Note: This page contains sample records for the topic endophytic bacillus pumilus from Science.gov.
While these samples are representative of the content of Science.gov,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of Science.gov
to obtain the most current and comprehensive results.
Last update: August 15, 2014.
1

Molecular characterization of a ?-1,4-endoglucanase from an endophytic Bacillus pumilus strain  

Microsoft Academic Search

Endophytes comprise mainly microorganisms that colonize inner plant tissues, often living with the host in a symbiotic manner. Several ecological roles have been assigned to endophytic fungi and bacteria, such as antibiosis to phytopathogenic agents and plant growth promotion. Nowadays, endophytes are viewed as a new source of genes, proteins and biochemical compounds that may be used to improve industrial

André O. S. Lima; Maria C. Quecine; Maria H. P. Fungaro; Fernando D. Andreote; Walter Maccheroni Jr; Welington L. Araújo; Márcio C. Silva-Filho; Aline A. Pizzirani-Kleiner; João L. Azevedo

2005-01-01

2

Bacillus pumilus SAFR-032 isolate  

NASA Technical Reports Server (NTRS)

The present invention relates to discovery and isolation of a biologically pure culture of a Bacillus pumilus SAFR-032 isolate with UV sterilization resistant properties. This novel strain has been characterized on the basis of phenotypic traits, 16S rDNA sequence analysis and DNA-DNA hybridization. According to the results of these analyses, this strain belongs to the genus Bacillus. The GenBank accession number for the 16S rDNA sequence of the Bacillus pumilus SAFR-032 isolate is AY167879.

Venkateswaran, Kasthuri J. (Inventor)

2007-01-01

3

Expression of a Bacillus thuringiensis ?-endotoxin gene by Bacillus pumilus  

Microsoft Academic Search

The ?-endotoxin genes from Bacillus thuringiensis were introduced into a rhizosphere-inhabiting Bacillus pumilus isolate to create a ?-endotoxin expression and delivery system for subterranean feeding insects such as the larvae of pale western cutworm (Agrotis orthogonia Morrison (Lepidoptera: Noctuidae)). Preliminary experiments indicated that Bacillus thuringiensis subsp. kurstaki cultures were toxic to pale western cutworm larvae. Three different cry genes from

L. B. Selinger; G. G. Khachatourians; J. R. Byers; M. F. Hynes

1998-01-01

4

Protection of Bacillus pumilus spores by catalases.  

PubMed

Bacillus pumilus SAFR-032, isolated at spacecraft assembly facilities of the National Aeronautics and Space Administration Jet Propulsion Laboratory, is difficult to kill by the sterilization method of choice, which uses liquid or vapor hydrogen peroxide. We identified two manganese catalases, YjqC and BPUM_1305, in spore protein extracts of several B. pumilus strains by using PAGE and mass spectrometric analyses. While the BPUM_1305 catalase was present in six of the B. pumilus strains tested, YjqC was not detected in ATCC 7061 and BG-B79. Furthermore, both catalases were localized in the spore coat layer along with laccase and superoxide dismutase. Although the initial catalase activity in ATCC 7061 spores was higher, it was less stable over time than the SAFR-032 enzyme. We propose that synergistic activity of YjqC and BPUM_1305, along with other coat oxidoreductases, contributes to the enhanced resistance of B. pumilus spores to hydrogen peroxide. We observed that the product of the catalase reaction, gaseous oxygen, forms expanding vesicles on the spore surface, affecting the mechanical integrity of the coat layer, resulting in aggregation of the spores. The accumulation of oxygen gas and aggregations may play a crucial role in limiting further exposure of Bacilli spore surfaces to hydrogen peroxide or other toxic chemicals when water is present. PMID:22752169

Checinska, Aleksandra; Burbank, Malcolm; Paszczynski, Andrzej J

2012-09-01

5

Protection of Bacillus pumilus Spores by Catalases  

PubMed Central

Bacillus pumilus SAFR-032, isolated at spacecraft assembly facilities of the National Aeronautics and Space Administration Jet Propulsion Laboratory, is difficult to kill by the sterilization method of choice, which uses liquid or vapor hydrogen peroxide. We identified two manganese catalases, YjqC and BPUM_1305, in spore protein extracts of several B. pumilus strains by using PAGE and mass spectrometric analyses. While the BPUM_1305 catalase was present in six of the B. pumilus strains tested, YjqC was not detected in ATCC 7061 and BG-B79. Furthermore, both catalases were localized in the spore coat layer along with laccase and superoxide dismutase. Although the initial catalase activity in ATCC 7061 spores was higher, it was less stable over time than the SAFR-032 enzyme. We propose that synergistic activity of YjqC and BPUM_1305, along with other coat oxidoreductases, contributes to the enhanced resistance of B. pumilus spores to hydrogen peroxide. We observed that the product of the catalase reaction, gaseous oxygen, forms expanding vesicles on the spore surface, affecting the mechanical integrity of the coat layer, resulting in aggregation of the spores. The accumulation of oxygen gas and aggregations may play a crucial role in limiting further exposure of Bacilli spore surfaces to hydrogen peroxide or other toxic chemicals when water is present.

Checinska, Aleksandra; Burbank, Malcolm

2012-01-01

6

Cutaneous infection due to Bacillus pumilus: report of 3 cases.  

PubMed

Human infection due to Bacillus pumilus is exceptional. We report 3 cases of cutaneous infection caused by B. pumilus that occurred in 3 shepherds, 2 of whom were members of the same family. The lesions appeared to have a morphology similar to that of cutaneous anthrax lesions. Two patients were cured after treatment with amoxicillin-clavulanate, and the third patient was cured after prolonged treatment with ciprofloxacin. To our knowledge, primary cutaneous infection due to B. pumilus has not been reported. B. pumilus should be considered in patients who develop lesions suggestive of cutaneous anthrax. PMID:17243047

Tena, Daniel; Martinez-Torres, Juan Angel; Perez-Pomata, María Teresa; Sáez-Nieto, Juan Antonio; Rubio, Virginia; Bisquert, Julia

2007-02-15

7

78 FR 35147 - Bacillus pumilus Strain BU F-33; Exemption From the Requirement of a Tolerance  

Federal Register 2010, 2011, 2012, 2013

...FRL-9389-2] Bacillus pumilus Strain BU F-33; Exemption From the Requirement of...for residues of Bacillus pumilus strain BU F-33 in or on all food commodities when applied...for residues of Bacillus pumilus strain BU F-33 under the FFDCA. DATES: This...

2013-06-12

8

Genomic Changes that May be Responsible for the Elevated UV Resistance of Bacillus Pumilus SAFR-032  

NASA Astrophysics Data System (ADS)

The genomes of Bacillus pumilus SAFR-032 whose spores are highly resistant to UV and the closely related B. pumilus ATCC-7061 that lacks this resistance are compared. Candidate genes are identified that may be responsible for the elevated resistance.

Tirumalai, M. R.; Rastogi, R.; Venkateswaran, K.; Fox, G. E.

2010-04-01

9

Regulatory elements common to the Bacillus pumilus and Bacillus subtilis trp operons.  

PubMed Central

The trp operon regulatory region of Bacillus pumilus was cloned and sequenced. The cloned B. pumilus trp promoter-leader region functioned in Bacillus subtilis to express the adjacent leukocyte interferon A gene on a multicopy transcriptional fusion plasmid, pBpIFI. In strains carrying this plasmid, anthranilate synthetase levels were elevated, possible due to titration of a B. subtilis trp regulatory factor by multiple copies of the transcript of the plasmid-borne B. pumilus trp leader region. The B. pumilus trp promoter was recognized efficiently in vitro by B. subtilis sigma 43 RNA polymerase. Approximately 12% of the transcripts produced in vitro terminated in the leader region immediately following synthesis of a transcript structure resembling rho-independent terminators of enteric bacteria. An analogous terminator exists in the B. subtilis trp leader transcript. Nucleotide sequence comparison of the B. pumilus and B. subtilis trp leader regions revealed conservation of these and other sequences that could form transcript secondary structures postulated to regulate transcription termination in B. subtilis (H. Shimotsu, M.I. Kuroda, C. Yanofsky, and D.J. Henner, J. Bacteriol. 166:461-471, 1986). We propose that two elements implicated in B. subtilis trp operon regulation are conserved in the related organism B. pumilus: alternative transcription antiterminator and terminator structures in the leader transcript, and a trans-acting factor present in limiting amounts that is required for transcription termination in the leader region. Images

Kuroda, M I; Shimotsu, H; Henner, D J; Yanofsky, C

1986-01-01

10

Paradoxical DNA Repair and Peroxide Resistance Gene Conservation in Bacillus pumilus SAFR-032  

PubMed Central

Background Bacillus spores are notoriously resistant to unfavorable conditions such as UV radiation, ?-radiation, H2O2, desiccation, chemical disinfection, or starvation. Bacillus pumilus SAFR-032 survives standard decontamination procedures of the Jet Propulsion Lab spacecraft assembly facility, and both spores and vegetative cells of this strain exhibit elevated resistance to UV radiation and H2O2 compared to other Bacillus species. Principal Findings The genome of B. pumilus SAFR-032 was sequenced and annotated. Lists of genes relevant to DNA repair and the oxidative stress response were generated and compared to B. subtilis and B. licheniformis. Differences in conservation of genes, gene order, and protein sequences are highlighted because they potentially explain the extreme resistance phenotype of B. pumilus. The B. pumilus genome includes genes not found in B. subtilis or B. licheniformis and conserved genes with sequence divergence, but paradoxically lacks several genes that function in UV or H2O2 resistance in other Bacillus species. Significance This study identifies several candidate genes for further research into UV and H2O2 resistance. These findings will help explain the resistance of B. pumilus and are applicable to understanding sterilization survival strategies of microbes.

Qin, Xiang; Jiang, Huaiyang; Igboeli, Okezie C.; Muzny, Donna; Dugan-Rocha, Shannon; Ding, Yan; Hawes, Alicia; Liu, Wen; Perez, Lesette; Kovar, Christie; Dinh, Huyen; Lee, Sandra; Nazareth, Lynne; Blyth, Peter; Holder, Michael; Buhay, Christian; Tirumalai, Madhan R.; Liu, Yamei; Dasgupta, Indrani; Bokhetache, Lina; Fujita, Masaya; Karouia, Fathi; Eswara Moorthy, Prahathees; Siefert, Johnathan; Uzman, Akif; Buzumbo, Prince; Verma, Avani; Zwiya, Hiba; McWilliams, Brian D.; Olowu, Adeola; Clinkenbeard, Kenneth D.; Newcombe, David; Golebiewski, Lisa; Petrosino, Joseph F.; Nicholson, Wayne L.; Fox, George E.; Venkateswaran, Kasthuri; Highlander, Sarah K.; Weinstock, George M.

2007-01-01

11

Molecular analysis of endophytic bacteria from the genus Bacillus isolated from tropical maize (Zea mays L.)  

PubMed Central

Endophytic bacteria play an important role in agriculture by improving plant performance and adaptation against biotic and abiotic stresses. In the present study molecular methods were used for identifying Bacillus endophytic bacteria isolated from Brazilian sweet corn. SDS-PAGE of whole-cell protein extract of forty-two isolates revealed a high number of scrutinable bands. Twenty-four isolates were identified in nine different groups of duplicated bacteria and eighteen were identified as unique. Some high-accumulated polipeptides with variable length were observed in almost isolates. Partial sequencing of 16S ribosomal gene revealed that all isolates are Bacillus sp. and among thirteen isolates with similar protein profiles, two were different strains. Among the forty-two isolates identified by rDNA sequencing, Bacillus subitilis and B. pumilus were the most frequenty species (15 and 12 isolates, respectively) followed by B. licheniformes (7 isolates), B. cereus (5 isolates) and B. amiloliquefascens (3 isolates). According to present results, SDS-PAGE technique could be used as a fast and cheap first tool for identifying inter-specific variation in maize endophytic bacterial collections while rDNA sequencing could be applied for analyzing intra-specific variation among isolates with similar protein profile as well as for taxonomic studies.

Figueiredo, Jose Edson Fontes; Gomes, Eliane Aparecida; Guimaraes, Claudia Teixeira; de Paula Lana, Ubiraci Gomes; Teixeira, Marta Aparecida; Lima, Guilherme Vitor Correa; Bressan, Wellington

2009-01-01

12

Recurrent Isolation of Hydrogen Peroxide-Resistant Spores of Bacillus pumilus from a Spacecraft Assembly Facility  

NASA Astrophysics Data System (ADS)

While the microbial diversity of a spacecraft assembly facility at the Jet Propulsion Laboratory (Pasadena, CA) was being monitored, H2O2-resistant bacterial strains were repeatedly isolated from various surface locations. H2O2 is a possible sterilant for spacecraft hardware because it is a low-temperature process and compatible with various modern-day spacecraft materials, electronics, and components. Both conventional biochemical testing and molecular analyses identified these strains as Bacillus pumilus. This Bacillus species was found in both unclassified (entrance floors, anteroom, and air-lock) and classified (floors, cabinet tops, and air) locations. Both vegetative cells and spores of several B. pumilus isolates were exposed to 5% liquid H2O2 for 60 min. Spores of each strain exhibited higher resistance than their respective vegetative cells to liquid H2O2. Results indicate that the H2O2 resistance observed in both vegetative cells and spores is strain-specific, as certain B. pumilus strains were two to three times more resistant than a standard Bacillus subtilis dosimetry strain. An example of this trend was observed when the type strain of B. pumilus, ATCC 7061, proved sensitive, whereas several environmental strains exhibited varying degrees of resistance, to H2O2. Repeated isolation of H2O2-resistant strains of B. pumilus in a clean-room is a concern because their persistence might potentially compromise life-detection missions, which have very strict cleanliness and sterility requirements for spacecraft hardware.

Kempf, Michael J.; Chen, Fei; Kern, Roger; Venkateswaran, Kasthuri

2005-06-01

13

Recurrent isolation of hydrogen peroxide-resistant spores of Bacillus pumilus from a spacecraft assembly facility  

NASA Technical Reports Server (NTRS)

While the microbial diversity of a spacecraft assembly facility at the Jet Propulsion Laboratory (Pasadena, CA) was being monitored, H2O2-resistant bacterial strains were repeatedly isolated from various surface locations. H2O2 is a possible sterilant for spacecraft hardware because it is a low-temperature process and compatible with various modern-day spacecraft materials, electronics, and components. Both conventional biochemical testing and molecular analyses identified these strains as Bacillus pumilus. This Bacillus species was found in both unclassified (entrance floors, anteroom, and air-lock) and classified (floors, cabinet tops, and air) locations. Both vegetative cells and spores of several B. pumilus isolates were exposed to 5% liquid H2O2 for 60 min. Spores of each strain exhibited higher resistance than their respective vegetative cells to liquid H2O2. Results indicate that the H2O2 resistance observed in both vegetative cells and spores is strain-specific, as certain B. pumilus strains were two to three times more resistant than a standard Bacillus subtilis dosimetry strain. An example of this trend was observed when the type strain of B. pumilus, ATCC 7061, proved sensitive, whereas several environmental strains exhibited varying degrees of resistance, to H2O2. Repeated isolation of H2O2-resistant strains of B. pumilus in a clean-room is a concern because their persistence might potentially compromise life-detection missions, which have very strict cleanliness and sterility requirements for spacecraft hardware.

Kempf, Michael J.; Chen, Fei; Kern, Roger; Venkateswaran, Kasthuri

2005-01-01

14

Biocontrol of Rhizoctonia solani damping-off disease in cucumber with Bacillus pumilus SQR-N43  

Microsoft Academic Search

Biological control is an efficient and environmentally friendly way to prevent damping-off disease. Micrographs were used to investigate the ability of Bacillus pumilus (B. pumilus) SQR-N43 to control Rhizoctonia solani (R. solani) Q1 in cucumbers. The root colonization ability of B. pumilus SQR-N43 was analyzed in vivo with a green fluorescent protein (GFP) tag. A pot experiment was performed to

Xinqi Huang; Nan Zhang; Xiaoyu Yong; Xingming Yang; Qirong Shen

15

Bacillus pumilus reveals a remarkably high resistance to hydrogen peroxide provoked oxidative stress.  

PubMed

Bacillus pumilus is characterized by a higher oxidative stress resistance than other comparable industrially relevant Bacilli such as B. subtilis or B. licheniformis. In this study the response of B. pumilus to oxidative stress was investigated during a treatment with high concentrations of hydrogen peroxide at the proteome, transcriptome and metabolome level. Genes/proteins belonging to regulons, which are known to have important functions in the oxidative stress response of other organisms, were found to be upregulated, such as the Fur, Spx, SOS or CtsR regulon. Strikingly, parts of the fundamental PerR regulon responding to peroxide stress in B. subtilis are not encoded in the B. pumilus genome. Thus, B. pumilus misses the catalase KatA, the DNA-protection protein MrgA or the alkyl hydroperoxide reductase AhpCF. Data of this study suggests that the catalase KatX2 takes over the function of the missing KatA in the oxidative stress response of B. pumilus. The genome-wide expression analysis revealed an induction of bacillithiol (Cys-GlcN-malate, BSH) relevant genes. An analysis of the intracellular metabolites detected high intracellular levels of this protective metabolite, which indicates the importance of bacillithiol in the peroxide stress resistance of B. pumilus. PMID:24465625

Handtke, Stefan; Schroeter, Rebecca; Jürgen, Britta; Methling, Karen; Schlüter, Rabea; Albrecht, Dirk; van Hijum, Sacha A F T; Bongaerts, Johannes; Maurer, Karl-Heinz; Lalk, Michael; Schweder, Thomas; Hecker, Michael; Voigt, Birgit

2014-01-01

16

Draft Genome Sequence of Bacillus pumilus CCMA-560, Isolated from an Oil-Contaminated Mangrove Swamp  

PubMed Central

Bacillus pumilus strain CCMA-560 was isolated from an oil-contaminated mangrove swamp and was shown to produce biosurfactants. The strain appears to be capable of degrading some plant cell wall-related compounds, including hemicelluose and pectin. Genes for biopolymer export and polysaccharide intercellular adhesin synthesis were also annotated.

Dellagnezze, Bruna M.; Greenfield, Paul; Reyes, Luciana R.; Melo, Itamar S.; Midgley, David J.; Oliveira, Valeria M.

2013-01-01

17

Draft Whole Genome Sequence of Bacillus pumilus Strain 3-19, a Chemical Mutant Overproducing Extracellular Ribonuclease  

PubMed Central

Here, we present a draft genome sequence of Bacillus pumilus strain 3-19. It was derived from soil-isolated B. pumilus 7P using chemical mutagenesis and is characterized by elevated production of extracellular ribonuclease which is known to possess different biological activities with potential of applications in experimental research, medicine, and biotechnology.

Shah Mahmud, Raihan; Dudkina, Elena; Vershinina, Valentina; Ilinskaya, Olga

2014-01-01

18

Draft Genome Sequence of Bacillus pumilus 7P, Isolated from the Soil of the Tatarstan Republic, Russia  

PubMed Central

Here, we present a draft genome sequence of Bacillus pumilus strain 7P. This strain was isolated from soil as an extracellular RNase-producing microorganism. The RNase of B. pumilus 7P is considered to be a potential antiviral and therapeutic antitumor agent, and it might be appropriate for agriculture and academic synthesis of oligoribonucleotides.

Toymentseva, Anna A.; Balaban, Nelly P.; Mardanova, Ayslu M.; Danilova, Yulia V.; Gusev, Oleg A.; Kostryukova, Elena; Karpova, Irina; Manolov, Aleksandr; Alexeev, Dmitriy

2014-01-01

19

Draft Genome Sequence of Bacillus pumilus BA06, a Producer of Alkaline Serine Protease with Leather-Dehairing Function  

PubMed Central

Bacillus pumilus BA06 was isolated from the proteinaceous soil and produced an extracellular alkaline protease with leather-dehairing function. The genome of BA06 was sequenced. The comparative genome analysis indicated that strain BA06 is different in genome from the other B. pumilus strains, with limited insertions, deletions, and rearrangements.

Zhao, Chuan-Wu; Wang, Hai-Yan; Zhang, Yi-Zheng

2012-01-01

20

2,5-Diketopiperazines Produced by Bacillus pumilus During Bacteriolysis of Arthrobacter citreus.  

PubMed

We report the detection by gas chromatography/mass spectrometry and liquid chromatography/mass spectrometry analyses of the secreted 2,5-diketopiperazines (DKPs) cyclo(-Ala-Pro), cyclo(-Gly-Pro), cyclo(-Val-Pro), cyclo(-Ile-Pro), cyclo(-Leu-Pro), cyclo(-Pro-Pro), cyclo(-HyP-Pro), cyclo(-Met-Pro), and cyclo(-Phe-Pro) produced by Bacillus pumilus. The study focuses on a marine isolate and a laboratory test strain of B. pumilus with capabilities to lyse pregrown living cell lawns of different bacterial species, among them Arthrobacter citreus. Chromatographic methods were used to analyze induced bioactive compounds. At least 13 different DKPs are produced by B. pumilus. Both strains respond with an increased production of the DKPs cyclo(-Gly-Pro), cyclo(-Ala-Pro), and cyclo(-Val-Pro) to the presence of pasteurized A. citreus cells after 4 h in a nutrient-poor liquid medium. In agar diffusion assays, these DKPs did not cause lysis zones in living cell lawns, but they did inhibit further growth of several pregrown test bacteria in microplates even at concentrations as low as 1 ?g ml(-1). Antibiotic substances produced by B. pumilus after 20 h of cultivation in a special lysis medium showed lytic activity in cell-free extracts of B. pumilus culture supernatants. PMID:24449388

Brack, Christiane; Mikolasch, Annett; Schauer, Frieder

2014-08-01

21

Some Properties of the PBP1 Transduction System in Bacillus pumilus  

PubMed Central

Bacteriophage PBP1 is a flagella-specific virus that performs generalized transduction in strains of Bacillus pumilus. PBP1 is morphologically and serologically distinct from two other flagella-specific phages, PBS1 and SP-15, which perform generalized transduction in certain Bacillus species. The DNA extracted from PBP1 particles has a buoyant density of 1.690 g/cm3 in cesium chloride gradients, a melting temperature of 86.1 C, and a sedimentation velocity of 47S in neutral sucrose gradients. Assuming the molecule is a linear duplex, PBP1 DNA has a molecular weight of approximately 76 × 106. In two strains of B. pumilus which are sensitive to both PBP1 and PBS1, co-transducible genetic markers are more tightly linked by PBS1 transduction than by PBP1 transduction. The size of the fragment of bacterial DNA carried by PBP1-transducing particles, inferred from transduction studies and sedimentation analysis of viral DNA, suggests that PBP1 may be useful for genetic studies of extrachromosomal DNA elements present in two strains of B. pumilus. Genetic exchange of chromosomally located genes between the plasmid+ and plasmid-B. pumilus strains NRS 576 and NRRL B-3275 has been demonstrated by PBP1 transduction.

Lovett, P. S.; Bramucci, D.; Bramucci, M. G.; Burdick, B. D.

1974-01-01

22

[Subtilisin like protease secreted in Bacillus pumilus KMM 62 on different growth stages].  

PubMed

A protease secreted in Bacillus pumilus KMM 62 culture liquid on different growth stages was isolated using ion-exchange chromatography. On the basis of pattern of specific chromogenic substrates hydrolysis and inhibitory analysis the protease was classified as subtilisin like serine protease. The molecular weight ofprotease is 31 kDa. Proteolytic activity towards Z-Ala-Ala-Leu-pNa substrate was maximal at pH 8-8.5. The optimal temperature for proteolytic activity was observed at a temperature of 30 degrees C, and the protein was stable within the pH range of 7.5-10.0. Bacillus pumilus KMM 62 subtilisin like serine protease was shown to have thrombolytic activity. PMID:22792728

Mardanova, A M; Malikova, L A; Balaban, N P; Zamaliutdinova, N M; Sharipova, M R

2012-01-01

23

Inhibition of aflatoxin production of Aspergillus parasiticus NRRL 2999 by Bacillus pumilus  

Microsoft Academic Search

Six isolates of Bacillus pumilus were tested for their ability to inhibit aflatoxin production of Aspergillus parasiticus\\u000a NRRL 2999 in yeast extract sucrose (YES) broth. Aflatoxin production was inhibited in both simultaneous and deferred antagonism\\u000a assays, suggesting that the inhibitory activity was due to extracellular metabolite(s) produced in cell-free supernatant fluids\\u000a of cultured broth. The inhibition was not due to

Célestin Munimbazi; Lloyd B. Bullerman

1997-01-01

24

Purification and Partial characterization of manganese peroxidase from Bacillus pumilus AND Paenibacillus sp.  

PubMed Central

The production of manganese peroxidase (MnP) from Bacillus pumilus and Paenibacillus sp. was studied under absence and presence of the inducers indulin AT, guayacol, veratryl alcohol, lignosulfonic acid and lignosulfonic acid desulfonated. Indulin AT increased the activity of B. pumilus MnP up to 31.66 U/L after 8 h, but no improve was observed for Paenibacillus sp., which reached maximum activity (12.22 U/L) after 20 h. Both MnPs produced by these microorganisms were purified in phenyl sepharose resin and the proteins from crude extracts were eluted in two fractions. However, only the first fraction of each extract exhibited MnP activities. Tests in different pH and temperature values, from pH 5.0 to pH 10.0 and 30 °C to 60 °C, respectively, were carried out with the purified MnP. The maximum activity reached for B. pumilus and Paenibacillus sp. MnPs were 4.3 U/L at pH 8.0 and 25 °C and 11.74 U/L at pH 9.0 and 35 °C, respectively. The molar masses determined by SDS-PAGE gel eletrophoresis were 25 kDa and 40 kDa, respectively, for the purified enzyme from B. pumilus and Paenibacillus sp.

de Oliveira, Patricia Lopes; Duarte, Marta Cristina Teixeira; Ponezi, Alexandre Nunes; Durrant, Lucia Regina

2009-01-01

25

Food poisoning associated with pumilacidin-producing Bacillus pumilus in rice.  

PubMed

Food poisoning caused by other Bacillus species than B. cereus has been described, but the toxins involved have rarely been isolated. Endospores will survive heat treatment and will germinate and multiply in cooked foods producing toxins under appropriate conditions. We describe a small food poisoning outbreak where three people became ill after a dinner in a Chinese restaurant. Acute symptoms including dizziness, headache, chills and back pain developed during the meal, and a few hours later they got stomach cramps and diarrhoea which lasted for several days. Cooked, reheated rice was the prime suspect of the food poisoning, and from the rice large numbers of Bacillus pumilus were isolated. The isolated B. pumilus strain was found to produce a complex of lipopeptides known as pumilacidins with the highest amounts produced at 15 degrees C. This is the first report on isolation of a pumilacidin-producing B. pumilus strain from food implicated in food poisoning and characterization of the organism and the toxin complex involved. PMID:17275116

From, Cecilie; Hormazabal, Victor; Granum, Per Einar

2007-04-20

26

Selection of a Bacillus pumilus Strain Highly Active against Ceratitis capitata (Wiedemann) Larvae?  

PubMed Central

Ceratitis capitata (Wiedemann) (Diptera: Tephritidae), the Mediterranean fruit fly (medfly), is one of the most important fruit pests worldwide. The medfly is a polyphagous species that causes losses in many crops, which leads to huge economic losses. Entomopathogenic bacteria belonging to the genus Bacillus have been proven to be safe, environmentally friendly, and cost-effective tools to control pest populations. As no control method for C. capitata based on these bacteria has been developed, isolation of novel strains is needed. Here, we report the isolation of 115 bacterial strains and the results of toxicity screening with adults and larvae of C. capitata. As a result of this analysis, we obtained a novel Bacillus pumilus strain, strain 15.1, that is highly toxic to C. capitata larvae. The toxicity of this strain for C. capitata was related to the sporulation process and was observed only when cultures were incubated at low temperatures before they were used in a bioassay. The mortality rate for C. capitata larvae ranged from 68 to 94% depending on the conditions under which the culture was kept before the bioassay. Toxicity was proven to be a special characteristic of the newly isolated strain, since other B. pumilus strains did not have a toxic effect on C. capitata larvae. The results of the present study suggest that B. pumilus 15.1 could be considered a strong candidate for developing strategies for biological control of C. capitata.

Molina, C. Alfonso; Cana-Roca, Juan F.; Osuna, Antonio; Vilchez, Susana

2010-01-01

27

Sugarcane bagasse pulps: biobleaching with commercial cartazyme HS and with Bacillus pumilus xylanase.  

PubMed

Organosolv (ethanol/water and acetosolv) pulps were treated with Bacillus pumilus xylanase for 4, 8, and 12 h and compared with commercial Cartazyme HS xylanase-treated pulps. Treatment of ethanol/water pulps with B. pumilus xylanase increased viscosity by 40% in 8 h of treatment compared with pulps treated without enzyme. However, acetosolv pulps treated with B. pumilus xylanase lost viscosity. Ethanol/water pulps treated with Cartazyme had a viscosity of 18.5 cP in 4 h of treatment. In the acetosolv pulps treated with commercial enzyme, the loss of viscosity was 20% compared with pulps treated without enzyme. Ethanol/water pulps treated with B. pumilus and Cartazyme had similar effects: a 44% reduction in kappa number for pulps treated with enzyme followed by alkaline extraction compared with pulps treated with alkaline extraction. In acetosolv pulps treated with B. pumilus, the kappa number was from 12 to 18, compared with pulps treated without enzyme, which had a 40% reduction in 4 and 12 h and a 60% reduction in 8 h. Cartazyme-treated acetosolv pulps had a kappa number of 14 in 4 and 8 h of treatment. For 12 h of treatment, the kappa number was 8. Fourier transform infrared spectra of the pulps showed that enzyme-treated pulps had changes in the 1000 cm-1 absorption owing to a C-O bond present in esters. Using principal component analysis, it is possible to differentiate the unbleached pulps and enzyme-treated pulps. PMID:15917597

Moriya, Regina Y; Gonçalves, Adilson R; Duarte, Marta C T

2005-01-01

28

Molecular characterization of cellulose-degrading Bacillus pumilus from the soil of tea garden, Darjeeling hills, India.  

PubMed

Bio-fuel produced from ethanol is economically and environmentally advantageous in context of changing global climate. A large number of microorganisms are capable of cellulase production but most of them cannot be utilized commercially due to their low activity. In the present study, an effiecient cellulose degrading strain of Bacillus pumilus was obtained after thorough screening for the production of extracellular cellulases. Out of a total of 144 microbes isolated from soils of Darjeeling hills of India, nineteen were found to be cellulose degrader under in vitro conditions as observed by clearing zone on CMC - agar plates. Isolate #35 had high cellulolytic activity as observed by a clearing zone of 26.83 mm diameter formed on CMC - agar plate. The isolate was characterized and identified as Bacillus pumilus. The isolate was submitted to National Agriculturally Important Microbial Culture Collection (NAIMCC), NBAIM, Mau with Accession number NAIMCC-B-01415. Transposon (Tn5) mutants of wild type isolate Bacillus pumilus NAIMCC-B-01415 were generated and screened for the absence of cellulose degradation. Of 365 B. pumilus NAIMCC-B-01415 mutants obtained, only two were unable to degrade cellulose under in vitro conditions. Inverse PCR studies with B. pumilus NAIMCC-B-01415 :: TL5, a cellulose degradation mutant of B. pumilus NAIMCC -B-01415 revealed presence of Cys B (Cystein protein regulatory) gene involved in cellulose degradation. The participation of Cys B gene in cellulase degradation is reported here. PMID:24813013

Padaria, Jasdeep Chatrath; Sarkar, Kanishendranath; Lone, Showkat Ahmad; Srivastava, Sunita

2014-05-01

29

First report of a bifunctional chitinase/lysozyme produced by Bacillus pumilus SG2.  

PubMed

Bacillus pumilus SG2 isolated from high salinity ecosystem in Iran produces two chitinases (ChiS and ChiL) and secretes them into the medium. In this study, chiS and chiL genes were cloned in pQE-30 expression vector and were expressed in the cytoplasm of Escherichia coli strain M15. The recombinant proteins were purified using Ni-NTA column. The optimum pH and optimum temperature for enzyme activity of ChiS were pH 6, 50°C; those of ChiL were pH 6.5, 40°C. The purified chitinases showed antifungal activity against Fusarium graminearum, Rhizoctonia solani, Magnaporthe grisea, Sclerotinia sclerotiorum, Trichoderma reesei, Botrytis cinerea and Bipolaris sp. Moreover, purified ChiS was identified as chitinase/lysozyme, which are capable of degrading the chitin component of fungal cell walls and the peptidoglycan component of cell walls with many kinds of bacteria (Xanthomonas translucens pv. hordei, Xanthomonas axonopodis pv. citri, Bacillus licheniformis, E. coli C600, E. coli TOP10, Pseudomonas aeruginosa and Pseudomonas putida). Strong homology was found between the three-dimensional structures of ChiS and a chitinase/lysozyme from Bacillus circulans WL-12. This is the first report of a bifunctional chitinase/lysozyme from B. pumilus. PMID:22112904

Ghasemi, Seyedhadi; Ahmadian, Gholamreza; Sadeghi, Mehdi; Zeigler, Daniel R; Rahimian, Heshmatollah; Ghandili, Soheila; Naghibzadeh, Neda; Dehestani, Ali

2011-03-01

30

Chemical Structure, Conjugation, and Cross-Reactivity of Bacillus pumilus Sh18 Cell Wall Polysaccharide  

Microsoft Academic Search

Bacillus pumilus strain Sh18 cell wall polysaccharide (CWP), cross-reactive with the capsular polysaccharide of Haemophilus influenzae type b, was purified and its chemical structure was elucidated using fast atom bombardment mass spectrometry, nuclear magnetic resonance techniques, and sugar-specific degradation procedures. Two major structures, 1,5-poly(ribitol phosphate) and 1,3-poly(glycerol phosphate), with the latter partially substituted by 2-acetamido-2-deoxy--galactopyranose (13%) and 2-acetamido-2-deoxy--glucopyr- anose (6%)

Joanna Kubler-Kielb; Bruce Coxon; Rachel Schneerson

2004-01-01

31

Characterization of Bacillus pumilus E601 Spores After Single Sublethal Gamma Irradiation Treatments1  

PubMed Central

Eighteen survivor strains of Bacillus pumilus E601 have been isolated after single sublethal irradiation treatments with 60Co. Primary isolation was based on the loss of motility and pellicle formation. However, with subsequent subcultivation, eight isolates reverted back to the standard of exhibiting motility and pellicle formation. Characteristics of the isolates include alterations in spore radiation resistance and in the amino acid requirements for spore germination and outgrowth. Other alterations in cultural and physiological characteristics were found. Three of the isolates were asporogenous.

Parisi, A. N.; Antoine, A. D.

1975-01-01

32

Purification and characterization of a new bioscouring pectate lyase from Bacillus pumilus BK2  

Microsoft Academic Search

An alkalophilic bacterium was isolated based on the potential of extra-cellular enzymes for bioscouring. The bacterium was identified as a new strain of Bacillus pumilus BK2 producing an extra-cellular endo-pectate lyase PL (EC 4.2.2.2). PL was purified to homogeneity in three steps and has a molecular mass of 37.3±4.8kDa as determined by SDS-PAGE and an isoelectric point of pH 8.5.

Barbara G. Klug-Santner; Wolfgang Schnitzhofer; Maria Vršanská; Jörg Weber; Pramod B. Agrawal; Vincent A. Nierstrasz; Georg M. Guebitz

2006-01-01

33

Bacillus pumilus laccase: a heat stable enzyme with a wide substrate spectrum  

PubMed Central

Background Laccases are multi-copper oxidases that catalyze the one electron oxidation of a broad range of compounds. Laccase substrates include substituted phenols, arylamines and aromatic thiols. Such compounds are activated by the enzyme to the corresponding radicals. Owing to their broad substrate range laccases are considered to be versatile biocatalysts which are capable of oxidizing natural and non-natural industrial compounds, with water as sole by-product. Results A novel CotA-type laccase from Bacillus pumilus was cloned, expressed and purified and its biochemical characteristics are presented here. The molecular weight of the purified laccase was estimated to be 58 kDa and the enzyme was found to be associated with four copper atoms. Its catalytic activity towards 2,2'-azino-bis(3-ethylbenzthiazoline-6-sulphonic acid) (ABTS), 2,6-dimethoxyphenol (2,6-DMP) and syringaldazine (SGZ) was investigated. The kinetic parameters KM and kcat for ABTS were 80 ± 4 ?M and 291 ± 2.7 s-1, for 2,6-DMP 680 ± 27 ?M and 11 ± 0.1 s-1 and for SGZ only kcat could be estimated to be 66 ± 1.5 s-1. The pH optimum for ABTS was 4, for 2,6-DMP 7 and for SGZ 6.5 and temperature optima for ABTS and 2,6-DMP were found to be around 70°C. The screening of 37 natural and non-natural compounds as substrates for B. pumilus laccase revealed 18 suitable compounds. Three of them served as redox mediators in the laccase-catalyzed decolorization of the dye indigocarmine (IC), thus assessing the new enzyme's biotechnological potential. Conclusions The fully copper loaded, thermostable CotA laccase from Bacillus pumilus is a versatile laccase with potential applications as an industrial biocatalyst.

2011-01-01

34

Bacillus pumilus BpCRI 6, a promising candidate for cellulase production under conditions of catabolite repression  

Microsoft Academic Search

Cellulose degrading organisms have been used for the conversion of cellulolytic materials into soluble sugars or solvents in several biotechnological and industrial applications. In this report, a mutant of Bacillus pumilus was obtained after chemical mutagenesis and screened for cellulase production. This mutant named BpCRI 6 was selected for its ability to produce cellulase under catabolite repression. Cellulase yield by

35

Draft Genome Sequence of Bacillus pumilus Fairview, an Isolate Recovered from a Microbial Methanogenic Enrichment of Coal Seam Gas Formation Water from Queensland, Australia  

PubMed Central

Despite its global abundance, Bacillus pumilus is poorly studied. The Fairview strain was obtained from a methanogenic anaerobic coal digester. The draft genome sequence was 3.8 Mbp long and contained 3,890 protein-coding genes. Like the SAFR-032 strain, it includes B. pumilus-specific proteins that likely confer enhanced resistance to environmental stresses.

Greenfield, Paul; Tran-Dinh, Nai; Midgley, David J.

2014-01-01

36

Draft Genome Sequence of Bacillus pumilus Fairview, an Isolate Recovered from a Microbial Methanogenic Enrichment of Coal Seam Gas Formation Water from Queensland, Australia.  

PubMed

Despite its global abundance, Bacillus pumilus is poorly studied. The Fairview strain was obtained from a methanogenic anaerobic coal digester. The draft genome sequence was 3.8 Mbp long and contained 3,890 protein-coding genes. Like the SAFR-032 strain, it includes B. pumilus-specific proteins that likely confer enhanced resistance to environmental stresses. PMID:24744330

Vockler, Cassandra J; Greenfield, Paul; Tran-Dinh, Nai; Midgley, David J

2014-01-01

37

Bacillus pumilus S124A carboxymethyl cellulase; a thermo stable enzyme with a wide substrate spectrum utility.  

PubMed

Bacillus pumilus S124A was identified as carboxymethyl cellulase producing bacteria from Azorean Bacillus collection (Lab collection), which was isolated in local soils. The bacterium was identified by 16S rRNA sequence and designated as Bacillus pumilus S124A. NCBI-blast analysis showed B. pumilus S124A; 16S rRNA sequence has high identity to other B. pumilus strains. Phylogenetic analysis showed B. pumilus S124A close to B. pumilus LZBP14 strain. CMcellulase was purified from cells-free supernatants and post mano-Q purification; 5.39% protein folds, and 0.88% recoveries were obtained. SDS-PAGE analysis showed molecular weight of the purified CMcellulase was estimated ?40kDa and composed of a single subunit. NonoLC ESI-MS/MS analysis was yielded four peptides, and protein has identity to other cellulases. Purified CMcellulase showed high activity to cellobiose followed by CMcellulose. Kinetic analysis showed Km, and Vmax were determined as 2.12mg/ml, 239?mol/min/mg, respectively. Optimum temperature and pH for the purified CMcellulase activity were found at 50°C and pH 6.0, respectively. Purified CMcellulase was maintained about 75% activity in a pH range of 4-8 and 70% activity in a temperature range of 40-70°C. CMcellulase activity was highly reduced by HgCl2, followed by EDTA, PMSF whereas CoCl2 was activated CMcellulase activity. PMID:24657377

Balasubramanian, Natesan; Simões, Nelson

2014-06-01

38

Phylogenetic Diversity of the Bacillus pumilus Group and the Marine Ecotype Revealed by Multilocus Sequence Analysis  

PubMed Central

Bacteria closely related to Bacillus pumilus cannot be distinguished from such other species as B. safensis, B. stratosphericus, B. altitudinis and B. aerophilus simply by 16S rRNA gene sequence. In this report, 76 marine strains were subjected to phylogenetic analysis based on 7 housekeeping genes to understand the phylogeny and biogeography in comparison with other origins. A phylogenetic tree based on the 7 housekeeping genes concatenated in the order of gyrB-rpoB-pycA-pyrE-mutL-aroE-trpB was constructed and compared with trees based on the single genes. All these trees exhibited a similar topology structure with small variations. Our 79 strains were divided into 6 groups from A to F; Group A was the largest and contained 49 strains close to B. altitudinis. Additional two large groups were presented by B. safensis and B. pumilus respectively. Among the housekeeping genes, gyrB and pyrE showed comparatively better resolution power and may serve as molecular markers to distinguish these closely related strains. Furthermore, a recombinant phylogenetic tree based on the gyrB gene and containing 73 terrestrial and our isolates was constructed to detect the relationship between marine and other sources. The tree clearly showed that the bacteria of marine origin were clustered together in all the large groups. In contrast, the cluster belonging to B. safensis was mainly composed of bacteria of terrestrial origin. Interestingly, nearly all the marine isolates were at the top of the tree, indicating the possibility of the recent divergence of this bacterial group in marine environments. We conclude that B. altitudinis bacteria are the most widely spread of the B. pumilus group in marine environments. In summary, this report provides the first evidence regarding the systematic evolution of this bacterial group, and knowledge of their phylogenetic diversity will help in the understanding of their ecological role and distribution in marine environments.

Dong, Chunming; Sun, Fengqin; Wang, Liping; Li, Guangyu; Shao, Zongze

2013-01-01

39

Optimization of chitin extraction from shrimp waste with Bacillus pumilus A1 using response surface methodology.  

PubMed

Chitin extraction from shrimp shells by biological treatment, using the Bacilli Bacillus pumilus A1, is a non-polluting method and offers the opportunity to preserve the exceptional qualities of chitin and its derivatives. However, the major disadvantage of the fermentative way is the low efficiency of demineralization and deproteinization. The aim of this study is to improve the yield of extraction which depends on many factors, such as the medium composition and the physical parameters. In order to look for the optimal conditions, a Plackett and Burman design was carried out to screen eight factors influencing the deproteinization and demineralization efficiencies. The four most influencing variables were then examined to achieve the optimization using a central composite design. The results obtained showed that the optimal conditions were: shrimp shell concentration of 70 g/l, glucose concentration of 50 g/l, pH of 5.0 incubated with 0.225 OD of B. pumilus A1 inoculum, at 35 °C and 150 rpm for 6 days in 500 ml flask containing 100 ml of working volume. These conditions led to 88% of demineralization and 94% of deproteinization. (13)C CP/MAS NMR spectral analysis of the chitin prepared was carried out and was found to be similar to that of the commercial ?-chitin. PMID:23831901

Ghorbel-Bellaaj, Olfa; Hajji, Sawssen; Younes, Islem; Chaabouni, Moncef; Nasri, Moncef; Jellouli, Kemel

2013-10-01

40

Biological and genomic analysis of a PBSX-like defective phage induced from Bacillus pumilus AB94180.  

PubMed

Defective prophages, which are found in the genomes of many bacteria, are unable to complete a viral replication cycle and propagate in their hosts as healthy prophages. They package random DNA fragments derived from various sites of the host chromosome instead of their own genomes. In this study, we characterized a defective phage, PBP180, which was induced from Bacillus pumilus AB94180 by treatment with mitomycin C. Electron microscopy showed that the PBP180 particle has a head with a hexagonal outline of ~40 nm in diameter and a long tail. The DNA packaged in the PBP180 head consists of 8-kb DNA fragments from random portions of the host chromosome. The head and tail proteins of the PBP180 particle consist of four major proteins of approximately 49, 33, 16 and 14 kDa. The protein profile of PBP180 is different from that of PBSX, a well-known defective phage induced from Bacillus subtilis 168. A killing activity test against two susceptible strains each of B. subtilis and B. pumilus showed that the defective particles of PBP180 killed three strains other than its own host, B. pumilus AB94180, differing from the host-killing ranges of the defective phages PBSX, PBSZ (induced from B. subtilis W23), and PBSX4 (induced from B. pumilus AB94044). The genome of the PBP180 prophage, which is integrated in the B. pumilus AB94180 chromosome, is 28,205 bp in length, with 40 predicted open reading frames (ORFs). Further genomic comparison of prophages PBP180, PBSX, PBSZ and other PBSX-like prophage elements in B. pumilus strains revealed that their overall architectures are similar, but significant low homology exists in ORF29-ORF38, which presumably encode tail fiber proteins involved in recognition and killing of susceptible strains. PMID:24154951

Jin, Tingting; Zhang, Xiaoming; Zhang, Yang; Hu, Zhongsheng; Fu, Zhengwei; Fan, Junpeng; Wu, Ming; Wang, Yi; Shen, Ping; Chen, Xiangdong

2014-04-01

41

Paddy Husk as Support for Solid State Fermentation to Produce Xylanase from Bacillus pumilus  

Microsoft Academic Search

To optimize culture conditions for xylanase production by solid state fermentation (SSF) using Bacillus pumilus, with paddy husk as support, solid medium contained 200 g of paddy husk with 800 mL of liquid fermentation medium [xylan, 20.0 g\\/L; peptone, 2.0 g\\/L; yeast extract, 2.5 g\\/L; K2HPO4, 2.5 g\\/L; KH2PO4, 1.0 g\\/L; NaCl, 0.1 g\\/L; (NH4)2SO4, 2.0 g\\/L, CaCl2·2H2O, 0.005 g\\/L;

Ranganathan KAPILAN; Vasanthy ARASARATNAM

2011-01-01

42

Characterization and a point mutational approach of a psychrophilic lipase from an arctic bacterium, Bacillus pumilus.  

PubMed

A bacterium with lipolytic activity was isolated from the Chukchi Sea within the Arctic Ocean. The lipase BpL5 from the isolate, Bacillus pumilus ArcL5, belongs to subfamily 4 of lipase family I. The optimum pH and temperature of the recombinant enzyme BpL5, as expressed in Escherichia coli, were 9.0 and 20 °C, respectively. The enzyme retained 85 % of its activity at 5 °C. There was a significant difference between temperatures for maximal activity (20 °C) and for protein denaturation (approx. 45 °C). The enzyme preferred middle-chain (C8) p-nitrophenyl substrates. Two mutants, S139A and S139Y, were rationally designed based on the 3D-structure model, and their activities were compared with that of the wild type. The both mutants showed significantly improved activity against tricaprylin. PMID:24563306

Wi, Ah Ram; Jeon, Sung-Jong; Kim, Sunghui; Park, Ha Ju; Kim, Dockyu; Han, Se Jong; Yim, Joung Han; Kim, Han-Woo

2014-06-01

43

Evaluation of fluorescence in situ hybridization to detect encapsulated Bacillus pumilus SAFR-032 spores released from poly(methylmethacrylate).  

PubMed

Bacillus pumilus SAFR-032 spores originally isolated from the Jet Propulsion Laboratory spacecraft assembly facility clean room are extremely resistant to UV radiation, H(2)O(2), desiccation, chemical disinfection and starvation compared to spores of other Bacillus species. The resistance of B. pumilus SAFR-032 spores to standard industrial clean room sterilization practices is not only a major concern for medical, pharmaceutical and food industries, but also a threat to the extraterrestrial environment during search for life via spacecraft. The objective of the present study was to investigate the potential of Alexa-FISH (fluorescence in situ hybridization with Alexa Fluor® 488 labeled oligonucleotide) method as a molecular diagnostic tool for enumeration of multiple sterilant-resistant B. pumilus SAFR-032 spores artificially encapsulated in, and released via organic solvent from, a model polymeric material: poly(methylmethacrylate) (Lucite, Plexiglas). Plexiglas is used extensively in various aerospace applications and in medical, pharmaceutical and food industries. Alexa-FISH signals were not detected from spores via standard methods for vegetative bacterial cells. Optimization of a spore permeabilization protocol capitalizing on the synergistic action of proteinase-K, lysozyme, mutanolysin and Triton X-100 facilitated efficient spore detection by Alexa-FISH microscopy. Neither of the Alexa-probes tested gave rise to considerable levels of Lucite- or solvent-associated background autofluorescence, demonstrating the immense potential of Alexa-FISH for rapid quantification of encapsulated B. pumilus SAFR-032 spores released from poly(methylmethacrylate). PMID:22145981

Mohapatra, Bidyut R; La Duc, Myron T

2012-01-01

44

Bilirubin Oxidase from Bacillus pumilus: A promising enzyme for the elaboration of efficient cathodes in Biofuel cells  

PubMed Central

A CotA Multicopper Oxidase (MCO) from Bacillus pumilus, previously identified as a laccase, has been studied and characterized as a new bacterial Bilirubin Oxidase (BOD). The 59kDa protein containing four coppers, was successfully over-expressed in Escherichia coli and purified to homogeneity in one step. This 509 amino-acid enzyme, having 67% and 26% sequence identity with CotA from Bacillus subtilis and BOD from Myrothecium verrucaria, respectively, shows higher turnover activity towards bilirubin compared to other bacterial MCOs. The current density for O2 reduction, when immobilized in a redox hydrogel, is only 12% smaller than the current obtained with Trachyderma tsunodae BOD. Under continuous electrocatalysis, an electrode modified with the new BOD is more stable, and has a higher tolerance towards NaCl, than a T. tsunodae BOD modified electrode. This makes BOD from B. pumilus an attractive new candidate for application in biofuel cells and biosensors.

Durand, Fabien; Kjaergaard, Christian Hauge; Suraniti, Emmanuel; Gounel, Sebastien; Hadt, Ryan G.; Solomon, Edward I; Mano, Nicolas

2013-01-01

45

An alkali-tolerant xylanase produced by the newly isolated alkaliphilic Bacillus pumilus from paper mill effluent  

Microsoft Academic Search

An alkaline active xylanase, XynBYG, was purified from an alkaliphilic Bacillus pumilus BYG, which was newly isolated from paper mill effluent. It had an optimum pH of 8.0–9.0, and showed good stability after\\u000a incubated at pH 9.0 for 120 min. The optimum temperature for the activity was 50°C, and the enzyme retained below 55% of its\\u000a original activity for 30 min at

Jing WangWei-wei; Wei-wei Zhang; Jin-ni Liu; Yao-ling Cao; Xiao-ting Bai; Yue-sheng Gong; Pei-lin Cen; Ming-ming Yang

2010-01-01

46

Detection of the organophosphate degrading gene opdA in the newly isolated bacterial strain Bacillus pumilus W1  

Microsoft Academic Search

The toxicity of organophosphates to a wide range of organisms necessitates the study of their degradation. We designed a study\\u000a to isolate an organophosphate-degrading bacterium and to detect the gene involved in the hydrolysis of organophosphates. The\\u000a bacterial strain was isolated by the enrichment culture technique from organophosphate-contaminated soil, It was identified\\u000a as Bacillus pumilus W1 based on its biochemical

Muhammad Ali; Tatheer Alam Naqvi; Maria Kanwal; Faisal Rasheed; Abdul Hameed; Safia Ahmed

47

Survival of Bacillus pumilus spores for a prolonged period of time in real space conditions.  

PubMed

To prevent forward contamination and maintain the scientific integrity of future life-detection missions, it is important to characterize and attempt to eliminate terrestrial microorganisms associated with exploratory spacecraft and landing vehicles. Among the organisms isolated from spacecraft-associated surfaces, spores of Bacillus pumilus SAFR-032 exhibited unusually high resistance to decontamination techniques such as UV radiation and peroxide treatment. Subsequently, B. pumilus SAFR-032 was flown to the International Space Station (ISS) and exposed to a variety of space conditions via the European Technology Exposure Facility (EuTEF). After 18 months of exposure in the EXPOSE facility of the European Space Agency (ESA) on EuTEF under dark space conditions, SAFR-032 spores showed 10-40% survivability, whereas a survival rate of 85-100% was observed when these spores were kept aboard the ISS under dark simulated martian atmospheric conditions. In contrast, when UV (>110?nm) was applied on SAFR-032 spores for the same time period and under the same conditions used in EXPOSE, a ?7-log reduction in viability was observed. A parallel experiment was conducted on Earth with identical samples under simulated space conditions. Spores exposed to ground simulations showed less of a reduction in viability when compared with the "real space" exposed spores (?3-log reduction in viability for "UV-Mars," and ?4-log reduction in viability for "UV-Space"). A comparative proteomics analysis indicated that proteins conferring resistant traits (superoxide dismutase) were present in higher concentration in space-exposed spores when compared to controls. Also, the first-generation cells and spores derived from space-exposed samples exhibited elevated UVC resistance when compared with their ground control counterparts. The data generated are important for calculating the probability and mechanisms of microbial survival in space conditions and assessing microbial contaminants as risks for forward contamination and in situ life detection. PMID:22680694

Vaishampayan, Parag A; Rabbow, Elke; Horneck, Gerda; Venkateswaran, Kasthuri J

2012-05-01

48

Bacillus pumilus ES4: candidate plant growth-promoting bacterium to enhance establishment of plants in mine tailings  

PubMed Central

Three plant growth-promoting bacteria (PGPB; Bacillus pumilus ES4, B. pumilus RIZO1, and Azospirillum brasilense Cd) were tested for their ability to enhance plant growth and development of the native Sonoran Desert shrub quailbush (Atriplex lentiformis) and for their effect on the native bacterial community in moderately acidic, high-metal content (AHMT) and in neutral, low metal content natural tailings (NLMT) in controlled greenhouse experiments. Inoculation of quailbush with all three PGPB significantly enhanced plant growth parameters, such as germination, root length, dry weight of shoots and roots, and root/shoot ratio in both types of tailings. The effect of inoculation on the indigenous bacterial community by the most successful PGPB Bacillus pumilus ES4 was evaluated by denaturating gradient gel electrophoresis (PCR-DGGE) fingerprinting and root colonization was followed by specific fluorescent in situ hybridization (FISH). Inoculation with this strain significantly changed the bacterial community over a period of 60 days. FISH analysis showed that the preferred site of colonization was the root tips and root elongation area. This study shows that inoculation of native perennial plants with PGPB can be used for developing technologies for phytostabilizing mine tailings.

de-Bashan, Luz E.; Hernandez, Juan-Pablo; Bashan, Yoav; Maier, Raina

2014-01-01

49

Antibiofilm activity of Bacillus pumilus SW9 against initial biofouling on microfiltration membranes.  

PubMed

Membrane biofouling, resulting from biofilm formation on the membrane, has become the main obstacle hindering wider application of membrane technology. Initial biofouling proves to be crucial which involves early stages of microbial adhesion and biofilm formation. Biological control of microbial attachment seems to be a promising strategy due to its high efficiency and eco-friendliness. The present study investigated the effects of a bacterium Bacillus pumilus SW9 on controlling the initial fouling formed by four target bacterial strains which were pioneer species responsible for biofouling in membrane bioreactors, using microfiltration membranes as the abiotic surfaces. The results suggested that strain SW9 exhibited excellent antibiofilm activity by decreasing the attached biomass of target strains. The production of extracellular polysaccharides and proteins by four target strains was also reduced. A distinct improvement of permeate flux in dead-end filtration systems was achieved when introducing strain SW9 to microfiltration experiments. Scanning electron microscopy and confocal laser scanning microscopy were performed to further ascertain significant changes of the biofouling layers. A link between biofilm inhibition and initial biofouling mitigation was thus provided, suggesting an alternatively potential way to control membrane biofouling through bacterial interactions. PMID:23715854

Zhang, Ying; Yu, Xin; Gong, Song; Ye, Chengsong; Fan, Zihong; Lin, Huirong

2014-02-01

50

Biochemical Characterization of a Thiol-Activated, Oxidation Stable Keratinase from Bacillus pumilus KS12  

PubMed Central

An extracellular keratinase from Bacillus pumilus KS12 was purified by DEAE ion exchange chromatography. It was a 45?kDa monomer as determined by SDS PAGE analysis. It was found to be an alkaline, serine protease with pH and temperature optima of 10 and 60°C, respectively. It was thiol activated with two- and eight-fold enhancement in presence of 10 mM DTT and ?-mercaptoethanol, respectively. In addition, its activity was stimulated in the presence of various surfactants, detergents, and oxidizing agents where a nearly 2- to 3-fold enhancement was observed in presence of H2O2 and NaHClO3. It hydrolyzed broad range of complex substrates including feather keratin, haemoglobin, fibrin, casein,and ?-keratin. Analysis of amidolytic activity revealed that it efficiently cleaved phenylalanine ? leucine ? alanine- p-nitroanilides. It also cleaved insulin B chain between Val2- Asn3, Leu6-Cys7 and His10-Leu11 residues.

Rajput, Rinky; Sharma, Richa; Gupta, Rani

2010-01-01

51

Biochemical Characterization of a Thiol-Activated, Oxidation Stable Keratinase from Bacillus pumilus KS12.  

PubMed

An extracellular keratinase from Bacillus pumilus KS12 was purified by DEAE ion exchange chromatography. It was a 45?kDa monomer as determined by SDS PAGE analysis. It was found to be an alkaline, serine protease with pH and temperature optima of 10 and 60°C, respectively. It was thiol activated with two- and eight-fold enhancement in presence of 10 mM DTT and ?-mercaptoethanol, respectively. In addition, its activity was stimulated in the presence of various surfactants, detergents, and oxidizing agents where a nearly 2- to 3-fold enhancement was observed in presence of H(2)O(2) and NaHClO(3). It hydrolyzed broad range of complex substrates including feather keratin, haemoglobin, fibrin, casein,and ?-keratin. Analysis of amidolytic activity revealed that it efficiently cleaved phenylalanine ? leucine ? alanine- p-nitroanilides. It also cleaved insulin B chain between Val(2)- Asn(3), Leu(6)-Cys(7) and His(10)-Leu(11) residues. PMID:21048858

Rajput, Rinky; Sharma, Richa; Gupta, Rani

2010-01-01

52

Structural analysis of Bacillus pumilus phenolic acid decarboxylase, a lipocalin-fold enzyme  

PubMed Central

The decarboxylation of phenolic acids, including ferulic and p-coumaric acids, to their corresponding vinyl derivatives is of importance in the flavouring and polymer industries. Here, the crystal structure of phenolic acid decarboxylase (PAD) from Bacillus pumilus strain UI-670 is reported. The enzyme is a 161-residue polypeptide that forms dimers both in the crystal and in solution. The structure of PAD as determined by X-ray crystallography revealed a ?-barrel structure and two ?-helices, with a cleft formed at one edge of the barrel. The PAD structure resembles those of the lipocalin-fold proteins, which often bind hydrophobic ligands. Superposition of structurally related proteins bound to their cognate ligands shows that they and PAD bind their ligands in a conserved location within the ?-barrel. Analysis of the residue-conservation pattern for PAD-related sequences mapped onto the PAD structure reveals that the conservation mainly includes residues found within the hydrophobic core of the protein, defining a common lipocalin-like fold for this enzyme family. A narrow cleft containing several conserved amino acids was observed as a structural feature and a potential ligand-binding site.

Matte, Allan; Grosse, Stephan; Bergeron, Helene; Abokitse, Kofi; Lau, Peter C. K.

