Sample records for endophytic bacillus pumilus

  1. Bacillus pumilus SAFR-032 isolate

    NASA Technical Reports Server (NTRS)

    Venkateswaran, Kasthuri J. (Inventor)

    2007-01-01

    The present invention relates to discovery and isolation of a biologically pure culture of a Bacillus pumilus SAFR-032 isolate with UV sterilization resistant properties. This novel strain has been characterized on the basis of phenotypic traits, 16S rDNA sequence analysis and DNA-DNA hybridization. According to the results of these analyses, this strain belongs to the genus Bacillus. The GenBank accession number for the 16S rDNA sequence of the Bacillus pumilus SAFR-032 isolate is AY167879.

  2. Applicability of UV resistant Bacillus pumilus endospores as a ...

    EPA Pesticide Factsheets

    Recent studies have demonstrated the potential to use Bacillus pumilus endospores as a surrogate of human adenovirus (HAdV) in UV disinfection studies. The use of endospores has been limited by observations of batch-to-batch variation in UV sensitivity. This study reports on a propagation method that utilizes a commercially available medium to produce UV tolerant B. pumilus endospores with a consistent UV sensitivity. It is further demonstrated that the endospores B. pumilus strain (ATCC 27142), produced using this protocol (half strength Columbia broth, 5 days incubation, with 0.1mM MnSO4), display a UV dose-response that is similar to that of HAdV. Endospore stocks could be stored in ethanol for up to two month at 4C without a significant change in UV sensitivity. Synergistic endospore damage by pre-pasteurization of water samples was observed, suggesting post-pasteurization only of UV treated water samples. UV tolerant B. pumilus endospores are a potential surrogate of HAdV for UV treatment performance tests in water utilities which do not have in-house research virology laboratories. This article describes the usefulness of Bacillus pumilus endspores as a viable surrogate for adeno virus in UV disinfection studies.

  3. A report on extensive lateral genetic reciprocation between arsenic resistant Bacillus subtilis and Bacillus pumilus strains analyzed using RAPD-PCR.

    PubMed

    Khowal, Sapna; Siddiqui, Md Zulquarnain; Ali, Shadab; Khan, Mohd Taha; Khan, Mather Ali; Naqvi, Samar Husain; Wajid, Saima

    2017-02-01

    The study involves isolation of arsenic resistant bacteria from soil samples. The characterization of bacteria isolates was based on 16S rRNA gene sequences. The phylogenetic consanguinity among isolates was studied employing rpoB and gltX gene sequence. RAPD-PCR technique was used to analyze genetic similarity between arsenic resistant isolates. In accordance with the results Bacillus subtilis and Bacillus pumilus strains may exhibit extensive horizontal gene transfer. Arsenic resistant potency in Bacillus sonorensis and high arsenite tolerance in Bacillus pumilus strains was identified. The RAPD-PCR primer OPO-02 amplified a 0.5kb DNA band specific to B. pumilus 3ZZZ strain and 0.75kb DNA band specific to B. subtilis 3PP. These unique DNA bands may have potential use as SCAR (Sequenced Characterized Amplified Region) molecular markers for identification of arsenic resistant B. pumilus and B. subtilis strains. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Construction of novel shuttle expression vectors for gene expression in Bacillus subtilis and Bacillus pumilus.

    PubMed

    Shao, Huanhuan; Cao, Qinghua; Zhao, Hongyan; Tan, Xuemei; Feng, Hong

    2015-01-01

    A native plasmid (pSU01) was detected by genome sequencing of Bacillus subtilis strain S1-4. Two pSU01-based shuttle expression vectors pSU02-AP and pSU03-AP were constructed enabling stable replication in B. subtilis WB600. These vectors contained the reporter gene aprE, encoding an alkaline protease from Bacillus pumilus BA06. The expression vector pSU03-AP only possessed the minimal replication elements (rep, SSO, DSO) and exhibited more stability on structure, suggesting that the rest of the genes in pSU01 (ORF1, ORF2, mob, hsp) were unessential for the structural stability of plasmid in B. subtilis. In addition, recombinant production of the alkaline protease was achieved more efficiently with pSU03-AP whose copy number was estimated to be more than 100 per chromosome. Furthermore, pSU03-AP could also be used to transform and replicate in B. pumilus BA06 under selective pressure. In conclusion, pSU03-AP is expected to be a useful tool for gene expression in Bacillus subtilis and B. pumilus.

  5. Recurrent isolation of hydrogen peroxide-resistant spores of Bacillus pumilus from a spacecraft assembly facility

    NASA Technical Reports Server (NTRS)

    Kempf, Michael J.; Chen, Fei; Kern, Roger; Venkateswaran, Kasthuri

    2005-01-01

    While the microbial diversity of a spacecraft assembly facility at the Jet Propulsion Laboratory (Pasadena, CA) was being monitored, H2O2-resistant bacterial strains were repeatedly isolated from various surface locations. H2O2 is a possible sterilant for spacecraft hardware because it is a low-temperature process and compatible with various modern-day spacecraft materials, electronics, and components. Both conventional biochemical testing and molecular analyses identified these strains as Bacillus pumilus. This Bacillus species was found in both unclassified (entrance floors, anteroom, and air-lock) and classified (floors, cabinet tops, and air) locations. Both vegetative cells and spores of several B. pumilus isolates were exposed to 5% liquid H2O2 for 60 min. Spores of each strain exhibited higher resistance than their respective vegetative cells to liquid H2O2. Results indicate that the H2O2 resistance observed in both vegetative cells and spores is strain-specific, as certain B. pumilus strains were two to three times more resistant than a standard Bacillus subtilis dosimetry strain. An example of this trend was observed when the type strain of B. pumilus, ATCC 7061, proved sensitive, whereas several environmental strains exhibited varying degrees of resistance, to H2O2. Repeated isolation of H2O2-resistant strains of B. pumilus in a clean-room is a concern because their persistence might potentially compromise life-detection missions, which have very strict cleanliness and sterility requirements for spacecraft hardware.

  6. Bacillus safensis FO-36b and Bacillus pumilus SAFR-032: a whole genome comparison of two spacecraft assembly facility isolates.

    PubMed

    Tirumalai, Madhan R; Stepanov, Victor G; Wünsche, Andrea; Montazari, Saied; Gonzalez, Racquel O; Venkateswaran, Kasturi; Fox, George E

    2018-06-08

    Bacillus strains producing highly resistant spores have been isolated from cleanrooms and space craft assembly facilities. Organisms that can survive such conditions merit planetary protection concern and if that resistance can be transferred to other organisms, a health concern too. To further efforts to understand these resistances, the complete genome of Bacillus safensis strain FO-36b, which produces spores resistant to peroxide and radiation was determined. The genome was compared to the complete genome of B. pumilus SAFR-032, and the draft genomes of B. safensis JPL-MERTA-8-2 and the type strain B. pumilus ATCC7061 T . Additional comparisons were made to 61 draft genomes that have been mostly identified as strains of B. pumilus or B. safensis. The FO-36b gene order is essentially the same as that in SAFR-032 and other B. pumilus strains. The annotated genome has 3850 open reading frames and 40 noncoding RNAs and riboswitches. Of these, 307 are not shared by SAFR-032, and 65 are also not shared by MERTA and ATCC7061 T . The FO-36b genome has ten unique open reading frames and two phage-like regions, homologous to the Bacillus bacteriophage SPP1 and Brevibacillus phage Jimmer1. Differing remnants of the Jimmer1 phage are found in essentially all B. safensis / B. pumilus strains. Seven unique genes are part of these phage elements. Whole Genome Phylogenetic Analysis of the B. pumilus, B. safensis and other Firmicutes genomes, separate them into three distinct clusters. Two clusters are subgroups of B. pumilus while one houses all the B. safensis strains. The Genome-genome distance analysis and a phylogenetic analysis of gyrA sequences corroborated these results. It is not immediately obvious that the presence or absence of any specific gene or combination of genes is responsible for the variations in resistance seen. It is quite possible that distinctions in gene regulation can alter the expression levels of key proteins thereby changing the organism

  7. Bacillus pumilus KatX2 confers enhanced hydrogen peroxide resistance to a Bacillus subtilis PkatA::katX2 mutant strain.

    PubMed

    Handtke, Stefan; Albrecht, Dirk; Zühlke, Daniela; Otto, Andreas; Becher, Dörte; Schweder, Thomas; Riedel, Kathrin; Hecker, Michael; Voigt, Birgit

    2017-04-26

    Bacillus pumilus cells exhibit a significantly higher resistance to hydrogen peroxide compared to closely related Bacilli like Bacillus subtilis. In this study we analyzed features of the catalase KatX2 of B. pumilus as one of the most important parts of the cellular response to hydrogen peroxide. KatX2, the vegetative catalase expressed in B. pumilus, was compared to the vegetative catalase KatA of B. subtilis. Data of our study demonstrate that B. pumilus can degrade toxic concentrations of hydrogen peroxide faster than B. subtilis. By replacing B. subtilis katA gene by katX2 we could significantly enhance its resistance to H 2 O 2 and its potential to eliminate this toxic compound. Mutant cells showed a 1.5- to 2-fold higher survival to toxic concentrations of hydrogen peroxide compared to wild type cells. Furthermore, we found reversible but also irreversible oxidations of the KatX2 protein which, in contrast to KatA, contains several cysteine residues. Our study indicates that the catalase KatX2 plays a major role in the increased resistance of B. pumilus to oxidative stress caused by hydrogen peroxide. Resistance to hydrogen peroxide of other Bacilli can be enhanced by exchanging the native catalase in the cells with katX2.

  8. Proteomics study of extracellular fibrinolytic proteases from Bacillus licheniformis RO3 and Bacillus pumilus 2.g isolated from Indonesian fermented food

    NASA Astrophysics Data System (ADS)

    Nur Afifah, Diana; Rustanti, Ninik; Anjani, Gemala; Syah, Dahrul; Yanti; Suhartono, Maggy T.

    2017-02-01

    This paper presents the proteomics study which includes separation, identification and characterization of proteins. The experiment on Indonesian fermented food such as extracellular fibrinolytic protease from Bacillus licheniformis RO3 and Bacillus pumilus 2.g isolated from red oncom and tempeh gembus was conducted. The experimental works comprise the following steps: (1) a combination of one- and two-dimensional electrophoresis analysis, (2) mass spectrometry analysis using MALDI-TOF-MS and (3) investigation using protein database. The result suggested that there were new two protein fractions of B. licheniformis RO3 and three protein fractions of B. pumilus 2.g. These result has not been previously reported.

  9. Digital data for quick response (QR) codes of alkalophilic Bacillus pumilus to identify and to compare bacilli isolated from Lonar Crator Lake, India.

    PubMed

    Rekadwad, Bhagwan N; Khobragade, Chandrahasya N

    2016-06-01

    Microbiologists are routinely engaged isolation, identification and comparison of isolated bacteria for their novelty. 16S rRNA sequences of Bacillus pumilus were retrieved from NCBI repository and generated QR codes for sequences (FASTA format and full Gene Bank information). 16SrRNA were used to generate quick response (QR) codes of Bacillus pumilus isolated from Lonar Crator Lake (19° 58' N; 76° 31' E), India. Bacillus pumilus 16S rRNA gene sequences were used to generate CGR, FCGR and PCA. These can be used for visual comparison and evaluation respectively. The hyperlinked QR codes, CGR, FCGR and PCA of all the isolates are made available to the users on a portal https://sites.google.com/site/bhagwanrekadwad/. This generated digital data helps to evaluate and compare any Bacillus pumilus strain, minimizes laboratory efforts and avoid misinterpretation of the species.

  10. Digital data for quick response (QR) codes of alkalophilic Bacillus pumilus to identify and to compare bacilli isolated from Lonar Crator Lake, India

    PubMed Central

    Rekadwad, Bhagwan N.; Khobragade, Chandrahasya N.

    2016-01-01

    Microbiologists are routinely engaged isolation, identification and comparison of isolated bacteria for their novelty. 16S rRNA sequences of Bacillus pumilus were retrieved from NCBI repository and generated QR codes for sequences (FASTA format and full Gene Bank information). 16SrRNA were used to generate quick response (QR) codes of Bacillus pumilus isolated from Lonar Crator Lake (19° 58′ N; 76° 31′ E), India. Bacillus pumilus 16S rRNA gene sequences were used to generate CGR, FCGR and PCA. These can be used for visual comparison and evaluation respectively. The hyperlinked QR codes, CGR, FCGR and PCA of all the isolates are made available to the users on a portal https://sites.google.com/site/bhagwanrekadwad/. This generated digital data helps to evaluate and compare any Bacillus pumilus strain, minimizes laboratory efforts and avoid misinterpretation of the species. PMID:27141529

  11. Diversity of indigenous endophytic bacteria associated with the roots of Chinese cabbage (Brassica campestris L.) cultivars and their antagonism towards pathogens.

    PubMed

    Haque, Md Azizul; Yun, Han Dae; Cho, Kye Man

    2016-05-01

    The study aimed to reveal the diversity of endophytic bacteria in the roots of Chinese cabbage (CC) cultivated in two areas in Korea, namely, Seosang-gun (SS) and Haenam-gun (HN), and also in a transgenic plant (TP) from the laboratory. A total of 653 colonies were isolated from the interior of CC roots, comprising 118, 302, and 233 isolates from SS, HN, and TP samples, respectively. Based on 16S rRNA gene sequence analysis, the isolates belonged to four major phylogenetic groups: high-G+C Gram-positive bacteria (HGC-GPB), low-G+C Gram-positive bacteria (LGC-GPB), Proteobacteria, and Bacteriodetes. The most dominant groups in the roots of the SS, HN, and TP cultivars were LGC-GPB (48.3%), Proteobacteria (50.2%), and HGC-GPB (38.2%), respectively. Importantly, most of the isolates that produced cell-walldegrading enzymes belonged to the genus Bacillus. Bacillus sp. (HNR03, TPR06), Bacillus pumilus (SSR07, HNR11, TPR07), and Bacillus subtilis (TPR03) showed high antagonism against the tested food-borne pathogenic bacteria. In addition, Bacillus sp. (HNR03, TPR06), Bacillus pumilus (SSR07, HNR11, HNR17, TPR11), Microbacterium oxidans (SSR09, TPR04), Bacillus cereus HNR10, Pseudomonas sp. HNR13, and Bacillus subtilis (TPR02, TPR03) showed strong antagonistic activity against the fungi Phythium ultimum, Phytophthora capsici, Fusarium oxysporum, and Rhizoctonia solani. The endophytes isolated from the TP cultivar showed the strongest antagonistic reactions against pathogens. This study is the first report on endophytic bacteria from Chinese cabbage roots.

  12. Effect of oral administration of Bacillus coagulans B37 and Bacillus pumilus B9 strains on fecal coliforms, Lactobacillus and Bacillus spp. in rat animal model

    PubMed Central

    Haldar, Lopamudra; Gandhi, D. N.

    2016-01-01

    Aim: To investigate the effect of oral administration of two Bacillus strains on fecal coliforms, Lactobacillus and Bacillus spp. in rat animal model. Materials and Methods: An in vivo experiment was conducted for 49-day period on 36 adult male albino Wister rats divided equally into to four groups. After 7-day adaptation period, one group (T1) was fed on sterile skim milk along with basal diet for the next 28 days. Second (T2) and (T3) groups received spore biomass of Bacillus coagulans B37 and Bacillus pumilus B9, respectively, suspended in sterilized skim milk at 8-9 log colony-forming units/ml plus basal diet for 28 days, while control group (T4) was supplied with clean water along with basal diet. There was a 14-day post-treatment period. A total of 288 fecal samples (8 fecal collections per rat) were collected at every 7-day interval starting from 0 to 49 days and subjected to the enumeration of the counts of coliforms and lactobacilli and Bacillus spores using respective agar media. In vitro acid and bile tolerance tests on both the strains were performed. Results: The rats those (T2 and T3) received either B. coagulans B37 or B. pumilus B9 spore along with non-fermented skim milk showed decrease (p<0.01) in fecal coliform counts and increase (p<0.05) in both fecal lactobacilli and Bacillus spore counts as compared to the control group (T4) and the group fed only skim milk (T1). In vitro study indicated that both the strains were found to survive at pH 2.0 and 3.0 even up to 3 h and tolerate bile up to 2.0% concentration even after 12 h of exposure. Conclusions: This study revealed that oral administration of either B. coagulans B37 or B. pumilus B9 strains might be useful in reducing coliform counts accompanied by concurrent increase in lactobacilli counts in the intestinal flora in rats. PMID:27536040

  13. Effect of oral administration of Bacillus coagulans B37 and Bacillus pumilus B9 strains on fecal coliforms, Lactobacillus and Bacillus spp. in rat animal model.

    PubMed

    Haldar, Lopamudra; Gandhi, D N

    2016-07-01

    To investigate the effect of oral administration of two Bacillus strains on fecal coliforms, Lactobacillus and Bacillus spp. in rat animal model. An in vivo experiment was conducted for 49-day period on 36 adult male albino Wister rats divided equally into to four groups. After 7-day adaptation period, one group (T1) was fed on sterile skim milk along with basal diet for the next 28 days. Second (T2) and (T3) groups received spore biomass of Bacillus coagulans B37 and Bacillus pumilus B9, respectively, suspended in sterilized skim milk at 8-9 log colony-forming units/ml plus basal diet for 28 days, while control group (T4) was supplied with clean water along with basal diet. There was a 14-day post-treatment period. A total of 288 fecal samples (8 fecal collections per rat) were collected at every 7-day interval starting from 0 to 49 days and subjected to the enumeration of the counts of coliforms and lactobacilli and Bacillus spores using respective agar media. In vitro acid and bile tolerance tests on both the strains were performed. The rats those (T2 and T3) received either B. coagulans B37 or B. pumilus B9 spore along with non-fermented skim milk showed decrease (p<0.01) in fecal coliform counts and increase (p<0.05) in both fecal lactobacilli and Bacillus spore counts as compared to the control group (T4) and the group fed only skim milk (T1). In vitro study indicated that both the strains were found to survive at pH 2.0 and 3.0 even up to 3 h and tolerate bile up to 2.0% concentration even after 12 h of exposure. This study revealed that oral administration of either B. coagulans B37 or B. pumilus B9 strains might be useful in reducing coliform counts accompanied by concurrent increase in lactobacilli counts in the intestinal flora in rats.

  14. Developing a new production host from a blueprint: Bacillus pumilus as an industrial enzyme producer.

    PubMed

    Küppers, Tobias; Steffen, Victoria; Hellmuth, Hendrik; O'Connell, Timothy; Bongaerts, Johannes; Maurer, Karl-Heinz; Wiechert, Wolfgang

    2014-03-24

    Since volatile and rising cost factors such as energy, raw materials and market competitiveness have a significant impact on the economic efficiency of biotechnological bulk productions, industrial processes need to be steadily improved and optimized. Thereby the current production hosts can undergo various limitations. To overcome those limitations and in addition increase the diversity of available production hosts for future applications, we suggest a Production Strain Blueprinting (PSB) strategy to develop new production systems in a reduced time lapse in contrast to a development from scratch.To demonstrate this approach, Bacillus pumilus has been developed as an alternative expression platform for the production of alkaline enzymes in reference to the established industrial production host Bacillus licheniformis. To develop the selected B. pumilus as an alternative production host the suggested PSB strategy was applied proceeding in the following steps (dedicated product titers are scaled to the protease titer of Henkel's industrial production strain B. licheniformis at lab scale): Introduction of a protease production plasmid, adaptation of a protease production process (44%), process optimization (92%) and expression optimization (114%). To further evaluate the production capability of the developed B. pumilus platform, the target protease was substituted by an α-amylase. The expression performance was tested under the previously optimized protease process conditions and under subsequently adapted process conditions resulting in a maximum product titer of 65% in reference to B. licheniformis protease titer. In this contribution the applied PSB strategy performed very well for the development of B. pumilus as an alternative production strain. Thereby the engineered B. pumilus expression platform even exceeded the protease titer of the industrial production host B. licheniformis by 14%. This result exhibits a remarkable potential of B. pumilus to be the

  15. Biocontrol of Rhizoctonia solani damping-off disease in cucumber with Bacillus pumilus SQR-N43.

    PubMed

    Huang, Xinqi; Zhang, Nan; Yong, Xiaoyu; Yang, Xingming; Shen, Qirong

    2012-03-20

    Biological control is an efficient and environmentally friendly way to prevent damping-off disease. Micrographs were used to investigate the ability of Bacillus pumilus (B. pumilus) SQR-N43 to control Rhizoctonia solani (R. solani) Q1 in cucumbers. The root colonization ability of B. pumilus SQR-N43 was analyzed in vivo with a green fluorescent protein (GFP) tag. A pot experiment was performed to assess the in vivo disease-control efficiency of B. pumilus SQR-N43 and its bio-organic fertilizer. Results indicate that B. pumilus SQR-N43 induced hyphal deformation, enlargement of cytoplasmic vacuoles and cytoplasmic leakage in R. solani Q1 mycelia. A biofilm on the root surface was formed when the roots were inoculated with 10(7)-10(8)cells g(-1) of soil of GFP-tagged B. pumilus SQR-N43. In the pot experiment, the biocontrol reduced the concentration of R. solani. In contrast to applications of only B. pumilus SQR-N43 (N treatment), which produced control efficiencies of 23%, control efficiencies of 68% were obtained with applications of a fermented organic fertilizer inoculated with B. pumilus SQR-N43 (BIO treatment). After twenty days of incubation, significant differences in the number of CFUs and the percentage of spores of B. pumilus SQR-N43 were recorded between the N treatment (2.20×10(7)CFU g(-1) of soil and 79%, respectively) and the BIO treatment (1.67×10(8)CFU g(-1) of soil and 52%, respectively). The results indicate that B. pumilus SQR-N43 is a potent antagonist against R. solani Q1. The BIO treatment was more effective than the N treatment because it stabilized the population and increased the active form of the antagonist. Copyright © 2011 Elsevier GmbH. All rights reserved.

  16. An in-depth characterization of the entomopathogenic strain Bacillus pumilus 15.1 reveals that it produces inclusion bodies similar to the parasporal crystals of Bacillus thuringiensis.

    PubMed

    Garcia-Ramon, Diana C; Molina, C Alfonso; Osuna, Antonio; Vílchez, Susana

    2016-04-01

    In the present work, the local isolate Bacillus pumilus 15.1 has been morphologically and biochemically characterized in order to gain a better understanding of this novel entomopathogenic strain active against Ceratitis capitata. This strain could represent an interesting biothechnological tool for the control of this pest. Here, we report on its nutrient preferences, extracellular enzyme production, motility mechanism, biofilm production, antibiotic suceptibility, natural resistance to chemical and physical insults, and morphology of the vegetative cells and spores. The pathogen was found to be β-hemolytic and susceptible to penicillin, ampicillin, chloramphenicol, gentamicin, kanamycin, rifampicin, tetracycline, and streptomycin. We also report a series of biocide, thermal, and UV treatments that reduce the viability of B. pumilus 15.1 by several orders of magnitude. Heat and chemical treatments kill at least 99.9 % of vegetative cells, but spores were much more resistant. Bleach was the only chemical that was able to completely eliminate B. pumilus 15.1 spores. Compared to the B. subtilis 168 spores, B. pumilus 15.1 spores were between 2.67 and 350 times more resistant to UV radiation while the vegetative cells of B. pumilus 15.1 were almost up to 3 orders of magnitude more resistant than the model strain. We performed electron microscopy for morphological characterization, and we observed geometric structures resembling the parasporal crystal inclusions synthesized by Bacillus thuringiensis. Some of the results obtained here such as the parasporal inclusion bodies produced by B. pumilus 15.1 could potentially represent virulence factors of this novel and potentially interesting strain.

  17. Bacillus pumilus ES4: candidate plant growth-promoting bacterium to enhance establishment of plants in mine tailings

    PubMed Central

    de-Bashan, Luz E.; Hernandez, Juan-Pablo; Bashan, Yoav; Maier, Raina

    2014-01-01

    Three plant growth-promoting bacteria (PGPB; Bacillus pumilus ES4, B. pumilus RIZO1, and Azospirillum brasilense Cd) were tested for their ability to enhance plant growth and development of the native Sonoran Desert shrub quailbush (Atriplex lentiformis) and for their effect on the native bacterial community in moderately acidic, high-metal content (AHMT) and in neutral, low metal content natural tailings (NLMT) in controlled greenhouse experiments. Inoculation of quailbush with all three PGPB significantly enhanced plant growth parameters, such as germination, root length, dry weight of shoots and roots, and root/shoot ratio in both types of tailings. The effect of inoculation on the indigenous bacterial community by the most successful PGPB Bacillus pumilus ES4 was evaluated by denaturating gradient gel electrophoresis (PCR-DGGE) fingerprinting and root colonization was followed by specific fluorescent in situ hybridization (FISH). Inoculation with this strain significantly changed the bacterial community over a period of 60 days. FISH analysis showed that the preferred site of colonization was the root tips and root elongation area. This study shows that inoculation of native perennial plants with PGPB can be used for developing technologies for phytostabilizing mine tailings. PMID:25009362

  18. Complete Genome Sequences of Two Bacillus pumilus Strains from Cuatrociénegas, Coahuila, Mexico

    PubMed Central

    Alcaraz, Luis D.; Aguilar-Salinas, Bernardo; Islas, Africa

    2018-01-01

    ABSTRACT We assembled the complete genome sequences of Bacillus pumilus strains 145 and 150a from Cuatrociénegas, Mexico. We detected genes codifying for proteins potentially involved in antagonism (bacteriocins) and defense mechanisms (abortive infection bacteriophage proteins and 4-azaleucine resistance). Both strains harbored prophage sequences. Our results provide insights into understanding the establishment of microbial interactions. PMID:29700165

  19. Complete Genome Sequences of Two Bacillus pumilus Strains from Cuatrociénegas, Coahuila, Mexico.

    PubMed

    Zarza, Eugenia; Alcaraz, Luis D; Aguilar-Salinas, Bernardo; Islas, Africa; Olmedo-Álvarez, Gabriela

    2018-04-26

    We assembled the complete genome sequences of Bacillus pumilus strains 145 and 150a from Cuatrociénegas, Mexico. We detected genes codifying for proteins potentially involved in antagonism (bacteriocins) and defense mechanisms (abortive infection bacteriophage proteins and 4-azaleucine resistance). Both strains harbored prophage sequences. Our results provide insights into understanding the establishment of microbial interactions. Copyright © 2018 Zarza et al.

  20. Draft Genome Sequence of the Entomopathogenic Bacterium Bacillus pumilus 15.1, a Strain Highly Toxic to the Mediterranean Fruit Fly Ceratitis capitata

    PubMed Central

    García-Ramón, Diana C.; Palma, Leopoldo; Berry, Colin; Osuna, Antonio

    2015-01-01

    We present the draft whole-genome sequence of the entomopathogenic Bacillus pumilus 15.1 strain that consists of 3,795,691 bp and 3,776 predicted protein-coding genes. This genome sequence provides the basis for understanding the potential mechanism behind the toxicity and virulence of B. pumilus 15.1 against the Mediterranean fruit fly. PMID:26404596

  1. [Alkaline-adapted beta-mannanase of Bacillus pumilus: gene heterologous expression and enzyme characterization].

    PubMed

    Tang, Jiajie; Guo, Su; Wang, Wei; Wei, Wei; Wei, Dongzhi

    2015-11-04

    We expressed a novel alkaline-adapted beta-mannanase gene and characterized the enzyme for potential industrial applications. We obtained a mannanase gene (named man(B)) from Bacillus pumilus Nsic2 and expressed the gene man(B) in Escherichia coli and Bacillus subtilis. Furthermore, we characterized the enzyme. The gene man(B) had an open reading frame of 1104 bp that encoded a polypeptide of 367-amino-acid beta-mannanase (Man(B)). The protein sequence showed the highest identity with the beta-mannanase from B. pumilus CCAM080065. We expressed the gene man(B) in E. coli BL21 (DE3) with the enzyme activity of 11021.3 U/mL. Compared with other mannanases, Man(B) showed higher stability under alkaline conditions and was stable at pH6.0 -9.0. The specific activity of purified Man(B) was 4191 ± 107 U/mg. The K(m) and V(max) values of purified Man(B) were 35.7 mg/mL and 14.9 μmol/(mL x min), respectively. Meanwhile, we achieved recombinant protein secretion expression in B. subtilis WB800N. We achieved heterologous expression of the gene man(B) and characterized its enzyme. The alkaline-adapted Man(B) showed potential value in industrial applications due to its pH stability.

  2. [A sepsis case caused by a rare opportunistic pathogen: Bacillus pumilus].

    PubMed

    Borsa, Barış Ata; Aldağ, Mehmet Ersoy; Tunalı, Birsen; Dinç, Uğur; Güngördü Dalar, Zeynep; Özalp, Veli Cengiz

    2016-07-01

    The high prevalence of Bacillus species in nature and the detection of these bacteria as contaminant in cultures may lead diagnostic dilemma, however they should still be considered as a pathogen particularly in case of repeated positive cultures from patients with risk factors. Bacillus pumilus is a bacteria, though rarely, been reported as the causative agent of various infections such as sepsis, endocarditis, skin infections and food poisoning in human. In this report, a sepsis case in an immunocompetent patient caused by B.pumilus was presented. A 38-year-old female patient was admitted to emergency service of our hospital with the complaints of headache, dizziness and diarrhea. She had not any risk factors except a history of heart valve replacement operation two years ago. In physical examination, she had abdominal retention, high fever and hypotension, together with the high levels of sedimentation rate (ESR) and C-reactive protein (CRP). The patient was hospitalized with the preliminary diagnosis of sepsis. Three sets of blood samples at two different periods were taken for the culture. All blood culture vials had a positive signal at the second day of incubation in BD BACTEC™ 9050 system, therefore subcultures were performed in sheep blood agar, chocolate agar and MacConkey agar, and incubated in aerobic and anaerobic conditions. Beta-haemolytic, gray-colored large colonies were isolated from anaerobic culture at the end of 18-24 hours incubation, and Gram staining from colonies showed gram-positive rods. The isolate was identified as B.pumilus with 99% accuracy rate by using BD Phoenix™ 100 identification system. This result was also confirmed by MALDI-TOF based VITEK® MS system and 16S rRNA sequencing by Illumina MiSeq® platform. Antibiotic susceptibility test performed by BD Phoenix™ 100 system and the isolate was found to be resistant against penicillin, while it was susceptible to vancomycin, erythromycin, clindamycin, levofloxacin, and

  3. Characterization of Bacillus megaterium, Bacillus pumilus, and Paenibacillus polymyxa isolated from a Pinot noir wine from Western Washington State.

    PubMed

    von Cosmos, Nicolas H; Watson, Bruce A; Fellman, J K; Mattinson, D S; Edwards, Charles G

    2017-10-01

    This report provides the first confirmed evidence of Bacillus-like bacteria present in a wine from Washington State. These bacteria were isolated from a 2013 Pinot noir wine whose aroma was sensorially described as being 'dirty' or 'pond scum.' Based on physiological traits and genetic sequencing, three bacterial isolates were identified as Bacillus megaterium (strain NHO-1), Bacillus pumilus (strain NHO-2), and Paenibacillus polymyxa (strain NHO-3). These bacteria grew in synthetic media of low pH (pH 3.5) while some survived ethanol concentrations up to 15% v/v. However, none tolerated molecular SO 2 concentrations ≥0.4 mg/l. Growth of strains NHO-1 and NHO-3 in a Merlot grape juice resulted in increases of titratable and volatile acidities while decreases in titratable acidity were noted for NHO-2. Copyright © 2017. Published by Elsevier Ltd.

  4. Effect of essential oil of Satureja hortensis against Bacillus pumilus, which cause of soft rot on some plants

    NASA Astrophysics Data System (ADS)

    Dadaşoǧlu, Fatih

    2017-04-01

    In this study, it is aimmed to be determined the antimicrobial effects of the essential oil in vitro conditions, extracted from wild forms of plant which is known as Satureja hortensis around the world and grows naturally at Erzurum province of Turkey against Bacillus pumilus isolates, which are the agent of Soft Rot for some fruits and vegetables. For this purpose, 18 isolates of B. pumilus which have been determined as the agent of Soft Rot in previous studies performed in plants such as potatos, onions, strawberries, melons and watermelons. As the positive control, Streptomycin antibiotics sold as ready produce were used. According to the obtained results, the essential oil have the antibactericidal effect of 19-29 mm against 18 isolates of B. pumilus. It has been observed that the antibiotics used as the positive control has the antibacterial effect of 16-22 mm. In conclusion, the essential oil has the lethal effect against 18 B. pumilus isolates which are agents of Soft Rot. It is assesed that these essential oil extracted from Satureja hortensis can be used against these Soft Rot pathogens.

  5. Isolation, purification and characterisation of low molecular weight xylanase from Bacillus pumilus SSP-34.

    PubMed

    Subramaniyan, S

    2012-04-01

    Low molecular weight endo-xylanase from Bacillus pumilus SSP-34 was purified to homogeneity using ion exchange and size exclusion chromatographies. Xylanases were isolated by novel purification protocol which includes the use of anion exchange matrix such as DEAE Sepharose CL 6B with less affinity towards enzyme protein. The purified B. pumilus SSP-34 have a molecular weight of 20 kDa, with optimum pH and temperature at 6.0 and 50 °C, respectively. The enzyme was stable at 50 °C for 30 min. It showed remarkable stability at pH values ranging from 4.5 to 9 when the reaction was carried out at 50 °C. K (m) and V (max) values, determined with oats spelts xylan were 6.5 mg ml⁻¹ and 1,233 μmol min⁻¹ mg⁻¹ protein, respectively, and the specific activity was 1,723 U mg⁻¹.

  6. Effective feather degradation and keratinase production by Bacillus pumilus GRK for its application as bio-detergent additive.

    PubMed

    Ramakrishna Reddy, M; Sathi Reddy, K; Ranjita Chouhan, Y; Bee, Hameeda; Reddy, Gopal

    2017-11-01

    An effecient feather-degrading bacterium was isolated from poultry dumping yard and identified as Bacillus pumilus GRK based on 16S rRNA sequencing. Complete feather degradation (98.3±1.52%) with high keratinase production (373±4 U/ml) was observed in 24h under optimized conditions (substrate 1% (w/w); inoculum size 4% (v/v); pH 10; 200rpm at 37°C) with feathers as sole carbon and nitrogen source in tap water. The fermented broth was enriched with amino acids like tryptophan (221.44µg/ml), isoleucine (15.0µg/ml), lysine (10.81µg/ml) and methionine (7.24µg/ml) suggesting its potential use as feed supplement. The keratinase produced was a detergent stable serine protease and its activity was further enhanced by Ca +2 and Mg +2 . Bacillus pumilus GRK keratinase was successfully utilised as bioadditive in detergent formulations for removing the blood stains from cloth without affecting its fiber and texture. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. [Diversity of Bacillus species inhabiting on the surface and endophyte of lichens collected from Wuyi Mountain].

    PubMed

    Ge, Cibin; Liu, Bo; Che, Jianmei; Chen, Meichun; Liu, Guohong; Wei, Jiangchun

    2015-05-04

    The present work reported the isolation, identification and diversity of Bacillus species colonizing on the surface and endophyte in lichens collected from Wuyi Mountain. Nine lichen samples of Evernia, Stereocaulon, Menegazzia and other 6 genera belonging to 7 families were collected from Wuyi mountain nature reserve. The bacillus-like species colonizing on the surface and endophyte in these lichens were isolated and identified by 16S rRNA gene sequence analysis. There was no bacillus-like species isolated from Evernia, Ramalina and Lecarona. A total of 34 bacillus-like bacteria were isolated from another 6 lichen samples. These bacteria were identified as 24 species and were classified into Bacillus, Paenibacillus, Brevibacillus, Lysinibacillus and Viridiibacillus. Paenibacillus and Bacillus are the dominant genera, and accounting for 41. 2% and 35. 3% of all isolated bacteria respectively. Brevibacillus, Lysinibacillus and Viridiibacillu were first reported being isolated from lichens. There were different species and quantity of bacillus colonizing on the surface and endophyte in different lichens. The quantity of bacillus colonizing on the surface of Physcia was more than 3.85 x 10(6) cfu/g and was the largest in the isolated bacteria, while the species of bacillus colonizing on the surface and endophyte in Stereocaulon was the most abundant. Most of the isolated bacteria were colonizing on (in) one lichen genera, but Paenibacillus taichungensis, Paenibacillus odorifer, Brevibacillus agri, Lysinibacillus xylanilyticus was respectively colonizing on (in) 2-3 lichen genera and Bacillus mycoides was colonizing on (in) Menegazzia, Cladonia Physcia, and Stereocaulon. There are species and quantity diversity of bacillus colonizing on (in) lichens.

  8. The hyperaccumulator Sedum plumbizincicola harbors metal-resistant endophytic bacteria that improve its phytoextraction capacity in multi-metal contaminated soil.

    PubMed

    Ma, Ying; Oliveira, Rui S; Nai, Fengjiao; Rajkumar, Mani; Luo, Yongming; Rocha, Inês; Freitas, Helena

    2015-06-01

    Endophyte-assisted phytoremediation has recently been suggested as a successful approach for ecological restoration of metal contaminated soils, however little information is available on the influence of endophytic bacteria on the phytoextraction capacity of metal hyperaccumulating plants in multi-metal polluted soils. The aims of our study were to isolate and characterize metal-resistant and 1-aminocyclopropane-1-carboxylate (ACC) utilizing endophytic bacteria from tissues of the newly discovered Zn/Cd hyperaccumulator Sedum plumbizincicola and to examine if these endophytic bacterial strains could improve the efficiency of phytoextraction of multi-metal contaminated soils. Among a collection of 42 metal resistant bacterial strains isolated from the tissues of S. plumbizincicola grown on Pb/Zn mine tailings, five plant growth promoting endophytic bacterial strains (PGPE) were selected due to their ability to promote plant growth and to utilize ACC as the sole nitrogen source. The five isolates were identified as Bacillus pumilus E2S2, Bacillus sp. E1S2, Bacillus sp. E4S1, Achromobacter sp. E4L5 and Stenotrophomonas sp. E1L and subsequent testing revealed that they all exhibited traits associated with plant growth promotion, such as production of indole-3-acetic acid and siderophores and solubilization of phosphorus. These five strains showed high resistance to heavy metals (Cd, Zn and Pb) and various antibiotics. Further, inoculation of these ACC utilizing strains significantly increased the concentrations of water extractable Cd and Zn in soil. Moreover, a pot experiment was conducted to elucidate the effects of inoculating metal-resistant ACC utilizing strains on the growth of S. plumbizincicola and its uptake of Cd, Zn and Pb in multi-metal contaminated soils. Out of the five strains, B. pumilus E2S2 significantly increased root (146%) and shoot (17%) length, fresh (37%) and dry biomass (32%) of S. plumbizincicola as well as plant Cd uptake (43%), whereas

  9. Biochemical and molecular characterization of a detergent-stable serine alkaline protease from Bacillus pumilus CBS with high catalytic efficiency.

    PubMed

    Jaouadi, Bassem; Ellouz-Chaabouni, Semia; Rhimi, Moez; Bejar, Samir

    2008-09-01

    We have described previously the potential use of an alkaline protease from Bacillus pumilus CBS as an effective additive in laundry detergent formulations [B. Jaouadi, S. Ellouz-Chaabouni, M. Ben Ali, E. Ben Messaoud, B. Naili, A. Dhouib, S. Bejar, A novel alkaline protease from Bacillus pumilus CBS having a high compatibility with laundry detergent and a high feather-degrading activity, Process Biochem, submitted for publication]. Here, we purified this enzyme (named SAPB) and we cloned, sequenced and over-expressed the corresponding gene. The enzyme was purified to homogeneity using salt precipitation and gel filtration HPLC. The pure protease was found to be monomeric protein with a molecular mass of 34598.19Da as determined by MALDI-TOF mass spectrometry. The NH2-terminal sequence of first 21 amino acids (aa) of the purified SAPB was AQTVPYGIPQIKAPAVHAQGY and was completely identical to proteases from other Bacillus pumilus species. This protease is strongly inhibited by PMSF and DFP, showing that it belongs to the serine proteases superfamily. Interestingly, the optimum pH is 10.6 while the optimum temperature was determined to be 65 degrees C. The enzyme was completely stable within a wide range of pH (7.0-10.6) and temperature (30-55 degrees C). One of the distinguishing properties is its catalytic efficiency (kcat/Km) calculated to be 45,265min(-1)mM(-1) and 147,000min(-1)mM(-1) using casein and AAPF as substrates, respectively, which is higher than that of Subtilisin Carlsberg, Subtilisin BPN' and Subtilisin 309 determined under the same conditions. In addition, SAPB showed remarkable stability, for 24h at 40 degrees C, in the presence of 5% Tween-80, 1% SDS, 15% urea and 10% H2O2, which comprise the common bleach-based detergent formulation. The sapB gene encoding SAPB was cloned, sequenced and over-expressed in Escherichia coli. The purified recombinant enzyme (rSAPB) has the same physicochemical and kinetic properties as the native one. SapB gene had

  10. Transfer of radiocesium from rhizosphere soil to four cruciferous vegetables in association with a Bacillus pumilus strain and root exudation.

    PubMed

    Aung, Han Phyo; Mensah, Akwasi Dwira; Aye, Yi Swe; Djedidi, Salem; Oikawa, Yosei; Yokoyama, Tadashi; Suzuki, Sohzoh; Dorothea Bellingrath-Kimura, Sonoko

    2016-11-01

    This study was carried out to assess the effect of Bacillus pumilus on the roots of four cruciferous vegetables with different root structures in regard to enhancement of 137 Cs bioavailability in contaminated rhizosphere soil. Results revealed that B. pumilus inoculation did not enhance the plant biomass of vegetables, although it increased root volume and root surface areas of all vegetables except turnip. The pH changes due to rhizosphere acidification by B. pumilus inoculation and root exudation did not affect the bioavailability of 137 Cs. However, concentrations of 137 Cs in plant tissues and soil-to-plant transfer values increased as a result of the larger root volume and root surface area of vegetables due to inoculation. Moreover, leafy vegetables, which possessed larger root volume and root surface areas, had a higher 137 Cs transfer value than root vegetables. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Sterilization of Bacillus pumilus spores using supercritical fluid carbon dioxide containing various modifier solutions.

    PubMed

    Shieh, Edison; Paszczynski, Andrzej; Wai, Chien M; Lang, Qingyong; Crawford, Ronald L

    2009-03-01

    Supercritical fluid carbon dioxide (SF-CO(2)) with small amounts of chemical modifier(s) provides a very effective sterilization technique that should be useful for destroying microorganism on heat-sensitive devices such as instruments flown on planetary-bound spacecraft. Under a moderate temperature (50 degrees C) and pressure (100 atm), spores of Bacillus pumilus strains ATCC 7061 and SAFR 032 can be effectively inactivated/eliminated from metal surfaces and small electronic devices in only 45 min using optimized modifier concentrations. Modifiers explored in this study included hydrogen peroxide (H(2)O(2)), tert-butyl hydroperoxide, formic acid, and Triton X-100. During sterilization procedure the modifiers were continuously added to SF-CO(2) in either methanol or water at controlled concentrations. The lowest effective concentrations were established for each modifier. Complete elimination of both types of B. pumilus endospores occurred with an optimal modifier addition of either or 10% methanol containing 12% H(2)O(2) or 12% tert-butyl hydroperoxide in SF-CO(2), or a mixture of 6% H(2)O(2) and 6% tert-butyl hydroperoxide. Using water as the carrier of SF-CO(2) modifier, the complete elimination of spores viability of both B. pumilus strains occurred with an addition of either 3.3% water containing 3% H(2)O(2), or 3.3% water containing 10% methanol and 0.5% formic acid, or 3.3% water containing 10% methanol, 1% formic acid and 2% H(2)O(2).

  12. The effect of different growth regimes on the endophytic bacterial communities of the fern, Dicksonia sellowiana hook (Dicksoniaceae).

    PubMed

    de Araújo Barros, Irene; Luiz Araújo, Welington; Lúcio Azevedo, João

    2010-10-01

    Endophytic bacteria associated with the fern Dicksonia sellowiana were investigated. The bacterial communities from the surface-sterilized pinnae and rachis segments of the plants from the Brazilian Atlantic Rainforest that grew in native field conditions were compared with the bacterial communities from plants grown in greenhouses and plants that were initially grown in greenhouses and then transferred to the forest. From 540 pinnae and 540 rachis segments, 163 (30.2%) and 346 (64.2%) were colonized by bacteria, respectively. The main bacterial genera and species that were isolated included Bacillus spp. ( B. cereus, B. megaterium, B. pumilus and B. subtilis ) , Paenibacillus sp. , Amphibacillus sp. , Gracilibacillus sp. , Micrococcus sp. and Stenotrophomonas spp. ( S. maltophilia and S. nitroreducens ). B. pumilus was the most frequently isolated bacterial species . Amphibacillus and Gracilibacillus were reported as endophytes for the first time. Other commonly found bacterial genera were not observed in D. sellowiana , which may reflect preferences of specific bacterial communities inside this fern or detection limitations due to the isolation procedures. Plants that were grown in greenhouses and plants that were reintroduced into the forest displayed more bacterial genera and species diversity than native field plants, suggesting that reintroduction shifts the bacterial diversity. Endophytic bacteria that displayed antagonistic properties against different microorganisms were detected, but no obvious correlation was found between their frequencies with plant tissues or with plants from different growth regimes. This paper reports the first isolation of endophytic bacteria from a fern.

  13. The effect of different growth regimes on the endophytic bacterial communities of the fern, Dicksonia sellowiana hook (Dicksoniaceae)

    PubMed Central

    de Araújo Barros, Irene; Luiz Araújo, Welington; Lúcio Azevedo, João

    2010-01-01

    Endophytic bacteria associated with the fern Dicksonia sellowiana were investigated. The bacterial communities from the surface-sterilized pinnae and rachis segments of the plants from the Brazilian Atlantic Rainforest that grew in native field conditions were compared with the bacterial communities from plants grown in greenhouses and plants that were initially grown in greenhouses and then transferred to the forest. From 540 pinnae and 540 rachis segments, 163 (30.2%) and 346 (64.2%) were colonized by bacteria, respectively. The main bacterial genera and species that were isolated included Bacillus spp. ( B. cereus, B. megaterium, B. pumilus and B. subtilis ) , Paenibacillus sp. , Amphibacillus sp. , Gracilibacillus sp. , Micrococcus sp. and Stenotrophomonas spp. ( S. maltophilia and S. nitroreducens ). B. pumilus was the most frequently isolated bacterial species . Amphibacillus and Gracilibacillus were reported as endophytes for the first time. Other commonly found bacterial genera were not observed in D. sellowiana , which may reflect preferences of specific bacterial communities inside this fern or detection limitations due to the isolation procedures. Plants that were grown in greenhouses and plants that were reintroduced into the forest displayed more bacterial genera and species diversity than native field plants, suggesting that reintroduction shifts the bacterial diversity. Endophytic bacteria that displayed antagonistic properties against different microorganisms were detected, but no obvious correlation was found between their frequencies with plant tissues or with plants from different growth regimes. This paper reports the first isolation of endophytic bacteria from a fern. PMID:24031575

  14. Purification and Characterization of a Fibrinolytic Enzyme from Bacillus pumilus 2.g Isolated from Gembus, an Indonesian Fermented Food

    PubMed Central

    Afifah, Diana Nur; Sulchan, Muhammad; Syah, Dahrul; Yanti; Suhartono, Maggy Thenawidjaja; Kim, Jeong Hwan

    2014-01-01

    Bacillus pumilus 2.g isolated from gembus, an Indonesian fermented soybean cake, secretes several proteases that have strong fibrinolytic activities. A fibrinolytic enzyme with an apparent molecular weight of 20 kDa was purified from the culture supernatant of B. pumilus 2.g by sequential application of ammonium sulfate precipitation, ion-exchange chromatography, and hydrophobic chromatography. The partially purified enzyme was stable between pH 5 and pH 9 and temperature of less than 60°C. Fibrinolytic activity was increased by 5 mM MgCl2 and 5 mM CaCl2 but inhibited by 1 mM phenylmethylsulfonyl fluoride (PMSF), 1 mM sodium dodecyl sulfate (SDS), and 1 mM ethylenediaminetetraacetic acid (EDTA). The partially purified enzyme quickly degraded the α and β chains of fibrinogen but was unable to degrade the γ chain. PMID:25320719

  15. Production of a cellulase-free alkaline xylanase from Bacillus pumilus MTCC 5015 by submerged fermentation and its application in biobleaching.

    PubMed

    Thomas, Leya; Sindhu, Raveendran; Binod, Parameswaran; Pandey, Ashok

    2015-06-01

    Here, we described the production of a cellulase-free alkaline xylanase from Bacillus pumilus MTCC 5015 by submerged fermentation and its application in biobleaching. Various process parameters affecting xylanase production by B. pumilus were optimized by adopting a Plackett-Burman design (PBD) as well as Response surface methodology (RSM). These statistical methods aid in improving the enzyme yield by analysing the individual crucial components of the medium. Maximum production was obtained with 4% yeast extract, 0.08% magnesium sulphate, 30 h of inoculum age, incubation temperature of 33.5 degrees C and pH 9.0. Under optimized conditions, the xylanase activity was 372 IU/ml. Media engineering improved a 5-fold increase in the enzyme production. Scanning electron microscopy (SEM) showed significant changes on the surface of xylanase treated pulps as a result of xylan hydrolysis. Increased roughness of paper carton fibres was apparent in scanning electron micrograph due to opening of the micro fibrils present on the surface by xylanase action. The untreated pulp did not show any such change. These results demonstrated that the B. pumilus MTCC 5015 xylanase was effective in bio-bleaching of paper carton.

  16. Applicability of UV resistant Bacillus pumilus endospores as a human adenovirus surrogate for evaluating the effectiveness of virus inactivation in low-pressure UV treatment systems

    EPA Science Inventory

    Recent studies have demonstrated the potential to use Bacillus pumilus endospores as a surrogate of human adenovirus (HAdV) in UV disinfection studies. The use of endospores has been limited by observations of batch-to-batch variation in UV sensitivity. This study reports on a pr...

  17. Immobilized WO3 nanoparticles on graphene oxide as a photo-induced antibacterial agent against UV-resistant Bacillus pumilus

    NASA Astrophysics Data System (ADS)

    Hosseini, Farshad; Rasuli, Reza; Jafarian, Vahab

    2018-04-01

    We present the antibacterial and photo-catalytic activity of immobilized WO3 nanoparticles on graphene oxide sheets. WO3 nanoparticles were immobilized on graphene oxide using the arc discharge method in arc currents of 5, 20, 40 and 60 A. Tauc plots of the UV-visible spectra show that the band gap of the prepared samples decreases (to ~2.7 eV) with respect to the WO3 nanoparticles. Photo-catalytic activity was examined by the degradation of rhodamine B under ultra-violet irradiation and the results show that the photo-catalytic activity of WO3 nanoparticles is increased by immobilizing them on graphene oxide sheets. In addition, the photo-degradation yield of the samples prepared by the 5 A arc current is 84% in 120 min, which is more than that of the other samples. The antibacterial activity of the prepared samples was studied against Bacillus pumilus (B. pumilus) bacteria, showing high resistance to ultra-violet exposure. Our results show that the bare and immobilized WO3 nanoparticles become more active under UV irradiation and their antibacterial properties are comparable with Ag nanoparticles. Besides this, the results show that although the photo-catalytic activity of the post-annealed samples at 500 °C is less than the as-prepared samples, it is, however, more active against B. pumilus bacteria under UV irradiation.

  18. Surfactin, Iturin, and Fengycin Biosynthesis by Endophytic Bacillus sp. from Bacopa monnieri.

    PubMed

    Jasim, B; Sreelakshmi, K S; Mathew, Jyothis; Radhakrishnan, E K

    2016-07-01

    Endophytic microorganisms which are ubiquitously present in plants may colonize intracellularly or intercellularly without causing any diseases. By living within the unique chemical environment of a host plant, they produce a vast array of compounds with a wide range of biological activities. Because of this, natural products of endophytic origin have been exploited for antimicrobial, antiviral, anticancer, and antioxidant properties. Also, they can be considered to function as an efficient microbial barrier to protect plants from various pathogens. In the present study, endophytic bacterium BmB 9 with antifungal and antibacterial activity isolated from the stem tissue of Bacopa monnieri was studied for the molecular and chemical basis of its activity. PCR-based genome mining for various biosynthetic gene clusters proved the presence of surfactin, iturin, and type I polyketide synthase (PKS) genes in the isolate. The LC-MS/MS based analysis of the extract further confirmed the production of surfactin derivatives (M + H(+)-1008.6602, 1022.6755), iturin (M + H(+)-1043.5697), and fengycin (M + H(+)-1491.8195, 1477.8055) by the selected bacterial isolate. The 16S rDNA sequence similarity based analysis identified the isolate BmB 9 as Bacillus sp. with 100 % identity to Bacillus sp. LCF1 (KP257289).

  19. Degradation of Total Petroleum Hydrocarbon (TPH) in Contaminated Soil Using Bacillus pumilus MVSV3.

    PubMed

    Varma, Surendra Sheeba; Lakshmi, Mahalingam Brinda; Rajagopal, Perumalsam; Velan, Manickam

    2017-01-01

     A study on bioremediation of soil contaminated with petroleum sludge was performed using Bacillus pumilus/MVSV3 (Accession number JN089707). In this study, 5 kg of agricultural soil was mixed well with 5% oil sludge and fertilizers containing nitrogen, phosphorus and potassium (N:P:K). The treatment resulted in 97% removal of total petroleum hydrocarbon (TPH) in 122 d in bacteria mixed contaminated soil when compared to 12% removal of TPH in uninoculated contaminated soil. The population of the microorganism remained stable after introduced into the oil environment. The physical and chemical parameters of the soil mixed with sludge showed variation indicating improvement and the pH level decreased during the experiment period. Elemental analysis and Gas Chromatography-Mass Spectroscopy (GC-MS) analysis revealed the bacterial ability to degrade oil sludge components. Growth experiments with Trigonellafoenumgraecum (Fenugreek) showed the applicability of bioremediated soil for the production.

  20. Occurrence of Bacillus amyloliquefaciens as a systemic endophyte of vanilla orchids.

    PubMed

    White, James F; Torres, Mónica S; Sullivan, Raymond F; Jabbour, Rabih E; Chen, Qiang; Tadych, Mariusz; Irizarry, Ivelisse; Bergen, Marshall S; Havkin-Frenkel, Daphna; Belanger, Faith C

    2014-11-01

    We report the occurrence of Bacillus amyloliquefaciens in vanilla orchids (Vanilla phaeantha) and cultivated hybrid vanilla (V. planifolia × V. pompona) as a systemic bacterial endophyte. We determined with light microscopy and isolations that tissues of V. phaeantha and the cultivated hybrid were infected by a bacterial endophyte and that shoot meristems and stomatal areas of stems and leaves were densely colonized. We identified the endophyte as B. amyloliquefaciens using DNA sequence data. Since additional endophyte-free plants and seed of this orchid were not available, additional studies were performed on surrogate hosts Amaranthus caudatus, Ipomoea tricolor, and I. purpurea. Plants of A. caudatus inoculated with B. amyloliquefaciens demonstrated intracellular colonization of guard cells and other epidermal cells, confirming the pattern observed in the orchids. Isolations and histological studies suggest that the bacterium may penetrate deeply into developing plant tissues in shoot meristems, forming endospores in maturing tissues. B. amyloliquefaciens produced fungal inhibitors in culture. In controlled experiments using morning glory seedlings we showed that the bacterium promoted seedling growth and reduced seedling necrosis due to pathogens. We detected the gene for phosphopantetheinyl transferase (sfp), an enzyme in the pathway for production of antifungal lipopeptides, and purified the lipopeptide "surfactin" from cultures of the bacterium. We hypothesize that B. amyloliquefaciens is a robust endophyte and defensive mutualist of vanilla orchids. Whether the symbiosis between this bacterium and its hosts can be managed to protect vanilla crops from diseases is a question that should be evaluated in future research. © 2014 Wiley Periodicals, Inc.

  1. Bacillus pumilus strain YSPMK11 as plant growth promoter and bicontrol agent against Sclerotinia sclerotiorum.

    PubMed

    Kaushal, Manoj; Kumar, Ajay; Kaushal, Rajesh

    2017-06-01

    A study was executed in a direction to attenuate Sclerotinia stalk rot (SSR) disease through biocontrol agent and also to enhance crop productivity. Culture filtrate of bacterial strain YSPMK11 inhibited growth of Sclerotinia sclerotiorum in vitro which also exhibited higher plant growth promoting attributes. Interaction studies revealed maximum (81.50%) growth inhibition at 35 °C and pH 7.0 after 72 h incubation period with 15% culture filtrate. Based upon 16S rRNA gene sequence strain, YSPMK11 was identified as Bacillus pumilus. Furthermore, the genome of this isolate was searched for antimicrobial lipopeptide, i.e., ItuD and SrfC genes. The PCR amplification results showed the presence of both these lipopeptide genes in isolate YSPMK11. Iturin A as antifungal compound was identified as major components of fraction through GC/MS. In field experiments, the application of strain YSPMK11 cell suspension (10 8 CFU/ml) suppressed disease severity by 93% and increased curd yield by 36% which was more that of commercially used fungicide in farmer practices under mid-hills of Himachal Pradesh. Conclusively, our study is first to demonstrate the effect of B. pumilus strain YSPMK11 in suppression of SSR under field conditions and would be employed as an efficient biocontrol agent to replace commercial fungicides in cauliflower cropping system. In addition, the presence of both lipopeptide genes (ItuD and SrfC) and iturin A in this isolate makes him potent strain for biological control application in agriculture.

  2. Purification and molecular characterization of subtilisin-like alkaline protease BPP-A from Bacillus pumilus strain MS-1.

    PubMed

    Miyaji, T; Otta, Y; Nakagawa, T; Watanabe, T; Niimura, Y; Tomizuka, N

    2006-03-01

    The present study was conducted by screening zein-degrading bacteria in an attempt to obtain zein-degrading protease. Soil bacteria were screened by formation of a clear zone on zein plates. Characterization of a zein-degrading bacterium indicated a taxonomic affiliation to Bacillus pumilus, and was named MS-1 strain. The strain produced two different types of extracellular proteases, BPP-A and BPP-B. In this study, we purified and characterized BPP-A because it exhibited a higher ability to hydrolyze zein than BPP-B. When casein was used as the substrate, the optimal pH for BPP-A was 11.0. In BPP-A, zein was better substrate than casein at pH 13.0, whereas casein was better one than zein at pH 11.0. The bppA gene encoded a 383-amino acid pre-pro form of BPP-A, and mature BPP-A contained 275 amino acid residues. It was concluded that BPP-A belonged to the subtilisin family. A zein-degrading bacterium assigned to B. pumilus produced two different types of extracellular proteases, BPP-A and BPP-B. BPP-A exhibited an ability to hydrolyze zein in an extreme alkaline condition. This is a first report on screening for zein-degrading micro-organisms. The subtilisin-like protease BPP-A is possible to utilize as an industrial enzyme for the production of zein hydrolysates.

  3. Structural analysis of Bacillus pumilus phenolic acid decarboxylase, a lipocalin-fold enzyme

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matte, Allan; Grosse, Stephan; Bergeron, Hélène

    The decarboxylation of phenolic acids, including ferulic and p-coumaric acids, to their corresponding vinyl derivatives is of importance in the flavoring and polymer industries. Here, the crystal structure of phenolic acid decarboxylase (PAD) from Bacillus pumilus strain UI-670 is reported. The enzyme is a 161-residue polypeptide that forms dimers both in the crystal and in solution. The structure of PAD as determined by X-ray crystallography revealed a -barrel structure and two -helices, with a cleft formed at one edge of the barrel. The PAD structure resembles those of the lipocalin-fold proteins, which often bind hydrophobic ligands. Superposition of structurally relatedmore » proteins bound to their cognate ligands shows that they and PAD bind their ligands in a conserved location within the -barrel. Analysis of the residue-conservation pattern for PAD-related sequences mapped onto the PAD structure reveals that the conservation mainly includes residues found within the hydrophobic core of the protein, defining a common lipocalin-like fold for this enzyme family. A narrow cleft containing several conserved amino acids was observed as a structural feature and a potential ligand-binding site.« less

  4. Sensitive change of iso-branched fatty acid (iso-15:0) in Bacillus pumilus PAMC 23174 in response to environmental changes.

    PubMed

    Yi, Da-Hye; Sathiyanarayanan, Ganesan; Seo, Hyung Min; Kim, Jung-Ho; Bhatia, Shashi Kant; Kim, Yun-Gon; Park, Sung-Hee; Jung, Ji-Young; Lee, Yoo Kyung; Yang, Yung-Hun

    2016-01-01

    In this study, the environmental adaptive metabolic processes were investigated using a psychrotrophic polar bacterium Bacillus pumilus PAMC 23174 in response to various temperatures and nutrients, especially in regard to the synthesis of fatty acids. Fatty acid methyl ester analysis was performed using gas chromatography-mass spectrometry and we found that a sensitive changes in iso-branched fatty acid (iso-15:0) synthesis occurred when adjusting the nutritional ratio of branched chain fatty acids (anteiso/iso) with different temperatures, resulting in a change in the balance of anteiso- and iso-form fatty acids. We also observed that this Arctic bacterium preferred amino acid leucine for the synthesis of fatty acids. The increased and decreased synthesis of iso-form fatty acids in response to different temperatures and leucine preference, changes the fatty acid ratio in bacteria, which further affects the membrane fluidity and it is also directly correlated with survival of bacteria in an extreme environment. Hence, this study suggests that B. pumilus PAMC 23174 is a potential model organism for the analysis of the unique ecological adaptations of polar bacteria in changing and the extreme environments.

  5. Plant Growth Enhancement, Disease Resistance, and Elemental Modulatory Effects of Plant Probiotic Endophytic Bacillus sp. Fcl1.

    PubMed

    Jayakumar, Aswathy; Krishna, Arathy; Mohan, Mahesh; Nair, Indu C; Radhakrishnan, E K

    2018-04-13

    Endophytic bacteria have already been studied for their beneficial support to plants to manage both biotic and abiotic stress through an array of well-established mechanisms. They have either direct or indirect impact on mobilizing diverse nutrients and elements from soil to plants. However, detailed insight into the fine-tuning of plant elemental composition by associated microorganism is very limited. In this study, endophytic Bacillus Fcl1 characterized from the rhizome of Curcuma longa was found to have broad range of plant growth-promoting and biocontrol mechanisms. The organism was found to have indole acetic acid and 1-aminocyclopropane-1-carboxylate deaminase production properties along with nitrogen fixation. The Bacillus Fcl1 could also inhibit diverse phytopathogens as confirmed by dual culture and well diffusion. By LC-MS/MS analysis, chemical basis of its antifungal activity has been proved to be due to the production of iturin A and a blend of surfactin compounds. Moreover, the organism was found to induce both plant growth and disease resistance in vivo in model plant system. Because of these experimentally demonstrated multiple plant probiotic features, Bacillus Fcl1 was selected as a candidate organism to study its role in modulation of plant elemental composition. ICP-MS analysis of Bacillus Fcl1-treated plants provided insight into relation of bacterial interaction with elemental composition of plants.

  6. Sterilizing Bacillus pumilus spores using supercritical carbon dioxide.

    PubMed

    Zhang, Jian; Burrows, Sarah; Gleason, Courtney; Matthews, Michael A; Drews, Michael J; Laberge, Martine; An, Yuehuei H

    2006-09-01

    Supercritical carbon dioxide (SC CO(2)) has been evaluated as a new sterilization technology. Results are presented on killing of B. pumilus spores using SC CO(2) containing trace levels of additives. Complete killing was achieved with 200 part per million (ppm) hydrogen peroxide in SC CO(2) at 60 degrees C, 27.5 MPa. Addition of water to SC CO(2) resulted in greater than three-log killing, but this is insufficient to claim sterilization. Neither ethanol nor isopropanol when added to SC CO(2) affected killing.

  7. In Vitro Assessment of Marine Bacillus for Use as Livestock Probiotics

    PubMed Central

    Prieto, Maria Luz; O’Sullivan, Laurie; Tan, Shiau Pin; McLoughlin, Peter; Hughes, Helen; Gutierrez, Montserrat; Lane, Jonathan A.; Hickey, Rita M.; Lawlor, Peadar G.; Gardiner, Gillian E.

    2014-01-01

    Six antimicrobial-producing seaweed-derived Bacillus strains were evaluated in vitro as animal probiotics, in comparison to two Bacillus from an EU-authorized animal probiotic product. Antimicrobial activity was demonstrated on solid media against porcine Salmonella and E. coli. The marine isolates were most active against the latter, had better activity than the commercial probiotics and Bacillus pumilus WIT 588 also reduced E. coli counts in broth. All of the marine Bacillus tolerated physiological concentrations of bile, with some as tolerant as one of the probiotics. Spore counts for all isolates remained almost constant during incubation in simulated gastric and ileum juices. All of the marine Bacillus grew anaerobically and the spores of all except one isolate germinated under anaerobic conditions. All were sensitive to a panel of antibiotics and none harbored Bacillus enterotoxin genes but all, except B. pumilus WIT 588, showed some degree of β-hemolysis. However, trypan blue dye exclusion and xCELLigence assays demonstrated a lack of toxicity in comparison to two pathogens; in fact, the commercial probiotics appeared more cytotoxic than the majority of the marine Bacillus. Overall, some of the marine-derived Bacillus, in particular B. pumilus WIT 588, demonstrate potential for use as livestock probiotics. PMID:24796302

  8. Survival of Bacillus pumilus spores for a prolonged period of time in real space conditions.

    PubMed

    Vaishampayan, Parag A; Rabbow, Elke; Horneck, Gerda; Venkateswaran, Kasthuri J

    2012-05-01

    To prevent forward contamination and maintain the scientific integrity of future life-detection missions, it is important to characterize and attempt to eliminate terrestrial microorganisms associated with exploratory spacecraft and landing vehicles. Among the organisms isolated from spacecraft-associated surfaces, spores of Bacillus pumilus SAFR-032 exhibited unusually high resistance to decontamination techniques such as UV radiation and peroxide treatment. Subsequently, B. pumilus SAFR-032 was flown to the International Space Station (ISS) and exposed to a variety of space conditions via the European Technology Exposure Facility (EuTEF). After 18 months of exposure in the EXPOSE facility of the European Space Agency (ESA) on EuTEF under dark space conditions, SAFR-032 spores showed 10-40% survivability, whereas a survival rate of 85-100% was observed when these spores were kept aboard the ISS under dark simulated martian atmospheric conditions. In contrast, when UV (>110 nm) was applied on SAFR-032 spores for the same time period and under the same conditions used in EXPOSE, a ∼7-log reduction in viability was observed. A parallel experiment was conducted on Earth with identical samples under simulated space conditions. Spores exposed to ground simulations showed less of a reduction in viability when compared with the "real space" exposed spores (∼3-log reduction in viability for "UV-Mars," and ∼4-log reduction in viability for "UV-Space"). A comparative proteomics analysis indicated that proteins conferring resistant traits (superoxide dismutase) were present in higher concentration in space-exposed spores when compared to controls. Also, the first-generation cells and spores derived from space-exposed samples exhibited elevated UVC resistance when compared with their ground control counterparts. The data generated are important for calculating the probability and mechanisms of microbial survival in space conditions and assessing microbial contaminants

  9. A Comparative biochemical study on two marine endophytes, Bacterium SRCnm and Bacillus sp. JS, Isolated from red sea algae.

    PubMed

    Ahmed, Eman Fadl; Hassan, Hossam Mokhtar; Rateb, Mostafa Ezzat; Abdel-Wahab, Noha; Sameer, Somayah; Aly Taie, Hanan Anwar; Abdel-Hameed, Mohammed Sayed; Hammouda, Ola

    2016-01-01

    Two marine endophytic bacteria were isolated from the Red Sea algae; a red alga; Acanthophora dendroides and the brown alga Sargassum sabrepandum. The isolates were identified based on their 16SrRNA sequences as Bacterium SRCnm and Bacillus sp. JS. The objective of this study was to investigate the potential anti-microbial and antioxidant activities of the extracts of the isolated bacteria grown in different nutrient conditions. Compared to amoxicillin (25μg/disk) and erythromycin (15μg/disk), the extracts of Bacterium SRCn min media II, III, IV and V were potent inhibitors of the gram-positive bacterium Sarcina maxima even at low concentrations. Also, the multidrug resistant Staphylococcus aureus(MRSA) was more sensitive to the metabolites produced in medium (II) of the same endophyte than erythromycin (15μg/disk). A moderate activity of the Bacillus sp. JS extracts of media I and II was obtained against the same pathogen. The total compounds (500ug/ml) of both isolated endophytes showed moderate antioxidant activities (48.9% and 46.1%, respectively). LC/MS analysis of the bacterial extracts was carried out to investigate the likely natural products produced. Cyclo(D-cis-Hyp-L-Leu), dihydrosphingosine and 2-Amino-1,3-hexadecanediol were identified in the fermentation medium of Bacterium SRCnm, whereas cyclo (D-Pro-L-Tyr) and cyclo (L-Leu-L-Pro) were the suggested compounds of Bacillus sp. JS.

  10. Substrate specificity and thermostability of the dehairing alkaline protease from Bacillus pumilus.

    PubMed

    Wan, Min-Yuan; Wang, Hai-Yan; Zhang, Yi-Zheng; Feng, Hong

    2009-11-01

    An alkaline protease (DHAP) from Bacillus pumilus has shown great potential in hide dehairing. To get better insights on its catalytic properties for application, the substrate specificity and thermostability were investigated using five natural proteins and nine synthetic peptides. The results showed that DHAP could hydrolyze five proteins tested here in different specificity. Collagen, a component of animal skin, was more resistant to hydrolysis than casein, fibrin, and gelatin. Among the synthetic peptides, the enzyme showed activity mainly with tetrapeptide substrates with the catalytic efficiency in order of Phe>Leu>Ala at P1 site, although k(m) value for AAVA-pN is much lower than that for AAPL-pN and AAPF-pN. With tripeptide substrates, smaller side-chain group (Gly) at P1 site was not hydrolyzed by DHAP. The enzyme showed good thermostability below 60 degrees C, and lost activity so quickly above 70 degrees C. The thermostability was largely dependent on metal ion, especially Ca(2+), although other ions, like Mg(2+), Mn(2+), and Co(2+), could sustain stability at certain extent within limited time. Cu(2+), Fe(2+), as well as Al(3+), did not support the enzyme to retain activity at 60 degrees C even in 5 min. In addition, the selected metal ions could coordinate calcium in improvement or destruction of thermostability for DHAP.

  11. Aqueous extracts of a Mars analogue regolith that mimics the Phoenix landing site do not inhibit spore germination or growth of model spacecraft contaminants Bacillus subtilis 168 and Bacillus pumilus SAFR-032

    NASA Astrophysics Data System (ADS)

    Nicholson, Wayne L.; McCoy, Lashelle E.; Kerney, Krystal R.; Ming, Douglas W.; Golden, D. C.; Schuerger, Andrew C.

    2012-08-01

    Because Mars is a primary target for life detection and habitability assessment missions, its exploration is also by necessity a Planetary Protection issue. The recent finding of significant levels of perchlorate (ClO4-) in regolith sampled from the Phoenix landing site raises the question of its potential biotoxicity to putative indigenous martian life, microbial forward contaminants from Earth, or future human visitors. To address this issue, an analogue regolith was constructed based on regolith chemistry data from the Phoenix landing site. A Mars Aqueous Regolith Extract (MARE) was prepared from the Phoenix analogue regolith and analyzed by ion chromatography. The MARE contained (mg/L) the cations Na+ (1411 ± 181), Mg2+ (1051 ± 160), Ca2+ (832 ± 125), and K+ (261 ± 29), and the anions SO42-(5911±993), ClO4-(5316±1767), Cl(171±25) and F- (2.0 ± 0.4). Nitrogen-containing species NO3-(773±113) and NO2-(6.9±2.3) were also present as a result of regolith preparation procedures, but their relevance to Mars is at present unknown. The MARE was tested for potential toxic effects on two model spacecraft contaminants, the spore-forming bacteria Bacillus subtilis strain 168 and Bacillus pumilus strain SAFR-032. In B. subtilis, spore germination and initial vegetative growth (up to ˜5 h) was not inhibited in a rich complex medium prepared with the MARE, but growth after 5 h was significantly suppressed in medium prepared using the MARE. Both B. subtilis and B. pumilus exhibited significantly higher rates of spore germination and growth in the MARE vs. DW with no additions (likely due to endogenous spore nutrients), but germination and growth was further stimulated by addition of glucose and a combination of buffered inorganic salts (K2HPO4, KH2PO4, (NH4)2SO4, and MgSO4). The data indicate that the aqueous environment in the regolith from the Phoenix landing site containing high levels of perchlorate does not pose a significant barrier to growth of putative

  12. Site-directed mutagenesis at aspartate and glutamate residues of xylanase from Bacillus pumilus.

    PubMed Central

    Ko, E P; Akatsuka, H; Moriyama, H; Shinmyo, A; Hata, Y; Katsube, Y; Urabe, I; Okada, H

    1992-01-01

    To elucidate the reaction mechanism of xylanase, the identification of amino acids essential for its catalysis is of importance. Studies have indicated the possibility that the reaction mechanism of xylanase is similar to that of hen's egg lysozyme, which involves acidic amino acid residues. On the basis of this assumption, together with the three-dimensional structure of Bacillus pumilus xylanase and its amino acid sequence similarity to other xylanases of different origins, three acidic amino acids, namely Asp-21, Glu-93 and Glu-182, were selected for site-directed mutagenesis. The Asp residue was altered to either Ser or Glu, and the Glu residues to Ser or Asp. The purified mutant xylanases D21E, D21S, E93D, E93S, E182D and E182S showed single protein bands of about 26 kDa on SDS/PAGE. C.d. spectra of these mutant enzymes show no effect on the secondary structure of xylanase, except that of D21E, which shows a little variation. Furthermore, mutations of Glu-93 and Glu-182 resulted in a drastic decrease in the specific activity of xylanase as compared with mutation of Asp-21. On the basis of these results we propose that Glu-93 and Glu-182 are the best candidates for the essential catalytic residues of xylanase. Images Fig. 1. Fig. 4 Fig. 5 PMID:1359880

  13. Isolation and characterization of Leu[7]-Surfactin from the endophytic bacterium Bacillus mojavensis RRC 101, a biocontrol agent for Fusarium verticillioides

    USDA-ARS?s Scientific Manuscript database

    Bacillus mojavensis is an endophytic bacterium patented for control of fungal diseases in maize and other plants. Culture extracts and filtrates from this bacterium were antagonistic to the pathogenic and mycotoxic fungus Fusarium verticillioides. However, the identity of the inhibitory substance ...

  14. Assessment of Plant-Probiotic Performance of Novel Endophytic Bacillus sp. in Talc-Based Formulation.

    PubMed

    Basheer, Jasim; Ravi, Aswani; Mathew, Jyothis; Krishnankutty, Radhakrishnan Edayileveettil

    2018-01-25

    Endophytic bacteria are considered to have a plethora of plant growth promoting and anti-phytopathogenic traits to live within the plants. Hence, they have immense promises for plant probiotic development. In the current study, plant probiotic endophytic Bacillus sp. CaB5 which has been previously isolated from Capsicum annuum was investigated for its performance in talc-based formulation. For this, CaB5 was made into formulation with sterile talc, calcium carbonate, and carboxymethyl cellulose. The viability analysis of the formulation by standard plate count and fluorescence methods has confirmed the stable microbial count up to 45 days. Plant probiotic performance of the prepared formulation was analyzed on cowpea (Vigna unguiculata) and lady's finger (Abelmoschus esculentus). The results showed the formulation treatment to have enhancement effect on seed germination as well as plant growth in both selected plants. The results highlight the potential of CaB5-based formulation for field application to enhance growth of economically important plants.

  15. Effect of endophytic Bacillus cereus ERBP inoculation into non-native host: Potentials and challenges for airborne formaldehyde removal.

    PubMed

    Khaksar, Gholamreza; Treesubsuntorn, Chairat; Thiravetyan, Paitip

    2016-10-01

    Phytoremediation could be a cost-effective, environmentally friendly approach for the treatment of indoor air. However, some drawbacks still dispute the expediency of phytotechnology. Our objectives were to investigate the competency of plant growth-promoting (PGP) endophytic Bacillus cereus ERBP (endophyte root blue pea), isolated from the root of Clitoria ternatea, to colonize and stabilize within Zamioculcas zamiifolia and Euphorbia milii as non-native hosts without causing any disease or stress symptoms. Moreover, the impact of B. cereus ERBP on the natural shoot endophytic community and for the airborne formaldehyde removal capability of non-native hosts was assessed. Non-native Z. zamiifolia was effectively inoculated with B. cereus ERBP through soil as the most efficient method of endophyte inoculation. Denaturing gradient gel electrophoresis profiling of the shoot endophytic community verified the colonization and stability of B. cereus ERBP within its non-native host during a 20-d fumigation period without interfering with the natural shoot endophytic diversity of Z. zamiifolia. B. cereus ERBP conferred full protection to its non-native host against formaldehyde phytotoxicity and enhanced airborne formaldehyde removal of Z. zamiifolia whereas non-inoculated plants suffered from formaldehyde phytotoxicity because their natural shoot endophytic community was detrimentally affected by formaldehyde. In contrast, B. cereus ERBP inoculation into non-native E. milii deteriorated airborne formaldehyde removal of the non-native host (compared to a non-inoculated one) as B. cereus ERBP interfered with natural shoot endophytic community of E. milii, which caused stress symptoms and stimulated ethylene biosynthesis. Non-native host inoculation with PGP B. cereus ERBP could bear potentials and challenges for airborne formaldehyde removal. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  16. Molecular cloning, sequence and structural analysis of dehairing Mn(2+) dependent alkaline serine protease (MASPT) of Bacillus pumilus TMS55.

    PubMed

    Ibrahim, Kalibulla Syed; Muniyandi, Jeyaraj; Pandian, Shunmugiah Karutha

    2011-10-01

    Leather industries release a large amount of pollution-causing chemicals which creates one of the major industrial pollutions. The development of enzyme based processes as a potent alternative to pollution-causing chemicals is useful to overcome this issue. Proteases are enzymes which have extensive applications in leather processing and in several bioremediation processes due to their high alkaline protease activity and dehairing efficacy. In the present study, we report cloning, characterization of a Mn2+ dependent alkaline serine protease gene (MASPT) of Bacillus pumilus TMS55. The gene encoding the protease from B. pumilus TMS55 was cloned and its nucleotide sequence was determined. This gene has an open reading frame (ORF) of 1,149 bp that encodes a polypeptide of 383 amino acid residues. Our analysis showed that this polypeptide is composed of 29 residues N-terminal signal peptide, a propeptide of 79 residues and a mature protein of 275 amino acids. We performed bioinformatics analysis to compare MASPT enzyme with other proteases. Homology modeling was employed to model three dimensional structure for MASPT. Structural analysis showed that MASPT structure is composed of nine α-helices and nine β-strands. It has 3 catalytic residues and 14 metal binding residues. Docking analysis showed that residues S223, A260, N263, T328 and S329 interact with Mn2+. This study allows initial inferences about the structure of the protease and will allow the rational design of its derivatives for structure-function studies and also for further improvement of the enzyme.

  17. Growth and (137)Cs uptake of four Brassica species influenced by inoculation with a plant growth-promoting rhizobacterium Bacillus pumilus in three contaminated farmlands in Fukushima prefecture, Japan.

    PubMed

    Aung, Han Phyo; Djedidi, Salem; Oo, Aung Zaw; Aye, Yi Swe; Yokoyama, Tadashi; Suzuki, Sohzoh; Sekimoto, Hitoshi; Bellingrath-Kimura, Sonoko Dorothea

    2015-07-15

    The effectiveness of the plant growth-promoting rhizobacterium Bacillus pumilus regarding growth promotion and radiocesium ((137)Cs) uptake was evaluated in four Brassica species grown on different (137)Cs contaminated farmlands at Fukushima prefecture in Japan from June to August 2012. B. pumilus inoculation did not enhance growth in any of the plants, although it resulted in a significant increase of (137)Cs concentration and higher (137)Cs transfer from the soil to plants. The Brassica species exhibited different (137)Cs uptake abilities in the order Komatsuna>turnip>mustard>radish. TF values of (137)Cs ranged from 0.018 to 0.069 for all vegetables. Komatsuna possessed the largest root surface area and root volume, and showed a higher (137)Cs concentration in plant tissue and higher (137)Cs TF values (0.060) than the other vegetables. Higher (137)Cs transfer to plants was prominent in soil with a high amount of organic matter and an Al-vermiculite clay mineral type. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Ethanol/water pulps from sugar cane straw and their biobleaching with xylanase from Bacillus pumilus.

    PubMed

    Moriya, Regina Y; Gonçalves, Adilson R; Duarte, Marta C T

    2007-04-01

    The influence of independent variables (temperature and time) on the cooking of sugar cane straw with ethanol/water mixtures was studied to determine operating conditions that obtain pulp with high cellulose contents and a low lignin content. An experimental 2(2) design was applied for temperatures of 185 and 215 degrees C, and time of 1 and 2.5 h with the ethanol/water mixture concentration and constant straw-to-solvent ratio. The system was scaled-up at 200 degrees C cooking temperature for 2 h with 50% ethanol-water concentration, and 1:10 (w/v) straw-to-solvent ratio to obtain a pulp with 3.14 cP viscosity, 58.09 kappa-number, and the chemical composition of the pulps were 3.2% pentosan and 31.5% lignin. Xylanase from Bacillus pumilus was then applied at a loading of 5-150 IU/g dry pulp in the sugar cane straw ethanol/water pulp at 50 degrees C for 2 and 20 h. To ethanol/water pulps, the best enzyme dosage was found to be 20 IU/g dry pulp at 20 h, and a high enzyme dosage of 150 IU/g dry pulp did not decrease the kappa-number of the pulp.

