Science.gov

Sample records for endophytic bacillus pumilus

  1. Genome Sequence of the Plant Endophyte Bacillus pumilus INR7, Triggering Induced Systemic Resistance in Field Crops

    PubMed Central

    Jeong, Haeyoung; Choi, Soo-Keun; Kloepper, Joseph W.

    2014-01-01

    Bacillus pumilus INR7 is an endophytic bacterium that has been commercialized as a biological control product against soilborne pathogens as well as foliar pathogens by direct antagonism and induction of systemic resistance. In the current study, we provide the genome sequence and a possible explanation of the function of strain INR7. PMID:25359912

  2. Bacillus pumilus SAFR-032 isolate

    NASA Technical Reports Server (NTRS)

    Venkateswaran, Kasthuri J. (Inventor)

    2007-01-01

    The present invention relates to discovery and isolation of a biologically pure culture of a Bacillus pumilus SAFR-032 isolate with UV sterilization resistant properties. This novel strain has been characterized on the basis of phenotypic traits, 16S rDNA sequence analysis and DNA-DNA hybridization. According to the results of these analyses, this strain belongs to the genus Bacillus. The GenBank accession number for the 16S rDNA sequence of the Bacillus pumilus SAFR-032 isolate is AY167879.

  3. ISR meets SAR outside: additive action of the endophyte Bacillus pumilus INR7 and the chemical inducer, benzothiadiazole, on induced resistance against bacterial spot in field-grown pepper

    PubMed Central

    Yi, Hwe-Su; Yang, Jung Wook; Ryu, Choong-Min

    2013-01-01

    Induced resistance has been recognized as an attractive tool for plant disease management in modern agriculture. During the last two decades, studies on chemically- and biologically elicited induced resistance have revealed previously unknown features of the plant defense response including defense priming. As a biological trigger for induced resistance, plant growth-promoting rhizobacteria (PGPR) are a group of root-associated bacteria that can reduce plant disease severity and incidence, and augment plant growth and yield under greenhouse and field conditions. We evaluated the potential of an endophytic PGPR, Bacillus pumilus INR7, to induce systemic resistance against bacterial spot caused by Xanthomonas axonopodis pv. vesicatoria in pepper. Trials in the greenhouse showed significantly less symptom development in pepper plants inoculated with strain INR7 compared to a water treatment. Furthermore, a single dipping treatment with INR7 before transplantation of pepper plants into the field elicited an induced systemic resistance response against bacterial spot caused by artificially infiltration of X. axonopodis pv. vesicatoria and even against naturally occurring bacterial spot disease. We identified an additive effect on induced resistance after administration of a combination treatment composed of strain INR7 with a chemical inducer, benzothiadiazole (BTH) in the field. The combination treatment stimulated expression of pepper defense marker genes CaPR1, CaTin1, and CaPR4 to a greater extent than did treatment with either agent alone. Similar experiments conducted with tobacco revealed no additive effects under field conditions. Interestingly, co-application of plants with INR7 lifted the growth repressing effect of BTH. Application of BTH onto pepper and tobacco did not affect rhizosphere colonization but supported a higher population density inside plant roots when compared to water-treated control plants. Our results indicate that PGPR can be used in combination with BTH for increased induced resistance capacity under field conditions. PMID:23717313

  4. 40 CFR 180.1224 - Bacillus pumilus GB34; exemption from the requirement of a tolerance.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 25 2012-07-01 2012-07-01 false Bacillus pumilus GB34; exemption from... FOOD Exemptions From Tolerances § 180.1224 Bacillus pumilus GB34; exemption from the requirement of a... pesticide Bacillus pumilus GB34 when used as a seed treatment in or on all food commodities. An exemption...

  5. 40 CFR 180.1224 - Bacillus pumilus GB34; exemption from the requirement of a tolerance.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 24 2014-07-01 2014-07-01 false Bacillus pumilus GB34; exemption from... FOOD Exemptions From Tolerances § 180.1224 Bacillus pumilus GB34; exemption from the requirement of a... pesticide Bacillus pumilus GB34 when used as a seed treatment in or on all food commodities. An exemption...

  6. 40 CFR 180.1224 - Bacillus pumilus GB34; exemption from the requirement of a tolerance.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 24 2011-07-01 2011-07-01 false Bacillus pumilus GB34; exemption from... FOOD Exemptions From Tolerances § 180.1224 Bacillus pumilus GB34; exemption from the requirement of a... pesticide Bacillus pumilus GB34 when used as a seed treatment in or on all food commodities. An exemption...

  7. 40 CFR 180.1224 - Bacillus pumilus GB34; exemption from the requirement of a tolerance.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 25 2013-07-01 2013-07-01 false Bacillus pumilus GB34; exemption from... FOOD Exemptions From Tolerances § 180.1224 Bacillus pumilus GB34; exemption from the requirement of a... pesticide Bacillus pumilus GB34 when used as a seed treatment in or on all food commodities. An exemption...

  8. 40 CFR 180.1224 - Bacillus pumilus GB34; exemption from the requirement of a tolerance.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Bacillus pumilus GB34; exemption from... FOOD Exemptions From Tolerances § 180.1224 Bacillus pumilus GB34; exemption from the requirement of a... pesticide Bacillus pumilus GB34 when used as a seed treatment in or on all food commodities. An exemption...

  9. Genome Sequence of Bacillus pumilus S-1, an Efficient Isoeugenol-Utilizing Producer for Natural Vanillin

    PubMed Central

    Su, Fei; Hua, Dongliang; Zhang, Zhaobin; Wang, Xiaoyu; Tang, Hongzhi; Tao, Fei; Tai, Cui; Wu, Qiulin; Wu, Geng; Xu, Ping

    2011-01-01

    Bacillus pumilus S-1 is an efficient isoeugenol-utilizing producer of natural vanillin. The genome of B. pumilus S-1 contains the epoxide hydrolase and six candidate monooxygenases that make it possible to explore the mechanism involved in conversion of isoenguenol to vanillin in the B. pumilus strain. PMID:22038964

  10. 40 CFR 180.1255 - Bacillus pumilus strain QST 2808; exemption from the requirement of a tolerance.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 25 2013-07-01 2013-07-01 false Bacillus pumilus strain QST 2808... RESIDUES IN FOOD Exemptions From Tolerances § 180.1255 Bacillus pumilus strain QST 2808; exemption from the... the microbial pesticide Bacillus pumilus strain QST 2808 when used in or on all...

  11. 40 CFR 180.1313 - Bacillus pumilus strain GHA 180; exemption from the requirement of a tolerance.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 25 2012-07-01 2012-07-01 false Bacillus pumilus strain GHA 180... RESIDUES IN FOOD Exemptions From Tolerances § 180.1313 Bacillus pumilus strain GHA 180; exemption from the... Bacillus pumilus strain GHA 180 in or on all food commodities when used in accordance with...

  12. 40 CFR 180.1226 - Bacillus pumilus strain QST2808; temporary exemption from the requirement of a tolerance.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 24 2014-07-01 2014-07-01 false Bacillus pumilus strain QST2808... RESIDUES IN FOOD Exemptions From Tolerances § 180.1226 Bacillus pumilus strain QST2808; temporary exemption... established for residues of the microbial pesticide Bacillus pumilus strain QST2808 when used in or on...

  13. 40 CFR 180.1255 - Bacillus pumilus strain QST 2808; exemption from the requirement of a tolerance.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 25 2012-07-01 2012-07-01 false Bacillus pumilus strain QST 2808... RESIDUES IN FOOD Exemptions From Tolerances § 180.1255 Bacillus pumilus strain QST 2808; exemption from the... the microbial pesticide Bacillus pumilus strain QST 2808 when used in or on all...

  14. 40 CFR 180.1226 - Bacillus pumilus strain QST2808; temporary exemption from the requirement of a tolerance.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 25 2012-07-01 2012-07-01 false Bacillus pumilus strain QST2808... RESIDUES IN FOOD Exemptions From Tolerances § 180.1226 Bacillus pumilus strain QST2808; temporary exemption... established for residues of the microbial pesticide Bacillus pumilus strain QST2808 when used in or on...

  15. 40 CFR 180.1226 - Bacillus pumilus strain QST2808; temporary exemption from the requirement of a tolerance.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 25 2013-07-01 2013-07-01 false Bacillus pumilus strain QST2808... RESIDUES IN FOOD Exemptions From Tolerances § 180.1226 Bacillus pumilus strain QST2808; temporary exemption... established for residues of the microbial pesticide Bacillus pumilus strain QST2808 when used in or on...

  16. 40 CFR 180.1322 - Bacillus pumilus strain BU F-33; exemption from the requirement of a tolerance.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 24 2014-07-01 2014-07-01 false Bacillus pumilus strain BU F-33... RESIDUES IN FOOD Exemptions From Tolerances § 180.1322 Bacillus pumilus strain BU F-33; exemption from the... Bacillus pumilus strain BU F-33 in or on all food commodities when applied to elicit induced...

  17. 40 CFR 180.1255 - Bacillus pumilus strain QST 2808; exemption from the requirement of a tolerance.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 24 2014-07-01 2014-07-01 false Bacillus pumilus strain QST 2808... RESIDUES IN FOOD Exemptions From Tolerances § 180.1255 Bacillus pumilus strain QST 2808; exemption from the... the microbial pesticide Bacillus pumilus strain QST 2808 when used in or on all...

  18. 40 CFR 180.1322 - Bacillus pumilus strain BU F-33; exemption from the requirement of a tolerance.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 25 2013-07-01 2013-07-01 false Bacillus pumilus strain BU F-33... RESIDUES IN FOOD Exemptions From Tolerances § 180.1322 Bacillus pumilus strain BU F-33; exemption from the... Bacillus pumilus strain BU F-33 in or on all food commodities when applied to elicit induced...

  19. 40 CFR 180.1313 - Bacillus pumilus strain GHA 180; exemption from the requirement of a tolerance.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 25 2013-07-01 2013-07-01 false Bacillus pumilus strain GHA 180... RESIDUES IN FOOD Exemptions From Tolerances § 180.1313 Bacillus pumilus strain GHA 180; exemption from the... Bacillus pumilus strain GHA 180 in or on all food commodities when used in accordance with...

  20. 40 CFR 180.1313 - Bacillus pumilus strain GHA 180; exemption from the requirement of a tolerance.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 24 2014-07-01 2014-07-01 false Bacillus pumilus strain GHA 180... RESIDUES IN FOOD Exemptions From Tolerances § 180.1313 Bacillus pumilus strain GHA 180; exemption from the... Bacillus pumilus strain GHA 180 in or on all food commodities when used in accordance with...

  1. 40 CFR 180.1255 - Bacillus pumilus strain QST 2808; exemption from the requirement of a tolerance.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 24 2011-07-01 2011-07-01 false Bacillus pumilus strain QST 2808... RESIDUES IN FOOD Exemptions From Tolerances § 180.1255 Bacillus pumilus strain QST 2808; exemption from the... the microbial pesticide Bacillus pumilus strain QST 2808 when used in or on all...

  2. 40 CFR 180.1255 - Bacillus pumilus strain QST 2808; exemption from the requirement of a tolerance.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Bacillus pumilus strain QST 2808... RESIDUES IN FOOD Exemptions From Tolerances § 180.1255 Bacillus pumilus strain QST 2808; exemption from the... the microbial pesticide Bacillus pumilus strain QST 2808 when used in or on all...

  3. 40 CFR 180.1226 - Bacillus pumilus strain QST2808; temporary exemption from the requirement of a tolerance.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Bacillus pumilus strain QST2808... RESIDUES IN FOOD Exemptions From Tolerances § 180.1226 Bacillus pumilus strain QST2808; temporary exemption... established for residues of the microbial pesticide Bacillus pumilus strain QST2808 when used in or on...

  4. 40 CFR 180.1226 - Bacillus pumilus strain QST2808; temporary exemption from the requirement of a tolerance.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 24 2011-07-01 2011-07-01 false Bacillus pumilus strain QST2808... RESIDUES IN FOOD Exemptions From Tolerances § 180.1226 Bacillus pumilus strain QST2808; temporary exemption... established for residues of the microbial pesticide Bacillus pumilus strain QST2808 when used in or on...

  5. Genetic Analysis in Bacillus pumilus by PBS1-Mediated Transduction

    PubMed Central

    Lovett, Paul S.; Young, Frank E.

    1970-01-01

    Bacteriophage PBS1 mediates generalized transduction in Bacillus pumilus NRRL B-3275 (BpB1). Transduction frequencies for single auxotrophic markers are of the order of 10−4 transductants per plaque-forming unit in crude phage lysates. The characteristics of PBS1 propagated on BpB1 and the properties of the system of transduction are similar to those reported for PBS1 propagated on Bacillus subtilis. By transduction, eight amino acid auxotrophic markers in BpB1 have been oriented into two linkage groups. One group contains the auxotrophic markers arginine A, leucine, and phenylalanine, and the other group contains the markers lysine, serine, tryptophan, isoleucine-valine, and isoleucine. The nature and relative order of the markers within each linkage group suggest that the arrangement of genes in these areas of the chromosome of BpB1 is similar to the arrangement of phenotypically comparable genes in two linkage groups (defined by PBS1 transduction) in B. subtilis. However, transduction of any of the above cited markers in BpB1 to prototrophy with PBS1 propagated on B. subtilis 168 could not be demonstrated. In addition to BpB1, seven other strains of B. pumilus can be infected with PBS1. Transduction has been demonstrated in three of these strains. Images PMID:5413829

  6. Evaluation of Bacillus cereus and Bacillus pumilus metabolites for anthelmintic activity

    PubMed Central

    Kumar, M. L. Vijaya; Thippeswamy, B.; Kuppust, I. L.; Naveenkumar, K. J.; Shivakumar, C. K.

    2015-01-01

    Objective: To assess the anthelmintic acivity of Bacillus cereus and Bacillus pumilus metabolites. Materials and Methods: The successive solvent extractions with petroleum ether, ethyl acetate and methanol. The solvent extracts were tested for anthelmintic activity against Pheretima posthuma at 20 mg/ml concentration. The time of paralysis and time of death of the worms was determined for all the extracts. Albendazole was taken as a standard reference and sterile water as a control. Results: All the sample extracts showed significant anthelmintic activity in paralyzing the worms comparable with that of the standard drug. The time of death exhibited by BP metabolites was close to the time exhibited by standard. Conclusion: The study indicates both bacteria Bacillus cereus and Bacillus pumilus have anthelmintic activity indicating potential metabolites in them. PMID:25598639

  7. Draft Genome Sequence of the Shellfish Larval Probiotic Bacillus pumilus RI06-95

    PubMed Central

    Hamblin, Meagan; Spinard, Edward; Gomez-Chiarri, Marta; Nelson, David R.

    2015-01-01

    Bacillus pumilus RI06-95 is a marine bacterium isolated in Narragansett, Rhode Island, which has shown probiotic activity against marine pathogens in larval shellfish. We report the genome of B. pumilus RI06-95, which provides insight into the microbe’s probiotic ability and may be used in future studies of the probiotic mechanism. PMID:26337873

  8. Microbiological bioassay using Bacillus pumilus to detect tetracycline in milk.

    PubMed

    Tumini, Melisa; Nagel, Orlando Guillermo; Althaus, Rafael Lisandro

    2015-05-01

    The tetracyclines (TCs) are widely used in the treatment of several diseases of cattle and their residues may be present in milk. To control these residues it is necessary to have available inexpensive screening methods, user-friendly and capable of analysing a high number of samples. The purpose of this study was to design a bioassay of microbiological inhibition in microtiter plates with spores of Bacillus pumilus to detect TCs at concentrations corresponding to the Maximum Residue Limits (MRLs). Several complementary experiments were performed to design the bioassay. In the first study, we determined the concentration of spores that produce a change in the bioassay's relative absorbance in a short time period. Subsequently, we assessed the concentration of chloramphenicol required to decrease the detection limit (DL) of TCs at MRLs levels. Thereafter, specificity, DL and cross-specificity of the bioassay were estimated. The most appropriate microbiological inhibition assay had a B. pumilus concentration of 1.6 × 10(9) spores/ml, fortified with 2500 μg chloramphenicol/l (CAP) in Mueller Hinton culture medium using brilliant black and toluidine blue as redox indicator. This bioassay detected 117 μg chlortetracycline/l, 142 μg oxytetracycline/l and 105 μg tetracycline/l by means of a change in the indicator's colour in a period of 5 h. The method showed good specificity (97.9%) which decreased slightly (93.3%) in milk samples with high somatic cell counts (>250,000 cells/ml). Furthermore, other antimicrobials studied (except neomycin) must be present in milk at high concentrations (from >5 to >100 MRLs) to produce positive results in this assay, indicating a low cross specificity. PMID:25720802

  9. Study of the radiation effect of (99)Mo/(99m)Tc generator on Bacillus subtilis and Bacillus pumilus species.

    PubMed

    Fukumori, Neuza T O; Endo, Erica M M; Felgueiras, Carlos F; Matsuda, Margareth M N; Osso Junior, Joo A

    2016-01-01

    In this work, molybdenum-99 loaded columns were challenged with Bacillus subtilis vegetative cells and Bacillus pumilus spores inside and outside the alumina column, and microbial recovery and radiation effect were assessed. Alumina was a barrier for the passage of microorganisms regardless the species, whilst spores were more retained than vegetative cells with a lower microbial recovery, without significant differences between 9.25 and 74GBq generators. Bacillus pumilus biological indicator showed lower recoveries, suggesting a radiation inactivating effect on microorganisms. PMID:26408912

  10. Biochemical and molecular characterization of Bacillus pumilus isolated from coastal environment in Cochin, India

    PubMed Central

    Parvathi, Ammini; Krishna, Kiran; Jose, Jiya; Joseph, Neetha; Nair, Santha

    2009-01-01

    Bacillus species constitute a diverse group of bacteria widely distributed in soil and the aquatic environment. In this study, Bacillus strains isolated from the coastal environment of Cochin, India were identified by detailed conventional biochemical methods, fatty acid methyl ester (FAME) analysis and partial 16S rDNA sequencing. Analysis of the data revealed that Bacillus pumilus was the most predominant species in the region under study followed by B. cereus and B. sphaericus. The B. pumilus isolates were further characterized by arbitrarily primed PCR (AP-PCR), antibiotic sensitivity profiling and PCR screening for known toxin genes associated with Bacillus spp. All B. pumilus isolates were biochemically identical, exhibited high protease and lipase activity and uniformly sensitive to antibiotics tested in this study. One strain of B. pumilus harboured cereulide synthetase gene cesB of B. cereus which was indistinguishable from rest of the isolates biochemically and by AP-PCR. This study reports, for the first time, the presence of the emetic toxin gene cesB in B. pumilus. PMID:24031357

  11. Recurrent isolation of hydrogen peroxide-resistant spores of Bacillus pumilus from a spacecraft assembly facility

    NASA Technical Reports Server (NTRS)

    Kempf, Michael J.; Chen, Fei; Kern, Roger; Venkateswaran, Kasthuri

    2005-01-01

    While the microbial diversity of a spacecraft assembly facility at the Jet Propulsion Laboratory (Pasadena, CA) was being monitored, H2O2-resistant bacterial strains were repeatedly isolated from various surface locations. H2O2 is a possible sterilant for spacecraft hardware because it is a low-temperature process and compatible with various modern-day spacecraft materials, electronics, and components. Both conventional biochemical testing and molecular analyses identified these strains as Bacillus pumilus. This Bacillus species was found in both unclassified (entrance floors, anteroom, and air-lock) and classified (floors, cabinet tops, and air) locations. Both vegetative cells and spores of several B. pumilus isolates were exposed to 5% liquid H2O2 for 60 min. Spores of each strain exhibited higher resistance than their respective vegetative cells to liquid H2O2. Results indicate that the H2O2 resistance observed in both vegetative cells and spores is strain-specific, as certain B. pumilus strains were two to three times more resistant than a standard Bacillus subtilis dosimetry strain. An example of this trend was observed when the type strain of B. pumilus, ATCC 7061, proved sensitive, whereas several environmental strains exhibited varying degrees of resistance, to H2O2. Repeated isolation of H2O2-resistant strains of B. pumilus in a clean-room is a concern because their persistence might potentially compromise life-detection missions, which have very strict cleanliness and sterility requirements for spacecraft hardware.

  12. Bacillus pumilus reveals a remarkably high resistance to hydrogen peroxide provoked oxidative stress.

    PubMed

    Handtke, Stefan; Schroeter, Rebecca; Jrgen, Britta; Methling, Karen; Schlter, Rabea; Albrecht, Dirk; van Hijum, Sacha A F T; Bongaerts, Johannes; Maurer, Karl-Heinz; Lalk, Michael; Schweder, Thomas; Hecker, Michael; Voigt, Birgit

    2014-01-01

    Bacillus pumilus is characterized by a higher oxidative stress resistance than other comparable industrially relevant Bacilli such as B. subtilis or B. licheniformis. In this study the response of B. pumilus to oxidative stress was investigated during a treatment with high concentrations of hydrogen peroxide at the proteome, transcriptome and metabolome level. Genes/proteins belonging to regulons, which are known to have important functions in the oxidative stress response of other organisms, were found to be upregulated, such as the Fur, Spx, SOS or CtsR regulon. Strikingly, parts of the fundamental PerR regulon responding to peroxide stress in B. subtilis are not encoded in the B. pumilus genome. Thus, B. pumilus misses the catalase KatA, the DNA-protection protein MrgA or the alkyl hydroperoxide reductase AhpCF. Data of this study suggests that the catalase KatX2 takes over the function of the missing KatA in the oxidative stress response of B. pumilus. The genome-wide expression analysis revealed an induction of bacillithiol (Cys-GlcN-malate, BSH) relevant genes. An analysis of the intracellular metabolites detected high intracellular levels of this protective metabolite, which indicates the importance of bacillithiol in the peroxide stress resistance of B. pumilus. PMID:24465625

  13. Genome Sequence of Bacillus pumilus Strain Bonn, Isolated from an Anthrax-Like Necrotic Skin Infection Site of a Child.

    PubMed

    Grass, Gregor; Bierbaum, Gabriele; Molitor, Ernst; Götte, Natascha; Antwerpen, Markus

    2016-01-01

    We report the draft genome sequence of Bacillus pumilus strain Bonn associated with human skin infection. B. pumilus Bonn was isolated from a carbuncle-like necrotic site, resembling cutaneous anthrax, on the back of the hand of a 10-year-old child. PMID:26868410

  14. Genome Sequence of Bacillus pumilus Strain Bonn, Isolated from an Anthrax-Like Necrotic Skin Infection Site of a Child

    PubMed Central

    Grass, Gregor; Bierbaum, Gabriele; Molitor, Ernst; Götte, Natascha

    2016-01-01

    We report the draft genome sequence of Bacillus pumilus strain Bonn associated with human skin infection. B. pumilus Bonn was isolated from a carbuncle-like necrotic site, resembling cutaneous anthrax, on the back of the hand of a 10-year-old child. PMID:26868410

  15. Modification of a xylanase from bacillus pumilus with pentaammineruthenium(III)

    SciTech Connect

    Evans, B.R.; Lane, L.; Woodward, J.

    1996-10-01

    A xylanase, xynA of Bacillus pumilus, was purified, and then modified by the attachment of pentaammineruthenium, resulting in the generation of a xylanase with veratryl alcohol oxidase activity. Modification of B. pumilus xyn A was found to greatly reduce xylan hydrolysis unless the active site of the xylanase was protected with xylose during the modification. Addition of histidine, cysteine, or reduced glutathione during xylan hydrolysis greatly increased xylanase activity of the modified xylanase. Glycine, glutamic acid, methionine, or oxidized glutathione had no effect on xylanase activity. The site of attachment of pentaammineruthenium, was identified as His-160 by mass spectroscopy and sequence determination of tryptic peptides from modified and native xylanase.

  16. 2,5-Diketopiperazines produced by Bacillus pumilus during bacteriolysis of Arthrobacter citreus.

    PubMed

    Brack, Christiane; Mikolasch, Annett; Schauer, Frieder

    2014-08-01

    We report the detection by gas chromatography/mass spectrometry and liquid chromatography/mass spectrometry analyses of the secreted 2,5-diketopiperazines (DKPs) cyclo(-Ala-Pro), cyclo(-Gly-Pro), cyclo(-Val-Pro), cyclo(-Ile-Pro), cyclo(-Leu-Pro), cyclo(-Pro-Pro), cyclo(-HyP-Pro), cyclo(-Met-Pro), and cyclo(-Phe-Pro) produced by Bacillus pumilus. The study focuses on a marine isolate and a laboratory test strain of B. pumilus with capabilities to lyse pregrown living cell lawns of different bacterial species, among them Arthrobacter citreus. Chromatographic methods were used to analyze induced bioactive compounds. At least 13 different DKPs are produced by B. pumilus. Both strains respond with an increased production of the DKPs cyclo(-Gly-Pro), cyclo(-Ala-Pro), and cyclo(-Val-Pro) to the presence of pasteurized A. citreus cells after 4 h in a nutrient-poor liquid medium. In agar diffusion assays, these DKPs did not cause lysis zones in living cell lawns, but they did inhibit further growth of several pregrown test bacteria in microplates even at concentrations as low as 1 μg ml(-1). Antibiotic substances produced by B. pumilus after 20 h of cultivation in a special lysis medium showed lytic activity in cell-free extracts of B. pumilus culture supernatants. PMID:24449388

  17. Molecular analysis of endophytic bacteria from the genus Bacillus isolated from tropical maize (Zea mays L.)

    PubMed Central

    Figueiredo, José Edson Fontes; Gomes, Eliane Aparecida; Guimarães, Claudia Teixeira; de Paula Lana, Ubiraci Gomes; Teixeira, Marta Aparecida; Lima, Guilherme Vitor Corrêa; Bressan, Wellington

    2009-01-01

    Endophytic bacteria play an important role in agriculture by improving plant performance and adaptation against biotic and abiotic stresses. In the present study molecular methods were used for identifying Bacillus endophytic bacteria isolated from Brazilian sweet corn. SDS-PAGE of whole-cell protein extract of forty-two isolates revealed a high number of scrutinable bands. Twenty-four isolates were identified in nine different groups of duplicated bacteria and eighteen were identified as unique. Some high-accumulated polipeptides with variable length were observed in almost isolates. Partial sequencing of 16S ribosomal gene revealed that all isolates are Bacillus sp. and among thirteen isolates with similar protein profiles, two were different strains. Among the forty-two isolates identified by rDNA sequencing, Bacillus subitilis and B. pumilus were the most frequenty species (15 and 12 isolates, respectively) followed by B. licheniformes (7 isolates), B. cereus (5 isolates) and B. amiloliquefascens (3 isolates). According to present results, SDS-PAGE technique could be used as a fast and cheap first tool for identifying inter-specific variation in maize endophytic bacterial collections while rDNA sequencing could be applied for analyzing intra-specific variation among isolates with similar protein profile as well as for taxonomic studies. PMID:24031395

  18. Complete genome sequence of Bacillus pumilus W3: A strain exhibiting high laccase activity.

    PubMed

    Guan, Zheng-Bing; Cai, Yu-Jie; Zhang, Yan-Zhou; Zhao, Hong; Liao, Xiang-Ru

    2015-08-10

    Here we report the full genome sequence of Bacillus pumilus W3, which was isolated from raw gallnut honey in Nandan County, Guangxi Province of China, showing high CotA-laccase activity. The W3 strain contains 3,745,123bp with GC content of 41.39%, and contains 3695 protein-coding genes, 21 rRNAs and 70 tRNAs. PMID:25957807

  19. Crystallization and preliminary X-ray studies of Bacillus pumilus IPO xylanase.

    PubMed

    Moriyama, H; Hata, Y; Yamaguchi, H; Sato, M; Shinmyo, A; Tanaka, N; Okada, H; Katsube, Y

    1987-01-01

    The xylan-degrading enzyme xylanase, from Bacillus pumilus IPO, has been crystallized. The crystals are monoclinic, space group P21 with a = 40.8 A, b = 66.8 A, c = 34.7 A and beta = 103.0 degrees. The asymmetric unit contains one molecule of Mr 22,500. The crystals diffract to at least 2.5 A resolution, and they are suitable for X-ray crystal structure analysis at high resolution. PMID:3586024

  20. Developing a new production host from a blueprint: Bacillus pumilus as an industrial enzyme producer

    PubMed Central

    2014-01-01

    Background Since volatile and rising cost factors such as energy, raw materials and market competitiveness have a significant impact on the economic efficiency of biotechnological bulk productions, industrial processes need to be steadily improved and optimized. Thereby the current production hosts can undergo various limitations. To overcome those limitations and in addition increase the diversity of available production hosts for future applications, we suggest a Production Strain Blueprinting (PSB) strategy to develop new production systems in a reduced time lapse in contrast to a development from scratch. To demonstrate this approach, Bacillus pumilus has been developed as an alternative expression platform for the production of alkaline enzymes in reference to the established industrial production host Bacillus licheniformis. Results To develop the selected B. pumilus as an alternative production host the suggested PSB strategy was applied proceeding in the following steps (dedicated product titers are scaled to the protease titer of Henkel’s industrial production strain B. licheniformis at lab scale): Introduction of a protease production plasmid, adaptation of a protease production process (44%), process optimization (92%) and expression optimization (114%). To further evaluate the production capability of the developed B. pumilus platform, the target protease was substituted by an α-amylase. The expression performance was tested under the previously optimized protease process conditions and under subsequently adapted process conditions resulting in a maximum product titer of 65% in reference to B. licheniformis protease titer. Conclusions In this contribution the applied PSB strategy performed very well for the development of B. pumilus as an alternative production strain. Thereby the engineered B. pumilus expression platform even exceeded the protease titer of the industrial production host B. licheniformis by 14%. This result exhibits a remarkable potential of B. pumilus to be the basis for a next generation production host, since the strain has still a large potential for further genetic engineering. The final amylase titer of 65% in reference to B. licheniformis protease titer suggests that the developed B. pumilus expression platform is also suitable for an efficient production of non-proteolytic enzymes reaching a final titer of several grams per liter without complex process modifications. PMID:24661794

  1. Antibacterial metabolites and bacteriolytic enzymes produced by Bacillus pumilus during bacteriolysis of Arthrobacter citreus.

    PubMed

    Brack, Christiane; Mikolasch, Annett; Schlueter, Rabea; Otto, Andreas; Becher, Dörte; Wegner, Uwe; Albrecht, Dirk; Riedel, Katharina; Schauer, Frieder

    2015-06-01

    The marine isolate Bacillus pumilus SBUG 1800 is able to lyse living cells of Arthrobacter citreus on solid media as well as pasteurized A. citreus cells in liquid mineral salt medium. The cultivation of B. pumilus in the presence of pasteurized A. citreus is accompanied by an enhanced production of 2,5-diketopiperazines (DKPs). DKPs inhibit bacterial growth, but do not seem to cause bacteriolysis. This study shows that B. pumilus also lyses living cells of A. citreus in co-culture experiments as an intraguild predator, even if the inoculum of B. pumilus is low. In order to characterize the bacteriolytic process, more precisely changes in the extracellular metabolome and proteome have been analyzed under different culture conditions. Besides the known DKPs, a number of different pumilacidins and bacteriolytic enzymes are produced. Two lipopeptides with [M + H](+) = 1008 and [M + H](+) = 1022 were detected and are proposed to be pumilacidin H and I. While the lipopeptides lyse living bacterial cells in lysis test assays, a set of extracellular enzymes degrades the dead cell material. Two of the cell wall hydrolases involved have been identified as N-acetylmuramoyl-L-alanine amidase and beta-N-acetylglucosaminidase. These findings together with electron microscopic and cell growth monitoring during co-culture experiments give a detailed view on the bacteriolytic process. PMID:25678259

  2. Use of a plasmid DNA probe to monitor populations of Bacillus pumilus inoculant strains in hay

    SciTech Connect

    Hendrick, C.A.; Smiley, B.K.; Shelley, T.H.; Tomes, N.J. )

    1991-03-01

    The authors are evaluating naturally occurring isolates of Bacillus pumilus for use as microbial hay preservatives. Seven isolates of B, pumilus from hay contained a 42-kb cryptic plasmid (pMGD296). They wished to determine whether pMGD296 could be used as a molecular marker to follow populations of these isolates in hay over time. Southern blots and colony blots of 69 isolates of B. pumilus and other Bacillus spp. were probed with {sup 32}P-labeled pMGD296. Twenty-nine probe-positive isolates were identified; of these, 28 contained a plasmid with a restriction profile identical to that of pMGD296. One isolate from untreated hay contained a 40-kb plasmid (pMGD150) that was homologous to pMGD296 but had a different restriction fragment pattern. Regions of homology between the two plasmids were identified by Southern blotting, and a 1.9-kb HindIII-PstI fragment of pMGD296 lacking strong homology to pMGD150 was cloned in pUC18. The cloned fragment hybridized only with isolates containing pMGD296 and was used to estimate populations of these isolates in treated and untreated hay.

  3. Selection of a Bacillus pumilus Strain Highly Active against Ceratitis capitata (Wiedemann) Larvae▿

    PubMed Central

    Molina, C. Alfonso; Caña-Roca, Juan F.; Osuna, Antonio; Vilchez, Susana

    2010-01-01

    Ceratitis capitata (Wiedemann) (Diptera: Tephritidae), the Mediterranean fruit fly (medfly), is one of the most important fruit pests worldwide. The medfly is a polyphagous species that causes losses in many crops, which leads to huge economic losses. Entomopathogenic bacteria belonging to the genus Bacillus have been proven to be safe, environmentally friendly, and cost-effective tools to control pest populations. As no control method for C. capitata based on these bacteria has been developed, isolation of novel strains is needed. Here, we report the isolation of 115 bacterial strains and the results of toxicity screening with adults and larvae of C. capitata. As a result of this analysis, we obtained a novel Bacillus pumilus strain, strain 15.1, that is highly toxic to C. capitata larvae. The toxicity of this strain for C. capitata was related to the sporulation process and was observed only when cultures were incubated at low temperatures before they were used in a bioassay. The mortality rate for C. capitata larvae ranged from 68 to 94% depending on the conditions under which the culture was kept before the bioassay. Toxicity was proven to be a special characteristic of the newly isolated strain, since other B. pumilus strains did not have a toxic effect on C. capitata larvae. The results of the present study suggest that B. pumilus 15.1 could be considered a strong candidate for developing strategies for biological control of C. capitata. PMID:20038689

  4. Molecular cloning of enantioselective ester hydrolase from Bacillus pumilus DBRL-191.

    PubMed

    Rasool, Shafaq; Johri, Sarojini; Riyaz-ul-Hassan, Syed; Maqbool, Qurrat-ul-Ain; Verma, Vijeshwar; Koul, Surrinder; Taneja, Subhash C; Qazi, Ghulam N

    2005-08-01

    A gene from Bacillus pumilus expressed under its native promoter was cloned in Escherichia coli. Recombinant B. pumilus esterase (BPE) affects the kinetic resolution of racemic mixtures such as unsubstituted and substituted 1-(phenyl)ethanols (E approximately 33-103), ethyl 3-hydroxy-3-phenylpropanoate (E approximately 45-71), trans-4-fluorophenyl-3-hydroxymethyl-N-methylpiperidine (E approximately 10-13) and ethyl 2-hydroxy-4-phenylbutyrate (E approximately 7). The enzyme is composed of a 34-amino acid signal peptide and a 181-amino acid mature protein corresponding to a molecular weight of approximately 19.2kD and pI approximately 9.4. 3-D the structural model of the enzyme built by homology modelling using the atomic coordinates from the crystal structure of B. subtilis lipase (LipA) showed a compact minimal alpha/beta hydrolase fold. PMID:16006072

  5. Molecular characterization of cellulose-degrading Bacillus pumilus from the soil of tea garden, Darjeeling hills, India.

    PubMed

    Padaria, Jasdeep Chatrath; Sarkar, Kanishendranath; Lone, Showkat Ahmad; Srivastava, Sunita

    2014-05-01

    Bio-fuel produced from ethanol is economically and environmentally advantageous in context of changing global climate. A large number of microorganisms are capable of cellulase production but most of them cannot be utilized commercially due to their low activity. In the present study, an effiecient cellulose degrading strain of Bacillus pumilus was obtained after thorough screening for the production of extracellular cellulases. Out of a total of 144 microbes isolated from soils of Darjeeling hills of India, nineteen were found to be cellulose degrader under in vitro conditions as observed by clearing zone on CMC - agar plates. Isolate #35 had high cellulolytic activity as observed by a clearing zone of 26.83 mm diameter formed on CMC - agar plate. The isolate was characterized and identified as Bacillus pumilus. The isolate was submitted to National Agriculturally Important Microbial Culture Collection (NAIMCC), NBAIM, Mau with Accession number NAIMCC-B-01415. Transposon (Tn5) mutants of wild type isolate Bacillus pumilus NAIMCC-B-01415 were generated and screened for the absence of cellulose degradation. Of 365 B. pumilus NAIMCC-B-01415 mutants obtained, only two were unable to degrade cellulose under in vitro conditions. Inverse PCR studies with B. pumilus NAIMCC-B-01415 :: TL5, a cellulose degradation mutant of B. pumilus NAIMCC -B-01415 revealed presence of Cys B (Cystein protein regulatory) gene involved in cellulose degradation. The participation of Cys B gene in cellulase degradation is reported here. PMID:24813013

  6. Transformation of Bacillus mojavensis with GFP and its endophytic localization

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Current studies on the use of bacterial endophytes for disease control and mycotoxin reduction in maize require the in planta localization and interaction of the intended biocontrol agent. Bacillus mojavensis, an endophytic species that has a phenotypic similarity to B. subtilis, has the potential...

  7. Characterization of cis-acting elements residing in the chitinase promoter of Bacillus pumilus SG2.

    PubMed

    Heravi, K Morabbi; Shali, A; Naghibzadeh, N; Ahmadian, G

    2014-05-01

    Bacillus pumilus SG2 is a chitinolytic bacterium that produces two chitinases, namely ChiS and ChiL. The chiS and chiL genes are consecutively expressed under a common promoter. Regulation of the chiS and chiL genes is under the control of carbon catabolite repression (CCR) in B. pumilus. This study aimed to investigate the cis-acting elements of the chitinase promoter. For this purpose, we transferred the chiS gene along with its specific promoter to Bacillus subtilis as a host. Primer extension analysis revealed two transcription start sites located 287 and 65 bp upstream of the chiS start codon. The distal promoter was highly compatible with the consensus sequence of the ?(A)-type promoters in B. subtilis, whereas the proximal promoter sequence showed less similarity to the ?(A)-type consensus sequence. A catabolite responsive element (cre), which is required for CCR in Bacillus species, was found to be 136 to 123 bp upstream of the chiS start codon. Interestingly, this cre site was located upstream of the -35 of the proximal promoter and downstream of the distal promoter. Deletion of this cre site sequence rendered the chiS expression constitutive. PMID:24293243

  8. The abiotic and biotic plant stress tolerant and beneficial secondary metabolites produced by endophytic Bacillus species

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Knowledge of endophytic bacteria and their potential for protecting crops has targeted the endophytic species of Bacillus as a valued microorganism not only for disease protection but also for inducing plant defense mechanisms. Numerous strains of Bacillus, endophytic and non-endophytic, are widely...

  9. Genomic analysis of a ginger pathogen Bacillus pumilus providing the understanding to the pathogenesis and the novel control strategy

    PubMed Central

    Yuan, Yihui; Gao, Meiying

    2015-01-01

    Bacillus pumilus has been widely identified as a pathogen of plant and human, while the genetic information is rarely available for pathogenic B. pumilus strains. B. pumilus GR8 is a pathogen that causes ginger rhizome rot disease by invading ginger rhizome parenchymatous tissues, growing in the extracellular space, and producing plant cell wall-degrading enzymes to destroy ginger cells. In this study, the genome of GR8 was sequenced and characterized. This genome was the third completely sequenced genome of the B. pumilus species, and it exhibited high similarity to the genome of the B. pumilus strain B6033. The genome of GR8 was 3.67 Mb in length and encoded 3,713 putative ORFs. Among these predicted proteins, numerous plant cell wall-degrading enzymes and several proteins associated with invading and adapting to the environment in the extracellular space of the ginger rhizome parenchymatous tissue were found. The GR8 genome contained only one restriction-modification system and no CRISPR/Cas system. The lack of phage-resistant system suggested that phages might be potential agents for the control of GR8. The genomic analysis of GR8 provided the understanding to the pathogenesis and the phage-control strategy of pathogenic B. pumilus strains. PMID:25989507

  10. Draft Genome Sequence of Bacillus pumilus Fairview, an Isolate Recovered from a Microbial Methanogenic Enrichment of Coal Seam Gas Formation Water from Queensland, Australia

    PubMed Central

    Greenfield, Paul; Tran-Dinh, Nai; Midgley, David J.

    2014-01-01

    Despite its global abundance, Bacillus pumilus is poorly studied. The Fairview strain was obtained from a methanogenic anaerobic coal digester. The draft genome sequence was 3.8 Mbp long and contained 3,890 protein-coding genes. Like the SAFR-032 strain, it includes B. pumilus-specific proteins that likely confer enhanced resistance to environmental stresses. PMID:24744330

  11. Draft Genome Sequence of Bacillus pumilus Fairview, an Isolate Recovered from a Microbial Methanogenic Enrichment of Coal Seam Gas Formation Water from Queensland, Australia.

    PubMed

    Vockler, Cassandra J; Greenfield, Paul; Tran-Dinh, Nai; Midgley, David J

    2014-01-01

    Despite its global abundance, Bacillus pumilus is poorly studied. The Fairview strain was obtained from a methanogenic anaerobic coal digester. The draft genome sequence was 3.8 Mbp long and contained 3,890 protein-coding genes. Like the SAFR-032 strain, it includes B. pumilus-specific proteins that likely confer enhanced resistance to environmental stresses. PMID:24744330

  12. Phylogenetic Diversity of the Bacillus pumilus Group and the Marine Ecotype Revealed by Multilocus Sequence Analysis

    PubMed Central

    Dong, Chunming; Sun, Fengqin; Wang, Liping; Li, Guangyu; Shao, Zongze

    2013-01-01

    Bacteria closely related to Bacillus pumilus cannot be distinguished from such other species as B. safensis, B. stratosphericus, B. altitudinis and B. aerophilus simply by 16S rRNA gene sequence. In this report, 76 marine strains were subjected to phylogenetic analysis based on 7 housekeeping genes to understand the phylogeny and biogeography in comparison with other origins. A phylogenetic tree based on the 7 housekeeping genes concatenated in the order of gyrB-rpoB-pycA-pyrE-mutL-aroE-trpB was constructed and compared with trees based on the single genes. All these trees exhibited a similar topology structure with small variations. Our 79 strains were divided into 6 groups from A to F; Group A was the largest and contained 49 strains close to B. altitudinis. Additional two large groups were presented by B. safensis and B. pumilus respectively. Among the housekeeping genes, gyrB and pyrE showed comparatively better resolution power and may serve as molecular markers to distinguish these closely related strains. Furthermore, a recombinant phylogenetic tree based on the gyrB gene and containing 73 terrestrial and our isolates was constructed to detect the relationship between marine and other sources. The tree clearly showed that the bacteria of marine origin were clustered together in all the large groups. In contrast, the cluster belonging to B. safensis was mainly composed of bacteria of terrestrial origin. Interestingly, nearly all the marine isolates were at the top of the tree, indicating the possibility of the recent divergence of this bacterial group in marine environments. We conclude that B. altitudinis bacteria are the most widely spread of the B. pumilus group in marine environments. In summary, this report provides the first evidence regarding the systematic evolution of this bacterial group, and knowledge of their phylogenetic diversity will help in the understanding of their ecological role and distribution in marine environments. PMID:24244618

  13. Use of Bacillus pumilus CBMAI 0008 and Paenibacillus sp. CBMAI 868 for colour removal from paper mill effluent

    PubMed Central

    de Oliveira, Patrícia Lopes; Duarte, Marta Cristina Teixeira; Ponezi, Alexandre Nunes; Durrant, Lúcia Regina

    2009-01-01

    Bacillus pumilus and Paenibacillus sp. were applied on the paper mill effluent to investigate the colour remotion. Inocula were individually applied in effluent at pH 7.0, 9.0 and 11.0. The real colour and COD remotion after 48h at pH 9.0 were, respectively, 41.87% and 22.08% for B. pumilus treatment and 42.30% and 22.89% for Paenibacillus sp. Gel permeation chromatography was used to verify the molar masses of compounds in the non-treated and treated effluent, showing a decrease in the compounds responsible for the paper mill effluent colour. PMID:24031372

  14. Digital data for quick response (QR) codes of alkalophilic Bacillus pumilus to identify and to compare bacilli isolated from Lonar Crator Lake, India.

    PubMed

    Rekadwad, Bhagwan N; Khobragade, Chandrahasya N

    2016-06-01

    Microbiologists are routinely engaged isolation, identification and comparison of isolated bacteria for their novelty. 16S rRNA sequences of Bacillus pumilus were retrieved from NCBI repository and generated QR codes for sequences (FASTA format and full Gene Bank information). 16SrRNA were used to generate quick response (QR) codes of Bacillus pumilus isolated from Lonar Crator Lake (19° 58' N; 76° 31' E), India. Bacillus pumilus 16S rRNA gene sequences were used to generate CGR, FCGR and PCA. These can be used for visual comparison and evaluation respectively. The hyperlinked QR codes, CGR, FCGR and PCA of all the isolates are made available to the users on a portal https://sites.google.com/site/bhagwanrekadwad/. This generated digital data helps to evaluate and compare any Bacillus pumilus strain, minimizes laboratory efforts and avoid misinterpretation of the species. PMID:27141529

  15. Digital data for quick response (QR) codes of alkalophilic Bacillus pumilus to identify and to compare bacilli isolated from Lonar Crator Lake, India

    PubMed Central

    Rekadwad, Bhagwan N.; Khobragade, Chandrahasya N.

    2016-01-01

    Microbiologists are routinely engaged isolation, identification and comparison of isolated bacteria for their novelty. 16S rRNA sequences of Bacillus pumilus were retrieved from NCBI repository and generated QR codes for sequences (FASTA format and full Gene Bank information). 16SrRNA were used to generate quick response (QR) codes of Bacillus pumilus isolated from Lonar Crator Lake (19° 58′ N; 76° 31′ E), India. Bacillus pumilus 16S rRNA gene sequences were used to generate CGR, FCGR and PCA. These can be used for visual comparison and evaluation respectively. The hyperlinked QR codes, CGR, FCGR and PCA of all the isolates are made available to the users on a portal https://sites.google.com/site/bhagwanrekadwad/. This generated digital data helps to evaluate and compare any Bacillus pumilus strain, minimizes laboratory efforts and avoid misinterpretation of the species. PMID:27141529

  16. Comparative effects of gamma rays and electron beams on spores of Bacillus pumilus

    SciTech Connect

    Hayashi, Toru; Todoriki, Setsuko ); Takizawa, Hironobu; Suzuki, Tetsuya; Takama, Kozo )

    1994-02-01

    The effects of [gamma] rays and electron beams on the germination, outgrowth and the synthesis of protein and RNA of Bacillus pumilus spores were investigated to clarify the difference in the effects of the two types of radiations on bacterial spores. Gamma irradiation facilitated the germination to a slightly larger degree than electron irradiation. The outgrowth, growth and the synthesis of protein and RNA were inhibited by [gamma] irradiation to a greater extent than electron irradiation, when the spores were irradiated at the same dose. However, the effects of the two types of radiations were the same when the spores were irradiated with electron beams at a dose 30% higher than [gamma] rays. The results indicate that the effects of electron beams on bacterial spores and those of [gamma] rays are qualitatively the same but quantitatively different. 23 refs., 5 figs.

  17. Initiation of Germination and Inactivation of Bacillus pumilus Spores by Hydrostatic Pressure

    PubMed Central

    Clouston, J. G.; Wills, Pamela A.

    1969-01-01

    The effect of hydrostatic pressures as high as 1,700 atm at 25 C on the heat and radiation resistance of Bacillus pumilus spores was studied. Phosphate-buffered spores were more sensitive to compression than spores suspended in distilled water. Measurements of the turbidity of suspensions, the viability, refractility, stainability, dry weight, and respiratory activity of spores, and calcium and dipicolinic acid release were made for different pressures and times. Initiation of germination occurred at pressures exceeding 500 atm and was the prerequisite for inactivation by compression. The rate of initiation increased with increasing pressure at constant temperature. This result is interpreted as a net decrease in the volume of the system during initiation as a result of increased solvation of the spore components. PMID:5773022

  18. Bilirubin oxidase from Bacillus pumilus: a promising enzyme for the elaboration of efficient cathodes in biofuel cells.

    PubMed

    Durand, Fabien; Kjaergaard, Christian Hauge; Suraniti, Emmanuel; Gounel, Sébastien; Hadt, Ryan G; Solomon, Edward I; Mano, Nicolas

    2012-05-15

    A CotA multicopper oxidase (MCO) from Bacillus pumilus, previously identified as a laccase, has been studied and characterized as a new bacterial bilirubin oxidase (BOD). The 59 kDa protein containing four coppers, was successfully over-expressed in Escherichia coli and purified to homogeneity in one step. This 509 amino-acid enzyme, having 67% and 26% sequence identity with CotA from Bacillus subtilis and BOD from Myrothecium verrucaria, respectively, shows higher turnover activity towards bilirubin compared to other bacterial MCOs. The current density for O(2) reduction, when immobilized in a redox hydrogel, is only 12% smaller than the current obtained with Trachyderma tsunodae BOD. Under continuous electrocatalysis, an electrode modified with the new BOD is more stable, and has a higher tolerance towards NaCl, than a T. tsunodae BOD modified electrode. This makes BOD from B. pumilus an attractive new candidate for application in biofuel cells (BFCs) and biosensors. PMID:22410485

  19. Matrix Production, Pigment Synthesis, and Sporulation in a Marine Isolated Strain of Bacillus pumilus

    PubMed Central

    Di Luccia, Blanda; Riccio, Antonio; Vanacore, Adele; Baccigalupi, Loredana; Molinaro, Antonio; Ricca, Ezio

    2015-01-01

    The ability to produce an extracellular matrix and form multicellular communities is an adaptive behavior shared by many bacteria. In Bacillus subtilis, the model system for spore-forming bacteria, matrix production is one of the possible differentiation pathways that a cell can follow when vegetative growth is no longer feasible. While in B. subtilis the genetic system controlling matrix production has been studied in detail, it is still unclear whether other spore formers utilize similar mechanisms. We report that SF214, a pigmented strain of Bacillus pumilus isolated from the marine environment, can produce an extracellular matrix relying on orthologs of many of the genes known to be important for matrix synthesis in B. subtilis. We also report a characterization of the carbohydrates forming the extracellular matrix of strain SF214. The isolation and characterization of mutants altered in matrix synthesis, pigmentation, and spore formation suggest that in strain SF214 the three processes are strictly interconnected and regulated by a common molecular mechanism. PMID:26506360

  20. Purification and partial characterization of serine-metallokeratinase from a newly isolated Bacillus pumilus NRC21.

    PubMed

    Tork, Sanaa E; Shahein, Yasser E; El-Hakim, Amr E; Abdel-Aty, Azza M; Aly, Magda M

    2016-05-01

    A serine metallokeratinase enzyme (30kDa) produced by a newly isolated Bacillus strain (Bacillus pumilus NRC21) cultivated under optimized conditions in medium containing chicken feather meal was purified and characterized in a set of biochemical assays. The purification was carried out using two successive chromatographic steps; cation exchange chromatography on CM-cellulose and gel filtration on sephadex G-100 columns. The purified enzyme showed a specific activity of 2000units/mg protein against 170units/mg protein for crude extract with 12 fold purification. The enzymatic activity of the keratinase stimulated by (Na(+), K(+), Mg(2+)), Hg(+2) had no effect, and inhibited by entire tested cations, serine and metalloproteinase inhibitors, therefore it can be considered as a serine metalloenzyme. The optimum pH and temperature for the purified enzyme were (7.5, 8.5) and (50, 45°C) when using keratin azure and azocasein as substrates, respectively. The purified enzyme was highly stable at broad pH and temperature ranged (5-10) and (20-60°C), respectively and its thermoactivity and thermostability were enhanced in the presence of 5mMMg(+2). These results suggest that the purified keratinase may be used in several industrial applications. PMID:26802243

  1. An in-depth characterization of the entomopathogenic strain Bacillus pumilus 15.1 reveals that it produces inclusion bodies similar to the parasporal crystals of Bacillus thuringiensis.

    PubMed

    Garcia-Ramon, Diana C; Molina, C Alfonso; Osuna, Antonio; Vílchez, Susana

    2016-04-01

    In the present work, the local isolate Bacillus pumilus 15.1 has been morphologically and biochemically characterized in order to gain a better understanding of this novel entomopathogenic strain active against Ceratitis capitata. This strain could represent an interesting biothechnological tool for the control of this pest. Here, we report on its nutrient preferences, extracellular enzyme production, motility mechanism, biofilm production, antibiotic suceptibility, natural resistance to chemical and physical insults, and morphology of the vegetative cells and spores. The pathogen was found to be β-hemolytic and susceptible to penicillin, ampicillin, chloramphenicol, gentamicin, kanamycin, rifampicin, tetracycline, and streptomycin. We also report a series of biocide, thermal, and UV treatments that reduce the viability of B. pumilus 15.1 by several orders of magnitude. Heat and chemical treatments kill at least 99.9 % of vegetative cells, but spores were much more resistant. Bleach was the only chemical that was able to completely eliminate B. pumilus 15.1 spores. Compared to the B. subtilis 168 spores, B. pumilus 15.1 spores were between 2.67 and 350 times more resistant to UV radiation while the vegetative cells of B. pumilus 15.1 were almost up to 3 orders of magnitude more resistant than the model strain. We performed electron microscopy for morphological characterization, and we observed geometric structures resembling the parasporal crystal inclusions synthesized by Bacillus thuringiensis. Some of the results obtained here such as the parasporal inclusion bodies produced by B. pumilus 15.1 could potentially represent virulence factors of this novel and potentially interesting strain. PMID:26782747

  2. Bacillus pumilus ES4: candidate plant growth-promoting bacterium to enhance establishment of plants in mine tailings

    PubMed Central

    de-Bashan, Luz E.; Hernandez, Juan-Pablo; Bashan, Yoav; Maier, Raina

    2014-01-01

    Three plant growth-promoting bacteria (PGPB; Bacillus pumilus ES4, B. pumilus RIZO1, and Azospirillum brasilense Cd) were tested for their ability to enhance plant growth and development of the native Sonoran Desert shrub quailbush (Atriplex lentiformis) and for their effect on the native bacterial community in moderately acidic, high-metal content (AHMT) and in neutral, low metal content natural tailings (NLMT) in controlled greenhouse experiments. Inoculation of quailbush with all three PGPB significantly enhanced plant growth parameters, such as germination, root length, dry weight of shoots and roots, and root/shoot ratio in both types of tailings. The effect of inoculation on the indigenous bacterial community by the most successful PGPB Bacillus pumilus ES4 was evaluated by denaturating gradient gel electrophoresis (PCR-DGGE) fingerprinting and root colonization was followed by specific fluorescent in situ hybridization (FISH). Inoculation with this strain significantly changed the bacterial community over a period of 60 days. FISH analysis showed that the preferred site of colonization was the root tips and root elongation area. This study shows that inoculation of native perennial plants with PGPB can be used for developing technologies for phytostabilizing mine tailings. PMID:25009362

  3. Isolation of a novel strain of Bacillus pumilus from penaeid shrimp that is inhibitory against marine pathogens.

    PubMed

    Hill, J E; Baiano, J C F; Barnes, A C

    2009-12-01

    A bacterium was isolated from the mid-gut of healthy black tiger shrimp, Penaeus monodon, based on a large zone of inhibition in mixed culture on solid medium. The isolate was a Gram-positive, motile spore former, with an optimum pH range for growth in tryptone soya broth containing 2% NaCl of between pH 6 and 9. The bacterium was highly salt tolerant with concentrations between 0% and 8% having no detrimental effect on growth. The isolate was identified as Bacillus pumilus based on physiological capabilities using the API50CHB and Biolog systems. Amplification and sequencing of the 16S rRNA gene followed by phylogenetic analysis confirmed its identity. The Bacillus pumilus isolate was strongly inhibitory against the marine bacterial pathogens Vibrio alginolyticus, V. mimicus and V. harveyi, and weakly inhibitory against V. parahaemolyticus in cross-streaking assays on solid medium. The organism was marginally self-inhibitory, and inhibited B. licheniformis and B. subtilis. The suitability of the B. pumilus isolate for use as a probiotic in farmed shrimp was further supported by the absence of any of the known B. cereus enterotoxin genes. Based on these in vitro results, in vivo safety and efficacy trials are underway to determine suitability of the novel strain as a commercial probiotic. PMID:19573134

  4. Draft Genome Sequence of the Entomopathogenic Bacterium Bacillus pumilus 15.1, a Strain Highly Toxic to the Mediterranean Fruit Fly Ceratitis capitata

    PubMed Central

    García-Ramón, Diana C.; Palma, Leopoldo; Berry, Colin; Osuna, Antonio

    2015-01-01

    We present the draft whole-genome sequence of the entomopathogenic Bacillus pumilus 15.1 strain that consists of 3,795,691 bp and 3,776 predicted protein-coding genes. This genome sequence provides the basis for understanding the potential mechanism behind the toxicity and virulence of B. pumilus 15.1 against the Mediterranean fruit fly. PMID:26404596

  5. Probing an Interfacial Surface in the Cyanide Dihydratase from Bacillus pumilus, A Spiral Forming Nitrilase

    PubMed Central

    Park, Jason M.; Mulelu, Andani; Sewell, B. Trevor; Benedik, Michael J.

    2016-01-01

    Nitrilases are of significant interest both due to their potential for industrial production of valuable products as well as degradation of hazardous nitrile-containing wastes. All known functional members of the nitrilase superfamily have an underlying dimer structure. The true nitrilases expand upon this basic dimer and form large spiral or helical homo-oligomers. The formation of this larger structure is linked to both the activity and substrate specificity of these nitrilases. The sequences of the spiral nitrilases differ from the non-spiral forming homologs by the presence of two insertion regions. Homology modeling suggests that these regions are responsible for associating the nitrilase dimers into the oligomer. Here we used cysteine scanning across these two regions, in the spiral forming nitrilase cyanide dihydratase from Bacillus pumilus (CynD), to identify residues altering the oligomeric state or activity of the nitrilase. Several mutations were found to cause changes to the size of the oligomer as well as reduction in activity. Additionally one mutation, R67C, caused a partial defect in oligomerization with the accumulation of smaller oligomer variants. These results support the hypothesis that these insertion regions contribute to the unique quaternary structure of the spiral microbial nitrilases. PMID:26779137

  6. Catalytic, kinetic and thermodynamic properties of Bacillus pumilus FH9 keratinase conjugated with activated pectin.

    PubMed

    Abdel-Naby, Mohamed A; A Ibrahim, M H; El-Refai, H A

    2016-04-01

    Bacillus pumilus FH9 keratinase was covalently coupled to several oxidized polysaccharides. The conjugates were evaluated for the retained activity, kinetic and thermodynamic stability. Among all preparations, the conjugated enzyme with oxidized pectin had the highest recovered activity (71.75%) and the highest thermal stability at 60°C (t1/2=333min). Compared to the native enzyme, the conjugated preparation exhibited higher optimum temperature, lower activation energy (Ea), lower deactivation constant rate (kd), higher t1/2, and higher decimal reduction time values (D) within the temperature range of 50-80°C. The thermodynamic parameters (ΔH*, ΔG*, ΔS*) of irreversible thermal denaturation for the native and conjugated keratinase were also evaluated. The values of enthalpy of activation (ΔH*), free energy of activation (ΔG*), and free energy of transition state binding (ΔG*E-T) for keratin hydrolysis were lower for the conjugated enzyme. Moreover, there was highly significant impact on improving the values of Vmax/Km, kcat, kcat/Km, and ΔG*E-S for the modified enzyme. Both native and conjugated enzymes were slightly activated by CaCl2 and MgCl2. However, the inhibitory effects of EDTA, HgCl2 and ZnSO4 were more pronounced with the native enzyme. PMID:26743746

  7. Acetoin Catabolism and Acetylbutanediol Formation by Bacillus pumilus in a Chemically Defined Medium

    PubMed Central

    Xiao, Zijun; Ma, Cuiqing; Xu, Ping; Lu, Jian R.

    2009-01-01

    Background Most low molecular diols are highly water-soluble, hygroscopic, and reactive with many organic compounds. In the past decades, microbial research to produce diols, e.g. 1,3-propanediol and 2,3-butanediol, were considerably expanded due to their versatile usages especially in polymer synthesis and as possible alternatives to fossil based feedstocks from the bioconversion of renewable natural resources. This study aimed to provide a new way for bacterial production of an acetylated diol, i.e. acetylbutanediol (ABD, 3,4-dihydroxy-3-methylpentan-2-one), by acetoin metabolism. Methodology/Principal Findings When Bacillus pumilus ATCC 14884 was aerobically cultured in a chemically defined medium with acetoin as the sole carbon and energy source, ABD was produced and identified by gas chromatography – chemical ionization mass spectrometry and NMR spectroscopy. Conclusions/Significance Although the key enzyme leading to ABD from acetoin has not been identified yet at this stage, this study proposed a new metabolic pathawy to produce ABD in vivo from using renewable resources – in this case acetoin, which could be reproduced from glucose in this study – making it the first facility in the world to prepare this new bio-based diol product. PMID:19461961

  8. Structural analysis of Bacillus pumilus phenolic acid decarboxylase, a lipocalin-fold enzyme

    SciTech Connect

    Matte, Allan; Grosse, Stephan; Bergeron, Hélène; Abokitse, Kofi; Lau, Peter C.K.

    2012-04-30

    The decarboxylation of phenolic acids, including ferulic and p-coumaric acids, to their corresponding vinyl derivatives is of importance in the flavoring and polymer industries. Here, the crystal structure of phenolic acid decarboxylase (PAD) from Bacillus pumilus strain UI-670 is reported. The enzyme is a 161-residue polypeptide that forms dimers both in the crystal and in solution. The structure of PAD as determined by X-ray crystallography revealed a -barrel structure and two -helices, with a cleft formed at one edge of the barrel. The PAD structure resembles those of the lipocalin-fold proteins, which often bind hydrophobic ligands. Superposition of structurally related proteins bound to their cognate ligands shows that they and PAD bind their ligands in a conserved location within the -barrel. Analysis of the residue-conservation pattern for PAD-related sequences mapped onto the PAD structure reveals that the conservation mainly includes residues found within the hydrophobic core of the protein, defining a common lipocalin-like fold for this enzyme family. A narrow cleft containing several conserved amino acids was observed as a structural feature and a potential ligand-binding site.

  9. Swapping of pro-sequences between keratinases of Bacillus licheniformis and Bacillus pumilus: altered substrate specificity and thermostability.

    PubMed

    Rajput, Rinky; Tiwary, Ekta; Sharma, Richa; Gupta, Rani

    2012-08-10

    Pro-sequences were swapped in cis between keratinases from Bacillus licheniformis (Ker BL) and Bacillus pumilus (Ker BP) to construct Ker ProBP-BL and Ker ProBL-BP, respectively. Expression of these keratinases was carried out constitutively by E. coli HB101-pEZZ18 system. They were characterized with respect to their parent enzymes, Ker BL and Ker BP, respectively. Ker ProBP-BL became more thermostable with a t(1/2) of 45 min at 80°C contrary to Ker BL which was not stable beyond 60°C. Similarly, the activity of Ker ProBP-BL on keratin and casein substrate, i.e. K:C ratio increased to 1.2 in comparison to 0.1 for Ker BL. Hydrolysis of insulin B-chain revealed that the cleavage sites increased to six from four in case of Ker ProBP-BL in comparison to Ker BL. However, cleavage sites decreased from seven to four in case of Ker ProBL-BP in comparison to the parent keratinase, Ker BP. Likewise, Ker ProBL-BP revealed altered pH and temperature kinetics with optima at pH 10 and 60°C in comparison to Ker BP which had optima at pH 9 and 70°C. It also cleaved soluble substrates with better efficiency in comparison to Ker BP with K:C ratio of 1.6. Pro-sequence mediated conformational changes were also observed in trans and were almost similar to the features acquired by the chimeras constructed in cis by swapping the pro-sequence region. PMID:22759531

  10. Thermostable Xanthine Oxidase Activity from Bacillus pumilus RL-2d Isolated from Manikaran Thermal Spring: Production and Characterization.

    PubMed

    Sharma, Nirmal Kant; Thakur, Shikha; Thakur, Neerja; Savitri; Bhalla, Tek Chand

    2016-03-01

    Xanthine oxidase is an important enzyme of purine metabolism that catalyzes the hydroxylation of hypoxanthine to xanthine and then xanthine to uric acid. A thermostable xanthine oxidase is being reported from a thermophilic organism RL-2d isolated from the Manikaran (Kullu) hot spring of Himachal Pradesh (India). Based on the morphology, physiological tests, and 16S rDNA gene sequence, RL-2d was identified as Bacillus pumilus. Optimization of physiochemical parameters resulted into 4.1-fold increase in the xanthine oxidase activity from 0.051 U/mg dcw (dry cell weight) to 0.209 U/mg dcw. The xanthine oxidase of B. pumilus RL-2d has exhibited very good thermostability and its t1/2 at 70 and 80 °C were 5 and 1 h, respectively. Activity of this enzyme was strongly inhibited by Hg(2+), Ag(+) and allopurinol. The investigation showed that B. pumilus RL-2d exhibited highest xanthine oxidase activity and remarkable thermostability among the other xanthine oxidases reported so far. PMID:26843701

  11. Biochemical and molecular characterization of a detergent-stable serine alkaline protease from Bacillus pumilus CBS with high catalytic efficiency.

    PubMed

    Jaouadi, Bassem; Ellouz-Chaabouni, Semia; Rhimi, Moez; Bejar, Samir

    2008-09-01

    We have described previously the potential use of an alkaline protease from Bacillus pumilus CBS as an effective additive in laundry detergent formulations [B. Jaouadi, S. Ellouz-Chaabouni, M. Ben Ali, E. Ben Messaoud, B. Naili, A. Dhouib, S. Bejar, A novel alkaline protease from Bacillus pumilus CBS having a high compatibility with laundry detergent and a high feather-degrading activity, Process Biochem, submitted for publication]. Here, we purified this enzyme (named SAPB) and we cloned, sequenced and over-expressed the corresponding gene. The enzyme was purified to homogeneity using salt precipitation and gel filtration HPLC. The pure protease was found to be monomeric protein with a molecular mass of 34598.19Da as determined by MALDI-TOF mass spectrometry. The NH2-terminal sequence of first 21 amino acids (aa) of the purified SAPB was AQTVPYGIPQIKAPAVHAQGY and was completely identical to proteases from other Bacillus pumilus species. This protease is strongly inhibited by PMSF and DFP, showing that it belongs to the serine proteases superfamily. Interestingly, the optimum pH is 10.6 while the optimum temperature was determined to be 65 degrees C. The enzyme was completely stable within a wide range of pH (7.0-10.6) and temperature (30-55 degrees C). One of the distinguishing properties is its catalytic efficiency (kcat/Km) calculated to be 45,265min(-1)mM(-1) and 147,000min(-1)mM(-1) using casein and AAPF as substrates, respectively, which is higher than that of Subtilisin Carlsberg, Subtilisin BPN' and Subtilisin 309 determined under the same conditions. In addition, SAPB showed remarkable stability, for 24h at 40 degrees C, in the presence of 5% Tween-80, 1% SDS, 15% urea and 10% H2O2, which comprise the common bleach-based detergent formulation. The sapB gene encoding SAPB was cloned, sequenced and over-expressed in Escherichia coli. The purified recombinant enzyme (rSAPB) has the same physicochemical and kinetic properties as the native one. SapB gene had an ORF of 1149bp encoding a protein of 383 aa organized into a signal peptide (29 aa), a pro-protein (79 aa) and a mature enzyme (275 aa). The deduced amino acid sequence inspection displays an important homology with other bacterial proteases. The highest homology of 98.1% was found with BPP-A protease from Bacillus pumilus MS-1, with only 8 aa of difference. PMID:18397761

  12. Candidate Genes That May Be Responsible for the Unusual Resistances Exhibited by Bacillus pumilus SAFR-032 Spores

    PubMed Central

    Tirumalai, Madhan R.; Rastogi, Rajat; Zamani, Nader; O’Bryant Williams, Elisha; Allen, Shamail; Diouf, Fatma; Kwende, Sharon; Weinstock, George M.; Venkateswaran, Kasthuri J.; Fox, George E.

    2013-01-01

    The spores of several Bacillus species, including Bacillus pumilus SAFR-032 and B. safensis FO-36b, which were isolated from the spacecraft assembly facility at NASA's Jet Propulsion Laboratory, are unusually resistant to UV radiation and hydrogen peroxide. In order to identify candidate genes that might be associated with these resistances, the whole genome of B. pumilus SAFR-032, and the draft genome of B. safensis FO-36b were compared in detail with the very closely related type strain B. pumilus ATCC7061T. 170 genes are considered characteristic of SAFR-032, because they are absent from both FO-36b and ATCC7061T. Forty of these SAFR-032 characteristic genes are entirely unique open reading frames. In addition, four genes are unique to the genomes of the resistant SAFR-032 and FO-36b. Fifty three genes involved in spore coat formation, regulation and germination, DNA repair, and peroxide resistance, are missing from all three genomes. The vast majority of these are cleanly deleted from their usual genomic context without any obvious replacement. Several DNA repair and peroxide resistance genes earlier reported to be unique to SAFR-032 are in fact shared with ATCC7061T and no longer considered to be promising candidates for association with the elevated resistances. Instead, several SAFR-032 characteristic genes were identified, which along with one or more of the unique SAFR-032 genes may be responsible for the elevated resistances. These new candidates include five genes associated with DNA repair, namely, BPUM_0608 a helicase, BPUM_0652 an ATP binding protein, BPUM_0653 an endonuclease, BPUM_0656 a DNA cytosine-5- methyltransferase, and BPUM_3674 a DNA helicase. Three of these candidate genes are in immediate proximity of two conserved hypothetical proteins, BPUM_0654 and BPUM_0655 that are also absent from both FO-36b and ATCC7061T. This cluster of five genes is considered to be an especially promising target for future experimental work. PMID:23799069

  13. Applicability of UV resistant Bacillus pumilus endospores as a human adenovirus surrogate for evaluating the effectiveness of virus inactivation in low-pressure UV treatment systems

    EPA Science Inventory

    Recent studies have demonstrated the potential to use Bacillus pumilus endospores as a surrogate of human adenovirus (HAdV) in UV disinfection studies. The use of endospores has been limited by observations of batch-to-batch variation in UV sensitivity. This study reports on a pr...

  14. Enhanced phytotransformation of Navy Blue RX dye by Petunia grandiflora Juss. with augmentation of rhizospheric Bacillus pumilus strain PgJ and subsequent toxicity analysis.

    PubMed

    Watharkar, Anuprita D; Rane, Niraj R; Patil, Swapnil M; Khandare, Rahul V; Jadhav, Jyoti P

    2013-08-01

    This study reveals the beneficial synergistic phytoremediation potential of Petunia grandiflora Juss. with its rhizospheric bacterial isolate Bacillus pumilus strain PgJ to decolorize reactive Navy Blue RX (NBRX) dye by their active enzymatic machinery. In vitro cultures of P. grandiflora and B. pumilus gave 80.01% and 76.80% while their consortium decolorized NBRX up to 96.86% within 36 h. Significant induction in the enzyme activities of lignin peroxidase (207%), tyrosinase (133%), laccase (161%), riboflavin reductase (78%) were seen in the roots of tissue cultured plants while enzymes tyrosinase (660%), laccase (689%), riboflavin reductase (528%) were induced significantly in the B. pumilus cells. Metabolites of treated NBRX were analyzed using UV-vis spectroscopy, gas chromatography and biotransformation was visualized using high performance thin layer chromatography profile. Metabolites of the dye exhibited reduced phytotoxicity Sorghum vulgare and Phaeseolus mungo and significant reduction in cytogenotoxicity on Allium cepa roots when compared to NBRX. PMID:23743429

  15. Genome Sequence of the Endophytic Bacterium Bacillus thuringiensis Strain KB1, a Potential Biocontrol Agent against Phytopathogens

    PubMed Central

    Jo, Sung Hee; Hong, Chi Eun

    2016-01-01

    Bacillus thuringiensis is the most widely known microbial pesticide used in agricultural applications. Herein, we report a draft genome sequence of the endophytic bacterium Bacillus thuringiensis strain KB1, which exhibits antagonism against phytopathogens. PMID:27103716

  16. Genome Sequence of the Endophytic Bacterium Bacillus thuringiensis Strain KB1, a Potential Biocontrol Agent against Phytopathogens.

