lower inputs are very relevant. Endophytic bacteria have a high potential to increment maize grain yield by means of input via biological nitrogen fixation and/or plant growth promotion, in this last case increasing the absorption of water and nutrients by the plants. In this study, we established a collection of 217 endophytic bacteria, isolated from roots of four lineages and three hybrid genotypes of maize, and isolated in four different N-free culture media. Biochemical-comprising growth in different carbon sources, intrinsic tolerance to antibiotics, and biochemical tests for catalase, nitrate reductase, urease, and growth in N-free media in vitro-and genetic characterization by BOX-PCR revealed great variability among the isolates. Both commercial hybrids and homozygous lineages were broadly colonized by endophytes, and sequencing of the 16S rRNA gene revealed the presence of bacteria belonging to the genera Pantoea, Bacillus, Burkholderia, and Klebsiella. Qualitative differences in endophytic colonization were detected between lineages and hybrid genotypes. PMID:22956211

  7. Characterization of Antifungal Natural Products Isolated from Endophytic Fungi of Finger Millet (Eleusine coracana).

    PubMed

    Mousa, Walaa Kamel; Schwan, Adrian L; Raizada, Manish N

    2016-01-01

    Finger millet is an ancient African-Indian crop that is resistant to many pathogens including the fungus, Fusarium graminearum. We previously reported the first isolation of putative fungal endophytes from finger millet and showed that the crude extracts of four strains had anti-Fusarium activity. However, active compounds were isolated from only one strain. The objectives of this study were to confirm the endophytic lifestyle of the three remaining anti-Fusarium isolates, to identify the major underlying antifungal compounds, and to initially characterize the mode(s) of action of each compound. Results of confocal microscopy and a plant disease assay were consistent with the three fungal strains behaving as endophytes. Using bio-assay guided fractionation and spectroscopic structural elucidation, three anti-Fusarium secondary metabolites were purified and characterized. These molecules were not previously reported to derive from fungi nor have antifungal activity. The purified antifungal compounds were: 5-hydroxy 2(3H)-benzofuranone, dehydrocostus lactone (guaianolide sesquiterpene lactone), and harpagoside (an iridoide glycoside). Light microscopy and vitality staining were used to visualize the in vitro interactions between each compound and Fusarium; the results suggested a mixed fungicidal/fungistatic mode of action. We conclude that finger millet possesses fungal endophytes that can synthesize anti-fungal compounds not previously reported as bio-fungicides against F. graminearum. PMID:27598120

  8. Antimicrobial activity in cultures of endophytic fungi isolated from Garcinia species.

    PubMed

    Phongpaichit, Souwalak; Rungjindamai, Nattawut; Rukachaisirikul, Vatcharin; Sakayaroj, Jariya

    2006-12-01

    The aim of the present study was to screen for antimicrobial activity in endophytic fungi isolated from surface sterilized leaves and branches of five Garcinia plants, G. atroviridis, G. dulcis, G. mangostana, G. nigrolineata and G. scortechinii, found in southern Thailand. Fermentation broths from 377 isolated fungi were tested for antimicrobial activity by the agar diffusion method. Minimum inhibitory concentrations (MICs) were obtained for crude ethyl acetate extracts. Seventy isolates (18.6%) displayed antimicrobial activity against at least one pathogenic microorganism, such as Staphylococcus aureus, a clinical isolate of methicillin-resistant S. aureus, Candida albicans and Cryptococcus neoformans. The results revealed that 6-10%, 1-2% and 18% of the crude ethyl acetate extracts inhibited both strains of S. aureus (MIC 32-512 microg mL(-1)), Ca. albicans and Cr. neoformans (MIC 64-200 microg mL(-1)), and Microsporum gypseum (MIC 2-64 microg mL(-1)), respectively. Isolates D15 and M76 displayed the strongest antibacterial activity against both strains of S. aureus. Isolates M76 and N24 displayed strong antifungal activity against M. gypseum. Fungal molecular identification based on internal transcribed spacer rRNA gene sequence analysis demonstrated that isolates D15 (DQ480353), M76 (DQ480360) and N24 (DQ480361) represented Phomopsis sp., Botryosphaeria sp. and an unidentified fungal endophyte, respectively. These results indicate that some endophytic fungi from Garcinia plants are a potential source of antimicrobial agents. PMID:17052267

  9. Polyketides from an Endophytic Aspergillus fumigatus Isolate Inhibit the Growth of Mycobacterium tuberculosis and MRSA.

    PubMed

    Flewelling, Andrew J; Bishop, Amanda I; Johnson, John A; Gray, Christopher A

    2015-10-01

    The crude extract of Aspergillusfumigatus isolate AF3-093A, an endophyte of the brown alga Fucus vesiculosus, showed significant antimicrobial activity in initial bioactivity screens. Bioassay-guided fractionation of the extract led to the isolation of flavipin, chaetoglobosin A and chaetoglobosin B, all of which inhibited the growth of Staphylococcus aureus, methicillin-resistant S. aureus and Mycobacterium tuberculosis H37Ra. The antimycobacterial activity of these compounds has not been previously reported. PMID:26669098

  10. Endophytic Fungi Isolated from Oil-Seed Crop Jatropha curcas Produces Oil and Exhibit Antifungal Activity

    PubMed Central

    Kumar, Susheel; Kaushik, Nutan

    2013-01-01

    Jatropha curcas L., a perennial plant grown in tropics and subtropics is popularly known for its potential as biofuel. The plant is reported to survive under varying environmental conditions having tolerance to stress and an ability to manage pest and diseases. The plant was explored for its endophytic fungi for use in crop protection. Endophytic fungi were isolated from leaf of Jatropha curcas, collected from New Delhi, India. Four isolates were identified as Colletotrichum truncatum, and other isolates were identified as Nigrospora oryzae, Fusarium proliferatum, Guignardia cammillae, Alternaria destruens, and Chaetomium sp. Dual plate culture bioassays and bioactivity assays of solvent extracts of fungal mycelia showed that isolates of Colletotrichum truncatum were effective against plant pathogenic fungi Fusarium oxysporum and Sclerotinia sclerotiorum. Isolate EF13 had highest activity against S. sclerotiorum. Extracts of active endophytic fungi were prepared and tested against S. sclerotiorum. Ethyl acetate and methanol extract of C. truncatum EF10 showed 71.7% and 70% growth inhibition, respectively. Hexane extracts of C. truncatum isolates EF9, EF10, and EF13 yielded oil and the oil from EF10 was similar to oil of the host plant, i.e., J. curcas. PMID:23409154

  11. Endophytic fungi isolated from oil-seed crop Jatropha curcas produces oil and exhibit antifungal activity.

    PubMed

    Kumar, Susheel; Kaushik, Nutan

    2013-01-01

    Jatropha curcas L., a perennial plant grown in tropics and subtropics is popularly known for its potential as biofuel. The plant is reported to survive under varying environmental conditions having tolerance to stress and an ability to manage pest and diseases. The plant was explored for its endophytic fungi for use in crop protection. Endophytic fungi were isolated from leaf of Jatropha curcas, collected from New Delhi, India. Four isolates were identified as Colletotrichum truncatum, and other isolates were identified as Nigrospora oryzae, Fusarium proliferatum, Guignardia cammillae, Alternaria destruens, and Chaetomium sp. Dual plate culture bioassays and bioactivity assays of solvent extracts of fungal mycelia showed that isolates of Colletotrichum truncatum were effective against plant pathogenic fungi Fusarium oxysporum and Sclerotinia sclerotiorum. Isolate EF13 had highest activity against S. sclerotiorum. Extracts of active endophytic fungi were prepared and tested against S. sclerotiorum. Ethyl acetate and methanol extract of C. truncatum EF10 showed 71.7% and 70% growth inhibition, respectively. Hexane extracts of C. truncatum isolates EF9, EF10, and EF13 yielded oil and the oil from EF10 was similar to oil of the host plant, i.e., J. curcas. PMID:23409154

  12. Screening of endophytic bacteria isolated from leaves of Sambung Nyawa [Gynura procumbens (Lour.) Merr.] for cytokinin-like compounds

    PubMed Central

    Bhore, Subhash J; Ravichantar, Nithya; Loh, Chye Ying

    2010-01-01

    Endophytic bacteria are harmless in most plant species; and known to boost the growth and development of the host plants probably by secreting growth hormones. The isolation, identification and screening of endophytic bacteria for the plant growth regulators like cytokinin are needed to get the leads for their applications in agriculture sector. We describe the isolation and identification of the bacterial endophytes from the leaves of Sambung Nyawa [Gynura procumbens (Lour.) Merr.] and their screening for cytokinin-like compounds. We isolated three endophytic bacteria from the leaves of G. procumbens collected from the forest research institute of Malaysia (FRIM). They were further identified using amplified 16S rRNA gene sequence based method of bacterial identification. The ethyl acetate extracts of the isolates-broth were analyzed using cucumber cotyledon greening bioassay (CCGB) to determine the presence of cytokinin-like compounds. Consequently, the bacterial putative endophytes were identified as Psuedomonas resinovorans, Paenibacillus polymaxa, and Acenitobacter calcoaceticus. Broth-extracts from two (Psuedomonas resinovorans and Paenibacillus polymaxa) of the three putative bacterial endophytes show the positive results in their screening for cytokinin-like compounds using CCGB. Thus, we hypothesize that the bacterial putative endophytes of G. procumbens that produce cytokinin-like compounds might have a role in the growth and development of G. procumbens. Abbreviations CCGB - Cucumber cotyledon greening bioassay, rDNA - Ribosomal DNA, K12, BAP - 6-Benzylaminopurine, Db1, MSA - Multiple sequence alignment. 8081, PMID:21364796

  13. Isolation and identification of an endophytic fungus Pezicula sp. in Forsythia viridissima and its secondary metabolites.

    PubMed

    Wang, Jiaying; Wang, Guoping; Zhang, Yalei; Zheng, Biqiang; Zhang, Chulong; Wang, Liwei

    2014-10-01

    In a survey of endophytic fungal biodiversity, an antimicrobial endophytic isolate zjwcf069 was obtained from twigs of Forsythia viridissima, Zhejiang Province, Southeast China. Zjwcf069 was then identified as Pezicula sp. through combination of morphological and phylogenetic analysis based on ITS-rDNA. Zjwcf069 here represented the first endophytic fungus in Pezicula isolated from host F. viridissima. From the fermentation broth, four compounds were obtained through silica gel column chromatography and Sephadex LH-20 under the guide of bioassay. Their structures were elucidated by spectroscopic analysis as mellein (1), ramulosin (2), butanedioic acid (3), and 4-methoxy-1(3H)-isobenzofuranone (4). Compound 4 here stood for the very first time as natural product from microbes. In vitro antifungal assay showed that compound 1 displayed growth inhibition against 9 plant pathogenic fungi, especially Botrytis cinerea and Fulvia fulva with EC50 values below 50 μg/mL. Endophytic fungi in medicinal plants were good resources for bioactive secondary metabolites. PMID:24928260

  14. Complete Genome Sequence of Micromonospora Strain L5, a Potential Plant-Growth-Regulating Actinomycete, Originally Isolated from Casuarina equisetifolia Root Nodules

    PubMed Central

    Alvarado, Johana; Bruce, David; Chertkov, Olga; De Hoff, Peter L.; Detter, John C.; Fujishige, Nancy A.; Goodwin, Lynne A.; Han, James; Han, Shunsheng; Ivanova, Natalia; Land, Miriam L.; Lum, Michelle R.; Milani-Nejad, Nima; Nolan, Matt; Pati, Amrita; Pitluck, Sam; Tran, Stephen S.; Woyke, Tanja; Valdés, Maria

    2013-01-01

    Micromonospora species live in diverse environments and exhibit a broad range of functions, including antibiotic production, biocontrol, and degradation of complex polysaccharides. To learn more about these versatile actinomycetes, we sequenced the genome of strain L5, originally isolated from root nodules of an actinorhizal plant growing in Mexico. PMID:24072863

  15. Complete Genome Sequence of Micromonospora Strain L5, a Potential Plant-Growth-Regulating Actinomycete, Originally Isolated from Casuarina equisetifolia Root Nodules

    SciTech Connect

    Hirsch, A. M.; Alvarado, J.; Bruce, D.; Chertkov, O.; De Hoff, P. L.; Detter, J. C.; Fujishige, N. A.; Goodwin, L. A.; Han, J.; Han, S.; Ivanova, N.; Land, M. L.; Lum, M. R.; Milani-Nejad, N.; Nolan, M.; Pati, A.; Pitluck, S.; Tran, S. S.; Woyke, T.; Valdes, M.

    2013-08-29

    Micromonospora species live in diverse environments and exhibit a broad range of functions including antibiotic production, biocontrol, and ability to degrade complex polysaccharides. To learn more about these versatile actinomycetes, we sequenced the genome of strain L5, originally isolated from root nodules of an actinorhizal plant growing in Mexico.

  16. Isolation and characterization of culturable endophytic actinobacteria associated with Artemisia annua L.

    PubMed

    Li, Jie; Zhao, Guo-Zhen; Huang, Hai-Yu; Qin, Sheng; Zhu, Wen-Yong; Zhao, Li-Xing; Xu, Li-Hua; Zhang, Si; Li, Wen-Jun; Strobel, Gary

    2012-03-01

    Endophytic actinobacteria isolated from Artemisia annua were characterized and evaluated for their bioactivities. A total of 228 isolates representing at least 19 different genera of actinobacteria were obtained and several of them seemed to be novel taxa. An evaluation of antimicrobial activity showed that more isolates possessed activity towards plant pathogens than activity against other pathogenic bacteria or yeasts. High frequencies of PCR amplification were obtained for type I polyketide synthases (PKS-I, 21.1%), type II polyketide synthases (PKS-II, 45.2%) and nonribosomal peptide synthetases (NRPS, 32.5%). The results of herbicidal activity screening indicated that 19 out of 117 samples of fermentation broths completely inhibited the germination of Echinochloa crusgalli. This study indicated that endophytic actinobacteria associated with A. annua are abundant and have potentially beneficial and diverse bioactivities which should be pursued for their biotechnical promise. PMID:22038129

  17. Amylase production by endophytic fungi Cylindrocephalumsp. isolated from medicinal plant Alpinia calcarata (Haw.) Roscoe

    PubMed Central

    Sunitha, V. H.; Ramesha, A.; Savitha, J.; Srinivas, C

    2012-01-01

    Amylases are among the most important enzymes used in modern biotechnology particularly in the process involving starch hydrolysis. Fungal amylase has large applications in food and pharmaceutical industries. Considering these facts, endophytic fungi isolated from the plant Alpinia calcarata (Haw.) Roscoe were screened for amylolytic activity on glucose yeast extract peptone agar (GYP) medium. Among thirty isolates of endophytic fungi, isolate number seven identified as Cylindrocephalum sp. (Ac-7) showed highest amylolytic activity and was taken for further study. Influence of various physical and chemical factors such as pH, temperature, carbon and nitrogen sources on amylase production in liquid media were studied. The maximal amylase production was found to be at 30ºC and at pH 7.0 of the growth medium. Among the various carbon and nitrogen sources tested, maltose at 1.5% and Sodium nitrate at 0.3% respectively gave optimum amylase production. PMID:24031946

  18. Lack of nifH gene in some endophytic bacteria isolated on RC solid medium.

    PubMed

    Pisarska, K; Adamski, M; Pietr, S J

    2011-01-01

    Presence of endophytic bacteria was reported in many crops including maize (Zea mays L.). Endophytes play a significant role in plant nutrient and pesticide uptake. Application of endophytic bacteria is a goal of sustainable agriculture. Occurrence of Azospirillum strains is often reported as tissue inhabiting bacteria of maize. The biological N2-fixation is one of most important processes assigned to this bacteria. The objective of this study was to examine the biodiversity of Azospirillum spp. isolated from the leaves of 6 cultivars of Zea mays L.. They were cultivated on two experimental fields at Smolice and Kobierzyce, (Poland). Strains of Azospirillum spp. were isolated on the solid RC medium. Forty four isolates grown as a small intensive red colonies were selected. To verify ability to N2-fixation isolates were analyzed based on nifH gene presence. Presence of nifH gene was tested using PCR method with PolF and PolR universal degenerate primers. The presence of nifH gene was found in 6 tested strains isolated from leaves of 3 cultivars (Cyrkon, Kosmo230, KB2704) from Smolice location, only. Our results suggest that selection of Azospirillum-like strains on RC solid medium based on appearance of colony is not correlated with theirs ability to nitrogen fixation or used degenerated primers (PolF, PolR) are not universal enough. PMID:22702189

  19. Isolation and characterization of endophytic bacterium LRE07 from cadmium hyperaccumulator Solanum nigrum L. and its potential for remediation.