2010-01-01

53

Structural analysis of Bacillus pumilus phenolic acid decarboxylase, a lipocalin-fold enzyme  

SciTech Connect

The decarboxylation of phenolic acids, including ferulic and p-coumaric acids, to their corresponding vinyl derivatives is of importance in the flavoring and polymer industries. Here, the crystal structure of phenolic acid decarboxylase (PAD) from Bacillus pumilus strain UI-670 is reported. The enzyme is a 161-residue polypeptide that forms dimers both in the crystal and in solution. The structure of PAD as determined by X-ray crystallography revealed a -barrel structure and two -helices, with a cleft formed at one edge of the barrel. The PAD structure resembles those of the lipocalin-fold proteins, which often bind hydrophobic ligands. Superposition of structurally related proteins bound to their cognate ligands shows that they and PAD bind their ligands in a conserved location within the -barrel. Analysis of the residue-conservation pattern for PAD-related sequences mapped onto the PAD structure reveals that the conservation mainly includes residues found within the hydrophobic core of the protein, defining a common lipocalin-like fold for this enzyme family. A narrow cleft containing several conserved amino acids was observed as a structural feature and a potential ligand-binding site.

Matte, Allan; Grosse, Stephan; Bergeron, Hélène; Abokitse, Kofi; Lau, Peter C.K. (Biotech Res.)

2012-04-30

54

Optimization of Chitinase Production by Bacillus pumilus Using Plackett-Burman Design and Response Surface Methodology  

PubMed Central

A soil bacterium capable of degrading chitin on chitin agar plates was isolated and identified as Bacillus pumilus isolate U5 on the basis of 16S rDNA sequence analysis. In order to optimize culture conditions for chitinase production by this bacterium, a two step approach was employed. First, the effects of several medium components were studied using the Plackett-Burman design. Among various components tested, chitin and yeast extract showed positive effect on enzyme production while MgSO4 and FeSO4 had negative effect. However, the linear model proved to be insufficient for determining the optimum levels for these components due to a highly significant curvature effect. In the second step, Box-Behnken response surface methodology was used to determine the optimum values. It was noticed that a quadratic polynomial equation fitted he experimental data appropriately. The optimum concentrations for chitin, yeast extract, MgSO4 and FeSO4 were found to be 4.76, 0.439, 0.0055 and 0.019 g/L, respectively, with a predicted value of chitinase production of 97.67 U/100 mL. Using this statistically optimized medium, the practical chitinase production reached 96.1 U/100 mL.

Tasharrofi, Noshin; Adrangi, Sina; Fazeli, Mehdi; Rastegar, Hossein; Khoshayand, Mohammad Reza; Faramarzi, Mohammad Ali

2011-01-01

55

Optimization of Chitinase Production by Bacillus pumilus Using Plackett-Burman Design and Response Surface Methodology.  

PubMed

A soil bacterium capable of degrading chitin on chitin agar plates was isolated and identified as Bacillus pumilus isolate U5 on the basis of 16S rDNA sequence analysis. In order to optimize culture conditions for chitinase production by this bacterium, a two step approach was employed. First, the effects of several medium components were studied using the Plackett-Burman design. Among various components tested, chitin and yeast extract showed positive effect on enzyme production while MgSO4 and FeSO4 had negative effect. However, the linear model proved to be insufficient for determining the optimum levels for these components due to a highly significant curvature effect. In the second step, Box-Behnken response surface methodology was used to determine the optimum values. It was noticed that a quadratic polynomial equation fitted he experimental data appropriately. The optimum concentrations for chitin, yeast extract, MgSO4 and FeSO4 were found to be 4.76, 0.439, 0.0055 and 0.019 g/L, respectively, with a predicted value of chitinase production of 97.67 U/100 mL. Using this statistically optimized medium, the practical chitinase production reached 96.1 U/100 mL. PMID:24250411

Tasharrofi, Noshin; Adrangi, Sina; Fazeli, Mehdi; Rastegar, Hossein; Khoshayand, Mohammad Reza; Faramarzi, Mohammad Ali

2011-01-01

56

Chemical structure, conjugation, and cross-reactivity of Bacillus pumilus Sh18 cell wall polysaccharide.  

PubMed

Bacillus pumilus strain Sh18 cell wall polysaccharide (CWP), cross-reactive with the capsular polysaccharide of Haemophilus influenzae type b, was purified and its chemical structure was elucidated using fast atom bombardment mass spectrometry, nuclear magnetic resonance techniques, and sugar-specific degradation procedures. Two major structures, 1,5-poly(ribitol phosphate) and 1,3-poly(glycerol phosphate), with the latter partially substituted by 2-acetamido-2-deoxy-alpha-galactopyranose (13%) and 2-acetamido-2-deoxy-alpha-glucopyranose (6%) on position O-2, were found. A minor component was established to be a polymer of -->3-O-(2-acetamido-2-deoxy-beta-glucopyranosyl)-1-->4-ribitol-1-OPO3-->. The ratios of the three components were 56, 34, and 10 mol%, respectively. The Sh18 CWP was covalently bound to carrier proteins, and the immunogenicity of the resulting conjugates was evaluated in mice. Two methods of conjugation were compared: (i) binding of 1-cyano-4-dimethylaminopyridinium tetrafluoroborate-activated hydroxyl groups of the CWP to adipic acid dihydrazide (ADH)-derivatized protein, and (ii) binding of the carbodiimide-activated terminal phosphate group of the CWP to ADH-derivatized protein. The conjugate-induced antibodies reacted in an enzyme-linked immunosorbent assay with the homologous polysaccharide and with a number of other bacterial polysaccharides containing ribitol and glycerol phosphates, including H. influenzae types a and b and strains of Staphylococcus aureus and Staphylococcus epidermidis. PMID:15466043

Kubler-Kielb, Joanna; Coxon, Bruce; Schneerson, Rachel

2004-10-01

57

Purification and characterization of ferulate and p-coumarate decarboxylase from Bacillus pumilus.  

PubMed Central

Bacillus pumilus PS213 isolated from bovine ruminal fluid was able to transform ferulic acid and p-coumaric acid to 4-vinylguaiacol and 4-vinylphenol, respectively, by nonoxidative decarboxylation. The enzyme responsible for this activity has been purified and characterized. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of crude extract from a culture induced by ferulic acid or p-coumaric acid shows three bands that are not present in the crude extract of an uninduced culture, while the purified enzyme shows a single band of 23 kDa; the molecular mass calculated by size exclusion chromatography is 45 kDa. Enzyme activity is optimal at 37 degrees C and pH 5.5 and is not enhanced by any cation. Kinetic studies indicated a Km of 1.03 mM and a Vmax of 0.19 mmol.min-1/mg.liter-1 for ferulic acid and a Km of 1.38 mM and a Vmax of 0.22 mmol.min-1/mg.liter-1 for p-coumaric acid.

Degrassi, G; Polverino De Laureto, P; Bruschi, C V

1995-01-01

58

Substrate specificity and thermostability of the dehairing alkaline protease from Bacillus pumilus.  

PubMed

An alkaline protease (DHAP) from Bacillus pumilus has shown great potential in hide dehairing. To get better insights on its catalytic properties for application, the substrate specificity and thermostability were investigated using five natural proteins and nine synthetic peptides. The results showed that DHAP could hydrolyze five proteins tested here in different specificity. Collagen, a component of animal skin, was more resistant to hydrolysis than casein, fibrin, and gelatin. Among the synthetic peptides, the enzyme showed activity mainly with tetrapeptide substrates with the catalytic efficiency in order of Phe>Leu>Ala at P1 site, although k(m) value for AAVA-pN is much lower than that for AAPL-pN and AAPF-pN. With tripeptide substrates, smaller side-chain group (Gly) at P1 site was not hydrolyzed by DHAP. The enzyme showed good thermostability below 60 degrees C, and lost activity so quickly above 70 degrees C. The thermostability was largely dependent on metal ion, especially Ca(2+), although other ions, like Mg(2+), Mn(2+), and Co(2+), could sustain stability at certain extent within limited time. Cu(2+), Fe(2+), as well as Al(3+), did not support the enzyme to retain activity at 60 degrees C even in 5 min. In addition, the selected metal ions could coordinate calcium in improvement or destruction of thermostability for DHAP. PMID:19132554

Wan, Min-Yuan; Wang, Hai-Yan; Zhang, Yi-Zheng; Feng, Hong

2009-11-01

59

Swapping of pro-sequences between keratinases of Bacillus licheniformis and Bacillus pumilus: altered substrate specificity and thermostability.  

PubMed

Pro-sequences were swapped in cis between keratinases from Bacillus licheniformis (Ker BL) and Bacillus pumilus (Ker BP) to construct Ker ProBP-BL and Ker ProBL-BP, respectively. Expression of these keratinases was carried out constitutively by E. coli HB101-pEZZ18 system. They were characterized with respect to their parent enzymes, Ker BL and Ker BP, respectively. Ker ProBP-BL became more thermostable with a t(1/2) of 45 min at 80°C contrary to Ker BL which was not stable beyond 60°C. Similarly, the activity of Ker ProBP-BL on keratin and casein substrate, i.e. K:C ratio increased to 1.2 in comparison to 0.1 for Ker BL. Hydrolysis of insulin B-chain revealed that the cleavage sites increased to six from four in case of Ker ProBP-BL in comparison to Ker BL. However, cleavage sites decreased from seven to four in case of Ker ProBL-BP in comparison to the parent keratinase, Ker BP. Likewise, Ker ProBL-BP revealed altered pH and temperature kinetics with optima at pH 10 and 60°C in comparison to Ker BP which had optima at pH 9 and 70°C. It also cleaved soluble substrates with better efficiency in comparison to Ker BP with K:C ratio of 1.6. Pro-sequence mediated conformational changes were also observed in trans and were almost similar to the features acquired by the chimeras constructed in cis by swapping the pro-sequence region. PMID:22759531

Rajput, Rinky; Tiwary, Ekta; Sharma, Richa; Gupta, Rani

2012-08-10

60

Diglucosyl-glycerolipids from the marine sponge-associated Bacillus pumilus strain AAS3: their production, enzymatic modification and properties  

Microsoft Academic Search

The marine strain Bacillus pumilus strain AAS3, isolated from the Mediterranean sponge Acanthella acuta, produced a diglucosyl-glycerolipid, 1,2- O-diacyl-3-[ß-glucopyranosyl-(1–6)-ß-glucopyranosyl)]glycerol, with 14-methylhexadecanoic acid and 12-methyltetradecanoic acid as the main fatty acid moieties (GGL11). On a 30 l scale, using artificial seawater supplemented with glucose (20 g\\/l), yeast extract (10 g\\/l), and suitable nitrogen\\/phosphate sources, growth-associated glycoglycerolipid production reached its maximum yield of 90 mg\\/l after

W. Ramm; W. Schatton; I. Wagner-Döbler; V. Wray; M. Nimtz; H. Tokuda; F. Enjyo; H. Nishino; W. Beil; R. Heckmann; V. Lurtz; S. Lang

2004-01-01

61

CotA, a Multicopper Oxidase from Bacillus pumilus WH4, Exhibits Manganese-Oxidase Activity  

PubMed Central

Multicopper oxidases (MCOs) are a family of enzymes that use copper ions as cofactors to oxidize various substrates. Previous research has demonstrated that several MCOs such as MnxG, MofA and MoxA can act as putative Mn(II) oxidases. Meanwhile, the endospore coat protein CotA from Bacillus species has been confirmed as a typical MCO. To study the relationship between CotA and the Mn(II) oxidation, the cotA gene from a highly active Mn(II)-oxidizing strain Bacillus pumilus WH4 was cloned and overexpressed in Escherichia coli strain M15. The purified CotA contained approximately four copper atoms per molecule and showed spectroscopic properties typical of blue copper oxidases. Importantly, apart from the laccase activities, the CotA also displayed substantial Mn(II)-oxidase activities both in liquid culture system and native polyacrylamide gel electrophoresis. The optimum Mn(II) oxidase activity was obtained at 53°C in HEPES buffer (pH 8.0) supplemented with 0.8 mM CuCl2. Besides, the addition of o-phenanthroline and EDTA both led to a complete suppression of Mn(II)-oxidizing activity. The specific activity of purified CotA towards Mn(II) was 0.27 U/mg. The Km, Vmax and kcat values towards Mn(II) were 14.85±1.17 mM, 3.01×10?6±0.21 M·min?1 and 0.32±0.02 s?1, respectively. Moreover, the Mn(II)-oxidizing activity of the recombinant E. coli strain M15-pQE-cotA was significantly increased when cultured both in Mn-containing K liquid medium and on agar plates. After 7-day liquid cultivation, M15-pQE-cotA resulted in 18.2% removal of Mn(II) from the medium. Furthermore, the biogenic Mn oxides were clearly observed on the cell surfaces of M15-pQE-cotA by scanning electron microscopy. To our knowledge, this is the first report that provides the direct observation of Mn(II) oxidation with the heterologously expressed protein CotA, Therefore, this novel finding not only establishes the foundation for in-depth study of Mn(II) oxidation mechanisms, but also offers a potential biocatalyst for Mn(II) removal.

Su, Jianmei; Bao, Peng; Bai, Tenglong; Deng, Lin; Wu, Hui; Liu, Fan; He, Jin

2013-01-01

62

Candidate genes that may be responsible for the unusual resistances exhibited by Bacillus pumilus SAFR-032 spores.  

PubMed

The spores of several Bacillus species, including Bacillus pumilus SAFR-032 and B. safensis FO-36b, which were isolated from the spacecraft assembly facility at NASA's Jet Propulsion Laboratory, are unusually resistant to UV radiation and hydrogen peroxide. In order to identify candidate genes that might be associated with these resistances, the whole genome of B. pumilus SAFR-032, and the draft genome of B. safensis FO-36b were compared in detail with the very closely related type strain B. pumilus ATCC7061(T). 170 genes are considered characteristic of SAFR-032, because they are absent from both FO-36b and ATCC7061(T). Forty of these SAFR-032 characteristic genes are entirely unique open reading frames. In addition, four genes are unique to the genomes of the resistant SAFR-032 and FO-36b. Fifty three genes involved in spore coat formation, regulation and germination, DNA repair, and peroxide resistance, are missing from all three genomes. The vast majority of these are cleanly deleted from their usual genomic context without any obvious replacement. Several DNA repair and peroxide resistance genes earlier reported to be unique to SAFR-032 are in fact shared with ATCC7061(T) and no longer considered to be promising candidates for association with the elevated resistances. Instead, several SAFR-032 characteristic genes were identified, which along with one or more of the unique SAFR-032 genes may be responsible for the elevated resistances. These new candidates include five genes associated with DNA repair, namely, BPUM_0608 a helicase, BPUM_0652 an ATP binding protein, BPUM_0653 an endonuclease, BPUM_0656 a DNA cytosine-5- methyltransferase, and BPUM_3674 a DNA helicase. Three of these candidate genes are in immediate proximity of two conserved hypothetical proteins, BPUM_0654 and BPUM_0655 that are also absent from both FO-36b and ATCC7061(T). This cluster of five genes is considered to be an especially promising target for future experimental work. PMID:23799069

Tirumalai, Madhan R; Rastogi, Rajat; Zamani, Nader; O'Bryant Williams, Elisha; Allen, Shamail; Diouf, Fatma; Kwende, Sharon; Weinstock, George M; Venkateswaran, Kasthuri J; Fox, George E

2013-01-01

63

Candidate Genes That May Be Responsible for the Unusual Resistances Exhibited by Bacillus pumilus SAFR-032 Spores  

PubMed Central

The spores of several Bacillus species, including Bacillus pumilus SAFR-032 and B. safensis FO-36b, which were isolated from the spacecraft assembly facility at NASA's Jet Propulsion Laboratory, are unusually resistant to UV radiation and hydrogen peroxide. In order to identify candidate genes that might be associated with these resistances, the whole genome of B. pumilus SAFR-032, and the draft genome of B. safensis FO-36b were compared in detail with the very closely related type strain B. pumilus ATCC7061T. 170 genes are considered characteristic of SAFR-032, because they are absent from both FO-36b and ATCC7061T. Forty of these SAFR-032 characteristic genes are entirely unique open reading frames. In addition, four genes are unique to the genomes of the resistant SAFR-032 and FO-36b. Fifty three genes involved in spore coat formation, regulation and germination, DNA repair, and peroxide resistance, are missing from all three genomes. The vast majority of these are cleanly deleted from their usual genomic context without any obvious replacement. Several DNA repair and peroxide resistance genes earlier reported to be unique to SAFR-032 are in fact shared with ATCC7061T and no longer considered to be promising candidates for association with the elevated resistances. Instead, several SAFR-032 characteristic genes were identified, which along with one or more of the unique SAFR-032 genes may be responsible for the elevated resistances. These new candidates include five genes associated with DNA repair, namely, BPUM_0608 a helicase, BPUM_0652 an ATP binding protein, BPUM_0653 an endonuclease, BPUM_0656 a DNA cytosine-5- methyltransferase, and BPUM_3674 a DNA helicase. Three of these candidate genes are in immediate proximity of two conserved hypothetical proteins, BPUM_0654 and BPUM_0655 that are also absent from both FO-36b and ATCC7061T. This cluster of five genes is considered to be an especially promising target for future experimental work.

Tirumalai, Madhan R.; Rastogi, Rajat; Zamani, Nader; O'Bryant Williams, Elisha; Allen, Shamail; Diouf, Fatma; Kwende, Sharon; Weinstock, George M.; Venkateswaran, Kasthuri J.; Fox, George E.

2013-01-01

64

Gene analysis, optimized production and property of marine lipase from Bacillus pumilus B106 associated with South China Sea sponge Halichondria rugosa  

Microsoft Academic Search

Gene cloning, optimized production and property of marine lipase from Bacillus pumilus B106 associated with South China Sea sponge Halichondria rugosa were investigated in this paper. A lipase gene with whole ORF encoding 215 amino acids was obtained by PCR, protein domain\\u000a prediction suggested that the deduced lipase belongs to ?\\/? hydrolases family. Based on single factor Seriatim-Factorial test\\u000a and

Hongzhen Zhang; Fengli Zhang; Zhiyong Li

2009-01-01

65

An alkali-thermostable xylanase from Bacillus pumilus functionally expressed in Kluyveromyces lactis and evaluation of its deinking efficiency.  

PubMed

This work aimed at studying the recombinant expression of an alkali- and thermo-stable xylanase from Bacillus pumilus in Kluyveromyces lactis and its use in deinking of civic paper waste. Efficient expression with a 3-fold increase in the activity than the native organism was achieved. An inducer concentration of 2.5% and medium pH of 9.0 was the best for enzyme expression. Purified enzyme showed an optimum activity at temperatures 50 and 60°C and pH 9.0 and 10.0, respectively. At pH 12.0, enzyme retained 74% and 26% activity after 2 and 3h of incubation, respectively. After incubation at 50 and 60°C for 1h, the enzyme showed 100% retention of activity, and remained active for 4h at 60°C retaining 23% residual activity. Partially purified recombinant enzyme showed higher deinking efficiency (273%) of laser print waste paper than crude xylanase from Bacillus and commercial acidic enzyme. This xylanase with superior stability characteristics could be a suitable candidate in paper and pulp industries. PMID:24709528

Thomas, Leya; Ushasree, Mrudula V; Pandey, Ashok

2014-08-01

66

Molecular cloning, sequence and structural analysis of dehairing Mn(2+) dependent alkaline serine protease (MASPT) of Bacillus pumilus TMS55.  

PubMed

Leather industries release a large amount of pollution-causing chemicals which creates one of the major industrial pollutions. The development of enzyme based processes as a potent alternative to pollution-causing chemicals is useful to overcome this issue. Proteases are enzymes which have extensive applications in leather processing and in several bioremediation processes due to their high alkaline protease activity and dehairing efficacy. In the present study, we report cloning, characterization of a Mn2+ dependent alkaline serine protease gene (MASPT) of Bacillus pumilus TMS55. The gene encoding the protease from B. pumilus TMS55 was cloned and its nucleotide sequence was determined. This gene has an open reading frame (ORF) of 1,149 bp that encodes a polypeptide of 383 amino acid residues. Our analysis showed that this polypeptide is composed of 29 residues N-terminal signal peptide, a propeptide of 79 residues and a mature protein of 275 amino acids. We performed bioinformatics analysis to compare MASPT enzyme with other proteases. Homology modeling was employed to model three dimensional structure for MASPT. Structural analysis showed that MASPT structure is composed of nine ?-helices and nine ?-strands. It has 3 catalytic residues and 14 metal binding residues. Docking analysis showed that residues S223, A260, N263, T328 and S329 interact with Mn2+. This study allows initial inferences about the structure of the protease and will allow the rational design of its derivatives for structure-function studies and also for further improvement of the enzyme. PMID:21592076

Ibrahim, Kalibulla Syed; Muniyandi, Jeyaraj; Pandian, Shunmugiah Karutha

2011-10-01

67

Thermostable keratinase from Bacillus pumilus KS12: production, chitin crosslinking and degradation of Sup35NM aggregates.  

PubMed

Production of thermostable keratinase from Bacillus pumilus KS12 was enhanced up to seven fold by statistical methods. The enzyme was partially purified by ultrafiltration followed by thermal precipitation with purity of 3.2-fold and recovery of 89%. Keratinase was immobilized using covalent method by crosslinking 2 mg protein (688 U/mg) onto 1g chitin activated with 2.5% (v/v) glutaraldehyde for 60 min. Its comparative biochemical studies with that of free keratinase revealed the shift in optimum pH with increased stability towards pH from 9.0 to 10.0 and temperature. Also, it showed statistically significant improved hydrolysis of a number of soluble and insoluble substrates in comparison to free keratinase. Owing to improved catalytic efficiency of immobilized keratinase, its potential for degradation of Sup35NM was evaluated, where 100 ?g of enzyme could degrade 60 ?g Sup35NM after 60 min at pH 7.0 and 37°C. PMID:23425582

Rajput, Rinky; Gupta, Rani

2013-04-01

68

A novel serine metallokeratinase from a newly isolated Bacillus pumilus A1 grown on chicken feather meal: biochemical and molecular characterization.  

PubMed

A keratinolytic enzyme (KerA1) secreted by a newly isolated Bacillus pumilus strain A1 cultivated in medium containing chicken feather meal was purified and characterized, and the gene was isolated and sequenced. The molecular mass of the purified enzyme was estimated to be 34,000 Da by sodium dodecyl sulfate (SDS) polyacrylamide gel electrophoresis and gel filtration. The optimum pH and temperature for the purified keratinase were 9.0 and 60 degrees C, respectively, using keratin as a substrate. KerA1 showed a high stability towards nonionic surfactants. It was found to be relatively stable toward the strong anionic surfactant (SDS). The deduced amino acid sequence of the keratinase KerA1 differs from both the organic solvent tolerant protease of B. pumilus 115b and the dehairing protease of B. pumilus UN-31-C-42 by one and nine amino acids, respectively. These results suggest that this keratinase may be a useful alternative and ecofriendly route for handling the abundant amount of waste feathers and for applications in detergent formulations. PMID:20012915

Fakhfakh-Zouari, Nahed; Hmidet, Noomen; Haddar, Anissa; Kanoun, Safia; Nasri, Moncef

2010-09-01

69

Antitumor activity of bacterial exopolysaccharides from the endophyte Bacillus amyloliquefaciens sp. isolated from Ophiopogon japonicus  

PubMed Central

The endophytic bacterium, MD-b1, was isolated from the medicinal plant Ophiopogon japonicas and identified as the Bacillus amyloliquefaciens sp. with 99% similarity based on the partial sequence analysis of 16S rDNA. Exopolysaccharides were extracted from the endophyte for the evaluation of its antitumor activity against gastric carcinoma cell lines (MC-4 and SGC-7901). 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assays and microscopy were performed to estimate the cell viability and morphological changes of the MC-4 and SGC-7901 cells following treatment with the exopolysaccharides at 14, 22 and 30 ?g/?l. The results revealed that the exopolysaccharides displayed concentration-dependent inhibitory effects against the MC-4 and SGC-7901 cells, with an IC50 of 19.7 and 26.8 ?g/?l, respectively. The exopolysaccharides also induced morphological abnormalities in the cells. These effects indicated the the exopolysaccharides had an antitumoral mechanism of action associated with the mitochondrial dysfunction of the treated cells. This is the first study to investigate the endophytic microorganism isolated from O. japonicas and also the first discovery of such antitumoral exopolysaccharides derived from the genus Bacillus. This provides a promising and reproducible natural product source with high therapeutic value for anticancer treatment, thereby facilitating the development of new anticancer agents.

CHEN, YI-TAO; YUAN, QIANG; SHAN, LE-TIAN; LIN, MEI-AI; CHENG, DONG-QING; LI, CHANG-YU

2013-01-01

70

The Discovery of phiAGATE, A Novel Phage Infecting Bacillus pumilus, Leads to New Insights into the Phylogeny of the Subfamily Spounavirinae  

PubMed Central

The Bacillus phage phiAGATE is a novel myovirus isolated from the waters of Lake Góreckie (a eutrophic lake in western Poland). The bacteriophage infects Bacillus pumilus, a bacterium commonly observed in the mentioned reservoir. Analysis of the phiAGATE genome (149844 base pairs) resulted in 204 predicted protein-coding sequences (CDSs), of which 53 could be functionally annotated. Further investigation revealed that the bacteriophage is a member of a previously undescribed cluster of phages (for the purposes of this study we refer to it as “Bastille group”) within the Spounavirinae subfamily. Here we demonstrate that these viruses constitute a distinct branch of the Spounavirinae phylogenetic tree, with limited similarity to phages from the Twortlikevirus and Spounalikevirus genera. The classification of phages from the Bastille group into any currently accepted genus proved extremely difficult, prompting concerns about the validity of the present taxonomic arrangement of the subfamily.

Barylski, Jakub; Nowicki, Grzegorz; Gozdzicka-Jozefiak, Anna

2014-01-01

71

A possible mechanism of action of plant growth-promoting rhizobacteria (PGPR) strain Bacillus pumilus WP8 via regulation of soil bacterial community structure.  

PubMed

According to the traditional view, establishment and maintenance of critical population densities in the rhizosphere was the premise of PGPR to exert growth-promoting effects. In light of the facts that soil bacterial community structures can be changed by some PGPR strains including Bacillus pumilus WP8, we hypothesize that regulation of soil bacterial community structure is one of the plant growth-promoting mechanisms of B. pumilus WP8, rather than depending on high-density cells in soil. In this study, denaturing gradient gel electrophoresis (PCR-DGGE) was performed to evaluate the relationship between changes in soil bacterial community structure and growth-promoting effect on the seedling growth of fava beans (Vicia faba L.) during three successive cultivations. We found that B. pumilus WP8 lacks capacity to reproduce in large enough numbers to survive in bulk soil more than 40 days, yet the bacterial community structures were gradually influenced by inoculation of WP8, especially on dominant populations. Despite WP8 being short-lived, it confers the ability of steadily promoting fava bean seedling growth on soil during the whole growing period for at least 90 days. Pseudomonas chlororaphis RA6, another tested PGPR strain, exists in large numbers for at least 60 days but less than 90 days, whilst giving rise to slight influence on bacterial community structure. In addition, along with the extinction of RA6 cells in bulk soils, the effect of growth promotion disappeared simultaneously. Furthermore, the increment of soil catalase activity from WP8 treatment implied the ability to stimulate soil microbial activity, which may be the reason why the dominant population changed and increased as time passed. Our study suggests that regulation of treated soil bacterial community structure may be another possible action mechanism. PMID:24005176

Kang, Yijun; Shen, Min; Wang, Huanli; Zhao, Qingxin

2013-01-01

72

Characterization of boron resistant and accumulating bacteria Lysinibacillus fusiformis M1, Bacillus cereus M2, Bacillus cereus M3, Bacillus pumilus M4 isolated from former mining site, Hokkaido, Japan.  

PubMed

Boron is known to be widespread environmental contaminant that is relatively mobile in soil when compared to other metal contaminants. The present study made an attempt to isolate and characterize the boron resistant and accumulating bacteria from former mining site at Hokkaido, Japan. Four potential strains M1, M2, M3 and M4 were selected based on high degree of boron and heavy metal resistances. The morphological, biochemical and 16S rDNA sequencing analysis of mining bacteria revealed that the isolates were highly homology to Lysinibacillus fusiformis M1 (99 %), Bacillus cereus M2 (99 %), Bacillus cereus M3 (99 %) and Bacillus pumilus M4 (99 %) respectively. The strains M1, M2, M3 and M4 showed resistance to several heavy metals such as As (III), As (V) and Cr (VI), Cu, Ni, Pb and Zn. The selected strains were found to be arsenic oxidizing bacteria confirmed by Silver nitrate test. The resting and growing cells of mining bacteria were used for boron accumulation analysis. Selected strains were found to be efficiently accumulating boron concentration ranging from 0.1-2.3 mg L (-1) and 1.5-4.7 mg L (-1) at 24 h and 168 h, respectively. The following results conclude that the mining bacteria act as potent bioaccumulator of boron and its resistant, removal characteristic can be valuable in boron bioremediation. PMID:22571522

Raja, Chellaiah Edward; Omine, Kiyoshi

2012-01-01

73

Effect of plant age on endophytic bacterial diversity of balloon flower (Platycodon grandiflorum) root and their antimicrobial activities.  

PubMed

Balloon flower (Platycodon grandiflorum) is widely cultivated vegetable and used as a remedy for asthma in East Asia. Experiments were conducted to isolate endophytic bacteria from 1-, 3-, and 6-year-old balloon flower roots and to analyze the enzymatic, antifungal, and anti-human pathogenic activities of the potential endophytic biocontrol agents obtained. Total 120 bacterial colonies were isolated from the interior of all balloon flower roots samples. Phylogenetic analysis based on 16S rRNA gene sequences showed that the population of 'low G + C gram-positive bacteria' (LGCGPB) gradually increased 60.0-80.0% from 1 to 6 years balloon flower sample. On the other hand, maximum hydrolytic enzyme activity showing endophytic bacteria was under LGCGPB, among the bacterial strains, Bacillus sp. (BF1-1 and BF3-8), Bacillus sp. (BF1-2 and BF3-5), and Bacillus sp. (BF1-3, BF3-6, and BF6-4) showed maximum enzyme activities. Besides, Bacillus licheniformis (BF3-5 and BF6-6) and Bacillus pumilus (BF6-1) showed maximum antifungal activity against Phytophthora capsici, Fusarium oxysporum, Rhizoctonia solani, and Pythium ultimum. Moreover, Bacillus licheniformis was found in 3 and 6 years balloon flower roots, but Bacillus pumilus was found only in 6 years sample. It is presumed that older balloon flower plants invite more potential antifungal endophytes for there protection from plant diseases. In addition, Bacillus sp. (BF1-2 and BF3-5) showed maximum anti-human pathogenic activity. So, plant age is presumed to influence diversity of balloon flower endophytic bacteria. PMID:20221603

Asraful Islam, Shah Md; Math, Renukaradhya K; Kim, Jong Min; Yun, Myoung Geun; Cho, Ji Joong; Kim, Eun Jin; Lee, Young Han; Yun, Han Dae

2010-10-01

74

Characterization of Bacillus subtilis HC8, a novel plant-beneficial endophytic strain from giant hogweed  

PubMed Central

Summary Thirty endophytic bacteria were isolated from various plant species growing near Saint?Petersburg, Russia. Based on a screening for various traits, including plant?beneficial properties and DNA fragment patterns, potential siblings were removed. The remaining isolates were taxonomically identified using 16S rDNA sequences and potential human and plant pathogens were removed. The remaining strains were tested for their ability to promote radish root growth and to protect tomato plants against tomato foot and root rot. One strain, Bacillus subtilis HC8, isolated from the giant hogweed Heracleum sosnowskyi Manden, significantly promoted plant growth and protected tomato against tomato foot and root rot. Metabolites possibly responsible for these plant?beneficial properties were identified as the hormone gibberellin and (lipo)peptide antibiotics respectively. The antibiotic properties of strain HC8 are similar to those of the commercially available plant?beneficial strain Bacillus amyloliquefaciens FZB42. However, thin layer chromatography profiles of the two strains differ. It is speculated that endophytes such as B. subtilis HC8 contribute to the fast growth of giant hogweed.

Malfanova, Natalia; Kamilova, Faina; Validov, Shamil; Shcherbakov, Andrey; Chebotar, Vladimir; Tikhonovich, Igor; Lugtenberg, Ben

2011-01-01

75

Characterization of Bacillus subtilis HC8, a novel plant-beneficial endophytic strain from giant hogweed.  

PubMed

Thirty endophytic bacteria were isolated from various plant species growing near Saint-Petersburg, Russia. Based on a screening for various traits, including plant-beneficial properties and DNA fragment patterns, potential siblings were removed. The remaining isolates were taxonomically identified using 16S rDNA sequences and potential human and plant pathogens were removed. The remaining strains were tested for their ability to promote radish root growth and to protect tomato plants against tomato foot and root rot. One strain, Bacillus subtilis HC8, isolated from the giant hogweed Heracleum sosnowskyi Manden, significantly promoted plant growth and protected tomato against tomato foot and root rot. Metabolites possibly responsible for these plant-beneficial properties were identified as the hormone gibberellin and (lipo)peptide antibiotics respectively. The antibiotic properties of strain HC8 are similar to those of the commercially available plant-beneficial strain Bacillus amyloliquefaciens FZB42. However, thin layer chromatography profiles of the two strains differ. It is speculated that endophytes such as B. subtilis HC8 contribute to the fast growth of giant hogweed. PMID:21366893

Malfanova, Natalia; Kamilova, Faina; Validov, Shamil; Shcherbakov, Andrey; Chebotar, Vladimir; Tikhonovich, Igor; Lugtenberg, Ben

2011-07-01

76

Xylan-hydrolyzing enzyme system from Bacillus pumilus CBMAI 0008 and its effects on Eucalyptus grandis kraft pulp for pulp bleaching improvement.  

PubMed

The extracellular productions of beta-xylanase, beta-xylosidase, beta-glucosidase, beta-mannanase, arabinosidase, alpha-glucuronidase, alpha-galactosidase and Fpase from Bacillus pumilus CBMAI 0008 were investigated with three different xylan sources as substrate. The enzymatic profiles on birchwood, Eucalyptus grandis and oat were studied at alkaline and acidic pH conditions. B. pumilus CBMAI 0008 grown on the three carbon sources produced mainly beta-xylanase. At pH 10, the levels of xylanase were 328, 160 and 136 U/ml, for birch, oat and E. grandis, respectively. beta-Mannanase production was induced on E. grandis (5 U/ml) and arabinofuranosidase on oat (5 U/ml). Although small quantities of alpha-glucuronidase had been produced at pH 10, activity at pH 4.8 was 1.5 U/ml, higher than observed for Aspergillus sp. in literature reports. Preliminary assays carried out on E. grandis kraft pulp from an industrial paper mill (RIPASA S.A. Celulose e Papel, Limeira, SP, Brazil) showed a reduction of 0.3% of chlorine use in the pulp treated with the enzymes, resulting in increased brightness, compared to conventional bleaching. The enzymes were more efficient if applied before the initial bleaching sequence, in a non-pre-oxygenated pulp. PMID:12573558

Duarte, Marta C Teixeira; da Silva, Elizete Cristina; de Bulhões Gomes, Isabel Menezes; Ponezi, Alexandre Nunes; Portugal, Edilberto Princi; Vicente, João Roberto; Davanzo, Ednilson

2003-05-01

77

Extraction in aqueous two-phase systems of alkaline xylanase produced by Bacillus pumilus and its application in kraft pulp bleaching.  

PubMed

The aim of this work was to extract and to purify xylanase, produced by Bacillus pumilus from the crude fermentation broth, using aqueous two-phase systems (ATPS). The xylanase was extracted by partitioning in ATPS composed of phosphate and polyethylene glycol (PEG). The effect of tie-line length, PEG molecular mass and NaCl concentrations upon the purification factors and yields of xylanase were investigated by statistical design. The best system studied was that containing 22% PEG6000, 10% K2HPO4 and 12% NaCl with a purification factor of 33 and a 98% yield of enzyme activity. This system was also used for continuous extraction in a pulsed caps column. Subsequently, the xylanase from the crude fermentation broth was tested in hardwood kraft pulp bleaching. PMID:10942305

Bim, M A; Franco, T T

2000-06-23

78

Bacillus subtilis and Enterobacter cloacae endophytes from healthy Theobroma cacao L. trees can systemically colonize seedlings and promote growth.  

PubMed

Clonal genotypes resistant to fungal diseases are an important component of the cocoa production system in southeastern Bahia state (Brazil), so that technologies for faster production of stronger and healthier plantlets are highly desirable. In this study, the effects of inoculated bacterial endophytes isolated from healthy adult cacao plants on seedlings, and aspects related to inoculation methods, colonization patterns, and photosynthesis were investigated. Sequencing of 16S rRNA, hsp-60, and rpo-B genes placed the wild-type isolates within the species Enterobacter cloacae (isolates 341 and 344) and Bacillus subtilis (isolate 629). Spontaneous rifampicin-resistant (rif(R)) variants for 344 were also produced and tested. Endophytic application was either by immersion of surface sterilized seeds in bacterial suspensions or direct inoculation into soil, 20 days after planting non-inoculated seeds into pots. Results from in vitro recovery of inoculated isolates showed that the wild-type endophytes and rif(R) variants systemically colonized the entire cacao seedlings in 15-20 days, regardless of the inoculation method. Some endophytic treatments showed significant increases in seedlings' height, number of leaves, and dry matter. Inoculation methods affected the combined application of endophytes, which maintained the growth-promotion effects, but not in the same manner as in single applications. Interestingly, the 344-3.2 rif(R) variant showed improved performance in relation to both the wild type and another related variant. Photosynthetic rates and stomatal conductance increased significantly for some endophytic treatments, being partially associated with effects on growth and affected by the inoculation method. The results suggest that E. cloacae and B. subtilis endophytes from healthy adult plants (not transmitted by seeds) were able to promote vegetative growth on cacao seedlings. The development of products for large-scale use in seedlings/plantlets production systems was discussed. PMID:23212670

Leite, Hianna Almeida Câmara; Silva, Anderson Barbosa; Gomes, Fábio Pinto; Gramacho, Karina Peres; Faria, José Cláudio; de Souza, Jorge Teodoro; Loguercio, Leandro Lopes

2013-03-01

79

Isolation and characterization of a co-producer of fengycinsand surfactins, endophytic Bacillus amyloliquefaciens ES2, from Scutellaria baicalensis Georgi  

Microsoft Academic Search

An endophytic bacterium was isolated from Chinese medicinal plant Scutellaria baicalensis Georgi. The phylogenetic and physiological characzterization indicated that the isolate, strain ES-2, was Bacillus amyloliquefaciens, which produced two families of secondary metabolites with broad-spectrum antibacterial and antifungal activities. Culture filtrate of ES-2 displayed antagonism against some phytopathogenic, food-borne pathogenic and spoilage bacteria and fungi owing to the existence of

Lijun Sun; Zhaoxin Lu; Xiaomei Bie; Fengxia Lu; Shengyuan Yang

2006-01-01

80

Aqueous extracts of a Mars analogue regolith that mimics the Phoenix landing site do not inhibit spore germination or growth of model spacecraft contaminants Bacillus subtilis 168 and Bacillus pumilus SAFR-032  

NASA Astrophysics Data System (ADS)

Because Mars is a primary target for life detection and habitability assessment missions, its exploration is also by necessity a Planetary Protection issue. The recent finding of significant levels of perchlorate (ClO4-) in regolith sampled from the Phoenix landing site raises the question of its potential biotoxicity to putative indigenous martian life, microbial forward contaminants from Earth, or future human visitors. To address this issue, an analogue regolith was constructed based on regolith chemistry data from the Phoenix landing site. A Mars Aqueous Regolith Extract (MARE) was prepared from the Phoenix analogue regolith and analyzed by ion chromatography. The MARE contained (mg/L) the cations Na+ (1411 ± 181), Mg2+ (1051 ± 160), Ca2+ (832 ± 125), and K+ (261 ± 29), and the anions SO42-(5911±993), ClO4-(5316±1767), Cl(171±25) and F- (2.0 ± 0.4). Nitrogen-containing species NO3-(773±113) and NO2-(6.9±2.3) were also present as a result of regolith preparation procedures, but their relevance to Mars is at present unknown. The MARE was tested for potential toxic effects on two model spacecraft contaminants, the spore-forming bacteria Bacillus subtilis strain 168 and Bacillus pumilus strain SAFR-032. In B. subtilis, spore germination and initial vegetative growth (up to ˜5 h) was not inhibited in a rich complex medium prepared with the MARE, but growth after 5 h was significantly suppressed in medium prepared using the MARE. Both B. subtilis and B. pumilus exhibited significantly higher rates of spore germination and growth in the MARE vs. DW with no additions (likely due to endogenous spore nutrients), but germination and growth was further stimulated by addition of glucose and a combination of buffered inorganic salts (K2HPO4, KH2PO4, (NH4)2SO4, and MgSO4). The data indicate that the aqueous environment in the regolith from the Phoenix landing site containing high levels of perchlorate does not pose a significant barrier to growth of putative forward contaminants such as B. subtilis and B. pumilus under Earth laboratory conditions.

Nicholson, Wayne L.; McCoy, Lashelle E.; Kerney, Krystal R.; Ming, Douglas W.; Golden, D. C.; Schuerger, Andrew C.

2012-08-01

81

Pongamia pinnata seed cake: a promising and inexpensive substrate for production of protease and lipase from Bacillus pumilus SG2 on solid-state fermentation.  

PubMed

The production of a protease and a lipase from Bacillus pumilus SG2 on solid-state fermentation using Pongamia pinnata seed cake as substrate was studied. The seed cake was proved to be a promising substrate for the bacterial growth and the enzyme production. The initial pH, incubation time and moisture content were optimized to achieve maximal enzyme production. Maximum protease production was observed at 72 h and that of the lipase at 96 h of incubation. The production of protease (9840 U/g DM) and lipase (1974 U/g DM) were maximum at pH 7.0 and at 60% moisture content. Triton X-100 (1%) was proved to be an effective extractant for the enzymes and their optimal activity was observed at alkaline pH and at 60 C. The molecular mass of the protease and lipase was 24 and 40 kDa, respectively. Both the enzymes were found to be stable detergent additives. The study demonstrated that inexpensive and easily available Pongamia seed cake could be used for production of industrially important enzymes, such as protease and lipase. PMID:22329247

Sangeetha, R; Geetha, A; Arulpandi, I

2011-12-01

82

Optimization of microwave-assisted FeCl3 pretreatment conditions of rice straw and utilization of Trichoderma viride and Bacillus pumilus for production of reducing sugars.  

PubMed

In this study, Box-Behnken design (BBD) and response surface methodology (RSM) were used to optimize microwave-assisted FeCl(3) pretreatment conditions of rice straw with respect to FeCl(3) concentration, microwave intensity, irradiation time and substrate concentration. When rice straw was pretreated at the optimal conditions of FeCl(3) concentration, 0.14 mol/L; microwave intensity, 160°C; irradiation time, 19 min; substrate concentration, 109 g/L; and inoculated with Trichoderma viride and Bacillus pumilus, the production of reducing sugars was 6.62 g/L. This yield was 2.9 times higher than that obtained with untreated rice straw. The microorganisms degraded 37.8% of pretreated rice straw after 72 h. The structural characteristic analyses suggest that microwave-assisted FeCl(3) pretreatment damaged the silicified waxy surface of rice straw, disrupted almost all the ether linkages between lignin and carbohydrates, and removed lignin. PMID:21561766

Lü, Jiliang; Zhou, Peijiang

2011-07-01

83

The combined effect of pasteurization intensity, water activity, pH and incubation temperature on the survival and outgrowth of spores of Bacillus cereus and Bacillus pumilus in artificial media and food products.  

PubMed

The objective of the study was to evaluate the combined effects of pasteurization intensity (no heat treatment and 10min at 70, 80 and 90°C), water activity (aw) (0.960-0.990), pH (5.5-7.0) and storage temperature (7 and 10°C) on the survival and outgrowth of psychrotolerant spores of Bacillus cereus FF119b and Bacillus pumilus FF128a. The experiments were performed in both artificial media and a validation was performed on real food products (cream, béchamel sauce and mixed vegetable soup). It was determined that in general, heat treatments of 10min at 70°C or 80°C activated the spores of both B. cereus FF119b and B. pumilus FF128a, resulting in faster outgrowth compared to native (non-heat treated) spores. A pasteurization treatment of 10min at 90°C generally resulted in the longest lag periods before outgrowth of both isolates. Some of the spores were inactivated by this heat treatment, with more inactivation being observed the lower the pH value of the heating medium. Despite this, it was also observed that under some conditions the remaining (surviving) spores were actually activated as their outgrowth took place after a shorter period of time compared to native non-heated spores. While the response of B. cereus FF119b to the pasteurization intensity in cream and béchamel sauce was similar to the trends observed in the artificial media at 10°C, in difference, outgrowth was only observed at 7°C in both products when the spores had been heated for 10min at 80°C. Moreover, no inactivation was observed in cream or béchamel sauce when the spores were heated for 10min at 90°C in these two products. This was attributed to the protective effect of fat in the cream and the ingredients in the béchamel sauce. The study provides some insight into the potential microbial (stability and safety) consequences of the current trend towards milder heat treatments which is being pursued in the food industry. PMID:24801270

Samapundo, S; Heyndrickx, M; Xhaferi, R; de Baenst, I; Devlieghere, F

2014-07-01

84

Endophytic Bacteria Improve Seedling Growth of Sunflower Under Water Stress, Produce Salicylic Acid, and Inhibit Growth of Pathogenic Fungi  

Microsoft Academic Search

Endophytic bacterial strains SF2 (99.9% homology with Achromobacter xylosoxidans), and SF3 and SF4 (99.9% homology with Bacillus pumilus) isolated from sunflower grown under irrigation or drought were selected on the basis of plant growth-promoting bacteria\\u000a (PGPB) characteristics. Aims of the study were to examine effects of inoculation with SF2, SF3, and SF4 on sunflower cultivated\\u000a under water stress, to evaluate salicylic acid

Gabriela Forchetti; Oscar Masciarelli; María J. Izaguirre; Sergio Alemano; Daniel Alvarez; Guillermina Abdala

2010-01-01

85

Lipopeptides from the banyan endophyte, Bacillus subtilis K1: mass spectrometric characterization of a library of fengycins.  

PubMed

Mass spectrometric analysis of a banyan endophyte, Bacillus subtilis K1, extract showing broad spectrum antifungal activity revealed a complex mixture of lipopeptides, iturins, surfactins, and fengycins. Fractionation by reversed-phase high performance liquid chromatography (HPLC) facilitated a detailed analysis of fengycin microheterogeneity. Matrix assisted laser desorption ionization (MALDI) and electrospray ionization (ESI) mass spectrometric studies permitted the identification of several new fengycin variants. Four major sites of heterogeneity are identified: (1) N-terminus ?-hydroxy fatty acid moiety, where chain length variation and the presence of unsaturation occur, (2) position 6 (Ala/Val/Ile/Leu), (3) position 10 (Val/Ile) within the macrocyclic ring, and (4) Gln to Glu replacement at position 8, resulting in fengycin variants that differ in mass by 1 Da. Diagnostic fragment ions provide a quick method for localizing the sites of variation in the macrocycle or the linear segment. Subsequent establishment of the sequences is achieved by MS/MS analysis of linear fengycin species produced by hydrolysis of the macrocyclic lactone. Unsaturation in the fatty acid chain and the presence of linear precursors in the B. subtilis K1 extract are also established by mass spectrometry. The anomalous distribution of intensities within isotopic multiplets is a diagnostic for Gln/Glu replacements. High resolution mass spectrometry facilitates the identification of fengycin species differing by 1 Da by localizing the variable position (Gln(8)/Glu(8)) in the fengycin variants. PMID:22847390

Pathak, Khyati V; Keharia, Haresh; Gupta, Kallol; Thakur, Suman S; Balaram, Padmanabhan

2012-10-01

86

Lipopeptides from the Banyan Endophyte, Bacillus subtilis K1: Mass Spectrometric Characterization of a Library of Fengycins  

NASA Astrophysics Data System (ADS)

Mass spectrometric analysis of a banyan endophyte, Bacillus subtilis K1, extract showing broad spectrum antifungal activity revealed a complex mixture of lipopeptides, iturins, surfactins, and fengycins. Fractionation by reversed-phase high performance liquid chromatography (HPLC) facilitated a detailed analysis of fengycin microheterogeneity. Matrix assisted laser desorption ionization (MALDI) and electrospray ionization (ESI) mass spectrometric studies permitted the identification of several new fengycin variants. Four major sites of heterogeneity are identified: (1) N-terminus ?-hydroxy fatty acid moiety, where chain length variation and the presence of unsaturation occur, (2) position 6 (Ala/Val/Ile/Leu), (3) position 10 (Val/Ile) within the macrocyclic ring, and (4) Gln to Glu replacement at position 8, resulting in fengycin variants that differ in mass by 1 Da. Diagnostic fragment ions provide a quick method for localizing the sites of variation in the macrocycle or the linear segment. Subsequent establishment of the sequences is achieved by MS/MS analysis of linear fengycin species produced by hydrolysis of the macrocyclic lactone. Unsaturation in the fatty acid chain and the presence of linear precursors in the B. subtilis K1 extract are also established by mass spectrometry. The anomalous distribution of intensities within isotopic multiplets is a diagnostic for Gln/Glu replacements. High resolution mass spectrometry facilitates the identification of fengycin species differing by 1 Da by localizing the variable position (Gln8/Glu8) in the fengycin variants.

Pathak, Khyati V.; Keharia, Haresh; Gupta, Kallol; Thakur, Suman S.; Balaram, Padmanabhan

2012-10-01

87

Enhanced degradation of textile effluent in constructed wetland system using Typha domingensis and textile effluent-degrading endophytic bacteria.  

PubMed

Textile effluent is one of the main contributors of water pollution and it adversely affects fauna and flora. Constructed wetland is a promising approach to remediate the industrial effluent. The detoxification of industrial effluent in a constructed wetland system may be enhanced by applying beneficial bacteria that are able to degrade contaminants present in industrial effluent. The aim of this study was to evaluate the influence of inoculation of textile effluent-degrading endophytic bacteria on the detoxification of textile effluent in a vertical flow constructed wetland reactor. A wetland plant, Typha domingensis, was vegetated in reactor and inoculated with two endophytic bacterial strains, Microbacterium arborescens TYSI04 and Bacillus pumilus PIRI30. These strains possessed textile effluent-degrading and plant growth-promoting activities. Results indicated that bacterial inoculation improved plant growth, textile effluent degradation and mutagenicity reduction and were correlated with the population of textile effluent-degrading bacteria in the rhizosphere and endosphere of T. domingensis. Bacterial inoculation enhanced textile effluent-degrading bacterial population in rhizosphere, root and shoot of T. domingensis. Significant reductions in COD (79%), BOD (77%) TDS (59%) and TSS (27%) were observed by the combined use of plants and bacteria within 72 h. The resultant effluent meets the wastewater discharge standards of Pakistan and can be discharged into the environment without any risks. This study revealed that the combined use of plant and endophytic bacteria is one of the approaches to enhance textile effluent degradation in a constructed wetland system. PMID:24755300

Shehzadi, Maryam; Afzal, Muhammad; Khan, Muhammad Umar; Islam, Ejazul; Mobin, Amina; Anwar, Samina; Khan, Qaiser Mahmood

2014-07-01

88

Induction of Defense-Related Ultrastructural Modifications in Pea Root Tissues Inoculated with Endophytic Bacteria.  

PubMed Central

The stimulation exerted by the endophytic bacterium Bacillus pumilus strain SE34 in plant defense reactions was investigated at the ultrastructural level using an in vitro system in which root-inducing T-DNA pea (Pisum sativum L.) roots were infected with the pea root-rotting fungus Fusarium oxysporum f. sp. pisi. In nonbacterized roots, the pathogen multiplied abundantly through much of the tissue including the vascular stele, whereas in prebacterized roots, pathogen growth was restricted to the epidermis and the outer cortex In these prebacterized roots, typical host reactions included strengthening the epidermal and cortical cell walls and deposition of newly formed barriers beyond the infection sites. Wall appositions were found to contain large amounts of callose in addition to being infiltrated with phenolic compounds. The labeling pattern obtained with the gold-complexed laccase showed that phenolics were widely distributed in Fusarium-challenged, bacterized roots. Such compounds accumulated in the host cell walls and the intercellular spaces as well as at the surface or even inside of the invading hyphae of the pathogen. The wall-bound chitin component in Fusarium hyphae colonizing bacterized roots was preserved even when hyphae had undergone substantial degradation. These observations confirm that endophytic bacteria may function as potential inducers of plant disease resistance.

Benhamou, N.; Kloepper, J. W.; Quadt-Hallman, A.; Tuzun, S.

1996-01-01

89

In silico characterization of a novel ?-1,3-glucanase gene from Bacillus amyloliquefaciens--a bacterial endophyte of Hevea brasiliensis antagonistic to Phytophthora meadii.  

PubMed

We report the molecular characterization of ?-1,3-glucanase-producing Bacillus amyloliquefaciens-an endophyte of Hevea brasiliensis antagonistic to Phytophthora meadii. After cloning and sequencing, the ?-1,3-glucanase gene was found to be 747 bp in length. A homology model of the ?-1,3-glucanase protein was built from the amino acid sequence obtained upon translation of the gene. The target ?-1,3-glucanase protein and the template protein, endo ?-1,3-1,4-glucanase protein (PDB ID: 3o5s), were found to share 94% sequence identity and to have similar secondary and tertiary structures. In the modeled structure, three residues in the active site region of the template-Asn52, Ile157 and Val158-were substituted with Asp, Leu and Ala, respectively. Computer-aided docking studies of the substrate disaccharide (?-1, 3-glucan) with the target as well as with the template proteins showed that the two protein-substrate complexes were stabilized by three hydrogen bonds and by many van der Waals interactions. Although the binding energies and the number of hydrogen bonds were the same in both complexes, the orientations of the substrate in the active sites of the two proteins were different. These variations might be due to the change in the three amino acids in the active site region of the two proteins. The difference in substrate orientation in the active site could also affect the catalytic potential of the ?-1,3 glucanase enzyme. PMID:23108702

Abraham, Amith; Narayanan, Sunilkumar Puthenpurackal; Philip, Shaji; Nair, Divya Gopalakrishnan; Chandrasekharan, Aparna; Kochupurackal, Jayachandran

2013-03-01

90

The phosphotransferase system gene ptsI in the endophytic bacterium Bacillus cereus is required for biofilm formation, colonization, and biocontrol against wheat sharp eyespot.  

PubMed

Natural resistance of wheat plants to wheat sharp eyespot is inadequate, and new strategies for controlling the disease are required. Biological control is an alternative and attractive way of reducing the use of chemicals in agriculture. In this study, we investigated the biocontrol properties of endophytic bacterium Bacillus cereus strain 0-9, which was isolated from the root systems of healthy wheat varieties. The phosphotransferase system is a major regulator of carbohydrate metabolism in bacteria. Enzyme I is one of the protein components of this system. Specific disruption and complementation of the enzyme I-coding gene ptsI from B. cereus was achieved through homologous recombination. Disruption of ptsI in B. cereus caused a 70% reduction in biofilm formation, a 30.4% decrease in biocontrol efficacy, and a 1000-fold reduction in colonization. The growth of ?ptsI mutant strain on G-tris synthetic medium containing glucose as the exclusive carbon source was also reduced. Wild-type properties could be restored to the ?ptsI mutant strain by ptsI complementation. These results suggested that ptsI may be one of the key genes involved in biofilm formation, colonization, and biocontrol of B. cereus and that B. cereus wild-type strain 0-9 may be an ideal biocontrol agent for controlling wheat sharp eyespot. PMID:24750250

Xu, Yu-Bin; Chen, Mai; Zhang, Ying; Wang, Miao; Wang, Ying; Huang, Qiu-bin; Wang, Xue; Wang, Gang

2014-05-01

91

Endophytic Fungi  

Microsoft Academic Search

\\u000a Endophytic fungi as well as plant-parasitic nematodes probably coevolved with all plant life on earth including cultivated\\u000a crop plants. While endophytic fungi often form mutualisitc associations to the benefit of the plant, plant-parasitic nematodes\\u000a can cause detrimental yield losses. Although both groups of organisms interact very closely within the plant tissue, the potential\\u000a role of endophytic fungi in nematode control

Johannes Hallmann; Richard A. Sikora

92

The characterization and diversity of bacterial endophytes of grapevine.  

PubMed

The diversity of culturable and nonculturable bacterial endophytes of grapevine (Vitis vinifera L.) was examined using a combination of cultivation and molecular methods. Entire grapevines were sampled to characterize bacterial diversity from different locations throughout the vine. Gas chromatography of fatty acid methyl esters (FAMEs) was used to identify culturable isolates prior to subsequent further microbiological characterization, whilst denaturing gradient gel electrophoresis (DGGE) was used to profile the ribosomal DNA of the bacterial endophyte community extracted from grapevines. Gas chromatography of FAMEs identified 75% of culturable bacterial endophytes to genus level (similarity index >0.3). Many isolates were identified as Bacillus spp., Pseudomonas spp., and Curtobacterium spp. Additionally, actinomycetes are reported for the first time as endophytes of grapevines, with a number of isolates identified as Streptomyces spp. DGGE was successfully used to identify major bands present in samples and indicated a degree of homogeneity of bacterial endophyte community profiles within the grapevines sampled. The major bacterial bands were sequenced and used in identification. Comparison with bacterial markers produced from cultured bacterial endophytes suggested that bacteria in the DGGE profiles were not the species most commonly cultured. Additional research demonstrated similarities between epiphytic and endophytic populations and examined potential entry vectors. Endophyte entry was demonstrated in both field-grown and potted grapevines ('Chardonnay') using a rifampicin-resistant Bacillus cereus mutant. The possibility of grapevine epiphytes becoming endophytes, if the opportunity arises, was supported by comparison of gas chromatography of FAMEs from epiphytic and endophytic populations. This research adds grapevine bacterial endophyte communities to those that have been characterized by a multifaceted approach. PMID:20453907

West, E R; Cother, E J; Steel, C C; Ash, G J

2010-03-01

93

Endophytic bacteria in sunflower (Helianthus annuus L.): isolation, characterization, and production of jasmonates and abscisic acid in culture medium.  