    PubMed

    Jeong, Haeyoung; Jo, Sung Hee; Hong, Chi Eun; Park, Jeong Mee

    2016-01-01

    ITALIC! Bacillus thuringiensisis the most widely known microbial pesticide used in agricultural applications. Herein, we report a draft genome sequence of the endophytic bacterium ITALIC! Bacillus thuringiensisstrain KB1, which exhibits antagonism against phytopathogens. PMID:27103716

  17. Arg²³⁵ is an essential catalytic residue of Bacillus pumilus DKS1 pectate lyase to degum ramie fibre.

    PubMed

    Basu, Snehasish; Roy, Arunava; Ghosh, Abhrajyoti; Bera, Amit; Chattopadhyay, Dhrubajyoti; Chakrabarti, Krishanu

    2011-02-01

    After 24 h of incubation with only purified pectate lyase isolated from Bacillus pumilus DKS1 (EF467045), the weight loss of the ramie fibre was found to be 25%. To know the catalytic residue of pectate lyase the pel gene encoding a pectate lyase from the strain Bacillus pumilus DKS1 was cloned in E. coli XL1Blue and expressed in E. coli BL21 (DE3) pLysS. The pel gene was sequenced and showed 1032 bp length. After purification using CM-Sepharose the enzyme showed molecular weight of 35 kDa and maximal enzymatic activity was observed at 60°C and a pH range of 8.5-9.0. Both Ca²(+) and Mn²(+) ions were required for activity on Na-pectate salt substrates, while the enzyme was strongly inhibited by Zn²(+) and EDTA. The deduced nucleotide sequence of the DKS1 pectate lyase (EU652988) showed 90% homology to pectate lyases from Bacillus pumilus SAFR-032 (CP000813). The 3D structure as well as the catalytic residues was predicted using EasyPred software and Catalytic Site Atlas (CSA), respectively. Site directed mutagenesis confirmed that arginine is an essential catalytic residue of DKS1 pectate lyase. PMID:20596756

  18. Applicability of UV resistant Bacillus pumilus endospores as a human adenovirus surrogate for evaluating the effectiveness of virus inactivation in low-pressure UV treatment systems.

    PubMed

    Boczek, Laura A; Rhodes, Eric R; Cashdollar, Jennifer L; Ryu, Jongseong; Popovici, Jonathan; Hoelle, Jill M; Sivaganesan, Mano; Hayes, Samuel L; Rodgers, Mark R; Ryu, Hodon

    2016-03-01

    Recent studies have demonstrated the potential to use Bacillus pumilus endospores as a surrogate for human adenovirus (HAdV) in UV disinfection studies. The use of endospores has been limited by observations of batch-to-batch variation in UV sensitivity. This study reports on a propagation method that utilizes a commercially available medium to produce UV tolerant B. pumilus endospores with a consistent UV sensitivity. It is further demonstrated that the endospores of B. pumilus strain (ATCC 27142), produced using this protocol (half strength Columbia broth, 5days incubation, with 0.1mM MnSO4), display a UV dose-response that is similar to that of HAdV. Endospore stocks could be stored in ethanol for up to two months at 4°C without a significant change in UV sensitivity. Synergistic endospore damage was observed by pre-heat treatment of water samples followed by UV irradiation. UV tolerant B. pumilus endospores are a potential surrogate of HAdV for UV treatment performance tests in water utilities which do not have in-house research virology laboratories. PMID:26825005

  19. Sequence and properties of beta-xylosidase from Bacillus pumilus IPO. Contradiction of the previous nucleotide sequence.

    PubMed

    Xu, W Z; Shima, Y; Negoro, S; Urabe, I

    1991-12-18

    The nucleotide sequence of the beta-xylosidase (xynB) gene from Bacillus pumilus has been reported previously [Moriyama, H., Fukusaki, E., Crespo, J.C., Shinmyo, A. & Okada, H. (1987) Eur. J. Biochem. 166, 539-545]. However, the sequence identified in the present study is quite different from the previously reported one. The total length of the PstI--EcoRI fragment of a plasmid pOXN295 containing the xynB gene is 2201 bp from our sequencing, while the length of the fragment in the previous data was 2466 bp. The sequences are similar in the N-terminal (500 bp) and C-terminal (260 bp) regions, but those in the central region are completely different. From the following observations, the previous sequence seems to have no reliable experimental basis. First, the restriction sites observed for pOXN295 are quite different from the sites deduced from the sequence. Second, the amino acid composition deduced from the sequence and the composition identified by amino acid analysis of the purified beta-xylosidase are very different. It is confirmed, on the other hand, that our new sequence agrees well with these experimental data. The enzyme was purified to homogeneity from Bacillus pumilus and Escherichia coli harboring a hybrid plasmid which highly expresses the xynB gene. The molecular mass of the enzyme was estimated to be 190 kDa by high performance gel filtration chromatography using TSK-G3000SW and 56 kDa by SDS/polyacrylamide gel electrophoresis. The pH optimum was 7.0, and the optimum temperature was 40 degrees C. The Vm value was estimated to be 1.23 +/- 0.14 mukat/mg (or p-nitrophenyl beta-D-xyloside) and 0.14 +/- 0.011 mukat/mg (for xylobiose), while Km was estimated to be 3.9 +/- 0.59 mM (for p-nitrophenyl beta-D-xyloside) and 8.9 +/- 1.19 mM (for xylobiose). PMID:1765080

  20. Structural Characterization and Antimicrobial Activity of a Biosurfactant Obtained From Bacillus pumilus DSVP18 Grown on Potato Peels

    PubMed Central

    Sharma, Deepak; Ansari, Mohammad Javed; Gupta, Sonam; Al Ghamdi, Ahmad; Pruthi, Parul; Pruthi, Vikas

    2015-01-01

    Background: Biosurfactants constitute a structurally diverse group of surface-active compounds derived from microorganisms. They are widely used industrially in various industrial applications such as pharmaceutical and environmental sectors. Major limiting factor in biosurfactant production is their production cost. Objectives: The aim of this study was to investigate biosurfactant production under laboratory conditions with potato peels as the sole source of carbon source. Materials and Methods: A biosurfactant-producing bacterial strain (Bacillus pumilus DSVP18, NCBI GenBank accession no. GQ865643) was isolated from motor oil contaminated soil samples. Biochemical characteristics of the purified biosurfactant were determined and its chemical structure was analyzed. Stability studies were performed and biological activity of the biosurfactant was also evaluated. Results: The strain, when grown on modified minimal salt media supplemented with 2% potato peels as the sole carbon source, showed the ability to reduce Surface Tension (ST) value of the medium from 72 to 28.7 mN/m. The isolated biosurfactant (3.2 ± 0.32 g/L) was stable over a wide range of temperatures (20 - 120 ºC), pH (2-12) and salt concentrations (2 - 12%). When characterized using high-performance liquid chromatography (HPLC) and Fourier transform infrared spectroscopy, it was found to be a lipopeptide in nature, which was further confirmed by Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (mass peak 1044.60) and nuclear magnetic resonance (NMR) studies. Data showed that the isolated biosurfactant at the concentration range of 30 - 35 µg/ml had strong antimicrobial activity when tested against standard strains of Bacillus cereus, Escherichia coli, Salmonella enteritidis, Staphylococcus aureus and Paenibacillus larvae. Conclusions: Potato peels were proved to be potentially useful substrates for biosurfactant production by B. pumilus DSVP18. The strain possessed a unique property to reduce surface tension of the media from 72 to 28.7 mN/m. In addition, it showed a stable surface activity over a wide range of temperatures, pH, and saline conditions and had strong antimicrobial activity. This potential of the identified biosurfactant can be exploited by pharmaceutical industries for its commercial usage. PMID:26495106

  1. Identification, sequencing and comparative analysis of pBp15.S plasmid from the newly described entomopathogen Bacillus pumilus 15.1.

    PubMed

    Garcia-Ramon, Diana C; Luque-Navas, Maria Jose; Molina, C Alfonso; Del Val, Coral; Osuna, Antonio; Vilchez, Susana

    2015-11-01

    The Bacillus pumilus 15.1 strain, a recently described entomopathogenic strain active against Ceratitis capitata, contains at least two extrachromosomal elements, pBp15.1S and pBp15.1B. Given that B. pumilus is not a typical entomopathogenic bacterium, the acquisition of this extrachromosomal DNA may explain why B. pumilus 15.1 is toxic to an insect. One of the plasmids present in the strain, the pBp15.1S plasmid, was sub-cloned, sequenced and analyzed using bioinformatics to identify any potential virulence factor. The pBp15.1S plasmid was found to be 7785 bp in size with a GC content of 35.7% and 11 putative ORFs. A replication module typical of a small rolling circle plasmid and a sensing and regulatory system specific for plasmids was found in pBp15.1S. Additionally, we demonstrated the existence of ssDNA in plasmid preparations suggesting that pBp15.1S replicates by the small rolling circle mechanism. A gene cluster present in plasmid pPZZ84 from a distantly isolated B. pumilus strain was also present in pBp15.1S. The plasmid copy number of pBp15.1S in exponentially growing B. pumilus cells was determined to be 33 copies per chromosome. After an extensive plasmid characterization, no known virulence factor was found so a search in the other extrachromosomal elements of the bacteria is needed. PMID:26416357

  2. Exo-pectinase production by Bacillus pumilus using different agricultural wastes and optimizing of medium components using response surface methodology.

    PubMed

    Tepe, Ozlem; Dursun, Arzu Y

    2014-01-01

    In this research, the production of exo-pectinase by Bacillus pumilus using different agricultural wastes was studied. Agricultural wastes containing pectin such as wheat bran, sugar beet pulp, sunflower plate, orange peel, banana peel, apple pomace and grape pomace were tested as substrates, and activity of exo-pectinase was determined only in the mediums containing sugar beet pulp and wheat bran. Then, effects of parameters such as concentrations of solid substrate (wheat bran and sugar beet pulp) (A), ammonium sulphate (B) and yeast extract (C) on the production of exo-pectinase were investigated by response surface methodology. First, wheat bran was used as solid substrate, and it was determined that exo-pectinase activity increased when relatively low concentrations of ammonium sulphate (0.12-0.21% w/v) and yeast extract (0.12-0.3% w/v) and relatively high wheat bran (~5-6% w/v) were used. Then, exo-pectinase production was optimized by response surface methodology using sugar beet pulp as a solid substrate. In comparison to P values of the coefficients, values of not greater than 0.05 of A and B (2) showed that the effect of these process variables in exo-pectinase production was important and that changes done in these variables will alter the enzyme activity. PMID:24819433

  3. Thermostable keratinase from Bacillus pumilus KS12: production, chitin crosslinking and degradation of Sup35NM aggregates.

    PubMed

    Rajput, Rinky; Gupta, Rani

    2013-04-01

    Production of thermostable keratinase from Bacillus pumilus KS12 was enhanced up to seven fold by statistical methods. The enzyme was partially purified by ultrafiltration followed by thermal precipitation with purity of 3.2-fold and recovery of 89%. Keratinase was immobilized using covalent method by crosslinking 2 mg protein (688 U/mg) onto 1g chitin activated with 2.5% (v/v) glutaraldehyde for 60 min. Its comparative biochemical studies with that of free keratinase revealed the shift in optimum pH with increased stability towards pH from 9.0 to 10.0 and temperature. Also, it showed statistically significant improved hydrolysis of a number of soluble and insoluble substrates in comparison to free keratinase. Owing to improved catalytic efficiency of immobilized keratinase, its potential for degradation of Sup35NM was evaluated, where 100 μg of enzyme could degrade 60 μg Sup35NM after 60 min at pH 7.0 and 37°C. PMID:23425582

  4. TECHNIQUES FOR MANIPULATING THE BACTERIAL ENDOPHYTE BACILLUS MOJAVENSIS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The importance of Fusarium species as symptomless endophytes in plant roots is reviewed. Fusarium is a very important genus from the aspects of food production and food safety and its species exist as intercellular root endophytes in both cultivated and wild plants and the role during the symptomle...

  5. High-Quality Draft Genome Sequence of Bacillus amyloliquefaciens Strain 629, an Endophyte from Theobroma cacao.

    PubMed

    SantAnna, Brena M M; Marbach, Phellippe P A; Rojas-Herrera, Marcelo; De Souza, Jorge T; Roque, Milton R A; Queiroz, Artur T L

    2015-01-01

    Bacillus amyloliquefaciens strain 629 is an endophyte isolated from Theobroma cacao L. Here, we report the draft genome sequence (3.9 Mb) of B. amyloliquefaciens strain 629 containing 16 contigs (3,903,367 bp), 3,912 coding sequences, and an average 46.5% G+C content. PMID:26586881

  6. High-Quality Draft Genome Sequence of Bacillus amyloliquefaciens Strain 629, an Endophyte from Theobroma cacao

    PubMed Central

    SantAnna, Brena M. M.; Marbach, Phellippe P. A.; Rojas-Herrera, Marcelo; De Souza, Jorge T.; Roque, Milton R. A.

    2015-01-01

    Bacillus amyloliquefaciens strain 629 is an endophyte isolated from Theobroma cacao L. Here, we report the draft genome sequence (3.9 Mb) of B. amyloliquefaciens strain 629 containing 16 contigs (3,903,367 bp), 3,912 coding sequences, and an average 46.5% G+C content. PMID:26586881

  7. Single amino acid mutation alters thermostability of the alkaline protease from Bacillus pumilus: thermodynamics and temperature dependence.

    PubMed

    Huang, Rong; Yang, Qingjun; Feng, Hong

    2015-02-01

    Dehairing alkaline protease (DHAP) from Bacillus pumilus BA06 has been demonstrated to have high catalytic efficiency and good thermostability, with potential application in leather processing. In order to get insights into its catalytic mechanism, two mutants with single amino acid substitution according to the homology modeling and multiple sequence alignment were characterized in thermodynamics of thermal denaturation and temperature dependence of substrate hydrolysis. The results showed that both mutants of V149I and R249E have a systematic increase in catalytic efficiency (kcat/Km) in a wide range of temperatures, mainly due to an increase of k1 (substrate diffusion) and k2 (acylation) for V149I and of k2 and k3 (deacylation) for R249E. In comparison with the wild-type DHAP, the thermostability is increased for V149I and decreased for R249E. Thermodynamic analysis indicated that the free energy (ΔGa°) of activation for thermal denaturation may govern the thermostability. The value of ΔGa° is increased for V149I and decreased for R249E. Based on these data and the structural modeling, it is suggested that substitution of Val149 with Ile may disturb the local flexibility in the substrate-binding pocket, leading to enhancement of binding affinity for the substrate. In contrast, substitution of Arg249 with Glu leads to interruption of interaction with the C-terminal of enzyme, thus resulting in less thermostability. This study indicates that amino acid residues in the active center or in the substrate-binding pocket may disturb the catalytic process and can be selected as the target for protein engineering in the bacterial alkaline proteases. PMID:25534779

  8. Effects of Actin-Like Proteins Encoded by Two Bacillus pumilus Phages on Unstable Lysogeny, Revealed by Genomic Analysis

    PubMed Central

    Yuan, Yihui; Peng, Qin; Wu, Dandan; Kou, Zheng; Wu, Yan; Liu, Pengming

    2014-01-01

    We characterized two newly isolated myoviruses, Bp8p-C and Bp8p-T, infecting the ginger rhizome rot disease pathogen Bacillus pumilus GR8. The plaque of Bp8p-T exhibited a clear center with a turbid rim, suggesting that Bp8p-T could transform into latent phage. Lysogeny assays showed that both the two phages could form latent states, while Bp8p-T could form latent phage at a higher frequency and stability than Bp8p-C. The genomes of Bp8p-C and Bp8p-T were 151,417 and 151,419 bp, respectively; both encoded 212 putative proteins, and only differed by three nucleotides. Moreover, owing to this difference, Bp8p-C encoded a truncated, putative actin-like plasmid segregation protein Gp27-C. Functional analysis of protein Gp27 showed that Gp27-T encoded by Bp8p-T exhibited higher ATPase activity and assembly ability than Gp27-C. The results indicate that the difference in Gp27 affected the phage lysogenic ability. Structural proteome analysis of Bp8p-C virion resulted in the identification of 14 structural proteins, among which a pectin lyase-like protein, a putative poly-gamma-glutamate hydrolase, and three proteins with unknown function, were firstly identified as components of the phage virion. Both phages exhibited specific lytic ability to the host strain GR8. Bp8p-C showed better control effect on the pathogen in ginger rhizome slices than Bp8p-T, suggesting that Bp8p-C has a potential application in bio-control of ginger rhizome rot disease. PMID:25344242

  9. Plant genotype-specific archaeal and bacterial endophytes but similar Bacillus antagonists colonize Mediterranean olive trees.

    PubMed

    Müller, Henry; Berg, Christian; Landa, Blanca B; Auerbach, Anna; Moissl-Eichinger, Christine; Berg, Gabriele

    2015-01-01

    Endophytes have an intimate and often symbiotic interaction with their hosts. Less is known about the composition and function of endophytes in trees. In order to evaluate our hypothesis that plant genotype and origin have a strong impact on both, endophytes of leaves from 10 Olea europaea L. cultivars from the Mediterranean basin growing at a single agricultural site in Spain and from nine wild olive trees located in natural habitats in Greece, Cyprus, and on Madeira Island were studied. The composition of the bacterial endophytic communities as revealed by 16S rRNA gene amplicon sequencing and the subsequent PCoA analysis showed a strong correlation to the plant genotypes. The bacterial distribution patterns were congruent with the plant origins in "Eastern" and "Western" areas of the Mediterranean basin. Subsequently, the endophytic microbiome of wild olives was shown to be closely related to those of cultivated olives of the corresponding geographic origins. The olive leaf endosphere harbored mostly Proteobacteria, followed by Firmicutes, Actinobacteria, and Bacteroidetes. The detection of a high portion of archaeal taxa belonging to the phyla Thaumarchaeota, Crenarchaeota, and Euryarchaeota in the amplicon libraries was an unexpected discovery, which was confirmed by quantitative real-time PCR revealing an archaeal portion of up to 35.8%. Although the function of these Archaea for their host plant remains speculative, this finding suggests a significant relevance of archaeal endophytes for plant-microbe interactions. In addition, the antagonistic potential of culturable endophytes was determined; all isolates with antagonistic activity against the olive-pathogenic fungus Verticillium dahliae Kleb. belong to Bacillus amyloliquefaciens. In contrast to the specific global structural diversity, BOX-fingerprints of the antagonistic Bacillus isolates were highly similar and independent of the olive genotype from which they were isolated. PMID:25784898

  10. Plant genotype-specific archaeal and bacterial endophytes but similar Bacillus antagonists colonize Mediterranean olive trees

    PubMed Central

    Müller, Henry; Berg, Christian; Landa, Blanca B.; Auerbach, Anna; Moissl-Eichinger, Christine; Berg, Gabriele

    2015-01-01

    Endophytes have an intimate and often symbiotic interaction with their hosts. Less is known about the composition and function of endophytes in trees. In order to evaluate our hypothesis that plant genotype and origin have a strong impact on both, endophytes of leaves from 10 Olea europaea L. cultivars from the Mediterranean basin growing at a single agricultural site in Spain and from nine wild olive trees located in natural habitats in Greece, Cyprus, and on Madeira Island were studied. The composition of the bacterial endophytic communities as revealed by 16S rRNA gene amplicon sequencing and the subsequent PCoA analysis showed a strong correlation to the plant genotypes. The bacterial distribution patterns were congruent with the plant origins in “Eastern” and “Western” areas of the Mediterranean basin. Subsequently, the endophytic microbiome of wild olives was shown to be closely related to those of cultivated olives of the corresponding geographic origins. The olive leaf endosphere harbored mostly Proteobacteria, followed by Firmicutes, Actinobacteria, and Bacteroidetes. The detection of a high portion of archaeal taxa belonging to the phyla Thaumarchaeota, Crenarchaeota, and Euryarchaeota in the amplicon libraries was an unexpected discovery, which was confirmed by quantitative real-time PCR revealing an archaeal portion of up to 35.8%. Although the function of these Archaea for their host plant remains speculative, this finding suggests a significant relevance of archaeal endophytes for plant–microbe interactions. In addition, the antagonistic potential of culturable endophytes was determined; all isolates with antagonistic activity against the olive-pathogenic fungus Verticillium dahliae Kleb. belong to Bacillus amyloliquefaciens. In contrast to the specific global structural diversity, BOX-fingerprints of the antagonistic Bacillus isolates were highly similar and independent of the olive genotype from which they were isolated. PMID:25784898

  11. The Discovery of phiAGATE, A Novel Phage Infecting Bacillus pumilus, Leads to New Insights into the Phylogeny of the Subfamily Spounavirinae

    PubMed Central

    Barylski, Jakub; Nowicki, Grzegorz; Goździcka-Józefiak, Anna

    2014-01-01

    The Bacillus phage phiAGATE is a novel myovirus isolated from the waters of Lake Góreckie (a eutrophic lake in western Poland). The bacteriophage infects Bacillus pumilus, a bacterium commonly observed in the mentioned reservoir. Analysis of the phiAGATE genome (149844 base pairs) resulted in 204 predicted protein-coding sequences (CDSs), of which 53 could be functionally annotated. Further investigation revealed that the bacteriophage is a member of a previously undescribed cluster of phages (for the purposes of this study we refer to it as “Bastille group”) within the Spounavirinae subfamily. Here we demonstrate that these viruses constitute a distinct branch of the Spounavirinae phylogenetic tree, with limited similarity to phages from the Twortlikevirus and Spounalikevirus genera. The classification of phages from the Bastille group into any currently accepted genus proved extremely difficult, prompting concerns about the validity of the present taxonomic arrangement of the subfamily. PMID:24466180

  12. Endophytic Bacillus spp. produce antifungal lipopeptides and induce host defence gene expression in maize.

    PubMed

    Gond, Surendra K; Bergen, Marshall S; Torres, Mónica S; White, James F

    2015-03-01

    Endophytes are mutualistic symbionts within healthy plant tissues. In this study we isolated Bacillus spp. from seeds of several varieties of maize. Bacillus amyloliquifaciens or Bacillus subtilis were found to be present in all maize varieties examined in this study. To determine whether bacteria may produce antifungal compounds, generally lipopeptides in Bacillus spp., bacterial cultures were screened for production of lipopeptides. Lipopeptides were extracted by acid precipitation from liquid cultures of Bacillus spp. Lipopeptide extracts from Bacillus spp. isolated from Indian popcorn and yellow dent corn showed inhibitory activity against Fusarium moniliforme at 500μg per disk. Using MALDI-TOF mass spectrometry we detected the presence of antifungal iturin A, fengycin and bacillomycin in these isolates. PCR amplification also showed the presence of genes for iturin A and fengycin. B. subtilis (SG_JW.03) isolated from Indian popcorn showed strong inhibition of Arabidopsis seed mycoflora and enhanced seedling growth. We tested for the induction of defence gene expression in the host plant after treatment of plants with B. subtilis (SG_JW.03) and its lipopeptide extract using RT-qPCR. Roots of Indian popcorn seedlings treated with a suspension of B. subtilis (SG_JW.03) showed the induction of pathogenesis-related genes, including PR-1 and PR-4, which relate to plant defence against fungal pathogens. The lipopeptide extract alone did not increase the expression of these pathogenesis-related genes. Based on our study of maize endophytes, we hypothesize that, bacterial endophytes that naturally occur in many maize varieties may function to protect hosts by secreting antifungal lipopeptides that inhibit pathogens as well as inducing the up-regulation of pathogenesis-related genes of host plants (systemic acquired resistance). PMID:25497916

  13. Occurrence of Bacillus amyloliquefaciens as a systemic endophyte of vanilla orchids.

    PubMed

    White, James F; Torres, Mónica S; Sullivan, Raymond F; Jabbour, Rabih E; Chen, Qiang; Tadych, Mariusz; Irizarry, Ivelisse; Bergen, Marshall S; Havkin-Frenkel, Daphna; Belanger, Faith C

    2014-11-01

    We report the occurrence of Bacillus amyloliquefaciens in vanilla orchids (Vanilla phaeantha) and cultivated hybrid vanilla (V. planifolia × V. pompona) as a systemic bacterial endophyte. We determined with light microscopy and isolations that tissues of V. phaeantha and the cultivated hybrid were infected by a bacterial endophyte and that shoot meristems and stomatal areas of stems and leaves were densely colonized. We identified the endophyte as B. amyloliquefaciens using DNA sequence data. Since additional endophyte-free plants and seed of this orchid were not available, additional studies were performed on surrogate hosts Amaranthus caudatus, Ipomoea tricolor, and I. purpurea. Plants of A. caudatus inoculated with B. amyloliquefaciens demonstrated intracellular colonization of guard cells and other epidermal cells, confirming the pattern observed in the orchids. Isolations and histological studies suggest that the bacterium may penetrate deeply into developing plant tissues in shoot meristems, forming endospores in maturing tissues. B. amyloliquefaciens produced fungal inhibitors in culture. In controlled experiments using morning glory seedlings we showed that the bacterium promoted seedling growth and reduced seedling necrosis due to pathogens. We detected the gene for phosphopantetheinyl transferase (sfp), an enzyme in the pathway for production of antifungal lipopeptides, and purified the lipopeptide "surfactin" from cultures of the bacterium. We hypothesize that B. amyloliquefaciens is a robust endophyte and defensive mutualist of vanilla orchids. Whether the symbiosis between this bacterium and its hosts can be managed to protect vanilla crops from diseases is a question that should be evaluated in future research. PMID:25060609

  14. Pumilicin 4, a novel bacteriocin with anti-MRSA and anti-VRE activity produced by newly isolated bacteria Bacillus pumilus strain WAPB4.

    PubMed

    Aunpad, Ratchaneewan; Na-Bangchang, Keasara

    2007-10-01

    A total of 34 bacterial strains with anti-methicillin-resistant Staphylococcus aureus (MRSA) activity were isolated from 69 soil and water samples collected from four areas of Thailand. One strain, WAPB4 identified as Bacillus pumilus, showed remarkable antibacterial activity against MRSA, vancomycin-resistant Enterococcus faecalis (VRE), and several Gram-positive test bacteria. Bacteriocin produced by WAPB4 was designated as pumilicin 4. It was heat stable up to 121 degrees C, 15 min and active within the pH range of 3-9. Its activity disappeared when treated with pronase E, chymotrypsin, and trypsin, demonstrating its proteinaceous nature. At high dosage (80 AU mL(-1)), the effect of pumilicin 4 was bactericidal to both MRSA and VRE. Bacteriostasis was observed for a low dose of bacteriocin (20 AU mL(-1)). Purification of pumilicin 4 was performed by a three-step procedure, i.e., solvent extraction, solid phase extraction, and reversed-phase chromatography. The molecular mass of purified pumilicin 4 as determined by mass spectrometry was 1994.62 Dalton. This present study is the first report of a novel bacteriocin, pumilicin 4, produced by B. pumilus that has potential for use as an alternative antibacterial agent for the treatment of infection with MRSA and VRE. PMID:17700984

  15. Whole-Genome Shotgun Sequence of Bacillus mojavensis Strain RRC101, an Endophytic Bacterium Antagonistic to the Mycotoxigenic Endophytic Fungus Fusrium verticillioides

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Here we report the whole genome shotgun sequence of Bacillus mojavensis strain RRC101, isolated from a maize kernel. This strain is antagonistic to the mycotoxigenic plant pathogen Fusarium verticillioides, and grows within maize tissue, suggesting potential as an endophytic biocontrol agent....

  16. Antitumor activity of bacterial exopolysaccharides from the endophyte Bacillus amyloliquefaciens sp. isolated from Ophiopogon japonicus

    PubMed Central

    CHEN, YI-TAO; YUAN, QIANG; SHAN, LE-TIAN; LIN, MEI-AI; CHENG, DONG-QING; LI, CHANG-YU

    2013-01-01

    The endophytic bacterium, MD-b1, was isolated from the medicinal plant Ophiopogon japonicas and identified as the Bacillus amyloliquefaciens sp. with 99% similarity based on the partial sequence analysis of 16S rDNA. Exopolysaccharides were extracted from the endophyte for the evaluation of its antitumor activity against gastric carcinoma cell lines (MC-4 and SGC-7901). 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assays and microscopy were performed to estimate the cell viability and morphological changes of the MC-4 and SGC-7901 cells following treatment with the exopolysaccharides at 14, 22 and 30 μg/μl. The results revealed that the exopolysaccharides displayed concentration-dependent inhibitory effects against the MC-4 and SGC-7901 cells, with an IC50 of 19.7 and 26.8 μg/μl, respectively. The exopolysaccharides also induced morphological abnormalities in the cells. These effects indicated the the exopolysaccharides had an antitumoral mechanism of action associated with the mitochondrial dysfunction of the treated cells. This is the first study to investigate the endophytic microorganism isolated from O. japonicas and also the first discovery of such antitumoral exopolysaccharides derived from the genus Bacillus. This provides a promising and reproducible natural product source with high therapeutic value for anticancer treatment, thereby facilitating the development of new anticancer agents. PMID:23833642

  17. Bioremediation of heavy metals by growing hyperaccumulaor endophytic bacterium Bacillus sp. L14.

    PubMed

    Guo, Hanjun; Luo, Shenglian; Chen, Liang; Xiao, Xiao; Xi, Qiang; Wei, Wanzhi; Zeng, Guangming; Liu, Chengbin; Wan, Yong; Chen, Jueliang; He, Yejuan

    2010-11-01

    Heavy metal bioremediation by a multi-metal resistant endophytic bacteria L14 (EB L14) isolated from the cadmium hyperaccumulator Solanum nigrum L. was characterized for its potential application in metal treatment. 16S rDNA analysis revealed that this endophyte belonged to Bacillus sp. The hormesis of EB L14 were observed in presence of divalent heavy metals (Cu (II), Cd (II) and Pb (II)) at a relatively lower concentration (10mg/L). Such hormesis was the side effect of abnormal activities increases of ATPase which was planned to provide energy to help EB L14 reduce the toxicity of heavy metals by exporting the cations. Within 24h incubation, EB L14 could specifically uptake 75.78%, 80.48%, 21.25% of Cd (II), Pb (II) and Cu (II) under the initial concentration of 10mg/L. However, nearly no chromium uptake was observed. The mechanism study indicated that its remediation efficiencies may be greatly promoted through inhibiting the activities of ATPase. The excellent adaptation abilities and promising remediation efficiencies strongly indicated the superiority of this endophyte in heavy metal bioremediation at low concentrations, which could be useful for developing efficient metal removal system. PMID:20637605

  18. Draft Genome Sequence of Bacillus amyloliquefaciens XK-4-1, a Plant Growth-Promoting Endophyte with Antifungal Activity.

    PubMed

    Sun, Zhengxiang; Hsiang, Tom; Zhou, Yi; Zhou, Jinglong

    2015-01-01

    Here, we report the draft genome sequence of a bacterial plant-growth-promoting endophyte, Bacillus amyloliquefaciens XK-4-1, which consists of one circular chromosome of 3,941,805 bp with 3,702 coding sequences (CDSs). The data presented highlight multiple sets of functional genes associated with its plant-beneficial characteristics. PMID:26564038

  19. Characterization of Bacillus subtilis HC8, a novel plant‐beneficial endophytic strain from giant hogweed

    PubMed Central

    Malfanova, Natalia; Kamilova, Faina; Validov, Shamil; Shcherbakov, Andrey; Chebotar, Vladimir; Tikhonovich, Igor; Lugtenberg, Ben

    2011-01-01

    Summary Thirty endophytic bacteria were isolated from various plant species growing near Saint‐Petersburg, Russia. Based on a screening for various traits, including plant‐beneficial properties and DNA fragment patterns, potential siblings were removed. The remaining isolates were taxonomically identified using 16S rDNA sequences and potential human and plant pathogens were removed. The remaining strains were tested for their ability to promote radish root growth and to protect tomato plants against tomato foot and root rot. One strain, Bacillus subtilis HC8, isolated from the giant hogweed Heracleum sosnowskyi Manden, significantly promoted plant growth and protected tomato against tomato foot and root rot. Metabolites possibly responsible for these plant‐beneficial properties were identified as the hormone gibberellin and (lipo)peptide antibiotics respectively. The antibiotic properties of strain HC8 are similar to those of the commercially available plant‐beneficial strain Bacillus amyloliquefaciens FZB42. However, thin layer chromatography profiles of the two strains differ. It is speculated that endophytes such as B. subtilis HC8 contribute to the fast growth of giant hogweed. PMID:21366893

  20. Aqueous extracts of a Mars analogue regolith that mimics the Phoenix landing site do not inhibit spore germination or growth of model spacecraft contaminants Bacillus subtilis 168 and Bacillus pumilus SAFR-032

    NASA Astrophysics Data System (ADS)

    Nicholson, Wayne L.; McCoy, Lashelle E.; Kerney, Krystal R.; Ming, Douglas W.; Golden, D. C.; Schuerger, Andrew C.

    2012-08-01

    Because Mars is a primary target for life detection and habitability assessment missions, its exploration is also by necessity a Planetary Protection issue. The recent finding of significant levels of perchlorate (ClO4-) in regolith sampled from the Phoenix landing site raises the question of its potential biotoxicity to putative indigenous martian life, microbial forward contaminants from Earth, or future human visitors. To address this issue, an analogue regolith was constructed based on regolith chemistry data from the Phoenix landing site. A Mars Aqueous Regolith Extract (MARE) was prepared from the Phoenix analogue regolith and analyzed by ion chromatography. The MARE contained (mg/L) the cations Na+ (1411 ± 181), Mg2+ (1051 ± 160), Ca2+ (832 ± 125), and K+ (261 ± 29), and the anions SO42-(5911±993), ClO4-(5316±1767), Cl(171±25) and F- (2.0 ± 0.4). Nitrogen-containing species NO3-(773±113) and NO2-(6.9±2.3) were also present as a result of regolith preparation procedures, but their relevance to Mars is at present unknown. The MARE was tested for potential toxic effects on two model spacecraft contaminants, the spore-forming bacteria Bacillus subtilis strain 168 and Bacillus pumilus strain SAFR-032. In B. subtilis, spore germination and initial vegetative growth (up to ˜5 h) was not inhibited in a rich complex medium prepared with the MARE, but growth after 5 h was significantly suppressed in medium prepared using the MARE. Both B. subtilis and B. pumilus exhibited significantly higher rates of spore germination and growth in the MARE vs. DW with no additions (likely due to endogenous spore nutrients), but germination and growth was further stimulated by addition of glucose and a combination of buffered inorganic salts (K2HPO4, KH2PO4, (NH4)2SO4, and MgSO4). The data indicate that the aqueous environment in the regolith from the Phoenix landing site containing high levels of perchlorate does not pose a significant barrier to growth of putative forward contaminants such as B. subtilis and B. pumilus under Earth laboratory conditions.

  1. Purification and characterization of [Formula: see text]-mannanase from Bacillus pumilus (M27) and its applications in some fruit juices.

    PubMed

    Adiguzel, Ahmet; Nadaroglu, Hayrunnisa; Adiguzel, Gulsah

    2015-08-01

    Thermo alkaline mannanase was purified from the bacteria of Bacillus pumilus (M27) using the techniques of ammonium sulphate precipitation, DEAE-Sephadex ion exchange chromatography and Sephacryl S200 gel filtration chromatography with 111-fold and 36 % yield. It was determined that the enzyme had 2 sub-units including 35 kDa and 55 kDa in gel filtration chromatography and SDS-PAGE electrophoresis systems. The optimum pH and temperature was determined as 8 and 60 °C, respectively. It was also noticed that the enzyme did not lose its activity at a wide interval such as pH 3-11 and at high temperatures such as 90 °C. Additionally, the effects of some metal ions on the mannanase enzyme activity. Moreover, the clarifying efficiency of purified mannanase enzyme with some fruit juices such as orange, apricot, grape and apple was also investigated. Enzymatic treatment was carried out with 1 mL L(-1) of purified mannanase for 1 h at 60 °C. It was determined that the highest pure enzyme was efficient upon clarifying the apple juice at 154 % rate. PMID:26243955

  2. Optimization of microwave-assisted FeCl3 pretreatment conditions of rice straw and utilization of Trichoderma viride and Bacillus pumilus for production of reducing sugars.

    PubMed

    Lü, Jiliang; Zhou, Peijiang

    2011-07-01

    In this study, Box-Behnken design (BBD) and response surface methodology (RSM) were used to optimize microwave-assisted FeCl(3) pretreatment conditions of rice straw with respect to FeCl(3) concentration, microwave intensity, irradiation time and substrate concentration. When rice straw was pretreated at the optimal conditions of FeCl(3) concentration, 0.14 mol/L; microwave intensity, 160°C; irradiation time, 19 min; substrate concentration, 109 g/L; and inoculated with Trichoderma viride and Bacillus pumilus, the production of reducing sugars was 6.62 g/L. This yield was 2.9 times higher than that obtained with untreated rice straw. The microorganisms degraded 37.8% of pretreated rice straw after 72 h. The structural characteristic analyses suggest that microwave-assisted FeCl(3) pretreatment damaged the silicified waxy surface of rice straw, disrupted almost all the ether linkages between lignin and carbohydrates, and removed lignin. PMID:21561766

  3. Sugarcane bagasse as support for immobilization of Bacillus pumilus HZ-2 and its use in bioremediation of mesotrione-contaminated soils.

    PubMed

    Liu, Jie; Chen, Shaohua; Ding, Jie; Xiao, Ying; Han, Haitao; Zhong, Guohua

    2015-12-01

    The degrading microorganisms isolated from environment usually fail to degrade pollutants when used for bioremediation of contaminated soils; thus, additional treatments are needed to enhance biodegradation. In the present study, the potential of sugarcane bagasse as bacteria-immobilizing support was investigated in mesotrione biodegradation. A novel isolate Bacillus pumilus HZ-2 was applied in bacterial immobilization, which was capable of degrading over 95 % of mesotrione at initial concentrations ranging from 25 to 200 mg L(-1) within 4 days in flask-shaking tests. Scanning electron microscope (SEM) images showed that the bacterial cells were strongly absorbed and fully dispersed on bagasse surface after immobilization. Specially, 86.5 and 82.9 % of mesotrione was eliminated by bacteria immobilized on bagasse of 100 and 60 mesh, respectively, which indicated that this immobilization was able to maintain a high degrading activity of the bacteria. Analysis of the degradation products determined 2-amino-4-methylsulfonylbenzoic acid (AMBA) and 4-methylsulfonyl-2-nitrobenzoic acid (MNBA) as the main metabolites in the biodegradation pathway of mesotrione. In the sterile soil, approximately 90 % of mesotrione was degraded after supplementing 5.0 % of molasses in bacteria-bagasse composite, which greatly enhanced microbial adaptability and growth in the soil environment. In the field tests, over 75 % of mesotrione in soil was degraded within 14 days. The immobilized preparation demonstrated that mesotrione could be degraded at a wide range of pH values (5.0-8.0) and temperatures (25-35 °C), especially at low concentrations of mesotrione (5 to 20 mg kg(-1)). These results showed that sugarcane bagasse might be a good candidate as bacteria-immobilizing support to enhance mesotrione degradation by Bacillus p. HZ-2 in contaminated soils. PMID:26337896

  4. Isolation, identification and characteristics of an endophytic quinclorac degrading bacterium Bacillus megaterium Q3.

    PubMed

    Liu, Min; Luo, Kun; Wang, Yunsheng; Zeng, Aiping; Zhou, Xiaomao; Luo, Feng; Bai, Lianyang

    2014-01-01

    In this study, we isolated an endophytic quinclorac-degrading bacterium strain Q3 from the root of tobacco grown in quinclorac contaminated soil. Based on morphological characteristics, Biolog identification, and 16S rDNA sequence analysis, we identified strain Q3 as Bacillus megaterium. We investigated the effects of temperature, pH, inoculation size, and initial quinclorac concentration on growth and degrading efficiency of Q3. Under the optimal degrading condition, Q3 could degrade 93% of quinclorac from the initial concentration of 20 mg/L in seven days. We analyzed the degradation products of quinclorac using liquid chromatography-tandem mass spectrometry (LC-MS/MS). The major degradation products by Q3 were different from those of previously identified quinclorac degrading strains, which suggests that Q3 may employ new pathways for quinclorac degradation. Our indoor pot experiments demonstrated that Q3 can effectively alleviate the quinclorac phytotoxicity in tobacco. As the first endophytic microbial that is capable of degrading quinclorac, Q3 can be a good bioremediation bacterium for quinclorac phytotoxicity. PMID:25244184

  5. Antioxidant and DNA Damage Protecting Activity of Exopolysaccharides from the Endophytic Bacterium Bacillus cereus SZ1.

    PubMed

    Zheng, Li Ping; Zou, Tin; Ma, Yan Jun; Wang, Jian Wen; Zhang, Yu Qing

    2016-01-01

    An endophytic bacterium was isolated from the Chinese medicinal plant Artemisia annua L. The phylogenetic and physiological characterization indicated that the isolate, strain SZ-1, was Bacillus cereus. The endophyte could produce an exopolysaccharide (EPS) at 46 mg/L. The 1,1-diphenyl-2-picrylhydracyl (DPPH) radical scavenging activity of the EPS reached more than 50% at 3-5 mg/mL. The EPS was also effective in scavenging superoxide radical in a concentration dependent fashion with an EC50 value of 2.6 mg/mL. The corresponding EC50 for scavenging hydroxyl radical was 3.1 mg/mL. Moreover, phenanthroline-copper complex-mediated chemiluminescent emission of DNA damage was both inhibited and delayed by EPS. The EPS at 0.7-1.7 mg/mL also protected supercoiled DNA strands in plasmid pBR322 against scission induced by Fenton-mediated hydroxyl radical. The preincubation of PC12 cells with the EPS prior to H₂O₂ exposure increased the cell survival and glutathione (GSH) level and catalase (CAT) activities, and decreased the level of malondialdehyde (MDA) and lactate dehydrogenase (LDH) activity in a dose-dependent manner, suggesting a pronounced protective effect against H₂O₂-induced cytotoxicity. Our study indicated that the EPS could be useful for preventing oxidative DNA damage and cellular oxidation in pharmaceutical and food industries. PMID:26861269

  6. Isolation, Identification and Characteristics of an Endophytic Quinclorac Degrading Bacterium Bacillus megaterium Q3

    PubMed Central

    Wang, Yunsheng; Zeng, Aiping; Zhou, Xiaomao; Luo, Feng; Bai, Lianyang

    2014-01-01

    In this study, we isolated an endophytic quinclorac-degrading bacterium strain Q3 from the root of tobacco grown in quinclorac contaminated soil. Based on morphological characteristics, Biolog identification, and 16S rDNA sequence analysis, we identified strain Q3 as Bacillus megaterium. We investigated the effects of temperature, pH, inoculation size, and initial quinclorac concentration on growth and degrading efficiency of Q3. Under the optimal degrading condition, Q3 could degrade 93% of quinclorac from the initial concentration of 20 mg/L in seven days. We analyzed the degradation products of quinclorac using liquid chromatography–tandem mass spectrometry (LC-MS/MS). The major degradation products by Q3 were different from those of previously identified quinclorac degrading strains, which suggests that Q3 may employ new pathways for quinclorac degradation. Our indoor pot experiments demonstrated that Q3 can effectively alleviate the quinclorac phytotoxicity in tobacco. As the first endophytic microbial that is capable of degrading quinclorac, Q3 can be a good bioremediation bacterium for quinclorac phytotoxicity. PMID:25244184

  7. Probing the crucial role of Leu31 and Thr33 of the Bacillus pumilus CBS alkaline protease in substrate recognition and enzymatic depilation of animal hide.

    PubMed

    Zaraî Jaouadi, Nadia; Jaouadi, Bassem; Ben Hlima, Hajer; Rekik, Hatem; Belhoul, Mouna; Hmidi, Maher; Ben Aicha, Houda Slimene; Hila, Chiraz Gorgi; Toumi, Abdessatar; Aghajari, Nushin; Bejar, Samir

    2014-01-01

    The sapB gene, encoding Bacillus pumilus CBS protease, and seven mutated genes (sapB-L31I, sapB-T33S, sapB-N99Y, sapB-L31I/T33S, sapB-L31I/N99Y, sapB-T33S/N99Y, and sapB-L31I/T33S/N99Y) were overexpressed in protease-deficient Bacillus subtilis DB430 and purified to homogeneity. SAPB-N99Y and rSAPB displayed the highest levels of keratinolytic activity, hydrolysis efficiency, and enzymatic depilation. Interestingly, and at the semi-industrial scale, rSAPB efficiently removed the hair of goat hides within a short time interval of 8 h, thus offering a promising opportunity for the attainment of a lime and sulphide-free depilation process. The efficacy of the process was supported by submitting depilated pelts and dyed crusts to scanning electron microscopic analysis, and the results showed well opened fibre bundles and no apparent damage to the collagen layer. The findings also revealed better physico-chemical properties and less effluent loads, which further confirmed the potential candidacy of the rSAPB enzyme for application in the leather industry to attain an ecofriendly process of animal hide depilation. More interestingly, the findings on the substrate specificity and kinetic properties of the enzyme using the synthetic peptide para-nitroanilide revealed strong preferences for an aliphatic amino-acid (valine) at position P1 for keratinases and an aromatic amino-acid (phenylalanine) at positions P1/P4 for subtilisins. Molecular modeling suggested the potential involvement of a Leu31 residue in a network of hydrophobic interactions, which could have shaped the S4 substrate binding site. The latter could be enlarged by mutating L31I, fitting more easily in position P4 than a phenylalanine residue. The molecular modeling of SAPB-T33S showed a potential S2 subside widening by a T33S mutation, thus suggesting its importance in substrate specificity. PMID:25264614

  8. Probing the Crucial Role of Leu31 and Thr33 of the Bacillus pumilus CBS Alkaline Protease in Substrate Recognition and Enzymatic Depilation of Animal Hide

    PubMed Central

    Zaraî Jaouadi, Nadia; Jaouadi, Bassem; Ben Hlima, Hajer; Rekik, Hatem; Belhoul, Mouna; Hmidi, Maher; Aicha, Houda Slimene Ben; Hila, Chiraz Gorgi; Toumi, Abdessatar; Aghajari, Nushin; Bejar, Samir

    2014-01-01

    The sapB gene, encoding Bacillus pumilus CBS protease, and seven mutated genes (sapB-L31I, sapB-T33S, sapB-N99Y, sapB-L31I/T33S, sapB-L31I/N99Y, sapB-T33S/N99Y, and sapB-L31I/T33S/N99Y) were overexpressed in protease-deficient Bacillus subtilis DB430 and purified to homogeneity. SAPB-N99Y and rSAPB displayed the highest levels of keratinolytic activity, hydrolysis efficiency, and enzymatic depilation. Interestingly, and at the semi-industrial scale, rSAPB efficiently removed the hair of goat hides within a short time interval of 8 h, thus offering a promising opportunity for the attainment of a lime and sulphide-free depilation process. The efficacy of the process was supported by submitting depilated pelts and dyed crusts to scanning electron microscopic analysis, and the results showed well opened fibre bundles and no apparent damage to the collagen layer. The findings also revealed better physico-chemical properties and less effluent loads, which further confirmed the potential candidacy of the rSAPB enzyme for application in the leather industry to attain an ecofriendly process of animal hide depilation. More interestingly, the findings on the substrate specificity and kinetic properties of the enzyme using the synthetic peptide para-nitroanilide revealed strong preferences for an aliphatic amino-acid (valine) at position P1 for keratinases and an aromatic amino-acid (phenylalanine) at positions P1/P4 for subtilisins. Molecular modeling suggested the potential involvement of a Leu31 residue in a network of hydrophobic interactions, which could have shaped the S4 substrate binding site. The latter could be enlarged by mutating L31I, fitting more easily in position P4 than a phenylalanine residue. The molecular modeling of SAPB-T33S showed a potential S2 subside widening by a T33S mutation, thus suggesting its importance in substrate specificity. PMID:25264614

  9. A Comparative biochemical study on two marine endophytes, Bacterium SRCnm and Bacillus sp. JS, Isolated from red sea algae.

    PubMed

    Ahmed, Eman Fadl; Hassan, Hossam Mokhtar; Rateb, Mostafa Ezzat; Abdel-Wahab, Noha; Sameer, Somayah; Aly Taie, Hanan Anwar; Abdel-Hameed, Mohammed Sayed; Hammouda, Ola

    2016-01-01

    Two marine endophytic bacteria were isolated from the Red Sea algae; a red alga; Acanthophora dendroides and the brown alga Sargassum sabrepandum. The isolates were identified based on their 16SrRNA sequences as Bacterium SRCnm and Bacillus sp. JS. The objective of this study was to investigate the potential anti-microbial and antioxidant activities of the extracts of the isolated bacteria grown in different nutrient conditions. Compared to amoxicillin (25μg/disk) and erythromycin (15μg/disk), the extracts of Bacterium SRCn min media II, III, IV and V were potent inhibitors of the gram-positive bacterium Sarcina maxima even at low concentrations. Also, the multidrug resistant Staphylococcus aureus(MRSA) was more sensitive to the metabolites produced in medium (II) of the same endophyte than erythromycin (15μg/disk). A moderate activity of the Bacillus sp. JS extracts of media I and II was obtained against the same pathogen. The total compounds (500ug/ml) of both isolated endophytes showed moderate antioxidant activities (48.9% and 46.1%, respectively). LC/MS analysis of the bacterial extracts was carried out to investigate the likely natural products produced. Cyclo(D-cis-Hyp-L-Leu), dihydrosphingosine and 2-Amino-1,3-hexadecanediol were identified in the fermentation medium of Bacterium SRCnm, whereas cyclo (D-Pro-L-Tyr) and cyclo (L-Leu-L-Pro) were the suggested compounds of Bacillus sp. JS. PMID:26826831

  10. Isolation and identification of bacterial endophytes from pharmaceutical agarwood-producing Aquilaria species

    PubMed Central

    Bhore, Subhash J.; Preveena, Jagadesan; Kandasamy, Kodi I.

    2013-01-01

    Background: Resins and gums are used in traditional medicine and do have potential applications in pharmacy and medicine. Agarwood is the fragrant resinous wood, which is an important commodity from Aquilaria species and has been used as a sedative, analgesic, and digestive in traditional medicine. Endophytic bacteria are potentially important in producing pharmaceutical compounds found in the plants. Hence, it was important to understand which types of endophytic bacteria are associated with pharmaceutical agarwood-producing Aquilaria species. Objective: This study was undertaken to isolate and identify endophytic bacteria associated with agarwood-producing seven (7) Aquilaria species from Malaysia. Materials and Methods: Botanical samples of seven Aquilaria species were collected, and endophytic bacteria were isolated from surface-sterilized-tissue samples. The 16S rRNA gene fragments were amplified using PCR method, and endophytic bacterial isolates (EBIs) were identified based on 16S rRNA gene sequence similarity based method. Results: Culturable, 77 EBIs were analyzed, and results of 16S rRNA gene sequences analysis suggest that 18 different types of endophytic bacteria are associated with (seven) Aquilaria species. From 77 EBIs, majority (36.4%) of the isolates were of Bacillus pumilus. Conclusion: These findings indicate that agarwood-producing Aquilaria species are harboring 18 different types of culturable endophytic bacteria. PMID:23798890

  11. Growth and (137)Cs uptake of four Brassica species influenced by inoculation with a plant growth-promoting rhizobacterium Bacillus pumilus in three contaminated farmlands in Fukushima prefecture, Japan.

    PubMed

    Aung, Han Phyo; Djedidi, Salem; Oo, Aung Zaw; Aye, Yi Swe; Yokoyama, Tadashi; Suzuki, Sohzoh; Sekimoto, Hitoshi; Bellingrath-Kimura, Sonoko Dorothea

    2015-07-15

    The effectiveness of the plant growth-promoting rhizobacterium Bacillus pumilus regarding growth promotion and radiocesium ((137)Cs) uptake was evaluated in four Brassica species grown on different (137)Cs contaminated farmlands at Fukushima prefecture in Japan from June to August 2012. B. pumilus inoculation did not enhance growth in any of the plants, although it resulted in a significant increase of (137)Cs concentration and higher (137)Cs transfer from the soil to plants. The Brassica species exhibited different (137)Cs uptake abilities in the order Komatsuna>turnip>mustard>radish. TF values of (137)Cs ranged from 0.018 to 0.069 for all vegetables. Komatsuna possessed the largest root surface area and root volume, and showed a higher (137)Cs concentration in plant tissue and higher (137)Cs TF values (0.060) than the other vegetables. Higher (137)Cs transfer to plants was prominent in soil with a high amount of organic matter and an Al-vermiculite clay mineral type. PMID:25847170

  12. Growth and (137)Cs uptake and accumulation among 56 Japanese cultivars of Brassica rapa, Brassica juncea and Brassica napus grown in a contaminated field in Fukushima: Effect of inoculation with a Bacillus pumilus strain.

    PubMed

    Djedidi, Salem; Kojima, Katsuhiro; Ohkama-Ohtsu, Naoko; Bellingrath-Kimura, Sonoko Dorothea; Yokoyama, Tadashi

    2016-06-01

    Fifty six local Japanese cultivars of Brassica rapa (40 cultivars), Brassica juncea (10 cultivars) and Brassica napus (6 cultivars) were assessed for variability in growth and (137)Cs uptake and accumulation in association with a Bacillus pumilus strain. Field trial was conducted at a contaminated farmland in Nihonmatsu city, in Fukushima prefecture. Inoculation resulted in different responses of the cultivars in terms of growth and radiocesium uptake and accumulation. B. pumilus induced a significant increase in shoot dry weight in 12 cultivars that reached up to 40% in one B. rapa and three B. juncea cultivars. Differences in radiocesium uptake were observed between the cultivars of each Brassica species. Generally, inoculation resulted in a significant increase in (137)Cs uptake in 22 cultivars, while in seven cultivars it was significantly decreased. Regardless of plant cultivar and bacterial inoculation, the transfer of (137)Cs to the plant shoots (TF) varied by a factor of up to 5 and it ranged from to 0.011 to 0.054. Five inoculated cultivars, showed enhanced shoot dry weights and decreased (137)Cs accumulations, among which two B. rapa cultivars named Bitamina and Nozawana had a significantly decreased (137)Cs accumulation in their shoots. Such cultivars could be utilized to minimize the entry of radiocesium into the food chain; however, verifying the consistency of their radiocesium accumulation in other soils is strongly required. Moreover, the variations in growth and radiocesium accumulation, as influenced by Bacillus inoculation, could help selecting well grown inoculated Brassica cultivars with low radiocesium accumulation in their shoots. PMID:26986237

  13. Formulations of the endophytic bacterium Bacillus subtilis Tu-100 suppress Sclerotinia sclerotiorum on oilseed rape and improve plant vigor in field trials conducted at separate locations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sclerotinia sclerotiorum causes serious yield losses in crops in The People’s Republic of China. Two formulations of oilseed rape seed containing the endophytic bacterium Bacillus subtilis Tu-100 were evaluated for suppression of this pathogen in field trials conducted at two independent locations....

  14. Potential for Control of Seedling Blight of Wheat Caused by Fusarium graminearum and Related Species Using the Bacterial Endophyte Bacillus mojavensis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fusarium infected-wheat seed decreases germination, seedling emergence, and causes post emergence seedling death, and can contribute to wheat scab and ear rot of maize, with consequent production of mycotoxins such as deoxynivalenol and zearalenone. A patented endophytic bacterial strain, Bacillus ...

  15. Isolation and characterization of Leu[7]-Surfactin from the endophytic bacterium Bacillus mojavensis RRC 101, a biocontrol agent for Fusarium verticillioides

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bacillus mojavensis is an endophytic bacterium patented for control of fungal diseases in maize and other plants. Culture extracts and filtrates from this bacterium were antagonistic to the pathogenic and mycotoxic fungus Fusarium verticillioides. However, the identity of the inhibitory substance ...

  16. Diversity of indigenous endophytic bacteria associated with the roots of Chinese cabbage (Brassica campestris L.) cultivars and their antagonism towards pathogens.

    PubMed

    Haque, Md Azizul; Yun, Han Dae; Cho, Kye Man

    2016-05-01

    The study aimed to reveal the diversity of endophytic bacteria in the roots of Chinese cabbage (CC) cultivated in two areas in Korea, namely, Seosang-gun (SS) and Haenam-gun (HN), and also in a transgenic plant (TP) from the laboratory. A total of 653 colonies were isolated from the interior of CC roots, comprising 118, 302, and 233 isolates from SS, HN, and TP samples, respectively. Based on 16S rRNA gene sequence analysis, the isolates belonged to four major phylogenetic groups: high-G+C Gram-positive bacteria (HGC-GPB), low-G+C Gram-positive bacteria (LGC-GPB), Proteobacteria, and Bacteriodetes. The most dominant groups in the roots of the SS, HN, and TP cultivars were LGC-GPB (48.3%), Proteobacteria (50.2%), and HGC-GPB (38.2%), respectively. Importantly, most of the isolates that produced cell-walldegrading enzymes belonged to the genus Bacillus. Bacillus sp. (HNR03, TPR06), Bacillus pumilus (SSR07, HNR11, TPR07), and Bacillus subtilis (TPR03) showed high antagonism against the tested food-borne pathogenic bacteria. In addition, Bacillus sp. (HNR03, TPR06), Bacillus pumilus (SSR07, HNR11, HNR17, TPR11), Microbacterium oxidans (SSR09, TPR04), Bacillus cereus HNR10, Pseudomonas sp. HNR13, and Bacillus subtilis (TPR02, TPR03) showed strong antagonistic activity against the fungi Phythium ultimum, Phytophthora capsici, Fusarium oxysporum, and Rhizoctonia solani. The endophytes isolated from the TP cultivar showed the strongest antagonistic reactions against pathogens. This study is the first report on endophytic bacteria from Chinese cabbage roots. PMID:27095454

  17. The effect of different growth regimes on the endophytic bacterial communities of the fern, Dicksonia sellowiana hook (Dicksoniaceae)

    PubMed Central

    de Araújo Barros, Irene; Luiz Araújo, Welington; Lúcio Azevedo, João

    2010-01-01

    Endophytic bacteria associated with the fern Dicksonia sellowiana were investigated. The bacterial communities from the surface-sterilized pinnae and rachis segments of the plants from the Brazilian Atlantic Rainforest that grew in native field conditions were compared with the bacterial communities from plants grown in greenhouses and plants that were initially grown in greenhouses and then transferred to the forest. From 540 pinnae and 540 rachis segments, 163 (30.2%) and 346 (64.2%) were colonized by bacteria, respectively. The main bacterial genera and species that were isolated included Bacillus spp. ( B. cereus, B. megaterium, B. pumilus and B. subtilis ) , Paenibacillus sp. , Amphibacillus sp. , Gracilibacillus sp. , Micrococcus sp. and Stenotrophomonas spp. ( S. maltophilia and S. nitroreducens ). B. pumilus was the most frequently isolated bacterial species . Amphibacillus and Gracilibacillus were reported as endophytes for the first time. Other commonly found bacterial genera were not observed in D. sellowiana , which may reflect preferences of specific bacterial communities inside this fern or detection limitations due to the isolation procedures. Plants that were grown in greenhouses and plants that were reintroduced into the forest displayed more bacterial genera and species diversity than native field plants, suggesting that reintroduction shifts the bacterial diversity. Endophytic bacteria that displayed antagonistic properties against different microorganisms were detected, but no obvious correlation was found between their frequencies with plant tissues or with plants from different growth regimes. This paper reports the first isolation of endophytic bacteria from a fern. PMID:24031575

  18. The effect of different growth regimes on the endophytic bacterial communities of the fern, Dicksonia sellowiana hook (Dicksoniaceae).

    PubMed

    de Araújo Barros, Irene; Luiz Araújo, Welington; Lúcio Azevedo, João

    2010-10-01

    Endophytic bacteria associated with the fern Dicksonia sellowiana were investigated. The bacterial communities from the surface-sterilized pinnae and rachis segments of the plants from the Brazilian Atlantic Rainforest that grew in native field conditions were compared with the bacterial communities from plants grown in greenhouses and plants that were initially grown in greenhouses and then transferred to the forest. From 540 pinnae and 540 rachis segments, 163 (30.2%) and 346 (64.2%) were colonized by bacteria, respectively. The main bacterial genera and species that were isolated included Bacillus spp. ( B. cereus, B. megaterium, B. pumilus and B. subtilis ) , Paenibacillus sp. , Amphibacillus sp. , Gracilibacillus sp. , Micrococcus sp. and Stenotrophomonas spp. ( S. maltophilia and S. nitroreducens ). B. pumilus was the most frequently isolated bacterial species . Amphibacillus and Gracilibacillus were reported as endophytes for the first time. Other commonly found bacterial genera were not observed in D. sellowiana , which may reflect preferences of specific bacterial communities inside this fern or detection limitations due to the isolation procedures. Plants that were grown in greenhouses and plants that were reintroduced into the forest displayed more bacterial genera and species diversity than native field plants, suggesting that reintroduction shifts the bacterial diversity. Endophytic bacteria that displayed antagonistic properties against different microorganisms were detected, but no obvious correlation was found between their frequencies with plant tissues or with plants from different growth regimes. This paper reports the first isolation of endophytic bacteria from a fern. PMID:24031575

  19. Control Efficacy of an Endophytic Bacillus amyloliquefaciens Strain BZ6-1 against Peanut Bacterial Wilt, Ralstonia solanacearum

    PubMed Central

    Liang, Guobin

    2014-01-01

    We aimed to isolate and identify endophytic bacteria that might have efficacy against peanut bacterial wilt (BW) caused by Ralstonia solanacearum. Thirty-seven endophytic strains were isolated from healthy peanut plants in R. solanacearum-infested fields and eight showed antagonistic effects against R. solanacearum. Strain BZ6-1 with the highest antimicrobial activity was identified as Bacillus amyloliquefaciens based on morphology, biochemistry, and 16S rRNA analysis. Culture conditions of BZ6-1 were optimized using orthogonal test method and inhibitory zone diameter in dual culture plate assay reached 34.2 mm. Furthermore, main antimicrobial substances of surfactin and fengycin A homologues produced by BZ6-1 were analyzed by high performance liquid chromatography electrospray ionization tandem mass spectrometry. Finally, pot experiments were adopted to test the control efficiency of BZ6-1 against peanut BW. Disease incidence decreased significantly from 84.5% in the control to 12.1% with addition of 15 mL (108 cfu mL−1) culture broth for each seedling, suggesting the feasibility of strain BZ6-1 in the biological control of peanut plants BW. PMID:24527448

  20. Control efficacy of an endophytic Bacillus amyloliquefaciens strain BZ6-1 against peanut bacterial Wilt, Ralstonia solanacearum.

    PubMed

    Wang, Xiaobing; Liang, Guobin

    2014-01-01

    We aimed to isolate and identify endophytic bacteria that might have efficacy against peanut bacterial wilt (BW) caused by Ralstonia solanacearum. Thirty-seven endophytic strains were isolated from healthy peanut plants in R. solanacearum-infested fields and eight showed antagonistic effects against R. solanacearum. Strain BZ6-1 with the highest antimicrobial activity was identified as Bacillus amyloliquefaciens based on morphology, biochemistry, and 16S rRNA analysis. Culture conditions of BZ6-1 were optimized using orthogonal test method and inhibitory zone diameter in dual culture plate assay reached 34.2 mm. Furthermore, main antimicrobial substances of surfactin and fengycin A homologues produced by BZ6-1 were analyzed by high performance liquid chromatography electrospray ionization tandem mass spectrometry. Finally, pot experiments were adopted to test the control efficiency of BZ6-1 against peanut BW. Disease incidence decreased significantly from 84.5% in the control to 12.1% with addition of 15 mL (10(8) cfu mL(-1)) culture broth for each seedling, suggesting the feasibility of strain BZ6-1 in the biological control of peanut plants BW. PMID:24527448

  1. Characterization of endophytic strains of Bacillus mojavensis and their production of surfactin isomers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bacillus subtilis consists of a large collection of strains from which several cryptic species have been delineated, and most of these along with strains within the species are important biocontrol agents. Bacillus mojavensis, a species recently distinguished from this broad Bacillus subtilis grou...

  2. The Endo-β-1,4-Glucanase of Bacillus amyloliquefaciens Is Required for Optimum Endophytic Colonization of Plants.

    PubMed

    Fan, Xiaojing; Yang, Ruixian; Qiu, Sixin; Cai, Xueqing; Zou, Huasong; Hu, Fangping

    2016-05-28

    The eglS gene in Bacillus amyloliquefaciens encodes an endo-β-1,4-glucanase that belongs to glycosyl hydrolase family 5. In this study, a disruption mutant of gene eglS was constructed to examine its role in bacterial adaptation in plants. The mutant TB2k, eglS gene inactivated bacterial strain, was remarkably impaired in extracellular cellulase activity. When inoculated on Brassica campestris, the TB2k population was reduced by more than 60% compared with the wild-type strain in the root, stem, and leaf tissues. Overexpression of eglS in the wild-type strain increased the bacteria population in the plant tissues. Further studies revealed that the transcription level of eglS was correlated with bacterial population. These data demonstrate that endo-β-1,4-glucanase of B. amyloliquefaciens is required for its optimal endophytic colonization. PMID:26907762

  3. Biotechnological Potential of Agro Residues for Economical Production of Thermoalkali-Stable Pectinase by Bacillus pumilus dcsr1 by Solid-State Fermentation and Its Efficacy in the Treatment of Ramie Fibres

    PubMed Central

    Sharma, Deepak Chand; Satyanarayana, T.

    2012-01-01

    The production of a thermostable and highly alkaline pectinase by Bacillus pumilus dcsr1 was optimized in solid-state fermentation (SSF) and the impact of various treatments (chemical, enzymatic, and in combination) on the quality of ramie fibres was investigated. Maximum enzyme titer (348.0 ± 11.8 Ug−1 DBB) in SSF was attained, when a mixture of agro-residues (sesame oilseed cake, wheat bran, and citrus pectin, 1 : 1 : 0.01) was moistened with mineral salt solution (aw 0.92, pH 9.0) at a substrate-to-moistening agent ratio of 1 : 2.5 and inoculated with 25% of 24 h old inoculum, in 144 h at 40°C. Parametric optimization in SSF resulted in 1.7-fold enhancement in the enzyme production as compared to that recorded in unoptimized conditions. A 14.2-fold higher enzyme production was attained in SSF as compared to that in submerged fermentation (SmF). The treatment with the enzyme significantly improved tensile strength and Young's modulus, reduction in brittleness, redness and yellowness, and increase in the strength and brightness of ramie fibres. PMID:22928091

  4. Biotechnological Potential of Agro Residues for Economical Production of Thermoalkali-Stable Pectinase by Bacillus pumilus dcsr1 by Solid-State Fermentation and Its Efficacy in the Treatment of Ramie Fibres.

    PubMed

    Sharma, Deepak Chand; Satyanarayana, T

    2012-01-01

    The production of a thermostable and highly alkaline pectinase by Bacillus pumilus dcsr1 was optimized in solid-state fermentation (SSF) and the impact of various treatments (chemical, enzymatic, and in combination) on the quality of ramie fibres was investigated. Maximum enzyme titer (348.0 ± 11.8 Ug(-1) DBB) in SSF was attained, when a mixture of agro-residues (sesame oilseed cake, wheat bran, and citrus pectin, 1 : 1 : 0.01) was moistened with mineral salt solution (a(w) 0.92, pH 9.0) at a substrate-to-moistening agent ratio of 1 : 2.5 and inoculated with 25% of 24 h old inoculum, in 144 h at 40°C. Parametric optimization in SSF resulted in 1.7-fold enhancement in the enzyme production as compared to that recorded in unoptimized conditions. A 14.2-fold higher enzyme production was attained in SSF as compared to that in submerged fermentation (SmF). The treatment with the enzyme significantly improved tensile strength and Young's modulus, reduction in brittleness, redness and yellowness, and increase in the strength and brightness of ramie fibres. PMID:22928091

  5. Lipopeptides from the Banyan Endophyte, Bacillus subtilis K1: Mass Spectrometric Characterization of a Library of Fengycins

    NASA Astrophysics Data System (ADS)

    Pathak, Khyati V.; Keharia, Haresh; Gupta, Kallol; Thakur, Suman S.; Balaram, Padmanabhan

    2012-10-01

    Mass spectrometric analysis of a banyan endophyte, Bacillus subtilis K1, extract showing broad spectrum antifungal activity revealed a complex mixture of lipopeptides, iturins, surfactins, and fengycins. Fractionation by reversed-phase high performance liquid chromatography (HPLC) facilitated a detailed analysis of fengycin microheterogeneity. Matrix assisted laser desorption ionization (MALDI) and electrospray ionization (ESI) mass spectrometric studies permitted the identification of several new fengycin variants. Four major sites of heterogeneity are identified: (1) N-terminus β-hydroxy fatty acid moiety, where chain length variation and the presence of unsaturation occur, (2) position 6 (Ala/Val/Ile/Leu), (3) position 10 (Val/Ile) within the macrocyclic ring, and (4) Gln to Glu replacement at position 8, resulting in fengycin variants that differ in mass by 1 Da. Diagnostic fragment ions provide a quick method for localizing the sites of variation in the macrocycle or the linear segment. Subsequent establishment of the sequences is achieved by MS/MS analysis of linear fengycin species produced by hydrolysis of the macrocyclic lactone. Unsaturation in the fatty acid chain and the presence of linear precursors in the B. subtilis K1 extract are also established by mass spectrometry. The anomalous distribution of intensities within isotopic multiplets is a diagnostic for Gln/Glu replacements. High resolution mass spectrometry facilitates the identification of fengycin species differing by 1 Da by localizing the variable position (Gln8/Glu8) in the fengycin variants.

  6. Endophytic Bacillus subtilis Strain E1R-J Is a Promising Biocontrol Agent for Wheat Powdery Mildew

    PubMed Central

    Gong, Yufei; Huo, Yunxia; Han, Qingmei; Kang, Zhensheng; Huang, Lili

    2015-01-01

    In this study, the biocontrol efficacies of 14 endophytic bacterial strains were tested against Blumeria graminis f. sp. tritici (Bgt) in pot experiments under greenhouse conditions. Bacillus subtilis strain E1R-j significantly reduced disease index and exhibited the best control (90.97%). When different formulations of E1R-j were sprayed 24 h before Bgt inoculation, fermentation liquid without bacterial cell and crude protein suspension displayed the similar effects; and they reduced disease index more than bacterial cell suspension (109 cfu mL−1) and fermentation liquid without protein. The control effects were not significantly different between 1011 and 109 cfu mL−1 of bacterial cell suspension but were higher than 107 cfu mL−1. Further observations showed that conidial germination and appressorial formation of Bgt were retarded by spraying E1R-j 24 h before Bgt inoculation. Compared with the water check, conidial germination and appressorial formation were decreased by 43.3% and 42.7%, respectively. In the treatment with E1R-j, the number of houstoria significantly reduced and the speed of mycelial extension was slowed down in the wheat leaves. Scanning electron microscopy observation revealed that E1R-j significantly suppressed the conidial germination and caused rupture and deformation of germ tubes. On the surface of wheat leaves, mycelia and conidiophores became shrinking. PMID:25759819

  7. Characterization of endophytic Bacillus strains from tomato plants (Lycopersicon esculentum) displaying antifungal activity against Botrytis cinerea Pers.

    PubMed

    Kefi, Asma; Ben Slimene, Imen; Karkouch, Ines; Rihouey, Christophe; Azaeiz, Sana; Bejaoui, Marwa; Belaid, Rania; Cosette, Pascal; Jouenne, Thierry; Limam, Ferid

    2015-12-01

    Eighty endophytic bacteria were isolated from healthy tissues of roots, stems, leaves and fruits of tomato plants (Lycopersicon esculentum). Four strains, named BL1, BT5, BR8 and BF11 were selected for their antagonism against Botrytis cinerea, a phytopathogenic fungus responsible of gray mold in several important crops, with growth inhibitory activity ranging from 27 to 53%. Morphological, biochemical, and molecular parameters as 16S rDNA sequencing demonstrated that the selected bacterial strains were related to Bacillus species which are known to produce and secrete a lot of lipopeptides with strong inhibitory effect against pathogen mycelial growth. Electrospray mass spectrometry analysis showed that these strains produced heterogeneous mixture of antibiotics belonging to fengycin and surfactin for BL1 and BT5, to iturin and surfactin for BR8, to bacillomycin D, fengycin and surfactin for BF11. Furthermore, these bacteria exhibited biocontrol potential by reducing the disease severity when tested on detached leaflets. Based on their antifungal activity against Botrytis cinerea, these strains could be used for biological control of plant diseases. PMID:26347324

  8. Unprecedented access of phenolic substrates to the heme active site of a catalase: substrate binding and peroxidase-like reactivity of Bacillus pumilus catalase monitored by X-ray crystallography and EPR spectroscopy.

    PubMed

    Loewen, Peter C; Villanueva, Jacylyn; Switala, Jacek; Donald, Lynda J; Ivancich, Anabella

    2015-05-01

    Heme-containing catalases and catalase-peroxidases catalyze the dismutation of hydrogen peroxide as their predominant catalytic activity, but in addition, individual enzymes support low levels of peroxidase and oxidase activities, produce superoxide, and activate isoniazid as an antitubercular drug. The recent report of a heme enzyme with catalase, peroxidase and penicillin oxidase activities in Bacillus pumilus and its categorization as an unusual catalase-peroxidase led us to investigate the enzyme for comparison with other catalase-peroxidases, catalases, and peroxidases. Characterization revealed a typical homotetrameric catalase with one pentacoordinated heme b per subunit (Tyr340 being the axial ligand), albeit in two orientations, and a very fast catalatic turnover rate (kcat ?=?339,000 s(-1) ). In addition, the enzyme supported a much slower (kcat ?=?20 s(-1) ) peroxidatic activity utilizing substrates as diverse as ABTS and polyphenols, but no oxidase activity. Two binding sites, one in the main access channel and the other on the protein surface, accommodating pyrogallol, catechol, resorcinol, guaiacol, hydroquinone, and 2-chlorophenol were identified in crystal structures at 1.65-1.95 . A third site, in the heme distal side, accommodating only pyrogallol and catechol, interacting with the heme iron and the catalytic His and Arg residues, was also identified. This site was confirmed in solution by EPR spectroscopy characterization, which also showed that the phenolic oxygen was not directly coordinated to the heme iron (no low-spin conversion of the Fe(III) high-spin EPR signal upon substrate binding). This is the first demonstration of phenolic substrates directly accessing the heme distal side of a catalase. PMID:25663126

  9. Bacillus oryzicola sp. nov., an Endophytic Bacterium Isolated from the Roots of Rice with Antimicrobial, Plant Growth Promoting, and Systemic Resistance Inducing Activities in Rice.