    PubMed

    Luo, Shenglian; Wan, Yong; Xiao, Xiao; Guo, Hanjun; Chen, Liang; Xi, Qiang; Zeng, Guangming; Liu, Chengbin; Chen, Jueliang

    2011-03-01

    Valuable endophytic strains facilitating plants growth and detoxification of heavy metals are required because the application of plant-endophyte symbiotic system is a promising potential technique to improve efficiency of phytoremediation. In this study, endophytic bacterium LRE07 was isolated from cadmium hyperaccumulator Solanum nigrum L. It was identified as Serratia sp. by 16S rRNA sequence analysis. The endophytic bacterium LRE07 was resistant to the toxic effects of heavy metals, solubilized mineral phosphate, and produced indoleacetic acid and siderophore. The heavy metal detoxification was studied in growing LRE07 cells. The strain bound over 65% of cadmium and 35% of zinc in its growing cells from single metal solutions 72 h after inoculation. Besides the high removal efficiencies in single-ion system, an analogous removal phenomenon was also observed in multi-ions system, indicating that the endophyte possesses specific and remarkable heavy metal remediation abilities. PMID:20953602

  20. Isolation, Characterization, and Insecticidal Activity of an Endophyte of Drunken Horse Grass, Achnatherum inebrians

    PubMed Central

    Shi, YingWu; Zhang, Xuebing; Lou, Kai

    2013-01-01

    Endophytic microorganisms reside within plant tissues and have often been found to promote plant growth. In this study, endophytic microorganisms were isolated from the roots, stems, leaves, and seeds of healthy drunken horse grass, Achnatherum inebrians (Hance) Keng (Poales: Poaceae), through the use of a grinding separation method and identified by a dual approach of morphological and physiological observation and 16S rRNA gene-based (for bacteria) and internal transcribed sequence-based (for fungi) molecular identification. The endophytes were then inoculated into liquid media for fermentation, and their crude extracts were employed for insecticidal activity tests using slide disc immersion and nebulization methods. A total of 89 bacteria species, which were classified into eight genera, Bacillus, Pseudomonas, Actinomyces, Corynebacterium, Acinetobacter, Sphingomonas, Paenibacillus, and Phyllobacterium, and two fungi, Claviceps and Chaetomium, were isolated. Of these species, isolates Streptomyces albus (Rossi-Doria) Waksman and Henrici (Actinomycetales: Streptomycetaceae) (GA) and Claviceps purpurea (Fr.) Tul. (Hypocreales: Clavicipitaceae) (PF-2) were shown to produce mortality rates of more than 90% in the cotton aphid, Aphis gossypii Glover (Hemiptera: Aphididae), after first and second screenings. The isolates PF-2 and GA associated with A. inebrians had significant insecticidal activities towards A. gossypii Glover (Hemiptera: Aphididae) and may provide a new biological resource for exploring a new microbial insecticide. PMID:24784492

  1. Isolation, characterization, and insecticidal activity of an endophyte of drunken horse grass, Achnatherum inebrians.

    PubMed

    Shi, YingWu; Zhang, Xuebing; Lou, Kai

    2013-01-01

    Abstract Endophytic microorganisms reside within plant tissues and have often been found to promote plant growth. In this study, endophytic microorganisms were isolated from the roots, stems, leaves, and seeds of healthy drunken horse grass, Achnatherum inebrians (Hance) Keng (Poales: Poaceae), through the use of a grinding separation method and identified by a dual approach of morphological and physiological observation and 16S rRNA gene-based (for bacteria) and internal transcribed sequence-based (for fungi) molecular identification. The endophytes were then inoculated into liquid media for fermentation, and their crude extracts were employed for insecticidal activity tests using slide disc immersion and nebulization methods. A total of 89 bacteria species, which were classified into eight genera, Bacillus, Pseudomonas, Actinomyces, Corynebacterium, Acinetobacter, Sphingomonas, Paenibacillus, and Phyllobacterium, and two fungi, Claviceps and Chaetomium, were isolated. Of these species, isolates Streptomyces albus (Rossi-Doria) Waksman and Henrici (Actinomycetales: Streptomycetaceae) (GA) and Claviceps purpurea (Fr.) Tul. (Hypocreales: Clavicipitaceae) (PF-2) were shown to produce mortality rates of more than 90% in the cotton aphid, Aphis gossypii Glover (Hemiptera: Aphididae), after first and second screenings. The isolates PF-2 and GA associated with A. inebrians had significant insecticidal activities towards A. gossypii Glover (Hemiptera: Aphididae) and may provide a new biological resource for exploring a new microbial insecticide. PMID:24784492

  2. Piperine production by endophytic fungus Colletotrichum gloeosporioides isolated from Piper nigrum.

    PubMed

    Chithra, S; Jasim, B; Sachidanandan, P; Jyothis, M; Radhakrishnan, E K

    2014-03-15

    Many endophytic fungi have been reported with the biosynthetic potential to produce same or similar metabolites present in host plants. The adaptations that might have acquired by these fungi as a result of the long-term association with their host plants can be the possible basis of their biosynthetic potential. The bioactive compounds originated from endophytes are currently explored for their potential applications in pharmaceutical, agriculture and food industries. Piper nigrum, a plant of the Piperaceae is very remarkable because of the presence of the alkaloid piperine. Piperine has been reported to have broad bioactive properties ranging from antimicrobial, antidepressant, anti-inflammatory, antioxidative to anticancer activities. Interestingly, piperine also plays a vital role in increasing the bioavailability of many drugs which again is a promising property. The current study was carried out to identify piperine producing endophytic fungus from Piper nigrum L. By screening various endophytic fungi, the isolate which was identified as member of Colletotrichum gloeosporioides was found to have the ability to form piperine and was confirmed by HPLC and LCMS. Considering the broad bioactive potential of piperine, the piperine producing fungi identified in the study can expect to have much industrial potential. PMID:24268806

  3. Broad-Spectrum Antimicrobial Epiphytic and Endophytic Fungi from Marine Organisms: Isolation, Bioassay and Taxonomy

    PubMed Central

    Zhang, Yi; Mu, Jun; Feng, Yan; Kang, Yue; Zhang, Jia; Gu, Peng-Juan; Wang, Yu; Ma, Li-Fang; Zhu, Yan-Hua

    2009-01-01

    In the search for new marine derived antibiotics, 43 epi- and endophytic fungal strains were isolated from the surface or the inner tissue of different marine plants and invertebrates. Through preliminary and secondary screening, 10 of them were found to be able to produce broad-spectrum antimicrobial metabolites. By morphological and molecular biological methods, three active strains were characterized to be Penicillium glabrum, Fusarium oxysporum, and Alternaria alternata. PMID:19597575

  4. Endophytic fungi isolated from Pinus halepensis needles in M'sila (Algeria) region and their bioactivities.

    PubMed

    Ladjal, S; Harzallah, D; Dahamna, S; Bouamra, D; Bouharati, S; Khennouf, S

    2013-01-01

    Fungal endophytes grow asymptomatically within the tissues of all vascular plants and some are known to provide their host plants with tolerance to different types of environmental stress. Endophytic fungi were detected, isolated and collected from healthy needles of Alep pine (Pinus halepensis Mill.) from the canton of El-Haourane in M'sila, Algeria. For the author's knowledge, these fungi are reported from this conifer for the first time in this region. A survey has been conducted using randomly sampled needles of symptomless trees for two categories of needles (old and young). From 600 surface-sterilized needles collected from 15 trees (300 needles for each age), 29 fungal isolates were obtained and identified on the basis of the morphological characterization using microscopic observations. The fungal isolates were grouped in Deuteromycetes and Zygomycetes. Species of Moniliales were the most common fungi assaciated with P. halepensis. It appears from the results also that the colonization frequency (CF%) was dependant on the age of the needles; older needles were more densely colonized than the younger needles with a 68.5%. The results of this study indicate that P. halepensis serves as a host to numerous endophytic fungi. These fungi could have significance as a source of novel metabolites. And therefore the mycoendophytes genera of Penicillium, Acremonium, Aspergillus, Rhizopus, Trichosporon, Cladosporium, Fusarium, Trichoderma. Expressed an antagonistic and antibiotic effect against pathogenic microorganisms to humans and plants. PMID:25151842

  5. Optimization of isolation and cultivation of bacterial endophytes through addition of plant extract to nutrient media

    PubMed Central

    Eevers, N; Gielen, M; Sánchez-López, A; Jaspers, S; White, J C; Vangronsveld, J; Weyens, N

    2015-01-01

    Many endophytes have beneficial effects on plants and can be exploited in biotechnological applications. Studies hypothesize that only 0.001–1% of all plant-associated bacteria are cultivable. Moreover, even after successful isolations, many endophytic bacteria often show reduced regrowth capacity. This research aimed to optimize isolation processes and culturing these bacteria afterwards. We compared several minimal and complex media in a screening. Beside the media themselves, two gelling agents and adding plant extract to media were investigated to enhance the number and diversity of endophytes as well as the growth capacity when regrown after isolation. In this work, 869 medium delivered the highest numbers of cultivable bacteria, as well as the highest diversity. When comparing gelling agents, no differences were observed in the numbers of bacteria. Adding plant extract to the media lead to a slight increase in diversity. However, when adding plant extract to improve the regrowth capacity, sharp increases of viable bacteria occurred in both rich and minimal media. PMID:25997013

  6. Isolation and Identification of Endophytic Fungi from Actinidia macrosperma and Investigation of Their Bioactivities

    PubMed Central

    Lu, Yin; Chen, Chuan; Chen, Hong; Zhang, Jianfen; Chen, Weiqin

    2012-01-01

    Endophytic fungi from the Chinese medicinal plant Actinidia macrosperma were isolated and identified for the first time. This was the first study to evaluate their cytotoxic and antitumour activities against brine shrimp and five types of tumour cells, respectively. In total, 17 fungal isolates were obtained. Five different taxa were represented by 11 isolates, and six isolates were grouped into the species of Ascomycete Incertae sedis with limited morphological and molecular data. Cytotoxic activity has been found in most isolates except AM05, AM06, and AM10. The isolates AM07 (4.86 μg/mL), AM11 (7.71 μg/mL), and AM17 (14.88 μg/mL) exhibited significant toxicity against brine shrimp. The results of the MTT assay to assess antitumour activity revealed that 82.4% of isolate fermentation broths displayed growth inhibition (50% inhibitory concentration IC50< 100 μg/mL). Moreover, AM07, AM11, and AM17 showed strong antitumour activity in all the cell lines examined. These results suggest that endophytic fungi in A. macrosperma are valuable for the isolation and identification of novel cytotoxic and antitumour bioactive agents. PMID:22203869

  7. [Isolation of endophytic bacteria in roots of Panax ginseng and screening of antagonistic strains against phytopathogens prevalent in P. ginseng].

    PubMed

    Li, Yong; Zhao, Dongyue; Ding, Wanlong; Ying, Yixin

    2012-06-01

    In this study, endophytic bacteria were isolated from roots of P. ginseng by plate culture method, and as a result, 40 endophytic bacterial strains were isolated, Bacillus spp. and Pseudomonas spp. were predominant. By confront culture method, two antagonistic endophytic bacterial strain, ge15 (Stenotrophomonas maltophilia) and ge25 (Bacillus sp. ) against Cylindrocarpon destructans, Sclerotinia schinseng and Alternaria pana were identified. The inhibition zone of ge15 to them were 5.5, 22.0, 14.8 mm, respectively; and which were 12.7,16.5,9.0 mm for ge25. The Results indicate that endophytic bacteria have biocontrol potential on ginseng pathogens, and which can be used as a bio-control factor on ginseng soilborne diseases control. PMID:22993975

  8. Comparative genomics of an endophytic Pseudomonas putida isolated from mango orchard.

    PubMed

    Asif, Huma; Studholme, David J; Khan, Asifullah; Aurongzeb, M; Khan, Ishtiaq A; Azim, M Kamran

    2016-07-01

    We analyzed the genome sequence of an endophytic bacterial strain Pseudomonas putida TJI51 isolated from mango bark tissues. Next generation DNA sequencing and short read de novo assembly generated the 5,805,096 bp draft genome of P. putida TJI51. Out of 6,036 protein coding genes in P. putida TJI51 sequences, 4,367 (72%) were annotated with functional specifications, while the remaining encoded hypothetical proteins. Comparative genome sequence analysis revealed that the P. putida TJI51genome contains several regions, not identified in so far sequenced P. putida genomes. Some of these regions were predicted to encode enzymes, including acetylornithine deacetylase, betaine aldehyde dehydrogenase, aldehyde dehydrogenase, benzoylformate decarboxylase, hydroxyacylglutathione hydrolase, and uroporphyrinogen decarboxylase. The genome of P. putida TJI51 contained three nonribosomal peptide synthetase gene clusters. Genome sequence analysis of P. putidaTJI51 identified this bacterium as an endophytic resident. The endophytic fitness might be linked with alginate, which facilitates bacterial colonization in plant tissues. Genome sequence analysis shed light on the presence of a diverse spectrum of metabolic activities and adaptation of this isolate to various niches. PMID:27392236

  9. Isolation and characterization of culturable seed-associated bacterial endophytes from gnotobiotically grown Marama bean seedlings.

    PubMed

    Chimwamurombe, Percy Maruwa; Grönemeyer, Jann Lasse; Reinhold-Hurek, Barbara

    2016-06-01

    Marama bean (Tylosema esculentum) is an indigenous non-nodulating legume to the arid agro-ecological parts of Southern Africa. It is a staple food for the Khoisan and Bantu people from these areas. It is intriguing how it is able to synthesize the high-protein content in the seeds since its natural habitat is nitrogen deficient. The aim of the study was to determine the presence of seed transmittable bacterial endophytes that may have growth promoting effects, which may be particularly important for the harsh conditions. Marama bean seeds were surface sterilized and gnotobiotically grown to 2 weeks old seedlings. From surface-sterilized shoots and roots, 123 distinct bacterial isolates were cultured using three media, and identified by BOX-PCR fingerprinting and sequence analyses of the 16S rRNA and nifH genes. Phylogenetic analyses of 73 putative endophytes assigned them to bacterial species from 14 genera including Proteobacteria (Rhizobium, Massilia, Kosakonia, Pseudorhodoferax, Caulobacter, Pantoea, Sphingomonas, Burkholderia, Methylobacterium), Firmicutes (Bacillus), Actinobacteria (Curtobacterium, Microbacterium) and Bacteroidetes (Mucilaginibacter, Chitinophaga). Screening for plant growth-promoting activities revealed that the isolates showed production of IAA, ACC deaminase, siderophores, endoglucanase, protease, AHLs and capacities to solubilize phosphate and fix nitrogen. This is the first report that marama bean seeds may harbor endophytes that can be cultivated from seedlings; in this community of bacteria, physiological characteristics that are potentially plant growth promoting are widespread. PMID:27118727

  10. Antitumor activity of bacterial exopolysaccharides from the endophyte Bacillus amyloliquefaciens sp. isolated from Ophiopogon japonicus

    PubMed Central

    CHEN, YI-TAO; YUAN, QIANG; SHAN, LE-TIAN; LIN, MEI-AI; CHENG, DONG-QING; LI, CHANG-YU

    2013-01-01

    The endophytic bacterium, MD-b1, was isolated from the medicinal plant Ophiopogon japonicas and identified as the Bacillus amyloliquefaciens sp. with 99% similarity based on the partial sequence analysis of 16S rDNA. Exopolysaccharides were extracted from the endophyte for the evaluation of its antitumor activity against gastric carcinoma cell lines (MC-4 and SGC-7901). 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assays and microscopy were performed to estimate the cell viability and morphological changes of the MC-4 and SGC-7901 cells following treatment with the exopolysaccharides at 14, 22 and 30 μg/μl. The results revealed that the exopolysaccharides displayed concentration-dependent inhibitory effects against the MC-4 and SGC-7901 cells, with an IC50 of 19.7 and 26.8 μg/μl, respectively. The exopolysaccharides also induced morphological abnormalities in the cells. These effects indicated the the exopolysaccharides had an antitumoral mechanism of action associated with the mitochondrial dysfunction of the treated cells. This is the first study to investigate the endophytic microorganism isolated from O. japonicas and also the first discovery of such antitumoral exopolysaccharides derived from the genus Bacillus. This provides a promising and reproducible natural product source with high therapeutic value for anticancer treatment, thereby facilitating the development of new anticancer agents. PMID:23833642

  11. Comparative genomics of an endophytic Pseudomonas putida isolated from mango orchard

    PubMed Central

    Asif, Huma; Studholme, David J.; Khan, Asifullah; Aurongzeb, M.; Khan, Ishtiaq A.; Azim, M. Kamran

    2016-01-01

    Abstract We analyzed the genome sequence of an endophytic bacterial strain Pseudomonas putida TJI51 isolated from mango bark tissues. Next generation DNA sequencing and short read de novo assembly generated the 5,805,096 bp draft genome of P. putida TJI51. Out of 6,036 protein coding genes in P. putida TJI51 sequences, 4,367 (72%) were annotated with functional specifications, while the remaining encoded hypothetical proteins. Comparative genome sequence analysis revealed that the P. putida TJI51genome contains several regions, not identified in so far sequenced P. putida genomes. Some of these regions were predicted to encode enzymes, including acetylornithine deacetylase, betaine aldehyde dehydrogenase, aldehyde dehydrogenase, benzoylformate decarboxylase, hydroxyacylglutathione hydrolase, and uroporphyrinogen decarboxylase. The genome of P. putida TJI51 contained three nonribosomal peptide synthetase gene clusters. Genome sequence analysis of P. putidaTJI51 identified this bacterium as an endophytic resident. The endophytic fitness might be linked with alginate, which facilitates bacterial colonization in plant tissues. Genome sequence analysis shed light on the presence of a diverse spectrum of metabolic activities and adaptation of this isolate to various niches. PMID:27560648

  12. Comparative genomics of an endophytic Pseudomonas putida isolated from mango orchard.

    PubMed

    Asif, Huma; Studholme, David J; Khan, Asifullah; Aurongzeb, M; Khan, Ishtiaq A; Azim, M Kamran

    2016-01-01

    We analyzed the genome sequence of an endophytic bacterial strain Pseudomonas putida TJI51 isolated from mango bark tissues. Next generation DNA sequencing and short read de novo assembly generated the 5,805,096 bp draft genome of P. putida TJI51. Out of 6,036 protein coding genes in P. putida TJI51 sequences, 4,367 (72%) were annotated with functional specifications, while the remaining encoded hypothetical proteins. Comparative genome sequence analysis revealed that the P. putida TJI51genome contains several regions, not identified in so far sequenced P. putida genomes. Some of these regions were predicted to encode enzymes, including acetylornithine deacetylase, betaine aldehyde dehydrogenase, aldehyde dehydrogenase, benzoylformate decarboxylase, hydroxyacylglutathione hydrolase, and uroporphyrinogen decarboxylase. The genome of P. putida TJI51 contained three nonribosomal peptide synthetase gene clusters. Genome sequence analysis of P. putidaTJI51 identified this bacterium as an endophytic resident. The endophytic fitness might be linked with alginate, which facilitates bacterial colonization in plant tissues. Genome sequence analysis shed light on the presence of a diverse spectrum of metabolic activities and adaptation of this isolate to various niches. PMID:27560648

  13. Indentification of huperzine A-producing endophytic fungi isolated from Huperzia serrata.

    PubMed

    Dong, Li-Hui; Fan, San-Wei; Ling, Qing-Zhi; Huang, Bei-Bei; Wei, Zhao-Jun

    2014-03-01

    This present study was designed to investigate the production of huperzine A (HupA), an acetylcholine inhibitor, which was produced by an endophytic fungi isolated from Huperzia serrata. Screening of 94 endophytic fungal isolates obtained from plant H. serrata was carried out for the production of HupA. Their morphological characteristics were studied and rDNA sequence analysis was carried out. The cultures were grown in liquid culture medium and the extracted metabolites were analyzed by thin layer chromatography and high performance liquid chromatograph for the presence of HupA. The DPPH scavenging ratio and inhibition ratio of acetylcholinesterase (AchE) of the same were determined. 3 out of 94 strains i.e. S29, L44 and S94 showed significant AchE-inhibitory activity and antioxidant activity. Strain L44 which exhibited maximum yield of HupA (37.63 μg/g on dry weight basis) was identified as Trichoderma species by ITS sequence analysis. In conclusion, endophytic fungi from H. serrata can be used as a new resource of HupA. PMID:24129696