PubMed

This study was designed to isolate and characterize endophytic bacteria from sunflower (Helianthus annuus) grown under irrigation and water stress (drought) conditions, to analyze growth of isolated bacteria under drought condition, and to evaluate the ability of bacteria isolated from plants cultivated under drought to produce jasmonates (JAs) and abscisic acid (ABA). Bacteria were isolated from soil samples collected when sunflower plants were at the end of the vegetative stage. A total of 29 endophytic strains were isolated from plants grown under irrigation or drought condition. Eight strains (termed SF1 through SF8) were selected based on nitrogen-fixing ability. All eight strains showed positive catalase and oxidase activities; five strains (SF2, SF3, SF4, SF5, SF7) solubilized phosphates; none of the strains produced siderophores. Strains SF2, SF3, SF4, and SF5, the ones with the highest phosphate solubilization ability, strongly inhibited growth of the pathogenic fungi Verticillum orense and Sclerotinia sclerotiorum but had less inhibitory effect on Alternaria sp. Among the eight strains, SF2 showed 99.9% sequence homology with Achromobacter xiloxidans or Alcaligenes sp., while the other seven showed 99.9% homology with Bacillus pumilus. Strains SF2, SF3, and SF4 grown in control medium produced jasmonic acid (JA), 12-oxo-phytodienoic acid (OPDA), and ABA. These three strains did not differ in amount of JA or OPDA produced. ABA content was higher than that of JA, and production of both ABA and JA increased under drought condition. The characteristics of these isolated bacterial strains have technological implications for inoculant formulation and improved growth of sunflower crops. PMID:17657487

Forchetti, G; Masciarelli, O; Alemano, S; Alvarez, D; Abdala, G

2007-10-01

94

Floral ontogeny in Mazus pumilus (Scrophulariaceae)  

Microsoft Academic Search

InMazus pumilus, all the floral appendages are initiated in acropetal sequence in the second cell layer (except stamens) of the floral primordium\\u000a by periclinal divisions. The actinomorphic calyx tube is formed due to zonal growth. The zygomorphy in corolla is evident\\u000a from the inception of petal primordia which arise sequentially as independent units in order of one anterior, a pair

Ramaveer Rawat; Devendra K. Awasthi; Vishnu Kumar

1988-01-01

95

Preliminary Screening of Endophytic Fungi from Medicinal Plants in Malaysia for Antimicrobial and Antitumor Activity  

PubMed Central

The screening of antimicrobial activity against Gram-positive bacteria, Gram-negative bacteria, yeast and fungi was carried out on isopropanol extracts prepared from 121 isolates of endophytic fungi isolated from medicinal plants in Malaysia. Sensitivity was found to vary among the microorganisms. Bacillus subtilis, Saccharomyces cerevisiae and Alternaria sp. were susceptible to extracts from three, two and two isolates of endophytic fungi, respectively. None were found effective against Salmonella typhimurium. Sixteen endophytic fungal isolates tested were also found to exhibit antitumor activity in the yeast cell-based assay.

Radu, Son; Kqueen, Cheah Yoke

2002-01-01

96

Chitin extraction from shrimp shell waste using Bacillus bacteria.  

PubMed

The ability of six protease-producing Bacillus species (Bacillus pumilus A1, Bacillus mojavencis A21, Bacillus licheniformis RP1, Bacillus cereus SV1, Bacillus amyloliquefaciens An6 and Bacillus subtilis A26) to ferment media containing only shrimp shell waste, for chitin extraction, was investigated. More than 80% deproteinization was attained by all the strains tested. However, demineralization rates not exceeding 67% were registered. Cultures conducted in media containing shrimp shell waste supplemented with 5% (w/v) glucose were found to remarkably promote demineralization efficiency, without affecting deproteinization rates. The antioxidant activities of hydrolysates, at different concentrations, produced during fermentation in medium supplemented with glucose, were determined using different tests: 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical-scavenging method, reducing power assay and chelating activity. All hydrolysates showed varying degrees of antioxidant activity. Hydrolysate produced by B. pumilus A1 exhibited the highest DPPH radical scavenging activity, with an IC(50) value of 0.3 mg/ml. Highest reducing power (DO 700 nm=1.55 at 1.5 mg/ml) and metal chelating activity (98% at 5mg/ml) were obtained with B. pumilus A1 and B. licheniformis RP1 hydrolysates, respectively. PMID:22981824

Ghorbel-Bellaaj, Olfa; Younes, Islem; Maâlej, Hana; Hajji, Sawssen; Nasri, Moncef

2012-12-01

97

Endophytic Fungi from Paddy  

PubMed Central

Endophytic fungi were isolated from different parts of healthy paddy plants (Oryza sativa). The most common endophytic fungal genus recovered was Fusarium, followed by Aspergillus, Curvularia, Penicillium, Gilmaniella and Arthrobotrys foliicola. Fusarium and Curvularia had higher occurrences in the seeds compared with the other fungi. Aspergillus was recovered mostly from leaf blades and Penicillium from the leaf sheath. Gilmaniella and A. foliicola were isolated only from the roots and leaf blade, respectively. The assemblage of endophytic fungi in healthy tissues of paddy plants may indicate that some of the fungi are possible latent pathogens and some may become saprophytic.

Zakaria, Latiffah; Yaakop, Amira Suriaty; Salleh, Baharuddin; Zakaria, Maziah

2010-01-01

98

Deoxyribonucleic Acid Homology and Taxonomy of the Genus Bacillus  

Microsoft Academic Search

The taxonomic relationships among 56 strains of 16 species of the genus Bacillus were studied by deoxyribonucleic acid (DNA) -DNA hybridization. In general, no significant DNA homology was detected between two strains of different species, except for a group of species consisting of B. subtilis, B. amyloliquefaciens, B. lichenifonis, and B. pumilus and for another group of species including B.

TATSUJI SEKI; CHI-KWAN CHUNG; HIDETADA MIKAMI; YASUJI OSHIMA

1978-01-01

99

Phenotypic characterization of food waste degrading Bacillus strains isolated from aerobic bioreactors.  

PubMed

A phenotypic characterization of seventeen Bacillus strains isolated from aerobic thermophilic bioreactors of a food waste processing company was carried out, using fatty acid and enzymatic activity profiles. It was observed that each species possessed a typical fatty acid and enzymatic production profile. Bacillus licheniformis strains exhibited the most significant enzyme production. Numerical analyses (principal component and hierarchical cluster analyses) revealed that Bacillus licheniformis strains were homogeneous regarding their fatty acid profiles whilst B. subtilis and Bacillus pumilus strains showed some phenotypic differences. However, enzymatic activities numerical analyses indicated that these three Bacillus species were more homogeneous regarding this phenotypic characteristic. PMID:16463317

Silva, Maria Teresa Saraiva Lopes da; Espírito Santo, Fátima; Pereira, Pablo Tavares; Roseiro, José Carlos Pereira

2006-01-01

100

In vitro assessment of marine Bacillus for use as livestock probiotics.  

PubMed

Six antimicrobial-producing seaweed-derived Bacillus strains were evaluated in vitro as animal probiotics, in comparison to two Bacillus from an EU-authorized animal probiotic product. Antimicrobial activity was demonstrated on solid media against porcine Salmonella and E. coli. The marine isolates were most active against the latter, had better activity than the commercial probiotics and Bacillus pumilus WIT 588 also reduced E. coli counts in broth. All of the marine Bacillus tolerated physiological concentrations of bile, with some as tolerant as one of the probiotics. Spore counts for all isolates remained almost constant during incubation in simulated gastric and ileum juices. All of the marine Bacillus grew anaerobically and the spores of all except one isolate germinated under anaerobic conditions. All were sensitive to a panel of antibiotics and none harbored Bacillus enterotoxin genes but all, except B. pumilus WIT 588, showed some degree of ?-hemolysis. However, trypan blue dye exclusion and xCELLigence assays demonstrated a lack of toxicity in comparison to two pathogens; in fact, the commercial probiotics appeared more cytotoxic than the majority of the marine Bacillus. Overall, some of the marine-derived Bacillus, in particular B. pumilus WIT 588, demonstrate potential for use as livestock probiotics. PMID:24796302

Prieto, Maria Luz; O'Sullivan, Laurie; Tan, Shiau Pin; McLoughlin, Peter; Hughes, Helen; Gutierrez, Montserrat; Lane, Jonathan A; Hickey, Rita M; Lawlor, Peadar G; Gardiner, Gillian E

2014-01-01

101

In Vitro Assessment of Marine Bacillus for Use as Livestock Probiotics  

PubMed Central

Six antimicrobial-producing seaweed-derived Bacillus strains were evaluated in vitro as animal probiotics, in comparison to two Bacillus from an EU-authorized animal probiotic product. Antimicrobial activity was demonstrated on solid media against porcine Salmonella and E. coli. The marine isolates were most active against the latter, had better activity than the commercial probiotics and Bacillus pumilus WIT 588 also reduced E. coli counts in broth. All of the marine Bacillus tolerated physiological concentrations of bile, with some as tolerant as one of the probiotics. Spore counts for all isolates remained almost constant during incubation in simulated gastric and ileum juices. All of the marine Bacillus grew anaerobically and the spores of all except one isolate germinated under anaerobic conditions. All were sensitive to a panel of antibiotics and none harbored Bacillus enterotoxin genes but all, except B. pumilus WIT 588, showed some degree of ?-hemolysis. However, trypan blue dye exclusion and xCELLigence assays demonstrated a lack of toxicity in comparison to two pathogens; in fact, the commercial probiotics appeared more cytotoxic than the majority of the marine Bacillus. Overall, some of the marine-derived Bacillus, in particular B. pumilus WIT 588, demonstrate potential for use as livestock probiotics.

Prieto, Maria Luz; O'Sullivan, Laurie; Tan, Shiau Pin; McLoughlin, Peter; Hughes, Helen; Gutierrez, Montserrat; Lane, Jonathan A.; Hickey, Rita M.; Lawlor, Peadar G.; Gardiner, Gillian E.

2014-01-01

102

Recovery Plan for Seabeach Amaranth ('Amaranthus pumilus') Rafinesque.  

National Technical Information Service (NTIS)

Seabeach amaranth (Amaranthus pumilus) is an annual plant native to the barrier island beaches of the Atlantic Coast. Because of its vulnerability to threats and the fact that it has already been eliminated from two-thirds of its historic range, the speci...

A. Weakley M. Bucher N. Murdock

1996-01-01

103

Fungal endophytes and bioprospecting  

Microsoft Academic Search

Horizontally transmitted fungal endophytes are an ecological group of fungi, mostly belonging to the Ascomycota, that reside in the aerial tissues and roots of plants without inducing any visual symptoms of their presence. These fungi appear to have a capacity to produce an array of secondary metabolites exhibiting a variety of biological activity. Although the ability of fungi to produce

T. S. Suryanarayanan; N. Thirunavukkarasu; M. B. Govindarajulu; F. Sasse; R. Jansen; T. S. Murali

2009-01-01

104

The communities of tomato (Solanum lycopersicum L.) leaf endophytic bacteria, analyzed by 16S-ribosomal RNA gene pyrosequencing.  

PubMed

Endophytic bacterial communities of tomato leaves were analyzed by 16S-rRNA gene pyrosequencing and compared to rhizosphere communities. Leaf endophytes mainly comprised five phyla, among which Proteobacteria was the most represented (90%), followed by Actinobacteria (1,5%), Planctomycetes (1,4%), Verrucomicrobia (1,1%), and Acidobacteria (0,5%). Gammaproteobacteria was the most abundant class of Proteobacteria (84%), while Alphaproteobacteria and Betaproteobacteria represented 12% and 4% of this phylum, respectively. Rarefaction curves for endophytic bacteria saturated at 80 OTUs, indicating a lower diversity as compared to rhizosphere samples (> 1700 OTUs). Hierarchical clustering also revealed that leaf endophytic communities strongly differed from rhizospheric ones. Some OTUs assigned to Bacillus, Stenotrophomonas, and Acinetobacter, as well as some unclassified Enterobacteriaceae were specific for the endophytic community, probably representing bacteria specialized in colonizing this niche. On the other hand, some OTUs detected in the leaf endophytic community were also present in the rhizosphere, probably representing soil bacteria that endophytically colonize leaves. As a whole, this study describes the composition of the endophytic bacterial communities of tomato leaves, identifying a variety of genera that could exert multiple effects on growth and health of tomato plants. PMID:24417185

Romero, Fernando M; Marina, María; Pieckenstain, Fernando L

2014-02-01

105

Antimicrobial Compounds from Tree Endophytes  

Microsoft Academic Search

\\u000a Endophytes are organisms that live at least parts of their life cycle asymptomatically within the plant tissue. Endophytic\\u000a fungi include new species as well as latent pathogens and dormant saprophytes. The estimated high species diversity of endophytes\\u000a and their adaptation to various plant habitats presumes a rich and almost untapped source of new secondary metabolites, some\\u000a of which might become

Anja Schueffler; Timm Anke

106

The occurrence and taxonomic value of PBS X-like defective phages in the genus Bacillus  

Microsoft Academic Search

72 strains of 24 Bacillus species were induced with mitomycin C. The lysates were examined for the presence of defective phages resembling PBS X in morphology. All strains tested of B. amyloliquefaciens. B, licheniformis, B. pumilus and B. subtilis contained such phages. Five morphological types of defective, PBS X-like phage could be distinguished, differing in their tail lengths and in

H. Y. Steensma; L. A. Robertson; J. D. VAN ELSAS

1978-01-01

107

Bacillus DNA in fossil bees: an ancient symbiosis?  

PubMed Central

We report here the isolation of DNA from abdominal tissue of four extinct stingless bees (Proplebeia dominicana) in Dominican amber, PCR amplification of a 546-bp fragment of the 16S rRNA gene from Bacillus spp., and their corresponding nucleotide sequences. These sequences were used in basic local alignment search tool searches of nonredundant nucleic acid data bases, and the highest scores were obtained with 16S rRNA sequences from Bacillus spp. Phylogenetic inference analysis by the maximum-likelihood method revealed close phylogenetic relationships of the four presumed ancient Bacillus sequences with Bacillus pumilus, B. firmus, B. subtilis, and B. circulans. These four extant Bacillus spp. are commonly isolated from abdominal tissue of stingless bees. The close phylogenetic association of the extracted DNA sequences with these bee colonizers suggests that a similar bee-Bacillus association existed in the extinct species P. dominicana.

Cano, R J; Borucki, M K; Higby-Schweitzer, M; Poinar, H N; Poinar, G O; Pollard, K J

1994-01-01

108

Antiproliferative, antifungal, and antibacterial activities of endophytic alternaria species from cupressaceae.  

PubMed

Recent research has shown the bioprospecting of endophytic fungi from Cupressaceae. Here, we further uncover that the healthy cypress plants such as Cupressus arizonica, Cupressus sempervirens var. cereiformis, and Thuja orientalis host highly bioactive endophytic Alternaria fungal species. Indeed, endophytic Alternaria alternata, Alternaria pellucida, and Alternaria tangelonis were recovered from healthy Cupressaceous trees. Biodiversity and bioactivity of recovered endophytic Alternaria species were a matter of biogeography and host identity. We further extracted such Alternaria's metabolites and highlighted their significant antiproliferative, growth inhibitory, and antibacterial activities against the model target fungus Pyricularia oryzae and the model pathogenic bacteria Bacillus sp., Erwinia amylovora, and Pseudomonas syringae. In vitro assays also indicated that endophytic Alternaria species significantly inhibited the growth of cypress fungal phytopathogens Diplodia seriata, Phaeobotryon cupressi, and Spencermartinsia viticola. In conclusion, since the recovered Alternaria species were originally reported as pathogenic and allergenic fungi, our findings suggest a possible ecological niche for them inside the foliar tissues of Cupressaceous trees. Moreover, in this study, the significant bioactivities of endophytic Alternaria species in association with Cupressaceae plant family are reported. PMID:24801337

Soltani, Jalal; Hosseyni Moghaddam, Mahdieh S

2014-09-01

109

[Influence of bacteria of Bacillus genus on the causative agent of bacterial cancer of tomatoes].  

PubMed

It has been shown that bacteria of the genus Bacillus inhibited the development of infection caused by Clavibacter michiganensis subsp. michiganensis, in tomatoes. Pre-sowing seed treatment with suspensions of Bacillus subtilis IMV B-7023 and Bacillus pumilus 3 enhanced resistance of plants to bacterial disease of cancer, probably due to the synthesis of biologically active substances with antimicrobial properties by these bacteria. Of the two strains of bacillus, differing by antagonist properties to C. michiganensis subsp. michiganensis, a significant stimulating effect on the growth and development of tomatoes was provided by the strain B. subtilis IMV B-7023, which is part of the bacterial preparations for crop production. PMID:23120989

Ro?, A A; Pasichnik, L A; Tserkovniak, L S; Khodos, S F; Kurdish, I K

2012-01-01

110

Establishing Fungal Entomopathogens as Endophytes: Towards Endophytic Biological Control  

PubMed Central

Beauveria bassiana is a fungal entomopathogen with the ability to colonize plants endophytically. As an endophyte, B. bassiana may play a role in protecting plants from herbivory and disease. This protocol demonstrates two inoculation methods to establish B. bassiana endophytically in the common bean (Phaseolus vulgaris), in preparation for subsequent evaluations of endophytic biological control. Plants are grown from surface-sterilized seeds for two weeks before receiving a B. bassiana treatment of 108 conidia/ml (or water) applied either as a foliar spray or a soil drench. Two weeks later, the plants are harvested and their leaves, stems and roots are sampled to evaluate endophytic fungal colonization. For this, samples are individually surface sterilized, cut into multiple sections, and incubated in potato dextrose agar media for 20 days. The media is inspected every 2-3 days to observe fungal growth associated with plant sections and record the occurrence of B. bassiana to estimate the extent of its endophytic colonization. Analyses of inoculation success compare the occurrence of B. bassiana within a given plant part (i.e. leaves, stems or roots) across treatments and controls. In addition to the inoculation method, the specific outcome of the experiment may depend on the target crop species or variety, the fungal entomopathogen species strain or isolate used, and the plant's growing conditions.

Parsa, Soroush; Ortiz, Viviana; Vega, Fernando E.

2013-01-01

111

Tree Endophytes and Wood Biodegradation  

Microsoft Academic Search

\\u000a In nature, wood-decaying fungi play an important role in global carbon and nitrogen cycling by promoting the bioconversion\\u000a of organic matter. Wood-decaying fungi colonize and degrade wood by attacking cell components with enzymatic and non-enzymatic\\u000a systems. Some fungal endophytes can become activate and express the wood-decay machinery under suitable conditions. It has\\u000a been proposed that endophytic fungi are involved in

Jaime Rodríguez; Juan Pedro Elissetche; Sofía Valenzuela

112

Diversity of endophytic bacteria in ginseng and their potential for plant growth promotion.  

PubMed

Endophytic bacteria have been found in virtually every plant studied, where they colonize the internal tissues of their host plant and can form a range of different beneficial relationships. The diversity of bacterial endophytes associated with ginseng plants of varying age levels in Korea was investigated. Fifty-one colonies were isolated from the interior of ginseng stems. Although a mixed composition of endophyte communities was recovered from ginseng based on the results of 16S rDNA analysis, bacteria of the genus Bacillus and Staphylococcus dominated in 1-year-old and 4-year-old plants, respectively. Phylogenetic analysis revealed four clusters: Firmicutes, Actinobacteria, ?-Proteobacteria, and ?-Proteobacteria, with Firmicutes being predominant. To evaluate the plant growth promoting activities, 18 representative isolates were selected. Amplification of nifH gene confirmed the presence of diazotrophy in only two isolates. Half of the isolates solubilized mineral phosphate. Except four, all the other endophytic isolates produced significant amounts of indole acetic acid in nutrient broth. Iron sequestering siderophore production was detected in seven isolates. Isolates E-I-3 (Bacillus megaterium), E-I-4 (Micrococcus luteus), E-I-8 (B. cereus), and E-I-20 (Lysinibacillus fusiformis) were positive for most of the plant growth promoting traits, indicating their role in growth promotion of ginseng. PMID:21046332

Vendan, Regupathy Thamizh; Yu, Young Joon; Lee, Sun Hee; Rhee, Young Ha

2010-10-01

113

Response of endophytic bacterial communities in banana tissue culture plantlets to Fusarium wilt pathogen infection.  

PubMed

Endophytic bacteria reside within plant hosts without having pathogenic effects, and various endophytes have been found to functionally benefit plant disease suppressive ability. In this study, the influence of banana plant stress on the endophytic bacterial communities, which was achieved by infection with the wilt pathogen Fusarium oxysporum f. sp. cubense, was examined by cultivation-independent denaturing gradient gel electrophoresis analysis of 16S ribosomal DNA directly amplified from plant tissue DNA. Community analysis clearly demonstrated increased bacterial diversity in pathogen-infected plantlets compared to that in control plantlets. By sequencing, bands most similar to species of Bacillus and Pseudomonas showed high density in the pathogen-treated pattern. In vitro screening of the isolates for antagonistic activity against Fusarium wilt pathogen acquired three strains of endophytic bacteria which were found to match those species that obviously increased in the pathogen infection process; moreover, the most inhibitive strain could also interiorly colonize plantlets and perform antagonism. The evidence obtained from this work showed that antagonistic endophytic bacteria could be induced by the appearance of a host fungal pathogen and further be an ideal biological control agent to use in banana Fusarium wilt disease protection. PMID:18497482

Lian, Jie; Wang, Zifeng; Zhou, Shining

2008-04-01

114

Induction of resistance against Fusarium wilt of tomato by combination of chitosan with an endophytic bacterial strain: ultrastructure and cytochemistry of the host response  

Microsoft Academic Search

.   The potential of Bacillus pumilus (PGPR strain SE?34), either alone or in combination with chitosan, for inducing defense reactions in tomato (Lycopersicon esculentum Mill.) plants inoculated with the vascular fungus, Fusarium oxysporum f. sp. radicis-lycopersici, was studied by light and transmission electron microscopy and further investigated by gold cytochemistry. The key importance\\u000a of fungal challenge in the elaboration of

Nicole Benhamou; Joseph W. Kloepper; Sadik Tuzun

1998-01-01

115

Cryptosporioptide: a bioactive polyketide produced by an endophytic fungus Cryptosporiopsis sp.  

PubMed

An antibiotic polyketide, Cryptosporioptide (1) was isolated from the culture extract of the endophytic fungus Cryptosporiopsis sp. The structure of Cryptosporioptide has been established with the help of 1D ((1)H, (13)C), 2D NMR (HSQC, HMBC, COSY, NOESY) techniques and mass spectrometry (FABMS, HRFABMS). The absolute configuration was established by means of electronic circular dichroism (ECD). Cryptosporioptide exhibited both lipoxygenase inhibitory and anti-Bacillus megaterium activities. PMID:23642454

Saleem, Muhammad; Tousif, Muhammad Imran; Riaz, Naheed; Ahmed, Ishtiaq; Schulz, Barbara; Ashraf, Muhammad; Nasar, Rumana; Pescitelli, Gennaro; Hussain, Hidayat; Jabbar, Abdul; Shafiq, Nusrat; Krohn, Karsten

2013-09-01

116

Hidden fungi, emergent properties: endophytes and microbiomes.  

PubMed

Endophytes are microorganisms that live within plant tissues without causing symptoms of disease. They are important components of plant microbiomes. Endophytes interact with, and overlap in function with, other core microbial groups that colonize plant tissues, e.g., mycorrhizal fungi, pathogens, epiphytes, and saprotrophs. Some fungal endophytes affect plant growth and plant responses to pathogens, herbivores, and environmental change; others produce useful or interesting secondary metabolites. Here, we focus on new techniques and approaches that can provide an integrative understanding of the role of fungal endophytes in the plant microbiome. Clavicipitaceous endophytes of grasses are not considered because they have unique properties distinct from other endophytes. Hidden from view and often overlooked, endophytes are emerging as their diversity, importance for plant growth and survival, and interactions with other organisms are revealed. PMID:19400639

Porras-Alfaro, Andrea; Bayman, Paul

2011-01-01

117

Molecular identification and pectate lyase production by Bacillus strains involved in cocoa fermentation.  

PubMed

We have previously reported the implication of Bacillus in the production of pectinolytic enzymes during cocoa fermentation. The objective of this work was to identify the Bacillus strains isolated from cocoa fermentation and study their ability to produce pectate lyase (PL) in various growth conditions. Ninety-eight strains were analyzed by Amplified Ribosomal DNA Restriction Analysis (ARDRA). Four different banding patterns were obtained leading to the clustering of the bacterial isolates into 4 distinct ARDRA groups. A subset of representative isolates for each group was identified by 16S rRNA gene partial sequencing. Six species were identified: Bacillus subtilis, Bacillus pumilus, Bacillus sphaericus, Bacillus cereus, Bacillus thuringiensis, together with Bacillus fusiformis which was isolated for the first time from cocoa fermentation. The best PL producers, yielding at least 9 U/mg of bacterial dry weight, belonged to B. fusiformis, B. subtilis, and B. pumilus species while those belonging to B. sphaericus, B. cereus and B. thuringiensis generally showed a low level of activity. Two kinds of PL were produced, as revealed by isoelectrofocusing: one with a pI of 9.8 produced by B. subtilis and B. fusiformis, the other with a pI of 10.5 was produced by B. pumilus. Strains yielded about 2 fold more PL in a pectic compound medium than in glucose medium and maximum enzyme production occurred in the late stationary bacterial growth phase. Together all these results indicate that PL production in the bacilli studied is modulated by the growth phase and by the carbon source present in the medium. PMID:21056768

Ouattara, Honoré G; Reverchon, Sylvie; Niamke, Sébastien L; Nasser, William

2011-02-01

118

Metabolic potential of endophytic bacteria?  

PubMed Central

The bacterial endophytic microbiome promotes plant growth and health and beneficial effects are in many cases mediated and characterized by metabolic interactions. Recent advances have been made in regard to metabolite production by plant microsymbionts showing that they may produce a range of different types of metabolites. These substances play a role in defense and competition, but may also be needed for specific interaction and communication with the plant host. Furthermore, few examples of bilateral metabolite production are known and endophytes may modulate plant metabolite synthesis as well. We have just started to understand such metabolic interactions between plants and endophytes, however, further research is needed to more efficiently make use of beneficial plant-microbe interactions and to reduce pathogen infestation as well as to reveal novel bioactive substances of commercial interest.

Brader, Gunter; Compant, Stephane; Mitter, Birgit; Trognitz, Friederike; Sessitsch, Angela

2014-01-01

119

Action of antimicrobial substances produced by different oil reservoir Bacillus strains against biofilm formation.  

PubMed

Microbial colonization of petroleum industry systems takes place through the formation of biofilms, and can result in biodeterioration of the metal surfaces. In a previous study, two oil reservoir Bacillus strains (Bacillus licheniformis T6-5 and Bacillus firmus H(2)O-1) were shown to produce antimicrobial substances (AMS) active against different Bacillus strains and a consortium of sulfate-reducing bacteria (SRB) on solid medium. However, neither their ability to form biofilms nor the effect of the AMS on biofilm formation was adequately addressed. Therefore, here, we report that three Bacillus strains (Bacillus pumilus LF4 -- used as an indicator strain, B. licheniformis T6-5, and B. firmus H(2)O-1), and an oil reservoir SRB consortium (T6lab) were grown as biofilms on glass surfaces. The AMS produced by strains T6-5 and H(2)O-1 prevented the formation of B. pumilus LF4 biofilm and also eliminated pre-established LF4 biofilm. In addition, the presence of AMS produced by H(2)O-1 reduced the viability and attachment of the SRB consortium biofilm by an order of magnitude. Our results suggest that the AMS produced by Bacillus strains T6-5 and H(2)O-1 may have a potential for pipeline-cleaning technologies to inhibit biofilm formation and consequently reduce biocorrosion. PMID:18330565

Korenblum, E; Sebastián, G V; Paiva, M M; Coutinho, C M L M; Magalhães, F C M; Peyton, B M; Seldin, L

2008-05-01

120

Evaluation of the efficacy and safety of a marine-derived Bacillus strain for use as an in-feed probiotic for newly weaned pigs.  

PubMed

Forty eight individual pigs (8.7±0.26 kg) weaned at 28±1 d of age were used in a 22-d study to evaluate the effect of oral administration of a Bacillus pumilus spore suspension on growth performance and health indicators. Treatments (n?=?16) were: (1) non-medicated diet; (2) medicated diet with apramycin (200 mg/kg) and pharmacological levels of zinc oxide (2,500 mg zinc/kg) and (3) B. pumilus diet (non-medicated diet + 10(10) spores/day B. pumilus). Final body weight and average daily gain tended to be lower (P?=?0.07) and feed conversion ratio was worsened (P<0.05) for the medicated treatment compared to the B. pumilus treatment. Ileal E. coli counts were lower for the B. pumilus and medicated treatments compared to the non-medicated treatment (P<0.05), perhaps as a result of increased ileal propionic acid concentrations (P<0.001). However, the medicated treatment reduced fecal (P<0.001) and cecal (P<0.05) Lactobacillus counts and tended to reduce the total cecal short chain fatty acid (SCFA) concentration (P?=?0.10). Liver weights were lighter and concentrations of liver enzymes higher (P<0.05) in pigs on the medicated treatment compared to those on the non-medicated or B. pumilus treatments. Pigs on the B. pumilus treatment had lower overall lymphocyte and higher granulocyte percentages (P<0.001) and higher numbers of jejunal goblet cells (P<0.01) than pigs on either of the other two treatments or the non-medicated treatment, respectively. However, histopathological examination of the small intestine, kidneys and liver revealed no abnormalities. Overall, the B. pumilus treatment decreased ileal E. coli counts in a manner similar to the medicated treatment but without the adverse effects on growth performance, Lactobacillus counts, cecal SCFA concentration and possible liver toxicity experienced with the medicated treatment. PMID:24586349

Prieto, Maria Luz; O'Sullivan, Laurie; Tan, Shiau Pin; McLoughlin, Peter; Hughes, Helen; O'Donovan, Orla; Rea, Mary C; Kent, Robert M; Cassidy, Joseph P; Gardiner, Gillian E; Lawlor, Peadar G

2014-01-01

121

Endophytic bacteria of Mammillaria fraileana, an endemic rock-colonizing cactus of the southern Sonoran Desert.  

PubMed

The small cactus Mammillaria fraileana is a pioneer rock-colonizing plant harboring endophytic bacteria with the potential for nitrogen fixation and rock weathering (phosphate solubilization and rock degradation). In seeds, only a combination of culture-independent methods, such as fluorescence in situ hybridization, scanning electron microscopy, and fluorescence vital staining, detected significant amounts of non-culturable, but living, endophytic bacteria distributed underneath the membrane covering the embryo, in the undifferentiated tissue of the embryo, and in the vascular tissue. Large populations of culturable endophytic bacteria were detected in stems and roots of wild plants colonizing rocks in the southern Sonoran Desert, but not in seeds. Among 14 endophytic bacterial isolates found in roots, four isolates were identified by full sequencing of their 16S rRNA gene. In vitro tests indicated that Azotobacter vinelandii M2Per is a potent nitrogen fixer. Solubilization of inorganic phosphate was exhibited by Pseudomonas putida M5TSA, Enterobacter sakazakii M2PFe, and Bacillus megaterium M1PCa, while A. vinelandii M2Per, P. putida M5TSA, and B. megaterium M1PCa weathered rock by reducing the size of rock particles, probably by changing the pH of the liquid media. Cultivated seedlings of M. fraileana, derived from disinfected seeds and inoculated with endophytic bacteria, showed re-colonization 105 days after inoculation. Their densities decreased from the root toward the stem and apical zones. Functional traits in planta of culturable and non-culturable endophytic bacteria in seeds remain unknown. PMID:21445557

Lopez, Blanca R; Bashan, Yoav; Bacilio, Macario

2011-07-01

122

Morphological and genetic characterization of endophytic bacteria isolated from roots of different maize genotypes.  

PubMed

Maize is one of the most important crops worldwide, and in Brazil, the state of Paraná stands as its largest producer. The crop demands high inputs of N fertilizers, therefore all strategies aiming to optimize the grain production with lower inputs are very relevant. Endophytic bacteria have a high potential to increment maize grain yield by means of input via biological nitrogen fixation and/or plant growth promotion, in this last case increasing the absorption of water and nutrients by the plants. In this study, we established a collection of 217 endophytic bacteria, isolated from roots of four lineages and three hybrid genotypes of maize, and isolated in four different N-free culture media. Biochemical-comprising growth in different carbon sources, intrinsic tolerance to antibiotics, and biochemical tests for catalase, nitrate reductase, urease, and growth in N-free media in vitro-and genetic characterization by BOX-PCR revealed great variability among the isolates. Both commercial hybrids and homozygous lineages were broadly colonized by endophytes, and sequencing of the 16S rRNA gene revealed the presence of bacteria belonging to the genera Pantoea, Bacillus, Burkholderia, and Klebsiella. Qualitative differences in endophytic colonization were detected between lineages and hybrid genotypes. PMID:22956211

Ikeda, Angela Cristina; Bassani, Luciana Lange; Adamoski, Douglas; Stringari, Danyelle; Cordeiro, Vanessa Kava; Glienke, Chirlei; Steffens, Maria Berenice Reynaud; Hungria, Mariangela; Galli-Terasawa, Lygia Vitoria

2013-01-01

123

Rapid inactivation of seven Bacillus spp. under simulated Mars UV irradiation  

NASA Astrophysics Data System (ADS)

Seven Bacillus spp. were exposed to simulations of Mars-normal UV fluence rates in order to study the effects of UV irradiation on microbial survival. A UV illumination system was calibrated to deliver 9.78 W m -2 (35.2 kJ m -2 h -1) of UVC + UVB irradiation (200-320 nm) to microbial samples, thus creating a clear-sky simulation (0.5 optical depth) of equatorial Mars. The Bacillus spp. studied were: B. licheniformis KL-196, B. megaterium KL-197, B. nealsonii FO-092, B. pumilus FO-36B, B. pumilus SAFR-032, B. subtilis 42HS1, and B. subtilis HA101. The bacteria were prepared as thin monolayers of endospores on aluminum coupons in order to simulate contaminated spacecraft surfaces. Bacterial monolayers were exposed to Mars UV irradiation for time-steps of 0, 0.25, 0.5, 1, 5, 15, 30, 60, 120, or 180 min. The surviving endospores were then assayed with a Most Probable Numbers (MPN) procedure and with a culture-based assay that utilized a bacillus spore germination medium. Results indicated that B. pumilus SAFR-032 was the most resistant, and B. subtilis 42HS-1 and B. megaterium were the most sensitive of the seven strains exposed to martian UV fluence rates. Bacillus subtilis 42HS1 and B. megaterium were inactivated after 30 min exposure to Mars UV, while B. pumilus SAFR-032 required 180 min for full inactivation in both assays. Spores of B. pumilus SAFR-032 exhibited significantly different inactivation kinetics suggesting that this wild type isolate also was more resistant than the standard dosimetric strain, B. subtilis HA101. Although the various Bacillus spp. exhibited diverse levels of UV resistance, none were immune to UV irradiation, and, thus, all species would be expected to be inactivated on Sun-exposed spacecraft surfaces within a few tens-of-minutes to a few hours on sol 1 under clear-sky conditions on equatorial Mars. The inactivation kinetics of all seven Bacillus spp. support the conclusion that significant levels of bioload reductions are possible on Sun-exposed spacecraft surfaces in very short time periods under clear-sky conditions on Mars. However, the presence of UV resistant microbes on spacecraft surfaces rapidly covered in dust during landing operations, and non-Sun-exposed surfaces of spacecraft remain concerns that must continue to be addressed through adequate spacecraft sanitizing procedures prior to launch.

Schuerger, Andrew C.; Richards, Jeff T.; Newcombe, David A.; Venkateswaran, Kasthuri

2006-03-01

124

Endophytic bacterial community living in roots of healthy and 'Candidatus Phytoplasma mali'-infected apple (Malus domestica, Borkh.) trees.  

PubMed

'Candidatus Phytoplasma mali', the causal agent of apple proliferation (AP) disease, is a quarantine pathogen controlled by chemical treatments against insect vectors and eradication of diseased plants. In accordance with the European Community guidelines, novel strategies should be developed for sustainable management of plant diseases by using resistance inducers (e.g. endophytes). A basic point for the success of this approach is the study of endophytic bacteria associated with plants. In the present work, endophytic bacteria living in healthy and 'Ca. Phytoplasma mali'-infected apple trees were described by cultivation-dependent and independent methods. 16S rDNA sequence analysis showed the presence of the groups Proteobacteria, Acidobacteria, Bacteroidetes, Actinobacteria, Chlamydiae, and Firmicutes. In detail, library analyses underscored 24 and 17 operational taxonomic units (OTUs) in healthy and infected roots, respectively, with a dominance of Betaproteobacteria. Moreover, differences in OTUs number and in CFU/g suggested that phytoplasmas could modify the composition of endophytic bacterial communities associated with infected plants. Intriguingly, the combination of culturing methods and cloning analysis allowed the identification of endophytic bacteria (e.g. Bacillus, Pseudomonas, and Burkholderia) that have been reported as biocontrol agents. Future research will investigate the capability of these bacteria to control 'Ca. Phytoplasma mali' in order to develop sustainable approaches for managing AP. PMID:22752594

Bulgari, Daniela; Bozkurt, Adem I; Casati, Paola; Ca?layan, Kadriye; Quaglino, Fabio; Bianco, Piero A

2012-11-01

125

Endophytes of grapevine flowers, berries, and seeds: identification of cultivable bacteria, comparison with other plant parts, and visualization of niches of colonization.  

PubMed

Endophytic bacteria can colonize various plants and organs. However, endophytes colonizing plant reproductive organs have been rarely analyzed. In this study, endophytes colonizing flowers as well as berries and seeds of grapevine plants grown under natural conditions were investigated by cultivation as well as by fluorescence in situ hybridization. For comparison, bacteria were additionally isolated from other plant parts and the rhizosphere and characterized. Flowers, fruits, and seeds hosted various endophytic bacteria. Some taxa were specifically isolated from plant reproductive organs, whereas others were also detected in the rhizosphere, endorhiza or grape inflo/infructescence stalk at the flowering or berry harvest stage. Microscopic analysis by fluorescence in situ hybridization of resin-embedded samples confirmed the presence of the isolated taxa in plant reproductive organs and enabled us to localize them within the plant. Gammaproteobacteria (including Pseudomonas spp.) and Firmicutes (including Bacillus spp.) were visualized inside the epidermis and xylem of ovary and/or inside flower ovules. Firmicutes, mainly Bacillus spp. were additionally visualized inside berries, in the intercellular spaces of pulp cells and/or xylem of pulp, but also along some cell walls inside parts of seeds. Analysis of cultivable bacteria as well as microscopic results indicated that certain endophytic bacteria can colonize flowers, berries, or seeds. Our results also indicated that some specific taxa may not only derive from the root environment but also from other sources such as the anthosphere. PMID:21625971

Compant, Stéphane; Mitter, Birgit; Colli-Mull, Juan Gualberto; Gangl, Helmut; Sessitsch, Angela

2011-07-01

126

The chemical constituents of endophytic fungus Trichoderma sp. MFF-1.  

PubMed

A fungal strain named MFF-1 was isolated from the flower of Pyrethrum cinerariifolium. Based on the sequence at the internal transcribed spacer (ITS) region, this strain was identified as a Trichoderma sp. Two new compounds, including a mitorubrin derivative and its potential biogenetic precursor, together with a known compound, were isolated from the cultures of the endophytic fungus. Their structures were established by spectroscopic methods and determined to be (3S*,6R*,7R*)-3,4,5,6,7,8-hexahydro-7-hydroxy-7-methyl-8-oxo-3-[(E)-prop-1-enyl]-1H-isochromen-6-yl 2,4-dihydroxy-6-methylbenzoate (1), named deacetylisowortmin, (E)-2-(hydroxymethyl)-3-(2-hydroxypent-3-enyl)phenol (2), and wortmannin (3). All compounds were assayed for antimicrobial activity. Compound 3 showed activity against Candida albicans and Bacillus cereus. PMID:20658667

Li, Guo-Hong; Wang, Xing-Biao; Liu, Fang-Fang; Dang, Li-Zhi; Li, Lei; Yang, Zhong-Shan; Xin, Xiong; Zhang, Ke-Qin

2010-07-01

127

Bacillus pumilus laccase: a heat stable enzyme with a wide substrate spectrum  

Microsoft Academic Search

BACKGROUND: Laccases are multi-copper oxidases that catalyze the one electron oxidation of a broad range of compounds. Laccase substrates include substituted phenols, arylamines and aromatic thiols. Such compounds are activated by the enzyme to the corresponding radicals. Owing to their broad substrate range laccases are considered to be versatile biocatalysts which are capable of oxidizing natural and non-natural industrial compounds,

Renate Reiss; Julian Ihssen; Linda Thöny-Meyer

2011-01-01

128

77 FR 19109 - Bacillus Pumilus Strain GHA 180; Exemption From the Requirement of a Tolerance  

Federal Register 2010, 2011, 2012, 2013

...R, et al., Manual of Clinical Microbiology. Washington, D. C.: ASM Press...and T.J. Montville. 1997. Food Microbiology: Fundamentals and Frontiers. American Society for Microbiology, Washington, DC 5. World...

2012-03-30

129

Molecular phylogenetic diversity of Bacillus community and its temporal-spatial distribution during the swine manure of composting.  

PubMed

In order to obtain the diversity and temporal-spatial distribution of Bacillus community during the swine manure composting, we utilized traditional culture methods and the modern molecular biology techniques of polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) and -denaturing gradient gel electrophoresis (PCR-DGGE). Bacillus species were firstly isolated from the composting. Based on temperature changes, the temporal-spatial characteristics of total culturable Bacillus were remarkable that the number of the culturable Bacillus detected at the high-temperature stage was the highest in each layer of the pile and that detected in the middle layer was the lowest at each stage of composting respectively. The diversity of cultivated Bacillus species isolated from different composting stages was low. A total of 540 isolates were classified by the RFLP method and partial 16S rDNA sequences. They affiliated to eight species including Bacillus subtilis, Bacillus cereus, Bacillus thuringiensis, Bacillus anthracis, Bacillus megaterium, Bacillus licheniformis, Bacillus pumilus, and Bacillus circulans. The predominant species was B. subtilis, and the diversity of culturable Bacillus isolated in the middle-level samples at temperature rising and cooling stages was the highest. The DGGE profile and clone library analysis revealed that the temporal-spatial distribution of Bacillus community was not obvious, species belonging to the Bacillus were dominant (67%) with unculturable bacteria and B. cereus was the second major culturable Bacillus species. This study indicated that a combination of culture and culture-independent approaches could be very useful for monitoring the diversity and temporal-spatial distribution of Bacillus community during the composting process. PMID:21701982

Yi, Jing; Wu, Hua-Yu; Wu, Jian; Deng, Chang-Yan; Zheng, Rong; Chao, Zhe

2012-01-01

130

Diversity of endophytic fungi isolated from korean ginseng leaves.  

PubMed

We investigated the diversity of the foliar endophytes of Korean ginseng. Endophytic fungi were isolated from healthy leaves of mountain-cultivated ginseng (MCG) and field-cultivated ginseng (FCG) at 4 sites in Chungbuk Province. A total of 24 species of fungal endophytes were identified using molecular approaches. Additionally, the diversity of these endophytic fungi was compared between MCG and FCG. The major isolated endophytes were Edenia gomezpompae and Gibberella moniliformis in the MCG and FCG samples, respectively. The results suggest that ginseng endophytes have different community structures in different environments, and this understanding may prove useful in ginseng cultivation. PMID:25071383

Eo, Ju-Kyeong; Choi, Min-Seok; Eom, Ahn-Heum

2014-06-01

131

Diversity of Endophytic Fungi Isolated from Korean Ginseng Leaves  

PubMed Central

We investigated the diversity of the foliar endophytes of Korean ginseng. Endophytic fungi were isolated from healthy leaves of mountain-cultivated ginseng (MCG) and field-cultivated ginseng (FCG) at 4 sites in Chungbuk Province. A total of 24 species of fungal endophytes were identified using molecular approaches. Additionally, the diversity of these endophytic fungi was compared between MCG and FCG. The major isolated endophytes were Edenia gomezpompae and Gibberella moniliformis in the MCG and FCG samples, respectively. The results suggest that ginseng endophytes have different community structures in different environments, and this understanding may prove useful in ginseng cultivation.

Eo, Ju-Kyeong; Choi, Min-Seok

2014-01-01

132

Monitoring the ecology of Bacillus during Daqu incubation, a fermentation starter, using culture-dependent and culture-independent methods.  

PubMed

Daqu, a traditional fermentation starter, has been used to produce attractively flavored foods such as vinegar and Chinese liquor for thousands of years. Although Bacillus spp. are one of the dominant microorganisms in Daqu, more precise information is needed to reveal why and how Bacillus became dominant in Daqu, and next, to assess the impact of Bacillus sp. on Daqu and its derived products. We combined culture-dependent and culture-independent methods to study the ecology of Bacillus during Daqu incubation. Throughout the incubation, 67 presumptive Bacillus spp. isolates were obtained, 52 of which were confirmed by 16S rDNA sequencing. The identified organisms belonged to 8 Bacillus species: B. licheniformis, B. subtilis, B. amyloliquefaciens, B. cereus, B. circulans, B. megaterium, B. pumilus, and B. anthracis. A primer set specific for Bacillus and related genera was used in a selective PCR study, followed by a nested DGGE PCR targeting the V9 region of the 16S rDNA. Species identified from the PCR-DGGE fingerprints were related to B. licheniformis, B. subtilis, B. amyloliquefaciens, B. pumilus, B. benzoevorans, and B. foraminis. The predominant species was found to be B. licheniformis. Certain B. licheniformis strains exhibited potent antimicrobial activities. The greatest species diversity occurred at the Liangmei stage of Daqu incubation. To date, we lack sufficient knowledge of Bacillus distribution in Daqu. Elucidating the ecology of Bacillus during Daqu incubation would enable the impact of Bacillus on Daqu to be accessed, and the quality and stabilization of Daqu-derived products to be optimized. PMID:23648849

Yan, Zheng; Zheng, Xiao-Wei; Han, Bei-Zhong; Han, Jian-Shu; Nout, M J Robert; Chen, Jing-Yu

2013-05-01

133

Sterilization of Bacillus spores by converted X rays  

NASA Astrophysics Data System (ADS)

Relative sensitivities of endospores of Bacillus pumilus E601, B. subtilis IAM1069, B. megaterium S31 and B. brevis S5 to gamma rays, converted X rays (bremsstrahlung) and electron beams were examined in order to estimate the conditions in which converted X rays kill Bacillus spores. The radiation sensitivities to gamma rays and electron beams of each strain dried on glass fiber filter without additives were found to be almost equivalent, and D values were obtained as follows: 1.5-1.6 kGy for B. pumilus, 1.4-1.5 kGy for B. subtilis, 1.9-2.0 kGy for B. megaterium and 1.6-2.0 kGy for B. brevis. The radiation sensitivities of endospores of each strain to electron beams were slightly lower than those to gamma rays in the dry condition with additives of 2% peptone + 1 % glycerin on glass fiber filters. The increase of radiation resistance in the presence of additives was also observed with X rays, and it was on an intermediate level between those with gamma rays and electron beams. In the dry condition using cellulose filter paper, only the radiation resistances of B. megaterium and B. brevis in the presence of additives B. megaterium and B. brevis in the presence of additives were increased.

Ito, Hitoshi; Ohki, Yumi; Watanabe, Yuhei; Sunaga, Hiromi; Ishigaki, Isao

1993-10-01

134

Antitumor and antimicrobial activities of endophytic fungi from medicinal parts of Aquilaria sinensis *  

PubMed Central

The purpose of this study was to isolate and characterize endophytic fungi from the stem tissue which can produce fragrant ingredients in Aquilaria sinensis (also called agarwood) to determine their antitumor and antimicrobial activities. Twenty-eight fungal endophytes were isolated from agarwood by strict sterile sample preparation and were classified into 14 genera and 4 taxonomic classes (Sordariomycetes, Dothideomycetes, Saccharomycetes, and Zygomycetes) based on molecular identification. Of the 28 isolates, 13 (46.4%) showed antimicrobial activity against at least one of the test strains by the agar well diffusion method, and 23 isolates (82.1%) displayed antitumor activity against at least one of five cancer cell lines by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. The diameters of inhibition zones of YNAS07, YNAS14, HNAS04, HNAS05, HNAS08, and HNAS11 were equal to or higher than 14.0 mm against Staphylococcus aureus, Escherichia coli, Bacillus subtilis, B. subtilis, Aspergillus fumigatus, and B. subtilis, respectively. The inhibition rates of YNAS06, YNAS08, and HNAS06 were not less than 60% to 293-T, 293-T, and SKVO3 cells, respectively. These results suggest that the endophytic fungi associated with agarwood will provide us with not only useful micro-ecological information, but also potential antimicrobial and antitumor agents.

Cui, Jin-long; Guo, Shun-xing; Xiao, Pei-gen

2011-01-01

135

Antimicrobial activity of pyrrocidines from Acremonium zeae against endophytes and pathogens of maize.  

PubMed

Acremonium zeae produces pyrrocidines A and B, which are polyketide-amino acid-derived antibiotics, and is recognized as a seedborne protective endophyte of maize which augments host defenses against microbial pathogens causing seedling blights and stalk rots. Pyrrocidine A displayed significant in vitro activity against Aspergillus flavus and Fusarium verticillioides in assays performed using conidia as inoculum, with pyrrocidine A being more active than B. In equivalent assays performed with conidia or hyphal cells as inoculum, pyrrocidine A revealed potent activity against major stalk and ear rot pathogens of maize, including F. graminearum, Nigrospora oryzae, Stenocarpella (Diplodia) maydis, and Rhizoctonia zeae. Pyrrocidine A displayed significant activity against seed-rotting saprophytes A. flavus and Eupenicillium ochrosalmoneum, as well as seed-infecting colonists of the phylloplane Alternaria alternata, Cladosporium cladosporioides, and Curvularia lunata, which produces a damaging leaf spot disease. Protective endophytes, including mycoparasites which grow asymptomatically within healthy maize tissues, show little sensitivity to pyrrocidines. Pyrrocidine A also exhibited potent activity against Clavibacter michiganense subsp. nebraskense, causal agent of Goss's bacterial wilt of maize, and Bacillus mojaviense and Pseudomonas fluorescens, maize endophytes applied as biocontrol agents, but were ineffective against the wilt-producing bacterium Pantoea stewartii. PMID:19055442

Wicklow, Donald T; Poling, Stephen M

2009-01-01

136

Isolation, Characterization, and Insecticidal Activity of an Endophyte of Drunken Horse Grass, Achnatherum inebrians  

PubMed Central

Endophytic microorganisms reside within plant tissues and have often been found to promote plant growth. In this study, endophytic microorganisms were isolated from the roots, stems, leaves, and seeds of healthy drunken horse grass, Achnatherum inebrians (Hance) Keng (Poales: Poaceae), through the use of a grinding separation method and identified by a dual approach of morphological and physiological observation and 16S rRNA gene-based (for bacteria) and internal transcribed sequence-based (for fungi) molecular identification. The endophytes were then inoculated into liquid media for fermentation, and their crude extracts were employed for insecticidal activity tests using slide disc immersion and nebulization methods. A total of 89 bacteria species, which were classified into eight genera, Bacillus, Pseudomonas, Actinomyces, Corynebacterium, Acinetobacter, Sphingomonas, Paenibacillus, and Phyllobacterium, and two fungi, Claviceps and Chaetomium, were isolated. Of these species, isolates Streptomyces albus (Rossi-Doria) Waksman and Henrici (Actinomycetales: Streptomycetaceae) (GA) and Claviceps purpurea (Fr.) Tul. (Hypocreales: Clavicipitaceae) (PF-2) were shown to produce mortality rates of more than 90% in the cotton aphid, Aphis gossypii Glover (Hemiptera: Aphididae), after first and second screenings. The isolates PF-2 and GA associated with A. inebrians had significant insecticidal activities towards A. gossypii Glover (Hemiptera: Aphididae) and may provide a new biological resource for exploring a new microbial insecticide.

Shi, YingWu; Zhang, Xuebing; Lou, Kai

2013-01-01

137

Isolation, Characterization, and Insecticidal Activity of an Endophyte of Drunken Horse Grass, Achnatherum inebrians.  

PubMed

Abstract Endophytic microorganisms reside within plant tissues and have often been found to promote plant growth. In this study, endophytic microorganisms were isolated from the roots, stems, leaves, and seeds of healthy drunken horse grass, Achnatherum inebrians (Hance) Keng (Poales: Poaceae), through the use of a grinding separation method and identified by a dual approach of morphological and physiological observation and 16S rRNA gene-based (for bacteria) and internal transcribed sequence-based (for fungi) molecular identification. The endophytes were then inoculated into liquid media for fermentation, and their crude extracts were employed for insecticidal activity tests using slide disc immersion and nebulization methods. A total of 89 bacteria species, which were classified into eight genera, Bacillus, Pseudomonas, Actinomyces, Corynebacterium, Acinetobacter, Sphingomonas, Paenibacillus, and Phyllobacterium, and two fungi, Claviceps and Chaetomium, were isolated. Of these species, isolates Streptomyces albus (Rossi-Doria) Waksman and Henrici (Actinomycetales: Streptomycetaceae) (GA) and Claviceps purpurea (Fr.) Tul. (Hypocreales: Clavicipitaceae) (PF-2) were shown to produce mortality rates of more than 90% in the cotton aphid, Aphis gossypii Glover (Hemiptera: Aphididae), after first and second screenings. The isolates PF-2 and GA associated with A. inebrians had significant insecticidal activities towards A. gossypii Glover (Hemiptera: Aphididae) and may provide a new biological resource for exploring a new microbial insecticide. PMID:24784492

Shi, Yingwu; Zhang, Xuebing; Lou, Kai

2013-12-01

138

Endophytic Fungi for Pest and Disease Management  

Microsoft Academic Search

Endophytes are microorganisms that inhabit the interior of a healthy plants. They offer great-untapped potentials, which can\\u000a be exploited to maintain healthy crops. Many cultivated and wild type plants have been investigated for endophytic fungal\\u000a metabolites which include guanidine and pyrrolizidine alkaloids, indole derivatives, sesquiterpenes, isocoumarin derivatives.\\u000a These metabolites show beneficial effects to crop plants and many of them also

Susheel Kumar; Nutan Kaushik; RuAngelie Edrada-Ebel; Rainer Ebel; Peter Proksch

139

Grasses and Neotyphodium endophytes: co-adaptation and adaptive breeding  

Microsoft Academic Search

Neotyphodium endophytes profoundly affect the biology of their host grasses, including the important forage species perennial ryegrass,\\u000a tall fescue and meadow fescue. The endophytic association is finely balanced, involving adaptation in each associate. The\\u000a evidence for co-adaptation is discussed. The presence of endophyte, and the difference between endophyte strains, can affect\\u000a some plant properties more than genetic variation intrinsic to

Herrick Sydney Easton

2007-01-01

140

Summer Dormancy and Endophyte Infection in Tall Fescue  

Microsoft Academic Search

Summer dormancy is a drought escape mechanism for some Mediterranean-origin perennial grasses. Little is known of the influence of fungal endophytes (Neotyphodium spp.) on the expression of summer dormancy in their grass hosts or of the possible role of endophytes in host drought survival. Research was conducted to investigate interactions between summer dormancy potential and endophyte symbiosis as related to

J. L. Underwood; C. P. West; D. P. Malinowski; C. A. Guerber; B. C. Grigg

141

7 CFR 201.58d - Fungal endophyte test.  

Code of Federal Regulations, 2010 CFR

...2013-01-01 2013-01-01 false Fungal endophyte test. 201.58d Section 201.58d Agriculture...Administration of the Act § 201.58d Fungal endophyte test. A fungal endophyte test may be used to determine the amount of...

2013-01-01

142

7 CFR 201.58d - Fungal endophyte test.  

Code of Federal Regulations, 2010 CFR

...2012-01-01 2012-01-01 false Fungal endophyte test. 201.58d Section 201.58d Agriculture...Administration of the Act § 201.58d Fungal endophyte test. A fungal endophyte test may be used to determine the amount of...

2012-01-01

143

7 CFR 201.58d - Fungal endophyte test.  

Code of Federal Regulations, 2010 CFR

...2011-01-01 2011-01-01 false Fungal endophyte test. 201.58d Section 201.58d Agriculture...Administration of the Act § 201.58d Fungal endophyte test. A fungal endophyte test may be used to determine the amount of...

2011-01-01

144

Poplar and its Bacterial Endophytes: Coexistence and Harmony  

Microsoft Academic Search

Associations between plants and microorganisms are very complex and are the subject of an increasing number of studies. Here, we specifically address the relationship between poplar and its endophytic bacteria. The role and importance of endophytic bacteria in growth and development of their host plants is still underestimated. However, since many endophytes have a beneficial effect on their host, an

Daniel van der Lelie; Safiyh Taghavi; Sébastien Monchy; Jorg Schwender; Lisa Miller; Richard Ferrieri; Alistair Rogers; Xiao Wu; Wei Zhu; Nele Weyens; Jaco Vangronsveld; Lee Newman

2009-01-01

145

Identification and characterization of endophytic bacteria from corn (Zea mays L.) roots with biotechnological potential in agriculture  

PubMed Central

Six endophytic bacteria of corn roots were identified as Bacillus sp. and as Enterobacter sp, by sequencing of the 16S rRNA gene. Four of the strains, CNPSo 2476, CNPSo 2477, CNPSo 2478 and CNPSo 2480 were positive for the nitrogen fixation ability evaluated through the acetylene reduction assay and amplification of nifH gene. Two Bacillus strains (CNPSo 2477 and CNPSo 2478) showed outstanding skills for the production of IAA, siderophores and lytic enzymes, but were not good candidates as growth promoters, because they reduced seed germination. However, the same strains were antagonists against the pathogenic fungi Fusarium verticillioides, Colletotrichum graminicola, Bipolaris maydis and Cercospora zea-maydis. As an indication of favorable bacterial action, Enterobacter sp. CNPSo 2480 and Bacillus sp. CNPSo 2481 increased the root volume by 44% and 39%, respectively, and the seed germination by 47% and 56%, respectively. Therefore, these two strains are good candidates for future testing as biological inoculants for corn.

2014-01-01

146

Diversity of endophytic bacteria in Brazilian sugarcane.  

PubMed

Endophytic bacteria live inside plant tissues without causing disease. Studies of endophytes in sugarcane have focused on the isolation of diazotrophic bacteria. We examined the diversity of endophytic bacteria in the internal tissues of sugarcane stems and leaves, using molecular and biochemical methods. Potato-agar medium was used to cultivate the endophytes; 32 isolates were selected for analysis. DNA was extracted and the 16S rRNA gene was partially sequenced and used for molecular identification. Gram staining, catalase and oxidase tests, and the API-20E system were used to characterize the isolates. The strains were divided into five groups, based on the 16S rRNA sequences. Group I comprised 14 representatives of the Enterobacteriaceae; group II was composed of Bacilli; group III contained one representative, Curtobacterium sp; group IV contained representatives of the Pseudomonadaceae family, and group V had one isolate with an uncultured bacterium. Four isolates were able to reduce acetylene to ethylene. Most of the bacteria isolated from the sugarcane stem and leaf tissues belonged to Enterobacteriaceae and Pseudomonaceae, respectively, demonstrating niche specificity. Overall, we found the endophytic bacteria in sugarcane to be more diverse than previously reported. PMID:20198580

Magnani, G S; Didonet, C M; Cruz, L M; Picheth, C F; Pedrosa, F O; Souza, E M

2010-01-01

147

Analysis of the abilities of endophytic bacteria associated with banana tree roots to promote plant growth.  

PubMed

A total of 40 endophytic bacterial isolates obtained from banana tree roots were characterized for their biotechnological potential for promoting banana tree growth. All isolates had at least one positive feature. Twenty isolates were likely diazotrophs and formed pellicles in nitrogen-free culture medium, and 67% of these isolates belonged to the genus Bacillus sp. The isolates EB-04, EB-169, EB-64, and EB-144 had N fixation abilities as measured by the Kjeldahl method and by an acetylene reduction activity assay. Among the 40 isolates, 37.5% were capable of solubilizing inorganic phosphate and the isolates EB-47 and EB-64 showed the highest solubilization capacity. The isolate EB-53 (Lysinibacillus sp.) had a high solubilization index, whereas 73% of the isolates had low solubilization indices. The synthesis of indole-3-acetic acid (IAA) in the presence of L-tryptophan was detected in 40% of the isolates. The isolate EB-40 (Bacillus sp.) produced the highest amount of IAA (47.88 ?g/ml) in medium supplemented with L-tryptophan and was able to synthesize IAA in the absence of L-tryptophan. The isolates EB-126 (Bacillus subtilis) and EB-47 (Bacillus sp.) were able to simultaneously fix nitrogen, solubilize phosphate and produce IAA in vitro. The results of this study demonstrated that the isolates analyzed here had diverse abilities and all have the potential to be used as growth-promoting microbial inoculants for banana trees. PMID:24390835

Andrade, Leandro Fernandes; de Souza, Gleika Larisse Oliveira Dorasio; Nietsche, Silvia; Xavier, Adelica Aparecida; Costa, Marcia Regina; Cardoso, Acleide Maria Santos; Pereira, Marlon Cristian Toledo; Pereira, Débora Francine Gomes Silva

2014-01-01

148

Evolution of Reproductive Morphology in Leaf Endophytes  

PubMed Central

The endophytic lifestyle has played an important role in the evolution of the morphology of reproductive structures (body) in one of the most problematic groups in fungal classification, the Leotiomycetes (Ascomycota). Mapping fungal morphologies to two groups in the Leiotiomycetes, the Rhytismatales and Hemiphacidiaceae reveals significant divergence in body size, shape and complexity. Mapping ecological roles to these taxa reveals that the groups include endophytic fungi living on leaves and saprobic fungi living on duff or dead wood. Finally, mapping of the morphologies to ecological roles reveals that leaf endophytes produce small, highly reduced fruiting bodies covered with fungal tissue or dead host tissue, while saprobic species produce large and intricate fruiting bodies. Intriguingly, resemblance between asexual conidiomata and sexual ascomata in some leotiomycetes implicates some common developmental pathways for sexual and asexual development in these fungi.