    PubMed

    Chung, Eu Jin; Hossain, Mohammad Tofajjal; Khan, Ajmal; Kim, Kyung Hyun; Jeon, Che Ok; Chung, Young Ryun

    2015-06-01

    Biological control of major rice diseases has been attempted in several rice-growing countries in Asia during the last few decades and its application using antagonistic bacteria has proved to be somewhat successful for controlling various fungal diseases in field trials. Two novel endophytic Bacillus species, designated strains YC7007 and YC7010(T), with anti-microbial, plant growth-promoting, and systemic resistance-inducing activities were isolated from the roots of rice in paddy fields at Jinju, Korea, and their multifunctional activities were analyzed. Strain YC7007 inhibited mycelial growth of major rice fungal pathogens strongly in vitro. Bacterial blight and panicle blight caused by Xanthomonas oryzae pv. oryzae (KACC 10208) and Burkholderia glumae (KACC 44022), respectively, were also suppressed effectively by drenching a bacterial suspension (10(7) cfu/ml) of strain YC7007 on the rhizosphere of rice. Additionally, strain YC7007 promoted the growth of rice seedlings with higher germination rates and more tillers than the untreated control. The taxonomic position of the strains was also investigated. Phylogenetic analyses based on 16S rRNA gene sequences indicated that both strains belong to the genus Bacillus, with high similarity to the closely related strains, Bacillus siamensis KACC 15859(T) (99.67%), Bacillus methylotrophicus KACC 13105(T) (99.65%), Bacillus amyloliquefaciens subsp. plantarum KACC 17177(T) (99.60%), and Bacillus tequilensis KACC 15944(T) (99.45%). The DNA-DNA relatedness value between strain YC7010(T) and the most closely related strain, B. siamensis KACC 15859(T) was 50.4±3.5%, but it was 91.5±11.0% between two strains YC7007 and YC7010(T), indicating the same species. The major fatty acids of two strains were anteiso-C15:0 and iso C15:0. Both strains contained MK-7 as a major respiratory quinone system. The G+C contents of the genomic DNA of two strains were 50.5 mol% and 51.2 mol%, respectively. Based on these polyphasic studies, the two strains YC7007 and YC7010(T) represent novel species of the genus Bacillus, for which the name Bacillus oryzicola sp. nov. is proposed. The type strain is YC7010(T) (= KACC 18228(T)). Taken together, our findings suggest that novel endophytic Bacillus strains can be used for the biological control of rice diseases. PMID:26060434

  10. Bacillus oryzicola sp. nov., an Endophytic Bacterium Isolated from the Roots of Rice with Antimicrobial, Plant Growth Promoting, and Systemic Resistance Inducing Activities in Rice

    PubMed Central

    Chung, Eu Jin; Hossain, Mohammad Tofajjal; Khan, Ajmal; Kim, Kyung Hyun; Jeon, Che Ok; Chung, Young Ryun

    2015-01-01

    Biological control of major rice diseases has been attempted in several rice-growing countries in Asia during the last few decades and its application using antagonistic bacteria has proved to be somewhat successful for controlling various fungal diseases in field trials. Two novel endophytic Bacillus species, designated strains YC7007 and YC7010T, with anti-microbial, plant growth-promoting, and systemic resistance-inducing activities were isolated from the roots of rice in paddy fields at Jinju, Korea, and their multifunctional activities were analyzed. Strain YC7007 inhibited mycelial growth of major rice fungal pathogens strongly in vitro. Bacterial blight and panicle blight caused by Xanthomonas oryzae pv. oryzae (KACC 10208) and Burkholderia glumae (KACC 44022), respectively, were also suppressed effectively by drenching a bacterial suspension (107 cfu/ml) of strain YC7007 on the rhizosphere of rice. Additionally, strain YC7007 promoted the growth of rice seedlings with higher germination rates and more tillers than the untreated control. The taxonomic position of the strains was also investigated. Phylogenetic analyses based on 16S rRNA gene sequences indicated that both strains belong to the genus Bacillus, with high similarity to the closely related strains, Bacillus siamensis KACC 15859T (99.67%), Bacillus methylotrophicus KACC 13105T (99.65%), Bacillus amyloliquefaciens subsp. plantarum KACC 17177T (99.60%), and Bacillus tequilensis KACC 15944T (99.45%). The DNA-DNA relatedness value between strain YC7010T and the most closely related strain, B. siamensis KACC 15859T was 50.4±3.5%, but it was 91.5±11.0% between two strains YC7007 and YC7010T, indicating the same species. The major fatty acids of two strains were anteiso-C15:0 and iso C15:0. Both strains contained MK-7 as a major respiratory quinone system. The G+C contents of the genomic DNA of two strains were 50.5 mol% and 51.2 mol%, respectively. Based on these polyphasic studies, the two strains YC7007 and YC7010T represent novel species of the genus Bacillus, for which the name Bacillus oryzicola sp. nov. is proposed. The type strain is YC7010T (= KACC 18228T). Taken together, our findings suggest that novel endophytic Bacillus strains can be used for the biological control of rice diseases. PMID:26060434

  11. Screening and characterization of endophytic Bacillus and Paenibacillus strains from medicinal plant Lonicera japonica for use as potential plant growth promoters.

    PubMed

    Zhao, Longfei; Xu, Yajun; Lai, Xin-He; Shan, Changjuan; Deng, Zhenshan; Ji, Yuliang

    2015-01-01

    A total of 48 endophytic bacteria were isolated from surface-sterilized tissues of the medicinal plant Lonicera japonica, which is grown in eastern China; six strains were selected for further study based on their potential ability to promote plant growth in vitro (siderophore and indoleacetic acid production). The bacteria were characterized by phylogenetically analyzing their 16S rRNA gene similarity, by examining their effect on the mycelial development of pathogenic fungi, by testing their potential plant growth-promoting characteristics, and by measuring wheat growth parameters after inoculation. Results showed that the number of endophytic bacteria in L. japonica varied among different tissues, but it remained relatively stable in the same tissues from four different plantation locations. Among the three endophytic strains, strains 122 and 124 both had high siderophore production, with the latter showing the highest phosphate solubilization activity (45.6 mg/L) and aminocyclopropane-1-carboxylic acid deaminase activity (47.3 nmol/mg/h). Strain 170 had the highest indoleacetic acid (IAA) production (49.2 mg/L) and cellulase and pectinase activities. After inoculation, most of the six selected isolates showed a strong capacity to promote wheat growth. Compared with the controls, the increase in the shoot length, root length, fresh weight, dry weight, and chlorophyll content was most remarkable in wheat seedlings inoculated with strain 130. The positive correlation between enzyme (cellulose and pectinase) activity and inhibition rate on Fusarium oxysporum, the IAA production, and the root length of wheat seedlings inoculated with each tested endophytic strain was significant in regression analysis. Deformity of pathogenic fungal mycelia was observed under a microscope after the interaction with the endophytic isolates. Such deformity may be directly related to the production of hydrolytic bacterial enzymes (cellulose and pectinase). The six endophytic bacterial strains were identified to be Paenibacillus and Bacillus strains based on the results of 16S rRNA gene sequencing analysis and their physiological and biochemical characteristics. Results indicate the promising application of endophytic bacteria to the biological control of pathogenic fungi and the improvement of wheat crop growth. PMID:26691455

  12. Screening and characterization of endophytic Bacillus and Paenibacillus strains from medicinal plant Lonicera japonica for use as potential plant growth promoters

    PubMed Central

    Zhao, Longfei; Xu, Yajun; Lai, Xin-He; Shan, Changjuan; Deng, Zhenshan; Ji, Yuliang

    2015-01-01

    Abstract A total of 48 endophytic bacteria were isolated from surface-sterilized tissues of the medicinal plant Lonicera japonica, which is grown in eastern China; six strains were selected for further study based on their potential ability to promote plant growth in vitro (siderophore and indoleacetic acid production). The bacteria were characterized by phylogenetically analyzing their 16S rRNA gene similarity, by examining their effect on the mycelial development of pathogenic fungi, by testing their potential plant growth-promoting characteristics, and by measuring wheat growth parameters after inoculation. Results showed that the number of endophytic bacteria in L. japonica varied among different tissues, but it remained relatively stable in the same tissues from four different plantation locations. Among the three endophytic strains, strains 122 and 124 both had high siderophore production, with the latter showing the highest phosphate solubilization activity (45.6 mg/L) and aminocyclopropane-1-carboxylic acid deaminase activity (47.3 nmol/mg/h). Strain 170 had the highest indoleacetic acid (IAA) production (49.2 mg/L) and cellulase and pectinase activities. After inoculation, most of the six selected isolates showed a strong capacity to promote wheat growth. Compared with the controls, the increase in the shoot length, root length, fresh weight, dry weight, and chlorophyll content was most remarkable in wheat seedlings inoculated with strain 130. The positive correlation between enzyme (cellulose and pectinase) activity and inhibition rate on Fusarium oxysporum, the IAA production, and the root length of wheat seedlings inoculated with each tested endophytic strain was significant in regression analysis. Deformity of pathogenic fungal mycelia was observed under a microscope after the interaction with the endophytic isolates. Such deformity may be directly related to the production of hydrolytic bacterial enzymes (cellulose and pectinase). The six endophytic bacterial strains were identified to be Paenibacillus and Bacillus strains based on the results of 16S rRNA gene sequencing analysis and their physiological and biochemical characteristics. Results indicate the promising application of endophytic bacteria to the biological control of pathogenic fungi and the improvement of wheat crop growth. PMID:26691455

  13. Bacillus endoradicis sp. nov., an endophytic bacterium isolated from soybean root.

    PubMed

    Zhang, Yun Zeng; Chen, Wen Feng; Li, Mao; Sui, Xin Hua; Liu, Hong-Can; Zhang, Xiao Xia; Chen, Wen Xin

    2012-02-01

    A gram-positive, aerobic, motile rod, designated strain CCBAU 05776(T), was isolated from the inner tissues of a healthy soybean (Glycine max L.) root collected from an agricultural field in the countryside of Shijiazhuang city, Hebei Province, China. Phylogenetic analysis of the 16S rRNA gene indicated that this strain was most closely related to Bacillus muralis LMG 20238(T) and Bacillus simplex NBRC 15720(T) with similarity of 96.5 % and 96.3 %, respectively, lower than the suggested threshold (97.0 %) for separating bacterial species. In phenotypic characterization, the novel strain differed from the two most related species in that it did not hydrolyse casein or starch but could grow on MacConkey agar. It grew between 15 and 45 °C and tolerated up to 7 % NaCl (w/v). Strain CCBAU 05776(T) grew in media with pH 5.5 to 10 (optimal growth at pH 7.0-8.0). The predominant cellular fatty acids were iso-C(15 : 0) (40.81 %) and C(16 : 1)ω7c alcohol (10.61 %). The predominant isoprenoid quinone was menaquinone 7 (MK-7). The cell-wall peptidoglycan contained meso-diaminopimelic acid. The major polar lipids were diphosphatidylglycerol and phosphatidylglycerol. The DNA G+C was 40.8 mol% (T(m)). DNA-DNA relatedness of the novel isolate with B. muralis and B. simplex was 42.4 % and 32.7 %, respectively. Based upon the consensus of phylogenetic and phenotypic analyses, strain CCBAU 05776(T) represents a novel species within the genus Bacillus, for which the name Bacillus endoradicis sp. nov. is proposed. The type strain is CCBAU 05776(T) ( = LMG 25492(T)  = HAMBI 3097(T)). PMID:21441377

  14. The hyperaccumulator Sedum plumbizincicola harbors metal-resistant endophytic bacteria that improve its phytoextraction capacity in multi-metal contaminated soil.

    PubMed

    Ma, Ying; Oliveira, Rui S; Nai, Fengjiao; Rajkumar, Mani; Luo, Yongming; Rocha, Inês; Freitas, Helena

    2015-06-01

    Endophyte-assisted phytoremediation has recently been suggested as a successful approach for ecological restoration of metal contaminated soils, however little information is available on the influence of endophytic bacteria on the phytoextraction capacity of metal hyperaccumulating plants in multi-metal polluted soils. The aims of our study were to isolate and characterize metal-resistant and 1-aminocyclopropane-1-carboxylate (ACC) utilizing endophytic bacteria from tissues of the newly discovered Zn/Cd hyperaccumulator Sedum plumbizincicola and to examine if these endophytic bacterial strains could improve the efficiency of phytoextraction of multi-metal contaminated soils. Among a collection of 42 metal resistant bacterial strains isolated from the tissues of S. plumbizincicola grown on Pb/Zn mine tailings, five plant growth promoting endophytic bacterial strains (PGPE) were selected due to their ability to promote plant growth and to utilize ACC as the sole nitrogen source. The five isolates were identified as Bacillus pumilus E2S2, Bacillus sp. E1S2, Bacillus sp. E4S1, Achromobacter sp. E4L5 and Stenotrophomonas sp. E1L and subsequent testing revealed that they all exhibited traits associated with plant growth promotion, such as production of indole-3-acetic acid and siderophores and solubilization of phosphorus. These five strains showed high resistance to heavy metals (Cd, Zn and Pb) and various antibiotics. Further, inoculation of these ACC utilizing strains significantly increased the concentrations of water extractable Cd and Zn in soil. Moreover, a pot experiment was conducted to elucidate the effects of inoculating metal-resistant ACC utilizing strains on the growth of S. plumbizincicola and its uptake of Cd, Zn and Pb in multi-metal contaminated soils. Out of the five strains, B. pumilus E2S2 significantly increased root (146%) and shoot (17%) length, fresh (37%) and dry biomass (32%) of S. plumbizincicola as well as plant Cd uptake (43%), whereas Bacillus sp. E1S2 significantly enhanced the accumulation of Zn (18%) in plants compared with non-inoculated controls. The inoculated strains also showed high levels of colonization in rhizosphere and plant tissues. Results demonstrate the potential to improve phytoextraction of soils contaminated with multiple heavy metals by inoculating metal hyperaccumulating plants with their own selected functional endophytic bacterial strains. PMID:25796039

  15. Bacillus mojavensis: its endophytic nature, the surfactins and their role in the plant response to infection by Fusarium verticillioides

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bacterial endophytes are fundamentally important as natural components of most plants, wild and cultivated with strong ecological merits. These ancient associations are recently at the forefront of biological control strategies designed to circumvent the problems associated with pesticide uses, par...

  16. Enhanced degradation of textile effluent in constructed wetland system using Typha domingensis and textile effluent-degrading endophytic bacteria.

    PubMed

    Shehzadi, Maryam; Afzal, Muhammad; Khan, Muhammad Umar; Islam, Ejazul; Mobin, Amina; Anwar, Samina; Khan, Qaiser Mahmood

    2014-07-01

    Textile effluent is one of the main contributors of water pollution and it adversely affects fauna and flora. Constructed wetland is a promising approach to remediate the industrial effluent. The detoxification of industrial effluent in a constructed wetland system may be enhanced by applying beneficial bacteria that are able to degrade contaminants present in industrial effluent. The aim of this study was to evaluate the influence of inoculation of textile effluent-degrading endophytic bacteria on the detoxification of textile effluent in a vertical flow constructed wetland reactor. A wetland plant, Typha domingensis, was vegetated in reactor and inoculated with two endophytic bacterial strains, Microbacterium arborescens TYSI04 and Bacillus pumilus PIRI30. These strains possessed textile effluent-degrading and plant growth-promoting activities. Results indicated that bacterial inoculation improved plant growth, textile effluent degradation and mutagenicity reduction and were correlated with the population of textile effluent-degrading bacteria in the rhizosphere and endosphere of T. domingensis. Bacterial inoculation enhanced textile effluent-degrading bacterial population in rhizosphere, root and shoot of T. domingensis. Significant reductions in COD (79%), BOD (77%) TDS (59%) and TSS (27%) were observed by the combined use of plants and bacteria within 72 h. The resultant effluent meets the wastewater discharge standards of Pakistan and can be discharged into the environment without any risks. This study revealed that the combined use of plant and endophytic bacteria is one of the approaches to enhance textile effluent degradation in a constructed wetland system. PMID:24755300

  17. Induction of Defense-Related Ultrastructural Modifications in Pea Root Tissues Inoculated with Endophytic Bacteria.

    PubMed Central

    Benhamou, N.; Kloepper, J. W.; Quadt-Hallman, A.; Tuzun, S.

    1996-01-01

    The stimulation exerted by the endophytic bacterium Bacillus pumilus strain SE34 in plant defense reactions was investigated at the ultrastructural level using an in vitro system in which root-inducing T-DNA pea (Pisum sativum L.) roots were infected with the pea root-rotting fungus Fusarium oxysporum f. sp. pisi. In nonbacterized roots, the pathogen multiplied abundantly through much of the tissue including the vascular stele, whereas in prebacterized roots, pathogen growth was restricted to the epidermis and the outer cortex In these prebacterized roots, typical host reactions included strengthening the epidermal and cortical cell walls and deposition of newly formed barriers beyond the infection sites. Wall appositions were found to contain large amounts of callose in addition to being infiltrated with phenolic compounds. The labeling pattern obtained with the gold-complexed laccase showed that phenolics were widely distributed in Fusarium-challenged, bacterized roots. Such compounds accumulated in the host cell walls and the intercellular spaces as well as at the surface or even inside of the invading hyphae of the pathogen. The wall-bound chitin component in Fusarium hyphae colonizing bacterized roots was preserved even when hyphae had undergone substantial degradation. These observations confirm that endophytic bacteria may function as potential inducers of plant disease resistance. PMID:12226427

  18. Purification, characterization, and heterologous expression of an antifungal protein from the endophytic Bacillus subtilis strain Em7 and its activity against Sclerotinia sclerotiorum.

    PubMed

    Wang, N N; Gao, X N; Yan, X; Li, Z P; Kang, Z S; Huang, L L; Han, Q M

    2015-01-01

    An antifungal protein exhibiting a high activity against Sclero-tinia sclerotiorum in vivo was purified by ammonium sulfate precipitation, hydrophobic chromatography, and gel filtration chromatography from the culture filtrate of the endophytic Bacillus subtilis strain Em7. The protein was characterized as a β-1,3-1,4-glucanase according to amino acid analysis, and showed excellent properties in thermal stability and acid resistance. At the same time, the antifungal protein was cloned and het-erologously expressed in Escherichia coli BL21. The recombinant protein was purified and showed similar enzymatic properties to the native protein, exhibiting strong inhibitory activity against S. sclerotiorum. This shows that the β-1,3-1,4-glucanase may play a very important role in B. subtilis Em7 biocontrol function. In addition, many physiochemical properties of the na-tive and purified recombinant protein were compared, including the effect of pH, temperature, metal cations, substrate specificity, and kinetic param-eters. All parameters were similar between the native and recombinant pu-rified protein, indicating that the purified recombinant protein has potential for industrial applications. PMID:26634515

  19. Bacterial endophytes: Bacillus spp. from vegetable crops as potential biological control agents of black pod rot of cacao

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Diseases are the most important factors limiting the production of Theobroma cacao in South America. Because of high disease pressure and environmental concerns, biological control is a pertinent area of research for cacao disease management. In this work, we evaluated the ability of four Bacillus s...

  20. Purification and characterization of a highly active chromate reductase from endophytic Bacillus sp. DGV19 of Albizzia lebbeck (L.) Benth. actively involved in phytoremediation of tannery effluent-contaminated sites.

    PubMed

    Manikandan, Muthu; Gopal, Judy; Kumaran, Rangarajulu Senthil; Kannan, Vijayaraghavan; Chun, Sechul

    2016-01-01

    Phytoremediation using timber-yielding tree species is considered to be the most efficient method for chromium/tannery effluent-contaminated sites. In this study, we have chosen Albizzia lebbeck, a chromium hyperaccumulator plant, and studied one of its chromium detoxification processes operated by its endophytic bacterial assemblage. Out of the four different groups of endophytic bacteria comprising Pseudomonas, Rhizobium, Bacillus, and Salinicoccus identified from A. lebbeck employed in phytoremediation of tannery effluent-contaminated soil, Bacillus predominated with three species, which exhibited not only remarkable chromium accumulation ability but also high chromium reductase activity. A chromate reductase was purified to homogeneity from the most efficient chromium accumulator, Bacillus sp. DGV 019, and the purified 34.2-kD enzyme was observed to be stable at temperatures from 20°C to 60°C. The enzyme was active over a wide range of pH values (4.0-9.0). Furthermore, the enzyme activity was enhanced with the electron donors NADH, followed by NADPH, not affected by glutathione and ascorbic acid. Cu(2+) enhanced the activity of the purified enzyme but was inhibited by Zn(2+) and etheylenediamine tetraacetic acid (EDTA). In conclusion, due to its versatile adaptability the chromate reductase can be used for chromium remediation. PMID:26444299

  1. Inoculation with endophytic Bacillus megaterium 1Y31 increases Mn accumulation and induces the growth and energy metabolism-related differentially-expressed proteome in Mn hyperaccumulator hybrid pennisetum.

    PubMed

    Zhang, Wen-hui; He, Lin-yan; Wang, Qi; Sheng, Xia-Fang

    2015-12-30

    In this study, a hydroponic culture experiment was conducted in a greenhouse to investigate the molecular and microbial mechanisms involved in the endophytic Bacillus megaterium 1Y31-enhanced Mn tolerance and accumulation in Mn hyperaccumulator hybrid pennisetum. Strain 1Y31 significantly increased the dry weights (ranging from 28% to 94%) and total Mn uptake (ranging from 23% to 112%) of hybrid pennisetum treated with 0, 2, and 10mM Mn compared to the control. Total 98 leaf differentially expressed proteins were identified between the live and dead bacterial inoculated hybrid pennisetum. The major leaf differentially expressed proteins were involved in energy generation, photosynthesis, response to stimulus, metabolisms, and unknown function. Furthermore, most of the energy generation and photosynthesis-related proteins were up-regulated, whereas most of the response to stimulus and metabolism-related proteins were down-regulated under Mn stress. Notably, the proportion of indole-3-acetic acid (IAA)-producing endophytic bacteria was significantly higher in the bacterial inoculated plants under Mn stress. The results suggested that strain 1Y31 increased the growth and Mn uptake of hybrid pennisetum through increasing the efficiency of photosynthesis and energy metabolism as well as the proportion of plant growth-promoting endophytic bacteria in the plants. PMID:26241871

  2. Inoculation of Phaseolus vulgaris with the nodule-endophyte Agrobacterium sp. 10C2 affects richness and structure of rhizosphere bacterial communities and enhances nodulation and growth.

    PubMed

    Chihaoui, Saif-Allah; Trabelsi, Darine; Jdey, Ahmed; Mhadhbi, Haythem; Mhamdi, Ridha

    2015-08-01

    Agrobacterium sp. 10C2 is a nonpathogenic and non-symbiotic nodule-endophyte strain isolated from root nodules of Phaseolus vulgaris. The effect of this strain on nodulation, plant growth and rhizosphere bacterial communities of P. vulgaris is investigated under seminatural conditions. Inoculation with strain 10C2 induced an increase in nodule number (+54 %) and plant biomass (+16 %). Grains also showed a significant increase in phosphorus (+53 %), polyphenols (+217 %), flavonoids (+62 %) and total antioxidant capacity (+82 %). The effect of strain 10C2 on bacterial communities was monitored using terminal restriction fragment length polymorphism of PCR-amplified 16S rRNA genes. When the initial soil was inoculated with strain 10C2 and left 15 days, the Agrobacterium strain did not affect TRF richness but changed structure. When common bean was sown in these soils and cultivated during 75 days, both TRF richness and structure were affected by strain 10C2. TRF richness increased in the rhizosphere soil, while it decreased in the bulk soil (root free). The taxonomic assignation of TRFs induced by strain 10C2 in the bean rhizosphere revealed the presence of four phyla (Firmicutes, Actinobacteria, Bacteroidetes and Proteobacteria) with a relative preponderance of Firmicutes, represented mainly by Bacillus species. Some of these taxa (i.e., Bacillus licheniformis, Bacillus pumilus, Bacillus senegalensis, Bacillus subtilis, Bacillus firmus and Paenibacillus koreensis) are particularly known for their plant growth-promoting potentialities. These results suggest that the beneficial effects of strain 10C2 observed on plant growth and grain quality are explained at least in part by the indirect effect through the promotion of beneficial microorganisms. PMID:25967041

  3. COFFEE ENDOPHYTES

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A survey for fungal endophytes in various coffee (Coffea arabica L.) tissues was conducted in Colombia, Hawaii, Mexico, and Puerto Rico. More than 700 fungal endophyte isolates have been sequenced: 281 from Colombia, 240 from Hawaii, 119 from Mexico, and 68 from Puerto Rico; these comprise over 17...

  4. Microbial genotyping and differentiating between Bacillus mojavensis and Bacillus subtilis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bacillus mojavensis, a specie recently distinguished from its previous Bacillus subtilis classification, was discovered in corn kernels and later determined to possess endophytic character. The bacterium was also determined to have biocontrol potential due to its growth inhibition of the maize mycot...

  5. Endophytic bacteria improve seedling growth of sunflower under water stress, produce salicylic acid, and inhibit growth of pathogenic fungi.

    PubMed

    Forchetti, Gabriela; Masciarelli, Oscar; Izaguirre, Mara J; Alemano, Sergio; Alvarez, Daniel; Abdala, Guillermina

    2010-12-01

    Endophytic bacterial strains SF2 (99.9% homology with Achromobacter xylosoxidans), and SF3 and SF4 (99.9% homology with Bacillus pumilus) isolated from sunflower grown under irrigation or drought were selected on the basis of plant growth-promoting bacteria (PGPB) characteristics. Aims of the study were to examine effects of inoculation with SF2, SF3, and SF4 on sunflower cultivated under water stress, to evaluate salicylic acid (SA) production by these strains in control medium or at ?a = -2.03 MPa, and to analyze effects of exogenously applied SA, jasmonic acid (JA), bacterial pellets, and bacterial supernatants on growth of pathogenic fungi Alternaria sp., Sclerotinia sp., and Verticillum sp. Growth response to bacterial inoculation was studied in two inbred lines (water stress-sensitive B59 and water stress-tolerant B71) and commercial hybrid Paraiso 24. Under both water stress and normal conditions, plant growth following inoculation was more strongly enhanced for Paraiso 24 and B71 than for B59. All three strains produced SA in control medium; levels for SF3 and SF4 were higher than for SF2. SA production was dramatically higher at ?a = -2.03 MPa. Exogenously applied SA or JA caused a significant reduction of growth for Sclerotinia and a lesser reduction for Alternaria and Verticillum. Fungal growth was more strongly inhibited by bacterial pellets than by bacterial supernatants. Our findings indicate that these endophytic bacteria enhance growth of sunflower seedlings under water stress, produce SA, and inhibit growth of pathogenic fungi. These characteristics are useful for formulation of inoculants to improve growth and yield of sunflower crops. PMID:20383767

  6. Direct inhibition of oncogenic KRAS by Bacillus pumilus ribonuclease (binase).

    PubMed

    Ilinskaya, Olga N; Singh, Indrabahadur; Dudkina, Elena; Ulyanova, Vera; Kayumov, Airat; Barreto, Guillermo

    2016-07-01

    RAS proteins function as molecular switches that transmit signals from cell surface receptors into specific cellular responses via activation of defined signaling pathways (Fang, 2015). Aberrant constitutive RAS activation occurs with high incidence in different types of cancer (Bos, 1989). Thus, inhibition of RAS-mediated signaling is extremely important for therapeutic approaches against cancer. Here we showed that the ribonuclease (RNase) binase, directly interacts with endogenous KRAS. Further, molecular structure models suggested an inhibitory nature of binase-RAS interaction involving regions of RAS that are important for different aspects of its function. Consistent with these models, phosphorylation analysis of effectors of RAS-mediated signaling revealed that binase inhibits the MAPK/ERK signaling pathway. Interestingly, RAS activation assays using a non-hydrolysable GTP analog (GTPγS) demonstrated that binase interferes with the exchange of GDP by GTP. Furthermore, we showed that binase reduced the interaction of RAS with the guanine nucleotide exchange factor (GEF), SOS1. Our data support a model in which binase-KRAS interaction interferes with the function of GEFs and stabilizes the inactive GDP-bound conformation of RAS thereby inhibiting MAPK/ERK signaling. This model plausibly explains the previously reported, antitumor-effect of binase specific towards RAS-transformed cells and suggests the development of anticancer therapies based on this ribonuclease. PMID:27066977

  7. Complete Genome Sequence of Bacillus subtilis BSn5, an Endophytic Bacterium of Amorphophallus konjac with Antimicrobial Activity for the Plant Pathogen Erwinia carotovora subsp. carotovora ?

    PubMed Central

    Deng, Yun; Zhu, Yiguang; Wang, Pengxia; Zhu, Lei; Zheng, Jinshui; Li, Rong; Ruan, Lifang; Peng, Donghai; Sun, Ming

    2011-01-01

    Here, we present the complete genome sequence of Bacillus subtilis strain BSn5, isolated from Amorphophallus konjac calli tissue and showing strong inhibitory activity to Erwinia carotovora subsp. carotovora, which causes Amorphophallus soft rot disease and affects the industry development of this organism. PMID:21317323

  8. Nitrogen acquisition in Agave tequilana from degradation of endophytic bacteria.

    PubMed

    Beltran-Garcia, Miguel J; White, James F; Prado, Fernanda M; Prieto, Katia R; Yamaguchi, Lydia F; Torres, Monica S; Kato, Massuo J; Medeiros, Marisa H G; Di Mascio, Paolo

    2014-01-01

    Plants form symbiotic associations with endophytic bacteria within tissues of leaves, stems, and roots. It is unclear whether or how plants obtain nitrogen from these endophytic bacteria. Here we present evidence showing nitrogen flow from endophytic bacteria to plants in a process that appears to involve oxidative degradation of bacteria. In our experiments we employed Agave tequilana and its seed-transmitted endophyte Bacillus tequilensis to elucidate organic nitrogen transfer from (15)N-labeled bacteria to plants. Bacillus tequilensis cells grown in a minimal medium with (15)NH4Cl as the nitrogen source were watered onto plants growing in sand. We traced incorporation of (15)N into tryptophan, deoxynucleosides and pheophytin derived from chlorophyll a. Probes for hydrogen peroxide show its presence during degradation of bacteria in plant tissues, supporting involvement of reactive oxygen in the degradation process. In another experiment to assess nitrogen absorbed as a result of endophytic colonization of plants we demonstrated that endophytic bacteria potentially transfer more nitrogen to plants and stimulate greater biomass in plants than heat-killed bacteria that do not colonize plants but instead degrade in the soil. Findings presented here support the hypothesis that some plants under nutrient limitation may degrade and obtain nitrogen from endophytic microbes. PMID:25374146

  9. Nitrogen acquisition in Agave tequilana from degradation of endophytic bacteria

    PubMed Central

    Beltran-Garcia, Miguel J.; White, Jr., James F.; Prado, Fernanda M.; Prieto, Katia R.; Yamaguchi, Lydia F.; Torres, Monica S.; Kato, Massuo J.; Medeiros, Marisa H. G.; Di Mascio, Paolo

    2014-01-01

    Plants form symbiotic associations with endophytic bacteria within tissues of leaves, stems, and roots. It is unclear whether or how plants obtain nitrogen from these endophytic bacteria. Here we present evidence showing nitrogen flow from endophytic bacteria to plants in a process that appears to involve oxidative degradation of bacteria. In our experiments we employed Agave tequilana and its seed-transmitted endophyte Bacillus tequilensis to elucidate organic nitrogen transfer from 15N-labeled bacteria to plants. Bacillus tequilensis cells grown in a minimal medium with 15NH4Cl as the nitrogen source were watered onto plants growing in sand. We traced incorporation of 15N into tryptophan, deoxynucleosides and pheophytin derived from chlorophyll a. Probes for hydrogen peroxide show its presence during degradation of bacteria in plant tissues, supporting involvement of reactive oxygen in the degradation process. In another experiment to assess nitrogen absorbed as a result of endophytic colonization of plants we demonstrated that endophytic bacteria potentially transfer more nitrogen to plants and stimulate greater biomass in plants than heat-killed bacteria that do not colonize plants but instead degrade in the soil. Findings presented here support the hypothesis that some plants under nutrient limitation may degrade and obtain nitrogen from endophytic microbes. PMID:25374146

  10. Isolation and characterization of bacterial endophytes of Chelidonium majus L.

    PubMed

    Goryluk, Agata; Rekosz-Burlaga, Hanna; Błaszczyk, Mieczysław

    2009-01-01

    The aim of this study was to isolate and identify endophytic bacteria from stems of Chelidonium majus L. (greater celandine) and to evaluate their antifungal properties. In total, 34 bacterial endophyte strains were isolated. The fungistatic effects of these bacteria on the growth of five moulds (Alternaria alternata, Chaetonium sp., Paecilomyces variotti, Byssochlamys fulva, Aureobasidium pullulans) and one species of black yeast (Exophiala mesophila) were tested. The majority of the bacterial isolates were found to inhibit the growth of fungi and those with the strongest antifungal properties were further characterized. Of the twelve isolates examined, 11 were species of Bacillus thuringiensis and one was Bacillus amyloliquefaciens. PMID:20380146

  11. Electrotransformation of Bacillus mojavensis with fluorescent protein markers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Gram-positive endophytic bacteria are difficult to transform. To study endophytic interactions between Bacillus mojavensis and maize, a method was developed to transform this species by electroporation with three fluorescent protein expressing integrative plasmids: pSG1154, pSG1192, and pSG1193. The...

  12. Diversity and potential application of endophytic bacteria in ginger.

    PubMed

    Chen, T; Chen, Z; Ma, G H; Du, B H; Shen, B; Ding, Y Q; Xu, K

    2014-01-01

    Here, 248 endophytic bacterial strains were isolated to assess the distribution and population diversity of endophytic bacteria in ginger plants. A total of 10.4 x 10(4) to 20.2 x 10(4) CFU/g fresh weight endophytic bacteria of different growth stages were isolated. Maximum bacterium numbers were obtained at the seedling stage. A total of 107 functional strains were screened, including 17 antibacterial strains and 90 indole acetic acid-producing strains. Based on 16S rDNA sequence restriction fragment length polymorphism and 16S rDNA sequences, these 107 strains were mapped and grouped into 16 genera. Bacillus and Pseudomonas were the dominant genera; however, the bacteria belonged to a tremendous range of genera, with the highest species richness being observed at the seedling stage. Sixteen strains exhibited antimicrobial activity against Pythium myriotylum Drechsler, while 7 strains exhibited antimicrobial activity against Phyllosticta zingiberi Hori. Bacillus was the dominant antibacterial strain. Pseudomonas fluorescens, B. megaterium, and Enterobacter ludwigii produced remarkably high levels of IAA. Only a few endophytic bacterial strains were inhibited in fresh ginger juice. Most of these strains were present during seedling stage, including Roseateles depolymerans, Chryseobacterium taiwanense, E. ludwigii, Agrobacterium larrymoorei, P. fluorescens, and Bacillus amyloliquefaciens. This study indicates that the community of endophytic bacteria in ginger changes with the synthesis of antibacterial substances. PMID:25062479

  13. Seasonal variation of bacterial endophytes in urban trees

    PubMed Central

    Shen, Shu Yi; Fulthorpe, Roberta

    2015-01-01

    Bacterial endophytes, non-pathogenic bacteria residing within plants, contribute to the growth and development of plants and their ability to adapt to adverse conditions. In order to fully exploit the capabilities of these bacteria, it is necessary to understand the extent to which endophytic communities vary between species and over time. The endophytes of Acer negundo, Ulmus pumila, and Ulmus parvifolia were sampled over three seasons and analyzed using culture dependent and independent methods (culture on two media, terminal restriction fragment length polymorphism, and tagged pyrosequencing of 16S ribosomal amplicons). The majority of culturable endophytes isolated were Actinobacteria, and all the samples harbored Bacillus, Curtobacterium, Frigoribacterium, Methylobacterium, Paenibacilllus, and Sphingomonas species. Regardless of culture medium used, only the culturable communities obtained in the winter for A. negundo could be distinguished from those of Ulmus spp. In contrast, the nonculturable communities were dominated by Proteobacteria and Actinobacteria, particularly Erwinia, Ralstonia, and Sanguibacter spp. The presence and abundance of various bacterial classes and phyla changed with the changing seasons. Multivariate analysis on the culture independent data revealed significant community differences between the endophytic communities of A. negundo and Ulmus spp., but overall season was the main determinant of endophytic community structure. This study suggests studies on endophytic populations of urban trees should expect to find significant seasonal and species-specific community differences and sampling should proceed accordingly. PMID:26042095

  14. In vitro assessment of marine Bacillus for use as livestock probiotics.

    PubMed

    Prieto, Maria Luz; O'Sullivan, Laurie; Tan, Shiau Pin; McLoughlin, Peter; Hughes, Helen; Gutierrez, Montserrat; Lane, Jonathan A; Hickey, Rita M; Lawlor, Peadar G; Gardiner, Gillian E

    2014-05-01

    Six antimicrobial-producing seaweed-derived Bacillus strains were evaluated in vitro as animal probiotics, in comparison to two Bacillus from an EU-authorized animal probiotic product. Antimicrobial activity was demonstrated on solid media against porcine Salmonella and E. coli. The marine isolates were most active against the latter, had better activity than the commercial probiotics and Bacillus pumilus WIT 588 also reduced E. coli counts in broth. All of the marine Bacillus tolerated physiological concentrations of bile, with some as tolerant as one of the probiotics. Spore counts for all isolates remained almost constant during incubation in simulated gastric and ileum juices. All of the marine Bacillus grew anaerobically and the spores of all except one isolate germinated under anaerobic conditions. All were sensitive to a panel of antibiotics and none harbored Bacillus enterotoxin genes but all, except B. pumilus WIT 588, showed some degree of β-hemolysis. However, trypan blue dye exclusion and xCELLigence assays demonstrated a lack of toxicity in comparison to two pathogens; in fact, the commercial probiotics appeared more cytotoxic than the majority of the marine Bacillus. Overall, some of the marine-derived Bacillus, in particular B. pumilus WIT 588, demonstrate potential for use as livestock probiotics. PMID:24796302

  15. In Vitro Assessment of Marine Bacillus for Use as Livestock Probiotics

    PubMed Central

    Prieto, Maria Luz; O’Sullivan, Laurie; Tan, Shiau Pin; McLoughlin, Peter; Hughes, Helen; Gutierrez, Montserrat; Lane, Jonathan A.; Hickey, Rita M.; Lawlor, Peadar G.; Gardiner, Gillian E.

    2014-01-01

    Six antimicrobial-producing seaweed-derived Bacillus strains were evaluated in vitro as animal probiotics, in comparison to two Bacillus from an EU-authorized animal probiotic product. Antimicrobial activity was demonstrated on solid media against porcine Salmonella and E. coli. The marine isolates were most active against the latter, had better activity than the commercial probiotics and Bacillus pumilus WIT 588 also reduced E. coli counts in broth. All of the marine Bacillus tolerated physiological concentrations of bile, with some as tolerant as one of the probiotics. Spore counts for all isolates remained almost constant during incubation in simulated gastric and ileum juices. All of the marine Bacillus grew anaerobically and the spores of all except one isolate germinated under anaerobic conditions. All were sensitive to a panel of antibiotics and none harbored Bacillus enterotoxin genes but all, except B. pumilus WIT 588, showed some degree of β-hemolysis. However, trypan blue dye exclusion and xCELLigence assays demonstrated a lack of toxicity in comparison to two pathogens; in fact, the commercial probiotics appeared more cytotoxic than the majority of the marine Bacillus. Overall, some of the marine-derived Bacillus, in particular B. pumilus WIT 588, demonstrate potential for use as livestock probiotics. PMID:24796302

  16. Entomopathogenic fungal endophytes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fungal endophytes are quite common in nature and some of them have been shown to have adverse effects against insects, nematodes, and plant pathogens. An introduction to fungal endophytes will be presented, followed by a discussion of research aimed at introducing Beauveria bassiana as a fungal endo...

  17. TRICHODERMA ENDOPHYTES OF SAPWOOD

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Trichoderma endophytes occur in sapwood of trunks of Theobroma spp., Cola spp., Fagus sylvatica, Scalesia pedunculata, and in the woody liana Ancistroderma korupensis. Trichoderma is a genus of soil fungi; thus trunks of trees represent a new niche for soil fungi. Trichoderma endophytes are rare in ...

  18. The influence of potato endophytes on Leptinotarsa decemlineata endosymbionts promotes mortality of the pest.

    PubMed

    Sorokan, Antonina V; Ben'kovskaya, Galina V; Maksimov, Igor' V

    2016-05-01

    Plants are exposed to pervasive attack by diverse attackers, such as pathogens and pests. But plants have their own endophytic microflora as well as the attacking insects. These microbiomes contact face to face in the nature. It has been found that the endophytic strain Bacillus subtilis 26D increases mortality of Colorado potato beetles, disturbing the development of insect microsymbionts Enterobacter ssp. and Acinetobacter ssp. PMID:26968115

  19. Bacillus species isolated from tungrymbai and bekang, naturally fermented soybean foods of India.

    PubMed

    Chettri, Rajen; Tamang, Jyoti Prakash

    2015-03-16

    Tungrymbai and bekang are naturally fermented soybean foods commonly consumed in Meghalaya and Mizoram states of India. A total of 39 samples of tungrymbai and 43 samples of bekang were collected from different villages and markets of Meghalaya and Mizoram, respectively and were analysed for microbial load. In both tungrymbai and bekang, the average population of Bacillus spp. was 8.2±0.1 log cfu/g. A total of 428 isolates of Bacillus were isolated from tungrymbai (211) and bekang (217) for detailed identification. On the basis of a combination of phenotypic and molecular characterisation using ARDRA, ITS-PCR and RAPD-PCR techniques, species of Bacillus isolated from tungrymbai were identified as Bacillus licheniformis (25.5%), Bacillus pumilus (19.5%) and Bacillus subtilis (55%), and species of Bacillus from bekang were Bacillus brevis (2%), Bacillus circulans (7.5%), Bacillus coagulans (6.5%), B. licheniformis (16.5%), B. pumilus (9.1%), Bacillus sphaericus (4.6%), B. subtilis (51.8%), and Lysinibacillus fusiformis (2%). The most dominant bacterium in both products was B. subtilis. PMID:25574846

  20. Preliminary Screening of Endophytic Fungi from Medicinal Plants in Malaysia for Antimicrobial and Antitumor Activity

    PubMed Central

    Radu, Son; Kqueen, Cheah Yoke

    2002-01-01

    The screening of antimicrobial activity against Gram-positive bacteria, Gram-negative bacteria, yeast and fungi was carried out on isopropanol extracts prepared from 121 isolates of endophytic fungi isolated from medicinal plants in Malaysia. Sensitivity was found to vary among the microorganisms. Bacillus subtilis, Saccharomyces cerevisiae and Alternaria sp. were susceptible to extracts from three, two and two isolates of endophytic fungi, respectively. None were found effective against Salmonella typhimurium. Sixteen endophytic fungal isolates tested were also found to exhibit antitumor activity in the yeast cell-based assay. PMID:22844221

  1. Surfactin production by strains of Bacillus mojavensis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bacillus mojavensis, RRC101 is an endophytic bacterium patented for control of fungal diseases in maize and other plants. DNA fingerprint analysis of the rep-PCR fragments of 35 B. mojavensis and 4 B. subtilis strains using the Diversilab genotyping system revealed genotypic distinctive strains alon...

  2. Diversity of endophytic bacteria in medicinally important Nepenthes species

    PubMed Central

    Bhore, Subhash J.; Komathi, Vijayan; Kandasamy, Kodi I.

    2013-01-01

    Background: Nepenthes species are used in traditional medicines to treat various health ailments. However, we do not know which types of endophytic bacteria (EB) are associated with Nepenthes spp. Objective: The objective of this study was to isolate and to identify EB associated with Nepenthes spp. Materials and Methods: Surface-sterilized leaf and stem tissues from nine Nepenthes spp. collected from Peninsular Malaysia were used to isolate EB. Isolates were identified using the polymerase chain reaction-amplified 16S ribosomal DNA (rDNA) sequence similarity based method. Results: Cultivable, 96 isolates were analyzed; and the 16S rDNA sequences analysis suggest that diverse bacterial species are associated with Nepenthes spp. Majority (55.2%) of the isolates were from Bacillus genus, and Bacillus cereus was the most dominant (14.6%) among isolates. Conclusion: Nepenthes spp. do harbor a wide array of cultivable endophytic bacteria. PMID:24082746

  3. Diversity, antimicrobial and antioxidant activities of culturable bacterial endophyte communities in Aloe vera.

    PubMed

    Akinsanya, Mushafau Adewale; Goh, Joo Kheng; Lim, Siew Ping; Ting, Adeline Su Yien

    2015-12-01

    Twenty-nine culturable bacterial endophytes were isolated from surface-sterilized tissues (root, stem and leaf) of Aloe vera and molecularly characterized to 13 genera: Pseudomonas, Bacillus, Enterobacter, Pantoea, Chryseobacterium, Sphingobacterium, Aeromonas, Providencia, Cedecea, Klebsiella, Cronobacter, Macrococcus and Shigella. The dominant genera include Bacillus (20.7%), Pseudomonas (20.7%) and Enterobacter (13.8%). The crude and ethyl acetate fractions of the metabolites of six isolates, species of Pseudomonas, Bacillus, Chryseobacterium and Shigella, have broad spectral antimicrobial activities against pathogenic Pseudomonas aeruginosa, Staphylococcus aureus, Bacillus cereus, Salmonella Typhimurium, Proteus vulgaris, Klebsiella pneumoniae, Escherichia coli, Streptococcus pyogenes and Candida albicans, with inhibition zones ranging from 6.0 ± 0.57 to 16.6 ± 0.57 mm. In addition, 80% of the bacterial endophytes produced 1,1-diphenyl-2-picrylhydrazyl (DPPH) with scavenging properties of over 75% when their crude metabolites were compared with ascorbic acid (92%). In conclusion, this study revealed for the first time the endophytic bacteria communities from A. vera (Pseudomonas hibiscicola, Macrococcus caseolyticus, Enterobacter ludwigii, Bacillus anthracis) that produce bioactive compounds with high DPPH scavenging properties (75-88%) and (Bacillus tequilensis, Pseudomonas entomophila, Chryseobacterium indologenes, Bacillus aerophilus) that produce bioactive compounds with antimicrobial activities against bacterial pathogens. Hence, we suggest further investigation and characterization of their bioactive compounds. PMID:26454221

  4. Establishing fungal entomopathogens as endophytes: towards endophytic biological control

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Beauveria basssiana is a fungal entomopathogen with the ability to colonize plants endophytically. As an endophyte, B. bassiana may play a role in protecting plants from herbivory and disease. This protocol demonstrates two inoculation methods to establish B. bassiana endophytically in the common be...

  5. Cultivable endophytic bacteria from leaf bases of Agave tequilana and their role as plant growth promoters.

    PubMed

    Martínez-Rodríguez, Julia del C; De la Mora-Amutio, Marcela; Plascencia-Correa, Luis A; Audelo-Regalado, Esmeralda; Guardado, Francisco R; Hernández-Sánchez, Elías; Peña-Ramírez, Yuri J; Escalante, Adelfo; Beltrán-García, Miguel J; Ogura, Tetsuya

    2014-01-01

    Agave tequilana Weber var. 'Azul' is grown for the production of tequila, inulin and syrup. Diverse bacteria inhabit plant tissues and play a crucial role for plant health and growth. In this study culturable endophytic bacteria were extracted from leaf bases of 100 healthy Agave tequilana plants. In plant tissue bacteria occurred at mean population densities of 3 million CFU/g of fresh plant tissue. Three hundred endophytic strains were isolated and 16s rDNA sequences grouped the bacteria into eight different taxa that shared high homology with other known sequences. Bacterial endophytes were identified as Acinectobacter sp., A. baumanii, A. bereziniae, Cronobacter sakazakii, Enterobacter hormaechei, Bacillus sp. Klebsiella oxytoca, Pseudomonas sp., Enterococcus casseliflavus, Leuconostoc mesenteroides subsp. mesenteroides and Gluconobacter oxydans. Isolates were confirmed to be plant growth promoting bacteria (PGPB) by their capacities for nitrogen fixation, auxin production, phosphate solubilization, or antagonism against Fusarium oxysporum AC132. E. casseliflavus JM47 and K. oxytoca JM26 secreted the highest concentrations of IAA. The endophyte Acinectobacter sp. JM58 exhibited the maximum values for nitrogen fixation and phosphate solubilization index (PSI). Inhibition of fungi was found in Pseudomonas sp. JM9p and K. oxytoca JM26. Bacterial endophytes show promise for use as bio-inoculants for agave cultivation. Use of endophytes to enhance cultivation of agave may be particularly important for plants produced by micropropagation techniques, where native endophytes may have been lost. PMID:25763038

  6. Cultivable endophytic bacteria from leaf bases of Agave tequilana and their role as plant growth promoters

    PubMed Central

    Martínez-Rodríguez, Julia del C.; la Mora-Amutio, Marcela De; Plascencia-Correa, Luis A.; Audelo-Regalado, Esmeralda; Guardado, Francisco R.; Hernández-Sánchez, Elías; Peña-Ramírez, Yuri J.; Escalante, Adelfo; Beltrán-García, Miguel J.; Ogura, Tetsuya

    2014-01-01

    Agave tequilana Weber var. ‘Azul’ is grown for the production of tequila, inulin and syrup. Diverse bacteria inhabit plant tissues and play a crucial role for plant health and growth. In this study culturable endophytic bacteria were extracted from leaf bases of 100 healthy Agave tequilana plants. In plant tissue bacteria occurred at mean population densities of 3 million CFU/g of fresh plant tissue. Three hundred endophytic strains were isolated and 16s rDNA sequences grouped the bacteria into eight different taxa that shared high homology with other known sequences. Bacterial endophytes were identified as Acinectobacter sp., A. baumanii, A. bereziniae, Cronobacter sakazakii, Enterobacter hormaechei, Bacillus sp. Klebsiella oxytoca, Pseudomonas sp., Enterococcus casseliflavus, Leuconostoc mesenteroides subsp. mesenteroides and Gluconobacter oxydans. Isolates were confirmed to be plant growth promoting bacteria (PGPB) by their capacities for nitrogen fixation, auxin production, phosphate solubilization, or antagonism against Fusarium oxysporum AC132. E. casseliflavus JM47 and K. oxytoca JM26 secreted the highest concentrations of IAA. The endophyte Acinectobacter sp. JM58 exhibited the maximum values for nitrogen fixation and phosphate solubilization index (PSI). Inhibition of fungi was found in Pseudomonas sp. JM9p and K. oxytoca JM26. Bacterial endophytes show promise for use as bio-inoculants for agave cultivation. Use of endophytes to enhance cultivation of agave may be particularly important for plants produced by micropropagation techniques, where native endophytes may have been lost. PMID:25763038

  7. Culturable bacterial endophytes isolated from Mangrove tree (Rhizophora apiculata Blume) enhance seedling growth in Rice

    PubMed Central

    Deivanai, Subramanian; Bindusara, Amitraghata Santhanam; Prabhakaran, Guruswamy; Bhore, Subhash Janardhan

    2014-01-01

    Background: Endophytic bacteria do have several potential applications in medicine and in other various sectors of biotechnology including agriculture. Bacterial endophytes need to be explored for their potential applications in agricultural biotechnology. One of the potential applications of bacterial endophytes in agricultural is to enhance the growth of the agricultural crops. Hence, this study was undertaken to explore the plant growth promoting potential application of bacterial endophytes. Objective: The objective of this study was to examine the effect of endophytic bacteria from mangrove tree (Rhizophora apiculata Blume) for their efficacy in promoting seedling growth in rice. Materials and Methods: Eight endophytic bacterial isolates (EBIs) isolated from twig and petiole tissues of the mangrove were identified based on their 16S ribosomal ribonucleic acid (rRNA) gene sequence homology. Separately, surface sterilized paddy seeds were treated with cell-free broth and cell suspension of the EBIs. Rice seedlings were analyzed by various bioassays and data was recorded. Results: The gene sequences of the isolates were closely related to two genera namely, Bacillus and Pantoea. Inoculation of EBIs from R. apiculata with rice seeds resulted in accelerated root and shoot growth with significant increase in chlorophyll content. Among the isolates, Pantoea ananatis (1MSE1) and Bacillus amyloliquefaciens (3MPE1) had shown predominance of activity. Endophytic invasion was recognized by the non-host by rapid accumulation of reactive oxygen species (ROS) and was counteracted by the production of hydrogen peroxide (H2O2) and lipid peroxide. The results demonstrated that EBIs from mangrove tree can increase the fitness of the rice seedlings under controlled conditions. Conclusion: These research findings could be useful to enhance the seedling growth and could serve as foundation in further research on enhancing the growth of the rice crop using endophytic bacteria. PMID:25097431

  8. Microbial Endophytes of Corn

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Increasing recognition is being given to the impact of microbial population dynamics on the general health of biological systems. Building on previous mycological and bacteriological research on agricultural commodities, more advanced technology is expanding our understanding of the “endophytic habi...

  9. Microbial endophytes: future challenges

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Endophytes are represented by a diverse group of prokaryotic (bacteria or cyanobacteria) or eukaryotic (fungi or parasitic vascular plants) organisms that form life-long associations within tissues of plants. Ecologically, these associations are usually viewed as advantageous although in some insta...

  10. Molecular identification and pectate lyase production by Bacillus strains involved in cocoa fermentation.

    PubMed

    Ouattara, Honoré G; Reverchon, Sylvie; Niamke, Sébastien L; Nasser, William

    2011-02-01

    We have previously reported the implication of Bacillus in the production of pectinolytic enzymes during cocoa fermentation. The objective of this work was to identify the Bacillus strains isolated from cocoa fermentation and study their ability to produce pectate lyase (PL) in various growth conditions. Ninety-eight strains were analyzed by Amplified Ribosomal DNA Restriction Analysis (ARDRA). Four different banding patterns were obtained leading to the clustering of the bacterial isolates into 4 distinct ARDRA groups. A subset of representative isolates for each group was identified by 16S rRNA gene partial sequencing. Six species were identified: Bacillus subtilis, Bacillus pumilus, Bacillus sphaericus, Bacillus cereus, Bacillus thuringiensis, together with Bacillus fusiformis which was isolated for the first time from cocoa fermentation. The best PL producers, yielding at least 9 U/mg of bacterial dry weight, belonged to B. fusiformis, B. subtilis, and B. pumilus species while those belonging to B. sphaericus, B. cereus and B. thuringiensis generally showed a low level of activity. Two kinds of PL were produced, as revealed by isoelectrofocusing: one with a pI of 9.8 produced by B. subtilis and B. fusiformis, the other with a pI of 10.5 was produced by B. pumilus. Strains yielded about 2 fold more PL in a pectic compound medium than in glucose medium and maximum enzyme production occurred in the late stationary bacterial growth phase. Together all these results indicate that PL production in the bacilli studied is modulated by the growth phase and by the carbon source present in the medium. PMID:21056768

  11. Isolation and enzyme bioprospection of endophytic bacteria associated with plants of Brazilian mangrove ecosystem.

    PubMed

    Castro, Renata A; Quecine, Maria Carolina; Lacava, Paulo T; Batista, Bruna D; Luvizotto, Danice M; Marcon, Joelma; Ferreira, Anderson; Melo, Itamar S; Azevedo, João L

    2014-01-01

    The mangrove ecosystem is a coastal tropical biome located in the transition zone between land and sea that is characterized by periodic flooding, which confers unique and specific environmental conditions on this biome. In these ecosystems, the vegetation is dominated by a particular group of plant species that provide a unique environment harboring diverse groups of microorganisms, including the endophytic microorganisms that are the focus of this study. Because of their intimate association with plants, endophytic microorganisms could be explored for biotechnologically significant products, such as enzymes, proteins, antibiotics and others. Here, we isolated endophytic microorganisms from two mangrove species, Rhizophora mangle and Avicennia nitida, that are found in streams in two mangrove systems in Bertioga and Cananéia, Brazil. Bacillus was the most frequently isolated genus, comprising 42% of the species isolated from Cananéia and 28% of the species from Bertioga. However, other common endophytic genera such as Pantoea, Curtobacterium and Enterobacter were also found. After identifying the isolates, the bacterial communities were evaluated for enzyme production. Protease activity was observed in 75% of the isolates, while endoglucanase activity occurred in 62% of the isolates. Bacillus showed the highest activity rates for amylase and esterase and endoglucanase. To our knowledge, this is the first reported diversity analysis performed on endophytic bacteria obtained from the branches of mangrove trees and the first overview of the specific enzymes produced by different bacterial genera. This work contributes to our knowledge of the microorganisms and enzymes present in mangrove ecosystems. PMID:25110630

  12. Endophytic bacteria from banana cultivars and their antifungal activity.

    PubMed

    Souza, A; Cruz, J C; Sousa, N R; Procpio, A R L; Silva, G F

    2014-01-01

    Endophytic microorganisms consist of fungi, bacteria, and actinomycetes that play important roles in the process of plant adaptation to the environment. Currently, the natural associations between microorganisms and plant species are being explored for a large number of biotechnological applications. In this study, 122 endophytic bacteria were isolated from 5 cultivars of Musa spp from the state of Amazonas (Brazil). Four strains were selected because they exhibited antagonistic activities against Fusarium oxysporum f. sp cubense and Colletotrichum guaranicola, with inhibitions ranging from 19 to 30% and 27 to 35%, respectively. Phylogenetic analysis of the 16S rDNA regions of these bacteria with antifungal activity showed that they are phylogenetically related to 3 different species of Bacillus - B. amyloliquefaciens, B. subtilis subsp subtilis, and B. thuringiensis. PMID:25366756

  13. Grass fungal endophytes and uses thereof

    SciTech Connect

    Craven, Kelly

    2015-03-10

    The invention provides isolated fungal endophytes and synthetic combinations thereof with host grass plants. Methods for inoculating grass plant with the endophytes, for propagating the grass-endophyte combinations, and for producing feeds and biofuels from grass-endophyte combinations are also provided.

  14. Potential role of Bacillus endospores in soil amended by olive mill wastewater.

    PubMed

    Naclerio, Gino; Falasca, Antonio; Petrella, Emma; Nerone, Valentina; Cocco, Federica; Celico, Fulvio

    2010-01-01

    The main aim of this work was to know how spread is laccase activity in spores of Bacillus species isolated from a soil where Italian law allows olive mill wastewater (OMW) spreading, and to investigate the potential role of such autochthonous soil microorganisms in degradation of OMW phenols, and prevention of groundwater pollution. Laccase activity was detected for the first time in spores of wild-type Bacillus pumilus, B. cereus sensu lato, and B. amyloliquefaciens strains. Because B. pumilus, B. cereus sensu lato, and B. amyloliquefaciens, together with B. subtilis account for a total of 93% of Bacillus isolates at the study site, the nearly totality of Bacillus spores reveals laccase activity. Thus, taking also into consideration that Bacillus spores are more abundant (about 100-fold) than white-rot fungi (that possess a well known extracellular, radical-based ligninolytic enzyme system capable of degrading OMW phenols) in the studied soil, these spores may contribute to in-situ degradation of OMW phenols. This role is further emphasized by dilution of crude OMW during infiltration of rainwater through soil that allows to minimize the antibacterial activity of phenols. The widespread presence of Bacillus spores in soils indicates a potential detoxifying role of these spores in a broader context. PMID:20489260

  15. Rapid inactivation of seven Bacillus spp. under simulated Mars UV irradiation

    NASA Astrophysics Data System (ADS)

    Schuerger, Andrew C.; Richards, Jeff T.; Newcombe, David A.; Venkateswaran, Kasthuri

    2006-03-01

    Seven Bacillus spp. were exposed to simulations of Mars-normal UV fluence rates in order to study the effects of UV irradiation on microbial survival. A UV illumination system was calibrated to deliver 9.78 W m -2 (35.2 kJ m -2 h -1) of UVC + UVB irradiation (200-320 nm) to microbial samples, thus creating a clear-sky simulation (0.5 optical depth) of equatorial Mars. The Bacillus spp. studied were: B. licheniformis KL-196, B. megaterium KL-197, B. nealsonii FO-092, B. pumilus FO-36B, B. pumilus SAFR-032, B. subtilis 42HS1, and B. subtilis HA101. The bacteria were prepared as thin monolayers of endospores on aluminum coupons in order to simulate contaminated spacecraft surfaces. Bacterial monolayers were exposed to Mars UV irradiation for time-steps of 0, 0.25, 0.5, 1, 5, 15, 30, 60, 120, or 180 min. The surviving endospores were then assayed with a Most Probable Numbers (MPN) procedure and with a culture-based assay that utilized a bacillus spore germination medium. Results indicated that B. pumilus SAFR-032 was the most resistant, and B. subtilis 42HS-1 and B. megaterium were the most sensitive of the seven strains exposed to martian UV fluence rates. Bacillus subtilis 42HS1 and B. megaterium were inactivated after 30 min exposure to Mars UV, while B. pumilus SAFR-032 required 180 min for full inactivation in both assays. Spores of B. pumilus SAFR-032 exhibited significantly different inactivation kinetics suggesting that this wild type isolate also was more resistant than the standard dosimetric strain, B. subtilis HA101. Although the various Bacillus spp. exhibited diverse levels of UV resistance, none were immune to UV irradiation, and, thus, all species would be expected to be inactivated on Sun-exposed spacecraft surfaces within a few tens-of-minutes to a few hours on sol 1 under clear-sky conditions on equatorial Mars. The inactivation kinetics of all seven Bacillus spp. support the conclusion that significant levels of bioload reductions are possible on Sun-exposed spacecraft surfaces in very short time periods under clear-sky conditions on Mars. However, the presence of UV resistant microbes on spacecraft surfaces rapidly covered in dust during landing operations, and non-Sun-exposed surfaces of spacecraft remain concerns that must continue to be addressed through adequate spacecraft sanitizing procedures prior to launch.

  16. 78 FR 35147 - Bacillus pumilus Strain BU F-33; Exemption From the Requirement of a Tolerance

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-12

    ..., Distribution, or Use'' (66 FR 28355, May 22, 2001), or Executive Order 13045, entitled ``Protection of Children... FR 59578) (FRL- 9364-6), the EPA issued a notice pursuant to FFDCA section 408(d)(3), 21 U.S.C. 346a..., entitled ``Regulatory Planning and Review'' (58 FR 51735, October 4, 1993). Because this final rule...

  17. 77 FR 19109 - Bacillus Pumilus Strain GHA 180; Exemption From the Requirement of a Tolerance

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-30

    ...- 5805. II. Background and Statutory Findings In the Federal Register of September 30, 2010 (75 FR 60452... (58 FR 51735, October 4, 1993). Because this final rule has been exempted from review under Executive... Regulations That Significantly Affect Energy Supply, Distribution, or Use'' (66 FR 28355, May 22, 2001)...

  18. Genetic discrimination of foodborne pathogenic and spoilage Bacillus spp. based on three housekeeping genes.

    PubMed

    Caamaño-Antelo, S; Fernández-No, I C; Böhme, K; Ezzat-Alnakip, M; Quintela-Baluja, M; Barros-Velázquez, J; Calo-Mata, P

    2015-04-01

    Bacillus genus includes foodborne pathogenic and spoilage-associated species, such as Bacillus cereus, Bacillus licheniformis, Bacillus subtilis and Bacillus pumilus. Bacillus is also a heterogeneous genus that includes closely related species that are difficult to discriminate among, especially when well-conserved genes such as 16S rRNA and 23S rRNA are considered. The main goal of the present work was to study the usefulness of three housekeeping genes, the TU elongation factor (tuf), the DNA gyrase β subunit (gyrB) and the RNA polymerase β subunit (rpoB) genes, for use in differentiating among the most important foodborne Bacillus spp. sequences from 20 foodborne isolated Bacillus strains, and sequences belonging to different Bacillus spp. retrieved from the GenBank were analysed. In general terms, gyrB, rpoB and tuf gene regions for the strains considered in this study exhibited interspecific similarities of 57.8%, 67.23% and 77.66% respectively. Novel tufGPF and tufGPR universal primers targeted to the tuf gene were designed and proved to be useful for the amplification of all Bacillus spp considered. In conclusion, the tuf gene can be considered to be a good target for the differential characterisation of foodborne Bacillus species, especially for differentiating B. subtilis and B. cereus from other closely related species. PMID:25475298

  19. Bacillus coagulans

    MedlinePlus

    ... It is used similarly to lactobacillus and other probiotics as "beneficial" bacteria. People take Bacillus coagulans for ... B. Coagulans, Bacillus Bacteria, Bacillus Probiotics, Bactéries Bacilles, ... en Forme de Bâtonnet, Gram Positive Spore-Forming Rod, L. Sporogenes, ...

  20. Intergenotic transformation of the Bacillus subtilis genospecies.

    PubMed

    Wilson, G A; Young, F E

    1972-09-01

    A multiple auxotrophic derivative of Bacillus subtilis 168 (strain BR151 carrying lys-3, trpC2, metB10) was transformed with deoxyribonucleic acid (DNA) isolated from B. subtilis 168, Bacillus amyloliquefaciens H, B. subtilis HSR, Bacillus pumilus, and Bacillus licheniformis. Transformation with heterologous DNA occurred at a very low frequency for the three auxotrophic markers. Heterologous transformation to rifampin resistance was 100 to 1,000 times more efficient than transformation to prototrophy. Transformants from the various heterologous exchanges were used to prepare donor DNA. The fragment of integrated DNA from the heterologous (foreign) species, termed the "intergenote," was capable of transforming BR151 with an efficiency almost equal to that of homologous DNA. When BR151 DNA contained the Rfm(R) (rifampin resistance) intergenote from B. amyloliquefaciens H, the frequency of transformation was frequently greater than that of the homologous DNA. Accompanying this increased efficiency was a marked change in the physiology of the cells. The growth rate of the transformants carrying this intergenote was approximately one-half that of either parental strain. Thus, in a prokaryotic transformation system, adverse side effects can occur after incorporation of a segment of foreign DNA. PMID:4626541

  1. The contribution of endophytic bacteria to Albizia lebbeck-mediated phytoremediation of tannery effluent contaminated soil.

    PubMed

    Manikandan, Muthu; Kannan, Vijayaraghavan; Mendoza, Ordetta Hannah; Kanimozhi, Mahalingam; Chun, Sechul; Pašić, Lejla

    2016-01-01

    Toxicity of chromium often impairs the remediation capacity of plants used in phytoremediation of polluted soils. In this study, we have identified Albizia lebbeck as a prospective chromium hyperaccumulator and examined cultivable diversity of endophytes present in chromium-treated and control saplings. High numbers (22-100%) of endophytic bacteria, isolated from root, stem, and leaf tissues, could tolerate elevated (1-3 mM) concentrations of K2CrO7. 16S rRNA gene sequence-based phylogenetic analysis showed that the 118 isolates obtained comprised of 17 operational taxonomic units affiliated with the proteobacterial genera Rhizobium (18%), Marinomonas (1%), Pseudomonas (16%), and Xanthomonas (7%) but also with members of Firmicutes genera, such as Bacillus (35%) and Salinococcus (3%). The novel isolates belonging to Salinococcus and Bacillus could tolerate high K2CrO7 concentrations (3 mM) and also showed elevated activity of chromate reductase. In addition, majority (%) of the endophytic isolates also showed production of indole-3-acetic acid. Taken together, our results indicate that the innate endophytic bacterial community assists plants in reducing heavy metal toxicity. PMID:26147743

  2. Establishing Fungal Entomopathogens as Endophytes: Towards Endophytic Biological Control

    PubMed Central

    Parsa, Soroush; Ortiz, Viviana; Vega, Fernando E.

    2013-01-01

    Beauveria bassiana is a fungal entomopathogen with the ability to colonize plants endophytically. As an endophyte, B. bassiana may play a role in protecting plants from herbivory and disease. This protocol demonstrates two inoculation methods to establish B. bassiana endophytically in the common bean (Phaseolus vulgaris), in preparation for subsequent evaluations of endophytic biological control. Plants are grown from surface-sterilized seeds for two weeks before receiving a B. bassiana treatment of 108 conidia/ml (or water) applied either as a foliar spray or a soil drench. Two weeks later, the plants are harvested and their leaves, stems and roots are sampled to evaluate endophytic fungal colonization. For this, samples are individually surface sterilized, cut into multiple sections, and incubated in potato dextrose agar media for 20 days. The media is inspected every 2-3 days to observe fungal growth associated with plant sections and record the occurrence of B. bassiana to estimate the extent of its endophytic colonization. Analyses of inoculation success compare the occurrence of B. bassiana within a given plant part (i.e. leaves, stems or roots) across treatments and controls. In addition to the inoculation method, the specific outcome of the experiment may depend on the target crop species or variety, the fungal entomopathogen species strain or isolate used, and the plant's growing conditions. PMID:23603853

  3. Abiotic stresses and endophyte effects

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Abiotic stresses consist of nonorganismal, nonpathogenic factors that inhibit plant function. Tall fescue [Lolium arundinaceum (Schreb.) Darbysh.] is widely symbiotic with a naturally occurring endophytic fungus [Neotyphodium coenophialum (Morgan-Jones and Gams) Glenn, Bacon, and Hanlin], which con...

  4. Drimane Sesquiterpenoids and Isochromone Derivative from the Endophytic Fungus Pestalotiopsis sp. M-23.

    PubMed

    Kuang, Ce; Jing, Shu-Xi; Liu, Yan; Luo, Shi-Hong; Li, Sheng-Hong

    2016-06-01

    Three new drimane sesquiterpenoids (1-3) together with the known 2α-hydroxyisodrimeninol (4), and a new isochromone derivative (5), were obtained from the solid cultures of fungal strain Pestalotiopsis sp. M-23, an endophytic fungus isolated from the leaves of Leucosceptrum canum (Labiatae). Their structures were determined by comprehensive 1D and 2D NMR, and MS analyses. The metabolites were evaluated for their antibacterial activities, and compound 3 showed weak inhibitory activity against Bacillus subtilis. PMID:27038619

  5. Endophytic bacterial diversity in banana 'Prata An' (Musa spp.) roots.

    PubMed

    Souza, Suzane A; Xavier, Adelica A; Costa, Mrcia R; Cardoso, Acleide M S; Pereira, Marlon C T; Nietsche, Silvia

    2013-07-01

    The genetic diversity of endophytic bacteria in banana 'Prata An' roots was characterized. Two hundred and one endophytic bacteria were isolated, 151 of which were classified as Gram-positive and 50 as Gram-negative. No hypersensitivity response was observed in any of the isolates. The rep-PCR technique generated different molecular profiles for each primer set (REP, ERIC and BOX). Fifty readable loci were obtained and all of the fragments were polymorphic. Amplified ribosomal DNA restriction analysis (ARDRA) of the isolates based on cleavage with four restriction enzymes yielded 45 polymorphic bands and no monomorphic bands. PCR amplified the nifH gene in 24 isolates. 16S rDNA sequencing of the 201 bacterial isolates yielded 102 high-quality sequences. Sequence analyses revealed that the isolates were distributed among ten bacterial genera (Agrobacterium, Aneurinibacillus, Bacillus, Enterobacter, Klebsiella, Lysinibacillus, Micrococcus, Paenibacillus, Rhizobium and Sporolactobacillus) and included 15 species. The greatest number of isolates belonged to the genus Bacillus. The bacteria identified in this study may be involved in promoting growth, phosphate solubilization, biological control and nitrogen fixation in bananas. PMID:23885208

  6. Surfactin A Production and Isoform Characterizations in Strains of Bacillus mojavensis for Potential Control of Fusarium verticillioides and Fumonisin in Maize

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bacillus mojavensis, a species recently distinguished as a cryptic species within Bacillus subtilis, was discovered in maize kernels and later determined to possess endophytic characteristics. The bacterium was also determined to have biocontrol potential due to its strong antagonism to the fungus...

  7. Habitat filters in fungal endophyte community assembly

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fungal endophytes can influence host health, and more broadly, can instigate trophic cascades with effects scaling to the ecosystem level. Despite this, biotic mechanisms of endophyte community assembly are largely unknown. We used maize to investigate three potential habitat filters in endophyte co...

  8. Metabolic potential and community structure of endophytic and rhizosphere bacteria associated with the roots of the halophyte Aster tripolium L.