  19. No adverse effects of transgenic maize on population dynamics of endophytic Bacillus subtilis strain B916-gfp.

    PubMed

    Sun, Chongsi; Geng, Lili; Wang, Meiling; Shao, Gaoxiang; Liu, Yongfeng; Shu, Changlong; Zhang, Jie

    2017-02-01

    Endophytic bacterial communities play a key role in promoting plant growth and combating plant diseases. However, little is known about their population dynamics in plant tissues and bulk soil, especially in transgenic crops. This study investigated the colonization of transgenic maize harboring the Bacillus thuringiensis (Bt) cry1Ah gene by Bacillus subtilis strain B916-gfp present in plant tissues and soil. Bt and nontransgenic maize were inoculated with B916-gfp by seed soaking, or root irrigation under both laboratory greenhouse and field conditions. During the growing season, B916-gfp colonized transgenic as well as nontransgenic plants by both inoculation methods. No differences were observed in B916-gfp population size between transgenic and nontransgenic plants, except at one or two time points in the roots and stems that did not persist over the examination period. Furthermore, planting transgenic maize did not affect the number of B916-gfp in bulk soil in either laboratory or field trials. These results indicate that transgenic modification of maize with the cry1Ah gene has no influence on colonization by the endophytic bacteria B916-gfp present in the plant and in bulk soil. © 2016 The Authors. MicrobiologyOpenpublished by John Wiley & Sons Ltd.

  20. Bacillus subtilis and Enterobacter cloacae endophytes from healthy Theobroma cacao L. trees can systemically colonize seedlings and promote growth.

    PubMed

    Leite, Hianna Almeida Câmara; Silva, Anderson Barbosa; Gomes, Fábio Pinto; Gramacho, Karina Peres; Faria, José Cláudio; de Souza, Jorge Teodoro; Loguercio, Leandro Lopes

    2013-03-01

    Clonal genotypes resistant to fungal diseases are an important component of the cocoa production system in southeastern Bahia state (Brazil), so that technologies for faster production of stronger and healthier plantlets are highly desirable. In this study, the effects of inoculated bacterial endophytes isolated from healthy adult cacao plants on seedlings, and aspects related to inoculation methods, colonization patterns, and photosynthesis were investigated. Sequencing of 16S rRNA, hsp-60, and rpo-B genes placed the wild-type isolates within the species Enterobacter cloacae (isolates 341 and 344) and Bacillus subtilis (isolate 629). Spontaneous rifampicin-resistant (rif(R)) variants for 344 were also produced and tested. Endophytic application was either by immersion of surface sterilized seeds in bacterial suspensions or direct inoculation into soil, 20 days after planting non-inoculated seeds into pots. Results from in vitro recovery of inoculated isolates showed that the wild-type endophytes and rif(R) variants systemically colonized the entire cacao seedlings in 15-20 days, regardless of the inoculation method. Some endophytic treatments showed significant increases in seedlings' height, number of leaves, and dry matter. Inoculation methods affected the combined application of endophytes, which maintained the growth-promotion effects, but not in the same manner as in single applications. Interestingly, the 344-3.2 rif(R) variant showed improved performance in relation to both the wild type and another related variant. Photosynthetic rates and stomatal conductance increased significantly for some endophytic treatments, being partially associated with effects on growth and affected by the inoculation method. The results suggest that E. cloacae and B. subtilis endophytes from healthy adult plants (not transmitted by seeds) were able to promote vegetative growth on cacao seedlings. The development of products for large-scale use in seedlings

  1. Antimicrobial and plant growth-promoting properties of the cacao endophyte Bacillus subtilis ALB629.

    PubMed

    Falcäo, L L; Silva-Werneck, J O; Vilarinho, B R; da Silva, J P; Pomella, A W V; Marcellino, L H

    2014-06-01

    To investigate the effects of the endophyte Bacillus subtilisALB629 on the growth of cacao seedlings at early developmental stage and to evaluate its antimicrobial properties. Germinating cacao seeds were inoculated with ALB629, and seedlings growth was evaluated 30 days later. Significant increase (P < 0·05) was observed in the root system (up to 30%), leaf area (14%) and stem height (7·6%). ALB629 colonized the entire plant, prevailing over indigenous micro-organisms. In addition, it was tested in vitro, by pairing assays, and showed antagonistic effect against the phytopathogenic fungi Moniliophthora perniciosa, Colletotrichum sp. and C. gossypii. When tested in cacao-grafting procedure in the field, ALB629 increased the grafting success rate (24%), indicating its protective effect. In addition, this Bacillus secretes an antagonist compound, as shown by the antifungal activity of the cell-free culture. Bacillus subtilisALB629 promotes cacao root growth, besides promoting growth of the aerial part of cacao seedlings. It has antimicrobial properties and produces an antifungal compound. ALB629 presented beneficial characteristics for cacao cultivation, being a good biological control agent candidate. Furthermore, it is a potential source of antifungal compound with potential for commercial exploitation. © 2014 The Society for Applied Microbiology.

  2. Nitrogen acquisition in Agave tequilana from degradation of endophytic bacteria

    PubMed Central

    Beltran-Garcia, Miguel J.; White, Jr., James F.; Prado, Fernanda M.; Prieto, Katia R.; Yamaguchi, Lydia F.; Torres, Monica S.; Kato, Massuo J.; Medeiros, Marisa H. G.; Di Mascio, Paolo

    2014-01-01

    Plants form symbiotic associations with endophytic bacteria within tissues of leaves, stems, and roots. It is unclear whether or how plants obtain nitrogen from these endophytic bacteria. Here we present evidence showing nitrogen flow from endophytic bacteria to plants in a process that appears to involve oxidative degradation of bacteria. In our experiments we employed Agave tequilana and its seed-transmitted endophyte Bacillus tequilensis to elucidate organic nitrogen transfer from 15N-labeled bacteria to plants. Bacillus tequilensis cells grown in a minimal medium with 15NH4Cl as the nitrogen source were watered onto plants growing in sand. We traced incorporation of 15N into tryptophan, deoxynucleosides and pheophytin derived from chlorophyll a. Probes for hydrogen peroxide show its presence during degradation of bacteria in plant tissues, supporting involvement of reactive oxygen in the degradation process. In another experiment to assess nitrogen absorbed as a result of endophytic colonization of plants we demonstrated that endophytic bacteria potentially transfer more nitrogen to plants and stimulate greater biomass in plants than heat-killed bacteria that do not colonize plants but instead degrade in the soil. Findings presented here support the hypothesis that some plants under nutrient limitation may degrade and obtain nitrogen from endophytic microbes. PMID:25374146

  3. Nitrogen acquisition in Agave tequilana from degradation of endophytic bacteria.

    PubMed

    Beltran-Garcia, Miguel J; White, James F; Prado, Fernanda M; Prieto, Katia R; Yamaguchi, Lydia F; Torres, Monica S; Kato, Massuo J; Medeiros, Marisa H G; Di Mascio, Paolo

    2014-11-06

    Plants form symbiotic associations with endophytic bacteria within tissues of leaves, stems, and roots. It is unclear whether or how plants obtain nitrogen from these endophytic bacteria. Here we present evidence showing nitrogen flow from endophytic bacteria to plants in a process that appears to involve oxidative degradation of bacteria. In our experiments we employed Agave tequilana and its seed-transmitted endophyte Bacillus tequilensis to elucidate organic nitrogen transfer from (15)N-labeled bacteria to plants. Bacillus tequilensis cells grown in a minimal medium with (15)NH4Cl as the nitrogen source were watered onto plants growing in sand. We traced incorporation of (15)N into tryptophan, deoxynucleosides and pheophytin derived from chlorophyll a. Probes for hydrogen peroxide show its presence during degradation of bacteria in plant tissues, supporting involvement of reactive oxygen in the degradation process. In another experiment to assess nitrogen absorbed as a result of endophytic colonization of plants we demonstrated that endophytic bacteria potentially transfer more nitrogen to plants and stimulate greater biomass in plants than heat-killed bacteria that do not colonize plants but instead degrade in the soil. Findings presented here support the hypothesis that some plants under nutrient limitation may degrade and obtain nitrogen from endophytic microbes.

  4. CotA, a Multicopper Oxidase from Bacillus pumilus WH4, Exhibits Manganese-Oxidase Activity

    PubMed Central

    Su, Jianmei; Bao, Peng; Bai, Tenglong; Deng, Lin; Wu, Hui; Liu, Fan; He, Jin

    2013-01-01

    Multicopper oxidases (MCOs) are a family of enzymes that use copper ions as cofactors to oxidize various substrates. Previous research has demonstrated that several MCOs such as MnxG, MofA and MoxA can act as putative Mn(II) oxidases. Meanwhile, the endospore coat protein CotA from Bacillus species has been confirmed as a typical MCO. To study the relationship between CotA and the Mn(II) oxidation, the cotA gene from a highly active Mn(II)-oxidizing strain Bacillus pumilus WH4 was cloned and overexpressed in Escherichia coli strain M15. The purified CotA contained approximately four copper atoms per molecule and showed spectroscopic properties typical of blue copper oxidases. Importantly, apart from the laccase activities, the CotA also displayed substantial Mn(II)-oxidase activities both in liquid culture system and native polyacrylamide gel electrophoresis. The optimum Mn(II) oxidase activity was obtained at 53°C in HEPES buffer (pH 8.0) supplemented with 0.8 mM CuCl2. Besides, the addition of o-phenanthroline and EDTA both led to a complete suppression of Mn(II)-oxidizing activity. The specific activity of purified CotA towards Mn(II) was 0.27 U/mg. The Km, Vmax and kcat values towards Mn(II) were 14.85±1.17 mM, 3.01×10−6±0.21 M·min−1 and 0.32±0.02 s−1, respectively. Moreover, the Mn(II)-oxidizing activity of the recombinant E. coli strain M15-pQE-cotA was significantly increased when cultured both in Mn-containing K liquid medium and on agar plates. After 7-day liquid cultivation, M15-pQE-cotA resulted in 18.2% removal of Mn(II) from the medium. Furthermore, the biogenic Mn oxides were clearly observed on the cell surfaces of M15-pQE-cotA by scanning electron microscopy. To our knowledge, this is the first report that provides the direct observation of Mn(II) oxidation with the heterologously expressed protein CotA, Therefore, this novel finding not only establishes the foundation for in-depth study of Mn(II) oxidation mechanisms, but also offers a

  5. The combined effect of pasteurization intensity, water activity, pH and incubation temperature on the survival and outgrowth of spores of Bacillus cereus and Bacillus pumilus in artificial media and food products.

    PubMed

    Samapundo, S; Heyndrickx, M; Xhaferi, R; de Baenst, I; Devlieghere, F

    2014-07-02

    The objective of the study was to evaluate the combined effects of pasteurization intensity (no heat treatment and 10 min at 70, 80 and 90 °C), water activity (aw) (0.960-0.990), pH (5.5-7.0) and storage temperature (7 and 10 °C) on the survival and outgrowth of psychrotolerant spores of Bacillus cereus FF119b and Bacillus pumilus FF128a. The experiments were performed in both artificial media and a validation was performed on real food products (cream, béchamel sauce and mixed vegetable soup). It was determined that in general, heat treatments of 10 min at 70 °C or 80 °C activated the spores of both B. cereus FF119b and B. pumilus FF128a, resulting in faster outgrowth compared to native (non-heat treated) spores. A pasteurization treatment of 10 min at 90 °C generally resulted in the longest lag periods before outgrowth of both isolates. Some of the spores were inactivated by this heat treatment, with more inactivation being observed the lower the pH value of the heating medium. Despite this, it was also observed that under some conditions the remaining (surviving) spores were actually activated as their outgrowth took place after a shorter period of time compared to native non-heated spores. While the response of B. cereus FF119b to the pasteurization intensity in cream and béchamel sauce was similar to the trends observed in the artificial media at 10 °C, in difference, outgrowth was only observed at 7 °C in both products when the spores had been heated for 10 min at 80 °C. Moreover, no inactivation was observed in cream or béchamel sauce when the spores were heated for 10 min at 90 °C in these two products. This was attributed to the protective effect of fat in the cream and the ingredients in the béchamel sauce. The study provides some insight into the potential microbial (stability and safety) consequences of the current trend towards milder heat treatments which is being pursued in the food industry. Copyright © 2014. Published by Elsevier B.V.

  6. Distinct differentiation of closely related species of Bacillus subtilis group with industrial importance.

    PubMed

    Jeyaram, Kumaraswamy; Romi, Wahengbam; Singh, Thangjam Anand; Adewumi, Gbenga Adedeji; Basanti, Khundrakpam; Oguntoyinbo, Folarin Anthony

    2011-11-01

    PCR amplification of 16S rRNA gene by universal primers followed by restriction fragment length polymorphism analysis using RsaI, CfoI and HinfI endonucleases, distinctly differentiated closely related Bacillus amyloliquefaciens, Bacillus licheniformis and Bacillus pumilus from Bacillus subtilis sensu stricto. This simple, economical, rapid and reliable protocol could be an alternative to misleading phenotype-based grouping of these closely related species. Copyright © 2011 Elsevier B.V. All rights reserved.

  7. Formulations of the endophytic bacterium Bacillus subtilis Tu-100 suppress Sclerotinia sclerotiorum on oilseed rape and improve plant vigor in field trials conducted at separate locations

    USDA-ARS?s Scientific Manuscript database

    Sclerotinia sclerotiorum causes serious yield losses in crops in The People’s Republic of China. Two formulations of oilseed rape seed containing the endophytic bacterium Bacillus subtilis Tu-100 were evaluated for suppression of this pathogen in field trials conducted at two independent locations....

  8. Evaluation of the Antimicrobial Activity of Endophytic Bacterial Populations From Chinese Traditional Medicinal Plant Licorice and Characterization of the Bioactive Secondary Metabolites Produced by Bacillus atrophaeus Against Verticillium dahliae.

    PubMed

    Mohamad, Osama A A; Li, Li; Ma, Jin-Biao; Hatab, Shaimaa; Xu, Lin; Guo, Jian-Wei; Rasulov, Bakhtiyor A; Liu, Yong-Hong; Hedlund, Brian P; Li, Wen-Jun

    2018-01-01

    Endophytic bacteria associated with medicinal plants possess unique strategies that enhance growth and suvival of host plants, many of which are mediated by distinctive secondary metabolites. These bacteria and their secondary metabolites are important subjects for both basic and applied research aimed at sustainable agriculture. In the present study, 114 endophytic strains isolated from the wild ethnomedicinal plant Glycyrrhiza uralensis (licorice) were screened for their in vitro antimicrobial activities against common fungal pathogens of tomato ( Fusarium oxysporum f. sp., Fulvia fulva , Alternaria solani ), cotton ( Fusarium oxysporum f. sp. Vesinfectum, Verticillium dahliae ), pomegranite ( Ceratocystis fimbriata ), Cymbidinium ( Colletotrichum gloeosporioides ), and Tsao-ko ( Pestalotiopsis microspora and Fusarium graminearum ) and the common bacteria Staphylococcus aureus , Bacillus cereus , Salmonella enteritidis , and Escherichia coli . Several Bacillus strains, particularly Bacillus atrophaeus and Bacillus mojavensis , had a broad spectrum of antifungal and antibacterial activity. A total of 16 strains, selected based on broad antimicrobial activity, were shown to contain at least one putative secondary metabolite-encoding gene (i.e., polyketide synthase or non-ribosomal peptide synthetase) and/or one lytic enzyme (i.e., protease, cellulase, lipase, chitinase), which may be important mediators of antagonistic activity against pathogens. Five strains, representing Bacillus atrophaeus and Bacillus mojavensis , were selected for plant growth chamber experiments based on strong in vitro antifungal activities. All five strains significantly reduced disease severity in Arabidopsis thaliana plants challenged with V. dahlia infection. Gas-chromatography/mass-spectrometry analysis of cell-free extracts of Bacillus atrophaeus strain XEGI50 showed that at least 13 compounds were produced only during co-cultivation with V. dahlia , including putative compounds known

  9. Biological Control of Rice Bakanae by an Endophytic Bacillus oryzicola YC7007

    PubMed Central

    Hossain, Mohammad Tofajjal; Khan, Ajmal; Chung, Eu Jin; Rashid, Md. Harun-Or; Chung, Young Ryun

    2016-01-01

    In our previous study, we reported that a novel endophytic bacterium Bacillus oryzicola YC7007 has suppressed bacterial diseases of rice via induced systemic resistance and antibiotic production. This endophytic strain, B. oryzicola YC7007 was used as a biological control agent against bakanae disease of rice caused by Fusarium fujikuroi, and its mechanism of interaction with the pathogen and the rice was further elucidated. Root drenching with B. oryzicola YC7007 suspension reduced the disease severity of bakanae significantly when compared with the untreated controls. The treatments of B. oryzicola YC7007 suspension (2.0 × 107 cfu/ml) to the rice rhizosphere reduced bakanae severity by 46–78% in pots and nursery box tests containing autoclaved and non-autoclaved soils. Moreover, in the detached rice leaves bioassay, the development of necrotic lesion and mycelial expansion of F. fujikuroi were inhibited significantly by spraying the culture filtrate of B. oryzicola YC7007. Drenching of ethyl acetate extracts of the culture filtrate to the rhizosphere of rice seedlings also reduced the bakanae disease severity in the plant culture dish tests. With the root drenching of B. oryzicola YC7007 suspension, the accumulation of hydrogen peroxide was observed at an early stage of rice seedlings, and a hormonal defense was elicited with and without pathogen inoculation. Our results showed that the strain B. oryzicola YC7007 had a good biocontrol activity against the bakanae disease of rice by direct inhibition, and was also capable of inducing systemic resistance against the pathogen via primed induction of the jasmonic acid pathway. PMID:27298598

  10. Evaluation of the endophytic nature of Bacillus amyloliquefaciens strain GYL4 and its efficacy in the control of anthracnose.

    PubMed

    Kim, Jeong Do; Jeon, Byeong Jun; Han, Jae Woo; Park, Min Young; Kang, Sin Ae; Kim, Beom Seok

    2016-08-01

    Endophytic bacteria are viewed as a potential new source of biofungicides because they have beneficial characteristics as control agents for plant disease. This study was performed to examine the endophytic feature and disease control efficacy of Bacillus amyloliquefaciens strain GYL4 and to identify the antifungal compounds produced by this strain. B. amyloliquefaciens strain GYL4 was isolated from leaf tissue of pepper plants (Capsicum annuum L.). Anthracnose symptoms were markedly reduced in the leaves of pepper plants colonised by GYL4. An egfp-expressing strain of GYL4 (GYL4-egfp) was constructed and reintroduced into pepper plants, which confirmed its ability to colonise the internal tissues of pepper plants. GYL4-egfp was observed in the root and stem tissues 4 days after treatment and abundantly found in the internal leaf tissue 9 days after treatment. Bacillomycin derivatives purified from the culture extract of GYL4 displayed control efficacy on anthracnose development in cucumber (Cucumis sativus L. cv. Chunsim). The present study is the first report on evaluation of the endophytic and systemic nature of B. amyloliquefaciens strain GYL4 and its potential as a biocontrol agent for anthracnose management. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.

  11. Evaluation of antibacterial efficacy of biosynthesized silver nanoparticles derived from fungi against endo-perio pathogens Porphyromonas gingivalis, Bacillus pumilus, and Enterococcus faecalis

    PubMed Central

    Halkai, Kiran Rahul; Mudda, Jayashree A.; Shivanna, Vasundhara; Rathod, Vandana; Halkai, Rahul S.

    2017-01-01

    Background: Even after rapid progress in contemporary dental practice, we encounter the failures due to endodontic, periodontal, or combined lesions. Complex anatomy of tooth and resistant microbes demands the development of new treatment strategies. Aim: The aim of this study is to biosynthesize silver nanoparticles (AgNPs) using fungi and determine the antibacterial efficacy against Porphyromonas gingivalis, Bacillus pumilus, and Enterococcus faecalis. Materials and Methods: Fungi isolated from healthy leaves of Withania somnifera were used to biosynthesize AgNPs. The biosynthesized AgNPs were characterized by different methods, and antibacterial efficacy was evaluated by agar well diffusion method measuring the zone of inhibition. Test microorganisms were divided as Group 1: B. pumilus 27142 (American Type Culture Collection [ATCC]), Group 2: E. faecalis 29212 (ATCC), and Group 3: P. gingivalis 33277 (ATCC). Agents used for antibacterial efficacy were grouped as: AgNPs: A (20 μl), B (40 μl), C (60 μl), D (80 μl), E (100 μl), F (0.2% chlorhexidine [CHX]), G (2% CHX), H (Ampicillin), and I (sterile distilled water). Results: Characterization studies showed the color change from colorless to reddish brown color; ultraviolet spectrum showed peak at 420 nm, transmission electron microscope revealed the particles spherical in shape and 10–20 nm size. Fourier transform infrared spectroscopy analysis revealed the presence of functional groups. Data collected for antibacterial efficacy were analyzed using one-way ANOVA and post hoc Tukey's multiple shows no significant difference among three groups (P < 0.0001). AgNPs were as effective as CHX and positive control ampicillin. No zones were seen for I (distilled water). Conclusion: Biosynthesized AgNPs showed efficient antibacterial efficacy. Therefore, it creates a new horizon in the management of endodontic, periodontal, and combined lesions. PMID:29430090

  12. Functional role of an endophytic Bacillus amyloliquefaciens in enhancing growth and disease protection of invasive English ivy (Hedera helix L.)

    USGS Publications Warehouse

    Soares, Marcos Antonio; Li, Jai-Yan; Bergen, Marshall; da Silva, Joaquim Manoel; Kowalski, Kurt P.; White, James Francis

    2015-01-01

    BackgroundWe hypothesize that invasive English ivy (Hedera helix) harbors endophytic microbes that promote plant growth and survival. To evaluate this hypothesis, we examined endophytic bacteria in English ivy and evaluated effects on the host plant.MethodsEndophytic bacteria were isolated from multiple populations of English ivy in New Brunswick, NJ. Bacteria were identified as a single species Bacillus amyloliquefaciens. One strain of B. amyloliquefaciens, strain C6c, was characterized for indoleacetic acid (IAA) production, secretion of hydrolytic enzymes, phosphate solubilization, and antibiosis against pathogens. PCR was used to amplify lipopeptide genes and their secretion into culture media was detected by MALDI-TOF mass spectrometry. Capability to promote growth of English ivy was evaluated in greenhouse experiments. The capacity of C6c to protect plants from disease was evaluated by exposing B+ (bacterium inoculated) and B− (non-inoculated) plants to the necrotrophic pathogen Alternaria tenuissima.ResultsB. amyloliquefaciens C6c systemically colonized leaves, petioles, and seeds of English ivy. C6c synthesized IAA and inhibited plant pathogens. MALDI-TOF mass spectrometry analysis revealed secretion of antifungal lipopeptides surfactin, iturin, bacillomycin, and fengycin. C6c promoted the growth of English ivy in low and high soil nitrogen conditions. This endophytic bacterium efficiently controlled disease caused by Alternaria tenuissima.ConclusionsThis study suggests that B. amyloliquefaciens plays an important role in enhancing growth and disease protection of English ivy.

  13. [Screening endophytic bacteria against plant-parasitic nematodes].

    PubMed

    Peng, Shuang; Yan, Shuzhen; Chen, Shuanglin

    2011-03-01

    Plant-parasite nematode is one of the most important pathogens in plant. Our objective is to screen endophytic bacteria against plant-parasitic nematodes from plant. Endophytic bacteria were isolated and screened by testing their metabolite against Bursaphelenchus xylophilus in vitro. Those strains inhibiting B. xylophilus were selected to culture in liquid medium and fermentation conditions were optimized by orthogonal test. The stability of the antinematode substances was evaluated by various. In addition, four strains were identified by 16SrDNA sequence analysis. In total 13 strains of endophytic bacteria secreting antinematode metabolite were isolated from 6 species of plant. The supernatant of the fermentation broth of these endophytic bacteria gave 100% mortality of nematodes after treated as the follows: 1 ml each was mixed with 0.2 ml of the suspension of nematodes (2000 nematodes/ml) then incubated at 250C for 24 h, some of which could led to leakage or dissolution of nematodes. Among them, four strains, BCM2, SZ5, CCM7 and DP1, showed stronger activity than others. The supernatants diluted three times also gave not less than 95% mortality after 24 h treatment, and those from DP1 and SZ5 even gave 100% mortality. The fermentation conditions of the four strains were optimized and the antinematode activity grew up four times after optimization. The antinematode substances of these strains were found stable when treated with protease or heating or stored at 4 degrees C after 100 days, while instable when treated with acid or alkali. DP1 and CCM7 were identified to be Bacillus subtilis, while SZ5 and BCM2 to be Bacillus cereus. Endophytic bacteria secreting antinematode metabolite were found in economic crops. The metabolite of some strains showed strong and stable antinematode activity. Our results indicate the real potential of biocontrol by endophytic bacteria.

  14. Exo-pectinase production by Bacillus pumilus using different agricultural wastes and optimizing of medium components using response surface methodology.

    PubMed

    Tepe, Ozlem; Dursun, Arzu Y

    2014-01-01

    In this research, the production of exo-pectinase by Bacillus pumilus using different agricultural wastes was studied. Agricultural wastes containing pectin such as wheat bran, sugar beet pulp, sunflower plate, orange peel, banana peel, apple pomace and grape pomace were tested as substrates, and activity of exo-pectinase was determined only in the mediums containing sugar beet pulp and wheat bran. Then, effects of parameters such as concentrations of solid substrate (wheat bran and sugar beet pulp) (A), ammonium sulphate (B) and yeast extract (C) on the production of exo-pectinase were investigated by response surface methodology. First, wheat bran was used as solid substrate, and it was determined that exo-pectinase activity increased when relatively low concentrations of ammonium sulphate (0.12-0.21% w/v) and yeast extract (0.12-0.3% w/v) and relatively high wheat bran (~5-6% w/v) were used. Then, exo-pectinase production was optimized by response surface methodology using sugar beet pulp as a solid substrate. In comparison to P values of the coefficients, values of not greater than 0.05 of A and B (2) showed that the effect of these process variables in exo-pectinase production was important and that changes done in these variables will alter the enzyme activity.

  15. Isolation and functional characterization of bacterial endophytes from Carica papaya fruits.

    PubMed

    Krishnan, P; Bhat, R; Kush, A; Ravikumar, P

    2012-08-01

    To isolate and characterize the endophytes from papaya fruits and to determine the fermentative potential of the strains. Endophytes provide potential sources for novel natural products for the use in agriculture and nutrition. There is very limited information on isolation and characterization of bacterial endophytes from papaya. We describe isolation and characterization of eighteen endophytes of papaya fruit from four economically important papaya varieties viz 'Red lady', 'Solo', 'Coorg Honey' and 'Bangalore'. The phylogenetic analysis based on the 16S rRNA sequence revealed that isolated endophytes are genetically distinct and cluster as discrete clades in the dendrogram. The Bacillus species is a predominant bacterial endophyte across papaya varieties. The seeds and the endocarp of papaya fruits harbour Kocuria, Acinetobacter and Enterobacter species. The Staphylococcus species were detected in the fruit mesocarp of two papaya varieties used in the study. The endophytes isolated from papaya fruits were capable of producing extracellular enzymes like amylase, cellulase, pectinase and xylanase. Three isolates, Bacillus (PE-LR-1 and PE-LR-3) and Kocuria (PE-LR-2), were selected for fruit fermentation, and antioxidant potential of the fermented product was evaluated. PE-LR-3 fermented product has the free radical scavenging activity of 61·2% and a microbial cocktail of PE-LR-3 with Saccharomyces cerevisiae MTCC 2918 enhances the antioxidant potential to 75·7%. These findings suggest that different parts of papaya fruits harbour an array of bacterial endophytes that could be important agents in attributing the high nutritive status to the fruit and can serve as potent microbial cocktails for developing value-added fermented products of this important fruit. This study describes isolation of a bacterial endophyte from papaya fruit that is capable of improving the antioxidant potential of raw papaya after fermentation. No claim to Indian Government works Journal

  16. Sugarcane bagasse as support for immobilization of Bacillus pumilus HZ-2 and its use in bioremediation of mesotrione-contaminated soils.

    PubMed

    Liu, Jie; Chen, Shaohua; Ding, Jie; Xiao, Ying; Han, Haitao; Zhong, Guohua

    2015-12-01

    The degrading microorganisms isolated from environment usually fail to degrade pollutants when used for bioremediation of contaminated soils; thus, additional treatments are needed to enhance biodegradation. In the present study, the potential of sugarcane bagasse as bacteria-immobilizing support was investigated in mesotrione biodegradation. A novel isolate Bacillus pumilus HZ-2 was applied in bacterial immobilization, which was capable of degrading over 95 % of mesotrione at initial concentrations ranging from 25 to 200 mg L(-1) within 4 days in flask-shaking tests. Scanning electron microscope (SEM) images showed that the bacterial cells were strongly absorbed and fully dispersed on bagasse surface after immobilization. Specially, 86.5 and 82.9 % of mesotrione was eliminated by bacteria immobilized on bagasse of 100 and 60 mesh, respectively, which indicated that this immobilization was able to maintain a high degrading activity of the bacteria. Analysis of the degradation products determined 2-amino-4-methylsulfonylbenzoic acid (AMBA) and 4-methylsulfonyl-2-nitrobenzoic acid (MNBA) as the main metabolites in the biodegradation pathway of mesotrione. In the sterile soil, approximately 90 % of mesotrione was degraded after supplementing 5.0 % of molasses in bacteria-bagasse composite, which greatly enhanced microbial adaptability and growth in the soil environment. In the field tests, over 75 % of mesotrione in soil was degraded within 14 days. The immobilized preparation demonstrated that mesotrione could be degraded at a wide range of pH values (5.0-8.0) and temperatures (25-35 °C), especially at low concentrations of mesotrione (5 to 20 mg kg(-1)). These results showed that sugarcane bagasse might be a good candidate as bacteria-immobilizing support to enhance mesotrione degradation by Bacillus p. HZ-2 in contaminated soils.

  17. Expression and Secretion of Cyan Fluorescent Protein (CFP) in B. subtilis using the Chitinase Promoter from Bacillus pumilus SG2

    PubMed Central

    Shali, Abbas; Rigi, Garshasb; Pornour, Majid; Ahmadian, Gholamreza

    2017-01-01

    Background: Improved cyan fluorescent protein (ICFP) is a monochromic, green fluorescent protein (GFP) derivative produced by Aequorea macrodactyla in a process similar to GFP. This protein has strong absorption spectra at wavelengths 426-446 nm. ICFP can be used in cell, organelle or intracellular protein labeling, investigating the protein-protein interactions as well as assessing the promoter activities. Methods: In our previous study, the promoters of two chitinases (ChiS and ChiL) from Bacillus pumilus SG2 were assessed in B. subtilis and their regulatory elements were characterized. In the present study, icfp was cloned downstream of several truncated promoters obtained in the former study, and ICFP expression was evaluated in B. subtilis. Results: Extracellular expression and secretion of ICFP were analyzed under the control of different truncated versions of ChiSL promoters grown on different media. Results from SDS-PAGE and fluorimetric analyses showed that there were different expression rates of CFP; however, the UPChi-ICFP3 construct exhibited a higher level of expression and secretion in the culture medium. Conclusion: Our presented results revealed that inserting this truncated form of Chi promoter upstream of the ICFP, as a reporter gene, in B. subtilis led to an approximately ten fold increase in ICFP expression. PMID:28088132

  18. Purification and characterization of a highly active chromate reductase from endophytic Bacillus sp. DGV19 of Albizzia lebbeck (L.) Benth. actively involved in phytoremediation of tannery effluent-contaminated sites.

    PubMed

    Manikandan, Muthu; Gopal, Judy; Kumaran, Rangarajulu Senthil; Kannan, Vijayaraghavan; Chun, Sechul

    2016-01-01

    Phytoremediation using timber-yielding tree species is considered to be the most efficient method for chromium/tannery effluent-contaminated sites. In this study, we have chosen Albizzia lebbeck, a chromium hyperaccumulator plant, and studied one of its chromium detoxification processes operated by its endophytic bacterial assemblage. Out of the four different groups of endophytic bacteria comprising Pseudomonas, Rhizobium, Bacillus, and Salinicoccus identified from A. lebbeck employed in phytoremediation of tannery effluent-contaminated soil, Bacillus predominated with three species, which exhibited not only remarkable chromium accumulation ability but also high chromium reductase activity. A chromate reductase was purified to homogeneity from the most efficient chromium accumulator, Bacillus sp. DGV 019, and the purified 34.2-kD enzyme was observed to be stable at temperatures from 20°C to 60°C. The enzyme was active over a wide range of pH values (4.0-9.0). Furthermore, the enzyme activity was enhanced with the electron donors NADH, followed by NADPH, not affected by glutathione and ascorbic acid. Cu(2+) enhanced the activity of the purified enzyme but was inhibited by Zn(2+) and etheylenediamine tetraacetic acid (EDTA). In conclusion, due to its versatile adaptability the chromate reductase can be used for chromium remediation.

  19. Biocontrol of Botrytis cinerea and Calonectria gracilis by eucalypts growth promoters Bacillus spp.

    PubMed

    Paz, Isabel Cristina Padula; Santin, Rita de Cássia Madail; Guimarães, Alexandre Martins; Rosa, Osmar Paulo Pereira da; Quecine, Maria Carolina; Silva, Michele de Cássia Pereira E; Azevedo, João Lúcio; Matsumura, Aida Terezinha Santos

    2018-05-17

    The clonal Eucalyptus plants are commonly obtained by vegetative propagation under a protected environment. This system improves the Botrytis cinerea and Calonectria spp infection on the young eucalypts plantings, resulting gray mold and cutting rot respectively. Currently, the unique available control method is based on chemicals. As alternative, novel methods to manage plant diseases, endophytic microorganisms could be an interesting alternative. Thus, we aimed to evaluate endophytic Bacillus isolated from eucalypts as a biocontrol agent against Botrytis cinerea and Calonectria gracilis, important fungal pathogens in the greenhouse, using clonal plantlets of E. urograndis. Eight endophytic strains of Bacillus, previously described as eucalyptus growth promoters, were evaluated in vitro and in vivo against Botrytis cinerea and Calonectria gracilis. The diffusible metabolites assay showed the potential of endophytic Bacillus to decrease the growth of both pathogens. Differences in the susceptibility of the pathogens to bacterial volatile metabolites were observed, B. cinerea showed more susceptible than Calonectria gracilis. In vivo assays, Bacillus amyloliquefaciens EUCB 10 demonstrated better overall reductions in these diseases. Based on the results obtained from the in vitro and in vivo analyses, we suggest that the endophytic B. amyloliquefaciens strain EUCB 10 constitutes a promising biocontrol agent against B. cinerea and Calonectria gracilis. Furthermore, this is the first reporting of B. amyloliquefaciens previously describe as plant growth promoter and also as potential control agent of B. cinerea and Calonectria gracilis to eucalyptus. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. Identification of a novel endophytic Bacillus sp. from Capsicum annuum with highly efficient and broad spectrum plant probiotic effect.

    PubMed

    Jasim, B; Mathew, J; Radhakrishnan, E K

    2016-10-01

    The study mainly aimed the isolation and characterization of plant probiotic endophytic bacteria from Capsicum annuum to explore its multipotent agricultural applications. Endophytic bacteria were isolated from the surface sterilized fruit tissue. The isolates were then subjected to PCR-based screening for the presence of potential biosynthetic gene clusters. The PCR positive isolate was then analysed for its inhibitory effect towards fungal and bacterial pathogens. The compounds responsible for the antimicrobial activity was purified from large scale culture and subjected to identification by LC-MS/MS. The ability of the selected isolate in plant growth enhancement was also done using Vigna radiata seedlings. In this study, an endophytic bacterium isolated from C. annuum was found to have the phenotypic and genetic basis for broad antimicrobial property. PCR-based sequence analysis has resulted in the identification of nonribosomal peptide synthases, PKS Type I, Iturin, surfactin, DAPG and gacA genes in the selected isolate CaB 5. The bioactivity-guided fractionation using column and HPLC purification of active fraction followed by LC-MS/MS analysis has proved the presence of surfactin derivatives (M+H(+) - 1008 & 1036) and iturin (M+H(+) - 1058) as the basis of antimicrobial activity of CaB 5. The isolate was identified as a novel Bacillus sp. because of its low (76%) identity to the reported sequences. Endophytes are considered to have the genetic basis for a diverse array of bioactive metabolites which can have significant applications in both pharmaceutical industry and agriculture. The identification of CaB 5 with broad bioactivity and excellent plant growth enhancement on taxonomically distinct plant species as explained in current study and our previous reports highlights its plant probiotic applicability. This proves the potential of the isolate obtained in the study to be an excellent plant probiotic. © 2016 The Society for Applied Microbiology.

  1. A novel thermostable GH5_7 β-mannanase from Bacillus pumilus GBSW19 and its application in manno-oligosaccharides (MOS) production.

    PubMed

    Zang, Haoyu; Xie, Shanshan; Wu, Huijun; Wang, Weiduo; Shao, Xiankun; Wu, Liming; Rajer, Faheem Uddin; Gao, Xuewen

    2015-10-01

    A novel thermostable mannanase from a newly isolated Bacillus pumilus GBSW19 has been identified, expressed, purified and characterized. The enzyme shows a structure comprising a 28 amino acid signal peptide, a glycoside hydrolase family 5 (GH5) catalytic domain and no carbohydrate-binding module. The recombinant mannanase has molecular weight of 45 kDa with an optimal pH around 6.5 and is stable in the range from pH 5-11. Meanwhile, the optimal temperature is around 65 °C, and it retains 50% relative activity at 60 °C for 12h. In addition, the purified enzyme can be activated by several ions and organic solvents and is resistant to detergents. Bpman5 can efficiently convert locus bean gum to mainly M2, M3 and M5, and hydrolyze manno-oligosaccharides with a minimum DP of 3. Further exploration of the optimum condition using HPLC to prepare oligosaccharides from locust bean gum was obtained as 10mg/ml locust bean gum incubated with 10 U/mg enzyme at 50 °C for 24h. By using this enzyme, locust bean gum can be utilized to generate high value-added oligosaccharides with a DP of 2-6. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Bacterial Seed Endophytes of Domesticated Cucurbits Antagonize Fungal and Oomycete Pathogens Including Powdery Mildew.

    PubMed

    Khalaf, Eman M; Raizada, Manish N

    2018-01-01

    The cucurbit vegetables, including cucumbers, melons and pumpkins, have been cultivated for thousands of years without fungicides. However, their seed germination stage is prone to be infected by soil-borne fungal and oomycete pathogens. Endophytes are symbionts that reside inside plant tissues including seeds. Seed endophytes are founders of the juvenile plant microbiome and can promote host defense at seed germination and later stages. We previously isolated 169 bacterial endophytes associated with seeds of diverse cultivated cucurbits. We hypothesized that these endophytes can antagonize major fungal and oomycete pathogens. Here we tested the endophytes for in vitro antagonism (dual culture assays) against important soil-borne pathogens ( Rhizoctonia solani , Fusarium graminearum , Phytophthora capsici , Pythium aphanideratum ). The endophytes were also assayed in planta (leaf disk and detached leaf bioassays) for antagonism against a foliar pathogen of global importance, Podosphaera fuliginea , the causative agent of cucurbit powdery mildew. The endophytes were further tested in vitro for secretion of volatile organic compounds (VOCs) known to induce plant defense. Extracellular ribonuclease activity was also tested, as a subset of pathogenesis-related (PR) proteins of plant hosts implicated in suppression of fungal pathogens, displays ribonuclease activity. An unexpected majority of the endophytes (70%, 118/169) exhibited antagonism to the five phytopathogens, of which 68% (50/73) of in vitro antagonists belong to the genera Bacillus and Paenibacillus . All Lactococcus and Pantoea endophytes exhibited anti-oomycete activity. However, amongst the most effective inoculants against Podosphaera fuliginea were Pediococcus and Pantoea endophytes. Interestingly, 67% (113/169) of endophytes emitted host defense inducing VOCs (acetoin/diacetyl) and 62% (104/169) secreted extracellular ribonucleases in vitro , respectively. These results show that seeds of cultivated

  3. Bacterial Seed Endophytes of Domesticated Cucurbits Antagonize Fungal and Oomycete Pathogens Including Powdery Mildew

    PubMed Central

    Khalaf, Eman M.; Raizada, Manish N.

    2018-01-01

    The cucurbit vegetables, including cucumbers, melons and pumpkins, have been cultivated for thousands of years without fungicides. However, their seed germination stage is prone to be infected by soil-borne fungal and oomycete pathogens. Endophytes are symbionts that reside inside plant tissues including seeds. Seed endophytes are founders of the juvenile plant microbiome and can promote host defense at seed germination and later stages. We previously isolated 169 bacterial endophytes associated with seeds of diverse cultivated cucurbits. We hypothesized that these endophytes can antagonize major fungal and oomycete pathogens. Here we tested the endophytes for in vitro antagonism (dual culture assays) against important soil-borne pathogens (Rhizoctonia solani, Fusarium graminearum, Phytophthora capsici, Pythium aphanidermatum). The endophytes were also assayed in planta (leaf disk and detached leaf bioassays) for antagonism against a foliar pathogen of global importance, Podosphaera fuliginea, the causative agent of cucurbit powdery mildew. The endophytes were further tested in vitro for secretion of volatile organic compounds (VOCs) known to induce plant defense. Extracellular ribonuclease activity was also tested, as a subset of pathogenesis-related (PR) proteins of plant hosts implicated in suppression of fungal pathogens, displays ribonuclease activity. An unexpected majority of the endophytes (70%, 118/169) exhibited antagonism to the five phytopathogens, of which 68% (50/73) of in vitro antagonists belong to the genera Bacillus and Paenibacillus. All Lactococcus and Pantoea endophytes exhibited anti-oomycete activity. However, amongst the most effective inoculants against Podosphaera fuliginea were Pediococcus and Pantoea endophytes. Interestingly, 67% (113/169) of endophytes emitted host defense inducing VOCs (acetoin/diacetyl) and 62% (104/169) secreted extracellular ribonucleases in vitro, respectively. These results show that seeds of cultivated cucurbits

  4. Seed-borne endophytic Bacillus amyloliquefaciens RWL-1 produces gibberellins and regulates endogenous phytohormones of Oryza sativa.

    PubMed

    Shahzad, Raheem; Waqas, Muhammad; Khan, Abdul Latif; Asaf, Sajjad; Khan, Muhammad Aaqil; Kang, Sang-Mo; Yun, Byung-Wook; Lee, In-Jung

    2016-09-01

    Some microorganisms are adapted to an endophytic mode, living symbiotically with plants through vertical transmission in seeds. The role of plant growth-promoting endophytes has been well studied, but those of seed-associated endophytic bacteria are less understood. The current study aimed to isolate and identify bacterial endophytes associated with rice (Oryza sativa L. 'Jin so mi') seeds, their potential to produce gibberellins (GAs), and role in improving host-plant physiology. The isolated bacterial endophyte RWL-1 was identified as Bacillus amyloliquefaciens by using 16S rRNA sequencing and phylogenetic analysis. The pure culture of B. amyloliquefaciens RWL-1, supplied with deuterated internal standards, was subjected to gas chromatography and mass spectrometric selected ion monitoring (GC-MS/SIM) for quantification of GAs. Results showed the presence of GAs in various quantities (ng/mL) viz., GA20 (17.88 ± 4.04), GA36 (5.75 ± 2.36), GA24 (5.64 ± 2.46), GA4 (1.02 ± 0.16), GA53 (0.772 ± 0.20), GA9 (0.12 ± 0.09), GA19 (0.093 ± 0.13), GA5 (0.08 ± 0.04), GA12 (0.014 ± 0.34), and GA8 (0.013 ± 0.01). Since endogenous seed GAs are essential for prolonged seed growth and subsequent plant development, we used exogenous GA3 as a positive control and water as a negative control for comparative analysis of the application of B. amyloliquefaciens RWL-1 to rice plants. The growth parameters of rice plants treated with endophytic bacterial cell application was significantly increased compared to the plants treated with exogenous GA3 and water. This was also revealed by the significant up-regulation of endogenous GA1 (17.54 ± 2.40 ng), GA4 (310 ± 5.41 ng), GA7 (192.60 ± 3.32 ng), and GA9 (19.04 ± 2.49 ng) as compared to results of the positive and negative control treatments. Rice plants inoculated with B. amyloliquefaciens RWL-1 exhibited significantly higher endogenous salicylic acid (1615.06 ± 10.81 μg), whereas

  5. An Alkaline Protease from Bacillus pumilus MP 27: Functional Analysis of Its Binding Model toward Its Applications As Detergent Additive.

    PubMed

    Baweja, Mehak; Tiwari, Rameshwar; Singh, Puneet K; Nain, Lata; Shukla, Pratyoosh

    2016-01-01

    A proteolytic strain of Bacillus pumilus MP 27 was isolated from water samples of Southern ocean produced alkaline protease. Since protease production need expensive ingredients, an economically viable process was developed by using low cost carbon source, wheat straw, supplemented with peptone. This protease was active within temperature ranges 10-70°C at pH 9. This process was optimized by response surface methodology using a Box Bekhman design by Design Expert 7.0 software that increased the protease activity to 776.5 U/ml. Moreover, the enzyme was extremely stable at a broad range of temperature and pH retaining 69% of its activity at 50°C and 70% at pH 11. The enzyme exhibited excellent compatibility with surfactants and commercial detergents, showing 87% stability with triton X-100 and 100% stability with Tide commercial detergent. The results of the wash performance analysis demonstrated considerably good de-staining at 50 and 4°C with low supplementation (109 U/ml). Molecular modeling of the protease revealed the presence of serine proteases, subtilase family and serine active site and further docking supported the association of catalytic site with the various substrates. Certainly, such protease can be considered as a good detergent additive in detergent industry with a possibility to remove the stains effectively even in a cold wash.

  6. Scale-up of an alkaline protease from Bacillus pumilus MTCC 7514 utilizing fish meal as a sole source of nutrients.

    PubMed

    Gupta, Rishikesh Kumar; Prasad, Dinesh; Sathesh, Jaykumar; Naidu, Ramachandra Boopathy; Kamini, Numbi Ramudu; Palanivel, Saravanan; Gowthaman, Marichetti Kuppuswami

    2012-09-01

    Fish meal grades SL1 and SL2 from Sardine (Sardinella longiceps) and NJ from Pink Perch (Nemipterus japonicas) were evaluated as a sole source of carbon and nitrogen in the medium for alkaline protease production by Bacillus pumilus MTCC 7514. The analysis of the fish meal suggests that the carbon and nitrogen contents in fish meal are sufficient to justify its choice as replacement for other nutrients. Protease production increased significantly (4,914 U/ml) in medium containing only fish meal, compared with the basal medium (2,646 U/ml). However, the elimination of inorganic salts from media reduced the protease productivity. In addition, all the three grades of fish meal yielded almost the same amounts of protease when employed as the sole source of carbon and nitrogen. Nevertheless, the best results were observed in fish meal SL1 medium. Furthermore, protease production was enhanced to 6,966 U/ml and 7,047 U/ml on scaling up from flask (4,914 U/ml) to 3.7 and 20 L fermenters, respectively, using fish meal (10 g/l). Similarly, the corresponding improvement in productivities over flask (102.38 U/ml/h) was 193.5 and 195.75 U/ml/h in 3.7 and 20 L fermenters, respectively. The crude protease was found to have dehairing ability in leather processing, which is bound to have great environmental benefits.

  7. Seasonal variation of bacterial endophytes in urban trees

    PubMed Central

    Shen, Shu Yi; Fulthorpe, Roberta

    2015-01-01

    Bacterial endophytes, non-pathogenic bacteria residing within plants, contribute to the growth and development of plants and their ability to adapt to adverse conditions. In order to fully exploit the capabilities of these bacteria, it is necessary to understand the extent to which endophytic communities vary between species and over time. The endophytes of Acer negundo, Ulmus pumila, and Ulmus parvifolia were sampled over three seasons and analyzed using culture dependent and independent methods (culture on two media, terminal restriction fragment length polymorphism, and tagged pyrosequencing of 16S ribosomal amplicons). The majority of culturable endophytes isolated were Actinobacteria, and all the samples harbored Bacillus, Curtobacterium, Frigoribacterium, Methylobacterium, Paenibacilllus, and Sphingomonas species. Regardless of culture medium used, only the culturable communities obtained in the winter for A. negundo could be distinguished from those of Ulmus spp. In contrast, the nonculturable communities were dominated by Proteobacteria and Actinobacteria, particularly Erwinia, Ralstonia, and Sanguibacter spp. The presence and abundance of various bacterial classes and phyla changed with the changing seasons. Multivariate analysis on the culture independent data revealed significant community differences between the endophytic communities of A. negundo and Ulmus spp., but overall season was the main determinant of endophytic community structure. This study suggests studies on endophytic populations of urban trees should expect to find significant seasonal and species-specific community differences and sampling should proceed accordingly. PMID:26042095

  8. The contribution of endophytic bacteria to Albizia lebbeck-mediated phytoremediation of tannery effluent contaminated soil.

    PubMed

    Manikandan, Muthu; Kannan, Vijayaraghavan; Mendoza, Ordetta Hannah; Kanimozhi, Mahalingam; Chun, Sechul; Pašić, Lejla

    2016-01-01

    Toxicity of chromium often impairs the remediation capacity of plants used in phytoremediation of polluted soils. In this study, we have identified Albizia lebbeck as a prospective chromium hyperaccumulator and examined cultivable diversity of endophytes present in chromium-treated and control saplings. High numbers (22-100%) of endophytic bacteria, isolated from root, stem, and leaf tissues, could tolerate elevated (1-3 mM) concentrations of K2CrO7. 16S rRNA gene sequence-based phylogenetic analysis showed that the 118 isolates obtained comprised of 17 operational taxonomic units affiliated with the proteobacterial genera Rhizobium (18%), Marinomonas (1%), Pseudomonas (16%), and Xanthomonas (7%) but also with members of Firmicutes genera, such as Bacillus (35%) and Salinococcus (3%). The novel isolates belonging to Salinococcus and Bacillus could tolerate high K2CrO7 concentrations (3 mM) and also showed elevated activity of chromate reductase. In addition, majority (%) of the endophytic isolates also showed production of indole-3-acetic acid. Taken together, our results indicate that the innate endophytic bacterial community assists plants in reducing heavy metal toxicity.

  9. Diversity of endophytic fungal and bacterial communities in Ilex paraguariensis grown under field conditions.

    PubMed

    Pérez, María Laura; Collavino, Mónica Mariana; Sansberro, Pedro Alfonso; Mroginski, Luis Amado; Galdeano, Ernestina

    2016-04-01

    The composition and diversity of the endophytic community associated with yerba mate (Ilex paraguariensis) was investigated using culture-depending methods. Fungi were identified based on their micromorphological characteristics and internal transcribed spacer rDNA sequence analysis; for bacteria 16S rDNA sequence analysis was used. Fungal and bacterial diversity did not show significant differences between organ age. The highest fungal diversity was registered during fall season and the lowest in winter. Bacterial diversity was higher in stems and increased from summer to winter, in contrast with leaves, which decreased. The most frequently isolated fungus was Fusarium, followed by Colletotrichum; they were both present in all the sampling seasons and organ types assayed. Actinobacteria represented 57.5 % of all bacterial isolates. The most dominant bacterial taxa were Curtobacterium and Microbacterium. Other bacteria frequently found were Methylobacterium, Sphingomonas, Herbiconiux and Bacillus. Nitrogen fixation and phosphate solubilization activity, ACC deaminase production and antagonism against plant fungal pathogens were assayed in endophytic bacterial strains. In the case of fungi, strains of Trichoderma, Penicillium and Aspergillus were assayed for antagonism against pathogenic Fusarium sp. All microbial isolates assayed showed at least one growth promoting activity. Strains of Bacillus, Pantoea, Curtobacterium, Methylobacterium, Brevundimonas and Paenibacillus had at least two growth-promoting activities, and Bacillus, Paenibacillus and the three endophytic fungi showed high antagonistic activity against Fusarium sp. In this work we have made a wide study of the culturable endophytic community within yerba mate plants and found that several microbial isolates could be considered as potential inoculants useful for improving yerba mate production.

  10. Culturable bacterial endophytes isolated from Mangrove tree (Rhizophora apiculata Blume) enhance seedling growth in Rice.

    PubMed

    Deivanai, Subramanian; Bindusara, Amitraghata Santhanam; Prabhakaran, Guruswamy; Bhore, Subhash Janardhan

    2014-07-01

    Endophytic bacteria do have several potential applications in medicine and in other various sectors of biotechnology including agriculture. Bacterial endophytes need to be explored for their potential applications in agricultural biotechnology. One of the potential applications of bacterial endophytes in agricultural is to enhance the growth of the agricultural crops. Hence, this study was undertaken to explore the plant growth promoting potential application of bacterial endophytes. The objective of this study was to examine the effect of endophytic bacteria from mangrove tree (Rhizophora apiculata Blume) for their efficacy in promoting seedling growth in rice. Eight endophytic bacterial isolates (EBIs) isolated from twig and petiole tissues of the mangrove were identified based on their 16S ribosomal ribonucleic acid (rRNA) gene sequence homology. Separately, surface sterilized paddy seeds were treated with cell-free broth and cell suspension of the EBIs. Rice seedlings were analyzed by various bioassays and data was recorded. The gene sequences of the isolates were closely related to two genera namely, Bacillus and Pantoea. Inoculation of EBIs from R. apiculata with rice seeds resulted in accelerated root and shoot growth with significant increase in chlorophyll content. Among the isolates, Pantoea ananatis (1MSE1) and Bacillus amyloliquefaciens (3MPE1) had shown predominance of activity. Endophytic invasion was recognized by the non-host by rapid accumulation of reactive oxygen species (ROS) and was counteracted by the production of hydrogen peroxide (H2O2) and lipid peroxide. The results demonstrated that EBIs from mangrove tree can increase the fitness of the rice seedlings under controlled conditions. These research findings could be useful to enhance the seedling growth and could serve as foundation in further research on enhancing the growth of the rice crop using endophytic bacteria.

  11. Synergistic plant-microbe interactions between endophytic bacterial communities and the medicinal plant Glycyrrhiza uralensis F.

    PubMed

    Li, Li; Mohamad, Osama Abdalla Abdelshafy; Ma, Jinbiao; Friel, Ariel D; Su, Yangui; Wang, Yun; Musa, Zulpiya; Liu, Yonghong; Hedlund, Brian P; Li, Wenjun

    2018-03-07

    Little is known about the composition, diversity, and geographical distribution of bacterial communities associated with medicinal plants in arid lands. To address this, a collection of 116 endophytic bacteria were isolated from wild populations of the herb Glycyrrhiza uralensis Fisch (licorice) in Xinyuan, Gongliu, and Tekesi of Xinjiang Province, China, and identified based on their 16S rRNA gene sequences. The endophytes were highly diverse, including 20 genera and 35 species. The number of distinct bacterial genera obtained from root tissues was higher (n = 14) compared to stem (n = 9) and leaf (n = 6) tissue. Geographically, the diversity of culturable endophytic genera was higher at the Tekesi (n = 14) and Xinyuan (n = 12) sites than the Gongliu site (n = 4), reflecting the extremely low organic carbon content, high salinity, and low nutrient status of Gongliu soils. The endophytic bacteria exhibited a number of plant growth-promoting activities ex situ, including diazotrophy, phosphate and potassium solubilization, siderophore production, auxin synthesis, and production of hydrolytic enzymes. Twelve endophytes were selected based on their ex situ plant growth-promoting activities for growth chamber assays to test for their ability to promote growth of G. uralensis F. and Triticum aestivum (wheat) plants. Several strains belonging to the genera Bacillus (n = 6) and Achromobacter (n = 1) stimulated total biomass production in both G. uralensis and T. aestivum under low-nutrient conditions. This work is the first report on the isolation and characterization of endophytes associated with G. uralensis F. in arid lands. The results demonstrate the broad diversity of endophytes associated with wild licorice and suggest that some Bacillus strains may be promising candidates for biofertilizers to promote enhanced survival and growth of licorice and other valuable crops in arid environments.

  12. Construction of probe of the plant growth-promoting bacteria Bacillus subtilis useful for fluorescence in situ hybridization.

    PubMed

    Posada, Luisa F; Alvarez, Javier C; Hu, Chia-Hui; de-Bashan, Luz E; Bashan, Yoav

    2016-09-01

    Strains of Bacillus subtilis are plant growth-promoting bacteria (PGPB) of many crops and are used as inoculants. PGPB colonization is an important trait for success of a PGPB on plants. A specific probe, based on the 16 s rRNA of Bacillus subtilis, was designed and evaluated to distinguishing, by fluorescence in situ hybridization (FISH), between this species and the closely related Bacillus amyloliquefaciens. The selected target for the probe was between nucleotides 465 and 483 of the gene, where three different nucleotides can be identified. The designed probe successfully hybridized with several strains of Bacillus subtilis, but failed to hybridize not only with B. amyloliquefaciens, but also with other strains such as Bacillus altitudinis, Bacillus cereus, Bacillus gibsonii, Bacillus megaterium, Bacillus pumilus; and with the external phylogenetic strains Azospirillum brasilense Cd, Micrococcus sp. and Paenibacillus sp. The results showed the specificity of this molecular probe for B. subtilis.

  13. Biodegradation of di-n-butyl phthalate (DBP) by a novel endophytic Bacillus megaterium strain YJB3.

    PubMed

    Feng, Nai-Xian; Yu, Jiao; Mo, Ce-Hui; Zhao, Hai-Ming; Li, Yan-Wen; Wu, Bing-Xiao; Cai, Quan-Ying; Li, Hui; Zhou, Dong-Mei; Wong, Ming-Hung

    2018-03-01

    Phthalic acid esters (PAEs) are a group of recalcitrant and hazardous organic compounds that pose a great threat to both ecosystem and human beings. A novel endophytic strain YJB3 that could utilize a wide range of PAEs as the sole carbon and energy sources for cell growth was isolated from Canna indica root tissue. It was identified as Bacillus megaterium based on morphological characteristics and 16S rDNA sequence homology analysis. The degradation capability of the strain YJB3 was investigated by incubation in mineral salt medium containing di-n-butyl-phthalate (DBP), one of important PAEs under different environmental conditions, showing 82.5% of the DBP removal in 5days of incubation under the optimum conditions (acetate 1.2g·L -1 , inocula 1.8%, and temperature 34.2°C) achieved by two-step sequential optimization technologies. The DBP metabolites including mono-butyl phthalate (MBP), phthalic acid (PA), protocatechuic acid (PCA), etc. were determined by GC-MS. The PCA catabolic genes responsible for the aromatic ring cleavage of PCA in the strain YJB3 were excavated by whole-genome sequencing. Thus, a degradation pathway of DBP by the strain YJB3 was proposed that MBP was formed, followed by PA, and then the intermediates were further utilized till complete degradation. To our knowledge, this is the first study to show the biodegradation of PAEs using endophyte. The results in the present study suggest that the strain YJB3 is greatly promising to act as a competent inoculum in removal of PAEs in both soils and crops. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Bacillus mojavensis RRC101 lipopeptides provoke physiological and metabolic changes in the course of antagonism against Fusarium verticillioides

    USDA-ARS?s Scientific Manuscript database

    The mycotoxigenic pathogen Fusarium verticillioides threatens the quality and utility of maize across industrial and agricultural purposes. Chemical control is complicated by the intimate endophytic lifestyle of the pathogen with its host. Bacillus mojavensis RRC 101, a maize10 endophytic bacteriu...

  15. Isolation and enzyme bioprospection of endophytic bacteria associated with plants of Brazilian mangrove ecosystem.

    PubMed

    Castro, Renata A; Quecine, Maria Carolina; Lacava, Paulo T; Batista, Bruna D; Luvizotto, Danice M; Marcon, Joelma; Ferreira, Anderson; Melo, Itamar S; Azevedo, João L

    2014-01-01

    The mangrove ecosystem is a coastal tropical biome located in the transition zone between land and sea that is characterized by periodic flooding, which confers unique and specific environmental conditions on this biome. In these ecosystems, the vegetation is dominated by a particular group of plant species that provide a unique environment harboring diverse groups of microorganisms, including the endophytic microorganisms that are the focus of this study. Because of their intimate association with plants, endophytic microorganisms could be explored for biotechnologically significant products, such as enzymes, proteins, antibiotics and others. Here, we isolated endophytic microorganisms from two mangrove species, Rhizophora mangle and Avicennia nitida, that are found in streams in two mangrove systems in Bertioga and Cananéia, Brazil. Bacillus was the most frequently isolated genus, comprising 42% of the species isolated from Cananéia and 28% of the species from Bertioga. However, other common endophytic genera such as Pantoea, Curtobacterium and Enterobacter were also found. After identifying the isolates, the bacterial communities were evaluated for enzyme production. Protease activity was observed in 75% of the isolates, while endoglucanase activity occurred in 62% of the isolates. Bacillus showed the highest activity rates for amylase and esterase and endoglucanase. To our knowledge, this is the first reported diversity analysis performed on endophytic bacteria obtained from the branches of mangrove trees and the first overview of the specific enzymes produced by different bacterial genera. This work contributes to our knowledge of the microorganisms and enzymes present in mangrove ecosystems.

  16. He said, she said: mRNA sequencing identifies specificity in metabolic response to Bacillus mojavensis lipopeptides in Fusarium verticillioides

    USDA-ARS?s Scientific Manuscript database

    Fusarium verticillioides is a mycotoxigenic fungus capable of both pathogenic and asymptomatic endophytic lifestyles in maize; such intimate association renders efficient chemical control cost-prohibitive. Bacillus mojavensis RRC101 is a maize endophyte demonstrating both in vitro antagonism of F. v...

  17. Surfactin production by strains of Bacillus mojavensis

    USDA-ARS?s Scientific Manuscript database

    Bacillus mojavensis, RRC101 is an endophytic bacterium patented for control of fungal diseases in maize and other plants. DNA fingerprint analysis of the rep-PCR fragments of 35 B. mojavensis and 4 B. subtilis strains using the Diversilab genotyping system revealed genotypic distinctive strains alon...

  18. Evaluation of the plant-growth-promoting abilities of endophytic bacteria from the psammophyte Ammodendron bifolium.

    PubMed

    Zhu, Yanlei; She, Xiaoping

    2018-04-01

    The objective of this study was to assess the plant-growth-promoting abilities of 45 endophytic bacterial isolates from Ammodendron bifolium through physiological characteristics detection and endophytic bacteria-plant interaction. Each of these isolates exhibited 1 or more plant-growth-promoting traits, but only 11 isolates belonging to the genera Bacillus, Staphylococcus, and Kocuria were capable of promoting seed germination and radicle growth. These results together with the results of the correlation analysis revealed that the completion of seed germination may not be due to IAA production, phosphate solubilization, pellicle formation, and ACC deaminase, protease and lipase production by endophytic bacteria, but may be closely related to amylase and cellulase production. Further, endophytic bacterial isolates with plant-growth-promoting traits may also provide beneficial effects to host plants at different growth stages. Thus, these results are of value for understanding the ecological roles of endophytic bacteria in host plant habitats and can serve as a foundation for further studies of their potential in plant regeneration.

  19. Comparative Transcriptomics of Bacillus mycoides Strains in Response to Potato-Root Exudates Reveals Different Genetic Adaptation of Endophytic and Soil Isolates.

    PubMed

    Yi, Yanglei; de Jong, Anne; Frenzel, Elrike; Kuipers, Oscar P

    2017-01-01

    Plant root secreted compounds alter the gene expression of associated microorganisms by acting as signal molecules that either stimulate or repel the interaction with beneficial or harmful species, respectively. However, it is still unclear whether two distinct groups of beneficial bacteria, non-plant-associated (soil) strains and plant-associated (endophytic) strains, respond uniformly or variably to the exposure with root exudates. Therefore, Bacillus mycoides , a potential biocontrol agent and plant growth-promoting bacterium, was isolated from the endosphere of potatoes and from soil of the same geographical region. Confocal fluorescence microscopy of plants inoculated with GFP-tagged B. mycoides strains showed that the endosphere isolate EC18 had a stronger plant colonization ability and competed more successfully for the colonization sites than the soil isolate SB8. To dissect these phenotypic differences, the genomes of the two strains were sequenced and the transcriptome response to potato root exudates was compared. The global transcriptome profiles evidenced that the endophytic isolate responded more pronounced than the soil-derived isolate and a higher number of significant differentially expressed genes were detected. Both isolates responded with the alteration of expression of an overlapping set of genes, which had previously been reported to be involved in plant-microbe interactions; including organic substance metabolism, oxidative reduction, and transmembrane transport. Notably, several genes were specifically upregulated in the endosphere isolate EC18, while being oppositely downregulated in the soil isolate SB8. These genes mainly encoded membrane proteins, transcriptional regulators or were involved in amino acid metabolism and biosynthesis. By contrast, several genes upregulated in the soil isolate SB8 and downregulated in the endosphere isolate EC18 were related to sugar transport, which might coincide with the different nutrient availability

  20. Antimicrobial Activity of Medicinal Plants Correlates with the Proportion of Antagonistic Endophytes

    PubMed Central

    Egamberdieva, Dilfuza; Wirth, Stephan; Behrendt, Undine; Ahmad, Parvaiz; Berg, Gabriele

    2017-01-01

    Medicinal plants are known to harbor potential endophytic microbes, due to their bioactive compounds. In a first study of ongoing research, endophytic bacteria were isolated from two medicinal plants, Hypericum perforatum and Ziziphora capitata with contrasting antimicrobial activities from the Chatkal Biosphere Reserve of Uzbekistan, and their plant-specific traits involved in biocontrol and plant growth promotion were evaluated. Plant extracts of H. perforatum exhibited a remarkable activity against bacterial and fungal pathogens, whereas extracts of Z. capitata did not exhibit any potential antimicrobial activity. Matrix-assisted laser desorption ionization (MALDI) time-of-flight (TOF) mass spectrometry (MS) was used to identify plant associated culturable endophytic bacteria. The isolated culturable endophytes associated with H. perforatum belong to eight genera (Arthrobacter, Achromobacter, Bacillus, Enterobacter, Erwinia, Pseudomonas, Pantoea, Serratia, and Stenotrophomonas). The endophytic isolates from Z. capitata also contain those genera except Arthrobacter, Serratia, and Stenotrophomonas. H. perforatum with antibacterial activity supported more bacteria with antagonistic activity, as compared to Z. capitata. The antagonistic isolates were able to control tomato root rot caused by Fusarium oxysporum and stimulated plant growth under greenhouse conditions and could thus be a cost-effective source for agro-based biological control agents. PMID:28232827

  1. Microgravity effect on endophytic bacteria communities of Triticum aestivum

    NASA Astrophysics Data System (ADS)

    Qin, Youcai; Fu, Yuming; Chen, Huiwen; Liu, Hong; Sun, Yi

    2018-02-01

    Under normal gravity conditions, endophytic bacteria, one of the key bacterial community that inhabit in plant tissues, are well-known in promoting the plant growth and health, which are essential for long-term and long-distance manned microgravity space exploration. Here, we report how the Triticum aestivum endophytic bacterial communities behave differently under the simulated microgravity conditions. We demonstrate that, under simulated microgravity conditions, the microbial diversity in wheat seedling leaf increases while that in root decreases, compared to that cultivated under normal gravity conditions. We found that the dominant bacteria genus such as Pseudomonas, Paenibacillus and Bacillus significantly changes with gravity. The findings of this study provide important insight for space research, especially in terms of the Triticum aestivum cultivation in space.

  2. RNA-Seq identification of candidate defense genes targeted by endophytic Bacillus cereus-mediated induced systemic resistance against Meloidogyne incognita in tomato.

    PubMed

    Hu, Haijing; Wang, Cong; Li, Xia; Tang, Yunyun; Wang, Yufang; Chen, Shuanglin; Yan, Shuzhen

    2018-05-08

    The endophytic bacteria Bacillus cereus BCM2 has shown great potential as a defense against the parasitic nematode Meloidogyne incognita. Here, we studied the endophytic bacteria-mediated plant defense against M. incognita and searched for defense-related candidate genes using RNA-Seq. The induced systemic resistance of BCM2 against M. incognita was tested using the split-root method. Pre-inoculated BCM2 on the inducer side was associated with a dramatic reduction in galls and egg masses at the responder side, but inoculated BCM2 alone did not produce the same effect. In order to investigate which plant defense-related genes are specifically activated by BCM2, four RNA samples from tomato roots were sequenced, and four high quality total clean bases were obtained, ranging from 6.64 to 6.75 Gb, with an average of 21558 total genes. The 34 candidate defense-related genes were identified by pair-wise comparison among libraries, representing the targets for BCM2 priming resistance against M. incognita. Functional characterization revealed that the plant-pathogen interaction pathway (ID: ko04626) was significantly enriched for BCM2-mediated M. incognita resistance. This study demonstrates that B. cereus BCM2 maintains a harmonious host-microbe relationship with tomato, but appeared to prime the plant, resulting in more vigorous defense response toward the infection nematode. This article is protected by copyright. All rights reserved.

  3. Isolation of potential probiotic Bacillus spp. and assessment of their subcellular components to induce immune responses in Labeo rohita against Aeromonas hydrophila.

    PubMed

    Ramesh, Dharmaraj; Vinothkanna, Annadurai; Rai, Amit Kumar; Vignesh, Venkada Subramanian

    2015-08-01

    Bacillus species isolated from the gut of healthy Labeo rohita (Hamilton) were screened for antibacterial activity against selected fish pathogens. Among the isolates, KADR5 and KADR6 showed antibacterial activity, tolerated low pH and high bile concentrations and were susceptibility to various antibiotics. Based on morphological and biochemical tests and 16S rRNA gene analysis the probiotic strains KADR5 and KADR6 were identified as Bacillus licheniformis and Bacillus pumilus, respectively. The immune stimulatory effect of subcellular components of probiotic Bacillus licheniformis KADR5 and Bacillus pumilus KADR6 in L. rohita against Aeromonas hydrophila infection was studied. Fish were immunized intraperitoneally in case of subcellular components [cell wall proteins (CWPs), extracellular proteins (ECPs), whole cell proteins (WCPs)] and orally in case of live cells (10(8) CFU/g of feed). After 14th day of administration, fishes from each group were challenged intraperitoneally with 0.1 ml of A. hydrophila cell suspension in PBS (10(5) cells ml(-1)). Groups immunized with subcellular components and live cells had significantly lower mortalities of 20-40% and 23-33%, respectively in comparison to control (80% mortality). The non specific immune factors in the cellular components and viable cells of the probiotics increased the expression of lysozyme and respiratory burst. Use of WCPs and CWPs resulted in better protection against A. hydrophila in L. rohita. Our results clearly reflect the potential of cellular components of the probiotics Bacillus species for the protection of fish against A. hydrophila infection by enhancing the immune response. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Characterization of endophytic Bacillus strains from tomato plants (Lycopersicon esculentum) displaying antifungal activity against Botrytis cinerea Pers.

    PubMed

    Kefi, Asma; Ben Slimene, Imen; Karkouch, Ines; Rihouey, Christophe; Azaeiz, Sana; Bejaoui, Marwa; Belaid, Rania; Cosette, Pascal; Jouenne, Thierry; Limam, Ferid

    2015-12-01

    Eighty endophytic bacteria were isolated from healthy tissues of roots, stems, leaves and fruits of tomato plants (Lycopersicon esculentum). Four strains, named BL1, BT5, BR8 and BF11 were selected for their antagonism against Botrytis cinerea, a phytopathogenic fungus responsible of gray mold in several important crops, with growth inhibitory activity ranging from 27 to 53%. Morphological, biochemical, and molecular parameters as 16S rDNA sequencing demonstrated that the selected bacterial strains were related to Bacillus species which are known to produce and secrete a lot of lipopeptides with strong inhibitory effect against pathogen mycelial growth. Electrospray mass spectrometry analysis showed that these strains produced heterogeneous mixture of antibiotics belonging to fengycin and surfactin for BL1 and BT5, to iturin and surfactin for BR8, to bacillomycin D, fengycin and surfactin for BF11. Furthermore, these bacteria exhibited biocontrol potential by reducing the disease severity when tested on detached leaflets. Based on their antifungal activity against Botrytis cinerea, these strains could be used for biological control of plant diseases.

  5. Antimicrobial activity and biodiversity of endophytic fungi in Dendrobium devonianum and Dendrobium thyrsiflorum from Vietnam.

    PubMed

    Xing, Yong-Mei; Chen, Juan; Cui, Jin-Long; Chen, Xiao-Mei; Guo, Shun-Xing

    2011-04-01

    Endophytic fungi are rich in orchids and have great impacts on their host plants. 53 endophytes (30 isolates from Dendrobium devonianum and 23 endophytic fungi from D. thyrsiflorum) were isolated, respectively, from roots and stems of Dendrobium species. All the fungi were identified by way of morphological and/or molecular biological methods. 30 endophytic fungi in D. devonianum were categorized into 11 taxa and 23 fungal endophytes in D. thyrsiflorum were grouped into 11 genera, respectively. Fusarium was the dominant species of the two Dendrobium species in common. Antimicrobial activity of ethanol extract of fermentation broth of these fungi was explored using agar diffusion test. 10 endophytic fungi in D. devonianum and 11 in D. thyrsiflorum exhibited antimicrobial activity against at least one pathogenic bacterium or fungus among 6 pathogenic microbes (Escherichia coli, Bacillus subtilis, Staphylococcus aureus, Candida albicans, Cryptococcus neoformans, and Aspergillus fumigatus). Out of the fungal endophytes isolated from D. devonianum and D. thyrsiflorum, Phoma displayed strong inhibitory activity (inhibition zones in diameter >20 mm) against pathogens. Epicoccum nigrum from D. thyrsiflorum exhibited antibacterial activity even stronger than ampicillin sodium. Fusarium isolated from the two Dendrobium species was effective against the pathogenic bacterial as well as fungal pathogens. The study reinforced the assumption that endophytic fungi isolated from different Dendrobium species could be of potential antibacterial or antifungal resource.

  6. Endophytic bacterial flora in root and stem tissues of black pepper (Piper nigrum L.) genotype: isolation, identification and evaluation against Phytophthora capsici.

    PubMed

    Aravind, R; Kumar, A; Eapen, S J; Ramana, K V

    2009-01-01

    To isolate and identify black pepper (Piper nigrum L) associated endophytic bacteria antagonistic to Phytophthora capsici causing foot rot disease. Endophytic bacteria (74) were isolated, characterized and evaluated against P. capsici. Six genera belong to Pseudomonas spp (20 strains), Serratia (1 strain), Bacillus spp. (22 strains), Arthrobacter spp. (15 strains), Micrococcus spp. (7 strains), Curtobacterium sp. (1 strain) and eight unidentified strains were isolated from internal tissues of root and stem. Three isolates, IISRBP 35, IISRBP 25 and IISRBP 17 were found effective for Phytophthora suppression in multilevel screening assays which recorded over 70% disease suppression in greenhouse trials. A species closest match (99% similarity) of IISRBP 35 was established as Pseudomonas aeruginosa (Pseudomonas EF568931), IISRBP 25 as P. putida (Pseudomonas EF568932), and IISRBP 17 as Bacillus megaterium (B. megaterium EU071712) based on 16S rDNA sequencing. Black pepper associated P. aeruginosa, P. putida and B. megaterium were identified as effective antagonistic endophytes for biological control of Phytophthora foot rot in black pepper. This work provides the first evidence for endophytic bacterial diversity in black pepper stem and roots, with biocontrol potential against P. capsici infection.

  7. Antimicrobial activities of endophytic fungi obtained from the arid zone invasive plant Opuntia dillenii and the isolation of equisetin, from endophytic Fusarium sp.

    PubMed

    Ratnaweera, Pamoda B; de Silva, E Dilip; Williams, David E; Andersen, Raymond J

    2015-07-10

    Opuntia dillenii is an invasive plant well established in the harsh South-Eastern arid zone of Sri Lanka. Evidence suggests it is likely that the endophytic fungal populations of O. dillenii assist the host in overcoming biotic and abiotic stress by producing biologically active metabolites. With this in mind there is potential to discover novel natural products with useful biological activities from this hitherto poorly investigated source. Consequently, an investigation of the antimicrobial activities of the endophytes of O. dillenii, that occupies a unique ecological niche, may well provide useful leads in the discovery of new pharmaceuticals. Endophytic fungi were isolated from the surface sterilized cladodes and flowers of O. dillenii using several nutrient media and the antimicrobial activities were evaluated against three Gram-positive and two Gram-negative bacteria and Candida albicans. The two most bioactive fungi were identified by colony morphology and DNA sequencing. The secondary metabolite of the endophyte Fusarium sp. exhibiting the best activity was isolated via bioassay guided chromatography. The chemical structure was elucidated from the ESIMS and NMR spectroscopic data obtained for the active metabolite. The minimum inhibitory concentrations (MICs) of the active compound were determined. Eight endophytic fungi were isolated from O. dillenii and all except one showed antibacterial activities against at least one of the test bacteria. All extracts were inactive against C. albicans. The most bioactive fungus was identified as Fusarium sp. and the second most active as Aspergillus niger. The structure of the major antibacterial compound of the Fusarium sp. was shown to be the tetramic acid derivative, equisetin. The MIC's for equisetin were 8 μg mL(-1) against Bacillus subtilis, 16 μg mL(-1) against Staphylococcus aureus and Methicillin Resistant Staphylococcus aureus (MRSA). O. dillenii, harbors several endophytic fungi capable of producing

  8. Role of mechanical vs. chemical action in the removal of adherent Bacillus spores during CIP procedures.

    PubMed

    Faille, C; Bénézech, T; Blel, W; Ronse, A; Ronse, G; Clarisse, M; Slomianny, C

    2013-04-01

    This study was designed to evaluate the respective roles of mechanical and chemical effects on the removal of Bacillus spores during cleaning-in-place. This analysis was performed on 12 strains belonging to the Bacillus cereus group (B. cereus, Bacillus anthracis, Bacillus thuringiensis) or to less related Bacillus species (Bacillus pumilus, Bacillus licheniformis, Bacillus sporothermodurans, Bacillus subtilis). Adherent spores were subjected to rinsing-in-place (mechanical action) and cleaning-in-place (mechanical and chemical actions) procedures, the latter involving NaOH 0.5% at 60°C. Results revealed that mechanical action alone only removed between 53 and 89% of the attached spores at a shear stress of 500 Pa. This resistance to shear was not related to spore surface properties. Conversely, in the presence of NaOH at a shear stress of 4 Pa, spores were readily detached, with between 80 and 99% of the adherent spores detached during CIP and the chemical action greatly depended on the strain. This finding suggests that chemical action plays the major role during CIP, whose efficacy is significantly governed by the spore surface chemistry. Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. Surfactin A Production and Isoform Characterizations in Strains of Bacillus mojavensis for Potential Control of Fusarium verticillioides and Fumonisin in Maize

    USDA-ARS?s Scientific Manuscript database

    Bacillus mojavensis, a species recently distinguished as a cryptic species within Bacillus subtilis, was discovered in maize kernels and later determined to possess endophytic characteristics. The bacterium was also determined to have biocontrol potential due to its strong antagonism to the fungus...

  10. A glimpse of the endophytic bacterial diversity in roots of blackberry plants (Rubus fruticosus).

    PubMed

    Contreras, M; Loeza, P D; Villegas, J; Farias, R; Santoyo, G

    2016-09-16

    The aim of this study was to explore the diversity of culturable bacterial communities residing in blackberry plants (Rubus fruticosus). Bacterial endophytes were isolated from plant roots, and their 16S rDNA sequences were amplified and sequenced. Our results show that the roots of R. fruticosus exhibit low colony forming units of bacterial endophytes per gram of fresh tissue (6 x 10 2 ± 0.5 x 10 2 ). We identified 41 endophytic bacterial species in R. fruticosus by BLAST homology search and a subsequent phylogenetic analysis, belonging to the classes Actinobacteria, Bacilli, Alfaproteobacteria, Betaproteobacteria, and Gammaproteobacteria. Predominantly, genera belonging the Proteobacteria (Burkholderia, 29.4%; Herbaspirillum, 10.7%; Pseudomonas, 4.9%; and Dyella, 3.9%), Firmicutes (Bacillus, 42.1%), and Actinobacteria (two isolates showing high identity with the Streptomyces genus, 1.9%) divisions were identified. Fifty percent of the bacterial endophytes produced the phytohormone indole-acetic acid (IAA), eleven of which exhibited higher IAA production (>5.8 mg/mL) compared to the plant growth-promoting strain, Pseudomonas fluorescens UM270. Additionally, the endophytic isolates exhibited protease activity (22%), produced siderophores (26.4%), and demonstrated antagonistic action (>50% inhibition of mycelial growth) against the grey mold phytopathogen Botrytis cinerea (3.9%). These results suggested that field-grown R. fruticosus plants contain bacterial endophytes within their tissues with the potential to promote plant growth and display antagonism towards plant pathogens.