Wang, Zheng; Johnston, Peter R.; Yang, Zhu L.; Townsend, Jeffrey P.

2009-01-01

149

Bioactive aromatic derivatives from endophytic fungus, Cytospora sp.  

PubMed

Two new benzyl gamma-butyrolactone analogues, (R)-5-((S)-hydroxy(phenyl)-methyl)dihydrofuran-2(3H)-one (1) and its 6-acetate (2), and a new naphthalenone derivative (8), together with eight additional known aromatic derivatives, (S)-5-((S)-hydroxy(phenyl)-methyl)dihydrofuran-2(3H)-one (3), (S)-5-benzyl-dihydrofuran-2(3H)-one (4), 5-phenyl-4-oxopentanoic acid (5), gamma-oxo-benzenepentanoic acid methyl ester (6), 3-(2,5-dihydro-4-hydroxy-5-oxo-3-phenyl-2-furyl)propionic acid (7), (3R)-5-methylmellein (9), integracins A (10) and B (11) were isolated from Cytospora sp., an endophytic fungus isolated from Ilex canariensis from Gomera. The structures of these compounds were elucidated by detailed spectroscopic analysis, comparison with reported data, and chemical interconversion. The absolute configurations of the new compounds (1, 2, 8) were established on the basis of optical rotation or CD spectra analysis. Preliminary studies showed antimicrobial activity of these compounds against the fungi Microbotryum violaceum, Botrytis cinerea and Septoria tritici, the alga Chlorella fusca, and the bacterium Bacillus megaterium. PMID:21615028

Lu, Shan; Draeger, Siegfried; Schulz, Barbara; Krohn, Karsten; Ahmed, Ishtiaq; Hussain, Hidayat; Yi, Yanghua; Li, Ling; Zhang, Wen

2011-05-01

150

In vitro susceptibility of Bacillus spp. to selected antimicrobial agents.  

PubMed Central

Although often dismissed as contaminants when isolated from blood cultures, Bacillus spp. are increasingly recognized as capable of causing serious systemic infections. As part of a clinical-microbiological study, 89 strains of Bacillus spp. isolated from clinical blood cultures between 1981 and 1985 had their species determined and were tested for antimicrobial agent susceptibility to 18 antibiotics. Species of isolates were determined by the API 50CH and API 20E systems. Bacillus cereus (54 strains) was the most common species isolated, followed by B. megaterium (13 strains), B. polymyxa (5 strains), B. pumilus (4 strains), B. subtilis (4 strains), B. circulans (3 strains), B. amyloliquefaciens (2 strains), B. licheniformis (1 strain), and Bacillus spp. (3 strains). Microdilution MIC susceptibility tests revealed all B. cereus strains to be susceptible to imipenem, vancomycin, chloramphenicol, gentamicin, and ciprofloxacin. Non-B. cereus strains were most susceptible to imipenem, vancomycin, LY146032, and ciprofloxacin. Disk susceptibility testing suggested that B. cereus was rarely susceptible to penicillins, semisynthetic penicillins, or cephalosporins with the exception of mezlocillin. In contrast, many non-B. cereus strains were susceptible to penicillins, semisynthetic penicillins, and cephalosporins, but marked variability was noted among species.

Weber, D J; Saviteer, S M; Rutala, W A; Thomann, C A

1988-01-01

151

Helvolic acid, an antibacterial nortriterpenoid from a fungal endophyte, Xylaria sp. of orchid Anoectochilus setaceus endemic to Sri Lanka  

PubMed Central

An endophytic fungus was isolated from surface sterilized leaf segments of Anoectochilus setaceus, an orchid endemic to Sri Lanka, and was identified as Xylaria sp. by morphological characters and DNA sequencing. Bioassay-guided chromatographic fractionation of the organic extract of a laboratory culture of this fungus led to the isolation of the known antibacterial helvolic acid. Helvolic acid was active against the Gram-positive bacteria, Bacillus subtilis [minimal inhibitory concentrations (MIC), 2 ?g mL?1] and methicillin-resistant Staphylococcus aureus (MIC, 4 ?g mL?1).

Ratnaweera, Pamoda B.; Williams, David E.; de Silva, E. Dilip; Wijesundera, Ravi L.C.; Dalisay, Doralyn S.; Andersen, Raymond J.

2014-01-01

152

Endophytic fungi reduce leaf-cutting ant damage to seedlings  

PubMed Central

Our study examines how the mutualism between Atta colombica leaf-cutting ants and their cultivated fungus is influenced by the presence of diverse foliar endophytic fungi (endophytes) at high densities in tropical leaf tissues. We conducted laboratory choice trials in which ant colonies chose between Cordia alliodora seedlings with high (Ehigh) or low (Elow) densities of endophytes. The Ehigh seedlings contained 5.5 times higher endophyte content and a greater diversity of fungal morphospecies than the Elow treatment, and endophyte content was not correlated with leaf toughness or thickness. Leaf-cutting ants cut over 2.5 times the leaf area from Elow relative to Ehigh seedlings and had a tendency to recruit more ants to Elow plants. Our findings suggest that leaf-cutting ants may incur costs from cutting and processing leaves with high endophyte loads, which could impact Neotropical forests by causing variable damage rates within plant communities.

Bittleston, L. S.; Brockmann, F.; Wcislo, W.; Van Bael, S. A.

2011-01-01

153

Endophytes: a potential resource for biosynthesis, biotransformation, and biodegradation  

Microsoft Academic Search

In natural ecosystems, endophytes, which live in the inner tissues of healthy plants, exhibit complex interactions with their\\u000a hosts. During a long coevolutionary process with their hosts, endophytes have developed many significant and novel characteristics.\\u000a In order to maintain a stable symbiosis, endophytes secrete varieties of extracellular enzymes that contribute to colonization\\u000a and growth. All these specific enzymes, under certain

Yu Wang; Chuan-Chao Dai

2011-01-01

154

Natural products with antitumor activity from endophytic fungi.  

PubMed

Endophytic fungi are a seemingly inexhaustible source of novel bioactive natural products. Currently, more than 140 fungal metabolites have shown confirmed activity in tumor cell line bioassays. We present the chemical structures of these antitumor metabolites, their corresponding fungal endophytes and host plants, and the activities they exhibited, and briefly discuss some of their action mechanisms. This review emphasizes the role of endophytic fungi as an important source of leads for drug discoveries. PMID:21861806

Wang, L-W; Zhang, Y-L; Lin, F-C; Hu, Y-Z; Zhang, C-L

2011-10-01

155

Chemical ecology of endophytic fungi: origins of secondary metabolites.  

PubMed

Endophytes constitute a remarkably multifarious group of microorganisms ubiquitous in plants and maintain an imperceptible association with their hosts for at least a part of their life cycle. Their enormous biological diversity coupled with their capability to biosynthesize bioactive secondary metabolites has provided the impetus for a number of investigations on endophytes. Here, we highlight the possible current and future strategies of understanding the chemical communication of endophytic fungi with other endophytes (fungi and bacteria) and with their host plants, which might not only allow the discovery and sustainable production of desirable natural products but also other mostly overlooked bioactive secondary metabolites. PMID:22840767

Kusari, Souvik; Hertweck, Christian; Spiteller, Michael

2012-07-27

156

Endophytic Fusarium spp. from Roots of Lawn Grass (Axonopus compressus)  

PubMed Central

Fungal endophytes are found inside host plants but do not produce any noticeable disease symptoms in their host. In the present study, endophytic Fusarium species were isolated from roots of lawn grass (Axonopus compressus). A total of 51 isolates were recovered from 100 root segments. Two Fusarium species, F. oxysporum (53%) and F. solani (47%), were identified based on macroconidia and conidiogenous cell morphology. The detection of endophytic F. oxysporum and F. solani in the roots of lawn grass contributes to the knowledge of both the distribution of the two Fusarium species and the importance of roots as endophytic niches for Fusarium species.

Zakaria, Latiffah; Ning, Chua Harn

2013-01-01

157

Polyketide and benzopyran compounds of an endophytic fungus isolated from Cinnamomum mollissimum: biological activity and structure  

PubMed Central

Objective To study bioactivity and compounds produced by an endophytic Phoma sp. fungus isolated from the medicinal plant Cinnamomum mollissimum. Methods Compounds produced by the fungus were extracted from fungal broth culture with ethyl acetate. This was followed by bioactivity profiling of the crude extract fractions obtained via high performance liquid chromatography. The fractions were tested for cytotoxicity to P388 murine leukemic cells and antimicrobial activity against bacteria and pathogenic fungi. Compounds purified from active fractions which showed antibacterial, antifungal and cytotoxic activities were identified using capillary nuclear magnetic resonance analysis, mass spectrometry and admission to AntiMarin database. Results Three known compounds, namely 4-hydroxymellein, 4,8-dihydroxy-6-methoxy-3-methyl-3,4-dihydro-1H-isochromen-1-one and 1-(2,6-dihydroxyphenyl) ethanone, were isolated from the fungus. The polyketide compound 4-hydroxymellein showed high inhibitory activity against P388 murine leukemic cells (94.6%) and the bacteria Bacillus subtilis (97.3%). Meanwhile, 4,8-dihydroxy-6-methoxy-3-methyl-3,4-dihydro-1H-isochromen-1-one, a benzopyran compound, demonstrated moderate inhibitory activity against P388 murine leukemic cells (48.8%) and the fungus Aspergillus niger (56.1%). The second polyketide compound, 1 (2,6-dihydroxyphenyl) ethanone was inactive against the tested targets. Conclusions These findings demonstrate the potential of endophytes as producers of pharmacologically important compounds, including polyketides which are major secondary metabolites in fungi.

Santiago, Carolina; Sun, Lin; Munro, Murray Herbert Gibson; Santhanam, Jacinta

2014-01-01

158

Isolation and characterization of plant growth promoting endophytic diazotrophic bacteria from Korean rice cultivars.  

PubMed

We have isolated 576 endophytic bacteria from the leaves, stems, and roots of 10 rice cultivars and identified 12 of them as diazotrophic bacteria using a specific primer set of nif gene. Through 16S rDNA sequence analysis, nifH genes were confirmed in the two species of Penibacillus, three species of Microbacterium, three Bacillus species, and four species of Klebsiella. Rice seeds treated with these plant growth-promoting bacteria (PGPB) showed improved plant growth, increased height and dry weight and antagonistic effects against fungal pathogens. In addition, auxin and siderophore producing ability, and phosphate solubilizing activity were studied for the possible mechanisms of plant growth promotion. Among 12 isolates tested, 10 strains have shown higher auxin producing activity, 6 isolates were confirmed as strains with high siderophore producing activity while 4 isolates turned out to have high phosphate-solubilizing activity. These results strongly suggest that the endophytic diazotrophic bacteria characterized in this study could be successfully used to promote plant growth and inducing fungal resistance in plants. PMID:23871145

Ji, Sang Hye; Gururani, Mayank Anand; Chun, Se-Chul

2014-01-20

159

New phenyl derivatives from endophytic fungus Aspergillus flavipes AIL8 derived of mangrove plant Acanthus ilicifolius.  

PubMed

Two new aromatic butyrolactones, flavipesins A (1) and B (2), two new natural products (3 and 4), and a known phenyl dioxolanone (5) were isolated from marine-derived endophytic fungus Aspergillus flavipes. The structures of compounds 1-5 were elucidated by 1D- and 2D-NMR and MS analysis, the absolute configurations were assigned by optical rotation and CD data, and the stereochemistry of 1 was determined by X-ray crystallography analysis. 1 demonstrated lower MIC values against Staphylococcus aureus (8.0 ?g/mL) and Bacillus subtillis (0.25 ?g/mL). 1 also showed the unique antibiofilm activity of penetration through the biofilm matrix and kills live bacteria inside mature S. aureus biofilm. PMID:24704337

Bai, Zhi-Qiang; Lin, Xiuping; Wang, Yizhu; Wang, Junfeng; Zhou, Xuefeng; Yang, Bin; Liu, Juan; Yang, Xianwen; Wang, Yi; Liu, Yonghong

2014-06-01

160

Structural and stereochemical studies of hydroxyanthraquinone derivatives from the endophytic fungus Coniothyrium sp.  

PubMed

Four known hydroxyanthraquinones (1-4) together with four new derivatives having a tetralone moiety, namely coniothyrinones A-D (5-8), were isolated from the culture of Coniothyrium sp., an endophytic fungus isolated from Salsola oppostifolia from Gomera in the Canary Islands. The structures of the new compounds were elucidated by detailed spectroscopic analysis and comparison with reported data. The absolute configurations of coniothyrinones A (5), B (6), and D (8) were determined by TDDFT calculations of CD spectra, allowing the determination of the absolute configuration of coniothyrinone C (7) as well. Coniothyrinones A (5), B (6), and D (8) could be used as ECD reference compounds in the determination of absolute configuration for related tetralone derivatives. This is the first report of anthraquinones and derivatives from an isolate of the genus Coniothyrium sp. These compounds showed inhibitory effects against the fungus Microbotryum violaceum, the alga Chlorella fusca, and the bacteria Escherichia coli and Bacillus megaterium. PMID:23255384

Sun, Peng; Huo, Juan; Kurtán, Tibor; Mándi, Attila; Antus, Sándor; Tang, Hua; Draeger, Siegfried; Schulz, Barbara; Hussain, Hidayat; Krohn, Karsten; Pan, Weihua; Yi, Yanghua; Zhang, Wen

2013-02-01

161

Regulation of Enteric Endophytic Bacterial Colonization by Plant Defenses  

Microsoft Academic Search

Bacterial endophytes reside within the interior of plants without causing disease or forming symbiotic structures. Some endophytes, such as Klebsiella pneumoniae 342 (Kp342), enhance plant growth and nutrition. Others, such as Salmonella enterica serovar Typhimurium (S. typhi- murium), are human pathogens that contaminate raw pro- duce. Several lines of evidence are presented here to sup- port the hypothesis that plant

A. Leonardo Iniguez; Yuemei Dong; Heather D. Carter; Brian M. M. Ahmer; Julie M. Stone; Eric W. Triplett

2005-01-01

162

Enhanced resistance to Spodoptera litura in endophyte infected cauliflower plants.  

PubMed

Endophytic fungi, which live within host plant tissues without causing any visible symptom of disease, are important mediators of plant-herbivore interactions. These endophytes enhance resistance of host plant against insect herbivores mainly by productions of various alkaloid based defensive compounds in the plant tissue or through alterations of plant nutritional quality. Two endophytic fungi, i.e., Nigrospora sp. and Cladosporium sp., were isolated from Tinospora cordifolia (Thunb.) Miers, a traditional indian medicinal plant. Cauliflower (Brassica oleracea L.) plants were inoculated with these two endophytic fungi. The effect of endophyte infected and uninfected cauliflower plants were measured on the survival and development of Spodoptera litura (Fab.), a polyphagous pest. Endophyte infected cauliflower plants showed resistance to S. litura in the form of significant increase in larval and pupal mortality in both the fungi. Inhibitory effects of endophytic fungi also were observed on adult emergence, longevity, reproductive potential, as well as hatchability of eggs. Thus, it is concluded that antibiosis to S. litura could be imparted by artificial inoculation of endophytes and this could be used to develop alternative ecologically safe control strategies. PMID:23575013

Thakur, Abhinay; Kaur, Sanehdeep; Kaur, Amarjeet; Singh, Varinder

2013-04-01

163

Fungal endophyte increases the allelopathic effects of an invasive forb.  

PubMed

Endophytic plant symbionts can have powerful effects on the way their hosts interact with pathogens, competitors, and consumers. The presence of endophytes in plants can alter food webs, community composition and ecosystem processes, suggesting that endophyte-plant symbioses may represent unique forms of extended phenotypes. We tested the impact of the fungal endophyte Alternaria alternata (phylotype CID 120) on the allelopathic effect of the invasive forb Centaurea stoebe when in competition with the North American native bunchgrass Koeleria macrantha in a greenhouse competition experiment. The allelopathic effect of C. stoebe on K. macrantha when infected with the fungal endophyte was more than twice that of endophyte-free C. stoebe. However, this allelopathic effect was a small part of the very large competitive effect of C. stoebe on K. macrantha in all treatments, likely because of the priority effects in our experimental design. To our knowledge, these results are the first experimental evidence for a symbiotic relationship between plants and fungal endophytes affecting allelopathic interactions between competing plants, and thus provide insight into the mechanisms by which fungal endophytes may increase the competitive ability of their hosts. PMID:24488227

Aschehoug, Erik T; Callaway, Ragan M; Newcombe, George; Tharayil, Nishanth; Chen, Shuyan

2014-05-01

164

Anti Helicobacter pylori substances from endophytic fungal cultures  

Microsoft Academic Search

The human pathogenic bacterium Helicobacter pylori has been ascertained to be an aetiological agent for chronic active gastritis and a significant determinant in peptic and duodenal ulcer diseases. Endophytic metabolites are being recognized as a versatile arsenal of antimicrobial agents, since some endophytes have been shown to possess superior biosynthetic capabilities owing to their presumable gene recombination with the host,

Y. Li; Y. C. Song; J. Y. Liu; Y. M. Ma; R. X. Tan

2005-01-01

165

Endophytic bacterial community of a Mediterranean marine angiosperm (Posidonia oceanica)  

PubMed Central

Bacterial endophytes are crucial for the survival of many terrestrial plants, but little is known about the presence and importance of bacterial endophytes of marine plants. We conducted a survey of the endophytic bacterial community of the long-living Mediterranean marine angiosperm Posidonia oceanica in surface-sterilized tissues (roots, rhizomes, and leaves) by Denaturing Gradient Gel Electrophoresis (DGGE). A total of 26 Posidonia oceanica meadows around the Balearic Islands were sampled, and the band patterns obtained for each meadow were compared for the three sampled tissues. Endophytic bacterial sequences were detected in most of the samples analyzed. A total of 34 OTUs (Operational Taxonomic Units) were detected. The main OTUs of endophytic bacteria present in P. oceanica tissues belonged primarily to Proteobacteria (?, ?, and ? subclasses) and Bacteroidetes. The OTUs found in roots significantly differed from those of rhizomes and leaves. Moreover, some OTUs were found to be associated to each type of tissue. Bipartite network analysis revealed differences in the bacterial endophyte communities present on different islands. The results of this study provide a pioneering step toward the characterization of the endophytic bacterial community associated with tissues of a marine angiosperm and reveal the presence of bacterial endophytes that differed among locations and tissue types.

Garcias-Bonet, Neus; Arrieta, Jesus M.; de Santana, Charles N.; Duarte, Carlos M.; Marba, Nuria

2012-01-01

166

Ring B aromatic steroids from an endophytic fungus, Colletotrichum sp.  

PubMed

The new (22E,24R)-3-acetoxy-19(10-->6)-abeo-ergosta-5,7,9,22-tetraen-3beta-ol (1) and the known (22E,24R)-19(10-->6)-abeo-ergosta-5,7,9,22-tetraen-3beta-ol (2), two interesting ergosteroids with rare aromatized ring B, together with seven known derivatives, namely (22E,24R)-ergosta-5,7,22-trien-3beta-ol (3), (22E,24R)-ergosta-4,7,22-trien-3-one (4), (22E,24R)-ergosta-4,6,8(14),22-tetraen-3-one (5), (22E,24R)-5alpha,8alpha-epidioxyergosta-6,22-dien-3beta-ol (6), (22E,24R)-ergosta-7,22-dien-3beta,5alpha,6beta-triol (7), (22E,24R)-6-acetoxy-ergosta-7,22-dien-3beta,5alpha,6beta-triol (8), and (22E,24R)-3,6-diacetoxy-ergosta-7,22-dien-3beta,5alpha,6beta-triol (9), were isolated from Colletotrichum sp., an endophytic fungus isolated from Ilex canariensis from Gomera. The structures of these compounds were elucidated by detailed spectroscopic analysis, comparison with reported data, and chemical interconversion. The isolation of these metabolites not only displays a beautiful array of chemical diversity, but also gives insight into the biosynthetic interconnections. Preliminary studies showed antimicrobial activity of these compounds against the fungus Microbotryum violaceum, the alga Chlorella fusca, and the bacteria Escherichia coli and Bacillus megaterium. PMID:19967971

Zhang, Wen; Draeger, Siegfried; Schulz, Barbara; Krohn, Karsten

2009-11-01

167

Bacillus xiamenensis sp. nov., isolated from intestinal tract contents of a flathead mullet (Mugil cephalus).  

PubMed

A taxonomic study was carried out on strain HYC-10(T), which was isolated from the intestinal tract contents of a flathead mullet, Mugil cephalus, captured from the sea off Xiamen Island, China. The bacterium was observed to be Gram positive, oxidase and catalase positive, rod shaped, and motile by subpolar flagella. The bacterium was found to grow at salinities of 0-12 % and at temperatures of 8-45 °C. The isolate was found to hydrolyze aesculin and gelatin, but was unable to reduce nitrate to nitrite. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain HYC-10(T) belongs to the genus Bacillus, with highest sequence similarity (99.3 %) to Bacillus aerophilus 28K(T), Bacillus stratosphericus 41KF2a(T) and Bacillus altitudinis DSM 21631(T), followed by Bacillus safensis DSM 19292(T) (99.5 %) and Bacillus pumilus DSM 27(T) (99.5 %), while the sequence similarities to others were all below 97.6 %. The genomic ANIm values between strain HYC-10(T) and three type strains (B. altitudinis DSM 21631(T), B. safensis DSM 19292(T) and B. pumilus DSM 27(T)) were determined to range from 89.11 to 91.53 %. The DNA-DNA hybridization estimate values between strain HYC-10(T) and the three type strains were from 36.60 to 44.00 %. The principal fatty acids identified were iso-C15:0 (39.1 %), anteiso-C15:0 (22.7 %), iso-C17:0 (13.1 %), C16:0 (6.1 %), anteiso-C17:0 (5.8 %) and iso-C16:0 (5.1 %). The G+C content of the chromosomal DNA was determined from the draft genome sequence to be 41.3 mol%. The respiratory quinone was determined to be MK-7 (100 %). Phosphatidylglycerol, diphosphatidylglycerol, aminoglycolipid, two glycolipids and two unknown phospholipids were found to be present. The combined genotypic and phenotypic data show that strain HYC-10(T) represents a novel species of the genus Bacillus, for which the name Bacillus xiamenensis sp. nov. is proposed, with the type strain HYC-10(T) (=CGMCC NO.1.12326(T) = LMG 27143(T) = MCCC 1A00008(T)). PMID:24158533

Lai, Qiliang; Liu, Yang; Shao, Zongze

2014-01-01

168

Covalent immobilization of xylanase produced from Bacillus pumilus SV-85S on electrospun polymethyl methacrylate nanofiber membrane.  

PubMed

Polymethyl methacrylate (PMMA) nanofiber membrane (NFM) was synthesized by an electrospinning technique. These membranes were utilized as a support for immobilization of xylanase enzyme to study its pH stability, thermal stability, and reusability. The morphology of aligned NFM was studied by optical microscopy and scanning electron microscopy. The PMMA NFM was functionalized with phenylenediamine and activated with glutaraldehyde to yield an aldehyde group on its surface for covalent immobilization of xylanase. The Fourier transform infrared analysis of the covalently immobilized xylanase confirmed that the enzyme was immobilized on PMMA NFM via amide linkages. The immobilization efficiency of covalently bound xylanase was found experimentally to be 90%. A forward shift in pH optima from 6.0-7.0 (soluble enzyme) to 7.0-9.0 (immobilized enzyme) was observed after xylanase immobilization. The pH and temperature stability of xylanase were enhanced upon its covalent immobilization. The immobilized enzyme was active on repeated use and retained ?80% of its initial activity after 11 reaction cycles. The improved thermal and operational stability of the covalently immobilized enzyme on PMMA NFM might be advantageous for industrial applications. PMID:23586605

Kumar, Pankaj; Gupta, Ashish; Dhakate, Sanjay R; Mathur, Rakesh B; Nagar, Sushil; Gupta, Vijay K

2013-01-01

169

Overexpression and characterization of thermostable chitinase from Bacillus atrophaeus SC081 in Escherichia coli.  

PubMed

The chitinase-producing strain SC081 was isolated from Korean traditional soy sauce and identified as Bacillus atrophaeus based on a phylogenetic analysis of the 16S rDNA sequence and a phenotypic analysis. A gene encoding chitinase from B. atrophaeus SC081 was cloned in Escherichia coli and was named SCChi-1 (GQ360078). The SCChi-1 nucleotide sequences were composed of 1788 base pairs and 596 amino acids, which were 92.6, 89.6, 89.3, and 78.9% identical to those of Bacillus subtilis (ABG57262), Bacillus pumilus (ABI15082), Bacillus amyloliquefaciens (ABO15008), and Bacillus licheniformis (ACF40833), respectively. A recombinant SCChi-1 containing a hexahistidine tag at the amino- terminus was constructed, overexpressed, and purified in E. coli to characterize SCChi-1. H(6)SCChi-1 revealed a hydrolytic band on zymograms containing 0.1% glycol chitin and showed the highest lytic activity on colloidal chitin and acidic chitosan. The optimal temperature and pH for chitinolytic activity were 50°C and pH 8.0, respectively. PMID:21429298

Cho, Eun Kyung; Choi, In Soon; Choi, Young Ju

2011-03-01

170

Insect Feeding Deterrents in Endophyte-Infected Tall Fescue †  

PubMed Central

The presence of an endophytic fungus, Acremonium coenophialum, in tall fescue (Festuca arundinacea) deterred aphid feeding by Rhopalosiphum padi and Schizaphis graminum. Both species of aphid were unable to survive when confined to endophyte-infected tall fescue plants. Feeding deterrents and toxic factors to R. padi and Oncopeltus fasciatus, large milkweed bug, were primarily associated with a methanol extract obtained when endophyte-infected tall fescue seed was serially extracted with hexane, ethyl acetate, and methanol. The concentrations of pyrrolizidine alkaloids were determined to be 30 to 100 times greater in the methanol extract than in the hexane and ethyl acetate extracts.

Johnson, M. C.; Dahlman, D. L.; Siegel, M. R.; Bush, L. P.; Latch, G. C. M.; Potter, D. A.; Varney, D. R.

1985-01-01

171

Endophyte-mediated resistance to black cutworm as a function of plant cultivar and endophyte strain in tall fescue.  

PubMed

To improve Neotyphodium endophyte-mediated resistance to black cutworm Agrotis ipsilon (Hufnagel) (BCW), a series of experiments was conducted by using several different cultivars of tall fescue, Schedonorus arundinaceus (Schreb.) Dumort. in combination with several different haplotypes of the endophyte Neotyphodium coenophialum (Morgan-Jones & Gams) (plant cultivar × endophyte haplotype = plant line), each producing unique alkaloid profiles. BCW settling response, survival at 5 and 10 d, and larval biomass varied significantly among plant lines. In general, greater variation BCW performance was observed within a single plant cultivar infected with different endophyte haplotypes than among different plant cultivars infected with the same endophyte haplotype, but comparisons among the former were far more numerous. Although five endophyte-mediated alkaloids representing three alkaloid classes were quantified in the plants, the pyrrolizidine alkaloid N-acetyl norloline was consistently the single best predictor of BCW performance. BCW settling response, 5-d survival, and 10-d survival decreased as levels of the alkaloid N-acetyl norloline increased. The same three response variables also decreased with increasing levels of peramine, but increased with increasing levels of ergovaline. Minor variation in endophyte infection levels occurring among infected plant lines had no significant influence on BCW performance. Results indicate a potentially important role for N-acetyl norloline and peramine in providing resistance to black cutworm whereas ergovaline appears to be much less important. Therefore, endophyte haplotypes expressing high levels of N-acetyl norloline and peramine may be of particular importance for developing 'friendly' endophyte-enhanced turf and pasture grasses that resist challenging lepidopteran pests, although remaining safe for wildlife and grazing mammals. PMID:22251642

Baldauf, Michael W; Mace, Wade J; Richmond, Douglas S

2011-06-01

172

Bacillus subtilis  

PubMed Central

Most pathogens enter the body through mucosal surfaces. Mucosal immunization, a non-invasive needle-free route, often stimulates a mucosal immune response that is both effective against mucosal and systemic pathogens. The development of mucosally administered heat-stable vaccines with long shelf life would therefore significantly enhance immunization programs in developing countries by avoiding the need for a cold chain or systemic injections. Currently, recombinant vaccine carriers are being used for antigen delivery. Engineering Bacillus subtilis for use as a non-invasive and heat stable antigen delivery system has proven successful. Bacterial spores protected by multiple layers of protein are known to be robust and resistant to desiccation. Stable constructs have been created by integration into the bacterial chromosome of immunogens. The spore coat has been used as a vehicle for heterologous antigen presentation and protective immunization. Sublingual (SL) and intranasal (IN) routes have recently received attention as delivery routes for therapeutic drugs and vaccines and recent attempts by several investigators, including our group, to develop vaccines that can be delivered intranasally and sublingually have met with a lot of success. As discussed in this Review, the use of Bacillus subtilis to express antigens that can be administered either intranasally or sublingually is providing new insights in the area of mucosal vaccines. In our work, we evaluated the efficacy of SL and IN immunizations with B. subtilis engineered to express tetanus toxin fragment C (TTFC) in mice and piglets. These bacteria engineered to express heterologous antigen either on the spore surface or within the vegetative cell have been used for oral, IN and SL delivery of antigens. A Bacillus subtilis spore coat protein, CotC was used as a fusion partner to express the tetanus fragment C. B. subtilis spores known to be highly stable and safe are also easy to purify making this spore-based display system a potentially powerful approach for surface expression of antigens. These advances will help to accelerate the development and testing of new mucosal vaccines against many human and animal diseases.

Amuguni, Hellen; Tzipori, Saul

2012-01-01

173

7 CFR 201.58d - Fungal endophyte test.  

...present. (7) Various sample sizes may be used for this test. Precision changes with sample size; therefore, the test results must include the sample size tested. (c) Procedure for determining levels of fungal endophyte in seedlings...

2014-01-01

174

Endophytic establishment of Azorhizobium caulinodans in wheat  

PubMed Central

Nitrogen fixing nodules are formed on the roots and stems of the tropical legume Sesbania rostrata by Azorhizobium caulinodans as a result of crack entry invasion of emerging lateral roots. Advantage was taken of this invasion capability of A. caulinodans to determine whether inoculation of the non-legume wheat with A. caulinodans would result in the endophytic establishment of azorhizobia within wheat roots. Advantage was also taken of the oxygen tolerance of the nitrogenase of free-living azorhizobia to assess the extent to which the endophytic establishment of azorhizobia in wheat roots would provide a niche for nitrogen fixation of benefit to the plant. Wheat was inoculated with A. caulinodans and grown in pots under controlled conditions, without added growth reglators and without addition of fixed nitrogen. Microscopic examination of the short lateral roots of inocluated wheat showed invasion of azorhizobia between cells of the cortex, within the xylem and the root meristem Acetylene reduction assays combined with analysis of tissue nitrogen levels indicated the likelihood that colonization led to nitrogenase activity. Inoculated wheat showed significant increases in dry weight and nitrogen content as compared with uninoculated controls. We discuss the extent to which this nitrogen fixation is likely to involve symbiotic nitrogen fixation, and we indicate the need for field trials to determine the extent to which inolculation of wheat with A. caulinodans will reduce the requirement for inputs of nitrogenous fertilizers.

Sabry, S. R. S.; Saleh, S. A.; Batchelor, C. A.; Jones, J.; Jotham, J.; Webster, G.; Kothari, S. L.; Davey, M. R.; Cocking, E. C.

1997-01-01

175

Long-term survival of Bacillus spores in alcohol and identification of 90% ethanol as relatively more spori/bactericidal.  

PubMed

This study was taken up with a view to generate basic information on spore hardiness to ethanol in various Bacillus species and related genera, and to assess the effectiveness of different levels of ethanol as a bacterial disinfectant. Predominantly spore-bearing cultures of five Bacillus spp. (B. pumilus, B. subtilis, B. megaterium, B. fusiformis and B. flexus) that were isolated from the spent-alcohol used during plant tissue culture work were challenged with aqueous ethanol (25, 50, 60, 70, 80 and 90% v/v) in 1 ml volumes at 10¹??¹¹ CFU ml?¹. Monitoring the spore endurance through spotting and plating revealed prolonged tolerance (>12 months) at different alcohol levels depending on the organism except in 90% where no survival was observed beyond 2-12 months. Spores of related genera like Paenibacillus and Lysinibacillus also showed long-term ethanol survival. Alcohol tolerance of spore-forming organisms depended on the extent of spores and spore hardiness, which in turn varied with the organism, strain, age of culture, growing conditions and other factors as authenticated with ATCC strains of B. pumilus and B. subtilis. Aqueous 90% ethanol caused instant inactivation of vegetative cells in different spore formers and twelve other non-sporulating Gram-positive and Gram-negative organisms tested. Taking into account both vegetative cells and spores, the appropriate concentration of ethanol as a disinfectant emerged to be 90% followed by absolute ethanol compared with the generally recommended 70-80% level. PMID:22057920

Thomas, Pious

2012-02-01

176

Quorum quenching activity in cell-free lysate of endophytic bacteria isolated from Pterocarpus santalinus Linn., and its effect on quorum sensing regulated biofilm in Pseudomonas aeruginosa PAO1.  

PubMed

Quorum sensing mechanism allows the microorganisms to resist the antibiotic treatment by forming biofilms. Quorum quenching is one of the mechanisms to control the development of drug resistance in microbes. Endophyte bacteria are beneficial to plant growth as they support the immune system against the pathogen attack. The endophytic bacteria present in Pterocarpus santalinus were screened for the presence of N-acyl homoserine lactones (AHLs) degrading bacteria using biosensor strains and further confirmed by quantifying the violacein production. Cell-free lysate of endophytic bacteria, Bacillus firmus PT18 and Enterobacter asburiae PT39 exhibited potent AHL degrading ability by inhibiting about 80% violacein production in biosensor strain. Furthermore, when the cell-free lysate was applied to Pseudomonas aeruginosa PAO1 and PAO1-JP2 biofilm it resulted in significant (p<0.01) inhibition of biofilm formation. The biofilm inhibition was confirmed by visualization of biofilm slides under fluorescence microscopy, which showed decrease in total biomass formation in treated slides. Isolation and amplification of the gene (aiiA) indicated that the presence of AHL lactonase in cell-free lysate and sequence alignment indicated that AiiA contains a "HXHXDH" zinc-binding motif that is being conserved in several groups of metallohydrolases. Therefore, the study shows the potential of AHLs degradation by AHL lactonase present in cell-free lysate of isolated endophytic bacteria and inhibition of quorum sensing regulated biofilm formation in P. aeruginosa PAO1. PMID:24268182

Rajesh, P S; Ravishankar Rai, V

2014-01-01

177

Bacterial Endophytes as Elicitors of Induced Systemic Resistance  

Microsoft Academic Search

As discussed in this review, selected strains of nonpathogenic endophytic bacteria can elicit ISR in plants, leading to reductions\\u000a in severity of various diseases. Research on such endophytes has concentrated both on delineating the pathosystems where protection\\u000a results and in understanding plant responses that occur during the signal transduction pathways that culminate in disease\\u000a protection. In many cases, elicitation of

Joseph W. Kloepper; Choong-Min Ryu

178

Endophytic fungi assemblages from 10 Dendrobium medicinal plants (Orchidaceae)  

Microsoft Academic Search

Dendrobium is the largest genus of tropical epiphytic orchid, some of which are traditional Chinese medicinal plants. The therapeutic\\u000a components varied significantly among species. Endophytic microbes (fungi) hidden in medicinal plants may play an important\\u000a effect on the overall quality of herb. Investigation of fungal composition in host plants is the first step toward elucidating\\u000a the relationship endophyte-therapeutic content of

Juan Chen; Ke-Xing Hu; Xiao-Qiang Hou; Shun-Xing Guo

2011-01-01

179

Fungal root endophytes of the carnivorous plant Drosera rotundifolia  

Microsoft Academic Search

As carnivorous plants acquire substantial amounts of nutrients from the digestion of their prey, mycorrhizal associations\\u000a are considered to be redundant; however, fungal root endophytes have rarely been examined. As endophytic fungi can have profound\\u000a impacts on plant communities, we aim to determine the extent of fungal root colonisation of the carnivorous plant Drosera rotundifolia at two points in the

Richard S. Quilliam; David L. Jones

2010-01-01

180

Survey of indigenous bacterial endophytes from cotton and sweet corn  

Microsoft Academic Search

The genotypic diversity of indigenous bacterial endophytes within stems and roots of sweet corn (Zea mays L.) and cotton (Gossypium hirsutum L.) was determined in field trials throughout one growing season. Strains were isolated from surface-disinfested tissues and identified by fatty acid analysis. Gram-negative bacteria comprised 70.5% of the endophytic bacteria and 27 of the 36 genera identified. The most

John A. McInroy; Joseph W. Kloepper

1995-01-01

181

A potential antioxidant resource: Endophytic fungi from medicinal plants  

Microsoft Academic Search

Medicinal plants and their endophytes are important resources for discovery of natural products. Several previous studies\\u000a have found a positive correlation between total antioxidant capacity (TAC) and total phenolic content (TPC) of many medicinal\\u000a plant extracts. However, no information is available on whether such a relationship also exists in their endophytic fungal\\u000a metabolites. We investigated the relationship between TAC and

Wu-Yang Huang; Yi-Zhong Cai; Jie Xing; Harold Corke; Mei Sun

2007-01-01

182

Interactions among endophytic bacteria and fungi: effects and potentials.  

PubMed

Plants benefit extensively by harbouring endophytic microbes. They promote plant growth and confer enhanced resistance to various pathogens. However, the way the interactions among endophytes influence the plant productivity has not been explained. Present study experimentally showed that endophytes isolated from rice (Oryza sativa) used as the test plant produced two types of interactions; biofilms (bacteria attached to mycelia) and mixed cultures with no such attachments. Acidity, as measured by pH in cultures with biofilms was higher than that of fungi alone, bacteria alone or the mixed cultures. Production of indoleacetic acid like substances (IAAS) of biofilms was higher than that of mixed cultures, fungi or bacteria. Bacteria and fungi produced higher quantities of IAAS than mixed cultures. In mixed cultures, the potential of IAAS production of resident microbes was reduced considerably. There was a negative relationship between IAAS and pH of the biofilms, indicating that IAAS was the main contributor to the acidity. However, such a relationship was not observed in mixed cultures. Microbial acid production is important for suppressing plant pathogens. Thus the biofilm formation in endophytic environment seems to be very important for healthy and improved plant growth. However, it is unlikely that an interaction among endophytes takes place naturally in the endophytic environment, due to physical barriers of plant tissues. Further, critical cell density dependant quorum sensing that leads to biofilm formation may not occur in the endophytic environment as there is a limited space. As such in vitro production and application of beneficial biofilmed inocula of endophytes are important for improved plant production in any agro-ecosystem. The conventional practice of plant inoculation with monocultures or mixed cultures of effective microbes may not give the highest microbial effect, which may only be achieved by biofilm formation. PMID:17301503

Bandara, W M M S; Seneviratne, Gamini; Kulasooriya, S A

2006-12-01

183

Untapped mutualistic paradigms linking host plant and endophytic fungal production of similar bioactive secondary metabolites.  

PubMed

The biosynthetic potential of endophytic fungi has gained impetus in recent times owing to the continual discovery of fungal endophytes capable of synthesizing plant compounds. However, the sustained production of the desired plant compounds has not yet been achieved using endophytes. It is thus imperative to investigate the diverse interactions that endophytes have with coexisting endophytes, host plants, insect pests, and other specific herbivores. The precise role of these associations on the endophytic production of host plant compounds is mostly overlooked and open to future discoveries. Here, highlighted are the implications of the poorly investigated links and molecular mechanisms that might trigger similar chemical responses in both plants and endophytes. Elucidating such connections can not only enhance the understanding of evolution of complex defense mechanisms in plants and associated organisms, but also help in the sustained production of plant compounds using endophytes harbored within them. PMID:22954732

Kusari, Souvik; Pandey, Shree P; Spiteller, Michael

2013-07-01

184

Contamination profiles and characterisation of Bacillus species in wheat bread and raw materials for bread production.  

PubMed

The Bacillus counts in white and wholemeal wheat loaves produced without preservatives or sour dough were consistently 10(6) cfu/g after two days of storage at ambient summer temperatures (25-30 degree C). Identified species were B. subtilis (70%), B. licheniformis (24%), B. pumilus (2%) and B. cereus (2%). The dominance of B. subtilis in bread could be explained by the higher resistance to heat of this species as determined by inoculation studies. Among 14 species isolated from retail bread and wheat grains, B. subtilis was the only species associated with ropiness. Samples of raw materials, particularly bran, seeds and oat products, contained low levels (10(0) - 10(2) cfu/g) of Bacillus spores, surviving a heat treatment (100 degree C, 10 min) corresponding to a baking process. Even low spore levels in raw materials with the frequently isolated species, B. licheniformis (49%) and B. subtilis (10%), resulted in 10(7) Bacillus per g bread crumb in two days as determined by test bakings. The results indicate a need for controlling growth of Bacillus in bread. PMID:7488530

Rosenkvist, H; Hansen, A

1995-08-01

185

Characterization of Bacillus spp. strains for use as probiotic additives in pig feed.  

PubMed

Bacillus spp. are commonly used as probiotic species in the feed industry, however, their benefits need to be confirmed. This study describes a high throughput screening combined with the detailed characterization of endospore-forming bacteria with the aim to identify new Bacillus spp. strains for use as probiotic additives in pig feed. A total of 245 bacterial isolates derived from African fermented food, feces and soil were identified by 16S rRNA gene sequencing and screened for antimicrobial activity and growth in the presence of antibiotics, bile salts and at pH 4.0. Thirty-three Bacillus spp. isolates with the best characteristics were identified by gyrB and rpoB gene sequencing as B. amyloliquefaciens subsp. plantarum, B. amyloliquefaciens subsp. amyloliquefaciens, B. subtilis subsp. subtilis, B. licheniformis, B. mojavensis, B. pumilus and B. megaterium. These isolates were further investigated for their activity against the pathogenic bacteria, antibiotic susceptibility, sporulation rates, biofilm formation and production of glycosyl hydrolytic enzymes. Additionally, ten selected isolates were assessed for heat resistance of spores and the effect on porcine epithelial cells IPEC-J2. Isolates of B. amyloliquefaciens, B. subtilis and B. mojavensis, showed the best overall characteristics and, therefore, potential for usage as probiotic additives in feed. A large number of taxonomically diverse strains made it possible to reveal species and subspecies-specific trends, contributing to our understanding of the probiotic potential of Bacillus species. PMID:24201893

Larsen, Nadja; Thorsen, Line; Kpikpi, Elmer Nayra; Stuer-Lauridsen, Birgitte; Cantor, Mette Dines; Nielsen, Bea; Brockmann, Elke; Derkx, Patrick M F; Jespersen, Lene

2014-02-01

186

Fungal root endophytes of the carnivorous plant Drosera rotundifolia.  

PubMed

As carnivorous plants acquire substantial amounts of nutrients from the digestion of their prey, mycorrhizal associations are considered to be redundant; however, fungal root endophytes have rarely been examined. As endophytic fungi can have profound impacts on plant communities, we aim to determine the extent of fungal root colonisation of the carnivorous plant Drosera rotundifolia at two points in the growing season (spring and summer). We have used a culture-dependent method to isolate fungal endophytes and diagnostic polymerase chain reaction methods to determine arbuscular mycorrhizal fungi colonisation. All of the roots sampled contained culturable fungal root endophytes; additionally, we have provided molecular evidence that they also host arbuscular mycorrhizal fungi. Colonisation showed seasonal differences: Roots in the spring were colonised by Articulospora tetracladia, two isolates of uncultured ectomycorrhizal fungi, an unidentified species of fungal endophyte and Trichoderma viride, which was present in every plant sampled. In contrast, roots in the summer were colonised by Alatospora acuminata, an uncultured ectomycorrhizal fungus, Penicillium pinophilum and an uncultured fungal clone. Although the functional roles of fungal endophytes of D. rotundifolia are unknown, colonisation may (a) confer abiotic stress tolerance, (b) facilitate the acquisition of scarce nutrients particularly at the beginning of the growing season or (c) play a role in nutrient signalling between root and shoot. PMID:20012108

Quilliam, Richard S; Jones, David L

2010-06-01

187

Endophytic fungi reduce leaf-cutting ant damage to seedlings.  

PubMed

Our study examines how the mutualism between Atta colombica leaf-cutting ants and their cultivated fungus is influenced by the presence of diverse foliar endophytic fungi (endophytes) at high densities in tropical leaf tissues. We conducted laboratory choice trials in which ant colonies chose between Cordia alliodora seedlings with high (E(high)) or low (E(low)) densities of endophytes. The E(high) seedlings contained 5.5 times higher endophyte content and a greater diversity of fungal morphospecies than the E(low) treatment, and endophyte content was not correlated with leaf toughness or thickness. Leaf-cutting ants cut over 2.5 times the leaf area from E(low) relative to E(high) seedlings and had a tendency to recruit more ants to E(low) plants. Our findings suggest that leaf-cutting ants may incur costs from cutting and processing leaves with high endophyte loads, which could impact Neotropical forests by causing variable damage rates within plant communities. PMID:20610420

Bittleston, L S; Brockmann, F; Wcislo, W; Van Bael, S A

2011-02-23

188

Diversity of sporadic symbionts and nonsymbiotic endophytic bacteria isolated from nodules of woody, shrub, and food legumes in Ethiopia.  

PubMed

Fifty-five bacterial isolates were obtained from surface-sterilized nodules of woody and shrub legumes growing in Ethiopia: Crotalaria spp., Indigofera spp., and Erythrina brucei, and the food legumes soybean and common bean. Based on partial 16S rRNA gene sequence analysis, the majority of the isolates were identified as Gram-negative bacteria belonging to the genera Achromobacter, Agrobacterium, Burkholderia, Cronobacter, Enterobacter, Mesorhizobium, Novosphingobium, Pantoea, Pseudomonas, Rahnella, Rhizobium, Serratia, and Variovorax. Seven isolates were Gram-positive bacteria belonging to the genera Bacillus, Paenibacillus, Planomicrobium, and Rhodococcus. Amplified fragment length polymorphism (AFLP) fingerprinting showed that each strain was genetically distinct. According to phylogenetic analysis of recA, glnII, rpoB, and 16S rRNA gene sequences, Rhizobium, Mesorhizobium, and Agrobacterium were further classified into six different genospecies: Agrobacterium spp., Agrobacterium radiobacter, Rhizobium sp., Rhizobium phaseoli, Mesorhizobium sp., and putative new Rhizobium species. The strains from R. phaseoli, Rhizobium sp. IAR30, and Mesorhizobium sp. ERR6 induced nodules on their host plants. The other strains did not form nodules on their original host. Nine endophytic bacterial strains representing seven genera, Agrobacterium, Burkholderia, Paenibacillus, Pantoea, Pseudomonas, Rhizobium, and Serratia, were found to colonize nodules of Crotalaria incana and common bean on co-inoculation with symbiotic rhizobia. Four endophytic Rhizobium and two Agrobacterium strains had identical nifH gene sequences with symbiotic Rhizobium strains, suggesting horizontal gene transfer. Most symbiotic and nonsymbiotic endophytic bacteria showed plant growth-promoting properties in vitro, which indicate their potential role in the promotion of plant growth when colonizing plant roots and the rhizosphere. PMID:24196581

Aserse, Aregu Amsalu; Räsänen, Leena A; Aseffa, Fassil; Hailemariam, Asfaw; Lindström, Kristina

2013-12-01

189

Bacillus Odysseyi Isolate.  

National Technical Information Service (NTIS)

The present invention relates to discovery and isolation of a biologically pure culture of a Bacillus odysseyi isolate with high adherence and sterilization resistant properties. B. odysseyi is a round spore forming Bacillus species that produces an exosp...

K. Venkateswaran M. T. La Duc

2007-01-01

190

Antimicrobial Activity and Biodiversity of Endophytic Fungi in Dendrobium devonianum and Dendrobium thyrsiflorum from Vietman  

Microsoft Academic Search

Endophytic fungi are rich in orchids and have great impacts on their host plants. 53 endophytes (30 isolates from Dendrobium devonianum and 23 endophytic fungi from D. thyrsiflorum) were isolated, respectively, from roots and stems of Dendrobium species. All the fungi were identified by way of morphological and\\/or molecular biological methods. 30 endophytic fungi in\\u000a D. devonianum were categorized into

Yong-Mei XingJuan; Juan Chen; Jin-Long Cui; Xiao-Mei Chen; Shun-Xing Guo

2011-01-01

191

Imperfect Vertical Transmission of the Endophyte Neotyphodium in Exotic Grasses in Grasslands of the Flooding Pampa  

Microsoft Academic Search

Cool-season grasses establish symbioses with vertically transmitted Neotyphodium endophytes widespread in nature. The frequency of endophyte-infected plants in closed populations (i.e., without migrations)\\u000a depends on both the differential fitness between infected and non-infected plants, and the endophyte-transmission efficiency.\\u000a Most studies have been focused on the first mechanism ignoring the second. Infection frequency and endophyte transmission\\u000a from vegetative tissues to seeds

Pedro E. Gundel; Lucas A. Garibaldi; Pedro M. Tognetti; Roxana Aragón; Claudio M. Ghersa; Marina Omacini

2009-01-01

192

Endophytic fungi from Nerium oleander L (Apocynaceae): main constituents and antioxidant activity  

Microsoft Academic Search

Diverse endophytic fungi exist within plant aerial tissues, with a global estimate of up to a million undescribed species.\\u000a These endophytes constitute a rich bio-resource for exploration to discover new natural products. Here we investigate fungal\\u000a endophytes associated with a medicinal plant, Nerium oleander L. (Apocynaceae). A total of 42 endophytic fungal strains were isolated from the host plant. Total

Wu-Yang Huang; Yi-Zhong Cai; Kevin D. Hyde; Harold Corke; Mei Sun

2007-01-01

193

Bioactivity of Fungal Endophytes as a Function of Endophyte Taxonomy and the Taxonomy and Distribution of Their Host Plants  

PubMed Central

Fungal endophytes – fungi that grow within plant tissues without causing immediate signs of disease – are abundant and diverse producers of bioactive secondary metabolites. Endophytes associated with leaves of tropical plants are an especially exciting and relatively untapped source of novel compounds. However, one major challenge in drug discovery lies in developing strategies to efficiently recover highly bioactive strains. As part of a 15-year drug discovery project, foliar endophytes were isolated from 3198 plant samples (51 orders, 105 families and at least 232 genera of angiosperms and ferns) collected in nine geographically distinct regions of Panama. Extracts from culture supernatants of >2700 isolates were tested for bioactivity (in vitro percent inhibition of growth, % IG) against a human breast cancer cell line (MCF-7) and the causative agents of malaria, leishmaniasis, and Chagas' disease. Overall, 32.7% of endophyte isolates were highly active in at least one bioassay, including representatives of diverse fungal lineages, host lineages, and collection sites. Up to 17% of isolates tested per assay were highly active. Most bioactive strains were active in only one assay. Fungal lineages differed in the incidence and degree of bioactivity, as did fungi from particular plant taxa, and greater bioactivity was observed in endophytes isolated from plants in cloud forests vs. lowland forests. Our results suggest that using host taxonomy and forest type to tailor plant collections, and selecting endophytes from specific orders or families for cultivation, will markedly increase the efficiency and efficacy of discovering bioactive metabolites for particular pharmaceutical targets.

Higginbotham, Sarah J.; Arnold, A. Elizabeth; Ibanez, Alicia; Spadafora, Carmenza; Coley, Phyllis D.; Kursar, Thomas A.

2013-01-01

194

Induced resistance by the mutualistic endophyte, Fusarium oxysporum strain 162, toward Meloidogyne incognita on tomato  

Microsoft Academic Search

The non-pathogenic endophytic fungus, Fusarium oxysporum strain 162, originally isolated from the endorhiza of tomato roots, reduces damage caused by Meloidogyne incognita, by inhibiting juvenile penetration of and development in the root. However, little is known about the mode of action of this endophyte fungus against the nematode. This study aimed at investigating how the endophyte affects nematode motility and

Abd El-Fattah Adnan Dababat; Richard Alexander Sikora

2007-01-01

195

Cytotoxic and antibacterial activities of endophytic fungi isolated from plants at the National Park, Pahang, Malaysia  

Microsoft Academic Search

BACKGROUND: Endophytes, microorganisms which reside in plant tissues, have potential in producing novel metabolites for exploitation in medicine. Cytotoxic and antibacterial activities of a total of 300 endophytic fungi were investigated. METHODS: Endophytic fungi were isolated from various parts of 43 plants from the National Park Pahang, Malaysia. Extracts from solid state culture were tested for cytotoxicity against a number

Nurul AMN Hazalin; Kalavathy Ramasamy; Siong Meng Lim; Ibtisam Abdul Wahab; Anthony LJ Cole; Abu Bakar Abdul Majeed

2009-01-01

196

Isolation and Characterization of Endophytic Colonizing Bacteria from Agronomic Crops and Prairie Plants  

Microsoft Academic Search

Endophytic bacteria reside within plant hosts without causing disease symptoms. In this study, 853 endophytic strains were isolated from aerial tissues of four agronomic crop species and 27 prairie plant species. We determined several phenotypic properties and found approximately equal numbers of gram-negative and gram-positive isolates. In a greenhouse study, 28 of 86 prairie plant endophytes were found to colonize

Denise K. Zinniel; Patricia A. Lambrecht; N. Beth Harris; Zhengyu Feng; Daniel Kuczmarski; Phyllis Higley; Carol A. Ishimaru; Alahari Arunakumari; Raul G. Barletta; Anne M. Vidaver

2002-01-01

197

Bacillus thuringiensis  

PubMed Central

Bacillus thuringiensis (Bt) is a unique bacterium in that it shares a common place with a number of chemical compounds which are used commercially to control insects important to agriculture and public health. Although other bacteria, including B. popilliae and B. sphaericus, are used as microbial insecticides, their spectrum of insecticidal activity is quite limited compared to Bt. Importantly, Bt is safe for humans and is the most widely used environmentally compatible biopesticide worldwide. Furthermore, insecticidal Bt genes have been incorporated into several major crops, rendering them insect resistant, and thus providing a model for genetic engineering in agriculture. This review highlights what the authors consider the most relevant issues and topics pertaining to the genomics and proteomics of Bt. At least one of the authors (L.A.B.) has spent most of his professional life studying different aspects of this bacterium with the goal in mind of determining the mechanism(s) by which it kills insects. The other authors have a much shorter experience with Bt but their intellect and personal insight have greatly enriched our understanding of what makes Bt distinctive in the microbial world. Obviously, there is personal interest and bias reflected in this article notwithstanding oversight of a number of published studies. This review contains some material not published elsewhere although several ideas and concepts were developed from a broad base of scientific literature up to 2010.

Ibrahim, Mohamed A; Griko, Natalya; Junker, Matthew

2010-01-01

198

Azaphilones from the endophyte Chaetomium globosum.  

PubMed

Six new azaphilones, 5'-epichaetoviridin A (7), 4'-epichaetoviridin F (9), 12?-hydroxychaetoviridin C (10), and chaetoviridins G-I (11-13), and six known azaphilones, chaetoviridins A-E (1-5) and 4'-epichaetoviridin A (8), were isolated from the endophytic fungus Chaetomium globosum cultivated in PDB medium for 21 days. The structure elucidation and the assignment of the relative configurations of the new natural products were based on detailed NMR and MS spectroscopic analyses. The structure of compound 1 was confirmed by single-crystal X-ray diffraction analysis. The absolute configurations of compounds 4, 7, 8, and 12 were determined using Mosher's method. The antibiotic activity of the compounds was evaluated using an in vivo Caenorhabditis elegans infection model. PMID:21548578

Borges, Warley S; Mancilla, Gabriela; Guimarães, Denise O; Durán-Patrón, Rosa; Collado, Isidro G; Pupo, Mônica T

2011-05-27

199

Bioactive endophytic streptomycetes from the Malay Peninsula.  

PubMed

Three novel endophytic streptomycetes have been isolated and characterized from plants with ethnobotanical uses on the Malay Peninsula including: Thottea grandiflora (family -Aristolochiaceae), Polyalthia spp. (family -Annonaceae), and Mapania sp. (family -Cyperaceae). Each isolate, as studied by scanning electron microscopy, has small hyphae, and produces typical barrel-shaped spores arising by hyphal fragmentation. Interestingly, although none has any detectable antibacterial killing properties, each has demonstrable killing activity against one or more pathogenic fungi including organisms such as Phytophthora erythroseptica, Pythium ultimum, Sclerotinia sclerotiorum, Mycosphaerella fijiensis and Rhizoctonia solani. Molecular biological studies on the rRNA gene sequence of each isolate revealed that it is distinct from all other genetic accessions of streptomyectes in GenBank, and each bears some genetic similarity to other streptomycetes. The bioactivity of each microbe was extractable in various organic solvents. PMID:17608698

Zin, Noraziah M; Sarmin, Nurul I M; Ghadin, Norazli; Basri, Dayang F; Sidik, Nik M; Hess, W M; Strobel, Gary A

2007-09-01

200

Vertical transmission of fungal endophytes is widespread in forbs.  