  14. Chemical investigation of metabolites produced by an endophytic Aspergillus sp. isolated from Limonia acidissima.

    PubMed

    Siriwardane, A M D A; Kumar, N Savitri; Jayasinghe, Lalith; Fujimoto, Yoshinori

    2015-01-01

    Endophytic fungi are considered as a good source to produce important secondary metabolites with interesting bioactivities. In a continuation of our studies towards the search for environmentally friendly bioactive compounds from Sri Lankan flora, we investigated the secondary metabolites produced by the endophytic fungi Aspergillus sp. isolated from the seeds of the popular edible fruit Limonia acidissima L. of the family Rutaceae. The pure culture of the Aspergillus sp. was grown on potato dextrose broth media. After 4 weeks fermentation, fungal media were extracted with organic solvents. Chromatographic separation of the fungal extracts over silica gel, Sephadex LH-20 and RP-HPLC furnished flavasperone (1), rubrofusarin B (2), aurasperone A (3), fonsecinone D (4) and aurasperone B (5). Compounds 1-4 showed moderate activities in brine shrimp toxicity assay. This is the first report of the (13)C NMR data of compounds 4 and 5. PMID:25809933

  15. Bipolamides A and B, triene amides isolated from the endophytic fungus Bipolaris sp. MU34.

    PubMed

    Siriwach, Ratklao; Kinoshita, Hiroshi; Kitani, Shigeru; Igarashi, Yasuhiro; Pansuksan, Kanokthip; Panbangred, Watanalai; Nihira, Takuya

    2014-02-01

    As a result of the continued screening for new metabolites produced by endophytic fungi from Thai medicinal plants, two new triene fatty acid amides, bipolamides A (1) and B (2), were discovered from the endophytic fungus Bipolaris sp. MU34. The structures of all of the isolated compounds were elucidated on the basis of the spectroscopic data of NMR and MS. An antimicrobial assay revealed that bipolamide B (2) had moderate antifungal activity against Cladosporium cladosporioides FERMS-9, Cladosporium cucumerinum NBRC 6370, Saccharomyces cerevisiae ATCC 9804, Aspergillus niger ATCC 6275 and Rhisopus oryzae ATCC 10404, with Minimum inhibitory concentration (MIC) values of 16, 32, 32, 64 and 64 μg ml(-1), respectively. PMID:24192556

  16. Huperzine A production by Paecilomyces tenuis YS-13, an endophytic fungus isolated from Huperzia serrata.

    PubMed

    Su, Jingqian; Yang, Minhe

    2015-01-01

    Huperzine A (HupA), a naturally occurring alkaloid in the plant family Huperziaceae, has drawn great interest for its potential application in Alzheimer disease therapy. Our primary objective was to identify alkaloid- and HupA-producing fungi from the Chinese folk herb, Huperzia serrata. We established a rapid and efficient model for screening HupA-producing endophytic fungal strains. The presence of HupA in Paecilomyces tenuis YS-13 was analysed by thin-layer chromatography, high-performance liquid chromatography and mass spectrometry. The fermentation yield of HupA was 21.0 μg/L, and the IC50 of the crude extract of YS-13 fermentation broth was 1.27 ± 0.04 mg/mL. This is the first report of P. tenuis as a HupA-producing endophyte isolated from Huperziaceae. PMID:25427833

  17. Ginkgolide B produced endophytic fungus (Fusarium oxysporum) isolated from Ginkgo biloba.

    PubMed

    Cui, Yuna; Yi, Dawei; Bai, Xiufeng; Sun, Baoshan; Zhao, Yuqing; Zhang, Yixuan

    2012-07-01

    To screen the presence of ginkgolide B-producing endophytic fungi from the root bark of Ginkgo biloba, a total of 27 fungal isolates, belonging to 6 different genus, were isolated from the internal root bark of the plant Ginkgo biloba. The fungal isolates were fermented on solid media and their metabolites were analyzed by TLC. The obtained potential ginkgolides-producing fungus, the isolate SYP0056 which was identified as Fusarium oxysporum, was successively cultured in the liquid fermentation media, and its metabolite was analyzed by HPLC. The ginkgolide B was successfully isolated from the metabolite and identified by HPLC/ESI-MS and (13)C-NMR. The current research provides a new method to produce ginkgolide B by fungal fermentation, which could overcome the natural resource limitation of isolating from the leaves and barks of the plant Ginkgo biloba. PMID:22537641

  18. Streptomyces polyrhachii sp. nov., a novel actinomycete isolated from an edible Chinese black ant (Polyrhachis vicina Roger).

    PubMed

    Yu, Chao; Liu, Chongxi; Wang, Xiangjing; Zhao, Junwei; Yang, Lingyu; Gao, Ruixia; Zhang, Yuejing; Xiang, Wensheng

    2013-12-01

    A novel actinomycete, designated strain NEAU-ycm1(T), was isolated from an edible Chinese black ant (Polyrhachis vicina Roger) and characterized with a polyphasic approach. The organism was found to have morphological and chemotaxonomic characteristics typical of streptomycetes. Phylogenetic analysis based on the almost complete 16S rRNA gene sequence show that the novel isolate belongs to the genus Streptomyces and forms a separate subclade. The closest phylogenetic relatives were identified as the type strains of Streptomyces intermedius NBRC 13049(T) (97.74 %), Streptomyces aureoverticillatus NRRL B-3326(T) (97.69 %), Streptomyces rutgersensis NBRC 12819(T) (97.68 %), Streptomyces gougerotii NBRC 3198(T) (97.68 %) and Streptomyces diastaticus subsp. diastaticus NBRC 3714(T) (97.68 %). Similarities to other type strains of the genus Streptomyces were lower than 97.55 %. A comparison between strain NEAU-ycm1(T) and the closest related Streptomyces type strains revealed that it is different from them in morphological, physiological and biochemical characteristics. Therefore, it is proposed that NEAU-ycm1(T) (=CGMCC 4.7094(T) = DSM 42102(T)) represents a novel species of the genus of Streptomyces, for which the name Streptomyces polyrhachii sp. nov. is proposed. PMID:24002610

  19. Effectiveness and toxicity of a novel isolated actinomycete strain Streptomyces sp. JS01 on a harmful alga Phaeocystis globosa.

    PubMed

    Zhang, Huajun; Zhang, Su; Peng, Yun; Li, Yi; Cai, Guanjing; Chen, Zhangran; Zheng, Wei; Tian, Yun; Xu, Hong; Zheng, Tianling

    2015-06-01

    An aquatic actinomycete capable of eliminating the brown tide causing marine alga Phaeocystis globosa was isolated from the surface sea water and the isolate named JS01 was characterized as Streptomyces on the basis of its 16S rRNA gene sequence. The supernatant of JS01 could lyse algal cells, implying that JS01 produced a latent alga-lytic compound. Considering this algicidal activity and the response of the algal cells, Chlorophyll a fluorescence decreased significantly in P. globosa in response to the JS01 supernatant when analyzed with flow cytometry. The algal cells experienced cell shrinkage and plasmolysis before disintegration after 72 h of treatment. The released algicide(s) were heat-tolerant, except above 121 °C, and fluctuation in pH variations; even so, algicidal activity was also over 60 %. The maximum toxicity of JS01 was on the seventh day of culture, and the relative luminosity was 0.49 at that time when detected by luminous bacteria Vibrio fischeri. These results indicated that the Streptomyces sp. JS01 could function as a potential controller of Phaeocystis globosa blooms. PMID:25638354

  20. Biogenesis of antibacterial silver nanoparticles using the endophytic bacterium Bacillus cereus isolated from Garcinia xanthochymus

    PubMed Central

    Sunkar, Swetha; Nachiyar, C Valli

    2012-01-01

    Objective To synthesize the ecofriendly nanoparticles, which is viewed as an alternative to the chemical method which initiated the use of microbes like bacteria and fungi in their synthesis. Methods The current study uses the endophytic bacterium Bacillus cereus isolated from the Garcinia xanthochymus to synthesize the silver nanoparticles (AgNPs). The AgNPs were synthesized by reduction of silver nitrate solution by the endophytic bacterium after incubation for 3-5 d at room temperature. The synthesis was initially observed by colour change from pale white to brown which was confirmed by UV-Vis spectroscopy. The AgNPs were further characterized using FTIR, SEM-EDX and TEM analyses. Results The synthesized nanoparticles were found to be spherical with the size in the range of 20-40 nm which showed a slight aggregation. The energy-dispersive spectra of the nanoparticle dispersion confirmed the presence of elemental silver. The AgNPs were found to have antibacterial activity against a few pathogenic bacteria like Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, Salmonella typhi and Klebsiella pneumoniae. Conclusions The endophytic bacteria identified as Bacillus cereus was able to synthesize silver nanoparticles with potential antibacterial activity. PMID:23593575

  1. Taxol production by an endophytic fungus, Fusarium redolens, isolated from Himalayan yew.

    PubMed

    Garyali, Sanjog; Kumar, Anil; Reddy, M Sudhakara

    2013-10-28

    Different endophytic fungi isolated from Himalayan Yew plants were tested for their ability to produce taxol. The BAPT gene (C-13 phenylpropanoid side chain-CoA acetyl transferase) involved in the taxol biosynthetic pathway was used as a molecular marker to screen taxol-producing endophytic fungi. Taxol extracted from fungal strain TBPJ-B was identified by HPLC and MS analysis. Strain TBPJ-B was identified as Fusarium redolens based on the morphology and internal transcribed spacer region of nrDNA analysis. HPLC quantification of fungal taxol showed that F. redolens was capable of producing 66 μg/l of taxol in fermentation broth. The antitumour activity of the fungal taxol was tested by potato disc tumor induction assay using Agrobacterium tumefaciens as the tumor induction agent. The present study results showed that PCR amplification of genes involved in taxol biosynthesis is an efficient and reliable method for prescreening taxol-producing fungi. We are reporting for the first time the production of taxol by F. redolens from Taxus baccata L. subsp. wallichiana (Zucc.) Pilger. This study offers important information and a new source for the production of the important anticancer drug taxol by endophytic fungus fermentation. PMID:23801250

  2. Optimization of protease production by endophytic fungus, Alternaria alternata, isolated from an Australian native plant.

    PubMed

    Zaferanloo, Bita; Quang, Trung D; Daumoo, Smita; Ghorbani, Mahmood M; Mahon, Peter J; Palombo, Enzo A

    2014-06-01

    Endophytes are recognised as potential sources of novel secondary metabolites, including enzymes and drugs, with applications in medicine, agriculture and industry. There is a growing need for new enzymes, including proteases, for use in industry that can function under a variety of conditions. In this study, three fungal endophytes (Alternaria alternata, Phoma herbarum and an unclassified fungus), were isolated from the Australian native plant, Eremophilia longifolia, and assessed for production of proteases. The lyophilised growth media obtained after fungal fermentation were analysed for protease production using enzyme activity assays. Protease production was optimised by assessing the effects of temperature, pH, carbon source and nitrogen source on activity. A. alternata showed the greatest protease activity in a wide range of pH (3-9). The broadest activity between 9 and 50 °C was observed at pH 7, suggesting a neutral protease. Overall, the optimum conditions were 37 °C and pH 7 with a maximum specific activity value of 69.86 BAEE units/mg. The characteristics demonstrated by this fungal endophyte showed that it is a potential source of an enzyme with particular application in the dairy industry. However, further studies of the tolerance to higher temperatures and pH will indicate whether the enzyme is suitable to such applications. PMID:24419660

  3. Diversity and Antimicrobial Activity of Culturable Endophytic Fungi Isolated from Moso Bamboo Seeds

    PubMed Central

    Cai, Chun-Ju; Fan, Li; Gao, Jian; Hou, Cheng-Lin

    2014-01-01

    Bamboos, regarded as therapeutic agents in ethnomedicine, have been used to inhibit inflammation and enhance natural immunity for a long time in Asia, and there are many bamboo associated fungi with medical and edible value. In the present study, a total of 350 fungal strains were isolated from the uncommon moso bamboo (Phyllostachys edulis) seeds for the first time. The molecular diversity of these endophytic fungi was investigated and bioactive compound producers were screened for the first time. All the fungal endophytes were categorized into 69 morphotypes according to culturable characteristics and their internal transcriber spacer (ITS) regions were analyzed by BLAST search with the NCBI database. The fungal isolates showed high diversity and were divided in Ascomycota (98.0%) and Basidiomycota (2.0%), including at least 19 genera in nine orders. Four particular genera were considered to be newly recorded bambusicolous fungi, including Leptosphaerulina, Simplicillium, Sebacina and an unknown genus in Basidiomycetes. Furthermore, inhibitory effects against clinical pathogens and phytopathogens were screened preliminarily and strains B09 (Cladosporium sp.), B34 (Curvularia sp.), B35 (undefined genus 1), B38 (Penicillium sp.) and zzz816 (Shiraia sp.) displayed broad-spectrum activity against clinical bacteria and yeasts by the agar diffusion method. The crude extracts of isolates B09, B34, B35, B38 and zzz816 under submerged fermentation, also demonstrated various levels of bioactivities against bambusicolous pathogenic fungi. This study is the first report on the antimicrobial activity of endophytic fungi associated with moso bamboo seeds, and the results show that they could be exploited as a potential source of bioactive compounds and plant defense activators. In addition, it is the first time that strains of Shiraia sp. have been isolated and cultured from moso bamboo seeds, and one of them (zzz816) could produce hypocrellin A at high yield, which is

  4. Diversity and antimicrobial activity of culturable endophytic fungi isolated from moso bamboo seeds.

    PubMed

    Shen, Xiao-Ye; Cheng, Yan-Lin; Cai, Chun-Ju; Fan, Li; Gao, Jian; Hou, Cheng-Lin

    2014-01-01

    Bamboos, regarded as therapeutic agents in ethnomedicine, have been used to inhibit inflammation and enhance natural immunity for a long time in Asia, and there are many bamboo associated fungi with medical and edible value. In the present study, a total of 350 fungal strains were isolated from the uncommon moso bamboo (Phyllostachys edulis) seeds for the first time. The molecular diversity of these endophytic fungi was investigated and bioactive compound producers were screened for the first time. All the fungal endophytes were categorized into 69 morphotypes according to culturable characteristics and their internal transcriber spacer (ITS) regions were analyzed by BLAST search with the NCBI database. The fungal isolates showed high diversity and were divided in Ascomycota (98.0%) and Basidiomycota (2.0%), including at least 19 genera in nine orders. Four particular genera were considered to be newly recorded bambusicolous fungi, including Leptosphaerulina, Simplicillium, Sebacina and an unknown genus in Basidiomycetes. Furthermore, inhibitory effects against clinical pathogens and phytopathogens were screened preliminarily and strains B09 (Cladosporium sp.), B34 (Curvularia sp.), B35 (undefined genus 1), B38 (Penicillium sp.) and zzz816 (Shiraia sp.) displayed broad-spectrum activity against clinical bacteria and yeasts by the agar diffusion method. The crude extracts of isolates B09, B34, B35, B38 and zzz816 under submerged fermentation, also demonstrated various levels of bioactivities against bambusicolous pathogenic fungi. This study is the first report on the antimicrobial activity of endophytic fungi associated with moso bamboo seeds, and the results show that they could be exploited as a potential source of bioactive compounds and plant defense activators. In addition, it is the first time that strains of Shiraia sp. have been isolated and cultured from moso bamboo seeds, and one of them (zzz816) could produce hypocrellin A at high yield, which is

  5. Isolation and characterization of saponin-producing fungal endophytes from Aralia elata in Northeast China.

    PubMed

    Wu, Hao; Yang, Hongyan; You, Xiangling; Li, Yuhua

    2012-01-01

    The purpose of this study was to investigate the diversity of endophytic fungi of Aralia elata distributed in Northeast China as well as their capacity to produce saponins. Ninety-six strains of endophytic fungi were isolated, and polymerase chain reaction (PCR) and sequencing were employed to identify the isolates. The saponin concentrations of the culture filtrates of representative strains were measured. The agar diffusion method was used to test antimicrobial activity, while high-performance liquid chromatography (HPLC) was employed to identify the saponins produced by representative strains. Alternaria, Botryosphaeria, Camarosporium, Cryptosporiopsis, Diaporthe, Dictyochaeta, Penicillium, Fusarium, Nectria, Peniophora, Schizophyllum, Cladosporium and Trichoderma species were isolated in this study. Overall, 25% of the isolates belonged to Diaporthe (Diaporthe eres), and 12.5% belonged to Alternaria. The highest concentration of saponins was produced by G22 (2.049 mg/mL). According to the results of the phylogenetic analysis, G22 belonged to the genus Penicillium. The culture filtrate of G22 exhibited antibacterial activity against Staphylococcus aureus, and ginsenosides Re and Rb2 were detected in G22 culture filtrates by HPLC. PMID:23203194

  6. Endophytic fungal metabolite fumigaclavine C causes relaxation of isolated rat aortic rings.

    PubMed

    Ma, Hsiao-Yen; Song, Yong-Chun; Mao, Ying-Ying; Jiang, Ji-Hong; Tan, Ren-Xiang; Luo, Lan

    2006-04-01

    Two indole alkaloids were isolated from the culture of Aspergillus fumigatus (strain No. CY018), an endophytic fungus harboring inside the elder leaf of Cynodon dactylon. These two chemicals were identified as fumigaclavine C and fumitremorgin C. In screening the bioactivity of these two indole alkaloids, their vasorelaxant effects on isolated rat thoracic aortic rings were observed. The results showed that fumigaclavine C exhibited potent concentration-dependent vasorelaxant actions in isolated rat aortic rings pre-contracted by high K+ or phenylephrine (with EC50 values of 5.62 micromol/L and 1.58 micromol/L, respectively) whereas fumitremorgin C displayed a weaker vasorelaxation. A detailed investigation was therefore performed with fumigaclavine C. The vasorelaxing action of fumigaclavine C is independent of the presence of endothelium, suggesting its effect of vasorelaxation was not related to endothelial mediators. Blockage of L-type voltage-dependent calcium channels, activation of ATP-sensitive potassium channels and inhibition of Ca2+ release from intracellular Ca2+ stores may be involved in fumigaclavine C induced relaxation of rat isolated aortic rings. These results demonstrate that fumigaclavine C from the endophytic fungus has a potential capacity in vascular protection and thus may have therapeutic use in protection against cardiovascular disease. PMID:16557450