  11. In vitro susceptibility of Bacillus spp. to selected antimicrobial agents.

    PubMed Central

    Weber, D J; Saviteer, S M; Rutala, W A; Thomann, C A

    1988-01-01

    Although often dismissed as contaminants when isolated from blood cultures, Bacillus spp. are increasingly recognized as capable of causing serious systemic infections. As part of a clinical-microbiological study, 89 strains of Bacillus spp. isolated from clinical blood cultures between 1981 and 1985 had their species determined and were tested for antimicrobial agent susceptibility to 18 antibiotics. Species of isolates were determined by the API 50CH and API 20E systems. Bacillus cereus (54 strains) was the most common species isolated, followed by B. megaterium (13 strains), B. polymyxa (5 strains), B. pumilus (4 strains), B. subtilis (4 strains), B. circulans (3 strains), B. amyloliquefaciens (2 strains), B. licheniformis (1 strain), and Bacillus spp. (3 strains). Microdilution MIC susceptibility tests revealed all B. cereus strains to be susceptible to imipenem, vancomycin, chloramphenicol, gentamicin, and ciprofloxacin. Non-B. cereus strains were most susceptible to imipenem, vancomycin, LY146032, and ciprofloxacin. Disk susceptibility testing suggested that B. cereus was rarely susceptible to penicillins, semisynthetic penicillins, or cephalosporins with the exception of mezlocillin. In contrast, many non-B. cereus strains were susceptible to penicillins, semisynthetic penicillins, and cephalosporins, but marked variability was noted among species. PMID:3395100

  12. Probing the Crucial Role of Leu31 and Thr33 of the Bacillus pumilus CBS Alkaline Protease in Substrate Recognition and Enzymatic Depilation of Animal Hide

    PubMed Central

    Zaraî Jaouadi, Nadia; Jaouadi, Bassem; Ben Hlima, Hajer; Rekik, Hatem; Belhoul, Mouna; Hmidi, Maher; Aicha, Houda Slimene Ben; Hila, Chiraz Gorgi; Toumi, Abdessatar; Aghajari, Nushin; Bejar, Samir

    2014-01-01

    The sapB gene, encoding Bacillus pumilus CBS protease, and seven mutated genes (sapB-L31I, sapB-T33S, sapB-N99Y, sapB-L31I/T33S, sapB-L31I/N99Y, sapB-T33S/N99Y, and sapB-L31I/T33S/N99Y) were overexpressed in protease-deficient Bacillus subtilis DB430 and purified to homogeneity. SAPB-N99Y and rSAPB displayed the highest levels of keratinolytic activity, hydrolysis efficiency, and enzymatic depilation. Interestingly, and at the semi-industrial scale, rSAPB efficiently removed the hair of goat hides within a short time interval of 8 h, thus offering a promising opportunity for the attainment of a lime and sulphide-free depilation process. The efficacy of the process was supported by submitting depilated pelts and dyed crusts to scanning electron microscopic analysis, and the results showed well opened fibre bundles and no apparent damage to the collagen layer. The findings also revealed better physico-chemical properties and less effluent loads, which further confirmed the potential candidacy of the rSAPB enzyme for application in the leather industry to attain an ecofriendly process of animal hide depilation. More interestingly, the findings on the substrate specificity and kinetic properties of the enzyme using the synthetic peptide para-nitroanilide revealed strong preferences for an aliphatic amino-acid (valine) at position P1 for keratinases and an aromatic amino-acid (phenylalanine) at positions P1/P4 for subtilisins. Molecular modeling suggested the potential involvement of a Leu31 residue in a network of hydrophobic interactions, which could have shaped the S4 substrate binding site. The latter could be enlarged by mutating L31I, fitting more easily in position P4 than a phenylalanine residue. The molecular modeling of SAPB-T33S showed a potential S2 subside widening by a T33S mutation, thus suggesting its importance in substrate specificity. PMID:25264614

  13. Heterologous expression and characterization of a new heme-catalase in Bacillus subtilis 168.

    PubMed

    Philibert, Tuyishime; Rao, Zhiming; Yang, Taowei; Zhou, Junping; Huang, Genshu; Irene, Komera; Samuel, Niyomukiza

    2016-06-01

    Reactive oxygen species (ROS) is an inherent consequence to all aerobically living organisms that might lead to the cells being lethal and susceptible to oxidative stress. Bacillus pumilus is characterized by high-resistance oxidative stress that stimulated our interest to investigate the heterologous expression and characterization of heme-catalase as potential biocatalyst. Results indicated that recombinant enzyme significantly exhibited the high catalytic activity of 55,784 U/mg expressed in Bacillus subtilis 168 and 98.097 µmol/min/mg peroxidatic activity, the apparent K m of catalytic activity was 59.6 ± 13 mM with higher turnover rate (K cat = 322.651 × 10(3) s(-1)). The pH dependence of catalatic and peroxidatic activity was pH 7.0 and pH 4.5 respectively with temperature dependence of 40 °C and the recombinant heme-catalase exhibited a strong Fe(2+) preference. It was further revealed that catalase KatX2 improved the resistance oxidative stress of B. subtilis. These findings suggest that this B. pumilus heme-catalase can be considered among the industrially relevant biocatalysts due to its exceptional catalytic rate and high stability and it can be a potential candidate for the improvement of oxidative resistance of industrially produced strains.

  14. Maize Endophytic Bacterial Diversity as Affected by Soil Cultivation History.

    PubMed

    Correa-Galeote, David; Bedmar, Eulogio J; Arone, Gregorio J

    2018-01-01

    The bacterial endophytic communities residing within roots of maize ( Zea mays L.) plants cultivated by a sustainable management in soils from the Quechua maize belt (Peruvian Andes) were examined using tags pyrosequencing spanning the V4 and V5 hypervariable regions of the 16S rRNA. Across four replicate libraries, two corresponding to sequences of endophytic bacteria from long time maize-cultivated soils and the other two obtained from fallow soils, 793 bacterial sequences were found that grouped into 188 bacterial operational taxonomic units (OTUs, 97% genetic similarity). The numbers of OTUs in the libraries from the maize-cultivated soils were significantly higher than those found in the libraries from fallow soils. A mean of 30 genera were found in the fallow soil libraries and 47 were in those from the maize-cultivated soils. Both alpha and beta diversity indexes showed clear differences between bacterial endophytic populations from plants with different soil cultivation history and that the soils cultivated for long time requires a higher diversity of endophytes. The number of sequences corresponding to main genera Sphingomonas, Herbaspirillum, Bradyrhizobium and Methylophilus in the maize-cultivated libraries were statistically more abundant than those from the fallow soils. Sequences of genera Dyella and Sreptococcus were significantly more abundant in the libraries from the fallow soils. Relative abundance of genera Burkholderia, candidatus Glomeribacter, Staphylococcus, Variovorax, Bacillus and Chitinophaga were similar among libraries. A canonical correspondence analysis of the relative abundance of the main genera showed that the four libraries distributed in two clearly separated groups. Our results suggest that cultivation history is an important driver of endophytic colonization of maize and that after a long time of cultivation of the soil the maize plants need to increase the richness of the bacterial endophytes communities.

  15. Maize Endophytic Bacterial Diversity as Affected by Soil Cultivation History

    PubMed Central

    Correa-Galeote, David; Bedmar, Eulogio J.; Arone, Gregorio J.

    2018-01-01

    The bacterial endophytic communities residing within roots of maize (Zea mays L.) plants cultivated by a sustainable management in soils from the Quechua maize belt (Peruvian Andes) were examined using tags pyrosequencing spanning the V4 and V5 hypervariable regions of the 16S rRNA. Across four replicate libraries, two corresponding to sequences of endophytic bacteria from long time maize-cultivated soils and the other two obtained from fallow soils, 793 bacterial sequences were found that grouped into 188 bacterial operational taxonomic units (OTUs, 97% genetic similarity). The numbers of OTUs in the libraries from the maize-cultivated soils were significantly higher than those found in the libraries from fallow soils. A mean of 30 genera were found in the fallow soil libraries and 47 were in those from the maize-cultivated soils. Both alpha and beta diversity indexes showed clear differences between bacterial endophytic populations from plants with different soil cultivation history and that the soils cultivated for long time requires a higher diversity of endophytes. The number of sequences corresponding to main genera Sphingomonas, Herbaspirillum, Bradyrhizobium and Methylophilus in the maize-cultivated libraries were statistically more abundant than those from the fallow soils. Sequences of genera Dyella and Sreptococcus were significantly more abundant in the libraries from the fallow soils. Relative abundance of genera Burkholderia, candidatus Glomeribacter, Staphylococcus, Variovorax, Bacillus and Chitinophaga were similar among libraries. A canonical correspondence analysis of the relative abundance of the main genera showed that the four libraries distributed in two clearly separated groups. Our results suggest that cultivation history is an important driver of endophytic colonization of maize and that after a long time of cultivation of the soil the maize plants need to increase the richness of the bacterial endophytes communities. PMID:29662471

  16. Enterotoxins and emetic toxins production by Bacillus cereus and other species of Bacillus isolated from Soumbala and Bikalga, African alkaline fermented food condiments.

    PubMed

    Ouoba, Labia Irene I; Thorsen, Line; Varnam, Alan H

    2008-06-10

    The ability of various species of Bacillus from fermented seeds of Parkia biglobosa known as African locust bean (Soumbala) and fermented seeds of Hibiscus sabdariffa (Bikalga) was investigated. The study included screening of the isolates by haemolysis on blood agar, detection of toxins in broth and during the fermentation of African locust bean using the Bacillus cereus Enterotoxin Reverse Passive Latex Agglutination test kit (BCET-RPLA) and the Bacillus Diarrhoeal Enterotoxin Visual Immunoassay (BDEVIA). Detection of genes encoding cytotoxin K (CytK), haemolysin BL (Hbl A, Hbl C, Hbl D), non-hemolytic enterotoxin (NheA, NheB, NheC) and EM1 specific of emetic toxin producers was also investigated using PCR with single pair and multiplex primers. Of 41 isolates, 29 Bacillus belonging to the species of B. cereus, Bacillus subtilis, Bacillus licheniformis and Bacillus pumilus showed haemolysis on blood agar. Using RPLA, enterotoxin production was detected for three isolates of B. cereus in broth and all B. cereus (9) in fermented seeds. Using BDEVIA, enterotoxin production was detected in broth as well as in fermented seeds for all B. cereus isolates. None of the isolates belonging to the other Bacillus species was able to produce enterotoxins either by RPLA or BDEVIA. Nhe genes were detected in all B. cereus while Hbl and CytK genes were detected respectively in five and six B. cereus strains. A weak presence of Hbl (A, D) and CytK genes was detected in two isolates of B. subtilis and one of B. licheniformis but results were inconsistent, especially for Hbl genes. The emetic specific gene fragment EM1 was not detected in any of the isolates studied.

  17. Cultivable endophytic bacteria from leaf bases of Agave tequilana and their role as plant growth promoters

    PubMed Central

    Martínez-Rodríguez, Julia del C.; la Mora-Amutio, Marcela De; Plascencia-Correa, Luis A.; Audelo-Regalado, Esmeralda; Guardado, Francisco R.; Hernández-Sánchez, Elías; Peña-Ramírez, Yuri J.; Escalante, Adelfo; Beltrán-García, Miguel J.; Ogura, Tetsuya

    2014-01-01

    Agave tequilana Weber var. ‘Azul’ is grown for the production of tequila, inulin and syrup. Diverse bacteria inhabit plant tissues and play a crucial role for plant health and growth. In this study culturable endophytic bacteria were extracted from leaf bases of 100 healthy Agave tequilana plants. In plant tissue bacteria occurred at mean population densities of 3 million CFU/g of fresh plant tissue. Three hundred endophytic strains were isolated and 16s rDNA sequences grouped the bacteria into eight different taxa that shared high homology with other known sequences. Bacterial endophytes were identified as Acinectobacter sp., A. baumanii, A. bereziniae, Cronobacter sakazakii, Enterobacter hormaechei, Bacillus sp. Klebsiella oxytoca, Pseudomonas sp., Enterococcus casseliflavus, Leuconostoc mesenteroides subsp. mesenteroides and Gluconobacter oxydans. Isolates were confirmed to be plant growth promoting bacteria (PGPB) by their capacities for nitrogen fixation, auxin production, phosphate solubilization, or antagonism against Fusarium oxysporum AC132. E. casseliflavus JM47 and K. oxytoca JM26 secreted the highest concentrations of IAA. The endophyte Acinectobacter sp. JM58 exhibited the maximum values for nitrogen fixation and phosphate solubilization index (PSI). Inhibition of fungi was found in Pseudomonas sp. JM9p and K. oxytoca JM26. Bacterial endophytes show promise for use as bio-inoculants for agave cultivation. Use of endophytes to enhance cultivation of agave may be particularly important for plants produced by micropropagation techniques, where native endophytes may have been lost. PMID:25763038

  18. Cultivable endophytic bacteria from leaf bases of Agave tequilana and their role as plant growth promoters.

    PubMed

    Martínez-Rodríguez, Julia del C; De la Mora-Amutio, Marcela; Plascencia-Correa, Luis A; Audelo-Regalado, Esmeralda; Guardado, Francisco R; Hernández-Sánchez, Elías; Peña-Ramírez, Yuri J; Escalante, Adelfo; Beltrán-García, Miguel J; Ogura, Tetsuya

    2014-01-01

    Agave tequilana Weber var. 'Azul' is grown for the production of tequila, inulin and syrup. Diverse bacteria inhabit plant tissues and play a crucial role for plant health and growth. In this study culturable endophytic bacteria were extracted from leaf bases of 100 healthy Agave tequilana plants. In plant tissue bacteria occurred at mean population densities of 3 million CFU/g of fresh plant tissue. Three hundred endophytic strains were isolated and 16s rDNA sequences grouped the bacteria into eight different taxa that shared high homology with other known sequences. Bacterial endophytes were identified as Acinectobacter sp., A. baumanii, A. bereziniae, Cronobacter sakazakii, Enterobacter hormaechei, Bacillus sp. Klebsiella oxytoca, Pseudomonas sp., Enterococcus casseliflavus, Leuconostoc mesenteroides subsp. mesenteroides and Gluconobacter oxydans. Isolates were confirmed to be plant growth promoting bacteria (PGPB) by their capacities for nitrogen fixation, auxin production, phosphate solubilization, or antagonism against Fusarium oxysporum AC132. E. casseliflavus JM47 and K. oxytoca JM26 secreted the highest concentrations of IAA. The endophyte Acinectobacter sp. JM58 exhibited the maximum values for nitrogen fixation and phosphate solubilization index (PSI). Inhibition of fungi was found in Pseudomonas sp. JM9p and K. oxytoca JM26. Bacterial endophytes show promise for use as bio-inoculants for agave cultivation. Use of endophytes to enhance cultivation of agave may be particularly important for plants produced by micropropagation techniques, where native endophytes may have been lost.

  19. Characterization of endophytic strains of Bacillus mojavensis and their production of surfactin isomers

    USDA-ARS?s Scientific Manuscript database

    Bacillus subtilis consists of a large collection of strains from which several cryptic species have been delineated, and most of these along with strains within the species are important biocontrol agents. Bacillus mojavensis, a species recently distinguished from this broad Bacillus subtilis grou...

  20. Inducing secondary metabolite production by the endophytic fungus Fusarium tricinctum through coculture with Bacillus subtilis.

    PubMed

    Ola, Antonius R B; Thomy, Dhana; Lai, Daowan; Brötz-Oesterhelt, Heike; Proksch, Peter

    2013-11-22

    Coculturing the fungal endophyte Fusarium tricinctum with the bacterium Bacillus subtilis 168 trpC2 on solid rice medium resulted in an up to 78-fold increase in the accumulation in constitutively present secondary metabolites that included lateropyrone (5), cyclic depsipeptides of the enniatin type (6-8), and the lipopeptide fusaristatin A (9). In addition, four compounds (1-4) including (-)-citreoisocoumarin (2) as well as three new natural products (1, 3, and 4) were not present in discrete fungal and bacterial controls and only detected in the cocultures. The new compounds were identified as macrocarpon C (1), 2-(carboxymethylamino)benzoic acid (3), and (-)-citreoisocoumarinol (4) by analysis of the 1D and 2D NMR and HRMS data. Enniatins B1 (7) and A1 (8), whose production was particularly enhanced, inhibited the growth of the cocultivated B. subtilis strain with minimal inhibitory concentrations (MICs) of 16 and 8 μg/mL, respectively, and were also active against Staphylococcus aureus, Streptococcus pneumoniae, and Enterococcus faecalis with MIC values in the range 2-8 μg/mL. In addition, lateropyrone (5), which was constitutively present in F. tricinctum, displayed good antibacterial activity against B. subtilis, S. aureus, S. pneumoniae, and E. faecalis, with MIC values ranging from 2 to 8 μg/mL. All active compounds were equally effective against a multiresistant clinical isolate of S. aureus and a susceptible reference strain of the same species.

  1. Establishing fungal entomopathogens as endophytes: towards endophytic biological control

    USDA-ARS?s Scientific Manuscript database

    Beauveria basssiana is a fungal entomopathogen with the ability to colonize plants endophytically. As an endophyte, B. bassiana may play a role in protecting plants from herbivory and disease. This protocol demonstrates two inoculation methods to establish B. bassiana endophytically in the common be...

  2. Inter- and intracellular colonization of Arabidopsis roots by endophytic actinobacteria and the impact of plant hormones on their antimicrobial activity.

    PubMed

    van der Meij, Anne; Willemse, Joost; Schneijderberg, Martinus A; Geurts, René; Raaijmakers, Jos M; van Wezel, Gilles P

    2018-05-01

    Many actinobacteria live in close association with eukaryotes such as fungi, insects, animals and plants. Plant-associated actinobacteria display (endo)symbiotic, saprophytic or pathogenic life styles, and can make up a substantial part of the endophytic community. Here, we characterised endophytic actinobacteria isolated from root tissue of Arabidopsis thaliana (Arabidopsis) plants grown in soil from a natural ecosystem. Many of these actinobacteria belong to the family of Streptomycetaceae with Streptomyces olivochromogenes and Streptomyces clavifer as well represented species. When seeds of Arabidopsis were inoculated with spores of Streptomyces strain coa1, which shows high similarity to S. olivochromogenes, roots were colonised intercellularly and, unexpectedly, also intracellularly. Subsequent exposure of endophytic isolates to plant hormones typically found in root and shoot tissues of Arabidopsis led to altered antibiotic production against Escherichia coli and Bacillus subtilis. Taken together, our work reveals remarkable colonization patterns of endophytic streptomycetes with specific traits that may allow a competitive advantage inside root tissue.

  3. Bacterial endophyte communities in the foliage of coast redwood and giant sequoia.

    PubMed

    Carrell, Alyssa A; Frank, Anna C

    2015-01-01

    The endophytic bacterial microbiome, with an emerging role in plant nutrient acquisition and stress tolerance, is much less studied in natural plant populations than in agricultural crops. In a previous study, we found consistent associations between trees in the pine family and acetic acid bacteria (AAB) occurring at high relative abundance inside their needles. Our objective here was to determine if that pattern may be general to conifers, or alternatively, is more likely restricted to pines or conifers growing in nutrient limited and exposed environments. We used 16S rRNA pyrosequencing to characterize the foliar endophyte communities of two conifers in the Cupressaceae family: Two coast redwood (CR; Sequoia sempervirens) populations and one giant sequoia (GS; Sequoiadendron giganteum) population were sampled. Similar to the pines, the endophyte communities of the giant trees were dominated by Proteobacteria, Firmicutes, Acidobacteria, and Actinobacteria. However, although some major operational taxonomic units (OTUs) occurred at a high relative abundance of 10-40% in multiple samples, no specific group of bacteria dominated the endophyte community to the extent previously observed in high-elevation pines. Several of the dominating bacterial groups in the CR and GS foliage (e.g., Bacillus, Burkholderia, Actinomycetes) are known for disease- and pest suppression, raising the possibility that the endophytic microbiome protects the giant trees against biotic stress. Many of the most common and abundant OTUs in our dataset were most similar to 16S rRNA sequences from bacteria found in lichens or arctic plants. For example, an OTU belonging to the uncultured Rhizobiales LAR1 lineage, which is commonly associated with lichens, was observed at high relative abundance in many of the CR samples. The taxa shared between the giant trees, arctic plants, and lichens may be part of a broadly defined endophyte microbiome common to temperate, boreal, and tundra ecosystems.

  4. Bacterial endophyte communities in the foliage of coast redwood and giant sequoia

    PubMed Central

    Carrell, Alyssa A.; Frank, Anna C.

    2015-01-01

    The endophytic bacterial microbiome, with an emerging role in plant nutrient acquisition and stress tolerance, is much less studied in natural plant populations than in agricultural crops. In a previous study, we found consistent associations between trees in the pine family and acetic acid bacteria (AAB) occurring at high relative abundance inside their needles. Our objective here was to determine if that pattern may be general to conifers, or alternatively, is more likely restricted to pines or conifers growing in nutrient limited and exposed environments. We used 16S rRNA pyrosequencing to characterize the foliar endophyte communities of two conifers in the Cupressaceae family: Two coast redwood (CR; Sequoia sempervirens) populations and one giant sequoia (GS; Sequoiadendron giganteum) population were sampled. Similar to the pines, the endophyte communities of the giant trees were dominated by Proteobacteria, Firmicutes, Acidobacteria, and Actinobacteria. However, although some major operational taxonomic units (OTUs) occurred at a high relative abundance of 10–40% in multiple samples, no specific group of bacteria dominated the endophyte community to the extent previously observed in high-elevation pines. Several of the dominating bacterial groups in the CR and GS foliage (e.g., Bacillus, Burkholderia, Actinomycetes) are known for disease- and pest suppression, raising the possibility that the endophytic microbiome protects the giant trees against biotic stress. Many of the most common and abundant OTUs in our dataset were most similar to 16S rRNA sequences from bacteria found in lichens or arctic plants. For example, an OTU belonging to the uncultured Rhizobiales LAR1 lineage, which is commonly associated with lichens, was observed at high relative abundance in many of the CR samples. The taxa shared between the giant trees, arctic plants, and lichens may be part of a broadly defined endophyte microbiome common to temperate, boreal, and tundra ecosystems

  5. Bacterial endophyte communities in the foliage of coast redwood and giant sequoia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carrell, Alyssa A.; Frank, Anna C.

    The endophytic bacterial microbiome, with an emerging role in plant nutrient acquisition and stress tolerance, is much less studied in natural plant populations than in agricultural crops. In a previous study, we found consistent associations between trees in the pine family and acetic acid bacteria (AAB) occurring at high relative abundance inside their needles. Our objective here was to determine if that pattern may be general to conifers, or alternatively, is more likely restricted to pines or conifers growing in nutrient limited and exposed environments. We used 16S rRNA pyrosequencing to characterize the foliar endophyte communities of two conifers inmore » the Cupressaceae family: Two coast redwood (CR; Sequoia sempervirens) populations and one giant sequoia (GS; Sequoiadendron giganteum) population were sampled. Similar to the pines, the endophyte communities of the giant trees were dominated by Proteobacteria, Firmicutes, Acidobacteria, and Actinobacteria. However, although some major operational taxonomic units (OTUs) occurred at a high relative abundance of 10–40% in multiple samples, no specific group of bacteria dominated the endophyte community to the extent previously observed in high-elevation pines. Several of the dominating bacterial groups in the CR and GS foliage (e.g., Bacillus, Burkholderia, Actinomycetes) are known for disease- and pest suppression, raising the possibility that the endophytic microbiome protects the giant trees against biotic stress. Many of the most common and abundant OTUs in our dataset were most similar to 16S rRNA sequences from bacteria found in lichens or arctic plants. For example, an OTU belonging to the uncultured Rhizobiales LAR1 lineage, which is commonly associated with lichens, was observed at high relative abundance in many of the CR samples. Lastly, the taxa shared between the giant trees, arctic plants, and lichens may be part of a broadly defined endophyte microbiome common to temperate, boreal, and

  6. Bacterial endophyte communities in the foliage of coast redwood and giant sequoia

    DOE PAGES

    Carrell, Alyssa A.; Frank, Anna C.

    2015-09-22

    The endophytic bacterial microbiome, with an emerging role in plant nutrient acquisition and stress tolerance, is much less studied in natural plant populations than in agricultural crops. In a previous study, we found consistent associations between trees in the pine family and acetic acid bacteria (AAB) occurring at high relative abundance inside their needles. Our objective here was to determine if that pattern may be general to conifers, or alternatively, is more likely restricted to pines or conifers growing in nutrient limited and exposed environments. We used 16S rRNA pyrosequencing to characterize the foliar endophyte communities of two conifers inmore » the Cupressaceae family: Two coast redwood (CR; Sequoia sempervirens) populations and one giant sequoia (GS; Sequoiadendron giganteum) population were sampled. Similar to the pines, the endophyte communities of the giant trees were dominated by Proteobacteria, Firmicutes, Acidobacteria, and Actinobacteria. However, although some major operational taxonomic units (OTUs) occurred at a high relative abundance of 10–40% in multiple samples, no specific group of bacteria dominated the endophyte community to the extent previously observed in high-elevation pines. Several of the dominating bacterial groups in the CR and GS foliage (e.g., Bacillus, Burkholderia, Actinomycetes) are known for disease- and pest suppression, raising the possibility that the endophytic microbiome protects the giant trees against biotic stress. Many of the most common and abundant OTUs in our dataset were most similar to 16S rRNA sequences from bacteria found in lichens or arctic plants. For example, an OTU belonging to the uncultured Rhizobiales LAR1 lineage, which is commonly associated with lichens, was observed at high relative abundance in many of the CR samples. Lastly, the taxa shared between the giant trees, arctic plants, and lichens may be part of a broadly defined endophyte microbiome common to temperate, boreal, and

  7. Isolation and identification of local bacteria endophyte and screening of its antimicrobial property against pathogenic bacteria and fungi

    NASA Astrophysics Data System (ADS)

    Fikri, Ahmad Syairazie Ibrahim; Rahman, Irman Abdul; Nor, Norefrina Shafinaz Md; Hamzah, Ainon

    2018-04-01

    Endophytes are organisms, often fungi and bacteria that live in living plant cells. These organisms reside in the living tissues of the host plant in a variety of relationships, ranging from symbiotic to slightly pathogenic. The endophytes may produce a plethora of substances that have potential to be used in modern medicine, agriculture and industry. The aims of this study are to isolate, identify and screening antimicrobial activity of bacterial endophytes. The endophytes were isolated using nutrient agar, incubated at 37°C for 48 hours. Identification of the isolates were done based on morphological characteristics, biochemical tests and 16S rDNA molecular analysis. Disk diffusion method was used to screen for antimicrobial activity of metabolites from endophytes against pathogenic bacteria. Screening for antifungal activity of selected endophytes was done using dual culture method againts pathogenic fungi followed by Kirby-Bauer method. Results showed endophytes designated as B2c and B7b have positive antimicrobial activity. The metabolites from isolate B2c showed antimicrobial activity against pathogenic bacteria methicillin-resistant Staphylococcus aureus (MRSA), Staphylococcus aureus and Staphylococcus epidermis, while isolate B7b have positive activities againts MRSA, S. aureus and Pseudomonas aeruginosa. Isolates B2c displayed antifungal activity against Fusarium oxysporum, Fusarium solani, Phytophthora palmivora and Colletotrichum gloeosporioides. Identification using biochemical tests and 16S rDNA sequences identified isolate B2c as Pseudomonas resinovorans with 97% homology and isolate B7b as Bacillus subtilis with 98% homology.

  8. Identification and Pathogenic Potential of Clinical Bacillus and Paenibacillus Isolates

    PubMed Central

    Celandroni, Francesco; Salvetti, Sara; Gueye, Sokhna Aissatou; Mazzantini, Diletta; Lupetti, Antonella; Senesi, Sonia; Ghelardi, Emilia

    2016-01-01

    The soil-related Bacillus and Paenibacillus species have increasingly been implicated in various human diseases. Nevertheless, their identification still poses problems in the clinical microbiology laboratory and, with the exception of Bacillus anthracis and Bacillus cereus, little is known on their pathogenicity for humans. In this study, we evaluated the use of matrix-assisted laser desorption—ionization time of flight mass spectrometry (MALDI-TOF MS) in the identification of clinical isolates of these genera and conducted genotypic and phenotypic analyses to highlight specific virulence properties. Seventy-five clinical isolates were subjected to biochemical and MALDI-TOF MS identification. 16S rDNA sequencing and supplemental tests were used to solve any discrepancies or failures in the identification results. MALDI-TOF MS significantly outperformed classical biochemical testing for correct species identification and no misidentification was obtained. One third of the collected strains belonged to the B. cereus species, but also Bacillus pumilus and Bacillus subtilis were isolated at high rate. Antimicrobial susceptibility testing showed that all the B. cereus, B. licheniformis, B. simplex, B. mycoides, Paenibacillus glucanolyticus and Paenibacillus lautus isolates are resistant to penicillin. The evaluation of toxin/enzyme secretion, toxin-encoding genes, motility, and biofilm formation revealed that B. cereus displays the highest virulence potential. However, although generally considered nonpathogenic, most of the other species were shown to swim, swarm, produce biofilms, and secrete proteases that can have a role in bacterial virulence. In conclusion, MALDI-TOF MS appears useful for fast and accurate identification of Bacillus and Paenibacillus strains whose virulence properties make them of increasing clinical relevance. PMID:27031639

  9. Endophytic bacterial community living in roots of healthy and 'Candidatus Phytoplasma mali'-infected apple (Malus domestica, Borkh.) trees.

    PubMed

    Bulgari, Daniela; Bozkurt, Adem I; Casati, Paola; Cağlayan, Kadriye; Quaglino, Fabio; Bianco, Piero A

    2012-11-01

    'Candidatus Phytoplasma mali', the causal agent of apple proliferation (AP) disease, is a quarantine pathogen controlled by chemical treatments against insect vectors and eradication of diseased plants. In accordance with the European Community guidelines, novel strategies should be developed for sustainable management of plant diseases by using resistance inducers (e.g. endophytes). A basic point for the success of this approach is the study of endophytic bacteria associated with plants. In the present work, endophytic bacteria living in healthy and 'Ca. Phytoplasma mali'-infected apple trees were described by cultivation-dependent and independent methods. 16S rDNA sequence analysis showed the presence of the groups Proteobacteria, Acidobacteria, Bacteroidetes, Actinobacteria, Chlamydiae, and Firmicutes. In detail, library analyses underscored 24 and 17 operational taxonomic units (OTUs) in healthy and infected roots, respectively, with a dominance of Betaproteobacteria. Moreover, differences in OTUs number and in CFU/g suggested that phytoplasmas could modify the composition of endophytic bacterial communities associated with infected plants. Intriguingly, the combination of culturing methods and cloning analysis allowed the identification of endophytic bacteria (e.g. Bacillus, Pseudomonas, and Burkholderia) that have been reported as biocontrol agents. Future research will investigate the capability of these bacteria to control 'Ca. Phytoplasma mali' in order to develop sustainable approaches for managing AP.

  10. Effects of growth stage and fulvic acid on the diversity and dynamics of endophytic bacterial community in Stevia rebaudiana Bertoni leaves

    PubMed Central

    Yu, Xuejian; Yang, Jinshui; Wang, Entao; Li, Baozhen; Yuan, Hongli

    2015-01-01

    The aim of this study was to learn the interactions among the endophytic bacteria, the plant growth, the foliar spray of fulvic acid, and the accumulation of steviol glycosides in the leaves of Stevia rebaudiana. Metagenomic DNA was extracted from the Stevia leaves at different growth stages with or without the fulvic acid treatment; and the diversity of endophytic bacteria in Stevia leaves was estimated by pyrosequencing of 16S rRNA genes. As results, Proteobacteria, Actinobacteria, Bacteroidetes, and Firmicutes were found to be the dominant phyla despite the growth stages and fulvic acid application. Stevia growth stages strongly regulated composition of endophytic community. The genera Agrobacterium (12.3%) and Erwinia (7.2%) dominated in seedling stage were apparently declined in the vegetable and initial flowering stages, while Sphingomonas and Methylobacterium increased in mature leaves at harvest time, which showed that the mature leaves of Stevia preferred to accumulate some certain endophytic bacteria. Sphingomonas and Methylobacterium constituted an important part of the core endophytic community and were positively correlated with the stevioside content and UGT74G1 gene expression, respectively; while Erwinia, Agrobacterium, and Bacillus were negatively correlated with the stevioside accumulation. Fulvic acid treatment accelerated the variation of endophytes along the growth stages and increased the steviol glycosides content. This is the first study to reveal the community composition of endophytic bacteria in the Stevia leaves, to evidence the strong effects of growth stage and fulvic acid application on the endophytes of Stevia, and to demonstrate the correlation between the endophytic bacteria and the steviol glycosides accumulation. PMID:26379644

  11. Indigenous endophytic seed bacteria promote seedling development and defend against fungal disease in browntop millet (Urochloa ramosa L.).

    PubMed

    Verma, S K; White, J F

    2018-03-01

    This study was conducted to investigate indigenous seed endophyte effects on browntop millet seedling development. We report that seed-inhabiting bacterial endophytes are responsible for promoting seedling development, including stimulation of root hair formation, increasing root and shoot length growth and increasing photosynthetic pigment content of seedlings. Bacterial endophytes also improved resistance of seedlings to disease. A total of four endophytic bacteria were isolated from surface-sterilized seeds and identified by 16S rDNA sequencing as Curtobacterium sp. (M1), Microbacterium sp. (M2), Methylobacterium sp. (M3) and Bacillus amyloliquefaciens (M4). Removal of bacteria with streptomycin treatment from the seeds compromised seedling growth and development. When endophytes were reinoculated onto seeds, seedlings recovered normal development. Strains M3 and M4 were found to be most potent in promoting growth of seedlings. Bacteria were found to produce auxin, solubilize phosphate and inhibit fungal pathogens. Significant protection of seedlings from Fusarium infection was found using strain M4 in microcosm assays. The antifungal lipopeptide genes for surfactin and iturin were detected in M4; culture extracts of M4 showed a positive drop collapse result for surfactins. This study demonstrates that browntop millet seeds vector indigenous endophytes that are responsible for modulation of seedling development and protection of seedlings from fungal disease. This study is significant and original in that it is the first report of seed-inhabiting endophytes of browntop millet that influence seedling development and function in defence against soilborne pathogens. This study suggests that conservation and management of seed-vectored endophytes may be important in development of more sustainable agricultural practices. © 2017 The Society for Applied Microbiology.

  12. Endophytic bacterial diversity in grapevine (Vitis vinifera L.) leaves described by 16S rRNA gene sequence analysis and length heterogeneity-PCR.

    PubMed

    Bulgari, Daniela; Casati, Paola; Brusetti, Lorenzo; Quaglino, Fabio; Brasca, Milena; Daffonchio, Daniele; Bianco, Piero Attilio

    2009-08-01

    Diversity of bacterial endophytes associated with grapevine leaf tissues was analyzed by cultivation and cultivation-independent methods. In order to identify bacterial endophytes directly from metagenome, a protocol for bacteria enrichment and DNA extraction was optimized. Sequence analysis of 16S rRNA gene libraries underscored five diverse Operational Taxonomic Units (OTUs), showing best sequence matches with gamma-Proteobacteria, family Enterobacteriaceae, with a dominance of the genus Pantoea. Bacteria isolation through cultivation revealed the presence of six OTUs, showing best sequence matches with Actinobacteria, genus Curtobacterium, and with Firmicutes genera Bacillus and Enterococcus. Length Heterogeneity-PCR (LH-PCR) electrophoretic peaks from single bacterial clones were used to setup a database representing the bacterial endophytes identified in association with grapevine tissues. Analysis of healthy and phytoplasma-infected grapevine plants showed that LH-PCR could be a useful complementary tool for examining the diversity of bacterial endophytes especially for diversity survey on a large number of samples.

  13. Antimicrobial activity of pyrrocidines from Acremonium zeae against endophytes and pathogens of maize.

    PubMed

    Wicklow, Donald T; Poling, Stephen M

    2009-01-01

    Acremonium zeae produces pyrrocidines A and B, which are polyketide-amino acid-derived antibiotics, and is recognized as a seedborne protective endophyte of maize which augments host defenses against microbial pathogens causing seedling blights and stalk rots. Pyrrocidine A displayed significant in vitro activity against Aspergillus flavus and Fusarium verticillioides in assays performed using conidia as inoculum, with pyrrocidine A being more active than B. In equivalent assays performed with conidia or hyphal cells as inoculum, pyrrocidine A revealed potent activity against major stalk and ear rot pathogens of maize, including F. graminearum, Nigrospora oryzae, Stenocarpella (Diplodia) maydis, and Rhizoctonia zeae. Pyrrocidine A displayed significant activity against seed-rotting saprophytes A. flavus and Eupenicillium ochrosalmoneum, as well as seed-infecting colonists of the phylloplane Alternaria alternata, Cladosporium cladosporioides, and Curvularia lunata, which produces a damaging leaf spot disease. Protective endophytes, including mycoparasites which grow asymptomatically within healthy maize tissues, show little sensitivity to pyrrocidines. Pyrrocidine A also exhibited potent activity against Clavibacter michiganense subsp. nebraskense, causal agent of Goss's bacterial wilt of maize, and Bacillus mojaviense and Pseudomonas fluorescens, maize endophytes applied as biocontrol agents, but were ineffective against the wilt-producing bacterium Pantoea stewartii.

  14. Drimane Sesquiterpenoids and Isochromone Derivative from the Endophytic Fungus Pestalotiopsis sp. M-23.

    PubMed

    Kuang, Ce; Jing, Shu-Xi; Liu, Yan; Luo, Shi-Hong; Li, Sheng-Hong

    2016-06-01

    Three new drimane sesquiterpenoids (1-3) together with the known 2α-hydroxyisodrimeninol (4), and a new isochromone derivative (5), were obtained from the solid cultures of fungal strain Pestalotiopsis sp. M-23, an endophytic fungus isolated from the leaves of Leucosceptrum canum (Labiatae). Their structures were determined by comprehensive 1D and 2D NMR, and MS analyses. The metabolites were evaluated for their antibacterial activities, and compound 3 showed weak inhibitory activity against Bacillus subtilis.

  15. Identification of Bacillus spp. from Bikalga, fermented seeds of Hibiscus sabdariffa: phenotypic and genotypic characterization.

    PubMed

    Ouoba, L I I; Parkouda, C; Diawara, B; Scotti, C; Varnam, A H

    2008-01-01

    To identify Bacillus spp. responsible of the fermentation of Hibiscus sabdariffa for production of Bikalga, an alkaline fermented food used as a condiment in Burkina Faso. Seventy bacteria were isolated from Bikalga produced in different regions of Burkina Faso and identified by phenotyping and genotyping using PCR amplification of the 16S-23S rDNA intergenic transcribed spacer (ITS-PCR), repetitive sequence-based PCR (rep-PCR) and DNA sequencing. The isolates were characterized as motile, rod-shaped, endospore forming, catalase positive, Gram-positive bacteria. ITS-PCR allowed typing mainly at species level. Rep-PCR was more discriminative and allowed a typing at ssp. level. The DNA sequencing combined with the Blast search program and fermentation profiles using API 50CHB system allowed an identification of the bacteria as Bacillus subtilis, B. licheniformis, B. cereus, B. pumilus, B. badius, Brevibacillus bortelensis, B. sphaericus and B. fusiformis. B. subtilis were the predominant bacterium (42) followed by B. licheniformis (16). Various species and ssp. of Bacillus are involved in fermentation of H. sabdariffa for production of Bikalga. Selection of starter cultures of Bacillus for controlled production of Bikalga, selection of probiotic bacteria.

  16. Metabolic potential and community structure of endophytic and rhizosphere bacteria associated with the roots of the halophyte Aster tripolium L.

    PubMed

    Szymańska, Sonia; Płociniczak, Tomasz; Piotrowska-Seget, Zofia; Złoch, Michał; Ruppel, Silke; Hrynkiewicz, Katarzyna

    2016-01-01

    The submitted work assumes that the abundance and diversity of endophytic and rhizosphere microorganisms co-existing with the halophytic plant Aster tripolium L. growing in a salty meadow in the vicinity of a soda factory (central Poland) represent unique populations of cultivable bacterial strains. Endophytic and rhizosphere bacteria were (i) isolated and identified based on 16S rDNA sequences; (ii) screened for nifH and acdS genes; and (iii) analyzed based on selected metabolic properties. Moreover, total microbial biomass and community structures of the roots (endophytes), rhizosphere and soil were evaluated using a cultivation-independent technique (PLFA) to characterize plant-microbial interactions under natural salt conditions. The identification of the isolated strains showed domination by Gram-positive bacteria (mostly Bacillus spp.) both in the rhizosphere (90.9%) and roots (72.7%) of A. tripolium. Rhizosphere bacterial strains exhibited broader metabolic capacities, while endophytes exhibited higher specificities for metabolic activity. The PLFA analysis showed that the total bacterial biomass decreased in the following order (rhizosphereendophytes) and confirmed the dominance of Gram-positive endophytic bacteria in the roots of the halophyte. The described strain collection provides a valuable basis for a subsequent applications of bacteria in improvement of site adaptation of plants in saline soils. Copyright © 2015 Elsevier GmbH. All rights reserved.

  17. Antimicrobial activity of Ulva reticulata and its endophytes

    NASA Astrophysics Data System (ADS)

    Dhanya, K. I.; Swati, V. I.; Vanka, Kanth Swaroop; Osborne, W. J.

    2016-04-01

    Seaweeds are known to exhibit various antimicrobial properties, since it harbours an enormous range of indigenous bioactive compounds. The emergence of drug resistant strains has directed to the identification of prospective metabolites from seaweed and its endophytes, thereby exploiting the properties in resisting bacterial diseases. The current study was aimed to assess the antimicrobial activity of extracts obtained from Ulva reticulate, for which metabolites of Ulva reticulata and its endophytes were extracted and assessed against human pathogens like Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa, Salmonella typhi, and Bacillus subtilis. It was observed that the hexane extract of isolate VITDSJ2 was effective against all the tested pathogens but a significant inhibition was observed for Staphylococcus aureus and Escherichia coli. Further, Gas chromatography coupled with Mass spectroscopy (GC-MS) revealed the existence of phenol, 3, 5-bis (1, 1-dimethylethyl) in the crude hexane extract which is well-known to possess antibacterial activity. The effective isolate VITDSJ2 was identified to be the closest neighbour of Pseudomonas stutzeri by phenotypic and genotypic methods. The crude extracts of the seaweed Ulva reticulata was also screened for antibacterial activity and the hexane extract was effective in showing inhibition against all the tested pathogens. The compound in the crude extract of Ulva reticulata was identified as hentriacontane using GC-MS. The extracts obtained from dichloromethane did not show significant activity in comparison with the hexane extracts. Hence the metabolites of Ulva reticulata and the bacterial secondary metabolites of the endophytes could be used in the treatment of bacterial infections.

  18. 77 FR 19109 - Bacillus Pumilus Strain GHA 180; Exemption From the Requirement of a Tolerance

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-30

    ... Organization, Bacillus species are often detected in drinking water even after going through disinfection... exposure through drinking water and in residential settings, but does not include occupational exposure... exposure to the pesticide through food, drinking water, and through other exposures that occur as a result...

  19. Deciphering endophyte behaviour: the link between endophyte biology and efficacious biological control agents.

    PubMed

    Card, Stuart; Johnson, Linda; Teasdale, Suliana; Caradus, John

    2016-08-01

    Endophytes associate with the majority of plant species found in natural and managed ecosystems. They are regarded as extremely important plant partners that provide improved stress tolerance to the host compared with plants that lack this symbiosis. Fossil records of endophytes date back more than 400 million years, implicating these microorganisms in host plant adaptation to habitat transitions. However, it is only recently that endophytes, and their bioactive products, have received meaningful attention from the scientific community. The benefits some endophytes can confer on their hosts include plant growth promotion and survival through the inhibition of pathogenic microorganisms and invertebrate pests, the removal of soil contaminants, improved tolerance of low fertility soils, and increased tolerance of extreme temperatures and low water availability. Endophytes are extremely diverse and can exhibit many different biological behaviours. Not all endophyte technologies have been successfully commercialised. Of interest in the development of the next generation of plant protection products is how much of this is due to the biology of the particular endophytic microorganism. In this review, we highlight selected case studies of endophytes and discuss their lifestyles and behavioural traits, and discuss how these factors contribute towards their effectiveness as biological control agents. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  20. Endophytes as sources of antibiotics.

    PubMed

    Martinez-Klimova, Elena; Rodríguez-Peña, Karol; Sánchez, Sergio

    2017-06-15

    Until a viable alternative can be accessible, the emergence of resistance to antimicrobials requires the constant development of new antibiotics. Recent scientific efforts have been aimed at the bioprospecting of microorganisms' secondary metabolites, with special emphasis on the search for antimicrobial natural products derived from endophytes. Endophytes are microorganisms that inhabit the internal tissues of plants without causing apparent harm to the plant. The present review article compiles recent (2006-2016) literature to provide an update on endophyte research aimed at finding metabolites with antibiotic activities. We have included exclusively information on endophytes that produce metabolites capable of inhibiting the growth of bacterial, fungal and protozoan pathogens of humans, animals and plants. Where available, the identified metabolites have been listed. In this review, we have also compiled a list of the bacterial and fungal phyla that have been isolated as endophytes as well as the plant families from which the endophytes were isolated. The majority of endophytes that produce antibiotic metabolites belong to either phylum Ascomycota (kingdom Fungi) or to phylum Actinobacteria (superkingdom Bacteria). Endophytes that produce antibiotic metabolites were predominant, but certainly not exclusively, from the plant families Fabaceae, Lamiaceae, Asteraceae and Araceae, suggesting that endophytes that produce antimicrobial metabolites are not restricted to a reduced number of plant families. The locations where plants (and inhabiting endophytes) were collected from, according to the literature, have been mapped, showing that endophytes that produce bioactive compounds have been collected globally. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Vulnerability of Bacillus spores and of related genera to physical impaction injury with particular reference to spread-plating.

    PubMed

    Thomas, P; Sekhar, A C; Mujawar, M M

    2014-11-01

    To examine whether bacterial spores are vulnerable to impaction injury during standard spread-plating or to other modes of physical impaction. Employing heat-challenged spores of Bacillus pumilus, Bacillus subtilis, Bacillus thuringiensis, Lysinibacillus, Paenibacillus and Brevibacillus spp. from day-4 to day-10 nutrient agar (NA) plates in 50% ethanol, plating the spore suspension to the extent of just drying the agar surface on fresh NA (50-60 s; SP-B) was tested in comparison with the spreader-independent approach of spotting-and-tilt-spreading (SATS), or a brief plating (<10 s; SP-A). Spore CFU was significantly reduced with SP-B in different organisms (23-40%) over SATS independent of the spore size. Comparing 4-, 7- and 10-day-old B. pumilus spores, the former two displayed significant CFU reduction in SP-B indicating a spore age-related effect. Continuous plating for 2-5 min showed a reduction in spore CFU in all organisms depending on plating duration. CFU reduction effect with SP-B was less manifest on refrigerated plates where no friction was experienced but acute on prewarmed and surface-dried plates. Spreader movement over agar surface subsequent to the exhaustion of free moisture proved highly detrimental to spores. A simulated plating study by plating the spores over a plastic film till drying showed a significant reduction in spore CFU. DAPI staining and glass bead-vortexing studies confirmed spore disruption through physical impaction. Bacterial spores are vulnerable to injury during spread-plating or with other forms of physical impaction with variable effects on different genotypes independent of the spore size but altered by spore age. Implications during spore CFU estimations employing spread-plating and during spore surveillance, and the recommendation of SATS as an easier and safer alternative for spore CFU enumeration. © 2014 The Society for Applied Microbiology.

  2. Investigation of Endophytic Bacterial Community in Supposedly Axenic Cultures of Pineapple and Orchids with Evidence on Abundant Intracellular Bacteria.

    PubMed

    Esposito-Polesi, Natalia Pimentel; de Abreu-Tarazi, Monita Fiori; de Almeida, Cristina Vieira; Tsai, Siu Mui; de Almeida, Marcílio

    2017-01-01

    Asepsis, defined as the absence of microbial contamination, is one of the most important requirements of plant micropropagation. In long-term micropropagated cultures, there may occasionally occur scattered microorganism growth in the culture medium. These microorganisms are common plant components and are known as latent endophytes. Thus, the aim of this research was to investigate the presence of endophytic bacteria in asymptomatic pineapple and orchid microplants, which were cultivated in three laboratories for 1 year. Isolation and characterization of bacterial isolates, PCR-DGGE from total genomic DNA of microplants and ultrastructural analysis of leaves were performed. In the culture-dependent technique, it was only possible to obtain bacterial isolates from pineapple microplants. In this case, the bacteria genera identified in the isolation technique were Bacillus, Acinetobacter, and Methylobacterium. The scanning electron microscopy and transmission electron microscopy (SEM and TEM) analyses revealed the presence of endophytic bacteria in intracellular spaces in the leaves of pineapple and orchid microplants, independent of the laboratory or cultivation protocol. Our results strongly indicate that there are endophytic bacterial communities inhabiting the microplants before initiation of the in vitro culture and that some of these endophytes persist in their latent form and can also grow in the culture medium even after long-term micropropagation, thus discarding the concept of "truly axenic plants."

  3. Endophytic bacteria from Piper tuberculatum Jacq.: isolation, molecular characterization, and in vitro screening for the control of Fusarium solani f. sp piperis, the causal agent of root rot disease in black pepper (Piper nigrum L.).

    PubMed

    Nascimento, S B; Lima, A M; Borges, B N; de Souza, C R B

    2015-07-06

    Endophytic bacteria have been found to colonize internal tissues in many different plants, where they can have several beneficial effects, including defense against pathogens. In this study, we aimed to identify endophytic bacteria associated with roots of the tropical piperaceae Piper tuberculatum, which is known for its resistance to infection by Fusarium solani f. sp piperis, the causal agent of black pepper (Piper nigrum) root rot disease in the Amazon region. Based on 16S rRNA gene sequence analysis, we isolated endophytes belonging to 13 genera: Bacillus, Paenibacillus, Pseudomonas, Enterobacter, Rhizobium, Sinorhizobium, Agrobacterium, Ralstonia, Serratia, Cupriavidus, Mitsuaria, Pantoea, and Staphylococcus. The results showed that 56.52% of isolates were associated with the phylum Proteobacteria, which comprised α, β, and γ classes. Other bacteria were related to the phylum Firmicutes, including Bacillus, which was the most abundant genus among all isolates. Antagonistic assays revealed that Pt12 and Pt13 isolates, identified as Pseudomonas putida and Pseudomonas sp, respectively, were able to inhibit F. solani f. sp piperis growth in vitro. We describe, for the first time, the molecular identification of 23 endophytic bacteria from P. tuberculatum, among which two Pseudomonas species have the potential to control the pathogen responsible for root rot disease in black pepper in the Amazon region.

  4. Population diversity of bacterial endophytes from jute (Corchorus olitorius) and evaluation of their potential role as bioinoculants.

    PubMed

    Haidar, Badrul; Ferdous, Mahbuba; Fatema, Babry; Ferdous, Ahlan Sabah; Islam, Mohammad Riazul; Khan, Haseena

    2018-03-01

    Endophytes are bacterial or fungal organisms associated with plants in an obligate or facultative manner. In order to maintain a stable symbiosis, many of the endophytes produce compounds that promote plant growth and help them adapt better to the environment. This study was conducted to explore the potential of jute bacterial endophytes for their growth promotion ability in direct and indirect ways. A total of 27 different bacterial species were identified from different varieties of a jute plant (Corchorus olitorius) and different parts of the plant (leaf, root, seed, and seedling) based on 16S rRNA gene sequence. Two of the isolates showed ACC deaminase activity with Staphylococcus pasteuri strain MBL_B3 and Ralstonia solanacearum strain MBL_B6 producing 18.1 and 8.08 μM mg -1  h -1 α-ketobutyrate respectively while eighteen had the ACC deaminase gene (acdS). Fourteen were positive for siderophore activity while Kocuria sp. strain MBL_B19 (133.36 μg/ml) and Bacillus sp. strain MBL_B17 (124.72 μg/ml) showed high IAA production ability. Seven bacterial strains were able to fix nitrogen with only one testing positive for nifH gene. Five isolates exhibited phosphorus utilization ability with Bacillus sp. strain MBL_B17 producing 218.47 μg P/ml. Three bacteria were able to inhibit the growth of a phytopathogen, Macrophomina phaseolina and among them Bacillus subtilis strain MBL_B4 was found to be the most effective, having 82% and 53% of relative inhibition ratio (RIR) and percent growth inhibition (PGI) values respectively. Nine bacteria were tested for their in vivo growth promotion ability and most of these isolates increased seed germination potential and vigour index significantly. Bacillus subtilis strain MBL_B13 showed 26.8% more vigour index than the control in which no bacterial inoculum was used. All inoculants were found to increase the dry weight of jute seedlings in comparison to the control plants and the most increase in fresh weight

  5. Classification of Bacillus beneficial substances related to plants, humans and animals.

    PubMed

    Mongkolthanaruk, Wiyada

    2012-12-01

    Genus Bacillus is a spore-forming bacterium that has unique properties in cell differentiation, allowing the forming of spores in stress conditions and activated in the vegetative cell, with suitable environments occurring during the life cycle acting as a trigger. Their habitat is mainly in soil; thus, many species of Bacillus are associated with plants as well as rhizosphere bacteria and endophytic bacteria. Signal transduction is the principal mechanism of interactions, both within the cell community and with the external environment, which provides the subsequent functions or properties for the cell. The antimicrobial compounds of Bacillus sp. are potentially useful products, which have been used in agriculture for the inhibition of phytopathogens, for the stimulation of plant growth, and in the food industry as probiotics. There are two systems for the synthesis of these substances: nonribosomal synthesis of cyclic lipopeptides (NRPS) and polyketides (PKS). For each group, the structures, properties, and genes of the main products are described. The different compounds described and the way in which they co-exist exhibit the relationship of Bacillus substances to plants, humans, and animals.

  6. Plant growth-promoting bacterial endophytes.

    PubMed

    Santoyo, Gustavo; Moreno-Hagelsieb, Gabriel; Orozco-Mosqueda, Ma del Carmen; Glick, Bernard R

    2016-02-01

    Bacterial endophytes ubiquitously colonize the internal tissues of plants, being found in nearly every plant worldwide. Some endophytes are able to promote the growth of plants. For those strains the mechanisms of plant growth-promotion known to be employed by bacterial endophytes are similar to the mechanisms used by rhizospheric bacteria, e.g., the acquisition of resources needed for plant growth and modulation of plant growth and development. Similar to rhizospheric plant growth-promoting bacteria, endophytic plant growth-promoting bacteria can act to facilitate plant growth in agriculture, horticulture and silviculture as well as in strategies for environmental cleanup (i.e., phytoremediation). Genome comparisons between bacterial endophytes and the genomes of rhizospheric plant growth-promoting bacteria are starting to unveil potential genetic factors involved in an endophytic lifestyle, which should facilitate a better understanding of the functioning of bacterial endophytes. Copyright © 2015 Elsevier GmbH. All rights reserved.

  7. Germination of Spores of Astrobiologically Relevant Bacillus Species in High-Salinity Environments.

    PubMed

    Nagler, Katja; Julius, Christina; Moeller, Ralf

    2016-07-01

    In times of increasing space exploration and search for extraterrestrial life, new questions and challenges for planetary protection, aiming to avoid forward contamination of different planets or moons with terrestrial life, are emerging. Spore-forming bacteria such as Bacillus species have a high contamination potential due to their spores' extreme resistance, enabling them to withstand space conditions. Spores require liquid water for their conversion into a growing cell (i.e., spore germination and subsequent growth). If present, water on extraterrestrial planets or moons is likely to be closely associated with salts (e.g., in salty oceans or brines), thus constituting high-salinity environments. Spores of Bacillus subtilis can germinate despite very high salt concentrations, although salt stress does exert negative effects on this process. In this study, germination and metabolic reactivation ("outgrowth") of spores of five astrobiologically relevant Bacillus species (B. megaterium, B. pumilus SAFR-032, B. nealsonii, B. mojavensis, and B. vallismortis) in high salinity (≤3.6 M NaCl) were investigated. Spores of different species exhibited different germination and outgrowth capabilities in high salinity, which strongly depended on germination conditions, especially the exact composition of the medium. In this context, a new "universal" germination trigger for Bacillus spores, named KAGE (KCl, L-alanine, D-glucose, ectoine), was identified, which will be very useful for future comparative germination and outgrowth studies on different Bacillus species. Overall, this study yielded interesting new insights on salt stress effects on spore germination and points out the difficulty of predicting the potential of spores to contaminate salty environments on extraterrestrial celestial bodies. Bacillus species-Spores-Germination-High salinity-Salt stress-NaCl-Inhibition. Astrobiology 16, 500-512.

  8. Germination of Spores of Astrobiologically Relevant Bacillus Species in High-Salinity Environments

    NASA Astrophysics Data System (ADS)

    Nagler, Katja; Julius, Christina; Moeller, Ralf

    2016-07-01

    In times of increasing space exploration and search for extraterrestrial life, new questions and challenges for planetary protection, aiming to avoid forward contamination of different planets or moons with terrestrial life, are emerging. Spore-forming bacteria such as Bacillus species have a high contamination potential due to their spores' extreme resistance, enabling them to withstand space conditions. Spores require liquid water for their conversion into a growing cell (i.e., spore germination and subsequent growth). If present, water on extraterrestrial planets or moons is likely to be closely associated with salts (e.g., in salty oceans or brines), thus constituting high-salinity environments. Spores of Bacillus subtilis can germinate despite very high salt concentrations, although salt stress does exert negative effects on this process. In this study, germination and metabolic reactivation ("outgrowth") of spores of five astrobiologically relevant Bacillus species (B. megaterium, B. pumilus SAFR-032, B. nealsonii, B. mojavensis, and B. vallismortis) in high salinity (≤3.6 M NaCl) were investigated. Spores of different species exhibited different germination and outgrowth capabilities in high salinity, which strongly depended on germination conditions, especially the exact composition of the medium. In this context, a new "universal" germination trigger for Bacillus spores, named KAGE (KCl, L-alanine, D-glucose, ectoine), was identified, which will be very useful for future comparative germination and outgrowth studies on different Bacillus species. Overall, this study yielded interesting new insights on salt stress effects on spore germination and points out the difficulty of predicting the potential of spores to contaminate salty environments on extraterrestrial celestial bodies.

  9. Isolation, Characterization, and Insecticidal Activity of an Endophyte of Drunken Horse Grass, Achnatherum inebrians

    PubMed Central

    Shi, YingWu; Zhang, Xuebing; Lou, Kai

    2013-01-01

    Endophytic microorganisms reside within plant tissues and have often been found to promote plant growth. In this study, endophytic microorganisms were isolated from the roots, stems, leaves, and seeds of healthy drunken horse grass, Achnatherum inebrians (Hance) Keng (Poales: Poaceae), through the use of a grinding separation method and identified by a dual approach of morphological and physiological observation and 16S rRNA gene-based (for bacteria) and internal transcribed sequence-based (for fungi) molecular identification. The endophytes were then inoculated into liquid media for fermentation, and their crude extracts were employed for insecticidal activity tests using slide disc immersion and nebulization methods. A total of 89 bacteria species, which were classified into eight genera, Bacillus, Pseudomonas, Actinomyces, Corynebacterium, Acinetobacter, Sphingomonas, Paenibacillus, and Phyllobacterium, and two fungi, Claviceps and Chaetomium, were isolated. Of these species, isolates Streptomyces albus (Rossi-Doria) Waksman and Henrici (Actinomycetales: Streptomycetaceae) (GA) and Claviceps purpurea (Fr.) Tul. (Hypocreales: Clavicipitaceae) (PF-2) were shown to produce mortality rates of more than 90% in the cotton aphid, Aphis gossypii Glover (Hemiptera: Aphididae), after first and second screenings. The isolates PF-2 and GA associated with A. inebrians had significant insecticidal activities towards A. gossypii Glover (Hemiptera: Aphididae) and may provide a new biological resource for exploring a new microbial insecticide. PMID:24784492

  10. Grass fungal endophytes and uses thereof

    DOEpatents

    Craven, Kelly

    2015-03-10

    The invention provides isolated fungal endophytes and synthetic combinations thereof with host grass plants. Methods for inoculating grass plant with the endophytes, for propagating the grass-endophyte combinations, and for producing feeds and biofuels from grass-endophyte combinations are also provided.

  11. Enhanced growth and nodulation of pigeon pea by co-inoculation of Bacillus strains with Rhizobium spp.

    PubMed

    Rajendran, Geetha; Sing, Falguni; Desai, Anjana J; Archana, G

    2008-07-01

    Endophytic bacteria which are known to reside in plant tissues have often been shown to promote plant growth. Present study deals with the isolation of putative endophytes from the surface sterilized root nodules of pigeon pea (Cajanus cajan) designated as non-rhizobial (NR) isolates. Three of these non-rhizobial isolates called NR2, NR4 and NR6 showed plant growth promotion with respect to increase in plant fresh weight, chlorophyll content, nodule number and nodule fresh weight when co-inoculated with the rhizobial bioinoculant strain IC3123. The three isolates were neither able to nodulate C. cajan nor did they show significant plant growth promotion when inoculated alone without Rhizobium spp. IC3123. All the three isolates were gram positive rods with NR2 and NR4 showing endospore formation and formed one single cluster in Amplified Ribosomal DNA Restriction Analysis (ARDRA). Partial sequences of 16S rRNA genes of NR4 and NR6 showed 97% similarity to Bacillus megaterium. The Bacillus strains NR4 and NR6 were able to produce siderophores which the rhizobial bioinoculant IC3123 was able to cross-utilize. Under iron starved conditions IC3123 showed enhanced growth in the presence of the Bacillus isolates indicating that siderophore mediated interactions may be underlying mechanism of beneficial effect of the NR isolates on nodulation by IC3123.

  12. Isolation of Antagonistic Endophytes from Banana Roots against Meloidogyne javanica and Their Effects on Soil Nematode Community

    PubMed Central

    Su, Lanxi; Shen, Zongzhuan; Ruan, Yunze; Tao, Chengyuan; Chao, Yifan; Li, Rong; Shen, Qirong

    2017-01-01

    Banana production is seriously hindered by Meloidogyne spp. all over the world. Endophytes are ideal candidates compared to pesticides as an environmentally benign agent. In the present study, endophytes isolated from banana roots infected by Meloidogyne spp. with different disease levels were tested in vitro, and in sterile and nature banana monoculture soils against Meloidogyne javanica. The proportion of antagonistic endophytes were higher in the roots of middle and high disease levels. Among those, bacteria were dominant, and Pseudomonas spp., Bacillus spp. and Streptomyces spp. showed more abundant populations. One strain, named as SA, with definite root inner-colonization ability was isolated and identified as Streptomyces sp. This strain showed an inhibiting rate of >50% in vitro and biocontrol efficiency of 70.7% in sterile soil against Meloidogyne javanica, compared to the control. Greenhouse experiment results showed that the strain SA exhibits excellent biological control ability for plant-parasites both in roots and in root-knot nematode infested soil. SA treatment showed a higher number of bacterivores, especially Mesorhabditis and Cephalobus. The maturity index was significantly lower, while enrichment index (EI) was significantly higher in the SA treatment. In conclusion, this study presents an important potential application of the endophytic strain Streptomyces sp. for the control of plant-parasitic nematodes, especially Meloidogyne javanica, and presents the effects on the associated variation of the nematode community. PMID:29123509

  13. Plant-endophyte symbiosis, an ecological perspective.

    PubMed

    Wani, Zahoor Ahmed; Ashraf, Nasheeman; Mohiuddin, Tabasum; Riyaz-Ul-Hassan, Syed

    2015-04-01

    Endophytism is the phenomenon of mutualistic association of a plant with a microorganism wherein the microbe lives within the tissues of the plant without causing any symptoms of disease. In addition to being a treasured biological resource, endophytes play diverse indispensable functions in nature for plant growth, development, stress tolerance, and adaptation. Our understanding of endophytism and its ecological aspects are overtly limited, and we have only recently started to appreciate its essence. Endophytes may impact plant biology through the production of diverse chemical entities including, but not limited to, plant growth hormones and by modulating the gene expression of defense and other secondary metabolic pathways of the host. Studies have shown differential recruitment of endophytes in endophytic populations of plants growing in the same locations, indicating host specificity and that endophytes evolve in a coordinated fashion with the host plants. Endophytic technology can be employed for the efficient production of agricultural and economically important plants and plant products. The rational application of endophytes to manipulate the microbiota, intimately associated with plants, can help in enhancement of production of agricultural produce, increased production of key metabolites in medicinal and aromatic plants, as well as adaption to new bio-geographic regions through tolerance to various biotic and abiotic conditions. However, the potential of endophytic biology can be judiciously harnessed only when we obtain insight into the molecular mechanism of this unique mutualistic relationship. In this paper, we present a discussion on endophytes, endophytism, their significance, and diverse functions in nature as unraveled by the latest research to understand this universal natural phenomenon.

  14. [Chemical-genetics based screening for furanonaphthoquinone producing endophytic actinomycetes from seeds of Trewia nudiflora].

    PubMed

    Li, Fang; Kang, Qianjin; Yao, Xiaoling; Li, Yanyan; Wei, Maolong; Cao, Yong; Lin, Shuangjun; Bai, Linquan; Ma, Wei; Deng, Zixin

    2012-04-04

    The seeds of Trewia nudiflora containing maytansine (an anticancer agent), was investigated to explore the endophytic actinomycetes diversity and screen for naphthoquinones producing strain. The seeds of Trewia nudiflora were sliced and plated on different selective media after surface sterilization. Clones that looked like actinomycetes were selected, and classified according to the 16S rRNA sequences. Isolated strains were screened for furanonaphthoquinone biosynthesis gene by PCR, and tested for antibacterial and antifungal activity using Staphyloccocusaureus, Pseudomon-asaeruginosa, Bacillus subtilis, Rhizoctoniasolani and Gibberellasaubinetii. LC-MS and NMR were used to determine the structure of candidate compounds. More than 100 endophytic bacteria were isolated. Among them 66 were streptomycetes. FNQ6 (polyketide synthase Type III) and FNQ21 (carboxymuconate cycloisomerase) were only detected in Streptomyces sp. HTZ 27. We got 5 mg pure furanonaphthoquinone (FNQI) from 1 liter Streptomyces sp. HTZ 27 agar fermentation medium. The use of chemical-genetics method increased the efficiency of screening for target compound producing bacteria.

  15. Evaluation of bioactive secondary metabolites from endophytic fungus Pestalotiopsis neglecta BAB-5510 isolated from leaves of Cupressus torulosa D.Don.

    PubMed

    Sharma, Deeksha; Pramanik, Avijit; Agrawal, Pavan Kumar

    2016-12-01

    Six endophytic fungi were isolated from Cupressus torulosa D.Don and identified phenotypically and genotypically. The fungal cultures were further grown and the culture was extracted by two organic solvents methanol and ethyl acetate. The screening was carried out using the agar well diffusion method against human pathogen such as Escherichia coli, Salmonella typhimurium, Bacillus subtilis and Staphylococcus aureus. Isolated strain of Pestalotiopsis sp. was showing prominent antibacterial activity. The crude methanol and ethyl acetate extract of Pestalotiopsis sp. showed MIC of 6.25 mg/mL for S. typhimurium and S. aureus which showed its efficacy as a potent antimicrobial. The phytochemical screening revealed the existence of a diverse group of secondary metabolites in the crude extracts of the endophytic fungi that resembled those in the host plant extracts. On the basis of phenotypic characteristics and rDNA sequencing of the ITS region of the endophyte was identified as P. neglecta which turned out to be a promising source of bioactive compounds. There is little known about endophytes from C. torulosa D.Don. In this paper we studied in detail the identification of isolated endophytic fungi P. neglecta from C. torulosa D.Don and characterization of its active metabolite compounds. The partially purified second fraction (PPF) extracted from the fungal culture supernatant was subjected to gas chromatography followed by mass spectrometry which revealed the presence of many phytochemicals. These results indicate that endophytic fungi P. neglecta isolated from medicinal plants could be a potential source for bioactive compounds and may find potential use in pharmaceutical industry.

  16. Fungal endophytes: modifiers of plant disease.

    PubMed

    Busby, Posy E; Ridout, Mary; Newcombe, George

    2016-04-01

    Many recent studies have demonstrated that non-pathogenic fungi within plant microbiomes, i.e., endophytes ("endo" = within, "phyte" = plant), can significantly modify the expression of host plant disease. The rapid pace of advancement in endophyte ecology warrants a pause to synthesize our understanding of endophyte disease modification and to discuss future research directions. We reviewed recent literature on fungal endophyte disease modification, and here report on several emergent themes: (1) Fungal endophyte effects on plant disease span the full spectrum from pathogen antagonism to pathogen facilitation, with pathogen antagonism most commonly reported. (2) Agricultural plant pathosystems are the focus of research on endophyte disease modification. (3) A taxonomically diverse group of fungal endophytes can influence plant disease severity. And (4) Fungal endophyte effects on plant disease severity are context-dependent. Our review highlights the importance of fungal endophytes for plant disease across a broad range of plant pathosystems, yet simultaneously reveals that complexity within plant microbiomes presents a significant challenge to disentangling the biotic environmental factors affecting plant disease severity. Manipulative studies integrating eco-evolutionary approaches with emerging molecular tools will be poised to elucidate the functional importance of endophytes in natural plant pathosystems that are fundamental to biodiversity and conservation.

  17. Marine Bacillus spp. associated with the egg capsule of Concholepas concholepas (common name "loco") have an inhibitory activity toward the pathogen Vibrio parahaemolyticus.

    PubMed

    Leyton, Yanett; Riquelme, Carlos

    2010-10-01

    The pandemic bacterium Vibrio parahaemolyticus, isolated from seawater, sediment, and marine organisms, is responsible for gastroenteric illnesses in humans and also cause diseases in aquaculture industry in Chile and other countries around the world. In this study, bacterial flora with inhibitory activity against pathogenic V. parahaemolyticus were collected from egg capsules of Concholepas concholepas and evaluated. The 16S rRNA fragment was sequenced from each isolated strain to determine its identity using the GenBank database. A phylogenetic analysis was made, and tests for the productions of antibacterial substance were performed using the double-layer method. Forty-five morphotypes of bacterial colonies were isolated, 8 of which presented an inhibitory effect on the growth of V. parahaemolyticus. 16S rRNA sequence and phylogenetic analysis show that these strains constitute taxa that are phylogenetically related to the Bacillus genus and are probably sister species or strains of the species Bacillus pumilus, Bacillus licheniform, or Bacillus sp. It is important to determine the nature of the antibacterial substance to evaluate their potential for use against the pathogen species V. parahaemolyticus.

  18. Evaluation of endophytic colonization of Citrus sinensis and Catharanthus roseus seedlings by endophytic bacteria.

    PubMed

    Lacava, Paulo Teixeira; Araújo, Welington Luiz; Azevedo, João Lúcio

    2007-02-01

    Over the last few years, the endophytic bacterial community associated with citrus has been studied as an important component interacting with Xylella fastidiosa, the causal agent of citrus variegated chlorosis (CVC). This bacterium may also colonize some model plants, such as Catharanthus roseus and Nicotiana clevelandii. In the present study, we compared the endophytic colonization of Citrus sinensis and Catharanthus roseus using the endophytic bacteria Klebsiella pneumoniae. We chose an appropriate strain, K. pneumoniae 342 (Kp342), labeled with the GFP gene. This strain was inoculated onto seedlings of C. sinensis and C. roseus. The isolation frequency was determined one week after the inoculation and the endophytic colonization of K. pneumoniae was observed using fluorescence microscopy. Although the endophytic bacterium was more frequently isolated from C. roseus than from C. sinensis, the colonization profiles for both host plants were similar, suggesting that C. roseus could be used as a model plant to study the interaction between endophytic bacteria and X. fastidiosa.

  19. Antitumor and antimicrobial activities of endophytic fungi from medicinal parts of Aquilaria sinensis.

    PubMed

    Cui, Jin-long; Guo, Shun-xing; Xiao, Pei-gen

    2011-05-01

    The purpose of this study was to isolate and characterize endophytic fungi from the stem tissue which can produce fragrant ingredients in Aquilaria sinensis (also called agarwood) to determine their antitumor and antimicrobial activities. Twenty-eight fungal endophytes were isolated from agarwood by strict sterile sample preparation and were classified into 14 genera and 4 taxonomic classes (Sordariomycetes, Dothideomycetes, Saccharomycetes, and Zygomycetes) based on molecular identification. Of the 28 isolates, 13 (46.4%) showed antimicrobial activity against at least one of the test strains by the agar well diffusion method, and 23 isolates (82.1%) displayed antitumor activity against at least one of five cancer cell lines by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. The diameters of inhibition zones of YNAS07, YNAS14, HNAS04, HNAS05, HNAS08, and HNAS11 were equal to or higher than 14.0 mm against Staphylococcus aureus, Escherichia coli, Bacillus subtilis, B. subtilis, Aspergillus fumigatus, and B. subtilis, respectively. The inhibition rates of YNAS06, YNAS08, and HNAS06 were not less than 60% to 293-T, 293-T, and SKVO3 cells, respectively. These results suggest that the endophytic fungi associated with agarwood will provide us with not only useful micro-ecological information, but also potential antimicrobial and antitumor agents.

  20. Endophyte-Mediated Modulation of Defense-Related Genes and Systemic Resistance in Withania somnifera (L.) Dunal under Alternaria alternata Stress.

    PubMed

    Mishra, Aradhana; Singh, Satyendra Pratap; Mahfooz, Sahil; Singh, Surendra Pratap; Bhattacharya, Arpita; Mishra, Nishtha; Nautiyal, C S

    2018-04-15

    Endophytes have been explored and found to perform an important role in plant health. However, their effects on the host physiological function and disease management remain elusive. The present study aimed to assess the potential effects of endophytes, singly as well as in combination, in Withania somnifera (L.) Dunal, on various physiological parameters and systemic defense mechanisms against Alternaria alternata Seeds primed with the endophytic bacteria Bacillus amyloliquefaciens and Pseudomonas fluorescens individually and in combination demonstrated an enhanced vigor index and germination rate. Interestingly, plants treated with the two-microbe combination showed the lowest plant mortality rate (28%) under A. alternata stress. Physiological profiling of treated plants showed improved photosynthesis, respiration, transpiration, and stomatal conductance under pathogenic stress. Additionally, these endophytes not only augmented defense enzymes and antioxidant activity in treated plants but also enhanced the expression of salicylic acid- and jasmonic acid-responsive genes in the stressed plants. Reductions in reactive oxygen species (ROS) and reactive nitrogen species (RNS) along with enhanced callose deposition in host plant leaves corroborated well with the above findings. Altogether, the study provides novel insights into the underlying mechanisms behind the tripartite interaction of endophyte- A. alternata - W. somnifera and underscores their ability to boost plant health under pathogen stress. IMPORTANCE W. somnifera is well known for producing several medicinally important secondary metabolites. These secondary metabolites are required by various pharmaceutical sectors to produce life-saving drugs. However, the cultivation of W. somnifera faces severe challenge from leaf spot disease caused by A. alternata To keep pace with the rising demand for this plant and considering its capacity for cultivation under field conditions, the present study was undertaken

  1. Induction of Systemic Resistance against Aphids by Endophytic Bacillus velezensis YC7010 via Expressing PHYTOALEXIN DEFICIENT4 in Arabidopsis

    PubMed Central

    Rashid, Md. Harun-Or-; Khan, Ajmal; Hossain, Mohammad T.; Chung, Young R.

    2017-01-01

    Aphids are the most destructive insect pests. They suck the sap and transmit plant viruses, causing widespread yield loss of many crops. A multifunctional endophytic bacterial strain Bacillus velezensis YC7010 has been found to induce systemic resistance against bacterial and fungal pathogens of rice. However, its activity against insects attack and underlying cellular and molecular defense mechanisms are not elucidated yet. Here, we show that root drenching of Arabidopsis seedlings with B. velezensis YC7010 can induce systemic resistance against green peach aphid (GPA), Myzus persicae. Treatment of bacterial suspension of B. velezensis YC7010 at 2 × 107 CFU/ml to Arabidopsis rhizosphere induced higher accumulation of hydrogen peroxide, cell death, and callose deposition in leaves compared to untreated plants at 6 days after infestation of GPA. Salicylic acid, jasmonic acid, ethylene, and abscisic acid were not required to confer defense against GPA in Arabidopsis plants treated by B. velezensis YC7010. Bacterial treatment with B. velezensis YC7010 significantly reduced settling, feeding and reproduction of GPA on Arabidopsis leaves via strongly expressing senescence-promoting gene PHYTOALEXIN DEFICIENT4 (PAD4) while suppressing BOTRYTIS-INDUCED KINASE1 (BIK1). These results indicate that B. velezensis YC7010-induced systemic resistance to the GPA is a hypersensitive response mainly dependent on higher expression of PAD4 with suppression of BIK1, resulting in more accumulation of hydrogen peroxide, cell death, and callose deposition in Arabidopsis. PMID:28261260

  2. Endophytic bacteria from wheat grain as biocontrol agents of Fusarium graminearum and deoxynivalenol production in wheat.

    PubMed

    Pan, D; Mionetto, A; Tiscornia, S; Bettucci, L

    2015-08-01

    In Uruguay, Fusarium graminearum is the most common species that infects wheat and is responsible for Fusarium head blight (FHB) and contamination of grain with deoxynivalenol (DON). The aim of this work was to select bacterial endophytes isolated from wheat grain to evaluate their antagonistic ability against F. graminearum and DON production in vitro and under field conditions. Four strains identified as Bacillus megaterium (BM1) and Bacillus subtilis (BS43, BSM0 y BSM2) significantly reduced fungal growth and spore germination of F. graminearum. This antagonist activity remained unchanged after the bacterial cultures were heat treated. Under field conditions, treatments with antagonist BM1 was the most effective, reducing the FHB incidence and severity by 93 and 54 %, respectively, and the production of DON by 89.3 %.

  3. Endophytic Bacteria Improve Plant Growth, Symbiotic Performance of Chickpea (Cicer arietinum L.) and Induce Suppression of Root Rot Caused by Fusarium solani under Salt Stress.

    PubMed

    Egamberdieva, Dilfuza; Wirth, Stephan J; Shurigin, Vyacheslav V; Hashem, Abeer; Abd Allah, Elsayed F

    2017-01-01

    Salinity causes disturbance in symbiotic performance of plants, and increases susceptibility of plants to soil-borne pathogens. Endophytic bacteria are an essential determinant of cross-tolerance to biotic and abiotic stresses in plants. The aim of this study was to isolate non-rhizobial endophytic bacteria from the root nodules of chickpea ( Cicer arietinum L.), and to assess their ability to improve plant growth and symbiotic performance, and to control root rot in chickpea under saline soil conditions. A total of 40 bacterial isolates from internal root tissues of chickpea grown in salinated soil were isolated. Four bacterial isolates, namely Bacillus cereus NUU1 , Achromobacter xylosoxidans NUU2, Bacillus thuringiensis NUU3, and Bacillus subtilis NUU4 colonizing root tissue demonstrated plant beneficial traits and/or antagonistic activity against F. solani and thus were characterized in more detail. The strain B. subtilis NUU4 proved significant plant growth promotion capabilities, improved symbiotic performance of host plant with rhizobia, and promoted yield under saline soil as compared to untreated control plants under field conditions. A combined inoculation of chickpea with M. ciceri IC53 and B. subtilis NUU4 decreased H 2 O 2 concentrations and increased proline contents compared to the un-inoculated plants indicating an alleviation of adverse effects of salt stress. Furthermore, the bacterial isolate was capable to reduce the infection rate of root rot in chickpea caused by F. solani . This is the first report of F. solani causing root rot of chickpea in a salinated soil of Uzbekistan. Our findings demonstrated that the endophytic B. subtilis strain NUU4 provides high potentials as a stimulator for plant growth and as biological control agent of chickpea root rot under saline soil conditions. These multiple relationships could provide promising practical approaches to increase the productivity of legumes under salt stress.

  4. Endophytic Bacteria Improve Plant Growth, Symbiotic Performance of Chickpea (Cicer arietinum L.) and Induce Suppression of Root Rot Caused by Fusarium solani under Salt Stress

    PubMed Central

    Egamberdieva, Dilfuza; Wirth, Stephan J.; Shurigin, Vyacheslav V.; Hashem, Abeer; Abd_Allah, Elsayed F.

    2017-01-01

    Salinity causes disturbance in symbiotic performance of plants, and increases susceptibility of plants to soil-borne pathogens. Endophytic bacteria are an essential determinant of cross-tolerance to biotic and abiotic stresses in plants. The aim of this study was to isolate non–rhizobial endophytic bacteria from the root nodules of chickpea (Cicer arietinum L.), and to assess their ability to improve plant growth and symbiotic performance, and to control root rot in chickpea under saline soil conditions. A total of 40 bacterial isolates from internal root tissues of chickpea grown in salinated soil were isolated. Four bacterial isolates, namely Bacillus cereus NUU1, Achromobacter xylosoxidans NUU2, Bacillus thuringiensis NUU3, and Bacillus subtilis NUU4 colonizing root tissue demonstrated plant beneficial traits and/or antagonistic activity against F. solani and thus were characterized in more detail. The strain B. subtilis NUU4 proved significant plant growth promotion capabilities, improved symbiotic performance of host plant with rhizobia, and promoted yield under saline soil as compared to untreated control plants under field conditions. A combined inoculation of chickpea with M. ciceri IC53 and B. subtilis NUU4 decreased H2O2 concentrations and increased proline contents compared to the un-inoculated plants indicating an alleviation of adverse effects of salt stress. Furthermore, the bacterial isolate was capable to reduce the infection rate of root rot in chickpea caused by F. solani. This is the first report of F. solani causing root rot of chickpea in a salinated soil of Uzbekistan. Our findings demonstrated that the endophytic B. subtilis strain NUU4 provides high potentials as a stimulator for plant growth and as biological control agent of chickpea root rot under saline soil conditions. These multiple relationships could provide promising practical approaches to increase the productivity of legumes under salt stress. PMID:29033922

  5. Chemical constituents of Aspergillus sp EJC08 isolated as endophyte from Bauhinia guianensis and their antimicrobial activity.

    PubMed

    Pinheiro, Eduardo A A; Carvalho, Josiwander M; Santos, Diellem C P dos; Feitosa, André O; Marinho, Patrícia S B; Guilhon, Giselle Maria S P; Santos, Lourivaldo S; Souza, Afonso L D de; Marinho, Andrey M R

    2013-01-01

    The present work reports the isolation of five compounds from Aspergillus sp EJC08 isolated as endophytic from Bauhinia guianensis, a tipical plant of the Amazon. The compounds ergosterol (1), ergosterol peroxide (2), mevalolactone (3), monomethylsulochrin (4) and trypacidin A (5) were isolated by chromatographic procedures and identified by spectral methods of 1D and 2D NMR and MS. Compounds 3, 4 and 5 were tested against Escherichia coli, Pseudomonas aeruginosa, Bacillus subtilis and Staphylococcus aureus and showed good activity.

  6. Science hub spore data

    EPA Pesticide Factsheets

    Data set includes UV dose, and Bacillus pumilus spore plate counts in colony forming unitsThis dataset is associated with the following publication:Boczek , L., E. Rhodes , J. Cashdollar, J. Ryu, J. Popovici , J. Hoelle , M. Sivaganesan , S. Hayes , M. Rodgers , and H. Ryu. Applicability of UV resistant Bacillus pumilus endospores as a human adenovirus surrogate for evaluating the effectiveness of virus inactivation in low-pressure UV treatment systems. JOURNAL OF MICROBIOLOGICAL METHODS. Elsevier Science Ltd, New York, NY, USA, 122: 43-49, (2016).

  7. Biodegradation of phenol and benzene by endophytic bacterial strains isolated from refinery wastewater-fed Cannabis sativa.