    PubMed

    Szymańska, Sonia; Płociniczak, Tomasz; Piotrowska-Seget, Zofia; Złoch, Michał; Ruppel, Silke; Hrynkiewicz, Katarzyna

    2016-01-01

    The submitted work assumes that the abundance and diversity of endophytic and rhizosphere microorganisms co-existing with the halophytic plant Aster tripolium L. growing in a salty meadow in the vicinity of a soda factory (central Poland) represent unique populations of cultivable bacterial strains. Endophytic and rhizosphere bacteria were (i) isolated and identified based on 16S rDNA sequences; (ii) screened for nifH and acdS genes; and (iii) analyzed based on selected metabolic properties. Moreover, total microbial biomass and community structures of the roots (endophytes), rhizosphere and soil were evaluated using a cultivation-independent technique (PLFA) to characterize plant-microbial interactions under natural salt conditions. The identification of the isolated strains showed domination by Gram-positive bacteria (mostly Bacillus spp.) both in the rhizosphere (90.9%) and roots (72.7%) of A. tripolium. Rhizosphere bacterial strains exhibited broader metabolic capacities, while endophytes exhibited higher specificities for metabolic activity. The PLFA analysis showed that the total bacterial biomass decreased in the following order (rhizosphereendophytes) and confirmed the dominance of Gram-positive endophytic bacteria in the roots of the halophyte. The described strain collection provides a valuable basis for a subsequent applications of bacteria in improvement of site adaptation of plants in saline soils. PMID:26686615

  9. Plant Growth Promoting of Endophytic Sporosarcina aquimarina SjAM16103 Isolated from the Pneumatophores of Avicennia marina L.

    PubMed Central

    Janarthine, S. Rylo Sona; Eganathan, P.

    2012-01-01

    Endophytic Sporosarcina aquimarina SjAM16103 was isolated from the inner tissues of pneumatophores of mangrove plant Avicennia marina along with Bacillus sp. and Enterobacter sp. Endophytic S. aquimarina SjAM16103 was Gram variable, and motile bacterium measured 0.60.9??m wide by 1.72.0??m long and light orange-brown coloured in 3-day cultures on tryptone broth at 26C. Nucleotide sequence of this strain has been deposited in the GenBank under accession number GU930359. This endophytic bacterium produced 2.37??Mol/mL of indole acetic acid and siderophore as it metabolites. This strain could solubilize phosphate molecules and fixes atmospheric nitrogen. Endophytic S. aquimarina SjAM16103 was inoculated into four different plants under in vitro method to analyse its growth-promoting activity and role inside the host plants. The growth of endophytic S. aquimarina SjAM16103 inoculated explants were highly significant than the uninoculated control explants. Root hairs and early root development were observed in the endophytic S. aquimarina SjAM16103 inoculated explants. PMID:22811715

  10. Investigation of the molecular mechanism of thermal tolerance in bacillus subtilis. Final report, August 15, 1980-August 14, 1981

    SciTech Connect

    Yamamoto, N.; Alexander, J.; Ch'ih, J.

    1981-08-14

    We have studied Bacillus subtilis, Bacillus pumilus and Bacillus caldolyticus to ascertain the molecular mechanism of the ability to growth at high temperatures. B. subtilus wild type strains grow in minimal salts medium at a mesophilic temperature (37/sup 0/C) but not at a thermophilic temperature (56/sup 0/C). However, they do grow at 56/sup 0/C in complex rich media. Analysis of their nutritional requirements revealed that these bacteria require pyridoxine or aspartic acid and threonine to grow at 56/sup 0/C indicating that they are temperature sensitive mutants. Furthermore, mutants of B. subtilis which are able to grow on minimal salts media at 56/sup 0/C can be readily isolated. Therefore, it appears that the lack of growth of the wild type strain in minimal salts media at 56/sup 0/C is due to the instability of an anabolic enzyme. In contrast to B. subtilis, B. pumilus has never been observed to growth above 50/sup 0/C. However, our studies show that mutants of B. pumilus and B. subtilis which grow at 68/sup 0/C can be easily isolated. The isolation of such mutants strongly supports the idea that one gene can determine the ability to grow at extreme temperatures.

  11. Distribution of Endophytic Bacteria in Alopecurus aequalis Sobol and Oxalis corniculata L. from Soils Contaminated by Polycyclic Aromatic Hydrocarbons

    PubMed Central

    Peng, Anping; Liu, Juan; Gao, Yanzheng; Chen, Zeyou

    2013-01-01

    The distributions of endophytic bacteria in Alopecurus aequalis Sobol and Oxalis corniculata L. grown in soils contaminated with different levels of polycyclic aromatic hydrocarbons (PAHs) were investigated with polymerase chain reaction followed by denaturing gradient gel electrophoresis technology (PCR-DGGE) and cultivation methods. Twelve types of PAHs, at concentrations varying from 0.16 to 180 mg·kg−1, were observed in the roots and shoots of the two plants. The total PAH concentrations in Alopecurus aequalis Sobol obtained from three different PAH-contaminated stations were 184, 197, and 304 mg·kg−1, and the total PAH concentrations in Oxalis corniculata L. were 251, 346, and 600 mg·kg−1, respectively. The PCR-DGGE results showed that the endophytic bacterial communities in the roots and shoots of the two plants were quite different, although most bacteria belonged to Firmicutes, Proteobacteria, Actinobacteria and Bacteroidetes. A total of 68 endophytic bacterial strains were isolated from different tissues of the two plants and classified into three phyla: Firmicutes, Proteobacteria and Bacteroidetes. In both plants, Bacillus spp. and Pseudomonas spp. were the dominant cultivable populations. With an increase in the PAH pollution level, the diversity and distribution of endophytic bacteria in the two plants changed correspondingly, and the number of cultivable endophytic bacterial strains decreased rapidly. Testing of the isolated endophytic bacteria for tolerance to each type of PAH showed that most isolates could grow well on Luria-Bertani media in the presence of different PAHs, and some isolates were able to grow rapidly on a mineral salt medium with a single PAH as the sole carbon and energy source, indicating that these strains may have the potential to degrade PAHs in plants. This research provides the first insight into the characteristics of endophytic bacterial populations under different PAH pollution levels and provides a species resource for the isolation of PAH-degrading endophytic bacteria. PMID:24358247

  12. Diversity of bacteria of the genus Bacillus on board of international space station.

    PubMed

    Alekhova, T A; Zakharchuk, L M; Tatarinova, N Yu; Kadnikov, V V; Mardanov, A V; Ravin, N V; Skryabin, K G

    2015-01-01

    From swabs of surfaces of equipment and air samples of the Russian segment of the International Space Station, nine strains of spore-forming bacteria of the genus Bacillus belonging to the species B. pumilus, B. licheniformis, B. subtilis, B. megaterium, and B. amyloliquefaciens were isolated. The last species of bacilli on the equipment of RS ISS was detected for the first time. For these species of bacilli, there are known strains that can be opportunistic to humans, and their metabolites can cause biodegradation of equipment and materials. B. pumilus found on ISS belongs to the group of bacteria that exhibits a particularly high resistance to adverse environmental conditions, such as dehydration, ultraviolet and gamma radiation, and chemical disinfection. PMID:26728721

  13. Plant growth-promoting bacterial endophytes.

    PubMed

    Santoyo, Gustavo; Moreno-Hagelsieb, Gabriel; Del Carmen Orozco-Mosqueda, Ma; Glick, Bernard R

    2016-02-01

    Bacterial endophytes ubiquitously colonize the internal tissues of plants, being found in nearly every plant worldwide. Some endophytes are able to promote the growth of plants. For those strains the mechanisms of plant growth-promotion known to be employed by bacterial endophytes are similar to the mechanisms used by rhizospheric bacteria, e.g., the acquisition of resources needed for plant growth and modulation of plant growth and development. Similar to rhizospheric plant growth-promoting bacteria, endophytic plant growth-promoting bacteria can act to facilitate plant growth in agriculture, horticulture and silviculture as well as in strategies for environmental cleanup (i.e., phytoremediation). Genome comparisons between bacterial endophytes and the genomes of rhizospheric plant growth-promoting bacteria are starting to unveil potential genetic factors involved in an endophytic lifestyle, which should facilitate a better understanding of the functioning of bacterial endophytes. PMID:26805622

  14. Endophytic bacteria associated with growing shoot tips of banana (Musa sp.) cv. Grand Naine and the affinity of endophytes to the host.

    PubMed

    Thomas, Pious; Soly, Thyvalappil A

    2009-11-01

    A cultivation-based assessment of endophytic bacteria present in deep-seated shoot tips of banana suckers was made with a view to generate information on the associated organisms, potential endophytic contaminants in tissue-cultured bananas and to assess if the endophytes shared a beneficial relationship with the host. Plating the tissue homogenate from the central core of suckers showed colony growth on nutrient agar from just 75% and 42% of the 12 stocks during May and November, respectively (average 58%; 6 x 10(3) colony-forming units per gram), yielding diverse organisms belonging to firmicutes (Bacillus, Brevibacillus, Paenibacillus, Virgibacillus, Staphylococcus spp.), actinobacteria (Cellulomonas, Micrococcus, Corynebacterium, Kocuria spp.), alpha-proteobacteria (Paracoccus sp.), and gamma-proteobacteria (Pseudomonas, Acinetobacter spp.). Each shoot tip showed one to three different organisms and no specific organism appeared common to different sucker tips. Tissue homogenate from shoot tips including the ones that did not yield culturable bacteria displayed abundant bacterial cells during microscopic examination suggesting that a high proportion of cells were in viable-but-nonculturable state, or their cultivation requirements were not met. Direct application of cultivation-independent approach to study endophytic bacterial community using bacterial 16S ribosomal RNA universal primers resulted in high interference from chloroplast and mitochondrial genome sequences. Dislodging the bacterial cells from shoot tips that did not show cultivable bacteria and incubating the tissue crush in dilute-nutrient broth led to the activation of four organisms (Klebsiella, Agrobacterium, Pseudacidovorax spp., and an unidentified isolate). The endophytic organisms in general showed better growth at 30-37 degrees C compared with 25 degrees C, and the growth of endophytes as well as pathogenic Erwinia carotovora were promoted with the supply of host tissue extract (HTE) while that of the isolates from nonplant sources were inhibited or unaffected by HTE, suggesting an affinity or dependence of the endophytes on the host and the prospect of an HTE-based assay for discriminating the nonendophytes from endophytes. PMID:19633807

  15. Fungal endophyte diversity in Sarracenia.

    PubMed

    Glenn, Anthony; Bodri, Michael S

    2012-01-01

    Fungal endophytes were isolated from 4 species of the carnivorous pitcher plant genus Sarracenia: S. minor, S. oreophila, S. purpurea, and S. psittacina. Twelve taxa of fungi, 8 within the Ascomycota and 4 within the Basidiomycota, were identified based on PCR amplification and sequencing of the internal transcribed spacer sequences of nuclear ribosomal DNA (ITS rDNA) with taxonomic identity assigned using the NCBI nucleotide megablast search tool. Endophytes are known to produce a large number of metabolites, some of which may contribute to the protection and survival of the host. We speculate that endophyte-infected Sarracenia may benefit from their fungal associates by their influence on nutrient availability from within pitchers and, possibly, by directly influencing the biota within pitchers. PMID:22427921

  16. Metabolic potential of endophytic bacteria☆

    PubMed Central

    Brader, Günter; Compant, Stéphane; Mitter, Birgit; Trognitz, Friederike; Sessitsch, Angela

    2014-01-01

    The bacterial endophytic microbiome promotes plant growth and health and beneficial effects are in many cases mediated and characterized by metabolic interactions. Recent advances have been made in regard to metabolite production by plant microsymbionts showing that they may produce a range of different types of metabolites. These substances play a role in defense and competition, but may also be needed for specific interaction and communication with the plant host. Furthermore, few examples of bilateral metabolite production are known and endophytes may modulate plant metabolite synthesis as well. We have just started to understand such metabolic interactions between plants and endophytes, however, further research is needed to more efficiently make use of beneficial plant-microbe interactions and to reduce pathogen infestation as well as to reveal novel bioactive substances of commercial interest. PMID:24863894

  17. Fungal Endophyte Diversity in Sarracenia

    PubMed Central

    Glenn, Anthony; Bodri, Michael S.

    2012-01-01

    Fungal endophytes were isolated from 4 species of the carnivorous pitcher plant genus Sarracenia: S. minor, S. oreophila, S. purpurea, and S. psittacina. Twelve taxa of fungi, 8 within the Ascomycota and 4 within the Basidiomycota, were identified based on PCR amplification and sequencing of the internal transcribed spacer sequences of nuclear ribosomal DNA (ITS rDNA) with taxonomic identity assigned using the NCBI nucleotide megablast search tool. Endophytes are known to produce a large number of metabolites, some of which may contribute to the protection and survival of the host. We speculate that endophyte-infected Sarracenia may benefit from their fungal associates by their influence on nutrient availability from within pitchers and, possibly, by directly influencing the biota within pitchers. PMID:22427921

  18. Diversity of endophytic fungal and bacterial communities in Ilex paraguariensis grown under field conditions.

    PubMed

    Pérez, María Laura; Collavino, Mónica Mariana; Sansberro, Pedro Alfonso; Mroginski, Luis Amado; Galdeano, Ernestina

    2016-04-01

    The composition and diversity of the endophytic community associated with yerba mate (Ilex paraguariensis) was investigated using culture-depending methods. Fungi were identified based on their micromorphological characteristics and internal transcribed spacer rDNA sequence analysis; for bacteria 16S rDNA sequence analysis was used. Fungal and bacterial diversity did not show significant differences between organ age. The highest fungal diversity was registered during fall season and the lowest in winter. Bacterial diversity was higher in stems and increased from summer to winter, in contrast with leaves, which decreased. The most frequently isolated fungus was Fusarium, followed by Colletotrichum; they were both present in all the sampling seasons and organ types assayed. Actinobacteria represented 57.5 % of all bacterial isolates. The most dominant bacterial taxa were Curtobacterium and Microbacterium. Other bacteria frequently found were Methylobacterium, Sphingomonas, Herbiconiux and Bacillus. Nitrogen fixation and phosphate solubilization activity, ACC deaminase production and antagonism against plant fungal pathogens were assayed in endophytic bacterial strains. In the case of fungi, strains of Trichoderma, Penicillium and Aspergillus were assayed for antagonism against pathogenic Fusarium sp. All microbial isolates assayed showed at least one growth promoting activity. Strains of Bacillus, Pantoea, Curtobacterium, Methylobacterium, Brevundimonas and Paenibacillus had at least two growth-promoting activities, and Bacillus, Paenibacillus and the three endophytic fungi showed high antagonistic activity against Fusarium sp. In this work we have made a wide study of the culturable endophytic community within yerba mate plants and found that several microbial isolates could be considered as potential inoculants useful for improving yerba mate production. PMID:26925623

  19. Bacterial endophyte communities in the foliage of coast redwood and giant sequoia

    PubMed Central

    Carrell, Alyssa A.; Frank, Anna C.

    2015-01-01

    The endophytic bacterial microbiome, with an emerging role in plant nutrient acquisition and stress tolerance, is much less studied in natural plant populations than in agricultural crops. In a previous study, we found consistent associations between trees in the pine family and acetic acid bacteria (AAB) occurring at high relative abundance inside their needles. Our objective here was to determine if that pattern may be general to conifers, or alternatively, is more likely restricted to pines or conifers growing in nutrient limited and exposed environments. We used 16S rRNA pyrosequencing to characterize the foliar endophyte communities of two conifers in the Cupressaceae family: Two coast redwood (CR; Sequoia sempervirens) populations and one giant sequoia (GS; Sequoiadendron giganteum) population were sampled. Similar to the pines, the endophyte communities of the giant trees were dominated by Proteobacteria, Firmicutes, Acidobacteria, and Actinobacteria. However, although some major operational taxonomic units (OTUs) occurred at a high relative abundance of 10–40% in multiple samples, no specific group of bacteria dominated the endophyte community to the extent previously observed in high-elevation pines. Several of the dominating bacterial groups in the CR and GS foliage (e.g., Bacillus, Burkholderia, Actinomycetes) are known for disease- and pest suppression, raising the possibility that the endophytic microbiome protects the giant trees against biotic stress. Many of the most common and abundant OTUs in our dataset were most similar to 16S rRNA sequences from bacteria found in lichens or arctic plants. For example, an OTU belonging to the uncultured Rhizobiales LAR1 lineage, which is commonly associated with lichens, was observed at high relative abundance in many of the CR samples. The taxa shared between the giant trees, arctic plants, and lichens may be part of a broadly defined endophyte microbiome common to temperate, boreal, and tundra ecosystems. PMID:26441933

  20. Bacterial endophyte communities in the foliage of coast redwood and giant sequoia.

    PubMed

    Carrell, Alyssa A; Frank, Anna C

    2015-01-01

    The endophytic bacterial microbiome, with an emerging role in plant nutrient acquisition and stress tolerance, is much less studied in natural plant populations than in agricultural crops. In a previous study, we found consistent associations between trees in the pine family and acetic acid bacteria (AAB) occurring at high relative abundance inside their needles. Our objective here was to determine if that pattern may be general to conifers, or alternatively, is more likely restricted to pines or conifers growing in nutrient limited and exposed environments. We used 16S rRNA pyrosequencing to characterize the foliar endophyte communities of two conifers in the Cupressaceae family: Two coast redwood (CR; Sequoia sempervirens) populations and one giant sequoia (GS; Sequoiadendron giganteum) population were sampled. Similar to the pines, the endophyte communities of the giant trees were dominated by Proteobacteria, Firmicutes, Acidobacteria, and Actinobacteria. However, although some major operational taxonomic units (OTUs) occurred at a high relative abundance of 10-40% in multiple samples, no specific group of bacteria dominated the endophyte community to the extent previously observed in high-elevation pines. Several of the dominating bacterial groups in the CR and GS foliage (e.g., Bacillus, Burkholderia, Actinomycetes) are known for disease- and pest suppression, raising the possibility that the endophytic microbiome protects the giant trees against biotic stress. Many of the most common and abundant OTUs in our dataset were most similar to 16S rRNA sequences from bacteria found in lichens or arctic plants. For example, an OTU belonging to the uncultured Rhizobiales LAR1 lineage, which is commonly associated with lichens, was observed at high relative abundance in many of the CR samples. The taxa shared between the giant trees, arctic plants, and lichens may be part of a broadly defined endophyte microbiome common to temperate, boreal, and tundra ecosystems. PMID:26441933

  1. Plant-endophyte-herbivore interactions

    PubMed Central

    Parsons, Anthony J; Popay, Alison; Xue, Hong; Newman, Jonathan A

    2008-01-01

    A recent paper by Rasmussen et al., (New Phytol 2007; 173:787–97) describes the interactions between Lolium perenne cultivars with contrasting carbohydrate content and the symbiotic fungal endophyte Neotyphodium lolii at different levels of nitrogen supply. In a subsequent study undertaken by Rasmussen et al., (Plant Physiol 2008; 146:1440–53) 66 metabolic variables were analysed in the same material, revealing widespread effects of endophyte infection, N supply and cultivar carbohydrate content on both primary and secondary metabolites. Here, we link insect numerical responses to these metabolic responses using multiple regression analysis. PMID:19704424

  2. Chitin extraction from crab shells by Bacillus bacteria. Biological activities of fermented crab supernatants.

    PubMed

    Hajji, Sawssen; Ghorbel-Bellaaj, Olfa; Younes, Islem; Jellouli, Kemel; Nasri, Moncef

    2015-08-01

    Crab shells waste were fermented using six protease-producing Bacillus species (Bacillus subtilis A26, Bacillus mojavensis A21, Bacillus pumilus A1, Bacillus amyloliquefaciens An6, Bacillus licheniformis NH1 and Bacillus cereus BG1) for the production of chitin and fermented-crab supernatants (FCSs). In medium containing only crab shells, the highest demineralization DM was obtained with B. licheniformis NH1 (83±0.5%) and B. pumilus A1 (80±0.6%), while the highest deproteinization (DP) was achieved with A1 (94±1%) followed by NH1 (90±1.5%) strains. Cultures conducted in medium containing crab shells waste supplemented with 5% (w/v) glucose, were found to remarkably promote demineralization efficiency, and enhance slightly deproteinization rates. FTIR spectra of chitins showed the characteristics bands of α-chitin. FCSs showed varying degrees of antioxidant activities which were in a dose-dependent manner (p<0.01). In fact, FCS produced by B. amyloliquefaciens An6 exhibited the highest DPPH free radical-scavenging activity (92% at 4 mg/ml), while the lowest hydroxyl radical-scavenging activity (60% at 4 mg/ml) was obtained with B. subtilis A26 hydrolysates. However, the highest reducing power (OD700nm=2 at 0.5 mg/ml) was obtained by B.amyloliquefaciens An6 hydrolysates. These results suggest that crab hydrolysates are good sources of natural antioxidants. Further, FCSs were found to exhibit antibacterial activity against Gram-positive and Gram-negative bacteria. PMID:25910648

  3. MICROARRAY COMPARISON OF TALL FESCUE GENE EXPRESSION IN ENDOPHYTE INFECTED AND ENDOPHYTE FREE PLANTS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Many grasses have mutualistic symbioses with fungi of the family Clavicipitaceae. Tall fescue (Lolium arundinaceum) can harbor the obligate endophyte, Neotyphodium coenophialum that are asexually propagated and transmitted via host seeds. The endophyte receives shelter and nutrients from the host ...

  4. Fungal endophytes: modifiers of plant disease.

    PubMed

    Busby, Posy E; Ridout, Mary; Newcombe, George

    2016-04-01

    Many recent studies have demonstrated that non-pathogenic fungi within plant microbiomes, i.e., endophytes ("endo" = within, "phyte" = plant), can significantly modify the expression of host plant disease. The rapid pace of advancement in endophyte ecology warrants a pause to synthesize our understanding of endophyte disease modification and to discuss future research directions. We reviewed recent literature on fungal endophyte disease modification, and here report on several emergent themes: (1) Fungal endophyte effects on plant disease span the full spectrum from pathogen antagonism to pathogen facilitation, with pathogen antagonism most commonly reported. (2) Agricultural plant pathosystems are the focus of research on endophyte disease modification. (3) A taxonomically diverse group of fungal endophytes can influence plant disease severity. And (4) Fungal endophyte effects on plant disease severity are context-dependent. Our review highlights the importance of fungal endophytes for plant disease across a broad range of plant pathosystems, yet simultaneously reveals that complexity within plant microbiomes presents a significant challenge to disentangling the biotic environmental factors affecting plant disease severity. Manipulative studies integrating eco-evolutionary approaches with emerging molecular tools will be poised to elucidate the functional importance of endophytes in natural plant pathosystems that are fundamental to biodiversity and conservation. PMID:26646287

  5. Effects of growth stage and fulvic acid on the diversity and dynamics of endophytic bacterial community in Stevia rebaudiana Bertoni leaves

    PubMed Central

    Yu, Xuejian; Yang, Jinshui; Wang, Entao; Li, Baozhen; Yuan, Hongli

    2015-01-01

    The aim of this study was to learn the interactions among the endophytic bacteria, the plant growth, the foliar spray of fulvic acid, and the accumulation of steviol glycosides in the leaves of Stevia rebaudiana. Metagenomic DNA was extracted from the Stevia leaves at different growth stages with or without the fulvic acid treatment; and the diversity of endophytic bacteria in Stevia leaves was estimated by pyrosequencing of 16S rRNA genes. As results, Proteobacteria, Actinobacteria, Bacteroidetes, and Firmicutes were found to be the dominant phyla despite the growth stages and fulvic acid application. Stevia growth stages strongly regulated composition of endophytic community. The genera Agrobacterium (12.3%) and Erwinia (7.2%) dominated in seedling stage were apparently declined in the vegetable and initial flowering stages, while Sphingomonas and Methylobacterium increased in mature leaves at harvest time, which showed that the mature leaves of Stevia preferred to accumulate some certain endophytic bacteria. Sphingomonas and Methylobacterium constituted an important part of the core endophytic community and were positively correlated with the stevioside content and UGT74G1 gene expression, respectively; while Erwinia, Agrobacterium, and Bacillus were negatively correlated with the stevioside accumulation. Fulvic acid treatment accelerated the variation of endophytes along the growth stages and increased the steviol glycosides content. This is the first study to reveal the community composition of endophytic bacteria in the Stevia leaves, to evidence the strong effects of growth stage and fulvic acid application on the endophytes of Stevia, and to demonstrate the correlation between the endophytic bacteria and the steviol glycosides accumulation. PMID:26379644

  6. Effects of growth stage and fulvic acid on the diversity and dynamics of endophytic bacterial community in Stevia rebaudiana Bertoni leaves.

    PubMed

    Yu, Xuejian; Yang, Jinshui; Wang, Entao; Li, Baozhen; Yuan, Hongli

    2015-01-01

    The aim of this study was to learn the interactions among the endophytic bacteria, the plant growth, the foliar spray of fulvic acid, and the accumulation of steviol glycosides in the leaves of Stevia rebaudiana. Metagenomic DNA was extracted from the Stevia leaves at different growth stages with or without the fulvic acid treatment; and the diversity of endophytic bacteria in Stevia leaves was estimated by pyrosequencing of 16S rRNA genes. As results, Proteobacteria, Actinobacteria, Bacteroidetes, and Firmicutes were found to be the dominant phyla despite the growth stages and fulvic acid application. Stevia growth stages strongly regulated composition of endophytic community. The genera Agrobacterium (12.3%) and Erwinia (7.2%) dominated in seedling stage were apparently declined in the vegetable and initial flowering stages, while Sphingomonas and Methylobacterium increased in mature leaves at harvest time, which showed that the mature leaves of Stevia preferred to accumulate some certain endophytic bacteria. Sphingomonas and Methylobacterium constituted an important part of the core endophytic community and were positively correlated with the stevioside content and UGT74G1 gene expression, respectively; while Erwinia, Agrobacterium, and Bacillus were negatively correlated with the stevioside accumulation. Fulvic acid treatment accelerated the variation of endophytes along the growth stages and increased the steviol glycosides content. This is the first study to reveal the community composition of endophytic bacteria in the Stevia leaves, to evidence the strong effects of growth stage and fulvic acid application on the endophytes of Stevia, and to demonstrate the correlation between the endophytic bacteria and the steviol glycosides accumulation. PMID:26379644

  7. WHAT DOES AN ENDOPHYTE LOOK LIKE? ENDOPHYTE PROFILES OF NATIVE GRASSES AND SHRUBS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Obligate fungal endophytes often defy detection and isolation by conventional microbiology techniques. Staining methods, including the use of trypan blue and sudan IV have effectively detected endophytes in plant tissues. However, stains fail to distinguish one fungal endophyte from another, thus ...

  8. Fungal endophyte diversity in Sarracenia

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fungal endophytes were isolated from four species of the carnivorous pitcher plant genus Sarracenia: S. minor, S. oreophila, S. purpurea, and S. psittacina. Twelve taxa of fungi, eight within the Ascomycota and four within the Basidiomycota, were identified based on PCR amplification and sequencing ...

  9. Antimicrobial activity of Ulva reticulata and its endophytes

    NASA Astrophysics Data System (ADS)

    Dhanya, K. I.; Swati, V. I.; Vanka, Kanth Swaroop; Osborne, W. J.

    2016-04-01

    Seaweeds are known to exhibit various antimicrobial properties, since it harbours an enormous range of indigenous bioactive compounds. The emergence of drug resistant strains has directed to the identification of prospective metabolites from seaweed and its endophytes, thereby exploiting the properties in resisting bacterial diseases. The current study was aimed to assess the antimicrobial activity of extracts obtained from Ulva reticulate, for which metabolites of Ulva reticulata and its endophytes were extracted and assessed against human pathogens like Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa, Salmonella typhi, and Bacillus subtilis. It was observed that the hexane extract of isolate VITDSJ2 was effective against all the tested pathogens but a significant inhibition was observed for Staphylococcus aureus and Escherichia coli. Further, Gas chromatography coupled with Mass spectroscopy (GC-MS) revealed the existence of phenol, 3, 5-bis (1, 1-dimethylethyl) in the crude hexane extract which is well-known to possess antibacterial activity. The effective isolate VITDSJ2 was identified to be the closest neighbour of Pseudomonas stutzeri by phenotypic and genotypic methods. The crude extracts of the seaweed Ulva reticulata was also screened for antibacterial activity and the hexane extract was effective in showing inhibition against all the tested pathogens. The compound in the crude extract of Ulva reticulata was identified as hentriacontane using GC-MS. The extracts obtained from dichloromethane did not show significant activity in comparison with the hexane extracts. Hence the metabolites of Ulva reticulata and the bacterial secondary metabolites of the endophytes could be used in the treatment of bacterial infections.

  10. Plant-endophyte symbiosis, an ecological perspective.

    PubMed

    Wani, Zahoor Ahmed; Ashraf, Nasheeman; Mohiuddin, Tabasum; Riyaz-Ul-Hassan, Syed

    2015-04-01

    Endophytism is the phenomenon of mutualistic association of a plant with a microorganism wherein the microbe lives within the tissues of the plant without causing any symptoms of disease. In addition to being a treasured biological resource, endophytes play diverse indispensable functions in nature for plant growth, development, stress tolerance, and adaptation. Our understanding of endophytism and its ecological aspects are overtly limited, and we have only recently started to appreciate its essence. Endophytes may impact plant biology through the production of diverse chemical entities including, but not limited to, plant growth hormones and by modulating the gene expression of defense and other secondary metabolic pathways of the host. Studies have shown differential recruitment of endophytes in endophytic populations of plants growing in the same locations, indicating host specificity and that endophytes evolve in a coordinated fashion with the host plants. Endophytic technology can be employed for the efficient production of agricultural and economically important plants and plant products. The rational application of endophytes to manipulate the microbiota, intimately associated with plants, can help in enhancement of production of agricultural produce, increased production of key metabolites in medicinal and aromatic plants, as well as adaption to new bio-geographic regions through tolerance to various biotic and abiotic conditions. However, the potential of endophytic biology can be judiciously harnessed only when we obtain insight into the molecular mechanism of this unique mutualistic relationship. In this paper, we present a discussion on endophytes, endophytism, their significance, and diverse functions in nature as unraveled by the latest research to understand this universal natural phenomenon. PMID:25750045

  11. Characterization of endophytic bacteria from cucurbit fruits with potential benefits to agriculture in melons (Cucumis melo L.).

    PubMed

    Glassner, Hanoch; Zchori-Fein, Einat; Compant, Stéphane; Sessitsch, Angela; Katzir, Nurit; Portnoy, Vitaly; Yaron, Sima

    2015-07-01

    Endophytes are microorganisms that mainly colonize vegetative parts, but are also found in reproductive and disseminating organs, and may have beneficial characteristics. To identify microorganisms associated with the agriculturally important family, Cucurbitaceae, endophytes were initially determined in fruits of Cucumis melo Reticulatus Group 'Dulce' by a cultivation-independent approach based on fluorescence in situ hybridization using double labeling of oligonucleotide probes. Alpha-, Beta-, Gammaproteobacteria, Firmicutes and Actinobacteria were localized inside the fruits. Culturable bacteria were further isolated and identified from fruit tissues of 'Dulce', from fruits of other cultivated and wild-field-grown Cucurbitaceae, and from wild fruits growing under natural conditions. Low densities of culturable bacteria were detected in the investigated fruits, especially in four out of the five wild species, regardless of their growing environment. Substantial differences were observed between the wild and cultivated cucurbit taxa in regard to the number of colonized fruits as well as the type of endophytes. Bacillus was the most dominant genus of endophytes colonizing fruits of Cucurbitaceae. The antagonistic effects of isolated endophytes were assessed against cucurbit disease agents in dual-culture assays. Several bacterial isolates exhibited antagonistic properties against the tested plant pathogens. The identified bacteria may be useful for protecting plants not only in the field, but also for post-harvest. PMID:26183916

  12. Antibacterial Azaphilones from an Endophytic Fungus, Colletotrichum sp. BS4.

    PubMed

    Wang, Wen-Xuan; Kusari, Souvik; Laatsch, Hartmut; Golz, Christopher; Kusari, Parijat; Strohmann, Carsten; Kayser, Oliver; Spiteller, Michael

    2016-04-22

    Three new compounds, colletotrichones A-C (1-3), and one known compound, chermesinone B (4a), were isolated from an endophytic fungus, Colletotrichum sp. BS4, harbored in the leaves of Buxus sinica, a well-known boxwood plant used in traditional Chinese medicine (TCM). Their structures were determined by extensive spectroscopic analyses including 1D and 2D NMR, HRMS, ECD spectra, UV, and IR, as well as single-crystal X-ray diffraction, and shown to be azaphilones sharing a 3,6a-dimethyl-9-(2-methylbutanoyl)-9H-furo[2,3-h]isochromene-6,8-dione scaffold. Owing to the remarkable antibacterial potency of known azaphilones coupled to the usage of the host plant in TCM, we evaluated the antibacterial efficacy of the isolated compounds against two commonly dispersed environmental strains of Escherichia coli and Bacillus subtilis, as well as against two human pathogenic clinical strains of Staphylococcus aureus and Pseudomonas aeruginosa. Compound 1 exhibited marked antibacterial potencies against the environmental strains that were comparable to the standard antibiotics. Compound 3 was also active against E. coli. Finally, compound 2a exhibited the same efficacy as streptomycin against the clinically relevant bacterium S. aureus. The in vitro cytotoxicity of these compounds on a human acute monocytic leukemia cell line (THP-1) was also assessed. Our results provide a scientific rationale for further investigations into endophyte-mediated host chemical defense against specialist and generalist pathogens. PMID:26905687

  13. [Stress resistance and genetic diversity of endophytic bacteria isolated from Caragana spp. root nodules].

    PubMed

    Dai, Jin-Xia; Wang, Yu-Jiong; Wu, Xue-Juan; Zhang, Xiao-Ling

    2012-02-01

    By adopting PCR-RFLP and 16S rDNA sequencing, this paper analyzed the genetic diversity and phylogeny of 40 endophytic bacterial strains isolated from Caragana spp. root nodules, and determined the salt resistance, acid- and alkali resistance, and growth temperature range of the strains. A total of 9 genotypes were obtained from the 40 strains by RFLP. The 16S rDNA sequencing, morphological observation, and biochemical test of representative strains showed that the strains belonged to Bacillus, Inquilinus, Shinella and Acinetobacter, respectively, and had rich genetic diversity. 57.5% of the strains could tolerate 4% NaCl stress, 75% of the strains could grow in YMA medium with an initial pH 11.0, and 85% of the strains could survive after heat shock treatment at 60 degrees C, suggesting that the endophytic bacteria of Caragana spp. had strong resistance capacity. Among the strains, LWEN 07 and LWEN 15 were most resistant. PMID:22586981

  14. Identification of Bacillus strains by MALDI TOF MS using geometric approach

    NASA Astrophysics Data System (ADS)

    Starostin, Konstantin V.; Demidov, Evgeny A.; Bryanskaya, Alla V.; Efimov, Vadim M.; Rozanov, Alexey S.; Peltek, Sergey E.

    2015-11-01

    Microorganism identification by MALDI TOF mass-spectrometry is based on the comparison of the mass spectrum of the studied organism with those of reference strains. It is a rapid and reliable method. However, commercial databases and programs are mostly designed for identification of clinically important strains and can be used only for particular mass spectrometer models. The need for open platforms and reference databases is obvious. In this study we describe a geometric approach for microorganism identification by mass spectra and demonstrate its capabilities by analyzing 24 strains belonging to the Bacillus pumilus group. This method is based on representing mass spectra as points on a multidimensional space, which allows us to use geometric distances to compare the spectra. Delimitation of microorganisms performed by geometric approach correlates well with the results of molecular phylogenetic analysis and clustering using Biotyper 3.1. All three methods used allowed us to reliably divide the strains into two groups corresponding to closely related species, Bacillus pumilus and Bacillus altitudinis. The method developed by us will be implemented in a Web interface designed for using open reference databases for microorganism identification. The data is available at http://www.bionet.nsc.ru/mbl/database/database.html.

  15. Identification of Bacillus strains by MALDI TOF MS using geometric approach.

    PubMed

    Starostin, Konstantin V; Demidov, Evgeny A; Bryanskaya, Alla V; Efimov, Vadim M; Rozanov, Alexey S; Peltek, Sergey E

    2015-01-01

    Microorganism identification by MALDI TOF mass-spectrometry is based on the comparison of the mass spectrum of the studied organism with those of reference strains. It is a rapid and reliable method. However, commercial databases and programs are mostly designed for identification of clinically important strains and can be used only for particular mass spectrometer models. The need for open platforms and reference databases is obvious. In this study we describe a geometric approach for microorganism identification by mass spectra and demonstrate its capabilities by analyzing 24 strains belonging to the Bacillus pumilus group. This method is based on representing mass spectra as points on a multidimensional space, which allows us to use geometric distances to compare the spectra. Delimitation of microorganisms performed by geometric approach correlates well with the results of molecular phylogenetic analysis and clustering using Biotyper 3.1. All three methods used allowed us to reliably divide the strains into two groups corresponding to closely related species, Bacillus pumilus and Bacillus altitudinis. The method developed by us will be implemented in a Web interface designed for using open reference databases for microorganism identification. The data is available at http://www.bionet.nsc.ru/mbl/database/database.html. PMID:26592761

  16. Identification of Bacillus strains by MALDI TOF MS using geometric approach

    PubMed Central

    Starostin, Konstantin V.; Demidov, Evgeny A.; Bryanskaya, Alla V.; Efimov, Vadim M.; Rozanov, Alexey S.; Peltek, Sergey E.

    2015-01-01

    Microorganism identification by MALDI TOF mass-spectrometry is based on the comparison of the mass spectrum of the studied organism with those of reference strains. It is a rapid and reliable method. However, commercial databases and programs are mostly designed for identification of clinically important strains and can be used only for particular mass spectrometer models. The need for open platforms and reference databases is obvious. In this study we describe a geometric approach for microorganism identification by mass spectra and demonstrate its capabilities by analyzing 24 strains belonging to the Bacillus pumilus group. This method is based on representing mass spectra as points on a multidimensional space, which allows us to use geometric distances to compare the spectra. Delimitation of microorganisms performed by geometric approach correlates well with the results of molecular phylogenetic analysis and clustering using Biotyper 3.1. All three methods used allowed us to reliably divide the strains into two groups corresponding to closely related species, Bacillus pumilus and Bacillus altitudinis. The method developed by us will be implemented in a Web interface designed for using open reference databases for microorganism identification. The data is available at http://www.bionet.nsc.ru/mbl/database/database.html. PMID:26592761

  17. [Relationship of bacteria of Bacillus genus with ciliate Colpoda steinii and their impact on germination of plant seeds].

    PubMed

    Pogorelova, V V; Bega, Z T; Kurdish, I K

    2012-01-01

    Features of symbiotic coexistence of bacteria of the genus Bacillus with ciliates Colpoda steinii have been studied. In their mutual cultivation during 10 days the number of bacteria B. subtilis IMV V-7023 was reduced 4.4 times, B. pumilus 3 - 3.4 times, B. megaterium 12 - 2.5 times. In the mixed culture with B. pumilus 3 the number of the ciliates increased gradualluy while under availability of the other two bacilli strains the number of protozoan increased in the first two days, after that their amount decreased. Treatment of some plants seeds by suspension of B. subtilis IMV V-7023 with the protozoan increased their germination and stimulated the growth of plants at the early stages of development. PMID:22686018

  18. Evaluation of the Efficacy and Safety of a Marine-Derived Bacillus Strain for Use as an In-Feed Probiotic for Newly Weaned Pigs

    PubMed Central

    Prieto, Maria Luz; O'Sullivan, Laurie; Tan, Shiau Pin; McLoughlin, Peter; Hughes, Helen; O'Donovan, Orla; Rea, Mary C.; Kent, Robert M.; Cassidy, Joseph P.; Gardiner, Gillian E.; Lawlor, Peadar G.

    2014-01-01

    Forty eight individual pigs (8.7±0.26 kg) weaned at 28±1 d of age were used in a 22-d study to evaluate the effect of oral administration of a Bacillus pumilus spore suspension on growth performance and health indicators. Treatments (n = 16) were: (1) non-medicated diet; (2) medicated diet with apramycin (200 mg/kg) and pharmacological levels of zinc oxide (2,500 mg zinc/kg) and (3) B. pumilus diet (non-medicated diet + 1010 spores/day B. pumilus). Final body weight and average daily gain tended to be lower (P = 0.07) and feed conversion ratio was worsened (P<0.05) for the medicated treatment compared to the B. pumilus treatment. Ileal E. coli counts were lower for the B. pumilus and medicated treatments compared to the non-medicated treatment (P<0.05), perhaps as a result of increased ileal propionic acid concentrations (P<0.001). However, the medicated treatment reduced fecal (P<0.001) and cecal (P<0.05) Lactobacillus counts and tended to reduce the total cecal short chain fatty acid (SCFA) concentration (P = 0.10). Liver weights were lighter and concentrations of liver enzymes higher (P<0.05) in pigs on the medicated treatment compared to those on the non-medicated or B. pumilus treatments. Pigs on the B. pumilus treatment had lower overall lymphocyte and higher granulocyte percentages (P<0.001) and higher numbers of jejunal goblet cells (P<0.01) than pigs on either of the other two treatments or the non-medicated treatment, respectively. However, histopathological examination of the small intestine, kidneys and liver revealed no abnormalities. Overall, the B. pumilus treatment decreased ileal E. coli counts in a manner similar to the medicated treatment but without the adverse effects on growth performance, Lactobacillus counts, cecal SCFA concentration and possible liver toxicity experienced with the medicated treatment. PMID:24586349

  19. Evaluation of the efficacy and safety of a marine-derived Bacillus strain for use as an in-feed probiotic for newly weaned pigs.

    PubMed

    Prieto, Maria Luz; O'Sullivan, Laurie; Tan, Shiau Pin; McLoughlin, Peter; Hughes, Helen; O'Donovan, Orla; Rea, Mary C; Kent, Robert M; Cassidy, Joseph P; Gardiner, Gillian E; Lawlor, Peadar G

    2014-01-01

    Forty eight individual pigs (8.7±0.26 kg) weaned at 28±1 d of age were used in a 22-d study to evaluate the effect of oral administration of a Bacillus pumilus spore suspension on growth performance and health indicators. Treatments (n = 16) were: (1) non-medicated diet; (2) medicated diet with apramycin (200 mg/kg) and pharmacological levels of zinc oxide (2,500 mg zinc/kg) and (3) B. pumilus diet (non-medicated diet + 10(10) spores/day B. pumilus). Final body weight and average daily gain tended to be lower (P = 0.07) and feed conversion ratio was worsened (P<0.05) for the medicated treatment compared to the B. pumilus treatment. Ileal E. coli counts were lower for the B. pumilus and medicated treatments compared to the non-medicated treatment (P<0.05), perhaps as a result of increased ileal propionic acid concentrations (P<0.001). However, the medicated treatment reduced fecal (P<0.001) and cecal (P<0.05) Lactobacillus counts and tended to reduce the total cecal short chain fatty acid (SCFA) concentration (P = 0.10). Liver weights were lighter and concentrations of liver enzymes higher (P<0.05) in pigs on the medicated treatment compared to those on the non-medicated or B. pumilus treatments. Pigs on the B. pumilus treatment had lower overall lymphocyte and higher granulocyte percentages (P<0.001) and higher numbers of jejunal goblet cells (P<0.01) than pigs on either of the other two treatments or the non-medicated treatment, respectively. However, histopathological examination of the small intestine, kidneys and liver revealed no abnormalities. Overall, the B. pumilus treatment decreased ileal E. coli counts in a manner similar to the medicated treatment but without the adverse effects on growth performance, Lactobacillus counts, cecal SCFA concentration and possible liver toxicity experienced with the medicated treatment. PMID:24586349

  20. 7 CFR 201.58d - Fungal endophyte test.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Fungal endophyte test. 201.58d Section 201.58d... REGULATIONS Examinations in the Administration of the Act § 201.58d Fungal endophyte test. A fungal endophyte test may be used to determine the amount of fungal endophyte (Acremonium spp.) in certain grasses....

  1. 7 CFR 201.58d - Fungal endophyte test.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 3 2011-01-01 2011-01-01 false Fungal endophyte test. 201.58d Section 201.58d... REGULATIONS Examinations in the Administration of the Act § 201.58d Fungal endophyte test. A fungal endophyte test may be used to determine the amount of fungal endophyte (Acremonium spp.) in certain grasses....

  2. In silico analysis of the 16S rRNA gene of endophytic bacteria, isolated from the aerial parts and seeds of important agricultural crops.

    PubMed

    Bredow, C; Azevedo, J L; Pamphile, J A; Mangolin, C A; Rhoden, S A

    2015-01-01

    Because of human population growth, increased food production and alternatives to conventional methods of biocontrol and development of plants such as the use of endophytic bacteria and fungi are required. One of the methods used to study microorganism diversity is sequencing of the 16S rRNA gene, which has several advantages, including universality, size, and availability of databases for comparison. The objective of this study was to analyze endophytic bacterial diversity in agricultural crops using published papers, sequence databases, and phylogenetic analysis. Fourteen papers were selected in which the ribosomal 16S rRNA gene was used to identify endophytic bacteria, in important agricultural crops, such as coffee, sugar cane, beans, corn, soybean, tomatoes, and grapes, located in different geographical regions (America, Europe, and Asia). The corresponding 16S rRNA gene sequences were selected from the NCBI database, aligned using the Mega 5.2 program, and phylogenetic analysis was undertaken. The most common orders present in the analyzed cultures were Bacillales, Enterobacteriales, and Actinomycetales and the most frequently observed genera were Bacillus, Pseudomonas, and Microbacterium. Phylogenetic analysis showed that only approximately 1.56% of the total sequences were not properly grouped, demonstrating reliability in the identification of microorganisms. This study identified the main genera found in endophytic bacterial cultures from plants, providing data for future studies on improving plant agriculture, biotechnology, endophytic bacterium prospecting, and to help understand relationships between endophytic bacteria and their interactions with plants. PMID:26345903

  3. Isolation and characterization of endophytic bacteria isolated from the leaves of the common bean (Phaseolus vulgaris)

    PubMed Central

    de Oliveira Costa, Leonardo Emanuel; de Queiroz, Marisa Vieira; Borges, Arnaldo Chaer; de Moraes, Celia Alencar; de Araújo, Elza Fernandes

    2012-01-01

    The common bean is one of the most important legumes in the human diet, but little is known about the endophytic bacteria associated with the leaves of this plant. The objective of this study was to characterize the culturable endophytic bacteria of common bean (Phaseolus vulgaris) leaves from three different cultivars (Vermelhinho, Talismã, and Ouro Negro) grown under the same field conditions. The density of endophytic populations varied from 4.5 x 102 to 2.8 x 103 CFU g-1 of fresh weight. Of the 158 total isolates, 36.7% belonged to the Proteobacteria, 32.9% to Firmicutes, 29.7% to Actinobacteria, and 0.6% to Bacteroidetes. The three P. vulgaris cultivars showed class distribution differences among Actinobacteria, Alphaproteobacteria and Bacilli. Based on 16S rDNA sequences, 23 different genera were isolated comprising bacteria commonly associated with soil and plants. The genera Bacillus, Delftia, Methylobacterium, Microbacterium, Paenibacillus, Staphylococcus and Stenotrophomonas were isolated from all three cultivars. To access and compare the community structure, diversity indices were calculated. The isolates from the Talismã cultivar were less diverse than the isolates derived from the other two cultivars. The results of this work indicate that the cultivar of the plant may contribute to the structure of the endophytic community associated with the common bean. This is the first report of endophytic bacteria from the leaves of P. vulgaris cultivars. Future studies will determine the potential application of these isolates in biological control, growth promotion and enzyme production for biotechnology. PMID:24031988

  4. Endophytic microbial diversity in coffee cherries of Coffea arabica from southeastern Brazil.

    PubMed

    Oliveira, Marcelo N V; Santos, Thiago M A; Vale, Helson M M; Delvaux, Júlio C; Cordero, Alexander P; Ferreira, Alessandra B; Miguel, Paulo S B; Tótola, Marcos R; Costa, Maurício D; Moraes, Célia A; Borges, Arnaldo C

    2013-04-01

    The microbiota associated with coffee plants may play a critical role in the final expression of coffee quality. However, the microbial diversity in coffee cherries is still poorly characterized. Here, we investigated the endophytic diversity in cherries of Coffea arabica by using culture-independent approaches to identify the associated microbes, ultimately to better understand their ecology and potential role in determining coffee quality. Group-specific 16S rRNA and 26S rRNA genes polymerase chain reaction - denaturing gradient gel electrophoresis and clone library sequencing showed that the endophytic community is composed of members of the 3 domains of life. Bacterial sequences showing high similarity with cultured and uncultured bacteria belonged to the Betaproteobacteria, Gammaproteobacteria, and Firmicutes phyla. Phylogenetic analyses of cloned sequences from Firmicutes revealed that most sequences fell into 3 major genera: Bacillus, Staphylococcus, and Paenibacillus. Archaeal sequences revealed the presence of operational taxonomic units belonging to Euryarchaeota and Crenarchaeota phyla. Sequences from endophytic yeast were not recovered, but various distinct sequences showing high identity with filamentous fungi were found. There was no obvious correlation between the microbial composition and cultivar or geographic location of the coffee plant. To the best of our knowledge, this is the first report demonstrating internal tissue colonization of plant fruits by members of the Archaea domain. The finding of archaeal small-subunit rRNA in coffee cherries, although not sufficient to indicate their role as active endophytes, certainly expands our perspectives toward considering members of this domain as potential endophytic microbes. PMID:23586745

  5. Relationship of substrate and surfactin production by Bacillus mojavensis strains and their antagonistical response to Fusarium verticillioides

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The endophytic bacterium, Bacillus mojavensis, RRC 101 controls fungal diseases in maize and other plants. The bacterium and its cultural extracts have been shown to be antagonistic to the pathogenic and mycotoxic fungus, Fusarium verticillioides. An antifungal lipopeptide produced by B. mojavensi...

  6. Surfactin A production and isoforms characterizations in strains of Bacillus mojavensis for control of a maize pathogen, Fusarium verticillioides

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The endophytic bacterium, Bacillus mojavensis, RRC 101 controls fungal diseases in maize and other plants. The bacterium and its cultural extracts have been shown to be antagonistic to the pathogenic and mycotoxic fungus, Fusarium verticillioides. An antifungal cyclic lipopeptide produced by B. moj...

  7. Bioactive alkaloids in vertically transmitted fungal endophytes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Plants form mutualistic symbioses with a variety of microorganisms, including endophytic fungi that live inside the plant and cause no symptoms of infection. Some endophytic fungi form defensive mutualisms based on the production of bioactive metabolites that protect the plant from herbivores in exc...

  8. Four new tetramic acid and one new furanone derivatives from the plant endophytic fungus Neopestalotiopsis sp.

    PubMed

    Zhao, Shasha; Chen, Shenxi; Wang, Bo; Niu, Shubin; Wu, Wenping; Guo, Liangdong; Che, Yongsheng

    2015-06-01

    Four new tetramic acid analogues neopestalotins A-D (1-4), one new furanone derivative neopestalotin E (6), and the known compound hymenosetin have been isolated from the solid cultures of the plant endophytic fungus Neopestalotiopsis sp. The structures of the new compounds were determined mainly by nuclear magnetic resonance (NMR) experiments. The absolute configurations of 1 and 2 were assigned by circular dichroism (CD) data, whereas those of 3 and 4 were deduced by a combination of CD and heteronuclear long range coupling (HETLOC) data. Compound 2 showed modest antimicrobial activity against the Gram-positive bacteria, Bacillus subtilis, Staphylococcus aureus col, and Streptococcus pneumoniae. PMID:25818228

  9. Identification and Pathogenic Potential of Clinical Bacillus and Paenibacillus Isolates

    PubMed Central

    Celandroni, Francesco; Salvetti, Sara; Gueye, Sokhna Aissatou; Mazzantini, Diletta; Lupetti, Antonella; Senesi, Sonia; Ghelardi, Emilia

    2016-01-01

    The soil-related Bacillus and Paenibacillus species have increasingly been implicated in various human diseases. Nevertheless, their identification still poses problems in the clinical microbiology laboratory and, with the exception of Bacillus anthracis and Bacillus cereus, little is known on their pathogenicity for humans. In this study, we evaluated the use of matrix-assisted laser desorption—ionization time of flight mass spectrometry (MALDI-TOF MS) in the identification of clinical isolates of these genera and conducted genotypic and phenotypic analyses to highlight specific virulence properties. Seventy-five clinical isolates were subjected to biochemical and MALDI-TOF MS identification. 16S rDNA sequencing and supplemental tests were used to solve any discrepancies or failures in the identification results. MALDI-TOF MS significantly outperformed classical biochemical testing for correct species identification and no misidentification was obtained. One third of the collected strains belonged to the B. cereus species, but also Bacillus pumilus and Bacillus subtilis were isolated at high rate. Antimicrobial susceptibility testing showed that all the B. cereus, B. licheniformis, B. simplex, B. mycoides, Paenibacillus glucanolyticus and Paenibacillus lautus isolates are resistant to penicillin. The evaluation of toxin/enzyme secretion, toxin-encoding genes, motility, and biofilm formation revealed that B. cereus displays the highest virulence potential. However, although generally considered nonpathogenic, most of the other species were shown to swim, swarm, produce biofilms, and secrete proteases that can have a role in bacterial virulence. In conclusion, MALDI-TOF MS appears useful for fast and accurate identification of Bacillus and Paenibacillus strains whose virulence properties make them of increasing clinical relevance. PMID:27031639

  10. Papaya shoot tip associated endophytic bacteria isolated from in vitro cultures and host-endophyte interaction in vitro and in vivo.

    PubMed

    Thomas, Pious; Kumari, Sima; Swarna, Ganiga K; Gowda, T K S

    2007-03-01

    Fourteen distinct bacterial clones were isolated from surface-sterilized shoot tips (approximately 1 cm) of papaya (Carica papaya L. 'Surya') planted on Murashige and Skoog (MS)-based papaya culture medium (23/50 nos.) during the 2-4 week period following in vitro culturing. These isolates were ascribed to six Gram-negative genera, namely Pantoea (P. ananatis), Enterobacter (E. cloacae), Brevundimonas (B. aurantiaca), Sphingomonas, Methylobacterium (M. rhodesianum), and Agrobacterium (A. tumefaciens) or two Gram-positive genera, Microbacterium (M. esteraromaticum) and Bacillus (B. benzoevorans) based on 16S rDNA sequence analysis. Pantoea ananatis was the most frequently isolated organism (70% of the cultures) followed by B. benzoevorans (13%), while others were isolated from single stocks. Bacteria-harboring in vitro cultures often showed a single organism. Pantoea, Enterobacter, and Agrobacterium spp. grew actively on MS-based normal papaya medium, while Microbacterium, Brevundimonas, Bacillus, Sphingomonas, and Methylobacterium spp. failed to grow in the absence of host tissue. Supplying MS medium with tissue extract enhanced the growth of all the organisms in a dose-dependent manner, indicating reliance of the endophyte on its host. Inoculation of papaya seeds with the endophytes (20 h at OD550=0.5) led to delayed germination or slow seedling growth initially. However, the inhibition was overcome by 3 months and the seedlings inoculated with Pantoea, Microbacterium, or Sphingomonas spp. displayed significantly better root and shoot growths. PMID:17538647

  11. A community of unknown, endophytic fungi in western white pine

    PubMed Central

    Ganley, Rebecca J.; Brunsfeld, Steven J.; Newcombe, George

    2004-01-01

    The endophytic fungi of woody plants may be diverse as often claimed, and likewise, they may be functionally novel as demonstrated in a few studies. However, the endophyte taxa that are most frequently reported tend to belong to fungal groups composed of morphologically similar endophytes and parasites. Thus, it is plausible that endophytes are known (i.e., described) parasites in a latent phase within the host. If this null hypothesis were true, endophytes would represent neither additional fungal diversity distinct from parasite diversity nor a symbiont community likely to be novel ecologically. To be synonymous with parasites of the host, endophytes should at least be most closely related to those same parasites. Here we report that seven distinct parasites of Pinus monticola do not occur as endophytes. The majority of endophytes of P. monticola (90% of 2,019 cultures) belonged to one fungal family, the Rhytismataceae. However, not a single rhytismataceous endophyte was found to be most closely related by sequence homology to the three known rhytismataceous parasites of P. monticola. Similarly, neither endophytic Mycosphaerella nor endophytic Rhizosphaera isolates were most closely related to known parasites of P. monticola. Morphologically, the endophytes of P. monticola can be confounded with the parasites of the same host. However, they are actually most closely related to, but distinct from, parasites of other species of Pinus. If endophytes are generally unknown species, then estimates of 1 million endophytes (i.e., approximately 1 in 14 of all species of life) seem reasonable. PMID:15220484

  12. Diversity of Endophytic Fungi Isolated from Korean Ginseng Leaves

    PubMed Central

    Eo, Ju-Kyeong; Choi, Min-Seok

    2014-01-01

    We investigated the diversity of the foliar endophytes of Korean ginseng. Endophytic fungi were isolated from healthy leaves of mountain-cultivated ginseng (MCG) and field-cultivated ginseng (FCG) at 4 sites in Chungbuk Province. A total of 24 species of fungal endophytes were identified using molecular approaches. Additionally, the diversity of these endophytic fungi was compared between MCG and FCG. The major isolated endophytes were Edenia gomezpompae and Gibberella moniliformis in the MCG and FCG samples, respectively. The results suggest that ginseng endophytes have different community structures in different environments, and this understanding may prove useful in ginseng cultivation. PMID:25071383

  13. Antifungal and antibacterial metabolites from an endophytic Aspergillus sp. associated with Melia azedarach.

    PubMed

    Xiao, Jian; Zhang, Qiang; Gao, Yu-Qi; Shi, Xin-Wei; Gao, Jin-Ming

    2014-01-01

    Seven known metabolites, dianhydro-aurasperone C (1), isoaurasperone A (2), fonsecinone A (3), asperpyrone A (4), asperazine (5), rubrofusarin B (6) and (R)-3-hydroxybutanonitrile (7), were isolated from the culture of Aspergillus sp. KJ-9, a fungal endophyte isolated from Melia azedarach and identified by spectroscopic methods. All isolates were evaluated in vitro against several phytopathogenic fungi (Gibberella saubinetti, Magnaporthe grisea, Botrytis cinerea, Colletotrichum gloeosporioides and Alternaria solani) and pathogenic bacteria (Escherichia coli, Bacillus subtilis, Staphyloccocus aureus and Bacillus cereus). Compounds 3 and 7 were active against almost all phytopathogenic fungi tested with minimum inhibitory concentration (MIC) range of 6.25-50 μM. Moreover, compound 3 was active against all pathogenic bacteria with MIC in the range of 25-100 μM. Compound 7 is a rare new natural product isolated from a natural source for the first time, and the detailed NMR data of 1 were first assigned. PMID:24708541

  14. Endophytic bacteria from wheat grain as biocontrol agents of Fusarium graminearum and deoxynivalenol production in wheat.

    PubMed

    Pan, D; Mionetto, A; Tiscornia, S; Bettucci, L

    2015-08-01

    In Uruguay, Fusarium graminearum is the most common species that infects wheat and is responsible for Fusarium head blight (FHB) and contamination of grain with deoxynivalenol (DON). The aim of this work was to select bacterial endophytes isolated from wheat grain to evaluate their antagonistic ability against F. graminearum and DON production in vitro and under field conditions. Four strains identified as Bacillus megaterium (BM1) and Bacillus subtilis (BS43, BSM0 y BSM2) significantly reduced fungal growth and spore germination of F. graminearum. This antagonist activity remained unchanged after the bacterial cultures were heat treated. Under field conditions, treatments with antagonist BM1 was the most effective, reducing the FHB incidence and severity by 93 and 54 %, respectively, and the production of DON by 89.3 %. PMID:25956808

  15. Metagenomics study of endophytic bacteria in Aloe vera using next-generation technology.

    PubMed

    Akinsanya, Mushafau Adewale; Goh, Joo Kheng; Lim, Siew Ping; Ting, Adeline Su Yien

    2015-12-01

    Next generation sequencing (NGS) enables rapid analysis of the composition and diversity of microbial communities in several habitats. We applied the high throughput techniques of NGS to the metagenomics study of endophytic bacteria in Aloe vera plant, by assessing its PCR amplicon of 16S rDNA sequences (V3-V4 regions) with the Illumina metagenomics technique used to generate a total of 5,199,102 reads from the samples. The analyses revealed Proteobacteria, Firmicutes, Actinobacteria and Bacteriodetes as the predominant genera. The roots have the largest composition with 23% not present in other tissues. The stems have more of the genus-Pseudomonas and the unclassified Pseudomonadaceae. The α-diversity analysis indicated the richness and inverse Simpson diversity index of the bacterial endophyte communities for the leaf, root and stem tissues to be 2.221, 6.603 and 1.491 respectively. In a similar study on culturable endophytic bacteria in the same A. vera plants (unpublished work), the dominance of Pseudomonas and Bacillus genera was similar, with equal proportion of four species each in root, stem and leaf tissues. It is evident that NGS technology captured effectively the metagenomics of microbiota in plant tissues and this can improve our understanding of the microbial-plant host interactions. PMID:26697361

  16. Isolation, Characterization, and Insecticidal Activity of an Endophyte of Drunken Horse Grass, Achnatherum inebrians

    PubMed Central

    Shi, YingWu; Zhang, Xuebing; Lou, Kai

    2013-01-01

    Endophytic microorganisms reside within plant tissues and have often been found to promote plant growth. In this study, endophytic microorganisms were isolated from the roots, stems, leaves, and seeds of healthy drunken horse grass, Achnatherum inebrians (Hance) Keng (Poales: Poaceae), through the use of a grinding separation method and identified by a dual approach of morphological and physiological observation and 16S rRNA gene-based (for bacteria) and internal transcribed sequence-based (for fungi) molecular identification. The endophytes were then inoculated into liquid media for fermentation, and their crude extracts were employed for insecticidal activity tests using slide disc immersion and nebulization methods. A total of 89 bacteria species, which were classified into eight genera, Bacillus, Pseudomonas, Actinomyces, Corynebacterium, Acinetobacter, Sphingomonas, Paenibacillus, and Phyllobacterium, and two fungi, Claviceps and Chaetomium, were isolated. Of these species, isolates Streptomyces albus (Rossi-Doria) Waksman and Henrici (Actinomycetales: Streptomycetaceae) (GA) and Claviceps purpurea (Fr.) Tul. (Hypocreales: Clavicipitaceae) (PF-2) were shown to produce mortality rates of more than 90% in the cotton aphid, Aphis gossypii Glover (Hemiptera: Aphididae), after first and second screenings. The isolates PF-2 and GA associated with A. inebrians had significant insecticidal activities towards A. gossypii Glover (Hemiptera: Aphididae) and may provide a new biological resource for exploring a new microbial insecticide. PMID:24784492

  17. Chilling and cultivar type affect the diversity of bacterial endophytes colonizing sweet pepper (Capsicum anuum L.).

    PubMed

    Rasche, Frank; Trondl, Robert; Naglreiter, Christina; Reichenauer, Thomas G; Sessitsch, Angela

    2006-11-01

    A climate chamber experiment was conducted to assay the effect of low temperatures (chilling) on the diversity of bacteria colonizing the endospheres of two thermophilic sweet pepper (Capsicum anuum L.) cultivars, Milder Spiral and Ziegenhorn Bello. Structural diversity was analyzed by 16S rRNA-based terminal restriction fragment length polymorphism (T-RFLP) analysis and by the generation of 16S rRNA gene libraries to determine dominant community members in T-RFLP profiles. Cultivable community members colonizing lines Milder Spiral and Ziegenhorn Bello were identified by 16S rRNA gene analysis. T-RFLP profiles and 16S rRNA gene libraries revealed a high heterogeneity of community composition due to chilling and suggested further the existence of cultivar-specific communities. The majority of isolates obtained from the cultivar Milder Spiral were assigned as high-G+C Gram-positive bacteria (Microbacterium sp., Micrococcus sp., Rhodococcus sp.) and Firmicutes (Staphylococcus sp.). Of the isolated endophytes obtained from cultivar Zeigenhorn Bello, 93% were affiliated with Staphylococcus aureus and Bacillus sp. (Firmicutes). The experimental set-up was suited to demonstrate that chilling and cultivar type can influence the diversity of bacterial endophytes colonizing sweet pepper. We propose additional chilling experiments to investigate the effect of chilling on functional, plant-beneficial abilities of bacterial endophytes associated with low-temperature-sensitive crops, such as sweet pepper. PMID:17215894

  18. Isolation and characterization of culturable seed-associated bacterial endophytes from gnotobiotically grown Marama bean seedlings.

    PubMed

    Chimwamurombe, Percy Maruwa; Grönemeyer, Jann Lasse; Reinhold-Hurek, Barbara

    2016-06-01

    Marama bean (Tylosema esculentum) is an indigenous non-nodulating legume to the arid agro-ecological parts of Southern Africa. It is a staple food for the Khoisan and Bantu people from these areas. It is intriguing how it is able to synthesize the high-protein content in the seeds since its natural habitat is nitrogen deficient. The aim of the study was to determine the presence of seed transmittable bacterial endophytes that may have growth promoting effects, which may be particularly important for the harsh conditions. Marama bean seeds were surface sterilized and gnotobiotically grown to 2 weeks old seedlings. From surface-sterilized shoots and roots, 123 distinct bacterial isolates were cultured using three media, and identified by BOX-PCR fingerprinting and sequence analyses of the 16S rRNA and nifH genes. Phylogenetic analyses of 73 putative endophytes assigned them to bacterial species from 14 genera including Proteobacteria (Rhizobium, Massilia, Kosakonia, Pseudorhodoferax, Caulobacter, Pantoea, Sphingomonas, Burkholderia, Methylobacterium), Firmicutes (Bacillus), Actinobacteria (Curtobacterium, Microbacterium) and Bacteroidetes (Mucilaginibacter, Chitinophaga). Screening for plant growth-promoting activities revealed that the isolates showed production of IAA, ACC deaminase, siderophores, endoglucanase, protease, AHLs and capacities to solubilize phosphate and fix nitrogen. This is the first report that marama bean seeds may harbor endophytes that can be cultivated from seedlings; in this community of bacteria, physiological characteristics that are potentially plant growth promoting are widespread. PMID:27118727

  19. Antitumor and antimicrobial activities of endophytic fungi from medicinal parts of Aquilaria sinensis.

    PubMed

    Cui, Jin-long; Guo, Shun-xing; Xiao, Pei-gen

    2011-05-01

    The purpose of this study was to isolate and characterize endophytic fungi from the stem tissue which can produce fragrant ingredients in Aquilaria sinensis (also called agarwood) to determine their antitumor and antimicrobial activities. Twenty-eight fungal endophytes were isolated from agarwood by strict sterile sample preparation and were classified into 14 genera and 4 taxonomic classes (Sordariomycetes, Dothideomycetes, Saccharomycetes, and Zygomycetes) based on molecular identification. Of the 28 isolates, 13 (46.4%) showed antimicrobial activity against at least one of the test strains by the agar well diffusion method, and 23 isolates (82.1%) displayed antitumor activity against at least one of five cancer cell lines by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. The diameters of inhibition zones of YNAS07, YNAS14, HNAS04, HNAS05, HNAS08, and HNAS11 were equal to or higher than 14.0 mm against Staphylococcus aureus, Escherichia coli, Bacillus subtilis, B. subtilis, Aspergillus fumigatus, and B. subtilis, respectively. The inhibition rates of YNAS06, YNAS08, and HNAS06 were not less than 60% to 293-T, 293-T, and SKVO3 cells, respectively. These results suggest that the endophytic fungi associated with agarwood will provide us with not only useful micro-ecological information, but also potential antimicrobial and antitumor agents. PMID:21528493

  20. Metagenomics study of endophytic bacteria in Aloe vera using next-generation technology

    PubMed Central

    Akinsanya, Mushafau Adewale; Goh, Joo Kheng; Lim, Siew Ping; Ting, Adeline Su Yien

    2015-01-01

    Next generation sequencing (NGS) enables rapid analysis of the composition and diversity of microbial communities in several habitats. We applied the high throughput techniques of NGS to the metagenomics study of endophytic bacteria in Aloe vera plant, by assessing its PCR amplicon of 16S rDNA sequences (V3–V4 regions) with the Illumina metagenomics technique used to generate a total of 5,199,102 reads from the samples. The analyses revealed Proteobacteria, Firmicutes, Actinobacteria and Bacteriodetes as the predominant genera. The roots have the largest composition with 23% not present in other tissues. The stems have more of the genus—Pseudomonas and the unclassified Pseudomonadaceae. The α-diversity analysis indicated the richness and inverse Simpson diversity index of the bacterial endophyte communities for the leaf, root and stem tissues to be 2.221, 6.603 and 1.491 respectively. In a similar study on culturable endophytic bacteria in the same A. vera plants (unpublished work), the dominance of Pseudomonas and Bacillus genera was similar, with equal proportion of four species each in root, stem and leaf tissues. It is evident that NGS technology captured effectively the metagenomics of microbiota in plant tissues and this can improve our understanding of the microbial–plant host interactions. PMID:26697361

  1. Antitumor and antimicrobial activities of endophytic fungi from medicinal parts of Aquilaria sinensis *

    PubMed Central

    Cui, Jin-long; Guo, Shun-xing; Xiao, Pei-gen

    2011-01-01

    The purpose of this study was to isolate and characterize endophytic fungi from the stem tissue which can produce fragrant ingredients in Aquilaria sinensis (also called agarwood) to determine their antitumor and antimicrobial activities. Twenty-eight fungal endophytes were isolated from agarwood by strict sterile sample preparation and were classified into 14 genera and 4 taxonomic classes (Sordariomycetes, Dothideomycetes, Saccharomycetes, and Zygomycetes) based on molecular identification. Of the 28 isolates, 13 (46.4%) showed antimicrobial activity against at least one of the test strains by the agar well diffusion method, and 23 isolates (82.1%) displayed antitumor activity against at least one of five cancer cell lines by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. The diameters of inhibition zones of YNAS07, YNAS14, HNAS04, HNAS05, HNAS08, and HNAS11 were equal to or higher than 14.0 mm against Staphylococcus aureus, Escherichia coli, Bacillus subtilis, B. subtilis, Aspergillus fumigatus, and B. subtilis, respectively. The inhibition rates of YNAS06, YNAS08, and HNAS06 were not less than 60% to 293-T, 293-T, and SKVO3 cells, respectively. These results suggest that the endophytic fungi associated with agarwood will provide us with not only useful micro-ecological information, but also potential antimicrobial and antitumor agents. PMID:21528493

  2. Phaseolus vulgaris seed-borne endophytic community with novel bacterial species such as Rhizobium endophyticum sp. nov.