  7. Isolation and Characterization of Saponin-Producing Fungal Endophytes from Aralia elata in Northeast China

    PubMed Central

    Wu, Hao; Yang, Hongyan; You, Xiangling; Li, Yuhua

    2012-01-01

    The purpose of this study was to investigate the diversity of endophytic fungi of Aralia elata distributed in Northeast China as well as their capacity to produce saponins. Ninety-six strains of endophytic fungi were isolated, and polymerase chain reaction (PCR) and sequencing were employed to identify the isolates. The saponin concentrations of the culture filtrates of representative strains were measured. The agar diffusion method was used to test antimicrobial activity, while high-performance liquid chromatography (HPLC) was employed to identify the saponins produced by representative strains. Alternaria, Botryosphaeria, Camarosporium, Cryptosporiopsis, Diaporthe, Dictyochaeta, Penicillium, Fusarium, Nectria, Peniophora, Schizophyllum, Cladosporium and Trichoderma species were isolated in this study. Overall, 25% of the isolates belonged to Diaporthe (Diaporthe eres), and 12.5% belonged to Alternaria. The highest concentration of saponins was produced by G22 (2.049 mg/mL). According to the results of the phylogenetic analysis, G22 belonged to the genus Penicillium. The culture filtrate of G22 exhibited antibacterial activity against Staphylococcus aureus, and ginsenosides Re and Rb2 were detected in G22 culture filtrates by HPLC. PMID:23203194

  8. Paenibacillus herberti sp. nov., an endophyte isolated from Herbertus sendtneri.

    PubMed

    Guo, Guan Nan; Zhou, Xun; Zhao, Ran; Chen, Xin Yao; Chen, Zhi Ling; Li, Xue Dong; Li, Yan Hong

    2015-09-01

    Strain R33(T), an endophyte recovered from Herbertus sendtneri, was identified as representing a novel species of the genus Paenibacillus by using a polyphasic taxonomic approach. The novel strain was observed to be a Gram-stain positive, aerobic, rod-shaped, motile and endospore-forming bacterium. The major polar lipids of strain R33(T) were identified as diphosphatidylglycerol, phosphatidylethanolamine, along with lesser amounts of phosphatidylglycerol, three unidentified aminophospholipids, two unidentified phospholipids and two unidentified lipids. The predominant isoprenoid quinone was identified as MK-7. The major fatty acids (>8.0 %) were found to be anteiso-C15:0 (40.0 %), C16:1 ω11c (9.4 %), C16:1 ω7c alcohol (8.5 %) and C16:0 (8.2 %). The diamino acid found in the cell-wall peptidoglycan was meso-diaminopimelic acid. The G+C content of genomic DNA was determined to be 56.9 mol%. The 16S rRNA gene sequence similarities of strain R33(T) to other Paenibacillus species ranged from 91.6 to 97.2 %, with high similarities to Paenibacillus humicus PC-147(T) and Paenibacillus pasadenensis SAFN-007(T). The phylogenetic analyses based on 16S rRNA gene sequences and the partial rpoB gene confirmed that strain R33(T) belongs to the genus Paenibacillus. However, strain R33(T) shows differential molecular characteristics compared to other related Paenibacillus species based on 16S rDNA-RFLP analyses; the DNA-DNA relatedness values between strain R33(T) and P. humicus PC-147(T), and that between strain R33(T) and P. pasadenensis SAFN-007(T), were 35.0 ± 2.0 and 41.4 ± 0.9 %, respectively. Based on its phenotypic, chemotaxonomic and phylogenetic properties, strain R33(T) is considered to represent a novel species of the genus Paenibacillus, for which the name Paenibacillus herberti is proposed (type strain R33(T) = CGMCC 1.15042(T) = DSM 29849(T)). PMID:26155771

  9. Isolation, Purification and Characterization of Vinblastine and Vincristine from Endophytic Fungus Fusarium oxysporum Isolated from Catharanthus roseus

    PubMed Central

    Kumar, Ashutosh; Patil, Deepak; Rajamohanan, Pattuparambil Ramanpillai; Ahmad, Absar

    2013-01-01

    Endophytic fungi reside in a symbiotic fashion inside their host plants, mimic their chemistry and interestingly, produce the same natural products as their hosts and are thus being screened for the production of valuable compounds like taxol, camptothecin, podophyllotoxin, etc. Vinblastine and vincristine are excellent anti-cancer drugs but their current production using plants is non-abundant and expensive. In order to make these drugs readily available to the patients at affordable prices, we isolated the endophytic fungi from Catharanthus roseus plant and found a fungus AA-CRL-6 which produces vinblastine and vincristine in appreciable amounts. These drugs were purified by TLC and HPLC and characterized using UV-Vis spectroscopy, ESI-MS, MS/MS and 1H NMR. One liter of culture filtrate yielded 76 µg and 67 µg of vinblastine and vincristine respectively. This endophytic fungal strain was identified as Fusarium oxysporum based upon its cultural and morphological characteristics and internal transcribed spacer (ITS) sequence analysis. PMID:24066024

  10. Plant Growth Promoting of Endophytic Sporosarcina aquimarina SjAM16103 Isolated from the Pneumatophores of Avicennia marina L.

    PubMed Central

    Janarthine, S. Rylo Sona; Eganathan, P.

    2012-01-01

    Endophytic Sporosarcina aquimarina SjAM16103 was isolated from the inner tissues of pneumatophores of mangrove plant Avicennia marina along with Bacillus sp. and Enterobacter sp. Endophytic S. aquimarina SjAM16103 was Gram variable, and motile bacterium measured 0.6–0.9 μm wide by 1.7–2.0 μm long and light orange-brown coloured in 3-day cultures on tryptone broth at 26°C. Nucleotide sequence of this strain has been deposited in the GenBank under accession number GU930359. This endophytic bacterium produced 2.37 μMol/mL of indole acetic acid and siderophore as it metabolites. This strain could solubilize phosphate molecules and fixes atmospheric nitrogen. Endophytic S. aquimarina SjAM16103 was inoculated into four different plants under in vitro method to analyse its growth-promoting activity and role inside the host plants. The growth of endophytic S. aquimarina SjAM16103 inoculated explants were highly significant than the uninoculated control explants. Root hairs and early root development were observed in the endophytic S. aquimarina SjAM16103 inoculated explants. PMID:22811715

  11. Plant Growth Promoting of Endophytic Sporosarcina aquimarina SjAM16103 Isolated from the Pneumatophores of Avicennia marina L.

    PubMed

    Janarthine, S Rylo Sona; Eganathan, P

    2012-01-01

    Endophytic Sporosarcina aquimarina SjAM16103 was isolated from the inner tissues of pneumatophores of mangrove plant Avicennia marina along with Bacillus sp. and Enterobacter sp. Endophytic S. aquimarina SjAM16103 was Gram variable, and motile bacterium measured 0.6-0.9 μm wide by 1.7-2.0 μm long and light orange-brown coloured in 3-day cultures on tryptone broth at 26°C. Nucleotide sequence of this strain has been deposited in the GenBank under accession number GU930359. This endophytic bacterium produced 2.37 μMol/mL of indole acetic acid and siderophore as it metabolites. This strain could solubilize phosphate molecules and fixes atmospheric nitrogen. Endophytic S. aquimarina SjAM16103 was inoculated into four different plants under in vitro method to analyse its growth-promoting activity and role inside the host plants. The growth of endophytic S. aquimarina SjAM16103 inoculated explants were highly significant than the uninoculated control explants. Root hairs and early root development were observed in the endophytic S. aquimarina SjAM16103 inoculated explants. PMID:22811715

  12. Perylene derivatives produced by Alternaria alternata, an endophytic fungus isolated from Laurencia species.

    PubMed

    Gao, Shu-Shan; Li, Xiao-Ming; Wang, Bin-Gui

    2009-11-01

    Two new perylene derivatives, 7-epi-8-hydroxyaltertoxin I (1) and 6-epi-stemphytriol (2), along with two known compounds stemphyperylenol (3) and altertoxin I (4) were isolated from Alternaria alternata, a marine endophytic fungus derived from an unidentified algal species of the genus Laurencia. Structures of compounds 1-4 were determined on the basis of detailed spectroscopic analysis, as well as by comparison with literature reports. The antimicrobial activities of compounds 1 and 3 against Staphylococcus aureus, Escherichia coli, and Aspergillus niger were evaluated; neither showed obvious activity. PMID:19967977

  13. Two new sesquiterpenoids from endophytic fungus J3 isolated from Mangrove Plant Ceriops tagal.

    PubMed

    Zeng, Yan-Bo; Gu, Hai-Gang; Zuo, Wen-Jian; Zhang, Li-Li; Bai, Hong-Jin; Guo, Zhi-Kai; Proksch, Peter; Mei, Wen-Li; Dai, Hao-Fu

    2015-01-01

    Two new sesquiterpenoids, named 2α-hydroxyxylaranol B (1) and 4β-hydroxyxylaranol B (2), together with a known diterpenoid 3,4-seco-sonderianol (3) were isolated from the fermentation of endophytic fungus J3 of Ceriops tagal. Their structures were elucidated based on spectroscopic methods including 1D and 2D NMR (HMQC, (1)H-(1)H COSY and HMBC). All compounds were evaluated for their cytotoxic activities by MTT method, and compound 3 exhibited cytotoxic activities against K562, SGC-7901, and BEL-7402 cell lines. PMID:25060947

  14. Chemical characterization of bioactive compounds from the endophytic fungus Diaporthe helianthi isolated from Luehea divaricata.

    PubMed

    Specian, Vânia; Sarragiotto, Maria Helena; Pamphile, João Alencar; Clemente, Edmar

    2012-07-01

    Endophytic microorganisms, defined as fungi or bacteria that colonize the interior of plants without causing any immediate negative effects or damages, have reciprocal relationships with host plants. In some cases their presence is beneficial to the host due to the synthesis of bioactive compounds, among which several alcohols, esters, ketones and others that may react with other compounds and may be lethal to pathogenic microorganisms. Diaporthe helianthi (Phomopsis helianthi in its anamorphic phase) is available worldwide, especially in Europe, Asia and America. Isolated in Europe as an agent of the sunflower stem cancer, it has also been endophytically isolated from tropical and temperate plants. A D. helianthi strain isolated from Luehea divaricata has been employed in current research. An investigation of the secondary metabolite from D. helianthi by CC and NMR of (1)H and (13)C yielded the separation of 10 fractions and the identification of the phenolic compound 2(-4 hydroxyphenyl)-ethanol (Tyrosol). Its antimicrobial reaction was tested and the ensuing antagonistic effects on the human pathogenic bacteria Enterococcus hirae, Escherichia coli, Micrococcus luteus, Salmonella typhi, Staphylococcus aureus, phytopathogenic Xanthomonas asc. phaseoli and phytopathogenic fungi were demonstrated. Results show that bioactive compounds and Tyrosol produced by D. helianthi have a biotechnological potential. PMID:24031942

  15. Chemical characterization of bioactive compounds from the endophytic fungus Diaporthe helianthi isolated from Luehea divaricata

    PubMed Central

    Specian, Vânia; Sarragiotto, Maria Helena; Pamphile, João Alencar; Clemente, Edmar

    2012-01-01

    Endophytic microorganisms, defined as fungi or bacteria that colonize the interior of plants without causing any immediate negative effects or damages, have reciprocal relationships with host plants. In some cases their presence is beneficial to the host due to the synthesis of bioactive compounds, among which several alcohols, esters, ketones and others that may react with other compounds and may be lethal to pathogenic microorganisms. Diaporthe helianthi (Phomopsis helianthi in its anamorphic phase) is available worldwide, especially in Europe, Asia and America. Isolated in Europe as an agent of the sunflower stem cancer, it has also been endophytically isolated from tropical and temperate plants. A D. helianthi strain isolated from Luehea divaricata has been employed in current research. An investigation of the secondary metabolite from D. helianthi by CC and NMR of 1H and 13C yielded the separation of 10 fractions and the identification of the phenolic compound 2(-4 hydroxyphenyl)-ethanol (Tyrosol). Its antimicrobial reaction was tested and the ensuing antagonistic effects on the human pathogenic bacteria Enterococcus hirae, Escherichia coli, Micrococcus luteus, Salmonella typhi, Staphylococcus aureus, phytopathogenic Xanthomonas asc. phaseoli and phytopathogenic fungi were demonstrated. Results show that bioactive compounds and Tyrosol produced by D. helianthi have a biotechnological potential. PMID:24031942

  16. Endophytic fungi isolated from wheat (Triticum durum Desf.): evaluation of their antimicrobial activity, antioxidant activity and host growth promotion.

    PubMed

    Harzallah, Daoud; Sadrati, Nouari; Zerroug, Amina; Dahamna, Saliha; Bouharati, Saddek

    2012-01-01

    The emergence of antibiotic-resistant micro-organisms calls for inventive research and development strategies. The screening for antimicrobial compounds from endophytes is a promising way to meet the increasing threat of drug-resistant strains of human and plant pathogens. Endophytes may be defined as "microbes that colonize living, internal tissues of plants without causing any immediate, overt negative effects". Endophytes are relatively unstudied as potential sources of novel natural products for exploitation in medicine, agriculture, and industry. The purpose of this study was to evaluate several isolated fungi from wheat (Triticum durum Desf.) Mohamed Ben Bachir variety and to select endophytic fungi for further evaluation of its antimicrobial, antioxidant activities and host growth promotion. A total of 20 endophytic fungi have been isolated. Antimicrobial activity was evaluated for crude ethyl acetate extracts using an agar diffusion assay. All extracts showed inhibitory activity on at least one or more pathogenic microorganism, with an average zone of inhibition varied between 7 mm to 25 mm, a large zone of 23 and 25mm against candida albicans and Escherichia coli respectively. The antioxidant capacity of the extracts was evaluated by beta-carotene/linoleic acid assay. Results showed that 70% of these extracts have antioxidant activity, exhibiting 50, 57% to 78, 96% inhibitions. While 30% from them, their inhibitory activity for oxidation of linoleic acid Were less than 50%. Growth promotion ability of these endophytes was tested on seed germination among ten isolates tested, two isolates showed significant growth promotion effects on wheat seeds. From the present work we can conclude that these microorganisms could be promising source of bioactive compounds, growth promotion and warrant further study. PMID:23878980

  17. Decolourisation of Synthetic Dyes by Endophytic Fungal Flora Isolated from Senduduk Plant (Melastoma malabathricum)

    PubMed Central

    Ngieng, Ngui Sing

    2013-01-01

    A total of twenty endophytic fungi successfully isolated from Melastoma malabathricum (Senduduk) were examined for their ability to decolourise azo dyes: Congo red, Orange G, and Methyl red and an anthraquinone dye, Remazol Brilliant Blue R. Initial screening on the glucose minimal media agar plates amended with 200 mg L−1 of each respective dye showed that only isolate MS8 was able to decolourise all of the four dyes. The isolate decolourised completely both the RBBR and Orange G in the agar medium within 8 days. Further quantitative analysis of the dye decolourisation by isolate MS8 in aqueous minimal medium showed that isolate MS8 was able to decolourise all the tested dyes at varying levels. Dye decolourisation by the isolate MS8 was determined to be 97% for RBBR, 33% for Orange G, 48% for Congo red, and 56% for Methyl red, respectively, within a period of 16 days. Molecular identification of the fungal isolate MS8 using primer ITS1 and ITS4 showed that isolate MS8 shared 99% sequence similarity with Marasmius cladophyllus, a Basidiomycete. The ability to decolourise different types of dyes by isolate MS8 thus suggested a possible application of this fungus in the decolourisation of dyestuff effluents. PMID:25937973

  18. Fungal endophytes in potato roots studied by traditional isolation and cultivation-independent DNA-based methods.

    PubMed

    Götz, Monika; Nirenberg, Helgard; Krause, Sibylle; Wolters, Heike; Draeger, Siegfried; Buchner, Arno; Lottmann, Jana; Berg, Gabriele; Smalla, Kornelia

    2006-12-01

    The composition and relative abundance of endophytic fungi in roots of field-grown transgenic T4-lysozyme producing potatoes and the parental line were assessed by classical isolation from root segments and cultivation-independent techniques to test the hypothesis that endophytic fungi are affected by T4-lysozyme. Fungi were isolated from the majority of root segments of both lines and at least 63 morphological groups were obtained with Verticillium dahliae, Cylindrocarpon destructans, Colletotrichum coccodes and Plectosporium tabacinum as the most frequently isolated species. Dominant bands in the fungal fingerprints obtained by denaturing gradient gel electrophoresis analysis of 18S rRNA gene fragments amplified from total community DNA corresponded to the electrophoretic mobility of the 18S rRNA gene fragments of the three most abundant fungal isolates, V. dahliae, C. destructans and Col. coccodes, but not to P. tabacinum. The assignment of the bands to these isolates was confirmed for V. dahliae and Col. coccodes by sequencing of clones. Verticillium dahliae was the most abundant endophytic fungus in the roots of healthy potato plants. Differences in the relative abundance of endophytic fungi colonizing the roots of T4-lysozyme producing potatoes and the parental line could be detected by both methods. PMID:17117985

  19. Endophytic fungus strain 28 isolated from Houttuynia cordata possesses wide-spectrum antifungal activity.

    PubMed

    Pan, Feng; Liu, Zheng-Qiong; Chen, Que; Xu, Ying-Wen; Hou, Kai; Wu, Wei

    2016-01-01

    The aim of this paper is to identify and investigate an endophytic fungus (strain 28) that was isolated from Houttuynia cordata Thunb, a famous and widely-used Traditional Chinese Medicine. Based on morphological methods and a phylogenetic analysis of ITS sequences, this strain was identified as Chaetomium globosum. An antifungal activity bioassay demonstrated that the crude ethyl acetate (EtOAc) extracts of strain 28 had a wide antifungal spectrum and strong antimicrobial activity, particularly against Exserohilum turcicum (Pass.) Leonard et Suggs, Botrytis cinerea persoon and Botrytis cinerea Pers. ex Fr. Furthermore, the fermentation conditions, extraction method and the heat stability of antifungal substances from strain 28 were also studied. The results showed that optimal antifungal activity can be obtained with the following parameters: using potato dextrose broth (PDB) as the base culture medium, fermentation for 4-8d (initial pH: 7.5), followed by extraction with EtOAc. The extract was stable at temperatures up to 80°C. This is the first report on the isolation of endophytic C. globosum from H. cordata to identify potential alternative biocontrol agents that could provide new opportunities for practical applications involving H. cordata. PMID:26991297

  20. New cytotoxic compounds of endophytic fungus Alternaria sp. isolated from Broussonetia papyrifera (L.) Vent.

    PubMed

    Zhang, Naidan; Zhang, Chunyan; Xiao, Xiao; Zhang, Qiaoyan; Huang, Baokang

    2016-04-01

    From the ethyl acetate extract of a culture of the endophytic fungus Alternaria species G7 in Broussonetia papyrifera, a new compound altertoxin IV (1) together with nine known compounds were isolated and identified by means of bioassay-guided fractionation. The structures of these compounds were established on the basis of spectroscopic methods, among which the absolute configuration of compound 1, a new tetrahydroperylenone derivative, was determined by means of X-Ray Crystallographic analysis. The isolated compounds were subjected to cytotoxic activity against three human cancer cell lines (A549, MG-63, and SMMC-7721). Compound 2 showed significant cytotoxic activities against tested cell lines, with IC50 values of 1.47, 2.11 and 7.34 μg/mL, respectively. Additionally, compound 4 also exhibited significant cytotoxic activities against cell lines MG-63 and SMMC-7721, with IC50 values of 0.53 and 2.92 μg/mL. Endophytic fungi Alternaria from B. papyrifera might be promising sources of natural bioactive and novel metabolites. PMID:27001249

  1. The beneficial endophyte, Trichoderma hamatum, isolate DIS 219B promotes growth and delays the onset of the drought response in Theobroma cacao

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Theobroma cacao (cacao), the source of chocolate, is cultivated in tropical climates where the crop is exposed to many biotic and abiotic stresses including plant diseases and drought. Endophytic Trichoderma isolates are being studied for their potential in controlling cacao diseases, but endophytes...