    PubMed

    Iqbal, Aneela; Arshad, Muhammad; Hashmi, Imran; Karthikeyan, Raghupathy; Gentry, Terry J; Schwab, Arthur Paul

    2017-06-13

    The presence of benzene and phenol in the environment can lead to serious health effects in humans and warrant development of efficient cleanup strategies. The aim of the present work was to assess the potential of indigenous endophytic bacterial strains to degrade benzene and phenol. Seven strains were successfully isolated from Cannabis sativa plants irrigated with oil refinery wastewater. Molecular characterization was performed by 16S rRNA gene sequencing. Phenol was biodegraded almost completely with Achromobacter sp. (AIEB-7), Pseudomonas sp. (AIEB-4), and Alcaligenes sp. (AIEB-6) at 250, 500, and 750 mg L -1 ; however, the degradation was only 81%, 72%, and 69%, respectively, when exposed to 1000 mg L -1 . Bacillus sp. (AIEB-1), Enterobacter sp. (AIEB-3), and Acinetobacter sp. (AIEB-2) degraded benzene significantly at 250, 500, and 750 mg L -1 . However, these strains showed 80%, 72%, and 68% benzene removal at 1000 mg L -1 exposure, respectively. Rates of degradation could be modeled with first-order kinetics with rate constant values of 1.86 × 10 -2 for Pseudomonas sp. (AIEB-4) and 1.80 × 10 -2  h -1 for Bacillus sp. (AIEB-1) and half-lives of 1.5 and 1.6 days, respectively. These results establish a foundation for further testing of the phytoremediation of hydrocarbon-contaminated soils in the presence of these endophytic bacteria.

  8. Identification of Bacillus Probiotics Isolated from Soil Rhizosphere Using 16S rRNA, recA, rpoB Gene Sequencing and RAPD-PCR.

    PubMed

    Mohkam, Milad; Nezafat, Navid; Berenjian, Aydin; Mobasher, Mohammad Ali; Ghasemi, Younes

    2016-03-01

    Some Bacillus species, especially Bacillus subtilis and Bacillus pumilus groups, have highly similar 16S rRNA gene sequences, which are hard to identify based on 16S rDNA sequence analysis. To conquer this drawback, rpoB, recA sequence analysis along with randomly amplified polymorphic (RAPD) fingerprinting was examined as an alternative method for differentiating Bacillus species. The 16S rRNA, rpoB and recA genes were amplified via a polymerase chain reaction using their specific primers. The resulted PCR amplicons were sequenced, and phylogenetic analysis was employed by MEGA 6 software. Identification based on 16S rRNA gene sequencing was underpinned by rpoB and recA gene sequencing as well as RAPD-PCR technique. Subsequently, concatenation and phylogenetic analysis showed that extent of diversity and similarity were better obtained by rpoB and recA primers, which are also reinforced by RAPD-PCR methods. However, in one case, these approaches failed to identify one isolate, which in combination with the phenotypical method offsets this issue. Overall, RAPD fingerprinting, rpoB and recA along with concatenated genes sequence analysis discriminated closely related Bacillus species, which highlights the significance of the multigenic method in more precisely distinguishing Bacillus strains. This research emphasizes the benefit of RAPD fingerprinting, rpoB and recA sequence analysis superior to 16S rRNA gene sequence analysis for suitable and effective identification of Bacillus species as recommended for probiotic products.

  9. Isolation and characterization of plant growth promoting endophytic diazotrophic bacteria from Korean rice cultivars.

    PubMed

    Ji, Sang Hye; Gururani, Mayank Anand; Chun, Se-Chul

    2014-01-20

    We have isolated 576 endophytic bacteria from the leaves, stems, and roots of 10 rice cultivars and identified 12 of them as diazotrophic bacteria using a specific primer set of nif gene. Through 16S rDNA sequence analysis, nifH genes were confirmed in the two species of Penibacillus, three species of Microbacterium, three Bacillus species, and four species of Klebsiella. Rice seeds treated with these plant growth-promoting bacteria (PGPB) showed improved plant growth, increased height and dry weight and antagonistic effects against fungal pathogens. In addition, auxin and siderophore producing ability, and phosphate solubilizing activity were studied for the possible mechanisms of plant growth promotion. Among 12 isolates tested, 10 strains have shown higher auxin producing activity, 6 isolates were confirmed as strains with high siderophore producing activity while 4 isolates turned out to have high phosphate-solubilizing activity. These results strongly suggest that the endophytic diazotrophic bacteria characterized in this study could be successfully used to promote plant growth and inducing fungal resistance in plants. Copyright © 2013 Elsevier GmbH. All rights reserved.

  10. Bacillus subtilis UBTn7, a potential producer of L - Methioninase isolated from mangrove, Rhizophora mucronata

    NASA Astrophysics Data System (ADS)

    Prihanto, A. A.

    2018-04-01

    L-methioninase is an enzyme that degrades sulfur-containing amino acids to α-keto acids, ammonia, and thiols. L-methioninase could be found in plants, bacteria, and fungi. The aims of this study was to obtain L-methioninase-producing endophytic bacteria isolated from mangrove Rhizophora mucronata. The mangrove was collected from Jenu Beach, Tuban, East Java, Indonesia. The samples were roots, stems, and leaves of Rhizophora mucronata. Endophytic bacteria were pure isolated using LB agar medium. Each bacteria were screened its capability to produce L-methioninase using selective media namely modified Czapek Dox agar. The best producer of enzyme was further identified with morphological and biochemical analysis. The result showed that three bacteria produced L-methioninase. Based on the result of morphological and biochemical analysis, the best producer was Bacillus subtilis UBTn7.

  11. Characterization of phytase enzymes as feed additive for poultry and feed

    NASA Astrophysics Data System (ADS)

    Lamid, M.; Al-Arif, A.; Asmarani, O.; Warsito, S. H.

    2018-04-01

    One of the obstacles to utilizing rice bran as feed is the presence of antinutrition in the form of phytic acid which binds in minerals to form complex compounds with P, Mg, Mn, Fe, Zn, Ca. Phytic acid and its salts are the main forms of P, Mg, Mn, Fe, Zn, Ca deposits contained in cereals, legume and grains, about 60-90% of total minerals P, Mg, Mn, Fe, Zn, Ca in the form of phytic acid or phytate salts. Phytate is one of the enzymes belonging to the phosphatase group capable of hydrolyzing phytate compounds of myo-inositol (1,2,3,4,5,6) hexsa phosphatase into myo-inositol and organic phosphat. The aim of this study was to obtain characterization of phytase enzymes from isolate Actinobacillus sp., Bacillus pumilus, Bacillus vallimortis and IBR-1. Determination of phytase activity and the absorbance was measured using a UV-Vis spectrophotometer at a wavelength of 392 nm. The result of Actinobacillus sp, Bacillus pumilus, Bacillus vallimortis, IBR-1 each having optimum temperature were 50°C, 40°C, 45°C, 45°C, and optimum pH were 4, 4, 5.5. Bacteria especially Actinobacillus sp, Bacillus pumilus, Bacillus vallimortis, IBR-1 are proven capable of producing the high enough phytase enzymes required for mineral availability for livestock and fish.

  12. Bacterial Endophyte Colonization and Distribution within Plants

    PubMed Central

    Kandel, Shyam L.; Joubert, Pierre M.

    2017-01-01

    The plant endosphere contains a diverse group of microbial communities. There is general consensus that these microbial communities make significant contributions to plant health. Both recently adopted genomic approaches and classical microbiology techniques continue to develop the science of plant-microbe interactions. Endophytes are microbial symbionts residing within the plant for the majority of their life cycle without any detrimental impact to the host plant. The use of these natural symbionts offers an opportunity to maximize crop productivity while reducing the environmental impacts of agriculture. Endophytes promote plant growth through nitrogen fixation, phytohormone production, nutrient acquisition, and by conferring tolerance to abiotic and biotic stresses. Colonization by endophytes is crucial for providing these benefits to the host plant. Endophytic colonization refers to the entry, growth and multiplication of endophyte populations within the host plant. Lately, plant microbiome research has gained considerable attention but the mechanism allowing plants to recruit endophytes is largely unknown. This review summarizes currently available knowledge about endophytic colonization by bacteria in various plant species, and specifically discusses the colonization of maize plants by Populus endophytes. PMID:29186821

  13. Endophytic bacteria take the challenge to improve Cu phytoextraction by sunflower.

    PubMed

    Kolbas, Aliaksandr; Kidd, Petra; Guinberteau, Jacques; Jaunatre, Renaud; Herzig, Rolf; Mench, Michel

    2015-04-01

    Endophytic bacteria from roots and crude seed extracts of a Cu-tolerant population of Agrostis capillaris were inoculated to a sunflower metal-tolerant mutant line, and their influence on Cu tolerance and phytoextraction was assessed using a Cu-contaminated soil series. Ten endophytic bacterial strains isolated from surface-sterilized A. capillaris roots were mixed to prepare the root endophyte inoculant (RE). In parallel, surface-sterilized seeds of A. capillaris were crushed in MgSO4 to prepare a crude seed extract containing seed endophytes (SE). An aliquot of this seed extract was filtered at 0.2 μm to obtain a bacterial cell-free seed extract (SEF). After surface sterilization, germinated sunflower seeds were separately treated with one of five modalities: no treatment (C), immersion in MgSO4 (CMg) or SEF solutions and inoculation with RE or SE. All plants were cultivated on a Cu-contaminated soil series (13-1020 mg Cu kg(-1)). Cultivable RE strains were mostly members of the Pseudomonas genera, and one strain was closely related to Labrys sp. The cultivable SE strains belonged mainly to the Bacillus genera and some members of the Rhodococcus genera. The treatment effects depended on the soil Cu concentration. Both SE and SEF plants had a higher Cu tolerance in the 13-517 mg Cu kg(-1) soil range as reflected by increased shoot and root DW yields compared to control plants. This was accompanied by a slight decrease in shoot Cu concentration and increase in root Cu concentration. Shoot and root DW yields were more promoted by SE than SEF in the 13-114 mg Cu kg(-1) soil range, which could reflect the influence of seed-located bacterial endophytes. At intermediate soil Cu (416-818 mg Cu kg(-1) soil), the RE and CMg plants had lower shoot Cu concentrations than the control, SE and SEF plants. At high total soil Cu (617-1020 mg Cu kg(-1)), root DW yield of RE plants slightly increased and their root Cu concentration rose by up to 1.9-fold. In terms

  14. Structural characterization of Bacillus licheniformis Dahb1 exopolysaccharide-antimicrobial potential and larvicidal activity on malaria and Zika virus mosquito vectors.

    PubMed

    Abinaya, Muthukumar; Vaseeharan, Baskaralingam; Divya, Mani; Vijayakumar, Sekar; Govindarajan, Marimuthu; Alharbi, Naiyf S; Khaled, Jamal M; Al-Anbr, Mohammed N; Benelli, Giovanni

    2018-04-27

    Microbial polysaccharides produced by marine species play a key role in food and cosmetic industry, as they are nontoxic and biodegradable polymers. This investigation reports the isolation of exopolysaccharide from Bacillus licheniformis Dahb1 and its biomedical applications. Bacillus licheniformis Dahb1 exopolysaccharide (Bl-EPS) was extracted using the ethanol precipitation method and structurally characterized. FTIR and 1 H-NMR pointed out the presence of various functional groups and primary aromatic compounds, respectively. Bl-EPS exhibited strong antioxidant potential confirmed via DPPH radical, reducing power and superoxide anion scavenging assays. Microscopic analysis revealed that the antibiofilm activity of Bl-EPS (75 μg/ml) was higher against Gram-negative (Pseudomonas aeruginosa and Proteus vulgaris) bacteria over Gram-positive species (Bacillus subtilis and Bacillus pumilus). Bl-EPS led to biofilm inhibition against Candida albicans when tested at 75 μg/ml. The hemolytic assay showed low cytotoxicity of Bl-EPS at 5 mg/ml. Besides, Bl-EPS achieved LC 50 values < 80 μg/ml against larvae of mosquito vectors Anopheles stephensi and Aedes aegypti. Overall, our findings pointed out the multipurpose bioactivity of Bl-EPS, which deserves further consideration for pharmaceutical, environmental and entomological applications.

  15. Comparative study of endophytic and endophytic diazotrophic bacterial communities across rice landraces grown in the highlands of northern Thailand.

    PubMed

    Rangjaroen, Chakrapong; Rerkasem, Benjavan; Teaumroong, Neung; Sungthong, Rungroch; Lumyong, Saisamorn

    2014-01-01

    Communities of bacterial endophytes within the rice landraces cultivated in the highlands of northern Thailand were studied using fingerprinting data of 16S rRNA and nifH genes profiling by polymerase chain reaction-denaturing gradient gel electrophoresis. The bacterial communities' richness, diversity index, evenness, and stability were varied depending on the plant tissues, stages of growth, and rice cultivars. These indices for the endophytic diazotrophic bacteria within the landrace rice Bue Wah Bo were significantly the lowest. The endophytic bacteria revealed greater diversity by cluster analysis with seven clusters compared to the endophytic diazotrophic bacteria (three clusters). Principal component analysis suggested that the endophytic bacteria showed that the community structures across the rice landraces had a higher stability than those of the endophytic diazotrophic bacteria. Uncultured bacteria were found dominantly in both bacterial communities, while higher generic varieties were observed in the endophytic diazotrophic bacterial community. These differences in bacterial communities might be influenced either by genetic variation in the rice landraces or the rice cultivation system, where the nitrogen input affects the endophytic diazotrophic bacterial community.

  16. Unprecedented access of phenolic substrates to the heme active site of a catalase: substrate binding and peroxidase-like reactivity of Bacillus pumilus catalase monitored by X-ray crystallography and EPR spectroscopy.

    PubMed

    Loewen, Peter C; Villanueva, Jacylyn; Switala, Jacek; Donald, Lynda J; Ivancich, Anabella

    2015-05-01

    Heme-containing catalases and catalase-peroxidases catalyze the dismutation of hydrogen peroxide as their predominant catalytic activity, but in addition, individual enzymes support low levels of peroxidase and oxidase activities, produce superoxide, and activate isoniazid as an antitubercular drug. The recent report of a heme enzyme with catalase, peroxidase and penicillin oxidase activities in Bacillus pumilus and its categorization as an unusual catalase-peroxidase led us to investigate the enzyme for comparison with other catalase-peroxidases, catalases, and peroxidases. Characterization revealed a typical homotetrameric catalase with one pentacoordinated heme b per subunit (Tyr340 being the axial ligand), albeit in two orientations, and a very fast catalatic turnover rate (kcat  = 339,000 s(-1) ). In addition, the enzyme supported a much slower (kcat  = 20 s(-1) ) peroxidatic activity utilizing substrates as diverse as ABTS and polyphenols, but no oxidase activity. Two binding sites, one in the main access channel and the other on the protein surface, accommodating pyrogallol, catechol, resorcinol, guaiacol, hydroquinone, and 2-chlorophenol were identified in crystal structures at 1.65-1.95 Å. A third site, in the heme distal side, accommodating only pyrogallol and catechol, interacting with the heme iron and the catalytic His and Arg residues, was also identified. This site was confirmed in solution by EPR spectroscopy characterization, which also showed that the phenolic oxygen was not directly coordinated to the heme iron (no low-spin conversion of the Fe(III) high-spin EPR signal upon substrate binding). This is the first demonstration of phenolic substrates directly accessing the heme distal side of a catalase. © 2015 Wiley Periodicals, Inc.

  17. Endophytic Fungi in Species of Artemisia.

    PubMed

    Cosoveanu, Andreea; Cabrera, Raimundo

    2018-05-01

    The genus Artemisia , a collection of ~400 hardy herbaceous plant and shrub species, is an important resource contributing to chemistry, medicine, agriculture, industry, and ecology. Its communities of endophytic fungi have only recently begun to be explored. Summarized from studies conducted on the fungal endophytes in Artemisia species, both fungal phylogenetic diversity and the associated bioactivity was examined. Isolations from 14 species of Artemisia have led to 51 genera of fungal endophytes, 28 families, and 18 orders. Endophytes belonged mainly to Ascomycota , except for two taxa of Cantharellales and Sporidiobolales , one taxon of Mucoromycota , and one species of Oomycota . The mostly common families were Pleosporaceae , Trichocomaceae , Leptosphaeriaceae , and Botryosphaeriaceae (relative abundance = 14.89, 8.51, 7.14 and 6.38, respectively). In the search for bioactive metabolites, 27 novel compounds were characterized and 22 metabolites were isolated between 2006 and 2017. The first study on endophytic fungi isolated from species of Artemisia was published but 18 years ago. This summary of recently acquired data illustrates the considerable diversity of biological purposes addressed by fungal endophytes of Artemisia spp.

  18. Fungal Endophytes: Beyond Herbivore Management

    PubMed Central

    Bamisile, Bamisope S.; Dash, Chandra K.; Akutse, Komivi S.; Keppanan, Ravindran; Wang, Liande

    2018-01-01

    The incorporation of entomopathogenic fungi as biocontrol agents into Integrated Pest Management (IPM) programs without doubt, has been highly effective. The ability of these fungal pathogens such as Beauveria bassiana and Metarhizium anisopliae to exist as endophytes in plants and protect their colonized host plants against the primary herbivore pests has widely been reported. Aside this sole role of pest management that has been traditionally ascribed to fungal endophytes, recent findings provided evidence of other possible functions as plant yield promoter, soil nutrient distributor, abiotic stress and drought tolerance enhancer in plants. However, reports on these additional important effects of fungal endophytes on the colonized plants remain scanty. In this review, we discussed the various beneficial effects of endophytic fungi on the host plants and their primary herbivore pests; as well as some negative effects that are relatively unknown. We also highlighted the prospects of our findings in further increasing the acceptance of fungal endophytes as an integral part of pest management programs for optimized crop production. PMID:29628919

  19. Isolation and Identification of Endophytic Bacteria with Plant Growth Promoting Activity and Biocontrol Potential from Wild Pistachio Trees.

    PubMed

    Etminani, Faegheh; Harighi, Behrouz

    2018-06-01

    In this study, samples were collected from the leaves and stems of healthy wild Pistachio trees ( Pistacia atlantica L.) from various locations of Baneh and Marivan regions, Iran. In total, 61 endophytic bacteria were isolated and grouped according to phenotypic properties. Ten selected isolates from each group were further identified by partial sequencing of the 16S rRNA gene. Based on the results, isolates were identified as bacteria belonging to Pseudomonas , Stenotrophomonas , Bacillus , Pantoea and Serratia genus. The ability of these isolates was evaluated to phytohormone production such as auxin and gibberellin, siderophore production, phosphate solubilization, atmospheric nitrogen fixation, protease and hydrogen cyanide production. All strains were able to produce the plant growth hormone auxin and gibberellin in different amounts. The majority of strains were able to solubilize phosphate. The results of atmospheric nitrogen fixation ability, protease and siderophore production were varied among strains. Only Ba66 could produce a low amount of hydrogen cyanide. The results of biocontrol assay showed that Pb78 and Sp15 strains had the highest and lowest inhibition effects on bacterial plant pathogens, Pseudomonas syringae pv. syringae Pss20 and Pseudomonas tolaasii Pt18 under in vitro condition. Pb3, Pb24 and Pb71 strains significantly promote root formation on carrot slices. To our knowledge this is the first report of the isolation of endophytic bacterial strains belonging to Pantoea , Bacillus , Pseudomonas , Serratia and Stenotrophomonas genus from wild pistachio trees with plant growth promoting potential and biocontrol activity.

  20. Habitat filters in fungal endophyte community assembly

    USDA-ARS?s Scientific Manuscript database

    Fungal endophytes can influence host health, and more broadly, can instigate trophic cascades with effects scaling to the ecosystem level. Despite this, biotic mechanisms of endophyte community assembly are largely unknown. We used maize to investigate three potential habitat filters in endophyte co...

  1. Fungal endophytes: diversity and functional roles

    USGS Publications Warehouse

    Rodriguez, R.J.; White, J.F.; Arnold, A.E.; Redman, R.S.

    2009-01-01

    All plants in natural ecosystems appear to be symbiotic with fungal endophytes. This highly diverse group of fungi can have profound impacts on plant communities through increasing fitness by conferring abiotic and biotic stress tolerance, increasing biomass and decreasing water consumption, or decreasing fitness by altering resource allocation. Despite more than 100 yr of research resulting in thousands of journal articles, the ecological significance of these fungi remains poorly characterized. Historically, two endophytic groups (clavicipitaceous (C) and nonclavicipitaceous (NC)) have been discriminated based on phylogeny and life history traits. Here, we show that NC-endophytes represent three distinct functional groups based on host colonization and transmission, in planta biodiversity and fitness benefits conferred to hosts. Using this framework, we contrast the life histories, interactions with hosts and potential roles in plant ecophysiology of C- and NC-endophytes, and highlight several key questions for future work in endophyte biology.

  2. Enhanced performance of the microalga Chlorella sorokiniana remotely induced by the plant growth-promoting bacteria Azospirillum brasilense and Bacillus pumilus

    PubMed Central

    Amavizca, Edgar; Bashan, Yoav; Ryu, Choong-Min; Farag, Mohamed A.; Bebout, Brad M.; de-Bashan, Luz E.

    2017-01-01

    Remote effects (occurring without physical contact) of two plant growth-promoting bacteria (PGPB) Azospirillum brasilense Cd and Bacilus pumilus ES4 on growth of the green microalga Chlorella sorokiniana UTEX 2714 were studied. The two PGPB remotely enhanced the growth of the microalga, up to six-fold, and its cell volume by about three-fold. In addition to phenotypic changes, both bacteria remotely induced increases in the amounts of total lipids, total carbohydrates, and chlorophyll a in the cells of the microalga, indicating an alteration of the microalga’s physiology. The two bacteria produced large amounts of volatile compounds, including CO2, and the known plant growth-promoting volatile 2,3-butanediol and acetoin. Several other volatiles having biological functions in other organisms, as well as numerous volatile compounds with undefined biological roles, were detected. Together, these bacteria-derived volatiles can positively affect growth and metabolic parameters in green microalgae without physical attachment of the bacteria to the microalgae. This is a new paradigm on how PGPB promote growth of microalgae which may serve to improve performance of Chlorella spp. for biotechnological applications. PMID:28145473

  3. Endophytic Fungi in a Hordeum Germplasm Collection

    Treesearch

    A. Dan Wilson; S.L. Clement; W.J. Kaiser

    1991-01-01

    The incidence of clavicipitaceous anamorphic endophytes in a Hordeum spp. germplasm collection is reported. The potential application of endophytes as biocontrol agents against pests of cereal crops is recognized. Suggestions are proposed to modify existing germplasm maintenance procedures to ensure that both seed viability and endophyte viability...

  4. A novel antibacterial and antifungal phenolic compound from the endophytic fungus Pestalotiopsis mangiferae.

    PubMed

    Subban, Kamalraj; Subramani, Ramesh; Johnpaul, Muthumary

    2013-01-01

    A novel phenolic compound, 4-(2,4,7-trioxa-bicyclo[4.1.0]heptan-3-yl) phenol (1), was isolated from Pestalotiopsis mangiferae, an endophytic fungus associated with Mangifera indica Linn. The structure of the compound was elucidated on the basis of comprehensive spectral analysis (UV, IR, ¹H-, ¹³C- and 2D-NMR, as well as HRESI-MS). Compound (1) shows potent antibacterial and antifungal activity against Bacillus subtilis, Klebsiella pneumoniae, Escherichia coli, Micrococcus luteus, Pseudomonas aeruginosa and Candida albicans. The transmission electron microscope study for the mode of inhibition of compound (1) on bacterial pathogens revealed the destruction of bacterial cells by cytoplasm agglutination with the formation of pores in cell wall membranes.

  5. Characterizing endophytic competence and plant growth promotion of bacterial endophytes inhabiting the seed endosphere of Rice.

    PubMed

    Walitang, Denver I; Kim, Kiyoon; Madhaiyan, Munusamy; Kim, Young Kee; Kang, Yeongyeong; Sa, Tongmin

    2017-10-26

    Rice (Oryza sativa L. ssp. indica) seeds as plant microbiome present both an opportunity and a challenge to colonizing bacterial community living in close association with plants. Nevertheless, the roles and activities of bacterial endophytes remain largely unexplored and insights into plant-microbe interaction are compounded by its complexity. In this study, putative functions or physiological properties associated with bacterial endophytic nature were assessed. Also, endophytic roles in plant growth and germination that may allow them to be selectively chosen by plants were also studied. The cultivable seed endophytes were dominated by Proteobacteria particularly class Gammaproteobacteria. Highly identical type strains were isolated from the seed endosphere regardless of the rice host's physiological tolerance to salinity. Among the type strains, Flavobacterium sp., Microbacterium sp. and Xanthomonas sp. were isolated from the salt-sensitive and salt-tolerant cultivars. PCA-Biplot ordination also showed that specific type strains isolated from different rice cultivars have distinguishing similar characteristics. Flavobacterium sp. strains are phosphate solubilizers and indole-3-acetic acid producers with high tolerance to salinity and osmotic stress. Pseudomonas strains are characterized as high siderophore producers while Microbacterium sp. and Xanthomonas sp. strains have very high pectinase and cellulase activity. Among the physiological traits of the seed endophytes, bacterial pectinase and cellulase activity are positively correlated as well as salt and osmotic tolerance. Overall characterization shows that majority of the isolates could survive in 4-8% salt concentration as well as in 0.6 M and 1.2 M sucrose solution. The activities of catalase, pectinase and cellulase were also observed in almost all of the isolates indicating the importance of these characteristics for survival and colonization into the seed endosphere. Seed bacterial endophytes also

  6. A community of unknown, endophytic fungi in western white pine.

    PubMed

    Ganley, Rebecca J; Brunsfeld, Steven J; Newcombe, George

    2004-07-06

    The endophytic fungi of woody plants may be diverse as often claimed, and likewise, they may be functionally novel as demonstrated in a few studies. However, the endophyte taxa that are most frequently reported tend to belong to fungal groups composed of morphologically similar endophytes and parasites. Thus, it is plausible that endophytes are known (i.e., described) parasites in a latent phase within the host. If this null hypothesis were true, endophytes would represent neither additional fungal diversity distinct from parasite diversity nor a symbiont community likely to be novel ecologically. To be synonymous with parasites of the host, endophytes should at least be most closely related to those same parasites. Here we report that seven distinct parasites of Pinus monticola do not occur as endophytes. The majority of endophytes of P. monticola (90% of 2,019 cultures) belonged to one fungal family, the Rhytismataceae. However, not a single rhytismataceous endophyte was found to be most closely related by sequence homology to the three known rhytismataceous parasites of P. monticola. Similarly, neither endophytic Mycosphaerella nor endophytic Rhizosphaera isolates were most closely related to known parasites of P. monticola. Morphologically, the endophytes of P. monticola can be confounded with the parasites of the same host. However, they are actually most closely related to, but distinct from, parasites of other species of Pinus. If endophytes are generally unknown species, then estimates of 1 million endophytes (i.e., approximately 1 in 14 of all species of life) seem reasonable.

  7. Phytoremediation: plant-endophyte partnerships take the challenge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weyens, N.; van der Lelie, D.; Taghavi, S.

    A promising field to exploit plant-endophyte partnerships is the remediation of contaminated soils and (ground) water. Many plant growth promoting endophytes can assist their host plant to overcome contaminant-induced stress responses, thus providing improved plant growth. During phytoremediation of organic contaminants, plants can further benefit from endophytes possessing appropriate degradation pathways and metabolic capabilities, leading to more efficient contaminant degradation and reduction of both phytotoxicity and evapotranspiration of volatile contaminants. For phytoremediation of toxic metals, endophytes possessing a metal-resistance/sequestration system can lower metal phytotoxicity and affect metal translocation to the above-ground plant parts. Furthermore, endophytes that can degrade organic contaminantsmore » and deal with or, even better, improve extraction of the metals offer promising ways to improve phytoremediation of mixed pollution.« less

  8. Mechanisms Involved in Nematode Control by Endophytic Fungi.

    PubMed

    Schouten, Alexander

    2016-08-04

    Colonization of plants by particular endophytic fungi can provide plants with improved defenses toward nematodes. Evidently, such endophytes can be important in developing more sustainable agricultural practices. The mechanisms playing a role in this quantitative antagonism are poorly understood but most likely multifactorial. This knowledge gap obstructs the progress regarding the development of endophytes or endophyte-derived constituents into biocontrol agents. In part, this may be caused by the fact that endophytic fungi form a rather heterogeneous group. By combining the knowledge of the currently characterized antagonistic endophytic fungi and their effects on nematode behavior and biology with the knowledge of microbial competition and induced plant defenses, the various mechanisms by which this nematode antagonism operates or may operate are discussed. Now that new technologies are becoming available and more accessible, the currently unresolved mechanisms can be studied in greater detail than ever before.

  9. Isolation and Identification of Endophytic Bacteria with Plant Growth Promoting Activity and Biocontrol Potential from Wild Pistachio Trees

    PubMed Central

    Etminani, Faegheh; Harighi, Behrouz

    2018-01-01

    In this study, samples were collected from the leaves and stems of healthy wild Pistachio trees (Pistacia atlantica L.) from various locations of Baneh and Marivan regions, Iran. In total, 61 endophytic bacteria were isolated and grouped according to phenotypic properties. Ten selected isolates from each group were further identified by partial sequencing of the 16S rRNA gene. Based on the results, isolates were identified as bacteria belonging to Pseudomonas, Stenotrophomonas, Bacillus, Pantoea and Serratia genus. The ability of these isolates was evaluated to phytohormone production such as auxin and gibberellin, siderophore production, phosphate solubilization, atmospheric nitrogen fixation, protease and hydrogen cyanide production. All strains were able to produce the plant growth hormone auxin and gibberellin in different amounts. The majority of strains were able to solubilize phosphate. The results of atmospheric nitrogen fixation ability, protease and siderophore production were varied among strains. Only Ba66 could produce a low amount of hydrogen cyanide. The results of biocontrol assay showed that Pb78 and Sp15 strains had the highest and lowest inhibition effects on bacterial plant pathogens, Pseudomonas syringae pv. syringae Pss20 and Pseudomonas tolaasii Pt18 under in vitro condition. Pb3, Pb24 and Pb71 strains significantly promote root formation on carrot slices. To our knowledge this is the first report of the isolation of endophytic bacterial strains belonging to Pantoea, Bacillus, Pseudomonas, Serratia and Stenotrophomonas genus from wild pistachio trees with plant growth promoting potential and biocontrol activity. PMID:29887777

  10. Isolation, morphological identification and in vitro antibacterial activity of endophytic bacteria isolated from Azadirachta indica (neem) leaves

    PubMed Central

    Singh, Ankit Kumar; Sharma, Rajesh Kumar; Sharma, Varsha; Singh, Tanmay; Kumar, Rajesh; Kumari, Dimple

    2017-01-01

    Aim: The objective of this study was to isolate endophytic bacteria from Azadirachta indica (neem) leaves, their identification and investigate their antibacterial activity against three Gram-positive bacteria, Staphylococcus aureus, Streptococcus pyogenes and Bacillus cereus and Gram-negative bacteria Escherichia coli, Salmonella Typhimurium and Klebsiella pneumoniae. Materials and Methods: Fresh leaves of A. indica (neem) was procured from the Department of Botany, JNKVV, Jabalpur. Five samples were taken, and each sample was divided into five subsamples and separated for further isolation of endophytic bacteria. For sterilization leaves were treated with double distilled water, 0.1% sodium hypochlorite, 0.01% bavistin, 0.05% and 70% ethanol. Sterilized leaves of the plants were embedded in Kings B (KB) petri plates and incubated at 37°C for 24 h. Characterization of the bacteria was done according to its morphology and by Gram-staining. After that, a single colony was transferred into brain heart infusion (BHI) broth and incubated at 37°C for 24 h. The antibacterial effect was studied by the disk diffusion method with known antibiotic ciprofloxacin (Ci) as standard. Results: A total of 25 bacterial isolates from A. indica (neem) were obtained and identified morphologically. Most of the samples on KB media depicted irregular shape, flat elevation, undulated, rough, opaque, and white in color. Most of the samples on blood agar showed irregular, raise elevation, undulated, smooth, opaque and all the isolates were nonhemolytic and nonchromogenic. The growth of endophytic bacteria in BHI broth were all isolates showed turbidity. The microscopic examination revealed that maximum isolates were Gram-positive and rod shaped. Good antibacterial activity was observed against S. aureus, Streptococcus pyogenes, E. coli, Salmonella Typhimurium, and K. pneumoniae. Conclusions: Endophytic bacteria are present in leaves of A. indica (neem) and it possesses antibacterial

  11. Identification of bacterial endophytes associated with traditional medicinal plant Tridax procumbens Linn.

    PubMed

    Preveena, Jagadesan; Bhore, Subhash J

    2013-01-01

    In traditional medicine, Tridax procumbens Linn. is used in the treatment of injuries and wounds. The bacterial endophytes (BEs) of medicinal plants could produce medicinally important metabolites found in their hosts; and hence, the involvement of BEs in conferring wound healing properties to T. Procumbens cannot be ruled out. But, we do not know which types of BEs are associated with T. Procumbens. The objective of this study was to investigate the fast growing and cultivable BEs associated with T. procumbens. Leaves and stems of healthy T. Procumbens plants were collected and cultivable BEs were isolated from surface-sterilized leaf and stem tissue samples using Luria-Bertani (LB) agar (medium) at standard conditions. A polymerase chain reaction was employed to amplify 16S rRNA coding gene fragments from the isolates. Cultivable endophytic bacterial isolates (EBIs) were identified using 16S rRNA gene nucleotide sequence similarity based method of bacterial identification. Altogether, 50 culturable EBIs were isolated. 16S rRNA gene nucleotide sequences analysis using the Basic Local Alignment Search Tool (BLAST) revealed identities of the EBIs. Analysis reveals that cultivable Bacillus spp., Cronobacter sakazakii, Enterobacter spp., Lysinibacillus sphaericus, Pantoea spp., Pseudomonas spp. and Terribacillus saccharophilus are associated with T. Procumbens. Based on the results, we conclude that 24 different types of culturable BEs are associated with traditionally used medicinal plant, T. Procumbens, and require further study.

  12. Arbuscular mycorrhizal fungus inoculation reduces the drought-resistance advantage of endophyte-infected versus endophyte-free Leymus chinensis.

    PubMed

    Liu, Hui; Chen, Wei; Wu, Man; Wu, Rihan; Zhou, Yong; Gao, Yubao; Ren, Anzhi

    2017-11-01

    Grasses can be infected simultaneously by endophytic fungi and arbuscular mycorrhizal (AM) fungi. In this study, we tested the hypothesis that endophyte-associated drought resistance of a native grass was affected by an AM fungus. In a greenhouse experiment, we compared the performance of endophyte-infected (EI) and endophyte-free (EF) Leymus chinensis, a dominant species native to the Inner Mongolia steppe, under altered water and AM fungus availability. The results showed that endophyte infection significantly increased drought resistance of the host grass, but the beneficial effects were reduced by AM fungus inoculation. In the mycorrhizal-non-inoculated (MF) treatment, EI plants accumulated significantly more biomass, had greater proline and total phenolic concentration, and lower malondialdehyde concentration than EF plants. In the mycorrhizal-inoculation (MI) treatment, however, no significant difference occurred in either growth or physiological characters measured between EI and EF plants. AM fungus inoculation enhanced drought resistance of EF plants but had no significant effect on drought resistance of EI plants, thus AM fungus inoculation reduced the difference between EI and EF plants. Our findings highlight the importance of interactions among multiple microorganisms for plant performance under drought stress.

  13. Bioactive endophytes warrant intensified exploration and conservation.

    PubMed

    Smith, Stephen A; Tank, David C; Boulanger, Lori-Ann; Bascom-Slack, Carol A; Eisenman, Kaury; Kingery, David; Babbs, Beatrice; Fenn, Kathleen; Greene, Joshua S; Hann, Bradley D; Keehner, Jocelyn; Kelley-Swift, Elizabeth G; Kembaiyan, Vivek; Lee, Sun Jin; Li, Puyao; Light, David Y; Lin, Emily H; Ma, Cong; Moore, Emily; Schorn, Michelle A; Vekhter, Daniel; Nunez, Percy V; Strobel, Gary A; Donoghue, Michael J; Strobel, Scott A

    2008-08-25

    A key argument in favor of conserving biodiversity is that as yet undiscovered biodiversity will yield products of great use to humans. However, the link between undiscovered biodiversity and useful products is largely conjectural. Here we provide direct evidence from bioassays of endophytes isolated from tropical plants and bioinformatic analyses that novel biology will indeed yield novel chemistry of potential value. We isolated and cultured 135 endophytic fungi and bacteria from plants collected in Peru. nrDNAs were compared to samples deposited in GenBank to ascertain the genetic novelty of cultured specimens. Ten endophytes were found to be as much as 15-30% different than any sequence in GenBank. Phylogenetic trees, using the most similar sequences in GenBank, were constructed for each endophyte to measure phylogenetic distance. Assays were also conducted on each cultured endophyte to record bioactivity, of which 65 were found to be bioactive. The novelty of our contribution is that we have combined bioinformatic analyses that document the diversity found in environmental samples with culturing and bioassays. These results highlight the hidden hyperdiversity of endophytic fungi and the urgent need to explore and conserve hidden microbial diversity. This study also showcases how undergraduate students can obtain data of great scientific significance.

  14. Endophytic Bacteria Isolated from Panax ginseng Improves Ginsenoside Accumulation in Adventitious Ginseng Root Culture.

    PubMed

    Song, Xiaolin; Wu, Hao; Yin, Zhenhao; Lian, Meilan; Yin, Chengri

    2017-05-23

    Ginsenoside is the most important secondary metabolite of ginseng. Natural sources of wild ginseng have been overexploited. Although root culture could reduce the length of the growth cycle of ginseng, the number of ginsenosides is fewer and their contents are lower in adventitious roots of ginseng than that in ginseng cultivated in the field. In this study, we investigated the effects of endophytic bacterial elicitors on biomass and ginsenoside production in adventitious roots cultures of Panax ginseng . Endophyte LB 5-3 as an elicitor could increase biomass and ginsenoside accumulation in ginseng adventitious root culture. After 6 days elicitation with a 10.0 mL of strain LB 5-3, the content of total ginsenoside was 2.026 mg g -1 which was four times more than that in unchallenged roots. The combination of methyl jasmonate and strain LB 5-3 had a negative effect on ginseng adventitious root growth and ginsenoside production. The genomic DNA of strain LB 5-3 was sequenced, and was found to be most closely related to Bacillus altitudinis (KX230132.1). The challenged ginseng adventitious root extracts exerted inhibitory effect against the HepG2 cells, which IC 50 value was 0.94 mg mL -1 .

  15. Endophytic actinobacteria of medicinal plants: diversity and bioactivity.

    PubMed

    Golinska, Patrycja; Wypij, Magdalena; Agarkar, Gauravi; Rathod, Dnyaneshwar; Dahm, Hanna; Rai, Mahendra

    2015-08-01

    Endophytes are the microorganisms that exist inside the plant tissues without having any negative impact on the host plant. Medicinal plants constitute the huge diversity of endophytic actinobacteria of economical importance. These microbes have huge potential to synthesis of numerous novel compounds that can be exploited in pharmaceutical, agricultural and other industries. It is of prime importance to focus the present research on practical utilization of this microbial group in order to find out the solutions to the problems related to health, environment and agriculture. An extensive characterization of diverse population of endophytic actinobacteria associated with medicinal plants can provide a greater insight into the plant-endophyte interactions and evolution of mutualism. In the present review, we have discussed the diversity of endophytic actinobacteria of from medicinal plants their multiple bioactivities.

  16. Endophytes are hidden producers of maytansine in Putterlickia roots.

    PubMed

    Kusari, Souvik; Lamshöft, Marc; Kusari, Parijat; Gottfried, Sebastian; Zühlke, Sebastian; Louven, Kathrin; Hentschel, Ute; Kayser, Oliver; Spiteller, Michael

    2014-12-26

    Several recent studies have lent evidence to the fact that certain so-called plant metabolites are actually biosynthesized by associated microorganisms. In this work, we show that the original source organism(s) responsible for the biosynthesis of the important anticancer and cytotoxic compound maytansine is the endophytic bacterial community harbored specifically within the roots of Putterlickia verrucosa and P. retrospinosa plants. Evaluation of the root endophytic community by chemical characterization of their fermentation products using HPLC-HRMS(n), along with a selective microbiological assay using the maytansine-sensitive type strain Hamigera avellanea revealed the endophytic production of maytansine. This was further confirmed by the presence of AHBA synthase genes in the root endophytic communities. Finally, MALDI-imaging-HRMS was used to demonstrate that maytansine produced by the endophytes is typically accumulated mainly in the root cortex of both plants. Our study, thus, reveals that maytansine is actually a biosynthetic product of root-associated endophytic microorganisms. The knowledge gained from this study provides fundamental insights on the biosynthesis of so-called plant metabolites by endophytes residing in distinct ecological niches.

  17. Molecular profiling and bioactive potential of an endophytic fungus Aspergillus sulphureus isolated from Sida acuta: a medicinal plant.

    PubMed

    Murali, M; Mahendra, C; Hema, P; Rajashekar, N; Nataraju, A; Sudarshana, M S; Amruthesh, K N

    2017-12-01

    Sida acuta Burm.f. (Malvaceae) extracts are reported to have applications against malaria, diuretic, antipyretic, nervous and urinary diseases. No fungal endophytes of S. acuta are reported. Isolation, identification and evaluation of antibacterial, antioxidant, anticancer and haemolytic potential of fungal endophytes from the ethnomedcinal plant S. acuta. Sida acuta stem segments were placed on PDA medium to isolate endophytic fungi. The fungus was identified by genomic DNA analysis and phylogenetic tree was constructed using ITS sequences (GenBank) to confirm species. The antibacterial efficacy of Aspergillus sulphureus MME12 ethyl acetate extract was tested against Gram-positive and Gram-negative pathogenic bacteria. DPPH free radical scavenging activity, anticancer and DNA fragmentation against EAC cells, and direct haemolytic activity (100-500 μg/mL) using human erythrocytes were determined. The ethyl acetate extract of A. sulphureus (Fresen.) Wehmer (Trichocomaceae) demonstrated significant antibacterial potential against Staphylococcus aureus, Bacillus subtilis, Escherichia coli and Salmonella typhi compared to streptomycin. MIC against test pathogens was in the range of 15.6-62.5 μg/mL. The antioxidant results revealed significant RSA from 12.43% to 62.02% (IC 50  = 350.4 μg/mL, p ≤ 0.05). MME12 offered considerable inhibition of EAC proliferation (23% to 84%, IC 50  = 216.7 μg/mL, p ≤ 0.05) supported by DNA fragmentation studies. The extract also offered insignificant haemolysis (5.6%) compared to Triton X-100. A single endophytic fungus, A. sulphureus MME12 was isolated and identified using molecular profiling. The above-mentioned findings support the pharmacological application of A. sulphureus MME12 extract and demand for purification of the active principle(s).

  18. Fungal Endophyte Diversity in Sarracenia

    PubMed Central

    Glenn, Anthony; Bodri, Michael S.

    2012-01-01

    Fungal endophytes were isolated from 4 species of the carnivorous pitcher plant genus Sarracenia: S. minor, S. oreophila, S. purpurea, and S. psittacina. Twelve taxa of fungi, 8 within the Ascomycota and 4 within the Basidiomycota, were identified based on PCR amplification and sequencing of the internal transcribed spacer sequences of nuclear ribosomal DNA (ITS rDNA) with taxonomic identity assigned using the NCBI nucleotide megablast search tool. Endophytes are known to produce a large number of metabolites, some of which may contribute to the protection and survival of the host. We speculate that endophyte-infected Sarracenia may benefit from their fungal associates by their influence on nutrient availability from within pitchers and, possibly, by directly influencing the biota within pitchers. PMID:22427921

  19. Fungal endophyte diversity in Sarracenia.

    PubMed

    Glenn, Anthony; Bodri, Michael S

    2012-01-01

    Fungal endophytes were isolated from 4 species of the carnivorous pitcher plant genus Sarracenia: S. minor, S. oreophila, S. purpurea, and S. psittacina. Twelve taxa of fungi, 8 within the Ascomycota and 4 within the Basidiomycota, were identified based on PCR amplification and sequencing of the internal transcribed spacer sequences of nuclear ribosomal DNA (ITS rDNA) with taxonomic identity assigned using the NCBI nucleotide megablast search tool. Endophytes are known to produce a large number of metabolites, some of which may contribute to the protection and survival of the host. We speculate that endophyte-infected Sarracenia may benefit from their fungal associates by their influence on nutrient availability from within pitchers and, possibly, by directly influencing the biota within pitchers.

  20. Enhanced resistance to Spodoptera litura in endophyte infected cauliflower plants.

    PubMed

    Thakur, Abhinay; Kaur, Sanehdeep; Kaur, Amarjeet; Singh, Varinder

    2013-04-01

    Endophytic fungi, which live within host plant tissues without causing any visible symptom of disease, are important mediators of plant-herbivore interactions. These endophytes enhance resistance of host plant against insect herbivores mainly by productions of various alkaloid based defensive compounds in the plant tissue or through alterations of plant nutritional quality. Two endophytic fungi, i.e., Nigrospora sp. and Cladosporium sp., were isolated from Tinospora cordifolia (Thunb.) Miers, a traditional indian medicinal plant. Cauliflower (Brassica oleracea L.) plants were inoculated with these two endophytic fungi. The effect of endophyte infected and uninfected cauliflower plants were measured on the survival and development of Spodoptera litura (Fab.), a polyphagous pest. Endophyte infected cauliflower plants showed resistance to S. litura in the form of significant increase in larval and pupal mortality in both the fungi. Inhibitory effects of endophytic fungi also were observed on adult emergence, longevity, reproductive potential, as well as hatchability of eggs. Thus, it is concluded that antibiosis to S. litura could be imparted by artificial inoculation of endophytes and this could be used to develop alternative ecologically safe control strategies.

  1. Diversity of Endophytic Bacteria in a Fern Species Dryopteris uniformis (Makino) Makino and Evaluation of Their Antibacterial Potential Against Five Foodborne Pathogenic Bacteria.

    PubMed

    Das, Gitishree; Park, Seonjoo; Baek, Kwang-Hyun

    2017-05-01

    The fern plant Dryopteris uniformis has traditionally been used in herbal medicine and possesses many biological activities. This study was conducted to explore the endophytic bacterial diversity associated with D. uniformis and evaluate their antibacterial potential against foodborne pathogenic bacteria (FPB). Among 51 isolated endophytic bacteria (EB), 26 EB were selected based on their morphological characteristics and identified by 16S rRNA gene analysis. The distribution of EB was diverse in the leaf and the stem/root tissues. When the EB were screened for antibacterial activity against five FPB, Listeria monocytogenes, Salmonella Typhimurium, Bacillus cereus, Staphylococcus aureus, and Escherichia coli O157:H7, four EB Bacillus sp. cryopeg, Paenibacillus sp. rif200865, Staphylococcus warneri, and Bacillus psychrodurans had a broad spectrum of antibacterial activity (9.58 ± 0.66 to 21.47 ± 0.27 mm inhibition zone). The butanol solvent extract of B. sp. cryopeg and P. sp. rif200865 displayed effective antibacterial activity against the five FPB, which was evident from the scanning electron microscopy with irregular or burst cell morphology in the EB-treated bacteria compared to smooth and regular cells in case of the control bacteria. The minimum inhibitory concentration and minimum bactericidal concentration values ranged between 250-500 μg/mL and 500-100 μg/mL, respectively. The above outcomes signify the huge prospective of the selected EB in the food industry. Overall, the above results suggested that D. uniformis contains several culturable EB that possess effective antibacterial compounds, and that EB can be utilized as a source of natural antibacterial agents for their practical application in food industry to control the spread of FPB as a natural antibacterial agent.

  2. Biocontrol of the internalization of Salmonella enterica and Enterohaemorrhagic Escherichia coli in mung bean sprouts with an endophytic Bacillus subtilis.

    PubMed

    Shen, Zhenyu; Mustapha, Azlin; Lin, Mengshi; Zheng, Guolu

    2017-06-05

    Internalization of Salmonella enterica and enterohaemorrhagic Escherichia coli (EHEC) in seed sprouts poses a health risk to consumers, and the conventional sanitization methods are not always effective to reduce this risk. This study initiated a biocontrol approach to limit the internalization using endophytic Bacillus subtilis strains, which were isolated from the inner tissue of mung bean seeds or lettuce stems. By using the deferred agar method, 12 strains of B. subtilis out of 94 putative Bacillus isolates displayed inhibitory activity against at least one of the pathogenic indicators, S. enterica Typhimurium ATCC 14028 and E. coli O157:H7 505B. Two B. subtilis isolates (LCA1 and M24) showed a broad inhibitory spectrum against multiple strains of S. enterica and EHEC, Staphylococcus aureus sp., Klebsiella pneumoniae ATCC 700603, and Listeria monocytogenes Scott A, while the laboratory B. subtilis strain 168 was only moderately inhibitory against L. monocytogenes. To facilitate the tracking of the three B. subtilis strains (LCA1, M24, and 168) in the mung bean sprouts, the three strains were genetically engineered to carry the chloramphenicol acetyltransferase (cat), generating the strains LCA1-cat, M24-cat, and 168-cat, respectively. Data of the study using the cat-tagged strains demonstrated that both the two vegetable-associated and the laboratory B. subtilis strains could internalize in mung bean sprouts during the sprouting, but the latter displayed about 1.2 lg CFU/g of seeds lower in internalization. Overall, the presence of the three B. subtilis strains could significantly reduce the internalization of S. enterica or EHEC cocktail in mung bean sprouts during the sprouting. Among them, LCA1 showed the greatest inhibition against the EHEC cocktails with a reduction of about 2.0lg CFU/g of seeds by the end of sprouting (day 5), while 168 had the smallest reduction at about 0.6lg CFU/g of seeds. In addition, the three strains demonstrated a similar

  3. Endophytic fungi reduce leaf-cutting ant damage to seedlings

    PubMed Central

    Bittleston, L. S.; Brockmann, F.; Wcislo, W.; Van Bael, S. A.

    2011-01-01

    Our study examines how the mutualism between Atta colombica leaf-cutting ants and their cultivated fungus is influenced by the presence of diverse foliar endophytic fungi (endophytes) at high densities in tropical leaf tissues. We conducted laboratory choice trials in which ant colonies chose between Cordia alliodora seedlings with high (Ehigh) or low (Elow) densities of endophytes. The Ehigh seedlings contained 5.5 times higher endophyte content and a greater diversity of fungal morphospecies than the Elow treatment, and endophyte content was not correlated with leaf toughness or thickness. Leaf-cutting ants cut over 2.5 times the leaf area from Elow relative to Ehigh seedlings and had a tendency to recruit more ants to Elow plants. Our findings suggest that leaf-cutting ants may incur costs from cutting and processing leaves with high endophyte loads, which could impact Neotropical forests by causing variable damage rates within plant communities. PMID:20610420

  4. ECR Plasma Sterilisation, Argon and Nitrogen Treated Plasma

    NASA Astrophysics Data System (ADS)

    Helhel, Selcuk; Oksuz, Lutfi; Cerezci, Osman; Rad, Abbas Y.

    2004-09-01

    ECR type plasma system was built to produce plasma in axial direction. Plasma was initiated in a specially designed Nickel - Chrome cylindrical vacuum tube which is being driven through dielectric window by 2.45GHz commercial magnetron source. Tube is also surrounded by a coil driving 150ADC to generate approximately 875Gauss magnetic field at the center. Langmuir probe and ICCD for optical spectrometry were used to characterize internal parameters like electron density, electron temperature and different characteristics of the plasma. Bacillus Subtilis var nigar, bacillus Stearothermophilus, bacillus pumilus E601, Escherichia coli and staphylococcus aureus type bacteria were selected as a reference. Each is resistant for different actions while the Bacilus cereus is the most resistant bacteria for microwave interaction. This study presents the effect of system on used bacteria. Those are gram positive and gram negative bacteria that refers to structure of cell wall. The sterilization efficacy of Argon type ECR plasma was found to be over 99, 5% in Staphylococcus aureus, Staphylococcus epidermidis, Bacillus subtilis (vegetative cell), Bacillus cereus (vegetative cell), Bacillus pumilus and Escherichia coli. System response type is less than 2 minutes.

  5. Effect of Contamination with Perennial Permafrost Microorganisms on the Outcome of Closed Brain Neurotrauma.

    PubMed

    Malchevskii, V A; Subbotin, A M; Nemkov, A G; Petrov, S A

    2016-07-01

    We studied the effect of contamination with Bacillus genus microorganisms isolated from perennial permafrost samples on the outcome of closed brain neurotrauma in Wistar rats. It was found that contamination with different Bacillus strains produced different effects on the mortality of experimental animals with closed neurotrauma. The complex of metabolites from strain Ch2/9 - Bacillus spp. (pumilus) produced a protective effect in experimental closed brain neurotrauma.

  6. Dark septate endophyte decreases stress on rice plants.

    PubMed

    Santos, Silvana Gomes Dos; Silva, Paula Renata Alves da; Garcia, Andres Calderin; Zilli, Jerri Édson; Berbara, Ricardo Luis Louro

    Abiotic stress is one of the major limiting factors for plant development and productivity, which makes it important to identify microorganisms capable of increasing plant tolerance to stress. Dark septate endophytes can be symbionts of plants. In the present study, we evaluated the ability of dark septate endophytes isolates to reduce the effects of water stress in the rice varieties Nipponbare and Piauí. The experiments were performed under gnotobiotic conditions, and the water stress was induced with PEG. Four dark septate endophytes were isolated from the roots of wild rice (Oryza glumaepatula) collected from the Brazilian Amazon. Plant height as well as shoot and root fresh and dry matter were measured. Leaf protein concentrations and antioxidant enzyme activity were also estimated. The dark septate endophytes were grown in vitro in Petri dishes containing culture medium; they exhibited different levels of tolerance to salinity and water stress. The two rice varieties tested responded differently to inoculation with dark septate endophytes. Endophytes promoted rice plant growth both in the presence and in the absence of a water deficit. Decreased oxidative stress in plants in response to inoculation was observed in nearly all inoculated treatments, as indicated by the decrease in antioxidant enzyme activity. Dark septate endophytes fungi were shown to increase the tolerance of rice plants to stress caused by water deficiency. Copyright © 2016 Sociedade Brasileira de Microbiologia. Published by Elsevier Editora Ltda. All rights reserved.

  7. Endophytic bacteria: prospects and applications for the phytoremediation of organic pollutants.

    PubMed

    Afzal, Muhammad; Khan, Qaiser M; Sessitsch, Angela

    2014-12-01

    Recently, there has been an increased effort to enhance the efficacy of phytoremediation of contaminated environments by exploiting plant-microbe interactions. The combined use of plants and endophytic bacteria is an emerging approach for the clean-up of soil and water polluted with organic compounds. In plant-endophyte partnerships, plants provide the habitat as well as nutrients to their associated endophytic bacteria. In response, endophytic bacteria with appropriate degradation pathways and metabolic activities enhance degradation of organic pollutants, and diminish phytotoxicity and evapotranspiration of organic pollutants. Moreover, endophytic bacteria possessing plant growth-promoting activities enhance the plant's adaptation and growth in soil and water contaminated with organic pollutants. Overall, the application of endophytic bacteria gives new insights into novel protocols to improve phytoremediation efficiency. However, successful application of plant-endophyte partnerships for the clean-up of an environment contaminated with organic compounds depends on the abundance and activity of the degrading endophyte in different plant compartments. Although many endophytic bacteria have the potential to degrade organic pollutants and improve plant growth, their contribution to enhance phytoremediation efficiency is still underestimated. A better knowledge of plant-endophyte interactions could be utilized to increase the remediation of polluted soil environments and to protect the foodstuff by decreasing agrochemical residues in food crops. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Induction of abiotic stress tolerance in plants by endophytic microbes.

    PubMed

    Lata, R; Chowdhury, S; Gond, S K; White, J F

    2018-04-01

    Endophytes are micro-organisms including bacteria and fungi that survive within healthy plant tissues and promote plant growth under stress. This review focuses on the potential of endophytic microbes that induce abiotic stress tolerance in plants. How endophytes promote plant growth under stressful conditions, like drought and heat, high salinity and poor nutrient availability will be discussed. The molecular mechanisms for increasing stress tolerance in plants by endophytes include induction of plant stress genes as well as biomolecules like reactive oxygen species scavengers. This review may help in the development of biotechnological applications of endophytic microbes in plant growth promotion and crop improvement under abiotic stress conditions. Increasing human populations demand more crop yield for food security while crop production is adversely affected by abiotic stresses like drought, salinity and high temperature. Development of stress tolerance in plants is a strategy to cope with the negative effects of adverse environmental conditions. Endophytes are well recognized for plant growth promotion and production of natural compounds. The property of endophytes to induce stress tolerance in plants can be applied to increase crop yields. With this review, we intend to promote application of endophytes in biotechnology and genetic engineering for the development of stress-tolerant plants. © 2018 The Society for Applied Microbiology.

  9. Identification of bacterial endophytes associated with traditional medicinal plant Tridax procumbens Linn.

    PubMed Central

    Preveena, Jagadesan; Bhore, Subhash J.

    2013-01-01

    Background: In traditional medicine, Tridax procumbens Linn. is used in the treatment of injuries and wounds. The bacterial endophytes (BEs) of medicinal plants could produce medicinally important metabolites found in their hosts; and hence, the involvement of BEs in conferring wound healing properties to T. Procumbens cannot be ruled out. But, we do not know which types of BEs are associated with T. Procumbens. Objective: The objective of this study was to investigate the fast growing and cultivable BEs associated with T. procumbens. Materials and Methods: Leaves and stems of healthy T. Procumbens plants were collected and cultivable BEs were isolated from surface-sterilized leaf and stem tissue samples using Luria-Bertani (LB) agar (medium) at standard conditions. A polymerase chain reaction was employed to amplify 16S rRNA coding gene fragments from the isolates. Cultivable endophytic bacterial isolates (EBIs) were identified using 16S rRNA gene nucleotide sequence similarity based method of bacterial identification. Results: Altogether, 50 culturable EBIs were isolated. 16S rRNA gene nucleotide sequences analysis using the Basic Local Alignment Search Tool (BLAST) revealed identities of the EBIs. Analysis reveals that cultivable Bacillus spp., Cronobacter sakazakii, Enterobacter spp., Lysinibacillus sphaericus, Pantoea spp., Pseudomonas spp. and Terribacillus saccharophilus are associated with T. Procumbens. Conclusion: Based on the results, we conclude that 24 different types of culturable BEs are associated with traditionally used medicinal plant, T. Procumbens, and require further study. PMID:24501447

  10. Variation in endophytic fungi from roots and leaves of Lepanthes (Orchidaceae)

    Treesearch

    PAUL BAYMAN; LIGIA L. LEBRO; RAYMOND L. TREMBLAY; JEAN D. LODGE

    1997-01-01

    Little is known about non-mycorrhizal endophytic fungi in tropical orchids; still less is known about how endophytes vary within and between individual orchid plants. Fungal endophytes were isolated from roots and leaves of epiphytic and lithophytic orchids in the genus Lepanthes; seven species, from rainforests in Puerto Rico, were sampled. The endophytes observed...

  11. Advanced UV Source for Biological Agent Destruction

    DTIC Science & Technology

    2006-01-01

    protection against chemical agents. The AUVS can be inserted into HVAC air ducts to eliminate BW agents, used to purify water, and / or used to reduce...operating costs are very low. The technology has been shown to be very effective for destroying Bacillus pumilus endospores that are significantly more...resistant to UV than anthrax spores . Up to7 orders of magnitude (7 logs) kill of B. pumilus spores have been demonstrated with the AUVS technology

  12. Rethinking production of Taxol® (paclitaxel) using endophyte biotechnology.

    PubMed

    Kusari, Souvik; Singh, Satpal; Jayabaskaran, Chelliah

    2014-06-01

    Taxol® (generic name paclitaxel) represents one of the most clinically valuable natural products known to mankind in the recent past. More than two decades have elapsed since the notable discovery of the first Taxol®-producing endophytic fungus, which was followed by a plethora of reports on other endophytes possessing similar biosynthetic potential. However, industrial-scale Taxol® production using fungal endophytes, although seemingly promising, has not seen the light of the day. In this opinion article, we embark on the current state of knowledge on Taxol® biosynthesis focusing on the chemical ecology of its producers, and ask whether it is actually possible to produce Taxol® using endophyte biotechnology. The key problems that have prevented the exploitation of potent endophytic fungi by industrial bioprocesses for sustained production of Taxol® are discussed. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. [Isolation and physiological characteristics of endophytic actinobacteria from medicinal plants].

    PubMed

    Du, Huijing; Su, Jing; Yu, Liyan; Zhang, Yuqin

    2013-01-04

    To isolate, incubate and characterize cultivable endophytic antinobacteria from medicinal plants, and analyze the diversity of the endophytic antinobacteria, then explore the novel microbial resources. Ten media were used to isolate endophytic antinobacteria from 37 fresh medicinal plant tissue samples. The optimal cultivation conditions for endophytic antinobacteria were determined by comparison. Based on the morphology of the colonies and cells of the new isolates, we chose 174 isolates to analyze their 16S rRNA gene sequences and the diversity of the medicinal plant endophytic antinobacteria. The physiological characteristics of 27 representative strains were studied using Biolog GEN III MicroPlates, API 50CH and API ZYM kits. In total 940 endophytics affiliated to 47 genera of 30 families were isolated, among which more than 600 actinobacteria belonged to 34 genera and 7 unknown taxa. Good growth of the endophytic antinobacteria on PYG (peptone-yeast-glycerol) medium with pH 7.2 at 28-32 degrees C was observed. Physiological characteristics differences of these isolates related to their phylogenetic relationships. Greater differences were shown among the strains from the same host plants than those from differ,ent plants grown in the same area. There are great diverse endophytic actinobacteria inside the medicinal plants. No direct relationship of the endophytic actinobacteria from medicinal plants with the host plants in the sole carbon source utilization, fermentation of carbon sources to produce acid and the enzyme activities was found, while it seemed that the physiological characteristics of the isolates related to the geographical distribution of their host.

  14. Endophytic fungi associated with Macrosolen tricolor and its host Camellia oleifera.

    PubMed

    Sheng-Liang, Zhou; Shu-Zhen, Yan; Zhen-Ying, Wu; Shuang-Lin, Chen

    2014-06-01

    Endophytic fungi play an important role in terrestrial ecosystem, while little is known about those in hemi-parasitic plants, a group of special plants which absorb nutrients from its hosts by haustoria. The relationship of the endophytes in the two parts of the bipartite systems (hemiparasites together with their hosts) is also poorly understood. Endophytic fungi of a hemi-parasitic plant Macrosolen tricolor, and its host plant Camellia oleifera were investigated and compared in this study. M. tricolor contained rich and diversified endophytic fungi (H' = 2.829), which consisted mainly of ascomycetes, distributed in more than ten orders of four classes (Sordariomycetes, Dothideomycetes, Leotiomycetes and Eurotiomycetes) besides Incertae sedis strains (23.2 % of total). In addition, 2.2 % of isolates were identified to be Basidiomycota, all of which belonged to Agaricomycetes. Obvious differences were observed between the endophytic fungal assembles in the leaves and those in the branches of M. tricolor. The endophytic fungi isolated from C. oleifera distributed in nearly same orders of the four classes of Ascomycota and one class (Agaricomycetes) of Basidiomycota as those from M. tricolor with similar proportion. For both M. tricolor and C. oleifera, Valsa sp. was the dominant endophyte species in the leaves, Torula sp. 1 and Fusarium sp. 1 were the dominant endophytic fungi in the branches. The similarity coefficient of the endophyte assembles in the two host was 64.4 %. Canonical correspondence analysis showed that the endophyte assembles of M. tricolor and C. oleifera were significantly different (p < 0.01).

  15. Chemical ecology of endophytic fungi: origins of secondary metabolites.

    PubMed

    Kusari, Souvik; Hertweck, Christian; Spiteller, Michael

    2012-07-27

    Endophytes constitute a remarkably multifarious group of microorganisms ubiquitous in plants and maintain an imperceptible association with their hosts for at least a part of their life cycle. Their enormous biological diversity coupled with their capability to biosynthesize bioactive secondary metabolites has provided the impetus for a number of investigations on endophytes. Here, we highlight the possible current and future strategies of understanding the chemical communication of endophytic fungi with other endophytes (fungi and bacteria) and with their host plants, which might not only allow the discovery and sustainable production of desirable natural products but also other mostly overlooked bioactive secondary metabolites. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. Survival of Spacecraft-Associated Microorganisms under Simulated Martian UV Irradiation

    PubMed Central

    Newcombe, David A.; Schuerger, Andrew C.; Benardini, James N.; Dickinson, Danielle; Tanner, Roger; Venkateswaran, Kasthuri

    2005-01-01

    Spore-forming microbes recovered from spacecraft surfaces and assembly facilities were exposed to simulated Martian UV irradiation. The effects of UVA (315 to 400 nm), UVA+B (280 to 400 nm), and the full UV spectrum (200 to 400 nm) on the survival of microorganisms were studied at UV intensities expected to strike the surfaces of Mars. Microbial species isolated from the surfaces of several spacecraft, including Mars Odyssey, X-2000 (avionics), and the International Space Station, and their assembly facilities were identified using 16S rRNA gene sequencing. Forty-three Bacillus spore lines were screened, and 19 isolates showed resistance to UVC irradiation (200 to 280 nm) after exposure to 1,000 J m−2 of UVC irradiation at 254 nm using a low-pressure mercury lamp. Spores of Bacillus species isolated from spacecraft-associated surfaces were more resistant than a standard dosimetric strain, Bacillus subtilis 168. In addition, the exposure time required for UVA+B irradiation to reduce the viable spore numbers by 90% was 35-fold longer than the exposure time required for the full UV spectrum to do this, confirming that UVC is the primary biocidal bandwidth. Among the Bacillus species tested, spores of a Bacillus pumilus strain showed the greatest resistance to all three UV bandwidths, as well as the total spectrum. The resistance to simulated Mars UV irradiation was strain specific; B. pumilus SAFR-032 exhibited greater resistance than all other strains tested. The isolation of organisms like B. pumilus SAFR-032 and the greater survival of this organism (sixfold) than of the standard dosimetric strains should be considered when the sanitation capabilities of UV irradiation are determined. PMID:16332797

  17. Survival of spacecraft-associated microorganisms under simulated martian UV irradiation.

    PubMed

    Newcombe, David A; Schuerger, Andrew C; Benardini, James N; Dickinson, Danielle; Tanner, Roger; Venkateswaran, Kasthuri

    2005-12-01

    Spore-forming microbes recovered from spacecraft surfaces and assembly facilities were exposed to simulated Martian UV irradiation. The effects of UVA (315 to 400 nm), UVA+B (280 to 400 nm), and the full UV spectrum (200 to 400 nm) on the survival of microorganisms were studied at UV intensities expected to strike the surfaces of Mars. Microbial species isolated from the surfaces of several spacecraft, including Mars Odyssey, X-2000 (avionics), and the International Space Station, and their assembly facilities were identified using 16S rRNA gene sequencing. Forty-three Bacillus spore lines were screened, and 19 isolates showed resistance to UVC irradiation (200 to 280 nm) after exposure to 1,000 J m(-2) of UVC irradiation at 254 nm using a low-pressure mercury lamp. Spores of Bacillus species isolated from spacecraft-associated surfaces were more resistant than a standard dosimetric strain, Bacillus subtilis 168. In addition, the exposure time required for UVA+B irradiation to reduce the viable spore numbers by 90% was 35-fold longer than the exposure time required for the full UV spectrum to do this, confirming that UVC is the primary biocidal bandwidth. Among the Bacillus species tested, spores of a Bacillus pumilus strain showed the greatest resistance to all three UV bandwidths, as well as the total spectrum. The resistance to simulated Mars UV irradiation was strain specific; B. pumilus SAFR-032 exhibited greater resistance than all other strains tested. The isolation of organisms like B. pumilus SAFR-032 and the greater survival of this organism (sixfold) than of the standard dosimetric strains should be considered when the sanitation capabilities of UV irradiation are determined.

  18. Quorum quenching activity in cell-free lysate of endophytic bacteria isolated from Pterocarpus santalinus Linn., and its effect on quorum sensing regulated biofilm in Pseudomonas aeruginosa PAO1.

    PubMed

    Rajesh, P S; Ravishankar Rai, V

    2014-01-01

    Quorum sensing mechanism allows the microorganisms to resist the antibiotic treatment by forming biofilms. Quorum quenching is one of the mechanisms to control the development of drug resistance in microbes. Endophyte bacteria are beneficial to plant growth as they support the immune system against the pathogen attack. The endophytic bacteria present in Pterocarpus santalinus were screened for the presence of N-acyl homoserine lactones (AHLs) degrading bacteria using biosensor strains and further confirmed by quantifying the violacein production. Cell-free lysate of endophytic bacteria, Bacillus firmus PT18 and Enterobacter asburiae PT39 exhibited potent AHL degrading ability by inhibiting about 80% violacein production in biosensor strain. Furthermore, when the cell-free lysate was applied to Pseudomonas aeruginosa PAO1 and PAO1-JP2 biofilm it resulted in significant (p<0.01) inhibition of biofilm formation. The biofilm inhibition was confirmed by visualization of biofilm slides under fluorescence microscopy, which showed decrease in total biomass formation in treated slides. Isolation and amplification of the gene (aiiA) indicated that the presence of AHL lactonase in cell-free lysate and sequence alignment indicated that AiiA contains a "HXHXDH" zinc-binding motif that is being conserved in several groups of metallohydrolases. Therefore, the study shows the potential of AHLs degradation by AHL lactonase present in cell-free lysate of isolated endophytic bacteria and inhibition of quorum sensing regulated biofilm formation in P. aeruginosa PAO1. Copyright © 2013 Elsevier GmbH. All rights reserved.

  19. Pervasive Effects of Wildfire on Foliar Endophyte Communities in Montane Forest Trees.

    PubMed

    Huang, Yu-Ling; Devan, M M Nandi; U'Ren, Jana M; Furr, Susan H; Arnold, A Elizabeth

    2016-02-01

    Plants in all terrestrial ecosystems form symbioses with endophytic fungi that inhabit their healthy tissues. How these foliar endophytes respond to wildfires has not been studied previously, but is important given the increasing frequency and intensity of severe wildfires in many ecosystems, and because endophytes can influence plant growth and responses to stress. The goal of this study was to examine effects of severe wildfires on endophyte communities in forest trees, with a focus on traditionally fire-dominated, montane ecosystems in the southwestern USA. We evaluated the abundance, diversity, and composition of endophytes in foliage of Juniperus deppeana (Cupressaceae) and Quercus spp. (Fagaceae) collected contemporaneously from areas affected by recent wildfire and paired areas not affected by recent fire. Study sites spanned four mountain ranges in central and southern Arizona. Our results revealed significant effects of fires on endophyte communities, including decreases in isolation frequency, increases in diversity, and shifts in community structure and taxonomic composition among endophytes of trees affected by recent fires. Responses to fire were similar in endophytes of each host in these fire-dominated ecosystems and reflect regional fire-return intervals, with endophytes after fire representing subsets of the regional mycoflora. Together, these findings contribute to an emerging perspective on the responses of diverse communities to severe fire, and highlight the importance of considering fire history when estimating endophyte diversity and community structure for focal biomes.

  20. Effects of the fungal endophyte, Neotyphodium lolii, on net photosynthesis and growth rates of perennial ryegrass (Lolium perenne) are independent of In Planta endophyte concentration.

    PubMed

    Spiering, Martin J; Greer, Dennis H; Schmid, Jan

    2006-08-01

    Neotyphodium lolii is a fungal endophyte of perennial ryegrass (Lolium perenne), improving grass fitness through production of bioactive alkaloids. Neotyphodium species can also affect growth and physiology of their host grasses (family Poaceae, sub-family Pooideae), but little is known about the mechanisms. This study examined the effect of N. lolii on net photosynthesis (P(n)) and growth rates in ryegrass genotypes differing in endophyte concentration in all leaf tissues. Plants from two ryegrass genotypes, Nui D and Nui UIV, infected with N. lolii (E+) differing approx. 2-fold in endophyte concentration or uninfected clones thereof (E-) were grown in a controlled environment. For each genotype x endophyte treatment, plant growth rates were assessed as tillering and leaf extension rates, and the light response of P(n), dark respiration and transpiration measured in leaves of young (30-45 d old) and old (>90 d old) plants with a single-chamber open infrared gas-exchange system. Neotyphodium lolii affected CO(2)-limited rates of P(n), which were approx. 17 % lower in E+ than E- plants (P < 0.05) in the young plants. Apparent photon yield and dark respiration were unaffected by the endophyte (P > 0.05). Neotyphodium lolii also decreased transpiration (P < 0.05), but only in complete darkness. There were no endophyte effects on P(n) in the old plants (P > 0.05). E+ plants grew faster immediately after replanting (P < 0.05), but had approx. 10 % lower growth rates during mid-log growth (P < 0.05) than E- plants, but there was no effect on final plant biomass (P > 0.05). The endophyte effects on P(n) and growth tended to be more pronounced in Nui UIV, despite having a lower endophyte concentration than Nui D. Neotyphodium lolii affects CO(2) fixation, but not light interception and photochemistry of P(n). The impact of N. lolii on plant growth and photosynthesis is independent of endophyte concentration in the plant, suggesting that the endophyte mycelium is not simply

  1. Molecular Characterisation of Endophytic Fungi from Roots of Wild Banana (Musa acuminata)

    PubMed Central

    Zakaria, Latiffah; Jamil, Muhamad Izham Muhamad; Anuar, Intan Sakinah Mohd

    2016-01-01

    Endophytic fungi inhabit apparently healthy plant tissues and are prevalent in terrestrial plants, especially root tissues, which harbour a wide assemblage of fungal endophytes. Therefore, this study focused on the isolation and characterisation of endophytic fungi from the roots of wild banana (Musa acuminata). A total of 31 isolates of endophytic fungi were isolated from 80 root fragments. The endophytic fungi were initially sorted according to morphological characteristics and identified using the sequences of the translation elongation factor-1α (TEF-1α) gene of Fusarium spp. and the Internal Transcribed Spacer (ITS) regions of other fungi. The most common fungal isolates were species of the genus Fusarium, which were identified as F. proliferatum, Fusarium sp., F. solani species complex, and F. oxysporum. Other isolated endophytic fungi included Curvularia lunata, Trichoderma atroviride, Calonectria gracilis, Rhizoctonia solani, Bionectria ochroleuca, and Stromatoneurospora phoenix (Xylariceae). Several of the fungal genera, such as Fusarium, Trichoderma, Rhizoctonia, and Xylariceae, are among the common fungal endophytes reported in plants. This study showed that the roots of wild banana harbour a diverse group of endophytic fungi. PMID:27019688

  2. Fungi with multifunctional lifestyles: endophytic insect pathogenic fungi.

    PubMed

    Barelli, Larissa; Moonjely, Soumya; Behie, Scott W; Bidochka, Michael J

    2016-04-01

    This review examines the symbiotic, evolutionary, proteomic and genetic basis for a group of fungi that occupy a specialized niche as insect pathogens as well as endophytes. We focus primarily on species in the genera Metarhizium and Beauveria, traditionally recognized as insect pathogenic fungi but are also found as plant symbionts. Phylogenetic evidence suggests that these fungi are more closely related to grass endophytes and diverged from that lineage ca. 100 MYA. We explore how the dual life cycles of these fungi as insect pathogens and endophytes are coupled. We discuss the evolution of insect pathogenesis while maintaining an endophytic lifestyle and provide examples of genes that may be involved in the transition toward insect pathogenicity. That is, some genes for insect pathogenesis may have been co-opted from genes involved in endophytic colonization. Other genes may be multifunctional and serve in both lifestyle capacities. We suggest that their evolution as insect pathogens allowed them to effectively barter a specialized nitrogen source (i.e. insects) with host plants for photosynthate. These ubiquitous fungi may play an important role as plant growth promoters and have a potential reservoir of secondary metabolites.

  3. Pervasive effects of wildfire on foliar endophyte communities in montane forest trees

    PubMed Central

    Huang, Yu-Ling; Devan, MM Nandi; U'Ren, Jana M.; Furr, Susan H.; Arnold, A. Elizabeth

    2015-01-01

    Plants in all terrestrial ecosystems form symbioses with endophytic fungi that inhabit their healthy tissues. How these foliar endophytes respond to wildfires has not been studied previously, but is important given the increasing frequency and intensity of severe wildfires in many ecosystems, and because endophytes can influence plant growth and responses to stress. The goal of this study was to examine effects of severe wildfires on endophyte communities in forest trees, with a focus on traditionally fire-dominated, montane ecosystems in the southwestern USA. We evaluated the abundance, diversity, and composition of endophytes in foliage of Juniperus deppeana (Cupressaceae) and Quercus spp. (Fagaceae) collected contemporaneously from areas affected by recent wildfire and paired areas not affected by recent fire. Study sites spanned four mountain ranges in central and southern Arizona. Our results revealed significant effects of fires on endophyte communities, including decreases in isolation frequency, increases in diversity, and shifts in community structure and taxonomic composition among endophytes of trees affected by recent fires. Responses to fire were similar in endophytes of each host in these fire-dominated ecosystems and reflect regional fire-return intervals, with endophytes after fire representing subsets of the regional mycoflora. Together these findings contribute to an emerging perspective on the responses of diverse communities to severe fire, and highlight the importance of considering fire history when estimating endophyte diversity and community structure for focal biomes. PMID:26370111

  4. Host status of endophyte-infected and noninfected tall fescue grass to Meloidogyne spp.

    USDA-ARS?s Scientific Manuscript database

    Tall fescue grass cultivars with or without endophytes were evaluated for their susceptibility to Meloidogyne incognita in the greenhouse. Tall fescue cultivars evaluated included, i) wild-type Jesup (E+, ergot-producing endophyte present), ii) endophyte-free Jesup (E-, no endophyte present), iii) ...

  5. Geographic Variation in Festuca rubra L. Ploidy Levels and Systemic Fungal Endophyte Frequencies.

    PubMed

    Dirihan, Serdar; Helander, Marjo; Väre, Henry; Gundel, Pedro E; Garibaldi, Lucas A; Irisarri, J Gonzalo N; Saloniemi, Irma; Saikkonen, Kari

    2016-01-01

    Polyploidy and symbiotic Epichloë fungal endophytes are common and heritable characteristics that can facilitate environmental range expansion in grasses. Here we examined geographic patterns of polyploidy and the frequency of fungal endophyte colonized plants in 29 Festuca rubra L. populations from eight geographic sites across latitudes from Spain to northernmost Finland and Greenland. Ploidy seemed to be positively and negatively correlated with latitude and productivity, respectively. However, the correlations were nonlinear; 84% of the plants were hexaploids (2n = 6x = 42), and the positive correlation between ploidy level and latitude is the result of only four populations skewing the data. In the southernmost end of the gradient 86% of the plants were tetraploids (2n = 4x = 28), whereas in the northernmost end of the gradient one population had only octoploid plants (2n = 8x = 56). Endophytes were detected in 22 out of the 29 populations. Endophyte frequencies varied among geographic sites, and populations and habitats within geographic sites irrespective of ploidy, latitude or productivity. The highest overall endophyte frequencies were found in the southernmost end of the gradient, Spain, where 69% of plants harbored endophytes. In northern Finland, endophytes were detected in 30% of grasses but endophyte frequencies varied among populations from 0% to 75%, being higher in meadows compared to riverbanks. The endophytes were detected in 36%, 30% and 27% of the plants in Faroe Islands, Iceland and Switzerland, respectively. Practically all examined plants collected from southern Finland and Greenland were endophyte-free, whereas in other geographic sites endophyte frequencies were highly variable among populations. Common to all populations with high endophyte frequencies is heavy vertebrate grazing. We propose that the detected endophyte frequencies and ploidy levels mirror past distribution history of F. rubra after the last glaciation period, and local

  6. Geographic Variation in Festuca rubra L. Ploidy Levels and Systemic Fungal Endophyte Frequencies

    PubMed Central

    Dirihan, Serdar; Helander, Marjo; Väre, Henry; Gundel, Pedro E.; Garibaldi, Lucas A.; Irisarri, J. Gonzalo N.; Saloniemi, Irma; Saikkonen, Kari

    2016-01-01

    Polyploidy and symbiotic Epichloë fungal endophytes are common and heritable characteristics that can facilitate environmental range expansion in grasses. Here we examined geographic patterns of polyploidy and the frequency of fungal endophyte colonized plants in 29 Festuca rubra L. populations from eight geographic sites across latitudes from Spain to northernmost Finland and Greenland. Ploidy seemed to be positively and negatively correlated with latitude and productivity, respectively. However, the correlations were nonlinear; 84% of the plants were hexaploids (2n = 6x = 42), and the positive correlation between ploidy level and latitude is the result of only four populations skewing the data. In the southernmost end of the gradient 86% of the plants were tetraploids (2n = 4x = 28), whereas in the northernmost end of the gradient one population had only octoploid plants (2n = 8x = 56). Endophytes were detected in 22 out of the 29 populations. Endophyte frequencies varied among geographic sites, and populations and habitats within geographic sites irrespective of ploidy, latitude or productivity. The highest overall endophyte frequencies were found in the southernmost end of the gradient, Spain, where 69% of plants harbored endophytes. In northern Finland, endophytes were detected in 30% of grasses but endophyte frequencies varied among populations from 0% to 75%, being higher in meadows compared to riverbanks. The endophytes were detected in 36%, 30% and 27% of the plants in Faroe Islands, Iceland and Switzerland, respectively. Practically all examined plants collected from southern Finland and Greenland were endophyte-free, whereas in other geographic sites endophyte frequencies were highly variable among populations. Common to all populations with high endophyte frequencies is heavy vertebrate grazing. We propose that the detected endophyte frequencies and ploidy levels mirror past distribution history of F. rubra after the last glaciation period, and local

  7. Tall fescue management: Pasture and cattle responses to endophyte and fertilization

    USDA-ARS?s Scientific Manuscript database

    Yearling heifers grazing tall fescue pastures had greatest performance in winter and spring on endophyte-free and novel endophyte associations, because of high forage quality and lack of ergot alkaloids produced by a common “wild” tall fescue-endophyte association. Pasture and cattle responses were...