PubMed

To date, it has been thought that endophytic fungi in forbs infect the leaves of their hosts most commonly by air-borne spores (termed "horizontal transmission"). Here, we show that vertical transmission from mother plant to offspring, via seeds, occurs in six forb species (Centaurea cyanus, C. nigra,Papaver rhoeas,Plantago lanceolata,Rumex acetosa, and Senecio vulgaris), suggesting that this may be a widespread phenomenon. Mature seeds were collected from field-grown plants and endophytes isolated from these, and from subsequent cotyledons and true leaves of seedlings, grown in sterile conditions. Most seeds contain one species of fungus, although the identity of the endophyte differs between plant species. Strong evidence for vertical transmission was found for two endophyte species, Alternaria alternata and Cladosporium sphaerospermum. These fungi were recovered from within seeds, cotyledons, and true leaves, although the plant species they were associated with differed. Vertical transmission appears to be an imperfect process, and germination seems to present a bottleneck for fungal growth. We also found that A. alternata and C. sphaerospermum occur on, and within pollen grains, showing that endophyte transmission can be both within and between plant generations. Fungal growth with the pollen tube is likely to be the way in which endophytes enter the developing seed. The fact that true vertical transmission seems common suggests a more mutualistic association between these fungi and their hosts than has previously been thought, and possession of endophytes by seedling plants could have far-reaching ecological consequences. Seedlings may have different growth rates and be better protected against herbivores and pathogens, dependent on the fungi that were present in the mother plant. This would represent a novel case of trans-generational resistance in plants. PMID:24834319

Hodgson, Susan; Cates, Catherine; Hodgson, Joshua; Morley, Neil J; Sutton, Brian C; Gange, Alan C

2014-04-01

201

Vertical transmission of fungal endophytes is widespread in forbs  

PubMed Central

To date, it has been thought that endophytic fungi in forbs infect the leaves of their hosts most commonly by air-borne spores (termed “horizontal transmission”). Here, we show that vertical transmission from mother plant to offspring, via seeds, occurs in six forb species (Centaurea cyanus, C. nigra,Papaver rhoeas,Plantago lanceolata,Rumex acetosa, and Senecio vulgaris), suggesting that this may be a widespread phenomenon. Mature seeds were collected from field-grown plants and endophytes isolated from these, and from subsequent cotyledons and true leaves of seedlings, grown in sterile conditions. Most seeds contain one species of fungus, although the identity of the endophyte differs between plant species. Strong evidence for vertical transmission was found for two endophyte species, Alternaria alternata and Cladosporium sphaerospermum. These fungi were recovered from within seeds, cotyledons, and true leaves, although the plant species they were associated with differed. Vertical transmission appears to be an imperfect process, and germination seems to present a bottleneck for fungal growth. We also found that A. alternata and C. sphaerospermum occur on, and within pollen grains, showing that endophyte transmission can be both within and between plant generations. Fungal growth with the pollen tube is likely to be the way in which endophytes enter the developing seed. The fact that true vertical transmission seems common suggests a more mutualistic association between these fungi and their hosts than has previously been thought, and possession of endophytes by seedling plants could have far-reaching ecological consequences. Seedlings may have different growth rates and be better protected against herbivores and pathogens, dependent on the fungi that were present in the mother plant. This would represent a novel case of trans-generational resistance in plants.

Hodgson, Susan; Cates, Catherine; Hodgson, Joshua; Morley, Neil J; Sutton, Brian C; Gange, Alan C

2014-01-01

202

Endohyphal Bacterium Enhances Production of Indole-3-Acetic Acid by a Foliar Fungal Endophyte  

PubMed Central

Numerous plant pathogens, rhizosphere symbionts, and endophytic bacteria and yeasts produce the important phytohormone indole-3-acetic acid (IAA), often with profound effects on host plants. However, to date IAA production has not been documented among foliar endophytes -- the diverse guild of primarily filamentous Ascomycota that live within healthy, above-ground tissues of all plant species studied thus far. Recently bacteria that live within hyphae of endophytes (endohyphal bacteria) have been detected, but their effects have not been studied previously. Here we show not only that IAA is produced in vitro by a foliar endophyte (here identified as Pestalotiopsis aff. neglecta, Xylariales), but that IAA production is enhanced significantly when the endophyte hosts an endohyphal bacterium (here identified as Luteibacter sp., Xanthomonadales). Both the endophyte and the endophyte/bacterium complex appear to rely on an L-tryptophan dependent pathway for IAA synthesis. The bacterium can be isolated from the fungus when the symbiotic complex is cultivated at 36°C. In pure culture the bacterium does not produce IAA. Culture filtrate from the endophyte-bacterium complex significantly enhances growth of tomato in vitro relative to controls and to filtrate from the endophyte alone. Together these results speak to a facultative symbiosis between an endophyte and endohyphal bacterium that strongly influences IAA production, providing a new framework in which to explore endophyte-plant interactions.

Hoffman, Michele T.; Gunatilaka, Malkanthi K.; Wijeratne, Kithsiri; Gunatilaka, Leslie; Arnold, A. Elizabeth

2013-01-01

203

Antimicrobial activities of endophytic fungi isolated from Ophiopogon japonicus (Liliaceae)  

PubMed Central

Background Drug resistance in bacteria has become a global concern and the search for new antibacterial agents is urgent and ongoing. Endophytes provide an abundant reservoir of bioactive metabolites for medicinal exploitation, and an increasing number of novel compounds are being isolated from endophytic fungi. Ophiopogon japonicus, containing compounds with antibacterial activity, is a traditional Chinese medicinal plant used for eliminating phlegm, relieving coughs, latent heat in the lungs, and alleviating diabetes mellitus. We investigated the antimicrobial activities of 30 strains of O. japonicus. Methods Fungal endophytes were isolated from roots and stems of O. japonicus collected from Chongqing City, southwestern China. Mycelial extracts (MC) and fermentation broth (FB) were tested for antimicrobial activity using peptide deformylase (PDF) inhibition fluorescence assays and MTT cell proliferation assays. Results A total of 30 endophytic strains were isolated from O. japonicus; 22 from roots and eight from stems. 53.33% of the mycelial extracts (MC) and 33.33% of the fermentation broths (FB) displayed potent inhibition of PDF. 80% of MC and 33.33% of FB significantly inhibited Staphylococcus aureus. 70% of MC and 36.67% of FB showed strong activities against Cryptococcus neoformans. None showed influence on Escherichia coli. Conclusion The secondary metabolites of endophytic fungi from O. japonicus are potential antimicrobial agents.

2012-01-01

204

Effects of dark septate endophytes on tomato plant performance.  

PubMed

Non-mycorrhizal fungal root endophytes can be found in all natural and cultivated ecosystems, but little is known about their impact on plant performance. The impact of three mitosporic dark septate endophytes (DSE48, DSE49 and Leptodontidium orchidicola) on tomato plant characteristics was studied. Their effects on root and shoot growth, their influence on fruit yield and fruit quality parameters and their ability to diminish the impact of the pathogen Verticillium dahliae were investigated. While shoot biomass of young plants was enhanced between 10% and 20% by the endophytes DSE48 and L. orchidicola in one of two experiments and by DSE49 in both experiments, vegetative growth parameters of 24-week-old plants were not affected except a reproducible increase of root diameter by the isolate DSE49. Concerning fruit yield and quality, L. orchidicola could double the biomass of tomatoes and increased glucose content by 17%, but this was dependent on date of harvest and on root colonisation density. Additionally, the endophytes DSE49 and L. orchidicola decreased the negative effect of V. dahliae on tomato, but only at a low dosage of the pathogen. This indicates that the three dark septate endophytes can have a significant impact on tomato characters, but that the effects are only obvious at early stages of vegetative and generative development and currently too inconsistent to recommend the application of these DSEs in horticultural practice. PMID:21184117

Andrade-Linares, Diana Rocio; Grosch, Rita; Restrepo, Silvia; Krumbein, Angelika; Franken, Philipp

2011-07-01

205

Culturable endophytes of medicinal plants and the genetic basis for their bioactivity.  

PubMed

The bioactive compounds of medicinal plants are products of the plant itself or of endophytes living inside the plant. Endophytes isolated from eight different anticancer plants collected in Yunnan, China, were characterized by diverse 16S and 18S rRNA gene phylogenies. A functional gene-based molecular screening strategy was used to target nonribosomal peptide synthetase (NRPS) and type I polyketide synthase (PKS) genes in endophytes. Bioinformatic analysis of these biosynthetic pathways facilitated inference of the potential bioactivity of endophyte natural products, suggesting that the isolated endophytes are capable of producing a plethora of secondary metabolites. All of the endophyte culture broth extracts demonstrated antiproliferative effects in at least one test assay, either cytotoxic, antibacterial or antifungal. From the perspective of natural product discovery, this study confirms the potential for endophytes from medicinal plants to produce anticancer, antibacterial and antifungal compounds. In addition, PKS and NRPS gene screening is a valuable method for screening isolates of biosynthetic potential. PMID:22430508

Miller, Kristin I; Qing, Chen; Sze, Daniel Man-Yuen; Roufogalis, Basil D; Neilan, Brett A

2012-08-01

206

Endophytic Bacteria Associated with Growing Shoot Tips of Banana ( Musa sp.) cv. Grand Naine and the Affinity of Endophytes to the Host  

Microsoft Academic Search

A cultivation-based assessment of endophytic bacteria present in deep-seated shoot tips of banana suckers was made with a\\u000a view to generate information on the associated organisms, potential endophytic contaminants in tissue-cultured bananas and\\u000a to assess if the endophytes shared a beneficial relationship with the host. Plating the tissue homogenate from the central\\u000a core of suckers showed colony growth on nutrient

Pious Thomas; Thyvalappil A. Soly

2009-01-01

207

Endophytic actinobacteria induce defense pathways in Arabidopsis thaliana.  

PubMed

Endophytic actinobacteria, isolated from healthy wheat tissue, which are capable of suppressing a number wheat fungal pathogens both in vitro and in planta, were investigated for the ability to activate key genes in the systemic acquired resistance (SAR) or the jasmonate/ethylene (JA/ET) pathways in Arabidopsis thaliana. Inoculation of A. thaliana (Col-0) with selected endophytic strains induced a low level of SAR and JA/ET gene expression, measured using quantitative polymerase chain reaction. Upon pathogen challenge, endophyte-treated plants demonstrated a higher abundance of defense gene expression compared with the non-endophyte-treated controls. Resistance to the bacterial pathogen Erwinia carotovora subsp. carotovora required the JA/ET pathway. On the other hand, resistance to the fungal pathogen Fusarium oxysporum involved primarily the SAR pathway. The endophytic actinobacteria appear to be able to "prime" both the SAR and JA/ET pathways, upregulating genes in either pathway depending on the infecting pathogen. Culture filtrates of the endophytic actinobacteria were investigated for the ability to also activate defense pathways. The culture filtrate of Micromonospora sp. strain EN43 grown in a minimal medium resulted in the induction of the SAR pathway; however, when grown in a complex medium, the JA/ET pathway was activated. Further analysis using Streptomyces sp. strain EN27 and defense-compromised mutants of A. thaliana indicated that resistance to E. carotovora subsp. carotovora occurred via an NPR1-independent pathway and required salicylic acid whereas the JA/ET signaling molecules were not essential. In contrast, resistance to F. oxysporum mediated by Streptomyces sp. strain EN27 occurred via an NPR1-dependent pathway but also required salicylic acid and was JA/ET independent. PMID:18184065

Conn, V M; Walker, A R; Franco, C M M

2008-02-01

208

Automated ribotyping and antibiotic resistance determining of Bacillus spp from conjunctiva of diabetic patients.  

PubMed

Objective(s): We aimed to characterize the phenotype and genotype of Bacillus spp isolated from diabetic patients' eyes, by studying the drug sensitivity patterns with a disc-diffusion method. Materials and Methods: Fifty eyes of 25 patients with type II diabetes mellitus, with at least 10 years of diabetes history, were included in the study. We analyzed the eyes for the presence of Bacillus spp.; presumptive isolates were identified by morphological, and biochemical tests, and confirmed by the VITEK system. Automated EcoRI ribotyping was performed with a RiboPrinter(®) Microbial Characterization System. We determined the antibiotic resistance of the isolates by the Kirby-Bauer disc diffusion test. Results: Seven out of 25 patients were on insulin treatment; 7 on oral anti-diabetic medication; and 11 on combination therapy of insulin and oral medications. Among the 28 Bacillus spp isolates, 14 were B. cereus, 11 were B. pumilus, 2 were B. mojavensis and 1 was B. subtilis. Almost all the strains were either resistant or multiresistant, particularly towards cefuroxime, methicillin, and ceftazidime. Conclusion: Diabetic patients seem to be more prone to B. cereus infections than healthy individuals. It would be greatly beneficial to understand and recognize the prevalence of microorganisms and their resistance patterns for better outcome in ocular surgeries. PMID:24711899

Argun K?vanç, Sertaç; K?vanç, Merih; Güllülü, Gülay

2014-02-01

209

Bioactive natural compounds from the mangrove endophytic fungi.  

PubMed

In recent years, mangrove endophytic fungi are increasingly attracting attention of the pharmaceutical community as they produce a wide variety of metabolites that are structurally unique and pharmacologically active. Previous chemical investigation of mangrove fungi resulted in the discovery of various bioactive secondary metabolites including terpenes, chromones, coumarins, polyketides, alkaloids and peptides with diverse structural features. The present report reviews the papers, which have appeared in the literature till now, concerning the isolation, structural elucidation, and biological activities of the secondary metabolites from mangrove endophytic fungi. PMID:24552269

Wang, Kui-Wu; Wang, Shi-Wei; Wu, Bin; Wei, Ji-Guang

2014-04-01

210

The role of the Oregon state university endophyte service laboratory in diagnosing clinical cases of endophyte toxicoses.  

PubMed

The Oregon State University Colleges of Veterinary Medicine and Agricultural Sciences instituted the Endophyte Service Laboratory to aid in diagnosing toxicity problems associated with cool-season grasses in livestock. The endophyte (Neotyphodium coenophalum) present in tall fescue (Festuca arundinacea) produces ergopeptine alkaloids, of which ergovaline is the molecule used to determine exposure and toxicity thresholds for the vasoconstrictive conditions "fescue foot" and "summer slump". Another vasoconstrictive syndrome, "ergotism," is caused by a parasitic fungus, Claviceps purpurea, and its primary toxin, ergotamine. "Ryegrass staggers" is a neurological condition that affects livestock consuming endophyte (Neotyphodium lolii)-infected perennial ryegrass (Lolium perenne) with high levels of lolitrem B. HPLC-fluorescent analytical methods for these mycotoxins are described and were used to determine threshold levels of toxicity for ergovaline and lolitrem B in cattle, sheep, horses, and camels. In addition, six clinical cases in cattle are presented to illustrate diagnosis of these three diseases. PMID:25017309

Craig, A Morrie; Blythe, Linda L; Duringer, Jennifer M

2014-07-30

211

Rapid, specific and quantitative assays for the detection of the endophytic bacterium Methylobacterium mesophilicum in plants.  

PubMed

Xylella fastidiosa is a xylem-limited bacterium that causes citrus variegated chlorosis disease in sweet orange. There is evidence that X. fastidiosa interacts with endophytic bacteria present in the xylem of sweet orange, and that these interactions, particularly with Methylobacterium mesophilicum, may affect disease progress. However, these interactions cannot be evaluated in detail until efficient methods for detection and enumeration of these bacteria in planta are developed. We have previously developed standard and quantitative PCR-based assays specific for X. fastidiosa using the LightCycler system [Li, W.B., Pria Jr., L.P.M.W.D., X. Qin, and J.S. Hartung, 2003. Presence of Xylella fastidiosa in sweet orange fruit and seeds and its transmission to seedlings. Phytopathology 93:953-958.], and now report the development of both standard and quantitative PCR assays for M. mesophilicum. The assays are specific for M. mesophilicum and do not amplify DNA from other species of Methylobacterium or other bacteria commonly associated with citrus or plant tissue. Other bacteria tested included Curtobacterium flaccumfaciens, Pantoea agglomerans, Enterobacter cloacae, Bacillus sp., X. fastidiosa, Xanthomonas axonopodis pv. citri, and Candidatus Liberibacter asiaticus. We have demonstrated that with these methods we can quantitatively monitor the colonization of xylem by M. mesophilicum during the course of disease development in plants artificially inoculated with both bacteria. PMID:16266765

Lacava, P T; Li, W B; Araújo, W L; Azevedo, J L; Hartung, J S

2006-06-01

212

Characterization of arsenic-resistant endophytic bacteria from hyperaccumulators Pteris vittata and Pteris multifida.  

PubMed

We isolated and characterized As-resistant endophytic bacteria (AEB) from two arsenic hyperaccumulators. Their plant growth promoting traits and the relation between As tolerance and transformation were evaluated. A total of 41 and 33 AEB were isolated from Pteris vittata (PV) and Pteris multifida (PM) respectively. PV AEB represented 2genera while PM AEB comprised of 12 genera, with Bacillus sp. being the most dominant bacteria from both plants. All AEB had limited ability in solubilizing P and producing indole acetic acid (IAA) and siderophore. All isolates tolerated 10mM arsenate (As(V)), with PV isolates being more tolerant to As(V) and PM more tolerant to arsenite (As(III)). Bacterial arsenic tolerance was related to their ability in As(III) oxidation and As(V) reduction as well as their ability to retain As in the biomass to a varying extent. Though AEB showed limited plant growth promoting traits, they were important in arsenic tolerance and speciation in plants. PMID:25065783

Zhu, Ling-Jia; Guan, Dong-Xing; Luo, Jun; Rathinasabapathi, Bala; Ma, Lena Q

2014-10-01

213

Assessment of the Bacteriocinogenic Potential of Marine Bacteria Reveals Lichenicidin Production by Seaweed-Derived Bacillus spp.  

PubMed Central

The objectives of this study were (1) to assess the bacteriocinogenic potential of bacteria derived mainly from seaweed, but also sand and seawater, (2) to identify at least some of the bacteriocins produced, if any and (3) to determine if they are unique to the marine environment and/or novel. Fifteen Bacillus licheniformis or pumilus isolates with antimicrobial activity against at least one of the indicator bacteria used were recovered. Some, at least, of the antimicrobials produced were bacteriocins, as they were proteinaceous and the producers displayed immunity. Screening with PCR primers for known Bacillus bacteriocins revealed that three seaweed-derived Bacillus licheniformis harbored the bli04127 gene which encodes one of the peptides of the two-peptide lantibiotic lichenicidin. Production of both lichenicidin peptides was then confirmed by mass spectrometry. This is the first definitive proof of bacteriocin production by seaweed-derived bacteria. The authors acknowledge that the bacteriocin produced has previously been discovered and is not unique to the marine environment. However, the other marine isolates likely produce novel bacteriocins, as none harboured genes for known Bacillus bacteriocins.

Luz Prieto, Maria; O'Sullivan, Laurie; Tan, Shiau Pin; McLoughlin, Peter; Hughes, Helen; O'Connor, Paula M.; Cotter, Paul D.; Lawlor, Peadar G.; Gardiner, Gillian E.

2012-01-01

214

Fungal Endophytes from Three Cultivars of Panax ginseng Meyer Cultivated in Korea  

PubMed Central

In order to investigate the diversity of endophytes, fungal endophytes in Panax ginseng Meyer cultivated in Korea were isolated and identified using internal transcribed spacer (ITS) sequences of ribosomal DNA. Three cultivars of 3-year-old ginseng roots (Chunpoong, Yunpoong, and Gumpoong) were used to isolate fungal endophytes. Surface sterilized ginseng roots were placed on potato dextrose agar plates supplemented with ampicilin and streptomycin to inhibit bacterial growth. Overall, 38 fungal endophytes were isolated from 12 ginseng roots. According to the sequence analysis of the ITS1-5.8S-ITS2, 38 fungal isolates were classified into 4 different fungal species, which were Phoma radicina, Fusarium oxysporum, Setophoma terrestris and Ascomycota sp. 2-RNK. The most dominant fungal endophyte was P. radicina in 3 cultivars. The percentage of dominant endophytes of P. radicina was 65.8%. The percentage of colonization frequency of P. radicina was 80%, 52.9%, and 75% in Chunpoong, Yunpoong, and Gumpoong, respectively. The second most dominant fungal endophyte was F. oxysporum. The diversity of the fungal endophytes was low and no ginseng cultivar specificity among endophytes was detected in this study. The identified endophytes can be potential fungi for the production of bioactive compounds and control against ginseng pathogens.

Park, Sang Un; Lim, Hyoun-Sub; Park, Kee-Choon; Park, Young-Hwan; Bae, Hanhong

2012-01-01

215

Relationships among non-Acremonium sp. fungal endophytes in five grass species.  

PubMed Central

Many cool-season grasses (subfamily Pooideae) possess maternally transmitted fungal symbionts which cause no known pathology and often enhance the ecological fitness and biochemical capabilities of the grass hosts. The most commonly described endophytes are the Acremonium section Albo-lanosa spp. (Acremonium endophytes), which are conidial anamorphs (strictly asexual forms) of Epichloë typhina. Other endophytes which have been noted are a Gliocladium-like fungus in perennial ryegrass (Lolium perenne L.) and a Phialophora-like fungus in tall fescue (Festuca arundinacea Schreb.). Here, we report the identification of additional non-Acremonium sp. endophytes (herein designated p-endophytes) in three more grass species: Festuca gigantea, Festuca arizonica, and Festuca pratensis. In each grass species, the p-endophyte was cosymbiotic with an Acremonium endophyte. Serological analysis and sequence determinations of variable portions of their rRNA genes indicated that the two previously identified non-Acremonium endophytes are closely related to each other and to the newly identified p-endophytes. Therefore, the p-endophytes represent a second group of widely distributed grass symbionts. Images

An, Z Q; Siegel, M R; Hollin, W; Tsai, H F; Schmidt, D; Schardl, C L

1993-01-01

216

The community of needle endophytes reflects the current physiological state of Norway spruce.  

PubMed

This study investigated fungal endophytes in the needles of Norway spruce (Picea abies) cuttings in relation to host tree growth. We also determined the prevalence of endophytes in needles incubated for six months. The cuttings originated from clonal origins showing slow- and fast-growth in long-term field trials but the heritable differences in growth rate were not yet detected among the studied cutting. Endophytes were isolated from surface-sterilized needles with culture-free DNA techniques. No significant differences were observed between endophyte communities of slow- and fast-growing clonal origins. However, the endophyte community correlated with the current growth rate of cuttings suggesting that endophytes reflect short- rather than long-term performance of a host. The concentration of condensed tannins was similar in slow- and fast-growing clonal origins but it showed a negative relationship with endophyte species richness, implying that these secondary compounds may play an important role in spruce tolerance against fungal infections. More than a third of endophyte species were detected in both fresh and decomposing needles, indicating that many needle endophytes are facultative saprotrophs. Several potentially pathogenic fungal species were also found within the community of saprotrophic endophytes. PMID:24607354

Rajala, Tiina; Velmala, Sannakajsa M; Vesala, Risto; Smolander, Aino; Pennanen, Taina

2014-03-01

217

Methylobacterium-Induced Endophyte Community Changes Correspond with Protection of Plants against Pathogen Attack  

PubMed Central

Plant inoculation with endophytic bacteria that normally live inside the plant without harming the host is a highly promising approach for biological disease control. The mechanism of resistance induction by beneficial bacteria is poorly understood, because pathways are only partly known and systemic responses are typically not seen. The innate endophytic community structures change in response to external factors such as inoculation, and bacterial endophytes can exhibit direct or indirect antagonism towards pathogens. Earlier we showed that resistance induction by an endophytic Methylobacterium sp. in potato towards Pectobacterium atrosepticum was dependent on the density of the inoculum, whereas the bacterium itself had no antagonistic activity. To elucidate the role of innate endophyte communities in plant responses, we studied community changes in both in vitro and greenhouse experiments using various combinations of plants, endophyte inoculants, and pathogens. Induction of resistance was studied in several potato (Solanum tuberosum L.) cultivars by Methylobacterium sp. IMBG290 against the pathogens P. atrosepticum, Phytophthora infestans and Pseudomonas syringae pv. tomato DC3000, and in pine (Pinus sylvestris L.) by M. extorquens DSM13060 against Gremmeniella abietina. The capacities of the inoculated endophytic Methylobacterium spp. strains to induce resistance were dependent on the plant cultivar, pathogen, and on the density of Methylobacterium spp. inoculum. Composition of the endophyte community changed in response to inoculation in shoot tissues and correlated with resistance or susceptibility to the disease. Our results demonstrate that endophytic Methylobacterium spp. strains have varying effects on plant disease resistance, which can be modulated through the endophyte community of the host.

Ardanov, Pavlo; Sessitsch, Angela; Haggman, Hely; Kozyrovska, Natalia; Pirttila, Anna Maria

2012-01-01

218

Identification and quantitation of Bacillus globigii using metal enhanced electrochemical detection and capillary biosensor.  

PubMed

Presented herein are two detection strategies for the identification and quantification of Bacillus globigii, a spore forming nonpathogenic simulant of Bacillus anthracis. The first strategy involves a label-free, metal-enhanced electrochemical immunosensor for the quantitative detection of Bacillus globigii (atrophaeus). The immunosensor comprises of antibacillus globigii (BG) antibody self-assembled onto a gold quartz crystal electrode via cystamine bond. A solid-phase monolayer of silver underpotentially deposited onto the cystamine modified-Au-electrode surface is used as the redox probe. The monolayer was also generated by adsorbing silver nanoparticles on the gold electrode. When the antibody-modified electrode is exposed to BG spores, the antibody-antigen (Ab-Ag) complex formed insulated the electrode surface toward the silver redox probe. The variation of redox current was found to be proportional to the concentration of the BG spores between 1 x 10(2)-3.5 x 10(4) spores/mL. A detection limit of 602 spores/mL was obtained, which is well-below the infectious dose of anthrax spores at 2.5 x 10(5) spores/mL. The second approach involves the use of ultrasensitive portable capillary biosensor (UPAC) to detect the spores. The capillary is an enclosed system that acts as the flow cell, the waveguide, and the solid support for immobilized bimolecular probes. An evanescent excitation generates a signal from an antigen-antibody-fluorophore complex, which propagates along the capillary and is guided to the detector. A limit of detection of 112 spores/mL was reported using the UPAC sensor. Both methods showed lower detection limits compared to the conventional ELISA. The effect of potential interferants tested using Bacillus pumilus confirmed the selectivity for the analyte. This work should allow the first responders to rapidly detect and quantify Bacillus globigii spores at concentrations that are well-below the infectious dose. PMID:19689112

Mwilu, Samuel K; Aluoch, Austin O; Miller, Seth; Wong, Paula; Sadik, Omowunmi A; Fatah, Alim A; Arcilesi, Richard D

2009-09-15

219

The use of olfaction in the foraging behaviour of the golden-mantled flying fox, Pteropus pumilus , and the greater musky fruit bat, Ptenochirus jagori (Megachiroptera: Pteropodidae)  

Microsoft Academic Search

Double-choice experiments with three adult males of the little golden-mantled flying fox, Pteropus pumilus, and ten adult greater musky fruit bats, Ptenochirus jagori (both Megachiroptera: Pteropodidae), demonstrate that they are able to discriminate accurately between an empty dish and a dish containing fruits of one of several species by odour alone. Tests were run using fruits of six fruit species

Stefan Luft; Eberhard Curio; Benjamin Tacud

2003-01-01

220

Bioaugmentation with engineered endophytic bacteria improves contaminant fate in phytoremediation  

SciTech Connect

Phytoremediation of volatile organic contaminants often proves not ideal because plants and their rhizosphere microbes only partially degrade these compounds. Consequently, plants undergo evapotranspiration that contaminates the ambient air and, thus, undermines the merits of phytoremediation. Under laboratory conditions, endophytic bacteria equipped with the appropriate degradation pathways can improve in plant degradation of volatile organic contaminants. However, several obstacles must be overcome before engineered endophytes will be successful in field-scale phytoremediation projects. Here we report the first in situ inoculation of poplar trees, growing on a TCE-contaminated site, with the TCE-degrading strain Pseudomonas putida W619-TCE. In situ bioaugmentation with strain W619-TCE reduced TCE evapotranspiration by 90% under field conditions. This encouraging result was achieved after the establishment and enrichment of P. putida W619-TCE as a poplar root endophyte and by further horizontal gene transfer of TCE metabolic activity to members of the poplar's endogenous endophytic population. Since P. putida W619-TCE was engineered via horizontal gene transfer, its deliberate release is not restricted under European genetically modified organisms (GMO) regulations.

Weyens, N.; van der Lelie, D.; Artois, T.; Smeets, K.; Taghavi, S.; Newman, L.; Carleer, R.; Vangronsveld, J.

2009-12-01

221

Impact of Endophytic Microorganisms on Plants, Environment and Humans  

PubMed Central

Endophytes are microorganisms (bacteria or fungi or actinomycetes) that dwell within robust plant tissues by having a symbiotic association. They are ubiquitously associated with almost all plants studied till date. Some commonly found endophytes are those belonging to the genera Enterobacter sp., Colletotrichum sp., Phomopsis sp., Phyllosticta sp., Cladosporium sp., and so forth. Endophytic population is greatly affected by climatic conditions and location where the host plant grows. They produce a wide range of compounds useful for plants for their growth, protection to environmental conditions, and sustainability, in favour of a good dwelling place within the hosts. They protect plants from herbivory by producing certain compounds which will prevent animals from further grazing on the same plant and sometimes act as biocontrol agents. A large amount of bioactive compounds produced by them not only are useful for plants but also are of economical importance to humans. They serve as antibiotics, drugs or medicines, or the compounds of high relevance in research or as compounds useful to food industry. They are also found to have some important role in nutrient cycling, biodegradation, and bioremediation. In this review, we have tried to comprehend different roles of endophytes in plants and their significance and impacts on man and environment.

Nair, Dhanya N.; Padmavathy, S.

2014-01-01

222

Endophytic Phomopsis species: host range and implications for diversity estimates.  

PubMed

Foliar endophyte assemblages of teak trees growing in dry deciduous and moist deciduous forests of Nilgiri Biosphere Reserve were compared. A species of Phomopsis dominated the endophyte assemblages of teak, irrespective of the location of the host trees. Internal transcribed spacer sequence analysis of 11 different Phomopsis isolates (ten from teak and one from Cassia fistula) showed that they fall into two groups, which are separated by a relatively long branch that is strongly supported. The results showed that this fungus is not host restricted and that it continues to survive as a saprotroph in teak leaf, possibly by exploiting senescent leaves as well as the litter. Although the endophyte assemblage of a teak tree growing about 500 km from the forests was also dominated by a Phomopsis sp., it separated into a different group based on internal transcribed spacer sequence analysis. Our results with an endophytic Phomopsis sp. reinforce the earlier conclusions reached by others for pathogenic Phomopsis sp., i.e., that this fungus is not host specific, and the species concept of Phomopsis needs to be redefined. PMID:16917524

Murali, T S; Suryanarayanan, T S; Geeta, R

2006-07-01

223

Biosynthetic Potential of Phylogenetically Unique Endophytic Actinomycetes from Tropical Plants? †  

PubMed Central

The culturable diversity of endophytic actinomycetes associated with tropical, native plants is essentially unexplored. In this study, 123 endophytic actinomycetes were isolated from tropical plants collected from several locations in Papua New Guinea and Mborokua Island, Solomon Islands. Isolates were found to be prevalent in roots but uncommon in leaves. Initially, isolates were dereplicated to the strain level by ribotyping. Subsequent characterization of 105 unique strains by 16S rRNA gene sequence analysis revealed that 17 different genera were represented, and rare genera, such as Sphaerisporangium and Planotetraspora, which have never been previously reported to be endophytic, were quite prevalent. Phylogenetic analyses grouped many of the strains into clades distinct from known genera within Thermomonosporaceae and Micromonosporaceae, indicating that they may be unique genera. Bioactivity testing and liquid chromatography-mass spectrometry (LC-MS) profiling of crude fermentation extracts were performed on 91 strains. About 60% of the extracts exhibited bioactivity or displayed LC-MS profiles with spectra indicative of secondary metabolites. The biosynthetic potential of 29 nonproductive strains was further investigated by the detection of putative polyketide synthase (PKS) and nonribosomal peptide synthetase (NRPS) genes. Despite their lack of detectable secondary metabolite production in fermentation, most were positive for type I (66%) and type II (79%) PKS genes, and all were positive for NRPS genes. These results suggest that tropical plants from New Guinea and the adjacent archipelago are hosts to unique endophytic actinomycetes that possess significant biosynthetic potential.

Janso, Jeffrey E.; Carter, Guy T.

2010-01-01

224

LOLINE ALKALOID BIOSYNTHESIS GENE EXPRESSION IN EPICHLOE ENDOPHYTES OF GRASSES  

Microsoft Academic Search

Loline alkaloids (LA) are secondary metabolites produced by Epichloandamp;euml; (anamorph, Neotyphodium) grass endophytes. They are toxic and deterrent to a broad range of herbivorous insects but not to livestock. This protective bioactivity has spurred considerable research into the LA biosynthetic pathway. LOL, the gene cluster containing nine genes, is required for LA biosynthesis. The regulation of LOL genes during LA

DONG-XIU ZHANG

2008-01-01

225

Mutualistic fungal endophytes in the Triticeae - survey and description.  

PubMed

Grasses of the tribe Triticeae were screened to determine the presence of mutualistic epichloae fungal endophytes. Over 1500 accessions, from more than 250 species, encompassing 22 genera within the Triticeae were screened using immunodetection and direct staining/microscopy techniques. Only two genera, Elymus and Hordeum, were identified as harbouring epichloae endophytes with accessions native to a range of countries including Canada, China, Iran, Kazakhstan, Kyrgyzstan, Mongolia, Russia and the USA. Genetic analysis based on simple sequence repeat data revealed that the majority of endophytes cluster according to geographical regions rather than to host species; many strains isolated from Hordeum grouped with those derived from Elymus, and amongst the Elymus-derived strains, there was no clear correspondence between clustering topology and host species. This is the first detailed survey demonstrating the genetic diversity of epichloae endophytes within the Triticeae and highlights the importance of germplasm centres for not only preserving the genetic diversity of plant species but also the beneficial microorganisms they may contain. PMID:24754753

Card, Stuart D; Faville, Marty J; Simpson, Wayne R; Johnson, Richard D; Voisey, Christine R; de Bonth, Anouck C M; Hume, David E

2014-04-01

226

Endophytic insect communities of two prairie perennials (Asteraceae: Silphium spp.)  

Microsoft Academic Search

Little is known of the biology of most insects that are endemic to prairie ecosystems of North America, with the exception of large and conspicuous species. In particular, species that are sequestered within plant tissues are commonly overlooked. In this paper, we assess the biodiversity of endophytic insects that inhabit stems of Silphium laciniatum L. and S. terebinthinaceum Jacquin (Asteraceae),

John F. Tooker; Lawrence M. Hanks

2004-01-01

227

Benzofuran derivatives from the mangrove endophytic Fungus Xylaria sp. (#2508).  

PubMed

Three metabolites, named xyloketal J (1), xyloester A (2), and xyloallenolide B (3), together with the known substituted dihydrobenzofuran (4) were isolated from the mangrove endophytic fungus Xylaria sp. (#2508). Structures were determined by spectroscopic methods, mainly 1D and 2D NMR. PMID:18500842

Xu, Fang; Zhang, Yi; Wang, Jiajun; Pang, Jiyan; Huang, Caihuan; Wu, Xiongyu; She, Zhigang; Vrijmoed, L L P; Jones, E B Gareth; Lin, Yongcheng

2008-07-01

228

Phylogeny of marine Bacillus isolates from the Gulf of Mexico  

NASA Technical Reports Server (NTRS)

The phylogeny of 11 pigmented, aerobic, spore-forming isolates from marine sources was studied. Forty-two biochemical characteristics were examined, and a 16S rDNA sequence was obtained for each isolate. In a phylogenetic tree based on 16S sequencing, four isolates (NRRL B-14850, NRRL B-14904, NRRL B-14907, and NRRL B-14908) clustered with B. subtilis and related organisms; NRRL B-14907 was closely related to B. amyloliquefaciens. NRRL B-14907 and NRRL B-14908 were phenotypically similar to B. amyloliquefaciens and B. pumilus, respectively. Three strains (NRRL B-14906, NRRL B-14910, and NRRL B-14911) clustered in a clade that included B. firmus, B. lentus, and B. megaterium. NRRL B-14910 was closely related phenotypically and phylogenetically to B. megaterium. NRRL B-14905 clustered with the mesophilic round spore-producing species, B. fusiformis and B. sphaericus; the isolate was more closely related to B. fusiformis. NRRL B-14905 displayed characteristics typical of the B. sphaericus-like organisms. NRRL B-14909 and NRRL B-14912 clustered with the Paenibacillus species and displayed characteristics typical of the genus. Only NRRL B-14851, an unusually thin rod that forms very small spores, may represent a new Bacillus species.

Siefert, J. L.; Larios-Sanz, M.; Nakamura, L. K.; Slepecky, R. A.; Paul, J. H.; Moore, E. R.; Fox, G. E.; Jurtshuk, P. Jr

2000-01-01

229

Epichloë Endophytes Alter Inducible Indirect Defences in Host Grasses  

PubMed Central

Epichloë endophytes are common symbionts living asymptomatically in pooid grasses and may provide chemical defences against herbivorous insects. While the mechanisms underlying these fungal defences have been well studied, it remains unknown whether endophyte presence affects the host's own defences. We addressed this issue by examining variation in the impact of Epichloë on constitutive and herbivore-induced emissions of volatile organic compounds (VOC), a well-known indirect plant defence, between two grass species, Schedonorus phoenix (ex. Festuca arundinacea; tall fescue) and Festuca pratensis (meadow fescue). We found that feeding by a generalist aphid species, Rhopalosiphum padi, induced VOC emissions by uninfected plants of both grass species but to varying extents, while mechanical wounding failed to do so in both species after one day of damage. Interestingly, regardless of damage treatment, Epichloë uncinata-infected F. pratensis emitted significantly lower quantities of VOCs than their uninfected counterparts. In contrast, Epichloë coenophiala-infected S. phoenix did not differ from their uninfected counterparts in constitutive VOC emissions but tended to increase VOC emissions under intense aphid feeding. A multivariate analysis showed that endophyte status imposed stronger differences in VOC profiles of F. pratensis than damage treatment, while the reverse was true for S. phoenix. Additionally, both endophytes inhibited R. padi population growth as measured by aphid dry biomass, with the inhibition appearing greater in E. uncinata-infected F. pratensis. Our results suggest, not only that Epichloë endophytes may play important roles in mediating host VOC responses to herbivory, but also that the magnitude and direction of such responses may vary with the identity of the Epichloë–grass symbiosis. Whether Epichloë-mediated host VOC responses will eventually translate into effects on higher trophic levels merits future investigation.

Li, Tao; Blande, James D.; Gundel, Pedro E.; Helander, Marjo; Saikkonen, Kari

2014-01-01

230

Community composition of endophytic fungi in Acer truncatum and their role in decomposition  

Microsoft Academic Search

The mycota and decomposing potential of endophytic fungi associated with Acer truncatum, a common tree in northern China, were investigated. The colonization rate of endophytic fungi was significantly higher in\\u000a twigs (77%) than in leaves (11%). However, there was no significant difference in the colonization rates of endophytic fungi\\u000a between lamina (9%) and midrib (14%) tissues. A total of 58

Xiang Sun; Liang-Dong Guo; K. D. Hyde

2011-01-01

231

Diversity and Antimicrobial and Plant-Growth-Promoting Activities of Endophytic Fungi in Dendrobium loddigesii Rolfe  

Microsoft Academic Search

Endophytic fungi are ubiquitously distributed in orchids and have a great impact on the host plant. The diversity of endophytic\\u000a fungi in the medicinal orchid Dendrobium loddigesii Rolfe was investigated and their bioactivities in microbe and plant growth were explored here. Endophytic fungi were identified\\u000a by using morphological and molecular biological methods. Antimicrobial activity was determined by a standard disk

Xiao Mei Chen; Hai Ling Dong; Ke Xing Hu; Zhi Rong Sun; Juan Chen; Shun Xing Guo

2010-01-01

232

Endophytic fungi from the medicinal plant Lippia sidoides Cham. and their antimicrobial activity  

Microsoft Academic Search

Endophytic fungi were isolated from healthy tissues of Lippia sidoides Cham. (Verbenaceae), a medicinal plant used as an antiseptic in the northeast of Brazil. From 480 fragments of leaves (240)\\u000a and stems (240), a total of 203 endophytic fungi were isolated, representing 14 species belonging to the groups Ascomycota, Coelomycetes and Hyphomycetes. Endophytic colonization was greater in leaves (50.4%) than

Virginia Medeiros de Siqueira; Raphael Conti; Janete Magali de Araújo; Cristina Maria Souza-Motta

2011-01-01

233

Induced Systemic Resistance and Promotion of Plant Growth by Bacillus spp.  

PubMed

ABSTRACT Elicitation of induced systemic resistance (ISR) by plant-associated bacteria was initially demonstrated using Pseudomonas spp. and other gram-negative bacteria. Several reviews have summarized various aspects of the large volume of literature on Pseudomonas spp. as elicitors of ISR. Fewer published accounts of ISR by Bacillus spp. are available, and we review this literature for the first time. Published results are summarized showing that specific strains of the species B. amyloliquefaciens, B. subtilis, B. pasteurii, B. cereus, B. pumilus, B. mycoides, and B. sphaericus elicit significant reductions in the incidence or severity of various diseases on a diversity of hosts. Elicitation of ISR by these strains has been demonstrated in greenhouse or field trials on tomato, bell pepper, muskmelon, watermelon, sugar beet, tobacco, Arabidopsis sp., cucumber, loblolly pine, and two tropical crops (long cayenne pepper and green kuang futsoi). Protection resulting from ISR elicited by Bacillus spp. has been reported against leaf-spotting fungal and bacterial pathogens, systemic viruses, a crown-rotting fungal pathogen, root-knot nematodes, and a stem-blight fungal pathogen as well as damping-off, blue mold, and late blight diseases. Reductions in populations of three insect vectors have also been noted in the field: striped and spotted cucumber beetles that transmit cucurbit wilt disease and the silver leaf whitefly that transmits Tomato mottle virus. In most cases, Bacillus spp. that elicit ISR also elicit plant growth promotion. Studies on mechanisms indicate that elicitation of ISR by Bacillus spp. is associated with ultrastructural changes in plants during pathogen attack and with cytochemical alterations. Investigations into the signal transduction pathways of elicited plants suggest that Bacillus spp. activate some of the same pathways as Pseudomonas spp. and some additional pathways. For example, ISR elicited by several strains of Bacillus spp. is independent of salicylic acid but dependent on jasmonic acid, ethylene, and the regulatory gene NPR1-results that are in agreement with the model for ISR elicited by Pseudomonas spp. However, in other cases, ISR elicited by Bacillus spp. is dependent on salicylic acid and independent of jasmonic acid and NPR1. In addition, while ISR by Pseudomonas spp. does not lead to accumulation of the defense gene PR1 in plants, in some cases, ISR by Bacillus spp. does. Based on the strains and results summarized in this review, two products for commercial agriculture have been developed, one aimed mainly at plant growth promotion for transplanted vegetables and one, which has received registration from the U.S. Environmental Protection Agency, for disease protection on soybean. PMID:18944464

Kloepper, Joseph W; Ryu, Choong-Min; Zhang, Shouan

2004-11-01

234

A fungal endophyte induces transcription of genes encoding a redundant fungicide pathway in its host plant  

PubMed Central

Background Taxol is an anti-cancer drug harvested from Taxus trees, proposed ecologically to act as a fungicide. Taxus is host to fungal endophytes, defined as organisms that inhabit plants without causing disease. The Taxus endophytes have been shown to synthesize Taxol in vitro, providing Taxus with a second potential biosynthetic route for this protective metabolite. Taxol levels in plants vary 125-fold between individual trees, but the underlying reason has remained unknown. Results Comparing Taxus trees or branches within a tree, correlations were observed between Taxol content, and quantity of its resident Taxol-producing endophyte, Paraconiothyrium SSM001. Depletion of fungal endophyte in planta by fungicide reduced plant Taxol accumulation. Fungicide treatment of intact plants caused concomitant decreases in transcript and/or protein levels corresponding to two critical genes required for plant Taxol biosynthesis. Taxol showed fungicidal activity against fungal pathogens of conifer wood, the natural habitat of the Taxol-producing endophyte. Consistent with other Taxol-producing endophytes, SSM001 was resistant to Taxol. Conclusions These results suggest that the variation in Taxol content between intact Taxus plants and/or tissues is at least in part caused by varying degrees of transcriptional elicitation of plant Taxol biosynthetic genes by its Taxol-producing endophyte. As Taxol is a fungicide, and the endophyte is resistant to Taxol, we discuss how this endophyte strategy may be to prevent colonization by its fungal competitors but at minimal metabolic cost to itself.

2013-01-01

235

Forages and pastures symposium: fungal endophytes of tall fescue and perennial ryegrass: pasture friend or foe?  

PubMed

Tall fescue [Lolium arundinaceum (Schreb.) Darbysh. syn. Festuca arundinacea Schreb.] and perennial ryegrass (Lolium perenne L.) are important perennial forage grasses utilized throughout the moderate- to high-rainfall temperate zones of the world. These grasses have coevolved with symbiotic fungal endophytes (Epichloë/Neotyphodium spp.) that can impart bioactive properties and environmental stress tolerance to the grass compared with endophyte-free individuals. These endophytes have proven to be very important in pastoral agriculture in the United States, New Zealand, and Australia, where forage grasses are the principal feed for grazing ruminants. In this review, we describe the biology of these grass-endophyte associations and implications for the livestock industries that are dependent on these forages. Endophyte alkaloid production is put in context with endophyte diversity, and we illustrate how this has facilitated utilization of grasses infected with different endophyte strains that reduce livestock toxicity issues. Utilization of tall fescue and use of perennial ryegrass in the United States, New Zealand, and Australia are compared, and management strategies focused predominantly on the success of endophyte-infected perennial ryegrass in New Zealand and Australia are discussed. In addition, we consider the impact of grass-endophyte associations on the sustainability of pasture ecosystems and their likely response to future changes in climate. PMID:23307839

Young, C A; Hume, D E; McCulley, R L

2013-05-01

236

Bioactive potential of endophytic Myrothecium sp. isolate M1-CA-102, associated with Calophyllum apetalum.  

PubMed

Abstract Context: Endophytes colonizing medicinal plants are diverse, constituting a rich bioresource for novel natural products. Objective: Myrothecium sp. isolate M1-CA-102 was the most promising among the 16 Myrothecium isolates screened. The bioactive potential of the crude extract from the Calophyllum apetalum Willd. endophytic Myrothecium sp. (Alb. & Schwein.) Ditmar (Incertae sedis) isolate M1-CA-102 and its thin layer chromatography (TLC) fractions were screened based on antioxidant, anti-inflammatory, antimicrobial activities, and cytotoxicity. Materials and methods: The antioxidant activity was measured by 1,1-diphenyl-2-picrylhydrazyl (DPPH) and 2,2'-azinobis-(3-ethylbenzthiazoline-6-sulfonic acid (ABTS) radical scavenging capacities. Further, 15-lipoxygenase (15-LOX) and human cyclooxygenase-2 (COX-2) inhibition were assessed at different concentrations (25, 50, and 100??g/mL for the crude extract, 5, 25, and 50??g/mL for the TLC fractions). DNA-nicking assay as an indicator of the capacity of extracts to scavenge hydroxyl radical was recorded at a concentration of 50??g/mL. Cell cytotoxicity was recorded by colorimetric 3-(4,5-dimethylthylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Antibacterial (Bacillus subtilis) and anti-Candida (Candida albicans) assays were performed by the microdilution method. Results: The DPPH and ABTS IC50 values of M1-CA-102 extract were 10 and 6??g/mL compared with 6.1 and 7.03??g/mL for the positive control quercetin. The cytotoxicity IC50 value of M1-CA-102 extract was 37??g/mL, while the M-I TLC fraction was 21??g/mL. The M1-CA-102 extract gave an IC50 value of 58 and 8??g/mL for 15-LOX and COX-2, respectively. The MIC values for antimicrobial activity for M1-CA-102 extract ranged from 35 to 54??g/mL, while for the TLC fractions, it ranged from 91 to 515??g/mL. Conclusion: The results indicate that Myrothecium M1-CA-102 isolated from C. apetalum is a potential source of natural metabolites of pharmaceutical importance. PMID:24635191

Ruma, Karmakar; Sunil, Kumar; Prakash, Harischandra Sripathy

2014-06-01

237

Patterns of epipelic algal distribution in an acidic adirondack lake. [Hapalosiphon pumilus; Fragilaria acidobiontica; Navicula tenuicephala; Navicula subtilissima  

SciTech Connect

The biovolume and species composition of epipelic algae along sediment depth gradients were sampled seasonally in an acidic oligotrophic lake in the Adirondack Park in New York State. The epipelic algal community of Woods Lake (Herkimer Co., NY) was dominated by diatoms and cyanobacteria. Distinct depth zonation patterns of community composition were evident. Total algal biovolume increased with depth due to a dense cyanobacterial mat on the sediments in deeper water (5-8 m). This mat was dominated by a single species of cyanobacteria, Hapalosiphon pumilus (Kuetz). Kirchner, which accounted for the later summer maximum in total biovolume at 7 m. The shallower (1-4 m) epipelic communities were dominated by diatoms, which showed a spring maximum in total biovolume and were dominated by Fragilaria acidobiontica Charles, Navicula tenuicephala Hust, and N. subtilissima Cl.

Roberts, D.A.; Boylen, C.W.

1988-06-01

238

Genetic diversity of endophytic bacteria which could be find in the apoplastic sap of the medullary parenchym of the stem of healthy sugarcane plants.  

PubMed

The genetic diversity of 29 endophytic bacterial strains isolated from apoplastic sap of the medullary parenchym of the stem of healthy sugarcane plants grown in Cuba was analysed by Two Primers-Ramdom Amplified Polymorphic DNA fingerprinting (TP-RAPD) and 16S rRNA gene sequencing. The strains were distributed into 17 groups on the basis of their TP-RAPD patterns, and a representative strain from each group was subjected to 16S rRNA gene sequencing. Analysis of these sequences showed that the isolates belong to a wide variety of phylogenetic groups being closely related to species of genera Bacillus and Staphylococcus from Firmicutes, Microbacterium, Micrococcus and Kokuria from Actinobacteria, Rhizobium and Gluconacetobacter from alpha -Proteobacteria, Comamonas and Xanthomonas from beta-Proteobacteria, and Acinetobacter and Pantoea from gamma-Proteobacteria. These results show the complexity of the bacterial populations present in inner tissues of sugarcane, and indicate the interest and relevance of the studies on microbial diversity to improve our knowledge on the plant endophytic bacterial communities. PMID:18383223

Velázquez, Encarna; Rojas, Marcia; Lorite, María José; Rivas, Raúl; Zurdo-Piñeiro, José Luis; Heydrich, Mayra; Bedmar, Eulogio J

2008-04-01

239

Classification of Bacillus beneficial substances related to plants, humans and animals.  

PubMed

Genus Bacillus is a spore-forming bacterium that has unique properties in cell differentiation, allowing the forming of spores in stress conditions and activated in the vegetative cell, with suitable environments occurring during the life cycle acting as a trigger. Their habitat is mainly in soil; thus, many species of Bacillus are associated with plants as well as rhizosphere bacteria and endophytic bacteria. Signal transduction is the principal mechanism of interactions, both within the cell community and with the external environment, which provides the subsequent functions or properties for the cell. The antimicrobial compounds of Bacillus sp. are potentially useful products, which have been used in agriculture for the inhibition of phytopathogens, for the stimulation of plant growth, and in the food industry as probiotics. There are two systems for the synthesis of these substances: nonribosomal synthesis of cyclic lipopeptides (NRPS) and polyketides (PKS). For each group, the structures, properties, and genes of the main products are described. The different compounds described and the way in which they co-exist exhibit the relationship of Bacillus substances to plants, humans, and animals. PMID:23221520

Mongkolthanaruk, Wiyada

2012-12-01

240

Disruption of Microbial Biofilms by an Extracellular Protein Isolated from Epibiotic Tropical Marine Strain of Bacillus licheniformis  

PubMed Central

Background Marine epibiotic bacteria produce bioactive compounds effective against microbial biofilms. The study examines antibiofilm ability of a protein obtained from a tropical marine strain of Bacillus licheniformis D1. Methodology/Principal Findings B. licheniformis strain D1 isolated from the surface of green mussel, Perna viridis showed antimicrobial activity against pathogenic Candida albicans BH, Pseudomonas aeruginosa PAO1 and biofouling Bacillus pumilus TiO1 cultures. The antimicrobial activity was lost after treatment with trypsin and proteinase K. The protein was purified by ultrafiltration and size-exclusion chromatography. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and matrix assisted laser desorption/ionization-time of flight (MALDI-TOF) analysis revealed the antimicrobial agent to be a 14 kDa protein designated as BL-DZ1. The protein was stable at 75°C for 30 min and over a pH range of 3.0 to 11.0. The sequence alignment of the MALDI-fingerprint showed homology with the NCBI entry for a hypothetical protein (BL00275) derived from B. licheniformis ATCC 14580 with the accession number gi52082584. The protein showed minimum inhibitory concentration (MIC) value of 1.6 µg/ml against C. albicans. Against both P. aeruginosa and B. pumilus the MIC was 3.12 µg/ml. The protein inhibited microbial growth, decreased biofilm formation and dispersed pre-formed biofilms of the representative cultures in polystyrene microtiter plates and on glass surfaces. Conclusion/Significance We isolated a protein from a tropical marine strain of B. licheniformis, assigned a function to the hypothetical protein entry in the NCBI database and described its application as a potential antibiofilm agent.

Dusane, Devendra H.; Damare, Samir R.; Nancharaiah, Yarlagadda V.; Ramaiah, N.; Venugopalan, Vayalam P.; Kumar, Ameeta Ravi; Zinjarde, Smita S.

2013-01-01

241

A novel cephalosporin deacetylating acetyl xylan esterase from Bacillus subtilis with high activity toward cephalosporin C and 7-aminocephalosporanic acid.  

PubMed

A cephalosporin deacetylating acetyl xylan esterase was cloned from the genomic DNA of Bacillus subtilis CICC 20034 and functionally expressed in Escherichia coli. Its gene contained an open reading frame of 957 bp encoding 318 amino acids with a calculated mass of 35,607 Da, and it displayed significant identity to acetyl xylan esterases from Bacillus sp. 916, B. subtilis 168, and Bacillus pumilus Cect5072. The enzyme was a native homohexamer but a trimer under the condition of 1% sodium dodecyl sulfate (SDS); both forms were active and could transit to each other by incubating in or removing SDS. The enzyme belongs to carbohydrate esterase family 7 and had a double specificity on both the acetylated oligosaccharide and cephalosporin C (CPC) and 7-aminocephalosporanic acid (7-ACA). The activity of this purified enzyme toward CPC and 7-ACA was highest among all the acetyl xylan esterase from CE family 7, which were 484 and 888 U/mg, respectively, and endowed itself with great industrial interest on semi-synthetic ?-lactam antibiotics. The optimum pH of the purified enzyme was 8.0, and the optimum temperature was 50 °C, and the enzyme had high thermal stability, broad range of pH tolerance, and extremely organic solvent tolerance. PMID:23828600

Tian, Qianqian; Song, Ping; Jiang, Ling; Li, Shuang; Huang, He

2014-03-01

242

Study of the anti-sapstain fungus activity of Bacillus amyloliquefaciens CGMCC 5569 associated with Ginkgo biloba and identification of its active components.  

PubMed

An endophytic bacterium, designated strain Bacillus amyloliquefaciens CGMCC 5569 was isolated from Chinese medicinal Ginkgo biloba collected from Xuzhou, China. Both the filtrate and the ethyl acetate extract of strain CGMCC 5569 showed growth inhibition activity against the sapstain fungi Lasiodiplodia rubropurpurea, L. crassispora, and L. theobromae obviously (>65%) based on the comparison of the length of zones on the petri dish. From the ethyl acetate extract of the filtrate, the antifungal compounds were obtained as a series of lipopeptides, which including series of fengycin, surfactin and bacillomycin. It showed strong growth inhibition activity in vitro against the L. rubropurpurea, L. crassispora and L. theobromae by about 70.22%, 69.53% and 78.76%, respectively. The strong anti-sapstain fungus activity indicated that the endophytic B. amyloliquefaciens CGMCC 5569 and its bioactive components might provide an alternative bio-resource for the bio-control of sapstain. PMID:22520222

Yuan, Bo; Wang, Zhe; Qin, Sheng; Zhao, Gui-Hua; Feng, You-Jian; Wei, Li-Hui; Jiang, Ji-Hong

2012-06-01

243

Gene Cloning, Transcriptional Analysis, Purification, and Characterization of Phenolic Acid Decarboxylase from Bacillus subtilis  

PubMed Central

Bacillus subtilis displays a substrate-inducible decarboxylating activity with the following three phenolic acids: ferulic, p-coumaric, and caffeic acids. Based on DNA sequence homologies between the Bacillus pumilus ferulate decarboxylase gene (fdc) (A. Zago, G. Degrassi, and C. V. Bruschi, Appl. Environ. Microbiol. 61:4484–4486, 1995) and the Lactobacillus plantarum p-coumarate decarboxylase gene (pdc) (J.-F. Cavin, L. Barthelmebs, and C. Diviès, Appl. Environ. Microbiol. 63:1939–1944, 1997), a DNA probe of about 300 nucleotides for the L. plantarum pdc gene was used to screen a B. subtilis genomic library in order to clone the corresponding gene in this bacterium. One clone was detected with this heterologous probe, and this clone exhibited phenolic acid decarboxylase (PAD) activity. The corresponding 5-kb insertion was partially sequenced and was found to contain a 528-bp open reading frame coding for a 161-amino-acid protein exhibiting 71 and 84% identity with the pdc- and fdc-encoded enzymes, respectively. The PAD gene (pad) is transcriptionally regulated by p-coumaric, ferulic, or caffeic acid; these three acids are the three substrates of PAD. The pad gene was overexpressed constitutively in Escherichia coli, and the stable purified enzyme was characterized. The difference in substrate specificity between this PAD and other PADs seems to be related to a few differences in the amino acid sequence. Therefore, this novel enzyme should facilitate identification of regions involved in catalysis and substrate specificity.

Cavin, Jean-Francois; Dartois, Veronique; Divies, Charles

1998-01-01

244

Interspecies Transformation Between Bacillus Subtilis and Bacillus Licheniformis.  

National Technical Information Service (NTIS)

Interspecies transformation was obtained between Bacillus subtilis and Bacillus licheniformis for the streptomycin resistance marker in both directions. A comparison of the reciprocal crosses indicates at least a 2-log difference in efficiency of transfor...

I. D. Goldgerg D. D. Gwinn C. B. Thorne

1966-01-01

245

Ecological implications of anti-pathogen effects of tropical fungal endophytes and mycorrhizae.  

PubMed

We discuss studies of foliar endophytic fungi (FEF) and arbuscular mycorrhizal fungi (AMF) associated with Theobroma cacao in Panama. Direct, experimentally controlled comparisons of endophyte free (E-) and endophyte containing (E+) plant tissues in T. cacao show that foliar endophytes (FEF) that commonly occur in healthy host leaves enhance host defenses against foliar damage due to the pathogen (Phytophthora palmivora). Similarly, root inoculations with commonly occurring AMF also reduce foliar damage due to the same pathogen. These results suggest that endophytic fungi can play a potentially important mutualistic role by augmenting host defensive responses against pathogens. There are two broad classes of potential mechanisms by which endophytes could contribute to host protection: (1) inducing or increasing the expression of intrinsic host defense mechanisms and (2) providing additional sources of defense, extrinsic to those of the host (e.g., endophyte-based chemical antibiosis). The degree to which either of these mechanisms predominates holds distinct consequences for the evolutionary ecology of host-endophyte-pathogen relationships. More generally, the growing recognition that plants are composed of a mosaic of plant and fungal tissues holds a series of implications for the study of plant defense, physiology, and genetics. PMID:17503581

Herre, Edward Allen; Mejía, Luis C; Kyllo, Damond A; Rojas, Enith; Maynard, Zuleyka; Butler, Andre; Van Bael, Sunshine A

2007-03-01

246

Restructuring of Endophytic Bacterial Communities in Grapevine Yellows-Diseased and Recovered Vitis vinifera L. Plants ?  

PubMed Central

Length heterogeneity-PCR assays, combined with statistical analyses, highlighted that the endophytic bacterial community associated with healthy grapevines was characterized by a greater diversity than that present in diseased and recovered plants. The findings suggest that phytoplasmas can restructure the bacterial community by selecting endophytic strains that could elicit a plant defense response.

Bulgari, Daniela; Casati, Paola; Crepaldi, Paola; Daffonchio, Daniele; Quaglino, Fabio; Brusetti, Lorenzo; Bianco, Piero Attilio

2011-01-01

247

Restructuring of endophytic bacterial communities in grapevine yellows-diseased and recovered Vitis vinifera L. plants.  