    PubMed

    López-López, Aline; Rogel, Marco A; Ormeño-Orrillo, Ernesto; Martínez-Romero, Julio; Martínez-Romero, Esperanza

    2010-10-01

    The bacterial endophytic community present in different Phaseolus vulgaris (bean) cultivars was analyzed by 16S ribosomal RNA gene sequences of cultured isolates derived from surface disinfected roots and immature seeds. Isolated endophytes from tissue-macerates belonged to over 50 species in 24 different genera and some isolates from Acinetobacter, Bacillus, Enterococcus, Nocardioides, Paracoccus, Phyllobacterium, and Sphingomonas seem to correspond to new lineages. Phytate solubilizing bacteria were identified among Acinetobacter, Bacillus and Streptomyces bean isolates, phytate is the most abundant reserve of phosphorus in bean and in other seeds. Endophytic rhizobia were not capable of forming nodules. A novel rhizobial species Rhizobium endophyticum was recognized on the basis of DNA-DNA hybridization, sequence of 16S rRNA, recA, rpoB, atpD, dnaK genes, plasmid profiles, and phenotypic characteristics. R. endophyticum is capable of solubilizing phytate, the type strain is CCGE2052 (ATCC BAA-2116; HAMBI 3153) that became fully symbiotic by acquiring the R. tropici CFN299 symbiotic plasmid. PMID:20822874

  3. Phylogeny in aid of the present and novel microbial lineages: diversity in Bacillus.

    PubMed

    Porwal, Shalini; Lal, Sadhana; Cheema, Simrita; Kalia, Vipin Chandra

    2009-01-01

    Bacillus represents microbes of high economic, medical and biodefense importance. Bacillus strain identification based on 16S rRNA sequence analyses is invariably limited to species level. Secondly, certain discrepancies exist in the segregation of Bacillus subtilis strains. In the RDP/NCBI databases, out of a total of 2611 individual 16S rDNA sequences belonging to the 175 different species of the genus Bacillus, only 1586 have been identified up to species level. 16S rRNA sequences of Bacillus anthracis (153 strains), B. cereus (211 strains), B. thuringiensis (108 strains), B. subtilis (271 strains), B. licheniformis (131 strains), B. pumilus (83 strains), B. megaterium (47 strains), B. sphaericus (42 strains), B. clausii (39 strains) and B. halodurans (36 strains) were considered for generating species-specific framework and probes as tools for their rapid identification. Phylogenetic segregation of 1121, 16S rDNA sequences of 10 different Bacillus species in to 89 clusters enabled us to develop a phylogenetic frame work of 34 representative sequences. Using this phylogenetic framework, 305 out of 1025, 16S rDNA sequences presently classified as Bacillus sp. could be identified up to species level. This identification was supported by 20 to 30 nucleotides long signature sequences and in silico restriction enzyme analysis specific to the 10 Bacillus species. This integrated approach resulted in identifying around 30% of Bacillus sp. up to species level and revealed that B. subtilis strains can be segregated into two phylogenetically distinct groups, such that one of them may be renamed. PMID:19212464

  4. Phylogeny in Aid of the Present and Novel Microbial Lineages: Diversity in Bacillus

    PubMed Central

    Porwal, Shalini; Lal, Sadhana; Cheema, Simrita; Kalia, Vipin Chandra

    2009-01-01

    Bacillus represents microbes of high economic, medical and biodefense importance. Bacillus strain identification based on 16S rRNA sequence analyses is invariably limited to species level. Secondly, certain discrepancies exist in the segregation of Bacillus subtilis strains. In the RDP/NCBI databases, out of a total of 2611 individual 16S rDNA sequences belonging to the 175 different species of the genus Bacillus, only 1586 have been identified up to species level. 16S rRNA sequences of Bacillus anthracis (153 strains), B. cereus (211 strains), B. thuringiensis (108 strains), B. subtilis (271 strains), B. licheniformis (131 strains), B. pumilus (83 strains), B. megaterium (47 strains), B. sphaericus (42 strains), B. clausii (39 strains) and B. halodurans (36 strains) were considered for generating species-specific framework and probes as tools for their rapid identification. Phylogenetic segregation of 1121, 16S rDNA sequences of 10 different Bacillus species in to 89 clusters enabled us to develop a phylogenetic frame work of 34 representative sequences. Using this phylogenetic framework, 305 out of 1025, 16S rDNA sequences presently classified as Bacillus sp. could be identified up to species level. This identification was supported by 20 to 30 nucleotides long signature sequences and in silico restriction enzyme analysis specific to the 10 Bacillus species. This integrated approach resulted in identifying around 30% of Bacillus sp. up to species level and revealed that B. subtilis strains can be segregated into two phylogenetically distinct groups, such that one of them may be renamed. PMID:19212464

  5. Identification and characterization of endophytic bacteria from corn (Zea mays L.) roots with biotechnological potential in agriculture

    PubMed Central

    2014-01-01

    Six endophytic bacteria of corn roots were identified as Bacillus sp. and as Enterobacter sp, by sequencing of the 16S rRNA gene. Four of the strains, CNPSo 2476, CNPSo 2477, CNPSo 2478 and CNPSo 2480 were positive for the nitrogen fixation ability evaluated through the acetylene reduction assay and amplification of nifH gene. Two Bacillus strains (CNPSo 2477 and CNPSo 2478) showed outstanding skills for the production of IAA, siderophores and lytic enzymes, but were not good candidates as growth promoters, because they reduced seed germination. However, the same strains were antagonists against the pathogenic fungi Fusarium verticillioides, Colletotrichum graminicola, Bipolaris maydis and Cercospora zea-maydis. As an indication of favorable bacterial action, Enterobacter sp. CNPSo 2480 and Bacillus sp. CNPSo 2481 increased the root volume by 44% and 39%, respectively, and the seed germination by 47% and 56%, respectively. Therefore, these two strains are good candidates for future testing as biological inoculants for corn. PMID:24949261

  6. Examining endophyte interactions within fourwing saltbush (Atriplex canescens)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cryptic endophyte consortia associated with embryonic tissues of fourwing saltbush (Atriplex canescens) are believed to serve mutualistic functions. However, the complexity of these endophyte communities makes cause-and-effect relationships difficult to establish. In fourwing saltbush, cryptic endo...

  7. Endophytic bacterial diversity in banana ‘Prata Anã’ (Musa spp.) roots

    PubMed Central

    Souza, Suzane A.; Xavier, Adelica A.; Costa, Márcia R.; Cardoso, Acleide M.S.; Pereira, Marlon C.T.; Nietsche, Silvia

    2013-01-01

    The genetic diversity of endophytic bacteria in banana ‘Prata Anã’ roots was characterized. Two hundred and one endophytic bacteria were isolated, 151 of which were classified as Gram-positive and 50 as Gram-negative. No hypersensitivity response was observed in any of the isolates. The rep-PCR technique generated different molecular profiles for each primer set (REP, ERIC and BOX). Fifty readable loci were obtained and all of the fragments were polymorphic. Amplified ribosomal DNA restriction analysis (ARDRA) of the isolates based on cleavage with four restriction enzymes yielded 45 polymorphic bands and no monomorphic bands. PCR amplified the nifH gene in 24 isolates. 16S rDNA sequencing of the 201 bacterial isolates yielded 102 high-quality sequences. Sequence analyses revealed that the isolates were distributed among ten bacterial genera (Agrobacterium, Aneurinibacillus, Bacillus, Enterobacter, Klebsiella, Lysinibacillus, Micrococcus, Paenibacillus, Rhizobium and Sporolactobacillus) and included 15 species. The greatest number of isolates belonged to the genus Bacillus. The bacteria identified in this study may be involved in promoting growth, phosphate solubilization, biological control and nitrogen fixation in bananas. PMID:23885208

  8. Genomics of Bacillus Species

    NASA Astrophysics Data System (ADS)

    Økstad, Ole Andreas; Kolstø, Anne-Brit

    Members of the genus Bacillus are rod-shaped spore-forming bacteria belonging to the Firmicutes, the low G+C gram-positive bacteria. The Bacillus genus was first described and classified by Ferdinand Cohn in Cohn (1872), and Bacillus subtilis was defined as the type species (Soule, 1932). Several Bacilli may be linked to opportunistic infections. However, pathogenicity among Bacillus spp. is mainly a feature of bacteria belonging to the Bacillus cereus group, including B. cereus, Bacillus anthracis, and Bacillus thuringiensis. Here we review the genomics of B. cereus group bacteria in relation to their roles as etiological agents of two food poisoning syndromes (emetic and diarrhoeal).

  9. Analysis of the abilities of endophytic bacteria associated with banana tree roots to promote plant growth.

    PubMed

    Andrade, Leandro Fernandes; de Souza, Gleika Larisse Oliveira Dorasio; Nietsche, Silvia; Xavier, Adelica Aparecida; Costa, Marcia Regina; Cardoso, Acleide Maria Santos; Pereira, Marlon Cristian Toledo; Pereira, Dbora Francine Gomes Silva

    2014-01-01

    A total of 40 endophytic bacterial isolates obtained from banana tree roots were characterized for their biotechnological potential for promoting banana tree growth. All isolates had at least one positive feature. Twenty isolates were likely diazotrophs and formed pellicles in nitrogen-free culture medium, and 67% of these isolates belonged to the genus Bacillus sp. The isolates EB-04, EB-169, EB-64, and EB-144 had N fixation abilities as measured by the Kjeldahl method and by an acetylene reduction activity assay. Among the 40 isolates, 37.5% were capable of solubilizing inorganic phosphate and the isolates EB-47 and EB-64 showed the highest solubilization capacity. The isolate EB-53 (Lysinibacillus sp.) had a high solubilization index, whereas 73% of the isolates had low solubilization indices. The synthesis of indole-3-acetic acid (IAA) in the presence of L-tryptophan was detected in 40% of the isolates. The isolate EB-40 (Bacillus sp.) produced the highest amount of IAA (47.88 ?g/ml) in medium supplemented with L-tryptophan and was able to synthesize IAA in the absence of L-tryptophan. The isolates EB-126 (Bacillus subtilis) and EB-47 (Bacillus sp.) were able to simultaneously fix nitrogen, solubilize phosphate and produce IAA in vitro. The results of this study demonstrated that the isolates analyzed here had diverse abilities and all have the potential to be used as growth-promoting microbial inoculants for banana trees. PMID:24390835

  10. Selenium hyperaccumulators harbor a diverse endophytic bacterial community characterized by high selenium resistance and plant growth promoting properties.

    PubMed

    Sura-de Jong, Martina; Reynolds, Ray J B; Richterova, Klara; Musilova, Lucie; Staicu, Lucian C; Chocholata, Iva; Cappa, Jennifer J; Taghavi, Safiyh; van der Lelie, Daniel; Frantik, Tomas; Dolinova, Iva; Strejcek, Michal; Cochran, Alyssa T; Lovecka, Petra; Pilon-Smits, Elizabeth A H

    2015-01-01

    Selenium (Se)-rich plants may be used to provide dietary Se to humans and livestock, and also to clean up Se-polluted soils or waters. This study focused on endophytic bacteria of plants that hyperaccumulate selenium (Se) to 0.5-1% of dry weight. Terminal restriction fragment length polymorphism (T-RFLP) analysis was used to compare the diversity of endophytic bacteria of hyperaccumulators Stanleya pinnata (Brassicaceae) and Astragalus bisulcatus (Fabaceae) with those from related non-accumulators Physaria bellii (Brassicaceae) and Medicago sativa (Fabaceae) collected on the same, seleniferous site. Hyperaccumulators and non-accumulators showed equal T-RF diversity. Parsimony analysis showed that T-RFs from individuals of the same species were more similar to each other than to those from other species, regardless of plant Se content or spatial proximity. Cultivable endophytes from hyperaccumulators S. pinnata and A. bisulcatus were further identified and characterized. The 66 bacterial morphotypes were shown by MS MALDI-TOF Biotyper analysis and 16S rRNA gene sequencing to include strains of Bacillus, Pseudomonas, Pantoea, Staphylococcus, Paenibacillus, Advenella, Arthrobacter, and Variovorax. Most isolates were highly resistant to selenate and selenite (up to 200 mM) and all could reduce selenite to red elemental Se, reduce nitrite and produce siderophores. Seven isolates were selected for plant inoculation and found to have plant growth promoting properties, both in pure culture and when co-cultivated with crop species Brassica juncea (Brassicaceae) or M. sativa. There were no effects on plant Se accumulation. We conclude that Se hyperaccumulators harbor an endophytic bacterial community in their natural seleniferous habitat that is equally diverse to that of comparable non-accumulators. The hyperaccumulator endophytes are characterized by high Se resistance, capacity to produce elemental Se and plant growth promoting properties. PMID:25784919

  11. Phylogenetic analysis of endophytic bacterial isolates from leaves of the medicinal plant Trichilia elegans A. Juss. (Meliaceae).

    PubMed

    Rhoden, S A; Garcia, A; Santos e Silva, M C; Azevedo, J L; Pamphile, J A

    2015-01-01

    Various organisms such as fungi and bacteria can live inside plants, inhabiting the aerial parts (primarily the leaves) without causing damage. These microorganisms, called endophytes, produce an extensive variety of compounds that can be useful for medical and agronomic purposes. Trichilia elegans A. Juss., belonging to the Meliaceae family, shows wide dispersion in South America, and phytochemical analyses from these plants and endophyte isolates have shown biological activity. Accordingly, the aim of this study was to verify the diversity of bacterial endophytes from T. elegans using partial sequencing of 16S rRNA, followed by phylogenetic analysis. Isolation was performed by cutting the leaves, after disinfection with 5% sodium hypochlorite (NaOCl), in 1-2-mm² fragments, which were equally placed on dishes containing TSA and fungicide BENLATE at 75 μg/mL. All dishes were incubated at 28°C in the biochemical oxygen demand system for 5 days and periodically checked. Afterwards, the colonization frequency (%) was determined: (number of fragments colonized by bacteria/total number of fragments) x 100. Three isolations between September 2011 and March 2012 were performed; the growth frequency ranged between 1.6 and 13.6%. Following sequencing of 16S rRNA and phylogenetic analysis, the genera identified were: Staphylococcus, Bacillus, Microbacterium, Pseudomonas, and Pantoea. These results will provide important knowledge on the diversity of endophytic bacteria inhabiting medicinal plants, and a better understanding of the microbiome of T. elegans would reinforce the necessity of endophyte studies with a focus on their future applications in biotechnological areas of agriculture, medicine, and the environment. PMID:25730091

  12. Selenium hyperaccumulators harbor a diverse endophytic bacterial community characterized by high selenium resistance and plant growth promoting properties

    PubMed Central

    Sura-de Jong, Martina; Reynolds, Ray J. B.; Richterova, Klara; Musilova, Lucie; Staicu, Lucian C.; Chocholata, Iva; Cappa, Jennifer J.; Taghavi, Safiyh; van der Lelie, Daniel; Frantik, Tomas; Dolinova, Iva; Strejcek, Michal; Cochran, Alyssa T.; Lovecka, Petra; Pilon-Smits, Elizabeth A. H.

    2015-01-01

    Selenium (Se)-rich plants may be used to provide dietary Se to humans and livestock, and also to clean up Se-polluted soils or waters. This study focused on endophytic bacteria of plants that hyperaccumulate selenium (Se) to 0.5–1% of dry weight. Terminal restriction fragment length polymorphism (T-RFLP) analysis was used to compare the diversity of endophytic bacteria of hyperaccumulators Stanleya pinnata (Brassicaceae) and Astragalus bisulcatus (Fabaceae) with those from related non-accumulators Physaria bellii (Brassicaceae) and Medicago sativa (Fabaceae) collected on the same, seleniferous site. Hyperaccumulators and non-accumulators showed equal T-RF diversity. Parsimony analysis showed that T-RFs from individuals of the same species were more similar to each other than to those from other species, regardless of plant Se content or spatial proximity. Cultivable endophytes from hyperaccumulators S. pinnata and A. bisulcatus were further identified and characterized. The 66 bacterial morphotypes were shown by MS MALDI-TOF Biotyper analysis and 16S rRNA gene sequencing to include strains of Bacillus, Pseudomonas, Pantoea, Staphylococcus, Paenibacillus, Advenella, Arthrobacter, and Variovorax. Most isolates were highly resistant to selenate and selenite (up to 200 mM) and all could reduce selenite to red elemental Se, reduce nitrite and produce siderophores. Seven isolates were selected for plant inoculation and found to have plant growth promoting properties, both in pure culture and when co-cultivated with crop species Brassica juncea (Brassicaceae) or M. sativa. There were no effects on plant Se accumulation. We conclude that Se hyperaccumulators harbor an endophytic bacterial community in their natural seleniferous habitat that is equally diverse to that of comparable non-accumulators. The hyperaccumulator endophytes are characterized by high Se resistance, capacity to produce elemental Se and plant growth promoting properties. PMID:25784919

  13. Endophytic fungi: resource for gibberellins and crop abiotic stress resistance.

    PubMed

    Khan, Abdul Latif; Hussain, Javid; Al-Harrasi, Ahmed; Al-Rawahi, Ahmed; Lee, In-Jung

    2015-03-01

    The beneficial effects of endophytes on plant growth are important for agricultural ecosystems because they reduce the need for fertilizers and decrease soil and water pollution while compensating for environmental perturbations. Endophytic fungi are a novel source of bioactive secondary metabolites; moreover, recently they have been found to produce physiologically active gibberellins as well. The symbiosis of gibberellins producing endophytic fungi with crops can be a promising strategy to overcome the adverse effects of abiotic stresses. The association of such endophytes has not only increased plant biomass but also ameliorated plant-growth during extreme environmental conditions. Endophytic fungi represent a trove of unexplored biodiversity and a frequently overlooked component of crop ecology. The present review describes the role of gibberellins producing endophytic fungi, suggests putative mechanisms involved in plant endophyte stress interactions and discusses future prospects in this field. PMID:23984800

  14. Helvolic acid, an antibacterial nortriterpenoid from a fungal endophyte, Xylaria sp. of orchid Anoectochilus setaceus endemic to Sri Lanka

    PubMed Central

    Ratnaweera, Pamoda B.; Williams, David E.; de Silva, E. Dilip; Wijesundera, Ravi L.C.; Dalisay, Doralyn S.; Andersen, Raymond J.

    2014-01-01

    An endophytic fungus was isolated from surface sterilized leaf segments of Anoectochilus setaceus, an orchid endemic to Sri Lanka, and was identified as Xylaria sp. by morphological characters and DNA sequencing. Bioassay-guided chromatographic fractionation of the organic extract of a laboratory culture of this fungus led to the isolation of the known antibacterial helvolic acid. Helvolic acid was active against the Gram-positive bacteria, Bacillus subtilis [minimal inhibitory concentrations (MIC), 2 μg mL−1] and methicillin-resistant Staphylococcus aureus (MIC, 4 μg mL−1). PMID:24772371

  15. Helvolic acid, an antibacterial nortriterpenoid from a fungal endophyte, Xylaria sp. of orchid Anoectochilus setaceus endemic to Sri Lanka.

    PubMed

    Ratnaweera, Pamoda B; Williams, David E; de Silva, E Dilip; Wijesundera, Ravi L C; Dalisay, Doralyn S; Andersen, Raymond J

    2014-03-01

    An endophytic fungus was isolated from surface sterilized leaf segments of Anoectochilus setaceus, an orchid endemic to Sri Lanka, and was identified as Xylaria sp. by morphological characters and DNA sequencing. Bioassay-guided chromatographic fractionation of the organic extract of a laboratory culture of this fungus led to the isolation of the known antibacterial helvolic acid. Helvolic acid was active against the Gram-positive bacteria, Bacillus subtilis [minimal inhibitory concentrations (MIC), 2 μg mL(-1)] and methicillin-resistant Staphylococcus aureus (MIC, 4 μg mL(-1)). PMID:24772371

  16. Bioactive metabolites from the endophytic fungus Alternaria alternata.

    PubMed

    Wang, Ying; Yang, Ming-Hua; Wang, Xiao-Bing; Li, Tian-Xiao; Kong, Ling-Yi

    2014-12-01

    Two altenuene derivatives (1-2) and one isocoumarin (3), together with six known compounds (4-9) were isolated from solid cultures of an endophytic fungus Alternaria alternata, obtained from the fresh branches of Camellia sinensis. Chiral analysis revealed the racemic nature of 1 and 2, which were subsequently resolved into two pairs of enantiomers [(+)-1 and (-)-1, (+)-2 and (-)-2]. Structures of all the isolates were identified through spectroscopic data. Absolute configurations of the two pairs of enantiomers were determined by electronic circular dichroism (ECD) calculation and the chiral center of C-10 in 3 was deduced via [Rh2(OCOCF₃)₄]-induced CD experiment. All the isolates were evaluated for their antimicrobial abilities against the pathogenic bacteria and fungi as well as cytotoxic activities against two human tumor cell lines. Compound 5 was the most active against Bacillus subtilis with MIC₈₀ of 8.6 μg/ml, and compounds 1-3, 6-7 and 9 exhibited moderate to weak inhibition towards the test pathogenic microorganism. Compound 4 showed mild cytotoxic activity against human osteosarcoma cells U2OS with IC₅₀ of 28.3 μM. PMID:25261763

  17. Evolution of Reproductive Morphology in Leaf Endophytes

    PubMed Central

    Wang, Zheng; Johnston, Peter R.; Yang, Zhu L.; Townsend, Jeffrey P.

    2009-01-01

    The endophytic lifestyle has played an important role in the evolution of the morphology of reproductive structures (body) in one of the most problematic groups in fungal classification, the Leotiomycetes (Ascomycota). Mapping fungal morphologies to two groups in the Leiotiomycetes, the Rhytismatales and Hemiphacidiaceae reveals significant divergence in body size, shape and complexity. Mapping ecological roles to these taxa reveals that the groups include endophytic fungi living on leaves and saprobic fungi living on duff or dead wood. Finally, mapping of the morphologies to ecological roles reveals that leaf endophytes produce small, highly reduced fruiting bodies covered with fungal tissue or dead host tissue, while saprobic species produce large and intricate fruiting bodies. Intriguingly, resemblance between asexual conidiomata and sexual ascomata in some leotiomycetes implicates some common developmental pathways for sexual and asexual development in these fungi. PMID:19158947

  18. Bacillus thuringiensis

    PubMed Central

    Ibrahim, Mohamed A; Griko, Natalya; Junker, Matthew

    2010-01-01

    Bacillus thuringiensis (Bt) is a unique bacterium in that it shares a common place with a number of chemical compounds which are used commercially to control insects important to agriculture and public health. Although other bacteria, including B. popilliae and B. sphaericus, are used as microbial insecticides, their spectrum of insecticidal activity is quite limited compared to Bt. Importantly, Bt is safe for humans and is the most widely used environmentally compatible biopesticide worldwide. Furthermore, insecticidal Bt genes have been incorporated into several major crops, rendering them insect resistant, and thus providing a model for genetic engineering in agriculture. This review highlights what the authors consider the most relevant issues and topics pertaining to the genomics and proteomics of Bt. At least one of the authors (L.A.B.) has spent most of his professional life studying different aspects of this bacterium with the goal in mind of determining the mechanism(s) by which it kills insects. The other authors have a much shorter experience with Bt but their intellect and personal insight have greatly enriched our understanding of what makes Bt distinctive in the microbial world. Obviously, there is personal interest and bias reflected in this article notwithstanding oversight of a number of published studies. This review contains some material not published elsewhere although several ideas and concepts were developed from a broad base of scientific literature up to 2010. PMID:21327125

  19. Metabolite and gene expression studies in endophyte infected and uninfected tall fescue under water deficit stress

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Tall fescue plants symbiotic with the endophytic fungus, Neotyphodium coenophialum (E+), have better survivability and persistence under stressful conditions, especially under drought stress, than plants lacking the endophyte (E-). To understand more about the grass-endophyte interactions, how endop...

  20. Isolation of potential probiotic Bacillus spp. and assessment of their subcellular components to induce immune responses in Labeo rohita against Aeromonas hydrophila.

    PubMed

    Ramesh, Dharmaraj; Vinothkanna, Annadurai; Rai, Amit Kumar; Vignesh, Venkada Subramanian

    2015-08-01

    Bacillus species isolated from the gut of healthy Labeo rohita (Hamilton) were screened for antibacterial activity against selected fish pathogens. Among the isolates, KADR5 and KADR6 showed antibacterial activity, tolerated low pH and high bile concentrations and were susceptibility to various antibiotics. Based on morphological and biochemical tests and 16S rRNA gene analysis the probiotic strains KADR5 and KADR6 were identified as Bacillus licheniformis and Bacillus pumilus, respectively. The immune stimulatory effect of subcellular components of probiotic Bacillus licheniformis KADR5 and Bacillus pumilus KADR6 in L. rohita against Aeromonas hydrophila infection was studied. Fish were immunized intraperitoneally in case of subcellular components [cell wall proteins (CWPs), extracellular proteins (ECPs), whole cell proteins (WCPs)] and orally in case of live cells (10(8) CFU/g of feed). After 14th day of administration, fishes from each group were challenged intraperitoneally with 0.1 ml of A. hydrophila cell suspension in PBS (10(5) cells ml(-1)). Groups immunized with subcellular components and live cells had significantly lower mortalities of 20-40% and 23-33%, respectively in comparison to control (80% mortality). The non specific immune factors in the cellular components and viable cells of the probiotics increased the expression of lysozyme and respiratory burst. Use of WCPs and CWPs resulted in better protection against A. hydrophila in L. rohita. Our results clearly reflect the potential of cellular components of the probiotics Bacillus species for the protection of fish against A. hydrophila infection by enhancing the immune response. PMID:25917974

  1. Diversity of endophytic fungi in Glycine max.

    PubMed

    Fernandes, Elio Gomes; Pereira, Olinto Liparini; Silva, Cynthia Cânedo da; Bento, Claudia Braga Pereira; Queiroz, Marisa Vieira de

    2015-12-01

    Endophytic fungi are microorganisms that live within plant tissues without causing disease during part of their life cycle. With the isolation and identification of these fungi, new species are being discovered, and ecological relationships with their hosts have also been studied. In Glycine max, limited studies have investigated the isolation and distribution of endophytic fungi throughout leaves and roots. The distribution of these fungi in various plant organs differs in diversity and abundance, even when analyzed using molecular techniques that can evaluate fungal communities in different parts of the plants, such as denaturing gradient gel electrophoresis (DGGE). Our results show there is greater species richness of culturable endophytic filamentous fungi in the leaves G. max as compared to roots. Additionally, the leaves had high values for diversity indices, i.e. Simpsons, Shannon and Equitability. Conversely, dominance index was higher in roots as compared to leaves. The fungi Ampelomyces sp., Cladosporium cladosporioides, Colletotrichum gloeosporioides, Diaporthe helianthi, Guignardia mangiferae and Phoma sp. were more frequently isolated from the leaves, whereas the fungi Fusarium oxysporum, Fusarium solani and Fusarium sp. were prevalent in the roots. However, by evaluating the two communities by DGGE, we concluded that the species richness was higher in the roots than in the leaves. UPGMA analysis showed consistent clustering of isolates; however, the fungus Leptospora rubella, which belongs to the order Dothideales, was grouped among species of the order Pleosporales. The presence of endophytic Fusarium species in G. max roots is unsurprising, since Fusarium spp. isolates have been previously described as endophyte in other reports. However, it remains to be determined whether the G. max Fusarium endophytes are latent pathogens or non-pathogenic forms that benefit the plant. This study provides a broader knowledge of the distribution of the fungal community in G. max leaves and roots, and identifies the genetic relationships among the isolated species. PMID:26111593

  2. Microarray analysis of Endophyte-infected and Endophyte-free tall fescue

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Many grasses have mutualistic symbioses with fungi of the family Clavicipitaceae. Tall fescue [Lolium arundinaceum (Schreb.) = Schedonorus arundinaceus (Schreb.) Dumont.] can harbor the obligate endophyte, Neotyphodium coenophialum that is asexually propagated and transmitted via host seeds. Total...

  3. Characterization of Bacillus spp. strains for use as probiotic additives in pig feed.

    PubMed

    Larsen, Nadja; Thorsen, Line; Kpikpi, Elmer Nayra; Stuer-Lauridsen, Birgitte; Cantor, Mette Dines; Nielsen, Bea; Brockmann, Elke; Derkx, Patrick M F; Jespersen, Lene

    2014-02-01

    Bacillus spp. are commonly used as probiotic species in the feed industry, however, their benefits need to be confirmed. This study describes a high throughput screening combined with the detailed characterization of endospore-forming bacteria with the aim to identify new Bacillus spp. strains for use as probiotic additives in pig feed. A total of 245 bacterial isolates derived from African fermented food, feces and soil were identified by 16S rRNA gene sequencing and screened for antimicrobial activity and growth in the presence of antibiotics, bile salts and at pH 4.0. Thirty-three Bacillus spp. isolates with the best characteristics were identified by gyrB and rpoB gene sequencing as B. amyloliquefaciens subsp. plantarum, B. amyloliquefaciens subsp. amyloliquefaciens, B. subtilis subsp. subtilis, B. licheniformis, B. mojavensis, B. pumilus and B. megaterium. These isolates were further investigated for their activity against the pathogenic bacteria, antibiotic susceptibility, sporulation rates, biofilm formation and production of glycosyl hydrolytic enzymes. Additionally, ten selected isolates were assessed for heat resistance of spores and the effect on porcine epithelial cells IPEC-J2. Isolates of B. amyloliquefaciens, B. subtilis and B. mojavensis, showed the best overall characteristics and, therefore, potential for usage as probiotic additives in feed. A large number of taxonomically diverse strains made it possible to reveal species and subspecies-specific trends, contributing to our understanding of the probiotic potential of Bacillus species. PMID:24201893

  4. Bioactivity of Root Endophytic Freshwater Hyphomycetes Anguillospora longissima (Sacc. & Syd.) Ingold

    PubMed Central

    Sati, S. C.; Singh, Lokendra

    2014-01-01

    Anguillospora longissima, isolated from root as endophytic freshwater hyphomycetes, was evaluated for its bioactivity (antibacterial potential) against five bacterial strains, namely, Gram-positive (Bacillus subtilis MTCC 121) and Gram-negative (Agrobacterium tumefaciens MTCC 609, Escherichia coli MTCC 40, Erwinia chrysanthemum, and Xanthomonas pseudomonas). Antimicrobial activity was assessed by measuring the zone of inhibition with preliminary and secondary antimicrobial assays. The applied fungus was found significant for all tested bacterial strains as showen by their zone of inhibition. In preliminary antimicrobial assay, maximum zone of inhibition was recorded against Gram-negative human pathogenic bacterial strain Escherichia coli (23 mm) followed by Erwinia chrysanthemi (22 mm), Agrobacterium tumefaciens (21 mm), and Xanthomonas phaseoli (21 mm), while minimum zone of inhibition was observed against Bacillus subtilis (20 mm). In secondary antimicrobial assay, the maximum zone of inhibition was recorded against Erwinia chrysanthemi (11 mm) followed by Agrobacterium tumefaciens (10 mm), Xanthomonas phaseoli (10 mm), and Bacillus subtilis (9 mm) and minimum inhibition was found against Escherichia coli (8 mm). PMID:25383378

  5. Interference of quorum sensing and virulence of the rice pathogen Burkholderia glumae by an engineered endophytic bacterium.

    PubMed

    Cho, Hyun-Soo; Park, Soo-Young; Ryu, Choong-Min; Kim, Jihyun F; Kim, Jong-Guk; Park, Seung-Hwan

    2007-04-01

    Many bacterial species are known to thrive within plants. Among these bacteria, a group referred to as endophytes provide beneficial effects to the host plants by the promotion of plant growth and the suppression of plant pathogens. Among 44 putative endophytic isolates isolated from surface-sterilized rice roots, Burkholderia sp. KJ006 was selected for further study because of a lack of pathogenicity to rice, a broad spectrum of antifungal properties, and the presence of the nifH gene, which is an indicator for nitrogen fixation. In an attempt to control Burkholderia glumae, a casual pathogen of seedling rot and grain rot of rice, an N-acyl-homoserine lactonase (aiiA) gene from Bacillus thuringiensis was introduced into Burkholderia sp. KJ006 given that the major virulence factor of Burkholderia glumae is controlled in a population-dependent manner (quorum sensing). The engineered strain KJ006 (pKPE-aiiA) inhibited production of quorum-sensing signals by Burkholderia glumae in vitro and reduced the disease incidence of rice seedling rot caused by Burkholderia glumae in situ. Our results indicate the possibility that a bacterial endophyte transformed with the aiiA gene can be used as a novel biological control agent against pathogenic Burkholderia glumae that are known to occupy the same ecological niche. PMID:17313662

  6. Rice Plants Grown With and Without Endophytes

    These rice plants show the difference in growth of rice plants exposed to salt when grown with and without endophytes, which are mutually beneficial microscopic fungi that live in most plants. The plant on the left was colonized with a fungi that made it salt-tolerant, but it wasn't exposed to ...

  7. Acid protease production in fungal root endophytes.

    PubMed

    Mayerhofer, Michael S; Fraser, Erica; Kernaghan, Gavin

    2015-01-01

    Fungal endophytes are ubiquitous in healthy root tissue, but little is known about their ecosystem functions, including their ability to utilize organic nutrient sources such as proteins. Root-associated fungi may secrete proteases to access the carbon and mineral nutrients within proteins in the soil or in the cells of their plant host. We compared the protein utilization patterns of multiple isolates of the root endophytes Phialocephala fortinii s.l., Meliniomyces variabilis and Umbelopsis isabellina with those of two ectomycorrhizal (ECM) fungi, Hebeloma incarnatulum and Laccaria bicolor, and the wood-decay fungus Irpex lacteus at pH values of 2-9 on liquid BSA media. We also assessed protease activity using a fluorescently labeled casein assay and gelatin zymography and characterized proteases using specific protease inhibitors. I. lacteus and U. isabellina utilized protein efficiently, while the ECM fungi exhibited poor protein utilization. ECM fungi secreted metallo-proteases and had pH optima above 4, while other fungi produced aspartic proteases with lower pH optima. The ascomycetous root endophytes M. variabilis and P. fortinii exhibited intermediate levels of protein utilization and M. variabilis exhibited a very low pH optimum. Comparing proteolytic profiles between fungal root endophytes and fungi with well defined ecological roles provides insight into the ecology of these cryptic root associates. PMID:25344260

  8. The secret world of endophytes in perspective

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This work in Fungal Ecology is focused on the group of plant symbionts that have been termed collectively ‘microbial endophytes’. Broadly, microbial endophytes are commonly considered to be any of a diverse group of bacteria, cyanobacteria, or fungi that colonize internal tissues of plants. After ...

  9. Impact of the endophyte on animal production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Tall fescue (Lolium arundinaceum L.) is widely utilized for forage in the eastern half of the USA. The grass is productive and persistent under low management; whish is attributed to alkaloids produced by a fungal endophyte (Neotyphodium coenophialum) that infects most tall fescue plants. Unfortua...

  10. Fungal endophytes in green coffee seeds

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Green coffee seeds from Colombia, Guatemala, India, Kenya, Papua New Guinea, Puerto Rico, and Vietnam were sampled for the presence of fungal endophytes. Sections of surface sterilized seeds were plated on yeast malt agar, and fungal growth was isolated for subsequent DNA extraction and sequencing....

  11. Endophytic bacteria from Piper tuberculatum Jacq.: isolation, molecular characterization, and in vitro screening for the control of Fusarium solani f. sp piperis, the causal agent of root rot disease in black pepper (Piper nigrum L.).

    PubMed

    Nascimento, S B; Lima, A M; Borges, B N; de Souza, C R B

    2015-01-01

    Endophytic bacteria have been found to colonize internal tissues in many different plants, where they can have several beneficial effects, including defense against pathogens. In this study, we aimed to identify endophytic bacteria associated with roots of the tropical piperaceae Piper tuberculatum, which is known for its resistance to infection by Fusarium solani f. sp piperis, the causal agent of black pepper (Piper nigrum) root rot disease in the Amazon region. Based on 16S rRNA gene sequence analysis, we isolated endophytes belonging to 13 genera: Bacillus, Paenibacillus, Pseudomonas, Enterobacter, Rhizobium, Sinorhizobium, Agrobacterium, Ralstonia, Serratia, Cupriavidus, Mitsuaria, Pantoea, and Staphylococcus. The results showed that 56.52% of isolates were associated with the phylum Proteobacteria, which comprised α, β, and γ classes. Other bacteria were related to the phylum Firmicutes, including Bacillus, which was the most abundant genus among all isolates. Antagonistic assays revealed that Pt12 and Pt13 isolates, identified as Pseudomonas putida and Pseudomonas sp, respectively, were able to inhibit F. solani f. sp piperis growth in vitro. We describe, for the first time, the molecular identification of 23 endophytic bacteria from P. tuberculatum, among which two Pseudomonas species have the potential to control the pathogen responsible for root rot disease in black pepper in the Amazon region. PMID:26214435

  12. Endophytic fungi reduce leaf-cutting ant damage to seedlings

    PubMed Central

    Bittleston, L. S.; Brockmann, F.; Wcislo, W.; Van Bael, S. A.

    2011-01-01

    Our study examines how the mutualism between Atta colombica leaf-cutting ants and their cultivated fungus is influenced by the presence of diverse foliar endophytic fungi (endophytes) at high densities in tropical leaf tissues. We conducted laboratory choice trials in which ant colonies chose between Cordia alliodora seedlings with high (Ehigh) or low (Elow) densities of endophytes. The Ehigh seedlings contained 5.5 times higher endophyte content and a greater diversity of fungal morphospecies than the Elow treatment, and endophyte content was not correlated with leaf toughness or thickness. Leaf-cutting ants cut over 2.5 times the leaf area from Elow relative to Ehigh seedlings and had a tendency to recruit more ants to Elow plants. Our findings suggest that leaf-cutting ants may incur costs from cutting and processing leaves with high endophyte loads, which could impact Neotropical forests by causing variable damage rates within plant communities. PMID:20610420

  13. Characteristics and biodiversity of endophytic phosphorus- and potassium-solubilizing bacteria in Moso Bamboo (Phyllostachys edulis).

    PubMed

    Yuan, Zong-Sheng; Liu, Fang; Zhang, Guo-Fang

    2015-12-01

    Endophytic phosphorus- and potassium-solubilizing bacteria were screened from the root, rhizome, stem, and leaves of Moso Bamboo, and their diversity was analyzed using their 16S rDNA sequences. Twenty endophytic phosphorus and potassium-solubilizing bacteria were screened from 82 bamboo plants, among which the CT-B09-2, WYS-A01-1 and JL-B06 had higher activities in decomposing organophosphates. The three species showed a decomposition diameter/colony diameter (D/d) of 5.05, 4.19 and 2.95, respectively, and a solubilizing activity of 81.77 mg/L, 77.85 mg/L and 63.69 mg/L, respectively. JL-B06, WYS-A01-1 and CT-B09-2 had higher activities in decomposing inorganic phosphorus, with a decomposition diameter/colony diameter (D/d) of 2.34, 2.12 and 1.82, respectively, and a solubilizing activity of 30.58 mg/L, 38.89 mg/L and 48.35 mg/L, respectively. CT-B21, WYS-A03-1 and JL-B06 had higher activities in decomposing potassium, with a decomposition diameter/colony diameter (D/d) of 3.37, 4.84 and 4.33, respectively, and a solubilizing activity of 2.81 mg/L, 2.54 mg/L and 2.46 mg/L, respectively. The 16S rDNA sequence analysis showed that the 20 phosphorus- and potassium-solubilizing bacteria belong to 14 species from 10 genera, and mainly consist of Alcaligenes spp., Enterobacter spp. and Bacillus spp. Our results demonstrate the abundant diversity of endophytic phosphorus- and potassiumsolubilizing bacteria in Moso Bamboo. PMID:26616376

  14. Identification of bacterial endophytes associated with traditional medicinal plant Tridax procumbens Linn.

    PubMed Central

    Preveena, Jagadesan; Bhore, Subhash J.

    2013-01-01

    Background: In traditional medicine, Tridax procumbens Linn. is used in the treatment of injuries and wounds. The bacterial endophytes (BEs) of medicinal plants could produce medicinally important metabolites found in their hosts; and hence, the involvement of BEs in conferring wound healing properties to T. Procumbens cannot be ruled out. But, we do not know which types of BEs are associated with T. Procumbens. Objective: The objective of this study was to investigate the fast growing and cultivable BEs associated with T. procumbens. Materials and Methods: Leaves and stems of healthy T. Procumbens plants were collected and cultivable BEs were isolated from surface-sterilized leaf and stem tissue samples using Luria-Bertani (LB) agar (medium) at standard conditions. A polymerase chain reaction was employed to amplify 16S rRNA coding gene fragments from the isolates. Cultivable endophytic bacterial isolates (EBIs) were identified using 16S rRNA gene nucleotide sequence similarity based method of bacterial identification. Results: Altogether, 50 culturable EBIs were isolated. 16S rRNA gene nucleotide sequences analysis using the Basic Local Alignment Search Tool (BLAST) revealed identities of the EBIs. Analysis reveals that cultivable Bacillus spp., Cronobacter sakazakii, Enterobacter spp., Lysinibacillus sphaericus, Pantoea spp., Pseudomonas spp. and Terribacillus saccharophilus are associated with T. Procumbens. Conclusion: Based on the results, we conclude that 24 different types of culturable BEs are associated with traditionally used medicinal plant, T. Procumbens, and require further study. PMID:24501447

  15. Bacterial endophytes contribute to abiotic stress adaptation in pepper plants (Capsicum annuum L.).

    PubMed

    Sziderics, A H; Rasche, F; Trognitz, F; Sessitsch, A; Wilhelm, E

    2007-11-01

    Endophytes are nonpathogenic plant-associated bacteria that can play an important role in plant vitality and may confer resistance to abiotic or biotic stress. The effects of 5 endophytic bacterial strains isolated from pepper plants showing 1-aminocyclopropane-1-carboxylate deaminase activity were studied in sweet pepper under in vitro conditions. Four of the strains tested showed production of indole acetic acid. Plant growth, osmotic potential, free proline content, and gene expression were monitored in leaves and roots under control and mild osmotic stress conditions. All indole acetate producers promoted growth in Capsicum annuum L. 'Ziegenhorn Bello', from which they were isolated. Osmotic stress caused an increase in the content of free proline in the leaves of both inoculated and noninoculated plants. Inoculated control plants also revealed higher proline levels in comparison with noninoculated control plants. Differential gene expression patterns of CaACCO, CaLTPI, CaSAR82A, and putative P5CR and P5CS genes during moderate stress were observed, depending on the bacterium applied. Inoculation with 2 bacterial strains, EZB4 and EZB8 (Arthrobacter sp. and Bacillus sp., respectively), resulted in a significantly reduced upregulation or even downregulation of the stress-inducible genes CaACCO and CaLTPI, as compared with the gene expression in noninoculated plants. This indicates that both strains reduced abiotic stress in pepper under the conditions tested. PMID:18026213

  16. Developmental Peculiarities and Seed-Borne Endophytes in Quinoa: Omnipresent, Robust Bacilli Contribute to Plant Fitness.

    PubMed

    Pitzschke, Andrea

    2016-01-01

    Among potential climate change-adapted crops for future agriculture, quinoa (Chenopodium quinoa), a facultative halophyte plant with exceptional nutritional properties, stands out as a prime candidate. This work examined how quinoa deals with extreme situations during seed rehydration. Quinoa distinguishes itself from other plants in multiple ways. It germinates within minutes, even under extremely hostile conditions. Broken seeds/split embryos are able to regenerate. Furthermore, quinoa seedlings are resurrection-competent. These peculiarities became in part explainable upon discovery of seed-borne microorganisms. 100% of quinoa seeds, from different sources, are inhabited by diverse members of the genus Bacillus. These endophytes are motile and reside in all seedling organs, indicating vertical transmission. Owing to their high catalase activities and superoxide contents the bacteria potentially manipulate the host's redox status. Superoxide-driven cell expansion enables quinoa to overcome a critical period in development, seedling establishment. Quinoa's immediate confrontation with "foreign" reactive oxygen species and bacterial elicitors likely induces a naturally primed state, enabling plants to withstand extreme situations. The endophytic bacteria, which are cultivable and highly robust themselves, have high potential for application in agriculture, food (amylase) and cosmetics (catalase) industry. This work also discusses the potential of transferring quinoa's microbiome to improve stress resistance in other plant species. PMID:26834724

  17. Developmental Peculiarities and Seed-Borne Endophytes in Quinoa: Omnipresent, Robust Bacilli Contribute to Plant Fitness

    PubMed Central

    Pitzschke, Andrea

    2016-01-01

    Among potential climate change-adapted crops for future agriculture, quinoa (Chenopodium quinoa), a facultative halophyte plant with exceptional nutritional properties, stands out as a prime candidate. This work examined how quinoa deals with extreme situations during seed rehydration. Quinoa distinguishes itself from other plants in multiple ways. It germinates within minutes, even under extremely hostile conditions. Broken seeds/split embryos are able to regenerate. Furthermore, quinoa seedlings are resurrection-competent. These peculiarities became in part explainable upon discovery of seed-borne microorganisms. 100% of quinoa seeds, from different sources, are inhabited by diverse members of the genus Bacillus. These endophytes are motile and reside in all seedling organs, indicating vertical transmission. Owing to their high catalase activities and superoxide contents the bacteria potentially manipulate the host’s redox status. Superoxide-driven cell expansion enables quinoa to overcome a critical period in development, seedling establishment. Quinoa’s immediate confrontation with “foreign” reactive oxygen species and bacterial elicitors likely induces a naturally primed state, enabling plants to withstand extreme situations. The endophytic bacteria, which are cultivable and highly robust themselves, have high potential for application in agriculture, food (amylase) and cosmetics (catalase) industry. This work also discusses the potential of transferring quinoa’s microbiome to improve stress resistance in other plant species. PMID:26834724

  18. Poplar and its bacterial endophytes: coexistence and harmony

    SciTech Connect

    van der Lelie, D.; Taghavi, S.; Monchy, S.; Schwender, J.; Miller, L.; Ferrieri, R.; Rogers, A.; Zhu, W.; Weyens, N.; Vangronsveld, J.; Newman, L.

    2009-09-01

    Associations between plants and microorganisms are very complex and are the subject of an increasing number of studies. Here, we specifically address the relationship between poplar and its endophytic bacteria. The role and importance of endophytic bacteria in growth and development of their host plants is still underestimated. However, since many endophytes have a beneficial effect on their host, an improved understanding of the interaction between poplar and its endophytic bacteria has the potential to provide major breakthroughs that will improve the productivity of poplar. Endophytic bacteria can improve plant growth and development in a direct or indirect way. Direct plant growth promoting mechanisms may involve nitrogen fixation, production of plant growth regulators such as auxins, cytokinins and gibberellins, and suppression of stress ethylene synthesis by 1-aminocyclopropane-1-carboxylate (ACC) deaminase activity. Endophytic bacteria can indirectly benefit the plant by preventing the growth or activity of plant pathogens through competition for space and nutrients, antibiosis, production of hydrolytic enzymes, inhibition of pathogen-produced enzymes or toxins, and through systemic induction of plant defense mechanisms. Examples of applications for custom endophyte-host partnerships include improved productivity and establishment of poplar trees on marginal soils and the phytoremediation of contaminated soils and groundwater. A systems biology approach to understand the synergistic interactions between poplar and its beneficial endophytic bacteria represents an important field of research, which is facilitated by the recent sequencing of the genomes of poplar and several of its endophytic bacteria.

  19. Antimicrobial dihydrobenzofurans and xanthenes from a foliar endophyte of Pinus strobus.

    PubMed

    Richardson, Susan N; Nsiama, Tienabe K; Walker, Allison K; McMullin, David R; Miller, J David

    2015-09-01

    Foliar fungal endophytes of Pinus strobus (eastern white pine) were collected from different sites across south-eastern New Brunswick, Canada and screened for the production of bioactive metabolites. From one site, two fungal isolates representing a formerly unknown genus and species within the family Massarinaceae (Pleosporales, Dothideomycetes, Ascomycota) were resolved by phylogenetic analysis. These isolates produced crude organic extracts that were active against Microbotryum violaceum and Saccharomyces cerevisiae. From these strains, DAOM 242779 and 242780, four dihydrobenzofurans (1-4) and two xanthenes (5-6) were characterized. Structures were elucidated by HRMS, interpretation of NMR spectra and other spectroscopic techniques. All isolated metabolites displayed antimicrobial activity against the biotrophic fungal pathogen M. violaceum and Bacillus subtilis. PMID:26189049

  20. Epiphytic and endophytic bacteria that promote growth of ethnomedicinal plants in the subtropical forests of Meghalaya, India.

    PubMed

    Nongkhlaw, Fenella Mary War; Joshi, S R

    2014-12-01

    The present study was aimed to investigate the endophytic and epiphytic bacteria associated with selected ethnomedicinal plants from the pristine subtropical forests of Meghalaya and analyse them for plant growth promotion and antagonistic ability. This study is an attempt to explore plant associated bacteria which are beneficial to host plants, and thus aid in the conservation of ethnomedicinal plants of the studied subtropical forests, which are dwindling due to exploitation. The plant growth promotion parameters like indole acetic acid (IAA) production, mineral phosphate solubilisation, acid phosphatase activity, presence of 1-aminocyclopropane-1-carboxylic acid deaminase (ACC) gene, nitrogen fixation, cellulose digestion, chitin and pectin degrada- tion were screened among the isolates. The study revealed significant differences in bacterial population not only between the epiphytic and endophytic microhabitats, but also amongst the host plants. Out of the 70 isolated plant associated bacteria, Bacillus sp., Serratia sp., Pseudomonas sp., Pantoea sp., and Lysinibacillus sp. showed potent plant growth promotion properties. Bacillus siamensis C53 and B. subtilis cenB showed significant antagonistic activity against the tested pathogens. This study indicated the isolates inhabiting the plants prevalent in the subtropical sacred forests could be explored for use as plant growth promoters while practising the cultiva- tion and conservation of ethnomedicinal plants. PMID:25720168

  1. Elimination of ergovaline from a grass–Neotyphodium endophyte symbiosis by genetic modification of the endophyte

    PubMed Central

    Panaccione, Daniel G.; Johnson, Richard D.; Wang, Jinghong; Young, Carolyn A.; Damrongkool, Prapassorn; Scott, Barry; Schardl, Christopher L.

    2001-01-01

    The fungal endophytes Neotyphodium lolii and Neotyphodium sp. Lp1 from perennial ryegrass (Lolium perenne), and related endophytes in other grasses, produce the ergopeptine toxin ergovaline, among other alkaloids, while also increasing plant fitness and resistance to biotic and abiotic stress. In the related fungus, Claviceps purpurea, the biosynthesis of ergopeptines requires the activities of two peptide synthetases, LPS1 and LPS2. A peptide synthetase gene hypothesized to be important for ergopeptine biosynthesis was identified in C. purpurea by its clustering with another ergot alkaloid biosynthetic gene, dmaW. Sequence analysis conducted independently of the research presented here indicates that this gene encodes LPS1 [Tudzynski, P., Holter, K., Correia, T., Arntz, C., Grammel, N. & Keller, U. (1999) Mol. Gen. Genet. 261, 133–141]. We have cloned a similar peptide synthetase gene from Neotyphodium lolii and inactivated it by gene knockout in Neotyphodium sp. Lp1. The resulting strain retained full compatibility with its perennial ryegrass host plant as assessed by immunoblotting of tillers and quantitative PCR. However, grass–endophyte associations containing the knockout strain did not produce detectable quantities of ergovaline as analyzed by HPLC with fluorescence detection. Disruption of this gene provides a means to manipulate the accumulation of ergovaline in endophyte-infected grasses for the purpose of determining the roles of ergovaline in endophyte-associated traits and, potentially, for ameliorating toxicoses in livestock. PMID:11592979

  2. Host status of endophyte-infected and noninfected tall fescue grass to Meloidogyne spp.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Tall fescue grass cultivars with or without endophytes were evaluated for their susceptibility to Meloidogyne incognita in the greenhouse. Tall fescue cultivars evaluated included, i) wild-type Jesup (E+, ergot-producing endophyte present), ii) endophyte-free Jesup (E-, no endophyte present), iii) ...

  3. Isolation and characterisation of Bacillus spp. antagonistic to Vibrio parahaemolyticus for use as probiotics in aquaculture.

    PubMed

    Liu, Xue-Fei; Li, Ya; Li, Jian-Rong; Cai, Lu-Yun; Li, Xiu-Xia; Chen, Jin-Ru; Lyu, Shu-Xia

    2015-05-01

    Acute gastroenteritis caused by pathogenic Vibrio parahaemolyticus is one of the major factors affecting the development of aquaculture and the safety of seafood. Using the antagonism of probiotics against pathogens is an alternative strategy to antibiotics and a common trend to control food-borne pathogenic bacteria. In this study, a total of 249 isolates were isolated from four types of seafood (Litopenaeus vannamei, Oratosquilla oratoria, Mactra veneriformis and Portunus trituberculatus) and coastal sediment from Liaodong Bay in the Bohai Sea, China with five different separation agars. The most isolates came from the sample of coastal sediment and on agar of 2216E, which accounted for 36.14 and 54.62 % respectively. Twenty-four among 249 isolates displayed direct antimicrobial activity to V. parahaemolyticus with spot inoculation. Sixteen active isolates were selected for extracellular antimicrobial activity using the Oxford cup method. Only strains of B16 and J7 showed extracellular antimicrobial activity and were identified as Bacillus pumilus and Bacillus mojavensis respectively based on the physiological identification and 16S rRNA sequence analysis. Both of the strains B16 and J7 exhibited extracellular hydrolytic enzyme activity and antagonism against more than one indicator bacteria in vitro, which indicates that the two strains have broad potential application as suitable probiotic candidates in aquaculture while B. mojavensis was first reported to inhibit pathogenic Vibrio spp. in vitro. There is no particular trait as to antagonism of B. pumilus B16 or B. mojavensis J7 to Gram-positive or Gram-negative indicator bacteria. PMID:25737203

  4. Efficacy of using harmless Bacillus endospores to estimate the inactivation of Cryptosporidium parvum oocysts in water.

    PubMed

    Garvey, Mary; Clifford, Eoghan; O'Reilly, Edmond; Rowan, Neil J

    2013-06-01

    The need to use complex in vitro cell culture, expensive equipment, and highly-trained technicians that are available only to specialist laboratories has significantly limited studies assessing the potential of pulsed UV light (PUV) to inactivate the waterborne parasite Cryptosporidium parvum in drinking water. This constitutes the first study to report on the use of different non-pathogenic Bacillus endospores as potential surrogate organisms to indicate the PUV inactivation performance of a C. parvum oocyst suspended in water. Findings showed that PUV effectively inactivated approximately 5 log10 CFU/ml Bacillus megaterium and Bacillus pumilus endospores suspended in water at a UV dose of 9.72 μJ/cm(2) that also inactivated statistically similar levels of C. parvum oocysts (P < 0.05), as determined by combined in vitro HCT-8 cell culture and quantitative PCR. Specifically, this study demonstrated that B. megaterium exhibited greater or similar PUV-inactivation kinetic data compared to that of similarly treated C. parvum over the UV dose range 6.4 to 12.9 μJ/cm(2). Therefore, the former may be used as an indicator organism for safely investigating the PUV-inactivation performance of this chlorine-resistant, waterborne parasite at the waste-water treatment plant level. Findings presented will impact positively on future water quality studies and on public health. PMID:23145570

  5. A novel method to scale up fungal endophyte isolations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Estimations of species diversity are influenced by sampling intensity which in turn is influenced by methodology. For fungal endophyte diversity studies, the methodology includes surface-sterilization prior to isolation of endophytes. Surface-sterilization is an essential component of fungal endophy...

  6. Endophytic bacterial community of a Mediterranean marine angiosperm (Posidonia oceanica)

    PubMed Central

    Garcias-Bonet, Neus; Arrieta, Jesus M.; de Santana, Charles N.; Duarte, Carlos M.; Marbà, Núria

    2012-01-01

    Bacterial endophytes are crucial for the survival of many terrestrial plants, but little is known about the presence and importance of bacterial endophytes of marine plants. We conducted a survey of the endophytic bacterial community of the long-living Mediterranean marine angiosperm Posidonia oceanica in surface-sterilized tissues (roots, rhizomes, and leaves) by Denaturing Gradient Gel Electrophoresis (DGGE). A total of 26 Posidonia oceanica meadows around the Balearic Islands were sampled, and the band patterns obtained for each meadow were compared for the three sampled tissues. Endophytic bacterial sequences were detected in most of the samples analyzed. A total of 34 OTUs (Operational Taxonomic Units) were detected. The main OTUs of endophytic bacteria present in P. oceanica tissues belonged primarily to Proteobacteria (α, γ, and δ subclasses) and Bacteroidetes. The OTUs found in roots significantly differed from those of rhizomes and leaves. Moreover, some OTUs were found to be associated to each type of tissue. Bipartite network analysis revealed differences in the bacterial endophyte communities present on different islands. The results of this study provide a pioneering step toward the characterization of the endophytic bacterial community associated with tissues of a marine angiosperm and reveal the presence of bacterial endophytes that differed among locations and tissue types. PMID:23049528

  7. Culture and Identification of Endophytic Fungi from Oxytropis glabra DC

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Oxytropis glabra DC. is an important poisonous plant species in Inner Mongolia steppe. In this research the endophytic fungi from O. glabra DC. were studied both by microbiological and molecular biological techniques. The results showed as follows: The in vitro cultured endophytic fungi displ...

  8. Endophyte status of tall fescue (festuca arundinacea) affects seed predation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In a preliminary study seed of a tall fescue (Festuca arundinacea Schreb.) variety ‘Jesup’ without endophyte were consumed at a slightly higher rate by common cricket (Acheta domesticus L.) in a standard feeding trial than the same fescue variety with the endophyte. Although, the preference for the...

  9. Geographic locality greatly influences fungal endophyte communities in Cephalotaxus harringtonia.

    PubMed

    Langenfeld, Aude; Prado, Soizic; Nay, Bastien; Cruaud, Corine; Lacoste, Sandrine; Bury, Edith; Hachette, Franois; Hosoya, Tsuyoshi; Dupont, Jolle

    2013-02-01

    Although endophytes of conifers have been extensively studied, few data are available on Cephalotaxaceae. We examined foliar and stem endophytes of Cephalotaxus harringtonia, within its natural range in Japan and outside its natural range in France to study the effect of geography on endophyte community composition. In Japan, rapidly growing endophytes were dominant and may have masked the real diversity, in comparison to France where most endophytes were growing slowly. Analyses of ITS rDNA revealed 104 different Blast Groups among 554 isolates. Almost no overlap between endophyte assemblages of C. harringtonia from the two countries was observed. It seems that Japanese C. harringtonia trees, which should be well adapted to their native site, would host a specific, endemic endophyte community, while trees that have been introduced recently to a foreign site, in France, should have captured existing cosmopolitan and more generalist taxa. In Japan the majority of xylariaceous taxa, which dominated the communities, were unknown and, although closely related to Asian taxa, may be new to science. Dothideomycetes were more prevalent in France. Locally, urban environment, particularly in Japan, may have introduced some perturbations in the native endophyte community of C. harringtonia, with an abundance of generalist fungi such as Nigrospora and Colletotrichum. PMID:23452950

  10. Phytoremediation: plant-endophyte partnerships take the challenge

    SciTech Connect

    Weyens, N.; van der Lelie, D.; Taghavi, S.; Vangronsveld, J.

    2009-04-01

    A promising field to exploit plant-endophyte partnerships is the remediation of contaminated soils and (ground) water. Many plant growth promoting endophytes can assist their host plant to overcome contaminant-induced stress responses, thus providing improved plant growth. During phytoremediation of organic contaminants, plants can further benefit from endophytes possessing appropriate degradation pathways and metabolic capabilities, leading to more efficient contaminant degradation and reduction of both phytotoxicity and evapotranspiration of volatile contaminants. For phytoremediation of toxic metals, endophytes possessing a metal-resistance/sequestration system can lower metal phytotoxicity and affect metal translocation to the above-ground plant parts. Furthermore, endophytes that can degrade organic contaminants and deal with or, even better, improve extraction of the metals offer promising ways to improve phytoremediation of mixed pollution.

  11. Assessment of the bacteriocinogenic potential of marine bacteria reveals lichenicidin production by seaweed-derived Bacillus spp.

    PubMed

    Prieto, Maria Luz; O'Sullivan, Laurie; Tan, Shiau Pin; McLoughlin, Peter; Hughes, Helen; O'Connor, Paula M; Cotter, Paul D; Lawlor, Peadar G; Gardiner, Gillian E

    2012-10-01

    The objectives of this study were (1) to assess the bacteriocinogenic potential of bacteria derived mainly from seaweed, but also sand and seawater, (2) to identify at least some of the bacteriocins produced, if any and (3) to determine if they are unique to the marine environment and/or novel. Fifteen Bacillus licheniformis or pumilus isolates with antimicrobial activity against at least one of the indicator bacteria used were recovered. Some, at least, of the antimicrobials produced were bacteriocins, as they were proteinaceous and the producers displayed immunity. Screening with PCR primers for known Bacillus bacteriocins revealed that three seaweed-derived Bacillus licheniformis harbored the bli04127 gene which encodes one of the peptides of the two-peptide lantibiotic lichenicidin. Production of both lichenicidin peptides was then confirmed by mass spectrometry. This is the first definitive proof of bacteriocin production by seaweed-derived bacteria. The authors acknowledge that the bacteriocin produced has previously been discovered and is not unique to the marine environment. However, the other marine isolates likely produce novel bacteriocins, as none harboured genes for known Bacillus bacteriocins. PMID:23170084

  12. Assessment of the Bacteriocinogenic Potential of Marine Bacteria Reveals Lichenicidin Production by Seaweed-Derived Bacillus spp.

    PubMed Central

    Luz Prieto, Maria; O’Sullivan, Laurie; Tan, Shiau Pin; McLoughlin, Peter; Hughes, Helen; O’Connor, Paula M.; Cotter, Paul D.; Lawlor, Peadar G.; Gardiner, Gillian E.

    2012-01-01

    The objectives of this study were (1) to assess the bacteriocinogenic potential of bacteria derived mainly from seaweed, but also sand and seawater, (2) to identify at least some of the bacteriocins produced, if any and (3) to determine if they are unique to the marine environment and/or novel. Fifteen Bacillus licheniformis or pumilus isolates with antimicrobial activity against at least one of the indicator bacteria used were recovered. Some, at least, of the antimicrobials produced were bacteriocins, as they were proteinaceous and the producers displayed immunity. Screening with PCR primers for known Bacillus bacteriocins revealed that three seaweed-derived Bacillus licheniformis harbored the bli04127 gene which encodes one of the peptides of the two-peptide lantibiotic lichenicidin. Production of both lichenicidin peptides was then confirmed by mass spectrometry. This is the first definitive proof of bacteriocin production by seaweed-derived bacteria. The authors acknowledge that the bacteriocin produced has previously been discovered and is not unique to the marine environment. However, the other marine isolates likely produce novel bacteriocins, as none harboured genes for known Bacillus bacteriocins. PMID:23170084

  13. Fungal epiphytes and endophytes of coffee leaves (Coffea arabica).

    PubMed

    Santamaría, Johanna; Bayman, Paul

    2005-07-01

    Plants harbor diverse communities of fungi and other microorganisms. Fungi are known to occur both on plant surfaces (epiphytes) and inside plant tissues (endophytes), but the two communities have rarely been compared. We compared epiphytic and endophytic fungal communities associated with leaves of coffee (Coffea arabica) in Puerto Rico. We asked whether the dominant fungi are the same in both communities, whether endophyte and epiphyte communities are equally diverse, and whether epiphytes and endophytes exhibit similar patterns of spatial heterogeneity among sites. Leaves of naturalized coffee plants were collected from six sites in Puerto Rico. Epiphytic and endophytic fungi were isolated by placing leaf pieces on potato dextrose agar without and with surface sterilization, respectively. A total of 821 colonies were isolated and grouped into 131 morphospecies. The taxonomic affinities of the four most common nonsporulating fungi were determined by sequencing the nuclear ribosomal internal transcribed spacer (ITS) region: two grouped with Xylaria and one each with Botryosphaeria and Guignardia. Of the most common genera, Pestalotia and Botryosphaeria were significantly more common as epiphytes; Colletotrichum, Xylaria, and Guignardia were significantly more common as endophytes. Suprisingly, more morphospecies occurred as endophytes than as epiphytes. Differences among sites in number of fungi per plant were significant. Thus epiphytic and endophytic communities differed greatly on a single leaf, despite living only millimeters apart, and both communities differed from site to site. Significant correlations between occurrence of fungal morphospecies suggested that fungi may have positive or negative effects on their neighbors. This is the first quantitative comparison of epiphytic and endophytic fungal floras in any plant, and the first to examine endophytic fungi or epiphytic fungi in leaves of coffee, one of the world's most valuable crops. PMID:16132426

  14. Endophytic bacteria take the challenge to improve Cu phytoextraction by sunflower.

    PubMed

    Kolbas, Aliaksandr; Kidd, Petra; Guinberteau, Jacques; Jaunatre, Renaud; Herzig, Rolf; Mench, Michel

    2015-04-01

    Endophytic bacteria from roots and crude seed extracts of a Cu-tolerant population of Agrostis capillaris were inoculated to a sunflower metal-tolerant mutant line, and their influence on Cu tolerance and phytoextraction was assessed using a Cu-contaminated soil series. Ten endophytic bacterial strains isolated from surface-sterilized A. capillaris roots were mixed to prepare the root endophyte inoculant (RE). In parallel, surface-sterilized seeds of A. capillaris were crushed in MgSO4 to prepare a crude seed extract containing seed endophytes (SE). An aliquot of this seed extract was filtered at 0.2 μm to obtain a bacterial cell-free seed extract (SEF). After surface sterilization, germinated sunflower seeds were separately treated with one of five modalities: no treatment (C), immersion in MgSO4 (CMg) or SEF solutions and inoculation with RE or SE. All plants were cultivated on a Cu-contaminated soil series (13-1020 mg Cu kg(-1)). Cultivable RE strains were mostly members of the Pseudomonas genera, and one strain was closely related to Labrys sp. The cultivable SE strains belonged mainly to the Bacillus genera and some members of the Rhodococcus genera. The treatment effects depended on the soil Cu concentration. Both SE and SEF plants had a higher Cu tolerance in the 13-517 mg Cu kg(-1) soil range as reflected by increased shoot and root DW yields compared to control plants. This was accompanied by a slight decrease in shoot Cu concentration and increase in root Cu concentration. Shoot and root DW yields were more promoted by SE than SEF in the 13-114 mg Cu kg(-1) soil range, which could reflect the influence of seed-located bacterial endophytes. At intermediate soil Cu (416-818 mg Cu kg(-1) soil), the RE and CMg plants had lower shoot Cu concentrations than the control, SE and SEF plants. At high total soil Cu (617-1020 mg Cu kg(-1)), root DW yield of RE plants slightly increased and their root Cu concentration rose by up to 1.9-fold. In terms of phytoextraction efficiency, shoot Cu removal was increased for sunflower plants inoculated with crude and bacterial cell-free seed extracts by 1.3- to 2.2-fold in the 13-416 mg Cu kg(-1) soil range. Such increase was mainly driven by an enhanced shoot DW yield. The number and distribution of endophytic bacteria in the harvested sunflower tissues must be further examined. PMID:25561255

  15. Phylogeny of marine Bacillus isolates from the Gulf of Mexico

    NASA Technical Reports Server (NTRS)

    Siefert, J. L.; Larios-Sanz, M.; Nakamura, L. K.; Slepecky, R. A.; Paul, J. H.; Moore, E. R.; Fox, G. E.; Jurtshuk, P. Jr

    2000-01-01

    The phylogeny of 11 pigmented, aerobic, spore-forming isolates from marine sources was studied. Forty-two biochemical characteristics were examined, and a 16S rDNA sequence was obtained for each isolate. In a phylogenetic tree based on 16S sequencing, four isolates (NRRL B-14850, NRRL B-14904, NRRL B-14907, and NRRL B-14908) clustered with B. subtilis and related organisms; NRRL B-14907 was closely related to B. amyloliquefaciens. NRRL B-14907 and NRRL B-14908 were phenotypically similar to B. amyloliquefaciens and B. pumilus, respectively. Three strains (NRRL B-14906, NRRL B-14910, and NRRL B-14911) clustered in a clade that included B. firmus, B. lentus, and B. megaterium. NRRL B-14910 was closely related phenotypically and phylogenetically to B. megaterium. NRRL B-14905 clustered with the mesophilic round spore-producing species, B. fusiformis and B. sphaericus; the isolate was more closely related to B. fusiformis. NRRL B-14905 displayed characteristics typical of the B. sphaericus-like organisms. NRRL B-14909 and NRRL B-14912 clustered with the Paenibacillus species and displayed characteristics typical of the genus. Only NRRL B-14851, an unusually thin rod that forms very small spores, may represent a new Bacillus species.

  16. Microarray Comparison of Endophyte-Infected and Endophyte-Free Tall Fescue

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Many grasses have mutualistic symbioses with fungi of the family Clavicipitaceae: Tall fescue (Festuca arudinacea = Lolium arundinaceum) can harbor the obligate endophyte, Neotyphodium coenophialum that are asexually propagated and transmitted via host seeds. In an effort to begin to dissect the hos...

  17. Performance by Spring-Calving Cows Grazing Tall Fescue Pastures with Either the Wild-Type Toxic Endophyte or a Non-Toxic Novel Endophyte

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cows grazing 'Kentucky-31' tall fescue [Lolium arundinaceum (Schreb.) Darbysh.] infected with its wild-type endophyte (Neotyphodium coenophialum; E+) generally display suboptimal performance. Recently, endophyte strains that do not produce compounds toxic to cattle have been incorporated into tall ...

  18. Gene expression and metabolite analysis of endophyte infected and uninfected tall fescue clone pairs under water deficit conditions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Tall fescue (Lolium arundinaceum) plants symbiotic with the endophytic fungus, Neotyphodium coenophialum (E+), have better survivability and persistence under stressful conditions, especially under drought stress, than plants lacking the endophyte (E-). To understand more about the grass-endophyte i...

  19. Genomic and chemical insights into biosurfactant production by the mangrove-derived strain Bacillus safensis CCMA-560.

    PubMed

    Domingos, Daniela Ferreira; de Faria, Andreia Fonseca; de Souza Galaverna, Renan; Eberlin, Marcos Nogueira; Greenfield, Paul; Zucchi, Tiago Domingues; Melo, Itamar Soares; Tran-Dinh, Nai; Midgley, David; de Oliveira, Valéria Maia

    2015-04-01

    Many Bacillus species can produce biosurfactant, although most of the studies on lipopeptide production by this genus have been focused on Bacillus subtilis. Surfactants are broadly used in pharmaceutical, food and petroleum industry, and biological surfactant shows some advantages over the chemical surfactants, such as less toxicity, production from renewable, cheaper feedstocks and development of novel recombinant hyperproducer strains. This study is aimed to unveil the biosurfactant metabolic pathway and chemical composition in Bacillus safensis strain CCMA-560. The whole genome of the CCMA-560 strain was previously sequenced, and with the aid of bioinformatics tools, its biosurfactant metabolic pathway was compared to other pathways of closely related species. Fourier transform infrared (FTIR) and high-resolution TOF mass spectrometry (MS) were used to characterize the biosurfactant molecule. B. safensis CCMA-560 metabolic pathway is similar to other Bacillus species; however, some differences in amino acid incorporation were observed, and chemical analyses corroborated the genetic results. The strain CCMA-560 harbours two genes flanked by srfAC and srfAD not present in other Bacillus spp., which can be involved in the production of the analogue gramicidin. FTIR and MS showed that B. safensis CCMA-560 produces a mixture of at least four lipopeptides with seven amino acids incorporated and a fatty acid chain with 14 carbons, which makes this molecule similar to the biosurfactant of Bacillus pumilus, namely, pumilacidin. This is the first report on the biosurfactant production by B. safensis, encompassing the investigation of the metabolic pathway and chemical characterization of the biosurfactant molecule. PMID:25586584

  20. Endophyte-mediated resistance to black cutworm as a function of plant cultivar and endophyte strain in tall fescue.

    PubMed

    Baldauf, Michael W; Mace, Wade J; Richmond, Douglas S

    2011-06-01

    To improve Neotyphodium endophyte-mediated resistance to black cutworm Agrotis ipsilon (Hufnagel) (BCW), a series of experiments was conducted by using several different cultivars of tall fescue, Schedonorus arundinaceus (Schreb.) Dumort. in combination with several different haplotypes of the endophyte Neotyphodium coenophialum (Morgan-Jones & Gams) (plant cultivar × endophyte haplotype = plant line), each producing unique alkaloid profiles. BCW settling response, survival at 5 and 10 d, and larval biomass varied significantly among plant lines. In general, greater variation BCW performance was observed within a single plant cultivar infected with different endophyte haplotypes than among different plant cultivars infected with the same endophyte haplotype, but comparisons among the former were far more numerous. Although five endophyte-mediated alkaloids representing three alkaloid classes were quantified in the plants, the pyrrolizidine alkaloid N-acetyl norloline was consistently the single best predictor of BCW performance. BCW settling response, 5-d survival, and 10-d survival decreased as levels of the alkaloid N-acetyl norloline increased. The same three response variables also decreased with increasing levels of peramine, but increased with increasing levels of ergovaline. Minor variation in endophyte infection levels occurring among infected plant lines had no significant influence on BCW performance. Results indicate a potentially important role for N-acetyl norloline and peramine in providing resistance to black cutworm whereas ergovaline appears to be much less important. Therefore, endophyte haplotypes expressing high levels of N-acetyl norloline and peramine may be of particular importance for developing 'friendly' endophyte-enhanced turf and pasture grasses that resist challenging lepidopteran pests, although remaining safe for wildlife and grazing mammals. PMID:22251642

  1. Diversity of bacterial endophytes in 3 and 15 year-old grapevines of Vitis vinifera cv. Corvina and their potential for plant growth promotion and phytopathogen control.

    PubMed

    Andreolli, Marco; Lampis, Silvia; Zapparoli, Giacomo; Angelini, Elisa; Vallini, Giovanni

    2016-02-01

    This study represents the first investigation on ecology of endophytic bacteria isolated from 3 and 15 year-old vine stems of Vitis vinifera cv. Corvina. The analysis was performed by means of culture-dependent techniques. The obtained results showed that new grapevine endophytic genera are being discovered. Moreover, Bacilli and Actinobacteria are frequently isolated from 3 year-old plants, whereas Alpha- and Gamma- Proteobacteria classes are more prevalent in the 15 year-old plants. Shannon-Wiener (H) index and analysis of rarefaction curves revealed greater genus richness in young grapevine plants. Furthermore, results evidenced an increase of genotypic group number within specific genera (e.g., Rhizobium and Pantoea). Among isolated strains from 3 and 15 year-old stems, respectively, 34 and 39% produce siderophores; 22 and 15% secrete ammonia; 22 and 21% produce indole-3-acetic acid; 8.7 and 41% solubilize phosphate. Besides, two strains isolated from 15 year-old grapevines showed 1-aminocyclopropane-1-carboxylate deaminase activity. Antifungal activity analysis evidenced that two Bacillus strains possess growth antagonistic effect toward all the tested fungal strains. Therefore, the present study extends our knowledge of the diversity of the endophytic bacteria by providing new insights into the complexity of the grapevine microbiome. PMID:26805617

  2. Biocontrol potential of endophytes harbored in Radula marginata (liverwort) from the New Zealand ecosystem.

    PubMed

    Kusari, Parijat; Kusari, Souvik; Spiteller, Michael; Kayser, Oliver

    2014-10-01

    Radula marginata and Cannabis sativa L. are two phylogenetically unrelated plant species containing structurally similar secondary metabolites like cannabinoids. The major objective of our work was the isolation, identification, biocontrol efficacies, biofilm forming potential and anti-biofilm ability of endophytic microbial community of the liverwort R. marginata, as compared to bacterial endophytic isolates harbored in C. sativa plants. A total of 15 endophytic fungal and 4 endophytic bacterial isolates were identified, including the presence of a bacterial endosymbiont within an endophytic fungal isolate. The endosymbiont was visible only when the fungus containing it was challenged with two phytopathogens Botrytis cinerea and Trichothecium roseum, highlighting a tripartite microbe-microbe interaction and biocontrol potency of endophytes under biotic stress. We also observed sixteen types of endophytic fungal-pathogen and twelve types of endophytic bacterial-pathogen interactions coupled to varying degree of growth inhibitions of either the pathogen or endophyte or both. This showed the magnitude of biocontrol efficacies of endophytes in aiding plant fitness benefits under different media (environmental) conditions. Additionally, it was ecologically noteworthy to find the presence of similar endophytic bacterial genera in both Radula and Cannabis plants, which exhibited similar functional traits like biofilm formation and general anti-biofilm activities. Thus far, our work underlines the biocontrol potency and defensive functional traits (in terms of antagonism and biofilm formation) of endophytes harbored in liverwort R. marginata as compared to the endophytic community of phylogenetically unrelated but phytochemically similar plant C. sativa. PMID:25100187

  3. Bacillus thuringiensis and Bacillus sphaericus biopesticides production.

    PubMed

    el-Bendary, Magda A

    2006-01-01

    The long residual action and toxicity of the chemical insecticides have brought about serious environmental problems such as the emergence and spread of insecticide resistance in many species of vectors, mammalian toxicity, and accumulation of pesticide residues in the food chain. All these problems have highlighted the need for alternative biological control agents. Entomo-pathogenic Bacillus thuringiensis (Bt) and Bacillus sphaericus (Bs) are two safe biological control agents. They have attracted considerable interest as possible replacements for the chemical insecticides. Although microbial insecticides based on Bt and Bs are available for use, their high cost makes large-scale application impracticable in developing countries. This review focuses on the economic production of these two microorganisms by submerged fermentation and solid state fermentation using agro-industrial by-products and other wastes. PMID:16598830

  4. Diversity of sporadic symbionts and nonsymbiotic endophytic bacteria isolated from nodules of woody, shrub, and food legumes in Ethiopia.