  2. Endophytic Bacteria Isolated from Common Bean (Phaseolus vulgaris) Exhibiting High Variability Showed Antimicrobial Activity and Quorum Sensing Inhibition.

    PubMed

    Lopes, Ralf Bruno Moura; Costa, Leonardo Emanuel de Oliveira; Vanetti, Maria Cristina Dantas; de Araújo, Elza Fernandes; de Queiroz, Marisa Vieira

    2015-10-01

    Endophytic bacteria play a key role in the biocontrol of phytopathogenic microorganisms. In this study, genotypic diversity was analyzed via repetitive element PCR (rep-PCR) of endophytic isolates of the phylum Actinobacteria that were previously collected from leaves of cultivars of common bean (Phaseolus vulgaris). Considerable variability was observed, which has not been reported previously for this phylum of endophytic bacteria of the common bean. Furthermore, the ethanol extracts from cultures of various isolates inhibited the growth of pathogenic bacteria in vitro, especially Gram-positive pathogens. Extracts from cultures of Microbacterium testaceum BAC1065 and BAC1093, which were both isolated from the 'Talismã' cultivar, strongly inhibited most of the pathogenic bacteria tested. Bean endophytic bacteria were also demonstrated to have the potential to inhibit the quorum sensing of Gram-negative bacteria. This mechanism may regulate the production of virulence factors in pathogens. The ability to inhibit quorum sensing has also not been reported previously for endophytic microorganisms of P. vulgaris. Furthermore, M. testaceum with capacity to inhibit quorum sensing appears to be widespread in common bean. The genomic profiles of M. testaceum were also analyzed via pulsed-field gel electrophoresis, and greater differentiation was observed using this method than rep-PCR; in general, no groups were formed based on the cultivar of origin. This study showed for the first time that endophytic bacteria from common bean plants exhibit high variability and may be useful for the development of strategies for the biological control of diseases in this important legume plant. PMID:26202846

  3. Isolation of endophytic endospore-forming bacteria from Theobroma cacao as potential biological control agents of cacao dieseases

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Endospore-forming bacterial endophytes were isolated from Theobroma cacao to access the present and diversity of endospore-forming bacteria in cacao. Cacao leaves, pods, branches, and flower cushions were removed from cacao trees escaping disease on INIAP’s Tropical Research Station in Pichilingue, ...

  4. Complete Genome Sequence of Kosakonia sacchari Strain BO-1, an Endophytic Diazotroph Isolated from a Sweet Potato.

    PubMed

    Shinjo, Rina; Uesaka, Kazuma; Ihara, Kunio; Loshakova, Kseniia; Mizuno, Yuri; Yano, Katsuya; Tanaka, Aiko

    2016-01-01

    The complete genome sequence of the endophytic diazotroph Kosakonia sacchari, isolated from a sweet potato, was analyzed. The 4,902,106-bp genome with 53.7% G+C content comprises 4,638 open reading frames, including nif genes, 84 tRNAs, and seven complete rRNAs in a circular chromosome. PMID:27609910

  5. Bioactive metabolites isolated from Penicillium sp. YY-20, the endophytic fungus from Ginkgo biloba.

    PubMed

    Yuan, Yuan; Tian, Jun-Mian; Xiao, Jian; Shao, Qi; Gao, Jin-Ming

    2014-01-01

    Six known metabolites, adenosine (1), methyl β-D-ribofuranoside (2), adenine (3), 2'-deoxyadenosine (4), 3-methylpiperazine-2,5-dione (5) and 2'-deoxyuridine (6), were isolated from the extracts of the endophytic fungus Penicillium sp. YY-20 isolated from the root of Ginkgo biloba, and their structures were elucidated by spectroscopic methods. The antioxidant and growth-promoting activities of these compounds were first evaluated. The results indicated that compounds 1, 3 and 4 exhibited potential DPPH-scavenging activities compared with positive control. In addition, all the compounds (except 5) stimulated seed germination of Raphanus sativus, Brassica napus and Brassica chinensis but had weak stimulating effect on their root and hypocotyl growth. PMID:24144081

  6. Streptomonospora tuzyakensis sp. nov., a halophilic actinomycete isolated from saline soil.

    PubMed

    Tatar, Demet; Guven, Kiymet; Inan, Kadriye; Cetin, Demet; Belduz, Ali Osman; Sahin, Nevzat

    2016-01-01

    A novel actinobacterium, designated strain BN506(T), was isolated from soil collected from Tuz (Salt) Lake, Konya, Turkey, and was characterised to determine its taxonomic position. The isolate was found to have morphological and chemotaxonomic properties associated with members of the genus Streptomonospora. The isolate was found to grow optimally at 37 °C and in the presence of 10 % (w/v) NaCl but not in the absence of NaCl. Phylogenetic analyses based on an almost-complete 16S rRNA gene sequences indicated that isolate is closely related to members of the genus Streptomonospora and forms a distinct phyletic line in the Streptomonospora phylogenetic tree. Strain BN506(T) is closely related to Streptomonospora halophila YIM 91355(T) (98.1 % sequence similarity). Sequence similarities with other type strains of the genus Streptomyces were lower than 98.0 %. The cell wall of the novel strain was found to contain meso-diaminopimelic acid. Whole cell hydrolysates were found to contain galactose, glucose and ribose. The predominant menaquinone was identified as MK-10(H8) (57.0 %). The polar lipids detected were identified as diphosphatidylglycerol, phosphatidylglycerol and phosphatidylcholine. The major fatty acids were found to be anteiso-C17:0, iso-C16:0 and 10 methyl C18:0. Based on 16S rRNA gene sequence analysis, DNA-DNA relatedness, phenotypic characteristics and chemotaxonomic data, strain BN506(T) was identified as a member of a novel species of the genus Streptomonospora, for which the name Streptomonospora tuzyakensis sp. nov. (type strain BN506(T) = DSM 45930(T) = KCTC 29210(T)) is proposed. PMID:26459342

  7. Geodermatophilus telluris sp. nov., an actinomycete isolated from Saharan desert sand.

    PubMed

    Montero-Calasanz, Maria del Carmen; Göker, Markus; Pötter, Gabriele; Rohde, Manfred; Spröer, Cathrin; Schumann, Peter; Klenk, Hans-Peter; Gorbushina, Anna A

    2013-06-01

    A novel Gram-positive, multiloculated thalli-forming, aerobic, actinobacterial strain, CF9/1/1(T), was isolated in 2007 during environmental screening for xerophilic fungi in arid desert soil from the Sahara desert, Chad. The isolate grew best at a temperature range of 20-35 °C and at pH 6.0-8.5 and with 0-4% (w/v) NaCl, forming black-coloured and irregular colonies on GYM agar. Chemotaxonomic and molecular characteristics of the isolate matched those described for members of the genus Geodermatophilus. The DNA G+C content of the novel strain was 75.4 mol%. The peptidoglycan contained meso-diaminopimelic acid as a diagnostic diamino acid. The main phospholipids were diphosphatidylglycerol, phosphatidylcholine, phosphatidylethanolamine, phosphatidylinositol, a not yet structurally identified aminophospholipid and a small amount of phosphatidylglycerol; MK-9(H4) was identified as the dominant menaquinone and galactose was a diagnostic sugar. The major cellular fatty acids were branched-chain saturated acids: iso-C16:0 and iso-C15:0. The 16S rRNA gene sequence of the isolate showed 94.6-97.0% sequence similarities with those of five members of the genus: Geodermatophilus ruber DSM 45317(T) (94.6%), Geodermatophilus obscurus DSM 43160(T) (94.8%), Geodermatophilus siccatus DSM 45419(T) (96.2%), Geodermatophilus nigrescens DSM 45408(T) (96.7%) and Geodermatophilus arenarius DSM 45418(T) (97.0%). Based on the evidence from this polyphasic taxonomic study, a novel species, Geodermatophilus telluris sp. nov., is proposed; the type strain is CF9/1/1(T) (=DSM 45421(T)=CCUG 62764(T)). PMID:23159748

  8. Nocardiopsis oceani sp. nov. and Nocardiopsis nanhaiensis sp. nov., actinomycetes isolated from marine sediment of the South China Sea.

    PubMed

    Pan, Hua-Qi; Zhang, Dao-Feng; Li, Li; Jiang, Zhao; Cheng, Juan; Zhang, Yong-Guang; Wang, Hong-Fei; Hu, Jiang-Chun; Li, Wen-Jun

    2015-10-01

    Two actinomycete strains, designated 10A08AT and 10A08BT, were isolated from marine sediment samples of the South China Sea and their taxonomic positions were determined by a polyphasic approach. The two Gram-stain-positive, aerobic strains produced branched substrate mycelium and aerial hyphae, and no diffusible pigment was produced in the media tested. At maturity, spore chains were formed on aerial hyphae and all mycelium fragmented with age. Whole-cell hydrolysates of both strains contained meso-diaminopimelic acid and no diagnostic sugars. Their predominant menaquinones (>10 %) were MK-9(H4), MK-9(H6) and MK-10(H6) for strain 10A08AT and MK-9(H4), MK-9(H6), MK-10(H4) and MK-10(H6) for strain 10A08BT. The polar lipids detected from the two strains were diphosphatidylglycerol, phosphatidylglycerol, phosphatidylcholine and unknown phosphoglycolipids and phospholipids. The major fatty acids (>10 %) of both strains were iso-C16 : 0 and summed feature 4 (iso-C17 : 1 I and/or anteiso-C17 : 1 B). The genomic DNA G+C contents of strains 10A08AT and 10A08BT were 70.9 and 71.6 mol%, respectively. On the basis of 16S rRNA gene sequence similarities, the two strains were shown to be most closely related to species of the genus Nocardiopsis. DNA–DNA hybridization relatedness values of < 70 % between these two isolates and their closest neighbour, Nocardiopsis terrae YIM 90022T, and between the two strains supported the conclusion that they represent two novel species. Based on phylogenetic analysis and phenotypic and genotypic data, it is concluded that the two isolates belong to the genus Nocardiopsis, and the names Nocardiopsis oceani sp. nov. (type strain 10A08AT = DSM 45931T = BCRC 16951T) and Nocardiopsis nanhaiensis sp. nov. (type strain 10A08BT = CGMCC 47227T = BCRC 16952T) are proposed. PMID:26297579

  9. Streptomyces iconiensis sp. nov. and Streptomyces smyrnaeus sp. nov., two halotolerant actinomycetes isolated from a salt lake and saltern.

    PubMed

    Tatar, Demet; Guven, Kiymet; Spröer, Cathrin; Klenk, Hans-Peter; Sahin, Nevzat

    2014-09-01

    The taxonomic positions of two novel actinomycetes, designated strains BNT558(T) and SM3501(T), were established by using a polyphasic approach. The organisms had chemical and morphological features that were consistent with their classification in the genus Streptomyces. The whole-cell hydrolysates of the two strains contained ll-diaminopimelic acid as the diagnostic diamino acid. The predominant menaquinones were MK-9(H6) and MK-9(H8) for strain BNT558(T) and MK-9(H8) and MK-9(H6) for strain SM3501(T). Major fatty acids of the strains were anteiso-C15 : 0, anteiso-C17 : 0 and iso-C16 : 0. The polar lipid profile of strain BNT558(T) contained diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylinositol, one unidentified glycolipid and one unidentified aminophospholipid, while that of strain SM3501(T) consisted of diphosphatidylglycerol, phosphatidylglycerol, phosphatidylinositol, phosphatidylethanolamine, three unidentified atypical aminolipids, one unidentified aminolipid and two unidentified glycolipids. The G+C contents of the genomic DNA were 70.2 and 69.6 mol% for strains BNT558(T) and SM3501(T), respectively. 16S rRNA gene sequence data supported the classification of the isolates in the genus Streptomyces and showed that they formed two distinct branches within the genus. Based on almost-complete 16S rRNA gene sequences, strain BNT558(T) was related most closely to Streptomyces albiaxialis NRRL B-24327(T) and strain SM3501(T) was related most closely to Streptomyces cacaoi subsp. cacaoi NBRC 12748(T). DNA-DNA relatedness between each of the isolates and its closest phylogenetic neighbours showed that they belonged to distinct species. The two isolates were readily distinguished from one another and from the type strains of the other species classified in the genus Streptomyces based on a combination of phenotypic and genotypic properties. Based on the genotypic and phenotypic evidence, strains BNT558(T) and SM3501(T) belong to two

  10. Gordonia didemni sp. nov. an actinomycete isolated from the marine ascidium Didemnum sp.

    PubMed

    de Menezes, Cláudia Beatriz Afonso; Afonso, Rafael Sanches; de Souza, Wallace Rafael; Parma, Márcia; de Melo, Itamar Soares; Zucchi, Tiago Domingues; Fantinatti-Garboggini, Fabiana

    2016-02-01

    A novel actinobacterium, designated isolate B204(T), was isolated from a marine ascidian Didemnum sp., collected from São Paulo, Brazil, and its taxonomic position established using data from a polyphasic study. The organism showed a combination of chemotaxonomic and morphological characteristics consistent with its classification in the genus Gordonia and formed a distinct phyletic line in the Gordonia 16S rRNA gene tree. It was closely related to Gordonia terrae DSM 43249(T) (99.9 % 16S rRNA gene sequence similarity) and Gordonia lacunae DSM 45085(T) (99.3 % 16S rRNA gene sequence similarity) but was distinguished from these strains by a moderate level of DNA-DNA relatedness (63.0 and 54.7 %) and discriminatory phenotypic properties. Based on the data obtained, the isolate B204(T) (=CBMAI 1069(T) = DSM 46679(T)) should therefore be classified as the type strain of a novel species of the genus Gordonia, for which the name Gordonia didemni sp. nov. is proposed. PMID:26678782

  11. Biosorption of cadmium by endophytic fungus (EF) Microsphaeropsis sp. LSE10 isolated from cadmium hyperaccumulator Solanum nigrum L.

    PubMed

    Xiao, Xiao; Luo, Shenglian; Zeng, Guangming; Wei, Wanzhi; Wan, Yong; Chen, Liang; Guo, Hanjun; Cao, Zhe; Yang, Lixia; Chen, Jueliang; Xi, Qiang

    2010-03-01

    A novel technology to obtain highly efficient biosorbent from the endophytes of a hyperaccumulator is reported. This technology is more convenient than the traditional method of obtaining biosorbents by experimentally screening many types of biomass by trial and error. Using this technology, endophytic fungus (EF) LSE10 was isolated from the cadmium hyperaccumulator Solanum nigrum L. It was identified as Microsphaeropsis sp. When cultured in vitro, the biomass yield of this EF was more than twice that of none-endophytic fungus (NEF) Rhizopus cohnii. Subsequently, it was used as a biosorbent for biosorption of cadmium from the aqueous solution. The results showed that the maximum biosorption capacity was 247.5mg/g (2.2 mmol/g) which was much higher than those of other adsorbents, including biosorbents and activated carbon. Carboxyl, amino, sulphonate and hydroxyl groups on EF LSE10 surface were responsible for the biosorption of cadmium. PMID:19854641

  12. Cytotoxic effects of oosporein isolated from endophytic fungus Cochliobolus kusanoi

    PubMed Central

    Ramesha, Alurappa; Venkataramana, M.; Nirmaladevi, Dhamodaran; Gupta, Vijai K.; Chandranayaka, S.; Srinivas, Chowdappa

    2015-01-01

    In the present study, oosporein, a fungal toxic secondary metabolite known to be a toxic agent causing chronic disorders in animals, was isolated from fungus Cochliobolus kusanoi of Nerium oleander L. Toxic effects of oosporein and the possible mechanisms of cytotoxicity as well as the role of oxidative stress in cytotoxicity to Madin-Darby canine kidney kidney cells and RAW 264.7 splene cells were evaluated in vitro. Also to know the possible in vivo toxic effects of oosporein on kidney and spleen, Balb/C mouse were treated with different concentrations of oosporein ranging from 20 to 200 μM). After 24 h of exposure histopathological observations were made to know the effects of oosporein on target organs. Oosporein induced elevated levels of reactive oxygen species (ROS) generation and high levels of malondialdehyde, loss of mitochondrial membrane potential, induced glutathione hydroxylase (GSH) production was observed in a dose depended manner. Effects oosporein on chromosomal DNA damage was assessed by Comet assay, and increase in DNA damage were observed in both the studied cell lines by increasing the oosporein concentration. Further, oosporein treatment to studied cell lines indicated significant suppression of oxidative stress related gene (Superoxide dismutase1 and Catalase ) expression, and increased levels of mRNA expression in apoptosis or oxidative stress inducing genes HSP70, Caspase3, Caspase6, and Caspase9 as measured by quantitative real time-PCR assay. Histopathological examination of oosporein treated mouse kidney and splenocytes further revealed that, oosporein treated target mouse tissues were significantly damaged with that of untreated sam control mice and these effects were in directly proportional to the the toxin dose. Results of the present study reveals that, ROS is the principle event prompting increased oosporein toxicity in studied in vivio and in vitro animal models. The high previlance of these fungi in temperate climates further

  13. Isolation, Identification and Characteristics of an Endophytic Quinclorac Degrading Bacterium Bacillus megaterium Q3

    PubMed Central

    Wang, Yunsheng; Zeng, Aiping; Zhou, Xiaomao; Luo, Feng; Bai, Lianyang

    2014-01-01

    In this study, we isolated an endophytic quinclorac-degrading bacterium strain Q3 from the root of tobacco grown in quinclorac contaminated soil. Based on morphological characteristics, Biolog identification, and 16S rDNA sequence analysis, we identified strain Q3 as Bacillus megaterium. We investigated the effects of temperature, pH, inoculation size, and initial quinclorac concentration on growth and degrading efficiency of Q3. Under the optimal degrading condition, Q3 could degrade 93% of quinclorac from the initial concentration of 20 mg/L in seven days. We analyzed the degradation products of quinclorac using liquid chromatography–tandem mass spectrometry (LC-MS/MS). The major degradation products by Q3 were different from those of previously identified quinclorac degrading strains, which suggests that Q3 may employ new pathways for quinclorac degradation. Our indoor pot experiments demonstrated that Q3 can effectively alleviate the quinclorac phytotoxicity in tobacco. As the first endophytic microbial that is capable of degrading quinclorac, Q3 can be a good bioremediation bacterium for quinclorac phytotoxicity. PMID:25244184

  14. Morphological, physiological, and molecular characterization of actinomycetes isolated from dry soil, rocks, and monument surfaces.