PubMed

Length heterogeneity-PCR assays, combined with statistical analyses, highlighted that the endophytic bacterial community associated with healthy grapevines was characterized by a greater diversity than that present in diseased and recovered plants. The findings suggest that phytoplasmas can restructure the bacterial community by selecting endophytic strains that could elicit a plant defense response. PMID:21622794

Bulgari, Daniela; Casati, Paola; Crepaldi, Paola; Daffonchio, Daniele; Quaglino, Fabio; Brusetti, Lorenzo; Bianco, Piero Attilio

2011-07-01

248

Age-dependent Distribution of Fungal Endophytes in Panax ginseng Roots Cultivated in Korea  

PubMed Central

Fungal endophytes were isolated from 1-, 2-, 3-, and 4-year-old ginseng roots (Panax ginseng Meyer) cultivated in Korea. The isolated fungal endophytes were identified based on sequence analysis of the internal transcribed spacer and morphological characterization by microscopic observations. A total of 81 fungal endophytes were isolated from 24 ginseng roots. Fungal endophytes were classified into 9 different fungal species and 2 unknown species. Ginseng roots that were 1-, 2-, 3-, and 4-years old were colonized by 2, 6, 8, and 5 species of fungal endophytes, respectively. While Phoma radicina was the most frequent fungal endophyte in 2-, 3-, and 4-year-old ginseng roots, Fusarium solani was the dominant endophyte in 1-year-old ginseng roots. The colonization frequencies (CF) varied with the host age. The CF were 12%, 40%, 31%, and 40% for 1-, 2-, 3-, and 4-year-old ginseng roots, respectively. We found a variety of fungal endophytes that were distributed depending on the age of ginseng plants.

Park, Young-Hwan; Kim, Young-Chang; Park, Sang Un; Lim, Hyoun-Sub; Kim, Joon Bum; Cho, Byoung-Kwan; Bae, Hanhong

2012-01-01

249

Biological activities from extracts of endophytic fungi isolated from Viguiera arenaria and Tithonia diversifolia  

Microsoft Academic Search

A total of 39 endophytic fungi have been isolated from Viguiera arenaria and Tithonia diversifolia, both collected in Sao Paulo State, Brazil. The isolates were identified based on their ribosomal DNA sequences. The ethyl acetate (EtOAc) extracts of all endophytic fungi were evaluated for their antimicrobial, antiparasitic and antitumoral activity. Antimicrobial screening was conducted using an agar diffusion assay against

Warley S. Borges; Cristina Y. Kawano; Gustavo H. Goldman; Auro Nomizo; Glaucius Oliva; Norberto P. Lopes; Mônica T. Pupo

2008-01-01

250

Response of Endophytic Bacterial Communities in Potato Plants to Infection with Erwinia carotovora subsp. atroseptica  

Microsoft Academic Search

The term endophyte refers to interior colonization of plants by microorganisms that do not have pathogenic effects on their hosts, and various endophytes have been found to play important roles in plant vitality. In this study, cultivation-independent terminal restriction fragment length polymorphism analysis of 16S ribosomal DNA directly amplified from plant tissue DNA was used in combination with molecular characterization

Birgit Reiter; Ulrike Pfeifer; Helmut Schwab; Angela Sessitsch

2002-01-01

251

Natural enemies act faster than endophytic fungi in population control of cereal aphids  

Microsoft Academic Search

Summary 1. Fast-growing populations of phytophagous insects can be limited by the presence of natural enemies and by alkaloids that are produced by symbiotic associations of many temperate grass species with endophytic fungi. It is unclear if and how acquired plant defences derived from endophytic fungi interact with natural enemies to affect phytophagous insect populations. 2. To assess the relative

Simone A. Härri; Jochen Krauss; Christine B. Müller

2008-01-01

252

Associations between microfungal endophytes and roots: do structural features indicate function?  

Microsoft Academic Search

Roots encounter a plethora of microorganisms in the soil environment that are either deleterious, neutral, or ben- eficial to plant growth. Root endophytic fungi are ubiquitous. These include dark septate endophytes whose role in plant growth and the maintenance of plant communities is largely unknown. The objectives of this review were to assess the structural features of the interactions between

R. Larry Peterson; Cameron Wagg; Michael Pautler

2008-01-01

253

THE ROLE OF ENDOPHYTIC FUNGI IN BRACHIARIA, A TROPICAL FORAGE GRASS  

Microsoft Academic Search

In temperate zones, endophytic fungi are widely used as biological protection agents for forage and turf grasses. They form nonpathogenic and intercellular associations with grasses and sedges, completing their entire life cycle within the plants' aerial parts. Our surveys and studies confirmed that various endophytic fungi, including Acremonium spp., also inhabit native savanna grasses and introduced tropical forage grasses. We

S. Kelemu; J. F. White; I. M. Rao

254

Fungal endophytes associated with the mistletoe Phoradendron perrottettii and its host tree Tapirira guianensis  

Microsoft Academic Search

The endophytic mycobiota of leaves and stems of the mistletoe Phoradendron perrottettii and its host tree Tapirira guianensis, two physiologically connected plant species of the Brazilian savannah in southeastern Brazil, were investigated to evaluate\\u000a host and organ recurrence among endophytes. Leaves and stems of P. perrottettii and leaves of T. guianensis were sampled in the dry and wet season. Stems

L. M. de Abreu; A. R. Almeida; M. Salgado; L. H. Pfenning

2010-01-01

255

Site and species-specific differences in endophyte occurrence in two herbaceous plants  

Microsoft Academic Search

Summary 1 Endophyte fungi exist within the living tissues of all plants, but compared with grasses and trees, remarkably little is known about their ecology in herbaceous species. These fungi produce an array of metabolites in culture and there is some evidence that they can increase the resistance of plants to herbivorous insects. 2 As herbaceous plant endophytes are thought

ALAN C. GANGE; SOMA DEY; AMANDA F. CURRIE; BRIAN C. SUTTON

2007-01-01

256

Complete genome sequence of the sugarcane nitrogen-fixing endophyte Gluconacetobacter diazotrophicus Pal5  

Microsoft Academic Search

BACKGROUND: Gluconacetobacter diazotrophicus Pal5 is an endophytic diazotrophic bacterium that lives in association with sugarcane plants. It has important biotechnological features such as nitrogen fixation, plant growth promotion, sugar metabolism pathways, secretion of organic acids, synthesis of auxin and the occurrence of bacteriocins. RESULTS: Gluconacetobacter diazotrophicus Pal5 is the third diazotrophic endophytic bacterium to be completely sequenced. Its genome is

Marcelo Bertalan; Rodolpho Albano; Vânia de Pádua; Luc Rouws; Cristian Rojas; Adriana Hemerly; Kátia Teixeira; Stefan Schwab; Jean Araujo; André Oliveira; Leonardo França; Viviane Magalhães; Sylvia Alquéres; Alexander Cardoso; Wellington Almeida; Marcio Martins Loureiro; Eduardo Nogueira; Daniela Cidade; Denise Oliveira; Tatiana Simão; Jacyara Macedo; Ana Valadão; Marcela Dreschsel; Flávia Freitas; Marcia Vidal; Helma Guedes; Elisete Rodrigues; Carlos Meneses; Paulo Brioso; Luciana Pozzer; Daniel Figueiredo; Helena Montano; Jadier Junior; Gonçalo de Souza Filho; Victor Martin Quintana Flores; Beatriz Ferreira; Alan Branco; Paula Gonzalez; Heloisa Guillobel; Melissa Lemos; Luiz Seibel; José Macedo; Marcio Alves-Ferreira; Gilberto Sachetto-Martins; Ana Coelho; Eidy Santos; Gilda Amaral; Anna Neves; Ana Beatriz Pacheco; Daniela Carvalho; Letícia Lery; Paulo Bisch; Shaila C Rössle; Turán Ürményi; Alessandra Rael Pereira; Rosane Silva; Edson Rondinelli; Wanda von Krüger; Orlando Martins; José Ivo Baldani; Paulo CG Ferreira

2009-01-01

257

A mixed culture of endophytic fungi increases production of antifungal polyketides.  

PubMed

Secondary metabolites produced by endophytic microorganisms can provide benefits to host plants, such as stimulating growth and enhancing the plant's resistance toward biotic and abiotic factors. During its life, a host plant may be inhabited by many species of endophytes within a restrictive environment. This condition can stimulate secondary metabolite production that improves microbial competition and may consequently affect both the neighboring microorganisms and the host plant. The interactions between the endophytes that co-habit the same host plant have been studied. However, the effect of these interactions on the host plant has remained neglected. When using mixed microbial cultures, we found that the endophytic fungus Alternaria tenuissima significantly increased the production of some polyketides, including antifungal stemphyperylenol in response to the endophytic Nigrospora sphaerica. Biological activity assays revealed that stemphyperylenol can cause cytotoxic effects against N. sphaerica, although no phytotoxicity was observed in the host plant Smallanthus sonchifolius, even at concentrations much higher than those toxic to the fungus. The polyketides produced by A. tenuissima may be important for the ecological relationships between endophyte-endophyte and endophytes-host plants in the natural environment. PMID:24114180

Chagas, Fernanda O; Dias, Luís G; Pupo, Mônica T

2013-10-01

258

Biosynthesis of archetypal plant self-defensive oxylipins by an endophytic fungus residing in mangrove embryos.  

PubMed

A tree's travel companion: a fungal endophyte (Fusarium incarnatum) isolated from a viviparous propagule (embryo) of a mangrove tree produces typical plant defense oxylipins. Stable-isotope labeling experiments revealed that the endophyte biosynthesizes coriolic acid, didehydrocoriolic acid, and an epoxy fatty acid derived from linoleic acid by a process involving ?(15)-desaturation and 13-lipoxygenation. PMID:23165938

Ding, Ling; Peschel, Gundela; Hertweck, Christian

2012-12-21

259

Host plant genetics affect hidden ecological players: links among Populus , condensed tannins, and fungal endophyte infection  

Microsoft Academic Search

Recent studies have shown effects of host plant genetics on community and ecosystem processes, which makes understanding the impacts of genetically based traits on hidden or non-apparent organisms more important. Here we examined links among genetic variation in hybrid cottonwoods, plant phytochemistry, and twig fungal endophytes (i.e., a common hidden organism). We found three major patterns: (1) twig fungal endophyte

Joseph K. Bailey; Ron Deckert; Jennifer A. Schweitzer; Brian J. Rehill; Richard L. Lindroth; Catherine Gehring; Thomas G. Whitham

2005-01-01

260

Order of arrival shifts endophyte-pathogen interactions in bean from resistance induction to disease facilitation.  

PubMed

Endophytic fungi colonize plants without causing symptoms of disease and can enhance the resistance of their host to pathogens. We cultivated 53 fungal strains from wild lima bean (Phaseolus lunatus) and investigated their effects on pathogens using in vitro assays and experiments in planta. Most strains were annotated as Rhizopus, Fusarium, Penicillium, Cochliobolus, and Artomyces spp. by the sequence of their 18S rRNA gene. In vitro confrontation assays between endophytes and three pathogens (the bacteria Pseudomonas syringae pv. syringae and Enterobacter sp. strain FCB1, and the fungus Colletotrichum lindemuthianum) revealed strong and mainly symmetric reciprocal effects: endophyte and pathogen either mutually inhibited (mainly Enterobacter FCB1 and Colletotrichum) or facilitated (P. syringae) the growth of each other. In planta, the endophytes had a strong inhibitory effect on P. syringae when they colonized the plant before the bacterium, whereas infection was facilitated when P. syringae colonized the plant before the endophyte. Infection with Enterobacter FCB1 was facilitated when the bacterium colonized the plant before or on the same day with the endophyte, but not when the endophyte was present before the bacterium. The order of arrival determines whether fungal endophytes enhance plant resistance to bacterial pathogens or facilitate disease. PMID:24801140

Adame-Álvarez, Rosa-María; Mendiola-Soto, Jaime; Heil, Martin

2014-06-01

261

Diversity and molecular phylogeny of fungal endophytes associated with Diospyros crassiflora  

Microsoft Academic Search

Plants of Diospyros spp. produce many bioactive compounds and are used for medicinal purposes. However, the diversity of their associated fungal endophytes, which are also potential sources of bioactive metabolites, has not been investigated. In this study, fungal endophytes isolated by culturing method from healthy leaves, fruit and root tissues of Diospyros crassiflora were examined using sequence data from the

Clovis Douanla-Meli; Ewald Langer

2012-01-01

262

Draft Genome Sequence of the Rice Endophyte Burkholderia kururiensis M130  

PubMed Central

Burkholderia kururiensis M130 is one of the few characterized rice endophytes and was isolated from surface-sterilized rice roots. This bacterium shows strong growth-promoting effects, being able to increase rice yields. Here we present its draft genome sequence, which contains important traits for endophytic life and plant growth promotion.

Coutinho, Bruna Goncalves; Passos da Silva, Daniel; Previato, Jose Osvaldo

2013-01-01

263

[Accuracy of x-ray and endoscopic methods in the diagnosis of an endophytic gastric cancer].  

PubMed

The results of roentgenologic and endoscopic investigations of the upper intestinal tract are compared. For endophytic gastric carcinoma the diagnostic accuracy of roentgenology was 90.6%, that of endoscopy 66.7%. According to an experimental model and the clinical results a new radiologic symptom "discontinuous inner contour" is described, that was observed in 26 patients with endophytic gastric carcinoma. PMID:2608902

Kuus, E M

1989-01-01

264

Endophytic fungi produce gibberellins and indoleacetic acid and promotes host-plant growth during stress.  

PubMed

We isolated and examined two endophytic fungi for their potential to secrete phytohormones viz. gibberellins (GAs) and indoleacetic acid (IAA) and mitigate abiotic stresses like salinity and drought. The endophytic fungi Phoma glomerata LWL2 and Penicillium sp. LWL3 significantly promoted the shoot and allied growth attributes of GAs-deficient dwarf mutant Waito-C and Dongjin-beyo rice. Analysis of the pure cultures of these endophytic fungi showed biologically active GAs (GA1, GA3, GA4 and GA7) in various quantities. The cultures of P. glomerata and Penicillium sp. also contained IAA. The culture application and endophytic-association with host-cucumber plants significantly increased the plant biomass and related growth parameters under sodium chloride and polyethylene glycol induced salinity and drought stress as compared to control plants. The endophytic symbiosis resulted in significantly higher assimilation of essential nutrients like potassium, calcium and magnesium as compared to control plants during salinity stress. Endophytic-association reduced the sodium toxicity and promoted the host-benefit ratio in cucumber plants as compared to non-inoculated control plants. The symbiotic-association mitigated stress by compromising the activities of reduced glutathione, catalase, peroxidase and polyphenol oxidase. Under stress conditions, the endophyte-infection significantly modulated stress through down-regulated abscisic acid, altered jasmonic acid, and elevated salicylic acid contents as compared to control. In conclusion, the two endophytes significantly reprogrammed the growth of host plants during stress conditions. PMID:22960869

Waqas, Muhammad; Khan, Abdul Latif; Kamran, Muhammad; Hamayun, Muhammad; Kang, Sang-Mo; Kim, Yoon-Ha; Lee, In-Jung

2012-01-01

265

Diversity of endophytic fungi of Taxus globosa (Mexican yew)  

Microsoft Academic Search

The aim of this work was the isolation and taxonomic characterization of endophytic fungi from Taxus globosa at the Sierra Alta Hidalguense, Mexico. A total of 116 fungi were isolated from the bark, branches, leaves and roots of healthy\\u000a yew trees. Based on morphological characteristics 57 were selected for taxonomic characterization through phylogenetic analysis\\u000a of their 28S rDNA sequences. The

Flor N. Rivera-Orduña; Roberto A. Suarez-Sanchez; Zoila R. Flores-Bustamante; Jorge N. Gracida-Rodriguez; Luis B. Flores-Cotera

2011-01-01

266

New chlamydosporol derivatives from the endophytic fungus Fusarium sp. #001.  

PubMed

Two new chlamydosporol derivatives, fusarilactone A (1) and fusarilactone B (2), together with nine known compounds (3-11), have been isolated from the crude extract of endophytic fungus Fusarium sp. #001. The structures of new compounds 1 and 2 were elucidated on the basis of extensive spectroscopic methods. Compound 1 showed mild cytotoxicities against three tumor cell lines (SMMC-7721, A-549, and MCF-7). PMID:24717139

Chen, Zi-Ming; Dong, Wen-Bin; Li, Zheng-Hui; Feng, Tao; Liu, Ji-Kai

2014-05-01

267

Bioactive natural compounds from the plant endophytic fungi Pestalotiopsis spp.  

PubMed

The plant-endophytic strains of the fungus Pestalotiopsis (Amphisphaeriaceae) are distributed throughout the world. Previous chemical investigation of members of the genus resulted in the discovery of various bioactive secondary metabolites including chromones, cytosporones, polyketides, terpenoids and coumarins with diverse structural features. The present report reviews the papers, which have appeared in the literature till now, concerning the isolation, structural elucidation, and biological activities of the secondary metabolites from Pestalotiopsis species. PMID:22876952

Wang, Kuiwu; Lei, Jinxiu; Wei, Jiguang; Yao, Nan

2012-11-01

268

Endophytic root colonization of gramineous plants by Herbaspirillum frisingense  

Microsoft Academic Search

Herbaspirillum frisingense is a diazotrophic betaproteobacterium isolated from C4-energy plants, for example Miscanthus sinensis. To demonstrate endophytic colonization unequivocally, immunological labeling techniques using monospecific polyclonal antibodies against two H. frisingense strains and green fluorescent protein (GFP)-fluorescence tagging were applied. The polyclonal antibodies enabled specific in situ identification and very detailed localization of H. frisingense isolates Mb11 and GSF30T within roots

Michael Rothballer; Barbara Eckert; Michael Schmid; Agnes Fekete; Michael Schloter; Angelika Lehner; Stephan Pollmann; Anton Hartmann

269

Piriformospora indica , a cultivable root endophyte with multiple biotechnological applications  

Microsoft Academic Search

Piriformospora indica is a wide-host root-colonizing endophytic fungus which allows the plants to grow under extreme physical and nutrient stress.\\u000a The fungus can be cultivated on complex and minimal substrates. It belongs to the Sebacinales in Basidiomycota. P. indica has a vast geographical distribution and is reported from Asia, South America and Australia. The fungus is interesting for\\u000a basic research

Ralf Oelmüller; Irena Sherameti; Swati Tripathi; Ajit Varma

2009-01-01

270

Bioactive secondary metabolites from endophytes and associated marine derived fungi  

Microsoft Academic Search

Endophytes and fungi that are associated with marine invertebrates or with algae are of growing importance as promising sources\\u000a of structurally unprecedented biologically active natural products. This review covers the literature published in 2010 and\\u000a highlights new bioactive metabolites and known compounds for which hitherto novel biological activities have been reported.\\u000a The compounds are grouped according to their reported biological

Abdessamad Debbab; Amal H. Aly; Peter Proksch

2011-01-01

271

[The metabolites of cyclic peptides from three endophytic mangrove fungi].  

PubMed

Nine secondary metaboites of cyclic peptide were isolated from three mangrove endophytic fungi Paecilomyces sp. (treel-7), 4557,ZZF65. They were viscumamide(1),cyclo(Pro-Iso)(2),cyclo(Phe-Gly)(3),cyclo(Phe-Ana)(4),cyclo(Gly-Pro) (5),cyclo(Gly-Leu)(6), cyclo(Trp-Ana)(7),neoechinulin A(8),cyclo(Pro-Thr)(9). The compounds 1,7,8,9 were firstly isolated from marine fungus. PMID:18422185

Guo, Zhi-yong; Huang, Zhong-jing; Wen, Lu; Wan, Qiao; Liu, Fan; She, Zhi-gang; Lin, Yong-cheng; Zhou, Shi-ning

2007-12-01

272

Marine Bacillus spp. associated with the egg capsule of Concholepas concholepas (common name "loco") have an inhibitory activity toward the pathogen Vibrio parahaemolyticus.  

PubMed

The pandemic bacterium Vibrio parahaemolyticus, isolated from seawater, sediment, and marine organisms, is responsible for gastroenteric illnesses in humans and also cause diseases in aquaculture industry in Chile and other countries around the world. In this study, bacterial flora with inhibitory activity against pathogenic V. parahaemolyticus were collected from egg capsules of Concholepas concholepas and evaluated. The 16S rRNA fragment was sequenced from each isolated strain to determine its identity using the GenBank database. A phylogenetic analysis was made, and tests for the productions of antibacterial substance were performed using the double-layer method. Forty-five morphotypes of bacterial colonies were isolated, 8 of which presented an inhibitory effect on the growth of V. parahaemolyticus. 16S rRNA sequence and phylogenetic analysis show that these strains constitute taxa that are phylogenetically related to the Bacillus genus and are probably sister species or strains of the species Bacillus pumilus, Bacillus licheniform, or Bacillus sp. It is important to determine the nature of the antibacterial substance to evaluate their potential for use against the pathogen species V. parahaemolyticus. PMID:20454959

Leyton, Yanett; Riquelme, Carlos

2010-10-01

273

Endophytic root colonization of gramineous plants by Herbaspirillum frisingense.  

PubMed

Herbaspirillum frisingense is a diazotrophic betaproteobacterium isolated from C4-energy plants, for example Miscanthus sinensis. To demonstrate endophytic colonization unequivocally, immunological labeling techniques using monospecific polyclonal antibodies against two H. frisingense strains and green fluorescent protein (GFP)-fluorescence tagging were applied. The polyclonal antibodies enabled specific in situ identification and very detailed localization of H. frisingense isolates Mb11 and GSF30(T) within roots of Miscanthusxgiganteus seedlings. Three days after inoculation, cells were found inside root cortex cells and after 7 days they were colonizing the vascular tissue in the central cylinder. GFP-tagged H. frisingense strains could be detected and localized in uncut root material by confocal laser scanning microscopy and were found as endophytes in cortex cells, intercellular spaces and the central cylinder of barley roots. Concerning the production of potential plant effector molecules, H. frisingense strain GSF30(T) tested positive for the production of indole-3-acetic acid, while Mb11 was shown to produce N-acylhomoserine lactones, and both strains were able to utilize 1-aminocyclopropane-1-carboxylate (ACC), providing an indication of the activity of an ACC-deaminase. These results clearly present H. frisingense as a true plant endophyte and, although initial greenhouse experiments did not lead to clear plant growth stimulation, demonstrate the potential of this species for beneficial effects on the growth of crop plants. PMID:18761671

Rothballer, Michael; Eckert, Barbara; Schmid, Michael; Fekete, Agnes; Schloter, Michael; Lehner, Angelika; Pollmann, Stephan; Hartmann, Anton

2008-10-01

274

Fungal endophyte communities reflect environmental structuring across a Hawaiian landscape  

PubMed Central

We surveyed endophytic fungal communities in leaves of a single tree species (Metrosideros polymorpha) across wide environmental gradients (500–5,500 mm of rain/y; 10–22 °C mean annual temperature) spanning short geographic distances on Mauna Loa Volcano, Hawai’i. Using barcoded amplicon pyrosequencing at 13 sites (10 trees/site; 10 leaves/tree), we found very high levels of diversity within sites (a mean of 551 ± 134 taxonomic units per site). However, among-site diversity contributed even more than did within-site diversity to the overall richness of more than 4,200 taxonomic units observed in M. polymorpha, and this among-site variation in endophyte community composition correlated strongly with temperature and rainfall. These results are consistent with suggestions that foliar endophytic fungi are hyperdiverse. They further suggest that microbial diversity may be even greater than has been assumed and that broad-scale environmental controls such as temperature and rainfall can structure eukaryotic microbial diversity. Appropriately constrained study systems across strong environmental gradients present a useful means to understand the environmental factors that structure the diversity of microbial communities.

Zimmerman, Naupaka B.; Vitousek, Peter M.

2012-01-01

275

Fungal endophyte communities reflect environmental structuring across a Hawaiian landscape.  

PubMed

We surveyed endophytic fungal communities in leaves of a single tree species (Metrosideros polymorpha) across wide environmental gradients (500-5,500 mm of rain/y; 10-22 °C mean annual temperature) spanning short geographic distances on Mauna Loa Volcano, Hawai'i. Using barcoded amplicon pyrosequencing at 13 sites (10 trees/site; 10 leaves/tree), we found very high levels of diversity within sites (a mean of 551 ± 134 taxonomic units per site). However, among-site diversity contributed even more than did within-site diversity to the overall richness of more than 4,200 taxonomic units observed in M. polymorpha, and this among-site variation in endophyte community composition correlated strongly with temperature and rainfall. These results are consistent with suggestions that foliar endophytic fungi are hyperdiverse. They further suggest that microbial diversity may be even greater than has been assumed and that broad-scale environmental controls such as temperature and rainfall can structure eukaryotic microbial diversity. Appropriately constrained study systems across strong environmental gradients present a useful means to understand the environmental factors that structure the diversity of microbial communities. PMID:22837398

Zimmerman, Naupaka B; Vitousek, Peter M

2012-08-01

276

Canopy cover and leaf age affect colonization by tropical fungal endophytes: Ecological pattern and process in Theobroma cacao (Malvaceae).  

PubMed

Fungal endophytes inhabit healthy tissues of all terrestrial plant taxa studied to date and are diverse and abundant in leaves of tropical woody angiosperms. Studies have demonstrated that plant location and leaf age influence density of endophyte infection in leaves of tropical forest trees. However, ecological factors underlying these observations have not been explored in detail. Here, we establish that foliar endophytes of a tropical tree (Theobroma cacao, Malvaceae) are transmitted horizontally and that endophyte-free seedlings can be produced for experimental manipulation by protecting aerial tissues from surface wetting. At Barro Colorado Island, Panama, we used transects of endophyte-free seedlings to determine the importance of several factors (canopy cover, abundance of aerial and epiphytic propagules, leaf age, leaf chemistry, leaf toughness and duration of exposure to viable air spora) in shaping colonization by endophytic fungi. Endophytes colonized leaves of T. cacao more rapidly beneath the forest canopy than in cleared sites, reflecting local abundance of aerial and epiphytic propagules. The duration of exposure, rather than absolute leaf age, influenced endophyte infection, whereas leaf toughness and chemistry had no observed effect. Endophytes isolated from mature T. cacao grew more rapidly on media containing leaf extracts of T. cacao than on media containing extracts from other co-occurring tree species, suggesting that interspecific differences in leaf chemistry influence endophyte assemblages. Together, these data allow us to identify factors underlying patterns of endophyte colonization within healthy leaves of this tropical tree. PMID:21156627

Arnold, A Elizabeth; Herre, Edward Allen

2003-01-01

277

Specific and Functional Diversity of Endophytic Bacteria from Pine Wood Nematode Bursaphelenchus Xylophilus with Different Virulence  

PubMed Central

Pine wilt disease (PWD) caused by the pine wood nematode (PWN), Bursaphelenchus xylophilus, is one of the most devastating diseases of Pinus spp. The PWN was therefore listed as one of the most dangerous forest pests in China meriting quarantine. Virulence of the PWN is closely linked with the spread of PWD. However, main factors responsible for the virulence of PWNs are still unclear. Recently epiphytic bacteria carried by PWNs have drawn much attention. But little is known about the relationship between endophytic bacteria and virulence of B. xylophilus. In this research, virulence of ten strains of B. xylophilus from different geographical areas in six provinces of China and four pine species were tested with 2-year-old seedlings of Pinus thunbergii. Endophytic bacteria were isolated from PWNs with different virulence to investigate the relationship between the bacteria and PWN virulence. Meanwhile, the carbon metabolism of endophytic bacteria from highly and low virulent B. xylophilus was analyzed using Biolog plates (ECO). The results indicated that ten strains of PWNs showed a wide range of virulence. Simultaneously, endophytic bacteria were isolated from 90% of the B. xylophilus strains. The dominant endophytic bacteria in the nematodes were identified as species of Stenotrophomonas, Achromobacter, Ewingella, Leifsonia, Rhizobium, and Pseudomonas using molecular and biochemical methods. Moreover, S. maltophilia, and A. xylosoxidans subsp. xylosoxidans were the predominant strains. Most of the strains (80%) from P. massoniana contained either S. maltophilia, A. xylosoxidans, or both species. There was a difference between the abilities of the endophytic bacteria to utilize carbon sources. Endophytic bacteria from highly virulent B. xylophilus had a relatively high utilization rate of carbohydrate and carboxylic acids, while bacteria from low virulent B. xylophilus made better use of amino acids. In conclusion, endophytic bacteria widely exist in B. xylophilus from different pines and areas; and B. xylophilus strains with different virulence possessed various endophytic bacteria and diverse carbon metabolism which suggested that the endophytic bacteria species and carbon metabolism might be related with the B. xylophilus virulence.

Wu, Xiao-Qin; Yuan, Wei-Min; Tian, Xiao-Jing; Fan, Ben; Fang, Xin; Ye, Jian-Ren; Ding, Xiao-Lei

2013-01-01

278

Endophytic fungi associated with Macrosolen tricolor and its host Camellia oleifera.  

PubMed

Endophytic fungi play an important role in terrestrial ecosystem, while little is known about those in hemi-parasitic plants, a group of special plants which absorb nutrients from its hosts by haustoria. The relationship of the endophytes in the two parts of the bipartite systems (hemiparasites together with their hosts) is also poorly understood. Endophytic fungi of a hemi-parasitic plant Macrosolen tricolor, and its host plant Camellia oleifera were investigated and compared in this study. M. tricolor contained rich and diversified endophytic fungi (H' = 2.829), which consisted mainly of ascomycetes, distributed in more than ten orders of four classes (Sordariomycetes, Dothideomycetes, Leotiomycetes and Eurotiomycetes) besides Incertae sedis strains (23.2 % of total). In addition, 2.2 % of isolates were identified to be Basidiomycota, all of which belonged to Agaricomycetes. Obvious differences were observed between the endophytic fungal assembles in the leaves and those in the branches of M. tricolor. The endophytic fungi isolated from C. oleifera distributed in nearly same orders of the four classes of Ascomycota and one class (Agaricomycetes) of Basidiomycota as those from M. tricolor with similar proportion. For both M. tricolor and C. oleifera, Valsa sp. was the dominant endophyte species in the leaves, Torula sp. 1 and Fusarium sp. 1 were the dominant endophytic fungi in the branches. The similarity coefficient of the endophyte assembles in the two host was 64.4 %. Canonical correspondence analysis showed that the endophyte assembles of M. tricolor and C. oleifera were significantly different (p < 0.01). PMID:24442818

Sheng-Liang, Zhou; Shu-Zhen, Yan; Zhen-Ying, Wu; Shuang-Lin, Chen

2014-06-01

279

Using Orchardgrass and Endophyte-Free Fescue Versus Endophyte-Infected Fescue Overseeded on Bermudagrass for Cow Herds: I. Four-Year Summary of Forage Characteristics  

Microsoft Academic Search

A systems trial was designed to evaluate forage characteristics within mixed-species pastures consisting of (i) endophyte-infected tall fescue (Festuca arundinacea Schreb.; E1) mixed with common bermudagrass (Cynodon dactylon (L.) Pers.) and other forages; (ii) endophyte-free tall fescue (E2) overseeded into dormant common bermudagrass; and (iii) orchardgrass (OG; Dactylis glomerata L.) established under the same conditions as E2. The E2 and

W. K. Coblentz; K. P. Coffey; T. F. Smith; D. S. Hubbell; D. A. Scarbrough; J. B. Humphry; B. C. McGinley; J. E. Turner; J. A. Jennings; C. P. West; M. P. Popp; D. H. Hellwig; D. L. Kreider; C. F. Rosenkrans

2006-01-01

280

Bacillus odysseyi isolate  

NASA Technical Reports Server (NTRS)

The present invention relates to discovery and isolation of a biologically pure culture of a Bacillus odysseyi isolate with high adherence and sterilization resistant properties. B. odysseyi is a round spore forming Bacillus species that produces an exosporium. This novel species has been characterized on the basis of phenotypic traits, 16S rDNA sequence analysis and DNA-DNA hybridization. According to the results of these analyses, this strain belongs to the genus Bacillus and the type strain is 34hs-1.sup.T (=ATCC PTA-4993.sup.T=NRRL B-30641.sup.T=NBRC 100172.sup.T). The GenBank accession number for the 16S rDNA sequence of strain 34hs-1.sup.T is AF526913.

Venkateswaran, Kasthuri (Inventor); La Duc, Myron Thomas (Inventor)

2007-01-01

281

Multi-target and medium-independent fungal antagonism by hydrolytic enzymes in Paenibacillus polymyxa and Bacillus pumilus strains from barley rhizosphere  

Microsoft Academic Search

Glucanolytic bacteria from barley rhizosphere soil were isolated by a procedure selecting for isolates with ?-glucosidase activity. Almost all isolates were fast-growing, Gram-positive rods. Sixteen out of 100 isolates showed in vitro fungal antagonism against widely different plant-pathogenic microfungi (Aphanomyces cochleoides, Pythium ultimum and Rhizoctonia solani). The 16 isolates shared a characteristic profile of cell-wall-degrading enzymes, comprising glucanolytic (cellulase, mannanase

Preben Nielsen; Jan Sørensen

1997-01-01

282

Isolation, purification and characterization of a surfactants-, laundry detergents- and organic solvents-resistant alkaline protease from Bacillus sp. HR-08.  

PubMed

Bacillus sp. HR-08 screened from soil samples of Iran, is capable of producing proteolytic enzymes. 16S rDNA analysis showed that this strain is closely related to Bacillus subtilis, Bacillus licheniformis, Bacillus pumilus, Bacillus mojavensis, and Bacillus atrophaeus. The zymogram analysis of the crude extract revealed the presence of five extracellular proteases. One of the proteases was purified in three steps procedure involving ammonium sulfate precipitation, DEAE-Sepharose ionic exchange and Sephacryl S-200 gel filtration chromatography. The molecular mass of the enzyme on SDS-PAGE was estimated to be 29 kDa. The protease exhibited maximum activity at pH 10.0 and 60 degrees C and was inhibited by PMSF but it was not affected by cysteine inhibitors, suggesting that the enzyme is a serine alkaline protease. Irreversible thermoinactivation of enzyme was examined at 50, 60, and 70 degrees C in the presence of 10 mM CaCl(2). Results showed that the protease activity retains more than 80% and 50% of its initial activity after incubation for 30 min at 60 and 70 degrees C, respectively. This enzyme had good stability in the presence of H(2)O(2), nonionic surfactant, and local detergents and its activity was enhanced in the presence of 20% of dimethyl sulfoxide (DMSO), dimethyl formamide (DMF) and isopropanol. The enzyme retained more than 90% of its initial activity after pre-incubation 1 h at room temperature in the presence of 20% of these solvents. Also, activation can be seen for the enzyme at high concentration (50%, v/v) of DMF and DMSO. PMID:19148779

Moradian, Fatemeh; Khajeh, Khosro; Naderi-Manesh, Hossein; Sadeghizadeh, Majid

2009-10-01

283

Fungal endophytes of aquatic macrophytes: diverse host-generalists characterized by tissue preferences and geographic structure.  

PubMed

Most studies of endophytic symbionts have focused on terrestrial plants, neglecting the ecologically and economically important plants present in aquatic ecosystems. We evaluated the diversity, composition, host and tissue affiliations, and geographic structure of fungal endophytes associated with common aquatic plants in lentic waters in northern Arizona, USA. Endophytes were isolated in culture from roots and photosynthetic tissues during two growing seasons. A total of 226 isolates representing 60 putative species was recovered from 9,600 plant tissue segments. Although isolation frequency was low, endophytes were phylogenetically diverse and species-rich. Comparisons among the most thoroughly sampled species and reservoirs revealed that isolation frequency and diversity did not differ significantly between collection periods, among species, among reservoirs, or as a function of depth. However, community structure differed significantly among reservoirs and tissue types. Phylogenetic analyses of a focal genus (Penicillium) corroborated estimates of species boundaries and informed community analyses, highlighting clade- and genotype-level affiliations of aquatic endophytes with both sediment- and waterborne fungi, and endophytes of proximate terrestrial plants. Together these analyses provide a first quantitative examination of endophytic associations in roots and foliage of aquatic plants and can be used to optimize survey strategies for efficiently capturing fungal biodiversity at local and regional scales. PMID:24402358

Sandberg, Dustin C; Battista, Lorna J; Arnold, A Elizabeth

2014-05-01

284

GC--MS analysis reveals production of 2--Phenylethanol from Aspergillus niger endophytic in rose.  

PubMed

Endophytes include all organisms that during a variable period of their life, colonize the living internal tissues of their hosts without causing detectable symptoms. Several fungal endophytes have been isolated from a variety of plant species which have proved themselves as a rich source of secondary metabolites. The reported natural products from endophytes include antibiotics, immunosuppresants, anticancer compounds, antioxidant agents, etc. For the first time Rosa damacaena (rose) has been explored for its endophytes. The rose oil industry is the major identified deligence for its application in perfumery, flavouring, ointments, and pharmaceuticals including various herbal products. During the present investigation fungal endophytes were isolated from Rosa damacaena. A total of fifty four isolates were isolated out of which sixteen isolates were screened for the production of secondary metabolites. GCMS analysis reveals the production of 2-phenylethanol by one of the isolates JUBT 3M which was identified as Aspergillus niger. This is the first report of production of 2-phenylethanol from endophytic A. niger. 2-phenylethanol is an important constituent of rose oil constituting about 4.06% of rose oil. Presence of 2-phenylethanol indicates that the endophyte of rose may duplicate the biosynthesis of phenyl propanoids by rose plant. Besides this, the other commercial applications of phenylethanol include its use in antiseptics, disinfectants, anti-microbials and preservative in pharmaceuticals. PMID:20082377

Wani, Masood Ahmed; Sanjana, Kaul; Kumar, Dhar Manoj; Lal, Dhar Kanahya

2010-02-01

285

Linking Bacterial Endophytic Communities to Essential Oils: Clues from Lavandula angustifolia Mill  

PubMed Central

Endophytic bacteria play a crucial role in plant life and are also drawing much attention for their capacity to produce bioactive compounds of relevant biotechnological interest. Here we present the characterisation of the cultivable endophytic bacteria of Lavandula angustifolia Mill.—a species used since antiquity for its therapeutic properties—since the production of bioactive metabolites from medical plants may reside also in the activity of bacterial endophytes through their direct production, PGPR activity on host, and/or elicitation of plant metabolism. Lavender tissues are inhabited by a tissue specific endophytic community dominated by Proteobacteria, highlighting also their difference from the rhizosphere environment where Actinobacteria and Firmicutes are also found. Leaves' endophytic community resulted as the most diverse from the other ecological niches. Overall, the findings reported here suggest: (i) the existence of different entry points for the endophytic community, (ii) its differentiation on the basis of the ecological niche variability, and (iii) a two-step colonization process for roots endophytes. Lastly, many isolates showed a strong inhibition potential against human pathogens and the molecular characterization demonstrated also the presence of not previously described isolates that may constitute a reservoir of bioactive compounds relevant in the field of pathogen control, phytoremediation, and human health.

Emiliani, Giovanni; Maida, Isabel; Perrin, Elena; Chiellini, Carolina; Fondi, Marco; Gallo, Eugenia; Gori, Luigi; Maggini, Valentina; Vannacci, Alfredo; Biffi, Sauro; Firenzuoli, Fabio; Fani, Renato

2014-01-01

286

Linking Bacterial Endophytic Communities to Essential Oils: Clues from Lavandula angustifolia Mill.  

PubMed

Endophytic bacteria play a crucial role in plant life and are also drawing much attention for their capacity to produce bioactive compounds of relevant biotechnological interest. Here we present the characterisation of the cultivable endophytic bacteria of Lavandula angustifolia Mill.-a species used since antiquity for its therapeutic properties-since the production of bioactive metabolites from medical plants may reside also in the activity of bacterial endophytes through their direct production, PGPR activity on host, and/or elicitation of plant metabolism. Lavender tissues are inhabited by a tissue specific endophytic community dominated by Proteobacteria, highlighting also their difference from the rhizosphere environment where Actinobacteria and Firmicutes are also found. Leaves' endophytic community resulted as the most diverse from the other ecological niches. Overall, the findings reported here suggest: (i) the existence of different entry points for the endophytic community, (ii) its differentiation on the basis of the ecological niche variability, and (iii) a two-step colonization process for roots endophytes. Lastly, many isolates showed a strong inhibition potential against human pathogens and the molecular characterization demonstrated also the presence of not previously described isolates that may constitute a reservoir of bioactive compounds relevant in the field of pathogen control, phytoremediation, and human health. PMID:24971151

Emiliani, Giovanni; Mengoni, Alessio; Maida, Isabel; Perrin, Elena; Chiellini, Carolina; Fondi, Marco; Gallo, Eugenia; Gori, Luigi; Maggini, Valentina; Vannacci, Alfredo; Biffi, Sauro; Firenzuoli, Fabio; Fani, Renato

2014-01-01

287

Diversity and screening for antimicrobial activity of endophytic fungi from Alstonia scholaris.  

PubMed

Endophytic fungi of three tissues (petiole, bark and leaf) of Alstonia scholaris were assessed. A total number of 1,152 endophytic fungi were isolated from 1,002 different plant segments of seven different localities of Paschim Medinipur, West Bengal, India. The isolated fungi belong to nineteen genera, including four unidentified fungi and yeast. Colletotrichum sp. (20.39%) and Sordaria sp. (29.68%) were most commonly isolated from this plant. Hyalopus sp., Fusarium sp. and Curvularia sp. were also isolated. The colonization frequency of endophytic fungi is much higher in leaves (44.66%) in comparison to petioles (32.16%) and barks (23.17%). The study provided evidence for tissue specificity of endophytic fungi. The endophytic fungal species diversity was higher in plant segments collected from Gopegarh and Khoirullahchak, while diversity was the lowest in Rice mill area. Screenings of antimicrobial activity of these isolated endophytic fungi were done. Eight endophytic fungi showed antimicrobial activity. Among them Curvularia sp., Aspergillus sp. and one unidentified fungus showed maximum activity against test pathogens. PMID:20870593

Mahapatra, S; Banerjee, D

2010-09-01

288

Fungal endophyte Penicillium janthinellum LK5 improves growth of ABA-deficient tomato under salinity.  

PubMed

An endophytic fungus was isolated from the roots of tomato (Solanum lycopersicum Mill) and identified as Penicillium janthinellum LK5. The culture filtrate (CF) of P. janthinellum significantly increased the shoot length of gibberellins (GAs) deficient mutant waito-c and normal Dongjin-beyo rice seedlings as compared to control. The CF of P. janthinellum contained GAs (GA3, GA4, GA7 and GA12). To assess endophyte-growth promoting and stress-tolerance potential, the CF along with the propagules of endophyte was applied to tomato-host and abscisic acid (ABA)-deficient mutant Sitiens plants under sodium chloride (NaCl) induced salinity stress. Sitiens plants had retarded growth under normal and salinity stress however its growth was much improved during P. janthinellum-association. The endophyte inoculation reduced the membrane injury by decreasing lipid peroxidation as compared to non-inoculated control under salinity. Endophyte-associated Sitiens plants have significantly higher catalase, peroxidase and glutathione activities as compared to control. Endophyte-infected host and Sitiens plants had low level of sodium ion toxicity and high calcium contents in its root as compared to control. P. janthinellum LK5 helped the Sitiens plants to synthesis significantly higher ABA and reduced the level of jasmonic acid to modulate stress responses. The results suggest that endophytes-association can resist salinity stress by producing gibberellins and activating defensive mechanisms of host and Sitiens plants to achieve improved growth. PMID:23842755

Khan, Abdul Latif; Waqas, Muhammad; Khan, Abdur Rahim; Hussain, Javid; Kang, Sang-Mo; Gilani, Syed Abdullah; Hamayun, Muhammad; Shin, Jae-Ho; Kamran, Muhammad; Al-Harrasi, Ahmed; Yun, Byung-Wook; Adnan, Muhammad; Lee, In-Jung

2013-11-01

289

The contribution of foliar endophytes to quantitative resistance to Melampsora rust.  

PubMed

Foliar endophytes of Populus do not induce the hypersensitive response associated with major genes for resistance to Melampsora leaf rust. But they could contribute to the quantitative resistance that represents a second line of defense. Quantitative resistance is thought to be determined by suites of minor genes in both host and pathogen that are influenced by the abiotic environment. Here, we determined the relative importance to quantitative resistance of foliar endophytes, one element of the biotic environment. Leaves of six host genotypes differing in genetic resistance to Melampsora × columbiana were inoculated first with one of four foliar endophytes (Stachybotrys sp., Trichoderma atroviride, Ulocladium atrum or Truncatella angustata), and then with Melampsora. These endophytes greatly reduced rust severity within inoculated leaves (i.e. local effects), but they had no systemic effect on rust of leaves not inoculated with endophytes. Differences among endophytes and their controls explained 54% of the total variation in quantitative resistance (i.e. rust severity); the six host/pathogen genotypes explained just 5%. In terms of magnitude of effect on rust severity, Stachybotrys, Trichoderma, Ulocladium and Truncatella were ranked in this order on all host/pathogen genotypes. Endophytes may contribute significantly to quantitative resistance to Melampsora in leaves of Populus. PMID:23228058

Raghavendra, Anil K H; Newcombe, George

2013-02-01

290

Control of Diatraea saccharalis by the endophytic Pantoea agglomerans 33.1 expressing cry1Ac7.  

PubMed

Despite the fact that Bacillus thuringiensis (Bt) is found in more than 90 % of the products used against insects, it has some difficulty reaching the internal regions where the larvae feed. To solve this problem, many genetically modified microorganisms that colonize the same pests have been developed. Thus, the endophytic bacterium Pantoea agglomerans (33.1), which has been recently described as a promising sugarcane growth promoter, was genetically modified with the pJTT vector (which carries the gene cry1Ac7) to control the sugarcane borer, Diatraea saccharalis. Firstly, the bioassays for D. saccharalis control by 33.1:pJTT were conducted with an artificial diet. A new in vivo methodology was also developed, which confirmed the partial control of larvae by 33.1:pJTT. The 33.1:pJTT strain was inoculated into sugarcane stalks containing the D. saccharalis larvae. In the sugarcane stalks, 33.1:pJTT was able to increase the mortality of D. saccharalis larvae, impair larval development and decrease larval weight. Sugarcane seedlings were inoculated with 33.1:pJTT, and re-isolation confirmed the capacity of 33.1:pJTT to continuously colonize the sugarcane. These results prove that P. agglomerans (33.1), a sugarcane growth promoter, can be improved by expressing the Cry protein, and the resulting strain is able to control the sugarcane borer. PMID:24531524

Quecine, M C; Araújo, W L; Tsui, S; Parra, J R P; Azevedo, J L; Pizzirani-Kleiner, A A

2014-04-01

291

Fungal Endophyte (Epichloë festucae) Alters the Nutrient Content of Festuca rubra Regardless of Water Availability  

PubMed Central

Festuca rubra plants maintain associations with the vertically transmitted fungal endophyte Epichloë festucae. A high prevalence of infected host plants in semiarid grasslands suggests that this association could be mutualistic. We investigated if the Epichloë-endophyte affects the growth and nutrient content of F. rubra plants subjected to drought. Endophyte-infected (E+) and non-infected (E?) plants of two half-sib lines (PEN and RAB) were subjected to three water availability treatments. Shoot and root biomass, nutrient content, proline, phenolic compounds and fungal alkaloids were measured after the treatments. The effect of the endophyte on shoot and root biomass and dead leaves depended on the plant line. In the PEN line, E+ plants had a greater S:R ratio than E-, but the opposite occurred in RAB. In both plant lines and all water treatments, endophyte-infected plants had greater concentrations of N, P and Zn in shoots and Ca, Mg and Zn in roots than E- plants. On average, E+ plants contained in their shoots more P (62%), Zn (58%) and N (19%) than E- plants. While the proline in shoots increased in response to water stress, the endophyte did not affect this response. A multivariate analysis showed that endophyte status and plant line impose stronger differences in the performance of the plants than the water stress treatments. Furthermore, differences between PEN and RAB lines seemed to be greater in E- than in E+ plants, suggesting that E+ plants of both lines are more similar than those of their non-infected version. This is probably due to the endophyte producing a similar effect in both plant lines, such as the increase in N, P and Zn in shoots. The remarkable effect of the endophyte in the nutrient balance of the plants could help to explain the high prevalence of infected plants in natural grasslands.

Vazquez-de-Aldana, Beatriz R.; Garcia-Ciudad, Antonia; Garcia-Criado, Balbino; Vicente-Tavera, Santiago; Zabalgogeazcoa, Inigo

2013-01-01

292

Draft Genome Sequences of Three Alkaliphilic Bacillus Strains, Bacillus wakoensis JCM 9140T, Bacillus akibai JCM 9157T, and Bacillus hemicellulosilyticus JCM 9152T.  

PubMed

Here, we report the draft genome sequences of the type strains of three cellulolytic or hemicellulolytic alkaliphilic Bacillus species: Bacillus wakoensis, Bacillus akibai, and Bacillus hemicellulosilyticus. The genome information for these three strains will be useful for studies of alkaliphilic Bacillus species, their evolution, and biotechnological applications for their enzymes. PMID:24482522

Yuki, Masahiro; Oshima, Kenshiro; Suda, Wataru; Oshida, Yumi; Kitamura, Keiko; Iida, Toshiya; Hattori, Masahira; Ohkuma, Moriya

2014-01-01

293

Bacteriophages that infect Bacillus bacteria (Anthrax)  

US Patent & Trademark Office Database

The invention provides bacteriophages that infect Bacillus bacteria, including Bacillus anthracis, and compositions containing the bacteriophages. The invention also provides methods for using the bacteriophages of the invention to prevent and treat infection of an organism by Bacillus bacteria. Methods and materials to decontaminate a surface or an organism that is contaminated with Bacillus bacteria or Bacillus spores is also provided.

2008-05-20

294

Unrelatedness of Bacillus amyloliquefaciens and Bacillus subtilis  

PubMed Central

Eight strains of highly amylolytic, sporeforming bacilli (hereafter referred to as Bacillus amyloliquefaciens) were compared with respect to their taxonomic relationship to B. subtilis. The physiological-biochemical properties of these two groups of organisms showed that B. amyloliquefaciens differed from B. subtilis by their ability to grow in 10% NaCl, characteristic growth on potato plugs, increased production of ?-amylase, and their ability to ferment lactose with the production of acid. The base compositions of the deoxyribonucleic acid (DNA) of the B. subtilis strains consistently fell in the range of 41.5 to 43.5% guanine + cytosine (G + C), whereas that of the B. amyloliquefaciens strains was in the 43.5 to 44.9% G + C range. Hybrid formation between B. subtilis W23 and B. amyloliquefaciens F DNA revealed only a 14.7 to 15.4% DNA homology between the two species. Transducing phage, SP-10, was able to propagate on B. subtilis W23 and B. amyloliquefaciens N, and would transduce B. subtilis 168 (indole?) and B. amyloliquefaciens N-10 (arginine?) to prototrophy with a frequency of 3.9 × 10?4 and 2.4 × 10?5 transductants per plaque-forming unit, respectively. Attempts to transduce between the two species were unsuccessful. These data show that Bacillus amyloliquefaciens is a valid species and should not be classified as a strain or variety of B. subtilis. Images

Welker, N. E.; Campbell, L. Leon

1967-01-01

295

The tubercle bacillus  

PubMed Central

A series of lectures on the tubercle bacillus by eminent authorities from various countries was organized at the Institut d'Hygiène et de Bactériologie of the University of Lausanne by Professor Paul Hauduroy, from 22 to 25 April 1949. Through the kindness of Professor Hauduroy it has been possible for the World Health Organization to publish in the Bulletin summaries of these lectures. *

1949-01-01

296

Evaluation of the bioactivities of extracts of endophytes isolated from Taiwanese herbal plants  

Microsoft Academic Search

The endophytic extracts from 19 endophytes, isolated from 13 species of Taiwanese plants, were evaluated for biological activity,\\u000a including cytotoxicity, anti-platelet aggregation, and anti-inflammatory activity. The extracts of 12 endophytes exhibited\\u000a inhibitory effects on collagen-induced platelet aggregation with IC50 values of 19.85–87.64 ?g\\/ml. Four strains, Rahnella aquatilis, Pantoea agglomerans, Rhodotorula sp., and Penicillium paxilli, also showed inhibitory effects on thrombin-induced platelet

Pei-Wen Hsieh; Li-Chi Hsu; Chern-Hsiung Lai; Chin-Chung Wu; Tsong-Long Hwang; Yin-Ku Lin; Yang-Chang Wu

2009-01-01

297

A new cyclopeptide from endophytic Streptomyces sp. YIM 64018.  

PubMed

One new cyclopeptide, cyclo(L-Phe-L-Ala-L-Phe-Gly), named as vinaceuline (1) and three known cyclodipeptides, cyclo (Phe-Gly), cyclo (Phe-4-hydroxyl-Pro) and cyclo (Phe-Ile) were isolated from broth culture of endophytic Streptomyces YIM 64018 associated with Paraboea sinensis. The planar structure of the new compound was assigned on the basis of 1D and 2D NMR spectroscopic techniques, while t he a bsolute configurations of the amino acid residueswere determined by application of the advanced Marfey method. Cyclotetrapeptides are rarely found as Streptomycete metabolites. PMID:24555291

Yang, Xueqiong; Yang, Yabin; Peng, Tianfeng; Yang, Fangfang; Zhou, Hao; Zhao, Lixing; Xu, Lihua; Ding, Zhongtao

2013-12-01

298

Alkaloids from an endophytic streptomyces sp. YIM66017.  

PubMed

Three alkaloids, flavensomycinoic acid (1), a linear polyketide, alpiniamide (2), and cyclo (L-Trp-L-Ala) (3), were isolated from the culture filtrate of endophytic Streptomyces sp. YIM66017 from Alpinia oxyphylla. Their structures were elucidated by spectroscopic analysis and the structure of 1 was confirmed by X-ray crystallographic analysis. Compound 1 was isolated from a natural source for the first time, and compound 2 is a new compound. Compound 1 showed cytotoxicity to MCF-7 with an IC50 value of 17.0 microM. PMID:24354182

Zhou, Hao; Yang, Yabin; Zhang, Jucheng; Peng, Tianfeng; Zhao, Lixing; Xu, Lihua; Ding, Zhongtao

2013-10-01

299

Antimicrobials from the marine algal endophyte Penicillium sp.  

PubMed

An endophytic fungus identified as Penicillium sp. was isolated from the brown alga Fucus spiralis collected from the Shetland Islands, United Kingdom. Bioassay-guided fractionation of an extract of the fungus led to the isolation of cladosporin, epiepoformin, phyllostine, and patulin, all of which showed antimicrobial activity against either Staphylococcus aureus or Pseudomonas aeruginosa. Cladosporin has not previously been identified from a fungus of the genus Penicillium, and, despite being biosynthetically related, epiepoformin, phyllostine and patulin have not been previously reported from one source. PMID:23678814

Flewelling, Andrew J; Johnson, John A; Gray, Christopher A

2013-03-01

300

Isolation, characterization, and bioactivity of endophytic fungi of Tylophora indica  

Microsoft Academic Search

Dothediomycetes sp., Alternaria\\u000a tenuissima, Thielavia\\u000a subthermophila, Alternaria sp., Nigrospora\\u000a oryzae, Colletotrichum truncatum, and Chaetomium sp. were isolated as endophytic fungi from leaves and stems of the medicinal plant, Tylophora indica, based on rDNA sequencing of ITS region and microscopic examination. Alternaria\\u000a tenuissima, Colletotrichum truncatum, and Alternaria sp. were found to be active against both Sclerotinia\\u000a sclerotiorum and Fusarium\\u000a oxysporum. Chaetomium

Susheel Kumar; Nutan Kaushik; Ruangelie Edrada-Ebel; Rainer Ebel; Peter Proksch

2011-01-01

301

Two new terpenoids from endophytic fungus Periconia sp. F-31.  

PubMed

Two new terpenoids, (+)-(3S,6S,7R,8S)-periconone A (1) and (-)-(1R,4R,6S,7S)-2-caren-4,8-olide (2), have been isolated from an endophytic fungus Periconia sp., which was collected from the plant Annona muricata. Their structures were elucidated on the basis of extensive spectroscopic analyses. In the in vitro assays, the two compounds showed low cytotoxic activities against six human tumor cell lines (HCT-8, Bel-7402, BGC-823, A549, A2780 and MCF-7) with IC(50)>10(-5) M. PMID:22130377

Ge, Han-Lin; Zhang, De-Wu; Li, Li; Xie, Dan; Zou, Jian-Hua; Si, Yi-Kang; Dai, Jungui

2011-01-01

302

Chaetoglobins A and B, two unusual alkaloids from endophytic Chaetomium globosum culture.  

PubMed

Chaetoglobins A (1) and B (2), two azaphilone alkaloid dimers with an unprecedented skeleton, were characterized from an endophytic fungus Chaetomium globosum with the former ascertained to be a significant cytotoxin valuable for anti-tumor drug discovery. PMID:19030558

Ming Ge, Hui; Yun Zhang, Wei; Ding, Gang; Saparpakorn, Patchareenart; Chun Song, Yong; Hannongbua, Supa; Tan, Ren Xiang

2008-12-01

303

Induced production of mycotoxins in an endophytic fungus from the medicinal plant Datura stramonium L.  

PubMed

Epigenetic modifiers, including DNA methyltransferase (DNMT) or histone deacetylase (HDAC) inhibitors, are useful to induce the expression of otherwise dormant biosynthetic genes under standard laboratory conditions. We isolated several endophytic fungi from the medicinal plant Datura stramonium L., which produces pharmaceutically important tropane alkaloids, including scopolamine and hyoscyamine. Although none of the endophytic fungi produced the tropane alkaloids, supplementation of a DNMT inhibitor, 5-azacytidine, and/or a HDAC inhibitor, suberoylanilide hydroxamic acid, to the culture medium induced the production of mycotoxins, including alternariol, alternariol-5-O-methyl ether, 3'-hydroxyalternariol-5-O-methyl ether, altenusin, tenuazonic acid, and altertoxin II, by the endophytic fungus Alternaria sp. This is the first report of a mycotoxin-producing endophytic fungus from the medicinal plant D. stramonium L. This work demonstrates that treatments with epigenetic modifiers induce the production of mycotoxins, thus providing a useful tool to explore the biosynthetic potential of the microorganisms. PMID:22967766

Sun, Jieyin; Awakawa, Takayoshi; Noguchi, Hiroshi; Abe, Ikuro

2012-10-15

304

Composition of the endophytic filamentous fungi isolated from the tea plant Camellia sinensis  

Microsoft Academic Search

It has been found by ribosomal DNA analysis that the endophytic filamentous fungi isolated from the tea plant Camellia sinensis (Theaceae) are composed of six groups; one Fusarium sp., one Penicillium sp., two Schizophyllum sp., and two Diaporthe sp..

Andria Agusta; Kazuyoshi Ohashi; Hirotaka Shibuya

2006-01-01

305

Effects of endophytic Fusarium oxysporum towards Radopholus similis activity in absence of banana.  