    PubMed

    Aserse, Aregu Amsalu; Räsänen, Leena A; Aseffa, Fassil; Hailemariam, Asfaw; Lindström, Kristina

    2013-12-01

    Fifty-five bacterial isolates were obtained from surface-sterilized nodules of woody and shrub legumes growing in Ethiopia: Crotalaria spp., Indigofera spp., and Erythrina brucei, and the food legumes soybean and common bean. Based on partial 16S rRNA gene sequence analysis, the majority of the isolates were identified as Gram-negative bacteria belonging to the genera Achromobacter, Agrobacterium, Burkholderia, Cronobacter, Enterobacter, Mesorhizobium, Novosphingobium, Pantoea, Pseudomonas, Rahnella, Rhizobium, Serratia, and Variovorax. Seven isolates were Gram-positive bacteria belonging to the genera Bacillus, Paenibacillus, Planomicrobium, and Rhodococcus. Amplified fragment length polymorphism (AFLP) fingerprinting showed that each strain was genetically distinct. According to phylogenetic analysis of recA, glnII, rpoB, and 16S rRNA gene sequences, Rhizobium, Mesorhizobium, and Agrobacterium were further classified into six different genospecies: Agrobacterium spp., Agrobacterium radiobacter, Rhizobium sp., Rhizobium phaseoli, Mesorhizobium sp., and putative new Rhizobium species. The strains from R. phaseoli, Rhizobium sp. IAR30, and Mesorhizobium sp. ERR6 induced nodules on their host plants. The other strains did not form nodules on their original host. Nine endophytic bacterial strains representing seven genera, Agrobacterium, Burkholderia, Paenibacillus, Pantoea, Pseudomonas, Rhizobium, and Serratia, were found to colonize nodules of Crotalaria incana and common bean on co-inoculation with symbiotic rhizobia. Four endophytic Rhizobium and two Agrobacterium strains had identical nifH gene sequences with symbiotic Rhizobium strains, suggesting horizontal gene transfer. Most symbiotic and nonsymbiotic endophytic bacteria showed plant growth-promoting properties in vitro, which indicate their potential role in the promotion of plant growth when colonizing plant roots and the rhizosphere. PMID:24196581

  5. Biodegradation of Polyester Polyurethane by Endophytic Fungi▿

    PubMed Central

    Russell, Jonathan R.; Huang, Jeffrey; Anand, Pria; Kucera, Kaury; Sandoval, Amanda G.; Dantzler, Kathleen W.; Hickman, DaShawn; Jee, Justin; Kimovec, Farrah M.; Koppstein, David; Marks, Daniel H.; Mittermiller, Paul A.; Núñez, Salvador Joel; Santiago, Marina; Townes, Maria A.; Vishnevetsky, Michael; Williams, Neely E.; Vargas, Mario Percy Núñez; Boulanger, Lori-Ann; Bascom-Slack, Carol; Strobel, Scott A.

    2011-01-01

    Bioremediation is an important approach to waste reduction that relies on biological processes to break down a variety of pollutants. This is made possible by the vast metabolic diversity of the microbial world. To explore this diversity for the breakdown of plastic, we screened several dozen endophytic fungi for their ability to degrade the synthetic polymer polyester polyurethane (PUR). Several organisms demonstrated the ability to efficiently degrade PUR in both solid and liquid suspensions. Particularly robust activity was observed among several isolates in the genus Pestalotiopsis, although it was not a universal feature of this genus. Two Pestalotiopsis microspora isolates were uniquely able to grow on PUR as the sole carbon source under both aerobic and anaerobic conditions. Molecular characterization of this activity suggests that a serine hydrolase is responsible for degradation of PUR. The broad distribution of activity observed and the unprecedented case of anaerobic growth using PUR as the sole carbon source suggest that endophytes are a promising source of biodiversity from which to screen for metabolic properties useful for bioremediation. PMID:21764951

  6. Influence of endophyte genotype on swainsonine concentrations in Oxytropis sericea.

    PubMed

    Cook, Daniel; Grum, Daniel S; Gardner, Dale R; Welch, Kevin D; Pfister, James A

    2013-01-01

    Locoism is a toxic syndrome of livestock caused by the ingestion of a subset of legumes belonging to the Astragalus and Oxytropis genera known as "locoweeds". Locoweeds contain the toxic indolizidine alkaloid swainsonine, which is produced by the endophytic fungi Undifilum species. Previously we reported that swainsonine concentrations differ between populations of Oxytropis sericea. We hypothesized that the genotype of the plant, endophyte, or an interaction of the two may be responsible for the differences in swainsonine concentration between populations of O. sericea. To test this hypothesis, plants derived from seeds collected at each location were grown in a common garden, Undifilum oxytropis isolates from each location were cultured and grown in a common environment, and a plant genotype by endophyte cross inoculation was performed. Here we show that the genotype of the endophyte is responsible for the differences in swainsonine concentrations observed in the two populations of O. sericea. PMID:23149419

  7. Robot-assisted Partial Nephrectomy for Endophytic Tumors.

    PubMed

    Kim, Dae Keun; Komninos, Christos; Kim, Lawrence; Rha, Koon Ho

    2015-11-01

    Robot-assisted partial nephrectomy (RAPN) has gained increasing popularity in the management of renal masses due to its technical feasibility and shorter learning curve with superior perioperative outcomes compared to laparoscopic partial nephrectomy (LPN). Given the cumulation of surgical experience on RAPN, the indication for RAPN has been extended to more challenging, complex cases, such as hilar or endophytic tumors. Renal masses that are completely endophytic can be very challenging to surgeons. These cases are associated with poor recognition of mass extension, higher risk of inadvertent vascular, or pelvicalyceal system injury. As a result, this can lead to potential positive surgical margin, difficulty in performing renorrhaphy as well as higher perioperative complication rates. There is few evidence of oncologic and functional outcomes of RAPN on treating endophytic masses. Therefore, the objective of this review is to critically analyze the current evidence and to provide a summary on the outcomes of RAPN for endophytic renal masses. PMID:26373545

  8. Fungal endophyte metabolism and allelopathic interactions with host plants

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The maize endophyte Fusarium verticillioides produces the fumonisin mycotoxins, which are of significant concern for their animal toxicity caused by inhibition of ceramide synthase and disruption of sphingolipid metabolism. Fumonisin-producing strains associated with maize cause leaf lesions, develo...

  9. Rare actinomycetes Nocardia caishijiensis and Pseudonocardia carboxydivorans as endophytes, their bioactivity and metabolites evaluation.

    PubMed

    Tanvir, Rabia; Sajid, Imran; Hasnain, Shahida; Kulik, Andreas; Grond, Stephanie

    2016-04-01

    Two strains identified as Nocardia caishijiensis (SORS 64b) and Pseudonocardia carboxydivorans (AGLS 2) were isolated as endophytes from Sonchus oleraceus and Ageratum conyzoides respectively. The analysis of their extracts revealed them to be strongly bioactive. The N. caishijiensis extract gave an LC50 of 570μg/ml(-1) in the brine shrimp cytotoxicity assay and an EC50 of 0.552μg/ml(-1) in the DPPH antioxidant assay. Antimicrobial activity was observed against Methicillin resistant Staphlococcus aureus (MRSA) and Escherichia coli ATCC 25922 (14mm), Klebsiella pneumoniae ATCC 706003 (13mm), S. aureus ATCC 25923 (11mm) and Candida tropicalis (20mm). For the extract of P. carboxydivorans the EC50 was 0.670μg/ml(-1) and it was observed to be more bioactive against Bacillus subtilis DSM 10 ATCC 6051 (21mm), C. tropicalis (20mm), S. aureus ATCC 25923 (17mm), MRSA (17mm), E. coli K12 (W1130) (16mm) and Chlorella vulgaris (10mm). The genotoxicity testing revealed a 20mm zone of inhibition against the polA mutant strain E. coli K-12 AB 3027 suggesting damage to the DNA and polA genes. The TLC and bioautography screening revealed a diversity of active bands of medium polar and nonpolar compounds. Metabolite analysis by HPLC-DAD via UV/vis spectral screening suggested the possibility of stenothricin and bagremycin A in the mycelium extract of N. caishijiensis respectively. In the broth and mycelium extract of P. carboxydivorans borrelidin was suggested along with α-pyrone. The HPLC-MS revealed bioactive long chained amide derivatives such as 7-Octadecenamide, 9, 12 octadecandienamide. This study reports the rare actinomycetes N. caishijiensis and P. carboxydivorans as endophytes and evaluates their bioactive metabolites. PMID:26946375

  10. Disruption of Microbial Biofilms by an Extracellular Protein Isolated from Epibiotic Tropical Marine Strain of Bacillus licheniformis

    PubMed Central

    Dusane, Devendra H.; Damare, Samir R.; Nancharaiah, Yarlagadda V.; Ramaiah, N.; Venugopalan, Vayalam P.; Kumar, Ameeta Ravi; Zinjarde, Smita S.

    2013-01-01

    Background Marine epibiotic bacteria produce bioactive compounds effective against microbial biofilms. The study examines antibiofilm ability of a protein obtained from a tropical marine strain of Bacillus licheniformis D1. Methodology/Principal Findings B. licheniformis strain D1 isolated from the surface of green mussel, Perna viridis showed antimicrobial activity against pathogenic Candida albicans BH, Pseudomonas aeruginosa PAO1 and biofouling Bacillus pumilus TiO1 cultures. The antimicrobial activity was lost after treatment with trypsin and proteinase K. The protein was purified by ultrafiltration and size-exclusion chromatography. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and matrix assisted laser desorption/ionization-time of flight (MALDI-TOF) analysis revealed the antimicrobial agent to be a 14 kDa protein designated as BL-DZ1. The protein was stable at 75°C for 30 min and over a pH range of 3.0 to 11.0. The sequence alignment of the MALDI-fingerprint showed homology with the NCBI entry for a hypothetical protein (BL00275) derived from B. licheniformis ATCC 14580 with the accession number gi52082584. The protein showed minimum inhibitory concentration (MIC) value of 1.6 µg/ml against C. albicans. Against both P. aeruginosa and B. pumilus the MIC was 3.12 µg/ml. The protein inhibited microbial growth, decreased biofilm formation and dispersed pre-formed biofilms of the representative cultures in polystyrene microtiter plates and on glass surfaces. Conclusion/Significance We isolated a protein from a tropical marine strain of B. licheniformis, assigned a function to the hypothetical protein entry in the NCBI database and described its application as a potential antibiofilm agent. PMID:23691235

  11. Chemical Assessment and Antimicrobial and Antioxidant Activities of Endophytic Fungi Extracts Isolated from Costus spiralis (Jacq.) Roscoe (Costaceae)

    PubMed Central

    Marson Ascêncio, Poliana Guerino; Ascêncio, Sérgio Donizeti; Aguiar, Aline Aires; Fiorini, Adriana; Pimenta, Raphael Sanzio

    2014-01-01

    Costus spiralis (Costaceae) is a species native to the Amazon region and is used in traditional medicine. The endophytic fungi used in this study were obtained from leaves of this plant. 13 strains were selected to obtain hydroethanolic extracts and were submitted to hydroalcoholic extraction and evaluated for antioxidant activity by DPPH (2,2-difenil-1-picrilhidrazil) and FRAP (ferric reducing antioxidant power), and all of the fungi had positive results. The antimicrobial action of crude extracts had a good range of activities. All extracts had inhibitory activities against the yeasts of Candida albicans and C. parapsilosis, with 125 to 500 μg/mL MIC. Eight extracts had antimicrobial activities against Bacillus subtilis (MIC from 62.4 to 125 μg/mL), 5 against Pseudomonas aeruginosa (MIC from 125 to 500 μg/mL), 2 against Salmonella enterica (MIC from 125 to 62.5 μg/mL), and 2 against Enterococcus faecalis (MIC from 500 to 125 μg/mL). The presence of secondary metabolites, including coumarins, was observed during chemical evaluation by thin layer chromatography. Total phenol content was estimated, and a strong positive correlation to antioxidant activity was observed, according to its Pearson coefficient. This is the first report of the bioactive potential of endophytic fungi isolated from the Costaceae family in Brazilian ecosystems. PMID:25587339

  12. Diversity of endophytic bacteria associated with nodules of two indigenous legumes at different altitudes of the Qilian Mountains in China.

    PubMed

    Xu, Lin; Zhang, Yong; Wang, Li; Chen, Weimin; Wei, Gehong

    2014-09-01

    A total of 201 endophytic root nodule-associated bacteria collected from two legumes indigenous to different Qilian Mountain altitudes (Hexi Corridor) were characterized through 16S rDNA polymerase chain reaction (PCR)-restriction fragment length polymorphism, 16S rRNA gene sequence analysis, and enterobacterial repetitive intergenic consensus-PCR clustering. The isolates phylogenetically belonged to 35 species in the Phyllobacterium, Ensifer, Rhizobium, Microvirga, Sphingomonas, Paracoccus, Mycobacterium, Paenibacillus, Cohnella, Sporosarcina, Bacillus, Staphylococcus, Brevibacterium, Xenophilus, Erwinia, Leclercia, Acinetobacter, and Pseudomonas genera. Phylogenetic nodA sequence analysis showed higher similarity to Sinorhizobium meliloti with strains related to the Rhizobium, Sinorhizobium, and Acinetobacter genera. Sequence analysis of the nifH gene revealed that the strains belonging to Xenophilus, Acinetobacter, Phyllobacterium, and Rhizobium had genes similar to those of Mesorhizobium and Sinorhizobium. The results indicated that horizontal gene transfer could have occurred between rhizobia and non-rhizobial endophytes. Canonical correspondence analysis revealed that altitude and host plant species contributed more to the bacterial endosymbiont separation than other ecological factors. This study provided valuable information on the interactions between symbiotic bacteria, non-symbiotic bacteria and their habitats, and thus provided knowledge on their genetic diversity and ecology. PMID:24985194

  13. Diversity of endophytic bacteria within nodules of the Sphaerophysa salsula in different regions of Loess Plateau in China.

    PubMed

    Deng, Zhen Shan; Zhao, Long Fei; Kong, Zhao Yu; Yang, Wen Quan; Lindström, Kristina; Wang, En Tao; Wei, Ge Hong

    2011-06-01

    A total of 115 endophytic bacteria were isolated from root nodules of the wild legume Sphaerophysa salsula grown in two ecological regions of Loess Plateau in China. The genetic diversity and phylogeny of the strains were revealed by restriction fragment length polymorphism and sequencing of 16S rRNA gene and enterobacterial repetitive intergenic consensus-PCR. Their symbiotic capacity was checked by nodulation tests and analysis of nifH gene sequence. This is the first systematic study on endophytic bacteria associated with S. salsula root nodules. Fifty of the strains found were symbiotic bacteria belonging to eight putative species in the genera Mesorhizobium, Rhizobium and Sinorhizobium, harboring similar nifH genes; Mesorhizobium gobiense was the main group and 65 strains were nonsymbiotic bacteria related to 17 species in the genera Paracoccus, Sphingomonas, Inquilinus, Pseudomonas, Serratia, Mycobacterium, Nocardia, Streptomyces, Paenibacillus, Brevibacillus, Staphylococcus, Lysinibacillus and Bacillus, which were universally coexistent with symbiotic bacteria in the nodules. Differing from other similar studies, the present study is the first time that symbiotic and nonsymbiotic bacteria have been simultaneously isolated from the same root nodules, offering the possibility to accurately reveal the correlation between these two kinds of bacteria. These results provide valuable information about the interactions among the symbiotic bacteria, nonsymbiotic bacteria and their habitats. PMID:21303396

  14. Fungal root endophytes of the carnivorous plant Drosera rotundifolia.

    PubMed

    Quilliam, Richard S; Jones, David L

    2010-06-01

    As carnivorous plants acquire substantial amounts of nutrients from the digestion of their prey, mycorrhizal associations are considered to be redundant; however, fungal root endophytes have rarely been examined. As endophytic fungi can have profound impacts on plant communities, we aim to determine the extent of fungal root colonisation of the carnivorous plant Drosera rotundifolia at two points in the growing season (spring and summer). We have used a culture-dependent method to isolate fungal endophytes and diagnostic polymerase chain reaction methods to determine arbuscular mycorrhizal fungi colonisation. All of the roots sampled contained culturable fungal root endophytes; additionally, we have provided molecular evidence that they also host arbuscular mycorrhizal fungi. Colonisation showed seasonal differences: Roots in the spring were colonised by Articulospora tetracladia, two isolates of uncultured ectomycorrhizal fungi, an unidentified species of fungal endophyte and Trichoderma viride, which was present in every plant sampled. In contrast, roots in the summer were colonised by Alatospora acuminata, an uncultured ectomycorrhizal fungus, Penicillium pinophilum and an uncultured fungal clone. Although the functional roles of fungal endophytes of D. rotundifolia are unknown, colonisation may (a) confer abiotic stress tolerance, (b) facilitate the acquisition of scarce nutrients particularly at the beginning of the growing season or (c) play a role in nutrient signalling between root and shoot. PMID:20012108

  15. Ungulate saliva inhibits a grass–endophyte mutualism

    PubMed Central

    Tanentzap, Andrew J.; Vicari, Mark; Bazely, Dawn R.

    2014-01-01

    Fungal endophytes modify plant–herbivore interactions by producing toxic alkaloids that deter herbivory. However, studies have neglected the direct effects herbivores may have on endophytes. Antifungal properties and signalling effectors in herbivore saliva suggest that evolutionary pressures may select for animals that mitigate the effects of endophyte-produced alkaloids. Here, we tested whether saliva of moose (Alces alces) and European reindeer (Rangifer tarandus) reduced hyphal elongation and production of ergot alkaloids by the foliar endophyte Epichloë festucae associated with the globally distributed red fescue Festuca rubra. Both moose and reindeer saliva reduced the growth of isolated endophyte hyphae when compared with a treatment of distilled water. Induction of the highly toxic alkaloid ergovaline was also inhibited in plants from the core of F. rubra's distribution when treated with moose saliva following simulated grazing. In genotypes from the southern limit of the species' distribution, ergovaline was constitutively expressed, as predicted where growth is environmentally limited. Our results now present the first evidence, to our knowledge, that ungulate saliva can combat plant defences produced by a grass–endophyte mutualism. PMID:25055816

  16. Exploring Arabidopsis thaliana Root Endophytes via Single-Cell Genomics

    SciTech Connect

    Lundberg, Derek; Woyke, Tanja; Tringe, Susannah; Dangl, Jeff

    2014-03-19

    Land plants grow in association with microbial communities both on their surfaces and inside the plant (endophytes). The relationships between microbes and their host can vary from pathogenic to mutualistic. Colonization of the endophyte compartment occurs in the presence of a sophisticated plant immune system, implying finely tuned discrimination of pathogens from mutualists and commensals. Despite the importance of the microbiome to the plant, relatively little is known about the specific interactions between plants and microbes, especially in the case of endophytes. The vast majority of microbes have not been grown in the lab, and thus one of the few ways of studying them is by examining their DNA. Although metagenomics is a powerful tool for examining microbial communities, its application to endophyte samples is technically difficult due to the presence of large amounts of host plant DNA in the sample. One method to address these difficulties is single-cell genomics where a single microbial cell is isolated from a sample, lysed, and its genome amplified by multiple displacement amplification (MDA) to produce enough DNA for genome sequencing. This produces a single-cell amplified genome (SAG). We have applied this technology to study the endophytic microbes in Arabidopsis thaliana roots. Extensive 16S gene profiling of the microbial communities in the roots of multiple inbred A. thaliana strains has identified 164 OTUs as being significantly enriched in all the root endophyte samples compared to their presence in bulk soil.

  17. Beauveria bassiana and Metarhizium anisopliae endophytically colonize cassava roots following soil drench inoculation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The fungal entomopathogens Beauveria bassiana and Metarhizium anisopliae were investigated to determine if endophytic colonization could be achieved in cassava. An inoculation method based on drenching the soil around cassava stems using conidial suspensions resulted in endophytic colonization of ca...

  18. ENHANCEMENT OF CHILE BIOMAS, FRUIT QUALITY, AND DROUGHT STRESS TOLERANCE BY INOCULATION WITH NATIVE PLANT ENDOPHYTES

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Recognition of the important contributions endophytes make to plant stress tolerance, defense, and production has grown exponentially with improvements in detection of unculturable microorganisms in plant tissues. Recently, the ability to manipulate host-endophyte combinations has provided a powerf...

  19. Discovery and characterization of cryptic endophytes that influence ecological fitness of host vegetation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Mechanisms by which seedborne endophytic microbes interact with host plants to influence larger ecological processes are widely unknown. Nonetheless, systems in which endophyte dynamics have been examined suggest high potential to utilize microbes for vegetative restoration. A long term, multidisc...

  20. Fungal endophyte infection increases carbon sequestration potential of southeastern USA tall fescue stands

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Tall fescue (Schedonorus arundinaceous (Schreb.)) is often infected with a common toxic fungal endophyte (Neotyphodium coenophialum) capable of producing alkaloids that affect grazing animal health, insect herbivory, plant production, and litter decomposition. The strength of these endophyte-associa...

  1. Symbiotic grasses: A review of basic biology of forage grass fungal endophytes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The fungal endophytes associated with grasses are the fundamental reason for the basic successes of several pasture grasses, notable tall fescues, and perennial ryegrass. Tall fescue and perennial ryegrass fungal endophytes, Neotyphodium coenophialum and N. lolii, respectively, and their relatives ...

  2. Asexual endophytes in a native grass: Tradeoffs in mortality, growth, reproduction, and alkaloid production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Neotyphodium endophytes are asexual, seed-borne fungal symbionts that are thought to interact mutualistically with their grass hosts. Benefits include increased growth, reproduction, and resistance of herbivores via endophytic alkaloids. Although these benefits are well established in infected int...

  3. Preferential association of endophytic bradyrhizobia with different rice cultivars and its implications for rice endophyte evolution.

    PubMed

    Piromyou, Pongdet; Greetatorn, Teerana; Teamtisong, Kamonluck; Okubo, Takashi; Shinoda, Ryo; Nuntakij, Achara; Tittabutr, Panlada; Boonkerd, Nantakorn; Minamisawa, Kiwamu; Teaumroong, Neung

    2015-05-01

    Plant colonization by bradyrhizobia is found not only in leguminous plants but also in nonleguminous species such as rice. To understand the evolution of the endophytic symbiosis of bradyrhizobia, the effect of the ecosystems of rice plantations on their associations was investigated. Samples were collected from various rice (Oryza sativa) tissues and crop rotational systems. The rice endophytic bradyrhizobia were isolated on the basis of oligotrophic properties, selective medium, and nodulation on siratro (Macroptilium atropurpureum). Six bradyrhizobial strains were obtained exclusively from rice grown in a crop rotational system. The isolates were separated into photosynthetic bradyrhizobia (PB) and nonphotosynthetic bradyrhizobia (non-PB). Thai bradyrhizobial strains promoted rice growth of Thai rice cultivars better than the Japanese bradyrhizobial strains. This implies that the rice cultivars possess characteristics that govern rice-bacterium associations. To examine whether leguminous plants in a rice plantation system support the persistence of rice endophytic bradyrhizobia, isolates were tested for legume nodulation. All PB strains formed symbioses with Aeschynomene indica and Aeschynomene evenia. On the other hand, non-PB strains were able to nodulate Aeschynomene americana, Vigna radiata, and M. atropurpureum but unable to nodulate either A. indica or A. evenia. Interestingly, the nodABC genes of all of these bradyrhizobial strains seem to exhibit low levels of similarity to those of Bradyrhizobium diazoefficiens USDA110 and Bradyrhizobium sp. strain ORS285. From these results, we discuss the evolution of the plant-bradyrhizobium association, including nonlegumes, in terms of photosynthetic lifestyle and nod-independent interactions. PMID:25710371

  4. Preferential Association of Endophytic Bradyrhizobia with Different Rice Cultivars and Its Implications for Rice Endophyte Evolution

    PubMed Central

    Piromyou, Pongdet; Greetatorn, Teerana; Teamtisong, Kamonluck; Okubo, Takashi; Shinoda, Ryo; Nuntakij, Achara; Tittabutr, Panlada; Boonkerd, Nantakorn

    2015-01-01

    Plant colonization by bradyrhizobia is found not only in leguminous plants but also in nonleguminous species such as rice. To understand the evolution of the endophytic symbiosis of bradyrhizobia, the effect of the ecosystems of rice plantations on their associations was investigated. Samples were collected from various rice (Oryza sativa) tissues and crop rotational systems. The rice endophytic bradyrhizobia were isolated on the basis of oligotrophic properties, selective medium, and nodulation on siratro (Macroptilium atropurpureum). Six bradyrhizobial strains were obtained exclusively from rice grown in a crop rotational system. The isolates were separated into photosynthetic bradyrhizobia (PB) and nonphotosynthetic bradyrhizobia (non-PB). Thai bradyrhizobial strains promoted rice growth of Thai rice cultivars better than the Japanese bradyrhizobial strains. This implies that the rice cultivars possess characteristics that govern rice-bacterium associations. To examine whether leguminous plants in a rice plantation system support the persistence of rice endophytic bradyrhizobia, isolates were tested for legume nodulation. All PB strains formed symbioses with Aeschynomene indica and Aeschynomene evenia. On the other hand, non-PB strains were able to nodulate Aeschynomene americana, Vigna radiata, and M. atropurpureum but unable to nodulate either A. indica or A. evenia. Interestingly, the nodABC genes of all of these bradyrhizobial strains seem to exhibit low levels of similarity to those of Bradyrhizobium diazoefficiens USDA110 and Bradyrhizobium sp. strain ORS285. From these results, we discuss the evolution of the plant-bradyrhizobium association, including nonlegumes, in terms of photosynthetic lifestyle and nod-independent interactions. PMID:25710371

  5. Microarray and Real-Time PCR Comparison of Endophyte-Infected and Endophyte-Free Tall Fescue Gene Expression

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Many grasses have mutualistic symbioses with fungi of the family Clavicipitaceae. Tall fescue [Schedonorus arundinaceus (Schreb.) Dumont. = Festuca arundinacea (Schreb.)] can harbor the obligate endophyte, Neotyphodium coenophialum, that is asexually propagated and transmitted via host seeds. To d...

  6. bac genes for recombinant bacilysin and anticapsin production in Bacillus host strains.

    PubMed

    Steinborn, Gerhard; Hajirezaei, Mohammad-Reza; Hofemeister, Jürgen

    2005-02-01

    The genes encoding the biosynthesis of the dipeptide bacilysin and its antibiotic constituent anticapsin were isolated from several strains of Bacillus subtilis as well as B. amyloliquefaciens and B. pumilus. The ywfBCDEF genes of B. subtilis 168 were shown to carry the biosynthetic core functions and were renamed bacABCDE. Mutation of the bacD gene or transformation of the bacABC genes into a B. subtilis Delta (ywfA-bacABCDE) deletion mutant led to the accumulation of anticapsin, which was fourfold higher after transformation of the bacABC genes into a bacD mutant. The genes bacD and bacE proved to encode the functions of amino acid ligation and self-protection to bacilysin, respectively. Amplification of the bacABCDE gene cluster in a bacAB gene-deficient host strain of B. amyloliquefaciens resulted in a tenfold bacilysin overproduction. Some host strains required distinct glucosamine and yeast extract supplements in order to prevent suicidal effects of the recombinant antibiotic production. The bac genes from different Bacillus species revealed the same arrangement and 72.6-88.6% of sequence identity. PMID:15609023

  7. Identification of Bacillus Probiotics Isolated from Soil Rhizosphere Using 16S rRNA, recA, rpoB Gene Sequencing and RAPD-PCR.

    PubMed

    Mohkam, Milad; Nezafat, Navid; Berenjian, Aydin; Mobasher, Mohammad Ali; Ghasemi, Younes

    2016-03-01

    Some Bacillus species, especially Bacillus subtilis and Bacillus pumilus groups, have highly similar 16S rRNA gene sequences, which are hard to identify based on 16S rDNA sequence analysis. To conquer this drawback, rpoB, recA sequence analysis along with randomly amplified polymorphic (RAPD) fingerprinting was examined as an alternative method for differentiating Bacillus species. The 16S rRNA, rpoB and recA genes were amplified via a polymerase chain reaction using their specific primers. The resulted PCR amplicons were sequenced, and phylogenetic analysis was employed by MEGA 6 software. Identification based on 16S rRNA gene sequencing was underpinned by rpoB and recA gene sequencing as well as RAPD-PCR technique. Subsequently, concatenation and phylogenetic analysis showed that extent of diversity and similarity were better obtained by rpoB and recA primers, which are also reinforced by RAPD-PCR methods. However, in one case, these approaches failed to identify one isolate, which in combination with the phenotypical method offsets this issue. Overall, RAPD fingerprinting, rpoB and recA along with concatenated genes sequence analysis discriminated closely related Bacillus species, which highlights the significance of the multigenic method in more precisely distinguishing Bacillus strains. This research emphasizes the benefit of RAPD fingerprinting, rpoB and recA sequence analysis superior to 16S rRNA gene sequence analysis for suitable and effective identification of Bacillus species as recommended for probiotic products. PMID:26898909

  8. Bioactivity of fungal endophytes as a function of endophyte taxonomy and the taxonomy and distribution of their host plants.

    PubMed

    Higginbotham, Sarah J; Arnold, A Elizabeth; Ibañez, Alicia; Spadafora, Carmenza; Coley, Phyllis D; Kursar, Thomas A

    2013-01-01

    Fungal endophytes--fungi that grow within plant tissues without causing immediate signs of disease--are abundant and diverse producers of bioactive secondary metabolites. Endophytes associated with leaves of tropical plants are an especially exciting and relatively untapped source of novel compounds. However, one major challenge in drug discovery lies in developing strategies to efficiently recover highly bioactive strains. As part of a 15-year drug discovery project, foliar endophytes were isolated from 3198 plant samples (51 orders, 105 families and at least 232 genera of angiosperms and ferns) collected in nine geographically distinct regions of Panama. Extracts from culture supernatants of >2700 isolates were tested for bioactivity (in vitro percent inhibition of growth, % IG) against a human breast cancer cell line (MCF-7) and the causative agents of malaria, leishmaniasis, and Chagas' disease. Overall, 32.7% of endophyte isolates were highly active in at least one bioassay, including representatives of diverse fungal lineages, host lineages, and collection sites. Up to 17% of isolates tested per assay were highly active. Most bioactive strains were active in only one assay. Fungal lineages differed in the incidence and degree of bioactivity, as did fungi from particular plant taxa, and greater bioactivity was observed in endophytes isolated from plants in cloud forests vs. lowland forests. Our results suggest that using host taxonomy and forest type to tailor plant collections, and selecting endophytes from specific orders or families for cultivation, will markedly increase the efficiency and efficacy of discovering bioactive metabolites for particular pharmaceutical targets. PMID:24066037

  9. Bioactivity of Fungal Endophytes as a Function of Endophyte Taxonomy and the Taxonomy and Distribution of Their Host Plants

    PubMed Central

    Higginbotham, Sarah J.; Arnold, A. Elizabeth; Ibañez, Alicia; Spadafora, Carmenza; Coley, Phyllis D.; Kursar, Thomas A.

    2013-01-01

    Fungal endophytes – fungi that grow within plant tissues without causing immediate signs of disease – are abundant and diverse producers of bioactive secondary metabolites. Endophytes associated with leaves of tropical plants are an especially exciting and relatively untapped source of novel compounds. However, one major challenge in drug discovery lies in developing strategies to efficiently recover highly bioactive strains. As part of a 15-year drug discovery project, foliar endophytes were isolated from 3198 plant samples (51 orders, 105 families and at least 232 genera of angiosperms and ferns) collected in nine geographically distinct regions of Panama. Extracts from culture supernatants of >2700 isolates were tested for bioactivity (in vitro percent inhibition of growth, % IG) against a human breast cancer cell line (MCF-7) and the causative agents of malaria, leishmaniasis, and Chagas' disease. Overall, 32.7% of endophyte isolates were highly active in at least one bioassay, including representatives of diverse fungal lineages, host lineages, and collection sites. Up to 17% of isolates tested per assay were highly active. Most bioactive strains were active in only one assay. Fungal lineages differed in the incidence and degree of bioactivity, as did fungi from particular plant taxa, and greater bioactivity was observed in endophytes isolated from plants in cloud forests vs. lowland forests. Our results suggest that using host taxonomy and forest type to tailor plant collections, and selecting endophytes from specific orders or families for cultivation, will markedly increase the efficiency and efficacy of discovering bioactive metabolites for particular pharmaceutical targets. PMID:24066037

  10. Bacillus odysseyi isolate

    NASA Technical Reports Server (NTRS)

    Venkateswaran, Kasthuri (Inventor); La Duc, Myron Thomas (Inventor)

    2007-01-01

    The present invention relates to discovery and isolation of a biologically pure culture of a Bacillus odysseyi isolate with high adherence and sterilization resistant properties. B. odysseyi is a round spore forming Bacillus species that produces an exosporium. This novel species has been characterized on the basis of phenotypic traits, 16S rDNA sequence analysis and DNA-DNA hybridization. According to the results of these analyses, this strain belongs to the genus Bacillus and the type strain is 34hs-1.sup.T (=ATCC PTA-4993.sup.T=NRRL B-30641.sup.T=NBRC 100172.sup.T). The GenBank accession number for the 16S rDNA sequence of strain 34hs-1.sup.T is AF526913.

  11. From the Lab Bench: Should you plant a non-toxic endophyte tall fescue?

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A column was written to discuss planting novel endophyte tall fescue for alleviating fescue toxicosis. Endophyte-free tall fescue cultivars can be grazed as a non-toxic alternative, but it maust be understood that it is the endophyte, through production of alkaloids other than ergot alkaloids, that...

  12. Increased milk production by Holstein cows consuming endophyte-infected fescue seed during the dry period.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ergot alkaloids in endophyte-infected grasses inhibit prolactin (PRL) secretion and may reduce milk production of cows consuming endophyte-infected grasses. We hypothesized that consumption of endophyte-infected fescue during the dry period inhibits mammary differentiation and subsequent milk produ...

  13. Tall fescue management: Pasture and cattle responses to endophyte and fertilization

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Yearling heifers grazing tall fescue pastures had greatest performance in winter and spring on endophyte-free and novel endophyte associations, because of high forage quality and lack of ergot alkaloids produced by a common “wild” tall fescue-endophyte association. Pasture and cattle responses were...

  14. Isolation and identification of fungal endophytes from grasses on the Oregon coast

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fungal endophytes have been shown to improve abiotic and biotic stress response in plants. Grasses growing along the Oregon coast are exposed to harsh conditions and may harbor endophytes that enable them to survive and grow under these conditions. Endophytic fungi were isolated from thirty-four gra...

  15. Host suitability of an endophyte-friendly tall fescue grass to Mesocriconema xenoplax and Pratylenchus vulnus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Tall fescue grass cultivars with or without endophytes were evaluated for their susceptibility to Mesocriconema xenoplax and Pratylenchus vulnus in the greenhouse. Tall fescue cultivars evaluated included, i) wild-type Jesup (E+, ergot-producing endophyte present), ii) endophyte-free Jesup (E-, no ...

  16. Alkaloid variation among epichloid endophytes of sleepygrass (Achnatherum robustum) and consequences for resistance to insect herbivores.

    PubMed

    Shymanovich, Tatsiana; Saari, Susanna; Lovin, Mary E; Jarmusch, Alan K; Jarmusch, Scott A; Musso, Ashleigh M; Charlton, Nikki D; Young, Carolyn A; Cech, Nadja B; Faeth, Stanley H

    2015-01-01

    Epichloid endophytes are well known symbionts of many cool-season grasses that may alleviate environmental stresses for their hosts. For example, endophytes produce alkaloid compounds that may be toxic to invertebrate or vertebrate herbivores. Achnatherum robustum, commonly called sleepygrass, was aptly named due to the presence of an endophyte that causes toxic effects to livestock and wildlife. Variation in alkaloid production observed in two A. robustum populations located near Weed and Cloudcroft in the Lincoln National Forest, New Mexico, suggests two different endophyte species are present in these populations. Genetic analyses of endophyte-infected samples revealed major differences in the endophyte alkaloid genetic profiles from the two populations, which were supported with chemical analyses. The endophyte present in the Weed population was shown to produce chanoclavine I, paspaline, and terpendoles, so thus resembles the previously described Epichloë funkii. The endophyte present in the Cloudcroft population produces chanoclavineI, ergonovine, lysergic acid amide, and paspaline, and is an undescribed endophyte species. We observed very low survival rates for aphids feeding on plants infected with the Cloudcroft endophyte, while aphid survival was better on endophyte infected plants in the Weed population. This observation led to the hypothesis that the alkaloid ergonovine is responsible for aphid mortality. Direct testing of aphid survival on oat leaves supplemented with ergonovine provided supporting evidence for this hypothesis. The results of this study suggest that alkaloids produced by the Cloudcroft endophyte, specifically ergonovine, have insecticidal properties. PMID:25501262

  17. Tall fescue endophyte effects on tolerance to water-deficit stress

    Technology Transfer Automated Retrieval System (TEKTRAN)

    To understand more about the enhanced drought tolerance conferred by the endophyte Neotyphodium coenophialum in tall fescue, we analyzed the effect of the endophyte on genetically identical tall fescue clones with (E+) and without the endophyte (E-), by generating E- plants through fungicide trea...

  18. Endophytic fungi: a reservoir of antibacterials

    PubMed Central

    Deshmukh, Sunil K.; Verekar, Shilpa A.; Bhave, Sarita V.

    2015-01-01

    Multidrug drug resistant bacteria are becoming increasingly problematic particularly in the under developed countries of the world. The most important microorganisms that have seen a geometric rise in numbers are Methicillin resistant Staphylococcus aureus, Vancomycin resistant Enterococcus faecium, Penicillin resistant Streptococcus pneumonia and multiple drug resistant tubercule bacteria to name a just few. New drug scaffolds are essential to tackle this every increasing problem. These scaffolds can be sourced from nature itself. Endophytic fungi are an important reservoir of therapeutically active compounds. This review attempts to present some data relevant to the problem. New, very specific and effective antibiotics are needed but also at an affordable price! A Herculean task for researchers all over the world! In the Asian subcontinent indigenous therapeutics that has been practiced over the centuries such as Ayurveda have been effective as “handed down data” in family generations. May need a second, third and more “in-depth investigations?” PMID:25620957

  19. Vertical transmission of fungal endophytes is widespread in forbs

    PubMed Central

    Hodgson, Susan; Cates, Catherine; Hodgson, Joshua; Morley, Neil J; Sutton, Brian C; Gange, Alan C

    2014-01-01

    To date, it has been thought that endophytic fungi in forbs infect the leaves of their hosts most commonly by air-borne spores (termed “horizontal transmission”). Here, we show that vertical transmission from mother plant to offspring, via seeds, occurs in six forb species (Centaurea cyanus, C. nigra,Papaver rhoeas,Plantago lanceolata,Rumex acetosa, and Senecio vulgaris), suggesting that this may be a widespread phenomenon. Mature seeds were collected from field-grown plants and endophytes isolated from these, and from subsequent cotyledons and true leaves of seedlings, grown in sterile conditions. Most seeds contain one species of fungus, although the identity of the endophyte differs between plant species. Strong evidence for vertical transmission was found for two endophyte species, Alternaria alternata and Cladosporium sphaerospermum. These fungi were recovered from within seeds, cotyledons, and true leaves, although the plant species they were associated with differed. Vertical transmission appears to be an imperfect process, and germination seems to present a bottleneck for fungal growth. We also found that A. alternata and C. sphaerospermum occur on, and within pollen grains, showing that endophyte transmission can be both within and between plant generations. Fungal growth with the pollen tube is likely to be the way in which endophytes enter the developing seed. The fact that true vertical transmission seems common suggests a more mutualistic association between these fungi and their hosts than has previously been thought, and possession of endophytes by seedling plants could have far-reaching ecological consequences. Seedlings may have different growth rates and be better protected against herbivores and pathogens, dependent on the fungi that were present in the mother plant. This would represent a novel case of trans-generational resistance in plants. PMID:24834319

  20. Diverse bacteria inhabit living hyphae of phylogenetically diverse fungal endophytes.

    PubMed

    Hoffman, Michele T; Arnold, A Elizabeth

    2010-06-01

    Both the establishment and outcomes of plant-fungus symbioses can be influenced by abiotic factors, the interplay of fungal and plant genotypes, and additional microbes associated with fungal mycelia. Recently bacterial endosymbionts were documented in soilborne Glomeromycota and Mucoromycotina and in at least one species each of mycorrhizal Basidiomycota and Ascomycota. Here we show for the first time that phylogenetically diverse endohyphal bacteria occur in living hyphae of diverse foliar endophytes, including representatives of four classes of Ascomycota. We examined 414 isolates of endophytic fungi, isolated from photosynthetic tissues of six species of cupressaceous trees in five biogeographic provinces, for endohyphal bacteria using microscopy and molecular techniques. Viable bacteria were observed within living hyphae of endophytic Pezizomycetes, Dothideomycetes, Eurotiomycetes, and Sordariomycetes from all tree species and biotic regions surveyed. A focus on 29 fungus/bacterium associations revealed that bacterial and fungal phylogenies were incongruent with each other and with taxonomic relationships of host plants. Overall, eight families and 15 distinct genotypes of endohyphal bacteria were recovered; most were members of the Proteobacteria, but a small number of Bacillaceae also were found, including one that appears to occur as an endophyte of plants. Frequent loss of bacteria following subculturing suggests a facultative association. Our study recovered distinct lineages of endohyphal bacteria relative to previous studies, is the first to document their occurrence in foliar endophytes representing four of the most species-rich classes of fungi, and highlights for the first time their diversity and phylogenetic relationships with regard both to the endophytes they inhabit and the plants in which these endophyte-bacterium symbiota occur. PMID:20435775

  1. Unrelatedness of Bacillus amyloliquefaciens and Bacillus subtilis.

    PubMed

    Welker, N E; Campbell, L L

    1967-10-01

    Eight strains of highly amylolytic, sporeforming bacilli (hereafter referred to as Bacillus amyloliquefaciens) were compared with respect to their taxonomic relationship to B. subtilis. The physiological-biochemical properties of these two groups of organisms showed that B. amyloliquefaciens differed from B. subtilis by their ability to grow in 10% NaCl, characteristic growth on potato plugs, increased production of alpha-amylase, and their ability to ferment lactose with the production of acid. The base compositions of the deoxyribonucleic acid (DNA) of the B. subtilis strains consistently fell in the range of 41.5 to 43.5% guanine + cytosine (G + C), whereas that of the B. amyloliquefaciens strains was in the 43.5 to 44.9% G + C range. Hybrid formation between B. subtilis W23 and B. amyloliquefaciens F DNA revealed only a 14.7 to 15.4% DNA homology between the two species. Transducing phage, SP-10, was able to propagate on B. subtilis W23 and B. amyloliquefaciens N, and would transduce B. subtilis 168 (indole(-)) and B. amyloliquefaciens N-10 (arginine(-)) to prototrophy with a frequency of 3.9 x 10(-4) and 2.4 x 10(-5) transductants per plaque-forming unit, respectively. Attempts to transduce between the two species were unsuccessful. These data show that Bacillus amyloliquefaciens is a valid species and should not be classified as a strain or variety of B. subtilis. PMID:4963774

  2. Construction of a shuttle vector for protein secretory expression in Bacillus subtilis and the application of the mannanase functional heterologous expression.

    PubMed

    Guo, Su; Tang, Jia-jie; Wei, Dong-zhi; Wei, Wei

    2014-04-01

    We report the construction of two Bacillus subtilis expression vectors, pBNS1/pBNS2. Both vectors are based on the strong promoter P43 and the ampicillin resistance gene expression cassette. Additionally, a fragment with the Shine-Dalgarno sequence and a multiple cloning site (BamHI, SalI, SacI, XhoI, PstI, SphI) were inserted. The coding region for the amyQ (encoding an amylase) signal peptide was fused to the promoter P43 of pBNS1 to construct the secreted expression vector pBNS2. The applicability of vectors was tested by first generating the expression vectors pBNS1-GFP/pBNS2-GFP and then detecting for green fluorescent protein gene expression. Next, the mannanase gene from B. pumilus Nsic-2 was fused to vector pBNS2 and we measured the mannanase activity in the supernatant. The mannanase total enzyme activity was 8.65 U/ml, which was 6 times higher than that of the parent strain. Our work provides a feasible way to achieve an effective transformation system for gene expression in B. subtilis and is the first report to achieve B. pumilus mannanase secretory expression in B. subtilis. PMID:24375416

  3. Competitive inhibition of the inverting beta-xylosidase of Bacillus pumilus 12 by monosaccharide derivatives of different structural and conformational types. A possible natural substrate.

    PubMed Central

    Marshall, P J; Sinnott, M L

    1983-01-01

    The title enzyme is competitively inhibited by compounds, for example alpha-D-xylopyranosylpyridinium salts and 1,6-anhydro-D-glucopyranose, for which the normal 4C1 conformation of the xylopyranose ring is precluded. It is competitively inhibited by compounds, for example beta-D-xylopyranosylpyridinium salts and 1,6-anhydro-L-idopyranose, for which the 1C4 conformation is precluded, and which have no accessible conformations in common with the first set of inhibitors. It is also competitively inhibited by alpha-L-arabinofuranosides. Inhibition by 1,6-anhydroglucopyranose, 1,6-anhydro-L-idopyranose and L-arabinono-gamma-lactone is competitive with respect to each other. alpha-D-Xylopyranosyl fluoride is not a detectable substrate, by itself or in the presence of a representative of any of the three types of inhibitor. On the basis of these and literature data, it is proposed that the natural substrate is a hemicellulose fragment containing the D-Xylp beta (1 leads to 4)-[L-Araf alpha (1 leads to 3)]D-Xylp structure. Tentative inferences about the catalytic mechanism can also be drawn. PMID:6414465

  4. [Variant of Bacillus anthracoides].

    PubMed

    Galanina, L A; Bekhtereva, M N; Kraĭnova, O A

    1979-01-01

    A comparative study of the Bacillus anthracoides culture and its variant has shown that the latter differs drastically from the parent culture in the shape and consistence of colonies, the size of spores and vegetative cells, the rate of spore germination in MPB, and the resistence to steam treatment and chloroactive disinfectants. PMID:423806

  5. Characterization of cellulases of fungal endophytes isolated from Espeletia spp.

    PubMed

    Cabezas, Luisa; Calderon, Carolina; Medina, Luis Miguel; Bahamon, Isabela; Cardenas, Martha; Bernal, Adriana Jimena; Gonzalez, Andrés; Restrepo, Silvia

    2012-12-01

    Endophytes are microorganisms that asymptomatically invade plant tissues. They can stimulate plant growth and/or provide defense against pathogen attacks through the production of secondary metabolites. Most endophyte species are still unknown, and because they may have several applications, the study of their metabolic capabilities is essential. We characterized 100 endophytes isolated from Espeletia spp., a genus unique to the paramo ecosystem, an extreme environment in the Andean mountain range. We evaluated the cellulolytic potential of these endophytes on the saccharification of the oil palm empty fruit bunch (OPEFB). The total cellulolytic activity was measured for each endophyte on filter paper (FPA). In addition, the specific carboxymethyl cellulase (CMCase), exoglucanase, and β-glucosidase activities were determined. We found four fungi positive for cellulases. Of these fungi, Penicillium glabrum had the highest cellulolytic activity after partial purification, with maximal CMCase, exoglucanase and β-glucosidase enzyme activities of 44.5, 48.3, and 0.45 U/ml, respectively. Our data showed that the bioprospection of fungi and the characterization of their enzymes may facilitate the process of biofuel production. PMID:23274988

  6. Endophytic Fungi Isolated from Coleus amboinicus Lour Exhibited Antimicrobial Activity

    PubMed Central

    Astuti, Puji; Sudarsono, Sudarsono; Nisak, Khoirun; Nugroho, Giri Wisnu

    2014-01-01

    Purpose: Coleus amboinicus is a medicinal plant traditionally used to treat various diseases such as throat infection, cough and fever, diarrhea, nasal congestion and digestive problems. The plant was explored for endophytic fungi producing antimicrobial agents. Methods: Screening for endophytic fungi producing antimicrobial agents was conducted using agar plug method and antimicrobial activity of promising ethyl acetate extracts was determined by disc diffusion assay. Thin layer chromatography (TLC) - bioautography was performed to localize the bioactive components within the extract. TLC visualization detection reagents were used to preliminary analyze phytochemical groups of the bioactive compounds. Results: Three endophytic fungi were obtained, two of them showed promising potential. Agar diffusion method showed that endophytic fungi CAL-2 exhibited antimicrobial activity against P. aeruginosa, B. subtilis, S. aureus and S. thypi, whilst CAS-1 inhibited the growth of B. subtilis. TLC bioautography of ethyl acetate extract of CAL-2 revealed at least three bands exhibited antimicrobial activity and at least two bands showed inhibition of B. subtilis growth. Preliminary analysis of the crude extracts suggests that bioactive compounds within CAL-2 extract are terpenoids, phenolics and phenyl propanoid compounds whilst the antimicrobial agents within CAS-1 extract are terpenoids, propylpropanoids, alkaloids or heterocyclic nitrogen compounds. Conclusion: These data suggest the potential of endophytic fungi of C. amboinicus as source for antimicrobial agents. PMID:25671195

  7. Fungi with multifunctional lifestyles: endophytic insect pathogenic fungi.

    PubMed

    Barelli, Larissa; Moonjely, Soumya; Behie, Scott W; Bidochka, Michael J

    2016-04-01

    This review examines the symbiotic, evolutionary, proteomic and genetic basis for a group of fungi that occupy a specialized niche as insect pathogens as well as endophytes. We focus primarily on species in the genera Metarhizium and Beauveria, traditionally recognized as insect pathogenic fungi but are also found as plant symbionts. Phylogenetic evidence suggests that these fungi are more closely related to grass endophytes and diverged from that lineage ca. 100 MYA. We explore how the dual life cycles of these fungi as insect pathogens and endophytes are coupled. We discuss the evolution of insect pathogenesis while maintaining an endophytic lifestyle and provide examples of genes that may be involved in the transition toward insect pathogenicity. That is, some genes for insect pathogenesis may have been co-opted from genes involved in endophytic colonization. Other genes may be multifunctional and serve in both lifestyle capacities. We suggest that their evolution as insect pathogens allowed them to effectively barter a specialized nitrogen source (i.e. insects) with host plants for photosynthate. These ubiquitous fungi may play an important role as plant growth promoters and have a potential reservoir of secondary metabolites. PMID:26644135

  8. Antifungal activity of Artemisia annua endophyte cultures against phytopathogenic fungi.

    PubMed

    Liu, C H; Zou, W X; Lu, H; Tan, R X

    2001-07-12

    Artemisia annua, well recognized for its production of antimalarial drug artemisinin, is seldom attacked by any of phytopathogenic fungi, which could be partially associated with the presence of endophytes. Present investigation is aiming at disclosing whether the endophytes inside A. annua produce antifungal substances. A total of 39 endophytes were isolated and fermented, and the ferment broth was evaluated in vitro for the antifungal activity against crop-threatening fungi Gaeumannomyces graminis var. tritici, Rhizoctonia cerealis, Helminthosporium sativum, Fusarium graminearum, Gerlachia nivalis and Phytophthora capsici. These plant pathogens are still causing wheat take-all, sharp eyespot, common rot, scab, snow mould, and pepper phytophthora blight, respectively. Out of 39 endophytes investigated, 21 can produce in vitro substances that are inhibitory to all or a few of the tested phytopathogens whereas the rest yielded nothing active. Moreover, the most active broth of endophyte IV403 was extracted with EtOAc and n-butanol, and comparisons of the antifungal activity of the extracts indicated that the major active metabolites were EtOAc-extractable. PMID:11434973

  9. Fungal endophytes as prolific source of phytochemicals and other bioactive natural products: A review.

    PubMed

    Nisa, Humeera; Kamili, Azra N; Nawchoo, Irshad A; Shafi, Sana; Shameem, Nowsheen; Bandh, Suhaib A

    2015-05-01

    Endophytic fungi are those that live internally in apparently healthy and asymptomatic hosts. Endophytic fungi appear to be ubiquitous; indeed, no study has yet shown the existence of a plant species without endophytes. High species diversity is another characteristic of endophytic mycobiota which is depicted by the fact that it is quite common for endophyte surveys to find assemblages consisting of more than 30 fungal species per host plant species. Medicinal plants had been used to isolate and characterize directly the bioactive metabolites. However, the discovery of fungal endophytes inside these plants with capacity to produce the same compounds shifted the focus of new drug sources from plants to fungi. Bioactive natural products from endophytic fungi, isolated from different plant species, are attracting considerable attention from natural product chemists and biologists alike which is clearly depicted by the steady increase of publications devoted to this topic during the recent years. This review will highlight the chemical potential of endophytic fungi with focus on the detection of pharmaceutically valuable plant constituents as products of fungal biosynthesis. In addition, it will cover newly discovered endophytic fungi and also new bioactive metabolites reported in recent years from fungal endophytes. It summarizes the up-to-date and comprehensive information on bioactive compounds from endophytic fungi by having done a thorough survey of literature. PMID:25865953

  10. A bioinformatics approach to the determination of genes involved in endophytic behavior in Burkholderia spp.

    PubMed

    Ali, Shimaila; Duan, Jin; Charles, Trevor C; Glick, Bernard R

    2014-02-21

    The vast majority of plants harbor endophytic bacteria that colonize a portion of the plant's interior tissues without harming the plant. Like plant pathogens, endophytes gain entry into their plants hosts through various mechanisms. Bacterial endophytes display a broad range of symbiotic interactions with their host plants. The molecular bases of these plant-endophyte interactions are currently not fully understood. In the present study, a set of genes possibly responsible for endophytic behavior for genus Burkholderia was predicted and then compared and contrasted with a number (nine endophytes from different genera) of endophytes by comparative genome analysis. The nine endophytes included Burkholderia phytofirmans PsJN, Burkholderia spp. strain JK006, Azospirillum lipoferum 4B, Enterobacter cloacae ENHKU01, Klebsiella pneumoniae 342, Pseudomonas putida W619, Enterobacter spp. 638, Azoarcus spp. BH72, and Serratia proteamaculans 568. From the genomes of the analyzed bacterial strains, a set of bacterial genes orthologs was identified that are predicted to be involved in determining the endophytic behavior of Burkholderia spp. The genes and their possible functions were then investigated to establish a potential connection between their presence and the role they play in bacterial endophytic behavior. Nearly all of the genes identified by this bioinformatics procedure encode function previously suggested in other studies to be involved in endophytic behavior. PMID:24513137

  11. Endohyphal Bacterium Enhances Production of Indole-3-Acetic Acid by a Foliar Fungal Endophyte

    PubMed Central

    Hoffman, Michele T.; Gunatilaka, Malkanthi K.; Wijeratne, Kithsiri; Gunatilaka, Leslie; Arnold, A. Elizabeth

    2013-01-01

    Numerous plant pathogens, rhizosphere symbionts, and endophytic bacteria and yeasts produce the important phytohormone indole-3-acetic acid (IAA), often with profound effects on host plants. However, to date IAA production has not been documented among foliar endophytes -- the diverse guild of primarily filamentous Ascomycota that live within healthy, above-ground tissues of all plant species studied thus far. Recently bacteria that live within hyphae of endophytes (endohyphal bacteria) have been detected, but their effects have not been studied previously. Here we show not only that IAA is produced in vitro by a foliar endophyte (here identified as Pestalotiopsis aff. neglecta, Xylariales), but that IAA production is enhanced significantly when the endophyte hosts an endohyphal bacterium (here identified as Luteibacter sp., Xanthomonadales). Both the endophyte and the endophyte/bacterium complex appear to rely on an L-tryptophan dependent pathway for IAA synthesis. The bacterium can be isolated from the fungus when the symbiotic complex is cultivated at 36°C. In pure culture the bacterium does not produce IAA. Culture filtrate from the endophyte-bacterium complex significantly enhances growth of tomato in vitro relative to controls and to filtrate from the endophyte alone. Together these results speak to a facultative symbiosis between an endophyte and endohyphal bacterium that strongly influences IAA production, providing a new framework in which to explore endophyte-plant interactions. PMID:24086270

  12. Cytotoxic and Antibiotic Cyclic Pentapeptide from an Endophytic Aspergillus tamarii of Ficus carica.

    PubMed

    Ma, Yang-Min; Liang, Xi-Ai; Zhang, Hong-Chi; Liu, Rui

    2016-05-18

    A new cyclic pentapeptide, disulfide cyclo-(Leu-Val-Ile-Cys-Cys) (1), named malformin E, together with 13 known cyclic dipeptides, was isolated from the culture broth of endophytic fungus FR02 from the roots of Ficus carica. The strain FR02 was identified as Aspergillus tamarii on the basis of morphological characteristics and molecular analyses of internal transcribed spacer (ITS). Their structures were determined by the combination of 1D and 2D NMR spectroscopy, HRMS (ESI), UV, and Marfey's analysis. Compound 1 exhibited strong cytotoxic activities against human cancer cell strains MCF-7 and A549 with IC50 values of 0.65 and 2.42 μM, respectively. It also displayed remarkable antimicrobial activities against Bacillus subtilis, Staphylococcus aureus, Pseudomonas aeruginosa, Escherichia coli, Penicillium chrysogenum, Candida albicans, and Fusarium solani with MIC values of 0.91, 0.45, 1.82, 0.91, 3.62, 7.24, and 7.24 μM, respectively. PMID:27147299

  13. Characterization of arsenic-resistant endophytic bacteria from hyperaccumulators Pteris vittata and Pteris multifida.

    PubMed

    Zhu, Ling-Jia; Guan, Dong-Xing; Luo, Jun; Rathinasabapathi, Bala; Ma, Lena Q

    2014-10-01

    We isolated and characterized As-resistant endophytic bacteria (AEB) from two arsenic hyperaccumulators. Their plant growth promoting traits and the relation between As tolerance and transformation were evaluated. A total of 41 and 33 AEB were isolated from Pteris vittata (PV) and Pteris multifida (PM) respectively. PV AEB represented 2genera while PM AEB comprised of 12 genera, with Bacillus sp. being the most dominant bacteria from both plants. All AEB had limited ability in solubilizing P and producing indole acetic acid (IAA) and siderophore. All isolates tolerated 10mM arsenate (As(V)), with PV isolates being more tolerant to As(V) and PM more tolerant to arsenite (As(III)). Bacterial arsenic tolerance was related to their ability in As(III) oxidation and As(V) reduction as well as their ability to retain As in the biomass to a varying extent. Though AEB showed limited plant growth promoting traits, they were important in arsenic tolerance and speciation in plants. PMID:25065783

  14. Rapid, specific and quantitative assays for the detection of the endophytic bacterium Methylobacterium mesophilicum in plants.

    PubMed

    Lacava, P T; Li, W B; Araújo, W L; Azevedo, J L; Hartung, J S

    2006-06-01

    Xylella fastidiosa is a xylem-limited bacterium that causes citrus variegated chlorosis disease in sweet orange. There is evidence that X. fastidiosa interacts with endophytic bacteria present in the xylem of sweet orange, and that these interactions, particularly with Methylobacterium mesophilicum, may affect disease progress. However, these interactions cannot be evaluated in detail until efficient methods for detection and enumeration of these bacteria in planta are developed. We have previously developed standard and quantitative PCR-based assays specific for X. fastidiosa using the LightCycler system [Li, W.B., Pria Jr., L.P.M.W.D., X. Qin, and J.S. Hartung, 2003. Presence of Xylella fastidiosa in sweet orange fruit and seeds and its transmission to seedlings. Phytopathology 93:953-958.], and now report the development of both standard and quantitative PCR assays for M. mesophilicum. The assays are specific for M. mesophilicum and do not amplify DNA from other species of Methylobacterium or other bacteria commonly associated with citrus or plant tissue. Other bacteria tested included Curtobacterium flaccumfaciens, Pantoea agglomerans, Enterobacter cloacae, Bacillus sp., X. fastidiosa, Xanthomonas axonopodis pv. citri, and Candidatus Liberibacter asiaticus. We have demonstrated that with these methods we can quantitatively monitor the colonization of xylem by M. mesophilicum during the course of disease development in plants artificially inoculated with both bacteria. PMID:16266765

  15. Vincamine-producing endophytic fungus isolated from Vinca minor.

    PubMed

    Yin, Hong; Sun, Yu-Hong

    2011-06-15

    Vinca minor is a plant containing the alkaloid vincamine, which is used in the pharmaceutical industry as a cerebral stimulant and vasodilator. The objective of this study was to determine whether endophytic fungi isolated from V. minor produce vincamine. Primary screening was carried out using Dragendorff's and Mayer's reactions, and strain re-selection was made by thin-layer chromatography (TLC) and high-performance liquid chromatography (HPLC) to identify the fermentation products of the selected strain. We isolated 10 endophytic fungal strains from V. minor. An extract from one (Vm-J2), showed positive reactions with both Dragendorff's and Mayer's reagents. The strain had a component with the same TLC R(f) value and HPLC retention time as authentic vincamine. Therefore, the fungus appeared to produce the same bioactive ingredient, vincamine, as the host plant. The prospect of using endophytic fungi to produce the phytoactive compound by fungal fermentation is discussed. PMID:21315568

  16. Fungal endophytes characterization from four species of Diplazium Swartz

    NASA Astrophysics Data System (ADS)

    Affina-Eliya, A. A.; Noraini, T.; Nazlina, I.; Ruzi, A. R.

    2014-09-01

    Four species on genus Diplazium namely Diplazium tomentosum, D. sorzogonense, D. asperum and D. accedens of Peninsular Malaysia were studied for presence of fungal endophyte. The objective of this study is to characterize fungal endophytes in the rhizome of four Diplazium species. The rhizome was surface sterilized and incubated to isolate fungal endophytes. Characterization of the colonies was performed by macroscopic morphological, microscopic identification, types of hyphae and mycelium, and spore structure. For isolation that produces spores, the structure of conidiophores and conidia were identified. From this study, four fungal have been isolated and determined as Aspergillus sp. (isolates AE 1), Aspergillus fumigatus (isolates AE 2), Aspergillus versicolor (isolates AE 3) and Verticillium sp. (isolates AE 4). The fungal isolates from this study were classified from the same family Moniliaceae.

  17. Bioprospecting for Microbial Endophytes and Their Natural Products

    PubMed Central

    Strobel, Gary; Daisy, Bryn

    2003-01-01

    Endophytic microorganisms are to be found in virtually every plant on earth. These organisms reside in the living tissues of the host plant and do so in a variety of relationships, ranging from symbiotic to slightly pathogenic. Because of what appears to be their contribution to the host plant, the endophytes may produce a plethora of substances of potential use to modern medicine, agriculture, and industry. Novel antibiotics, antimycotics, immunosuppressants, and anticancer compounds are only a few examples of what has been found after the isolation, culture, purification, and characterization of some choice endophytes in the recent past. The potential prospects of finding new drugs that may be effective candidates for treating newly developing diseases in humans, plants, and animals are great. PMID:14665674

  18. [beta-1,3-1,4-Glucanase in sporeforming microorganisms. II. Production of beta-glucan-hydrolases by various Bacillus species (author's transl)].

    PubMed

    Borriss, R; Zemek, J; Augustín, J; Pácová, Z; Kuniak, L

    1980-01-01

    Production of beta-1,3-1,4-glucan hydrolase (licheninase) was studied in 45 strains of Bacillus representing 17 various species using lichenin as substrate. It was found that the enzyme was produced by the strains of B. pumilus, B. subtilis, B. amyloliquefaciens, B. polymyxa, B. macerans, B. laterosporus and one strain of B. circulans. A new screening method based on application of a gel prepared from the cross-linked lichenin as an only source of carbon in the cultivation medium is presented. Using this method and methods using other cross-linked gels as carbon sources in a synthetic liquid medium, production of licheninase, amylase and cellulase by the strains tested is compared. PMID:7456809

  19. A multiphasic approach for the identification of endophytic bacterial in strawberry fruit and their potential for plant growth promotion.

    PubMed

    de Melo Pereira, Gilberto Vinícius; Magalhães, Karina Teixeira; Lorenzetii, Emi Rainildes; Souza, Thiago Pereira; Schwan, Rosane Freitas

    2012-02-01

    This study used a multiphasic approach, characterized by the simultaneous use of culture-dependent and culture-independent methods, to investigate endophytic bacterial communities in strawberry (Fragaria ananassa) fruit. A total of 92 bacterial endophytes were isolated and initially grouped by their repetitive extragenic palindromic (rep)-PCR banding pattern and biochemical features. Phylogenetic analysis of the 16S rRNA gene sequences of 45 representatives showed that the isolates belonged to the species Bacillus subtilis (eight isolates), Bacillus sp. (seven isolates), Enterobacter sp. (seven isolates), Enterobacter ludwigii (six isolates), Lactobacillus plantarum (six isolates), Pseudomonas sp. (five isolates), Pantoea punctata (three isolates), and Curtobacterium citreum (three isolates). Nucleic acids were extracted from the strawberry fruit and subjected to 16S rRNA gene directed polymerase chain reaction denaturing gradient gel electrophoresis (16S rRNA PCR-DGGE). The species B. subtilis, Enterobacter sp., and Pseudomonas sp. were detected both by isolation and DGGE. The DGGE fingerprints of total bacterial DNA did not exhibit bands corresponding to several of the representative species isolated in the extinction dilution (L. plantarum, C. citreum, and P. punctata). In contrast, bands in the DGGE profile that were identified as relatives of Arthrobacter sp. and one uncultivable Erythrobacter sp. were not recovered by cultivation techniques. After isolation, the nitrogen fixation ability and the in vitro production of indole-3-acetic acid (IAA) equivalents and siderophores were evaluated. A high percentage of isolates were found to possess the ability to produce siderophores and IAA equivalents; however, only a few isolates belonging to the genera Pseudomonas and Enterobacter showed the ability to fix nitrogen. Plant growth promotion was evaluated under greenhouse conditions and revealed the ability of the Bacillus strains to enhance the number of leaves, shoot length, root dry weight, and shoot dry weight. The activity of the bacterial isolate identified as B. subtilis NA-108 exerted the greatest influence on strawberry growth and showed a 42.8% increase in number of leaves, 15.26% for high shoot, 43.5% increase in root dry weight, and a 77% increase in shoot dry weight when compared with untreated controls. PMID:21837472

  20. In planta reduction of maize seedling stalk lesions by the bacterial endophyte Bacillus mojavensis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Due to autoinfection and alloinfection, maize is susceptible to infection by Fusarium verticillioides resulting in diseases and contamination of maize kernels with the fumonisin mycotoxins. Attempts at controlling this fungus are currently being done with biocontrol agents such as bacteria and this...

  1. Biodegradation of Trichloroethylene by an Endophyte of Hybrid Poplar

    PubMed Central

    Kang, Jun Won; Khan, Zareen

    2012-01-01

    We isolated and characterized a novel endophyte from hybrid poplar. This unique endophyte, identified as Enterobacter sp. strain PDN3, showed high tolerance to trichloroethylene (TCE). Without the addition of inducers, such as toluene or phenol, PDN3 rapidly reduced TCE levels in medium from 72.4 μM to 30.1 μM in 24 h with a concurrent release of 127 μM chloride ion, and nearly 80% of TCE (55.3 μM) was dechlorinated by PDN3 in 5 days with 166 μM chloride ion production, suggesting TCE degradation. PMID:22367087

  2. Ruling out Bacillus anthracis.

    PubMed

    Papaparaskevas, Joseph; Houhoula, Dimitra P; Papadimitriou, Maria; Saroglou, Georgios; Legakis, Nicholas J; Zerva, Loukia

    2004-04-01

    Optimization of methods for ruling out Bacillus anthracis leads to increased yields, faster turnaround times, and a lighter workload. We used 72 environmental non-B. anthracis bacilli to validate methods for ruling out B. anthracis. Most effective were the use of horse blood agar, motility testing after isolates had a 2-h incubation in trypticase soy broth, and screening isolates with a B. anthracis-selective agar. PMID:15200872

  3. The tubercle bacillus

    PubMed Central

    1949-01-01

    A series of lectures on the tubercle bacillus by eminent authorities from various countries was organized at the Institut d'Hygiène et de Bactériologie of the University of Lausanne by Professor Paul Hauduroy, from 22 to 25 April 1949. Through the kindness of Professor Hauduroy it has been possible for the World Health Organization to publish in the Bulletin summaries of these lectures. * PMID:20603940

  4. The role of the Oregon State University Endophyte Service Laboratory in diagnosing clinical cases of endophyte toxicoses.

    PubMed

    Craig, A Morrie; Blythe, Linda L; Duringer, Jennifer M

    2014-07-30

    The Oregon State University Colleges of Veterinary Medicine and Agricultural Sciences instituted the Endophyte Service Laboratory to aid in diagnosing toxicity problems associated with cool-season grasses in livestock. The endophyte (Neotyphodium coenophalum) present in tall fescue (Festuca arundinacea) produces ergopeptine alkaloids, of which ergovaline is the molecule used to determine exposure and toxicity thresholds for the vasoconstrictive conditions "fescue foot" and "summer slump". Another vasoconstrictive syndrome, "ergotism," is caused by a parasitic fungus, Claviceps purpurea, and its primary toxin, ergotamine. "Ryegrass staggers" is a neurological condition that affects livestock consuming endophyte (Neotyphodium lolii)-infected perennial ryegrass (Lolium perenne) with high levels of lolitrem B. HPLC-fluorescent analytical methods for these mycotoxins are described and were used to determine threshold levels of toxicity for ergovaline and lolitrem B in cattle, sheep, horses, and camels. In addition, six clinical cases in cattle are presented to illustrate diagnosis of these three diseases. PMID:25017309

  5. Differential detection of a surrogate biological threat agent (Bacillus globigii) with a portable surface plasmon resonance biosensor.