    PubMed

    Eppard, M; Krumbein, W E; Koch, C; Rhiel, E; Staley, J T; Stackebrandt, E

    1996-07-01

    In an extended study on the biodiversity of rock-dwelling bacteria, the colony and cell morphology, physiology, protein patterns, and 16S rDNA sequences of 17 bacterial strains isolated from different surfaces of rocks, stones, and monuments and from various geographical locations were characterized. All except one strain, which was found to be a Bacillus, were members of the order Actinomycetales. The majority of the strains either were closely related to Geodermatophilus obscurus, which was also analyzed in this study, or formed a closely related sister taxon. All of these strains were isolated from the surface of marble in Namibia and Greece and from limestone from the Negev desert, Israel. One strain, G10, of Namibia origin was equidistantly related to Geodermatophilus obscurus, Frankia alni, Sporichthya polymorpha, and Acidothermus cellulolyticus. Three strains from rock varnish in the Mojave desert, California, were found to be highly related to Arthrobacter (formerly Micrococcus) agilis. All clusters could be confirmed from results of studies on morphological and physiological properties and from banding patterns of whole cell proteins. Based on the results of tests, four additional strains were assigned to the lineage defined by strain G10. PMID:8661940

  15. Amycolatopsis rhabdoformis sp. nov., an actinomycete isolated from a tropical forest soil.

    PubMed

    Souza, Wallace Rafael; Silva, Rafael Eduardo; Goodfellow, Michael; Busarakam, Kanungnid; Figueiro, Fernanda Sales; Ferreira, Douglas; Rodrigues-Filho, Edson; Moraes, Luiz Alberto Beraldo; Zucchi, Tiago Domingues

    2015-06-01

    Strain SB026T was isolated from Brazilian rainforest soil and its taxonomic position established using data from a polyphasic study. The organism showed a combination of chemotaxonomic and morphological features consistent with its classification in the genus Amycolatopsis and formed a branch in the Amycolatopsis 16S rRNA gene tree together with Amycolatopsis bullii NRRL B-24847T, Amycolatopsis plumensis NRRL B-24324T, Amycolatopsis tolypomycina DSM 44544T and Amycolatopsis vancoresmycina NRRL B-24208T. It was related most closely to A. bullii NRRL B-24847T (99.0 % 16S rRNA gene sequence similarity), but was distinguished from this strain by a low level of DNA-DNA relatedness (~46 %) and discriminatory phenotypic properties. Based on the combined genotypic and phenotypic data, it is proposed that the isolate should be classified in the genus Amycolatopsis as representing a novel species, Amycolatopsis rhabdoformis sp. nov. The type strain is SB026T ( = CBMAI 1694T = CMAA 1285T = NCIMB 14900T). PMID:25744584

  16. Anti-phytopathogen potential of endophytic actinobacteria isolated from tomato plants (Lycopersicon esculentum) in southern Brazil, and characterization of Streptomyces sp. R18(6), a potential biocontrol agent.

    PubMed

    de Oliveira, Margaroni Fialho; da Silva, Mariana Germano; Van Der Sand, Sueli T

    2010-09-01

    Tomato plants (Lycopersicon esculentum) are highly susceptible to phytopathogen attack. The resulting intensive application of pesticides on tomato crops can affect the environment and health of humans and animals. The objective of this study was to select potential biocontrol agents among actinobacteria from tomato plants, in a search for alternative phytopathogen control. We evaluated 70 endophytic actinobacteria isolated from tomato plants in southern Brazil, testing their antimicrobial activity, siderophore production, indoleacetic acid production, and phosphate solubility. The actinomycete isolate with the highest antimicrobial potential was selected using the agar-well diffusion method, in order to optimize conditions for the production of compounds with antimicrobial activity. For this study, six growth media (starch casein-SC, ISP2, Bennett's, Sahin, Czapek-Dox, and TSB), three temperatures (25 degrees C, 30 degrees C, and 35 degrees C) and different pH were tested. Of the actinobacteria tested, 88.6% showed antimicrobial activity against at least one phytopathogen, 72.1% showed a positive reaction for indoleacetic acid production, 86.8% produced siderophores and 16.2% showed a positive reaction for phosphate solubility. Isolate R18(6) was selected due to its antagonistic activity against all phytopathogenic microorganisms tested in this study. The best conditions for production were observed in the SC medium, at 30 degrees C and pH 7.0. The isolate R18(6) showed close biochemical and genetic similarity to Streptomyces pluricolorescens. PMID:20542109

  17. Antibacterial activity of alkaloids produced by endophytic fungus Aspergillus sp. EJC08 isolated from medical plant Bauhinia guianensis.

    PubMed

    Pinheiro, Eduardo Antonio A; Carvalho, Josiwander Miranda; dos Santos, Diellem Cristina P; Feitosa, André de Oliveira; Marinho, Patrícia Santana B; Guilhon, Giselle Maria Skelding Pinheiro; de Souza, Afonso Duarte L; da Silva, Felipe Moura A; Marinho, Andrey Moacir do R

    2013-01-01

    Bauhinia guianensis is a typical plant in the Amazon region belonging to the family Leguminosea, used by local populations for the treatment of infectious and renal diseases. Previous work on the plant B. guianensis led to the isolation of substances with anti-inflammatory and analgesic activities. Thus, compounds isolated from B. guianensis with antimicrobial activities had not been identified. Given that there is a possibility of biological activity reported for a given plant being found in the endophytic fungi, we decided to isolate endophytic fungi from B. guianensis and test their antimicrobial activities. The alkaloids known as fumigaclavine C and pseurotin A were isolated by column chromatography and identified by 1D and 2D NMR techniques and mass spectrometry. The alkaloids are first reported as broad-spectrum antibacterial agents with good activity. PMID:23234304

  18. Geodermatophilus poikilotrophi sp. nov.: A Multitolerant Actinomycete Isolated from Dolomitic Marble

    PubMed Central

    Montero-Calasanz, Maria del Carmen; Hofner, Benjamin; Göker, Markus; Rohde, Manfred; Spröer, Cathrin; Hezbri, Karima; Gtari, Maher; Schumann, Peter; Klenk, Hans-Peter

    2014-01-01

    A novel Gram-reaction-positive, aerobic actinobacterium, tolerant to mitomycin C, heavy metals, metalloids, hydrogen peroxide, desiccation, and ionizing- and UV-radiation, designated G18T, was isolated from dolomitic marble collected from outcrops in Samara (Namibia). The growth range was 15–35°C, at pH 5.5–9.5 and in presence of 1% NaCl, forming greenish-black coloured colonies on GYM Streptomyces agar. Chemotaxonomic and molecular characteristics of the isolate matched those described for other representatives of the genus Geodermatophilus. The peptidoglycan contained meso-diaminopimelic acid as diagnostic diaminoacid. The main phospholipids were phosphatidylethanolamine, phosphatidylcholine, phosphatidylinositol, and small amount of diphosphatidylglycerol. MK-9(H4) was the dominant menaquinone and galactose was detected as diagnostic sugar. The major cellular fatty acids were branched-chain saturated acids iso-C16:0 and iso-C15:0 and the unsaturated C17:1ω8c and C16:1ω7c. The 16S rRNA gene showed 97.4–99.1% sequence identity with the other representatives of genus Geodermatophilus. Based on phenotypic results and 16S rRNA gene sequence analysis, strain G18T is proposed to represent a novel species, Geodermatophilus poikilotrophi. Type strain is G18T (= DSM 44209T = CCUG 63018T). The INSDC accession number is HF970583. The novel R software package lethal was used to compute the lethal doses with confidence intervals resulting from tolerance experiments. PMID:25114928

  19. Geodermatophilus poikilotrophi sp. nov.: a multitolerant actinomycete isolated from dolomitic marble.

    PubMed

    del Carmen Montero-Calasanz, Maria; Hofner, Benjamin; Göker, Markus; Rohde, Manfred; Spröer, Cathrin; Hezbri, Karima; Gtari, Maher; Schumann, Peter; Klenk, Hans-Peter

    2014-01-01

    A novel Gram-reaction-positive, aerobic actinobacterium, tolerant to mitomycin C, heavy metals, metalloids, hydrogen peroxide, desiccation, and ionizing- and UV-radiation, designated G18T, was isolated from dolomitic marble collected from outcrops in Samara (Namibia). The growth range was 15-35°C, at pH 5.5-9.5 and in presence of 1% NaCl, forming greenish-black coloured colonies on GYM Streptomyces agar. Chemotaxonomic and molecular characteristics of the isolate matched those described for other representatives of the genus Geodermatophilus. The peptidoglycan contained meso-diaminopimelic acid as diagnostic diaminoacid. The main phospholipids were phosphatidylethanolamine, phosphatidylcholine, phosphatidylinositol, and small amount of diphosphatidylglycerol. MK-9(H4) was the dominant menaquinone and galactose was detected as diagnostic sugar. The major cellular fatty acids were branched-chain saturated acids iso-C16:0 and iso-C15:0 and the unsaturated C17:1 ω8c and C16:1 ω7c. The 16S rRNA gene showed 97.4-99.1% sequence identity with the other representatives of genus Geodermatophilus. Based on phenotypic results and 16S rRNA gene sequence analysis, strain G18T is proposed to represent a novel species, Geodermatophilus poikilotrophi. Type strain is G18T (=DSM 44209T=CCUG 63018T). The INSDC accession number is HF970583. The novel R software package lethal was used to compute the lethal doses with confidence intervals resulting from tolerance experiments. PMID:25114928

  20. Streptomyces xinjiangensis sp. nov., an actinomycete isolated from Lop Nur region.

    PubMed

    Cheng, Cong; Li, Yu-Qian; Asem, Mipeshwaree Devi; Lu, Chun-Yan; Shi, Xiao-Han; Chu, Xiao; Zhang, Wan-Qin; Di An, Deng-; Li, Wen-Jun

    2016-10-01

    A novel actinobacterial strain, designated LPA192(T), was isolated from a soil sample collected from Lop Nur, Xinjiang Uygur Autonomous Region, Northwest China. A polyphasic approach was used to investigate the taxonomic position of strain LPA192(T). The isolate showed morphological and chemotaxonomic characteristics typical of members of the genus Streptomyces. Peptidoglycan was found to contain LL-diaminopimelic acid as the diagnostic diamino acid. The predominant menaquinones were MK-9(H6) and MK-10(H4). Polar lipids were phosphatidylethanolamine, diphosphatidylglycerol and phosphatidylinositol. Major cellular fatty acids consist of C16:0, anteiso-C15:0 and C18:1 ω9c. The sugar in whole-cell hydrolysates was mannose. Phylogenetic analysis indicated that strain LPA192(T) is closely related to Streptomyces tanashiensis LMG 20274(T) (99.3 %), Streptomyces gulbargensis DAS131(T) (99.3 %), Streptomyces nashvillensis NBRC 13064(T) (99.3 %), Streptomyces roseolus NBRC 12816(T) (99.2 %) and Streptomyces filamentosus NBRC 12767(T) (99.1 %) while showing below 98.5 % sequencing similarities with other validly published Streptomyces species. However, DNA-DNA relatedness values between LPA192(T) and the closely related type strains were below 40 %, which are much lower than 70 % threshold value for species delineation. The genomic DNA G + C content of strain LPA192(T) was 69.3 mol %. Based on the differences in genotypic and phenotypic characteristics from the closely related strains, strain LPA192(T) is considered to represent a novel species of the genus Streptomyces for which the name Streptomyces xinjiangensis sp. nov. is proposed. The type strain is LPA192(T) (=KCTC 39601(T) = CGMCC 4.7288(T)). PMID:27209413

  1. Isolation of (-)-avenaciolide as the antifungal and antimycobacterial constituent of a Seimatosporium sp. Endophyte from the medicinal plant Hypericum perforatum .

    PubMed

    Clark, Trevor N; Bishop, Amanda I; McLaughlin, Mark; Calhoun, Larry A; Johnson, John A; Gray, Christopher A

    2014-10-01

    An extract of Seimatosporium sp., an endophyte from the Canadian medicinal plant Hypericum perforatum, exhibited significant antifungal and antimycobacterial activity against Candida albicans and Mycobacterium tuberculosis H37Ra. Bioassay guided fractionation led to the isolation of (-)-avenaciolide as the only bioactive constituent of the extract. This is the first report of both the antimycobacterial activity of avenaciolide and its isolation from a Seimatosporium sp. fungus. PMID:25522544

  2. Isolation and Characterization of an Endophytic Fungal Strain with Potent Antimicrobial and Termiticidal Activities From Port-Orford-Cedar.

    PubMed

    Sun, Liqing; Hse, Chung-Yun; Shupe, Todd; Sun, Mingjing; Wang, Xiaohua; Zhao, Kai

    2015-06-01

    Termites are responsible for an estimated US$1 billion annually in property damage, repairs, pest control, and prevention. There is an urgent need of finding a better alternative way to control and prevent termites. Port-Orford-Cedar (POC) has been known to have significant levels of natural durability and termiticidal activities due to its extractive contents. In this study, 25 endophytes including 22 fungal and 3 bacterial strains were isolated from the POC. Four strains, namely, HDZK-BYF21, HDZK-BYF1, HDZK-BYF2, and HDZK-BYB11, were chosen to test their termiticidal activities. The fermentation broth of strain HDZK-BYF21 displayed the potent antimicrobial and termiticidal activities. Morphological examination and 18 S rDNA sequence analysis demonstrated that strain HDZK-BYF21 belonged to the genus Aspergillus. This finding indicates the existence of an interesting chemical symbiosis between an endophytic fungus and its host. This is also the first report on endophytes isolated from the POC that may have potential termiticidal activities. Endophytes with termiticidal activities can be grown in bioreactor to provide an inexhaustible supply of bioactive compounds and thus can be exploited commercially. PMID:26470217

  3. A primary assessment of the endophytic bacterial community in a xerophilous moss (Grimmia montana) using molecular method and cultivated isolates

    PubMed Central

    Liu, Xiao Lei; Liu, Su Lin; Liu, Min; Kong, Bi He; Liu, Lei; Li, Yan Hong

    2014-01-01

    Investigating the endophytic bacterial community in special moss species is fundamental to understanding the microbial-plant interactions and discovering the bacteria with stresses tolerance. Thus, the community structure of endophytic bacteria in the xerophilous moss Grimmia montana were estimated using a 16S rDNA library and traditional cultivation methods. In total, 212 sequences derived from the 16S rDNA library were used to assess the bacterial diversity. Sequence alignment showed that the endophytes were assigned to 54 genera in 4 phyla (Proteobacteria, Firmicutes, Actinobacteria and Cytophaga/Flexibacter/Bacteroids). Of them, the dominant phyla were Proteobacteria (45.9%) and Firmicutes (27.6%), the most abundant genera included Acinetobacter, Aeromonas, Enterobacter, Leclercia, Microvirga, Pseudomonas, Rhizobium, Planococcus, Paenisporosarcina and Planomicrobium. In addition, a total of 14 species belonging to 8 genera in 3 phyla (Proteobacteria, Firmicutes, Actinobacteria) were isolated, Curtobacterium, Massilia, Pseudomonas and Sphingomonas were the dominant genera. Although some of the genera isolated were inconsistent with those detected by molecular method, both of two methods proved that many different endophytic bacteria coexist in G. montana. According to the potential functional analyses of these bacteria, some species are known to have possible beneficial effects on hosts, but whether this is the case in G. montana needs to be confirmed. PMID:24948927

  4. Talarolutins A-D: Meroterpenoids from an endophytic fungal isolate of Talaromyces minioluteus.

    PubMed

    Kaur, Amninder; Raja, Huzefa A; Swenson, Dale C; Agarwal, Rajesh; Deep, Gagan; Falkinham, Joseph O; Oberlies, Nicholas H

    2016-06-01

    Four meroterpenoids [talarolutins A-D] and one known compound [purpurquinone A] were characterized from an endophytic fungal isolate of Talaromyces minioluteus (G413), which was obtained from the leaves of the medicinal plant milk thistle [Silybum marianum (L.) Gaertn. (Asteraceae)]. The structures of talarolutins A-D were determined by the analysis of various NMR and MS techniques. The relative and absolute configuration of talarolutin A was determined by X-ray diffraction analysis. A combination of NOESY data and comparisons of ECD spectra were employed to assign the relative and absolute configuration of the other analogs. Talarolutins B-D were tested for cytotoxicity against human prostate carcinoma (PC-3) cell line, antimicrobial activity, and induction of quinone reductase; no notable bioactivity was observed in any assay. PMID:27048854

  5. Phylogenetic analysis of endophytic bacterial isolates from leaves of the medicinal plant Trichilia elegans A. Juss. (Meliaceae).