PubMed

Four endophytic fungi (Fusarium spp.) isolated from the cortical tissue of surface-sterilised banana as well as from tomato roots were tested for their capacity of biological control towards the burrowing nematode Radopholus similis on banana. The pathogenic and parasitic capacities of endophytic fungi towards R. similis were tested in in vitro experiments. No parasitism of fungi on R. similis was observed. However, nematode activity decreased significantly in the presence of all endophytic fungi in vitro when compared to nematodes in the absence of fungi. The effects of fungi on R. similis activities in the soil were tested in the absence of plants. Nematode activities were reduced significantly by 16-30% by endophytic fungi when compared to untreated soil. PMID:15759438

Vu, T T; Sikora, R A; Hauschild, R

2004-01-01

306

Endophytic fungi in European aspen ( Populus tremula ) leaves—diversity, detection, and a suggested correlation with herbivory resistance  

Microsoft Academic Search

Fungal endophytes are found in most seed plants, but their ecological function mainly remains elusive, except in pooid (or\\u000a clavicipitalean) systems. The diversity and dynamics of endophytes in non clavicipitalean plants make studies of their ecological\\u000a function challenging. This paper describes the advantage of using molecular techniques to survey the ecological function of\\u000a endophytes in Populus tremula clones. About 1,000

Benedicte R. Albrectsen; Lars Björkén; Akkamahadevi Varad; Åsa Hagner; Mats Wedin; Jan Karlsson; Stefan Jansson

2010-01-01

307

Aspergillus oryzae NRRL 35191 from coffee, a non-toxigenic endophyte with the ability to synthesize kojic acid  

Microsoft Academic Search

Aspergillus oryzae NRRL 35191 was isolated as an endophyte from coffee leaves and found to produce kojic acid (KA) in culture. When inoculated\\u000a into cacao seedlings (Theobroma cacao), A. oryzae grew endophytically and synthesized KA in planta. Cacao seedlings inoculated with A. oryzae produced higher levels of caffeine than non-inoculated ones. Aspergillus oryzae may be a useful endophyte to introduce

Fabio C. Chaves; Thomas J. Gianfagna; Madhu Aneja; Francisco Posada; Stephen W. Peterson; Fernando E. Vega

308

Potential Xanthine Oxidase Inhibitory Activity of Endophytic Lasiodiplodia pseudotheobromae.  

PubMed

Xanthine oxidase is considered as a potential target for treatment of hyperuricemia. Hyperuricemia is predisposing factor for gout, chronic heart failure, atherosclerosis, tissue injury, and ischemia. To date, only two inhibitors of xanthine oxidase viz. allopurinol and febuxostat have been clinically approved for used as drugs. In the process of searching for new xanthine oxidase inhibitors, we screened culture filtrates of 42 endophytic fungi using in vitro qualitative and quantitative XO inhibitory assays. The qualitative assay exhibited potential XO inhibition by culture filtrates of four isolates viz. #1048 AMSTITYEL, #2CCSTITD, #6AMLWLS, and #96 CMSTITNEY. The XO inhibitory activity was present only in the chloroform extract of the culture filtrates. Chloroform extract of culture filtrate #1048 AMSTITYEL exhibited the highest inhibition of XO with an IC50 value of 0.61 ?g ml(-1) which was better than allopurinol exhibiting an IC50 of 0.937 ?g ml(-1) while febuxostat exhibited a much lower IC50 of 0.076 ?g ml(-1). Further, molecular phylogenetic tools and morphological studies were used to identify #1048 AMSTITYEL as Lasiodiplodia pseudotheobromae. This is the first report of an endophytic Lasiodiplodia pseudotheobromae from Aegle marmelos exhibiting potential XO Inhibitory activity. PMID:24801403

Kapoor, Neha; Saxena, Sanjai

2014-07-01

309

Structure of Diversity in Dark Septate Endophytes: From Species to Genes  

Microsoft Academic Search

\\u000a Dark septate endophytes (DSE) are among the most abundant colonizers of plant roots. The form taxon DSE includes a broad range\\u000a of fungal species that are only distantly related and the taxonomy of DSE has puzzled mycologists for years. In the following\\u000a chapter we discuss the structure of diversity in dark septate endophytes. In the first part, we give an

Christoph R. Grünig; Valentin Queloz; Thomas N. Sieber

310

Spatial and Temporal Variation in Fungal Endophyte Communities Isolated from Cultivated Cotton (Gossypium hirsutum)  

PubMed Central

Studies of fungi in upland cotton (Gossypium hirsutum) cultivated in the United States have largely focused on monitoring and controlling plant pathogens. Given increasing interest in asymptomatic fungal endophytes as potential biological control agents, surveys are needed to better characterize their diversity, distribution patterns and possible applications in integrated pest management. We sampled multiple varieties of cotton in Texas, USA and tested for temporal and spatial variation in fungal endophyte diversity and community composition, as well as for differences associated with organic and conventional farming practices. Fungal isolates were identified by morphological and DNA identification methods. We found members of the genera Alternaria, Colletotrichum and Phomopsis, previously isolated as endophytes from other plant species. Other recovered species such as Drechslerella dactyloides (formerly Arthrobotrys dactyloides) and Exserohilum rostratum have not, to our knowledge, been previously reported as endophytes in cotton. We also isolated many latent pathogens, but some species such as Alternaria tennuissima, Epicoccum nigrum, Acremonium alternatum, Cladosporium cladosporioides, Chaetomium globosum and Paecilomyces sp., are known to be antagonists against plant pathogens, insects and nematode pests. We found no differences in endophyte species richness or diversity among different cotton varieties, but did detect differences over time and in different plant tissues. No consistent patterns of community similarity associated with variety, region, farming practice, time of the season or tissue type were observed regardless of the ecological community similarity measurements used. Results indicated that local fungal endophyte communities may be affected by both time of the year and plant tissue, but the specific community composition varies across sites. In addition to providing insights into fungal endophyte community structure, our survey provides candidates for further evaluation as potential management tools against a variety of pests and diseases when present as endophytes in cotton and other plants.

Ek-Ramos, Maria J.; Zhou, Wenqing; Valencia, Cesar U.; Antwi, Josephine B.; Kalns, Lauren L.; Morgan, Gaylon D.; Kerns, David L.; Sword, Gregory A.

2013-01-01

311

Fungal endophytes from higher plants: a prolific source of phytochemicals and other bioactive natural products  

Microsoft Academic Search

Bioactive natural products from endophytic fungi, isolated from higher plants, are attracting considerable attention from\\u000a natural product chemists and biologists alike as indicated by the steady increase of publications devoted to this topic during\\u000a recent years (113 research articles on secondary metabolites from endophytic fungi in the period of 2008–2009, 69 in 2006–2007,\\u000a 36 in 2004–2005, 14 in 2002–2003, and

Amal H. Aly; Abdessamad Debbab; Julia Kjer; Peter Proksch

2010-01-01

312

Spatial and temporal variation in fungal endophyte communities isolated from cultivated cotton (Gossypium hirsutum).  

PubMed

Studies of fungi in upland cotton (Gossypium hirsutum) cultivated in the United States have largely focused on monitoring and controlling plant pathogens. Given increasing interest in asymptomatic fungal endophytes as potential biological control agents, surveys are needed to better characterize their diversity, distribution patterns and possible applications in integrated pest management. We sampled multiple varieties of cotton in Texas, USA and tested for temporal and spatial variation in fungal endophyte diversity and community composition, as well as for differences associated with organic and conventional farming practices. Fungal isolates were identified by morphological and DNA identification methods. We found members of the genera Alternaria, Colletotrichum and Phomopsis, previously isolated as endophytes from other plant species. Other recovered species such as Drechslerella dactyloides (formerly Arthrobotrys dactyloides) and Exserohilum rostratum have not, to our knowledge, been previously reported as endophytes in cotton. We also isolated many latent pathogens, but some species such as Alternaria tennuissima, Epicoccum nigrum, Acremonium alternatum, Cladosporium cladosporioides, Chaetomium globosum and Paecilomyces sp., are known to be antagonists against plant pathogens, insects and nematode pests. We found no differences in endophyte species richness or diversity among different cotton varieties, but did detect differences over time and in different plant tissues. No consistent patterns of community similarity associated with variety, region, farming practice, time of the season or tissue type were observed regardless of the ecological community similarity measurements used. Results indicated that local fungal endophyte communities may be affected by both time of the year and plant tissue, but the specific community composition varies across sites. In addition to providing insights into fungal endophyte community structure, our survey provides candidates for further evaluation as potential management tools against a variety of pests and diseases when present as endophytes in cotton and other plants. PMID:23776604

Ek-Ramos, María J; Zhou, Wenqing; Valencia, César U; Antwi, Josephine B; Kalns, Lauren L; Morgan, Gaylon D; Kerns, David L; Sword, Gregory A

2013-01-01

313

Connecting plant–microbial interactions above and belowground: a fungal endophyte affects decomposition  

Microsoft Academic Search

Mutualisms can strongly affect the structure of communities, but their influence on ecosystem processes is not well resolved.\\u000a Here we show that a plant–microbial mutualism affects the rate of leaf litter decomposition using the widespread interaction\\u000a between tall fescue grass (Lolium arundinaceum) and the fungal endophyte Neotyphodium coenophialum. In grasses, fungal endophytes live symbiotically in the aboveground tissues, where the

Alisha Lemons; Keith Clay; Jennifer A. Rudgers

2005-01-01

314

Influence of endophytic fungal elicitation on production of inophyllum in suspension cultures of Calophyllum inophyllum L  

Microsoft Academic Search

The influence of dried cell powder and culture filtrates of endophytic fungi on production of inophyllum in cell suspension\\u000a cultures of leaf- and stem-derived callus of Calophyllum inophyllum was investigated. Two fungi, Nigrospora sphaerica and Phoma spp., endophytic to C. inophyllum, were isolated from leaf tissues, and were identified by both 18S rRNA gene amplification and sequencing. Elicitation of\\u000a suspension

Kiran D. PawarAmit; Amit V. Yadav; Yogesh S. Shouche; Shubhada R. Thengane

2011-01-01

315

Antitumor and antimicrobial activities of endophytic fungi from medicinal parts of Aquilaria sinensis  

Microsoft Academic Search

The purpose of this study was to isolate and characterize endophytic fungi from the stem tissue which can produce fragrant\\u000a ingredients in Aquilaria sinensis (also called agarwood) to determine their antitumor and antimicrobial activities. Twenty-eight fungal endophytes were isolated\\u000a from agarwood by strict sterile sample preparation and were classified into 14 genera and 4 taxonomic classes (Sordariomycetes,\\u000a Dothideomycetes, Saccharomycetes, and

Jin-long Cui; Shun-xing Guo; Pei-gen Xiao

2011-01-01

316

Genotypic and Chemotypic Diversity of Neotyphodium Endophytes in Tall Fescue from Greece  

PubMed Central

Epichloid endophytes provide protection from a variety of biotic and abiotic stresses for cool-season grasses, including tall fescue. A collection of 85 tall fescue lines from 15 locations in Greece, including both Continental and Mediterranean germplasm, was screened for the presence of native endophytes. A total of 37 endophyte-infected lines from 10 locations were identified, and the endophytes were classified into five distinct groups (G1 to G5) based on physical characteristics such as colony morphology, growth rate, and conidial morphology. These classifications were supported by phylogenetic analyses of housekeeping genes tefA and tubB, and the endophytes were further categorized as Neotyphodium coenophialum isolates (G1, G4, and G5) or Neotyphodium sp. FaTG-2 (Festuca arundinacea taxonomic group 2 isolates (G2 and G3). Analyses of the tall fescue matK chloroplast genes indicated a population-wide, host-specific association between N. coenophialum and Continental tall fescue and between FaTG-2 and Mediterranean tall fescue that was also reflected by differences in colonization of host tillers by the native endophytes. Genotypic analyses of alkaloid gene loci combined with chemotypic (chemical phenotype) profiles provided insight into the genetic basis of chemotype diversity. Variation in alkaloid gene content, specifically the presence and absence of genes, and copy number of gene clusters explained the alkaloid diversity observed in the endophyte-infected tall fescue, with one exception. The results from this study provide insight into endophyte germplasm diversity present in living tall fescue populations.

Takach, Johanna E.; Mittal, Shipra; Swoboda, Ginger A.; Bright, Sherrita K.; Trammell, Michael A.; Hopkins, Andrew A.

2012-01-01

317

Diverse non-mycorrhizal fungal endophytes inhabiting an epiphytic, medicinal orchid ( Dendrobium nobile ): estimation and characterization  

Microsoft Academic Search

Although the terrestrial and temperate orchids–fungal biology have been largely explored, knowledge of tropical epiphytic\\u000a orchids–fungus relationships, especially on the ecological roles imparted by non-mycorrhizal fungal endophytes, is less known.\\u000a Exploitation of the endophytic fungal mycobiota residing in epiphytic orchid plants may be of great importance to further\\u000a elucidate the fungal ecology in this special habitat as well as developing

Zhi-lin Yuan; Yi-cun Chen; Yun Yang

2009-01-01

318

New Records of Endophytic Paecilomyces inflatus and Bionectria ochroleuca from Chili Pepper Plants in Korea.  

PubMed

Two new species of endophytic fungi were encountered during a diversity study of healthy tissues of chili pepper plants in Korea. The species were identified as Paecilomyces inflatus and Bionectria ochroleuca based on molecular and morphological analyses. Morphological descriptions of these endophytic isolates matched well with their molecular analysis. In the present study, detailed descriptions of internal transcribed spacer regions and morphological observations of these two fungi are presented. PMID:23610535

Paul, Narayan Chandra; Deng, Jian Xin; Lee, Ji Hye; Yu, Seung Hun

2013-03-01

319

Genome of Herbaspirillum seropedicae Strain SmR1, a Specialized Diazotrophic Endophyte of Tropical Grasses  

Microsoft Academic Search

The molecular mechanisms of plant recognition, colonization, and nutrient exchange between diazotrophic endophytes and plants are scarcely known. Herbaspirillum seropedicae is an endophytic bacterium capable of colonizing intercellular spaces of grasses such as rice and sugar cane. The genome of H. seropedicae strain SmR1 was sequenced and annotated by The Paraná State Genome Programme—GENOPAR. The genome is composed of a

Fábio O. Pedrosa; Rose Adele Monteiro; Roseli Wassem; Leonardo M. Cruz; Ricardo A. Ayub; Nelson B. Colauto; Maria Aparecida Fernandez; Maria Helena P. Fungaro; Edmundo C. Grisard; Mariangela Hungria; Humberto M. F. Madeira; Rubens O. Nodari; Clarice A. Osaku; Maria Luiza Petzl-Erler; Hernán Terenzi; Luiz G. E. Vieira; Maria Berenice R. Steffens; Vinicius A. Weiss; Luiz F. P. Pereira; Marina I. M. Almeida; Lysangela R. Alves; Anelis Marin; Luiza Maria Araujo; Eduardo Balsanelli; Valter A. Baura; Leda S. Chubatsu; Helisson Faoro; Augusto Favetti; Geraldo Friedermann; Chirlei Glienke; Susan Karp; Vanessa Kava-Cordeiro; Roberto T. Raittz; Humberto J. O. Ramos; Enilze Maria S. F. Ribeiro; Liu Un Rigo; Saul N. Rocha; Stefan Schwab; Anilda G. Silva; Eliel M. Souza; Michelle Z. Tadra-Sfeir; Rodrigo A. Torres; Audrei N. G. Dabul; Maria Albertina M. Soares; Luciano S. Gasques; Ciela C. T. Gimenes; Juliana S. Valle; Ricardo R. Ciferri; Luiz C. Correa; Norma K. Murace; João A. Pamphile; Eliana Valéria Patussi; Alberto J. Prioli; Sonia Maria A. Prioli; Carmem Lúcia M. S. C. Rocha; Olívia Márcia N. Arantes; Márcia Cristina Furlaneto; Leandro P. Godoy; Carlos E. C. Oliveira; Daniele Satori; Laurival A. Vilas-Boas; Maria Angélica E. Watanabe; Bibiana Paula Dambros; Miguel P. Guerra; Sandra Marisa Mathioni; Karine Louise Santos; Mario Steindel; Javier Vernal; Fernando G. Barcellos; Rubens J. Campo; Ligia Maria O. Chueire; Marisa Fabiana Nicolás; Lilian Pereira-Ferrari; José L. da Conceição Silva; Nereida M. R. Gioppo; Vladimir P. Margarido; Maria Amélia Menck-Soares; Fabiana Gisele S. Pinto; Rita de Cássia G. Simão; Elizabete K. Takahashi; Marshall G. Yates; Emanuel M. Souza

2011-01-01

320

Volatile compounds of endophyte-free and infected tall fescue ( Festuca arundinacea Schreb.)  

Microsoft Academic Search

Volatile compounds produced by intact plants and ground leaf tissue from endophyte-infected (E+) and endophyte-free (E?) tall fescue (Festuca arundinacea Schreb.) were collected by a purge-and-trap procedure and analyzed by gas chromatography\\/mass spectrometry The volatile compound profile from ground leaf tissue was similar between E+ and E? clonal plants; however, the sheaths of E+ clonal plants produced higher levels of

Qin Yue; Chunlin Wang; Thomas J Gianfagna; William A Meyer

2001-01-01

321

Study of endophytic fungal community from different parts of Aegle marmelos Correae (Rutaceae) from Varanasi (India)  

Microsoft Academic Search

Endophytic fungi were isolated from healthy, living, and symptomless tissues of inner bark, leaf, and roots of Aegle marmelos, a well-known medicinal plant, growing in different parts of India including Varanasi. A total of 79 isolates of endophytic\\u000a fungi were isolated, representing 21 genera, adopting a standard isolation protocol. Members of the deuteromycotina were more\\u000a prevalent than ascomycotina and others.

S. K. Gond; V. C. Verma; A. Kumar; V. Kumar; R. N. Kharwar

2007-01-01

322

Degradation of phenanthrene by the endophytic fungus Ceratobasidum stevensii found in Bischofia polycarpa  

Microsoft Academic Search

Some strains of white rot fungi, non-lignolytic fungi and litter-decomposing basidiomycetes have been recognized as PAH degraders.\\u000a The purpose of our research was to enlarge the scope of PAH-degrading fungi and explore the huge endophytic microorganism\\u000a resource for bioremediation of PAHs. In this study, phenanthrene was used as a model PAHs compound. Nine strains of endophytic\\u000a fungi isolated from four

Chuan-chao Dai; Lin-shuang Tian; Yu-ting Zhao; Yan Chen; Hui Xie

2010-01-01

323

Dynamics of Seed-Borne Rice Endophytes on Early Plant Growth Stages  

PubMed Central

Bacterial endophytes are ubiquitous to virtually all terrestrial plants. With the increasing appreciation of studies that unravel the mutualistic interactions between plant and microbes, we increasingly value the beneficial functions of endophytes that improve plant growth and development. However, still little is known on the source of established endophytes as well as on how plants select specific microbial communities to establish associations. Here, we used cultivation-dependent and -independent approaches to assess the endophytic bacterrial community of surface-sterilized rice seeds, encompassing two consecutive rice generations. We isolated members of nine bacterial genera. In particular, organisms affiliated with Stenotrophomonas maltophilia and Ochrobactrum spp. were isolated from both seed generations. PCR-based denaturing gradient gel electrophoresis (PCR-DGGE) of seed-extracted DNA revealed that approximately 45% of the bacterial community from the first seed generation was found in the second generation as well. In addition, we set up a greenhouse experiment to investigate abiotic and biotic factors influencing the endophytic bacterial community structure. PCR-DGGE profiles performed with DNA extracted from different plant parts showed that soil type is a major effector of the bacterial endophytes. Rice plants cultivated in neutral-pH soil favoured the growth of seed-borne Pseudomonas oryzihabitans and Rhizobium radiobacter, whereas Enterobacter-like and Dyella ginsengisoli were dominant in plants cultivated in low-pH soil. The seed-borne Stenotrophomonas maltophilia was the only conspicuous bacterial endophyte found in plants cultivated in both soils. Several members of the endophytic community originating from seeds were observed in the rhizosphere and surrounding soils. Their impact on the soil community is further discussed.

Hardoim, Pablo R.; Hardoim, Cristiane C. P.; van Overbeek, Leonard S.; van Elsas, Jan Dirk

2012-01-01

324

Endophytic bacteria of Mammillaria fraileana , an endemic rock-colonizing cactus of the southern Sonoran Desert  

Microsoft Academic Search

The small cactus Mammillaria fraileana is a pioneer rock-colonizing plant harboring endophytic bacteria with the potential for nitrogen fixation and rock weathering\\u000a (phosphate solubilization and rock degradation). In seeds, only a combination of culture-independent methods, such as fluorescence\\u000a in situ hybridization, scanning electron microscopy, and fluorescence vital staining, detected significant amounts of non-culturable,\\u000a but living, endophytic bacteria distributed underneath the

Blanca R. Lopez; Yoav Bashan; Macario Bacilio

2011-01-01

325

Diversity and cold adaptation of culturable endophytic fungi from bryophytes in the Fildes Region, King George Island, maritime Antarctica.  

PubMed

Endophytic fungi associated with three bryophyte species in the Fildes Region, King George Island, maritime Antarctica, that is, the liverwort Barbilophozia hatcheri, the mosses Chorisodontium aciphyllum and Sanionia uncinata, were studied by culture-dependent method. A total of 128 endophytic fungi were isolated from 1329 tissue segments of 14 samples. The colonization rate of endophytic fungi in three bryophytes species were 12.3%, 12.1%, and 8.7%, respectively. These isolates were identified to 21 taxa, with 15 Ascomycota, 5 Basidiomycota, and 1 unidentified fungus, based on morphological characteristics and sequence analyses of ITS region and D1/D2 domain. The dominant fungal endophyte was Hyaloscyphaceae sp. in B. hatcheri, Rhizoscyphus sp. in C. aciphyllum, and one unidentified fungus in S. uncinata; and their relative frequencies were 33.3%, 32.1%, and 80.0%, respectively. Furthermore, different Shannon-Weiner diversity indices (0.91-1.99) for endophytic fungi and low endophytic fungal composition similarities (0.19-0.40) were found in three bryophyte species. Growth temperature tests indicated that 21 taxa belong to psychrophiles (9), psychrotrophs (11), and mesophile (1). The results herein demonstrate that the Antarctic bryophytes are an interesting source of fungal endophytes and the endophytic fungal composition is different among the bryophyte species, and suggest that these fungal endophytes are adapted to cold stress in Antarctica. PMID:23350605

Zhang, Tao; Zhang, Yu-Qin; Liu, Hong-Yu; Wei, Yu-Zhen; Li, Hai-Long; Su, Jing; Zhao, Li-Xun; Yu, Li-Yan

2013-04-01

326

Exploring the evolutionary ecology of fungal endophytes in agricultural systems: using functional traits to reveal mechanisms in community processes  

PubMed Central

All plants, including crop species, harbor a community of fungal endophyte species, yet we know little about the biotic factors that are important in endophyte community assembly. We suggest that the most direct route to understanding the mechanisms underlying community assembly is through the study of functional trait variation in the host and its fungal consortium. We review studies on crop endophytes that investigate plant and fungal traits likely to be important in endophyte community processes. We focus on approaches that could speed detection of general trends in endophyte community assembly: (i) use of the ‘assembly rules’ concept to identify specific mechanisms that influence endophyte community dynamics, (ii) measurement of functional trait variation in plants and fungi to better understand endophyte community processes and plant–fungal interactions, and (iii) investigation of microbe–microbe interactions, and fungal traits that mediate them. This approach is well suited for research in agricultural systems, where pair-wise host–fungus interactions and mechanisms of fungal–fungal competition have frequently been described. Areas for consideration include the possibility that human manipulation of crop phenotype and deployment of fungal biocontrol species can significantly influence endophyte community assembly. Evaluation of endophyte assembly rules may help to fine-tune crop management strategies.

Saunders, Megan; Glenn, Anthony E; Kohn, Linda M

2010-01-01

327

Role of bacterial isolates in enhancing the bud induction in the industrially important red alga Gracilaria dura.  

PubMed

Plant growth depends on the integration of environmental cues, nitrogen fixation and phytohormone-signaling pathways. The growth and development of Gracilaria dura was significantly influenced by the association of bacterial isolates. The putative bud-inducing epiphytic Exiguobacterium homiense and endophytic Bacillus pumilus, Bacillus licheniformis were examined for their ability to fix nitrogen and produce indole-3-acetic acid (IAA). These bacterial isolates were identified to the species level by biochemical tests, fatty acid and partial 16S rRNA gene sequence analysis. The B. pumilus, B. licheniformis and E. homiense produced 445.5, 335 and 184.1 ?g mL(-1) IAA and 12.51, 10.14 and 6.9 mM mL(-1) ammonium, respectively, as determined using HPLC and spectroscopy. New bud regeneration observed after the addition of total protein of the bacterial isolates suggests that IAA is conjugated with protein. The epi- and endophytic bacterial isolates were able to induce five and 10 new buds per frond, respectively, in comparison to the control, where one to two buds were observed. The combination of 25 °C and 30‰ showed the optimum condition for bud induction in G. dura when incubated with the total protein of B. pumilus. Our finding revealed for the first time that IAA coupled with nitrogen fixation induce and regenerate new buds in G. dura. PMID:21255055

Singh, Ravindra Pal; Bijo, A J; Baghel, Ravi S; Reddy, C R K; Jha, Bhavanath

2011-05-01

328

Selection of Specific Endophytic Bacterial Genotypes by Plants in Response to Soil Contamination  

PubMed Central

Plant-bacterial combinations can increase contaminant degradation in the rhizosphere, but the role played by indigenous root-associated bacteria during plant growth in contaminated soils is unclear. The purpose of this study was to determine if plants had the ability to selectively enhance the prevalence of endophytes containing pollutant catabolic genes in unrelated environments contaminated with different pollutants. At petroleum hydrocarbon contaminated sites, two genes encoding hydrocarbon degradation, alkane monooxygenase (alkB) and naphthalene dioxygenase (ndoB), were two and four times more prevalent in bacteria extracted from the root interior (endophytic) than from the bulk soil and sediment, respectively. In field sites contaminated with nitroaromatics, two genes encoding nitrotoluene degradation, 2-nitrotoluene reductase (ntdAa) and nitrotoluene monooxygenase (ntnM), were 7 to 14 times more prevalent in endophytic bacteria. The addition of petroleum to sediment doubled the prevalence of ndoB-positive endophytes in Scirpus pungens, indicating that the numbers of endophytes containing catabolic genotypes were dependent on the presence and concentration of contaminants. Similarly, the numbers of alkB- or ndoB-positive endophytes in Festuca arundinacea were correlated with the concentration of creosote in the soil but not with the numbers of alkB- or ndoB-positive bacteria in the bulk soil. Our results indicate that the enrichment of catabolic genotypes in the root interior is both plant and contaminant dependent.

Siciliano, Steven D.; Fortin, Nathalie; Mihoc, Anca; Wisse, Gesine; Labelle, Suzanne; Beaumier, Danielle; Ouellette, Danielle; Roy, Real; Whyte, Lyle G.; Banks, M. Kathy; Schwab, Paul; Lee, Ken; Greer, Charles W.

2001-01-01

329

Evaluation of foliar fungal endophyte diversity and colonization of medicinal plant Luehea divaricata (Martius et Zuccarini).  

PubMed

Endophyte microorganisms are organisms that live inside plants without causing any apparent damage to their hosts. Since all plants exhibit endophyte microorganisms, it is believed that mutual association is of great importance in nature. Luehea divaricata (Martius & Zuccarini), known popularly in Brazil as agoita-cavalo, is a big-sized tree with a wide distribution in the country that possesses medicinal qualities for: dysentery, leucorrhea, rheumatism, blennorrhoea, tumors, bronchitis, and depuration. This research aims at isolating and molecularly characterizing fungi isolates from L. divaricata by sequence analysis of ITS1-5.8S-ITS2 rDNA. Further, the colonization of endophyte in the host plant by Light and Scanning Electron Microscopy will also be investigated. Whereas, genera Alternaria, Cochliobolus, Diaporthe, Epicoccum, Guignardia, Phoma, and Phomopsis, were identified; rDNA sequence analysis revealed intra-species variability among endophyte isolates of the genus Phomopsis sp. Light and Scanning Electron Microscopy techniques showed the presence of endophyte fungi inside L. divaricata leaves, inhabiting inter- and intra-cellular spaces. These types of extensive colonization and dissemination were reported throughout all the leaf parts in palisade parenchyma, esclerenchyma, spongy parenchyma, adaxial epidermis, and vascular bundle indicating colonization of endophytes in múltiple structural sub-niches in the host plant. PMID:21526263

Bernardi-Wenzel, Juliana; García, Adriana; Filho, Celso J R; Prioli, Alberto J; Pamphile, João A

2010-01-01

330

Photosynthetic Bradyrhizobia Are Natural Endophytes of the African Wild Rice Oryza breviligulata  

PubMed Central

We investigated the presence of endophytic rhizobia within the roots of the wetland wild rice Oryza breviligulata, which is the ancestor of the African cultivated rice Oryza glaberrima. This primitive rice species grows in the same wetland sites as Aeschynomene sensitiva, an aquatic stem-nodulated legume associated with photosynthetic strains of Bradyrhizobium. Twenty endophytic and aquatic isolates were obtained at three different sites in West Africa (Senegal and Guinea) from nodal roots of O. breviligulata and surrounding water by using A. sensitiva as a trap legume. Most endophytic and aquatic isolates were photosynthetic and belonged to the same phylogenetic Bradyrhizobium/Blastobacter subgroup as the typical photosynthetic Bradyrhizobium strains previously isolated from Aeschynomene stem nodules. Nitrogen-fixing activity, measured by acetylene reduction, was detected in rice plants inoculated with endophytic isolates. A 20% increase in the shoot growth and grain yield of O. breviligulata grown in a greenhouse was also observed upon inoculation with one endophytic strain and one Aeschynomene photosynthetic strain. The photosynthetic Bradyrhizobium sp. strain ORS278 extensively colonized the root surface, followed by intercellular, and rarely intracellular, bacterial invasion of the rice roots, which was determined with a lacZ-tagged mutant of ORS278. The discovery that photosynthetic Bradyrhizobium strains, which are usually known to induce nitrogen-fixing nodules on stems of the legume Aeschynomene, are also natural true endophytes of the primitive rice O. breviligulata could significantly enhance cultivated rice production.

Chaintreuil, Clemence; Giraud, Eric; Prin, Yves; Lorquin, Jean; Ba, Amadou; Gillis, Monique; de Lajudie, Philippe; Dreyfus, Bernard

2000-01-01

331

The Diversity of Anti-Microbial Secondary Metabolites Produced by Fungal Endophytes: An Interdisciplinary Perspective  

PubMed Central

Endophytes are microbes that inhabit host plants without causing disease and are reported to be reservoirs of metabolites that combat microbes and other pathogens. Here we review diverse classes of secondary metabolites, focusing on anti-microbial compounds, synthesized by fungal endophytes including terpenoids, alkaloids, phenylpropanoids, aliphatic compounds, polyketides, and peptides from the interdisciplinary perspectives of biochemistry, genetics, fungal biology, host plant biology, human and plant pathology. Several trends were apparent. First, host plants are often investigated for endophytes when there is prior indigenous knowledge concerning human medicinal uses (e.g., Chinese herbs). However, within their native ecosystems, and where investigated, endophytes were shown to produce compounds that target pathogens of the host plant. In a few examples, both fungal endophytes and their hosts were reported to produce the same compounds. Terpenoids and polyketides are the most purified anti-microbial secondary metabolites from endophytes, while flavonoids and lignans are rare. Examples are provided where fungal genes encoding anti-microbial compounds are clustered on chromosomes. As different genera of fungi can produce the same metabolite, genetic clustering may facilitate sharing of anti-microbial secondary metabolites between fungi. We discuss gaps in the literature and how more interdisciplinary research may lead to new opportunities to develop bio-based commercial products to combat global crop and human pathogens.

Mousa, Walaa Kamel; Raizada, Manish N.

2013-01-01

332

Characteristics of foliar fungal endophyte assemblages and host effective components in Salvia miltiorrhiza Bunge.  

PubMed

Salvia miltiorrhiza Bunge, a well-known medicinal plant, has more than 20 effective components. The aim of this study was to comprehensively investigate foliar fungal endophyte communities of S. miltiorrhiza and explore the inside relationship between host-specific fungal endophytes and effective components accumulation. Five plant samples were collected from four geological different provinces in China. Foliar fungal endophyte communities were determined by terminal restriction fragment length polymorphism (T-RFLP) of the ITS region. Effective components were analyzed with high-performance liquid chromatography. The results showed that S. miltiorrhiza foliage harbored a large diversity of fungal endophytes. Principal component analysis revealed similar T-RFLP profiles and the characteristics of the 24 effective components among the five samples, which could be clustered into three groups. In foliar T-RFLP profiles derived from the restriction digestion by CfoI, HaeIII, MspI, or TaqI, there were identical 45, 42, 38, and 34 terminal restriction fragments (T-RFs) from the five samples. We consider these T-RFs as host-specific fungal endophytes. Correlation analysis of these T-RFs' area and 24 effective components contents revealed a significant correlationship between some host-specific fungal endophytes and foliage or root effective components accumulation. PMID:24146079

Sun, Jianjun; Xia, Fei; Cui, Langjun; Liang, Jian; Wang, Zhezhi; Wei, Yukun

2014-04-01

333

Effect of endophytic fungi on cadmium tolerance and bioaccumulation by Festuca arundinacea and Festuca pratensis.  

PubMed

Endophytic fungi are a group of fungi that live asymptomatically inside plant tissue. These fungi may increase host plant tolerance to biotic and abiotic stresses. The effect of Neotyphodium endophytes in two grass species (Festuca arundinacea and Festuca pratensis) on cadmium (Cd) tolerance, accumulation and translocation has been our main objective. The plants were grown in a hydroponic system under different Cd concentrations (0, 5, 10, and 20 mg L(-1)) for 6 weeks. They were also grown in soil spiked with different concentrations of Cd (0, 10, 20, and 40 mg kg(-1)) for 2 months. The results from all Cd treatments showed higher biomass production (12-24%) and higher potential to accumulate Cd in roots (6-16%) and shoots (6-20%) of endophyte-infected plants than endophyte-free plants. Cadmium accumulation by plants indicated that the grasses were capable of Cd hyperaccumulation, a property that was augmented after endophyte infection. Maximum photochemical efficiency of photosystem II (Fv/Fm) revealed that Cd stress was significantly reduced in endophyte-infected plants compared to non-infected ones. PMID:21166279

Soleimani, Mohsen; Hajabbasi, Mohammad A; Afyuni, Majid; Mirlohi, Aghafakhr; Borggaard, Ole K; Holm, Peter E

2010-08-01

334

Characterization of Five Fungal Endophytes Producing Cajaninstilbene Acid Isolated from Pigeon Pea [Cajanus cajan (L.) Millsp.  

PubMed Central

Five fungal endophytes (K4, K5, K6, K9, K14) producing Cajaninstilbene acid (CSA, 3-hydroxy-4-prenyl-5-methoxystilbene-2-carboxylic acid) were isolated from the roots of pigeon pea [Cajanus cajan (L.) Millsp.]. CSA is responsible for the prominent pharmacological activities in pigeon pea. The amount of CSA in culture solution varied among the five fungal endophytes. K4 produced the highest levels of CSA (1037.13 µg/L) among the endophytes tested after incubation for five days. Both morphological characteristics and molecular methods were used for species identification of fungal endophytes. The five endophytic isolates were characterized by analyzing the internal transcribed spacer (ITS) rRNA and ?-tubulin genes. The K4, K5, K9 and K14 strains isolated from pigeon pea roots were found to be closely related to the species Fusarium oxysporum. K6 was identified as Neonectria macrodidym. The present study is the first report on the isolation and identification of fungal endophytes producing CSA in pigeon pea. The study also provides a scientific base for large scale production of CSA.

Zu, Yuan Gang; Fu, Yu Jie; Wang, Wei; Luo, Meng; Efferth, Thomas

2011-01-01

335

Endophytic yeast strains, methods for ethanol and xylitol production, methods for biological nitrogen fixation, and a genetic source for improvement of industrial strains  

US Patent & Trademark Office Database

The present invention provides novel endophytic yeast strains capable of metabolizing both pentose and hexose sugars. Methods of producing ethanol and xylitol using the novel endophytic yeast are provided herein. Also provided are methods of fixing nitrogen and fertilizing a crop using the novel endophytic yeast strains provided herein.

2014-05-20

336

Interactive effects of hypobaria, low temperature, and CO 2 atmospheres inhibit the growth of mesophilic Bacillus spp. under simulated martian conditions  

NASA Astrophysics Data System (ADS)

Robotic spacecraft are launched with finite levels of terrestrial microorganisms that are similar to the microbial communities within facilities in which spacecraft are assembled. In particular, spores of mesophilic aerobic Bacillus species are common spacecraft contaminants considered most likely to survive interplanetary transfer to Mars. During the cruise phase to Mars, and then again during surface operations, microbial bioloads are exposed to a diversity of biocidal factors that are likely to render the microbial species either dead or significantly inhibited from active metabolic activity and replication. We report here, for the first time, that interactive effects of low pressure, low temperature, and high CO 2 atmospheres approaching conditions likely to be encountered on the martian surface strongly inhibit the growth and replication of seven common Bacillus spp. isolated from spacecraft. Tests were conducted within a small glass bell-jar system maintained in a low-temperature microbial incubator. Atmospheric pressures were controlled at 1013 (Earth-normal), 100, 50, 35, 25, or 15 mb, and temperatures were maintained at 30, 20, 15, 10, or 5 °C. Experiments were carried out for 48 h or 7 days under either Earth-normal O 2/N 2 or pure CO 2 atmospheres. Results indicated that low pressure, low temperature, and high CO 2 atmospheres, applied separately or in combination, were capable of inhibiting the growth and replication of B. pumilus SAFR-032, B. pumilus FO-36B, B. subtilis HA-101, B. subtilis 42HS-1, B. megaterium KL-197, B. licheniformis KL-196, and B. nealsonii FO-092 under simulated martian conditions. Endospores of all seven Bacillus spp. strains failed to germinate and grow at 25 mb at 30 °C. Although, vegetative cells of these strains exhibited a slightly greater ability to replicate at lower pressures than did endospores, vegetative cells of these species failed to grow at pressures below 25 mb. Interactive effects of these environmental parameters acted to generally increase the inhibitory nature of the low-pressure conditions on growth and replication of the seven Bacillus spp. tested.

Schuerger, Andrew C.; Nicholson, Wayne L.

2006-11-01

337

Bovine Bacillus anthracis in Cameroon ? †  

PubMed Central

Bovine Bacillus anthracis isolates from Cameroon were genetically characterized. They showed a strong homogeneity, and they belong, together with strains from Chad, to cluster A?, which appears to be predominant in western Africa. However, one strain that belongs to a newly defined clade (D) and cluster (D1) is penicillin resistant and shows certain phenotypes typical of Bacillus cereus.

Pilo, Paola; Rossano, Alexandra; Bamamga, Hamadou; Abdoulkadiri, Souley; Perreten, Vincent; Frey, Joachim

2011-01-01

338

Specific and functional diversity of endophytic bacteria from pine wood nematode Bursaphelenchus xylophilus with different virulence.  

PubMed

Pine wilt disease (PWD) caused by the pine wood nematode (PWN), Bursaphelenchus xylophilus, is one of the most devastating diseases of Pinus spp. The PWN was therefore listed as one of the most dangerous forest pests in China meriting quarantine. Virulence of the PWN is closely linked with the spread of PWD. However, main factors responsible for the virulence of PWNs are still unclear. Recently epiphytic bacteria carried by PWNs have drawn much attention. But little is known about the relationship between endophytic bacteria and virulence of B. xylophilus. In this research, virulence of ten strains of B. xylophilus from different geographical areas in six provinces of China and four pine species were tested with 2-year-old seedlings of Pinus thunbergii. Endophytic bacteria were isolated from PWNs with different virulence to investigate the relationship between the bacteria and PWN virulence. Meanwhile, the carbon metabolism of endophytic bacteria from highly and low virulent B. xylophilus was analyzed using Biolog plates (ECO). The results indicated that ten strains of PWNs showed a wide range of virulence. Simultaneously, endophytic bacteria were isolated from 90% of the B. xylophilus strains. The dominant endophytic bacteria in the nematodes were identified as species of Stenotrophomonas, Achromobacter, Ewingella, Leifsonia, Rhizobium, and Pseudomonas using molecular and biochemical methods. Moreover, S. maltophilia, and A. xylosoxidans subsp. xylosoxidans were the predominant strains. Most of the strains (80%) from P. massoniana contained either S. maltophilia, A. xylosoxidans, or both species. There was a difference between the abilities of the endophytic bacteria to utilize carbon sources. Endophytic bacteria from highly virulent B. xylophilus had a relatively high utilization rate of carbohydrate and carboxylic acids, while bacteria from low virulent B. xylophilus made better use of amino acids. In conclusion, endophytic bacteria widely exist in B. xylophilus from different pines and areas; and B. xylophilus strains with different virulence possessed various endophytic bacteria and diverse carbon metabolism which suggested that the endophytic bacteria species and carbon metabolism might be related with the B. xylophilus virulence. PMID:23289015

Wu, Xiao-Qin; Yuan, Wei-Min; Tian, Xiao-Jing; Fan, Ben; Fang, Xin; Ye, Jian-Ren; Ding, Xiao-Lei

2013-01-01

339

Diversity and Communities of Foliar Endophytic Fungi from Different Agroecosystems of Coffea arabica L. in Two Regions of Veracruz, Mexico.  

PubMed

Over the past 20 years, the biodiversity associated with shaded coffee plantations and the role of diverse agroforestry types in biodiversity conservation and environmental services have been topics of debate. Endophytic fungi, which are microorganisms that inhabit plant tissues in an asymptomatic manner, form a part of the biodiversity associated with coffee plants. Studies on the endophytic fungi communities of cultivable host plants have shown variability among farming regions; however, the variability in fungal endophytic communities of coffee plants among different coffee agroforestry systems is still poorly understood. As such, we analyzed the diversity and communities of foliar endophytic fungi inhabiting Coffea arabica plants growing in the rustic plantations and simple polycultures of two regions in the center of Veracruz, Mexico. The endophytic fungi isolates were identified by their morphological traits, and the majority of identified species correspond to species of fungi previously reported as endophytes of coffee leaves. We analyzed and compared the colonization rates, diversity, and communities of endophytes found in the different agroforestry systems and in the different regions. Although the endophytic diversity was not fully recovered, we found differences in the abundance and diversity of endophytes among the coffee regions and differences in richness between the two different agroforestry systems of each region. No consistent pattern of community similarity was found between the coffee agroforestry systems, but we found that rustic plantations shared the highest number of morphospecies. The results suggest that endophyte abundance, richness, diversity, and communities may be influenced predominantly by coffee region, and to a lesser extent, by the agroforestry system. Our results contribute to the knowledge of the relationships between agroforestry systems and biodiversity conservation and provide information regarding some endophytic fungi and their communities as potential management tools against coffee plant pests and pathogens. PMID:24887512

Saucedo-García, Aurora; Anaya, Ana Luisa; Espinosa-García, Francisco J; González, María C

2014-01-01

340

Diversity and Communities of Foliar Endophytic Fungi from Different Agroecosystems of Coffea arabica L. in Two Regions of Veracruz, Mexico  

PubMed Central

Over the past 20 years, the biodiversity associated with shaded coffee plantations and the role of diverse agroforestry types in biodiversity conservation and environmental services have been topics of debate. Endophytic fungi, which are microorganisms that inhabit plant tissues in an asymptomatic manner, form a part of the biodiversity associated with coffee plants. Studies on the endophytic fungi communities of cultivable host plants have shown variability among farming regions; however, the variability in fungal endophytic communities of coffee plants among different coffee agroforestry systems is still poorly understood. As such, we analyzed the diversity and communities of foliar endophytic fungi inhabiting Coffea arabica plants growing in the rustic plantations and simple polycultures of two regions in the center of Veracruz, Mexico. The endophytic fungi isolates were identified by their morphological traits, and the majority of identified species correspond to species of fungi previously reported as endophytes of coffee leaves. We analyzed and compared the colonization rates, diversity, and communities of endophytes found in the different agroforestry systems and in the different regions. Although the endophytic diversity was not fully recovered, we found differences in the abundance and diversity of endophytes among the coffee regions and differences in richness between the two different agroforestry systems of each region. No consistent pattern of community similarity was found between the coffee agroforestry systems, but we found that rustic plantations shared the highest number of morphospecies. The results suggest that endophyte abundance, richness, diversity, and communities may be influenced predominantly by coffee region, and to a lesser extent, by the agroforestry system. Our results contribute to the knowledge of the relationships between agroforestry systems and biodiversity conservation and provide information regarding some endophytic fungi and their communities as potential management tools against coffee plant pests and pathogens.

Saucedo-Garcia, Aurora; Anaya, Ana Luisa; Espinosa-Garcia, Francisco J.; Gonzalez, Maria C.

2014-01-01

341

Chaetoglobosin Vb from endophytic Chaetomium globosum: absolute configuration of chaetoglobosins.  

PubMed

One new cytochalasan alkaloid, chaetoglobosin V(b) (1), together with two structurally related known compounds, chaetoglobosin V (2) and chaetoglobosin G (3), was isolated from the ethyl acetate extract of a culture of the endophytic fungus Chaetomium globosum, associated with the leaves of Ginkgo biloba tree. The structures of the isolated compounds were elucidated by spectroscopic methods including 1D and 2D NMR and mass spectrometry. The absolute configuration of chaetoglobosin V(b) (1) was established by means of electronic circular dichroism (CD) spectroscopy, on the basis of the comparison between the CD spectrum of (+)-1 with that calculated with time-dependent density functional theory method for a simplified model. The correlation between compounds 1-3 was demonstrated by a biomimetic transformation of chaetoglobosin G (3) under mild conditions in chaetoglobosins V and V(b) (1 and 2). The isolated metabolites were tested against some phytopathogens. PMID:22593034

Xue, Min; Zhang, Qiang; Gao, Jin-Ming; Li, He; Tian, Jun-Mian; Pescitelli, Gennaro

2012-08-01

342

Endophytic Chaetomium globosum enhances maize seedling copper stress tolerance.  

PubMed

This study aims at characterisation of the impact of Chaetomium globosum on copper stress resistance of maize seedlings. Higher levels of copper treatment decreased maize dry weight and induced a marked increase in osmotic solutes, antioxidant enzyme activity and the level of lipid peroxidation. On the other hand, addition of the endophytic C. globosum alleviated the toxic effect of copper on maize growth. The combination of copper sulphate and Chaetomium increased seedling dry weight, osmotic solute content and antioxidant enzyme activity compared to copper sulphate alone, while lipid peroxidation levels were also decreased. The fungal scavenger system might be important for supporting the ability of maize seedlings to resist copper toxicity. PMID:22672065

Abou Alhamed, M F; Shebany, Y M

2012-06-01

343

Antifungal metabolites from fungal endophytes of Pinus strobus.  

PubMed

The extracts of five foliar fungal endophytes isolated from Pinus strobus (eastern white pine) that showed antifungal activity in disc diffusion assays were selected for further study. From these strains, the aliphatic polyketide compound 1 and three related sesquiterpenes 2-4 were isolated and characterized. Compound 2 is reported for the first time as a natural product and the E/Z conformational isomers 3 and 4 were hitherto unknown. Additionally, the three known macrolides; pyrenophorol (5), dihydropyrenophorin (6), and pyrenophorin (7) were isolated and identified. Their structures were elucidated by spectroscopic analyses including 2D NMR, HRMS and by comparison to literature data where available. The isolated compounds 1, 2, and 5 were antifungal against both the rust Microbotryum violaceum and Saccharomyces cerevisae. PMID:21632082

Sumarah, Mark W; Kesting, Julie R; Sørensen, Dan; Miller, J David

2011-10-01

344

Biosynthetic code for divergolide assembly in a bacterial mangrove endophyte.  

PubMed

Divergolides are structurally diverse ansamycins produced by a bacterial endophyte (Streptomyces sp.) of the mangrove tree Bruguiera gymnorrhiza. By genomic analyses a gene locus coding for the divergolide pathway was detected. The div gene cluster encodes genes for the biosynthesis of 3-amino-5-hydroxybenzoate and the rare extender units ethylmalonyl-CoA and isobutylmalonyl-CoA, polyketide assembly by a modular type I polyketide synthase (PKS), and enzymes involved in tailoring reactions, such as a Baeyer-Villiger oxygenase. A detailed PKS domain analysis confirmed the stereochemical integrity of the divergolides and provided valuable new insights into the formation of the diverse aromatic chromophores. The bioinformatic analyses and the isolation and full structural elucidation of four new divergolide congeners led to a revised biosynthetic model that illustrates the formation of four different types of ansamycin chromophores from a single polyketide precursor. PMID:24867126

Xu, Zhongli; Baunach, Martin; Ding, Ling; Peng, Huiyun; Franke, Jakob; Hertweck, Christian

2014-06-16

345

Antimalarial benzoquinones from an endophytic fungus, Xylaria sp.  

PubMed

Two novel benzoquinone metabolites, 2-chloro-5-methoxy-3-methylcyclohexa-2,5-diene-1,4-dione ( 1) and xylariaquinone A ( 2) together with two known compounds were isolated from an endophytic fungus, Xylaria sp. Their structures were assigned by analysis of spectroscopic data, and the structures of 1 and 3 were also confirmed by single-crystal X-ray data. Compounds 1 and 2 showed in vitro activity against Plasmodium falciparum, K1 strain, with IC 50 values of 1.84 and 6.68 microM and cytotoxicity against African green monkey kidney fibroblasts (Vero cells) with IC 50 values of 1.35 and >184 microM, respectively. PMID:17892262

Tansuwan, Srinuan; Pornpakakul, Surachai; Roengsumran, Sophon; Petsom, Amorn; Muangsin, Nongnuj; Sihanonta, Prakitsin; Chaichit, Narongsak

2007-10-01

346

Reclassification of bioindicator strains Bacillus subtilis DSM 675 and Bacillus subtilis DSM 2277 as Bacillus atrophaeus  

Microsoft Academic Search

On the basis of high DNA-DNA reassociation values and confirmatory automated RiboPrint analysis, two aerobic spore-forming strains hitherto allocated to Bacillus subtilis and used as bioindicators (DSM 675, hot-air sterilization control; DSM 2277, ethylene oxide sterilization control) are reclassified as Bacillus atrophaeus.

Dagmar Fritze; Mascheroder Weg

2001-01-01

347

Isolation and Characterization of Endophytic Colonizing Bacteria from Agronomic Crops and Prairie Plants†  

PubMed Central

Endophytic bacteria reside within plant hosts without causing disease symptoms. In this study, 853 endophytic strains were isolated from aerial tissues of four agronomic crop species and 27 prairie plant species. We determined several phenotypic properties and found approximately equal numbers of gram-negative and gram-positive isolates. In a greenhouse study, 28 of 86 prairie plant endophytes were found to colonize their original hosts at 42 days postinoculation at levels of 3.5 to 7.7 log10 CFU/g (fresh weight). More comprehensive colonization studies were conducted with 373 corn and sorghum endophytes. In growth room studies, none of the isolates displayed pathogenicity, and 69 of the strains were recovered from corn or sorghum seedlings at levels of 8.3 log10 CFU/plant or higher. Host range greenhouse studies demonstrated that 26 of 29 endophytes were recoverable from at least one host other than corn and sorghum at levels of up to 5.8 log10 CFU/g (fresh weight). Long-range dent corn greenhouse studies and field trials with 17 wild-type strains and 14 antibiotic-resistant mutants demonstrated bacterial persistence at significant average colonization levels ranging between 3.4 and 6.1 log10 CFU/g (fresh weight) up to 78 days postinoculation. Three prairie and three agronomic endophytes exhibiting the most promising levels of colonization and an ability to persist were identified as Cellulomonas, Clavibacter, Curtobacterium, and Microbacterium isolates by 16S rRNA gene sequence, fatty acid, and carbon source utilization analyses. This study defines for the first time the endophytic nature of Microbacterium testaceum. These microorganisms may be useful for biocontrol and other applications.

Zinniel, Denise K.; Lambrecht, Pat; Harris, N. Beth; Feng, Zhengyu; Kuczmarski, Daniel; Higley, Phyllis; Ishimaru, Carol A.; Arunakumari, Alahari; Barletta, Raul G.; Vidaver, Anne K.

2002-01-01

348

Species diversity of culturable endophytic fungi from Brazilian mangrove forests.  

PubMed

This study aimed to perform a comparative analysis of the diversity of endophytic fungal communities isolated from the leaves and branches of Rhizophora mangle, Avicennia schaueriana and Laguncularia racemosa trees inhabiting two mangroves in the state of São Paulo, Brazil [Cananeia and Bertioga (oil spill-affected and unaffected)] in the summer and winter. Three hundred and forty-three fungi were identified by sequencing the ITS1-5.8S-ITS2 region of rDNA. Differences were observed in the frequencies of fungi isolated from the leaves and branches of these three different plant species sampled from the Bertioga oil spill-affected and the oil-unaffected mangrove sites in the summer and winter; these differences indicate a potential impact on fungal diversity in the study area due to the oil spill. The molecular identification of the fungi showed that the fungal community associated with these mangroves is composed of at least 34 different genera, the most frequent of which were Diaporthe, Colletotrichum, Fusarium, Trichoderma and Xylaria. The Shannon and the Chao1 indices [H'(95 %) = 4.00, H'(97 %) = 4.22, Chao1(95 %) = 204 and Chao1(97 %) = 603] indicated that the mangrove fungal community possesses a vast diversity and richness of endophytic fungi. The data generated in this study revealed a large reservoir of fungal genetic diversity inhabiting these Brazilian mangrove forests and highlighted substantial differences between the fungal communities associated with distinct plant tissues, plant species, impacted sites and sampling seasons. PMID:23832271

de Souza Sebastianes, Fernanda Luiza; Romão-Dumaresq, Aline Silva; Lacava, Paulo Teixeira; Harakava, Ricardo; Azevedo, João Lúcio; de Melo, Itamar Soares; Pizzirani-Kleiner, Aline Aparecida

2013-08-01

349

Interactions of Bacillus spp. and plants--with special reference to induced systemic resistance (ISR).  

PubMed

Biological control of soil-borne pathogens comprises the decrease of inoculum or of the disease producing activity of a pathogen through one or more mechanisms. Interest in biological control of soil-borne plant pathogens has increased considerably in the last few decades, because it may provide control of diseases that cannot or only partly be managed by other control strategies. Recent advances in microbial and molecular techniques have significantly contributed to new insights in underlying mechanisms by which introduced bacteria function. Colonization of plant roots is an essential step for both soil-borne pathogenic and beneficial rhizobacteria. Colonization patterns showed that rhizobacteria act as biocontrol agents or as growth-promoting bacteria form microcolonies or biofilms at preferred sites of root exudation. Such microcolonies are sites for bacteria to communicate with each other (quorum sensing) and to act in a coordinated manner. Elicitation of induced systemic resistance (ISR) by plant-associated bacteria was initially demonstrated using Pseudomonas spp. and other Gram-negative bacteria. Several strains of the species Bacillus amyloliquefaciens, B. subtilis, B. pasteurii, B. cereus, B. pumilus, B. mycoides, and B. sphaericus elicit significant reductions in the incidence or severity of various diseases on a diversity of hosts. Elicitation of ISR by these strains has been demonstrated in greenhouse or field trials on tomato, bell pepper, muskmelon, watermelon, sugar beet, tobacco, Arabidopsis sp., cucumber, loblolly pine, and two tropical crops (long cayenne pepper and green kuang futsoi). Protection resulting from ISR elicited by Bacillus spp. has been reported against leaf-spotting fungal and bacterial pathogens, systemic viruses, a crown-rotting fungal pathogen, root-knot nematodes, and a stem-blight fungal pathogen as well as damping-off, blue mold, and late blight diseases. This progress will lead to a more efficient use of these strains which is worthwhile approach to explore in context of biocontrol strategies. PMID:18845426

Choudhary, Devendra K; Johri, Bhavdish N

2009-01-01

350

Genome Sequence of Klebsiella oxytoca SA2, an Endophytic Nitrogen-Fixing Bacterium Isolated from the Pioneer Grass Psammochloa villosa.  

PubMed

Klebsiella oxytoca strain SA2 is an endophytic nitrogen-fixing bacterium isolated from the pioneer grass Psammochloa villosa, which grows in the moving sand dunes of Ordos Plateau, China. The SA2 genome sequence provides the genetic background for understanding its endophytic lifestyle and survival in association with grass in nitrogen-poor environments. PMID:23950120

Chen, Mingyue; Lin, Li; Zhang, Yanming; Sun, Li; An, Qianli

2013-01-01

351

Transformation of Fusarium verticillioides with a polyketide gene cluster isolated from a fungal endophyte activates the biosynthesis of fusaric acid  

Microsoft Academic Search

A large number of bioactive natural products have been isolated from plant endophytic fungi. However, molecular mechanisms for the biosynthesis of these metabolites have lagged behind because genetic and biochemical studies are difficult to perform within many of the endophytes. In this work, we describe our attempt to express a putative mycoepoxydiene (MED) biosynthetic gene cluster in Fusarium verticillioides, which

Yunxuan Xie; Wei Zhang; Yaoyao Li; Mingzi Wang; Ronald L. Cerny; Yuemao Shen; Liangcheng Du

2011-01-01

352

A cryptic Bacillus isolate exhibited narrow 16S rRNA gene sequence divergence with Bacillus thuringiensis and showed low maintenance requirements in hyper-osmotic complex substrate cultivations.  

PubMed

A cryptic Bacillus (K90) isolate obtained from soil samples from the Kuwait desert exhibited lower maintenance requirements in complex substrate cultivations than Bacillus thuringiensis. A mathematical model was used to estimate apparent maintenance coefficients (m(c)) and these were found to be 0.336 and 0.041/h for B. thuringiensis and K90, respectively. The results also showed that the values of apparent maintenance coefficients were inversely related to the specific growth rates. Furthermore, 16S rRNA gene sequencing showed that K90 exhibited 99.81% sequence similarity to that of B. mojavensis and 92.9% with B. thuringiensis. It is evident from the dendrogram that the evolution of B. mojavensis (K90) (B. subtilis group), which may have originated after B. licheniformis could have been influenced by prolonged hyper-osmotic conditions, while B. thuringiensis that evolved before B. oleronius exhibited greater sensitivity as implied by the higher maintenance coefficient obtained for the hyper-osmotic cultures. As K90 exhibited low maintenance requirements in hyperosmotic cultures, close phylogenetic relationship with B. thuringiensis, along with the reported property of encapsulation of insecticidal crystal proteins (Cry) in Bacillus strains and endophytic nature of B. mojavensis, strongly suggest that K90 could be a promising surrogate host for the transgenic delivery of "Cry" proteins. PMID:15959906

Sachidanandham, Ramaiah; Al-Shayji, Yousif; Al-Awadhi, Nader; Gin, Karina Yew-Hoong

2005-09-30

353

Increased responsiveness to intravenous lipopolysaccharide challenge in steers grazing endophyte-infected tall fescue compared with steers grazing endophyte-free tall fescue  

Microsoft Academic Search

Fescue toxicosis in cattle occurs as a result of consump- tion of ergot alkaloids in endophyte-infected (E+, Neotyphodium coenophialum) tall fescue (Festuca arundinacea). The condition is characterized by pyrexia, decreased weight gains, rough hair coats, and decreased calving rates. The objective of this experiment was to investigate whether steers grazing E+ fescue have altered host response to lipopolysaccharide (endotoxin, LPS)

N M Filipov; F N Thompson; J A Stuedemann; T H Elsasser; S Kahl; R P Sharma; L H Stanker; C K Smith

1999-01-01

354

Endophytic Penicillium funiculosum LHL06 secretes gibberellin that reprograms Glycine max L. growth during copper stress  

PubMed Central

Background Heavy metal pollution in crop fields is one of the major issues in sustainable agriculture production. To improve crop growth and reduce the toxic effects of metals is an ideal strategy. Understanding the resilience of gibberellins producing endophytic fungi associated with crop plants in metal contaminated agriculture fields could be an important step towards reducing agrochemical pollutions. In present study, it was aimed to screen and identify metal resistant endophyte and elucidate its role in rescuing crop plant growth and metabolism during metal stress. Results Fungal endophyte, Penicillium funiculosum LHL06, was identified to possess higher growth rate in copper (Cu) and cadmium contaminated mediums as compared to other endophytes (Metarhizium anisopliae, Promicromonospora sp. and Exophiala sp.). P. funiculosum had high biosorption potential toward copper as compared to cadmium. An endophyte-metal-plant interaction was assessed by inoculating the host Glycine max L. plants with P. funiculosum during Cu (100??M) stress. The Cu application adversely affected the biomass, chlorophyll and total protein content of non-inoculated control plants. The control plants unable to synthesis high carbon, hydrogen and nitrogen because the roots had lower access to phosphorous, potassium, sulphur and calcium during Cu treatment. Conversely, P. funiculosum-association significantly increased the plant biomass, root physiology and nutrients uptake to support higher carbon, hydrogen and nitrogen assimilation in shoot. The metal-removal potential of endophyte-inoculated plants was significantly higher than control as the endophyte-association mediated the Cu uptake via roots into shoots. The symbiosis rescued the host-plant growth by minimizing Cu-induced electrolytic leakage and lipid peroxidation while increasing reduces glutathione activities to avoid oxidative stress. P. funiculosum-association synthesized higher quantities of proline and glutamate as compared to control. Stress-responsive abscisic acid was significantly down-regulated in the plant-metal-microbe association. Conclusion The endophyte P. funiculosum symbiosis counteracted the Cu stress and reprogrammed soybean plant growth. Such growth promoting and stress mediating endophytes can be applied at field levels to help in bioremediation of the polluted agricultural fields.