  8. [Isolation and diversity analyses of endophytic fungi from Paris polyphylla var. yunnanensis].

    PubMed

    Wang, Qian; Shen, Shi-Kang; Zhang, Ai-Li; Wu, Chun-Yan; Wu, Fu-Qin; Zhang, Xin-Jun; Wang, Yue-Hua

    2013-11-01

    The paper is aimed at studying the diversity of endophytic fungi community from Paris polyphylla var. yunnanensis, and to provide a scientific basis for the utilization value of the endophytic fungi as bioactive material resources. In the present study, endophytic fungi were isolated from roots, rhizomes and leaves of wild P. polyphylla var. yunnanensis collected from Baoshan, Heqing county and Songming city of Yunnan province, and identified and classified by morphological methods together with its ITS sequence analysis. Seven and forty-nine strains of endophytic fungi were isolated from P. polyphylla var. yunnanensis. They were identified belonging to 41 genus. In these 41 genus, 3 genus exist in root only, 12 genus only exist in rhizome and 8 genus only exist in leaf. There was difference in endophytic fungi isolated from different sample sites. Endophytic fungi diversity from rhizomes of Heqing site was the highest. Endophytic fungi similarity coefficient was low among different sites and tissues. Based on these results, it is reasonable to propose that endophytic fungi of P. polyphylla var. yannanensis from different tissue and different sample sites has a certain difference which is possibly relate to their different habitats, different structure and composition of each tissue.

  9. The defensive role of foliar endophytic fungi for a South American tree

    PubMed Central

    González-Teuber, Marcia

    2016-01-01

    Fungal endophytes colonize living internal plant tissues without causing any visible symptoms of disease. Endophytic fungi associated with healthy leaves may play an important role in the protection of hosts against herbivores and pathogens. In this study, the diversity of foliar endophytic fungi (FEF) of the southern temperate tree Embothrium coccineum (Proteaceae), as well as their role in plant protection in nature was determined. Fungal endophytes were isolated from 40 asymptomatic leaves by the culture method for molecular identification of the 18S rRNA gene. A relationship between FEF frequency and plant protection was evaluated in juveniles of E. coccineum. Fungal endophyte frequency was estimated using real-time PCR analyses to determine endophyte DNA content per plant. A total of 178 fungal isolates were identified, with sequence data revealing 34 different operational taxonomic units (OTUs). A few common taxa dominated the fungal endophyte community, whereas most taxa qualified as rare. A significant positive correlation between plant protection (evaluated in terms of percentage of leaf damage) and FEF frequency was found. Furthermore, in vitro confrontation assays indicated that FEF were able to inhibit the growth of fungal pathogens. The data showed a relatively high diversity of fungal endophytes associated with leaves of E. coccineum, and suggest a positive relationship between fungal endophyte frequencies in leaves and host protection in nature. PMID:27339046

  10. [Diversity and community structure of endophytic fungi from Taxus chinensis var. mairei].

    PubMed

    2014-07-01

    A total of 628 endophytic fungi were isolated from 480 tissue segments of needles and branches of Taxus chinensis var. mairei. According to morphological characteristics and ITS sequences, they represented 43 taxa in 28 genera, of which 10 Hyphomycetes, 20 Coelomycetes, 12 Ascomycetes and 1 unknown fungus. Phomopsis mali was confirmed as the dominant species. In accordance with relative frequency, Alternaria alternata, Aureobasidium pullulans, Colletotrichum boninense, C. gloeosporioides, Epicoccum nigrum , Fungal sp., Fusarium lateritium, Glomerella cingulata, Magnaporthales sp. , Nigrospora oryzae, Pestalotiopsis maculiformans, P. microspora, Peyronellaea glomerata and Xylaria sp. 1 were more common in T. chinensis var. mairei. T. chinensis var. mairei were severely infected by endophytic fungi. Endophytic fungi were found in 81 percent of plant tissues with a high diversity. Distribution ranges of endophytic fungi were influenced by tissue properties. The colonization rate, richness, diversity of endophytic fungi in needles were obviously lower than in branches, and kinds of endophytic fungi between branches were more similar than those in needles, thus endophytic fungi had tissue preference. In addition, tissue age influenced the community structure of endophytic fungi. The elder branch tissues were, the higher colonization rate, richness, diversity of endophytic fungi were. Systematic studying the diversity and community structure of endophytic fungi in T. chinensis var. mairei and clarifying their distribution regularity in plant tissues would offer basic data and scientific basis for their development and utilization. Discussing the presence of fungal pathogens in healthy plant tissues would be of positive significance for source protection of T. chinensis var. mairei.

  11. Bacillus subtilis Protects Public Goods by Extending Kin Discrimination to Closely Related Species

    PubMed Central

    2017-01-01

    ABSTRACT Kin discrimination systems are found in numerous communal contexts like multicellularity and are theorized to prevent exploitation of cooperative behaviors. The kin discrimination system in Bacillus subtilis differs from most other such systems because it excludes nonkin cells rather than including kin cells. Because nonkin are the target of the system, B. subtilis can potentially distinguish degrees of nonkin relatedness, not just kin versus nonkin. We examined this by testing a large strain collection of diverse Bacillus species against B. subtilis in different multicellular contexts. The effects of kin discrimination extend to nearby species, as the other subtilis clade species were treated with the same antagonism as nonkin. Species in the less-related pumilus clade started to display varied phenotypes but were mostly still discriminated against, while cereus clade members and beyond were no longer subject to kin discrimination. Seeking a reason why other species are perceived as antagonistic nonkin, we tested the ability of B. subtilis to steal communally produced surfactant from these species. We found that the species treated as nonkin were the only ones that made a surfactant that B. subtilis could utilize and that nonkin antagonism prevented such stealing when the two strains were mixed. The nonkin exclusion kin discrimination method thus allows effective protection of the cooperative behaviors prevalent in multicellularity while still permitting interactions with more distant species that are not a threat. PMID:28679746

  12. Endophytic Fusarium spp. from Roots of Lawn Grass (Axonopus compressus)

    PubMed Central

    Zakaria, Latiffah; Ning, Chua Harn

    2013-01-01

    Fungal endophytes are found inside host plants but do not produce any noticeable disease symptoms in their host. In the present study, endophytic Fusarium species were isolated from roots of lawn grass (Axonopus compressus). A total of 51 isolates were recovered from 100 root segments. Two Fusarium species, F. oxysporum (53%) and F. solani (47%), were identified based on macroconidia and conidiogenous cell morphology. The detection of endophytic F. oxysporum and F. solani in the roots of lawn grass contributes to the knowledge of both the distribution of the two Fusarium species and the importance of roots as endophytic niches for Fusarium species. PMID:24575251

  13. Biodiversity, Phylogeny, and Antifungal Functions of Endophytic Fungi Associated with Zanthoxylum bungeanum.

    PubMed

    Li, Peiqin; Wu, Zhou; Liu, Tao; Wang, Yanan

    2016-09-13

    This study investigated the biodiversity, phylogeny, and antifungal activity of endophytic fungi isolated from Zanthoxylum bungeanum. A total of 940 isolates obtained were grouped into 93 morphotypes, 43 species, and 23 genera, which were authenticated by molecular identification based on rDNA internal transcribed spacer (ITS) sequence analysis. A high diversity of endophytic fungi from Z. bungeanum are observed with high species richness S (43), Margalef index D' (6.1351), Shannon-Wiener index H' (3.2743), Simpson diversity index Ds (0.9476), PIE index (0.9486), and evenness Pielou index J (0.8705) but a low dominant index λ (0.0524). Significant tissue specificity of the endophytic fungi was observed in Z. bungeanum, and the highest species richness and diversity indexes were obtained in the stem. Phylogenetic analyses of the 93 endophytic isolates were carried out by the neighbor-joining (NJ) method to demonstrate their evolutionary processes. Antifungal activities of endophytic fungi were assayed and eight endophytic isolates showed strong and long-lasting inhibition against host pathogenic fungi Fusarium sambucinum and Pseudocercospora zanthoxyli. Here, for the first time, we systematically demonstrate the biodiversity, phylogeny, and antifungal activity of endophytic fungi associated with Z. bungeanum and reveal the value of sampling different tissues of a given plant to obtain the greatest endophyte species diversity, which might offer a framework for further investigation and utilization of endophytic fungi as aunique source of interesting and useful bioactive compounds.

  14. Biodiversity, Phylogeny, and Antifungal Functions of Endophytic Fungi Associated with Zanthoxylum bungeanum

    PubMed Central

    Li, Peiqin; Wu, Zhou; Liu, Tao; Wang, Yanan

    2016-01-01

    This study investigated the biodiversity, phylogeny, and antifungal activity of endophytic fungi isolated from Zanthoxylum bungeanum. A total of 940 isolates obtained were grouped into 93 morphotypes, 43 species, and 23 genera, which were authenticated by molecular identification based on rDNA internal transcribed spacer (ITS) sequence analysis. A high diversity of endophytic fungi from Z. bungeanum are observed with high species richness S (43), Margalef index D′ (6.1351), Shannon–Wiener index H′ (3.2743), Simpson diversity index Ds (0.9476), PIE index (0.9486), and evenness Pielou index J (0.8705) but a low dominant index λ (0.0524). Significant tissue specificity of the endophytic fungi was observed in Z. bungeanum, and the highest species richness and diversity indexes were obtained in the stem. Phylogenetic analyses of the 93 endophytic isolates were carried out by the neighbor-joining (NJ) method to demonstrate their evolutionary processes. Antifungal activities of endophytic fungi were assayed and eight endophytic isolates showed strong and long-lasting inhibition against host pathogenic fungi Fusarium sambucinum and Pseudocercospora zanthoxyli. Here, for the first time, we systematically demonstrate the biodiversity, phylogeny, and antifungal activity of endophytic fungi associated with Z. bungeanum and reveal the value of sampling different tissues of a given plant to obtain the greatest endophyte species diversity, which might offer a framework for further investigation and utilization of endophytic fungi as aunique source of interesting and useful bioactive compounds. PMID:27649145

  15. Isolation and Identification of cellulolytic bacteria from mangrove sediment in Bangka Island

    NASA Astrophysics Data System (ADS)

    Kurniawan, A.; Prihanto, A. A.; Sari, S. P.; Febriyanti, D.; Kurniawan, A.; Sambah, A. B.; Asriani, E.

    2018-04-01

    Cellulolytic bacteria is bacteria which hydrolyze cellulose to reducing sugars. This research aims to obtain cellulolytic bacteria from the sediment of mangroves in Bangka island. Reasearch was conducted from March to August 2017. Sampling was conducted at Sungailiat, and Tukak Sadai, South of Bangka. Bacteria was isolated using 1% Carboxymetyl Cellulosa (CMC). The isolation resulted in four isolates from Sungailiat and nine isolates from Tukak Sadai. Total five isolates, namely Bacillus pumilus, Pseudomonas sp., Bacillus amyloliquefacien, Bacillus alvei, Bacillus coagulant were identified. The best isolates that produced cellulose was Pseudomonas aeruginosa.

  16. Endohyphal Bacterium Enhances Production of Indole-3-Acetic Acid by a Foliar Fungal Endophyte

    PubMed Central

    Hoffman, Michele T.; Gunatilaka, Malkanthi K.; Wijeratne, Kithsiri; Gunatilaka, Leslie; Arnold, A. Elizabeth

    2013-01-01

    Numerous plant pathogens, rhizosphere symbionts, and endophytic bacteria and yeasts produce the important phytohormone indole-3-acetic acid (IAA), often with profound effects on host plants. However, to date IAA production has not been documented among foliar endophytes -- the diverse guild of primarily filamentous Ascomycota that live within healthy, above-ground tissues of all plant species studied thus far. Recently bacteria that live within hyphae of endophytes (endohyphal bacteria) have been detected, but their effects have not been studied previously. Here we show not only that IAA is produced in vitro by a foliar endophyte (here identified as Pestalotiopsis aff. neglecta, Xylariales), but that IAA production is enhanced significantly when the endophyte hosts an endohyphal bacterium (here identified as Luteibacter sp., Xanthomonadales). Both the endophyte and the endophyte/bacterium complex appear to rely on an L-tryptophan dependent pathway for IAA synthesis. The bacterium can be isolated from the fungus when the symbiotic complex is cultivated at 36°C. In pure culture the bacterium does not produce IAA. Culture filtrate from the endophyte-bacterium complex significantly enhances growth of tomato in vitro relative to controls and to filtrate from the endophyte alone. Together these results speak to a facultative symbiosis between an endophyte and endohyphal bacterium that strongly influences IAA production, providing a new framework in which to explore endophyte-plant interactions. PMID:24086270

  17. The role of the Oregon State University Endophyte Service Laboratory in diagnosing clinical cases of endophyte toxicoses.

    PubMed

    Craig, A Morrie; Blythe, Linda L; Duringer, Jennifer M

    2014-07-30

    The Oregon State University Colleges of Veterinary Medicine and Agricultural Sciences instituted the Endophyte Service Laboratory to aid in diagnosing toxicity problems associated with cool-season grasses in livestock. The endophyte (Neotyphodium coenophalum) present in tall fescue (Festuca arundinacea) produces ergopeptine alkaloids, of which ergovaline is the molecule used to determine exposure and toxicity thresholds for the vasoconstrictive conditions "fescue foot" and "summer slump". Another vasoconstrictive syndrome, "ergotism," is caused by a parasitic fungus, Claviceps purpurea, and its primary toxin, ergotamine. "Ryegrass staggers" is a neurological condition that affects livestock consuming endophyte (Neotyphodium lolii)-infected perennial ryegrass (Lolium perenne) with high levels of lolitrem B. HPLC-fluorescent analytical methods for these mycotoxins are described and were used to determine threshold levels of toxicity for ergovaline and lolitrem B in cattle, sheep, horses, and camels. In addition, six clinical cases in cattle are presented to illustrate diagnosis of these three diseases.

  18. Transcriptome response in different tissues of Lolium arundinaceum to the fungal endophyte Epichloe coenophiala

    USDA-ARS?s Scientific Manuscript database

    Tall fescue (Lolium arundinaceum) plants symbiotic with the endophytic fungus, Epichloe coenophiala , (E+), have been shown to have better survivability and persistence than plants lacking the endophyte (E-). To understand more about the grass-endophyte interactions and how endophyte affects the ho...

  19. Marine Algicolous Endophytic Fungi - A Promising Drug Resource of the Era.

    PubMed

    Sarasan, Manomi; Puthumana, Jayesh; Job, Neema; Han, Jeonghoon; Lee, Jae-Seong; Philip, Rosamma

    2017-06-28

    Endophytic fungi have currently been acknowledged as the most promising source of bioactive compounds for drug discovery, and considerable progress has been made in exploring their diversity, species richness, and bioprospecting. Fungal endophytes from unique environmental settings offer a pool of potentially useful medicinal entities. Owing to the constant stresses imposed on macroalgae by marine environments, it is believed that algae and their associated endophytic symbionts represent a good source of structurally diverse bioactive secondary metabolites. Despite the proven significance of active metabolites of algal endophytes, little have been exploited. This review highlights the latest discoveries in algicolous endophytic research, with particular focus on the bioactive metabolites from algal endophytes. Compounds are classified according to their reported biological activities, like anticancer, antibacterial, antifungal, and antioxidant properties. Present experimental evidence suggests that a majority of the bioactive metabolites were reported from Phaeophyceae followed by Rhodophyceae and Chlorophyceae. An intensive search for newer and more effective bioactive metabolites has generated a treasure trove of publications, and this review partially covers the literature published up to 2016.

  20. Exploring Arabidopsis thaliana Root Endophytes via Single-Cell Genomics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lundberg, Derek; Woyke, Tanja; Tringe, Susannah

    2014-03-19

    Land plants grow in association with microbial communities both on their surfaces and inside the plant (endophytes). The relationships between microbes and their host can vary from pathogenic to mutualistic. Colonization of the endophyte compartment occurs in the presence of a sophisticated plant immune system, implying finely tuned discrimination of pathogens from mutualists and commensals. Despite the importance of the microbiome to the plant, relatively little is known about the specific interactions between plants and microbes, especially in the case of endophytes. The vast majority of microbes have not been grown in the lab, and thus one of the fewmore » ways of studying them is by examining their DNA. Although metagenomics is a powerful tool for examining microbial communities, its application to endophyte samples is technically difficult due to the presence of large amounts of host plant DNA in the sample. One method to address these difficulties is single-cell genomics where a single microbial cell is isolated from a sample, lysed, and its genome amplified by multiple displacement amplification (MDA) to produce enough DNA for genome sequencing. This produces a single-cell amplified genome (SAG). We have applied this technology to study the endophytic microbes in Arabidopsis thaliana roots. Extensive 16S gene profiling of the microbial communities in the roots of multiple inbred A. thaliana strains has identified 164 OTUs as being significantly enriched in all the root endophyte samples compared to their presence in bulk soil.« less

  1. Diversity of endophytic fungi in Glycine max.

    PubMed

    Fernandes, Elio Gomes; Pereira, Olinto Liparini; da Silva, Cynthia Cânedo; Bento, Claudia Braga Pereira; de Queiroz, Marisa Vieira

    2015-12-01

    Endophytic fungi are microorganisms that live within plant tissues without causing disease during part of their life cycle. With the isolation and identification of these fungi, new species are being discovered, and ecological relationships with their hosts have also been studied. In Glycine max, limited studies have investigated the isolation and distribution of endophytic fungi throughout leaves and roots. The distribution of these fungi in various plant organs differs in diversity and abundance, even when analyzed using molecular techniques that can evaluate fungal communities in different parts of the plants, such as denaturing gradient gel electrophoresis (DGGE). Our results show there is greater species richness of culturable endophytic filamentous fungi in the leaves G. max as compared to roots. Additionally, the leaves had high values for diversity indices, i.e. Simpsons, Shannon and Equitability. Conversely, dominance index was higher in roots as compared to leaves. The fungi Ampelomyces sp., Cladosporium cladosporioides, Colletotrichum gloeosporioides, Diaporthe helianthi, Guignardia mangiferae and Phoma sp. were more frequently isolated from the leaves, whereas the fungi Fusarium oxysporum, Fusarium solani and Fusarium sp. were prevalent in the roots. However, by evaluating the two communities by DGGE, we concluded that the species richness was higher in the roots than in the leaves. UPGMA analysis showed consistent clustering of isolates; however, the fungus Leptospora rubella, which belongs to the order Dothideales, was grouped among species of the order Pleosporales. The presence of endophytic Fusarium species in G. max roots is unsurprising, since Fusarium spp. isolates have been previously described as endophyte in other reports. However, it remains to be determined whether the G. max Fusarium endophytes are latent pathogens or non-pathogenic forms that benefit the plant. This study provides a broader knowledge of the distribution of the fungal

  2. Antibacterial Activities of Endophytic Bacteria Isolated from Taxus brevifolia Against Foodborne Pathogenic Bacteria.

    PubMed

    Islam, Nurul; Choi, Jaehyuk; Baek, Kwang-Hyun

    2018-05-01

    Endophytes are a potential source of novel bioactive compounds with medicinal properties. In this study, 41 endophytic bacteria (EB) were isolated from tissues of a medicinally important plant Taxus brevifolia (Pacific yew). The objective was to screen all the EB isolates for their antibacterial effects against five foodborne pathogenic bacteria: Bacillus cereus ATCC10876, Staphylococcus aureus ATCC12600, Listeria monocytogenes ATCC19115, Escherichia coli ATCC43890, and Salmonella Typhimurium ATCC19585. Among the EB isolates, T. brevifolia seed (TbS)-8, T. brevifolia fleshy part of fruit (TbFl)-10, T. brevifolia leaf (TbL)-22, TbS-29, and TbL-34 exerted significant antibacterial activity against the tested foodborne pathogens. Especially TbFl-10 showed the highest antibacterial activity against all the tested bacteria and was identified as Paenibacillus kribbensis (Pk). Furthermore, an ethyl acetate extract of Pk-TbFl-10 possessed antibacterial activities against the tested five foodborne pathogenic bacteria, with zones of inhibition from 15.71 ± 2.85 to 13.01 ± 2.12 mm. Scanning electron microscopy analysis revealed ruptured, lysed, shrunk, and swollen cells of all the tested foodborne pathogens treated with the ethyl acetate extract of Pk-TbFl-10, suggesting that a metabolite(s) of Pk-TbFl-10 penetrates the cell membrane and causes cell lysis leading to cell death. Our results indicate that Pk-TbFl-10 isolated from T. brevifolia can serve as a novel source of natural antibacterial agents against foodborne pathogenic bacteria, with potential applications in the pharmaceutical industry.

  3. Munumbicins, wide-spectrum antibiotics produced by Streptomyces NRRL 30562, endophytic on Kennedia nigriscans.

    PubMed

    Castillo, Uvidelio F; Strobel, Gary A; Ford, Eugene J; Hess, Wilford M; Porter, Heidi; Jensen, James B; Albert, Heather; Robison, Richard; Condron, Margret A M; Teplow, David B; Stevens, Dennis; Yaver, Debbie

    2002-09-01

    Munumbicins A, B, C and D are newly described antibiotics with a wide spectrum of activity against many human as well as plant pathogenic fungi and bacteria, and a Plasmodium sp. These compounds were obtained from Streptomyces NRRL 3052, which is endophytic in the medicinal plant snakevine (Kennedia nigriscans), native to the Northern Territory of Australia. This endophyte was cultured, the broth was extracted with an organic solvent and the contents of the residue were purified by bioassay-guided HPLC. The major components were four functionalized peptides with masses of 1269.6, 1298.5, 1312.5 and 1326.5 Da. Numerous other related compounds possessing bioactivity, with differing masses, were also present in the culture broth extract in lower quantities. With few exceptions, the peptide portion of each component contained only the common amino acids threonine, aspartic acid (or asparagine), glutamic acid (or glutamine), valine and proline, in varying ratios. The munumbicins possessed widely differing biological activities depending upon the target organism. For instance, munumbicin B had an MIC of 2.5 microg x ml(-1) against a methicillin-resistant strain of Staphylococcus aureus, whereas munumbicin A was not active against this organism. In general, the munumbicins demonstrated activity against Gram-positive bacteria such as Bacillus anthracis and multidrug-resistant Mycobacterium tuberculosis. However, the most impressive biological activity of any of the munumbicins was that of munumbicin D against the malarial parasite Plasmodium falciparum, having an IC(50) of 4.5+/-0.07 ng x ml(-1). This report also describes the potential of the munumbicins in medicine and agriculture.

  4. 7 CFR 201.58d - Fungal endophyte test.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ...) Method of preparation of aniline blue stain for use in testing grass seed and plant material for the presence of fungal endophyte: (1) Prepare a 1 percent aqueous aniline blue solution by dissolving 1 gram aniline blue in 100 ml distilled water. (2) Prepare the endophyte staining solution of one part of 1...

  5. 7 CFR 201.58d - Fungal endophyte test.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ...) Method of preparation of aniline blue stain for use in testing grass seed and plant material for the presence of fungal endophyte: (1) Prepare a 1 percent aqueous aniline blue solution by dissolving 1 gram aniline blue in 100 ml distilled water. (2) Prepare the endophyte staining solution of one part of 1...

  6. 7 CFR 201.58d - Fungal endophyte test.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ...) Method of preparation of aniline blue stain for use in testing grass seed and plant material for the presence of fungal endophyte: (1) Prepare a 1 percent aqueous aniline blue solution by dissolving 1 gram aniline blue in 100 ml distilled water. (2) Prepare the endophyte staining solution of one part of 1...

  7. Isolation and identification of bacterial endophytes from grasses along the Oregon coast

    USDA-ARS?s Scientific Manuscript database

    Bacterial endophytes have been shown to improve abiotic and biotic stress responses in plants. Grasses growing along the Oregon coast are exposed to harsh conditions and may harbor endophytes that enable them to survive and grow under these conditions. Bacterial endophytes were isolated from thirty-...

  8. A novel method to scale up fungal endophyte isolations

    USDA-ARS?s Scientific Manuscript database

    Estimations of species diversity are influenced by sampling intensity which in turn is influenced by methodology. For fungal endophyte diversity studies, the methodology includes surface-sterilization prior to isolation of endophytes. Surface-sterilization is an essential component of fungal endophy...

  9. Diversity and host range of foliar fungal endophytes: are tropical leaves biodiversity hotspots?

    PubMed

    Arnold, A Elizabeth; Lutzoni, F

    2007-03-01

    Fungal endophytes are found in asymptomatic photosynthetic tissues of all major lineages of land plants. The ubiquity of these cryptic symbionts is clear, but the scale of their diversity, host range, and geographic distributions are unknown. To explore the putative hyperdiversity of tropical leaf endophytes, we compared endophyte communities along a broad latitudinal gradient from the Canadian arctic to the lowland tropical forest of central Panama. Here, we use molecular sequence data from 1403 endophyte strains to show that endophytes increase in incidence, diversity, and host breadth from arctic to tropical sites. Endophyte communities from higher latitudes are characterized by relatively few species from many different classes of Ascomycota, whereas tropical endophyte assemblages are dominated by a small number of classes with a very large number of endophytic species. The most easily cultivated endophytes from tropical plants have wide host ranges, but communities are dominated by a large number of rare species whose host range is unclear. Even when only the most easily cultured species are considered, leaves of tropical trees represent hotspots of fungal species diversity, containing numerous species not yet recovered from other biomes. The challenge remains to recover and identify those elusive and rarely cultured taxa with narrower host ranges, and to elucidate the ecological roles of these little-known symbionts in tropical forests.

  10. Salicaceae Endophytes Modulate Stomatal Behavior and Increase Water Use Efficiency in Rice

    PubMed Central

    Rho, Hyungmin; Van Epps, Victor; Wegley, Nicholas; Doty, Sharon L.; Kim, Soo-Hyung

    2018-01-01

    Bacterial and yeast endophytes isolated from the Salicaceae family have been shown to promote growth and alleviate stress in plants from different taxa. To determine the physiological pathways through which endophytes affect plant water relations, we investigated leaf water potential, whole-plant water use, and stomatal responses of rice plants to Salicaceae endophyte inoculation under CO2 enrichment and water deficit. Daytime stomatal conductance and stomatal density were lower in inoculated plants compared to controls. Leaf ABA concentrations increased with endophyte inoculation. As a result, transpirational water use decreased significantly with endophyte inoculation while biomass did not change or slightly increased. This response led to a significant increase in cumulative water use efficiency at harvest. Different endophyte strains produced the same results in host plant water relations and stomatal responses. These stomatal responses were also observed under elevated CO2 conditions, and the increase in water use efficiency was more pronounced under water deficit conditions. The effect on water use efficiency was positively correlated with daily light integrals across different experiments. Our results provide insights on the physiological mechanisms of plant-endophyte interactions involving plant water relations and stomatal functions. PMID:29552021

  11. Endophyte-mediated interactions between cauliflower, the herbivore Spodoptera litura, and the ectoparasitoid Bracon hebetor.

    PubMed

    Kaur, Tamanreet; Singh, Bahaderjeet; Kaur, Amarjeet; Kaur, Sanehdeep

    2015-10-01

    Fungal endosymbionts in plants may influence interactions among plants, herbivores and their parasitoids through the production of secondary metabolites. We used a lepidopteran pest and its generalist parasitoid to test the effect of endophyte-infected plants on a third trophic level. Endophytic fungi, Aspergillus flavus and Aspergillus niger, isolated from Acacia arabica, were used to infect cauliflower plants. We found that the presence of the endophyte in the plants significantly extended the development period of Spodoptera litura (Fab.) larvae. Feeding of the host on endophyte-infected plants further adversely affected the development and performance of its parasitoid, Bracon hebetor (Say). A negative impact was also recorded for longevity and fecundity of endophyte-naive parasitoid females due to the parasitization of host larvae fed on endophyte-infected plants. The presence of endophytes in the diet of the host larvae significantly prolonged the development of the parasitoid. A strong detrimental effect was also recorded for larval survival and emergence of parasitoid adults. The longevity and parasitism rate of female wasps were reduced significantly due to the ingestion of endophyte-infected cauliflower plants by S. litura larvae. Overall, we found that both endophytic fungi had a negative impact on the parasitoid.

  12. Characterization of cellulases of fungal endophytes isolated from Espeletia spp.

    PubMed

    Cabezas, Luisa; Calderon, Carolina; Medina, Luis Miguel; Bahamon, Isabela; Cardenas, Martha; Bernal, Adriana Jimena; Gonzalez, Andrés; Restrepo, Silvia

    2012-12-01

    Endophytes are microorganisms that asymptomatically invade plant tissues. They can stimulate plant growth and/or provide defense against pathogen attacks through the production of secondary metabolites. Most endophyte species are still unknown, and because they may have several applications, the study of their metabolic capabilities is essential. We characterized 100 endophytes isolated from Espeletia spp., a genus unique to the paramo ecosystem, an extreme environment in the Andean mountain range. We evaluated the cellulolytic potential of these endophytes on the saccharification of the oil palm empty fruit bunch (OPEFB). The total cellulolytic activity was measured for each endophyte on filter paper (FPA). In addition, the specific carboxymethyl cellulase (CMCase), exoglucanase, and β-glucosidase activities were determined. We found four fungi positive for cellulases. Of these fungi, Penicillium glabrum had the highest cellulolytic activity after partial purification, with maximal CMCase, exoglucanase and β-glucosidase enzyme activities of 44.5, 48.3, and 0.45 U/ml, respectively. Our data showed that the bioprospection of fungi and the characterization of their enzymes may facilitate the process of biofuel production.

  13. Efficient phytoremediation of organic contaminants in soils using plant-endophyte partnerships.

    PubMed

    Feng, Nai-Xian; Yu, Jiao; Zhao, Hai-Ming; Cheng, Yu-Ting; Mo, Ce-Hui; Cai, Quan-Ying; Li, Yan-Wen; Li, Hui; Wong, Ming-Hung

    2017-04-01

    Soil pollution with organic contaminants is one of the most intractable environmental problems today, posing serious threats to humans and the environment. Innovative strategies for remediating organic-contaminated soils are critically needed. Phytoremediation, based on the synergistic actions of plants and their associated microorganisms, has been recognized as a powerful in situ approach to soil remediation. Suitable combinations of plants and their associated endophytes can improve plant growth and enhance the biodegradation of organic contaminants in the rhizosphere and/or endosphere, dramatically expediting the removal of organic pollutants from soils. However, for phytoremediation to become a more widely accepted and predictable alternative, a thorough understanding of plant-endophyte interactions is needed. Many studies have recently been conducted on the mechanisms of endophyte-assisted phytoremediation of organic contaminants in soils. In this review, we highlight the superiority of organic pollutant-degrading endophytes for practical applications in phytoremediation, summarize alternative strategies for improving phytoremediation, discuss the fundamental mechanisms of endophyte-assisted phytoremediation, and present updated information regarding the advances, challenges, and new directions in the field of endophyte-assisted phytoremediation technology. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Alleviation of Drought Stress and Metabolic Changes in Timothy (Phleum pratense L.) Colonized with Bacillus subtilis B26

    PubMed Central

    Gagné-Bourque, François; Bertrand, Annick; Claessens, Annie; Aliferis, Konstantinos A.; Jabaji, Suha

    2016-01-01

    Drought is a major limiting factor of crop productivity worldwide and its incidence is predicted to increase under climate change. Drought adaptation of cool-season grasses is thus a major challenge to secure the agricultural productivity under current and future climate conditions. Endophytes are non-pathogenic plant-associated bacteria that can play an important role in conferring resistance and improving plant tolerance to drought. In this study, the effect of inoculation of the bacterial endophyte Bacillus subtilis strain B26 on growth, water status, photosynthetic activity and metabolism of timothy (Phleum pratense L.) subjected to drought stress was investigated under controlled conditions. Under both drought-stress and non-stressed conditions, strain B26 successfully colonized the internal tissues of timothy and had a positive impact on plant growth. Exposure of inoculated plant to a 8-week drought-stress led to significant increase in shoot and root biomass by 26.6 and 63.8%, and in photosynthesis and stomatal conductance by 55.2 and 214.9% respectively, compared to non-inoculated plants grown under similar conditions. There was a significant effect of the endophyte on plant metabolism; higher levels of several sugars, notably sucrose and fructans and an increase of key amino acids such as, asparagine, glutamic acid and glutamine were recorded in shoots and roots of colonized plants compared to non-colonized ones. The accumulation of the non-protein amino acid GABA in shoots of stressed plants and in roots of stressed and unstressed plants was increased in the presence of the endophyte. Taken together, our results indicate that B. subtilis B26 improves timothy growth under drought stress through the modification of osmolyte accumulation in roots and shoots. These results will contribute to the development of a microbial agent to improve the yield of grass species including forage crops and cereals exposed to environmental stresses. PMID:27200057

  15. Inner Plant Values: Diversity, Colonization and Benefits from Endophytic Bacteria

    PubMed Central

    Liu, Hongwei; Carvalhais, Lilia C.; Crawford, Mark; Singh, Eugenie; Dennis, Paul G.; Pieterse, Corné M. J.; Schenk, Peer M.

    2017-01-01

    One of the most exciting scientific advances in recent decades has been the realization that the diverse and immensely active microbial communities are not only ‘passengers’ with plants, but instead play an important role in plant growth, development and resistance to biotic and abiotic stresses. A picture is emerging where plant roots act as ‘gatekeepers’ to screen soil bacteria from the rhizosphere and rhizoplane. This typically results in root endophytic microbiome dominated by Proteobacteria, Actinobacteria and to a lesser extent Bacteroidetes and Firmicutes, but Acidobacteria and Gemmatimonadetes being almost depleted. A synthesis of available data suggest that motility, plant cell-wall degradation ability and reactive oxygen species scavenging seem to be crucial traits for successful endophytic colonization and establishment of bacteria. Recent studies provide solid evidence that these bacteria serve host functions such as improving of plant nutrients through acquisition of nutrients from soil and nitrogen fixation in leaves. Additionally, some endophytes can engage ‘priming’ plants which elicit a faster and stronger plant defense once pathogens attack. Due to these plant growth-promoting effects, endophytic bacteria are being widely explored for their use in the improvement of crop performance. Updating the insights into the mechanism of endophytic bacterial colonization and interactions with plants is an important step in potentially manipulating endophytic bacteria/microbiome for viable strategies to improve agricultural production. PMID:29312235

  16. Insect Feeding Deterrents in Endophyte-Infected Tall Fescue †

    PubMed Central

    Johnson, M. C.; Dahlman, D. L.; Siegel, M. R.; Bush, L. P.; Latch, G. C. M.; Potter, D. A.; Varney, D. R.

    1985-01-01

    The presence of an endophytic fungus, Acremonium coenophialum, in tall fescue (Festuca arundinacea) deterred aphid feeding by Rhopalosiphum padi and Schizaphis graminum. Both species of aphid were unable to survive when confined to endophyte-infected tall fescue plants. Feeding deterrents and toxic factors to R. padi and Oncopeltus fasciatus, large milkweed bug, were primarily associated with a methanol extract obtained when endophyte-infected tall fescue seed was serially extracted with hexane, ethyl acetate, and methanol. The concentrations of pyrrolizidine alkaloids were determined to be 30 to 100 times greater in the methanol extract than in the hexane and ethyl acetate extracts. PMID:16346751

  17. Diversity of fungal endophytes in non-native Phragmites australis in the Great Lakes

    USGS Publications Warehouse

    Clay, Keith; Shearin, Zachery; Bourke, Kimberly; Bickford, Wesley A.; Kowalski, Kurt P.

    2016-01-01

    Plant–microbial interactions may play a key role in plant invasions. One common microbial interaction takes place between plants and fungal endophytes when fungi asymptomatically colonize host plant tissues. The objectives of this study were to isolate and sequence fungal endophytes colonizing non-native Phragmites australis in the Great Lakes region to evaluate variation in endophyte community composition among three host tissue types and three geographical regions. We collected entire ramets from multiple clones and populations, surface sterilized plant tissues, and plated replicate tissue samples from leaves, stems, and rhizomes on corn meal agar plates to culture and isolate fungal endophytes. Isolates were then subjected to Sanger sequencing of the ITS region of the nuclear ribosomal DNA. Sequences were compared to fungal databases to define operational taxonomic units (OTUs) that were analyzed statistically for community composition. In total, we obtained 173 endophyte isolates corresponding to 55 OTUs, 39 of which were isolated only a single time. The most common OTU corresponded most closely to Sarocladium strictum and comprised 25 % of all fungal isolates. More OTUs were found in stem tissues, but endophyte diversity was greatest in rhizome tissues. PERMANOVA analyses indicated significant differences in endophyte communities among tissue types, geographical regions, and the interaction between those factors, but no differences among individual ramets were detected. The functional role of the isolated endophytes is not yet known, but one genus isolated here (Stagonospora) has been reported to enhance Phragmites growth. Understanding the diversity and functions of Phragmites endophytes may provide targets for control measures based on disrupting host plant/endophyte interactions.

  18. The Effect of Endophytic Fungi on Nematode Populations in Summer-dormant and Summer-active Tall Fescue.

    PubMed

    Rogers, James K; Walker, Nathan R; Young, Carolyn A

    2016-06-01

    Summer-active (continental) and summer-dormant (Mediterranean) tall fescue morphotypes are each adapted to different environmental conditions. Endophyte presence provides plant parasitic nematode resistance, but not with all endophyte strains and cultivar combinations. This study sought to compare effects of four nematode genera on continental and Mediterranean cultivars infected with common toxic or novel endophyte strains. A 6-mon greenhouse study was conducted with continental cultivars, Kentucky 31 (common toxic) and Texoma MaxQ II (novel endophyte) and the Mediterranean cultivar Flecha MaxQ (novel endophyte). Endophyte-free plants of each cultivar were controls. Each cultivar × endophyte combination was randomly assigned to a control, low or high inoculation rate of a mixed nematode culture containing stunt nematodes (Tylenchorhynchus spp.), ring nematodes (Criconemella spp.), spiral nematodes (Helicotylenchus spp.), and lesion nematodes (Pratylenchus spp.). Endophyte infection had no effect on nematode population densities. The cultivar × endophyte interaction was significant. Population densities of stunt nematode, spiral nematode, and ring nematodes were higher for Flecha MaxQ than other cultivar × endophyte combinations. Novel endophyte infection enhances suitability of Flecha MaxQ as a nematode host.

  19. A Friendly Relationship between Endophytic Fungi and Medicinal Plants: A Systematic Review

    PubMed Central

    Jia, Min; Chen, Ling; Xin, Hai-Liang; Zheng, Cheng-Jian; Rahman, Khalid; Han, Ting; Qin, Lu-Ping

    2016-01-01

    Endophytic fungi or endophytes exist widely inside the healthy tissues of living plants, and are important components of plant micro-ecosystems. Over the long period of evolution, some co-existing endophytes and their host plants have established a special relationship with one and another, which can significantly influence the formation of metabolic products in plants, then affect quality and quantity of crude drugs derived from medicinal plants. This paper will focus on the increasing knowledge of relationships between endophytic fungi and medicinal plants through reviewing of published research data obtained from the last 30 years. The analytical results indicate that the distribution and population structure of endophytes can be considerably affected by factors, such as the genetic background, age, and environmental conditions of their hosts. On the other hand, the endophytic fungi can also confer profound impacts on their host plants by enhancing their growth, increasing their fitness, strengthening their tolerances to abiotic and biotic stresses, and promoting their accumulation of secondary metabolites. All the changes are very important for the production of bioactive components in their hosts. Hence, it is essential to understand such relationships between endophytic fungi and their host medicinal plants. Such knowledge can be well exploited and applied for the production of better and more drugs from medicinal plants. PMID:27375610

  20. Linking Bacterial Endophytic Communities to Essential Oils: Clues from Lavandula angustifolia Mill

    PubMed Central

    Emiliani, Giovanni; Maida, Isabel; Perrin, Elena; Chiellini, Carolina; Fondi, Marco; Gallo, Eugenia; Gori, Luigi; Maggini, Valentina; Vannacci, Alfredo; Biffi, Sauro; Firenzuoli, Fabio; Fani, Renato

    2014-01-01

    Endophytic bacteria play a crucial role in plant life and are also drawing much attention for their capacity to produce bioactive compounds of relevant biotechnological interest. Here we present the characterisation of the cultivable endophytic bacteria of Lavandula angustifolia Mill.—a species used since antiquity for its therapeutic properties—since the production of bioactive metabolites from medical plants may reside also in the activity of bacterial endophytes through their direct production, PGPR activity on host, and/or elicitation of plant metabolism. Lavender tissues are inhabited by a tissue specific endophytic community dominated by Proteobacteria, highlighting also their difference from the rhizosphere environment where Actinobacteria and Firmicutes are also found. Leaves' endophytic community resulted as the most diverse from the other ecological niches. Overall, the findings reported here suggest: (i) the existence of different entry points for the endophytic community, (ii) its differentiation on the basis of the ecological niche variability, and (iii) a two-step colonization process for roots endophytes. Lastly, many isolates showed a strong inhibition potential against human pathogens and the molecular characterization demonstrated also the presence of not previously described isolates that may constitute a reservoir of bioactive compounds relevant in the field of pathogen control, phytoremediation, and human health. PMID:24971151

  1. A novel Bacillus pumilus-related strain from tropical landfarm soil is capable of rapid dibenzothiophene degradation and biodesulfurization.

    PubMed

    Buzanello, Elizandra Bruschi; Rezende, Rachel Passos; Sousa, Fernanda Maria Oliveira; Marques, Eric de Lima Silva; Loguercio, Leandro Lopes

    2014-10-08

    The presence of organic sulfur-containing compounds in the environment is harmful to animals and human health. The combustion of these compounds in fossil fuels tends to release sulfur dioxide in the atmosphere, which leads to acid rain, corrosion, damage to crops, and an array of other problems. The process of biodesulfurization rationally exploits the ability of certain microorganisms in the removal of sulfur prior to fuel burning, without loss of calorific value. In this sense, we hypothesized that bacterial isolates from tropical landfarm soils can demonstrate the ability to degrade dibenzothiophene (DBT), the major sulfur-containing compound present in fuels. Nine bacterial isolates previously obtained from a tropical landfarm soil were tested for their ability to degrade dibenzothiophene (DBT). An isolate labeled as RR-3 has shown the best performance and was further characterized in the present study. Based on physiological aspects and 16 s rDNA sequencing, this isolate was found to be very closely related to the Bacillus pumillus species. During its growth, high levels of DBT were removed in the first 24 hours, and a rapid DBT degradation within the first hour of incubation was observed when resting cells were used. Detection of 2-hydroxybiphenyl (HBP), a marker for the 4S pathway, suggests this strain has metabolical capability for DBT desulfurization. The presence of MgSO4 in growth medium as an additional sulfur source has interfered with DBT degradation. To our knowledge, this is the first study showing that a Bacillus strain can metabolize DBT via the 4S pathway. However, further evidences suggest RR-3 can also use DBT (and/or its derivative metabolites) as carbon/sulfur source through another type of metabolism. Compared to other reported DBT-degrading strains, the RR-3 isolate showed the highest capacity for DBT degradation ever described in quantitative terms. The potential application of this isolate for the biodesulfurization of this sulfur

  2. Fungal endophytes in germinated seeds of the common bean, Phaseolus vulgaris

    PubMed Central

    Parsa, Soroush; García-Lemos, Adriana M.; Castillo, Katherine; Ortiz, Viviana; López-Lavalle, Luis Augusto Becerra; Braun, Jerome; Vega, Fernando E.

    2016-01-01

    We conducted a survey of fungal endophytes in 582 germinated seeds belonging to 11 Colombian cultivars of the common bean (Phaseolus vulgaris). The survey yielded 394 endophytic isolates belonging to 42 taxa, as identified by sequence analysis of the ribosomal DNA internal transcribed spacer (ITS) region. Aureobasidium pullulans was the dominant endophyte, isolated from 46.7 % of the samples. Also common were Fusarium oxysporum, Xylaria sp., and Cladosporium cladosporioides, but found in only 13.4 %, 11.7 %, and 7.6 % of seedlings, respectively. Endophytic colonization differed significantly among common bean cultivars and seedling parts, with the highest colonization occurring in the first true leaves of the seedlings. PMID:27109374

  3. Resources and testing of endophyte-infected germplasm in national grass repository collections

    Treesearch

    A. D. Wilson

    1996-01-01

    Clavicipitaceous endophytes have been known to exist in grasses since the discovery of an endophyte in seeds of damel (Lolium temulentum L.) by Vogl in 1898 (26). The oldest known specimens of damel with endophytic mycelium were seeds retrieved from a pharoah's tomb in an Egyptian pyramid dating back to 3400 B.C. (16). Subsequent work by...

  4. [Diversity of endophytic fungi associated with Ferula sinkiangensis K. M. Shen].

    PubMed

    Sun, Li; Zhu, Jun; Li, Xiaojin; Shi, Shubing; Guo, Shunxing

    2014-08-04

    We studied the diversity of endophytic fungi associated with Ferula sinkiangensis K. M. Shen. Endophytic fungi from different years (1-2 years, 3-4 years and > 5 years) and different parts (root, stemand leaf) of Ferula sinkiangensis K. M. Shen were isolated by tissue expand method. Strains were classified by morphology and similarity of internal transcribed spacer (ITS) sequence by Clustal X method. Composition, diversity and preference of endophytic fungal community were analyzed by the isolation rate (IR), isolation frequency (IF), Shannon-Wiener biodiversity index (H'), Margalef Richness index (R). In total 140 endophytic fungi were isolated from F. sinkiangensis K. M. Shen and classified into 18 genera. Among the 140 isolates, Aureobasidium (25.7%), Alternaria (16.4%) and Phyllosticta (15.7%) were the dominant genera. The isolation results show that there were some notable differences between distribution and composition of the endophytic fungi isolated from different years and different parts of Ferula sinkiangensis K. M. Shen. Meanwhile, a certain degree of years and tissue preference were also obvious. The results obtained in this study will be helpful to exploit the endophytic fungal resources of Ferula sinkiangensis K. M. Shen, which can also provide a new way for the realization of the artificial breeding of Ferula sinkiangensis K. M. Shen.

  5. Ergot Alkaloids Produced by Endophytic Fungi of the Genus Epichloë

    PubMed Central

    Guerre, Philippe

    2015-01-01

    The development of fungal endophytes of the genus Epichloë in grasses results in the production of different groups of alkaloids, whose mechanism and biological spectrum of toxicity can differ considerably. Ergot alkaloids, when present in endophyte-infected tall fescue, are responsible for “fescue toxicosis” in livestock, whereas indole-diterpene alkaloids, when present in endophyte-infected ryegrass, are responsible for “ryegrass staggers”. In contrast, peramine and loline alkaloids are deterrent and/or toxic to insects. Other toxic effects in livestock associated with the consumption of endophyte-infected grass that contain ergot alkaloids include the “sleepy grass” and “drunken horse grass” diseases. Although ergovaline is the main ergopeptine alkaloid produced in endophyte-infected tall fescue and is recognized as responsible for fescue toxicosis, a number of questions still exist concerning the profile of alkaloid production in tall fescue and the worldwide distribution of tall fescue toxicosis. The purpose of this review is to present ergot alkaloids produced in endophyte-infected grass, the factors of variation of their level in plants, and the diseases observed in the mammalian species as relate to the profiles of alkaloid production. In the final section, interactions between ergot alkaloids and drug-metabolizing enzymes are presented as mechanisms that could contribute to toxicity. PMID:25756954

  6. Behavior Performance of Diuraphis noxia (Homoptera: Aphididae) on Fungal Endophyte-Infected and Uninfected Perennial Ryegrass

    Treesearch

    S.L. Clement; D.G. Lester; A. Dan Wilson; K.S. Pike

    1992-01-01

    The behavior and performance of the Russian wheat aphid, Diuraphis noxia (Mordvilko), on fungal endophyte-infected and endophyte-free perennial ryegrass, Lolium perenne L., was investigated in the laboratory and field. Aphids did not select endophyte-free over endophyte-infected leaf sheaths and stem segments in petri dish preference tests....

  7. Endophytic Fungi in Indigenous Australasian Grasses Associated with Toxicity to Livestock

    PubMed Central

    Miles, Christopher O.; di Menna, Margaret E.; Jacobs, Surrey W. L.; Garthwaite, Ian; Lane, Geoffrey A.; Prestidge, Ron A.; Marshall, Sergio L.; Wilkinson, Heather H.; Schardl, Christopher L.; Ball, Olivier J.-P.; Latch, Garrick C. M.

    1998-01-01

    Grazing of Echinopogon spp. by livestock in Australia has caused symptoms similar to those of perennial ryegrass staggers. We observed an endophytic fungus in the intercellular spaces of the leaves and seeds of New Zealand and Australian specimens of Echinopogon ovatus. Culture of surface-sterilized seeds from New Zealand specimens yielded a slow-growing fungus. An examination in which immunoblotting and an enzyme-linked immunosorbent assay (ELISA) were used indicated that E. ovatus plants from Australia and New Zealand were infected with fungi serologically related to Neotyphodium lolii (the endophyte of perennial ryegrass) and other Epichloe and Neotyphodium spp. endophytic in pooid grasses. No lolitrems (the indole–diterpenoids implicated as the causative agents of perennial ryegrass staggers), peramine analogs, or ergot alkaloids were detected in the infected specimens by high-performance liquid chromatography or ELISA. However, in endophyte-infected E. ovatus plants from New Zealand, analogs of the indole–diterpenoid paxilline (thought to be a biosynthetic precursor of the lolitrems and related tremorgens) were detected by ELISA, and N-formylloline was detected by gas chromatography. Endophyte-free specimens of New Zealand E. ovatus did not contain detectable paxilline analogs or lolines and were more palatable than infected specimens to adults of the pasture pest Listronotus bonariensis (Argentine stem weevil). Hyphae similar to those of the E. ovatus endophyte were also found in herbarium specimens of Echinopogon nutans var. major, Echinopogon intermedius, Echinopogon caespitosus, and Echinopogon cheeli. This appears to be the first time that an endophytic Neotyphodium species has been identified in grasses endemic to New Zealand or Australia. PMID:9464398

  8. Unexpected diversity of basidiomycetous endophytes in sapwood and leaves of Hevea.

    PubMed

    Martin, Rachael; Gazis, Romina; Skaltsas, Demetra; Chaverri, Priscila; Hibbett, David

    2015-01-01

    Research on fungal endophytes has expanded dramatically in recent years, but little is known about the diversity and ecological roles of endophytic basidiomycetes. Here we report the analysis of 310 basidiomycetous endophytes isolated from wild and planted populations of the rubber tree genus, Hevea. Species accumulation curves were nonasymptotic, as in the majority of endophyte surveys, indicating that more sampling is needed to recover the true diversity of the community. One hundred eighteen OTUs were delimited, representing nine orders of Basidiomycota (Agaricales, Atheliales, Auriculariales, Cantharellales, Hymenochaetales, Polyporales, Russulales, Septobasidiales, Tremellales). The diversity of basidiomycetous endophytes found inhabiting wild populations of Hevea was comparable to that present in plantations. However, when samples were segregated by tissue type, sapwood of wild populations was found to contain a higher number of species than sapwood of planted trees. Seventy-five percent of isolates were members of the Polyporales, the majority in the phlebioid clade. Most of the species belong to clades known to cause a white-rot type of wood decay. Two species in the insect-associated genus Septobasidium were isolated. The most frequently isolated genera included Bjerkandera, Ceriporia, Phanerochaete, Phlebia, Rigidoporus, Tinctoporellus, Trametes (Polyporales), Peniophora, Stereum (Russulales) and Coprinellus (Agaricales), all of which have been reported as endophytes from a variety of hosts, across wide geographic locations. Literature records on the geographic distribution and host association of these genera revealed that their distribution and substrate affinity could be extended if the endophytic niche was investigated as part of fungal biodiversity surveys. © 2015 by The Mycological Society of America.

  9. Endophytic fungi: expanding the arsenal of industrial enzyme producers.

    PubMed

    Corrêa, Rúbia Carvalho Gomes; Rhoden, Sandro Augusto; Mota, Thatiane Rodrigues; Azevedo, João Lúcio; Pamphile, João Alencar; de Souza, Cristina Giatti Marques; Polizeli, Maria de Lourdes Teixeira de Moraes; Bracht, Adelar; Peralta, Rosane Marina

    2014-10-01

    Endophytic fungi, mostly belonging to the Ascomycota, are found in the intercellular spaces of the aerial plant parts, particularly in leaf sheaths, sometimes even within the bark and root system without inducing any visual symptoms of their presence. These fungi appear to have a capacity to produce a wide range of enzymes and secondary metabolites exhibiting a variety of biological activities. However, they have been only barely exploited as sources of enzymes of industrial interest. This review emphasizes the suitability and possible advantages of including the endophytic fungi in the screening of new enzyme producing organisms as well as in studies aiming to optimize the production of enzymes through well-known culture processes. Apparently endophytic fungi possess the two types of extracellular enzymatic systems necessary to degrade the vegetal biomass: (1) the hydrolytic system responsible for polysaccharide degradation consisting mainly in xylanases and cellulases; and (2) the unique oxidative ligninolytic system, which degrades lignin and opens phenyl rings, comprises mainly laccases, ligninases and peroxidases. The obvious ability of endophytic fungi to degrade the complex structure of lignocellulose makes them useful in the exploration of the lignocellulosic biomass for the production of fuel ethanol and other value-added commodity chemicals. In addition to this, endophytic fungi may become new sources of industrially useful enzymes such as lipases, amylases and proteases.

  10. From the Lab Bench: Should you plant a non-toxic endophyte tall fescue?

    USDA-ARS?s Scientific Manuscript database

    A column was written to discuss planting novel endophyte tall fescue for alleviating fescue toxicosis. Endophyte-free tall fescue cultivars can be grazed as a non-toxic alternative, but it maust be understood that it is the endophyte, through production of alkaloids other than ergot alkaloids, that...

  11. Endophytic fungal communities of Polygonum acuminatum and Aeschynomene fluminensis are influenced by soil mercury contamination

    PubMed Central

    Mello, Ivani Souza; Vendruscullo, Suzana Junges; da Silva, Gilvan Ferreira; da Cunha, Cátia Nunes; White, James Francis

    2017-01-01

    The endophytic fungal communities of Polygonum acuminatum and Aeschynomene fluminensis were examined with respect to soil mercury (Hg) contamination. Plants were collected in places with and without Hg+2 for isolation and identification of their endophytic root fungi. We evaluated frequency of colonization, number of isolates and richness, indices of diversity and similarity, functional traits (hydrolytic enzymes, siderophores, indoleacetic acid, antibiosis and metal tolerance) and growth promotion of Aeschynomene fluminensis inoculated with endophytic fungi on soil with mercury. The frequency of colonization, structure and community function, as well as the abundant distribution of taxa of endophytic fungi were influenced by mercury contamination, with higher endophytic fungi in hosts in soil with mercury. The presence or absence of mercury in the soil changes the profile of the functional characteristics of the endophytic fungal community. On the other hand, tolerance of lineages to multiple metals is not associated with contamination. A. fluminensis depends on its endophytic fungi, since plants free of endophytic fungi grew less than expected due to mercury toxicity. In contrast plants containing certain endophytic fungi showed good growth in soil containing mercury, even exceeding growth of plants cultivated in soil without mercury. The data obtained confirm the hypothesis that soil contamination by mercury alters community structure of root endophytic fungi in terms of composition, abundance and species richness. The inoculation of A. fluminensis with certain strains of stress tolerant endophytic fungi contribute to colonization and establishment of the host and may be used in processes that aim to improve phytoremediation of soils with toxic concentrations of mercury. PMID:28742846

  12. Endophytic fungal communities of Polygonum acuminatum and Aeschynomene fluminensis are influenced by soil mercury contamination.

    PubMed

    Pietro-Souza, William; Mello, Ivani Souza; Vendruscullo, Suzana Junges; Silva, Gilvan Ferreira da; Cunha, Cátia Nunes da; White, James Francis; Soares, Marcos Antônio

    2017-01-01

    The endophytic fungal communities of Polygonum acuminatum and Aeschynomene fluminensis were examined with respect to soil mercury (Hg) contamination. Plants were collected in places with and without Hg+2 for isolation and identification of their endophytic root fungi. We evaluated frequency of colonization, number of isolates and richness, indices of diversity and similarity, functional traits (hydrolytic enzymes, siderophores, indoleacetic acid, antibiosis and metal tolerance) and growth promotion of Aeschynomene fluminensis inoculated with endophytic fungi on soil with mercury. The frequency of colonization, structure and community function, as well as the abundant distribution of taxa of endophytic fungi were influenced by mercury contamination, with higher endophytic fungi in hosts in soil with mercury. The presence or absence of mercury in the soil changes the profile of the functional characteristics of the endophytic fungal community. On the other hand, tolerance of lineages to multiple metals is not associated with contamination. A. fluminensis depends on its endophytic fungi, since plants free of endophytic fungi grew less than expected due to mercury toxicity. In contrast plants containing certain endophytic fungi showed good growth in soil containing mercury, even exceeding growth of plants cultivated in soil without mercury. The data obtained confirm the hypothesis that soil contamination by mercury alters community structure of root endophytic fungi in terms of composition, abundance and species richness. The inoculation of A. fluminensis with certain strains of stress tolerant endophytic fungi contribute to colonization and establishment of the host and may be used in processes that aim to improve phytoremediation of soils with toxic concentrations of mercury.

  13. Screening mycotoxins for quorum inhibition in a biocontrol bacterial endophyte

    USDA-ARS?s Scientific Manuscript database

    Bacterial endophytes are used as biocontrol organisms for plant pathogens such as the maize endophyte Fusarium verticillioides and its production of fumonisin mycotoxins. However, such applications are not always predictable and efficient. Bacteria communicate via cell-dependent signals, which are r...

  14. Microbial endophytes: future challenges

    USDA-ARS?s Scientific Manuscript database

    Endophytes are represented by a diverse group of prokaryotic (bacteria or cyanobacteria) or eukaryotic (fungi or parasitic vascular plants) organisms that form life-long associations within tissues of plants. Ecologically, these associations are usually viewed as advantageous although in some insta...

  15. Identification of arsenic resistant endophytic bacteria from Pteris vittata roots and characterization for arsenic remediation application.

    PubMed

    Tiwari, Sarita; Sarangi, Bijaya Ketan; Thul, Sanjog T

    2016-09-15

    Mitigation of arsenic (As) pollution is a topical environmental issue of high R&D priority. The present investigation was carried out to isolate As resistant endophytes from the roots of Indian ecotype Pteris vittata and characterize their As transformation and tolerance ability, plant growth promoting characteristics and their role to facilitate As uptake by the plant. A total of 8 root endophytes were isolated from plants grown in As amended soil (25 mg As kg(-1)). These isolates were studied for minimum inhibitory concentration (MIC), arsenite As(III) - arsenate As(V) transformation ability, plant growth promoting (PGP) characteristics through siderophore, indole acetic acid (IAA) production, phosphatase, ACC deaminase activity, and presence of arsenite oxidase (aox) and arsenite transporter (arsB) genes. On the basis of 16S rDNA sequence analysis, these isolates belong to Proteobacteria, Firmicutes and Bacteroidetes families under the genera Bacillus, Enterobacter, Stenotrophomonas and Rhizobium. All isolates were found As tolerant, of which one isolates showed highest tolerance up to 1000 mg L(-1) concentration in SLP medium. Five isolates were IAA positive with highest IAA production up to 60 mg/L and two isolates exhibited siderophore activity. Phosphatase activity was shown by only one isolate while ACC deaminase activity was absent in all the isolates. The As transformation study by silver nitrate test showed that only two strains had dual characteristics of As(III) oxidation and As (V) reduction, four strains exhibited either of the characteristics while other two didn't confirmed any of the two characteristics. Presence of aox gene was detected in two strains and arsB gene in six isolates. The strain with highest As tolerance also showed highest IAA production and occurrence of arsB gene. Present investigation may open up further scope of utilizing these endophytes for up gradation of phytoextraction process. Copyright © 2016 Elsevier Ltd. All

  16. Diversity and antimicrobial activity of endophytic fungi associated with the alpine plant Saussurea involucrata.

    PubMed

    Lv, Ya-li; Zhang, Fu-sheng; Chen, Juan; Cui, Jin-long; Xing, Yong-mei; Li, Xiang-dong; Guo, Shun-xing

    2010-01-01

    Endophytic fungi are rich in species diversity and may play an important role in the fitness of their host plants. This study investigated the diversity and antimicrobial potential of endophytic fungi obtained from Saussurea involucrata KAR. et KIR. A total of 49 endophytic fungi were isolated from S. involucrata and identified using morphological and molecular techniques. Extracts of fermentation broth from the 49 fungi were tested for antimicrobial activity against pathogenic microorganisms using the agar diffusion method. Forty-eight out of the 49 endophytic fungi were identified and grouped into 14 taxa. Cylindrocarpon sp. was the dominant species isolated from S. involucrata, followed by Phoma sp. and Fusarium sp. Among the 49 endophytic fungi, 9 root isolates having darkly pigmented, septate hyphae were identified as dark septate endophytic (DSE) fungus, and 12 fungi inhibited at least one test microorganism. Moreover, 5 strains showed a broader spectrum of antimicrobial activity and 4 strains displayed strong inhibition (+++) against pathogenic fungi. The results indicate that endophytic fungi isolated from S. involucrata are diverse in species and a potential source of antimicrobial agents.

  17. First report of clavicipitaceous anamorphic endophytes in hordeum species

    Treesearch

    A.D. Wilson; S.L. Clement; W.J. Kaiser; D.G. Lester

    1991-01-01

    Clavicipitaceous endophytes systemically infect many grass species and produce alkaloids that confer resistance to insects (2) and toxicity to mammals (1). The mutualistic anamorphic forms (e.g., Acremonium spp.) do not sporulate or cause symptoms, but they produce distinctive mycelium in their hosts. The incidence of anamorphic endophytes in a portion of the U.S....

  18. Endophyte mediated plant-herbivore interactions or cross resistance to fungi and insect herbivores

    Treesearch

    Kari Saikkonen; Marjo Helander

    2012-01-01

    Endophytic fungi are generally considered to be plant mutualists that protect the host plant from pathogens and herbivores. Defensive mutualism appears to hold true particularly for seed-transmitted, alkaloid producing, grass endophytes. However, we propose that the mutualistic nature of plant-endophyte interactions via enhanced plant resistance to pathogens and...

  19. Endophytic microorganisms--promising applications in bioremediation of greenhouse gases.

    PubMed

    Stępniewska, Z; Kuźniar, A

    2013-11-01

    Bioremediation is a technique that uses microbial metabolism to remove pollutants. Various techniques and strategies of bioremediation (e.g., phytoremediation enhanced by endophytic microorganisms, rhizoremediation) can mainly be used to remove hazardous waste from the biosphere. During the last decade, this specific technique has emerged as a potential cleanup tool only for metal pollutants. This situation has changed recently as a possibility has appeared for bioremediation of other pollutants, for instance, volatile organic compounds, crude oils, and radionuclides. The mechanisms of bioremediation depend on the mobility, solubility, degradability, and bioavailability of contaminants. Biodegradation of pollutions is associated with microbial growth and metabolism, i.e., factors that have an impact on the process. Moreover, these factors have a great influence on degradation. As a result, recognition of natural microbial processes is indispensable for understanding the mechanisms of effective bioremediation. In this review, we have emphasized the occurrence of endophytic microorganisms and colonization of plants by endophytes. In addition, the role of enhanced bioremediation by endophytic bacteria and especially of phytoremediation is presented.

  20. Isolation, Purification and Characterization of Antimicrobial Agent Antagonistic to Escherichia coli ATCC 10536 Produced by Bacillus pumilus SAFR-032 Isolated from the Soil of Unaizah, Al Qassim Province of Saudi Arabia.

    PubMed

    S Alanazi, Abdurrahman; Qureshi, Kamal Ahmad; Elhassan, Gamal Osman; I El-Agamy, Elsayed

    Escherichia coli is one of the most common pathogenic bacteria, which cause urinary tract infections in infants as well as in adult human beings. Due to the emergence of antibiotic resistance in E. coli, there is a great demand of new antimicrobial agent for the treatment of infections caused by such E. coli. This study aims to isolate, identify and characterize the native soil-bacterial strains predominate in the soil of Unaizah city, which produce antimicrobial agent antagonistic to E. coli ATCC 10536, followed by isolation, purification and characterization of antimicrobial agent. Pour plate, spread plate and 16S rRNA sequence analysis methods were followed for the isolation and identification of soil bacteria. Ammonium sulphate and dialysis (MWCO-8 KD) methods were followed for the isolation and partial purification of antimicrobial agent from the cell free broths. The characterization of antimicrobial agent was carried out by determining the minimum inhibitory concentration and effects of temperature and pH on the antimicrobial stability. Out of the twenty five soil samples, only one soil-bacterial strain was found to produce antimicrobial agent antagonistic to E. coli ATCC 10536. The isolated soil bacterium was identified as Bacillus pumilus SAFR-032. The soil isolate was characterized and results suggest that 30°C temperature and pH 7.0 were the optimum growth parameters and soybean casein digest broth was the best fermentation medium, whereas the highest production of antimicrobial agent was at 35°C temperature, pH 7.0, shaking at 150-220 rpm and at 60th h of incubation. The maximum yield of antimicrobial agent was obtained at 60% of (NH 4) 2SO 4. The results of characterization of antimicrobial agent suggest that the maximum and minimum antimicrobial activities were at pH 3.0 and 8.0, respectively, whereas antimicrobial activity was unaffected by temperature. The antimicrobial agent was highly stable at varying range of temperature 50-120°C. Minimum

  1. Phylogeny of marine Bacillus isolates from the Gulf of Mexico

    NASA Technical Reports Server (NTRS)

    Siefert, J. L.; Larios-Sanz, M.; Nakamura, L. K.; Slepecky, R. A.; Paul, J. H.; Moore, E. R.; Fox, G. E.; Jurtshuk, P. Jr

    2000-01-01

    The phylogeny of 11 pigmented, aerobic, spore-forming isolates from marine sources was studied. Forty-two biochemical characteristics were examined, and a 16S rDNA sequence was obtained for each isolate. In a phylogenetic tree based on 16S sequencing, four isolates (NRRL B-14850, NRRL B-14904, NRRL B-14907, and NRRL B-14908) clustered with B. subtilis and related organisms; NRRL B-14907 was closely related to B. amyloliquefaciens. NRRL B-14907 and NRRL B-14908 were phenotypically similar to B. amyloliquefaciens and B. pumilus, respectively. Three strains (NRRL B-14906, NRRL B-14910, and NRRL B-14911) clustered in a clade that included B. firmus, B. lentus, and B. megaterium. NRRL B-14910 was closely related phenotypically and phylogenetically to B. megaterium. NRRL B-14905 clustered with the mesophilic round spore-producing species, B. fusiformis and B. sphaericus; the isolate was more closely related to B. fusiformis. NRRL B-14905 displayed characteristics typical of the B. sphaericus-like organisms. NRRL B-14909 and NRRL B-14912 clustered with the Paenibacillus species and displayed characteristics typical of the genus. Only NRRL B-14851, an unusually thin rod that forms very small spores, may represent a new Bacillus species.

  2. Glucanase and Chitinase from Some Isolates of Endophytic Fungus Trichoderma spp.

    NASA Astrophysics Data System (ADS)

    Prasetyawan, Sasangka; Sulistyowati, Lilik; Aulanni'am

    2018-01-01

    Endophytic fungi are those fungi that are able to grow in plant tissue without causing symptoms of disease. It is thought that these fungi may confer on the host plants degree of resistance to parasitic invasion. Endophytic fungi have been isolated from stem tissue and these fungi are known to be antagonistic to pathogenic fungi. These endophytes produce chitinase and β-1,3-glucanase enzymes. Based on the fact that chitin and β-1,3-glucan are the main skeletal polysaccharides of the cell walls of fungal patogen. The aim of this research is to do potential test on some of isolates of Trichoderma’s endophytic (L-1, L-2, Is-1, Is-2 and Is-7) in the chitinase and β-1,3-glucanase activity in effort to determine endophytic which be chossen to be gene resource for the next research. The gene will be transformed to citrus plant japanese citroen in effort to make citrus plant transgenic resistance to phytopatogenic invasion. The result of this research is endofit namely L-1 is the most potential endophytic fungi with chitinase activities is 4,8 10-2 Unit and glucanase 24,2. 1012 Unit. The addition of chitin and cell wall of phytophtora causes chitinase activity significantly increase, and also addition of laminarin and cell wall of phytophtora makes glucanase activity increase.

  3. A Legume Genetic Framework Controls Infection of Nodules by Symbiotic and Endophytic Bacteria

    PubMed Central

    Zgadzaj, Rafal; James, Euan K.; Kelly, Simon; Kawaharada, Yasuyuki; de Jonge, Nadieh; Jensen, Dorthe B.; Madsen, Lene H.; Radutoiu, Simona

    2015-01-01

    Legumes have an intrinsic capacity to accommodate both symbiotic and endophytic bacteria within root nodules. For the symbionts, a complex genetic mechanism that allows mutual recognition and plant infection has emerged from genetic studies under axenic conditions. In contrast, little is known about the mechanisms controlling the endophytic infection. Here we investigate the contribution of both the host and the symbiotic microbe to endophyte infection and development of mixed colonised nodules in Lotus japonicus. We found that infection threads initiated by Mesorhizobium loti, the natural symbiont of Lotus, can selectively guide endophytic bacteria towards nodule primordia, where competent strains multiply and colonise the nodule together with the nitrogen-fixing symbiotic partner. Further co-inoculation studies with the competent coloniser, Rhizobium mesosinicum strain KAW12, show that endophytic nodule infection depends on functional and efficient M. loti-driven Nod factor signalling. KAW12 exopolysaccharide (EPS) enabled endophyte nodule infection whilst compatible M. loti EPS restricted it. Analysis of plant mutants that control different stages of the symbiotic infection showed that both symbiont and endophyte accommodation within nodules is under host genetic control. This demonstrates that when legume plants are exposed to complex communities they selectively regulate access and accommodation of bacteria occupying this specialized environmental niche, the root nodule. PMID:26042417

  4. Endophytic bacteria and their potential to enhance heavy metal phytoextraction.

    PubMed

    Rajkumar, Mani; Ae, Noriharu; Freitas, Helena

    2009-09-01

    Pollution of soils with heavy metals is becoming one of the most severe environmental and human health hazards. Due to its widespread contamination finding innovative ways to clean metal pollutant has become a priority in the remediation field. Phytoremediation, the use of plants for the restoration of environments contaminated with pollutants is a relatively new technology that is more benign than current engineering solutions to treat contaminated sites. Recently, the benefits of combining endophytic bacteria with plants for increased remediation of pollutants have been successfully tried for toxic metal removal from contaminated soils. Endophytic bacteria reside within plant hosts without causing disease symptoms. Further, the metal resistant endophytes are reported to be present in various hyperaccumulator plants growing on heavy metal contaminated soils and play an important role in successful survival and growth of plants. Moreover, the metal resistant endophytes are reported to promote plant growth by various mechanisms such as nitrogen fixation, solubilization of minerals, production of phytohormones, siderophores, utilization of 1-aminocyclopropane-1-carboxylic acid as a sole N source and transformation of nutrient elements. In this review we highlight the diversity and plant growth promoting features of metal resistant endophytic bacteria and discuss their potential in phytoextraction of heavy metals from contaminated soils.

  5. From Concept to Commerce: Developing a Successful Fungal Endophyte Inoculant for Agricultural Crops

    PubMed Central

    Doohan, Fiona M.; Hodkinson, Trevor R.

    2018-01-01

    The development of endophyte inoculants for agricultural crops has been bedevilled by the twin problems of a lack of reliability and consistency, with a consequent lack of belief among end users in the efficacy of such treatments. We have developed a successful research pipeline for the production of a reliable, consistent and environmentally targeted fungal endophyte seed-delivered inoculant for barley cultivars. Our approach was developed de novo from an initial concept to source candidate endophyte inoculants from a wild relative of barley, Hordeum murinum (wall barley). A careful screening and selection procedure and extensive controlled environment testing of fungal endophyte strains, followed by multi-year field trials has resulted in the validation of an endophyte consortium suitable for barley crops grown on relatively dry sites. Our approach can be adapted for any crop or environment, provided that the set of first principles we have developed is followed. Here, we report how we developed the successful pipeline for the production of an economically viable fungal endophyte inoculant for barley cultivars. PMID:29439471

  6. From Concept to Commerce: Developing a Successful Fungal Endophyte Inoculant for Agricultural Crops.

    PubMed

    Murphy, Brian R; Doohan, Fiona M; Hodkinson, Trevor R

    2018-02-11

    The development of endophyte inoculants for agricultural crops has been bedevilled by the twin problems of a lack of reliability and consistency, with a consequent lack of belief among end users in the efficacy of such treatments. We have developed a successful research pipeline for the production of a reliable, consistent and environmentally targeted fungal endophyte seed-delivered inoculant for barley cultivars. Our approach was developed de novo from an initial concept to source candidate endophyte inoculants from a wild relative of barley, Hordeum murinum (wall barley). A careful screening and selection procedure and extensive controlled environment testing of fungal endophyte strains, followed by multi-year field trials has resulted in the validation of an endophyte consortium suitable for barley crops grown on relatively dry sites. Our approach can be adapted for any crop or environment, provided that the set of first principles we have developed is followed. Here, we report how we developed the successful pipeline for the production of an economically viable fungal endophyte inoculant for barley cultivars.

  7. Data on litter quality of host grass plants with and without fungal endophytes

    PubMed Central

    Gundel, P.E.; Helander, M.; Garibaldi, L.A.; Vázquez-de-Aldana, B.R.; Zabalgogeazcoa, I.; Saikkonen, K.

    2016-01-01

    Certain Pooideae species form persistent symbiosis with fungal endophytes of Epichloë genus. Although endophytes are known to impact the ecology and evolution of host species, their effects on parameters related with quality of plant biomass has been elusive. This article provides information about parameters related with the quality of plant litter biomass of two important grass species (Schedonorus phoenix and Schedonorus pratensis) affected by the symbiosis with fungal endophytes (Epichloë coenophiala and Epichloë uncinata, respectively). Four population origins of S. phoenix and one of S. pratensis were included. Mineral, biochemical and structural parameters were obtained from three samples per factors combination [species (and population origin)×endophyte]. This data can be potentially used in other studies which, by means of ‘data reanalyzing’ or meta-analysis, attempt to find generalizations about endophyte effects on host plant litter biomass. The present data is associated with the research article “Role of foliar fungal endophytes on litter decomposition among species and population origins” (Gundel et al., In preparation) [1]. PMID:27182541

  8. Data on litter quality of host grass plants with and without fungal endophytes.

    PubMed

    Gundel, P E; Helander, M; Garibaldi, L A; Vázquez-de-Aldana, B R; Zabalgogeazcoa, I; Saikkonen, K

    2016-06-01

    Certain Pooideae species form persistent symbiosis with fungal endophytes of Epichloë genus. Although endophytes are known to impact the ecology and evolution of host species, their effects on parameters related with quality of plant biomass has been elusive. This article provides information about parameters related with the quality of plant litter biomass of two important grass species (Schedonorus phoenix and Schedonorus pratensis) affected by the symbiosis with fungal endophytes (Epichloë coenophiala and Epichloë uncinata, respectively). Four population origins of S. phoenix and one of S. pratensis were included. Mineral, biochemical and structural parameters were obtained from three samples per factors combination [species (and population origin)×endophyte]. This data can be potentially used in other studies which, by means of 'data reanalyzing' or meta-analysis, attempt to find generalizations about endophyte effects on host plant litter biomass. The present data is associated with the research article "Role of foliar fungal endophytes on litter decomposition among species and population origins" (Gundel et al., In preparation) [1].

  9. Endophyte-associated ergot alkaloids

    USDA-ARS?s Scientific Manuscript database

    Fescue toxicosis is a very costly (greater than $600 million/annually) for the cattle, horse and small ruminant industries. The tall fescue forage responsible for this intoxication is infected with an endophytic fungus (Neotyphodium coenophialum) that produces ergot alkaloids, which are toxic to th...

  10. Does fire maintain symbiotic, fungal endophyte infections in native grasses?

    Treesearch

    S. H. Faeth; S. M.  Haase; S. S. Sackett; T. J. Sullivan; R. H.  Remington; C. E.  Hamilton

    2002-01-01

    Systemic endophytic fungi in agronomic and turf grasses are well known for conferring increased resistance to herbivores and to abiotic stresses, such as drought, and increasing competitive abilities. Many native grasses also harbor high frequencies of the asexual and vertically-transmitted endophyte, Neotyphodium. In Festuca arizonica...

  11. Host associations and beta diversity of fungal endophyte communities in New Guinea rainforest trees.

    PubMed

    Vincent, J B; Weiblen, G D; May, G

    2016-02-01

    Processes shaping the distribution of foliar fungal endophyte species remain poorly understood. Despite increasing evidence that these cryptic fungal symbionts of plants mediate interactions with pathogens and herbivores, there remain basic questions regarding the extent to which dispersal limitation and host specificity might shape fungal endophyte community composition in rainforests. To assess the relative importance of spatial pattern and host specificity, we isolated fungi from a sample of mapped trees in lowland Papua New Guinea. Sequences of the internal transcribed spacer (ITS) region were obtained for 2079 fungal endophytes from three sites and clustered into molecular operational taxonomic units (MOTUs) at 95% similarity. Multivariate analyses suggest that host affinity plays a significant role in structuring endophyte community composition whereas there was no evidence of endophyte spatial pattern at the scale of tens to hundreds of metres. Differences in endophyte communities between sampled trees were weakly correlated with variation in foliar traits but not with tree species relatedness. The dominance of relatively few generalist endophytes and the presence of a large number of rare MOTUs was a consistent observation at three sites separated by hundreds of kilometres and regional turnover was low. Host specificity appears to play a relatively weak but more important role than dispersal limitation in shaping the distribution of fungal endophyte communities in New Guinea forests. Our results suggest that in the absence of strong ecological gradients and host turnover, beta diversity of endophyte communities could be low in large areas of contiguous forest. © 2015 John Wiley & Sons Ltd.

  12. Endophytic fungi from mangrove inhibit lung cancer cell growth and angiogenesis in vitro.

    PubMed

    Liu, Xin; Wu, Xin; Ma, Yuefan; Zhang, Wenzhang; Hu, Liang; Feng, Xiaowei; Li, Xiangyong; Tang, Xudong

    2017-03-01

    The secondary metabolites of mangrove-derived endophytic fungi contain multiple substances with novel structures and biological activities. In the present study, three types of mangrove plants, namely Kandelia candel, Rhizophora stylosa and Rhizophoraceae from Zhanjiang region including the leaves, roots and stems were collected, and endophytic fungi were isolated, purified and identified from these mangrove plants. MTT assay was used to observe the effects of the isolated endophytic fungi on the growth of A549 and NCI-H460 lung cancer cells. The effect of the endophytic fungi on lung cancer angiogenesis in vitro induced by the HPV-16 E7 oncoprotein was observed. Our results showed that 28 strains of endophytic fungi were isolated, purified and identified from the three types of mangrove plants. Ten strains of endophytic fungi significantly suppressed the growth of A549 and NCI-H460 cells. The average inhibitory rates in the A549 cells were 64.4, 59.5, 81.9, 43.9, 58.3, 56.2, 48.3, 42.4, 93.0 and 49.7%, respectively. The average inhibitory rates in the NCI-H460 cells were 41.2, 49.3, 82.7, 40.7, 53.9, 52.6, 56.8, 64.3, 91.0 and 45.6%, respectively. Particularly, three strains of endophytic fungi markedly inhibited HPV-16 E7 oncoprotein‑induced lung cancer angiogenesis in vitro. These findings contribute to the further screening of potential chemotherapeutic agents from mangrove-derived endophytic fungi.

  13. Endophytic fungi specifically introduce novel metabolites into grape flesh cells in vitro

    PubMed Central

    Ao, Xiu-Jin; Ren, An-Yun; Zhang, Han-Bo

    2018-01-01

    Since endophytes can affect metabolism of host plants, they are expected to be used to improve crop quality, especially for crops with organoleptic sensitive products such as wine grape. However, details of metabolic interactions between endophytes and host plants were less understood. In this work, we used high pressure liquid chromatography (HPLC) to analyze the metabolites of fruit flesh cells of grape treated with dual culture of different endophytic fungal strains (EFS). We observed that the dual-culture with different fungal strains show different metabolites composition in grape cells. In response to different EFS, quantities of detected metabolites in grape cells varied from 6 to 17 in this assay, and 1 to 11 novel metabolites were introduced into metabolome of grape cells. Dual-culture with fungal strains CS2, RH16 and RH5 introduced the highest quantities (10 or 11) of novel metabolites in grape cells. More importantly, the modification of metabolic profiles in grape cells via fungal endophytes appeared to be fungal strain/genus-specificity. Overall, this work revealed that introduction of specific metabolites in host plants may be one consequence during the process of endophytes-host metabolic interactions, which raise the possibility to shape grape qualities and characteristics using tool of fungal endophytes. PMID:29734364

  14. Evaluation of antibacterial properties of some medicinal plants used in Iran.

    PubMed

    Bonjar, Shahidi

    2004-10-01

    Forty-five species of 29 plant families used in the traditional medicine by Iranian people, showed antibacterial activities against one or more of the bacterial species: Bacillus cereus, Bacillus pumilus, Bordetella bronchiseptica, Escherichia coli, Klebsiella pneumoniae, Micrococcus luteus, Pseudomonas aeruginosa, Pseudomonas fluorescens, Serratia marcescens, Staphylococcus aureus and Staphylococcus epidermidis. No plant showed activity against Serratia marcescens; Bordetella bronchiseptica being the most susceptible species. All extracts showed the same activity 18 months later.

  15. Endophyte status of tall fescue (festuca arundinacea) affects seed predation

    USDA-ARS?s Scientific Manuscript database

    In a preliminary study seed of a tall fescue (Festuca arundinacea Schreb.) variety ‘Jesup’ without endophyte were consumed at a slightly higher rate by common cricket (Acheta domesticus L.) in a standard feeding trial than the same fescue variety with the endophyte. Although, the preference for the...