    PubMed

    Rhoden, S A; Garcia, A; Santos e Silva, M C; Azevedo, J L; Pamphile, J A

    2015-01-01

    Various organisms such as fungi and bacteria can live inside plants, inhabiting the aerial parts (primarily the leaves) without causing damage. These microorganisms, called endophytes, produce an extensive variety of compounds that can be useful for medical and agronomic purposes. Trichilia elegans A. Juss., belonging to the Meliaceae family, shows wide dispersion in South America, and phytochemical analyses from these plants and endophyte isolates have shown biological activity. Accordingly, the aim of this study was to verify the diversity of bacterial endophytes from T. elegans using partial sequencing of 16S rRNA, followed by phylogenetic analysis. Isolation was performed by cutting the leaves, after disinfection with 5% sodium hypochlorite (NaOCl), in 1-2-mm² fragments, which were equally placed on dishes containing TSA and fungicide BENLATE at 75 μg/mL. All dishes were incubated at 28°C in the biochemical oxygen demand system for 5 days and periodically checked. Afterwards, the colonization frequency (%) was determined: (number of fragments colonized by bacteria/total number of fragments) x 100. Three isolations between September 2011 and March 2012 were performed; the growth frequency ranged between 1.6 and 13.6%. Following sequencing of 16S rRNA and phylogenetic analysis, the genera identified were: Staphylococcus, Bacillus, Microbacterium, Pseudomonas, and Pantoea. These results will provide important knowledge on the diversity of endophytic bacteria inhabiting medicinal plants, and a better understanding of the microbiome of T. elegans would reinforce the necessity of endophyte studies with a focus on their future applications in biotechnological areas of agriculture, medicine, and the environment. PMID:25730091

  6. Natural Products from Mangrove Actinomycetes

    PubMed Central

    Xu, Dong-Bo; Ye, Wan-Wan; Han, Ying; Deng, Zi-Xin; Hong, Kui

    2014-01-01

    Mangroves are woody plants located in tropical and subtropical intertidal coastal regions. The mangrove ecosystem is becoming a hot spot for natural product discovery and bioactivity survey. Diverse mangrove actinomycetes as promising and productive sources are worth being explored and uncovered. At the time of writing, we report 73 novel compounds and 49 known compounds isolated from mangrove actinomycetes including alkaloids, benzene derivatives, cyclopentenone derivatives, dilactones, macrolides, 2-pyranones and sesquiterpenes. Attractive structures such as salinosporamides, xiamycins and novel indolocarbazoles are highlighted. Many exciting compounds have been proven as potential new antibiotics, antitumor and antiviral agents, anti-fibrotic agents and antioxidants. Furthermore, some of their biosynthetic pathways have also been revealed. This review is an attempt to consolidate and summarize the past and the latest studies on mangrove actinomycetes natural product discovery and to draw attention to their immense potential as novel and bioactive compounds for marine drugs discovery. PMID:24798926

  7. [Screening and identification of antioxidant endophytes from Lycium barbarum of Ningxia].

    PubMed

    Du, Xiao-ning; Dai, Jin-xia

    2015-10-01

    In this paper, 29 endophytes were isolated from different organs and tissues of Lycium barbarum of Ningxia by tablet coating method, 18 of them was fungi, and 11 of them was actinomycetes. The endophytes quantity in the different tissues were leaves > flowers > roots >fruits; The hydroxyl radical scavenging activities of 11 endophytes were investigated by Fenton reaction, and total antioxidant capacities of them were examined by a. total antioxidant capacity test kit; culture features and strain-specific sequence analysis were employed to explore the diversity of the 11 endophytes. The result showed that 5 fungi and 6 actinomycetes that having antioxidant activity could be phylogenetically classified into 3 genera, 3 genera and 3 families, respectively. The total antioxidant capacity and hydroxyl radical scavenging activity of the 11 endophytes showed distinct difference. The antioxidant activity of Aspergillus were stronger, among which total antioxidant capacity of fL1 was (188.5 ± 0.549) U · mL⁻¹ and the IC₅₀ was 0.3 mg · L⁻¹; the IC₅₀ of strain fL1 was 0.42 mg · L⁻¹ and the total antioxidant capacity of fL9 was (113.63 ± 1.021) U · mL⁻¹, all of them were stronger than the positive control Vit C. The experimental results indicated that endophytic fungi of L. barbarum of Ningxia have a great developing and application prospect for the development of antioxidant agent. PMID:27062806

  8. Rational approaches to improving the isolation of endophytic actinobacteria from Australian native trees.

    PubMed

    Kaewkla, Onuma; Franco, Christopher M M

    2013-02-01

    In recent years, new actinobacterial species have been isolated as endophytes of plants and shrubs and are sought after both for their role as potential producers of new drug candidates for the pharmaceutical industry and as biocontrol inoculants for sustainable agriculture. Molecular-based approaches to the study of microbial ecology generally reveal a broader microbial diversity than can be obtained by cultivation methods. This study aimed to improve the success of isolating individual members of the actinobacterial population as pure cultures as well as improving the ability to characterise the large numbers obtained in pure culture. To achieve this objective, our study successfully employed rational and holistic approaches including the use of isolation media with low concentrations of nutrients normally available to the microorganism in the plant, plating larger quantities of plant sample, incubating isolation plates for up to 16 weeks, excising colonies when they are visible and choosing Australian endemic trees as the source of the actinobacteria. A hierarchy of polyphasic methods based on culture morphology, amplified 16S rRNA gene restriction analysis and limited sequencing was used to classify all 576 actinobacterial isolates from leaf, stem and root samples of two eucalypts: a Grey Box and Red Gum, a native apricot tree and a native pine tree. The classification revealed that, in addition to 413 Streptomyces spp., isolates belonged to 16 other actinobacterial genera: Actinomadura (two strains), Actinomycetospora (six), Actinopolymorpha (two), Amycolatopsis (six), Gordonia (one), Kribbella (25), Micromonospora (six), Nocardia (ten), Nocardioides (11), Nocardiopsis (one), Nonomuraea (one), Polymorphospora (two), Promicromonospora (51), Pseudonocardia (36), Williamsia (two) and a novel genus Flindersiella (one). In order to prove novelty, 12 strains were characterised fully to the species level based on polyphasic taxonomy. One strain represented a novel

  9. A Comparative biochemical study on two marine endophytes, Bacterium SRCnm and Bacillus sp. JS, Isolated from red sea algae.

    PubMed

    Ahmed, Eman Fadl; Hassan, Hossam Mokhtar; Rateb, Mostafa Ezzat; Abdel-Wahab, Noha; Sameer, Somayah; Aly Taie, Hanan Anwar; Abdel-Hameed, Mohammed Sayed; Hammouda, Ola

    2016-01-01

    Two marine endophytic bacteria were isolated from the Red Sea algae; a red alga; Acanthophora dendroides and the brown alga Sargassum sabrepandum. The isolates were identified based on their 16SrRNA sequences as Bacterium SRCnm and Bacillus sp. JS. The objective of this study was to investigate the potential anti-microbial and antioxidant activities of the extracts of the isolated bacteria grown in different nutrient conditions. Compared to amoxicillin (25μg/disk) and erythromycin (15μg/disk), the extracts of Bacterium SRCn min media II, III, IV and V were potent inhibitors of the gram-positive bacterium Sarcina maxima even at low concentrations. Also, the multidrug resistant Staphylococcus aureus(MRSA) was more sensitive to the metabolites produced in medium (II) of the same endophyte than erythromycin (15μg/disk). A moderate activity of the Bacillus sp. JS extracts of media I and II was obtained against the same pathogen. The total compounds (500ug/ml) of both isolated endophytes showed moderate antioxidant activities (48.9% and 46.1%, respectively). LC/MS analysis of the bacterial extracts was carried out to investigate the likely natural products produced. Cyclo(D-cis-Hyp-L-Leu), dihydrosphingosine and 2-Amino-1,3-hexadecanediol were identified in the fermentation medium of Bacterium SRCnm, whereas cyclo (D-Pro-L-Tyr) and cyclo (L-Leu-L-Pro) were the suggested compounds of Bacillus sp. JS. PMID:26826831

  10. Identification and characterization of the endophytic plant growth prompter Bacillus Cereus strain mq23 isolated from Sophora Alopecuroides root nodules

    PubMed Central

    Zhao, Longfei; Xu, Yajun; Sun, Ran; Deng, Zhenshan; Yang, Wenquan; Wei, Gehong

    2011-01-01

    Endophytes MQ23 and MQ23R isolated from Sophora alopecuroides root nodules were characterized by observing their ability to promote plant growth and employing molecular analysis techniques. Results showed that MQ23 and MQ23R are potential N2-fixing endophytes and belong to the same species as Bacillus cereus. MQ23 was shown to be able to produce siderophores, IAA, and demonstrate certain antifungal activity to plant pathogenic fungi. Co-inoculation with MQ23+MQ23II showed a more significant effect than inoculation alone in vitro for most of positive actions suggesting they have a cooperative interaction. Results of plant inoculation with endophytes indicated that the growth indexes of co-inoculated MQ23+MQ23II were higher than those of inoculated alone (p<0.05) (the exception being for root fresh weight) when compared to negative control. There have been little of any studies of nonrhizobial putative endophytes with growth-promotion attributes in S. alopecuroides root nodules. This could be exploited as potential bio-inoculants and biocontrol agents in agriculture. PMID:24031669

  11. Identification and characterization of the endophytic plant growth prompter Bacillus Cereus strain mq23 isolated from Sophora Alopecuroides root nodules.

    PubMed

    Zhao, Longfei; Xu, Yajun; Sun, Ran; Deng, Zhenshan; Yang, Wenquan; Wei, Gehong

    2011-04-01

    Endophytes MQ23 and MQ23R isolated from Sophora alopecuroides root nodules were characterized by observing their ability to promote plant growth and employing molecular analysis techniques. Results showed that MQ23 and MQ23R are potential N2-fixing endophytes and belong to the same species as Bacillus cereus. MQ23 was shown to be able to produce siderophores, IAA, and demonstrate certain antifungal activity to plant pathogenic fungi. Co-inoculation with MQ23+MQ23II showed a more significant effect than inoculation alone in vitro for most of positive actions suggesting they have a cooperative interaction. Results of plant inoculation with endophytes indicated that the growth indexes of co-inoculated MQ23+MQ23II were higher than those of inoculated alone (p<0.05) (the exception being for root fresh weight) when compared to negative control. There have been little of any studies of nonrhizobial putative endophytes with growth-promotion attributes in S. alopecuroides root nodules. This could be exploited as potential bio-inoculants and biocontrol agents in agriculture. PMID:24031669

  12. Bioactive metabolites from the endophytic fungus Ampelomyces sp. isolated from the medicinal plant Urospermum picroides.

    PubMed

    Aly, Amal H; Edrada-Ebel, Ruangelie; Wray, Victor; Müller, Werner E G; Kozytska, Svitlana; Hentschel, Ute; Proksch, Peter; Ebel, Rainer

    2008-05-01

    Extracts of cultures grown in liquid or on solid rice media of the fungal endophyte Ampelomyces sp. isolated from the medicinal plant Urospermum picroides exhibited considerable cytotoxic activity when tested in vitro against L5178Y cells. Chromatographic separation yielded 14 natural products that were unequivocally identified based on their 1H and 13C NMR as well as mass spectra and comparison with previously published data. Six compounds (2, 4, 5, 7, 9 and 11) were natural products. Both fungal extracts differed considerably in their secondary metabolites. The extract obtained from liquid cultures afforded a pyrone (2) and sulfated anthraquinones (7 and 9) along with the known compounds 1, 3, 6 and 8. When grown on solid rice medium the fungus yielded three compounds 4, 5 and 11 in addition to several known metabolites including 6, 8, 10, 12, 13 and 14. Compounds 4, 8 and 10 showed the strongest cytotoxic activity against L5178Y cells with EC50 values ranging from 0.2-7.3microg/ml. Furthermore, 8 and 10 displayed antimicrobial activity against the Gram-positive pathogens, Staphylococcus aureus, S. epidermidis and Enterococcus faecalis at minimal inhibitory concentrations (MIC) of 12.5microg/ml and 12.5-25microg/ml, respectively. Interestingly, 6 and 8 were also identified as constituents of an extract derived from a healthy plant sample of the host plant U. picroides thereby indicating that the production of bioactive natural products by the endophyte proceeds also under in situ conditions within the host plant. PMID:18400237

  13. Grass fungal endophytes and uses thereof

    SciTech Connect

    Craven, Kelly

    2015-03-10

    The invention provides isolated fungal endophytes and synthetic combinations thereof with host grass plants. Methods for inoculating grass plant with the endophytes, for propagating the grass-endophyte combinations, and for producing feeds and biofuels from grass-endophyte combinations are also provided.

  14. Anticancer activity of Ophiobolin A, isolated from the endophytic fungus Bipolaris setariae.

    PubMed

    Bhatia, Dimple R; Dhar, Payal; Mutalik, Varun; Deshmukh, Sunil Kumar; Verekar, Shilpa A; Desai, Dattatraya C; Kshirsagar, Rajendra; Thiagarajan, Padma; Agarwal, Veena

    2016-06-01

    The present work describes the anticancer activity of Ophiobolin A isolated from the endophytic fungus Bipolaris setariae. Ophiobolin A was isolated using preparative HPLC and its structure was confirmed by HRMS, (1)H NMR, (13)C NMR, COSY, DEPT, HSQC and HMBC. It inhibited solid and haematological cancer cell proliferation with IC50 of 0.4-4.3 μM. In comparison, IC50 against normal cells was 20.9 μM. It was found to inhibit the phosphorylation of S6 (IC50 = 1.9 ± 0.2 μM), ERK (IC50 = 0.28 ± 0.02 μM) and RB (IC50 = 1.42 ± 0.1 μM), the effector proteins of PI3K/mTOR, Ras/Raf/ERK and CDK/RB pathways, respectively. It induced apoptosis and inhibited cell cycle progression in MDA-MB-231 cancer cells with concomitant inhibition of signalling proteins. Thus, this study reveals that anticancer activity of Ophiobolin A is associated with simultaneous inhibition of multiple oncogenic signalling pathways namely PI3K/mTOR, Ras/Raf/ERK and CDK/RB. PMID:26212208

  15. Studies on a rhein-producing endophytic fungus isolated from Rheum palmatum L.

    PubMed

    You, Xia; Feng, Su; Luo, Shenglian; Cong, Dingding; Yu, Zhiwei; Yang, Zhirong; Zhang, Jie

    2013-03-01

    Rheum palmatum L. (Chinese rhubarb) is a highly regarded medicinal plant. Its dominant active constituents are anthraquinones including emodin, aloe-emodin, rhein, etc. Rhein naturally occurs in anthraquinone (1, 3, 8-trihydroxy-6-methyl anthraquinone), which is found in R. palmatum L. and related plants such as rhubarb. It has good antitumor, anti-inflammatory, anticancer, antimicrobial and hemostatic properties. In this study, a total of 14 strains of endophytic fungi were isolated from R. palmatum L. All fungal isolates were fermented in liquid PDA medium and their extracts were preliminarily analyzed by antibacterial reactions, magnesium acetate-methanol reagent and Borntraiger's reaction, and the strain reselection was made by thin-layer chromatography (TLC), high-performance liquid chromatography (HPLC) and LC-MS to identify the fermentation products of the selected strains and confirmed through a comparison with authentic standards. Extract from one strain, R13, showed positive reactions with both reagents. The strain R13 had a component with the same TLC (Rf) value and HPLC, LC-MS retention time as authentic rhein standards. The yield of rhein in R13 can reach 5.672mgl(-1). The fungi were identified as Fusarium solani by using both ITS rDNA sequencing and spore morphology. PMID:23266728

  16. Endophytic Trichoderma isolates from tropical environments delay disease onset and induce resistance against Phytophthora capsici in hot pepper using multiple mechanisms

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Isolates of several Trichoderma spp., were collected from tropical environments as potential biocontrol agents for cacao (Theobroma cacao) diseases. The diversity of isolates collected, including new species, and there endophytic nature on their host plants, led us to consider if these isolates have...

  17. Isolation of endophytic bacteria from arboreal species of the Amazon and identification by sequencing of the 16S rRNA encoding gene.

    PubMed

    Coêlho, Mariza M; Ferreira-Nozawa, Monica S; Nozawa, Sérgio R; Santos, André L W

    2011-10-01

    Endophytic bacteria from three arboreal species native to the Amazon (Carapa guianenses, Ceiba pentandra, and Swietenia macrophylla), were isolated and identified, through partial sequencing of the 16S rRNA encoding gene. From these, 16 isolates were obtained, although, when compared to sequences deposited in GenBank, only seven had produced identifiable fragments. Bacillus, Pantoea and two non-culturable samples were identified. Results obtained through sequence analysis revealed low genetic diversity across the isolates, even when analyzing different species and plant structures. This is the first report concerning the isolation and identification of endophytic bacteria in these plant species. PMID:22215973

  18. Isolation of endophytic bacteria from arboreal species of the Amazon and identification by sequencing of the 16S rRNA encoding gene

    PubMed Central

    Coêlho, Mariza M.; Ferreira-Nozawa, Monica S.; Nozawa, Sérgio R.; Santos, André L.W.

    2011-01-01

    Endophytic bacteria from three arboreal species native to the Amazon (Carapa guianenses, Ceiba pentandra, and Swietenia macrophylla), were isolated and identified, through partial sequencing of the 16S rRNA encoding gene. From these, 16 isolates were obtained, although, when compared to sequences deposited in GenBank, only seven had produced identifiable fragments. Bacillus, Pantoea and two non-culturable samples were identified. Results obtained through sequence analysis revealed low genetic diversity across the isolates, even when analyzing different species and plant structures. This is the first report concerning the isolation and identification of endophytic bacteria in these plant species. PMID:22215973

  19. [Isolation, identification and anticancer activity of an endophytic fungi from Juglans mandshurica].

    PubMed

    Li, Meiya; Wu, Yunwei; Jiang, Fusheng; Yu, Xiangli; Tang, Kexuan; Miao, Zhiqi

    2009-07-01

    The endophytic fungus named FSN006 was isolated from the inner bark of Juglans mandshurica. It grew quickly and formed circular colony on PDA plate. The upper side of the colony was white, while the lower side of the colony and the conditioned medium were light yellow as a result of significant yellow pigment substances were produced and secreted by the fungi. Green elliptic conidia appeared when cultured on CMX plate. Based on the morphology identification and ITS sequence, it was clear that this fungus belonged to the Deuteromycotina, HyPhomycetes, Moniliales, Trichoderma longibrachiatum. The conditioned medium of FSN006 showed a high anti-tumor ability against liver cancer cell-HepG2, and reached its IC50 concentration after being diluted 20 times, while the IC50 concentration of curcumine was(11.49 +/- 0.12) mg x L(-1). In addition, there was preeminent selective inhibiting effect against the normal liver cell strain HL-7702 and its caner counter strain HepG2. The inhibiting effect against strain HL-7702 was only one quarter of that against HepG2 at the concentration of IC50. Therefore, the fermentation of FSN006 may provide a possible way to produce anticancer drug with higher efficiency and lower toxicity. PMID:19873766

  20. Mycoparasitism of endophytic fungi isolated from reed on soilborne phytopathogenic fungi and production of cell wall-degrading enzymes in vitro.