2013-01-01

355

Endophytic Fungal ?-1,6-Glucanase Expression in the Infected Host Grass1  

PubMed Central

Mutualistic fungal endophytes infect many grass species and often confer benefits to the hosts such as reduced herbivory by insects and animals. The physiological interactions between the endophytes and their hosts have not been well characterized. Fungal-secreted proteins are likely to be important components of the interaction. In the interaction between Poa ampla and the endophyte Neotyphodium sp., a fungal ?-1,6-glucanase is secreted into the apoplast, and activity of the enzyme is detectable in endophyte-infected plants. Sequence analysis indicates the ?-1,6-glucanase is homologous to enzymes secreted by the mycoparasitic fungi Trichoderma harzianum and Trichoderma virens. DNA gel-blot analysis indicated the ?-1,6-glucanase was encoded by a single gene. As a secreted protein, the ?-1,6-glucanase may have a nutritional role for the fungus. In culture, ?-1,6-glucanase activity was induced in the presence of ?-1,6-glucans. From RNA gel blots, similar ?-1,6-glucanases were expressed in tall fescue (Festuca arundinacea Schreb.) and Chewings fescue (Festuca rubra L. subsp. fallax [Thuill] Nyman) infected with the endophyte species Neotyphodium coenophialum and Epichloë festucae, respectively.

Moy, Melinda; Li, Huaijun Michael; Sullivan, Ray; White, James F.; Belanger, Faith C.

2002-01-01

356

Isolation and characterization of endophytic huperzine A-producing fungi from Huperzia serrata.  

PubMed

Huperzia serrata is a producer of huperzine A (HupA), a cholinesterase inhibitor (ChEI). Over 120 endophytic fungi were recovered from this plant and screened for Hup-A and nine were found. These nine represented seven different fungal genera with the most significant producer being Shiraia sp. A total of 127 endophytic fungi isolates obtained from the root, stem, and leaf segments of H. serrata were grouped into 19 genera based on their morphological traits and sequence analysis of the internal transcribed spacers (ITS1-5.8S-ITS2), indicating endophytic fungi in H. serrata are diverse and abundant. Aspergillus, Podospora, Penicillium, Colletotrichum, and Acremonium were the frequent genera, whereas the remaining genera were infrequent groups. Overall, 39 endophytic fungi isolates showed acetylcholinesterase (AChE) inhibition in vitro. Nine endophytic fungi isolates from seven distinct genera were capable of producing HupA verified by thin-layer chromatography and reverse-phase high-performance liquid chromatography (RP-HPLC). Among the HupA-producing fungi, the yield of HupA produced by the Shiraia sp. Slf14 was 327.8 ?g/l in potato dextrose broth, and the fungal HupA was further validated by mass spectrometry (ESI-MS). The present study demonstrated that H. serrata was a fascinating fungal reservoir for producing HupA and other ChEIs. PMID:21107640

Wang, Ya; Zeng, Qing Gui; Zhang, Zhi Bin; Yan, Ri Ming; Wang, Ling Yun; Zhu, Du

2011-09-01

357

ENHANCEMENT OF RUTIN PRODUCTION IN Fagopyrum tataricum HAIRY ROOT CULTURES WITH ITS ENDOPHYTIC FUNGAL ELICITORS.  

PubMed

Tartary buckwheat (Fagopyrum tataricum) is a potentially important source of rutin, a natural bioactive flavonoid with antihyperglycemic, antioxidative, antihypertensive, and anti-inflammatory properties. This study examines the effects of endophytic fungi on rutin production in the hairy root cultures of F. tataricum. Without obvious changes in the appearance of the hairy roots, the exogenous fungal mycelia elicitors efficiently stimulated the hairy root growth and rutin biosynthesis, and the stimulation effect was mainly dependent on the mycelia elicitor species, as well as its treatment dose. Two endophytic fungal isolates Fat9 (Fusarium oxysporum) and Fat15 (Alternaria sp.) were screened as promising candidates for promoting F. tataricum hairy root growth and rutin production. With application of polysaccharide (PS) of endophyte Fat9 (200 mg/L), and PS of endophyte Fat15 (100 mg/L) to the hairy root cultures on day 25, the rutin yield was increased to 45.9 mg/L and 47.2 mg/L, respectively. That was about 3.1- to 3.2-fold in comparison with the control level of 14.6 mg/L. Moreover, the present study revealed that the accumulation of rutin resulted from the stimulation of the phenylpropanoid pathway by mycelia PS treatments. This may be an efficient strategy for enhancing rutin production in F. tataricum hairy root culture provided with its endophytic mycelia elicitors. PMID:24279735

Zhao, Jianglin; Xiang, Dabing; Peng, Lianxin; Zou, Liang; Wang, Yuehua; Zhao, Gang

2014-11-17

358

Indole-3-acetic acid production by endophytic Streptomyces sp. En-1 isolated from medicinal plants.  

PubMed

Plant-associated actinobacteria are rich sources of bioactive compounds including indole-derived molecules such as phytohormone indole-3-acetic acid (IAA). In view of few investigations concerning the biosynthesis of IAA by endophytic actinobacteria, this study evaluated the potential of IAA production in endophytic streptomycete isolates sourced from medicinal plant species Taxus chinensis and Artemisia annua. By HPLC analysis of IAA combined with molecular screening approach of iaaM, a genetic determinant of streptomycete IAA synthesis via indole-3-acetamide (IAM), our data showed the putative operation of IAM-mediated IAA biosynthesis in Streptomyces sp. En-1 endophytic to Taxus chinensis. Furthermore, using the co-cultivation system of model plant Arabidopsis thaliana and streptomycete, En-1 was found to be colonized intercellularly in the tissues of Arabidopsis, an alternative host, and the effects of endophytic En-1 inoculation on the model plant were also assayed. The phytostimulatory effects of En-1 inoculation suggest that IAA-producing Streptomyces sp. En-1 of endophytic origin could be a promising candidate for utilization in growth improvement of plants of economic and agricultural value. PMID:23512121

Lin, Lan; Xu, Xudong

2013-08-01

359

Cytotoxic and antibacterial activities of endophytic fungi isolated from plants at the National Park, Pahang, Malaysia  

PubMed Central

Background Endophytes, microorganisms which reside in plant tissues, have potential in producing novel metabolites for exploitation in medicine. Cytotoxic and antibacterial activities of a total of 300 endophytic fungi were investigated. Methods Endophytic fungi were isolated from various parts of 43 plants from the National Park Pahang, Malaysia. Extracts from solid state culture were tested for cytotoxicity against a number of cancer cell lines using the MTT assay. Antibacterial activity was determined using the disc diffusion method. Results A total of 300 endophytes were isolated from various parts of plants from the National Park, Pahang. 3.3% of extracts showed potent (IC50 < 0.01 ?g/ml) cytotoxic activity against the murine leukemic P388 cell line and 1.7% against a human chronic myeloid leukemic cell line K562. Sporothrix sp. (KK29FL1) isolated from Costus speciosus showed strong cytotoxicity against colorectal carcinoma (HCT116) and human breast adenocarcinoma (MCF7) cell lines with IC50 values of 0.05 ?g/ml and 0.02 ?g/ml, respectively. Antibacterial activity was demonstrated for 8% of the extracts. Conclusion Results indicate the potential for production of bioactive agents from endophytes of the tropical rainforest flora.

2009-01-01

360

Response of Endophytic Bacterial Communities in Potato Plants to Infection with Erwinia carotovora subsp. atroseptica  

PubMed Central

The term endophyte refers to interior colonization of plants by microorganisms that do not have pathogenic effects on their hosts, and various endophytes have been found to play important roles in plant vitality. In this study, cultivation-independent terminal restriction fragment length polymorphism analysis of 16S ribosomal DNA directly amplified from plant tissue DNA was used in combination with molecular characterization of isolates to examine the influence of plant stress, achieved by infection with the blackleg pathogen Erwinia carotovora subsp. atroseptica, on the endophytic population in two different potato varieties. Community analysis clearly demonstrated increased bacterial diversity in infected plants compared to that in control plants. The results also indicated that the pathogen stress had a greater impact on the bacteria population than the plant genotype had. Partial sequencing of the 16S rRNA genes of isolated endophytes revealed a broad phylogenetic spectrum of bacteria, including members of the ?, ?, and ? subgroups of the Proteobacteria, high- and low-G+C-content gram-positive organisms, and microbes belonging to the Flexibacter-Cytophaga-Bacteroides group. Screening of the isolates for antagonistic activity against E. carotovora subsp. atroseptica revealed that 38% of the endophytes protected tissue culture plants from blackleg disease.

Reiter, Birgit; Pfeifer, Ulrike; Schwab, Helmut; Sessitsch, Angela

2002-01-01

361

Exploring the potential of endophytes from medicinal plants as sources of antimycobacterial compounds.  

PubMed

Natural product drug discovery has regained interest due to low production costs, structural diversity, and multiple uses of active compounds to treat various diseases. Attention has been directed towards medicinal plants as these plants have been traditionally used for generations to treat symptoms of numerous diseases. It is established that plants harbour microorganisms, collectively known as endophytes. Exploring the as-yet untapped natural products from the endophytes increases the chances of finding novel compounds. The concept of natural products targeting microbial pathogens has been applied to isolate novel antimycobacterial compounds, and the rapid development of drug-resistant Mycobacterium tuberculosis has significantly increased the need for new treatments against this pathogen. It remains important to continuously screen for novel compounds from natural sources, particularly from rarely encountered microorganisms, such as the endophytes. This review focuses on bioprospecting for polyketides and small peptides exhibiting antituberculosis activity, although current treatments against tuberculosis are described. It is established that natural products from these structure classes are often biosynthesised by microorganisms. Therefore it is hypothesised that some bioactive polyketides and peptides originally isolated from plants are in fact produced by their endophytes. This is of interest for further endophyte natural product investigations. PMID:24582778

Alvin, Alfonsus; Miller, Kristin I; Neilan, Brett A

2014-01-01

362

Diversity and Biological Activities of Endophytic Fungi of Emblica officinalis, an Ethnomedicinal Plant of India.  

PubMed

In the present study, an attempt to evaluate the antimicrobial and antioxidant activity of fungal endophytes inhabiting Emblica officinalis has been made keeping in view the medicinal importance of the selected host plant in Indian traditional practices. A total of four endophytic fungi belonging to Phylum Ascomycetes were isolated from different parts of the plant which were characterized morphologically and by using rDNA-internal transcribed spacer. The most frequently isolated endophyte was Phomopsis sp. The antioxidant activity by 2, 2-diphenyl-1-picrylhydrazyl (DPPH) and reducing power assay, and total phenol were evaluated using ethanolic extract of endophytic fungi. DPPH activities in all the ethanolic extract increased with the increase in concentrations. Endophytes, Phomopsis sp. and Xylaria sp. showed highest antioxidant activity and also had the higher levels of phenolics. Antimicrobial activity of fungal extract were tested against four bacteria namely, Escherichia coli MTCC730, Enteroccocus faecalis MTCC2729, Salmonella enterica ser. paratyphi MTCC735 and Streptococcus pyogenes MTCC1925, and the fungus Candida albicans MTCC183. In general, the fungal extracts inhibited the growth of test organisms except E. coli. PMID:22783128

Nath, Archana; Raghunatha, Prajwal; Joshi, S R

2012-03-01

363

Resistance to Dutch Elm Disease Reduces Presence of Xylem Endophytic Fungi in Elms (Ulmus spp.)  

PubMed Central

Efforts to introduce pathogen resistance into landscape tree species by breeding may have unintended consequences for fungal diversity. To address this issue, we compared the frequency and diversity of endophytic fungi and defensive phenolic metabolites in elm (Ulmus spp.) trees with genotypes known to differ in resistance to Dutch elm disease. Our results indicate that resistant U. minor and U. pumila genotypes exhibit a lower frequency and diversity of fungal endophytes in the xylem than susceptible U. minor genotypes. However, resistant and susceptible genotypes showed a similar frequency and diversity of endophytes in the leaves and bark. The resistant and susceptible genotypes could be discriminated on the basis of the phenolic profile of the xylem, but not on basis of phenolics in the leaves or bark. As the Dutch elm disease pathogen develops within xylem tissues, the defensive chemistry of resistant elm genotypes thus appears to be one of the factors that may limit colonization by both the pathogen and endophytes. We discuss a potential trade-off between the benefits of breeding resistance into tree species, versus concomitant losses of fungal endophytes and the ecosystem services they provide.

Martin, Juan A.; Witzell, Johanna; Blumenstein, Kathrin; Rozpedowska, Elzbieta; Helander, Marjo; Sieber, Thomas N.; Gil, Luis

2013-01-01

364

The endophytic mycoflora of bark, leaf, and stem tissues of Azadirachta indica A. Juss (neem) from Varanasi (India).  

PubMed

A systematic study was made of the endophytes of Azadirachta indica A. Juss (the neem tree) growing in several of its natural habitats in India. A total of 233 isolates of endophytic fungi representing 18 fungal taxa were obtained from segments of bark, stem, and leaves of this tree. Hyphomycetes (62.2%) were the most prevalent followed by the Coelomycetes (27.4%) and Mycelia Sterilia (7.7%). As mathematically determined, the maximum species richness and frequency of colonization of endophytes appeared in leaf segments rather than stem and bark tissues from each location. Endophytic colonization frequency was also greater in leaves (45.5%) than bark (31.5%). The leaf samples from all locations were nearly constant in their endophytic composition, whereas bark samples showed maximum diversity at different locations. Inter-site comparisons for endophytic diversity, however, were not significantly different with Loc1 and Loc2 having a maximum of 66.67% Jc. The smallest similarity was between Loc2 and Loc3 of 54.17% Jc. The dominant endophytic fungi isolated were Phomopsis oblonga, Cladosporium cladosporioides, Pestalotiopsis sp., Trichoderma sp, and Aspergillus sp. Genera such as Periconia, Stenella, and Drechslera are reported here for the first time as endophytes from this host plant. This report illustrates the value of sampling different tissues of a given plant in several locations to obtain the greatest species diversity of endophytes. The rich and sizeable collection of endophytic fungi from this specific plant may represent a unique source of one or more of the interesting and useful bioactive compounds normally associated with A. indica such as the azadirachtins and related tetranortriterpenoids. PMID:17394041

Verma, V C; Gond, S K; Kumar, A; Kharwar, R N; Strobel, Gary

2007-07-01

365

Spore Stain of Bacillus cereus  

NSDL National Science Digital Library

This strain of Bacillus cereus was isolated from a sample of gasoline-contaminated soil and cultured on blood agar. This picture allows students to see spores utilizing a simple, reliable method of staining.

American Society For Microbiology;

2002-01-01

366

The Insect Pathogen Bacillus thuringiensis  

NSDL National Science Digital Library

Bacillus thuringiensis or Bt is a widespread toxic bacterium of many groups of insects. Some are more specific than others. This page discusses the varieties and target insects, use, and mode of action.

0002-11-30

367

Transformation of Bacillus subtilis.  

PubMed

Bacillus subtilis has tremendous applications in both academic research and industrial production. However, molecular cloning and transformation of B. subtilis are not as easy as those of Escherichia coli. Here we developed a simple protocol based on super-competent cells prepared from the recombinant B. subtilis strain SCK6 and multimeric plasmids generated by prolonged overlap extension-PCR. Super-competent B. subtilis SCK6 cells were prepared by overexpression of the competence master regulator ComK that was induced by adding xylose. This new protocol is simple (e.g., restriction enzyme, phosphatase, and ligase free), fast, and highly efficient (i.e., ~10(7) or ~10(4) transformants per ?g of multimeric plasmid or ligated plasmid DNA, respectively). Shuttle vectors for E. coli-B. subtilis are not required. PMID:24838881

Zhang, Xiao-Zhou; You, Chun; Zhang, Yi-Heng Percival

2014-01-01

368

Bacillus subtilis genome diversity.  

PubMed

Microarray-based comparative genomic hybridization (M-CGH) is a powerful method for rapidly identifying regions of genome diversity among closely related organisms. We used M-CGH to examine the genome diversity of 17 strains belonging to the nonpathogenic species Bacillus subtilis. Our M-CGH results indicate that there is considerable genetic heterogeneity among members of this species; nearly one-third of Bsu168-specific genes exhibited variability, as measured by the microarray hybridization intensities. The variable loci include those encoding proteins involved in antibiotic production, cell wall synthesis, sporulation, and germination. The diversity in these genes may reflect this organism's ability to survive in diverse natural settings. PMID:17114265

Earl, Ashlee M; Losick, Richard; Kolter, Roberto

2007-02-01

369

Phylogenomics of fescue grass-derived fungal endophytes based on selected nuclear genes and the mitochondrial gene complement  

PubMed Central

Background Tall fescue and meadow fescue are important as temperate pasture grasses, forming mutualistic associations with asexual Neotyphodium endophytes. The most frequently identified endophyte of Continental allohexaploid tall fescue is Neotyphodium coenophialum, while representatives of two other taxa (FaTG-2 and FaTG-3) have been described as colonising decaploid and Mediterranean hexaploid tall fescue, respectively. In addition, a recent study identified two other putatively novel endophyte taxa from Mediterranean hexaploid and decaploid tall fescue accessions, which were designated as uncharacterised Neotyphodium species (UNS) and FaTG-3-like respectively. In contrast, diploid meadow fescue mainly forms associations with the endophyte taxon Neotyphodium uncinatum, although a second endophyte taxon, termed N. siegelii, has also been described. Results Multiple copies of the translation elongation factor 1-a (tefA) and ?-tubulin (tub2) ‘house-keeping’ genes, as well as the endophyte-specific perA gene, were identified for each fescue-derived endophyte taxon from whole genome sequence data. The assembled gene sequences were used to reconstruct evolutionary relationships between the heteroploid fescue-derived endophytes and putative ancestral sub-genomes derived from known sexual Epichloë species. In addition to the nuclear genome-derived genes, the complete mitochondrial genome (mt genome) sequence was obtained for each of the sequenced endophyte, and phylogenetic relationships between the mt genome protein coding gene complements were also reconstructed. Conclusions Complex and highly reticulated evolutionary relationships between Epichloë-Neotyphodium endophytes have been predicted on the basis of multiple nuclear genes and entire mitochondrial protein-coding gene complements, derived from independent assembly of whole genome sequence reads. The results are consistent with previous studies while also providing novel phylogenetic insights, particularly through inclusion of data from the endophyte lineage-specific gene, as well as affording evidence for the origin of cytoplasmic genomes. In particular, the results obtained from the present study imply the possible occurrence of at least two distinct E. typhina progenitors for heteropoid taxa, as well the ancestral contribution of an endophyte species distinct from (although related to) contemporary E. baconii to the extant hybrid species. Furthermore, the present study confirmed the distinct taxonomic status of the newly identified fescue endophyte taxa, FaTG-3-like and UNS, which are consequently proposed to be renamed FaTG4 and FaTG5, respectively.

2013-01-01

370

Diversity and taxonomy of endophytes from Leymus chinensis in the Inner Mongolia steppe of China.  

PubMed

Epichloë species and their anamorphic relatives in genus Neotyphodium are fungal symbionts of grasses ubiquitously existing in temperate regions all over the world. To date, 13 Epichloë species and 22 Neotyphodium species have been formally described, based on morphological characters and phylogenetic analyses. Leymus chinensis (Poaceae) is a dominant grass native to the Inner Mongolia steppe of China. Previously, it was reported to harbor endophytes, but little was known about these endophytes. To investigate their diversity and taxonomy, 96 fungal isolates were obtained from three field populations of L. chinensis. The isolates were classified into three morphotypes based on morphological characters and phylogenetic analyses of sequences of genes for ?-tubulin (tubB), translation elongation factor 1-? (tefA), and actin (actG). The dominant morphotype, morphotype I, was identified as a choke disease endophyte, Epichloë bromicola. This broadened the host range and phylogenetic definition of E. bromicola. PMID:23330647

Zhu, Min-Jie; Ren, An-Zhi; Wen, Wei; Gao, Yu-Bao

2013-03-01

371

In vitro and in planta compatibility of insecticides and the endophytic entomopathogen, Lecanicillium lecanii.  

PubMed

In an attempt to clarify the potential role of endophytic fungi in integrated pest management, the compatibility of an endophytic isolate of Lecanicillium lecanii (Zimmermann) Gams & Zare (Hyphomycetes) with nine insecticides used against Aphis gossypii Glover (Homoptera : Aphididae) was examined both in vitro over 14 days and in planta. In the laboratory, most insecticides partially or completely inhibited the germination of conidia and growth of hyphae in nutrient-rich conditions. Endosulfan completely inhibited the germination of conidia and hyphal growth. In contrast, all insecticides were compatible with L. lecanii in planta, and the fungus was readily recovered from inoculated, colonized leaves. These data support the hypothesis that endophytic L. lecanii will be unaffected by insecticides and could be integrated in the management of pests in cotton. PMID:21424605

Gurulingappa, Pampapathy; Mc Gee, Peter; Sword, Gregory A

2011-08-01

372

Antifungal Metabolites Produced by Chaetomium globosum No.04, an Endophytic Fungus Isolated from Ginkgo biloba.  

PubMed

The fungal endophyte Chaetomium globosum No.04 was isolated from the medicinal plant Ginkgo biloba. The crude extract of the fungus fermentation were active in the agar-diffusion tests against the phytopathogenic fungi Rhizopus stolonifer and Coniothyrium diplodiella. Further bioassay-guided chemical investigation led to the isolation and purification of six alkaloids and three non-targeted compounds from 50 L fermentation of this endophytic fungus and their structures were elucidated as chaetoglobosin A, C, D, E, G, R (1-6), ergosterol, allantoin and uracil, by means of spectroscopic analysis. Compounds 1-6 showed significant growth inhibitory activity against R. stolonifer and C. diplodiella at a concentration of 20 ?g/disc. We present here, for the first time, the potent antifungal activity of chaetoglobosins from endophytic fungi against two important phytopathogenic fungi R. stolonifer and C. diplodiella. PMID:24426105

Zhang, Guizhen; Zhang, Yanhua; Qin, Jianchun; Qu, Xiaoyan; Liu, Jinliang; Li, Xiang; Pan, Hongyu

2013-06-01

373

The Epichloe endophytes associated with the woodland grass Hordelymus europaeus including four new taxa.  

PubMed

Epichloë endophytes (Clavicipitaceae, Ascomycota), including asexual forms placed in Neotyphodium, are common in cool-season grasses. Here we characterize the endophytes of the European woodland grass Hordelymus europaeus based on growth characteristics, morphology of conidiophores and conidia and phylogenetic relationships. Of the six different taxa found on H. europaeus, four are new, for which we propose the species names E. hordelymi, E. disjuncta, E. danica and subspecies E. sylvatica subsp. pollinensis. The other two are assigned to previously described E. bromicola and E. sylvatica. E. hordelymi, E. disjuncta and E. danica are asexual interspecific hybrids, while the other taxa are haploid. Only E. sylvatica subsp. pollinensis was found to reproduce sexually on H. europaeus. The high diversity of endophytes may be explained by repeated host jumps to H. europaeus with and without subsequent interspecific hybridizations. PMID:23921239

Leuchtmann, Adrian; Oberhofer, Martina

2013-01-01

374

Molecular Identification of Endophytic Fungi Isolated from Needle Leaves of Conifers in Bohyeon Mountain, Korea  

PubMed Central

Fungal endophytes are microfungi that live in plants without causing apparent symptoms of infection. This study was conducted to identify endophytic fungi isolated from leaves of coniferous trees in Bohyeon Mountain of Korea. We collected leaves of two species of coniferous trees, Pinus densiflora and Pinus koraiensis, from 11 sites in the study area. A total 58 isolates were obtained and identified using molecular and morphological characteristics. Four species of endophytic fungi were isolated from P. densiflora: Lophodermium conigenum, Leotiomycetes sp., Septoria pini-thunbergii, and Polyporales sp., while two fungal species were isolated from P. koraiensis: Eurotiomycetes sp. and Rhytismataceae sp. The most frequently isolated species were L. conigenum and S. pini-thunbergii.

Yoo, Jae-Joon

2012-01-01

375

A new fungal endophyte, Scolecobasidium humicola, promotes tomato growth under organic nitrogen conditions.  

PubMed

A new fungal endophyte, Scolecobasidium humicola, was identified as a common dark septate endophytic fungal (DSE) species under both natural and agricultural conditions. This fungus was found to grow endophylically in the roots of tomato seedlings. Light microscopy of cross-sections of colonized tomato roots showed that the intercellular, pigmented hyphae of the fungus were mostly limited to the epidermal layer and formed outer mantle-like structures. Two isolates of S. humicola, H2-2 and F1-3, have shown the ability to increase plant biomass with an organic nitrogen source. This finding is the first report of S. humicola as an endophyte and could help to improve plant growth with organic nitrogen sources. PMID:24223848

Mahmoud, Rola S; Narisawa, Kazuhiko

2013-01-01

376

A New Fungal Endophyte, Scolecobasidium humicola, Promotes Tomato Growth under Organic Nitrogen Conditions  

PubMed Central

A new fungal endophyte, Scolecobasidium humicola, was identified as a common dark septate endophytic fungal (DSE) species under both natural and agricultural conditions. This fungus was found to grow endophylically in the roots of tomato seedlings. Light microscopy of cross-sections of colonized tomato roots showed that the intercellular, pigmented hyphae of the fungus were mostly limited to the epidermal layer and formed outer mantle-like structures. Two isolates of S. humicola, H2-2 and F1-3, have shown the ability to increase plant biomass with an organic nitrogen source. This finding is the first report of S. humicola as an endophyte and could help to improve plant growth with organic nitrogen sources.

Mahmoud, Rola S.; Narisawa, Kazuhiko

2013-01-01

377

Endophytic Bacteria in Toxic South African Plants: Identification, Phylogeny and Possible Involvement in Gousiekte  

PubMed Central

Background South African plant species of the genera Fadogia, Pavetta and Vangueria (all belonging to Rubiaceae) are known to cause gousiekte (literally ‘quick disease’), a fatal cardiotoxicosis of ruminants characterised by acute heart failure four to eight weeks after ingestion. Noteworthy is that all these plants harbour endophytes in their leaves: nodulating bacteria in specialized nodules in Pavetta and non-nodulating bacteria in the intercellular spaces between mesophyll cells in Fadogia and Vangueria. Principal Findings Isolation and analyses of these endophytes reveal the presence of Burkholderia bacteria in all the plant species implicated in gousiekte. Although the nodulating and non-nodulating bacteria belong to the same genus, they are phylogenetically not closely related and even fall in different bacterial clades. Pavetta harborii and Pavetta schumanniana have their own specific endophyte – Candidatus Burkholderia harborii and Candidatus Burkholderia schumanniana – while the non-nodulating bacteria found in the other gousiekte-inducing plants show high similarity to Burkholderia caledonica. In this group, the bacteria are host specific at population level. Investigation of gousiekte-inducing plants from other African countries resulted in the discovery of the same endophytes. Several other plants of the genera Afrocanthium, Canthium, Keetia, Psydrax, Pygmaeothamnus and Pyrostria were tested and were found to lack bacterial endophytes. Conclusions The discovery and identification of Burkholderia bacteria in gousiekte-inducing plants open new perspectives and opportunities for research not only into the cause of this economically important disease, but also into the evolution and functional significance of bacterial endosymbiosis in Rubiaceae. Other South African Rubiaceae that grow in the same area as the gousiekte-inducing plants were found to lack bacterial endophytes which suggests a link between bacteria and gousiekte. The same bacteria are consistently found in gousiekte-inducing plants from different regions indicating that these plants will also be toxic to ruminants in other African countries.

Verstraete, Brecht; Van Elst, Daan; Steyn, Hester; Van Wyk, Braam; Lemaire, Benny; Smets, Erik; Dessein, Steven

2011-01-01

378

A comparative analysis of endophytic bacterial communities associated with hyperaccumulators growing in mine soils.  

PubMed

Interactions between endophytic bacterial communities and hyperaccumulators in heavy metal-polluted sites are not fully understood. In this study, the diversity of stem-associated endophytic bacterial communities of two hyperaccumulators (Solanum nigrum L. and Phytolacca acinosa Roxb.) growing in mine soils was investigated using molecular-based methods. The denaturing gradient gel electrophoresis (DGGE) analysis showed that the endophytic bacterial community structures were affected by both the level of heavy metal pollution and the plant species. Heavy metal in contaminated soil determined, to a large extent, the composition of the different endophytic bacterial communities in S. nigrum growing across soil series (five sampling spots, and the concentration of Cd is from 0.2 to 35.5 mg/kg). Detailed analysis of endophytic bacterial populations by cloning of 16S rRNA genes amplified from the stems of the two plants at the same site revealed a different composition. A total of 51 taxa at the genus level that included ?-, ?-, and ?-Proteobacteria (68.8% of the two libraries clones), Bacteroidetes (9.0% of the two libraries clones), Firmicutes (2.0% of the two libraries clones), Actinobacteria (16.4% of the two libraries clones), and unclassified bacteria (3.8% of the two libraries clones) were found in the two clone libraries. The most abundant genus in S. nigrum was Sphingomonas (23.35%), while Pseudomonas prevailed in P. acinosa (21.40%). These results suggest that both heavy metal pollution and plant species contribute to the shaping of the dynamic endophytic bacterial communities associated with stems of hyperaccumulators. PMID:24595752

Chen, Liang; Luo, Shenglian; Chen, Jueliang; Wan, Yong; Li, Xiaojie; Liu, Chengbin; Liu, Feng

2014-06-01

379

Gymnemagenin-producing endophytic fungus isolated from a medicinal plant Gymnema sylvestre R.Br.  

PubMed

Gymnema sylvestre is a plant containing the triterpenoid gymnemagenin, which is used in the pharmaceutical industry as an antidiabetic agent. The objective of this study was to determine whether endophytic fungi, isolated from G. sylvestre, produce gymnemagenin. We isolated an endophytic fungal strain from the leaves of G. sylvestre which produces gymnemagenin in the medium. The fungus was identified as Penicillium oxalicum based on morphological and molecular methods. The strain had a component with the same TLC Rf value and HPLC retention time as authentic gymnemagenin. The presence of gymnemagenin was further confirmed by FTIR, UV, and (1)H NMR analyses. PMID:24497046

Parthasarathy, Ramalingam; Sathiyabama, Muthukrishnan

2014-03-01

380

Cytotoxic activities of endophytic fungi isolated from the endangered, Chinese endemic species Dysosma pleiantha.  

PubMed

Eleven strains of endophytic fungi which habitat in an endangered, Chinese endemic medicinal plant, Dysosma pleiantha (Hance) Woodson, were isolated and tested for their cytotoxic activity using the brine shrimp lethality bioassay. Six isolates were found to exhibit some cytotoxic activity. Extracts of F1273, F1276, and F1280, which were identified as Trichoderma citrinoviride, Chaetomium globosum and Ascomycete sp., in particular, showed most potent activity with LC50 values of 4.86, 7.71, and 14.88 microg/ml, respectively. These results indicate that endophytic fungi of Dysosma pleiantha could be a promising source for antitumour agents. PMID:19791503

Lu, Yin; Chen, Shaoyuan; Wang, Ben

2009-01-01

381

Jesterone and hydroxy-jesterone antioomycete cyclohexenone epoxides from the endophytic fungus Pestalotiopsis jesteri.  

PubMed

Jesterone and hydroxy-jesterone are novel highly functionalized cyclohexenone epoxides isolated from a newly described endophytic fungal species--Pestalotiopsis jesteri. They were purified from cultures of the fungus by bioassay guided fractionation using Pythium ultimum as the indicator organism. Jesterone, in particular, displays selective antimycotic activity against the oomycetous fungi which are some of the most plant pathogenic of all disease causing fungi. The possible importance of these cyclohexenones to the biology of the endophytic fungus-host plant relationship is also discussed. PMID:11382242

Li, J Y; Strobel, G A

2001-05-01

382

Diversity and Seasonal Variation of Endophytic Fungi Isolated from Three Conifers in Mt. Taehwa, Korea  

PubMed Central

The needled leaves of three conifer species were collected in Mt. Taehwa during different seasons of the year. Total 59 isolates and 19 species of endophytic fungi were isolated from the leaves and identified using morphological and molecular characteristics. As a result, Shannon index was different in its host plant; Larix kaempferi had a highest value of species diversity. According to the sampling season, 9 species of 19 species were isolated during fall season. The results suggest that the existing of host plant and sampling season are major factors of distribution of endophytic fungi.

Kim, Chang-Kyun; Eo, Ju-Kyeong

2013-01-01

383

Genome Survey and Characterization of Endophytic Bacteria Exhibiting a Beneficial Effect on Growth and Development of Poplar Trees ? †  

PubMed Central

The association of endophytic bacteria with their plant hosts has a beneficial effect for many different plant species. Our goal is to identify endophytic bacteria that improve the biomass production and the carbon sequestration potential of poplar trees (Populus spp.) when grown in marginal soil and to gain an insight in the mechanisms underlying plant growth promotion. Members of the Gammaproteobacteria dominated a collection of 78 bacterial endophytes isolated from poplar and willow trees. As representatives for the dominant genera of endophytic gammaproteobacteria, we selected Enterobacter sp. strain 638, Stenotrophomonas maltophilia R551-3, Pseudomonas putida W619, and Serratia proteamaculans 568 for genome sequencing and analysis of their plant growth-promoting effects, including root development. Derivatives of these endophytes, labeled with gfp, were also used to study the colonization of their poplar hosts. In greenhouse studies, poplar cuttings (Populus deltoides × Populus nigra DN-34) inoculated with Enterobacter sp. strain 638 repeatedly showed the highest increase in biomass production compared to cuttings of noninoculated control plants. Sequence data combined with the analysis of their metabolic properties resulted in the identification of many putative mechanisms, including carbon source utilization, that help these endophytes to thrive within a plant environment and to potentially affect the growth and development of their plant hosts. Understanding the interactions between endophytic bacteria and their host plants should ultimately result in the design of strategies for improved poplar biomass production on marginal soils as a feedstock for biofuels.

Taghavi, Safiyh; Garafola, Craig; Monchy, Sebastien; Newman, Lee; Hoffman, Adam; Weyens, Nele; Barac, Tanja; Vangronsveld, Jaco; van der Lelie, Daniel

2009-01-01

384

An endophyte of the tropical forage grass Brachiaria brizantha: isolating, identifying, and characterizing the fungus, and determining its antimycotic properties.  

PubMed

Brachiaria, predominantly an African genus, contains species, such as B. brizantha, an apomictic C4 grass, that are commercially important forage grasses in tropical America, where they now cover about 55 million hectares. From B. brizantha accession CIAT 6780, we isolated an endophytic fungus that may be economically significant. The fungus was identified as Acremonium implicatum (J. Gilman & E.V. Abott). 18S rDNA and ITS rDNA sequences were used to characterize isolates of the endophyte, and showed that they belonged to the Acremonium genus, being close to A. strictum and A. kiliense. Using the random amplified polymorphic DNA (RAPD) technique, involving arbitrary primers of 10 bases, we showed that the isolates were highly similar to each other. Antiserum produced from a monoconidial culture of A. implicatum isolated from B. brizantha 6780, differentiated the isolates consistently in line with the DNA data. When we compared endophyte-free with endophyte-infected B. brizantha CIAT 6780 plants, both artificially inoculated with the pathogenic Drechslera fungus, we found that the endophyte-infected plants had fewer and smaller lesions than did the endophyte-free plants. Sporulation of Drechslera sp. on artificially inoculated leaf sheath tissues was also much less on tissue infected with the endophyte. PMID:15049450

Kelemu, S; White, J F; Muñoz, F; Takayama, Y

2001-01-01

385

Detecting and differentiating Acremonium implicatum: developing a PCR-based method for an endophytic fungus associated with the genus Brachiaria.  

PubMed

SUMMARY Brachiaria is a pan-tropical genus of grasses with about 100 species. The fungus Acremonium implicatum can develop an endophytic association that is mutually beneficial with Brachiaria species. We developed a polymerase chain reaction (PCR)-based method by first amplifying DNA from A. implicatum isolates using the Random amplified polymorphic DNA (RAPD) technique with arbitrary 10-mer primers. A 500-bp PCR product, amplified with primer OPAK-10 and common to A. implicatum isolates, was selected for further evaluation. The fragment was digoxygenin-labelled and used to probe a dot blot containing genomic DNA from isolates of A. implicatum and non-endophytic fungi, and from Brachiaria species free of endophytes. Strong signals were obtained only for DNA from A. implicatum isolates. This fragment was cloned and subsequently sequenced. Based on the sequence data, two primers were selected and synthesized: P1 (5'-TTCGAATGATAAGGCAGATC-3') and P4 (5'-ACGCATCCACTGTATGCTAC-3'). The primer pair amplified a single fragment of about 500 bp from DNA of A. implicatum isolates, whether from pure culture or in association with Brachiaria plants. No amplification product was detected in DNA from endophyte-free plants, pathogenic fungi, the bacterium Xanthomonas campestris pv. graminis, or non-pathogenic fungi associated with Brachiaria. This assay thus allows the precise and rapid detection of endophytes in Brachiaria plants and permits a differentiation between endophytic and non-endophytic fungi. PMID:20569370

Kelemu, Segenet; Dongyi, Huang; Guixiu, Huang; Takayama, Yuka

2003-03-01

386

Nitric oxide and brassinosteroids mediated fungal endophyte-induced volatile oil production through protein phosphorylation pathways in Atractylodes lancea plantlets.  

PubMed

Fungal endophytes have been isolated from almost every plant, infecting their hosts without causing visible disease symptoms, and yet have still proved to be involved in plant secondary metabolites accumulation. To decipher the possible physiological mechanisms of the endophytic fungus-host interaction, the role of protein phosphorylation and the relationship between endophytic fungus-induced kinase activity and nitric oxide (NO) and brassinolide (BL) in endophyte-enhanced volatile oil accumulation in Atractylodes lancea plantlets were investigated using pharmacological and biochemical approaches. Inoculation with the endophytic fungus Gilmaniella sp. AL12 enhanced the activities of total protein phosphorylation, Ca²?-dependent protein kinase, and volatile oil accumulation in A. lancea plantlets. The upregulation of protein kinase activity could be blocked by the BL inhibitor brassinazole. Furthermore, pretreatments with the NO-specific scavenger cPTIO significantly reduced the increased activities of protein kinases in A. lancea plantlets inoculated with endophytic fungus. Pretreatments with different protein kinase inhibitors also reduced fungus-induced NO production and volatile oil accumulation, but had barely no effect on the BL level. These data suggest that protein phosphorylation is required for endophyte-induced volatile oil production in A. lancea plantlets, and that crosstalk between protein phosphorylation and the NO pathway may occur and act as a downstream signaling event of the BL pathway. PMID:23773784

Ren, Cheng-Gang; Dai, Chuan-Chao

2013-11-01

387

Differentiation of Bacillus anthracis from Other Bacillus cereus Group Bacteria with the PCR  

Microsoft Academic Search

DNA homology studies (11, 24) have shown that Bacillus anthracis is closely related to Bacillus cereus, Bacillus thuringiensis, and Bacillus mycoides. These species have almost identical G+C contents (31 to 34 mol%) (15), and ribosomal DNA sequence data have revealed only minor differences among them (1, 2). In the laboratory, confirma- tion of suspect isolates as B. anthracis is generally

I. HENDERSON; C. J. DUGGLEBY; P. C. B. TURNBULLl

1994-01-01

388

Volatile antimicrobials from Muscodor crispans, a novel endophytic fungus.  

PubMed

Muscodor crispans is a recently described novel endophytic fungus of Ananas ananassoides (wild pineapple) growing in the Bolivian Amazon Basin. The fungus produces a mixture of volatile organic compounds (VOCs); some of the major components of this mixture, as determined by GC/MS, are propanoic acid, 2-methyl-, methyl ester; propanoic acid, 2-methyl-; 1-butanol, 3-methyl-;1-butanol, 3-methyl-, acetate; propanoic acid, 2-methyl-, 2-methylbutyl ester; and ethanol. The fungus does not, however, produce naphthalene or azulene derivatives as has been observed with many other members of the genus Muscodor. The mixture of VOCs produced by M. crispans cultures possesses antibiotic properties, as does an artificial mixture of a majority of the components. The VOCs of the fungus are effective against a wide range of plant pathogens, including the fungi Pythium ultimum, Phytophthora cinnamomi, Sclerotinia sclerotiorum and Mycosphaerella fijiensis (the black sigatoka pathogen of bananas), and the serious bacterial pathogen of citrus, Xanthomonas axonopodis pv. citri. In addition, the VOCs of M. crispans killed several human pathogens, including Yersinia pestis, Mycobacterium tuberculosis and Staphylococcus aureus. Artificial mixtures of the fungal VOCs were both inhibitory and lethal to a number of human and plant pathogens, including three drug-resistant strains of Mycobacterium tuberculosis. The gaseous products of Muscodor crispans potentially could prove to be beneficial in the fields of medicine, agriculture, and industry. PMID:19797357

Mitchell, Angela M; Strobel, Gary A; Moore, Emily; Robison, Richard; Sears, Joe

2010-01-01

389

Endophytic bacteria as a source of novel antibiotics: An overview.  

PubMed

World human population is increasing with an alarming rate; and a variety of new types of health issues are popping up. For instance, increase in number of drug-resistant bacteria is a cause of concern. Research on antibiotics and other microbial natural products is pivotal in the global fight against the growing problem of antibiotic resistance. It is necessary to find new antibiotics to tackle this problem. The use of therapeutic plant species in traditional medicine is as old as mankind; and currently, it is strongly believed that all types of plant species across the plant kingdom do harbour endophytic bacteria (EB). The natural therapeutic compounds produced by EB do have several potential applications in pharmaceutical industry. The EB derived natural products such as Ecomycins, Pseudomycins, Munumbicins and Xiamycins are antibacterial, antimycotic and antiplasmodial. Some of these natural products have been reported to possess even antiviral (including Human Immunodeficiency Virus (HIV)) properties. Therefore, to deal with increasing number of drug-resistant pathogens EB could serve as a potential source of novel antibiotics. PMID:23922451

Christina, Ambrose; Christapher, Varghese; Bhore, Subhash J

2013-01-01

390

Studies on Transformation of 'Bacillus subtilis'.  

National Technical Information Service (NTIS)

The report contains results of studies on the following topics: The mechanism of DNA-mediated transformation of Bacillus subtilis; phages specific for Bacillus subtilis; and the mechanism of free viral DNA uptake and biological activity in susceptable hos...

W. R. Romig

1972-01-01

391

Essential Bacillus subtilis genes  

PubMed Central

To estimate the minimal gene set required to sustain bacterial life in nutritious conditions, we carried out a systematic inactivation of Bacillus subtilis genes. Among ?4,100 genes of the organism, only 192 were shown to be indispensable by this or previous work. Another 79 genes were predicted to be essential. The vast majority of essential genes were categorized in relatively few domains of cell metabolism, with about half involved in information processing, one-fifth involved in the synthesis of cell envelope and the determination of cell shape and division, and one-tenth related to cell energetics. Only 4% of essential genes encode unknown functions. Most essential genes are present throughout a wide range of Bacteria, and almost 70% can also be found in Archaea and Eucarya. However, essential genes related to cell envelope, shape, division, and respiration tend to be lost from bacteria with small genomes. Unexpectedly, most genes involved in the Embden–Meyerhof–Parnas pathway are essential. Identification of unknown and unexpected essential genes opens research avenues to better understanding of processes that sustain bacterial life.

Kobayashi, K.; Ehrlich, S. D.; Albertini, A.; Amati, G.; Andersen, K. K.; Arnaud, M.; Asai, K.; Ashikaga, S.; Aymerich, S.; Bessieres, P.; Boland, F.; Brignell, S. C.; Bron, S.; Bunai, K.; Chapuis, J.; Christiansen, L. C.; Danchin, A.; Debarbouille, M.; Dervyn, E.; Deuerling, E.; Devine, K.; Devine, S. K.; Dreesen, O.; Errington, J.; Fillinger, S.; Foster, S. J.; Fujita, Y.; Galizzi, A.; Gardan, R.; Eschevins, C.; Fukushima, T.; Haga, K.; Harwood, C. R.; Hecker, M.; Hosoya, D.; Hullo, M. F.; Kakeshita, H.; Karamata, D.; Kasahara, Y.; Kawamura, F.; Koga, K.; Koski, P.; Kuwana, R.; Imamura, D.; Ishimaru, M.; Ishikawa, S.; Ishio, I.; Le Coq, D.; Masson, A.; Mauel, C.; Meima, R.; Mellado, R. P.; Moir, A.; Moriya, S.; Nagakawa, E.; Nanamiya, H.; Nakai, S.; Nygaard, P.; Ogura, M.; Ohanan, T.; O'Reilly, M.; O'Rourke, M.; Pragai, Z.; Pooley, H. M.; Rapoport, G.; Rawlins, J. P.; Rivas, L. A.; Rivolta, C.; Sadaie, A.; Sadaie, Y.; Sarvas, M.; Sato, T.; Saxild, H. H.; Scanlan, E.; Schumann, W.; Seegers, J. F. M. L.; Sekiguchi, J.; Sekowska, A.; Seror, S. J.; Simon, M.; Stragier, P.; Studer, R.; Takamatsu, H.; Tanaka, T.; Takeuchi, M.; Thomaides, H. B.; Vagner, V.; van Dijl, J. M.; Watabe, K.; Wipat, A.; Yamamoto, H.; Yamamoto, M.; Yamamoto, Y.; Yamane, K.; Yata, K.; Yoshida, K.; Yoshikawa, H.; Zuber, U.; Ogasawara, N.

2003-01-01

392

Minicells of Bacillus subtilis  

PubMed Central

After nitrosoguanidine (N-methyl-N?-nitro-N-nitrosoguanidine) mutagenesis, two Bacillus subtilis mutants (div IV-A1 and div IV-B1) were isolated that are defective in the location of division site along cell length. Both mutations were transferred into strain CU403 by transformation, and their properties were studied in the CU403 genetic background. Location of divisions in close proximity to cell pole regions in both mutants results in minicell production. Purified minicells contain a ratio of ribonucleic acid to protein comparable to that found in the parent cells. Autoradiographs of 3H-thymine incorporation into deoxyribonucleic acid (DNA), thymine-2-14C incorporation into DNA, electron micrographs, and chemical analyses for DNA all fail to demonstrate DNA in the minicells. Minicells produced by both mutants are highly motile, an indication of functional energy metabolism. Electron micrographs reveal that minicells are produced by a structurally normal division mechanism and that minicells contain a normal cell surface. The div IV-A1 mutation has been mapped by PBS1 transduction linked to ura. The div IV-B1 mutation is closely linked to pheA by both PBS1 transduction and by co-transformation. Images

Reeve, John N.; Mendelson, Neil H.; Coyne, Sheila I.; Hallock, Linda L.

1973-01-01

393

ENDOPHYTES OF SERAPIAS PARVIFLORA PARL. AND SPIRANTHES SPIRALIS (L.) CHEVALL. (ORCHIDACEAE): DESCRIPTION OF ENDOPHYTES OF S. PARVIFLORA, AND IN VITRO SYMBIOSIS DEVELOPMENT IN S. PARVIFLORA AND SPIRANTHES SPIRALIS  

Microsoft Academic Search

AB S T R A C T. Endophytes were isolated from Serapias parviflora (Orchidaceae) roots. They are described and partially classified under microscope, after growth on PDA. Two fungi had symbiotic characters: A-Sepa-1, an ascomycete, and B-Sepa-1, a basidiomycete. At the same time, many plants of S. parviflora and Spiranthes spiralis were asymbiotically obtained by sterilisation of seeds and sowing

PIER LUIGI PACETTI; SABINE RIESS

394

Diversity of endophytic fungi and screening of fungal paclitaxel producer from Anglojap yew, Taxus x media  

PubMed Central

Background Endophytic fungi represent underexplored resource of novel lead compounds and have a capacity to produce diverse class of plant secondary metabolites. Here we investigated endophytic fungi diversity and screening of paclitaxel-producing fungi from Taxus x media. Results Eighty-one endophytic fungi isolated from T. media were grouped into 8 genera based on the morphological and molecular identification. Guignardia and Colletotrichum were the dominant genera, whereas the remaining genera were infrequent groups. The genera Glomerella and Gibberella were first reported in Taxus. Three representative species of the distinct genera gave positive hits by molecular marker screening and were capable of producing taxol which were validated by HPLC-MS. Among these 3 taxol-producing fungi, the highest yield of taxol was 720 ng/l by Guignardia mangiferae HAA11 compared with those of Fusarium proliferatum HBA29 (240 ng/l) and Colletotrichum gloeosporioides TA67 (120 ng/l). This is the first report of taxol producer from Guignardia. Moreover, the lower similarities of ts and bapt between microbial and plant origin suggested that fungal taxol biosynthetic cluster might be repeatedly invented during evolution, nor horizontal gene transfer from Taxus species. Conclusions Taxol-producing endophytic fungi could be a fascinating reservoir to generate taxol-related drug lead and to elucidate the remained 5 unknown genes or the potential regulation mechanism in the taxol biosynthesis pathway.

2013-01-01

395

Involution of endophytic optic disc hemangioma with a single session of photodynamic treatment.  

PubMed

We report a 58-year-old otherwise healthy woman with unilateral endophytic optic disc hemangioma and associated serous retinal detachment and exudation. A standard verteporfin dose was given and a photodynamic treatment (PDT) protocol was followed. A moderate vitreous hemorrhage occurred four days after PDT. The hemangioma regressed markedly 6 weeks after the procedure and serous retinal detachment showed marked resolution. PMID:17914208

Yaman, Aylin; Saatci, Ali Osman; Arikan, Gul; Gunduz, Kaan

2007-01-01

396

Intraspecific variation in Burkholderia caledonica: Europe vs. Africa and soil vs. endophytic isolates.  

PubMed

The best-known interaction between bacteria and plants is the Rhizobium-legume symbiosis, but other bacteria-plant interactions exist, such as between Burkholderia and Rubiaceae (coffee family). A number of bacterial endophytes in Rubiaceae are closely related to the soil bacterium Burkholderia caledonica. This intriguing observation is explored by investigating isolates from different geographic regions (Western Europe vs. sub-Saharan Africa) and from different niches (free-living bacteria in soil vs. endophytic bacteria in host plants). The multilocus sequence analysis shows five clades, of which clade 1 with two basal isolates deviates from the rest and is therefore not considered further. All other isolates belong to the species B. caledonica, but two genetically different groups are identified. Group A holds only European isolates and group B holds isolates from Africa, with the exception of one European isolate. Although the European and African isolates are considered one species, some degree of genetic differentiation is evident. Endophytic isolates of B. caledonica are found in certain members of African Rubiaceae, but only in group B. Within this group, the endophytes cannot be distinguished from the soil isolates, which indicates a possible exchange of bacteria between soil and host plant. PMID:24433672

Verstraete, Brecht; Peeters, Charlotte; van Wyk, Braam; Smets, Erik; Dessein, Steven; Vandamme, Peter

2014-05-01

397

An endophytic sanguinarine-producing fungus from Macleaya cordata, Fusarium proliferatum BLH51.  

PubMed

Fermentation processes using sanguinarine-producing fungi other than Macleaya cordata may be an alternative way to produce sanguinarine (SA), which is a quaternary benzo[c]phenanthridine alkaloid possessing antibacterial, anthelmintic, and anti-inflammatory properties. In this study, a SA-producing endophytic fungus strain BLH51 was isolated from the leaves of M. cordata grown in the Dabie Mountain, China. Strain BLH51 produced SA when grown in potato dextrose liquid medium. The amount of SA produced by this endophytic fungus was quantified to be 178 ?g/L by HPLC, substantially lower than that produced by the host tissue. The fungal SA--which was analyzed by thin layer chromatography and high-performance liquid chromatography--was shown to be identical to authentic SA. Strain BLH51 was identified as Fusarium proliferatum based on the morphological characteristics and nuclear ribosomal DNA ITS sequence analysis. To the best of our knowledge, this is the first report concerning the isolation and identification of endophytic SA-producing fungi from the host plant, which further proved that endophytic fungi are valuable reservoirs of bioactive compounds. PMID:24166154

Wang, Xue-Jun; Min, Chang-Li; Ge, Mei; Zuo, Rui-Hua

2014-03-01

398

Genome Sequence of Streptomyces wadayamensis Strain A23, an Endophytic Actinobacterium from Citrus reticulata  

PubMed Central

The actinobacterium Streptomyces wadayamensis A23 is an endophyte of Citrus reticulata that produces the antimycin and mannopeptimycin antibiotics, among others. The strain has the capability to inhibit Xylella fastidiosa growth. The draft genome of S. wadayamensis A23 has ~7.0 Mb and 6,006 protein-coding sequences, with a 73.5% G+C content.

Tormet Gonzalez, Gabriela D.; Samborsky, Markyian; Marcon, Joelma; Araujo, Welington L.; de Azevedo, Joao Lucio

2014-01-01

399

Tetracladium nainitalense sp. nov., a root endophyte from Kumaun Himalaya, India.  

PubMed

An aquatic hyphomycete, Tetracladium nainitalense sp. nov., isolated as a root endophyte from riparian plants from Nainital, Kumaun Himalaya, India, is illustrated and described. The new species is characterized by laterally applanate conidia appearing lobate, with typically four rounded apices and lacking filiform, acicular or subulate elements. An updated key to the species of Tetracladium is provided. PMID:19750949

Sati, S C; Arya, P; Belwal, M

2009-01-01

400

Secondary metabolites from the endophytic fungi Penicillium polonicum and Aspergillus fumigatus.  

PubMed

Two new compounds, rhodostegone (1) from endophytic fungus Penicillium polonicum and cyclo-(l-Val-l-Leu) (2) from Aspergillus fumigatus, together with six known diketopiperazines (3-8), were isolated. The structures of these compounds were characterized through a combination of extensive IR, MS, NMR, and CD analysis. PMID:23600807

Ding, Guang-Zhi; Liu, Jing; Wang, Jia-Ming; Fang, Lei; Yu, Shi-Shan

2013-01-01

401

Interannual variation and host affiliations of endophytic fungi associated with ferns at La Selva, Costa Rica.  

PubMed

Ferns are an ancient and diverse lineage of vascular plants that differ morphologically, chemically and in growth habits from the angiosperms with which they co-occur. We used a culture-based approach coupled with phylogenetic analyses to characterize the incidence, diversity and composition of fungal endophyte assemblages in ferns, with a focus on healthy aboveground tissues of seven species of eupolypods at La Selva, Costa Rica. Endophytes were isolated from every individual plant and were similarly abundant and diverse in frond blades and stalks, in different vegetation types, in epiphytic vs. terrestrial species, and between sampling years. However, abundance, diversity and community structure differed significantly among fern species, and composition differed markedly between sampling years. Phylogenetic classification using separate and combined datasets revealed that as for many Neotropical angiosperms, the majority (95%) of endophyte taxa were Ascomycota, with particular dominance by Sordariomycetes, Eurotiomycetes and Dothideomycetes. However, our data suggest higher phylogenetic richness and stronger host affinities in fern associated endophytes relative to those studied in angiosperms thus far. PMID:24459121

Del Olmo-Ruiz, Mariana; Arnold, A Elizabeth

2014-01-01

402

Endophytic fungi from Dracaena cambodiana and Aquilaria sinensis and their antimicrobial activity  

Microsoft Academic Search

Single mycelium method was used to isolate endophytic fungi from surface-sterilized tissues of two medicinal plants. Of the 300 isolates recovered, 172 were from Dracaena cambodiana and 128 from Aquilaria sinensis. According to morphological characteristics, 174 (58%) isolates were identified and belonged to 41 taxa in 30 genera. The remaining 126 (42%) isolates did not sporulate and were segregated into

Li-Juan Gong; Shun-Xing Guo

2009-01-01

403

Three new species of Pyricularia are isolated as zingiberaceous endophytes from Thailand  

Microsoft Academic Search

Pyricularia costina and three undescribed Pyricularia species were found as endophytes on wild ginger Amomum siamense and Alpinia malaccensis in Doi Suthep-Pui National Park, Chiang Mai, Thailand. Three new species, Pyricularia kookicola, P. longispora, and P. variabilis are described, illustrated and com- pared to similar Pyricularia species.

Boonsom Bussaban; Saisamorn Lumyong; Pipob Lumyong; Kevin D. Hyde; Eric H. C. McKenzie

404

Three new species of Pyricularia are isolated as zingiberaceous endophytes from Thailand.  

PubMed

Pyricularia costina and three undescribed Pyricularia species were found as endophytes on wild ginger Amomum siamense and Alpinia malaccensis in Doi Suthep-Pui National Park, Chiang Mai, Thailand. Three new species, Pyricularia kookicola, P. longispora, and P. variabilis are described, illustrated and compared to similar Pyricularia species. PMID:21156642

Bussaban, Boonsom; Lumyong, Saisamorn; Lumyong, Pipob; Hyde, Kevin D; McKenzie, Eric H C

2003-01-01

405

An Endophytic Pseudonocardia Species Induces the Production of Artemisinin in Artemisia annua  

PubMed Central

Endophytic actinobacteria colonize internal tissues of their host plants and are considered as a rich and reliable source of diverse species and functional microorganisms. In this study, endophytic actinobacterial strain YIM 63111 was isolated from surface-sterilized tissue of the medicinal plant Artemisia annua. We identified strain YIM 63111 as a member of the genus Pseudonocardia. A. annua seedlings grown under both sterile and greenhouse conditions were inoculated with strain YIM 63111. The growth of A. annua seedlings was strongly reduced when YIM 63111 was inoculated at higher concentrations under sterile conditions. However, no growth inhibition was observed when A. annua was grown under greenhouse conditions. Using an enhanced green fluorescent protein (EGFP) expressing YIM 63111 strain, we also observed the endophytic colonization of A. annua seedling using confocal laser-scanning microscopy. The transcription levels of the key genes involved in artemisinin biosynthesis were investigated using real time RT-PCR, revealing that cytochrome P450 monooxygenase (CYP71AV1) and cytochrome P450 oxidoreductase (CPR) expression were up-regulated in A. annua upon inoculation with strain YIM 63111 under certain conditions. The up-regulation of these genes was associated with the increased accumulation of artemisinin. These results suggest that endophytic actinobacteria effectively stimulate certain plant defense responses. Our data also demonstrate the use of Pseudonocardia sp. strain YIM 63111 as a promising means to enhance artemisinin production in plants.

Li, Jie; Zhao, Guo-Zhen; Varma, Ajit; Qin, Sheng; Xiong, Zhi; Huang, Hai-Yu; Zhu, Wen-Yong; Zhao, Li-Xing; Xu, Li-Hua; Zhang,