  16. Endophytic colonization and in planta nitrogen fixation by a diazotrophic Serratia sp. in rice.

    PubMed

    Sandhiya, G S; Sugitha, T C K; Balachandar, D; Kumar, K

    2005-09-01

    Nitrogen fixing endophytic Serratia sp. was isolated from rice and characterized. Re-colonization ability of Serratia sp. in the rice seedlings as endophyte was studied under laboratory condition. For detecting the re-colonization potential in the rice seedlings, Serratia sp. was marked with reporter genes (egfp and Kmr) using transposon mutagenesis. The conjugants were screened for re-colonization ability and presence of nif genes using PCR. Further, the influence of flavonoids and growth hormones on the endophytic colonization and in planta nitrogen fixation of Serratia was also investigated. The flavonoids, quercetin (3 microg/ml) and diadzein (2 microg/ml) significantly increased the re-colonization ability of the endophytic Serratia, whereas the growth hormones like IAA and NAA (5 microg/ml) reduced the endophytic colonization ability of Serratia sp. Similarly, the in planta nitrogen fixation by Serratia sp. in rice was significantly increased due to flavonoids. The inoculation of endophytic diazotrophs increased the plant biomass and biochemical constituents.

  17. Translocation and insecticidal activity of Bacillus thuringiensis living inside of plants

    PubMed Central

    Monnerat, Rose Gomes; Soares, Carlos Marcelo; Capdeville, Guy; Jones, Gareth; Martins, Érica Soares; Praça, Lilian; Cordeiro, Bruno Arrivabene; Braz, Shélida Vasconcelos; Dos Santos, Roseane Cavalcante; Berry, Colin

    2009-01-01

    Summary The major biological pesticide for the control of insect infestations of crops, Bacillus thuringiensis was found to be present naturally within cotton plants from fields that had never been treated with commercial formulations of this bacterium. The ability of B. thuringiensis to colonize plants as an endophyte was further established by the introduction of a strain marked by production of green fluorescent protein (GFP). After inoculation of this preparation close to the roots of cotton and cabbage seedlings, GFP‐marked bacteria could be re‐isolated from all parts of the plant, having entered the roots and migrated through the xylem. Leaves taken from the treated plants were able to cause toxicity when fed to the Lepidoptera Spodoptera frugiperda (cotton) and Plutella xylostella (cabbage). These results open up new horizons for understanding the natural ecology and evolution of B. thuringiensis and use of B. thuringiensis in insect control. PMID:21255282

  18. Fungal endophytes and their interactions with plants in phytoremediation: A review.

    PubMed

    Deng, Zujun; Cao, Lixiang

    2017-02-01

    Endophytic microorganisms (including bacteria and fungi) are likely to interact closely with their hosts and are more protected from adverse changes in the environment. The microbiota contribute to plant growth, productivity, carbon sequestration, and phytoremediation. Elevated levels of contaminants (i.e. metals) are toxic to most plants, the plant's metabolism and growth were impaired and their potential for metal phytoextraction is highly restricted. Exploiting endophytic microorganisms to reduce metal toxicity to plants have been investigated to improve phytoremediation efficiencies. Fungi play an important role in organic and inorganic transformation, element cycling, rock and mineral transformations, bioweathering, mycogenic mineral formation, fungal-clay interactions, and metal-fungal interactions. Endophytic fungi also showed potentials to enhance phytoremediation. Compared to bacteria, most fungi exhibit a filamentous growth habit, which provides the ability to adopt both explorative or exploitative growth strategies and form linear organs of aggregated hyphae to protect fungal translocation. However, the information regarding the role of endophytic fungi in phytoremediation are incomplete, this review highlights the taxa, physiological properties, and interaction of endophytic fungi with plants in phytoremediation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Enhancement of the immune response and protection against Vibrio parahaemolyticus by indigenous probiotic Bacillus strains in mud crab (Scylla paramamosain).

    PubMed

    Wu, Hui-Juan; Sun, Ling-Bin; Li, Chuan-Biao; Li, Zhong-Zhen; Zhang, Zhao; Wen, Xiao-Bo; Hu, Zhong; Zhang, Yue-Ling; Li, Sheng-Kang

    2014-12-01

    In a previous study, bacterial communities of the intestine in three populations of crabs (wild crabs, pond-raised healthy crabs and diseased crabs) were probed by culture-independent methods. In this study, we examined the intestinal communities of the crabs by bacterial cultivation with a variety of media. A total of 135 bacterial strains were isolated from three populations of mud crabs. The strains were screened for antagonistic activity against Vibrio parahaemolyticus using an agar spot assay. Antagonistic strains were then identified by 16S rRNA gene sequence analysis. Three strains (Bacillus subtilis DCU, Bacillus pumilus BP, Bacillus cereus HL7) with the strongest antagonistic activity were further evaluated for their probiotic characteristics. The results showed that two (BP and DCU) of them were able to survive low pH and high bile concentrations, showed good adherence characteristics and a broad spectrum of antibiotic resistance. The probiotic effects were then tested by feeding juvenile mud crabs (Scylla paramamosain) with foods supplemented with 10(5) CFU/g of BP or DCU for 30 days before being subjected to an immersion challenge with V. parahaemolyticus for 48 h. The treated crabs showed significantly higher expression levels of immune related genes (CAT, proPO and SOD) and activities of respiratory burst than that in controlled groups. Crabs treated with BP and DCU supplemented diets exhibited survival rates of 76.67% and 78.33%, respectively, whereas survival rate was 54.88% in crabs not treated with the probiotics. The data showed that indigenous mud-associated microbiota, such as DCU and BP, have potential application in controlling pathogenic Vibriosis in mud crab aquaculture. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Research advance on stable mechanism of endophytic fungi to red wine colour during the aging

    NASA Astrophysics Data System (ADS)

    Nan, Lijun; Li, Yashan; Cui, Changwei; Ning, Na; Huang, Jing; Xu, Chengdong; Tao, Fang; Zhang, Jinyong

    2018-04-01

    Based on the fact that persistent mutation of vinous color was not conducive to the stabilization of vinous quality during the aging, research advance on the stable mechanism of endophytic fungi to colour of red wine during the aging, including investigative status and developmental dynamic at home and abroad, endophytes and pigment of materials in wine, including effect of endophyte on vinaceous color, and even the application of tracer method in wine was summarized, respectively. The relationship between diversity of community the endophytic fungi and the main pigment material in wine was existent objectively, also included the response mechanism on colony dynamic of endophytic fungi to the various pigment as well as substance related to color, which laid the foundation for exploring the relationships between endophytic fungi and wine color, and the variational mechanism of the color under endophytic fungi during the aging period of wine. Color as an important reference index of wine quality influenced not only the sensory evaluation of consumer, but also the quality of wine because of the self-aggregation or combination of phenolic composition with other substances under the endophytic fungi during the storage. Only steady wine in the color could guarantee the security of quality.

  1. Diversity of fungal endophytes in recent and ancient wheat ancestors Triticum dicoccoides and Aegilops sharonensis.

    PubMed

    Ofek-Lalzar, Maya; Gur, Yonatan; Ben-Moshe, Sapir; Sharon, Or; Kosman, Evsey; Mochli, Elad; Sharon, Amir

    2016-10-01

    Endophytes have profound impacts on plants, including beneficial effects on agriculturally important traits. We hypothesized that endophytes in wild plants include beneficial endophytes that are absent or underrepresented in domesticated crops. In this work, we studied the structure of endophyte communities in wheat-related grasses, Triticum dicoccoides and Aegilops sharonensis, and compared it to an endophyte community from wheat (T. aeastivum). Endophytes were isolated by cultivation and by cultivation-independent methods. In total, 514 intergenic spacer region sequences from single cultures were analyzed. Categorization at 97% sequence similarity resulted in 67 operational taxonomic units (OTUs) that were evenly distributed between the different plant species. A narrow core community of Alternaria spp. was found in all samples, but each plant species also contained a significant portion of unique endophytes. The cultivation-independent analysis identified a larger number of OTUs than the cultivation method, half of which were singletons or doubletons. For OTUs with a relative abundance >0.5%, similar numbers were obtained by both methods. Collectively, our data show that wild grass relatives of wheat contain a wealth of taxonomically diverse fungal endophytes that are not found in modern wheat, some of which belong to taxa with known beneficial effects. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  2. Seed-vectored endophytic bacteria modulate development of rice seedlings.

    PubMed

    Verma, S K; Kingsley, K; Irizarry, I; Bergen, M; Kharwar, R N; White, J F

    2017-06-01

    The aim of the present study was to evaluate the effects of the removal of indigenous bacteria from rice seeds on seedling growth and development. Here we report the presence of three indigenous endophytic bacteria in rice seeds that play important roles in modulating seedling development (shoot and root lengths, and formation of root hairs and secondary roots) and defence against pathogens. Seed-associated bacteria were removed using surface sterilization with NaOCl (bleach) followed by antibiotic treatment. When bacteria were absent, growth of seedlings in terms of root hair development and overall seedling size was less than that of seedlings that contained bacteria. Reactive oxygen staining of seedlings showed that endophytic bacteria became intracellular in root parenchyma cells and root hairs. Roots containing endophytic bacteria were seen to stain densely for reactive oxygen, while roots free of bacteria stained lightly for reactive oxygen. Bacteria were isolated and identified as Enterobacter asburiae (VWB1), Pantoea dispersa (VWB2) and Pseudomonas putida (VWB3) by 16S rDNA sequencing. Bacteria were found to produce indole acetic acid (auxins), inhibited the pathogen Fusarium oxysporum and solubilized phosphate. Reinoculation of bacteria onto seedlings derived from surface-disinfected rice and Bermuda grass seeds significantly restored seedling growth and development. Rice seeds harbour indigenous bacterial endophytes that greatly influence seedling growth and development, including root and shoot lengths, root hair formation and disease susceptibility of rice seedlings. This study shows that seeds of rice naturally harbour bacterial endophytes that play key roles in modulation of seedling development. © 2017 The Society for Applied Microbiology.

  3. Horizontal Gene Transfer to Endogenous Endophytic Bacteria from Poplar Improves Phytoremediation of Toluene

    PubMed Central

    Taghavi, Safiyh; Barac, Tanja; Greenberg, Bill; Borremans, Brigitte; Vangronsveld, Jaco; van der Lelie, Daniel

    2005-01-01

    Poplar, a plant species frequently used for phytoremediation of groundwater contaminated with organic solvents, was inoculated with the endophyte Burkholderia cepacia VM1468. This strain, whose natural host is yellow lupine, contains the pTOM-Bu61 plasmid coding for constitutively expressed toluene degradation. Noninoculated plants or plants inoculated with the soil bacterium B. cepacia Bu61(pTOM-Bu61) were used as controls. Inoculation of poplar had a positive effect on plant growth in the presence of toluene and reduced the amount of toluene released via evapotranspiration. These effects were more dramatic for VM1468, the endophytic strain, than for Bu61. Remarkably, none of the strains became established at detectable levels in the endophytic community, but there was horizontal gene transfer of pTOM-Bu61 to different members of the endogenous endophytic community, both in the presence and in the absence of toluene. This work is the first report of in planta horizontal gene transfer among plant-associated endophytic bacteria and demonstrates that such transfer could be used to change natural endophytic microbial communities in order to improve the remediation of environmental insults. PMID:16332840

  4. Increased milk production by Holstein cows consuming endophyte-infected fescue seed during the dry period.

    USDA-ARS?s Scientific Manuscript database

    Ergot alkaloids in endophyte-infected grasses inhibit prolactin (PRL) secretion and may reduce milk production of cows consuming endophyte-infected grasses. We hypothesized that consumption of endophyte-infected fescue during the dry period inhibits mammary differentiation and subsequent milk produ...

  5. An endophytic Coniochaeta velutina producing broad spectrum antimycotics.

    PubMed

    Xie, Jie; Strobel, Gary A; Feng, Tao; Ren, Huishuang; Mends, Morgan T; Zhou, Zeyang; Geary, Brad

    2015-06-01

    An endophyte (PC27-5) was isolated from stem tissue of Western hemlock (Tsuga heterophylla) in a Pacific Northwest temperate rainforest. Phylogenetic analyses, based on ITS-5.8S rDNA and 18S rDNA sequence data, combined with cultural and morphological analysis showed that endophyte PC27-5 exhibited all characteristics of a fungus identical to Coniochaeta velutina. Furthermore, wide spectrum antimycotics were produced by this endophyte that were active against such plant pathogens as Sclerotinia sclerotiorum, Pythium ultimum, and Verticillium dahliae and lethal to Phythophthora cinnamomi, Pythium ultimum, and Phytophthora palmivora in plate tests. The bioactive components were purified through organic solvent extraction, followed by silica column chromatography, and finally preparative HPLC. The minimum inhibitory concentration of the active fraction to Pythium ultimum, which was gained from preparative HPLC, was 11 μg/ml. UPLC-HRMS analysis showed there were two similar components in the antimycotic fraction. Their molecular formulae were established as C30H22O11 (compound I) and C30H22O10 (compound II) respectively, and preliminary spectral results indicate that they are anthroquinone glycosides. Other non-biologically active compounds were identified in culture fluids of this fungus by spectral means as emodin and chrysophanol--anthroquinone derivatives. This is the first report that Coniochaeta velutina as an endophyte produces bioactive antifungal components.

  6. Bacterial endophytes enhance competition by invasive plants.

    PubMed

    Rout, Marnie E; Chrzanowski, Thomas H; Westlie, Tara K; DeLuca, Thomas H; Callaway, Ragan M; Holben, William E

    2013-09-01

    Invasive plants can alter soil microbial communities and profoundly alter ecosystem processes. In the invasive grass Sorghum halepense, these disruptions are consequences of rhizome-associated bacterial endophytes. We describe the effects of N2-fixing bacterial strains from S. halepense (Rout and Chrzanowski, 2009) on plant growth and show that bacteria interact with the plant to alter soil nutrient cycles, enabling persistence of the invasive. • We assessed fluxes in soil nutrients for ∼4 yr across a site invaded by S. halepense. We assayed the N2-fixing bacteria in vitro for phosphate solubilization, iron chelation, and production of the plant-growth hormone indole-3-acetic acid (IAA). We assessed the plant's ability to recruit bacterial partners from substrates and vertically transmit endophytes to seeds and used an antibiotic approach to inhibit bacterial activity in planta and assess microbial contributions to plant growth. • We found persistent alterations to eight biogeochemical cycles (including nitrogen, phosphorus, and iron) in soils invaded by S. halepense. In this context, three bacterial isolates solubilized phosphate, and all produced iron siderophores and IAA in vitro. In growth chamber experiments, bacteria were transmitted vertically, and molecular analysis of bacterial community fingerprints from rhizomes indicated that endophytes are also horizontally recruited. Inhibiting bacterial activity with antibiotics resulted in significant declines in plant growth rate and biomass, with pronounced rhizome reductions. • This work suggests a major role of endophytes on growth and resource allocation of an invasive plant. Indeed, bacterial isolate physiology is correlated with invader effects on biogeochemical cycles of nitrogen, phosphate, and iron.

  7. Fungal endophytes characterization from four species of Diplazium Swartz

    NASA Astrophysics Data System (ADS)

    Affina-Eliya, A. A.; Noraini, T.; Nazlina, I.; Ruzi, A. R.

    2014-09-01

    Four species on genus Diplazium namely Diplazium tomentosum, D. sorzogonense, D. asperum and D. accedens of Peninsular Malaysia were studied for presence of fungal endophyte. The objective of this study is to characterize fungal endophytes in the rhizome of four Diplazium species. The rhizome was surface sterilized and incubated to isolate fungal endophytes. Characterization of the colonies was performed by macroscopic morphological, microscopic identification, types of hyphae and mycelium, and spore structure. For isolation that produces spores, the structure of conidiophores and conidia were identified. From this study, four fungal have been isolated and determined as Aspergillus sp. (isolates AE 1), Aspergillus fumigatus (isolates AE 2), Aspergillus versicolor (isolates AE 3) and Verticillium sp. (isolates AE 4). The fungal isolates from this study were classified from the same family Moniliaceae.

  8. Determination and production of antimicrobial compounds by Aspergillus clavatonanicus strain MJ31, an endophytic fungus from Mirabilis jalapa L. using UPLC-ESI-MS/MS and TD-GC-MS analysis

    PubMed Central

    Mishra, Vineet Kumar; Passari, Ajit Kumar; Chandra, Preeti; Leo, Vincent Vineeth; Kumar, Brijesh; Uthandi, Sivakumar; Thankappan, Sugitha; Gupta, Vijai Kumar

    2017-01-01

    Endophytic fungi associated with medicinal plants are reported as potent producers of diverse classes of secondary metabolites. In the present study, an endophytic fungi, Aspergillus clavatonanicus strain MJ31, exhibiting significant antimicrobial activity was isolated from roots of Mirabilis jalapa L., was identified by sequencing three nuclear genes i.e. internal transcribed spacers ribosomal RNA (ITS rRNA), 28S ribosomal RNA (28S rRNA) and translation elongation factor 1- alpha (EF 1α). Ethyl acetate extract of strain MJ31displayed significant antimicrobial potential against Bacillus subtilis, followed by Micrococccus luteus and Staphylococcus aureus with minimum inhibitory concentrations (MIC) of 0.078, 0.156 and 0.312 mg/ml respectively. In addition, the strain was evaluated for its ability to synthesize bioactive compounds by the amplification of polyketide synthase (PKS) and non ribosomal peptide synthetase (NRPS) genes. Further, seven antibiotics (miconazole, ketoconazole, fluconazole, ampicillin, streptomycin, chloramphenicol, and rifampicin) were detected and quantified using UPLC-ESI-MS/MS. Additionally, thermal desorption-gas chromatography mass spectrometry (TD-GC-MS) analysis of strain MJ31 showed the presence of 28 volatile compounds. This is the first report on A. clavatonanicus as an endophyte obtained from M. jalapa. We conclude that A. clavatonanicus strain MJ31 has prolific antimicrobial potential against both plant and human pathogens and can be exploited for the discovery of new antimicrobial compounds and could be an alternate source for the production of secondary metabolites. PMID:29049321

  9. Determination and production of antimicrobial compounds by Aspergillus clavatonanicus strain MJ31, an endophytic fungus from Mirabilis jalapa L. using UPLC-ESI-MS/MS and TD-GC-MS analysis.

    PubMed

    Mishra, Vineet Kumar; Passari, Ajit Kumar; Chandra, Preeti; Leo, Vincent Vineeth; Kumar, Brijesh; Uthandi, Sivakumar; Thankappan, Sugitha; Gupta, Vijai Kumar; Singh, Bhim Pratap

    2017-01-01

    Endophytic fungi associated with medicinal plants are reported as potent producers of diverse classes of secondary metabolites. In the present study, an endophytic fungi, Aspergillus clavatonanicus strain MJ31, exhibiting significant antimicrobial activity was isolated from roots of Mirabilis jalapa L., was identified by sequencing three nuclear genes i.e. internal transcribed spacers ribosomal RNA (ITS rRNA), 28S ribosomal RNA (28S rRNA) and translation elongation factor 1- alpha (EF 1α). Ethyl acetate extract of strain MJ31displayed significant antimicrobial potential against Bacillus subtilis, followed by Micrococccus luteus and Staphylococcus aureus with minimum inhibitory concentrations (MIC) of 0.078, 0.156 and 0.312 mg/ml respectively. In addition, the strain was evaluated for its ability to synthesize bioactive compounds by the amplification of polyketide synthase (PKS) and non ribosomal peptide synthetase (NRPS) genes. Further, seven antibiotics (miconazole, ketoconazole, fluconazole, ampicillin, streptomycin, chloramphenicol, and rifampicin) were detected and quantified using UPLC-ESI-MS/MS. Additionally, thermal desorption-gas chromatography mass spectrometry (TD-GC-MS) analysis of strain MJ31 showed the presence of 28 volatile compounds. This is the first report on A. clavatonanicus as an endophyte obtained from M. jalapa. We conclude that A. clavatonanicus strain MJ31 has prolific antimicrobial potential against both plant and human pathogens and can be exploited for the discovery of new antimicrobial compounds and could be an alternate source for the production of secondary metabolites.

  10. Infection of Helicoverpa armigera by endophytic Beauveria bassiana colonizing tomato plants

    USDA-ARS?s Scientific Manuscript database

    A novel endophytic strain of Beauveria bassiana was isolated from leaf tissue of a wild tomato plant. This strain and two B. bassiana strains previously isolated from soil were evaluated for their ability to endophytically colonize tomatoes and subsequent in planta efficacy against Helicoverpa armig...

  11. What Is There in Seeds? Vertically Transmitted Endophytic Resources for Sustainable Improvement in Plant Growth

    PubMed Central

    Shahzad, Raheem; Khan, Abdul L.; Bilal, Saqib; Asaf, Sajjad; Lee, In-Jung

    2018-01-01

    Phytobeneficial microbes, particularly endophytes, such as fungi and bacteria, are concomitant partners of plants throughout its developmental stages, including seed germination, root and stem growth, and fruiting. Endophytic microbes have been identified in plants that grow in a wide array of habitats; however, seed-borne endophytic microbes have not been fully explored yet. Seed-borne endophytes are of great interest because of their vertical transmission; their potential to produce various phytohormones, enzymes, antimicrobial compounds, and other secondary metabolites; and improve plant biomass and yield under biotic and abiotic stresses. This review addresses the current knowledge on endophytes, their ability to produce metabolites, and their influence on plant growth and stress mitigation. PMID:29410675

  12. Fungal endophyte assemblages from ethnopharmaceutically important medicinal trees.

    PubMed

    Tejesvi, Mysore V; Mahesh, Basavanna; Nalini, Monnanda S; Prakash, Harishchandra S; Kini, Kukkundoor R; Subbiah, Ven; Shetty, Hunthrike S

    2006-05-01

    Endophytic fungi represent an interesting group of microorganisms associated with the healthy tissues of terrestrial plants. They represent a large reservoir of genetic diversity. Fungal endophytes were isolated from the inner bark segments of ethnopharmaceutically important medicinal tree species, namely Terminalia arjuna, Crataeva magna, Azadirachta indica, Holarrhena antidysenterica, Terminalia chebula, and Butea monosperma (11 individual trees), growing in different regions of southern India. Forty-eight fungal species were recovered from 2200 bark segments. Mitosporic fungi represented a major group (61%), with ascomycetes (21%) and sterile mycelia (18%) the next major groups. Species of Fusarium, Pestalotiopsis, Myrothecium, Trichoderma, Verticillium, and Chaetomium were frequently isolated. Exclusive fungal taxa were recovered from five of the six plant species considered for the study of endophytic fungi. Rarefaction indices for species richness indicated the highest expected number of species for bark segments were isolated from T. arjuna and A. indica (20 species each) and from C. magna (18 species).

  13. The diversity of citrus endophytic bacteria and their interactions with Xylella fastidiosa and host plants.

    PubMed

    Azevedo, João Lúcio; Araújo, Welington Luiz; Lacava, Paulo Teixeira

    2016-01-01

    The bacterium Xylella fastidiosa is the causal agent of citrus variegated chlorosis (CVC) and has been associated with important losses in commercial orchards of all sweet orange [Citrus sinensis (L.)] cultivars. The development of this disease depends on the environmental conditions, including the endophytic microbial community associated with the host plant. Previous studies have shown that X. fastidiosa interacts with the endophytic community in xylem vessels as well as in the insect vector, resulting in a lower bacterial population and reduced CVC symptoms. The citrus endophytic bacterium Methylobacterium mesophilicum can trigger X. fastidiosa response in vitro, which results in reduced growth and induction of genes associated with energy production, stress, transport, and motility, indicating that X. fastidiosa has an adaptive response to M. mesophilicum. Although this response may result in reduced CVC symptoms, the colonization rate of the endophytic bacteria should be considered in studies that intend to use this endophyte to suppress CVC disease. Symbiotic control is a new strategy that uses symbiotic endophytes as biological control agents to antagonize or displace pathogens. Candidate endophytes for symbiotic control of CVC must occupy the xylem of host plants and attach to the precibarium of sharpshooter insects to access the pathogen. In the present review, we focus on interactions between endophytic bacteria from sweet orange plants and X. fastidiosa, especially those that may be candidates for control of CVC.

  14. The diversity of citrus endophytic bacteria and their interactions with Xylella fastidiosa and host plants

    PubMed Central

    Azevedo, João Lúcio; Araújo, Welington Luiz; Lacava, Paulo Teixeira

    2016-01-01

    Abstract The bacterium Xylella fastidiosa is the causal agent of citrus variegated chlorosis (CVC) and has been associated with important losses in commercial orchards of all sweet orange [Citrus sinensis (L.)] cultivars. The development of this disease depends on the environmental conditions, including the endophytic microbial community associated with the host plant. Previous studies have shown that X. fastidiosa interacts with the endophytic community in xylem vessels as well as in the insect vector, resulting in a lower bacterial population and reduced CVC symptoms. The citrus endophytic bacterium Methylobacterium mesophilicum can trigger X. fastidiosa response in vitro, which results in reduced growth and induction of genes associated with energy production, stress, transport, and motility, indicating that X. fastidiosa has an adaptive response to M. mesophilicum. Although this response may result in reduced CVC symptoms, the colonization rate of the endophytic bacteria should be considered in studies that intend to use this endophyte to suppress CVC disease. Symbiotic control is a new strategy that uses symbiotic endophytes as biological control agents to antagonize or displace pathogens. Candidate endophytes for symbiotic control of CVC must occupy the xylem of host plants and attach to the precibarium of sharpshooter insects to access the pathogen. In the present review, we focus on interactions between endophytic bacteria from sweet orange plants and X. fastidiosa, especially those that may be candidates for control of CVC. PMID:27727362

  15. Characterization of lipopeptides produced by Bacillus licheniformis using liquid chromatography with accurate tandem mass spectrometry.

    PubMed

    Favaro, Gabriella; Bogialli, Sara; Di Gangi, Iole Maria; Nigris, Sebastiano; Baldan, Enrico; Squartini, Andrea; Pastore, Paolo; Baldan, Barbara

    2016-10-30

    The plant endophyte Bacillus licheniformis, isolated from leaves of Vitis vinifera, was studied to individuate and characterize the presence of bioactive lipopeptides having amino acidic structures. Crude extracts of liquid cultures were analyzed by ultra-high-performance liquid chromatography (UHPLC) coupled to a quadrupole time-of-flight (QTOF) mass analyzer. Chromatographic conditions were optimized in order to obtain an efficient separation of the different isobaric lipopeptides, avoiding merged fragmentations of co-eluted isomeric compounds and reducing possible cross-talk phenomena. Composition of the amino acids was outlined through the interpretation of the fragmentation behavior in tandem high-resolution mass spectrometry (HRMS/MS) mode, which showed both common-class and peculiar fragment ions. Both [M + H](+) and [M + Na](+) precursor ions were fragmented in order to differentiate some isobaric amino acids, i.e. Leu/Ile. Neutral losses characteristic of the iso acyl chain were also evidenced. More than 90 compounds belonging to the classes of surfactins and lichenysins, known as biosurfactant molecules, were detected. Sequential LC/HRMS/MS analysis was used to identify linear and cyclic lipopeptides, and to single out the presence of a large number of isomers not previously reported. Some critical issues related to the simultaneous selection of different compounds by the quadrupole filter were highlighted and partially solved, leading to tentative assignments of several structures. Linear lichenysins are described here for the first time. The approach was proved to be useful for the characterization of non-target lipopeptides, and proposes a rationale MS experimental scheme aimed to investigate the difference in amino acid sequence and/or in the acyl chain of the various congeners, when standards are not available. Results expanded the knowledge about production of linear and cyclic bioactive compounds from Bacillus licheniformis, clarifying the

  16. Implementing Ultraviolet (UV) Disinfection for Treatment of Groundwater for Small and Medium Sized Utilities - abstract

    EPA Science Inventory

    This presentation will focus on validation testing performed on a three-lamp low-pressure high-output (LPHO) TrojanUVSwiftTM UV reactor using MS2, Bacillus Pumilus, and live adenovirus as the test microbes. An adjustable sensor was used to help determine the optimal sensor locati...

  17. Evaluating UV-C LED disinfection performance and investigating potential dual-wavelength synergy

    EPA Science Inventory

    This study evaluated ultraviolet (UV) light emitting diodes (LEDs) emitting at 260 nm, 280 nm, and the combination of 260|280 nm together for their efficacy at inactivating Escherichia. coli, MS2 coliphage, human adenovirus type 2 (HAdV2), and Bacillus pumilus spores; research in...

  18. Production of bioproducts by endophytic fungi: chemical ecology, biotechnological applications, bottlenecks, and solutions.

    PubMed

    Yan, Lu; Zhao, Haobin; Zhao, Xixi; Xu, Xiaoguang; Di, Yichao; Jiang, Chunmei; Shi, Junling; Shao, Dongyan; Huang, Qingsheng; Yang, Hui; Jin, Mingliang

    2018-05-29

    Endophytes are microorganisms that colonize the interior of host plants without causing apparent disease. They have been widely studied for their ability to modulate relationships between plants and biotic/abiotic stresses, often producing valuable secondary metabolites that can affect host physiology. Owing to the advantages of microbial fermentation over plant/cell cultivation and chemical synthesis, endophytic fungi have received significant attention as a mean for secondary metabolite production. This article summarizes currently reported results on plant-endophyte interaction hypotheses and highlights the biotechnological applications of endophytic fungi and their metabolites in agriculture, environment, biomedicine, energy, and biocatalysts. Current bottlenecks in industrial development and commercial applications as well as possible solutions are also discussed.

  19. Quorum quenching is an antivirulence strategy employed by endophytic bacteria.

    PubMed

    Kusari, Parijat; Kusari, Souvik; Lamshöft, Marc; Sezgin, Selahaddin; Spiteller, Michael; Kayser, Oliver

    2014-08-01

    Bacteria predominantly use quorum sensing to regulate a plethora of physiological activities such as cell-cell crosstalk, mutualism, virulence, competence, biofilm formation, and antibiotic resistance. In this study, we investigated how certain potent endophytic bacteria harbored in Cannabis sativa L. plants use quorum quenching as an antivirulence strategy to disrupt the cell-to-cell quorum sensing signals in the biosensor strain, Chromobacterium violaceum. We used a combination of high-performance liquid chromatography high-resolution mass spectrometry (HPLC-ESI-HRMS(n)) and matrix-assisted laser desorption ionization imaging high-resolution mass spectrometry (MALDI-imaging-HRMS) to first quantify and visualize the spatial distribution of the quorum sensing molecules in the biosensor strain, C. violaceum. We then showed, both quantitatively and visually in high spatial resolution, how selected endophytic bacteria of C. sativa can selectively and differentially quench the quorum sensing molecules of C. violaceum. This study provides fundamental insights into the antivirulence strategies used by endophytes in order to survive in their ecological niches. Such defense mechanisms are evolved in order to thwart the plethora of pathogens invading associated host plants in a manner that prevents the pathogens from developing resistance against the plant/endophyte bioactive secondary metabolites. This work also provides evidence towards utilizing endophytes as tools for biological control of bacterial phytopathogens. In continuation, such insights would even afford new concepts and strategies in the future for combating drug resistant bacteria by quorum-inhibiting clinical therapies.

  20. Secondary Metabolite Accumulation Associates with Ecological Succession of Endophytic Fungi in Cynomorium songaricum Rupr.

    PubMed

    Cui, Jin-Long; Zhang, Yan-Yan; Vijayakumar, Vinod; Zhang, Gang; Wang, Meng-Liang; Wang, Jun-Hong

    2018-06-06

    Cynomorium songaricum Rupr. is a rare root-parasitic plant distributed in the desert ecosystem. Little is known about the role of endophytes in accumulation of metabolites in C. songaricum. Here, the correlations between the seven active components (total sugars, flavonoids, protocatechuic acid, catechins, tannins, gallic acid, and ursolic acid) and the endophytic fungi of C. songaricum were investigated, and their causal relationships are discussed further. The results showed that the accumulation of these components and the assembly of endophytic fungi changed with different plant developmental stages. Diverse relationships including positive and negative correlation were found among chemicals and endophytic fungal operational taxonomic units based on correlation coefficient matrices, which demonstrated that the accumulation of secondary metabolites in C. songaricum is closely related to the endophytic fungal community composition. These results present new opportunities to deeply understand plant-fungal symbioses and secondary metabolite productions.

  1. Interspecific metabolic diversity of root-colonizing endophytic fungi revealed by enzyme activity tests.

    PubMed

    Knapp, Dániel G; Kovács, Gábor M

    2016-12-01

    Although dark septate endophytes (DSE) represent a worldwide dispersed form group of root-colonizing endophytic fungi, our knowledge on their role in ecosystem functioning is far limited. In this study, we aimed to test if functional diversity exists among DSE fungi representing different lineages of root endophytic fungal community of semiarid sandy grasslands. To address this question and to gain general information on function of DSE fungi, we adopted api-ZYM and BioLog FF assays to study those non-sporulating filamentous fungi and characterized the metabolic activity of 15 different DSE species. Although there were striking differences among the species, all of the substrates tested were utilized by the DSE fungi. When endophytes characteristic to grasses and non-grass host plants were separately considered, we found that the whole substrate repertoire was used by both groups. This might illustrate the complementary functional diversity of the communities root endophytic plant-associated fungi. The broad spectra of substrates utilized by these root endophytes illustrate the functional importance of their diversity, which can play role not only in nutrient mobilization and uptake of plants from with nutrient poor soils, but also in general plant performance and ecosystem functioning. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  2. Bioactive metabolites from an endophytic Cryptosporiopsis sp. inhabiting Clidemia hirta.

    PubMed

    Zilla, Mahesh K; Qadri, Masroor; Pathania, Anup S; Strobel, Gary A; Nalli, Yedukondalu; Kumar, Sunil; Guru, Santosh K; Bhushan, Shashi; Singh, Sanjay K; Vishwakarma, Ram A; Riyaz-Ul-Hassan, Syed; Ali, Asif

    2013-11-01

    An endophytic Cryptosporiopsis sp. was isolated from Clidemia hirta and analyzed for its secondary metabolites that lead to the isolation of three bioactive molecules. The compounds were purified from the culture broth of the fungus and their structures were determined by spectroscopic methods as (R)-5-hydroxy-2-methylchroman-4-one (1), 1-(2,6-dihydroxyphenyl)pentan-1-one (2) and (Z)-1-(2-(2-butyryl-3-hydroxyphenoxy)-6-hydroxyphenyl)-3-hydroxybut-2-en-1-one (3). Compound 1 exhibited significant cytotoxic activity against the human leukemia cell line, HL-60 with an IC50 of 4 μg/ml. This compound induced G2 arrest of the HL-60 cell cycle significantly. In addition, out of these compounds, 2 and 3 were active against several bacterial pathogens. Compound 2 was active against Bacillus cereus, Escherichia coli and Staphylococcus aureus with IC50 values varying from 18 to 30 μg/ml, and compound 3 displayed activity against Pseudomonas fluorescens with an IC50 value of 6 μg/ml. Compounds 2 and 3 are novel whereas compound 1 was reported earlier but the stereochemistry of its C-2 methyl is established for the first time. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Impact of Endophytic Microorganisms on Plants, Environment and Humans

    PubMed Central

    Nair, Dhanya N.; Padmavathy, S.

    2014-01-01

    Endophytes are microorganisms (bacteria or fungi or actinomycetes) that dwell within robust plant tissues by having a symbiotic association. They are ubiquitously associated with almost all plants studied till date. Some commonly found endophytes are those belonging to the genera Enterobacter sp., Colletotrichum sp., Phomopsis sp., Phyllosticta sp., Cladosporium sp., and so forth. Endophytic population is greatly affected by climatic conditions and location where the host plant grows. They produce a wide range of compounds useful for plants for their growth, protection to environmental conditions, and sustainability, in favour of a good dwelling place within the hosts. They protect plants from herbivory by producing certain compounds which will prevent animals from further grazing on the same plant and sometimes act as biocontrol agents. A large amount of bioactive compounds produced by them not only are useful for plants but also are of economical importance to humans. They serve as antibiotics, drugs or medicines, or the compounds of high relevance in research or as compounds useful to food industry. They are also found to have some important role in nutrient cycling, biodegradation, and bioremediation. In this review, we have tried to comprehend different roles of endophytes in plants and their significance and impacts on man and environment. PMID:24587715

  4. Broad-spectrum inhibition of Phytophthora infestans by fungal endophytes

    PubMed Central

    von Dahlen, Janina K; Schnake, Anika; Ginschel, Sarah; Schulz, Barbara; Rose, Laura E

    2018-01-01

    ABSTRACT Phytophthora infestans is a devastating pathogen of tomato and potato. It readily overcomes resistance genes and applied agrochemicals and hence even today causes large yield losses. Fungal endophytes provide a largely unexplored avenue of control of Phy. infestans. Not only do endophytes produce a wide array of bioactive metabolites, they may also directly compete with and defeat pathogens in planta. Here, we tested 12 fungal endophytes isolated from different plant species in vitro for their production of metabolites with anti- Phytophthora activity. Four well-performing isolates were evaluated for their ability to suppress nine isolates of Phy. infestans on agar medium and in planta. Two endophytes reliably inhibited all Phy. infestans isolates on agar medium, of which Phoma eupatorii isolate 8082 was the most promising. It nearly abolished infection by Phy. infestans in planta. Our data indicate a role for the production of anti-Phytophthora compounds by the fungus and/or an enhanced plant defense response, as evident by an enhanced anthocyanin production. Here, we present a potential biocontrol agent, which can inhibit a broad-spectrum of Phy. infestans isolates. Such broadly acting inhibition is ideal, because it allows for effective control of genetically diverse isolates and may slow the adaptation of Phy. infestans. PMID:29528408

  5. Bacillus subtilis Protects Public Goods by Extending Kin Discrimination to Closely Related Species.

    PubMed

    Lyons, Nicholas A; Kolter, Roberto

    2017-07-05

    Kin discrimination systems are found in numerous communal contexts like multicellularity and are theorized to prevent exploitation of cooperative behaviors. The kin discrimination system in Bacillus subtilis differs from most other such systems because it excludes nonkin cells rather than including kin cells. Because nonkin are the target of the system, B. subtilis can potentially distinguish degrees of nonkin relatedness, not just kin versus nonkin. We examined this by testing a large strain collection of diverse Bacillus species against B. subtilis in different multicellular contexts. The effects of kin discrimination extend to nearby species, as the other subtilis clade species were treated with the same antagonism as nonkin. Species in the less-related pumilus clade started to display varied phenotypes but were mostly still discriminated against, while cereus clade members and beyond were no longer subject to kin discrimination. Seeking a reason why other species are perceived as antagonistic nonkin, we tested the ability of B. subtilis to steal communally produced surfactant from these species. We found that the species treated as nonkin were the only ones that made a surfactant that B. subtilis could utilize and that nonkin antagonism prevented such stealing when the two strains were mixed. The nonkin exclusion kin discrimination method thus allows effective protection of the cooperative behaviors prevalent in multicellularity while still permitting interactions with more distant species that are not a threat. IMPORTANCE Multicellular systems like bacterial biofilms and swarms rely on cooperative behaviors that could be undermined by exploitative invaders. Discriminating kin from nonkin is one way to help guard against such exploitation but has thus far been examined only intraspecifically, so the phylogenetic range of this important trait is unknown. We tested whether Bacillus subtilis treats other species as nonkin by testing a single strain against a

  6. Isolation and screening of endophytes from the rhizomes of some Zingiberaceae plants for L-asparaginase production.

    PubMed

    Krishnapura, Prajna Rao; Belur, Prasanna D

    2016-01-01

    Endophytes are described as microorganisms that colonize the internal tissues of healthy plants without causing any disease. Endophytes isolated from medicinal plants have been attracting considerable attention due to their high biodiversity and their predicted potential to produce a plethora of novel compounds. In this study, an attempt was made to isolate endophytes from rhizomes of five medicinal plants of Zingiberaceae family, and to screen the endophytes for L-asparaginase activity. In total, 50 endophytes (14 bacteria, 22 actinomycetes, and 14 fungi) were isolated from Alpinia galanga, Curcuma amada, Curcuma longa, Hedychium coronarium, and Zingiber officinale; of these, 31 endophytes evidenced positive for L-asparaginase production. All the L-asparaginase-positive isolates showed L-asparaginase activity in the range of 54.17-155.93 U/mL in unoptimized medium. An endophytic fungus isolated from Curcuma amada, identified as Talaromyces pinophilus, was used for further experiments involving studies on the effect of certain nutritional and nonnutritional factors on L-asparaginase production in submerged fermentation. Talaromyces pinophilus initially gave an enzyme activity of 108.95 U/mL, but gradually reduced to 80 U/mL due to strain degeneration. Perhaps this is the first report ever on the production of L-asparaginase from endophytes isolated from medicinal plants of Zingiberaceae family.

  7. Endophytic fungi associated with roots of date palm (Phoenix dactylifera) in coastal dunes.

    PubMed

    Mohamed Mahmoud, Fadila; Krimi, Zoulikha; Maciá-Vicente, Jose G; Brahim Errahmani, Mohamed; Lopez-Llorca, Luis V

    Symbiotic interactions with fungal endophytes are argued to be responsible for the tolerance of plants to some stresses and for their adaptation to natural conditions. In this study we aimed to examine the endophytic fungal diversity associated with roots of date palms growing in coastal dune systems, and to screen this collection of endophytes for potential use as biocontrol agents, for antagonistic activity and mycoparasitism, and as producers of antifungal compounds with potential efficacy against root diseases of date palm. Roots of nine individual date palms growing in three coastal locations in the South-East of Spain (Guardamar, El Carabassí, and San Juan) were selected to isolate endophytic fungi. Isolates were identified on the basis of morphological and/or molecular characters. Five hundred and fifty two endophytic fungi were isolated and assigned to thirty morphological taxa or molecular operational taxonomic units. Most isolates belonged to Ascomycota, and the dominant order was Hypocreales. Fusarium and Clonostachys were the most frequently isolated genera and were present at all sampling sites. Comparisons of the endophytic diversity with previous studies, and their importance in the management of the date palm crops are discussed. This is the first study on the diversity of endophytic fungi associated with roots of date palm. The isolates obtained might constitute a source of biological control agents and biofertilizers for use in crops of this plant. Copyright © 2016 Asociación Española de Micología. Publicado por Elsevier España, S.L.U. All rights reserved.

  8. Photosynthetic Bradyrhizobia Are Natural Endophytes of the African Wild Rice Oryza breviligulata

    PubMed Central

    Chaintreuil, Clémence; Giraud, Eric; Prin, Yves; Lorquin, Jean; Bâ, Amadou; Gillis, Monique; de Lajudie, Philippe; Dreyfus, Bernard

    2000-01-01

    We investigated the presence of endophytic rhizobia within the roots of the wetland wild rice Oryza breviligulata, which is the ancestor of the African cultivated rice Oryza glaberrima. This primitive rice species grows in the same wetland sites as Aeschynomene sensitiva, an aquatic stem-nodulated legume associated with photosynthetic strains of Bradyrhizobium. Twenty endophytic and aquatic isolates were obtained at three different sites in West Africa (Senegal and Guinea) from nodal roots of O. breviligulata and surrounding water by using A. sensitiva as a trap legume. Most endophytic and aquatic isolates were photosynthetic and belonged to the same phylogenetic Bradyrhizobium/Blastobacter subgroup as the typical photosynthetic Bradyrhizobium strains previously isolated from Aeschynomene stem nodules. Nitrogen-fixing activity, measured by acetylene reduction, was detected in rice plants inoculated with endophytic isolates. A 20% increase in the shoot growth and grain yield of O. breviligulata grown in a greenhouse was also observed upon inoculation with one endophytic strain and one Aeschynomene photosynthetic strain. The photosynthetic Bradyrhizobium sp. strain ORS278 extensively colonized the root surface, followed by intercellular, and rarely intracellular, bacterial invasion of the rice roots, which was determined with a lacZ-tagged mutant of ORS278. The discovery that photosynthetic Bradyrhizobium strains, which are usually known to induce nitrogen-fixing nodules on stems of the legume Aeschynomene, are also natural true endophytes of the primitive rice O. breviligulata could significantly enhance cultivated rice production. PMID:11097925

  9. Investigation of the Biosynthetic Potential of Endophytes in Traditional Chinese Anticancer Herbs

    PubMed Central

    Miller, Kristin I.; Qing, Chen; Sze, Daniel Man Yuen; Neilan, Brett A.

    2012-01-01

    Traditional Chinese medicine encompasses a rich empirical knowledge of the use of plants for the treatment of disease. In addition, the microorganisms associated with medicinal plants are also of interest as the producers of the compounds responsible for the observed plant bioactivity. The present study has pioneered the use of genetic screening to assess the potential of endophytes to synthesize bioactive compounds, as indicated by the presence of non-ribosomal peptide synthetase (NRPS) and polyketide synthase (PKS) genes. The total DNA extracts of 30 traditional Chinese herbs, were screened for functional genes involved in the biosynthesis of bioactive compounds. The four PCR screens were successful in targeting four bacterial PKS, six bacterial NRPS, ten fungal PKS and three fungal NRPS gene fragments. Analysis of the detected endophyte gene fragments afforded consideration of the possible bioactivity of the natural products produced by endophytes in medicinal herbs. This investigation describes a rapid method for the initial screening of medicinal herbs and has highlighted a subset of those plants that host endophytes with biosynthetic potential. These selected plants can be the focus of more comprehensive endophyte isolation and natural product studies. PMID:22629306

  10. Screening of endophytic bacteria isolated from two kinds of antarctic plant antagonistic konjac soft rot disease

    NASA Astrophysics Data System (ADS)

    Gong, Mingfu; Lin, Tianxing; Huang, Jiao; Zeng, Bo

    2018-04-01

    Konjac soft rot has a serious impact on the production of konjac, the use of endophytic bacteria to inhibit konjac soft rot bacteria have many advantages. Twenty-three endophytic bacteria isolated from the medicinal plants were used to determine the antagonistic effects of endophytic bacteria on konjac soft rot in the Oxford cups. Of the strain. The results showed that 23 strains of endophytic bacteria had different antagonistic activities against konjac soft rot, 8 strains had very significant antibacterial effect, and YC06 and YC09 had strong antibacterial ability of two endophytic bacteria. Konjac soft rot fungi also have a strong antibacterial capacity.

  11. Ecosystem services and plant physiological status during endophyte-assisted phytoremediation of metal contaminated soil.

    PubMed

    Burges, Aritz; Epelde, Lur; Blanco, Fernando; Becerril, José M; Garbisu, Carlos

    2017-04-15

    Mining sites shelter a characteristic biodiversity with large potential for the phytoremediation of metal contaminated soils. Endophytic plant growth-promoting bacteria were isolated from two metal-(hyper)accumulator plant species growing in a metal contaminated mine soil. After characterizing their plant growth-promoting traits, consortia of putative endophytes were used to carry out an endophyte-assisted phytoextraction experiment using Noccaea caerulescens and Rumex acetosa (singly and in combination) under controlled conditions. We evaluated the influence of endophyte-inoculated plants on soil physicochemical and microbial properties, as well as plant physiological parameters and metal concentrations. Data interpretation through the grouping of soil properties within a set of ecosystem services was also carried out. When grown together, we observed a 41 and 16% increase in the growth of N. caerulescens and R. acetosa plants, respectively, as well as higher values of Zn phytoextraction and soil microbial biomass and functional diversity. Inoculation of the consortia of putative endophytes did not lead to higher values of plant metal uptake, but it improved the plants' physiological status, by increasing the content of chlorophylls and carotenoids by up to 28 and 36%, respectively, indicating a reduction in the stress level of plants. Endophyte-inoculation also stimulated soil microbial communities: higher values of acid phosphatase activity (related to the phosphate solubilising traits of the endophytes), bacterial and fungal abundance, and structural diversity. The positive effects of plant growth and endophyte inoculation on soil properties were reflected in an enhancement of some ecosystem services (biodiversity, nutrient cycling, water flow regulation, water purification and contamination control). Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Inoculation of a phenanthrene-degrading endophytic bacterium reduces the phenanthrene level and alters the bacterial community structure in wheat.

    PubMed

    Liu, Juan; Xiang, Yanbing; Zhang, Zhiming; Ling, Wanting; Gao, Yanzheng

    2017-06-01

    Colonization by polycyclic aromatic hydrocarbon (PAH)-degrading endophytic bacteria (PAHDEB) can reduce the PAH contamination risk in plant. However, little information is available on the impact of PAHDEB colonization on the endophytic bacterial community of inner plant tissues. A phenanthrene-degrading endophytic bacterium (PDEB), Massilia sp. Pn2, was inoculated onto the roots of wheat and subjected to greenhouse container experiments. The endophytic bacterial community structure in wheat was investigated using high-throughput sequencing technology. The majority of endophytic bacteria in wheat were Proteobacteria, and the dominant genus was Pseudomonas. Phenanthrene contamination clearly increased the diversity of endophytic bacteria in wheat. The cultivable endophytic bacteria counts in wheat decreased with increasing the level of phenanthrene contamination; the endophytic bacterial community structure changed correspondingly, and the bacterial richness first increased and then decreased. Inoculation of strain Pn2 reduced the phenanthrene contamination in wheat, enlarged the biomass of wheat roots, changed the bacterial community structure and enhanced the cell counts, diversity and richness of endophytic bacteria in phenanthrene-contaminated wheat in a contamination level-dependent manner. The findings of this investigation provide insight into the responses of endophytic bacterial community in plant to external PAH contamination and PAHDEB colonization.

  13. Fungal endophytes of aquatic macrophytes: diverse host-generalists characterized by tissue preferences and geographic structure

    PubMed Central

    Sandberg, Dustin C.; Battista, Lorna J.; Arnold, A. Elizabeth

    2014-01-01

    Most studies of endophytic symbionts have focused on terrestrial plants, neglecting the ecologically and economically important plants present in aquatic ecosystems. We evaluated the diversity, composition, host- and tissue affiliations, and geographic structure of fungal endophytes associated with common aquatic plants in northern Arizona, USA. Endophytes were isolated in culture from roots and photosynthetic tissues during two growing seasons. A total of 226 isolates representing 60 putative species was recovered from 9,600 plant tissue segments. Although isolation frequency was low, endophytes were phylogenetically diverse and species-rich. Comparisons among the most thoroughly sampled species and reservoirs revealed that isolation frequency and diversity did not differ significantly between collection periods, among species, among reservoirs, or as a function of depth. However, community structure differed significantly among reservoirs and tissue types. Phylogenetic analyses of a focal genus (Penicillium) corroborated estimates of species boundaries and informed community analyses, highlighting clade- and genotype-level affiliations of aquatic endophytes with both sediment- and waterborne fungi, and endophytes of proximate terrestrial plants. Together these analyses provide a first quantitative examination of endophytic associations in roots and foliage of aquatic plants and can be used to optimize survey strategies for efficiently capturing fungal biodiversity at local and regional scales. PMID:24402358

  14. Arsenic transformation and plant growth promotion characteristics of As-resistant endophytic bacteria from As-hyperaccumulator Pteris vittata.

    PubMed

    Xu, Jia-Yi; Han, Yong-He; Chen, Yanshan; Zhu, Ling-Jia; Ma, Lena Q

    2016-02-01

    The ability of As-resistant endophytic bacteria in As transformation and plant growth promotion was determined. The endophytes were isolated from As-hyperaccumulator Pteris vittata (PV) after growing for 60 d in a soil containing 200 mg kg(-1) arsenate (AsV). They were isolated in presence of 10 mM AsV from PV roots, stems, and leaflets, representing 4 phyla and 17 genera. All endophytes showed at least one plant growth promoting characteristics including IAA synthesis, siderophore production and P solubilization. The root endophytes had higher P solubilization ability than the leaflet (60.0 vs. 18.3 mg L(-1)). In presence of 10 mM AsV, 6 endophytes had greater growth than the control, suggesting As-stimulated growth. Furthermore, root endophytes were more resistant to AsV while the leaflet endophytes were more tolerant to arsenite (AsIII), which corresponded to the dominant As species in PV tissues. Bacterial As resistance was positively correlated to their ability in AsV reduction but not AsIII oxidation. The roles of those endophytes in promoting plant growth and As resistance in P. vittata warrant further investigation. Published by Elsevier Ltd.

  15. Bioaugmentation with engineered endophytic bacteria improves contaminant fate in phytoremediation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weyens, N.; van der Lelie, D.; Artois, T.

    Phytoremediation of volatile organic contaminants often proves not ideal because plants and their rhizosphere microbes only partially degrade these compounds. Consequently, plants undergo evapotranspiration that contaminates the ambient air and, thus, undermines the merits of phytoremediation. Under laboratory conditions, endophytic bacteria equipped with the appropriate degradation pathways can improve in plant degradation of volatile organic contaminants. However, several obstacles must be overcome before engineered endophytes will be successful in field-scale phytoremediation projects. Here we report the first in situ inoculation of poplar trees, growing on a TCE-contaminated site, with the TCE-degrading strain Pseudomonas putida W619-TCE. In situ bioaugmentation with strainmore » W619-TCE reduced TCE evapotranspiration by 90% under field conditions. This encouraging result was achieved after the establishment and enrichment of P. putida W619-TCE as a poplar root endophyte and by further horizontal gene transfer of TCE metabolic activity to members of the poplar's endogenous endophytic population. Since P. putida W619-TCE was engineered via horizontal gene transfer, its deliberate release is not restricted under European genetically modified organisms (GMO) regulations.« less

  16. Fungal endophyte diversity in Sarracenia

    USDA-ARS?s Scientific Manuscript database

    Fungal endophytes were isolated from four species of the carnivorous pitcher plant genus Sarracenia: S. minor, S. oreophila, S. purpurea, and S. psittacina. Twelve taxa of fungi, eight within the Ascomycota and four within the Basidiomycota, were identified based on PCR amplification and sequencing ...

  17. Rare actinomycetes Nocardia caishijiensis and Pseudonocardia carboxydivorans as endophytes, their bioactivity and metabolites evaluation.

    PubMed

    Tanvir, Rabia; Sajid, Imran; Hasnain, Shahida; Kulik, Andreas; Grond, Stephanie

    2016-04-01

    Two strains identified as Nocardia caishijiensis (SORS 64b) and Pseudonocardia carboxydivorans (AGLS 2) were isolated as endophytes from Sonchus oleraceus and Ageratum conyzoides respectively. The analysis of their extracts revealed them to be strongly bioactive. The N. caishijiensis extract gave an LC50 of 570 μg/ml(-1) in the brine shrimp cytotoxicity assay and an EC50 of 0.552 μg/ml(-1) in the DPPH antioxidant assay. Antimicrobial activity was observed against Methicillin resistant Staphlococcus aureus (MRSA) and Escherichia coli ATCC 25922 (14 mm), Klebsiella pneumoniae ATCC 706003 (13 mm), S. aureus ATCC 25923 (11 mm) and Candida tropicalis (20 mm). For the extract of P. carboxydivorans the EC50 was 0.670 μg/ml(-1) and it was observed to be more bioactive against Bacillus subtilis DSM 10 ATCC 6051 (21 mm), C. tropicalis (20 mm), S. aureus ATCC 25923 (17 mm), MRSA (17 mm), E. coli K12 (W1130) (16 mm) and Chlorella vulgaris (10 mm). The genotoxicity testing revealed a 20 mm zone of inhibition against the polA mutant strain E. coli K-12 AB 3027 suggesting damage to the DNA and polA genes. The TLC and bioautography screening revealed a diversity of active bands of medium polar and nonpolar compounds. Metabolite analysis by HPLC-DAD via UV/vis spectral screening suggested the possibility of stenothricin and bagremycin A in the mycelium extract of N. caishijiensis respectively. In the broth and mycelium extract of P. carboxydivorans borrelidin was suggested along with α-pyrone. The HPLC-MS revealed bioactive long chained amide derivatives such as 7-Octadecenamide, 9, 12 octadecandienamide. This study reports the rare actinomycetes N. caishijiensis and P. carboxydivorans as endophytes and evaluates their bioactive metabolites. Copyright © 2016 Elsevier GmbH. All rights reserved.

  18. Persistence of endophytic fungi in cultivars of Lolium perenne grown from seeds stored for 22 years.

    PubMed

    Cheplick, Gregory P

    2017-04-01

    Genetic resources for forage crops often consist of seeds of specific species and cultivars in cold storage for future use in breeding and selection programs. Temperate grasses such as Lolium perenne , used worldwide for forage and turf, produce seeds commonly infected by hyphae of an endophytic fungus ( Epichloë festucae var. lolii ). This research determined whether endophytes could persist and infect seedlings of L. perenne emerging from seeds stored for over two decades. Endophyte-infected seeds (>90% infected) of four cultivars were obtained in 1994 and stored dry in plastic bags at 4°C. Seed germination was tested after 12 yr (for two cultivars) and after 18 and 22 yr (for all cultivars). Seedling leaf sheaths were excised, stained, and examined at 400× for endophytic hyphae to quantify infection frequency (% plants infected) and intensity (mean number of endophytic hyphae per field of view). Seed germination after 22 yr depended on cultivar, ranging from 53 to 78%. Between 58 and 73% of plants grown from seeds stored for 22 yr still contained viable endophytic hyphae. Infection intensity remained at original levels for 18 yr in one cultivar; however, in all cultivars, infection intensity declined significantly between 18 and 22 yr. Persistence of the grass seed-endophyte symbiosis for over 20 yr surpasses all prior records of endophyte longevity within stored seeds. Storage of germplasm of cool-season grass cultivars that contain potentially beneficial fungal endophytes should be possible for several decades under dry, cold conditions. © 2017 Botanical Society of America.

  19. Diversity of endophytic yeasts from sweet orange and their localization by scanning electron microscopy.

    PubMed

    Gai, Cláudia Santos; Lacava, Paulo Teixeira; Maccheroni, Walter; Glienke, Chirlei; Araújo, Welington Luiz; Miller, Thomas Albert; Azevedo, João Lúcio

    2009-10-01

    Endophytes are microorganisms that colonize plant tissues internally without causing harm to the host. Despite the increasing number of studies on sweet orange pathogens and endophytes, yeast has not been described as a sweet orange endophyte. In the present study, endophytic yeasts were isolated from sweet orange plants and identified by sequencing of internal transcribed spacer (ITS) rRNA. Plants sampled from four different sites in the state of São Paulo, Brazil exhibited different levels of CVC (citrus variegated chlorosis) development. Three citrus endophytic yeasts (CEYs), chosen as representative examples of the isolates observed, were identified as Rhodotorula mucilaginosa, Pichia guilliermondii and Cryptococcus flavescens. These strains were inoculated into axenic Citrus sinensis seedlings. After 45 days, endophytes were re-isolated in populations ranging from 10(6) to 10(9) CFU/g of plant tissue, but, in spite of the high concentrations of yeast cells, no disease symptoms were observed. Colonized plant material was examined by scanning electron microscopy (SEM), and yeast cells were found mainly in the stomata and xylem of plants, reinforcing their endophytic nature. P. guilliermondii was isolated primarily from plants colonized by the causal agent of CVC, Xylella fastidiosa. The supernatant from a culture of P. guilliermondii increased the in vitro growth of X. fastidiosa, suggesting that the yeast could assist in the establishment of this pathogen in its host plant and, therefore, contribute to the development of disease symptoms. Copyright 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. An endophytic fungus isolated from finger millet (Eleusine coracana) produces anti-fungal natural products

    PubMed Central

    Mousa, Walaa K.; Schwan, Adrian; Davidson, Jeffrey; Strange, Philip; Liu, Huaizhi; Zhou, Ting; Auzanneau, France-Isabelle; Raizada, Manish N.

    2015-01-01

    Finger millet is an ancient African cereal crop, domesticated 7000 years ago in Ethiopia, reaching India at 3000 BC. Finger millet is reported to be resistant to various fungal pathogens including Fusarium sp. We hypothesized that finger millet may host beneficial endophytes (plant-colonizing microbes) that contribute to the antifungal activity. Here we report the first isolation of endophyte(s) from finger millet. Five distinct fungal species were isolated from roots and predicted taxonomically based on 18S rDNA sequencing. Extracts from three putative endophytes inhibited growth of F. graminearum and three other pathogenic Fusarium species. The most potent anti-Fusarium strain (WF4, predicted to be a Phoma sp.) was confirmed to behave as an endophyte using pathogenicity and confocal microscopy experiments. Bioassay-guided fractionation of the WF4 extract identified four anti-fungal compounds, viridicatol, tenuazonic acid, alternariol, and alternariol monomethyl ether. All the purified compounds caused dramatic breakage of F. graminearum hyphae in vitro. These compounds have not previously been reported to have anti-Fusarium activity. None of the compounds, except for tenuazonic acid, have previously been reported to be produced by Phoma. We conclude that the ancient, disease-tolerant crop, finger millet, is a novel source of endophytic anti-fungal natural products. This paper suggests the value of the crops grown by subsistence farmers as sources of endophytes and their natural products. Application of these natural chemicals to solve real world problems will require further validation. PMID:26539183

  1. An endophytic fungus isolated from finger millet (Eleusine coracana) produces anti-fungal natural products.

    PubMed

    Mousa, Walaa K; Schwan, Adrian; Davidson, Jeffrey; Strange, Philip; Liu, Huaizhi; Zhou, Ting; Auzanneau, France-Isabelle; Raizada, Manish N

    2015-01-01

    Finger millet is an ancient African cereal crop, domesticated 7000 years ago in Ethiopia, reaching India at 3000 BC. Finger millet is reported to be resistant to various fungal pathogens including Fusarium sp. We hypothesized that finger millet may host beneficial endophytes (plant-colonizing microbes) that contribute to the antifungal activity. Here we report the first isolation of endophyte(s) from finger millet. Five distinct fungal species were isolated from roots and predicted taxonomically based on 18S rDNA sequencing. Extracts from three putative endophytes inhibited growth of F. graminearum and three other pathogenic Fusarium species. The most potent anti-Fusarium strain (WF4, predicted to be a Phoma sp.) was confirmed to behave as an endophyte using pathogenicity and confocal microscopy experiments. Bioassay-guided fractionation of the WF4 extract identified four anti-fungal compounds, viridicatol, tenuazonic acid, alternariol, and alternariol monomethyl ether. All the purified compounds caused dramatic breakage of F. graminearum hyphae in vitro. These compounds have not previously been reported to have anti-Fusarium activity. None of the compounds, except for tenuazonic acid, have previously been reported to be produced by Phoma. We conclude that the ancient, disease-tolerant crop, finger millet, is a novel source of endophytic anti-fungal natural products. This paper suggests the value of the crops grown by subsistence farmers as sources of endophytes and their natural products. Application of these natural chemicals to solve real world problems will require further validation.

  2. Fungal endophytes of Vanilla planifolia across Réunion Island: isolation, distribution and biotransformation.

    PubMed

    Khoyratty, Shahnoo; Dupont, Joëlle; Lacoste, Sandrine; Palama, Tony Lionel; Choi, Young Hae; Kim, Hye Kyong; Payet, Bertrand; Grisoni, Michel; Fouillaud, Mireille; Verpoorte, Robert; Kodja, Hippolyte

    2015-06-14

    The objective of the work was to characterize fungal endophytes from aerial parts of Vanilla planifolia. Also, to establish their biotransformation abilities of flavor-related metabolites. This was done in order to find a potential role of endophytes on vanilla flavors. Twenty three MOTUs were obtained, representing 6 fungal classes. Fungi from green pods were cultured on mature green pod based media for 30 days followed by (1)H NMR and HPLC-DAD analysis. All fungi from pods consumed metabolized vanilla flavor phenolics. Though Fusarium proliferatum was recovered more often (37.6% of the isolates), it is Pestalotiopsis microspora (3.0%) that increased the absolute amounts (quantified by (1)H NMR in μmol/g DW green pods) of vanillin (37.0 × 10(-3)), vanillyl alcohol (100.0 × 10(-3)), vanillic acid (9.2 × 10(-3)) and p-hydroxybenzoic acid (87.9 × 10(-3)) by significant amounts. All plants studied contained endophytic fungi and the isolation of the endophytes was conducted from plant organs at nine sites in Réunion Island including under shade house and undergrowth conditions. Endophytic variation occured between cultivation practices and the type of organ. Given the physical proximity of fungi inside pods, endophytic biotransformation may contribute to the complexity of vanilla flavors.

  3. Culturable endophytic bacterial communities associated with field-grown soybean.

    PubMed

    de Almeida Lopes, K B; Carpentieri-Pipolo, V; Oro, T H; Stefani Pagliosa, E; Degrassi, G

    2016-03-01

    Assess the diversity of the culturable endophytic bacterial population associated with transgenic and nontransgenic soybean grown in field trial sites in Brazil and characterize them phenotypically and genotypically focusing on characteristics related to plant growth promotion. Endophytic bacteria were isolated from roots, stems and leaves of soybean cultivars (nontransgenic (C) and glyphosate-resistant (GR) transgenic soybean), including the isogenic BRS133 and BRS245RR. Significant differences were observed in bacterial densities in relation to genotype and tissue from which the isolates were obtained. The highest number of bacteria was observed in roots and in GR soybean. Based on characteristics related to plant growth promotion, 54 strains were identified by partial 16S rRNA sequence analysis, with most of the isolates belonging to the species Enterobacter ludwigii and Variovorax paradoxus. Among the isolates, 44·4% were able to either produce indoleacetic acid (IAA) or solubilize phosphates, and 9·2% (all from GR soybean) presented both plant growth-promoting activities. The results from this study indicate that the abundance of endophytic bacterial communities of soybean differs between cultivars and in general it was higher in the transgenic cultivars than in nontransgenic cultivars. BRS 245 RR exhibited no significant difference in abundance compared to nontransgenic BRS133. This suggests that the impact of the management used in the GR soybean fields was comparable with the impacts of some enviromental factors. However, the bacterial endophytes associated to GR and nontransgenic soybean were different. The soybean-associated bacteria showing characteristics related to plant growth promotion were identified as belonging to the species Pantoea agglomerans and Variovorax paradoxus. Our study demonstrated differences concerning compostion of culturable endophytic bacterial population in nontransgenic and transgenic soybean. © 2016 The Society for Applied

  4. Biodegradation of Mixed PAHs by PAH-Degrading Endophytic Bacteria.

    PubMed

    Zhu, Xuezhu; Ni, Xue; Waigi, Michael Gatheru; Liu, Juan; Sun, Kai; Gao, Yanzheng

    2016-08-09

    Endophytic bacteria can promote plant growth, induce plant defence mechanisms, and increase plant resistance to organic contaminants. The aims of the present study were to isolate highly PAH-degrading endophytic bacteria from plants growing at PAH-contaminated sites and to evaluate the capabilities of these bacteria to degrade polycyclic aromatic hydrocarbons (PAHs) in vitro, which will be beneficial for re-colonizing target plants and reducing plant PAH residues through the inoculation of plants with endophytic bacteria. Two endophytic bacterial strains P₁ (Stenotrophomonas sp.) and P₃ (Pseudomonas sp.), which degraded more than 90% of phenanthrene (PHE) within 7 days, were isolated from Conyza canadensis and Trifolium pretense L., respectively. Both strains could use naphthalene (NAP), PHE, fluorene (FLR), pyrene (PYR), and benzo(a)pyrene (B(a)P) as the sole sources of carbon and energy. Moreover, these bacteria reduced the contamination of mixed PAHs at high levels after inoculation for 7 days; strain P₁ degraded 98.0% NAP, 83.1% FLR, 87.8% PHE, 14.4% PYR, and 1.6% B(a)P, and strain P₃ degraded 95.3% NAP, 87.9% FLR, 90.4% PHE, 6.9% PYR, and negligible B(a)P. Notably, the biodegradation of PAHs could be promoted through additional carbon and nitrogen nutrients; therein, beef extract was suggested as the optimal co-substrate for the degradation of PAHs by these two strains (99.1% PHE was degraded within 7 days). Compared with strain P₁, strain P₃ has more potential for the use in the removal of PAHs from plant tissues. These results provide a novel perspective in the reduction of plant PAH residues in PAH-contaminated sites through inoculating plants with highly PAH-degrading endophytic bacteria.

  5. Detection and quantification of three distinct Neotyphodium lolii endophytes in Lolium perenne by real time PCR of secondary metabolite genes.

    PubMed

    Zhou, Yanfei; Bradshaw, Rosie E; Johnson, Richard D; Hume, David E; Simpson, Wayne R; Schmid, Jan

    2014-03-01

    Perennial ryegrass (Lolium perenne) is a widely used pasture grass, which is frequently infected by Neotyphodium lolii endophytes that enhance grass performance but can produce alkaloids inducing toxicosis in livestock. Several selected endophyte strains with reduced livestock toxicity, but that confer insect resistance, are now in common use. Little is known regarding the survival and persistence of these endophytes when in competition with common toxic endophytes. This is mainly because there are currently no assays available to easily and reliably quantify different endophytes in pastures or in batches of seeds infected with multiple strains. We developed real time PCR assays, based on secondary metabolite genes known to differ between N. lolii endophyte strains, to quantify two selected endophytes, AR1 and AR37, and a common toxic ecotype used in New Zealand. A duplex PCR allowed assessment of endophyte:grass DNA ratios with high sensitivity, specificity and precision. Endophyte specific primers/probes could detect contamination of AR37 seeds with other endophytes down to a level of 3-25%. We demonstrated that it is possible to quantify different endophyte strains simultaneously using multiplex PCR. This method has potential applications in management of endophytes in pastures and in fundamental research into this important plant-microbe symbiosis. Copyright © 2014 The British Mycological Society. Published by Elsevier Ltd. All rights reserved.

  6. The pathogenicity of Beauveria bassiana: what happens after an endophytic phase in plants?

    PubMed

    Akello, J; Dubois, T; Coyne, D; Kyamanywa, S

    2010-01-01

    The banana weevil Cosmopolites sordidus (Germar) (Coleoptera: Curculionidae) is a serious constraint to banana (Musa spp.) production throughout the world. The entomopathogenic fungus Beauveria bassiana (Balsamo) Vuillemin (Ascomycota: Hypocreales) offers a potential weevil management option, but conventional delivery mechanisms have limited its success. As an endophyte, however, B. bassiana can be efficiently delivered to banana planting materials for the potential management of C. sordidus. However, entomopathogens can change morphology and efficacy against their target host when successively sub-cultured on artificial media or when exposed to certain physical and chemical environmental conditions. Whether such changes occur in B. bassiana after an endophytic phase inside a banana plant remains unknown. The primary aim of our study was to evaluate the viability, growth, sporulation and pathogenicity of endophytic B. bassiana. To attain this, two sets of experiments, namely morphological characterization and larval bioassays, were conducted under laboratory conditions. In these experiments, growth and pathogenicity of the wild-type B. bassiana strain G41, obtained originally from banana farms, was compared with the endophytic B. bassiana strain G41, re-isolated from the rhizome of B. bassiana-inoculated banana plants at one month post-inoculation. Morphological characterization, conidial germination, colony growth and sporulation rate was assessed on SDAY media while pathogenicity was determined 15 days after immersing the larvae of C. sordidus in different conidial doses. No differences were observed in colony appearance and growth rate between the endophytic and wild-type strain. Percentage conidial germination for the endophytic strain (91.4-94.0%) was higher than for the wild-type (86.6-89.7%). LD50 equated 1.76 x 10(5) and 0.71 x 10(5) conidia/ml for the wild-type and endophytic B. bassiana strains, respectively, but did not differ between strains. Our study

  7. [Separation and identification of endophytic fungi from desert plant Cynanchum komarovii].

    PubMed

    Duan, Hai-Jing; Han, Ting; Wu, Xiu-Li; Li, Na; Chen, Jing; Qin, Lu-Ping

    2013-02-01

    The research aimed to investigate the entophytic fungal community of Cynanchum Komarrovii, including the biodiversity in different organs and the correlations with ecological environment. Endophytic fungi with patent bioactivity were also rapidly screened. PDA medium was used to isolate and purify the endophytic fungi from C. komarovii living in Shaanxi and Ningxia district, respectively. The strains were identified based on the morphological characteristics of the fungi and similarity of 5.8S gene and internal transcribed spacer (ITS) sequence. Pyriculaia oryzae model was applied to preliminarily screen the active fungi. Ninety-four strains of endophytic fungi were isolated and identified to 9 species, 13 genera, 9 families and 6 orders, among them, 47 strains were from the plants living in Ningxia. And then, 5 of them were isolated from roots, 14 from branches, and 28 from leaves. They were identified belonging to 8 species, 9 genera, 5 families and 4 orders. Additionally, 47 strains were from the plants living in Shaanxi. 16 were isolated from the roots, 18 from branches, 13 from leaves. They were identified belonging to 5 species, 8 genera, 6 families and 4 orders. By preliminary screening, 18 strains of endophytes completely inhibited the germination of conidium, which showed a potential bioactivity for these fungi. Both N4 and S17 strains had stronger growth inhibition effect. Endophytic fungi from desert plant C. komarovii have the feature of diversity. Different geographical environment and type of organizations lead to the significant difference on the quantity and the species composition. Most of fungi in Ningxia C. komarovii distribute in leaves. However, most of those in Shaanxi C. komarovii distribute in stems and leaves. It also indicated that endophytes from C. komarovii had a strong antifungal activity.

  8. Epicoccum nigrum P16, a Sugarcane Endophyte, Produces Antifungal Compounds and Induces Root Growth

    PubMed Central

    Fávaro, Léia Cecilia de Lima; Sebastianes, Fernanda Luiza de Souza; Araújo, Welington Luiz

    2012-01-01

    Background Sugarcane is one of the most important crops in Brazil, mainly because of its use in biofuel production. Recent studies have sought to determine the role of sugarcane endophytic microbial diversity in microorganism-plant interactions, and their biotechnological potential. Epicoccum nigrum is an important sugarcane endophytic fungus that has been associated with the biological control of phytopathogens, and the production of secondary metabolites. In spite of several studies carried out to define the better conditions to use E. nigrum in different crops, little is known about the establishment of an endophytic interaction, and its potential effects on plant physiology. Methodology/Principal Findings We report an approach based on inoculation followed by re-isolation, molecular monitoring, microscopic analysis, plant growth responses to fungal colonization, and antimicrobial activity tests to study the basic aspects of the E. nigrum endophytic interaction with sugarcane, and the effects of colonization on plant physiology. The results indicate that E. nigrum was capable of increasing the root system biomass and producing compounds that inhibit the in vitro growth of sugarcane pathogens Fusarium verticillioides, Colletotrichum falcatum, Ceratocystis paradoxa, and Xanthomomas albilineans. In addition, E. nigrum preferentially colonizes the sugarcane surface and, occasionally, the endophytic environment. Conclusions/Significance Our work demonstrates that E. nigrum has great potential for sugarcane crop application because it is capable of increasing the root system biomass and controlling pathogens. The study of the basic aspects of the interaction of E. nigrum with sugarcane demonstrated the facultative endophytism of E. nigrum and its preference for the phylloplane environment, which should be considered in future studies of biocontrol using this species. In addition, this work contributes to the knowledge of the interaction of this ubiquitous endophyte

  9. Arcopilus aureus, a Resveratrol-Producing Endophyte from Vitis vinifera.

    PubMed

    Dwibedi, Vagish; Saxena, Sanjai

    2018-04-14

    Resveratrol is extensively being used as a therapeutic moiety, as well as a pharmacophore for development of new drugs due to its multifarious beneficial effects. The objective of the present study was to isolate and screen the resveratrol-producing endophytic fungi from different varieties of Vitis vinifera. A total of 53 endophytic fungi belonging to different fungal genera were isolated from the stem and leaf tissues of Vitis vinifera (merlot, wild, pinot noir, Shiraz, muscat) from different grape-producing locations of India. Only 29 endophytic fungal isolates exhibited a positive test for phenolics by phytochemical methods. The resveratrol obtained after ethyl acetate extraction was confirmed using standard molecule on thin layer chromatography (TLC) with a retention factor (R f ) of 0.69. The purified and standard resveratrol were visualized under UV light as a violet-colored spot. In HPLC analysis of the ethyl acetate extract of culture broth of 11 endophytic isolates, the highest resveratrol content was found in #12VVLPM (89.1 μg/ml) followed by #18VVLPM (37.3 μg/ml) and 193VVSTPM (25.2 μg/ml) exhibiting a retention time of 3.36 min which corresponded to the standard resveratrol. The resveratrol-producing isolates belong to seven genera viz. Aspergillus, Botryosphaeria, Penicillium, Fusarium, Alternaria, Arcopilus, and Lasiodiplodia, and using morphological and molecular methods, #12VVLPM was identified as Arcopilus aureus.

  10. Endophytic Phytoaugmentation: Treating Wastewater and Runoff Through Augmented Phytoremediation

    PubMed Central

    Redfern, Lauren K.

    2016-01-01

    Abstract Limited options exist for efficiently and effectively treating water runoff from agricultural fields and landfills. Traditional treatments include excavation, transport to landfills, incineration, stabilization, and vitrification. In general, treatment options relying on biological methods such as bioremediation have the ability to be applied in situ and offer a sustainable remedial option with a lower environmental impact and reduced long-term operating expenses. These methods are generally considered ecologically friendly, particularly when compared to traditional physicochemical cleanup options. Phytoremediation, which relies on plants to take up and/or transform the contaminant of interest, is another alternative treatment method which has been developed. However, phytoremediation is not widely used, largely due to its low treatment efficiency. Endophytic phytoaugmentation is a variation on phytoremediation that relies on augmenting the phytoremediating plants with exogenous strains to stimulate associated plant-microbe interactions to facilitate and improve remediation efficiency. In this review, we offer a summary of the current knowledge as well as developments in endophytic phytoaugmentation and present some potential future applications for this technology. There has been a limited number of published endophytic phytoaugmentation case studies and much remains to be done to transition lab-scale results to field applications. Future research needs include large-scale endophytic phytoaugmentation experiments as well as the development of more exhaustive tools for monitoring plant-microbe-pollutant interactions. PMID:27158249

  11. Enhancement of heterogeneous alkaline xylanase production in Pichia pastoris GS115

    NASA Astrophysics Data System (ADS)

    Zheng, Wei

    2017-08-01

    A series of strategies were applied to improve expression level of the recombinant alkaline xylanase from Bacillus pumilus G1-3 in Pichia pastoris GS115. Codon optimization of xylanase gene xynG1-3 from B. pumilus G1-3 were carried out for its heterogeneous expression in P. pastoris. The activity of xylanase encoded by optimized gene (xynG1-3-opt) was up to 33641 U/mL, which was 37% higher than that by wild-type (xynG1-3) gene. The results will greatly contribute to increasing the production of recombinant proteins in P. pastoris and improving the industrial production of the alkaline xylanase.

  12. Plant volatile organic compounds associated with fungal endophyte seed treatment of cotton

    USDA-ARS?s Scientific Manuscript database

    Fungal endophytes are asymptomatic endosymbionts of plants that can confer benefits to the host plant such as drought tolerance and herbivore resistance. We isolated naturally occurring fungal endophytes from field-grown cotton, cultured them in lab, and used their prepared biomass in seed treatmen...

  13. Composition of fungal communities in soil and endophytic in raspberry production systems

    USDA-ARS?s Scientific Manuscript database

    Fungi play important roles as decomposers, plant symbionts and pathogens in soil. While endophytes are microorganisms that dwell within plant tissues and have a symbiotic association with the host. The structures of fungal communities in the soil and in endophytic association are dependent up comple...

  14. [Screening of antifungi endophytic actinomyces strains from salvia przewalskii in Tibean Plateau].

    PubMed

    Liu, Song-Qing; Jiang, Hua-Ming; Guan, Tong-Wei; Qi, Shan-Shan; Gu, Yun-Fu; Zhao, Ke; Wang, Xu; Zhang, Xiao-Ping

    2013-10-01

    Twenty-four endophytic actinomycetes strains were isolated from the Salvia przewalskii in Tibetan Plateau of China by tablet coating method. Fusarium moniliforme, Helminthosporium turcicum and Bipolaris maydis were selected as indicator fungi to test the antimicrobial activities of these endophytic actinomycetes by tablet confrontation method. The results showed that 21 strains can produce antimicrobial substances which accounts for 85.7% of the total separates number. Four strains of endogenous actinomyces have more obvious antifungi activity. According to results of morphology and culture properties and 16S rDNA sequences of endophytic actinomyces, it is concluded that all of the isolates were streptomycetes trains.

  15. A Bilobalide-Producing Endophytic Fungus, Pestalotiopsis uvicola from Medicinal Plant Ginkgo biloba.

    PubMed

    Qian, Yi-Xin; Kang, Ji-Chuan; Luo, Yi-Kai; Zhao, Jun-Jie; He, Jun; Geng, Kun

    2016-08-01

    For screening bilobalide (BB)-producing endophytic fungi from medicinal plant Ginkgo biloba, a total of 57 fungal isolates were isolated from the internal stem, root, leaf, and bark of the plant G. biloba. Fermentation processes using BB-producing fungi other than G. biloba may become a novel way to produce BB, which is a terpene trilactones exhibiting neuroprotective effects. In this study, a BB-producing endophytic fungal strain GZUYX13 was isolated from the leaves of G. biloba grown in the campus of Guizhou University, Guiyang city, Guizhou province, China. The strain produced BB when grown in potato dextrose liquid medium. The amount of BB produced by this endophytic fungus was quantified to be 106 μg/L via high-performance liquid chromatography (HPLC), substantially lower than that produced by the host tissue. The fungal BB which was analyzed by thin layer chromatography (TLC) and HPLC was proven to be identical to authentic BB. The strain GZUYX13 was identified as Pestalotiopsis uvicola via morphology and ITS rDNA phylogeny. To the best of our knowledge, this is the first report concerning the isolation and identification of endophytic BB-producing Pestalotiopsis spp. from the host plant, which further proved that endophytic fungi have the potential to produce bioactive compounds.

  16. The diversity of anti-microbial secondary metabolites produced by fungal endophytes: an interdisciplinary perspective.

    PubMed

    Mousa, Walaa Kamel; Raizada, Manish N

    2013-01-01

    Endophytes are microbes that inhabit host plants without causing disease and are reported to be reservoirs of metabolites that combat microbes and other pathogens. Here we review diverse classes of secondary metabolites, focusing on anti-microbial compounds, synthesized by fungal endophytes including terpenoids, alkaloids, phenylpropanoids, aliphatic compounds, polyketides, and peptides from the interdisciplinary perspectives of biochemistry, genetics, fungal biology, host plant biology, human and plant pathology. Several trends were apparent. First, host plants are often investigated for endophytes when there is prior indigenous knowledge concerning human medicinal uses (e.g., Chinese herbs). However, within their native ecosystems, and where investigated, endophytes were shown to produce compounds that target pathogens of the host plant. In a few examples, both fungal endophytes and their hosts were reported to produce the same compounds. Terpenoids and polyketides are the most purified anti-microbial secondary metabolites from endophytes, while flavonoids and lignans are rare. Examples are provided where fungal genes encoding anti-microbial compounds are clustered on chromosomes. As different genera of fungi can produce the same metabolite, genetic clustering may facilitate sharing of anti-microbial secondary metabolites between fungi. We discuss gaps in the literature and how more interdisciplinary research may lead to new opportunities to develop bio-based commercial products to combat global crop and human pathogens.