    PubMed

    Cao, Ronghua; Liu, Xiaoguang; Gao, Kexiang; Mendgen, Kurt; Kang, Zhensheng; Gao, Jianfeng; Dai, Yang; Wang, Xue

    2009-12-01

    Antagonism of three endophytic fungi isolated from common reed (Phragmites australis) against eight soilborne pathogenic fungi was investigated on potato dextrose agar by light microscopy, scanning electron microscopy, and transmission electron microscopy. Inhibitory zones were not observed. The microscopical studies suggested that the endophytes inhibit growth of soilborne pathogens by means of coiling around hyphae and, after penetration, the degradation of hyphal cytoplasm. Since penetration of hyphae seems to play a major role in parasitism, we studied the production of cell wall degrading enzymes by the three endophytes. Choiromyces aboriginum produced higher activities of beta-1,3-glucanases compared to Stachybotrys elegans and Cylindrocarpon sp. For C. aboriginum and S. elegans, colloidal chitin was the best substrate for the induction of beta-1,3-glucanases and chitinases, respectively. This result suggests that mycoparasitism by endophytes on soilborne plant pathogens can be explained by their mycoparasitic activity. PMID:19705202

  1. [Morphological and molecular characterization of the antagonistic interaction between the endophyte Diaporthe sp. isolated from frailejón (Espeletia sp.) and the plant pathogen Phytophthora infestans].

    PubMed

    Prada, Harold; Avila, Laura; Sierra, Roberto; Bernal, Adriana; Restrepo, Silvia

    2009-09-30

    Endophytic fungi produce a great variety of secondary metabolites both in vivo and in vitro. In this study, we characterized the ability of a sterile-mycelium endophytic fungus isolated from Espeletia sp. to control the growth of Phytophthora infestans in Petri dishes. Sequence from the ITS regions (internal transcribed spacer) of the endophyte showed 94% similarity to Diaporthe phaseolorum's. The antagonistic interaction between Diaporthe sp. and P. infestans was evaluated in three different culture media. Diaporthe sp. showed an antagonistic effect towards P. infestans, with some variation depending on which medium was used. In an attempt to identify possible genes involved in this antagonism, we detected a gene from the endophyte encoding an amylase, which was differentially expressed during this biotic interaction. PMID:19635440

  2. Description of Kibdelosporangium banguiense sp. nov., a novel actinomycete isolated from soil of the forest of Pama, on the plateau of Bangui, Central African Republic.

    PubMed

    Pascual, Javier; González, Ignacio; Estévez, Mar; Benito, Patricia; Trujillo, Martha E; Genilloud, Olga

    2016-05-01

    A novel actinomycete strain F-240,109(T) from the MEDINA collection was isolated from a soil sample collected in the forest of Pama, on the plateau of Bangui, Central African Republic. The strain was identified according to its 16S rRNA gene sequence as a new member of the genus Kibdelosporangium, being closely related to Kibdelosporangium aridum subsp. aridum (98.6 % sequence similarity), Kibledosporangium phytohabitans (98.3 %), Kibdelosporangium aridum subsp. largum (97.7 %), Kibdelosporangium philippinense (97.6 %) and Kibledosporangium lantanae (96.9 %). In order to resolve its precise taxonomic status, the strain was characterised through a polyphasic approach. The strain is a Gram-stain positive, aerobic, non-motile and catalase-positive actinomycete characterised by formation of extensively branched substrate mycelia and sparse brownish grey aerial mycelia with sporangium-like globular structures. The chemotaxonomic characterisation of strain F-240,109(T) corroborated its affiliation into the genus Kibdelosporangium. The peptidoglycan contains meso-diaminopimelic acid; the major menaquinone is MK-9(H4); the phospholipid profile contains high amounts of phosphatidylethanolamine, hydroxyphosphatidylethanolamine, diphosphatidylglycerol and an unidentified phospholipid; and the predominant cellular fatty acid methyl esters are iso-C16:0, iso-C14:0, iso-C15:0 and 2OH iso-C16:0. However, some key phenotypic differences regarding to its close relatives and DNA-DNA hybridization values indicate that strain F-240,109(T) represents a novel Kibdelosporangium species, for which the name Kibdelosporangium banguiense sp. nov. is proposed. The type strain is strain F-240,109(T) (=DSM 46670(T), =LMG 28181(T)). PMID:26936255

  3. Endophyte isolate and host grass effects on Chaetocnema pulicaria (Coleoptera: Chrysomelidae) feeding.

    PubMed

    Ball, Olivier J P; Gwinn, Kimberly D; Pless, Charles D; Popay, Alison J

    2011-04-01

    Endophytic fungi belonging to the genus Neotyphodium, confer resistance to infected host grasses against insect pests. The effect of host species, and endophtye species and strain, on feeding and survival of the corn flea beetle, Chaetocnema pulicaria Melsheimer (Coleoptera: Chrysomelidae) was investigated. The grass-endophyte associations included natural and artificially derived associations producing varying arrays of common endophyte-related alkaloids or alkaloid groups, peramine, lolitrem B, ergovaline, and the lolines. Preference and nonpreference tests showed that C. pulicaria feeding and survival were reduced by infection of tall fescue with the wild-type strain of N. coenophialum, the likely mechanism being antixenosis rather than antibiosis. In the preference tests, endophyte and host species effects were observed. Of the 10 different Neotyphodium strains tested in artificially derived tall fescue associations, eight strongly deterred feeding by C. pulicaria, whereas the remaining two strains had little or no effect on feeding. Infection of tall fescue with another fungal symbiont, p-endophyte, had no effect. Perennial ryegrass, Lolium perenne L., infected with six strains of endophyte, was moderately resistant to C. pulicaria compared with endophyte-free grass, but four additional strains were relatively inactive. Six Neotyphodium-meadow fescue, Festuca pratensis Huds., associations, including the wild-type N. uncinatum-meadow fescue combination, were resistant, whereas three associations were not effective. Loline alkaloids seemed to play a role in antixenosis to C. pulicaria. Effects not attributable to the lolines or any other of the alkaloids examined also were observed. This phenomenon also has been reported in tests with other insects, and indicates the presence of additional insect-active factors. PMID:21510220

  4. An actinomycete isolate from solitary wasp mud nest having strong antibacterial activity and kills the Candida cells due to the shrinkage and the cytosolic loss

    PubMed Central

    Kumar, Vijay; Naik, Bindu; Gusain, Omprakash; Bisht, Gajraj S.

    2014-01-01

    An actinomycetes strain designated as MN 2(6) was isolated from the solitary wasp mud nest. The isolate was identified using polyphasic taxonomy. It produced the extensive branched brown substrate and white aerial hyphae that changed into grayish black. The aerial mycelia produced the spiral spore chains with rugose spore surface. The growth was observed between temperature range of 27–37°C, pH 8–10 and below salt concentration of 6% (w/v). The comparative analysis of 16S rRNA gene sequence and phylogenetic relationship showed that strain MN 2(6) lies in clade with Streptomyces hygroscopicus subsp. hygroscopicus NRRL 2387T, Streptomyces sporocinereus NBRC 100766T and Streptomyces demainii NRRL B-1478T with which it shares a 16S rRNA gene sequence similarity of 99.3%. The strain MN 2(6) can be differentiated from type strains based on phenotypic characteristics. The strain MN 2(6) showed most promising activity against Gram-positive, Gram-negative bacteria, acid-fast bacilli and Candida species suggesting broad-spectrum characteristics of the active metabolite. Evaluation of anti-candidal activity of the metabolite of strain MN 2(6) by scanning electron microscopy (SEM) revealed changed external morphology of yeast. It kills the Candida cells due to the shrinkage and the cytosolic loss. However, further studies are required to elucidate the structure of the active metabolite produced by the isolate MN 2(6). PMID:25191320

  5. Improved plant growth and Zn accumulation in grains of rice (Oryza sativa L.) by inoculation of endophytic microbes isolated from a Zn Hyperaccumulator, Sedum alfredii H.

    PubMed

    Wang, Yuyan; Yang, Xiaoe; Zhang, Xincheng; Dong, Lanxue; Zhang, Jie; Wei, Yanyan; Feng, Ying; Lu, Lingli

    2014-02-26

    This study is to investigate the possibility of zinc (Zn) biofortification in the grains of rice (Oryza sativa L.) by inoculation of endophytic strains isolated from a Zn hyperaccumulator, Sedum alfredii Hance. Five endophytic strains, Burkholderia sp. SaZR4, Burkholderia sp. SaMR10, Sphingomonas sp. SaMR12, Variovorax sp. SaNR1, and Enterobacter sp. SaCS20, isolated from S. alfredii, were inoculated in the roots of Japonica rice Nipponbare under hydroponic condition. Fluorescence images showed that endophytic strains successfully colonized rice roots after 72 h. Improved root morphology and plant growth of rice was observed after inoculation with endophytic strains especially SaMR12 and SaCS20. Under hydroponic conditions, endophytic inoculation with SaMR12 and SaCS20 increased Zn concentration by 44.4% and 51.1% in shoots, and by 73.6% and 83.4% in roots, respectively. Under soil conditions, endophytic inoculation with SaMR12 and SaCS20 resulted in an increase of grain yields and elevated Zn concentrations by 20.3% and 21.9% in brown rice and by 13.7% and 11.2% in polished rice, respectively. After inoculation of SaMR12 and SaCS20, rhizosphere soils of rice plants contained higher concentration of DTPA-Zn by 10.4% and 20.6%, respectively. In situ micro-X-ray fluorescence mapping of Zn confirmed the elevated Zn content in the rhizosphere zone of rice treated with SaMR12 as compared with the control. The above results suggested that endophytic microbes isolated from S. alfredii could successfully colonize rice roots, resulting in improved root morphology and plant growth, increased Zn bioavailability in rhizosphere soils, and elevated grain yields and Zn densities in grains. PMID:24447030

  6. An Endophytic Fungus, Talaromyces radicus, Isolated from Catharanthus roseus, Produces Vincristine and Vinblastine, Which Induce Apoptotic Cell Death

    PubMed Central

    Jayabaskaran, Chelliah

    2015-01-01

    Endophytic fungi isolated from Catharanthus roseus were screened for the production of vincristine and vinblastine. Twenty-two endophytic fungi isolated from various tissues of C. roseus were characterized taxonomically by sequence analysis of the internal transcribed spacer (ITS) region of rDNA and grouped into 10 genera: Alternaria, Aspergillus, Chaetomium, Colletotrichum, Dothideomycetes, Eutypella, Eutypa, Flavodon, Fusarium and Talaromyces. The antiproliferative activity of these fungi was assayed in HeLa cells using the MTT assay. The fungal isolates Eutypella sp—CrP14, obtained from stem tissues, and Talaromyces radicus—CrP20, obtained from leaf tissues, showed the strongest antiproliferative activity, with IC50 values of 13.5 μg/ml and 20 μg/ml, respectively. All 22 endophytic fungi were screened for the presence of the gene encoding tryptophan decarboxylase (TDC), the key enzyme in the terpenoid indole alkaloid biosynthetic pathway, though this gene could only be amplified from T. radicus—CrP20 (NCBI GenBank accession number KC920846). The production of vincristine and vinblastine by T. radicus—CrP20 was confirmed and optimized in nine different liquid media. Good yields of vincristine (670 μg/l) in modified M2 medium and of vinblastine (70 μg/l) in potato dextrose broth medium were obtained. The cytotoxic activity of partially purified fungal vincristine was evaluated in different human cancer cell lines, with HeLa cells showing maximum susceptibility. The apoptosis-inducing activity of vincristine derived from this fungus was established through cell cycle analysis, loss of mitochondrial membrane potential and DNA fragmentation patterns. PMID:26697875

  7. An Endophytic Fungus, Talaromyces radicus, Isolated from Catharanthus roseus, Produces Vincristine and Vinblastine, Which Induce Apoptotic Cell Death.

    PubMed

    Palem, Padmini P C; Kuriakose, Gini C; Jayabaskaran, Chelliah

    2015-01-01

    Endophytic fungi isolated from Catharanthus roseus were screened for the production of vincristine and vinblastine. Twenty-two endophytic fungi isolated from various tissues of C. roseus were characterized taxonomically by sequence analysis of the internal transcribed spacer (ITS) region of rDNA and grouped into 10 genera: Alternaria, Aspergillus, Chaetomium, Colletotrichum, Dothideomycetes, Eutypella, Eutypa, Flavodon, Fusarium and Talaromyces. The antiproliferative activity of these fungi was assayed in HeLa cells using the MTT assay. The fungal isolates Eutypella sp--CrP14, obtained from stem tissues, and Talaromyces radicus--CrP20, obtained from leaf tissues, showed the strongest antiproliferative activity, with IC50 values of 13.5 μg/ml and 20 μg/ml, respectively. All 22 endophytic fungi were screened for the presence of the gene encoding tryptophan decarboxylase (TDC), the key enzyme in the terpenoid indole alkaloid biosynthetic pathway, though this gene could only be amplified from T. radicus--CrP20 (NCBI GenBank accession number KC920846). The production of vincristine and vinblastine by T. radicus--CrP20 was confirmed and optimized in nine different liquid media. Good yields of vincristine (670 μg/l) in modified M2 medium and of vinblastine (70 μg/l) in potato dextrose broth medium were obtained. The cytotoxic activity of partially purified fungal vincristine was evaluated in different human cancer cell lines, with HeLa cells showing maximum susceptibility. The apoptosis-inducing activity of vincristine derived from this fungus was established through cell cycle analysis, loss of mitochondrial membrane potential and DNA fragmentation patterns. PMID:26697875

  8. An antimicrobial diketopiperazine alkaloid and co-metabolites from an endophytic strain of Gliocladium isolated from Strychnos cf. toxifera.

    PubMed

    Koolen, Hector Henrique Ferreira; Soares, Elzalina Ribeiro; Silva, Felipe Moura Araújo da; Souza, Antonia Queiroz Lima de; Medeiros, Lívia Soman de; Filho, Edson Rodrigues; Almeida, Richardson Alves de; Ribeiro, Ismael Alexandre; Pessoa, Cláudia do Ó; Morais, Manoel Odorico de; Costa, Patrícia Marçal da; Souza, Afonso Duarte Leão de

    2012-11-01

    From an endophytic strain of Gliocladium sp. isolated from the Amazonian plant Strychnos cf. toxifera, we obtained the diketopiperazine alkaloid cyclo-(glycyl-L-tyrosyl)-4,4-dimethylallyl ether (1), the steroids ergosterol (2), ergosterol peroxide (3), cerevisterol (4) and the citric acid (5). The AcOEt extract of the fermented broth by Gliocladium sp. showed potent activity against the cancer cell lines MDA-MB435 (human breast cancer cells), HCT-8 (human colorectal cancer cells) and SF-295 (human glioblastoma cancer cells). Compound 1 exhibited a strong antimicrobial activity against Micrococcus luteus at a concentration of 43.4 µM. PMID:22117164

  9. Description of Micrococcus aloeverae sp. nov., an endophytic actinobacterium isolated from Aloe vera.

    PubMed

    Prakash, Om; Nimonkar, Yogesh; Munot, Hitendra; Sharma, Avinash; Vemuluri, Venkata Ramana; Chavadar, Mahesh S; Shouche, Yogesh S

    2014-10-01

    A yellow Gram-stain-positive, non-motile, non-endospore -forming, spherical endophytic actinobacterium, designated strain AE-6(T), was isolated from the inner fleshy leaf tissues of Aloe barbadensis (Aloe vera) collected from Pune, Maharashtra, India. Strain AE-6(T) grew at high salt concentrations [10% (w/v) NaCl], temperatures of 15-41 °C and a pH range of 5-12. It showed highest (99.7%) 16S rRNA gene sequence similarity with Micrococcus yunnanensis YIM 65004(T) followed by Micrococcus luteus NCTC 2665(T) (99.6%) and Micrococcus endophyticus YIM 56238(T) (99.0%). Ribosomal protein profiling by MALDI-TOF/MS also showed it was most closely related to M. yunnanensis YIM 65004(T) and M. luteus NCTC 2665(T). Like other members of the genus Micrococcus, strain AE-6(T) had a high content of branched chain fatty acids (iso-C15:0 and anteiso-C15:0). MK-8(H2) and MK-8 were the predominant isoprenoid quinones. Cell wall analysis showed an 'A2 L-Lys-peptide subunit' type of peptidoglycan and ribose to be the major cell wall sugar. The DNA G+C content was 70 mol%. Results of DNA-DNA hybridization of AE-6(T) with its closest relatives from the genus Micrococcus produced a value of less than 70%. Based on the results of this study, strain AE-6(T) could be clearly differentiated from other members of the genus Micrococcus. We propose that it represents a novel species of the genus Micrococcus and suggest the name Micrococcus aloeverae sp. nov., with strain AE-6(T) ( = MCC 2184(T) = DSM 27472(T)) as the type strain of the species. PMID:25048212

  10. Flavobacterium suaedae sp. nov., an endophyte isolated from the root of Suaeda corniculata.

    PubMed

    Sun, Ji-Quan; Xu, Lian; Liu, Min; Wang, Xin-Ying; Wu, Xiao-Lei

    2016-05-01

    A Gram-stain-negative, non-motile, yellow, endophytic bacterium, designated G16-7T, was isolated from the root of Suaeda corniculata in Inner Mongolia, northern China. Phylogenetic analysis, based on the 16S rRNA gene, revealed that strain G16-7T belonged to the genus Flavobacterium, with highest sequence similarities to Flavobacterium rakeshii FCS-5T, Flavobacterium suzhouense XIN-1T, Flavobacterium beibuense F44-8T, Flavobacterium hauense BX12T and Flavobacterium shanxiense YF-2, ranging from 92.7 % to 94.9 %. The predominant fatty acids of strain G16-7T were iso-C15 : 0, summed feature 3 (consisting of C16 : 1ω7c and/or C16 : 1ω6c), iso-C17 : 0 3-OH and summed feature 9 (consisting of iso-C17 : 1ω9c and/or C16 : 0 10-methyl), while MK-6 was the major respiratory quinone. The major polar lipids were phosphatidylethanolamine, an unknown phospholipid, an unknown aminophospholipid, four unknown aminolipids and three unknown lipids. The genomic DNA G+C content of the strain was 34.2 mol%. Based on the phenotypic and genotypic characteristics, strain G16-7T is considered to represent a novel species of the genus Flavobacterium, for which the name Flavobacterium suaedae sp. nov. is proposed. The type strain is G16-7T ( = CGMCC 1.15461T = KCTC 42947T). PMID:26868635