    PubMed

    Adducci, Benjamin A; Gruszewski, Hope A; Khatibi, Piyum A; Schmale, David G

    2016-04-15

    New methods and technology are needed to quickly and accurately detect potential biological warfare agents, such as Bacillus anthracis, causal agent of anthrax in humans and animals. Here, we report the detection of a simulant of B. anthracis (B. globigii) alone and in a mixture with a different species of Bacillus to test non-specific interference using a portable surface plasmon resonance (SPR) biosensor (SPIRIT 4.0, Seattle Sensor Systems). Both direct capture and antibody amplification were used to determine the limit of detection for spores of B. globigii, and to detect spores of B. globigii in a mixed sample containing another Bacillus spp. Spores of B. globigii were detected by anti-B. globigii (anti-Bg) coated sensors by direct capture at a concentration of 10(7)spores/mL, and with a secondary antibody amplification at a concentration of 10(5)spores/mL. Spores of B. globigii were differentially detected in a 1:1 mixture with B. pumilus spores from equal concentrations (10(7)spores/mL) with a secondary antibody amplification. To our knowledge, this is the first report of the differential detection of B. globigii with SPR in a mixed sample containing at least one additional Bacillus spp., highlighting the potential for SPR to detect any target bacterium in a mixed sample of closely related species. With the availability of portable instrumentation to accurately detect biological warfare agents such as B. anthracis, emergency responders can implement protocols in a timely fashion, limiting the amount of exposed individuals. PMID:26606307

  6. The community of needle endophytes reflects the current physiological state of Norway spruce.

    PubMed

    Rajala, Tiina; Velmala, Sannakajsa M; Vesala, Risto; Smolander, Aino; Pennanen, Taina

    2014-03-01

    This study investigated fungal endophytes in the needles of Norway spruce (Picea abies) cuttings in relation to host tree growth. We also determined the prevalence of endophytes in needles incubated for six months. The cuttings originated from clonal origins showing slow- and fast-growth in long-term field trials but the heritable differences in growth rate were not yet detected among the studied cutting. Endophytes were isolated from surface-sterilized needles with culture-free DNA techniques. No significant differences were observed between endophyte communities of slow- and fast-growing clonal origins. However, the endophyte community correlated with the current growth rate of cuttings suggesting that endophytes reflect short- rather than long-term performance of a host. The concentration of condensed tannins was similar in slow- and fast-growing clonal origins but it showed a negative relationship with endophyte species richness, implying that these secondary compounds may play an important role in spruce tolerance against fungal infections. More than a third of endophyte species were detected in both fresh and decomposing needles, indicating that many needle endophytes are facultative saprotrophs. Several potentially pathogenic fungal species were also found within the community of saprotrophic endophytes. PMID:24607354

  7. Fungal Endophytes from Three Cultivars of Panax ginseng Meyer Cultivated in Korea.

    PubMed

    Park, Sang Un; Lim, Hyoun-Sub; Park, Kee-Choon; Park, Young-Hwan; Bae, Hanhong

    2012-01-01

    In order to investigate the diversity of endophytes, fungal endophytes in Panax ginseng Meyer cultivated in Korea were isolated and identified using internal transcribed spacer (ITS) sequences of ribosomal DNA. Three cultivars of 3-year-old ginseng roots (Chunpoong, Yunpoong, and Gumpoong) were used to isolate fungal endophytes. Surface sterilized ginseng roots were placed on potato dextrose agar plates supplemented with ampicilin and streptomycin to inhibit bacterial growth. Overall, 38 fungal endophytes were isolated from 12 ginseng roots. According to the sequence analysis of the ITS1-5.8S-ITS2, 38 fungal isolates were classified into 4 different fungal species, which were Phoma radicina, Fusarium oxysporum, Setophoma terrestris and Ascomycota sp. 2-RNK. The most dominant fungal endophyte was P. radicina in 3 cultivars. The percentage of dominant endophytes of P. radicina was 65.8%. The percentage of colonization frequency of P. radicina was 80%, 52.9%, and 75% in Chunpoong, Yunpoong, and Gumpoong, respectively. The second most dominant fungal endophyte was F. oxysporum. The diversity of the fungal endophytes was low and no ginseng cultivar specificity among endophytes was detected in this study. The identified endophytes can be potential fungi for the production of bioactive compounds and control against ginseng pathogens. PMID:23717111

  8. Endophytic bacteria: prospects and applications for the phytoremediation of organic pollutants.

    PubMed

    Afzal, Muhammad; Khan, Qaiser M; Sessitsch, Angela

    2014-12-01

    Recently, there has been an increased effort to enhance the efficacy of phytoremediation of contaminated environments by exploiting plant-microbe interactions. The combined use of plants and endophytic bacteria is an emerging approach for the clean-up of soil and water polluted with organic compounds. In plant-endophyte partnerships, plants provide the habitat as well as nutrients to their associated endophytic bacteria. In response, endophytic bacteria with appropriate degradation pathways and metabolic activities enhance degradation of organic pollutants, and diminish phytotoxicity and evapotranspiration of organic pollutants. Moreover, endophytic bacteria possessing plant growth-promoting activities enhance the plant's adaptation and growth in soil and water contaminated with organic pollutants. Overall, the application of endophytic bacteria gives new insights into novel protocols to improve phytoremediation efficiency. However, successful application of plant-endophyte partnerships for the clean-up of an environment contaminated with organic compounds depends on the abundance and activity of the degrading endophyte in different plant compartments. Although many endophytic bacteria have the potential to degrade organic pollutants and improve plant growth, their contribution to enhance phytoremediation efficiency is still underestimated. A better knowledge of plant-endophyte interactions could be utilized to increase the remediation of polluted soil environments and to protect the foodstuff by decreasing agrochemical residues in food crops. PMID:25078615

  9. Pervasive Effects of Wildfire on Foliar Endophyte Communities in Montane Forest Trees.

    PubMed

    Huang, Yu-Ling; Devan, M M Nandi; U'Ren, Jana M; Furr, Susan H; Arnold, A Elizabeth

    2016-02-01

    Plants in all terrestrial ecosystems form symbioses with endophytic fungi that inhabit their healthy tissues. How these foliar endophytes respond to wildfires has not been studied previously, but is important given the increasing frequency and intensity of severe wildfires in many ecosystems, and because endophytes can influence plant growth and responses to stress. The goal of this study was to examine effects of severe wildfires on endophyte communities in forest trees, with a focus on traditionally fire-dominated, montane ecosystems in the southwestern USA. We evaluated the abundance, diversity, and composition of endophytes in foliage of Juniperus deppeana (Cupressaceae) and Quercus spp. (Fagaceae) collected contemporaneously from areas affected by recent wildfire and paired areas not affected by recent fire. Study sites spanned four mountain ranges in central and southern Arizona. Our results revealed significant effects of fires on endophyte communities, including decreases in isolation frequency, increases in diversity, and shifts in community structure and taxonomic composition among endophytes of trees affected by recent fires. Responses to fire were similar in endophytes of each host in these fire-dominated ecosystems and reflect regional fire-return intervals, with endophytes after fire representing subsets of the regional mycoflora. Together, these findings contribute to an emerging perspective on the responses of diverse communities to severe fire, and highlight the importance of considering fire history when estimating endophyte diversity and community structure for focal biomes. PMID:26370111

  10. Functional characterization of salicylate hydroxylase from the fungal endophyte Epichloë festucae

    PubMed Central

    Ambrose, Karen V.; Tian, Zipeng; Wang, Yifei; Smith, Jordan; Zylstra, Gerben; Huang, Bingru; Belanger, Faith C.

    2015-01-01

    Epichloë spp. are symbiotic fungal endophytes of many cool season grasses. The presence of the fungal endophytes often confers insect, drought, and disease tolerance to the host grasses. The presence of the fungal endophytes within the host plants does not elicit host defense responses. The molecular basis for this phenomenon is not known. Epichloë festucae, the endophyte of Festuca rubra, expresses a salicylate hydroxylase similar to NahG from the bacterium Pseudomonas putida. Few fungal salicylate hydroxylase enzymes have been reported. The in planta expression of an endophyte salicylate hydroxylase raised the possibility that degradation of plant-produced salicylic acid is a factor in the mechanism of how the endophyte avoids eliciting host plant defenses. Here we report the characterization of the E. festucae salicylate hydroxylase, designated Efe-shyA. Although the fungal enzyme has the expected activity, based on salicylic acid levels in endophyte-free and endophyte-infected plants it is unlikely that expression of the endophyte salicylate hydroxylase is a factor in the lack of a host defense response to the presence of the fungal endophyte. PMID:26055188

  11. Functional characterization of salicylate hydroxylase from the fungal endophyte Epichloë festucae.

    PubMed

    Ambrose, Karen V; Tian, Zipeng; Wang, Yifei; Smith, Jordan; Zylstra, Gerben; Huang, Bingru; Belanger, Faith C

    2015-01-01

    Epichloë spp. are symbiotic fungal endophytes of many cool season grasses. The presence of the fungal endophytes often confers insect, drought, and disease tolerance to the host grasses. The presence of the fungal endophytes within the host plants does not elicit host defense responses. The molecular basis for this phenomenon is not known. Epichloë festucae, the endophyte of Festuca rubra, expresses a salicylate hydroxylase similar to NahG from the bacterium Pseudomonas putida. Few fungal salicylate hydroxylase enzymes have been reported. The in planta expression of an endophyte salicylate hydroxylase raised the possibility that degradation of plant-produced salicylic acid is a factor in the mechanism of how the endophyte avoids eliciting host plant defenses. Here we report the characterization of the E. festucae salicylate hydroxylase, designated Efe-shyA. Although the fungal enzyme has the expected activity, based on salicylic acid levels in endophyte-free and endophyte-infected plants it is unlikely that expression of the endophyte salicylate hydroxylase is a factor in the lack of a host defense response to the presence of the fungal endophyte. PMID:26055188

  12. Identification and characterization of the Sudanese Bacillus thuringiensis and related bacterial strains for their efficacy against Helicoverpa armigera and Tribolium castaneum.

    PubMed

    Gorashi, N E; Tripathi, M; Kalia, V; Gujar, G T

    2014-06-01

    Forty-four isolates of Bacillus thuringiensis like bacteria from various sources in different locations from Sudan were tested for their insecticidal activity. The toxicity of these isolates ranged from 6.6 to 70% to the neonates of cotton bollworm, Helicoverpa armigera at 10 ppm concentration. The most effective ones are Kb-29, St-6 and Wh-1 comparable with HD-1. Toxicity of isolates to larvae of the red flour beetle, Tribolium castaneum ranged from 20 to 100%. Isolates St-2 and St-23 gave 100% larval mortality within 15 days of exposure and were at par with Ab-8, Ab-12, Kb-26, Kb-30, Om-4, Po-2, Po-5, Po-7, Sa-8 and Wh-5 and were also comparable with E. coli clone expressing Cry3 toxin. The most effective five isolates viz., Kb-29, St-2, St-6, St-23 and Wh-1 belonged to B. thuringiensis. The St-6 isolate, which also showed high toxicity to T. castaneum larvae, had cry1 genes along with coleopteran active cry28 genes, but not cry3 genes. Of the 25 isolates characterized with 16s DNA sequencing, seven belonged to Paenibacillus spp., one Lysinibacillus sphaericus, one Bacillus pumilus, four Bacillus spp., and rest 12 belonged to B. thuringiensis. Biochemical characterization in each species showed variation. The present study shows potential of some isolates like Kb-29, St-2, St-6, St-23 and Wh-1 as promising bioinsecticides. PMID:24956895

  13. Detection of Uncultured Seed Borne Endophytes in Atriplex canesens: Methods used in: “Seed Borne Endophyte Microbiomes are Associated with Vascular Plants”

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Micropropagated systems provide controlled habitats in which complex plant-endophyte interactions can be studied with minimal interference from superficial microbes. The series of protocols described herein can be used to examine seed borne endophyte consortia associated with woody plant species. ...

  14. Using Orchardgrass and Endophyte-Free Fescue Versus Endophyte-Infected Fescue Overseeded on Bermudagrass for Cow Herds: I. Four-Year Summary of Forage Characteristics

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A systems trial was designed to evaluate forage characteristics within mixed-species pastures consisting of: i) endophyte-infected tall fescue (Festuca arundinacea Schreb.; E+) mixed with common bermudagrass [Cynodon dactylon (L.) Pers.] and other forages; ii) endophyte-free tall fescue (E-) oversee...

  15. Bacterial endophytic communities in the grapevine depend on pest management.

    PubMed

    Campisano, Andrea; Antonielli, Livio; Pancher, Michael; Yousaf, Sohail; Pindo, Massimo; Pertot, Ilaria

    2014-01-01

    Microbial plant endophytes are receiving ever-increasing attention as a result of compelling evidence regarding functional interaction with the host plant. Microbial communities in plants were recently reported to be influenced by numerous environmental and anthropogenic factors, including soil and pest management. In this study we used automated ribosomal intergenic spacer analysis (ARISA) fingerprinting and pyrosequencing of 16S rDNA to assess the effect of organic production and integrated pest management (IPM) on bacterial endophytic communities in two widespread grapevines cultivars (Merlot and Chardonnay). High levels of the dominant Ralstonia, Burkholderia and Pseudomonas genera were detected in all the samples We found differences in the composition of endophytic communities in grapevines cultivated using organic production and IPM. Operational taxonomic units (OTUs) assigned to the Mesorhizobium, Caulobacter and Staphylococcus genera were relatively more abundant in plants from organic vineyards, while Ralstonia, Burkholderia and Stenotrophomonas were more abundant in grapevines from IPM vineyards. Minor differences in bacterial endophytic communities were also found in the grapevines of the two cultivars. PMID:25387008

  16. Impact of endophytic microorganisms on plants, environment and humans.

    PubMed

    Nair, Dhanya N; Padmavathy, S

    2014-01-01

    Endophytes are microorganisms (bacteria or fungi or actinomycetes) that dwell within robust plant tissues by having a symbiotic association. They are ubiquitously associated with almost all plants studied till date. Some commonly found endophytes are those belonging to the genera Enterobacter sp., Colletotrichum sp., Phomopsis sp., Phyllosticta sp., Cladosporium sp., and so forth. Endophytic population is greatly affected by climatic conditions and location where the host plant grows. They produce a wide range of compounds useful for plants for their growth, protection to environmental conditions, and sustainability, in favour of a good dwelling place within the hosts. They protect plants from herbivory by producing certain compounds which will prevent animals from further grazing on the same plant and sometimes act as biocontrol agents. A large amount of bioactive compounds produced by them not only are useful for plants but also are of economical importance to humans. They serve as antibiotics, drugs or medicines, or the compounds of high relevance in research or as compounds useful to food industry. They are also found to have some important role in nutrient cycling, biodegradation, and bioremediation. In this review, we have tried to comprehend different roles of endophytes in plants and their significance and impacts on man and environment. PMID:24587715

  17. Beneficial role of bacterial endophytes in heavy metal phytoremediation.

    PubMed

    Ma, Ying; Rajkumar, Mani; Zhang, Chang; Freitas, Helena

    2016-06-01

    Phytoremediation is an emerging technology that uses plants and their associated microbes to clean up pollutants from the soil, water and air. In recent years, phytoremediation assisted by bacterial endophytes has been highly recommended for cleaning up of metal polluted soils since endophytic bacteria can alleviate metal toxicity in plant through their own metal resistance system and facilitate plant growth under metal stress. Endophytic bacteria improve plant growth in metal polluted soils in two different ways: 1) directly by producing plant growth beneficial substances including solubilization/transformation of mineral nutrients (phosphate, nitrogen and potassium), production of phytohormones, siderophores and specific enzymes; and 2) indirectly through controlling plant pathogens or by inducing a systemic resistance of plants against pathogens. Besides, they also alter metal accumulation capacity in plants by excreting metal immobilizing extracellular polymeric substances, as well as metal mobilizing organic acids and biosurfactants. The present work aims to review the progress of recent research on the isolation, identification and diversity of metal resistant endophytic bacteria and illustrate various mechanisms responsible for plant growth promotion and heavy metal detoxification/phytoaccumulation/translocation in plants. PMID:26989941

  18. TALL FESCUE AND ASSOCIATED MUTUALISTIC TOXIC FUNGAL ENDOPHYTES IN AGROECOSYSTEMS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bacon et al. (1977) proposed and Hoveland et al. (1980, 1986) substantiated that impaired health and performance of livestock grazing tall fescue [Lolium arundinaceum S. J. Darbyshire, formerly Festuca arundinacea Schreb.] were associated with the fungal endophyte Neotyphodium coenophialum Glenn, Ha...

  19. Endophytic Phomopsis species: host range and implications for diversity estimates.

    PubMed

    Murali, T S; Suryanarayanan, T S; Geeta, R

    2006-07-01

    Foliar endophyte assemblages of teak trees growing in dry deciduous and moist deciduous forests of Nilgiri Biosphere Reserve were compared. A species of Phomopsis dominated the endophyte assemblages of teak, irrespective of the location of the host trees. Internal transcribed spacer sequence analysis of 11 different Phomopsis isolates (ten from teak and one from Cassia fistula) showed that they fall into two groups, which are separated by a relatively long branch that is strongly supported. The results showed that this fungus is not host restricted and that it continues to survive as a saprotroph in teak leaf, possibly by exploiting senescent leaves as well as the litter. Although the endophyte assemblage of a teak tree growing about 500 km from the forests was also dominated by a Phomopsis sp., it separated into a different group based on internal transcribed spacer sequence analysis. Our results with an endophytic Phomopsis sp. reinforce the earlier conclusions reached by others for pathogenic Phomopsis sp., i.e., that this fungus is not host specific, and the species concept of Phomopsis needs to be redefined. PMID:16917524

  20. Plant growth promotion induced by phosphate solubilizing endophytic Pseudomonas isolates.

    PubMed

    Oteino, Nicholas; Lally, Richard D; Kiwanuka, Samuel; Lloyd, Andrew; Ryan, David; Germaine, Kieran J; Dowling, David N

    2015-01-01

    The use of plant growth promoting bacterial inoculants as live microbial biofertilizers provides a promising alternative to chemical fertilizers and pesticides. Inorganic phosphate solubilization is one of the major mechanisms of plant growth promotion by plant associated bacteria. This involves bacteria releasing organic acids into the soil which solubilize the phosphate complexes converting them into ortho-phosphate which is available for plant up-take and utilization. The study presented here describes the ability of endophytic bacteria to produce gluconic acid (GA), solubilize insoluble phosphate, and stimulate the growth of Pisum sativum L. plants. This study also describes the genetic systems within three of these endophyte strains thought to be responsible for their effective phosphate solubilizing abilities. The results showed that many of the endophytic strains produced GA (14-169 mM) and have moderate to high phosphate solubilization capacities (~400-1300 mg L(-1)). When inoculated into P. sativum L. plants grown in soil under soluble phosphate limiting conditions, the endophytes that produced medium-high levels of GA displayed beneficial plant growth promotion effects. PMID:26257721

  1. Potential roles for microbial endophytes in herbicide tolerance in plants.

    PubMed

    Tétard-Jones, Catherine; Edwards, Robert

    2016-02-01

    Herbicide tolerance in crops and weeds is considered to be monotrophic, i.e. determined by the relative susceptibility of the physiological process targeted and the plant's ability to metabolise and detoxify the agrochemical. A growing body of evidence now suggests that endophytes, microbes that inhabit plant tissues and provide a range of growth, health and defence enhancements, can contribute to other types of abiotic and biotic stress tolerance. The current evidence for herbicide tolerance being bitrophic, with both free-living and plant-associated endophytes contributing to tolerance in the host plant, has been reviewed. We propose that endophytes can directly contribute to herbicide detoxification through their ability to metabolise xenobiotics. In addition, we explore the paradigm that microbes can 'prime' resistance mechanisms in plants such that they enhance herbicide tolerance by inducing the host's stress responses to withstand the downstream toxicity caused by herbicides. This latter mechanism has the potential to contribute to the growth of non-target-site-based herbicide resistance in weeds. Microbial endophytes already contribute to herbicide detoxification in planta, and there is now significant scope to extend these interactions using synthetic biology approaches to engineer new chemical tolerance traits into crops via microbial engineering. © 2015 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry. PMID:26350619

  2. Plant growth promotion induced by phosphate solubilizing endophytic Pseudomonas isolates

    PubMed Central

    Oteino, Nicholas; Lally, Richard D.; Kiwanuka, Samuel; Lloyd, Andrew; Ryan, David; Germaine, Kieran J.; Dowling, David N.

    2015-01-01

    The use of plant growth promoting bacterial inoculants as live microbial biofertilizers provides a promising alternative to chemical fertilizers and pesticides. Inorganic phosphate solubilization is one of the major mechanisms of plant growth promotion by plant associated bacteria. This involves bacteria releasing organic acids into the soil which solubilize the phosphate complexes converting them into ortho-phosphate which is available for plant up-take and utilization. The study presented here describes the ability of endophytic bacteria to produce gluconic acid (GA), solubilize insoluble phosphate, and stimulate the growth of Pisum sativum L. plants. This study also describes the genetic systems within three of these endophyte strains thought to be responsible for their effective phosphate solubilizing abilities. The results showed that many of the endophytic strains produced GA (14–169 mM) and have moderate to high phosphate solubilization capacities (~400–1300 mg L−1). When inoculated into P. sativum L. plants grown in soil under soluble phosphate limiting conditions, the endophytes that produced medium-high levels of GA displayed beneficial plant growth promotion effects. PMID:26257721

  3. Swainsonine and endophyte relationships in Astragalus mollissimus and Astragalus lentiginosus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Locoweeds are defined as Astragalus and Oxytropis species that contain the toxic alkaloid swainsonine. Swainsonine was detected in all parts of Astragalus lentiginosus and Astragalus mollissimus with greater concentrations found in the above ground parts. Undifilum oxytropis, a fungal endophyte re...

  4. Mutualistic fungal endophytes in the Triticeae - survey and description.

    PubMed

    Card, Stuart D; Faville, Marty J; Simpson, Wayne R; Johnson, Richard D; Voisey, Christine R; de Bonth, Anouck C M; Hume, David E

    2014-04-01

    Grasses of the tribe Triticeae were screened to determine the presence of mutualistic epichloae fungal endophytes. Over 1500 accessions, from more than 250 species, encompassing 22 genera within the Triticeae were screened using immunodetection and direct staining/microscopy techniques. Only two genera, Elymus and Hordeum, were identified as harbouring epichloae endophytes with accessions native to a range of countries including Canada, China, Iran, Kazakhstan, Kyrgyzstan, Mongolia, Russia and the USA. Genetic analysis based on simple sequence repeat data revealed that the majority of endophytes cluster according to geographical regions rather than to host species; many strains isolated from Hordeum grouped with those derived from Elymus, and amongst the Elymus-derived strains, there was no clear correspondence between clustering topology and host species. This is the first detailed survey demonstrating the genetic diversity of epichloae endophytes within the Triticeae and highlights the importance of germplasm centres for not only preserving the genetic diversity of plant species but also the beneficial microorganisms they may contain. PMID:24754753

  5. Extracellular Hemicellulolytic Enzymes from the Maize Endophyte Acremonium zeae

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The maize endophyte Acremonium zeae was examined for production of extracellular enzymes that hydrolyze cellulose and hemicellulose. The most prominent enzyme activity in cell-free culture media from A. zeae NRRL 6415 was xylanase, with a specific activity of 60 U/mg from cultures grown on crude co...

  6. Nematode suppression by endophyte-associated tall fescue

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Tall fescue is planted as a forage and turf grass and a postplant ground cover for reducing soil erosion. It withstands drought and is resistant to various pests, including some plant-parasitic nematodes. The presence of the endophytic fungus Neotyphodium coenophialum can increase tall fescue grow...

  7. Host associations between fungal root endophytes and boreal trees.

    PubMed

    Kernaghan, Gavin; Patriquin, Glenn

    2011-08-01

    Fungal root endophytes colonize root tissue concomitantly with mycorrhizal fungi, but their identities and host preferences are largely unknown. We cultured fungal endophytes from surface-sterilized Cenococcum geophilum ectomycorrhizae of Betula papyrifera, Abies balsamea, and Picea glauca from two boreal sites in eastern Canada. Isolates were initially grouped on the basis of cultural morphology and then identified by internal transcribed spacer ribosomal DNA sequencing or by PCR restriction fragment length polymorphism. Phylogenetic analysis of the sequence data revealed 31 distinct phylotypes among the isolates, comprising mainly members of the ascomycete families Helotiaceae, Dermateaceae, Myxotrichaceae, and Hyaloscyphaceae, although other fungi were also isolated. Multivariate analyses indicate a clear separation among the endophyte communities colonizing each host tree species. Some phylotypes were evenly distributed across the roots of all three host species, some were found preferentially on particular hosts, and others were isolated from single hosts only. The results indicate that fungal root endophytes of boreal trees are not randomly distributed, but instead form relatively distinct assemblages on different host tree species. PMID:21475991

  8. An endophytic Coniochaeta velutina producing broad spectrum antimycotics.

    PubMed

    Xie, Jie; Strobel, Gary A; Feng, Tao; Ren, Huishuang; Mends, Morgan T; Zhou, Zeyang; Geary, Brad

    2015-06-01

    An endophyte (PC27-5) was isolated from stem tissue of Western hemlock (Tsuga heterophylla) in a Pacific Northwest temperate rainforest. Phylogenetic analyses, based on ITS-5.8S rDNA and 18S rDNA sequence data, combined with cultural and morphological analysis showed that endophyte PC27-5 exhibited all characteristics of a fungus identical to Coniochaeta velutina. Furthermore, wide spectrum antimycotics were produced by this endophyte that were active against such plant pathogens as Sclerotinia sclerotiorum, Pythium ultimum, and Verticillium dahliae and lethal to Phythophthora cinnamomi, Pythium ultimum, and Phytophthora palmivora in plate tests. The bioactive components were purified through organic solvent extraction, followed by silica column chromatography, and finally preparative HPLC. The minimum inhibitory concentration of the active fraction to Pythium ultimum, which was gained from preparative HPLC, was 11 μg/ml. UPLC-HRMS analysis showed there were two similar components in the antimycotic fraction. Their molecular formulae were established as C30H22O11 (compound I) and C30H22O10 (compound II) respectively, and preliminary spectral results indicate that they are anthroquinone glycosides. Other non-biologically active compounds were identified in culture fluids of this fungus by spectral means as emodin and chrysophanol--anthroquinone derivatives. This is the first report that Coniochaeta velutina as an endophyte produces bioactive antifungal components. PMID:26025171

  9. Defensive functions and responsible metabolites of microbial endophytes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Increasing evidence indicates that plant microbiomes are influence by ecological successes of plant hosts. Further, endophytic microbes such as bacteria and fungi greatly affect plant stress tolerance and are responsible for defensive reaction to several forms of herbivory. What is not yet clear i...

  10. Relationship between plant lipid bodies and fungal endophytes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Lipid bodies are universal components of plant cells and provide a mobilized carbon source for essential biological processes. Plant oils harvested for food and fuel often reside in these lipid bodies. Plants also host diverse populations of endophytic fungi, which easily escape microscopic detect...

  11. Elucidating biotic factors that influence assembly of fungal endophyte communities

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Most plants harbor a diverse assemblage of non-mycorrhizal fungal endophytes. These fungi can directly influence the host plant, and can instigate trophic cascades that affect surrounding communities of herbivores, plants, and animals. Despite this, biotic mechanisms that influence assembly of funga...

  12. 7 CFR 201.58d - Fungal endophyte test.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 3 2013-01-01 2013-01-01 false Fungal endophyte test. 201.58d Section 201.58d Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing Practices), DEPARTMENT OF AGRICULTURE (CONTINUED) FEDERAL SEED ACT FEDERAL SEED ACT REGULATIONS Examinations in...

  13. 7 CFR 201.58d - Fungal endophyte test.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 3 2014-01-01 2014-01-01 false Fungal endophyte test. 201.58d Section 201.58d Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing Practices), DEPARTMENT OF AGRICULTURE (CONTINUED) FEDERAL SEED ACT FEDERAL SEED ACT REGULATIONS Examinations in...

  14. 7 CFR 201.58d - Fungal endophyte test.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 3 2012-01-01 2012-01-01 false Fungal endophyte test. 201.58d Section 201.58d Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing Practices), DEPARTMENT OF AGRICULTURE (CONTINUED) FEDERAL SEED ACT FEDERAL SEED ACT REGULATIONS Examinations in...

  15. Influence of endophyte genotype on swainsonine concentrations in Oxytropis sericea

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Locoism is a toxic syndrome of livestock caused by the ingestion of a subset of legumes belonging to the Astragalus and Oxytropis genera known as locoweeds. Locoweeds contain the toxic indolizidine alkaloid swainsonine, which is produced by the endophytic fungi Undifilum species. Previously we r...

  16. Bacterial Endophytic Communities in the Grapevine Depend on Pest Management

    PubMed Central

    Campisano, Andrea; Antonielli, Livio; Pancher, Michael; Yousaf, Sohail; Pindo, Massimo; Pertot, Ilaria

    2014-01-01

    Microbial plant endophytes are receiving ever-increasing attention as a result of compelling evidence regarding functional interaction with the host plant. Microbial communities in plants were recently reported to be influenced by numerous environmental and anthropogenic factors, including soil and pest management. In this study we used automated ribosomal intergenic spacer analysis (ARISA) fingerprinting and pyrosequencing of 16S rDNA to assess the effect of organic production and integrated pest management (IPM) on bacterial endophytic communities in two widespread grapevines cultivars (Merlot and Chardonnay). High levels of the dominant Ralstonia, Burkholderia and Pseudomonas genera were detected in all the samples We found differences in the composition of endophytic communities in grapevines cultivated using organic production and IPM. Operational taxonomic units (OTUs) assigned to the Mesorhizobium, Caulobacter and Staphylococcus genera were relatively more abundant in plants from organic vineyards, while Ralstonia, Burkholderia and Stenotrophomonas were more abundant in grapevines from IPM vineyards. Minor differences in bacterial endophytic communities were also found in the grapevines of the two cultivars. PMID:25387008

  17. Endophytic bacteria in potato tubers affected by zebra chip disease

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Potato zebra chip disease (ZCD) could drastically reduce quality and value of all market classes of potato, costing growers and processors millions of dollars in losses in North America. Endophytic bacteria colonize the internal tissue and could have both positive and negative effects on host plants...

  18. Impact of Endophytic Microorganisms on Plants, Environment and Humans

    PubMed Central

    Nair, Dhanya N.; Padmavathy, S.

    2014-01-01

    Endophytes are microorganisms (bacteria or fungi or actinomycetes) that dwell within robust plant tissues by having a symbiotic association. They are ubiquitously associated with almost all plants studied till date. Some commonly found endophytes are those belonging to the genera Enterobacter sp., Colletotrichum sp., Phomopsis sp., Phyllosticta sp., Cladosporium sp., and so forth. Endophytic population is greatly affected by climatic conditions and location where the host plant grows. They produce a wide range of compounds useful for plants for their growth, protection to environmental conditions, and sustainability, in favour of a good dwelling place within the hosts. They protect plants from herbivory by producing certain compounds which will prevent animals from further grazing on the same plant and sometimes act as biocontrol agents. A large amount of bioactive compounds produced by them not only are useful for plants but also are of economical importance to humans. They serve as antibiotics, drugs or medicines, or the compounds of high relevance in research or as compounds useful to food industry. They are also found to have some important role in nutrient cycling, biodegradation, and bioremediation. In this review, we have tried to comprehend different roles of endophytes in plants and their significance and impacts on man and environment. PMID:24587715

  19. Bioaugmentation with engineered endophytic bacteria improves contaminant fate in phytoremediation.

    PubMed

    Weyens, Nele; van der Lelie, Daniel; Artois, Tom; Smeets, Karen; Taghavi, Safiyh; Newman, Lee; Carleer, Robert; Vangronsveld, Jaco

    2009-12-15

    Phytoremediation of volatile organic contaminants often proves not ideal because plants and their rhizosphere microbes only partially degrade these compounds. Consequently, plants undergo evapotranspiration that contaminates the ambient air and, thus, undermines the merits of phytoremediation. Under laboratory conditions, endophytic bacteria equipped with the appropriate degradation pathways can improve in planta degradation of volatile organic contaminants. However, several obstacles must be overcome before engineered endophytes will be successful in field-scale phytoremediation projects. Here we report the first in situ inoculation of poplar trees, growing on a TCE-contaminated site, with the TCE-degrading strain Pseudomonas putida W619-TCE. In situ bioaugmentation with strain W619-TCE reduced TCE evapotranspiration by 90% under field conditions. This encouraging result was achieved after the establishment and enrichment of P. putida W619-TCE as a poplar root endophyte and by further horizontal gene transfer of TCE metabolic activity to members of the poplar's endogenous endophytic population. Since P. putida W619-TCE was engineered via horizontal gene transfer, its deliberate release is not restricted under European genetically modified organisms (GMO) regulations. PMID:20000537

  20. Bioaugmentation with engineered endophytic bacteria improves contaminant fate in phytoremediation

    SciTech Connect

    Weyens, N.; van der Lelie, D.; Artois, T.; Smeets, K.; Taghavi, S.; Newman, L.; Carleer, R.; Vangronsveld, J.

    2009-12-01

    Phytoremediation of volatile organic contaminants often proves not ideal because plants and their rhizosphere microbes only partially degrade these compounds. Consequently, plants undergo evapotranspiration that contaminates the ambient air and, thus, undermines the merits of phytoremediation. Under laboratory conditions, endophytic bacteria equipped with the appropriate degradation pathways can improve in plant degradation of volatile organic contaminants. However, several obstacles must be overcome before engineered endophytes will be successful in field-scale phytoremediation projects. Here we report the first in situ inoculation of poplar trees, growing on a TCE-contaminated site, with the TCE-degrading strain Pseudomonas putida W619-TCE. In situ bioaugmentation with strain W619-TCE reduced TCE evapotranspiration by 90% under field conditions. This encouraging result was achieved after the establishment and enrichment of P. putida W619-TCE as a poplar root endophyte and by further horizontal gene transfer of TCE metabolic activity to members of the poplar's endogenous endophytic population. Since P. putida W619-TCE was engineered via horizontal gene transfer, its deliberate release is not restricted under European genetically modified organisms (GMO) regulations.

  1. Alleviation of Drought Stress and Metabolic Changes in Timothy (Phleum pratense L.) Colonized with Bacillus subtilis B26.

    PubMed

    Gagné-Bourque, François; Bertrand, Annick; Claessens, Annie; Aliferis, Konstantinos A; Jabaji, Suha

    2016-01-01

    Drought is a major limiting factor of crop productivity worldwide and its incidence is predicted to increase under climate change. Drought adaptation of cool-season grasses is thus a major challenge to secure the agricultural productivity under current and future climate conditions. Endophytes are non-pathogenic plant-associated bacteria that can play an important role in conferring resistance and improving plant tolerance to drought. In this study, the effect of inoculation of the bacterial endophyte Bacillus subtilis strain B26 on growth, water status, photosynthetic activity and metabolism of timothy (Phleum pratense L.) subjected to drought stress was investigated under controlled conditions. Under both drought-stress and non-stressed conditions, strain B26 successfully colonized the internal tissues of timothy and had a positive impact on plant growth. Exposure of inoculated plant to a 8-week drought-stress led to significant increase in shoot and root biomass by 26.6 and 63.8%, and in photosynthesis and stomatal conductance by 55.2 and 214.9% respectively, compared to non-inoculated plants grown under similar conditions. There was a significant effect of the endophyte on plant metabolism; higher levels of several sugars, notably sucrose and fructans and an increase of key amino acids such as, asparagine, glutamic acid and glutamine were recorded in shoots and roots of colonized plants compared to non-colonized ones. The accumulation of the non-protein amino acid GABA in shoots of stressed plants and in roots of stressed and unstressed plants was increased in the presence of the endophyte. Taken together, our results indicate that B. subtilis B26 improves timothy growth under drought stress through the modification of osmolyte accumulation in roots and shoots. These results will contribute to the development of a microbial agent to improve the yield of grass species including forage crops and cereals exposed to environmental stresses. PMID:27200057

  2. Alleviation of Drought Stress and Metabolic Changes in Timothy (Phleum pratense L.) Colonized with Bacillus subtilis B26

    PubMed Central

    Gagné-Bourque, François; Bertrand, Annick; Claessens, Annie; Aliferis, Konstantinos A.; Jabaji, Suha

    2016-01-01

    Drought is a major limiting factor of crop productivity worldwide and its incidence is predicted to increase under climate change. Drought adaptation of cool-season grasses is thus a major challenge to secure the agricultural productivity under current and future climate conditions. Endophytes are non-pathogenic plant-associated bacteria that can play an important role in conferring resistance and improving plant tolerance to drought. In this study, the effect of inoculation of the bacterial endophyte Bacillus subtilis strain B26 on growth, water status, photosynthetic activity and metabolism of timothy (Phleum pratense L.) subjected to drought stress was investigated under controlled conditions. Under both drought-stress and non-stressed conditions, strain B26 successfully colonized the internal tissues of timothy and had a positive impact on plant growth. Exposure of inoculated plant to a 8-week drought-stress led to significant increase in shoot and root biomass by 26.6 and 63.8%, and in photosynthesis and stomatal conductance by 55.2 and 214.9% respectively, compared to non-inoculated plants grown under similar conditions. There was a significant effect of the endophyte on plant metabolism; higher levels of several sugars, notably sucrose and fructans and an increase of key amino acids such as, asparagine, glutamic acid and glutamine were recorded in shoots and roots of colonized plants compared to non-colonized ones. The accumulation of the non-protein amino acid GABA in shoots of stressed plants and in roots of stressed and unstressed plants was increased in the presence of the endophyte. Taken together, our results indicate that B. subtilis B26 improves timothy growth under drought stress through the modification of osmolyte accumulation in roots and shoots. These results will contribute to the development of a microbial agent to improve the yield of grass species including forage crops and cereals exposed to environmental stresses. PMID:27200057

  3. Leaf endophyte load influences fungal garden development in leaf-cutting ants

    PubMed Central

    2012-01-01

    Background Previous work has shown that leaf-cutting ants prefer to cut leaf material with relatively low fungal endophyte content. This preference suggests that fungal endophytes exact a cost on the ants or on the development of their colonies. We hypothesized that endophytes may play a role in their host plants’ defense against leaf-cutting ants. To measure the long-term cost to the ant colony of fungal endophytes in their forage material, we conducted a 20-week laboratory experiment to measure fungal garden development for colonies that foraged on leaves with low or high endophyte content. Results Colony mass and the fungal garden dry mass did not differ significantly between the low and high endophyte feeding treatments. There was, however, a marginally significant trend toward greater mass of fungal garden per ant worker in the low relative to the high endophyte treatment. This trend was driven by differences in the fungal garden mass per worker from the earliest samples, when leaf-cutting ants had been foraging on low or high endophyte leaf material for only 2 weeks. At two weeks of foraging, the mean fungal garden mass per worker was 77% greater for colonies foraging on leaves with low relative to high endophyte loads. Conclusions Our data suggest that the cost of endophyte presence in ant forage material may be greatest to fungal colony development in its earliest stages, when there are few workers available to forage and to clean leaf material. This coincides with a period of high mortality for incipient colonies in the field. We discuss how the endophyte-leaf-cutter ant interaction may parallel constitutive defenses in plants, whereby endophytes reduce the rate of colony development when its risk of mortality is greatest. PMID:23140096

  4. Effects of the Epichloë fungal endophyte symbiosis with Schedonorus pratensis on host grass invasiveness.

    PubMed

    Shukla, Kruti; Hager, Heather A; Yurkonis, Kathryn A; Newman, Jonathan A

    2015-07-01

    Initial studies of grass-endophyte mutualisms using Schedonorus arundinaceus cultivar Kentucky-31 infected with the vertically transmitted endophyte Epichloë coenophiala found strong, positive endophyte effects on host-grass invasion success. However, more recent work using different cultivars of S. arundinaceus has cast doubt on the ubiquity of this effect, at least as it pertains to S. arundinaceus-E. coenophiala. We investigated the generality of previous work on vertically transmitted Epichloë-associated grass invasiveness by studying a pair of very closely related species: S. pratensis and E. uncinata. Seven cultivars of S. pratensis and two cultivars of S. arundinaceus that were developed with high- or low-endophyte infection rate were broadcast seeded into 2 × 2-m plots in a tilled, old-field grassland community in a completely randomized block design. Schedonorus abundance, endophyte infection rate, and co-occurring vegetation were sampled 3, 4, 5, and 6 years after establishment, and the aboveground invertebrate community was sampled in S. pratensis plots 3 and 4 years after establishment. Endophyte infection did not enable the host grass to achieve high abundance in the plant community. Contrary to expectations, high-endophyte S. pratensis increased plant richness relative to low-endophyte cultivars. However, as expected, high-endophyte S. pratensis marginally decreased invertebrate taxon richness. Endophyte effects on vegetation and invertebrate community composition were inconsistent among cultivars and were weaker than temporal effects. The effect of the grass-Epichloë symbiosis on diversity is not generalizable, but rather specific to species, cultivar, infection, and potentially site. Examining grass-endophyte systems using multiple cultivars and species replicated among sites will be important to determine the range of conditions in which endophyte associations benefit host grass performance and have subsequent effects on co-occurring biotic communities. PMID:26257873

  5. Effects of the Epichloë fungal endophyte symbiosis with Schedonorus pratensis on host grass invasiveness

    PubMed Central

    Shukla, Kruti; Hager, Heather A; Yurkonis, Kathryn A; Newman, Jonathan A

    2015-01-01

    Initial studies of grass–endophyte mutualisms using Schedonorus arundinaceus cultivar Kentucky-31 infected with the vertically transmitted endophyte Epichloë coenophiala found strong, positive endophyte effects on host-grass invasion success. However, more recent work using different cultivars of S. arundinaceus has cast doubt on the ubiquity of this effect, at least as it pertains to S. arundinaceus–E. coenophiala. We investigated the generality of previous work on vertically transmitted Epichloë-associated grass invasiveness by studying a pair of very closely related species: S. pratensis and E. uncinata. Seven cultivars of S. pratensis and two cultivars of S. arundinaceus that were developed with high- or low-endophyte infection rate were broadcast seeded into 2 × 2-m plots in a tilled, old-field grassland community in a completely randomized block design. Schedonorus abundance, endophyte infection rate, and co-occurring vegetation were sampled 3, 4, 5, and 6 years after establishment, and the aboveground invertebrate community was sampled in S. pratensis plots 3 and 4 years after establishment. Endophyte infection did not enable the host grass to achieve high abundance in the plant community. Contrary to expectations, high-endophyte S. pratensis increased plant richness relative to low-endophyte cultivars. However, as expected, high-endophyte S. pratensis marginally decreased invertebrate taxon richness. Endophyte effects on vegetation and invertebrate community composition were inconsistent among cultivars and were weaker than temporal effects. The effect of the grass–Epichloë symbiosis on diversity is not generalizable, but rather specific to species, cultivar, infection, and potentially site. Examining grass–endophyte systems using multiple cultivars and species replicated among sites will be important to determine the range of conditions in which endophyte associations benefit host grass performance and have subsequent effects on co-occurring biotic communities. PMID:26257873

  6. Isolation and characterization of endophytic plant growth-promoting bacteria from date palm tree (Phoenix dactylifera L.) and their potential role in salinity tolerance.

    PubMed

    Yaish, Mahmoud W; Antony, Irin; Glick, Bernard R

    2015-06-01

    Endophytic bacteria were isolated from date palm (Phoenix dactylifera L.) seedling roots, characterized and tested for their ability to help plants grow under saline conditions. Molecular characterization showed that the majority of these strains belonged to the genera Bacillus and Enterobacter and had different degrees of resistance to various antibiotics. Some of these strains were able to produce the enzyme 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase and the plant growth regulatory hormone indole-3-acetic acid (IAA). Some strains were also able to chelate ferric iron (Fe(3+)) and solubilize potassium (K(+)), phosphorus (PO 4 (3-) ) and zinc (Zn(2+)), and produce ammonia. The results also showed that ACC deaminase activity and IAA production was slightly increased in some strains in response to an increase in NaCl concentration in the growth media. Consistent with these results, selected strains such as PD-R6 (Paenibacillus xylanexedens) and PD-P6 (Enterobacter cloacae) were able to enhance canola root elongation when grown under normal and saline conditions as demonstrated by a gnotobiotic root elongation assay. These results suggest that the isolated and characterized endophytic bacteria can alter ethylene and IAA levels and also facilitate nutrient uptake in roots and therefore have the potential role to promote the growth and development of date palm trees growing under salinity stress. PMID:25860542

  7. Interactive effects of hypobaria, low temperature, and CO 2 atmospheres inhibit the growth of mesophilic Bacillus spp. under simulated martian conditions

    NASA Astrophysics Data System (ADS)

    Schuerger, Andrew C.; Nicholson, Wayne L.

    2006-11-01

    Robotic spacecraft are launched with finite levels of terrestrial microorganisms that are similar to the microbial communities within facilities in which spacecraft are assembled. In particular, spores of mesophilic aerobic Bacillus species are common spacecraft contaminants considered most likely to survive interplanetary transfer to Mars. During the cruise phase to Mars, and then again during surface operations, microbial bioloads are exposed to a diversity of biocidal factors that are likely to render the microbial species either dead or significantly inhibited from active metabolic activity and replication. We report here, for the first time, that interactive effects of low pressure, low temperature, and high CO 2 atmospheres approaching conditions likely to be encountered on the martian surface strongly inhibit the growth and replication of seven common Bacillus spp. isolated from spacecraft. Tests were conducted within a small glass bell-jar system maintained in a low-temperature microbial incubator. Atmospheric pressures were controlled at 1013 (Earth-normal), 100, 50, 35, 25, or 15 mb, and temperatures were maintained at 30, 20, 15, 10, or 5 °C. Experiments were carried out for 48 h or 7 days under either Earth-normal O 2/N 2 or pure CO 2 atmospheres. Results indicated that low pressure, low temperature, and high CO 2 atmospheres, applied separately or in combination, were capable of inhibiting the growth and replication of B. pumilus SAFR-032, B. pumilus FO-36B, B. subtilis HA-101, B. subtilis 42HS-1, B. megaterium KL-197, B. licheniformis KL-196, and B. nealsonii FO-092 under simulated martian conditions. Endospores of all seven Bacillus spp. strains failed to germinate and grow at 25 mb at 30 °C. Although, vegetative cells of these strains exhibited a slightly greater ability to replicate at lower pressures than did endospores, vegetative cells of these species failed to grow at pressures below 25 mb. Interactive effects of these environmental parameters acted to generally increase the inhibitory nature of the low-pressure conditions on growth and replication of the seven Bacillus spp. tested.

  8. A novel intracellular nitrogen-fixing symbiosis made by Ustilago maydis and Bacillus spp.

    PubMed

    Ruiz-Herrera, José; León-Ramírez, Claudia; Vera-Nuñez, Antonio; Sánchez-Arreguín, Alejandro; Ruiz-Medrano, Roberto; Salgado-Lugo, Holjes; Sánchez-Segura, Lino; Peña-Cabriales, Juan José

    2015-08-01

    We observed that the maize pathogenic fungus Ustilago maydis grew in nitrogen (N)-free media at a rate similar to that observed in media containing ammonium nitrate, suggesting that it was able to fix atmospheric N2 . Because only prokaryotic organisms have the capacity to reduce N2 , we entertained the possibility that U. maydis was associated with an intracellular bacterium. The presence of nitrogenase in the fungus was analyzed by acetylene reduction, and capacity to fix N2 by use of (15) N2 . Presence of an intracellular N2 -fixing bacterium was analyzed by PCR amplification of bacterial 16S rRNA and nifH genes, and by microscopic observations. Nitrogenase activity and (15) N incorporation into the cells proved that U. maydis fixed N2 . Light and electron microscopy, and fluorescence in situ hybridization (FISH) experiments revealed the presence of intracellular bacteria related to Bacillus pumilus, as evidenced by sequencing of the PCR-amplified fragments. These observations reveal for the first time the existence of an endosymbiotic N2 -fixing association involving a fungus and a bacterium. PMID:25754368

  9. Host associations and beta diversity of fungal endophyte communities in New Guinea rainforest trees.

    PubMed

    Vincent, J B; Weiblen, G D; May, G

    2016-02-01

    Processes shaping the distribution of foliar fungal endophyte species remain poorly understood. Despite increasing evidence that these cryptic fungal symbionts of plants mediate interactions with pathogens and herbivores, there remain basic questions regarding the extent to which dispersal limitation and host specificity might shape fungal endophyte community composition in rainforests. To assess the relative importance of spatial pattern and host specificity, we isolated fungi from a sample of mapped trees in lowland Papua New Guinea. Sequences of the internal transcribed spacer (ITS) region were obtained for 2079 fungal endophytes from three sites and clustered into molecular operational taxonomic units (MOTUs) at 95% similarity. Multivariate analyses suggest that host affinity plays a significant role in structuring endophyte community composition whereas there was no evidence of endophyte spatial pattern at the scale of tens to hundreds of metres. Differences in endophyte communities between sampled trees were weakly correlated with variation in foliar traits but not with tree species relatedness. The dominance of relatively few generalist endophytes and the presence of a large number of rare MOTUs was a consistent observation at three sites separated by hundreds of kilometres and regional turnover was low. Host specificity appears to play a relatively weak but more important role than dispersal limitation in shaping the distribution of fungal endophyte communities in New Guinea forests. Our results suggest that in the absence of strong ecological gradients and host turnover, beta diversity of endophyte communities could be low in large areas of contiguous forest. PMID:26661903

  10. Forages and pastures symposium: fungal endophytes of tall fescue and perennial ryegrass: pasture friend or foe?

    PubMed

    Young, C A; Hume, D E; McCulley, R L

    2013-05-01

    Tall fescue [Lolium arundinaceum (Schreb.) Darbysh. syn. Festuca arundinacea Schreb.] and perennial ryegrass (Lolium perenne L.) are important perennial forage grasses utilized throughout the moderate- to high-rainfall temperate zones of the world. These grasses have coevolved with symbiotic fungal endophytes (Epichlo/Neotyphodium spp.) that can impart bioactive properties and environmental stress tolerance to the grass compared with endophyte-free individuals. These endophytes have proven to be very important in pastoral agriculture in the United States, New Zealand, and Australia, where forage grasses are the principal feed for grazing ruminants. In this review, we describe the biology of these grass-endophyte associations and implications for the livestock industries that are dependent on these forages. Endophyte alkaloid production is put in context with endophyte diversity, and we illustrate how this has facilitated utilization of grasses infected with different endophyte strains that reduce livestock toxicity issues. Utilization of tall fescue and use of perennial ryegrass in the United States, New Zealand, and Australia are compared, and management strategies focused predominantly on the success of endophyte-infected perennial ryegrass in New Zealand and Australia are discussed. In addition, we consider the impact of grass-endophyte associations on the sustainability of pasture ecosystems and their likely response to future changes in climate. PMID:23307839

  11. Endophyte-mediated interactions between cauliflower, the herbivore Spodoptera litura, and the ectoparasitoid Bracon hebetor.

    PubMed

    Kaur, Tamanreet; Singh, Bahaderjeet; Kaur, Amarjeet; Kaur, Sanehdeep

    2015-10-01

    Fungal endosymbionts in plants may influence interactions among plants, herbivores and their parasitoids through the production of secondary metabolites. We used a lepidopteran pest and its generalist parasitoid to test the effect of endophyte-infected plants on a third trophic level. Endophytic fungi, Aspergillus flavus and Aspergillus niger, isolated from Acacia arabica, were used to infect cauliflower plants. We found that the presence of the endophyte in the plants significantly extended the development period of Spodoptera litura (Fab.) larvae. Feeding of the host on endophyte-infected plants further adversely affected the development and performance of its parasitoid, Bracon hebetor (Say). A negative impact was also recorded for longevity and fecundity of endophyte-naive parasitoid females due to the parasitization of host larvae fed on endophyte-infected plants. The presence of endophytes in the diet of the host larvae significantly prolonged the development of the parasitoid. A strong detrimental effect was also recorded for larval survival and emergence of parasitoid adults. The longevity and parasitism rate of female wasps were reduced significantly due to the ingestion of endophyte-infected cauliflower plants by S. litura larvae. Overall, we found that both endophytic fungi had a negative impact on the parasitoid. PMID:26041060

  12. A fungal endophyte induces transcription of genes encoding a redundant fungicide pathway in its host plant

    PubMed Central

    2013-01-01

    Background Taxol is an anti-cancer drug harvested from Taxus trees, proposed ecologically to act as a fungicide. Taxus is host to fungal endophytes, defined as organisms that inhabit plants without causing disease. The Taxus endophytes have been shown to synthesize Taxol in vitro, providing Taxus with a second potential biosynthetic route for this protective metabolite. Taxol levels in plants vary 125-fold between individual trees, but the underlying reason has remained unknown. Results Comparing Taxus trees or branches within a tree, correlations were observed between Taxol content, and quantity of its resident Taxol-producing endophyte, Paraconiothyrium SSM001. Depletion of fungal endophyte in planta by fungicide reduced plant Taxol accumulation. Fungicide treatment of intact plants caused concomitant decreases in transcript and/or protein levels corresponding to two critical genes required for plant Taxol biosynthesis. Taxol showed fungicidal activity against fungal pathogens of conifer wood, the natural habitat of the Taxol-producing endophyte. Consistent with other Taxol-producing endophytes, SSM001 was resistant to Taxol. Conclusions These results suggest that the variation in Taxol content between intact Taxus plants and/or tissues is at least in part caused by varying degrees of transcriptional elicitation of plant Taxol biosynthetic genes by its Taxol-producing endophyte. As Taxol is a fungicide, and the endophyte is resistant to Taxol, we discuss how this endophyte strategy may be to prevent colonization by its fungal competitors but at minimal metabolic cost to itself. PMID:23802696

  13. The Hidden World within Plants: Ecological and Evolutionary Considerations for Defining Functioning of Microbial Endophytes

    PubMed Central

    Hardoim, Pablo R.; van Overbeek, Leonard S.; Berg, Gabriele; Pirttilä, Anna Maria; Compant, Stéphane; Campisano, Andrea; Döring, Matthias; Sessitsch, Angela

    2015-01-01

    SUMMARY All plants are inhabited internally by diverse microbial communities comprising bacterial, archaeal, fungal, and protistic taxa. These microorganisms showing endophytic lifestyles play crucial roles in plant development, growth, fitness, and diversification. The increasing awareness of and information on endophytes provide insight into the complexity of the plant microbiome. The nature of plant-endophyte interactions ranges from mutualism to pathogenicity. This depends on a set of abiotic and biotic factors, including the genotypes of plants and microbes, environmental conditions, and the dynamic network of interactions within the plant biome. In this review, we address the concept of endophytism, considering the latest insights into evolution, plant ecosystem functioning, and multipartite interactions. PMID:26136581

  14. Cyclic Lipopeptides with Herbicidal and Insecticidal Activities Produced by Bacillus clausii DTM1.

    PubMed

    Guo, Da-Le; Wan, Bo; Xiao, Shi-Ji; Allen, Sarah; Gu, Yu-Cheng; Ding, Li-Sheng; Zhoua, Yan

    2015-12-01

    Seven cyclic lipopeptide biosurfactants (1-7) were isolated for the first time from the fermentation broth of endophytic Bacillus clausii DTM1 and were identified as anteisoC13[Val7] surfactin-(L-Glu)-O-methyl-ester (1), anteisoC12[Val7] surfactin (2), anteisoC15[Val7] surfactin (3), isoC14[Leu7] surfactin (4), anteisoC12[Leu7] surfactin (5), nC13[Leu7] surfactin (6), and anteisoC14[Leu7] surfactin-(L-Glu)-O-methyl-ester (7); 1 has not been isolated before as a natural product from any source. Plate-based herbicide and insecticide bioassays showed that all compounds exhibited interesting insecticidal and herbicidal activities. PMID:26882688

  15. Interactions of Bacillus spp. and plants--with special reference to induced systemic resistance (ISR).

    PubMed

    Choudhary, Devendra K; Johri, Bhavdish N

    2009-01-01

    Biological control of soil-borne pathogens comprises the decrease of inoculum or of the disease producing activity of a pathogen through one or more mechanisms. Interest in biological control of soil-borne plant pathogens has increased considerably in the last few decades, because it may provide control of diseases that cannot or only partly be managed by other control strategies. Recent advances in microbial and molecular techniques have significantly contributed to new insights in underlying mechanisms by which introduced bacteria function. Colonization of plant roots is an essential step for both soil-borne pathogenic and beneficial rhizobacteria. Colonization patterns showed that rhizobacteria act as biocontrol agents or as growth-promoting bacteria form microcolonies or biofilms at preferred sites of root exudation. Such microcolonies are sites for bacteria to communicate with each other (quorum sensing) and to act in a coordinated manner. Elicitation of induced systemic resistance (ISR) by plant-associated bacteria was initially demonstrated using Pseudomonas spp. and other Gram-negative bacteria. Several strains of the species Bacillus amyloliquefaciens, B. subtilis, B. pasteurii, B. cereus, B. pumilus, B. mycoides, and B. sphaericus elicit significant reductions in the incidence or severity of various diseases on a diversity of hosts. Elicitation of ISR by these strains has been demonstrated in greenhouse or field trials on tomato, bell pepper, muskmelon, watermelon, sugar beet, tobacco, Arabidopsis sp., cucumber, loblolly pine, and two tropical crops (long cayenne pepper and green kuang futsoi). Protection resulting from ISR elicited by Bacillus spp. has been reported against leaf-spotting fungal and bacterial pathogens, systemic viruses, a crown-rotting fungal pathogen, root-knot nematodes, and a stem-blight fungal pathogen as well as damping-off, blue mold, and late blight diseases. This progress will lead to a more efficient use of these strains which is worthwhile approach to explore in context of biocontrol strategies. PMID:18845426

  16. Plant functional traits and phylogenetic relatedness explain variation in associations with root fungal endophytes in an extreme arid environment

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Since root endophytes may ameliorate drought stress, understanding which plants associate with endophytes is important, especially in arid ecosystems. Here we characterized the root endophytes of 42 plants from an arid region of Argentina. We related colonization by arbuscular mycorrhizal fungi (AMF...

  17. Alfalfa endophytes as novel sources of antimicrobial compounds that inhibit the growth of human and plant pathogens

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fungal endophytes may contribute to plant health and disease protection, yet little is known about their various roles in alfalfa. Also, endophytes from several plant species produce novel antimicrobial compounds that may be useful clinically. We isolated endophytic fungi from over 50 samples from s...

  18. The effect of feeding endophyte-infected fescue on the acute phase response to lipopolysaccharide in beef heifers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Angus heifers (n = 22; 292 ± 9.0 kg body weight) were paired by body weight and randomly placed on either an endophyte-infected (E+) or endophyte-free (E-) diet for 10 days to determine the influence of feeding endophyte-infected fescue on the physiological and acute phase responses of beef heifers ...

  19. Geographic locality and host identity shape fungal endophyte communities in cupressaceous trees.

    PubMed

    Hoffman, Michele T; Arnold, A Elizabeth

    2008-03-01

    Understanding how fungal endophyte communities differ in abundance, diversity, taxonomic composition, and host affinity over the geographic ranges of their hosts is key to understanding the ecology and evolutionary context of endophyte-plant associations. We examined endophytes associated with healthy photosynthetic tissues of three closely related tree species in the Cupressaceae (Coniferales): two native species within their natural ranges [Juniperus virginiana in a mesic semideciduous forest, North Carolina (NC); Cupressus arizonica, under xeric conditions, Arizona (AZ)], and a non-native species planted in each site (Platycladus orientalis). Endophytes were recovered from 229 of 960 tissue segments and represented at least 35 species of Ascomycota. Isolation frequency was more than threefold greater for plants in NC than in AZ, and was 2.5 (AZ) to four (NC) times greater for non-native Platycladus than for Cupressus or Juniperus. Analyses of ITS rDNA for 109 representative isolates showed that endophyte diversity was more than twofold greater in NC than in AZ, and that endophytes recovered in AZ were more likely to be host-generalists relative to those in NC. Different endophyte genera dominated the assemblages of each host species/locality combination, but in both localities, Platycladus harboured less diverse and more cosmopolitan endophytes than did either native host. Parsimony and Bayesian analyses for four classes of Ascomycota (Dothideomycetes, Sordariomycetes, Pezizomycetes, Eurotiomycetes) based on LSU rDNA data (ca 1.2 kb) showed that well-supported clades of endophytes frequently contained representatives of a single locality or host species, underscoring the importance of both geography and host identity in shaping a given plant's endophyte community. Together, our data show that not only do the abundance, diversity, and taxonomic composition of endophyte communities differ as a function of host identity and locality, but that host affinities of those communities are variable as well. PMID:18308531

  20. Enhancement of the immune response and protection against Vibrio parahaemolyticus by indigenous probiotic Bacillus strains in mud crab (Scylla paramamosain).

    PubMed

    Wu, Hui-Juan; Sun, Ling-Bin; Li, Chuan-Biao; Li, Zhong-Zhen; Zhang, Zhao; Wen, Xiao-Bo; Hu, Zhong; Zhang, Yue-Ling; Li, Sheng-Kang

    2014-12-01

    In a previous study, bacterial communities of the intestine in three populations of crabs (wild crabs, pond-raised healthy crabs and diseased crabs) were probed by culture-independent methods. In this study, we examined the intestinal communities of the crabs by bacterial cultivation with a variety of media. A total of 135 bacterial strains were isolated from three populations of mud crabs. The strains were screened for antagonistic activity against Vibrio parahaemolyticus using an agar spot assay. Antagonistic strains were then identified by 16S rRNA gene sequence analysis. Three strains (Bacillus subtilis DCU, Bacillus pumilus BP, Bacillus cereus HL7) with the strongest antagonistic activity were further evaluated for their probiotic characteristics. The results showed that two (BP and DCU) of them were able to survive low pH and high bile concentrations, showed good adherence characteristics and a broad spectrum of antibiotic resistance. The probiotic effects were then tested by feeding juvenile mud crabs (Scylla paramamosain) with foods supplemented with 10(5) CFU/g of BP or DCU for 30 days before being subjected to an immersion challenge with V. parahaemolyticus for 48 h. The treated crabs showed significantly higher expression levels of immune related genes (CAT, proPO and SOD) and activities of respiratory burst than that in controlled groups. Crabs treated with BP and DCU supplemented diets exhibited survival rates of 76.67% and 78.33%, respectively, whereas survival rate was 54.88% in crabs not treated with the probiotics. The data showed that indigenous mud-associated microbiota, such as DCU and BP, have potential application in controlling pathogenic Vibriosis in mud crab aquaculture. PMID:25193866

  1. Transformation of Bacillus subtilis.

    PubMed

    Zhang, Xiao-Zhou; You, Chun; Zhang, Yi-Heng Percival

    2014-01-01

    Bacillus subtilis has tremendous applications in both academic research and industrial production. However, molecular cloning and transformation of B. subtilis are not as easy as those of Escherichia coli. Here we developed a simple protocol based on super-competent cells prepared from the recombinant B. subtilis strain SCK6 and multimeric plasmids generated by prolonged overlap extension-PCR. Super-competent B. subtilis SCK6 cells were prepared by overexpression of the competence master regulator ComK that was induced by adding xylose. This new protocol is simple (e.g., restriction enzyme, phosphatase, and ligase free), fast, and highly efficient (i.e., ~10(7) or ~10(4) transformants per ?g of multimeric plasmid or ligated plasmid DNA, respectively). Shuttle vectors for E. coli-B. subtilis are not required. PMID:24838881

  2. Bacillus thuringiensis (Bt)

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Bacillus thuringiensis (Bt), a natural bacteria found all over the Earth, has a fairly novel way of getting rid of unwanted insects. Bt forms a protein substance (shown on the right) that is not harmful to humans, birds, fish or other vertebrates. When eaten by insect larvae the protein causes a fatal loss of appetite. For over 25 years agricultural chemical companies have relied heavily upon safe Bt pesticides. New space based research promises to give the insecticide a new dimension in effectiveness and applicability. Researchers from the Consortium for Materials Development in Space along with industrial affiliates such as Abott Labs and Pern State University flew Bt on a Space Shuttle mission in the fall of 1996. Researchers expect that the Shuttle's microgravity environment will reveal new information about the protein that will make it more effective against a wider variety of pests.

  3. CHLORINE INACTIVATION OF BACILLUS ENDOSPORES

    EPA Science Inventory

    The possibility of a bioterrorism event resulting in the release of Bacillus anthracis endospores into a drinking water distribution system necessitates research into means by which these endospores can be inactivated. This study was designed to determine the chlorine resistance...

  4. Swainsonine-containing plants and their relationship to endophytic fungi.

    PubMed

    Cook, Daniel; Gardner, Dale R; Pfister, James A

    2014-07-30

    Swainsonine, an indolizidine alkaloid with significant physiological activity, is an α-mannosidase and mannosidase II inhibitor that alters glycoprotein processing and causes lysosomal storage disease. Swainsonine is present in a number of plant species worldwide and causes severe toxicosis in livestock grazing these plants. Consumption of these plants by grazing animals leads to a chronic wasting disease characterized by weight loss, depression, altered behavior, decreased libido, infertility, and death. This review focuses on the three plant families and the associated taxa that contain swainsonine; the fungi that produce swainsonine, specifically the fungal endophytes associated with swainsonine-containing taxa; studies investigating the plant, endophyte, and swainsonine relationship; the influence of environmental factors on swainsonine concentrations in planta; and areas of future research. PMID:24758700

  5. Metabolites from the endophytic mitosporic Dothideomycete sp. LRUB20.

    PubMed

    Chomcheon, Porntep; Wiyakrutta, Suthep; Sriubolmas, Nongluksna; Ngamrojanavanich, Nattaya; Mahidol, Chulabhorn; Ruchirawat, Somsak; Kittakoop, Prasat

    2009-01-01

    The endophytic mitosporic Dothideomycete sp. LRUB20 was found to produce pyrone derivatives, dothideopyrones A-D (1, 3, 4, and 5), together with seven known compounds, including questin (9), asterric acid (10), methyl asterrate (11), sulochrin (12), and eugenitin (13), 6-hydroxymethyleugenitin (14), and cis, trans-muconic acid (15). Dothideopyrone D (5) and its acetate derivative 6 exhibited moderate cytotoxic activity. This is the first report on a naturally occurring muconic acid, which is commonly known as a biomarker in environments after exposure to benzene and phenol (or derivatives). Interestingly, the LRUB20 fungus could produce muconic acid in relatively high yield (47.8mg/L). The utility of endophytic fungi in the field of white biotechnology is discussed. PMID:19038408

  6. A new enniatin antibiotic from the endophyte Fusarium tricinctum Corda.

    PubMed

    Zaher, Ahmed M; Makboul, Makboul A; Moharram, Ahmad M; Tekwani, Babu L; Calderón, Angela I

    2015-03-01

    Enniatins (ENs), a group of antibiotics commonly produced by various strains of Fusarium, are six-membered cyclic depsipeptides formed by the union of three molecules of D-α-hydroxyisovaleric acid and three N-methyl-L-amino acids. The endophyte Fusarium tricinctum Corda was isolated from the fruits of Hordeum sativum Jess. and cultivated on a rice medium. The fungal metabolites were extracted with methanol and were identified, employing liquid chromatography-mass spectrometry as ENs A, A1, B, B1, B2 and Q. EN Q is a new analog of EN A and the occurrence of EN B2 is reported for the first time from this endophyte, in addition to four well-known ENs (A, A1, B and B1). The methanol extract of F. tricinctum showed mild antibacterial and antileishmanial activities. Additionally the tested extract displayed inhibition of the activity of thioredoxin reductase enzyme of Plasmodium falciparum. PMID:25315756

  7. Two Species of Endophytic Cladosporium in Pine Trees in Korea

    PubMed Central

    Paul, Narayan Chandra

    2008-01-01

    During our studies on the diverse endophytic fungi resident on conifer needles, many species of Cladosporium previously unreported in Korea were encountered. In this paper, we report on two species of Cladosporium from the needles of pine trees (Pinus spp.). Based on analyses of internal transcribed spacer gene sequence, and cultural and micromorphological characteristics, they were identified as C. oxysporum and C. sphaerospermum. Both species have not been hitherto reported in Korea. PMID:23997628

  8. Xylactam B, A New Isobenzofuranone from an Endophytic Xylaria sp.

    PubMed

    Piyasena, Nelum P K G; Schüffler, Anja; Laatsch, Hartmut

    2015-10-01

    A new nitrogen containing compound named xylactam B (2), along with a further eight known compounds, ceramide 2a, cerebroside B, cyclo(prolyl,valyl), marmesin, 5-methoxycarbonylmellein, 5-methylmellein, polypropylene glycol and p-hydroxybenzoic acid, were isolated from an endophytic Xylaria sp. The structure elucidation of the new compound and the other isolates was carried out with the help of spectroscopic analyses and databases. PMID:26669110

  9. Phenology of host Chondrus ocellatus with filamentous green endophyte infection

    NASA Astrophysics Data System (ADS)

    Choi, Hang Gil; Kim, Changsong; Kim, Young Sik; Lee, Soon Jeong; Park, Myoung Ae; Nam, Ki Wan

    2015-09-01

    Monthly variations in gametophyte and tetrasporophyte biomass of Chondrus ocellatus Holmes, a commercial carragenophyte alga, were examined at wave-exposed and sheltered shore stations of Jungdori, Wando, Korea from September, 2013 to August, 2014. The frequency of infection of the fronds with a green filamentous endophyte was investigated and the endophyte was identified using tufA analysis. Biomass of C. ocellatus was significantly greater at the exposed shore (331.84 g wet wt. m-2) than at the sheltered shore (181 g wet wt. m-2); the average biomass was 259 g wet wt. m-2. Gametophyte biomass of C. ocellatus accounted for 64.25% of the total biomass (259 g wet wt. m-2); tetrasporophyte biomass was 93.05 g wet wt. m-2 (35.93%). Biomass was minimal in winter and maximal in summer at both stations and similar patterns were found for gametophyte and tetrasporophyte biomass. Frond lengths and weights of C. ocellatus were slightly greater at the exposed shore than at the sheltered shore. Fronds of C. ocellatus were infected by a green endophytic species, which grew in between the cortical and medullar tissue and was identified as Ulvella ramosa by tufA analysis. We conclude that the optimal harvesting period of the C. ocellatus field population in terms of biomass might be autumn, after the rapid growth period. Additional in-depth research on the endophytes, such as infection mechanism and frequency, should be performed in order to maintain and manage the field populations of C. ocellatus.

  10. Lasiodiplodins from mangrove endophytic fungus Lasiodiplodia sp. 318.

    PubMed

    Li, Jing; Xue, Yanyu; Yuan, Jie; Lu, Yongjun; Zhu, Xun; Lin, Yongcheng; Liu, Lan

    2016-04-01

    Four new lasiodiplodins (1-4), together with three known analogues, have been isolated from a mangrove endophytic fungus, Lasiodiplodia sp. 318#. Their structures were elucidated by spectroscopic techniques. Cytotoxic activities of compounds 1-7 were evaluated in vitro against human cancer lines THP1, MDA-MB-435, A549, HepG2 and HCT-116. Compound 4 exhibited moderate cytotoxic activities. PMID:26222141

  11. A mixed culture of endophytic fungi increases production of antifungal polyketides.

    PubMed

    Chagas, Fernanda O; Dias, Lus G; Pupo, Mnica T

    2013-10-01

    Secondary metabolites produced by endophytic microorganisms can provide benefits to host plants, such as stimulating growth and enhancing the plant's resistance toward biotic and abiotic factors. During its life, a host plant may be inhabited by many species of endophytes within a restrictive environment. This condition can stimulate secondary metabolite production that improves microbial competition and may consequently affect both the neighboring microorganisms and the host plant. The interactions between the endophytes that co-habit the same host plant have been studied. However, the effect of these interactions on the host plant has remained neglected. When using mixed microbial cultures, we found that the endophytic fungus Alternaria tenuissima significantly increased the production of some polyketides, including antifungal stemphyperylenol in response to the endophytic Nigrospora sphaerica. Biological activity assays revealed that stemphyperylenol can cause cytotoxic effects against N. sphaerica, although no phytotoxicity was observed in the host plant Smallanthus sonchifolius, even at concentrations much higher than those toxic to the fungus. The polyketides produced by A. tenuissima may be important for the ecological relationships between endophyte-endophyte and endophytes-host plants in the natural environment. PMID:24114180

  12. Restructuring of endophytic bacterial communities in grapevine yellows-diseased and recovered Vitis vinifera L. plants.

    PubMed

    Bulgari, Daniela; Casati, Paola; Crepaldi, Paola; Daffonchio, Daniele; Quaglino, Fabio; Brusetti, Lorenzo; Bianco, Piero Attilio

    2011-07-01

    Length heterogeneity-PCR assays, combined with statistical analyses, highlighted that the endophytic bacterial community associated with healthy grapevines was characterized by a greater diversity than that present in diseased and recovered plants. The findings suggest that phytoplasmas can restructure the bacterial community by selecting endophytic strains that could elicit a plant defense response. PMID:21622794

  13. Draft Genome Sequence of Burkholderia cenocepacia Strain 869T2, a Plant-Beneficial Endophytic Bacterium.

    PubMed

    Ho, Ying-Ning; Huang, Chieh-Chen

    2015-01-01

    An endophytic bacterium, Burkholderia cenocepacia 869T2, isolated from vetiver grass, has shown its abilities for both in planta biocontrol and plant growth promotion. Its draft genome sequence was determined to provide insights into those metabolic pathways involved in plant-beneficial activity. This is the first genome report for endophytic B. cenocepacia. PMID:26564046

  14. USDA - Kentucky Report (Annual Report to SERA-IEG 8, Tall Fescue Toxicosis/Endophyte Workshop)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Of the ergopeptine alkaloids produced by the endophyte (Neotyphodium coenophialum) of tall fescue, ergovaline has been reported as the most abundant in endophyte-infected tall fescue (Lolium arundinacea). As a result much focus has been placed on ergovaline and its impact on grazing animal health (i...

  15. Vasoconstriction in horses caused by endophyte-infected tall fescue seed is detected with Doppler ultrasonography

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The hypotheses that endophyte (Neotyphodium coenophialum)-infected tall fescue (TF) seed causes vasoconstriction in horses in vivo and that ground seed would cause more pronounced vasoconstriction than whole seed were tested. Ten horses each received 1 of 3 treatments: endophyte-free ground (E–G; n ...