  17. The Role of Endophytic Fungi in the Anticancer Activity of Morinda citrifolia Linn. (Noni)

    PubMed Central

    Wu, Yougen; Girmay, Sisay; da Silva, Vitor Martins; Perry, Brian; Hu, Xinwen; Tan, Ghee T.

    2015-01-01

    We hypothesize that the fungal endophytes of noni may possibly play a role in its overall pharmacological repertoire, especially since the perceived efficacy of the fruit in ethnomedicinal use is associated with the fermented juice. The foremost goal of this study is to explore the role of endophyte-derived secondary metabolites in the purported anticancer properties of noni. To that end, culturable endophytic fungi resident within the healthy leaves and fruit of the plant were isolated and identified by molecular sequence analysis of the 5.8S gene and internal transcribed spacers (ITS). Purified organisms were subjected to in vitro fermentation in malt extract broth for 8 weeks under anaerobic conditions at room temperature (25°C), in order to simulate the conditions under which traditional fermented noni juice is prepared. The cytotoxic potential of organic extracts derived from the fermented broths of individual endophytes was then tested against three major cancers that afflict humans. Twelve distinct endophytic fungal species were obtained from the leaves and 3 from the fruit. Three of the leaf endophytes inhibited the growth of human carcinoma cell lines LU-1 (lung), PC-3 (prostate), and MCF-7 (breast) with IC50 values of ≤10 μg/mL. PMID:26783408

  18. The Role of Endophytic Fungi in the Anticancer Activity of Morinda citrifolia Linn. (Noni).

    PubMed

    Wu, Yougen; Girmay, Sisay; da Silva, Vitor Martins; Perry, Brian; Hu, Xinwen; Tan, Ghee T

    2015-01-01

    We hypothesize that the fungal endophytes of noni may possibly play a role in its overall pharmacological repertoire, especially since the perceived efficacy of the fruit in ethnomedicinal use is associated with the fermented juice. The foremost goal of this study is to explore the role of endophyte-derived secondary metabolites in the purported anticancer properties of noni. To that end, culturable endophytic fungi resident within the healthy leaves and fruit of the plant were isolated and identified by molecular sequence analysis of the 5.8S gene and internal transcribed spacers (ITS). Purified organisms were subjected to in vitro fermentation in malt extract broth for 8 weeks under anaerobic conditions at room temperature (25°C), in order to simulate the conditions under which traditional fermented noni juice is prepared. The cytotoxic potential of organic extracts derived from the fermented broths of individual endophytes was then tested against three major cancers that afflict humans. Twelve distinct endophytic fungal species were obtained from the leaves and 3 from the fruit. Three of the leaf endophytes inhibited the growth of human carcinoma cell lines LU-1 (lung), PC-3 (prostate), and MCF-7 (breast) with IC50 values of ≤10 μg/mL.

  19. The local environment determines the assembly of root endophytic fungi at a continental scale.

    PubMed

    Glynou, Kyriaki; Ali, Tahir; Buch, Ann-Katrin; Haghi Kia, Sevda; Ploch, Sebastian; Xia, Xiaojuan; Çelik, Ali; Thines, Marco; Maciá-Vicente, Jose G

    2016-09-01

    Root endophytic fungi are found in a great variety of plants and ecosystems, but the ecological drivers of their biogeographic distribution are poorly understood. Here, we investigate the occurrence of root endophytes in the non-mycorrhizal plant genus Microthlaspi, and the effect of environmental factors and geographic distance in structuring their communities at a continental scale. We sampled 52 plant populations across the northern Mediterranean and central Europe and used a cultivation approach to study their endophytic communities. Cultivation of roots yielded 2601 isolates, which were grouped into 296 operational taxonomic units (OTUs) by internal transcribed spacer sequencing of 1998 representative colonies. Climatic and spatial factors were the best descriptors of the structure of endophytic communities, outweighing soil characteristics, host genotype and geographical distance. OTU richness was negatively affected by precipitation, and the composition of communities followed latitudinal gradients of precipitation and temperature. Only six widespread OTUs belonging to the orders Pleosporales, Hypocreales and Helotiales represented about 50% of all isolates. Assessments of their individual distribution revealed particular ecological preferences or a cosmopolitan occurrence. Our findings support a strong influence of the local environment in determining root endophytic communities, and show a different niche occupancy by individual endophytes. © 2015 Society for Applied Microbiology and John Wiley & Sons Ltd.

  20. L-Asparaginase Activity of Fungal Endophytes from Tabernaemontana heyneana Wall. (Apocynaceae), Endemic to the Western Ghats (India)

    PubMed Central

    Manasa, Chandramouli; Nalini, Monnanda Somaiah

    2014-01-01

    Endophytes,” the microbes residing within the plant tissues, are important sources of secondary metabolites. Tabernaemontana heyneana Wall., a medicinal tree, endemic to the Western Ghats with rich ethnobotanical history and unique chemical diversity, was selected to study fungal endophytes and evaluate them for L-asparaginase activity. Healthy plant parts were selected for the isolation of endophytes following standard isolation protocols. A total of 727 isolates belonging to 20 taxa were obtained. The isolates comprised of bark (11%), twig (22%), leaf (43%), fruit (12.0%), and seeds (12%). Endophytes such as Colletotrichum, Curvularia, Fusarium, Phomopsis, Verticillium, and Volutella colonized T. heyneana plant parts. Fusarium sp., Phomopsis spp., isolate Thlf01, and Fusarium solani were the dominant genera of bark, twig, leaf, fruits, and seed samples, respectively. The endophytes were screened for their ability to utilize L-asparagine by plate assay method. Fusarium spp. exhibited a high level of activity among the nine endophytes tested positive for L-asparaginase activity. Studies underline the potentials of endophyte-derived fungal L-asparaginases as sources of chemotherapeutic agents. PMID:27382605

  1. Cyclic Lipopeptide Biosynthetic Genes and Products, and Inhibitory Activity of Plant-Associated Bacillus against Phytopathogenic Bacteria

    PubMed Central

    Mora, Isabel; Cabrefiga, Jordi; Montesinos, Emilio

    2015-01-01

    The antibacterial activity against bacterial plant pathogens and its relationships with the presence of the cyclic lipopeptide (cLP) biosynthetic genes ituC (iturin), bmyB (bacillomycin), fenD (fengycin) and srfAA (surfactin), and their corresponding antimicrobial peptide products have been studied in a collection of 64 strains of Bacillus spp. isolated from plant environments. The most frequent antimicrobial peptide (AMP) genes were bmyB, srfAA and fenD (34-50% of isolates). Most isolates (98.4%) produced surfactin isoforms, 90.6% iturins and 79.7% fengycins. The antibacterial activity was very frequent and generally intense among the collection of strains because 75% of the isolates were active against at least 6 of the 8 bacterial plant pathogens tested. Hierarchical and correspondence analysis confirmed the presence of two clearly differentiated groups. One group consisted of Bacillus strains that showed a strong antibacterial activity, presented several cLPs genes and produced several isoforms of cLPs simultaneously, mainly composed of B. subtilis and B. amyloliquefaciens, although the last one was exclusive to this group. Another group was characterized by strains with very low or none antibacterial activity, that showed one or none of the cLP genes and produced a few or none of the corresponding cLPs, and was the most heterogenous group including B. subtilis, B. licheniformis, B. megaterium, B. pumilus, B. cereus and B. thuringiensis, although the last two were exclusive to this group. This work demonstrated that the antagonistic capacity of plant-associated Bacillus against plant pathogenic bacteria is related to the presence of cLP genes and to the production of the corresponding cLPs, and it is mainly associated to the species B. subtilis and B. amyloliquefaciens. Our findings would help to increase the yield and efficiency of screening methods to obtain candidate strains to biocontrol agents with a mechanism of action relaying on the production of

  2. Endophytic Fungi—Alternative Sources of Cytotoxic Compounds: A Review

    PubMed Central

    Uzma, Fazilath; Mohan, Chakrabhavi D.; Hashem, Abeer; Konappa, Narasimha M.; Rangappa, Shobith; Kamath, Praveen V.; Singh, Bhim P.; Mudili, Venkataramana; Gupta, Vijai K.; Siddaiah, Chandra N.; Chowdappa, Srinivas; Alqarawi, Abdulaziz A.; Abd_Allah, Elsayed F.

    2018-01-01

    Cancer is a major cause of death worldwide, with an increasing number of cases being reported annually. The elevated rate of mortality necessitates a global challenge to explore newer sources of anticancer drugs. Recent advancements in cancer treatment involve the discovery and development of new and improved chemotherapeutics derived from natural or synthetic sources. Natural sources offer the potential of finding new structural classes with unique bioactivities for cancer therapy. Endophytic fungi represent a rich source of bioactive metabolites that can be manipulated to produce desirable novel analogs for chemotherapy. This review offers a current and integrative account of clinically used anticancer drugs such as taxol, podophyllotoxin, camptothecin, and vinca alkaloids in terms of their mechanism of action, isolation from endophytic fungi and their characterization, yield obtained, and fungal strain improvement strategies. It also covers recent literature on endophytic fungal metabolites from terrestrial, mangrove, and marine sources as potential anticancer agents and emphasizes the findings for cytotoxic bioactive compounds tested against specific cancer cell lines. PMID:29755344

  3. Symbiotic interaction of endophytic bacteria with arbuscular mycorrhizal fungi and its antagonistic effect on Ganoderma boninense.

    PubMed

    Sundram, Shamala; Meon, Sariah; Seman, Idris Abu; Othman, Radziah

    2011-08-01

    Endophytic bacteria (Pseudomonas aeruginosa UPMP3 and Burkholderia cepacia UMPB3), isolated from within roots of oil palm (Elaeis guineensis Jacq.) were tested for their presymbiotic effects on two arbuscular mcorrhizal fungi, Glomus intraradices UT126 and Glomus clarum BR152B). These endophytic bacteria were also tested for antagonistic effects on Ganoderma boninense PER 71, a white wood rot fungal pathogen that causes a serious disease in oil palm. Spore germination and hyphal length of each arbuscular mycorrhizal fungal (AMF) pairing with endophytic bacteria was found to be significantly higher than spores plated in the absence of bacteria. Scanning electron microscopy (SEM) showed that the endophytic bacteria were scattered, resting or embedded on the surface hyaline layer or on the degraded walls of AMF spores, possibly feeding on the outer hyaline spore wall. The antagonistic effect of the endophytic bacteria was expressed as severe morphological abnormalities in the hyphal structures of G. boninense PER 71. The effects of the endophytic bacteria on G. boninense PER 71 hyphal structures were observed clearly under SEM. Severe inter-twisting, distortion, lysis and shriveling of the hyphal structures were observed. This study found that the effect of endophytic bacteria on G. intraradices UT126 and G. clarum BR152B resembled that of a mycorrhiza helper bacteria (MHB) association because the association significantly promoted AMF spore germination and hyphal length. However, the endophytic bacteria were extremely damaging to G. boninense PER 71.

  4. Bacillus velezensis is not a later heterotypic synonym of Bacillus amyloliquefaciens; Bacillus methylotrophicus, Bacillus amyloliquefaciens subsp plantarum and ‘Bacillus oryzicola’ are later heterotypic synonyms of Bacillus

    USDA-ARS?s Scientific Manuscript database

    The rhizosphere isolated bacteria belonging to the Bacillus amyloliquefaciens subsp. plantarum and Bacillus methylotrophicus clades are an important group of strains that are used as plant growth promoters and antagonists of plant pathogens. These properties have made these strains the focus of comm...

  5. Host and geographic structure of endophytic and endolichenic fungi at a continental scale.

    PubMed

    U'Ren, Jana M; Lutzoni, François; Miadlikowska, Jolanta; Laetsch, Alexander D; Arnold, A Elizabeth

    2012-05-01

    Endophytic and endolichenic fungi occur in healthy tissues of plants and lichens, respectively, playing potentially important roles in the ecology and evolution of their hosts. However, previous sampling has not comprehensively evaluated the biotic, biogeographic, and abiotic factors that structure their communities. Using molecular data we examined the diversity, composition, and distributions of 4154 endophytic and endolichenic Ascomycota cultured from replicate surveys of ca. 20 plant and lichen species in each of five North American sites (Madrean coniferous forest, Arizona; montane semideciduous forest, North Carolina; scrub forest, Florida; Beringian tundra and forest, western Alaska; subalpine tundra, eastern central Alaska). Endolichenic fungi were more abundant and diverse per host species than endophytes, but communities of endophytes were more diverse overall, reflecting high diversity in mosses and lycophytes. Endophytes of vascular plants were largely distinct from fungal communities that inhabit mosses and lichens. Fungi from closely related hosts from different regions were similar in higher taxonomy, but differed at shallow taxonomic levels. These differences reflected climate factors more strongly than geographic distance alone. Our study provides a first evaluation of endophytic and endolichenic fungal associations with their hosts at a continental scale. Both plants and lichens harbor abundant and diverse fungal communities whose incidence, diversity, and composition reflect the interplay of climatic patterns, geographic separation, host type, and host lineage. Although culture-free methods will inform future work, our study sets the stage for empirical assessments of ecological specificity, metabolic capability, and comparative genomics.

  6. Genetic characterization of uncultured fungal endophytes from Bouteloua eriopoda and Atriplex canescens

    Treesearch

    Mary E. Lucero; Jerry R. Barrow; Ruth Sedillo; Pedro Osuna-Avila; Isaac Reyes-Vera

    2008-01-01

    Obligate fungal endophytes form cryptic communities in vascular plants that can defy detection and isolation by microscopic examination of reproductive structures. Molecular detection by PCR amplification of fungal DNA sequences alone is insufficient, since target endophyte sequences are unknown and difficult to distinguish from sequences already characterized as plant...

  7. Genotypic variation in the response of chickpea to arbuscular mycorrhizal fungi and non-mycorrhizal fungal endophytes.

    PubMed

    Bazghaleh, Navid; Hamel, Chantal; Gan, Yantai; Tar'an, Bunyamin; Knight, Joan Diane

    2018-04-01

    Plant roots host symbiotic arbuscular mycorrhizal (AM) fungi and other fungal endophytes that can impact plant growth and health. The impact of microbial interactions in roots may depend on the genetic properties of the host plant and its interactions with root-associated fungi. We conducted a controlled condition experiment to investigate the effect of several chickpea (Cicer arietinum L.) genotypes on the efficiency of the symbiosis with AM fungi and non-AM fungal endophytes. Whereas the AM symbiosis increased the biomass of most of the chickpea cultivars, inoculation with non-AM fungal endophytes had a neutral effect. The chickpea cultivars responded differently to co-inoculation with AM fungi and non-AM fungal endophytes. Co-inoculation had additive effects on the biomass of some cultivars (CDC Corrine, CDC Anna, and CDC Cory), but non-AM fungal endophytes reduced the positive effect of AM fungi on Amit and CDC Vanguard. This study demonstrated that the response of plant genotypes to an AM symbiosis can be modified by the simultaneous colonization of the roots by non-AM fungal endophytes. Intraspecific variations in the response of chickpea to AM fungi and non-AM fungal endophytes indicate that the selection of suitable genotypes may improve the ability of crop plants to take advantage of soil ecosystem services.

  8. Bacterial endophyte communities of three agricultural important grass species differ in their response towards management regimes

    NASA Astrophysics Data System (ADS)

    Wemheuer, Franziska; Kaiser, Kristin; Karlovsky, Petr; Daniel, Rolf; Vidal, Stefan; Wemheuer, Bernd

    2017-01-01

    Endophytic bacteria are critical for plant growth and health. However, compositional and functional responses of bacterial endophyte communities towards agricultural practices are still poorly understood. Hence, we analyzed the influence of fertilizer application and mowing frequency on bacterial endophytes in three agriculturally important grass species. For this purpose, we examined bacterial endophytic communities in aerial plant parts of Dactylis glomerata L., Festuca rubra L., and Lolium perenne L. by pyrotag sequencing of bacterial 16S rRNA genes over two consecutive years. Although management regimes influenced endophyte communities, observed responses were grass species-specific. This might be attributed to several bacteria specifically associated with a single grass species. We further predicted functional profiles from obtained 16S rRNA data. These profiles revealed that predicted abundances of genes involved in plant growth promotion or nitrogen metabolism differed between grass species and between management regimes. Moreover, structural and functional community patterns showed no correlation to each other indicating that plant species-specific selection of endophytes is driven by functional rather than phylogenetic traits. The unique combination of 16S rRNA data and functional profiles provided a holistic picture of compositional and functional responses of bacterial endophytes in agricultural relevant grass species towards management practices.

  9. Effects of Water Stress on the Endophytic Fungal Communities of Pinus koraiensis Needles Infected by Cenangium ferruginosum

    PubMed Central

    Lee, Sun Keun; Lee, Seung Kyu; Bae, Hanhong; Seo, Sang-Tae

    2014-01-01

    To examine the effects of water stress and Cenangium ferruginosum (CF) on the fungal endophytic community of needles of Pinus koraiensis (PK), fungal endophytes isolated from the needles of 5-year-old PK seedlings were compared before and after exposure to water stress conditions and artificial inoculation with CF ascospores. Artificial CF inoculation was successfully confirmed using PCR with CF-specific primers (CfF and CfR). For comparison of the degree of water deficit in water-stressed and control groups of PK seedlings infected with CF, the water saturation deficit and water potential were measured. Lower water potential estimates were found in the water-stressed seedlings than in the control group. The fungal endophytes isolated from the second-year needles of non-water-stressed seedlings before and after CF inoculation revealed that primary saprobes were approximately 30% and 71.7%, respectively, and the remaining endophytes were rot fungi or pathogens. Sixty days after CF inoculation, diverse fungal endophytes in the first-year needles were isolated from the water-stressed seedlings. However, some fungal endophytes isolated from the non-water-stressed seedlings were also identified. Fungal endophytes in the second-year needles of the water-stressed and non-water-stressed seedlings were approximately 8% and 71.7% of saprobes, respectively, and the remaining endophytes were rot fungi or pathogens. On the basis of the results, we conclude that water deficit and CF can have an effect on fungal endophytic communities in the needles of PK seedlings. PMID:25606004

  10. Beauveria bassiana and Metarhizium anisopliae endophytically colonize cassava roots following soil drench inoculation

    USDA-ARS?s Scientific Manuscript database

    The fungal entomopathogens Beauveria bassiana and Metarhizium anisopliae were investigated to determine if endophytic colonization could be achieved in cassava. An inoculation method based on drenching the soil around cassava stems using conidial suspensions resulted in endophytic colonization of ca...

  11. Fungal Endophyte (Epichloë festucae) Alters the Nutrient Content of Festuca rubra Regardless of Water Availability

    PubMed Central

    Vázquez-de-Aldana, Beatriz R.; García-Ciudad, Antonia; García-Criado, Balbino; Vicente-Tavera, Santiago; Zabalgogeazcoa, Iñigo

    2013-01-01

    Festuca rubra plants maintain associations with the vertically transmitted fungal endophyte Epichloë festucae. A high prevalence of infected host plants in semiarid grasslands suggests that this association could be mutualistic. We investigated if the Epichloë-endophyte affects the growth and nutrient content of F. rubra plants subjected to drought. Endophyte-infected (E+) and non-infected (E−) plants of two half-sib lines (PEN and RAB) were subjected to three water availability treatments. Shoot and root biomass, nutrient content, proline, phenolic compounds and fungal alkaloids were measured after the treatments. The effect of the endophyte on shoot and root biomass and dead leaves depended on the plant line. In the PEN line, E+ plants had a greater S:R ratio than E-, but the opposite occurred in RAB. In both plant lines and all water treatments, endophyte-infected plants had greater concentrations of N, P and Zn in shoots and Ca, Mg and Zn in roots than E- plants. On average, E+ plants contained in their shoots more P (62%), Zn (58%) and N (19%) than E- plants. While the proline in shoots increased in response to water stress, the endophyte did not affect this response. A multivariate analysis showed that endophyte status and plant line impose stronger differences in the performance of the plants than the water stress treatments. Furthermore, differences between PEN and RAB lines seemed to be greater in E- than in E+ plants, suggesting that E+ plants of both lines are more similar than those of their non-infected version. This is probably due to the endophyte producing a similar effect in both plant lines, such as the increase in N, P and Zn in shoots. The remarkable effect of the endophyte in the nutrient balance of the plants could help to explain the high prevalence of infected plants in natural grasslands. PMID:24367672

  12. Partitioning of Fungal Endophyte Assemblages in Root-Parasitic Plant Cynomorium songaricum and Its Host Nitraria tangutorum

    PubMed Central

    Cui, Jin-Long; Vijayakumar, Vinod; Zhang, Gang

    2018-01-01

    Endophytic fungi are an integral part and even seen as host organs of plant, influencing physiology, ecology, and development of host plants. However, little is known about micro-ecosystems and functional interactions of endophytic fungi in root-parasitic interactions of Cynomorium songaricum and its host Nitraria tangutorum. Here, distribution and dynamics of endophytic fungi were objectively investigated in their associations with C. songaricum and N. tangutorum based on mycobiome studies using high-throughput sequencing. Results suggest that endophytic fungi may be exchanged between C. songaricum and its host N. tangutorum probably through haustorium, connection of xylem and phloem in the vascular system. The similarity of endophytic fungal composition between C. songaricum and parasitized N. tangutorum was 3.88% which was significantly higher than the fungal similarity of 0.10% observed between C. songaricum and non-parasitized N. tangutorum. The similarities of fungal community in parasitized N. tangutorum were much closer to C. songaricum than to the non-parasitized N. tangutorum. The composition of endophytic fungi in these associations increased in progressive developmental stages of C. songaricum from sprouting to above ground emergence, and decreased subsequently probably due to host recognition and response by fungi. However, the shared fungal operational taxonomic units (OTUs) increased among interactions of C. songaricum with parasitized and non-parasitized N. tangutorum. Studies of bioactivity on culturable endophytic fungi showed that isolates such as Fusarium spp. possess the ability to promote seed germination of C. songaricum. Our study reports for the first time the special ecological system of endophytic fungi in C. songaricum and its host N. tangutorum. Overall, we hypothesize that a deeper understanding of the sharing, movement, and role of endophytic fungi between root-parasitic plant and its host may lead to finding alternative approaches to

  13. Alfalfa endophytes as novel sources of antimicrobial compounds that inhibit the growth of human and plant pathogens

    USDA-ARS?s Scientific Manuscript database

    Fungal endophytes may contribute to plant health and disease protection, yet little is known about their various roles in alfalfa. Also, endophytes from several plant species produce novel antimicrobial compounds that may be useful clinically. We isolated endophytic fungi from over 50 samples from s...

  14. Endophytic bacteria in cacti seeds can improve the development of cactus seedlings.

    Treesearch

    M. Esther Puente; Ching Y. Li; Yoav Bashan

    2009-01-01

    A plant-bacterium association between the giant cardon cactus Pachycereus pringlei and endophytic bacteria help seedlings establish and grow on barren rock, This cactus, together with other desert plants, is responsible for weathering ancient lava flows in the Baja California Peninsula of Mexico.When cardon seeds are inoculated with endophytic...

  15. Characterization of five fungal endophytes producing Cajaninstilbene acid isolated from pigeon pea [Cajanus cajan (L.) Millsp].

    PubMed

    Gao, Yuan; Zhao, Jin Tong; Zu, Yuan Gang; Fu, Yu Jie; Wang, Wei; Luo, Meng; Efferth, Thomas

    2011-01-01

    Five fungal endophytes (K4, K5, K6, K9, K14) producing Cajaninstilbene acid (CSA, 3-hydroxy-4-prenyl-5-methoxystilbene-2-carboxylic acid) were isolated from the roots of pigeon pea [Cajanus cajan (L.) Millsp.]. CSA is responsible for the prominent pharmacological activities in pigeon pea. The amount of CSA in culture solution varied among the five fungal endophytes. K4 produced the highest levels of CSA (1037.13 µg/L) among the endophytes tested after incubation for five days. Both morphological characteristics and molecular methods were used for species identification of fungal endophytes. The five endophytic isolates were characterized by analyzing the internal transcribed spacer (ITS) rRNA and β-tubulin genes. The K4, K5, K9 and K14 strains isolated from pigeon pea roots were found to be closely related to the species Fusarium oxysporum. K6 was identified as Neonectria macrodidym. The present study is the first report on the isolation and identification of fungal endophytes producing CSA in pigeon pea. The study also provides a scientific base for large scale production of CSA.

  16. Preferential Association of Endophytic Bradyrhizobia with Different Rice Cultivars and Its Implications for Rice Endophyte Evolution

    PubMed Central

    Piromyou, Pongdet; Greetatorn, Teerana; Teamtisong, Kamonluck; Okubo, Takashi; Shinoda, Ryo; Nuntakij, Achara; Tittabutr, Panlada; Boonkerd, Nantakorn

    2015-01-01

    Plant colonization by bradyrhizobia is found not only in leguminous plants but also in nonleguminous species such as rice. To understand the evolution of the endophytic symbiosis of bradyrhizobia, the effect of the ecosystems of rice plantations on their associations was investigated. Samples were collected from various rice (Oryza sativa) tissues and crop rotational systems. The rice endophytic bradyrhizobia were isolated on the basis of oligotrophic properties, selective medium, and nodulation on siratro (Macroptilium atropurpureum). Six bradyrhizobial strains were obtained exclusively from rice grown in a crop rotational system. The isolates were separated into photosynthetic bradyrhizobia (PB) and nonphotosynthetic bradyrhizobia (non-PB). Thai bradyrhizobial strains promoted rice growth of Thai rice cultivars better than the Japanese bradyrhizobial strains. This implies that the rice cultivars possess characteristics that govern rice-bacterium associations. To examine whether leguminous plants in a rice plantation system support the persistence of rice endophytic bradyrhizobia, isolates were tested for legume nodulation. All PB strains formed symbioses with Aeschynomene indica and Aeschynomene evenia. On the other hand, non-PB strains were able to nodulate Aeschynomene americana, Vigna radiata, and M. atropurpureum but unable to nodulate either A. indica or A. evenia. Interestingly, the nodABC genes of all of these bradyrhizobial strains seem to exhibit low levels of similarity to those of Bradyrhizobium diazoefficiens USDA110 and Bradyrhizobium sp. strain ORS285. From these results, we discuss the evolution of the plant-bradyrhizobium association, including nonlegumes, in terms of photosynthetic lifestyle and nod-independent interactions. PMID:25710371

  17. Antimicrobial activity of endophytic fungi from olive tree leaves.

    PubMed

    Malhadas, Cynthia; Malheiro, Ricardo; Pereira, José Alberto; de Pinho, Paula Guedes; Baptista, Paula

    2017-03-01

    In this study, the antimicrobial potential of three fungal endophytes from leaves of Olea europaea L. was evaluated and the host plant extract effect in the antimicrobial activity was examined. The volatile compounds produced by endophytes were identified by GC/MS and further correlated with the antimicrobial activity. In potato dextrose agar, both Penicillium commune and Penicillium canescens were the most effective inhibiting Gram-positive and -negative bacteria (up to 2.7-fold compared to 30 µg/mL chloramphenicol), whereas Alternaria alternata was most effective inhibiting yeasts (up to 8.0-fold compared to 25 μg/mL fluconazole). The presence of aqueous leaf extract in culture medium showed to induce or repress the antimicrobial activity, depending on the endophytic species. In the next step, various organic extracts from both A. alternata mycelium and cultured broth were prepared; being ethyl acetate extracts displayed the widest spectrum of anti-microorganisms at a minimum inhibitory concentration ≤0.095 mg/mL. The volatile composition of the fungi that displayed the highest (A. alternata) and the lowest (P. canescens) antimicrobial activity against yeasts revealed the presence of six volatiles, being the most abundant components (3-methyl-1-butanol and phenylethyl alcohol) ascribed with antimicrobial potentialities. Overall the results highlighted for the first time the antimicrobial potential of endophytic fungi from O. europaea and the possibility to be exploited for their antimicrobial agents.

  18. Exploring the evolutionary ecology of fungal endophytes in agricultural systems: using functional traits to reveal mechanisms in community processes

    PubMed Central

    Saunders, Megan; Glenn, Anthony E; Kohn, Linda M

    2010-01-01

    All plants, including crop species, harbor a community of fungal endophyte species, yet we know little about the biotic factors that are important in endophyte community assembly. We suggest that the most direct route to understanding the mechanisms underlying community assembly is through the study of functional trait variation in the host and its fungal consortium. We review studies on crop endophytes that investigate plant and fungal traits likely to be important in endophyte community processes. We focus on approaches that could speed detection of general trends in endophyte community assembly: (i) use of the ‘assembly rules’ concept to identify specific mechanisms that influence endophyte community dynamics, (ii) measurement of functional trait variation in plants and fungi to better understand endophyte community processes and plant–fungal interactions, and (iii) investigation of microbe–microbe interactions, and fungal traits that mediate them. This approach is well suited for research in agricultural systems, where pair-wise host–fungus interactions and mechanisms of fungal–fungal competition have frequently been described. Areas for consideration include the possibility that human manipulation of crop phenotype and deployment of fungal biocontrol species can significantly influence endophyte community assembly. Evaluation of endophyte assembly rules may help to fine-tune crop management strategies. PMID:25567944

  19. Antitumour and antimicrobial activities of endophytic streptomycetes from pharmaceutical plants in rainforest.

    PubMed

    Li, J; Zhao, G-Z; Chen, H-H; Wang, H-B; Qin, S; Zhu, W-Y; Xu, L-H; Jiang, C-L; Li, W-J

    2008-12-01

    The aim of this study was to screen antitumour and antimicrobial activities of endophytic actinomycetes isolated from pharmaceutical plants in rainforest in Yunnan province, China. Antitumour activity was studied by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay and antimicrobial activity was determined by agar well diffusion method. The high bioactive endophytic isolates were identified and further investigated for the presence of polyketide synthases (PKS-I, PKS-II) and nonribosomal peptide synthetases (NRPS) sequences by specific amplification. The molecular identification confirmed that the 41 isolates showed significant activities were members of the genus Streptomyces. Among them, 31.7% of endophytic streptomycete cultures were cytotoxic against A549 cells, 29.3% against HL-60 cells, 85.4% against BEL-7404 cells, 90.2% against P388D1 cells, 65.9% were active against Escherichia coli, 24.4% against Staphylococcus aureus, 31.7% against Staphylococcus epidermidis, 12.2% against Candida albicans and no strain displayed antagonistic activity against Klebsiella pneumoniae. High frequencies of positive PCR amplification were obtained for PKS-I (34.1%), PKS-II (63.4%) and NRPS (61.0%) biosynthetic systems. Many endophytic streptomycetes isolated from pharmaceutical plants in rainforest possess remarkable and diverse antitumour and antimicrobial bioactivities. These endophytic streptomycetes are precious resources obtained from rainforests, and they could be a promising source for bioactive agents.

  20. Isolation and characterization of endophytic huperzine A-producing fungi from Huperzia serrata.

    PubMed

    Wang, Ya; Zeng, Qing Gui; Zhang, Zhi Bin; Yan, Ri Ming; Wang, Ling Yun; Zhu, Du

    2011-09-01

    Huperzia serrata is a producer of huperzine A (HupA), a cholinesterase inhibitor (ChEI). Over 120 endophytic fungi were recovered from this plant and screened for Hup-A and nine were found. These nine represented seven different fungal genera with the most significant producer being Shiraia sp. A total of 127 endophytic fungi isolates obtained from the root, stem, and leaf segments of H. serrata were grouped into 19 genera based on their morphological traits and sequence analysis of the internal transcribed spacers (ITS1-5.8S-ITS2), indicating endophytic fungi in H. serrata are diverse and abundant. Aspergillus, Podospora, Penicillium, Colletotrichum, and Acremonium were the frequent genera, whereas the remaining genera were infrequent groups. Overall, 39 endophytic fungi isolates showed acetylcholinesterase (AChE) inhibition in vitro. Nine endophytic fungi isolates from seven distinct genera were capable of producing HupA verified by thin-layer chromatography and reverse-phase high-performance liquid chromatography (RP-HPLC). Among the HupA-producing fungi, the yield of HupA produced by the Shiraia sp. Slf14 was 327.8 μg/l in potato dextrose broth, and the fungal HupA was further validated by mass spectrometry (ESI-MS). The present study demonstrated that H. serrata was a fascinating fungal reservoir for producing HupA and other ChEIs.

  1. Genome sequencing and analysis of the paclitaxel-producing endophytic fungus Penicillium aurantiogriseum NRRL 62431

    PubMed Central

    2014-01-01

    Background Paclitaxel (Taxol™) is an important anticancer drug with a unique mode of action. The biosynthesis of paclitaxel had been considered restricted to the Taxus species until it was discovered in Taxomyces andreanae, an endophytic fungus of T. brevifolia. Subsequently, paclitaxel was found in hazel (Corylus avellana L.) and in several other endophytic fungi. The distribution of paclitaxel in plants and endophytic fungi and the reported sequence homology of key genes in paclitaxel biosynthesis between plant and fungi species raises the question about whether the origin of this pathway in these two physically associated groups could have been facilitated by horizontal gene transfer. Results The ability of the endophytic fungus of hazel Penicillium aurantiogriseum NRRL 62431 to independently synthesize paclitaxel was established by liquid chromatography-mass spectrometry and proton nuclear magnetic resonance. The genome of Penicillium aurantiogriseum NRRL 62431 was sequenced and gene candidates that may be involved in paclitaxel biosynthesis were identified by comparison with the 13 known paclitaxel biosynthetic genes in Taxus. We found that paclitaxel biosynthetic gene candidates in P. aurantiogriseum NRRL 62431 have evolved independently and that horizontal gene transfer between this endophytic fungus and its plant host is unlikely. Conclusions Our findings shed new light on how paclitaxel-producing endophytic fungi synthesize paclitaxel, and will facilitate metabolic engineering for the industrial production of paclitaxel from fungi. PMID:24460898

  2. The Diversity of Anti-Microbial Secondary Metabolites Produced by Fungal Endophytes: An Interdisciplinary Perspective

    PubMed Central

    Mousa, Walaa Kamel; Raizada, Manish N.

    2013-01-01

    Endophytes are microbes that inhabit host plants without causing disease and are reported to be reservoirs of metabolites that combat microbes and other pathogens. Here we review diverse classes of secondary metabolites, focusing on anti-microbial compounds, synthesized by fungal endophytes including terpenoids, alkaloids, phenylpropanoids, aliphatic compounds, polyketides, and peptides from the interdisciplinary perspectives of biochemistry, genetics, fungal biology, host plant biology, human and plant pathology. Several trends were apparent. First, host plants are often investigated for endophytes when there is prior indigenous knowledge concerning human medicinal uses (e.g., Chinese herbs). However, within their native ecosystems, and where investigated, endophytes were shown to produce compounds that target pathogens of the host plant. In a few examples, both fungal endophytes and their hosts were reported to produce the same compounds. Terpenoids and polyketides are the most purified anti-microbial secondary metabolites from endophytes, while flavonoids and lignans are rare. Examples are provided where fungal genes encoding anti-microbial compounds are clustered on chromosomes. As different genera of fungi can produce the same metabolite, genetic clustering may facilitate sharing of anti-microbial secondary metabolites between fungi. We discuss gaps in the literature and how more interdisciplinary research may lead to new opportunities to develop bio-based commercial products to combat global crop and human pathogens. PMID:23543048

  3. Distribution and antimicrobial potential of endophytic fungi associated with ethnomedicinal plant Melastoma malabathricum L.

    PubMed

    Mishra, Vineet Kumar; Singh, Garima; Passari, Ajit Kumar; Yadav, Mukesh Kumar; Gupta, Vijai Kumar; Singh, Bhim Pratap

    2016-03-01

    Distributions of endophytic fungi associated with ethnomedicinal plant Melastoma malabathricum L. was studied and 91 isolates belonging to 18 genera were recovered. The isolates were distributed to sordariomycetes (62.63%), dothideomycetes (19.78%), eurotiomycetes (7.69%), zygomycetes (4.19%), agaricomycetes (1.09%), and mycelia sterilia (4.39%). Based on colony morphology and examination of spores, the isolates were classified into 18 taxa, of which Colletotrichum, Phomopsis and Phoma were dominant, their relative frequencies were 23.07%, 17.58% and 12.08% respectively. The colonization rate of endophytic fungi was determined and found to be significantly higher in leaf segments (50.76%), followed by root (41.53%) and stem tissues (27.69%). All the isolates were screened for antimicrobial activity and revealed that 26.37% endophytic fungi were active against one or more pathogens. Twenty four isolates showing significant antimicrobial activity were identified by sequencing the ITS1-5.8S-ITS2 region of rRNA gene. Results indicated that endophytic fungi associated with leaf were functionally versatile as they showed antimicrobial activity against most of the tested pathogens. The endophytic fungi Diaporthe phaseolorum var. meridionalis (KF193982) inhibited all the tested bacterial pathogens, whereas, Penicillium chermesinum (KM405640) displayed most significant antifungal activity. This seems to be the first hand report to understand the distribution and antimicrobial ability of endophytic fungi from ethno-medicinal plant M. malabathricum.

  4. Extracellular enzymatic profiles and taxonomic identification of endophytic fungi isolated from four plant species.

    PubMed

    Alberto, R N; Costa, A T; Polonio, J C; Santos, M S; Rhoden, S A; Azevedo, J L; Pamphile, J A

    2016-11-03

    Plants of medicinal and economic importance have been studied to investigate the presence of enzyme-producing endophytic fungi. The characterization of isolates with distinct enzyme production potential may identify suitable alternatives for specialized industry. At Universidade Estadual de Maringá Laboratory of Microbial Biotechnology, approximately 500 isolates of endophytic fungi have been studied over the last decade from various host plants, including medicinally and economically important species, such as Luehea divaricata (Martius et Zuccarini), Trichilia elegans A. Juss, Sapindus saponaria L., Piper hispidum Swartz, and Saccharum spp. However, only a fraction of these endophytes have been identified and evaluated for their biotechnological application, having been initially grouped by morphological characteristics, with at least one representative of each morphogroup tested. In the current study, several fungal strains from four plants (L. divaricata, T. elegans, S. saponaria, and Saccharum spp) were identified by ribosomal DNA typing and evaluated semi-quantitatively for their enzymatic properties, including amylase, cellulase, pectinase, and protease activity. Phylogenetic analysis revealed the presence of four genera of endophytic fungi (Diaporthe, Saccharicola, Bipolaris, and Phoma) in the plants examined. According to enzymatic tests, 62% of the isolates exhibited amylase, approximately 93% cellulase, 50% pectinase, and 64% protease activity. Our results verified that the composition and abundance of endophytic fungi differed between the plants tested, and that these endophytes are a potential enzyme production resource of commercial and biotechnological value.

  5. Enhanced degradation of chlorpyrifos in rice (Oryza sativa L.) by five strains of endophytic bacteria and their plant growth promotional ability.

    PubMed

    Feng, Fayun; Ge, Jing; Li, Yisong; He, Shuang; Zhong, Jianfeng; Liu, Xianjing; Yu, Xiangyang

    2017-10-01

    Endophytic bacteria reside in plant tissues, such as roots, stems, leaves and seeds. Most of them can stimulate plant growth or alleviate phytotoxicity of pollutants. There are handful species with dual functions stimulating plant growth and degrading pollutants have been reported. Five endophytic bacteria were isolated from chlorpyrifos (CP) treated rice plants and identified as Pseudomonas aeruginosa strain RRA, Bacillus megaterium strain RRB, Sphingobacterium siyangensis strain RSA, Stenotrophomonas pavanii strain RSB and Curtobacterium plantarum strain RSC according to morphological characteristics, physiological and biochemical tests, and 16S rDNA phylogeny. All of them possessed some plant growth promotional traits, including indole acetic acid and siderophore production, secretion of phosphate solubilization and 1-aminocyclopropane-1-carboxylate deaminase. The bacteria were marked with the green fluorescent protein (gfp) gene and successfully colonized into rice plants. All isolates were able to degrade CP in vitro and in vivo. The five isolates degraded more than 90% of CP in 24 h when the initial concentration was lower than 5 mg/L. CP degradation was significantly enhanced in the infested rice plants and rice grains. The final CP residual was reduced up to 80% in the infested rice grains compared to the controls. The results indicate that these isolates are promising bio-inoculants for the removal or detoxification of CP residues in rice plants and grains. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Influences of Plant Species, Season and Location on Leaf Endophytic Bacterial Communities of Non-Cultivated Plants

    PubMed Central

    Ding, Tao; Melcher, Ulrich

    2016-01-01

    Bacteria are known to be associated endophytically with plants. Research on endophytic bacteria has identified their importance in food safety, agricultural production and phytoremediation. However, the diversity of endophytic bacterial communities and the forces that shape their compositions in non-cultivated plants are largely uncharacterized. In this study, we explored the diversity, community structure, and dynamics of endophytic bacteria in different plant species in the Tallgrass Prairie Preserve of northern Oklahoma, USA. High throughput sequencing of amplified segments of bacterial rDNA from 81 samples collected at four sampling times from five plant species at four locations identified 335 distinct OTUs at 97% sequence similarity, representing 16 phyla. Proteobacteria was the dominant phylum in the communities, followed by the phyla Bacteriodetes and Actinobacteria. Bacteria from four classes of Proteobacteria were detected with Alphaproteobacteria as the dominant class. Analysis of molecular variance revealed that host plant species and collecting date had significant influences on the compositions of the leaf endophytic bacterial communities. The proportion of Alphaproteobacteria was much higher in the communities from Asclepias viridis than from other plant species and differed from month to month. The most dominant bacterial groups identified in LDA Effect Size analysis showed host-specific patterns, indicating mutual selection between host plants and endophytic bacteria and that leaf endophytic bacterial compositions were dynamic, varying with the host plant’s growing season in three distinct patterns. In summary, next generation sequencing has revealed variations in the taxonomic compositions of leaf endophytic bacterial communities dependent primarily on the nature of the plant host species. PMID:26974817

  7. Influences of Plant Species, Season and Location on Leaf Endophytic Bacterial Communities of Non-Cultivated Plants.

    PubMed

    Ding, Tao; Melcher, Ulrich

    2016-01-01

    Bacteria are known to be associated endophytically with plants. Research on endophytic bacteria has identified their importance in food safety, agricultural production and phytoremediation. However, the diversity of endophytic bacterial communities and the forces that shape their compositions in non-cultivated plants are largely uncharacterized. In this study, we explored the diversity, community structure, and dynamics of endophytic bacteria in different plant species in the Tallgrass Prairie Preserve of northern Oklahoma, USA. High throughput sequencing of amplified segments of bacterial rDNA from 81 samples collected at four sampling times from five plant species at four locations identified 335 distinct OTUs at 97% sequence similarity, representing 16 phyla. Proteobacteria was the dominant phylum in the communities, followed by the phyla Bacteriodetes and Actinobacteria. Bacteria from four classes of Proteobacteria were detected with Alphaproteobacteria as the dominant class. Analysis of molecular variance revealed that host plant species and collecting date had significant influences on the compositions of the leaf endophytic bacterial communities. The proportion of Alphaproteobacteria was much higher in the communities from Asclepias viridis than from other plant species and differed from month to month. The most dominant bacterial groups identified in LDA Effect Size analysis showed host-specific patterns, indicating mutual selection between host plants and endophytic bacteria and that leaf endophytic bacterial compositions were dynamic, varying with the host plant's growing season in three distinct patterns. In summary, next generation sequencing has revealed variations in the taxonomic compositions of leaf endophytic bacterial communities dependent primarily on the nature of the plant host species.

  8. Endophytic l-asparaginase-producing fungi from plants associated with anticancer properties.

    PubMed

    Chow, YiingYng; Ting, Adeline S Y

    2015-11-01

    Endophytes are novel sources of natural bioactive compounds. This study seeks endophytes that produce the anticancer enzyme l-asparaginase, to harness their potential for mass production. Four plants with anticancer properties; Cymbopogon citratus, Murraya koenigii, Oldenlandia diffusa and Pereskia bleo, were selected as host plants. l-Asparaginase-producing endophytes were detected by the formation of pink zones on agar, a result of hydrolyzes of asparagine into aspartic acid and ammonia that converts the phenol red dye indicator from yellow (acidic condition) to pink (alkaline condition). The anticancer enzyme asparaginase was further quantified via Nesslerization. Results revealed that a total of 89 morphotypes were isolated; mostly from P. bleo (40), followed by O. diffusa (25), C. citratus (14) and M. koenigii (10). Only 25 of these morphotypes produced l-asparaginase, mostly from P. bleo and their asparaginase activities were between 0.0069 and 0.025 μM mL(-1) min(-1). l-Asparaginase producing isolates were identified as probable species of the genus Colletotrichum, Fusarium, Phoma and Penicillium. Studies here revealed that endophytes are good alternative sources for l-asparaginase production and they can be sourced from anticancer plants, particularly P. bleo.

  9. Endophytic l-asparaginase-producing fungi from plants associated with anticancer properties

    PubMed Central

    Chow, YiingYng; Ting, Adeline S.Y.

    2014-01-01

    Endophytes are novel sources of natural bioactive compounds. This study seeks endophytes that produce the anticancer enzyme l-asparaginase, to harness their potential for mass production. Four plants with anticancer properties; Cymbopogon citratus, Murraya koenigii, Oldenlandia diffusa and Pereskia bleo, were selected as host plants. l-Asparaginase-producing endophytes were detected by the formation of pink zones on agar, a result of hydrolyzes of asparagine into aspartic acid and ammonia that converts the phenol red dye indicator from yellow (acidic condition) to pink (alkaline condition). The anticancer enzyme asparaginase was further quantified via Nesslerization. Results revealed that a total of 89 morphotypes were isolated; mostly from P. bleo (40), followed by O. diffusa (25), C. citratus (14) and M. koenigii (10). Only 25 of these morphotypes produced l-asparaginase, mostly from P. bleo and their asparaginase activities were between 0.0069 and 0.025 μM mL−1 min−1. l-Asparaginase producing isolates were identified as probable species of the genus Colletotrichum, Fusarium, Phoma and Penicillium. Studies here revealed that endophytes are good alternative sources for l-asparaginase production and they can be sourced from anticancer plants, particularly P. bleo. PMID:26644924

  10. The Hidden World within Plants: Ecological and Evolutionary Considerations for Defining Functioning of Microbial Endophytes

    PubMed Central

    van Overbeek, Leonard S.; Berg, Gabriele; Pirttilä, Anna Maria; Compant, Stéphane; Campisano, Andrea; Döring, Matthias; Sessitsch, Angela

    2015-01-01

    SUMMARY All plants are inhabited internally by diverse microbial communities comprising bacterial, archaeal, fungal, and protistic taxa. These microorganisms showing endophytic lifestyles play crucial roles in plant development, growth, fitness, and diversification. The increasing awareness of and information on endophytes provide insight into the complexity of the plant microbiome. The nature of plant-endophyte interactions ranges from mutualism to pathogenicity. This depends on a set of abiotic and biotic factors, including the genotypes of plants and microbes, environmental conditions, and the dynamic network of interactions within the plant biome. In this review, we address the concept of endophytism, considering the latest insights into evolution, plant ecosystem functioning, and multipartite interactions. PMID:26136581

  11. Endophytic fungi harbored in the root of Sophora tonkinensis Gapnep: Diversity and biocontrol potential against phytopathogens.

    PubMed

    Yao, Yu Qun; Lan, Fang; Qiao, Yun Ming; Wei, Ji Guang; Huang, Rong Shao; Li, Liang Bo

    2017-06-01

    This work, for the first time, investigated the diversity of endophytic fungi harbored in the xylem and phloem of the root of Sophora tonkinensis Gapnep from three geographic localities with emphasis on the influence of the tissue type and geographic locality on endophytic fungal communities and their potential as biocontrol agents against phytopathogens of Panax notoginseng. A total of 655 fungal strains representing 47 taxa were isolated. Forty-two taxa (89.4%) were identified but not five taxa (10.6%) according to morphology and molecular phylogenetics. Out of identifiable taxa, the majority of endophyte taxa were Ascomycota (76.6%), followed by Basidiomycota (8.5%) and Zygomycota (4.3%). The alpha-diversity indices indicated that the species diversity of endophytic fungal community harbored in the root of S. tonkinensis was very high. The colonization and species diversity of endophytic fungal communities were significantly influenced by the geographic locality but not tissue type. The geographic locality and tissue type had great effects on the species composition of endophytic fungal communities. Forty-seven respective strains were challenged by three fungal phytopathogens of P. notoginseng and six strains exhibited significant inhibitory activity. It was noteworthy that endophytic Rhexocercosporidium sp. and F. solani strongly inhibited pathogenic F. solani and other fungal phytopathogens of P. notoginseng. © 2017 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.

  12. Interaction between endophytic bacteria from citrus plants and the phytopathogenic bacteria Xylella fastidiosa, causal agent of citrus-variegated chlorosis.

    PubMed

    Lacava, P T; Araújo, W L; Marcon, J; Maccheroni, W; Azevedo, J L

    2004-01-01

    To isolate endophytic bacteria and Xylella fastidiosa and also to evaluate whether the bacterial endophyte community contributes to citrus-variegated chlorosis (CVC) status in sweet orange (Citrus sinensis [L.] Osbeck cv. Pera). The presence of Xylella fastidiosa and the population diversity of culturable endophytic bacteria in the leaves and branches of healthy, CVC-asymptomatic and CVC-symptomatic sweet orange plants and in tangerine (Citrus reticulata cv. Blanco) plants were assessed, and the in vitro interaction between endophytic bacteria and X. fastidiosa was investigated. There were significant differences in endophyte incidence between leaves and branches, and among healthy, CVC-asymptomatic and CVC-symptomatic plants. Bacteria identified as belonging to the genus Methylobacterium were isolated only from branches, mainly from those sampled from healthy and diseased plants, from which were also isolated X. fastidiosa. The in vitro interaction experiments indicated that the growth of X. fastidiosa was stimulated by endophytic Methylobacterium extorquens and inhibited by endophytic Curtobacterium flaccumfaciens. This work provides the first evidence of an interaction between citrus endophytic bacteria and X. fastidiosa and suggests a promising approach that can be used to better understand CVC disease.

  13. Potential roles for microbial endophytes in herbicide tolerance in plants.

    PubMed

    Tétard-Jones, Catherine; Edwards, Robert

    2016-02-01

    Herbicide tolerance in crops and weeds is considered to be monotrophic, i.e. determined by the relative susceptibility of the physiological process targeted and the plant's ability to metabolise and detoxify the agrochemical. A growing body of evidence now suggests that endophytes, microbes that inhabit plant tissues and provide a range of growth, health and defence enhancements, can contribute to other types of abiotic and biotic stress tolerance. The current evidence for herbicide tolerance being bitrophic, with both free-living and plant-associated endophytes contributing to tolerance in the host plant, has been reviewed. We propose that endophytes can directly contribute to herbicide detoxification through their ability to metabolise xenobiotics. In addition, we explore the paradigm that microbes can 'prime' resistance mechanisms in plants such that they enhance herbicide tolerance by inducing the host's stress responses to withstand the downstream toxicity caused by herbicides. This latter mechanism has the potential to contribute to the growth of non-target-site-based herbicide resistance in weeds. Microbial endophytes already contribute to herbicide detoxification in planta, and there is now significant scope to extend these interactions using synthetic biology approaches to engineer new chemical tolerance traits into crops via microbial engineering. © 2015 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.

  14. Root-endophytes improve the ecophysiological performance and production of an agricultural species under drought condition

    PubMed Central

    Molina-Montenegro, Marco A.; Oses, Rómulo; Torres-Díaz, Cristian; Atala, Cristian; Zurita-Silva, Andrés; Ruiz-Lara, Simón

    2016-01-01

    Throughout many regions of the world, climate change has limited the availability of water for irrigating crops. Indeed, current models of climate change predict that arid and semi-arid zones will be places where precipitation will drastically decrease. In this context, plant root-associated fungi appear as a new strategy to improve ecophysiological performance and yield of crops under abiotic stress. Thus, use of fungal endophytes from ecosystems currently subjected to severe drought conditions could improve the ecophysiological performance and quantum yield of crops exposed to drought. In this study, we evaluated how the inoculation of fungal endophytes isolated from Antarctic plants can improve the net photosynthesis, water use efficiency and production of fresh biomass in a lettuce cultivar, grown under different water availability regimes. In addition, we assessed if the presence of biochemical mechanisms and gene expression related with environmental tolerance are improved in presence of fungal endophytes. Overall, those individuals with presence of endophytes showed higher net photosynthesis and maintained higher water use efficiency in drought conditions, which was correlated with greater fresh and dry biomass production as well as greater root system development. In addition, presence of fungal endophytes was correlated with a higher proline concentration, lower peroxidation of lipids and up-/down-regulation of ion homeostasis. Our results suggest that presence of fungal endophytes could minimize the negative effect of drought by improving drought tolerance through biochemical mechanisms and improving nutritional status. Thus, root-endophytes might be a successful biotechnological tool to maintain high levels of ecophysiological performance and productivity in zones under drought. PMID:27613875

  15. Importance and Implications of the Production of Phenolic Secondary Metabolites by Endophytic Fungi: A Mini-Review.

    PubMed

    Negreiros de Carvalho, Patrícia Lunardelli; Silva, Eliane de Oliveira; Chagas-Paula, Daniela Aparecida; Hortolan Luiz, Jaine Honorata; Ikegaki, Masaharu

    2016-01-01

    In the natural products research, a valuable approach is the prospection of uncommon sources and unexplored habitat. Special attention has been given to endophytic fungi because of their ability to produce new and interesting secondary metabolites, which have several biological applications. The endophytes establish exclusive symbiotic relationships with plants and the metabolic interactions may support the synthesis of some similar valuables compounds. Among secondary metabolites, phenol-derived structures are responsible for several bioactivities such as antioxidant, cytotoxic, antimicrobial, among others. Phenolic compounds might be biosynthesized from the shikimate pathway. Although shikimic acid is a common precursor in plants, it is described as rare in microorganisms. To the best of our knowledge, this is the first review about phenolic compounds produced by endophytic fungi and a comparison has been made with those produced by the plant host. This review covers 124 phenolic secondary metabolites produced by endophytic fungi. Considering the data analyzed by us, only seven of such compounds were isolated from fungi and from their hosts. These observations claim for more attention to phenolic compounds produced by endophytic fungi with a view to understand the real importance of these compounds to endophytes survival.

  16. Horn fly larval survival in cattle dung is reduced by endophyte infection of tall fescue pasture.

    PubMed

    Parra, Leonardo; Mutis, Ana; Chacón, Manuel; Lizama, Marcelo; Rojas, Claudio; Catrileo, Adrián; Rubilar, Olga; Tortella, Gonzalo; Birkett, Michael A; Quiroz, Andrés

    2016-07-01

    The potential for using endophytic microorganisms in pest control has increased during the last 40 years. In this study, we investigated the impact of endophyte (Neotyphodium coenophialum) infection of cattle pasture upon the survival of the horn fly, Haematobia irritans, a major agricultural pest affecting livestock in many parts of the world. In laboratory assays, where cattle dung collected from endophyte-infected (E+) tall fescue cultivar K-31 was used as the oviposition substrate, larval development was significantly reduced compared with development on cattle dung from steers that grazed uninfected (E-) tall fescue. Furthermore, studies with cattle dung supplemented with the alkaloid fraction extracted from the endophytic fungi revealed significant larval mortality, and HPLC analysis identified two alkaloids, peramine and lolitrem B. The development of larvae was shown to be significantly reduced in field-collected cattle dung. These results suggest that part of the toxicity of alkaloids contained in endophytes is transferred to faecal matter, causing an increase in mortality of H. irritans. These data suggest that endophyte infection of cattle pasture, i.e. modified pasture management, can significantly affect horn fly development. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.

  17. Characterization of Five Fungal Endophytes Producing Cajaninstilbene Acid Isolated from Pigeon Pea [Cajanus cajan (L.) Millsp.

    PubMed Central

    Zu, Yuan Gang; Fu, Yu Jie; Wang, Wei; Luo, Meng; Efferth, Thomas

    2011-01-01

    Five fungal endophytes (K4, K5, K6, K9, K14) producing Cajaninstilbene acid (CSA, 3-hydroxy-4-prenyl-5-methoxystilbene-2-carboxylic acid) were isolated from the roots of pigeon pea [Cajanus cajan (L.) Millsp.]. CSA is responsible for the prominent pharmacological activities in pigeon pea. The amount of CSA in culture solution varied among the five fungal endophytes. K4 produced the highest levels of CSA (1037.13 µg/L) among the endophytes tested after incubation for five days. Both morphological characteristics and molecular methods were used for species identification of fungal endophytes. The five endophytic isolates were characterized by analyzing the internal transcribed spacer (ITS) rRNA and β-tubulin genes. The K4, K5, K9 and K14 strains isolated from pigeon pea roots were found to be closely related to the species Fusarium oxysporum. K6 was identified as Neonectria macrodidym. The present study is the first report on the isolation and identification of fungal endophytes producing CSA in pigeon pea. The study also provides a scientific base for large scale production of CSA. PMID:22102911

  18. Bioactive Constituents from an Endophytic Fungus, Penicillium polonicum NFW9, Associated with Taxus fauna.

    PubMed

    Fatima, Nighat; Sripisut, Tawanun; Youn, Ui J; Ahmed, Safia; Ul-Haq, Ihsan; Munoz-Acuna, Ulyana; Simmons, Charles J; Qazi, Muneer A; Jadoon, Muniba; Tan, Ghee T; de Blanco, Esperanza J C; Chang, Leng C

    2017-01-01

    Endophytic fungi are being recognized as vital and untapped sources of a variety of structurally novel and unique bioactive secondary metabolites in the field of natural products drug discovery. Herein, this study reports the isolation and characterization of secondary metabolites from an endophytic fungus Penicillium polonicum (NFW9) associated with Taxus fuana. The extracts of the endophytic fungus cultured on potato dextrose agar were purified using several chromatographic techniques. Biological evaluation was performed based on their abilities to inhibit tumor necrosis factor-alpha (TNF-α)-induced nuclear factor-kappa B (NF-κB) and cytotoxicity assays. Bioactivity-directed fractionation of the ethyl acetate extract of a fermentation culture of an endophytic fungus, Penicillium polonicum led to the isolation of a dimeric anthraquinone, (R)- 1,1',3,3',5,5'-hexahydroxy-7,7'-dimethyl[2,2'-bianthracene]-9,9',10,10'-tetraone (1), a steroidal furanoid (-)-wortmannolone (2), along with three other compounds (3-4). Moreover, this is the first report on the isolation of compound 1 from an endophytic fungus. All purified metabolites were characterized by NMR and MS data analyses. The stereo structure of compound 1 was determined by the measurement of specific optical rotation and CD spectrum. The relative stereochemistry of 2 was confirmed by single-crystal X-ray diffraction. Compounds 2-3 showed inhibitory activities in the TNF-α-induced NF-κB assay with IC50 values in the range of 0.47-2.11 µM. Compounds 1, 4 and 5 showed moderate inhibition against NF-κB and cancer cell lines. The endophytic fungus Penicillium polonicum of Taxus fuana is capable of producing biologically active natural compounds. Our results provide a scientific rationale for further chemical investigations into endophyte-producing natural products, drug discovery and development. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  19. Plant species affect colonization patterns and metabolic activity of associated endophytes during phytoremediation of crude oil-contaminated soil.

    PubMed

    Fatima, K; Imran, A; Amin, I; Khan, Q M; Afzal, M

    2016-04-01

    Plants coupled with endophytic bacteria hold great potential for the remediation of polluted environment. The colonization patterns and activity of inoculated endophytes in rhizosphere and endosphere of host plant are among the primary factors that may influence the phytoremediation process. However, these colonization patterns and metabolic activity of the inoculated endophytes are in turn controlled by none other than the host plant itself. The present study aims to determine such an interaction specifically for plant-endophyte systems remediating crude oil-contaminated soil. A consortium (AP) of two oil-degrading endophytic bacteria (Acinetobacter sp. strain BRSI56 and Pseudomonas aeruginosa strain BRRI54) was inoculated to two grasses, Brachiaria mutica and Leptochloa fusca, vegetated in crude oil-contaminated soil. Colonization patterns and metabolic activity of the endophytes were monitored in the rhizosphere and endosphere of the plants. Bacterial augmentation enhanced plant growth and crude oil degradation. Maximum crude oil degradation (78%) was achieved with B. mutica plants inoculated with AP consortium. This degradation was significantly higher than those treatments, where plants and bacteria were used individually or L. fusca and endophytes were used in combination. Moreover, colonization and metabolic activity of the endophytes were higher in the rhizosphere and endosphere of B. mutica than L. fusca. The plant species affected not only colonization pattern and biofilm formation of the inoculated bacteria in the rhizosphere and endosphere of the host plant but also affected the expression of alkane hydroxylase gene, alkB. Hence, the investigation revealed that plant species can affect colonization patterns and metabolic activity of inoculated endophytic bacteria and ultimately the phytoremediation process.

  20. Diversity of endophytic fungi of Myricaria laxiflora grown under pre- and post-flooding conditions.

    PubMed

    Tian, W; Bi, Y H; Zeng, W; Jiang, W; Xue, Y H; Wang, G X; Liu, S P

    2015-09-09

    Myricaria laxiflora is distributed along the riverbanks of the Yangtze River valley. The Three Gorges Dam has dramatically changed the habitat of M. laxiflora, which has evolved to develop increased resistance to flooding stress. In order to elucidate the relationship between plant endophytic fungi and flooding stress, we isolated and taxonomically characterized the endophytic fungi of M. laxiflora. One hundred and sixty-three fungi were isolated from healthy stems, leaves and roots of M. laxiflora grown under pre- and post-flooding conditions. Culture and isolation were carried out under aerobic and anaerobic conditions. Based on internal transcribed spacer sequence analysis and morphological characteristics, the isolates exhibited abundant biodiversity; they were classified into 5 subphyla, 7 classes, 12 orders, 17 families, and 26 genera. Dominant endophytes varied between pre- and post-flooding plants, among different plant tissues, and between aerobic and anaerobic culture conditions. Aspergillus and Alternaria accounted for more than 55% of all isolates. Although the number of isolates from post-flooding plants was greater, endophytes from pre-flooding plants were more diverse and abundant. Endophytes were distributed preferentially in particular tissues; this affinity was constrained by both the host habitat and the oxygen availability of the host.

  1. Clavicipitaceous anamorphic endophytes in Hordeum germplasm

    Treesearch

    A. Dan Wilson

    2007-01-01

    The incidence of clavicipitaceous anamorphic endophytes, non-choke inducing endosymbiotic fungi of the genus Neotyphodium that systemically infect grasses, in eighteen Hordeum species from the U.S. National Plant Germplasm System was examined using light and Scanning Electron Microscopy (SEM). Seventeen plant inventory accessions...

  2. Phytoremediation of Alberta oil sand tailings using native plants and fungal endophytes

    NASA Astrophysics Data System (ADS)

    Repas, T.; Germida, J.; Kaminskyj, S.

    2012-04-01

    Fungal endophytes colonize host plants without causing disease. Some endophytes confer plant tolerance to harsh environments. One such endophyte, Trichoderma harzianum strain TSTh20-1, was isolated from a plant growing on Athabasca oil sand tailings. Tailing sands are a high volume waste product from oil sand extraction that the industry is required to remediate. Tailing sands are low in organic carbon and mineral nutrients, and are hydrophobic due to residual polyaromatic hydrocarbons. Typically, tailing sands are remediated by planting young trees in large quantities of mulch plus mineral fertilizer, which is costly and labour intensive. In greenhouse trials, TSTh20-1 supports growth of tomato seedlings on tailing sands without fertilizer. The potential use of TSTh20-1 in combination with native grasses and forbs to remediate under field conditions is being assessed. Twenty-three commercially available plant species are being screened for seed germination and growth on tailing sands in the presence of TSTh20-1. The best candidates from this group will be used in greenhouse and small scale field trials. Potential mechanisms that contribute to endophyte-induced plant growth promotion, such as plant hormone production, stress tolerance, mineral solubilization, and uptake are also being assessed. As well, TSTh20-1 appears to be remarkably frugal in its nutrient requirements and the possibility that this attribute is characteristic of other plant-fungal endophytes from harsh environments is under study.

  3. Endophytic fungi associated with Sudanese medicinal plants show cytotoxic and antibiotic potential.

    PubMed

    Khiralla, Afra; Mohamed, Ietidal E; Tzanova, Tzvetomira; Schohn, Hervé; Slezack-Deschaumes, Sophie; Hehn, Alain; André, Philippe; Carre, Gaëlle; Spina, Rosella; Lobstein, Annelise; Yagi, Sakina; Laurain-Mattar, Dominique

    2016-06-01

    In this study, we isolated 15 endophytic fungi from five Sudanese medicinal plants. Each fungal endophytic strain was identified by sequencing of internal transcribed spacer (ITS) regions of rDNA. Ethyl acetate extracts were prepared from each endophyte cultivated in vitro and tested for their respective antibacterial activities and antiproliferative activities against human cancer cells. Antibacterial screening was carried out against two bacterial strains: Gram-negative Escherichia coli and Gram-positive methicillin-resistant Staphylococcus aureus, by the broth dilution method. Cell viability was evaluated by the MTT procedure after exposure of MCF7 breast cancer cells and HT29 or HCT116 human colon adenocarcinoma cells to each endophytic extract. Of interest, Byssochlamys spectabilis isolated from Euphorbia prostata showed cytotoxicity (IC50 = 1.51 ± 0.2 μg mL(-1)) against MCF7 cells, but had a low effect against HT29 or HCT116 cells (IC50 > 20 μg mL(-1)). Cladosporium cladosporioides 2, isolated from Vernonia amygdalina leaves, showed antiproliferative activities against MCF7 cells (IC50 = 10.5 ± 1.5 μg mL(-1)) only. On the other hand, B. spectabilis and Alternaria sp. extract had antibacterial activities against the S. aureus strain. The findings of this work revealed that endophytic fungi associated with medicinal plants from Sudan could be considered as an attractive source of new therapeutic compounds. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  4. Fungal endophytes of South China blueberry (Vaccinium dunalianum var. urophyllum).

    PubMed

    Li, Z-J; Shen, X-Y; Hou, C-L

    2016-12-01

    A total of 374 fungal endophyte strains were isolated from of Vaccinium dunalianum var. urophyllum (Ericaceae), a well-known cultivated blueberry in southern China. These fungal endophytes could be categorized into 25 morphotypes according to culture characteristics and molecular identification based on the internal transcribed spacer region. All of these isolates belonged to Ascomycota. Jaccard's (Jc) and Sorenson's similarity indices indicated that the species communities from the fruits and branches were closer to each other than to those from leaves. The leaves appeared to host the highest fungal biodiversity, and the fruits displayed the lowest diversity. This study is the first on endophytic fungi isolated from fruits, branches and leaves of blueberry plants. The results contribute to the body of knowledge on the biocontrol of pathogens associated with blueberry and develop the improvement of plant growth. By comparing with the different fungal communities, the leaves appeared to host the highest biodiversity. © 2016 The Society for Applied Microbiology.

  5. Bacillus spp. from rainforest soil promote plant growth under limited nitrogen conditions.

    PubMed

    Huang, X-F; Zhou, D; Guo, J; Manter, D K; Reardon, K F; Vivanco, J M

    2015-03-01

    The aim of this study was to evaluate effects of PGPR (plant growth-promoting rhizobacteria) isolated from rainforest soil on different plants under limited nitrogen conditions. Bacterial isolates from a Peruvian rainforest soil were screened for plant growth-promoting effects on Arabidopsis (Col-0). Four selected isolates including one Bacillus subtilis, two B. atrophaeus and one B. pumilus significantly promoted growth of Zea mays L. and Solanum lycopersicum under greenhouse conditions. Moreover, the PGPRs significantly promoted growth of S. lycopersicum in both low and nitrogen-amended soil conditions. These PGPR strains were further studied to obtain insights into possible mechanisms of plant growth promotion. Volatile chemicals from those isolates promoted Arabidopsis growth, and the expression of genes related to IAA production was induced in the Arabidopsis plants treated with PGPRs. Further, selected PGPR strains triggered induced systemic resistance (ISR) against Pseudomonas syringae pv tomato DC3000 in Arabidopsis. PGPR strains isolated from the rainforest soil promoted the plant growth of Arabidopsis, corn and tomato. New PGPR that have wider adaptability to different crops, soils and environmental conditions are needed to decrease our reliance on agricultural amendments derived from fossil-based fuels. The PGPRs isolated from a nonagricultural site constitute new plant growth-promoting strains that could be developed for agricultural uses. © 2014 The Society for Applied Microbiology.

  6. Molecular Characterization and Analysis of Antimicrobial Activity of Endophytic Fungi From Medicinal Plants in Saudi Arabia

    PubMed Central

    Gashgari, Rukaia; Gherbawy, Youssuf; Ameen, Fuad; Alsharari, Salam

    2016-01-01

    Background: Endophytic fungi, which have been reported in numerous plant species, are important components of the forest community and contribute significantly to the diversity of natural ecosystems. Objectives: The current study aimed to evaluate and characterize, at the molecular level, the diversity and antimicrobial activities of endophytic fungi from medicinal plants in Saudi Arabia. Materials and Methods: Fungi growing on plant segments were isolated and identified based on morphological and molecular characteristics. The isolates were grouped into 35 distinct operational taxonomic units, based on the sequence of the internal transcribed spacer regions in the rRNA gene. The colonization frequency and the dominant fungi percentage of these endophytic fungi were calculated. A dual culture technique was adopted to investigate the antifungal activity of these endophytes. Results: Tamarix nilotica showed the highest endophytic diversity with a relative frequency of 27.27%, followed by Cressa cretica with a relative frequency of 19.27%. The most frequently isolated species was Penicillium chrysogenum with an overall colonization rate of 98.57%. Seven out of 35 endophytic fungi exhibited strong antifungal activity to all plant fungal pathogens tested. P. chrysogenum, Fusarium oxysporum, and F. nygamai exhibited the highest inhibition against the human pathogenic bacteria Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa, and Klebsiella pneumoniae. Aspergillus sydowii, P. chrysogenum, and Eupenicillium crustaceum showed strong antimicrobial activity against Enterococcus faecalis. Conclusions: The antimicrobial activity of these endophytic microorganisms could be exploited in biotechnology, medicine, and agriculture. PMID:27099679

  7. Biodegradation of Trichloroethylene by an Endophyte of Hybrid Poplar

    PubMed Central

    Kang, Jun Won; Khan, Zareen

    2012-01-01

    We isolated and characterized a novel endophyte from hybrid poplar. This unique endophyte, identified as Enterobacter sp. strain PDN3, showed high tolerance to trichloroethylene (TCE). Without the addition of inducers, such as toluene or phenol, PDN3 rapidly reduced TCE levels in medium from 72.4 μM to 30.1 μM in 24 h with a concurrent release of 127 μM chloride ion, and nearly 80% of TCE (55.3 μM) was dechlorinated by PDN3 in 5 days with 166 μM chloride ion production, suggesting TCE degradation. PMID:22367087

  8. Melanised endophytic fungi may increase stores of organic carbon in soil

    NASA Astrophysics Data System (ADS)

    McGee, Peter; Mukasa Mugerwa, Tendo

    2013-04-01

    The processes underlying the carbon cycle in soil, especially sequestration of organic carbon (OC), are poorly understood. Hydrolysis and oxidation reduce organic matter. Hydrolysis degrades linear organic molecules in aerobic and anaerobic conditions, though it is slower in anaerobic conditions. Aromatic compounds are only degraded by oxidation. Oxygen is by far the most common electron acceptor in soil. Anaerobic conditions preclude oxidation in soil and will result in the preservation of aromatic compounds so long as the conditions remain anaerobic. We experimentally tested this model using melanised endophytic fungi. Melanin is a polyaromatic compound that can be readily visualised, though is difficult to quantify. An endophytic association provides the fungus with an ongoing source of energy. Fungal hyphae elongate considerable distances in soil where they may colonise aggregates, the core of which may be anaerobic. The hypothesis we tested is that melanised endophytic fungi increase OC in soil. Seedlings of subterranean clover inoculated with single isolates were grown in split pots where the impact of the fungus could be quantified in the hyphal chamber, separated from the roots by a steel mesh. We found that melanised endophytic fungi significantly increased OC and aromatic carbon in a well-aggregated carbon-rich soil. OC increased by up to 17% within 14 weeks. Twenty out of 24 isolates statistically significantly increased and none decreased OC. Increases differed between fungal isolates. Increases in the hyphal chamber were independent of any change in OC associated with the roots of the host plant. The storage of OC in field soils is being explored. Inoculation of plant roots with melanised endophytic fungi offers one means whereby OC may be increased in field soils.

  9. Sexual and asexual states of some endophytic Phialocephala species of Picea.

    PubMed

    Tanney, Joey B; Douglas, Brian; Seifert, Keith A

    2016-01-01

    Unidentified DNA sequences in isolation-based or culture-free studies of conifer endophytes are a persistent problem that requires a field approach to resolve. An investigation of foliar endophytes of Picea glauca, P. mariana, P. rubens and Pinus strobus in eastern Canada, using a combined field, morphological, cultural and DNA sequencing approach, resulted in the frequent isolation of Phialocephala spp. and the first verified discovery of their mollisia-like sexual states in the field. Phialocephala scopiformis and Ph. piceae were the most frequent species isolated as endophytes from healthy conifer needles. Corresponding Mollisia or mollisioid sexual states for Ph. scopiformis, Ph. piceae and several undescribed species in a clade containing Ph. dimorphospora were collected in the sampling area and characterized by analysis of the nuc internal transcribed spacer rDNA (ITS) and gene for the largest subunit of RNA polymerase II (RPB1) loci. Four novel species and one new combination in a clade containing Ph. dimorphospora, the type of Phialocephala, are presented, accompanied by descriptions of apothecia and previously undocumented synanamorphs. An epitype culture and corresponding reference sequences for Phialocephala dimorphospora are proposed. The resulting ITS barcodes linked with robust taxonomic species concepts are an important resource for future research on forest ecosystems and endophytes. © 2016 by The Mycological Society of America.

  10. Piperine production by endophytic fungus Colletotrichum gloeosporioides isolated from Piper nigrum.

    PubMed

    Chithra, S; Jasim, B; Sachidanandan, P; Jyothis, M; Radhakrishnan, E K

    2014-03-15

    Many endophytic fungi have been reported with the biosynthetic potential to produce same or similar metabolites present in host plants. The adaptations that might have acquired by these fungi as a result of the long-term association with their host plants can be the possible basis of their biosynthetic potential. The bioactive compounds originated from endophytes are currently explored for their potential applications in pharmaceutical, agriculture and food industries. Piper nigrum, a plant of the Piperaceae is very remarkable because of the presence of the alkaloid piperine. Piperine has been reported to have broad bioactive properties ranging from antimicrobial, antidepressant, anti-inflammatory, antioxidative to anticancer activities. Interestingly, piperine also plays a vital role in increasing the bioavailability of many drugs which again is a promising property. The current study was carried out to identify piperine producing endophytic fungus from Piper nigrum L. By screening various endophytic fungi, the isolate which was identified as member of Colletotrichum gloeosporioides was found to have the ability to form piperine and was confirmed by HPLC and LCMS. Considering the broad bioactive potential of piperine, the piperine producing fungi identified in the study can expect to have much industrial potential. Copyright © 2013 Elsevier GmbH. All rights reserved.

  11. Utilization of Low-Pressure Plasma to Inactivate Bacterial Spores on Stainless Steel Screws

    PubMed Central

    Stapelmann, Katharina; Fiebrandt, Marcel; Raguse, Marina; Awakowicz, Peter; Reitz, Günther

    2013-01-01

    Abstract A special focus area of planetary protection is the monitoring, control, and reduction of microbial contaminations that are detected on spacecraft components and hardware during and after assembly. In this study, wild-type spores of Bacillus pumilus SAFR-032 (a persistent spacecraft assembly facility isolate) and the laboratory model organism B. subtilis 168 were used to study the effects of low-pressure plasma, with hydrogen alone and in combination with oxygen and evaporated hydrogen peroxide as a process gas, on spore survival, which was determined by a colony formation assay. Spores of B. pumilus SAFR-032 and B. subtilis 168 were deposited with an aseptic technique onto the surface of stainless steel screws to simulate a spore-contaminated spacecraft hardware component, and were subsequently exposed to different plasmas and hydrogen peroxide conditions in a very high frequency capacitively coupled plasma reactor (VHF-CCP) to reduce the spore burden. Spores of the spacecraft isolate B. pumilus SAFR-032 were significantly more resistant to plasma treatment than spores of B. subtilis 168. The use of low-pressure plasma with an additional treatment of evaporated hydrogen peroxide also led to an enhanced spore inactivation that surpassed either single treatment when applied alone, which indicates the potential application of this method as a fast and suitable way to reduce spore-contaminated spacecraft hardware components for planetary protection purposes. Key Words: Bacillus spores—Contamination—Spacecraft hardware—Plasma sterilization—Planetary protection. Astrobiology 13, 597–606. PMID:23768085

  12. Endophytes from medicinal plants and their potential for producing indole acetic acid, improving seed germination and mitigating oxidative stress* #

    PubMed Central

    Khan, Abdul Latif; Gilani, Syed Abdullah; Waqas, Muhammad; Al-Hosni, Khadija; Al-Khiziri, Salima; Kim, Yoon-Ha; Ali, Liaqat; Kang, Sang-Mo; Asaf, Sajjad; Shahzad, Raheem; Hussain, Javid; Lee, In-Jung; Al-Harrasi, Ahmed

    2017-01-01

    Medicinal plants have been used by marginal communities to treat various ailments. However, the potential of endophytes within these bio-prospective medicinal plants remains unknown. The present study elucidates the endophytic diversity of medicinal plants (Caralluma acutangula, Rhazya stricta, and Moringa peregrina) and the endophyte role in seed growth and oxidative stress. Various organs of medicinal plants yielded ten endophytes, which were identified as Phoma sp. (6 isolates), Alternaria sp. (2), Bipolaris sp. (1), and Cladosporium sp. (1) based on 18S rDNA sequencing and phylogenetic analysis. The culture filtrates (CFs; 25%, 50%, and 100% concentrations) from these endophytes were tested against the growth of normal and dwarf mutant rice lines. Endophytic CF exhibited dose-dependent growth stimulation and suppression effects. CF (100%) of Phoma sp. significantly increased rice seed germination and growth compared to controls and other endophytes. This growth-promoting effect was due to the presence of indole acetic acid in endophytic CF. The gas chromatography/mass spectrometry (GC/MS) analysis showed the highest indole acetic acid content ((54.31±0.21) µmol/L) in Bipolaris sp. In addition, the isolate of Bipolaris sp. exhibited significantly higher radical scavenging and anti-lipid peroxidation activity than the other isolates. Bipolaris sp. and Phoma sp. also exhibited significantly higher flavonoid and phenolic contents. The medicinal plants exhibited the presence of bio-prospective endophytic strains, which could be used for the improvement of crop growth and the mitigation of oxidative stresses. PMID:28124841

  13. Endophytes from medicinal plants and their potential for producing indole acetic acid, improving seed germination and mitigating oxidative stress.

    PubMed

    Khan, Abdul Latif; Gilani, Syed Abdullah; Waqas, Muhammad; Al-Hosni, Khadija; Al-Khiziri, Salima; Kim, Yoon-Ha; Ali, Liaqat; Kang, Sang-Mo; Asaf, Sajjad; Shahzad, Raheem; Hussain, Javid; Lee, In-Jung; Al-Harrasi, Ahmed

    Medicinal plants have been used by marginal communities to treat various ailments. However, the potential of endophytes within these bio-prospective medicinal plants remains unknown. The present study elucidates the endophytic diversity of medicinal plants (Caralluma acutangula, Rhazya stricta, and Moringa peregrina) and the endophyte role in seed growth and oxidative stress. Various organs of medicinal plants yielded ten endophytes, which were identified as Phoma sp. (6 isolates), Alternaria sp. (2), Bipolaris sp. (1), and Cladosporium sp. (1) based on 18S rDNA sequencing and phylogenetic analysis. The culture filtrates (CFs; 25%, 50%, and 100% concentrations) from these endophytes were tested against the growth of normal and dwarf mutant rice lines. Endophytic CF exhibited dose-dependent growth stimulation and suppression effects. CF (100%) of Phoma sp. significantly increased rice seed germination and growth compared to controls and other endophytes. This growth-promoting effect was due to the presence of indole acetic acid in endophytic CF. The gas chromatography/mass spectrometry (GC/MS) analysis showed the highest indole acetic acid content ((54.31±0.21) µmol/L) in Bipolaris sp. In addition, the isolate of Bipolaris sp. exhibited significantly higher radical scavenging and anti-lipid peroxidation activity than the other isolates. Bipolaris sp. and Phoma sp. also exhibited significantly higher flavonoid and phenolic contents. The medicinal plants exhibited the presence of bio-prospective endophytic strains, which could be used for the improvement of crop growth and the mitigation of oxidative stresses.

  14. Chemoprofile and functional diversity of fungal and bacterial endophytes and role of ecofactors - A review.

    PubMed

    Shah, Aiyatullah; Hassan, Qazi Parvaiz; Mushtaq, Saleem; Shah, Aabid Manzoor; Hussain, Aehtesham

    2017-10-01

    Endophytes represent a hidden world within plants. Almost all plants that are studied harbor one or more endophytes, which help their host to survive against pathogens and changing adverse environmental conditions. Fungal and bacterial endophytes with distinct ecological niches show important biological activities and ecological functions. Their unique physiological and biochemical characteristics lead to the production of niche specific secondary metabolites that may have pharmacological potential. Identification of specific secondary metabolites in adverse environment can also help us in understanding mechanisms of host tolerance against stress condition such as biological invasions, salt, drought, temperature. These metabolites include micro as well as macromolecules, which they produce through least studied yet surprising mechanisms like xenohormesis, toxin-antitoxin system, quorum sensing. Therefore, future studies should focus on unfolding all the underlying molecular mechanisms as well as the impact of physical and biochemical environment of a specific host over endophytic function and metabolite elicitation. Need of the hour is to reshape the focus of research over endophytes and scientifically drive their ecological role toward prospective pharmacological as well as eco-friendly biological applications. This may help to manage these endophytes especially from untapped ecoregions as a useful undying biological tool to meet the present challenges as well as lay a strong and logical basis for any impending challenges. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Infection with a Shoot-Specific Fungal Endophyte (Epichloë) Alters Tall Fescue Soil Microbial Communities.