  16. Molecular Characterisation of Endophytic Fungi from Roots of Wild Banana (Musa acuminata).

    PubMed

    Zakaria, Latiffah; Jamil, Muhamad Izham Muhamad; Anuar, Intan Sakinah Mohd

    2016-02-01

    Endophytic fungi inhabit apparently healthy plant tissues and are prevalent in terrestrial plants, especially root tissues, which harbour a wide assemblage of fungal endophytes. Therefore, this study focused on the isolation and characterisation of endophytic fungi from the roots of wild banana (Musa acuminata). A total of 31 isolates of endophytic fungi were isolated from 80 root fragments. The endophytic fungi were initially sorted according to morphological characteristics and identified using the sequences of the translation elongation factor-1α (TEF-1α) gene of Fusarium spp. and the Internal Transcribed Spacer (ITS) regions of other fungi. The most common fungal isolates were species of the genus Fusarium, which were identified as F. proliferatum, Fusarium sp., F. solani species complex, and F. oxysporum. Other isolated endophytic fungi included Curvularia lunata, Trichoderma atroviride, Calonectria gracilis, Rhizoctonia solani, Bionectria ochroleuca, and Stromatoneurospora phoenix (Xylariceae). Several of the fungal genera, such as Fusarium, Trichoderma, Rhizoctonia, and Xylariceae, are among the common fungal endophytes reported in plants. This study showed that the roots of wild banana harbour a diverse group of endophytic fungi. PMID:27019688

  17. Infection of Helicoverpa armigera by endophytic Beauveria bassiana colonizing tomato plants

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A novel endophytic strain of Beauveria bassiana was isolated from leaf tissue of a wild tomato plant. This strain and two B. bassiana strains previously isolated from soil were evaluated for their ability to endophytically colonize tomatoes and subsequent in planta efficacy against Helicoverpa armig...

  18. Fungal endophyte diversity in coffee plants from Colombia, Hawaii, Mexico and Puerto Rico

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A survey of fungal endophytes in coffee plants was conducted in Colombia, Hawaii, Mexico and Puerto Rico. Coffee plant sections were sterilized and fungal endophytes were isolated using standard techniques, followed by DNA extraction and sequencing of the internal transcribed spacer region (ITS) of...

  19. PLANT INOCULATION WITH OBLIGATE ENDOPHYTES FROM ARID RANGELAND GRASSES: IMPLICATIONS FOR WATER USAGE

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Endophytic inoculation of grasses can result in significant agronomic advantages including increased drought tolerance and disease resistance as well as enhanced water and nutrient uptake. While some endophytes can increase plant toxicity, others are thought to be strictly beneficial. New attempts...

  20. Molecular characterization of fungal endophytic morphospecies associated with the indigenous forest tree, Theobroma gileri in Ecuador

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fungal endophytes were isolated from healthy stems and pods of Theobroma gileri, an alternative host of the frosty pod rot pathogen of cacao. Identification of sporulating isolates was undertaken; however, many of the endophytes isolated could not be identified morphologically as they were non-sporu...

  1. Enhancing native grass productivity by cocultivating with endophyte-laden calli

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The influence native endophytes have on grass establishment and productivity was evaluated by co-cultivating Bouteloua eriopoda (Torr.) Torr. (black grama) or Sporobolus cryptandrus (Torr.) Gray (sand dropseed) seedlings with endophyte-laden calli from three of four native grass and shrub species; A...

  2. Advantages of Endophyte Infection in Dry, Irrigated, Cold-Desert Environments

    Technology Transfer Automated Retrieval System (TEKTRAN)

    It has been well documented that fungal endophytes aid in the persistence and survival of symbiotic grasses in the humid, disease and insect-prone environments of the U.S. However, there has been little research to evaluate possible endophyte benefits to adaptation and production of grasses in the ...

  3. Grazing Evaluation of a Novel Endophyte Tall Fescue Developed for the Upper Transition Zone

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A wild-type endophyte (Neotyphodium coenophialum)that infests tall fescue (Lolium arundinaceum) imparts tolerances to moisture, heat, and grazing stresses, but also produces ergot alkaloids that adversely affect performance and physiology of cattle. Novel endophytes can sustain fescue persistence an...

  4. GENETIC CHARACTERIZATION OF UNCULTURED FUNGAL ENDOPHYTES FROM BOUTELOUA ERIOPODA AND ATRIPLEX

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Obligate fungal endophytes form cryptic communities in vascular plants which can defy detection and isolation by conventional methods. Molecular detection by PCR amplification of fungal DNA sequences alone is insufficient, since target endophyte sequences are unknown and quite similar to sequences ...

  5. The potential role of water in spread of conidia of the Neotyphodium endophyte of Poa ampla

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Endophytes of the genus Neotyphodium are mutualistic fungi that colonize many cool season grasses. Neotyphodium endophytes are asexual but related to the ascomycete genus Epichloe. They do not produce obvious structures external to the host and for most of the life cycle are asymptomatic and system...

  6. Update regarding endophyte related research in Agricultural Research Service/USDA

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Recent results from various ARS locations regarding solutions to the endophyte problem of the use of cool season forage as a feed stock for ruminants were presented. The endophyte problem refers to decreases in animal health and productivity when livestock consume cool-season forages like tall fescu...

  7. Draft Genome Sequence of the Rice Endophyte Burkholderia kururiensis M130

    PubMed Central

    Coutinho, Bruna Gonçalves; Passos da Silva, Daniel; Previato, José Osvaldo

    2013-01-01

    Burkholderia kururiensis M130 is one of the few characterized rice endophytes and was isolated from surface-sterilized rice roots. This bacterium shows strong growth-promoting effects, being able to increase rice yields. Here we present its draft genome sequence, which contains important traits for endophytic life and plant growth promotion. PMID:23558537

  8. Study on plant endophyte PLFAs polymorphism in different spatial of citrus HLB (huanglongbing)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Huanglongbing (HLB, a yellow shoot disease) is the most destructive citrus disease in the world. Plant endophytic communities of red pomelo have been associated with HLB. It was therefore important to investigate the endophytic community of red pomelo plant in relation to HLB. In this paper, endophy...

  9. Muscodor yucatenensis, a new endophytic ascomycete from Mexican chakah, Bursera simaruba

    Technology Transfer Automated Retrieval System (TEKTRAN)

    During a study on the fungal endophytic associations with some trees of the dry tropical forest of El Eden Ecological Reserve located in the northeast of the Yucatan Peninsula of Mexico, a new fungal species was isolated as an endophyte of a tree named chakah, chachah or huk´up by indigenous mayas. ...

  10. Rice responds to endophytic colonization which is independent of the common symbiotic signaling pathway.

    PubMed

    Chen, Xi; Mich, Lucie; Sachs, Sabrina; Wang, Qi; Buschart, Anna; Yang, Haiyuan; Vera Cruz, Casiana M; Hurek, Thomas; Reinhold-Hurek, Barbara

    2015-10-01

    As molecular interactions of plants with N2 -fixing endophytes are largely uncharacterized, we investigated whether the common signaling pathway (CSP) shared by root nodule symbioses (RNS) and arbuscular mycorrhizal (AM) symbioses may have been recruited for the endophytic Azoarcus sp.-rice (Oryza sativa) interaction, and combined this investigation with global approaches to characterize rice root responses to endophytic colonization. Putative homologs of genes required for the CSP were analyzed for their putative role in endophytic colonization. Proteomic and suppressive subtractive hybridization (SSH) approaches were also applied, and a comparison of defense-related processes was carried out by setting up a pathosystem for flooded roots with Xanthomonas oryzae pv. oryzae strain PXO99 (Xoo). All tested genes were expressed in rice roots seedlings but not induced upon Azoarcus sp. inoculation, and the oscyclops and oscastor mutants were not impaired in endophytic colonization. Global approaches highlighted changes in rice metabolic activity and Ca(2+) -dependent signaling in roots colonized by endophytes, including some stress proteins. Marker genes for defense responses were induced to a lesser extent by the endophytes than by the pathogen, indicating a more compatible interaction. Our results thus suggest that rice roots respond to endophytic colonization by inducing metabolic shifts and signaling events, for which the CSP is not essential. PMID:26009800

  11. An Integrated Database for Grass and Endophyte Genomics at www.grassendophyte.org

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The endophytic microbes are able to promote plant growth and health under various stresses via their symbiotic association with host plants. Genome-wide comparative analysis has been extensively employed to decipher complex mechanisms of interactions between endophytic microbes and host plants, resu...

  12. Age-dependent Distribution of Fungal Endophytes in Panax ginseng Roots Cultivated in Korea

    PubMed Central

    Park, Young-Hwan; Kim, Young-Chang; Park, Sang Un; Lim, Hyoun-Sub; Kim, Joon Bum; Cho, Byoung-Kwan; Bae, Hanhong

    2012-01-01

    Fungal endophytes were isolated from 1-, 2-, 3-, and 4-year-old ginseng roots (Panax ginseng Meyer) cultivated in Korea. The isolated fungal endophytes were identified based on sequence analysis of the internal transcribed spacer and morphological characterization by microscopic observations. A total of 81 fungal endophytes were isolated from 24 ginseng roots. Fungal endophytes were classified into 9 different fungal species and 2 unknown species. Ginseng roots that were 1-, 2-, 3-, and 4-years old were colonized by 2, 6, 8, and 5 species of fungal endophytes, respectively. While Phoma radicina was the most frequent fungal endophyte in 2-, 3-, and 4-year-old ginseng roots, Fusarium solani was the dominant endophyte in 1-year-old ginseng roots. The colonization frequencies (CF) varied with the host age. The CF were 12%, 40%, 31%, and 40% for 1-, 2-, 3-, and 4-year-old ginseng roots, respectively. We found a variety of fungal endophytes that were distributed depending on the age of ginseng plants. PMID:23717135

  13. Arthropod abundance in tall fescue, Lolium arundinaceum, pastures containing novel ‘safe’ endophytes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Poor livestock performance on tall fescue is linked to infection by a fungal endophyte that enhances grass resistance to stress, including erbivory, while producing ergot alkaloids toxic to vertebrate grazers. Novel ‘safe’ endophyte/grass associations produce no ergot alkaloids yet etain stand persi...

  14. Molecular Characterisation of Endophytic Fungi from Roots of Wild Banana (Musa acuminata)

    PubMed Central

    Zakaria, Latiffah; Jamil, Muhamad Izham Muhamad; Anuar, Intan Sakinah Mohd

    2016-01-01

    Endophytic fungi inhabit apparently healthy plant tissues and are prevalent in terrestrial plants, especially root tissues, which harbour a wide assemblage of fungal endophytes. Therefore, this study focused on the isolation and characterisation of endophytic fungi from the roots of wild banana (Musa acuminata). A total of 31 isolates of endophytic fungi were isolated from 80 root fragments. The endophytic fungi were initially sorted according to morphological characteristics and identified using the sequences of the translation elongation factor-1α (TEF-1α) gene of Fusarium spp. and the Internal Transcribed Spacer (ITS) regions of other fungi. The most common fungal isolates were species of the genus Fusarium, which were identified as F. proliferatum, Fusarium sp., F. solani species complex, and F. oxysporum. Other isolated endophytic fungi included Curvularia lunata, Trichoderma atroviride, Calonectria gracilis, Rhizoctonia solani, Bionectria ochroleuca, and Stromatoneurospora phoenix (Xylariceae). Several of the fungal genera, such as Fusarium, Trichoderma, Rhizoctonia, and Xylariceae, are among the common fungal endophytes reported in plants. This study showed that the roots of wild banana harbour a diverse group of endophytic fungi. PMID:27019688

  15. Composition of fungal communities in soil and endophytic in raspberry production systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fungi play important roles as decomposers, plant symbionts and pathogens in soil. While endophytes are microorganisms that dwell within plant tissues and have a symbiotic association with the host. The structures of fungal communities in the soil and in endophytic association are dependent up comple...

  16. Symbiotic interaction of endophytic bacteria with arbuscular mycorrhizal fungi and its antagonistic effect on Ganoderma boninense.

    PubMed

    Sundram, Shamala; Meon, Sariah; Seman, Idris Abu; Othman, Radziah

    2011-08-01

    Endophytic bacteria (Pseudomonas aeruginosa UPMP3 and Burkholderia cepacia UMPB3), isolated from within roots of oil palm (Elaeis guineensis Jacq.) were tested for their presymbiotic effects on two arbuscular mcorrhizal fungi, Glomus intraradices UT126 and Glomus clarum BR152B). These endophytic bacteria were also tested for antagonistic effects on Ganoderma boninense PER 71, a white wood rot fungal pathogen that causes a serious disease in oil palm. Spore germination and hyphal length of each arbuscular mycorrhizal fungal (AMF) pairing with endophytic bacteria was found to be significantly higher than spores plated in the absence of bacteria. Scanning electron microscopy (SEM) showed that the endophytic bacteria were scattered, resting or embedded on the surface hyaline layer or on the degraded walls of AMF spores, possibly feeding on the outer hyaline spore wall. The antagonistic effect of the endophytic bacteria was expressed as severe morphological abnormalities in the hyphal structures of G. boninense PER 71. The effects of the endophytic bacteria on G. boninense PER 71 hyphal structures were observed clearly under SEM. Severe inter-twisting, distortion, lysis and shriveling of the hyphal structures were observed. This study found that the effect of endophytic bacteria on G. intraradices UT126 and G. clarum BR152B resembled that of a mycorrhiza helper bacteria (MHB) association because the association significantly promoted AMF spore germination and hyphal length. However, the endophytic bacteria were extremely damaging to G. boninense PER 71. PMID:21887636

  17. Endophyte-infected fescue alters components of the acute phase response to lipopolysaccharide in beef heifers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sixteen Angus and 8 Hereford X Angus (334.7 +/- 10.7 kilograms body weight) heifers were stratified by sire breed, temperament (using weaning exit velocity), and body weight and randomly assigned within strata to either an endophyte-infected (E+) or endophyte-free (E-) diet for 10 days to determine ...

  18. Endophytic fungi from plums (Prunus domestica) and their antifungal activity against Monilinia fructicola

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Plant endophytic microorganisms may play an important role in plant evolution, development, and resistance to biotic and abiotic stresses. However, the use of these microorganisms to benefit agriculture is in its infancy. We isolated endophytic fungi from plum leaves, identified them using ITS1 an...

  19. Muscodor yucatanensis, a new endophytic ascomycete from Mexican chakah, Bursera simaruba

    Technology Transfer Automated Retrieval System (TEKTRAN)

    During a study on the fungal endophytic associations with some trees of the secondary forest of El Eden Ecological Reserve located in the northeastern Yucatan Peninsula of Mexico, a new fungal species was isolated as an endophyte of a tree named chakah, chachah or hukúp (Bursera simaruba) by indigen...

  20. Fungal endophyte communities reflect environmental structuring across a Hawaiian landscape.

    PubMed

    Zimmerman, Naupaka B; Vitousek, Peter M

    2012-08-01

    We surveyed endophytic fungal communities in leaves of a single tree species (Metrosideros polymorpha) across wide environmental gradients (500-5,500 mm of rain/y; 10-22 °C mean annual temperature) spanning short geographic distances on Mauna Loa Volcano, Hawai'i. Using barcoded amplicon pyrosequencing at 13 sites (10 trees/site; 10 leaves/tree), we found very high levels of diversity within sites (a mean of 551 ± 134 taxonomic units per site). However, among-site diversity contributed even more than did within-site diversity to the overall richness of more than 4,200 taxonomic units observed in M. polymorpha, and this among-site variation in endophyte community composition correlated strongly with temperature and rainfall. These results are consistent with suggestions that foliar endophytic fungi are hyperdiverse. They further suggest that microbial diversity may be even greater than has been assumed and that broad-scale environmental controls such as temperature and rainfall can structure eukaryotic microbial diversity. Appropriately constrained study systems across strong environmental gradients present a useful means to understand the environmental factors that structure the diversity of microbial communities. PMID:22837398

  1. Fungal endophyte communities reflect environmental structuring across a Hawaiian landscape

    PubMed Central

    Zimmerman, Naupaka B.; Vitousek, Peter M.

    2012-01-01

    We surveyed endophytic fungal communities in leaves of a single tree species (Metrosideros polymorpha) across wide environmental gradients (500–5,500 mm of rain/y; 10–22 °C mean annual temperature) spanning short geographic distances on Mauna Loa Volcano, Hawai’i. Using barcoded amplicon pyrosequencing at 13 sites (10 trees/site; 10 leaves/tree), we found very high levels of diversity within sites (a mean of 551 ± 134 taxonomic units per site). However, among-site diversity contributed even more than did within-site diversity to the overall richness of more than 4,200 taxonomic units observed in M. polymorpha, and this among-site variation in endophyte community composition correlated strongly with temperature and rainfall. These results are consistent with suggestions that foliar endophytic fungi are hyperdiverse. They further suggest that microbial diversity may be even greater than has been assumed and that broad-scale environmental controls such as temperature and rainfall can structure eukaryotic microbial diversity. Appropriately constrained study systems across strong environmental gradients present a useful means to understand the environmental factors that structure the diversity of microbial communities. PMID:22837398

  2. Avanex Unique Endophyte Technology: Reduced Insect Food Source at Airports.

    PubMed

    Pennell, Christopher G L; Popay, Alison J; Rolston, M Philip; Townsend, Richard J; Lloyd-West, Catherine M; Card, Stuart D

    2016-02-01

    Birds and other forms of wildlife are a major issue for airport authorities worldwide, as they can create hazards to operating aircraft. Wildlife "strikes," the majority caused by birds, can cause damage to operating aircraft and in severe cases lead to a loss of human life. Many airfields contain large areas of ground cover herbage alongside their runways that consist of mixtures of grasses, legumes, and weeds that can harbor many invertebrates. Many airfields use insecticides to control insect populations; however, mounting pressure from regional councils and water boards aim to reduce this practice due to ground water runoff and contamination concerns. Avanex Unique Endophyte Technology, a product specifically developed to reduce the attractiveness of airports and surrounding areas to birds, is based on a novel association between a selected strain of Epichloë endophyte and a turf-type tall fescue cultivar. This grass-endophyte association acts through a direct mechanism whereby a negative response in birds is created through taste aversion and postingestion feedback as well as an indirect mechanism by deterring many invertebrates, a food source of many bird species. PMID:26374758

  3. Anti-microbial screening of endophytic fungi from Hypericum perforatum Linn.

    PubMed

    Zhang, Huawei; Ying, Chen; Tang, Yifei

    2014-09-01

    Anti-microbial properties of 21 endophytic fungal strains from Hypericum perforatum Linn. were evaluated against three human pathogens, Staphyloccocus aureus, Escherichia coli and Rhodotorula glutinis, and two phytopathogens, Rhizoctonia cerealis and Pyricularia grisea. The results indicated that the ethyl acetate extracts of endophytic fermentation broth had stronger anti-microbial activities than their fermentation broth. And the inhibitory effect of the endophytic extracts on human pathogens was better than those on phytopathogens. Among these endophytic fungi, strains GYLQ-10, GYLQ-24 and GYLQ-22 respectively showed the strongest activities against S. aureu, E. coli, R. glutinis. GYLQ-14 and GYLQ-22 exhibited the most pronounced effect on P. Grisea while both GYLQ-06 and GYLQ-08 had the strongest anti-microbial activities against R. cerealis. Till now, this study is the first report on the isolation of endophytic fungi from H. perforatum Linn. and their anti-microbial evaluation. PMID:25176358

  4. Rice bacterial endophytes: isolation of a collection, identification of beneficial strains and microbiome analysis.

    PubMed

    Bertani, Iris; Abbruscato, Pamela; Piffanelli, Pietro; Subramoni, Sujatha; Venturi, Vittorio

    2016-06-01

    Endophytes are harmless or beneficial microorganisms that live inside plants between cells. The relationship they develop with the plant as well as their potential role in plant health is at large unexplored and it is believed that the opportunity to find new and interesting endophytes among the large variety of plants is great. Here, we present the isolation and analysis of a large collection of endophytes from one cultivar of rice grown in Italy. A total 1318 putative endophytes were isolated from roots, leaves and stems from rice grown in submerged and dry conditions and a working collection of 229 isolates was created. Among these, several isolates were confirmed to be endophytes and a few displayed the trait of plant growth promotion. A cultivation independent analysis via 16S rDNA amplicons of the bacterial community of the endosphere was also performed providing information on bacterial diversity in the rice endopshere. PMID:27038229

  5. Bacterial endophytes from wild maize suppress Fusarium graminearum in modern maize and inhibit mycotoxin accumulation.

    PubMed

    Mousa, Walaa K; Shearer, Charles R; Limay-Rios, Victor; Zhou, Ting; Raizada, Manish N

    2015-01-01

    Wild maize (teosinte) has been reported to be less susceptible to pests than their modern maize (corn) relatives. Endophytes, defined as microbes that inhabit plants without causing disease, are known for their ability to antagonize plant pests and pathogens. We hypothesized that the wild relatives of modern maize may host endophytes that combat pathogens. Fusarium graminearum is the fungus that causes Gibberella Ear Rot (GER) in modern maize and produces the mycotoxin, deoxynivalenol (DON). In this study, 215 bacterial endophytes, previously isolated from diverse maize genotypes including wild teosintes, traditional landraces and modern varieties, were tested for their ability to antagonize F. graminearum in vitro. Candidate endophytes were then tested for their ability to suppress GER in modern maize in independent greenhouse trials. The results revealed that three candidate endophytes derived from wild teosintes were most potent in suppressing F. graminearum in vitro and GER in a modern maize hybrid. These wild teosinte endophytes could suppress a broad spectrum of fungal pathogens of modern crops in vitro. The teosinte endophytes also suppressed DON mycotoxin during storage to below acceptable safety threshold levels. A fourth, less robust anti-fungal strain was isolated from a modern maize hybrid. Three of the anti-fungal endophytes were predicted to be Paenibacillus polymyxa, along with one strain of Citrobacter. Microscopy studies suggested a fungicidal mode of action by all four strains. Molecular and biochemical studies showed that the P. polymyxa strains produced the previously characterized anti-Fusarium compound, fusaricidin. Our results suggest that the wild relatives of modern crops may serve as a valuable reservoir for endophytes in the ongoing fight against serious threats to modern agriculture. We discuss the possible impact of crop evolution and domestication on endophytes in the context of plant defense. PMID:26500660

  6. The Endophytic System of Mediterranean Cytinus (Cytinaceae) Developing on Five Host Cistaceae Species

    PubMed Central

    De Vega, Clara; Ortiz, Pedro Luis; Arista, Montserrat; Talavera, Salvador

    2007-01-01

    Background and Aims One of the most extreme manifestations of parasitism is found in the genus Cytinus, a holoparasite whose vegetative body is reduced to an endophytic system living within its host root. There are two species of Cytinus in the Mediterranean, C. hypocistis and C. ruber, which parasitize various genera of Cistaceae, one of the most characteristic families of the Mediterranean scrublands. The aim of this work is to describe the endophytic systems of C. hypocistis and C. ruber, and their tissue relationships with their host. Methods Roots from five different hosts infected with C. hypocistis and C. ruber were harvested, and examined by anatomical techniques under light microscopy to elucidate the characteristics of the endophytic system of Cytinus, and to determine if differences in endophytic systems occur between the two species and in response to different hosts. Key Results The endophyte structure is similar in both Cytinus species irrespective of the host species. In the initial stages of the endophyte, rows of parenchymal cells spread through the host pericyclic derivatives and phloem, and begin to generate small nodules in the outermost region of the host xylem. Later the nodules anastomose, and bands of parasitic tissue are formed. The host cambium continues to develop xylem tissue, and consequently the endophyte becomes enclosed within the xylem. The bands of parasitic tissue fuse to form a continuous sheath. This mature endophyte has well-developed vascular system with xylem and phloem, and forms sinkers with transfer cells that grow through the host xylem. Conclusions The endophytic system of Cytinus develops in all host root tissues and reaches its most mature stages in the host xylem. It is more complex than previously reported, showing parenchyma, xylem and phloem tissues. This is the first report of well-developed phloem in a holoparasitic endophytic species. PMID:17804607

  7. Bacterial endophytes from wild maize suppress Fusarium graminearum in modern maize and inhibit mycotoxin accumulation

    PubMed Central

    Mousa, Walaa K.; Shearer, Charles R.; Limay-Rios, Victor; Zhou, Ting; Raizada, Manish N.

    2015-01-01

    Wild maize (teosinte) has been reported to be less susceptible to pests than their modern maize (corn) relatives. Endophytes, defined as microbes that inhabit plants without causing disease, are known for their ability to antagonize plant pests and pathogens. We hypothesized that the wild relatives of modern maize may host endophytes that combat pathogens. Fusarium graminearum is the fungus that causes Gibberella Ear Rot (GER) in modern maize and produces the mycotoxin, deoxynivalenol (DON). In this study, 215 bacterial endophytes, previously isolated from diverse maize genotypes including wild teosintes, traditional landraces and modern varieties, were tested for their ability to antagonize F. graminearum in vitro. Candidate endophytes were then tested for their ability to suppress GER in modern maize in independent greenhouse trials. The results revealed that three candidate endophytes derived from wild teosintes were most potent in suppressing F. graminearum in vitro and GER in a modern maize hybrid. These wild teosinte endophytes could suppress a broad spectrum of fungal pathogens of modern crops in vitro. The teosinte endophytes also suppressed DON mycotoxin during storage to below acceptable safety threshold levels. A fourth, less robust anti-fungal strain was isolated from a modern maize hybrid. Three of the anti-fungal endophytes were predicted to be Paenibacillus polymyxa, along with one strain of Citrobacter. Microscopy studies suggested a fungicidal mode of action by all four strains. Molecular and biochemical studies showed that the P. polymyxa strains produced the previously characterized anti-Fusarium compound, fusaricidin. Our results suggest that the wild relatives of modern crops may serve as a valuable reservoir for endophytes in the ongoing fight against serious threats to modern agriculture. We discuss the possible impact of crop evolution and domestication on endophytes in the context of plant defense. PMID:26500660

  8. Tall fescue cultivar and fungal endophyte combinations influence plant growth and root exudate composition.

    PubMed

    Guo, Jingqi; McCulley, Rebecca L; McNear, David H

    2015-01-01

    Tall fescue [Lolium arundinaceum (Schreb.)] is a cool-season perennial grass used in pastures throughout the Southeastern United States. The grass can harbor a shoot-specific fungal endophyte (Epichloë coenophiala) thought to provide the plant with enhanced resistance to biotic and abiotic stresses. Because alkaloids produced by the common variety of the endophyte cause severe animal health issues, focus has been on replacing the common-toxic strain with novel varieties that do not produce the mammal-toxic alkaloids but maintain abiotic and biotic stress tolerance benefits. Little attention has been given to the influence of the plant-fungal symbiosis on rhizosphere processes. Therefore, our objective was to study the influence of this relationship on plant biomass production and root exudate composition in tall fescue cultivars PDF and 97TF1, which were either not infected with the endophyte (E-), infected with the common toxic endophyte (CTE+) strain or with one of two novel endophytes (AR542E+, AR584E+). Plants were grown sterile for 3 weeks after which plant biomass, total organic carbon, total phenolic content and detailed chemical composition of root exudates were determined. Plant biomass production and exudate phenolic and organic carbon content were influenced by endophyte status, tall fescue cultivar, and their interaction. GC-TOF MS identified 132 compounds, including lipids, carbohydrates and carboxylic acids. Cluster analysis showed that the interaction between endophyte and cultivar resulted in unique exudate profiles. This is the first detailed study to assess how endophyte infection, notably with novel endophytes, and tall fescue cultivar interact to influence root exudate composition. Our results illustrate that tall fescue cultivar and endophyte status can influence plant growth and root exudate composition, which may help explain the observed influence of this symbiosis on rhizosphere biogeochemical processes. PMID:25914697

  9. Tall fescue cultivar and fungal endophyte combinations influence plant growth and root exudate composition

    PubMed Central

    Guo, Jingqi; McCulley, Rebecca L.; McNear, David H.

    2015-01-01

    Tall fescue [Lolium arundinaceum (Schreb.)] is a cool-season perennial grass used in pastures throughout the Southeastern United States. The grass can harbor a shoot-specific fungal endophyte (Epichloë coenophiala) thought to provide the plant with enhanced resistance to biotic and abiotic stresses. Because alkaloids produced by the common variety of the endophyte cause severe animal health issues, focus has been on replacing the common-toxic strain with novel varieties that do not produce the mammal-toxic alkaloids but maintain abiotic and biotic stress tolerance benefits. Little attention has been given to the influence of the plant-fungal symbiosis on rhizosphere processes. Therefore, our objective was to study the influence of this relationship on plant biomass production and root exudate composition in tall fescue cultivars PDF and 97TF1, which were either not infected with the endophyte (E-), infected with the common toxic endophyte (CTE+) strain or with one of two novel endophytes (AR542E+, AR584E+). Plants were grown sterile for 3 weeks after which plant biomass, total organic carbon, total phenolic content and detailed chemical composition of root exudates were determined. Plant biomass production and exudate phenolic and organic carbon content were influenced by endophyte status, tall fescue cultivar, and their interaction. GC-TOF MS identified 132 compounds, including lipids, carbohydrates and carboxylic acids. Cluster analysis showed that the interaction between endophyte and cultivar resulted in unique exudate profiles. This is the first detailed study to assess how endophyte infection, notably with novel endophytes, and tall fescue cultivar interact to influence root exudate composition. Our results illustrate that tall fescue cultivar and endophyte status can influence plant growth and root exudate composition, which may help explain the observed influence of this symbiosis on rhizosphere biogeochemical processes. PMID:25914697

  10. Methylobacterium-Induced Endophyte Community Changes Correspond with Protection of Plants against Pathogen Attack

    PubMed Central

    Ardanov, Pavlo; Sessitsch, Angela; Häggman, Hely; Kozyrovska, Natalia; Pirttilä, Anna Maria

    2012-01-01

    Plant inoculation with endophytic bacteria that normally live inside the plant without harming the host is a highly promising approach for biological disease control. The mechanism of resistance induction by beneficial bacteria is poorly understood, because pathways are only partly known and systemic responses are typically not seen. The innate endophytic community structures change in response to external factors such as inoculation, and bacterial endophytes can exhibit direct or indirect antagonism towards pathogens. Earlier we showed that resistance induction by an endophytic Methylobacterium sp. in potato towards Pectobacterium atrosepticum was dependent on the density of the inoculum, whereas the bacterium itself had no antagonistic activity. To elucidate the role of innate endophyte communities in plant responses, we studied community changes in both in vitro and greenhouse experiments using various combinations of plants, endophyte inoculants, and pathogens. Induction of resistance was studied in several potato (Solanum tuberosum L.) cultivars by Methylobacterium sp. IMBG290 against the pathogens P. atrosepticum, Phytophthora infestans and Pseudomonas syringae pv. tomato DC3000, and in pine (Pinus sylvestris L.) by M. extorquens DSM13060 against Gremmeniella abietina. The capacities of the inoculated endophytic Methylobacterium spp. strains to induce resistance were dependent on the plant cultivar, pathogen, and on the density of Methylobacterium spp. inoculum. Composition of the endophyte community changed in response to inoculation in shoot tissues and correlated with resistance or susceptibility to the disease. Our results demonstrate that endophytic Methylobacterium spp. strains have varying effects on plant disease resistance, which can be modulated through the endophyte community of the host. PMID:23056459

  11. Endophytic fungi associated with Macrosolen tricolor and its host Camellia oleifera.

    PubMed

    Sheng-Liang, Zhou; Shu-Zhen, Yan; Zhen-Ying, Wu; Shuang-Lin, Chen

    2014-06-01

    Endophytic fungi play an important role in terrestrial ecosystem, while little is known about those in hemi-parasitic plants, a group of special plants which absorb nutrients from its hosts by haustoria. The relationship of the endophytes in the two parts of the bipartite systems (hemiparasites together with their hosts) is also poorly understood. Endophytic fungi of a hemi-parasitic plant Macrosolen tricolor, and its host plant Camellia oleifera were investigated and compared in this study. M. tricolor contained rich and diversified endophytic fungi (H' = 2.829), which consisted mainly of ascomycetes, distributed in more than ten orders of four classes (Sordariomycetes, Dothideomycetes, Leotiomycetes and Eurotiomycetes) besides Incertae sedis strains (23.2 % of total). In addition, 2.2 % of isolates were identified to be Basidiomycota, all of which belonged to Agaricomycetes. Obvious differences were observed between the endophytic fungal assembles in the leaves and those in the branches of M. tricolor. The endophytic fungi isolated from C. oleifera distributed in nearly same orders of the four classes of Ascomycota and one class (Agaricomycetes) of Basidiomycota as those from M. tricolor with similar proportion. For both M. tricolor and C. oleifera, Valsa sp. was the dominant endophyte species in the leaves, Torula sp. 1 and Fusarium sp. 1 were the dominant endophytic fungi in the branches. The similarity coefficient of the endophyte assembles in the two host was 64.4 %. Canonical correspondence analysis showed that the endophyte assembles of M. tricolor and C. oleifera were significantly different (p < 0.01). PMID:24442818

  12. The Bacillus anthracis spore.

    PubMed

    Driks, Adam

    2009-12-01

    In response to starvation, Bacillus anthracis can form a specialized cell type called the spore, which is the infectious particle for the disease anthrax. The spore is largely metabolically inactive and can resist a wide range of stresses found in nature. In spite of its dormancy, the spore can sense the presence of nutrient and rapidly return to vegetative growth. These properties help the spore to persist for long periods of time in the environment, survive host defenses after entering the body, and cause disease when the correct location in the host is reached. The anatomy of the spore is unique among bacteria, being comprised of a series of specialized concentric shells, each of which provides specific critical functions. Surrounding the spore core (which houses the chromosome) is a peptidoglycan layer important for spore dormancy, a protein shell that resists a variety of toxic molecules, and finally an exterior protein and glycoprotein layer that, among other functions, mediates interactions with surfaces, including those encountered by the spore within the host. Detailed molecular analysis of these shells has shed considerable light on how each layer determines specific spore properties. Future work, especially on the outermost spore layer, is likely to advance therapeutics, methods for spore decontamination and other critical biodefense technologies. PMID:19683018

  13. Lactic Acid Bacteria in Durum Wheat Flour Are Endophytic Components of the Plant during Its Entire Life Cycle.

    PubMed

    Minervini, Fabio; Celano, Giuseppe; Lattanzi, Anna; Tedone, Luigi; De Mastro, Giuseppe; Gobbetti, Marco; De Angelis, Maria

    2015-10-01

    This study aimed at assessing the dynamics of lactic acid bacteria and other Firmicutes associated with durum wheat organs and processed products. 16S rRNA gene-based high-throughput sequencing showed that Lactobacillus, Streptococcus, Enterococcus, and Lactococcus were the main epiphytic and endophytic genera among lactic acid bacteria. Bacillus, Exiguobacterium, Paenibacillus, and Staphylococcus completed the picture of the core genus microbiome. The relative abundance of each lactic acid bacterium genus was affected by cultivars, phenological stages, other Firmicutes genera, environmental temperature, and water activity (aw) of plant organs. Lactobacilli, showing the highest sensitivity to aw, markedly decreased during milk development (Odisseo) and physiological maturity (Saragolla). At these stages, Lactobacillus was mainly replaced by Streptococcus, Lactococcus, and Enterococcus. However, a key sourdough species, Lactobacillus plantarum, was associated with plant organs during the life cycle of Odisseo and Saragolla wheat. The composition of the sourdough microbiota and the overall quality of leavened baked goods are also determined throughout the phenological stages of wheat cultivation, with variations depending on environmental and agronomic factors. PMID:26187970

  14. Lactic Acid Bacteria in Durum Wheat Flour Are Endophytic Components of the Plant during Its Entire Life Cycle

    PubMed Central

    Minervini, Fabio; Celano, Giuseppe; Lattanzi, Anna; Tedone, Luigi; De Mastro, Giuseppe; De Angelis, Maria

    2015-01-01

    This study aimed at assessing the dynamics of lactic acid bacteria and other Firmicutes associated with durum wheat organs and processed products. 16S rRNA gene-based high-throughput sequencing showed that Lactobacillus, Streptococcus, Enterococcus, and Lactococcus were the main epiphytic and endophytic genera among lactic acid bacteria. Bacillus, Exiguobacterium, Paenibacillus, and Staphylococcus completed the picture of the core genus microbiome. The relative abundance of each lactic acid bacterium genus was affected by cultivars, phenological stages, other Firmicutes genera, environmental temperature, and water activity (aw) of plant organs. Lactobacilli, showing the highest sensitivity to aw, markedly decreased during milk development (Odisseo) and physiological maturity (Saragolla). At these stages, Lactobacillus was mainly replaced by Streptococcus, Lactococcus, and Enterococcus. However, a key sourdough species, Lactobacillus plantarum, was associated with plant organs during the life cycle of Odisseo and Saragolla wheat. The composition of the sourdough microbiota and the overall quality of leavened baked goods are also determined throughout the phenological stages of wheat cultivation, with variations depending on environmental and agronomic factors. PMID:26187970

  15. Metabolites from the Fungal Endophyte Aspergillus austroafricanus in Axenic Culture and in Fungal-Bacterial Mixed Cultures.

    PubMed

    Ebrahim, Weaam; El-Neketi, Mona; Lewald, Laura-Isabell; Orfali, Raha S; Lin, Wenhan; Rehberg, Nidja; Kalscheuer, Rainer; Daletos, Georgios; Proksch, Peter

    2016-04-22

    The endophytic fungus Aspergillus austroafricanus isolated from leaves of the aquatic plant Eichhornia crassipes was fermented axenically on solid rice medium as well as in mixed cultures with Bacillus subtilis or with Streptomyces lividans. Chromatographic analysis of EtOAc extract of axenic cultures afforded two new metabolites, namely, the xanthone dimer austradixanthone (1) and the sesquiterpene (+)-austrosene (2), along with five known compounds (3-7). Austradixanthone (1) represents the first highly oxygenated heterodimeric xanthone derivative. When A. austroafricanus was grown in mixed cultures with B. subtilis or with S. lividans, several diphenyl ethers (8-11) including the new austramide (8) were induced up to 29-fold. The structures of new compounds were unambiguously elucidated using 1D- and 2D-NMR spectroscopy, HRESIMS, and chemical derivatization. Compound 7 exhibited weak cytotoxicity against the murine lymphoma L5178Y cell line (EC50 is 12.6 μM). In addition, compounds 9 and 10, which were enhanced in mixed fungal/bacterial cultures, proved to be active against Staphylococcus aureus (ATCC 700699) with minimal inhibitory concentrations (MICs) of 25 μM each (6.6 μg/mL), whereas compound 11 revealed moderate antibacterial activity against B. subtilis 168 trpC2 with an MIC value of 34.8 μM (8 μg/mL). PMID:27070198

  16. Silver nanoparticles synthesis mediated by new isolates of Bacillus spp., nanoparticle characterization and their activity against Bean Yellow Mosaic Virus and human pathogens

    PubMed Central

    Elbeshehy, Essam K. F.; Elazzazy, Ahmed M.; Aggelis, George

    2015-01-01

    Extracellular agents produced by newly isolated bacterial strains were able to catalyze the synthesis of silver nanoparticles (AgNPs). The most effective isolates were identified as Bacillus pumilus, B. persicus, and Bacillus licheniformis using molecular identification. DLS analysis revealed that the AgNPs synthesized by the above strains were in the size range of 77–92 nm. TEM observations showed that the nanoparticles were coated with a capping agent, which was probably involved in nanoparticle stabilization allowing their perfect dispersion in aqueous solutions. FTIR analyses indicated the presence of proteins in the capping agent of the nanoparticles and suggested that the oxidation of hydroxyl groups of peptide hydrolysates (originated from the growth medium) is coupled to the reduction of silver ions. Energy Dispersive X-ray Spectroscopy confirmed the above results. The nanoparticles, especially those synthesized by B. licheniformis, were stable (zeta potential ranged from −16.6 to −21.3 mV) and showed an excellent in vitro antimicrobial activity against important human pathogens and a considerable antiviral activity against the Bean Yellow Mosaic Virus. The significance of the particular antiviral activity is highlighted, given the significant yield reduction in fava bean crops resulting from Bean Yellow Mosaic Virus infections, in many African countries. PMID:26029190

  17. Protein secretion in Bacillus species.

    PubMed Central

    Simonen, M; Palva, I

    1993-01-01

    Bacilli secrete numerous proteins into the environment. Many of the secretory proteins, their export signals, and their processing steps during secretion have been characterized in detail. In contrast, the molecular mechanisms of protein secretion have been relatively poorly characterized. However, several components of the protein secretion machinery have been identified and cloned recently, which is likely to lead to rapid expansion of the knowledge of the protein secretion mechanism in Bacillus species. Comparison of the presently known export components of Bacillus species with those of Escherichia coli suggests that the mechanism of protein translocation across the cytoplasmic membrane is conserved among gram-negative and gram-positive bacteria differences are found in steps preceding and following the translocation process. Many of the secretory proteins of bacilli are produced industrially, but several problems have been encountered in the production of Bacillus heterologous secretory proteins. In the final section we discuss these problems and point out some possibilities to overcome them. PMID:8464403

  18. Effect of Endophytic Fusarium oxysporum on Host Preference of Radopholus similis to Tissue Culture Banana Plants.

    PubMed

    Athman, Shahasi Y; Dubois, Thomas; Coyne, Daniel; Gold, Clifford S; Labuschagne, Nico; Viljoen, Altus

    2006-12-01

    The burrowing nematode Radopholus similis is one of the major constraints to banana (Musa spp.) production worldwide. Resource-poor farmers can potentially manage R. similis by using naturally occurring banana endophytes, such as nonpathogenic Fusarium oxysporum, that are inoculated into tissue culture banana plantlets. At present, it is unclear at what stage in the R. similis infection process the endophytes are most effective. In this study, the effect of three endophytic F. oxysporum isolates (V5w2, Eny1.31i and Eny7.11o) on R. similis host preference of either endophyte-treated or untreated banana plants was investigated. No differences were observed between the proportion of nematodes attracted to either root segments excised from endophyte-treated or untreated plants, or in experiments using endophyte-treated and untreated tissue culture banana plantlets. These results imply that the early processes of banana plant host recognition by R. similis are not affected by endophyte infection. PMID:19259463

  19. A Legume Genetic Framework Controls Infection of Nodules by Symbiotic and Endophytic Bacteria

    PubMed Central

    Zgadzaj, Rafal; James, Euan K.; Kelly, Simon; Kawaharada, Yasuyuki; de Jonge, Nadieh; Jensen, Dorthe B.; Madsen, Lene H.; Radutoiu, Simona

    2015-01-01

    Legumes have an intrinsic capacity to accommodate both symbiotic and endophytic bacteria within root nodules. For the symbionts, a complex genetic mechanism that allows mutual recognition and plant infection has emerged from genetic studies under axenic conditions. In contrast, little is known about the mechanisms controlling the endophytic infection. Here we investigate the contribution of both the host and the symbiotic microbe to endophyte infection and development of mixed colonised nodules in Lotus japonicus. We found that infection threads initiated by Mesorhizobium loti, the natural symbiont of Lotus, can selectively guide endophytic bacteria towards nodule primordia, where competent strains multiply and colonise the nodule together with the nitrogen-fixing symbiotic partner. Further co-inoculation studies with the competent coloniser, Rhizobium mesosinicum strain KAW12, show that endophytic nodule infection depends on functional and efficient M. loti-driven Nod factor signalling. KAW12 exopolysaccharide (EPS) enabled endophyte nodule infection whilst compatible M. loti EPS restricted it. Analysis of plant mutants that control different stages of the symbiotic infection showed that both symbiont and endophyte accommodation within nodules is under host genetic control. This demonstrates that when legume plants are exposed to complex communities they selectively regulate access and accommodation of bacteria occupying this specialized environmental niche, the root nodule. PMID:26042417

  20. Antifungal and proteolytic activities of endophytic fungi isolated from Piper hispidum Sw

    PubMed Central

    Orlandelli, Ravely Casarotti; de Almeida, Tiago Tognolli; Alberto, Raiani Nascimento; Polonio, Julio Cesar; Azevedo, João Lúcio; Pamphile, João Alencar

    2015-01-01

    Endophytes are being considered for use in biological control, and the enzymes they secrete might facilitate their initial colonization of internal plant tissues and direct interactions with microbial pathogens. Microbial proteases are also biotechnologically important products employed in bioremediation processes, cosmetics, and the pharmaceutical, photographic and food industries. In the present study, we evaluated antagonism and competitive interactions between 98 fungal endophytes and Alternaria alternata, Colletotrichum sp., Phyllosticta citricarpa and Moniliophthora perniciosa. We also examined the proteolytic activities of endophytes grown in liquid medium and conducted cup plate assays. The results showed that certain strains in the assemblage of P. hispidum endophytes are important sources of antifungal properties, primarily Lasiodiplodia theobromae JF766989, which reduced phytopathogen growth by approximately 54 to 65%. We detected 28 endophytes producing enzymatic halos of up to 16.40 mm in diameter. The results obtained in the present study highlight the proteolytic activity of the endophytes Phoma herbarum JF766995 and Schizophyllum commune JF766994, which presented the highest enzymatic halo diameters under at least one culture condition tested. The increased activities of certain isolates in the presence of rice or soy flour as a substrate (with halos up to 17.67 mm in diameter) suggests that these endophytes have the potential to produce enzymes using agricultural wastes. PMID:26273250

  1. A legume genetic framework controls infection of nodules by symbiotic and endophytic bacteria.

    PubMed

    Zgadzaj, Rafal; James, Euan K; Kelly, Simon; Kawaharada, Yasuyuki; de Jonge, Nadieh; Jensen, Dorthe B; Madsen, Lene H; Radutoiu, Simona

    2015-06-01

    Legumes have an intrinsic capacity to accommodate both symbiotic and endophytic bacteria within root nodules. For the symbionts, a complex genetic mechanism that allows mutual recognition and plant infection has emerged from genetic studies under axenic conditions. In contrast, little is known about the mechanisms controlling the endophytic infection. Here we investigate the contribution of both the host and the symbiotic microbe to endophyte infection and development of mixed colonised nodules in Lotus japonicus. We found that infection threads initiated by Mesorhizobium loti, the natural symbiont of Lotus, can selectively guide endophytic bacteria towards nodule primordia, where competent strains multiply and colonise the nodule together with the nitrogen-fixing symbiotic partner. Further co-inoculation studies with the competent coloniser, Rhizobium mesosinicum strain KAW12, show that endophytic nodule infection depends on functional and efficient M. loti-driven Nod factor signalling. KAW12 exopolysaccharide (EPS) enabled endophyte nodule infection whilst compatible M. loti EPS restricted it. Analysis of plant mutants that control different stages of the symbiotic infection showed that both symbiont and endophyte accommodation within nodules is under host genetic control. This demonstrates that when legume plants are exposed to complex communities they selectively regulate access and accommodation of bacteria occupying this specialized environmental niche, the root nodule. PMID:26042417

  2. An endophytic fungus isolated from finger millet (Eleusine coracana) produces anti-fungal natural products.

    PubMed

    Mousa, Walaa K; Schwan, Adrian; Davidson, Jeffrey; Strange, Philip; Liu, Huaizhi; Zhou, Ting; Auzanneau, France-Isabelle; Raizada, Manish N

    2015-01-01

    Finger millet is an ancient African cereal crop, domesticated 7000 years ago in Ethiopia, reaching India at 3000 BC. Finger millet is reported to be resistant to various fungal pathogens including Fusarium sp. We hypothesized that finger millet may host beneficial endophytes (plant-colonizing microbes) that contribute to the antifungal activity. Here we report the first isolation of endophyte(s) from finger millet. Five distinct fungal species were isolated from roots and predicted taxonomically based on 18S rDNA sequencing. Extracts from three putative endophytes inhibited growth of F. graminearum and three other pathogenic Fusarium species. The most potent anti-Fusarium strain (WF4, predicted to be a Phoma sp.) was confirmed to behave as an endophyte using pathogenicity and confocal microscopy experiments. Bioassay-guided fractionation of the WF4 extract identified four anti-fungal compounds, viridicatol, tenuazonic acid, alternariol, and alternariol monomethyl ether. All the purified compounds caused dramatic breakage of F. graminearum hyphae in vitro. These compounds have not previously been reported to have anti-Fusarium activity. None of the compounds, except for tenuazonic acid, have previously been reported to be produced by Phoma. We conclude that the ancient, disease-tolerant crop, finger millet, is a novel source of endophytic anti-fungal natural products. This paper suggests the value of the crops grown by subsistence farmers as sources of endophytes and their natural products. Application of these natural chemicals to solve real world problems will require further validation. PMID:26539183

  3. Geographical and temporal changes of foliar fungal endophytes associated with the invasive plant Ageratina adenophora.

    PubMed

    Mei, Liang; Zhu, Ming; Zhang, De-Zhu; Wang, Yong-Zhou; Guo, Jing; Zhang, Han-Bo

    2014-02-01

    Endophytes may gradually accumulate in the new geographic range of a non-native plant, just as pathogens do. To test this hypothesis, the dynamics of colonization and diversity of foliar fungal endophytes of non-native Ageratina adenophora were investigated. Previous reports showed that the time since the initial introduction (1930s) of A. adenophora into China varied among populations. Endophytes were sampled in three provinces of Southwest China in 21 sites that varied from 20 to 70 years since the introduction of A. adenophora from its native Central America. Endophyte isolation frequencies varied from 1.87% to 60.23% overall in a total of 4,032 leaf fragments. Based on ITS sequence variations, 463 fungal endophytes were distinguished as 112 operational taxonomic units (OTUs) belonging to the Sordariomycetes (77 OTUs, 373 isolates), Dothideomycetes (18 OTUs, 38 isolates), and Agaricomycetes (17 OTUs, 52 strains) classes. Colletotrichum (28.51%), Nemania (14.90%), Phomopsis (13.17%), and Xylaria (4.97%) were the most abundant genera. Both endophyte diversity and overall isolation frequency increased with time since introduction. The genetic differentiation of the fungus Colletotrichum gloeosporioides indicated that the dispersal of endophytes was likely affected by a combination of geographic factors and the invasion history of the host A. adenophora. PMID:24276537

  4. Unexpected diversity of basidiomycetous endophytes in sapwood and leaves of Hevea.

    PubMed

    Martin, Rachael; Gazis, Romina; Skaltsas, Demetra; Chaverri, Priscila; Hibbett, David

    2015-01-01

    Research on fungal endophytes has expanded dramatically in recent years, but little is known about the diversity and ecological roles of endophytic basidiomycetes. Here we report the analysis of 310 basidiomycetous endophytes isolated from wild and planted populations of the rubber tree genus, Hevea. Species accumulation curves were nonasymptotic, as in the majority of endophyte surveys, indicating that more sampling is needed to recover the true diversity of the community. One hundred eighteen OTUs were delimited, representing nine orders of Basidiomycota (Agaricales, Atheliales, Auriculariales, Cantharellales, Hymenochaetales, Polyporales, Russulales, Septobasidiales, Tremellales). The diversity of basidiomycetous endophytes found inhabiting wild populations of Hevea was comparable to that present in plantations. However, when samples were segregated by tissue type, sapwood of wild populations was found to contain a higher number of species than sapwood of planted trees. Seventy-five percent of isolates were members of the Polyporales, the majority in the phlebioid clade. Most of the species belong to clades known to cause a white-rot type of wood decay. Two species in the insect-associated genus Septobasidium were isolated. The most frequently isolated genera included Bjerkandera, Ceriporia, Phanerochaete, Phlebia, Rigidoporus, Tinctoporellus, Trametes (Polyporales), Peniophora, Stereum (Russulales) and Coprinellus (Agaricales), all of which have been reported as endophytes from a variety of hosts, across wide geographic locations. Literature records on the geographic distribution and host association of these genera revealed that their distribution and substrate affinity could be extended if the endophytic niche was investigated as part of fungal biodiversity surveys. PMID:25572095

  5. A cultured endophyte community is associated with the plant Clerodendrum inerme and antifungal activity.

    PubMed

    Gong, B; Yao, X H; Zhang, Y Q; Fang, H Y; Pang, T C; Dong, Q L

    2015-01-01

    Fungal endophytes live in the inner tissues of Clerodendrum inerme and may be significant resources for new chemicals in drug discovery. A total of 242 endophytic fungi were recovered from 602 sample segments of C. inerme; 66 were purified. The 66 fungi belonging to 16 taxa and 11 genera (Alternaria, Nigrospora, Bartalinia, Pestalotiopsis, Fusarium, Mycoleptodiscus, Trichoderma, Phomopsis, Diaporthe, Lasiodiplodia, and Curvularia) were identified by morphological characteristics and fungal internal transcribed spacer sequences. The most abundant genera were Alternaria and Lasiodiplodia. Some of the endophytes exhibited tissue specificity. The colonization frequencies of endophytes in the stems were evidently higher than those in the roots and leaves. The crude ethyl acetate extracts were tested against 6 endophytes isolated from C. inerme. Three of 10 (33.3%) endophytes, which were identified as Phomopsis sp, Curvularia sp, and Mycoleptodiscus sp, displayed distinct antifungal activity against ≥3 tested fungi. To our knowledge, this is the first report of an endophytic community associated with C. inerme in China and its antifungal activity in vitro. PMID:26125809

  6. ABC transporter and metallothionein expression affected by NI and Epichloe endophyte infection in tall fescue.

    PubMed

    Mirzahossini, Zahra; Shabani, Leila; Sabzalian, Mohammad R; Sharifi-Tehrani, Majid

    2015-10-01

    Epichloe endophytes are symbiotic fungi which unlike mycorrhiza grow within aerial parts of host plants. The fungi may increase host tolerance to both biotic and abiotic stresses. In this study, the effect of endophyte infection on growth and tolerance, carbohydrate contents and ABC (ABC transporter) and MET (metallothionein) expression in the leaves of tall fescue (Festuca arundinacea) plants cultivated in Ni polluted soil were evaluated. The endophyte infected (E+) and non-infected (E-) fescue plants were cultivated in soil under different Ni concentrations (30, 90 and 180mgkg(-1)). Growth parameters including root, shoot, total biomass, tiller number and total chlorophyll content of plants and H2O2 content of shoots were measured at the end of experiment. Ni translocation to the shoots, carbohydrate contents in roots and expression of ABC and MET of the leaves were also measured after 10 weeks of growth. Results demonstrated the beneficial effect of endophyte association on growth and Ni tolerance of tall fescue under Ni stress through an avoidance mechanism (reduction of Ni accumulation and translocation to the shoots). Endophyte infected plants showed less ABC and MET expression compared to the endophyte free plants. In endophyte free plants, H2O2 production had a significant positive correlation with genes expression, indicating that an increase in H2O2 might be involved in the up-regulation of ABC and MET under Ni stress. PMID:26024809

  7. GC--MS analysis reveals production of 2--Phenylethanol from Aspergillus niger endophytic in rose.

    PubMed

    Wani, Masood Ahmed; Sanjana, Kaul; Kumar, Dhar Manoj; Lal, Dhar Kanahya

    2010-02-01

    Endophytes include all organisms that during a variable period of their life, colonize the living internal tissues of their hosts without causing detectable symptoms. Several fungal endophytes have been isolated from a variety of plant species which have proved themselves as a rich source of secondary metabolites. The reported natural products from endophytes include antibiotics, immunosuppresants, anticancer compounds, antioxidant agents, etc. For the first time Rosa damacaena (rose) has been explored for its endophytes. The rose oil industry is the major identified deligence for its application in perfumery, flavouring, ointments, and pharmaceuticals including various herbal products. During the present investigation fungal endophytes were isolated from Rosa damacaena. A total of fifty four isolates were isolated out of which sixteen isolates were screened for the production of secondary metabolites. GCMS analysis reveals the production of 2-phenylethanol by one of the isolates JUBT 3M which was identified as Aspergillus niger. This is the first report of production of 2-phenylethanol from endophytic A. niger. 2-phenylethanol is an important constituent of rose oil constituting about 4.06% of rose oil. Presence of 2-phenylethanol indicates that the endophyte of rose may duplicate the biosynthesis of phenyl propanoids by rose plant. Besides this, the other commercial applications of phenylethanol include its use in antiseptics, disinfectants, anti-microbials and preservative in pharmaceuticals. PMID:20082377

  8. Linking Bacterial Endophytic Communities to Essential Oils: Clues from Lavandula angustifolia Mill

    PubMed Central

    Emiliani, Giovanni; Maida, Isabel; Perrin, Elena; Chiellini, Carolina; Fondi, Marco; Gallo, Eugenia; Gori, Luigi; Maggini, Valentina; Vannacci, Alfredo; Biffi, Sauro; Firenzuoli, Fabio; Fani, Renato

    2014-01-01

    Endophytic bacteria play a crucial role in plant life and are also drawing much attention for their capacity to produce bioactive compounds of relevant biotechnological interest. Here we present the characterisation of the cultivable endophytic bacteria of Lavandula angustifolia Mill.—a species used since antiquity for its therapeutic properties—since the production of bioactive metabolites from medical plants may reside also in the activity of bacterial endophytes through their direct production, PGPR activity on host, and/or elicitation of plant metabolism. Lavender tissues are inhabited by a tissue specific endophytic community dominated by Proteobacteria, highlighting also their difference from the rhizosphere environment where Actinobacteria and Firmicutes are also found. Leaves' endophytic community resulted as the most diverse from the other ecological niches. Overall, the findings reported here suggest: (i) the existence of different entry points for the endophytic community, (ii) its differentiation on the basis of the ecological niche variability, and (iii) a two-step colonization process for roots endophytes. Lastly, many isolates showed a strong inhibition potential against human pathogens and the molecular characterization demonstrated also the presence of not previously described isolates that may constitute a reservoir of bioactive compounds relevant in the field of pathogen control, phytoremediation, and human health. PMID:24971151

  9. Fungal endophytes of aquatic macrophytes: diverse host-generalists characterized by tissue preferences and geographic structure

    PubMed Central

    Sandberg, Dustin C.; Battista, Lorna J.; Arnold, A. Elizabeth

    2014-01-01

    Most studies of endophytic symbionts have focused on terrestrial plants, neglecting the ecologically and economically important plants present in aquatic ecosystems. We evaluated the diversity, composition, host- and tissue affiliations, and geographic structure of fungal endophytes associated with common aquatic plants in northern Arizona, USA. Endophytes were isolated in culture from roots and photosynthetic tissues during two growing seasons. A total of 226 isolates representing 60 putative species was recovered from 9,600 plant tissue segments. Although isolation frequency was low, endophytes were phylogenetically diverse and species-rich. Comparisons among the most thoroughly sampled species and reservoirs revealed that isolation frequency and diversity did not differ significantly between collection periods, among species, among reservoirs, or as a function of depth. However, community structure differed significantly among reservoirs and tissue types. Phylogenetic analyses of a focal genus (Penicillium) corroborated estimates of species boundaries and informed community analyses, highlighting clade- and genotype-level affiliations of aquatic endophytes with both sediment- and waterborne fungi, and endophytes of proximate terrestrial plants. Together these analyses provide a first quantitative examination of endophytic associations in roots and foliage of aquatic plants and can be used to optimize survey strategies for efficiently capturing fungal biodiversity at local and regional scales. PMID:24402358

  10. An endophytic fungus isolated from finger millet (Eleusine coracana) produces anti-fungal natural products

    PubMed Central

    Mousa, Walaa K.; Schwan, Adrian; Davidson, Jeffrey; Strange, Philip; Liu, Huaizhi; Zhou, Ting; Auzanneau, France-Isabelle; Raizada, Manish N.

    2015-01-01

    Finger millet is an ancient African cereal crop, domesticated 7000 years ago in Ethiopia, reaching India at 3000 BC. Finger millet is reported to be resistant to various fungal pathogens including Fusarium sp. We hypothesized that finger millet may host beneficial endophytes (plant-colonizing microbes) that contribute to the antifungal activity. Here we report the first isolation of endophyte(s) from finger millet. Five distinct fungal species were isolated from roots and predicted taxonomically based on 18S rDNA sequencing. Extracts from three putative endophytes inhibited growth of F. graminearum and three other pathogenic Fusarium species. The most potent anti-Fusarium strain (WF4, predicted to be a Phoma sp.) was confirmed to behave as an endophyte using pathogenicity and confocal microscopy experiments. Bioassay-guided fractionation of the WF4 extract identified four anti-fungal compounds, viridicatol, tenuazonic acid, alternariol, and alternariol monomethyl ether. All the purified compounds caused dramatic breakage of F. graminearum hyphae in vitro. These compounds have not previously been reported to have anti-Fusarium activity. None of the compounds, except for tenuazonic acid, have previously been reported to be produced by Phoma. We conclude that the ancient, disease-tolerant crop, finger millet, is a novel source of endophytic anti-fungal natural products. This paper suggests the value of the crops grown by subsistence farmers as sources of endophytes and their natural products. Application of these natural chemicals to solve real world problems will require further validation. PMID:26539183

  11. Molecular Characterization and Analysis of Antimicrobial Activity of Endophytic Fungi From Medicinal Plants in Saudi Arabia

    PubMed Central

    Gashgari, Rukaia; Gherbawy, Youssuf; Ameen, Fuad; Alsharari, Salam

    2016-01-01

    Background: Endophytic fungi, which have been reported in numerous plant species, are important components of the forest community and contribute significantly to the diversity of natural ecosystems. Objectives: The current study aimed to evaluate and characterize, at the molecular level, the diversity and antimicrobial activities of endophytic fungi from medicinal plants in Saudi Arabia. Materials and Methods: Fungi growing on plant segments were isolated and identified based on morphological and molecular characteristics. The isolates were grouped into 35 distinct operational taxonomic units, based on the sequence of the internal transcribed spacer regions in the rRNA gene. The colonization frequency and the dominant fungi percentage of these endophytic fungi were calculated. A dual culture technique was adopted to investigate the antifungal activity of these endophytes. Results: Tamarix nilotica showed the highest endophytic diversity with a relative frequency of 27.27%, followed by Cressa cretica with a relative frequency of 19.27%. The most frequently isolated species was Penicillium chrysogenum with an overall colonization rate of 98.57%. Seven out of 35 endophytic fungi exhibited strong antifungal activity to all plant fungal pathogens tested. P. chrysogenum, Fusarium oxysporum, and F. nygamai exhibited the highest inhibition against the human pathogenic bacteria Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa, and Klebsiella pneumoniae. Aspergillus sydowii, P. chrysogenum, and Eupenicillium crustaceum showed strong antimicrobial activity against Enterococcus faecalis. Conclusions: The antimicrobial activity of these endophytic microorganisms could be exploited in biotechnology, medicine, and agriculture. PMID:27099679

  12. A mutualistic endophyte alters the niche dimensions of its host plant

    PubMed Central

    Kazenel, Melanie R.; Debban, Catherine L.; Ranelli, Luciana; Hendricks, Will Q.; Chung, Y. Anny; Pendergast, Thomas H.; Charlton, Nikki D.; Young, Carolyn A.; Rudgers, Jennifer A.

    2015-01-01

    Mutualisms can play important roles in influencing species coexistence and determining community composition. However, few studies have tested whether such interactions can affect species distributions by altering the niches of partner species. In subalpine meadows of the Rocky Mountains, USA, we explored whether the presence of a fungal endophyte (genus Epichloë) may shift the niche of its partner plant, marsh bluegrass (Poa leptocoma) relative to a closely related but endophyte-free grass species, nodding bluegrass (Poa reflexa). Using observations and a 3-year field experiment, we tested two questions: (i) Do P. leptocoma and P. reflexa occupy different ecological niches? and (ii) Does endophyte presence affect the relative fitness of P. leptocoma versus P. reflexa in the putative niches of these grass species? The two species were less likely to co-occur than expected by chance. Specifically, P. leptocoma grew closer to water sources and in wetter soils than P. reflexa, and also had higher root colonization by mycorrhizal fungi. Endophyte-symbiotic P. leptocoma seeds germinated with greater frequency in P. leptocoma niches relative to P. reflexa niches, whereas neither endophyte-free (experimentally removed) P. leptocoma seeds nor P. reflexa seeds showed differential germination between the two niche types. Thus, endophyte presence constrained the germination and early survival of host plants to microsites occupied by P. leptocoma. However, endophyte-symbiotic P. leptocoma ultimately showed greater growth than endophyte-free plants across all microsites, indicating a net benefit of the symbiosis at this life history stage. Differential effects of endophyte symbiosis on different host life history stages may thus contribute to niche partitioning between the two congeneric plant species. Our study therefore identifies a symbiotic relationship as a potential mechanism facilitating the coexistence of two species, suggesting that symbiont effects on host niche may have community-level consequences. PMID:25603965

  13. Holoparasitic Rafflesiaceae possess the most reduced endophytes and yet give rise to the world's largest flowers

    PubMed Central

    Nikolov, Lachezar A.; Tomlinson, P. B.; Manickam, Sugumaran; Endress, Peter K.; Kramer, Elena M.; Davis, Charles C.

    2014-01-01

    Background and Aims Species in the holoparasitic plant family Rafflesiaceae exhibit one of the most highly modified vegetative bodies in flowering plants. Apart from the flower shoot and associated bracts, the parasite is a mycelium-like endophyte living inside their grapevine hosts. This study provides a comprehensive treatment of the endophytic vegetative body for all three genera of Rafflesiaceae (Rafflesia, Rhizanthes and Sapria), and reports on the cytology and development of the endophyte, including its structural connection to the host, shedding light on the poorly understood nature of this symbiosis. Methods Serial sectioning and staining with non-specific dyes, periodic–Schiff's reagent and aniline blue were employed in order to characterize the structure of the endophyte across a phylogenetically diverse sampling. Key Results A previously identified difference in the nuclear size between Rafflesiaceae endophytes and their hosts was used to investigate the morphology and development of the endophytic body. The endophytes generally comprise uniseriate filaments oriented radially within the host root. The emergence of the parasite from the host during floral development is arrested in some cases by an apparent host response, but otherwise vegetative growth does not appear to elicit suppression by the host. Conclusions Rafflesiaceae produce greatly reduced and modified vegetative bodies even when compared with the other holoparasitic angiosperms once grouped with Rafflesiaceae, which possess some vegetative differentiation. Based on previous studies of seeds together with these findings, it is concluded that the endophyte probably develops directly from a proembryo, and not from an embryo proper. Similarly, the flowering shoot arises directly from the undifferentiated endophyte. These filaments produce a protocorm in which a shoot apex originates endogenously by formation of a secondary morphological surface. This degree of modification to the vegetative body is exceptional within angiosperms and warrants additional investigation. Furthermore, the study highlights a mechanical isolation mechanism by which the host may defend itself from the parasite. PMID:24942001

  14. Contributions of North American endophytes to the phylogeny, ecology, and taxonomy of Xylariaceae (Sordariomycetes, Ascomycota).

    PubMed

    U'Ren, Jana M; Miadlikowska, Jolanta; Zimmerman, Naupaka B; Lutzoni, François; Stajich, Jason E; Arnold, A Elizabeth

    2016-05-01

    The Xylariaceae (Sordariomycetes) comprise one of the largest and most diverse families of Ascomycota, with at least 85 accepted genera and ca. 1343 accepted species. In addition to their frequent occurrence as saprotrophs, members of the family often are found as endophytes in living tissues of phylogenetically diverse plants and lichens. Many of these endophytes remain sterile in culture, precluding identification based on morphological characters. Previous studies indicate that endophytes are highly diverse and represent many xylariaceous genera; however, phylogenetic analyses at the family level generally have not included endophytes, such that their contributions to understanding phylogenetic relationships of Xylariaceae are not well known. Here we use a multi-locus, cumulative supermatrix approach to integrate 92 putative species of fungi isolated from plants and lichens into a phylogenetic framework for Xylariaceae. Our collection spans 1933 isolates from living and senescent tissues in five biomes across the continental United States, and here is analyzed in the context of previously published sequence data from described species and additional taxon sampling of type specimens from culture collections. We found that the majority of strains obtained in our surveys can be classified in the hypoxyloid and xylaroid subfamilies, although many also were found outside of these lineages (as currently circumscribed). Many endophytes were placed in lineages previously not known for endophytism. Most endophytes appear to represent novel species, but inferences are limited by potential gaps in public databases. By linking our data, publicly available sequence data, and records of ascomata, we identify many geographically widespread, host-generalist clades capable of symbiotic associations with diverse photosynthetic partners. Concomitant with such cosmopolitan host use and distributions, many xylariaceous endophytes appear to inhabit both living and non-living plant tissues, with potentially important roles as saprotrophs. Overall, our study reveals major gaps in the availability of multi-locus datasets and metadata for this iconic family, and provides new hypotheses regarding the ecology and evolution of endophytism and other trophic modes across the family Xylariaceae. PMID:26903035

  15. Phages Preying on Bacillus anthracis, Bacillus cereus, and Bacillus thuringiensis: Past, Present and Future

    PubMed Central

    Gillis, Annika; Mahillon, Jacques

    2014-01-01

    Many bacteriophages (phages) have been widely studied due to their major role in virulence evolution of bacterial pathogens. However, less attention has been paid to phages preying on bacteria from the Bacillus cereus group and their contribution to the bacterial genetic pool has been disregarded. Therefore, this review brings together the main information for the B. cereus group phages, from their discovery to their modern biotechnological applications. A special focus is given to phages infecting Bacillus anthracis, B. cereus and Bacillus thuringiensis. These phages belong to the Myoviridae, Siphoviridae, Podoviridae and Tectiviridae families. For the sake of clarity, several phage categories have been made according to significant characteristics such as lifestyles and lysogenic states. The main categories comprise the transducing phages, phages with a chromosomal or plasmidial prophage state, γ-like phages and jumbo-phages. The current genomic characterization of some of these phages is also addressed throughout this work and some promising applications are discussed here. PMID:25010767

  16. Isolation and bioassay screening of medicinal plant endophytes from eastern Canada.

    PubMed

    Ellsworth, Katelyn T; Clark, Trevor N; Gray, Christopher A; Johnson, John A

    2013-11-01

    Eighty-one distinct fungal endophytes were isolated from 12 traditionally used medicinal plants from New Brunswick, Canada. This is the first report of endophytes from 8 of the 12 host plants. One hundred and sixty-two crude extracts derived from the mycelia and spent fermentation broths of liquid cultures of each endophyte were screened for antibacterial and antifungal activity. Twenty-two extracts were active against Staphylococcus aureus while 30 were active against Pseudomonas aeruginosa. Twelve crude extracts were found to be active against Candida albicans. PMID:24206359

  17. Two new terpenoids from endophytic fungus Periconia sp. F-31.

    PubMed

    Ge, Han-Lin; Zhang, De-Wu; Li, Li; Xie, Dan; Zou, Jian-Hua; Si, Yi-Kang; Dai, Jungui

    2011-01-01

    Two new terpenoids, (+)-(3S,6S,7R,8S)-periconone A (1) and (-)-(1R,4R,6S,7S)-2-caren-4,8-olide (2), have been isolated from an endophytic fungus Periconia sp., which was collected from the plant Annona muricata. Their structures were elucidated on the basis of extensive spectroscopic analyses. In the in vitro assays, the two compounds showed low cytotoxic activities against six human tumor cell lines (HCT-8, Bel-7402, BGC-823, A549, A2780 and MCF-7) with IC(50)>10(-5) M. PMID:22130377

  18. Bioactive compounds from the endophytic fungus Fusarium proliferatum.

    PubMed

    Dame, Zerihun T; Silima, Beauty; Gryzenhout, Marieka; van Ree, Teunis

    2016-06-01

    The crude extract of an endophytic fungus isolated from Syzygium cordatum and identified as Fusarium proliferatum showed 100% cytotoxicity against the brine shrimp Artemia salina at 100 μg/mL. Seven coloured, biologically active metabolites - including ergosta-5,7,22-trien-3β-ol, nectriafurone-8-methyl ether, 9-O-methyl fusarubin, bostrycoidin, bostrycoidin-9-methyl ether and 8-hydroxy-5,6-dimethoxy-2-methyl-3-(2-oxo-propyl)-1,4-naphthoquinone- were isolated from the extract. PMID:26158312

  19. Endophytic Fungus from Sinopodophyllum emodi (Wall.) Ying that Produces Podophyllotoxin.

    PubMed

    Liang, Zizhen; Zhang, Jia; Zhang, Xuan; Li, Jinjie; Zhang, Xiaoqian; Zhao, Changqi

    2016-02-01

    The aryltetralin lactone podophyllotoxin, which exhibits pronounced antineoplastic activity, is used as the precursor of the following three clinical anticancer drugs: Etoposide™, Etopophos™ and Teniposide™. The natural occurrence of this arylnaphthalene lignan is scarce and unable to meet the ever-rising demand in the medical industry. Thus, developing alternative sources for the production of podophyllotoxin is extremely urgent. This is the first report of the production of podophyllotoxin from endophytic Alternaria tenuissima isolated from Sinopodophyllum emodi (Wall.) Ying. The identification of podophyllotoxin was performed using high-performance liquid chromatography and liquid chromatography-mass spectrometry (MS)-MS and confirmed by comparison with authentic standards. PMID:26306574

  20. A new cytosporone derivative from the endophytic fungus Cytospora sp.

    PubMed

    Takano, Tomoya; Koseki, Takuya; Koyama, Hiromasa; Shiono, Yoshihito

    2014-07-01

    Japanese oak wilt (JOW) is a tree disease caused by the fungus Raffaelea quercivora, which is vectored by the ambrosia beetle, Platypus quercivorus. In a screening study of the inhibitory active compounds from fungi, a new cytosporone analogue, compound 1, was isolated from the endophytic fungus Cytospora sp. TT-10 isolated from Japanese oak, together with the known compounds, integracin A (2), cytosporones N (3) and A (4). Their structures were determined by extensive 1D- and 2D-NMR spectroscopic and mass spectral analyses. Compound 1 was identified as 4,5-dihydroxy-3-heptylphthalide and named cytosporone E. Compounds 2 and 3 showed antimicrobial activity against Raffaelea quercivora. PMID:25230507