    PubMed

    Rojas, Xavier; Guo, Jingqi; Leff, Jonathan W; McNear, David H; Fierer, Noah; McCulley, Rebecca L

    2016-07-01

    Tall fescue (Schedonorus arundinaceus) is a widespread grass that can form a symbiotic relationship with a shoot-specific fungal endophyte (Epichloë coenophiala). While the effects of fungal endophyte infection on fescue physiology and ecology have been relatively well studied, less attention has been given to how this relationship may impact the soil microbial community. We used high-throughput DNA sequencing and phospholipid fatty acid analysis to determine the structure and biomass of microbial communities in both bulk and rhizosphere soils from tall fescue stands that were either uninfected with E. coenophiala or were infected with the common toxic strain or one of several novel strains of the endophyte. We found that rhizosphere and bulk soils harbored distinct microbial communities. Endophyte presence, regardless of strain, significantly influenced soil fungal communities, but endophyte effects were less pronounced in prokaryotic communities. E. coenophiala presence did not change total fungal biomass but caused a shift in soil and rhizosphere fungal community composition, increasing the relative abundance of taxa within the Glomeromycota phylum and decreasing the relative abundance of genera in the Ascomycota phylum, including Lecanicillium, Volutella, Lipomyces, Pochonia, and Rhizoctonia. Our data suggests that tripartite interactions exist between the shoot endophyte E. coenophiala, tall fescue, and soil fungi that may have important implications for the functioning of soils, such as carbon storage, in fescue-dominated grasslands.

  16. A COMPARATIVE STUDY OF THE BIOLOGICAL CHARACTERS AND PATHOGENESIS OF BACILLUS X (STERNBERG), BACILLUS ICTEROIDES (SANARELLI), AND THE HOG-CHOLERA BACILLUS (SALMON AND SMITH)

    PubMed Central

    Reed, Walter; Carroll, James

    1900-01-01

    1. Bacillus X (Sternberg) belongs to the colon group. 2. Bacillus icteroides (Sanarelli) is a member of the hog-cholera group. 3. The various channels of infection, the duration of the disease and the gross and microscopical lesions in mice, guinea-pigs and rabbits are the same for Bacillus icteroides and the hog-cholera bacillus. 4. The clinical symptoms and the lesions observed in dogs inoculated intravenously with Bacillus icteroides, are reproduced in these animals by infection with the hog-cholera bacillus. 5. Bacillus icteroides when fed to the domestic pig causes fatal infection, accompanied by diphtheritic, necrotic and ulcerative lesions in the digestive tract, such as are seen in hogs when infected with the hog-cholera bacillus. 6. This disease may be acquired by exposing swine in pens already infected with Bacillus icteroides, or by feeding them with the viscera of infected pigs. 7. Guinea-pigs may be immunized with sterilized cultures ofBacillus icteroides from a fatal dose of the hog-cholera bacillus and vice versa. 8. Rabbits may be rendered immune by gradually increasing doses of a living culture of Bacillus icteroides of weak virulence from a fatal dose of a virulent culture of the hog-cholera bacillus 9. The sera of animals immunized with Bacillus icteroides and with the hog-cholera bacillus, respectively, show a marked reciprocal agglutinative reaction. 10. While the blood of yellow fever practically does not exercise an agglutinative reaction upon Bacillus icteroides, the blood of hog-cholera agglutinates this bacillus in a much more marked degree, thus pointing, we think, to the closer etiological relationship of this bacillus to hog-cholera than to yellow fever. PMID:19866945

  17. Complete Genome Sequence of the Endophytic Bacterium Burkholderia sp. Strain KJ006

    PubMed Central

    Kwak, Min-Jung; Song, Ju Yeon; Kim, Seon-Young; Jeong, Haeyoung; Kang, Sung Gyun; Kim, Byung Kwon; Kwon, Soon-Kyeong; Lee, Choong Hoon; Yu, Dong Su

    2012-01-01

    Endophytes live inside plant tissues without causing any harm and may even benefit plants. Here, we provide the high-quality genome sequence of Burkholderia sp. strain KJ006, an endophytic bacterium of rice with antifungal activity. The 6.6-Mb genome, consisting of three chromosomes and a single plasmid, contains genes related to plant growth promotion or degradation of aromatic compounds. PMID:22843575

  18. Diversity of cultivable fungal endophytes in Paullinia cupana (Mart.) Ducke and bioactivity of their secondary metabolites.

    PubMed

    Silva, Fábio de Azevedo; Liotti, Rhavena Graziela; Boleti, Ana Paula de Araújo; Reis, Érica de Melo; Passos, Marilene Borges Silva; Dos Santos, Edson Lucas; Sampaio, Olivia Moreira; Januário, Ana Helena; Branco, Carmen Lucia Bassi; Silva, Gilvan Ferreira da; Mendonça, Elisabeth Aparecida Furtado de; Soares, Marcos Antônio

    2018-01-01

    Paullinia cupana is associated with a diverse community of pathogenic and endophytic microorganisms. We isolated and identified endophytic fungal communities from the roots and seeds of P. cupana genotypes susceptible and tolerant to anthracnose that grow in two sites of the Brazilian Amazonia forest. We assessed the antibacterial, antitumor and genotoxic activity in vitro of compounds isolated from the strains Trichoderma asperellum (1BDA) and Diaporthe phaseolorum (8S). In concert, we identified eight fungal species not previously reported as endophytes; some fungal species capable of inhibiting pathogen growth; and the production of antibiotics and compounds with bacteriostatic activity against Pseudomonas aeruginosa in both susceptible and multiresistant host strains. The plant genotype, geographic location and specially the organ influenced the composition of P. cupana endophytic fungal community. Together, our findings identify important functional roles of endophytic species found within the microbiome of P. cupana. This hypothesis requires experimental validation to propose management of this microbiome with the objective of promoting plant growth and protection.

  19. Diversity of cultivable fungal endophytes in Paullinia cupana (Mart.) Ducke and bioactivity of their secondary metabolites

    PubMed Central

    Liotti, Rhavena Graziela; Boleti, Ana Paula de Araújo; Reis, Érica de Melo; Passos, Marilene Borges Silva; dos Santos, Edson Lucas; Sampaio, Olivia Moreira; Januário, Ana Helena; Branco, Carmen Lucia Bassi; da Silva, Gilvan Ferreira; de Mendonça, Elisabeth Aparecida Furtado

    2018-01-01

    Paullinia cupana is associated with a diverse community of pathogenic and endophytic microorganisms. We isolated and identified endophytic fungal communities from the roots and seeds of P. cupana genotypes susceptible and tolerant to anthracnose that grow in two sites of the Brazilian Amazonia forest. We assessed the antibacterial, antitumor and genotoxic activity in vitro of compounds isolated from the strains Trichoderma asperellum (1BDA) and Diaporthe phaseolorum (8S). In concert, we identified eight fungal species not previously reported as endophytes; some fungal species capable of inhibiting pathogen growth; and the production of antibiotics and compounds with bacteriostatic activity against Pseudomonas aeruginosa in both susceptible and multiresistant host strains. The plant genotype, geographic location and specially the organ influenced the composition of P. cupana endophytic fungal community. Together, our findings identify important functional roles of endophytic species found within the microbiome of P. cupana. This hypothesis requires experimental validation to propose management of this microbiome with the objective of promoting plant growth and protection. PMID:29649297

  20. Colonization of onions by endophytic fungi and their impacts on the biology of Thrips tabaci.

    PubMed

    Muvea, Alexander M; Meyhöfer, Rainer; Subramanian, Sevgan; Poehling, Hans-Michael; Ekesi, Sunday; Maniania, Nguya K

    2014-01-01

    Endophytic fungi, which live within host plant tissues without causing any visible symptom of infection, are important mutualists that mediate plant-herbivore interactions. Thrips tabaci (Lindeman) is one of the key pests of onion, Allium cepa L., an economically important agricultural crop cultivated worldwide. However, information on endophyte colonization of onions, and their impacts on the biology of thrips feeding on them, is lacking. We tested the colonization of onion plants by selected fungal endophyte isolates using two inoculation methods. The effects of inoculated endophytes on T. tabaci infesting onion were also examined. Seven fungal endophytes used in our study were able to colonize onion plants either by the seed or seedling inoculation methods. Seed inoculation resulted in 1.47 times higher mean percentage post-inoculation recovery of all the endophytes tested as compared to seedling inoculation. Fewer thrips were observed on plants inoculated with Clonostachys rosea ICIPE 707, Trichoderma asperellum M2RT4, Trichoderma atroviride ICIPE 710, Trichoderma harzianum 709, Hypocrea lixii F3ST1 and Fusarium sp. ICIPE 712 isolates as compared to those inoculated with Fusarium sp. ICIPE 717 and the control treatments. Onion plants colonized by C. rosea ICIPE 707, T. asperellum M2RT4, T. atroviride ICIPE 710 and H. lixii F3ST1 had significantly lower feeding punctures as compared to the other treatments. Among the isolates tested, the lowest numbers of eggs were laid by T. tabaci on H. lixii F3ST1 and C. rosea ICIPE 707 inoculated plants. These results extend the knowledge on colonization of onions by fungal endophytes and their effects on Thrips tabaci.

  1. Colonization of Onions by Endophytic Fungi and Their Impacts on the Biology of Thrips tabaci

    PubMed Central

    Muvea, Alexander M.; Meyhöfer, Rainer; Subramanian, Sevgan; Poehling, Hans-Michael; Ekesi, Sunday; Maniania, Nguya K.

    2014-01-01

    Endophytic fungi, which live within host plant tissues without causing any visible symptom of infection, are important mutualists that mediate plant–herbivore interactions. Thrips tabaci (Lindeman) is one of the key pests of onion, Allium cepa L., an economically important agricultural crop cultivated worldwide. However, information on endophyte colonization of onions, and their impacts on the biology of thrips feeding on them, is lacking. We tested the colonization of onion plants by selected fungal endophyte isolates using two inoculation methods. The effects of inoculated endophytes on T. tabaci infesting onion were also examined. Seven fungal endophytes used in our study were able to colonize onion plants either by the seed or seedling inoculation methods. Seed inoculation resulted in 1.47 times higher mean percentage post-inoculation recovery of all the endophytes tested as compared to seedling inoculation. Fewer thrips were observed on plants inoculated with Clonostachys rosea ICIPE 707, Trichoderma asperellum M2RT4, Trichoderma atroviride ICIPE 710, Trichoderma harzianum 709, Hypocrea lixii F3ST1 and Fusarium sp. ICIPE 712 isolates as compared to those inoculated with Fusarium sp. ICIPE 717 and the control treatments. Onion plants colonized by C. rosea ICIPE 707, T. asperellum M2RT4, T. atroviride ICIPE 710 and H. lixii F3ST1 had significantly lower feeding punctures as compared to the other treatments. Among the isolates tested, the lowest numbers of eggs were laid by T. tabaci on H. lixii F3ST1 and C. rosea ICIPE 707 inoculated plants. These results extend the knowledge on colonization of onions by fungal endophytes and their effects on Thrips tabaci. PMID:25254657

  2. Conservation and Diversity of Seed Associated Endophytes in Zea across Boundaries of Evolution, Ethnography and Ecology

    PubMed Central

    Johnston-Monje, David; Raizada, Manish N.

    2011-01-01

    Endophytes are non-pathogenic microbes living inside plants. We asked whether endophytic species were conserved in the agriculturally important plant genus Zea as it became domesticated from its wild ancestors (teosinte) to modern maize (corn) and moved from Mexico to Canada. Kernels from populations of four different teosintes and 10 different maize varieties were screened for endophytic bacteria by culturing, cloning and DNA fingerprinting using terminal restriction fragment length polymorphism (TRFLP) of 16S rDNA. Principle component analysis of TRFLP data showed that seed endophyte community composition varied in relation to plant host phylogeny. However, there was a core microbiota of endophytes that was conserved in Zea seeds across boundaries of evolution, ethnography and ecology. The majority of seed endophytes in the wild ancestor persist today in domesticated maize, though ancient selection against the hard fruitcase surrounding seeds may have altered the abundance of endophytes. Four TRFLP signals including two predicted to represent Clostridium and Paenibacillus species were conserved across all Zea genotypes, while culturing showed that Enterobacter, Methylobacteria, Pantoea and Pseudomonas species were widespread, with γ-proteobacteria being the prevalent class. Twenty-six different genera were cultured, and these were evaluated for their ability to stimulate plant growth, grow on nitrogen-free media, solubilize phosphate, sequester iron, secrete RNAse, antagonize pathogens, catabolize the precursor of ethylene, produce auxin and acetoin/butanediol. Of these traits, phosphate solubilization and production of acetoin/butanediol were the most commonly observed. An isolate from the giant Mexican landrace Mixteco, with 100% identity to Burkholderia phytofirmans, significantly promoted shoot potato biomass. GFP tagging and maize stem injection confirmed that several seed endophytes could spread systemically through the plant. One seed isolate

  3. Conservation and diversity of seed associated endophytes in Zea across boundaries of evolution, ethnography and ecology.

    PubMed

    Johnston-Monje, David; Raizada, Manish N

    2011-01-01

    Endophytes are non-pathogenic microbes living inside plants. We asked whether endophytic species were conserved in the agriculturally important plant genus Zea as it became domesticated from its wild ancestors (teosinte) to modern maize (corn) and moved from Mexico to Canada. Kernels from populations of four different teosintes and 10 different maize varieties were screened for endophytic bacteria by culturing, cloning and DNA fingerprinting using terminal restriction fragment length polymorphism (TRFLP) of 16S rDNA. Principle component analysis of TRFLP data showed that seed endophyte community composition varied in relation to plant host phylogeny. However, there was a core microbiota of endophytes that was conserved in Zea seeds across boundaries of evolution, ethnography and ecology. The majority of seed endophytes in the wild ancestor persist today in domesticated maize, though ancient selection against the hard fruitcase surrounding seeds may have altered the abundance of endophytes. Four TRFLP signals including two predicted to represent Clostridium and Paenibacillus species were conserved across all Zea genotypes, while culturing showed that Enterobacter, Methylobacteria, Pantoea and Pseudomonas species were widespread, with γ-proteobacteria being the prevalent class. Twenty-six different genera were cultured, and these were evaluated for their ability to stimulate plant growth, grow on nitrogen-free media, solubilize phosphate, sequester iron, secrete RNAse, antagonize pathogens, catabolize the precursor of ethylene, produce auxin and acetoin/butanediol. Of these traits, phosphate solubilization and production of acetoin/butanediol were the most commonly observed. An isolate from the giant Mexican landrace Mixteco, with 100% identity to Burkholderia phytofirmans, significantly promoted shoot potato biomass. GFP tagging and maize stem injection confirmed that several seed endophytes could spread systemically through the plant. One seed isolate

  4. Anticestodal Activity of Endophytic Pestalotiopsis sp. on Protoscoleces of Hydatid Cyst Echinococcus granulosus

    PubMed Central

    Verma, Vijay C.; Yashpal, Madhu; Nath, Gopal

    2013-01-01

    Surgery is still the main treatment in hydatidosis caused by Echinococcus, which is a global health problem in human and animals. So, there is need for some natural protoscolicidal agents for instillation to prevent their reoccurrence at therapeutic doses. In this present investigation, anticestodal activity of one of the endophytic fungi Pestalotiopsis sp. from Neem plant was observed on protoscoleces of hydatid cysts of Echinococcus granulosus. Viability of protoscoleces was confirmed by 0.1% aqueous eosin red stain method, where mortality was observed at different concentrations with respect to time. An average anticestodal activity was observed with different endophytic fungal strains, that is, Nigrospora (479 ± 2.9), Colletotrichum (469 ± 25.8), Fusarium (355 ± 14.5), and Chaetomium (332 ± 28.3) showing 64 to 70% protoscolicidal activity, except Pestalotiopsis sp. (581 ± 15.0), which showed promising scolicidal activity up to 97% mortality just within 30 min of incubation. These species showed significant reduction in viability of protoscoleces. This is the first report on the scolicidal activity of endophytic Pestalotiopsis sp. We conclude that ultrastructural changes in protoscoleces were due to endophytic extract suggesting that there may be some bioactive compounds that have selective action on the tegument layer of protoscoleces. As compared with that of standard drug used, endophytic species of Neem plant shows significant anticestodal activity. PMID:24063003

  5. Anticestodal activity of endophytic Pestalotiopsis sp. on protoscoleces of hydatid cyst Echinococcus granulosus.

    PubMed

    Verma, Vijay C; Gangwar, Mayank; Yashpal, Madhu; Nath, Gopal

    2013-01-01

    Surgery is still the main treatment in hydatidosis caused by Echinococcus, which is a global health problem in human and animals. So, there is need for some natural protoscolicidal agents for instillation to prevent their reoccurrence at therapeutic doses. In this present investigation, anticestodal activity of one of the endophytic fungi Pestalotiopsis sp. from Neem plant was observed on protoscoleces of hydatid cysts of Echinococcus granulosus. Viability of protoscoleces was confirmed by 0.1% aqueous eosin red stain method, where mortality was observed at different concentrations with respect to time. An average anticestodal activity was observed with different endophytic fungal strains, that is, Nigrospora (479 ± 2.9), Colletotrichum (469 ± 25.8), Fusarium (355 ± 14.5), and Chaetomium (332 ± 28.3) showing 64 to 70% protoscolicidal activity, except Pestalotiopsis sp. (581 ± 15.0), which showed promising scolicidal activity up to 97% mortality just within 30 min of incubation. These species showed significant reduction in viability of protoscoleces. This is the first report on the scolicidal activity of endophytic Pestalotiopsis sp. We conclude that ultrastructural changes in protoscoleces were due to endophytic extract suggesting that there may be some bioactive compounds that have selective action on the tegument layer of protoscoleces. As compared with that of standard drug used, endophytic species of Neem plant shows significant anticestodal activity.

  6. Fungal endophytes of turmeric (Curcuma longa L.) and their biocontrol potential against pathogens Pythium aphanidermatum and Rhizoctonia solani.

    PubMed

    Vinayarani, G; Prakash, H S

    2018-03-14

    Endophytic fungi have been isolated from the healthy turmeric (Curcuma longa L.) rhizomes from South India. Thirty-one endophytes were identified based on morphological and ITS-rDNA sequence analysis. The isolated endophytes were screened for antagonistic activity against Pythium aphanidermatum (Edson) Fitzp., and Rhizoctonia solani Kuhn., causing rhizome rot and leaf blight diseases in turmeric respectively. Results revealed that only six endophytes showed > 70% suppression of test pathogens in antagonistic dual culture assays. The endophyte T. harzianum TharDOB-31 showed significant in vitro mycelial growth inhibition of P. aphanidermatum (76.0%) and R. solani (76.9%) when tested by dual culture method. The SEM studies of interaction zone showed morphological abnormalities like parasitism, shriveling, breakage and lysis of hyphae of the pathogens by endophyte TharDOB-31. Selected endophytic isolates recorded multiple plant growth promoting traits in in vitro studies. The rhizome bacterization followed by soil application of endophyte TharDOB-31 showed lowest Percent Disease Incidence of rhizome rot and leaf blight, 13.8 and 11.6% respectively. The treatment of TharDOB-31 exhibited significant increase in plant height (85 cm) and fresh rhizome yield/plant (425 g) in comparison with untreated control under greenhouse condition. The confocal microscopy validates the colonization of the TharDOB-31 in turmeric rhizomes. The secondary metabolites in ethyl acetate extract of TharDOB-31 were found to contain higher number of antifungal compounds by high resolution liquid chromatograph mass spectrometer analysis. Thereby, endophyte T. harzianum isolate can be exploited as a potential biocontrol agent for suppressing rhizome rot and leaf blight diseases in turmeric.

  7. Consumption of endophyte-infected fescue seed during the dry period does not decrease milk production in the following lactation

    USDA-ARS?s Scientific Manuscript database

    Ergot alkaloids in endophyte-infected grasses inhibit prolactin (PRL) secretion and may reduce milk production of cows consuming endophyte-infected grasses. We investigated the effects of consuming endophyte-infected fescue during late lactation and the dry period on mammary growth, differentiation ...

  8. Fungal endophytes of Catharanthus roseus enhance vindoline content by modulating structural and regulatory genes related to terpenoid indole alkaloid biosynthesis

    PubMed Central

    Pandey, Shiv S.; Singh, Sucheta; Babu, C. S. Vivek; Shanker, Karuna; Srivastava, N. K.; Shukla, Ashutosh K.; Kalra, Alok

    2016-01-01

    Not much is known about the mechanism of endophyte-mediated induction of secondary metabolite production in Catharanthus roseus. In the present study two fungal endophytes, Curvularia sp. CATDLF5 and Choanephora infundibulifera CATDLF6 were isolated from the leaves of the plant that were found to enhance vindoline content by 229–403%. The isolated endophytes did not affect the primary metabolism of the plant as the maximum quantum efficiency of PSII, net CO2 assimilation, plant biomass and starch content of endophyte-inoculated plants was similar to endophyte-free control plants. Expression of terpenoid indole alkaloid (TIA) pathway genes, geraniol 10-hydroxylase (G10H), tryptophan decarboxylase (TDC), strictosidine synthase (STR), 16-hydoxytabersonine-O-methyltransferase (16OMT), desacetoxyvindoline-4-hydroxylase (D4H), deacetylvindoline-4-O-acetyltransferase (DAT) were upregulated in endophyte-inoculated plants. Endophyte inoculation upregulated the expression of the gene for transcriptional activator octadecanoid-responsive Catharanthus AP2-domain protein (ORCA3) and downregulated the expression of Cys2/His2-type zinc finger protein family transcriptional repressors (ZCTs). The gene for the vacuolar class III peroxidase (PRX1), responsible for coupling vindoline and catharanthine, was upregulated in endophyte-inoculated plants. These endophytes may enhance vindoline production by modulating the expression of key structural and regulatory genes of vindoline biosynthesis without affecting the primary metabolism of the host plant. PMID:27220774

  9. Resistance of Endophyte-Infected Plants of Tall Fescue and Perennial Ryegrass to the Russian Wheat Aphid (Homoptera: Aphididae)

    Treesearch

    S.L. Clement; K.S. Pike; W.J. Kaiser; A. Dan Wilson

    1991-01-01

    Fewer aphids of the Russian wheat aphid, (Mordvilko), were found on tall fescue and perennial ryegrass plants harboring systemic fungal endophytes than on endophyte-free plants in laboratory tests. These results indicate that enhanced resistance in some perennial grasses to D. noxia is associated with the presence of endophytic fungi.

  10. Endophytic actinobacteria: Diversity, secondary metabolism and mechanisms to unsilence biosynthetic gene clusters.

    PubMed

    Dinesh, Raghavan; Srinivasan, Veeraraghavan; T E, Sheeja; Anandaraj, Muthuswamy; Srambikkal, Hamza

    2017-09-01

    Endophytic actinobacteria, which reside in the inner tissues of host plants, are gaining serious attention due to their capacity to produce a plethora of secondary metabolites (e.g. antibiotics) possessing a wide variety of biological activity with diverse functions. This review encompasses the recent reports on endophytic actinobacterial species diversity, in planta habitats and mechanisms underlying their mode of entry into plants. Besides, their metabolic potential, novel bioactive compounds they produce and mechanisms to unravel their hidden metabolic repertoire by activation of cryptic or silent biosynthetic gene clusters (BGCs) for eliciting novel secondary metabolite production are discussed. The study also reviews the classical conservative techniques (chemical/biological/physical elicitation, co-culturing) as well as modern microbiology tools (e.g. next generation sequencing) that are being gainfully employed to uncover the vast hidden scaffolds for novel secondary metabolites produced by these endophytes, which would subsequently herald a revolution in drug engineering. The potential role of these endophytes in the agro-environment as promising biological candidates for inhibition of phytopathogens and the way forward to thoroughly exploit this unique microbial community by inducing expression of cryptic BGCs for encoding unseen products with novel therapeutic properties are also discussed.

  11. Diversity and distribution of the endophytic bacterial community at different stages of Eucalyptus growth.

    PubMed

    Miguel, Paulo Sérgio Balbino; de Oliveira, Marcelo Nagem Valério; Delvaux, Júlio César; de Jesus, Guilherme Luiz; Borges, Arnaldo Chaer; Tótola, Marcos Rogério; Neves, Júlio César Lima; Costa, Maurício Dutra

    2016-06-01

    The relationships between plants and endophytic bacteria significantly contribute to plant health and yield. However, the microbial diversity in leaves of Eucalyptus spp. is still poorly characterized. Here, we investigated the endophytic diversity in leaves of hybrid Eucalyptus grandis x E. urophylla (Eucalyptus "urograndis") by using culture-independent and culture-dependent approaches, to better understand their ecology in leaves at different stages of Eucalyptus development, including bacteria with N2 fixation potential. Firmicutes, Proteobacteria (classes alpha-, beta- and gamma-) and Actinobacteria were identified in the Eucalyptus "urograndis" endophytic bacterial community. Within this community, the species Novosphingobium barchaimii, Rhizobium grahamii, Stenotrophomonas panacihumi, Paenibacillus terrigena, P. darwinianus and Terrabacter lapilli represent the first report these bacteria as endophytes. The diversity of the total endophytic bacteria was higher in the leaves from the 'field' (the Shannon-Wiener index, 2.99), followed by the indices obtained in the 'clonal garden' (2.78), the 'recently out from under shade (2.68), 'under shade' (2.63) and 'plants for dispatch' (2.51). In contrast, for diazotrophic bacteria, the highest means of these indices were obtained from the leaves of plants in the 'under shade' (2.56), 'recently out from under shade (2.52)' and 'field' stages (2.54). The distribution of the endophytic bacterial species in Eucalyptus was distinct and specific to the development stages under study, and many of the species had the potential for nitrogen fixation, raising the question of whether these bacteria could contribute to overall nitrogen metabolism of Eucalyptus.

  12. Diversity and Communities of Foliar Endophytic Fungi from Different Agroecosystems of Coffea arabica L. in Two Regions of Veracruz, Mexico

    PubMed Central

    Saucedo-García, Aurora; Anaya, Ana Luisa; Espinosa-García, Francisco J.; González, María C.

    2014-01-01

    Over the past 20 years, the biodiversity associated with shaded coffee plantations and the role of diverse agroforestry types in biodiversity conservation and environmental services have been topics of debate. Endophytic fungi, which are microorganisms that inhabit plant tissues in an asymptomatic manner, form a part of the biodiversity associated with coffee plants. Studies on the endophytic fungi communities of cultivable host plants have shown variability among farming regions; however, the variability in fungal endophytic communities of coffee plants among different coffee agroforestry systems is still poorly understood. As such, we analyzed the diversity and communities of foliar endophytic fungi inhabiting Coffea arabica plants growing in the rustic plantations and simple polycultures of two regions in the center of Veracruz, Mexico. The endophytic fungi isolates were identified by their morphological traits, and the majority of identified species correspond to species of fungi previously reported as endophytes of coffee leaves. We analyzed and compared the colonization rates, diversity, and communities of endophytes found in the different agroforestry systems and in the different regions. Although the endophytic diversity was not fully recovered, we found differences in the abundance and diversity of endophytes among the coffee regions and differences in richness between the two different agroforestry systems of each region. No consistent pattern of community similarity was found between the coffee agroforestry systems, but we found that rustic plantations shared the highest number of morphospecies. The results suggest that endophyte abundance, richness, diversity, and communities may be influenced predominantly by coffee region, and to a lesser extent, by the agroforestry system. Our results contribute to the knowledge of the relationships between agroforestry systems and biodiversity conservation and provide information regarding some endophytic fungi and

  13. Diversity and communities of foliar endophytic fungi from different agroecosystems of Coffea arabica L. in two regions of Veracruz, Mexico.

    PubMed

    Saucedo-García, Aurora; Anaya, Ana Luisa; Espinosa-García, Francisco J; González, María C

    2014-01-01

    Over the past 20 years, the biodiversity associated with shaded coffee plantations and the role of diverse agroforestry types in biodiversity conservation and environmental services have been topics of debate. Endophytic fungi, which are microorganisms that inhabit plant tissues in an asymptomatic manner, form a part of the biodiversity associated with coffee plants. Studies on the endophytic fungi communities of cultivable host plants have shown variability among farming regions; however, the variability in fungal endophytic communities of coffee plants among different coffee agroforestry systems is still poorly understood. As such, we analyzed the diversity and communities of foliar endophytic fungi inhabiting Coffea arabica plants growing in the rustic plantations and simple polycultures of two regions in the center of Veracruz, Mexico. The endophytic fungi isolates were identified by their morphological traits, and the majority of identified species correspond to species of fungi previously reported as endophytes of coffee leaves. We analyzed and compared the colonization rates, diversity, and communities of endophytes found in the different agroforestry systems and in the different regions. Although the endophytic diversity was not fully recovered, we found differences in the abundance and diversity of endophytes among the coffee regions and differences in richness between the two different agroforestry systems of each region. No consistent pattern of community similarity was found between the coffee agroforestry systems, but we found that rustic plantations shared the highest number of morphospecies. The results suggest that endophyte abundance, richness, diversity, and communities may be influenced predominantly by coffee region, and to a lesser extent, by the agroforestry system. Our results contribute to the knowledge of the relationships between agroforestry systems and biodiversity conservation and provide information regarding some endophytic fungi and

  14. Rock-degrading endophytic bacteria in cacti

    Treesearch

    M. Esther Puente; Ching Y. Li; Yoav Bashan

    2009-01-01

    A plant-bacterium association of the cardon cactus (Pachycereus pringlei) and endophytic bacteria promotes establishment of seedlings and growth on igneous rocks without soil. These bacteria weather several rock types and minerals, unbind significant amounts of useful minerals for plants from the rocks, fix in vitro N2. produce...

  15. Plant functional traits and phylogenetic relatedness explain variation in associations with root fungal endophytes in an extreme arid environment

    USDA-ARS?s Scientific Manuscript database

    Since root endophytes may ameliorate drought stress, understanding which plants associate with endophytes is important, especially in arid ecosystems. Here we characterized the root endophytes of 42 plants from an arid region of Argentina. We related colonization by arbuscular mycorrhizal fungi (AMF...

  16. The plant hormone salicylic acid interacts with the mechanism of anti-herbivory conferred by fungal endophytes in grasses.

    PubMed

    Bastías, Daniel A; Alejandra Martínez-Ghersa, M; Newman, Jonathan A; Card, Stuart D; Mace, Wade J; Gundel, Pedro E

    2018-02-01

    The plant hormone salicylic acid (SA) is recognized as an effective defence against biotrophic pathogens, but its role as regulator of beneficial plant symbionts has received little attention. We studied the relationship between the SA hormone and leaf fungal endophytes on herbivore defences in symbiotic grasses. We hypothesize that the SA exposure suppresses the endophyte reducing the fungal-produced alkaloids. Because of the role that alkaloids play in anti-herbivore defences, any reduction in their production should make host plants more susceptible to herbivores. Lolium multiflorum plants symbiotic and nonsymbiotic with the endophyte Epichloë occultans were exposed to SA followed by a challenge with the aphid Rhopalosiphum padi. We measured the level of plant resistance to aphids, and the defences conferred by endophytes and host plants. Symbiotic plants had lower concentrations of SA than did the nonsymbiotic counterparts. Consistent with our prediction, the hormonal treatment reduced the concentration of loline alkaloids (i.e., N-formyllolines and N-acetylnorlolines) and consequently decreased the endophyte-conferred resistance against aphids. Our study highlights the importance of the interaction between the plant immune system and endophytes for the stability of the defensive mutualism. Our results indicate that the SA plays a critical role in regulating the endophyte-conferred resistance against herbivores. © 2017 John Wiley & Sons Ltd.

  17. A comparison of the community diversity of foliar fungal endophytes between seedling and adult loblolly pines (Pinus taeda)

    PubMed Central

    Oono, Ryoko; Lefèvre, Emilie; Simha, Anita; Lutzoni, François

    2015-01-01

    Fungal endophytes represent one of the most ubiquitous plant symbionts on Earth and are phylogenetically diverse. The structure and diversity of endophyte communities have been shown to depend on host taxa and climate, but there have been relatively few studies exploring endophyte communities throughout host maturity. We compared foliar fungal endophyte communities between seedlings and adult trees of loblolly pines (Pinus taeda) at the same seasons and locations by culturing and culture-independent methods. We sequenced the internal transcribed spacer region and adjacent partial large subunit nuclear ribosomal RNA gene (ITS–LSU amplicon) to delimit operational taxonomic units and phylogenetically characterize the communities. Despite the lower infection frequency in seedlings compared to adult trees, seedling needles were receptive to a more diverse community of fungal endophytes. Culture-free method confirmed the presence of commonly cultured OTUs from adult needles but revealed several new OTUs from seedling needles that were not found with culturing methods. The two most commonly cultured OTUs in adults were rarely cultured from seedlings, suggesting that host age is correlated with a selective enrichment for specific endophytes. This shift in endophyte species dominance may be indicative of a functional change between these fungi and their loblolly pine hosts. PMID:26399186

  18. Seaweed temporal distribution in southeast coast of Peninsular Malaysia and isolation of endophytic fungi

    NASA Astrophysics Data System (ADS)

    Zainee, Nur Farah Ain; Ismail, Ahmad; Ibrahim, Nazlina; Ismail, Asmida

    2018-04-01

    Temporal study of seaweeds was carried out between on February 2015 and November 2015 at Kampung Jawa Darat and Kampung Sungai Buntu at Pengerang, Johor, Malaysia. The research objectives were to study the diversity of seaweed and to determine the presence of fungal endophyte in the seaweed. The diversity of seaweed in the sampling site was calculated by using quadrat with 25 meter line transect by 3 replication for each site. The specimen were identified and processed in laboratory and kept for reference in the Algae Herbarium, Universiti Kebangsaan Malaysia. The specimen for fungal endophyte isolation was collected randomly by choosing the complete thallus, transferred into sterile zip-lock plastic bag and kept in freezer until used. From this study, a total of 29 species have been successfully identified including 12 species of Chlorophyta, 2 species of Phaeophyta and 14 species of Rhodophyta. From February to November 2015, the number of species highly varied and a significant change in community structure was noted. Kampung Sungai Buntu shows the highest diversity throughout the study compared to Kampung Jawa Darat. Eighteen seaweed species were screened for the presence of fungal endophyte, Sargassum polycystum shows the highest number of fungal endophyte. This study documented the seaweed diversity in two sites at Pengerang, Johor that accommodates fungal endophytes.

  19. [Isolation, identification and characterization of ACC deaminase-containing endophytic bacteria from halophyte Suaeda salsa].

    PubMed

    Teng, Songshan; Liu, Yanping; Zhao, Lei

    2010-11-01

    We Isolated and characterized 1-aminocyclopropane-1-carboxylate (ACC) deaminase-containing endophytic bacteria from halophyte Suaeda salsa to understand the interactions between endophytes and halophyte. ACC deaminase-containing endophytic bacteria were isolated from root, stalk and leaf of Suaeda salsa and were identified based on morphological, physiological-biochemical properties, API and 16S rRNA sequence analysis. Isolates were evaluated for their ACC deaminase, antifungal, protease activity, siderophores and phytohormones, such as indole-3-acetic acid, gibberellic acid and abscisic acid production, as well as atmospheric nitrogen fixation and phosphate solubilization. Four ACC deaminase-containing endophytic bacteria strains named as LP11, SS12, TW1 and TW2 were isolated and identified as Pseudomonas oryzihabitans, Pseudomonas sp., Pantoea agglomerans and Pseudomonas putida respectively. All the strains possessed the phosphate-solubilizing ability and could produce siderophores and phytohormones more or less. None of them could fix atmospheric nitrogen or produce protease. Only strain SS12 showed antagonism against two phytopathogenic fungi viz Fusarium oxysporum f. sp. conglutinans and F. oxysporum f. sp. cucumerinum. ACC deaminase-containing endophytic bacteria of Pseudomonas sp. and Pantoea sp. isolated from halophyte Suaeda salsa have abundant biological characteristics related to plant growth promotion, stress homeostasis regulation and biocontrol activity.

  20. An endophytic Basidiomycete, Grammothele lineata, isolated from Corchorus olitorius, produces paclitaxel that shows cytotoxicity

    PubMed Central

    Das, Avizit; Rahman, Mohammad Imtiazur; Ferdous, Ahlan Sabah; Amin, Al-; Rahman, Mohammad Mahbubur; Nahar, Nilufar; Uddin, Md. Aftab; Islam, Mohammad Riazul; Khan, Haseena

    2017-01-01

    Grammothele lineata, an endophyte isolated in our laboratory from jute (Corchorus olitorius acc. 2015) was found to be a substantial paclitaxel producer. Taxol and its related compounds, produced by this endophyte were extracted by growing the fungus in simple nutrient media (potato dextrose broth, PDB). Taxol was identified and characterized by different analytical techniques (TLC, HPLC, FTIR, LC-ESI-MS/MS) following its extraction by ethyl acetate. In PDB media, this fungus was found to produce 382.2 μgL-1 of taxol which is about 7.6 x103 fold higher than the first reported endophytic fungi, Taxomyces andreanae. The extracted taxol exhibited cytotoxic activity in an in vitro culture of HeLa cancer cell line. The fungal extract also exhibited antifungal and antibacterial activities against different pathogenic strains. This is the first report of a jute endophytic fungus harboring the capacity to produce taxol and also the first reported taxol producing species that belongs to the Basidiomycota phylum, so far unknown to be a taxol producer. These findings suggest that the fungal endophyte, Grammothele lineata can be an excellent source of taxol and can also serve as a potential species for chemical and genetic engineering to enhance further the production of taxol. PMID:28636663

  1. An endophytic Basidiomycete, Grammothele lineata, isolated from Corchorus olitorius, produces paclitaxel that shows cytotoxicity.

    PubMed

    Das, Avizit; Rahman, Mohammad Imtiazur; Ferdous, Ahlan Sabah; Amin, Al-; Rahman, Mohammad Mahbubur; Nahar, Nilufar; Uddin, Md Aftab; Islam, Mohammad Riazul; Khan, Haseena

    2017-01-01

    Grammothele lineata, an endophyte isolated in our laboratory from jute (Corchorus olitorius acc. 2015) was found to be a substantial paclitaxel producer. Taxol and its related compounds, produced by this endophyte were extracted by growing the fungus in simple nutrient media (potato dextrose broth, PDB). Taxol was identified and characterized by different analytical techniques (TLC, HPLC, FTIR, LC-ESI-MS/MS) following its extraction by ethyl acetate. In PDB media, this fungus was found to produce 382.2 μgL-1 of taxol which is about 7.6 x103 fold higher than the first reported endophytic fungi, Taxomyces andreanae. The extracted taxol exhibited cytotoxic activity in an in vitro culture of HeLa cancer cell line. The fungal extract also exhibited antifungal and antibacterial activities against different pathogenic strains. This is the first report of a jute endophytic fungus harboring the capacity to produce taxol and also the first reported taxol producing species that belongs to the Basidiomycota phylum, so far unknown to be a taxol producer. These findings suggest that the fungal endophyte, Grammothele lineata can be an excellent source of taxol and can also serve as a potential species for chemical and genetic engineering to enhance further the production of taxol.

  2. Impact of grassland management regimes on bacterial endophyte diversity differs with grass species.

    PubMed

    Wemheuer, F; Wemheuer, B; Kretzschmar, D; Pfeiffer, B; Herzog, S; Daniel, R; Vidal, S

    2016-04-01

    Most plant species are colonized by endophytic bacteria. Despite their importance for plant health and growth, the response of these bacteria to grassland management regimes is still not understood. Hence, we investigated the bacterial community structure in three agricultural important grass species Dactylis glomerata L., Festuca rubra L. and Lolium perenne L. with regard to fertilizer application and different mowing frequencies. For this purpose, above-ground plant material was collected from the Grassland Management Experiment (GrassMan) in Germany in September 2010 and 2011. DNA was extracted from surface-sterilized plant tissue and subjected to 16S rRNA gene PCRs. Endophytic community structures were assessed by denaturing gradient gel electrophoresis (DGGE)-based analysis of obtained PCR products. DGGE fingerprints revealed that fertilizer application significantly altered the endophytic communities in L. perenne and F. rubra but not in D. glomerata. Although no direct effect of mowing was observed, mowing frequencies in combination with fertilizer application had a significant impact on endophyte bacterial community structures. However, this effect was not observed for all three grass species in both years. Therefore, our results showed that management regimes changed the bacterial endophyte communities, but this effect was plant-specific and varied over time. Endophytic bacteria play an important role in plant health and growth. However, studies addressing the influence of grassland management regimes on these bacteria in above-ground plant parts are still missing. In this study, we present first evidence that fertilizer application significantly impacted bacterial community structures in three agricultural important grass species, whereas mowing had only a minor effect. Moreover, this effect was plant-specific and thus not visible for all grass species in each year. Consequently, this study sheds new light into the complex interaction of microbes and

  3. Quantifying the associations between fungal endophytes and biocontrol-induced herbivory of invasive purple loosestrife (Lythrum salicaria L.).

    PubMed

    David, Aaron S; Quiram, Gina L; Sirota, Jennie I; Seabloom, Eric W

    2016-01-01

    Fungal endophytes are one of several groups of heterotrophic organisms that associate with living plants. The net effects of these groups of organisms on each other and ultimately on their host plants depend in part on how they facilitate or antagonize one another. In this study we quantified the associations between endophyte communities and herbivory induced by a biological control in the invasive Lythrum salicaria at various spatial scales using a culture-based approach. We found positive associations between herbivory damage and endophyte isolation frequency and richness at the site level and weak, positive associations at the leaf level. Herbivory damage was more strongly influenced by processes at the site level than were endophyte isolation frequency and community structure, which were influenced by processes at the plant and leaf levels. Furthermore, endophytic taxa found in low herbivory sites were nested subsets of those taxa found at high herbivory sites. Our findings suggest that endophyte communities of L. salicaria are associated with, and potentially facilitated by, biocontrol-induced herbivory. Quantifying the associations between heterotrophic groups ultimately may lead to a clearer understanding of their complex interactions with plants. © 2016 by The Mycological Society of America.

  4. Antimicrobial activity of saponins produced by two novel endophytic fungi from Panax notoginseng.

    PubMed

    Jin, Zhaoxia; Gao, Lin; Zhang, Lin; Liu, Tianyi; Yu, Fang; Zhang, Zongshen; Guo, Qiong; Wang, Biying

    2017-11-01

    Endophytes in plants may be co-producer of the bioactive compounds of their hosts. We conducted a study to bioprospect for saponin-producing endophytic fungi from Panax notoginseng and evaluate the antimicrobial activity of saponins. Two novel fungal endophytes, Fusarium sp. PN8 and Aspergillus sp. PN17, were isolated from traditional Chinese medicinal herb P. notoginseng. After eight days of fermentation, the total saponins produced in the culture broth of PN8 and PN17 were 1.061 and 0.583 mg mL -1 , respectively. The saponin extracts exhibited moderate to high (inhibition zone diameter 15.7-28.4 mm, MIC 1.6-12.5 mg mL -1 ) antimicrobial activity against pathogens tested. Further analysis showed that triterpenoid saponins produced by Fusarium PN8 were Rb 1 , Rd and 20(S)-Rg 3 , while Aspergillus PN17 had the ability to synthesise ginsenoside Re, Rd and 20(S)-Rg 3 . The isolated endophytes may be used as potential sources for microbial production of plant secondary metabolites and for antimicrobial agents.

  5. Silicon, endophytes and secondary metabolites as grass defenses against mammalian herbivores

    PubMed Central

    Huitu, Otso; Forbes, Kristian M.; Helander, Marjo; Julkunen-Tiitto, Riitta; Lambin, Xavier; Saikkonen, Kari; Stuart, Peter; Sulkama, Sini; Hartley, Sue

    2014-01-01

    Grasses have been considered to primarily employ tolerance in lieu of defense in mitigating damage caused by herbivory. Yet a number of mechanisms have been identified in grasses, which may deter feeding by grazers. These include enhanced silicon uptake, hosting of toxin-producing endophytic fungi and induction of secondary metabolites. While these mechanisms have been individually studied, their synergistic responses to grazing, as well as their effects on grazers, are poorly known. A field experiment was carried out in 5 × 5 m outdoor enclosures to quantify phytochemical changes of either endophyte-infected (E+) or endophyte-free (E-) meadow fescue (Schedonorus pratensis) in response to medium intensity (corresponding with densities of ca. 1200 voles/ha for 5 weeks during 3 months) or heavy intensity (ca. 1200 voles/ha for 8 weeks during 3 months) grazing by a mammalian herbivore, the field vole (Microtus agrestis). A laboratory experiment was then conducted to evaluate the effects of endophyte infection status and grazing history of the grass diet on vole performance. As predicted, grazing increased foliar silicon content, by up to 13%. Grazing also increased foliar levels of phosphorous and several phenolic compounds, most notably those of the flavonols isorhamnetin-diglycoside and rhamnetin derivative. Silicon concentrations were consistently circa 16% higher in E+ grasses than in E-grasses, at all levels of grazing. Similarly, concentrations of chlorogenic acid derivative were found to be consistently higher in E+ than in E- grasses. Female voles maintained on heavily grazed grasses suffered higher mortality rates in the laboratory than female voles fed ungrazed grass, regardless of endophyte infection status. Our results conclusively demonstrate that, in addition to tolerance, grasses employ multi-tiered, effective defenses against mammalian grazers. PMID:25278951

  6. USDA - Kentucky Report (Annual Report to SERA-IEG 8, Tall Fescue Toxicosis/Endophyte Workshop)

    USDA-ARS?s Scientific Manuscript database

    Of the ergopeptine alkaloids produced by the endophyte (Neotyphodium coenophialum) of tall fescue, ergovaline has been reported as the most abundant in endophyte-infected tall fescue (Lolium arundinacea). As a result much focus has been placed on ergovaline and its impact on grazing animal health (i...

  7. Transformation of taxol-producing endophytic fungi by restriction enzyme-mediated integration (REMI).

    PubMed

    Wang, Yechun; Guo, Binhui; Miao, Zhiqi; Tang, Kexuan

    2007-08-01

    The REMI method was used to introduce the plasmid pV2 harboring the hygromycin B phosphotransferase (hph) gene controlled by the Aspergillus nidulans trpC promoter and the trpC terminator into a taxol-producing endophytic fungus BT2. REMI transformation yielded stable transformants capable of continuing to grow on PDA medium containing 125 mug mL(-1) hygromycin B. The transformation efficiency was about 5-6 transformants mug(-1) plasmid DNA. The presence of hph gene in transformants was confirmed by PCR and Southern blot analyses. To the authors' knowledge, this is the first report on the transformation of taxol-producing endophytic fungi by the REMI technique. This study provides an effective approach for improving taxol production of endophytic fungi by the genetic engineering of taxol biosynthetic pathway genes in the future.

  8. A novel endophytic Huperzine A-producing fungus, Shiraia sp. Slf14, isolated from Huperzia serrata.

    PubMed

    Zhu, D; Wang, J; Zeng, Q; Zhang, Z; Yan, R

    2010-10-01

    To characterize and identify a novel Huperzine A (HupA)-producing fungal strain Slf14 isolated from Huperzia serrata (Thunb. ex Murray) Trev. in China. The isolation, identification and characterization of a novel endophytic fungus producing HupA specifically and consistently from the leaves of H. serrata were investigated. The fungus was identified as Shiraia sp. Slf14 by molecular and morphological methods. The HupA produced by this endophytic fungus was shown to be identical to authentic HupA analysed by thin layer chromatographic, High-performance liquid chromatography (HPLC), LC-MS, (1) H NMR and acetylcholinesterase (AChE) inhibition activity in vitro. The amount of HupA produced by Shiraia sp. Slf14 was quantified to be 327.8 μg l(-1) by HPLC, which was far higher than that of the reported endophytic fungi, Acremonium sp., Blastomyces sp. and Botrytis sp. The production of HupA by endophyte Shiraia sp. Slf14 is an enigmatic observation. It would be interesting to further study the HupA production and regulation by the cultured endophyte in H. serrata and in axenic cultures. Although the current accumulation of HupA by the endophyte is not very high, it could provide a promising alterative approach for large-scale production of HupA. However, further strain improvement and the fermentation process optimization are required to result in the consistent and dependable production. © 2010 The Authors. Journal compilation © 2010 The Society for Applied Microbiology.

  9. Heavy metal resistant endophytic fungi isolated from Nypa fruticans in Kuching Wetland National Park

    NASA Astrophysics Data System (ADS)

    Choo, Jenny; Sabri, Nuraini Binti Mohd; Tan, Daniel; Mujahid, Aazani; Müller, Moritz

    2015-06-01

    Heavy metal pollution is an environmental issue globally and the aim of this study was to isolate endophytic fungi from mangrove wetlands of Sarawak to assess and test their ability to grow in the presence of various heavy metals (copper (Cu), zinc (Zn), lead (Pb), and chromium (Cr)). Samples of Nypa fruticans were collected from Kuching Wetland National Park (KWNP) for subsequent endophyte isolation. Ninety-three (93) isolates were obtained and assessed and the most resistant isolates (growing at concentrations up to 1000 ppm) were identified using fungal primers ITS 1 and ITS 4. All of the endophytic fungi were identified to be closely related to Pestalotiopsis sp. and this is to our knowledge the first study reporting the ability of Pestalotiopsis sp. to grow at high concentrations of copper, lead, zinc and chromium. Our results highlight the potential of using endophytic fungi for the treatment of heavy metal pollution, for example as biosorbents.

  10. Resistance to Dutch Elm Disease Reduces Presence of Xylem Endophytic Fungi in Elms (Ulmus spp.)

    PubMed Central

    Martín, Juan A.; Witzell, Johanna; Blumenstein, Kathrin; Rozpedowska, Elzbieta; Helander, Marjo; Sieber, Thomas N.; Gil, Luis

    2013-01-01

    Efforts to introduce pathogen resistance into landscape tree species by breeding may have unintended consequences for fungal diversity. To address this issue, we compared the frequency and diversity of endophytic fungi and defensive phenolic metabolites in elm (Ulmus spp.) trees with genotypes known to differ in resistance to Dutch elm disease. Our results indicate that resistant U. minor and U. pumila genotypes exhibit a lower frequency and diversity of fungal endophytes in the xylem than susceptible U. minor genotypes. However, resistant and susceptible genotypes showed a similar frequency and diversity of endophytes in the leaves and bark. The resistant and susceptible genotypes could be discriminated on the basis of the phenolic profile of the xylem, but not on basis of phenolics in the leaves or bark. As the Dutch elm disease pathogen develops within xylem tissues, the defensive chemistry of resistant elm genotypes thus appears to be one of the factors that may limit colonization by both the pathogen and endophytes. We discuss a potential trade-off between the benefits of breeding resistance into tree species, versus concomitant losses of fungal endophytes and the ecosystem services they provide. PMID:23468900

  11. Distribution and dispersal of Xylaria endophytes in two tree species in Puerto Rico

    Treesearch

    P. Bayman; D. J. Lodge; P. Angulo-Sandoval; Z. Baez-Ortiz

    1998-01-01

    Xylaria species are common endophytes in tropical plants. It is not known, however, whether transmission of Xylaria occurs horizontally or vertically, whether individual Xylaria strains have wide host ranges or are host-specific, or how they are dispersed. We compared frequency of Xylaria endophytes in leaves and seeds of two tree species in Puerto Rico, Casuarina...

  12. Enzyme inhibitory metabolites from endophytic Penicillium citrinum isolated from Boswellia sacra.

    PubMed

    Ali, Sajid; Khan, Abdul Latif; Ali, Liaqat; Rizvi, Tania Shamim; Khan, Sumera Afzal; Hussain, Javid; Hamayun, Muhammad; Al-Harrasi, Ahmed

    2017-07-01

    Fungal endophytes establish an important niche within the host plant through the secretion of chemical constituents. Isolation of bioactive metabolites could be a vital source for inhibiting the function of enzymes such as α-glucosidase and urease. The present study aimed to elucidate the potential of endophytes associated with Boswellia sacra through bioassay-guided isolation and identification of secondary metabolites with enzyme inhibitory ability. Endophytic fungal strains viz. Penicillium citrinum, P. spinulosum, Fusarium oxysporum, Alternaria alternata and Aspergillus caespitosus were identified through genomic DNA extraction, PCR amplification, sequencing and phylogenetic analysis. The enzymes inhibition analysis of the ethyl acetate extract from pure cultures suggested that P. citrinum possess significantly higher enzyme inhibitory activities compared to other strains. The active strain was subjected to chromatographic isolation and nuclear magnetic resonance methods to identify bioactive compounds. The bioactive extracts resulted in the isolation of 11-oxoursonic acid benzyl ester (1), n-nonane (2), 3-decene-1-ol (3), 2-Hydroxyphenyl acetic acid (4), and Glochidacuminosides A (5). Among pure compound, 11-oxoursonic acid benzyl ester (1) showed significantly higher enzyme inhibition activity compared to other metabolites. Our results suggest that the endophytic microorganism associated with the arid-land tree can offer a rich source of biologically active chemical constituents that could help discover lead drugs for enzyme inhibition.

  13. Endophytic bacteria improve phytoremediation of Ni and TCE co-contamination

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weyens, N.; van der Lelie, D.; Croes, S.

    The aim of this work was to investigate if engineered endophytes can improve phytoremediation of co-contaminations by organic pollutants and toxic metals. As a model system, yellow lupine was inoculated with the endophyte Burkholderia cepacia VM1468 possessing (a) the pTOM-Bu61 plasmid, coding for constitutive trichloroethylene (TCE) degradation, and (b) the ncc-nre Ni resistance/sequestration system. Plants were exposed to Ni and TCE and (a) Ni and TCE phytotoxicity, (b) TCE degradation and evapotranspiration, and (c) Ni concentrations in the roots and shoots were determined. Inoculation with B. cepacia VM1468 resulted in decreased Ni and TCE phytotoxicity, as measured by 30% increasedmore » root biomass and up to 50% decreased activities of enzymes involved in anti-oxidative defence in the roots. In addition, TCE evapotranspiration showed a decreasing trend and a 5 times higher Ni uptake was observed after inoculation. Engineered endophytes can improve phytoremediation of mixed contaminations via enhanced degradation of organic contaminants and improved metal uptake and translocation.« less

  14. Endophytic Colletrotrichum spp. from Cinchona calisaya wedd. and it's potential quinine production as antibacterial and antimalaria

    NASA Astrophysics Data System (ADS)

    Radiastuti, Nani; Mutea, Dalli; Sumarlin, La Ode

    2017-02-01

    An endophytic fungus is microorganisms that live inside plant tissues without harming its host and is capable of producing the same secondary metabolites as its host plant. The endophytic fungus is very diverse and important group of microorganisms. The objectives of the study are to identify endophyte Colletotrichum spp. using ITS rDNA analyze, alkaloid cinchona and antibacterial characteristics. Phylogenetic analysis of ITS rDNA regions and morphology are used to identify the species. The Chloroform extracts of filtrate were analyzed using the High Pressure Liquid Chromatography (HPLC) to determine the production of quinine. There were 13 isolates of Colletotrichum spp as endophytes with associated with Cinchona calisaya Wedd. from fruit (6 isolates), leaf (5 isolates), twig (1 isolate) and root (1 isolate). This is the first report as endophytes are associated with C. calisaya. Based on ITS phylogenetic analysis are introduced of 7 strains Colletotrichum sp, 1 strain closely with C. aegnigma, 2 strains closely C. cordylinicola, 1 strains C arxii, 2 strains nested C. karstii. The Colletotrichum sp. M1 (leaf), M3 (bark), M8 (fruit) and C. karstii M5 (fruit) are potential alkaloid quinine. Five strains of Colletotrichum spp. have antibacterial activity are selected against Staphylococcus aureus and nine Colletotrichum spp. against Escherichia coli. The endophyte identification of Colletotrichum species needs another gene other than ITS rDNA.

  15. Dynamics of bacterial class Bacilli in the deepest valley lake of Kashmir-the Manasbal Lake.

    PubMed

    Shafi, Sana; Kamili, Azra N; Shah, Manzoor A; Bandh, Suhaib A; Dar, Rubiya

    2017-03-01

    In recognition of the importance of bacteria as ecological indicators of the aquatic systems a comprehensive and systematic analysis was carried out on Manasbal Lake, the deepest spring fed valley lake of Kashmir. The main objective envisaged was to analyze bacterial community composition (BCC) and for this purpose systematic and regular sampling of waters from ten different sampling stations, predetermined in the Lake according to differences in degree of human interference and also as zones of special ecological interests were selected. The isolated species were identified according to Bergey's Manual specification by examining their micro and macro morphological characteristics and biochemical characteristics on different culture media. Further confirmation was done by sequencing the 16s rRNA gene by using universal bacterial primers 27F and 1429R. From all the sampling stations the class Bacilli showed a maximum relative abundance with a contribution of 16 bacterial species. The whole process resulted in the identification of Bacillus aerius, Bacillus altitudinis, Bacillus anthracis, Bacillus cereus, Bacillus ginsengisoli, Bacillus pumilus, Bacillus safensis, Bacillus stratosphericus, Bacillus subtilis, Bacillus tequilensis, Bacillus thermocopriae, Bacillus thuringiensis, Brevibacillus agri strain, Lysinibacillus boronitolerans, Lysinibacillus pakistanensis and Lysinibacillus sphaericus. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Seed Endophyte Microbiome of Crotalaria pumila Unpeeled: Identification of Plant-Beneficial Methylobacteria.

    PubMed

    Sánchez-López, Ariadna S; Pintelon, Isabel; Stevens, Vincent; Imperato, Valeria; Timmermans, Jean-Pierre; González-Chávez, Carmen; Carrillo-González, Rogelio; Van Hamme, Jonathan; Vangronsveld, Jaco; Thijs, Sofie

    2018-01-19

    Metal contaminated soils are increasing worldwide. Metal-tolerant plants growing on metalliferous soils are fascinating genetic and microbial resources. Seeds can vertically transmit endophytic microorganisms that can assist next generations to cope with environmental stresses, through yet poorly understood mechanisms. The aims of this study were to identify the core seed endophyte microbiome of the pioneer metallophyte Crotalaria pumila throughout three generations, and to better understand the plant colonisation of the seed endophyte Methylobacterium sp. Cp3. Strain Cp3 was detected in C. pumila seeds across three successive generations and showed the most dominant community member. When inoculated in the soil at the time of flowering, strain Cp3 migrated from soil to seeds. Using confocal microscopy, Cp3-mCherry was demonstrated to colonise the root cortex cells and xylem vessels of the stem under metal stress. Moreover, strain Cp3 showed genetic and in planta potential to promote seed germination and seedling development. We revealed, for the first time, that the seed microbiome of a pioneer plant growing in its natural environment, and the colonisation behaviour of an important plant growth promoting systemic seed endophyte. Future characterization of seed microbiota will lead to a better understanding of their functional contribution and the potential use for seed-fortification applications.

  17. Seed Endophyte Microbiome of Crotalaria pumila Unpeeled: Identification of Plant-Beneficial Methylobacteria

    PubMed Central

    Sánchez-López, Ariadna S.; Pintelon, Isabel; Imperato, Valeria; Carrillo-González, Rogelio; Van Hamme, Jonathan; Thijs, Sofie

    2018-01-01

    Metal contaminated soils are increasing worldwide. Metal-tolerant plants growing on metalliferous soils are fascinating genetic and microbial resources. Seeds can vertically transmit endophytic microorganisms that can assist next generations to cope with environmental stresses, through yet poorly understood mechanisms. The aims of this study were to identify the core seed endophyte microbiome of the pioneer metallophyte Crotalaria pumila throughout three generations, and to better understand the plant colonisation of the seed endophyte Methylobacterium sp. Cp3. Strain Cp3 was detected in C. pumila seeds across three successive generations and showed the most dominant community member. When inoculated in the soil at the time of flowering, strain Cp3 migrated from soil to seeds. Using confocal microscopy, Cp3-mCherry was demonstrated to colonise the root cortex cells and xylem vessels of the stem under metal stress. Moreover, strain Cp3 showed genetic and in planta potential to promote seed germination and seedling development. We revealed, for the first time, that the seed microbiome of a pioneer plant growing in its natural environment, and the colonisation behaviour of an important plant growth promoting systemic seed endophyte. Future characterization of seed microbiota will lead to a better understanding of their functional contribution and the potential use for seed-fortification applications. PMID:29351192

  18. Highly diverse endophytes in roots of Cycas bifida (Cycadaceae), an ancient but endangered gymnosperm.

    PubMed

    Zheng, Ying; Chiang, Tzen-Yuh; Huang, Chao-Li; Gong, Xun

    2018-05-01

    As an ancient seed plant, cycads are one of the few gymnosperms that develop a root symbiosis with cyanobacteria, which has allowed cycads to cope with harsh geologic and climatic conditions during the evolutionary process. However, the endophytic microbes in cycad roots remain poorly identified. In this study, using next-generation sequencing techniques, we investigated the microbial diversity and composition of both the coralloid and regular roots of Cycas bifida (Dyer) K.D. Hill. Highly diverse endophytic communities were observed in both the coralloid and regular roots. Of the associated bacteria, the top five families were the Nostocaceae, Sinobacteraceae, Bradyrhizobiaceae, Bacillaceae, and Hyphomicrobiaceae. The Nectriaceae, Trichocomaceae, and Incertae sedis were the predominant fungal families in all root samples. A significant difference in the endophytic bacterial community was detected between coralloid roots and regular roots, but no difference was observed between the fungal communities in the two root types. Cyanobacteria were more dominant in coralloid roots than in regular roots. The divergence of cycad root structures and the modified physiological processes may have contributed to the abundance of cyanobionts in coralloid roots. Consequently, the colonization of cyanobacteria inhibits the assemblage of other endophytes. Our results contribute to an understanding of the species diversity and composition of the cycad-endophyte microbiome and provide an abbreviated list of potential ecological roles of the core microbes present.

  19. Hypocrea lixii, novel endophytic fungi producing anticancer agent cajanol, isolated from pigeon pea (Cajanus cajan [L.] Millsp.).

    PubMed

    Zhao, J; Li, C; Wang, W; Zhao, C; Luo, M; Mu, F; Fu, Y; Zu, Y; Yao, M

    2013-07-01

    The aim was to isolate, identify and characterize endophytes from pigeon pea (Cajanus cajan [L.] Millsp.), as novel producer of cajanol and its in vitro cytotoxicity assay. Isolation, identification and characterization of novel endophytes producing cajanol from the roots of pigeon pea were investigated. The endophytes were identified as Hypocrea lixii by morphological and molecular methods. Cajanol produced by endophytes were quantified by liquid chromatography-tandem mass spectrometry (LC-MS/MS). R-18 produced the highest levels of cajanol (322·4 ± 10·6 μg l(-1) or 102·8 ± 6·9 μg g(-1) dry weight of mycelium) after incubation for 7 days. The cytotoxicity towards human lung carcinoma cells (A549) of fungal cajanol was investigated in vitro. First, a novel endophyte Hypocrea lixii, producing anticancer agent cajanol, was isolated from the host pigeon pea (Cajanus cajan [L.] Millsp.). Fungal cajanol possessed stronger cytotoxicity activity towards A549 cells in time- and dose-dependent manners. This endophyte is a potential handle for scientific and commercial exploitation, and it could provide a promising alterative approach for large-scale production of cajanol to satisfy new anticancer drug development. Journal of Applied Microbiology © 2013 The Society for Applied Microbiology.

  20. Fungal endophytes from seeds of invasive, non-native Phragmites australis and their potential role in germination and seedling growth

    USGS Publications Warehouse

    Shearin, Zackery R. C.; Filipek, Matthew; Desai, Rushvi; Bickford, Wesley A.; Kowalski, Kurt P.; Clay, Keith

    2018-01-01

    Background and aimsWe characterized fungal endophytes of seeds of invasive, non-native Phragmites from three sites in the Great Lakes region to determine if fungal symbiosis could contribute to invasiveness through their effects on seed germination and seedling growth.MethodsField-collected seeds were surface sterilized and plated on agar to culture endophytes for ITS sequencing. Prevalence of specific endophytes from germinated and non-germinated seeds, and from seedlings, was compared.ResultsOne-third of 740 seeds yielded endophyte isolates. Fifteen taxa were identified with Alternaria sp. representing 54% of all isolates followed by Phoma sp. (21%) and Penicillium corylophilum (12%). Overall germination of seeds producing an isolate (36%) was significantly higher than seeds not producing an isolate (20%). Penicillium in particular was strongly associated with increased germination of seeds from one site. Sixty-three isolates and 11 taxa were also obtained from 30 seedlings where Phoma, Penicillium and Alternaria respectively were most prevalent. There was a significant effect of isolating an endophyte from the seed on seedling growth.ConclusionsThese results suggest that many endophyte taxa are transmitted in seeds and can increase seed germination and seedling growth of invasive Phragmites. The role of fungal endophytes in host establishment, growth and invasiveness in nature requires further research.

  1. Characterization of community structure of culturable endophytic fungi in sweet cherry composite trees and their growth-retarding effect against pathogens.

    PubMed

    Haddadderafshi, Neda; Pósa, Tímea Borbála; Péter, Gábor; Gáspár, László; Ladányi, Márta; Hrotkó, Károly; Lukács, Noémi; Halász, Krisztián

    2016-09-01

    Endophytic fungi have the potential to protect their host plants in stress situations. Characterizing the ecology and complex interaction between these endophytes and their host plants is therefore of great practical importance, particularly in horticultural plants. Among horticultural plants, fruit trees form a special category because of their longevity and because they are composites of rootstock and scion, which often belong to different plant species. Here we present the first characterization of culturable endophytic fungal community of sweet cherry. Samples from the Hungarian cultivar 'Petrus' grafted on 11 different rootstocks were collected in autumn and in spring in a bearing orchard and the dependence of colonization rate and endophyte diversity on rootstock, organ and season was analysed. On the basis of their ITS sequences 26 fungal operational taxonomic units were identified at least down to the genus level. The dominant genus, comprising more than 50% of all isolates, was Alternaria, followed by different Fusarium and Epicoccum species. We observed some organ-specificity amongst endophytes, and organs showed more sizeable differences in colonization rates and endophyte diversity than rootstocks. Most dynamic endophyte populations, strongly influenced by environmental conditions and crop management, were observed in leaves. The potential of selected endophytes to confer protection against Monilinia laxa was also analysed and 7 isolates were found to inhibit the growth of this pathogen in vitro.

  2. Penialidins A-C with strong antibacterial activities from Penicillium sp., an endophytic fungus harboring leaves of Garcinia nobilis.

    PubMed

    Jouda, Jean-Bosco; Kusari, Souvik; Lamshöft, Marc; Mouafo Talontsi, Ferdinand; Douala Meli, Clovis; Wandji, Jean; Spiteller, Michael

    2014-10-01

    Three new polyketides named penialidins A-C (1-3), along with one known compound, citromycetin (4), were isolated from an endophytic fungus, Penicillium sp., harbored in the leaves of the Cameroonian medicinal plant Garcinia nobilis. Their structures were elucidated by means of spectroscopic and spectrometric methods (NMR and HRMS(n)). The antibacterial efficacies of the new compounds (1-3) were tested against the clinically-important risk group 2 (RG2) bacterial strains of Staphylococcus aureus and Escherichia coli. The ecologically imposing strains of E. coli (RG1), Bacillus subtilis and Acinetobacter sp. BD4 were also included in the assay. Compound 3 exhibited pronounced activity against the clinically-relevant S. aureus as well as against B. subtilis comparable to that of the reference standard (streptomycin). Compound 2 was also highly-active against S. aureus. By comparing the structures of the three new compounds (1-3), it was revealed that altering the substitutions at C-10 and C-2 can significantly increase the antibacterial activity of 1. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Lactic Acid Bacteria in Durum Wheat Flour Are Endophytic Components of the Plant during Its Entire Life Cycle.

    PubMed

    Minervini, Fabio; Celano, Giuseppe; Lattanzi, Anna; Tedone, Luigi; De Mastro, Giuseppe; Gobbetti, Marco; De Angelis, Maria

    2015-10-01

    This study aimed at assessing the dynamics of lactic acid bacteria and other Firmicutes associated with durum wheat organs and processed products. 16S rRNA gene-based high-throughput sequencing showed that Lactobacillus, Streptococcus, Enterococcus, and Lactococcus were the main epiphytic and endophytic genera among lactic acid bacteria. Bacillus, Exiguobacterium, Paenibacillus, and Staphylococcus completed the picture of the core genus microbiome. The relative abundance of each lactic acid bacterium genus was affected by cultivars, phenological stages, other Firmicutes genera, environmental temperature, and water activity (aw) of plant organs. Lactobacilli, showing the highest sensitivity to aw, markedly decreased during milk development (Odisseo) and physiological maturity (Saragolla). At these stages, Lactobacillus was mainly replaced by Streptococcus, Lactococcus, and Enterococcus. However, a key sourdough species, Lactobacillus plantarum, was associated with plant organs during the life cycle of Odisseo and Saragolla wheat. The composition of the sourdough microbiota and the overall quality of leavened baked goods are also determined throughout the phenological stages of wheat cultivation, with variations depending on environmental and agronomic factors. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  4. Lactic Acid Bacteria in Durum Wheat Flour Are Endophytic Components of the Plant during Its Entire Life Cycle

    PubMed Central

    Minervini, Fabio; Celano, Giuseppe; Lattanzi, Anna; Tedone, Luigi; De Mastro, Giuseppe; De Angelis, Maria

    2015-01-01

    This study aimed at assessing the dynamics of lactic acid bacteria and other Firmicutes associated with durum wheat organs and processed products. 16S rRNA gene-based high-throughput sequencing showed that Lactobacillus, Streptococcus, Enterococcus, and Lactococcus were the main epiphytic and endophytic genera among lactic acid bacteria. Bacillus, Exiguobacterium, Paenibacillus, and Staphylococcus completed the picture of the core genus microbiome. The relative abundance of each lactic acid bacterium genus was affected by cultivars, phenological stages, other Firmicutes genera, environmental temperature, and water activity (aw) of plant organs. Lactobacilli, showing the highest sensitivity to aw, markedly decreased during milk development (Odisseo) and physiological maturity (Saragolla). At these stages, Lactobacillus was mainly replaced by Streptococcus, Lactococcus, and Enterococcus. However, a key sourdough species, Lactobacillus plantarum, was associated with plant organs during the life cycle of Odisseo and Saragolla wheat. The composition of the sourdough microbiota and the overall quality of leavened baked goods are also determined throughout the phenological stages of wheat cultivation, with variations depending on environmental and agronomic factors. PMID:26187970

  5. Vasoconstriction in horses caused by endophyte-infected tall fescue seed is detected with Doppler ultrasonography

    USDA-ARS?s Scientific Manuscript database

    The hypotheses that endophyte (Neotyphodium coenophialum)-infected tall fescue (TF) seed causes vasoconstriction in horses in vivo and that ground seed would cause more pronounced vasoconstriction than whole seed were tested. Ten horses each received 1 of 3 treatments: endophyte-free ground (E–G; n ...

  6. Endophytic fungi and soil microbial community characteristics over different years of phytoremediation in a copper tailings dam of Shanxi, China.

    PubMed

    Tong, Jia; Miaowen, Cao; Juhui, Jing; Jinxian, Liu; Baofeng, Chai

    2017-01-01

    We conducted a survey of native grass species infected by endophytic fungi in a copper tailings dam over progressive years of phytoremediation. We investigated how endophytic fungi, soil microbial community structure and soil physiochemical properties and enzymatic activity varied in responses to heavy metal pollution over different stages of phytoremediation. endophyte infection frequency increased with years of phytoremediation. Rates of endophyte infection varied among different natural grass species in each sub-dam. Soil carbon content and soil enzymatic activity gradually increased through the years of phytoremediation. endophyte infection rates of Bothriochloa ischaemum and Festuca rubra were positively related to levels of cadmium (Cd) pollution levels, and fungal endophytes associated with Imperata cylindrical and Elymus dahuricus developed tolerance to lead (Pb). The structure and relative abundance of bacterial communities varied little over years of phytoremediation, but there was a pronounced variation in soil fungi types. Leotiomycetes were the dominant class of resident fungi during the initial phytoremediation period, but Pezizomycetes gradually became dominant as the phytoremediation period progressed. Fungal endophytes in native grasses as well as soil fungi and soil bacteria play different ecological roles during phytoremediation processes. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Some fungal endophytes from vegetable crops and their anti-oomycete activities against tomato late blight.

    PubMed

    Kim, H-Y; Choi, G J; Lee, H B; Lee, S-W; Lim, H K; Jang, K S; Son, S W; Lee, S O; Cho, K Y; Sung, N D; Kim, J-C

    2007-03-01

    To isolate endophytic fungi from vegetable plants and examine their in vivo anti-oomycete activity against Phytophthora infestans in tomato plants. Endophytic fungi were isolated from surface-sterilized plant tissues and anti-oomycete activity was measured by in vivo assay using tomato seedlings. Endophytic fungi showing potent anti-oomycete activity were identified by morphological characteristics and nuclear ribosomal ITS1-5.8S-ITS2 sequence analysis. A total of 152 isolates were obtained from 66 healthy tissue samples of cucumber, red pepper, tomato, pumpkin and Chinese cabbage and the fermentation broths of 23 isolates showed potent in vivo anti-oomycete activity against tomato late blight with control values over 90%. The Fusarium oxysporum strain EF119, which was isolated from roots of red pepper, showed the most potent disease control efficacy against tomato late blight. In dual-culture tests, it inhibited the growth of Pythium ultimum, P. infestans and Phytophthora capsici. Among endophytic fungi isolated from healthy tissues of vegetable plants, F. oxysporum EF119 showed the most potent in vivo anti-oomycete activity against tomato late blight and in vitro anti-oomycete activity against several oomycete pathogens. Endophytic fungi showing anti-oomycete activity in vitro and in vivo may be used as biocontrol agents particularly of tomato late blight.

  8. N-Acyl derivatives of Asn, new bacterial N-acyl D-amino acids with surfactant activity.

    PubMed

    Peypoux, F; Laprévote, O; Pagadoy, M; Wallach, J

    2004-03-01

    New N-acyl D-amino acids were isolated from Bacillus pumilus IM 1801. Their structures were determined by chemical analysis and mass spectrometry. The lipid part was identified as a mixture of fatty acids with 11, 12, 13, 15, and 16 carbon atoms in the iso, anteiso or n configuration linked by an amide bond with a D-asparagine. They exhibited surfactant properties.

  9. Endophytic bacterial community of grapevine leaves influenced by sampling date and phytoplasma infection process

    PubMed Central

    2014-01-01

    Background Endophytic bacteria benefit host plant directly or indirectly, e.g. by biocontrol of the pathogens. Up to now, their interactions with the host and with other microorganisms are poorly understood. Consequently, a crucial step for improving the knowledge of those relationships is to determine if pathogens or plant growing season influence endophytic bacterial diversity and dynamic. Results Four healthy, four phytoplasma diseased and four recovered (symptomatic plants that spontaneously regain a healthy condition) grapevine plants were sampled monthly from June to October 2010 in a vineyard in north-western Italy. Metagenomic DNA was extracted from sterilized leaves and the endophytic bacterial community dynamic and diversity were analyzed by taxon specific real-time PCR, Length-Heterogeneity PCR and genus-specific PCR. These analyses revealed that both sampling date and phytoplasma infection influenced the endophytic bacterial composition. Interestingly, in June, when the plants are symptomless and the pathogen is undetectable (i) the endophytic bacterial community associated with diseased grapevines was different from those in the other sampling dates, when the phytoplasmas are detectable inside samples; (ii) the microbial community associated with recovered plants differs from that living inside healthy and diseased plants. Interestingly, LH-PCR database identified bacteria previously reported as biocontrol agents in the examined grapevines. Of these, Burkholderia, Methylobacterium and Pantoea dynamic was influenced by the phytoplasma infection process and seasonality. Conclusion Results indicated that endophytic bacterial community composition in grapevine is correlated to both phytoplasma infection and sampling date. For the first time, data underlined that, in diseased plants, the pathogen infection process can decrease the impact of seasonality on community dynamic. Moreover, based on experimental evidences, it was reasonable to hypothesize that

  10. Endophytic bacterial community of grapevine leaves influenced by sampling date and phytoplasma infection process.

    PubMed

    Bulgari, Daniela; Casati, Paola; Quaglino, Fabio; Bianco, Piero A

    2014-07-21

    Endophytic bacteria benefit host plant directly or indirectly, e.g. by biocontrol of the pathogens. Up to now, their interactions with the host and with other microorganisms are poorly understood. Consequently, a crucial step for improving the knowledge of those relationships is to determine if pathogens or plant growing season influence endophytic bacterial diversity and dynamic. Four healthy, four phytoplasma diseased and four recovered (symptomatic plants that spontaneously regain a healthy condition) grapevine plants were sampled monthly from June to October 2010 in a vineyard in north-western Italy. Metagenomic DNA was extracted from sterilized leaves and the endophytic bacterial community dynamic and diversity were analyzed by taxon specific real-time PCR, Length-Heterogeneity PCR and genus-specific PCR. These analyses revealed that both sampling date and phytoplasma infection influenced the endophytic bacterial composition. Interestingly, in June, when the plants are symptomless and the pathogen is undetectable (i) the endophytic bacterial community associated with diseased grapevines was different from those in the other sampling dates, when the phytoplasmas are detectable inside samples; (ii) the microbial community associated with recovered plants differs from that living inside healthy and diseased plants. Interestingly, LH-PCR database identified bacteria previously reported as biocontrol agents in the examined grapevines. Of these, Burkholderia, Methylobacterium and Pantoea dynamic was influenced by the phytoplasma infection process and seasonality. Results indicated that endophytic bacterial community composition in grapevine is correlated to both phytoplasma infection and sampling date. For the first time, data underlined that, in diseased plants, the pathogen infection process can decrease the impact of seasonality on community dynamic. Moreover, based on experimental evidences, it was reasonable to hypothesize that after recovery the restructured

  11. Mixed Phenolic Acids Mediated Proliferation of Pathogens Talaromyces helicus and Kosakonia sacchari in Continuously Monocultured Radix pseudostellariae Rhizosphere Soil

    PubMed Central

    Wu, Hongmiao; Wu, Linkun; Wang, Juanying; Zhu, Quan; Lin, Sheng; Xu, Jiahui; Zheng, Cailiang; Chen, Jun; Qin, Xianjin; Fang, Changxun; Zhang, Zhixing; Azeem, Saadia; Lin, Wenxiong

    2016-01-01

    Radix pseudostellariae L. is a common and popular Chinese medication. However, continuous monoculture has increased its susceptibility to severe diseases. We identified two pathogenic microorganisms, Talaromyces helicus M. (KU355274) and Kosakonia sacchari W. (KU324465), and their antagonistic bacterium, Bacillus pumilus Z. in rhizosphere soil of continuously monocultured R. pseudostellariae. Nine types of phenolic acids were identified both in the rhizosphere soil and in culture medium under sterile conditions. A syringic acid and phenolic acid mixture significantly promoted the growth of T. helicus and K. sacchari. T. helicus could utilize eight types of phenolic acids, whereas K. sacchari could only use four phenolic acids. K. sacchari produced protocatechuic acid when consuming vanillin. Protocatechuic acid negatively affected the growth of B. pumilus. The 3A-DON toxin produced by T. helicus promoted the growth of K. sacchari and inhibited growth of B. pumilus at low concentrations. These data help explain why phenolic exudates mediate a microflora shift and structure disorder in the rhizosphere soil of continuously monocultured R. pseudostellariae and lead to increased replanting disease incidence. PMID:27014250

  12. Cytotoxic and antimicrobial activities of endophytic fungi isolated from Bacopa monnieri (L.) Pennell (Scrophulariaceae).

    PubMed

    Katoch, Meenu; Singh, Gurpreet; Sharma, Sadhna; Gupta, Nidhi; Sangwan, Payare Lal; Saxena, Ajit Kumar

    2014-02-11

    Endophytes, which reside in plant tissues, have the potential to produce novel metabolites with immense benefits for health industry. Cytotoxic and antimicrobial activities of endophytic fungi isolated from Bacopa monnieri (L.) Pennell were investigated. Endophytic fungi were isolated from the Bacopa monnieri. Extracts from liquid cultures were tested for cytotoxicity against a number of cancer cell lines using the MTT assay. Antimicrobial activity was determined using the micro dilution method. 22% of the examined extracts showed potent (IC50 of <20 μg/ml) cytotoxic activity against HCT-116 cell line. 5.5%, 11%, 11% of the extracts were found to be cytotoxic for MCF-7, PC-3, and A-549 cell lines respectively. 33% extracts displayed antimicrobial activity against at least one test organism with MIC value 10-100 μg/ml. The isolate B9_Pink showed the most potent cytotoxic activity for all the cell lines examined and maximum antimicrobial activity against the four pathogens examined which was followed by B19. Results indicated the potential for production of bioactive agents from endophytes of Bacopa monnieri.

  13. Biosynthetic Potential of Phylogenetically Unique Endophytic Actinomycetes from Tropical Plants▿ †

    PubMed Central

    Janso, Jeffrey E.; Carter, Guy T.

    2010-01-01

    The culturable diversity of endophytic actinomycetes associated with tropical, native plants is essentially unexplored. In this study, 123 endophytic actinomycetes were isolated from tropical plants collected from several locations in Papua New Guinea and Mborokua Island, Solomon Islands. Isolates were found to be prevalent in roots but uncommon in leaves. Initially, isolates were dereplicated to the strain level by ribotyping. Subsequent characterization of 105 unique strains by 16S rRNA gene sequence analysis revealed that 17 different genera were represented, and rare genera, such as Sphaerisporangium and Planotetraspora, which have never been previously reported to be endophytic, were quite prevalent. Phylogenetic analyses grouped many of the strains into clades distinct from known genera within Thermomonosporaceae and Micromonosporaceae, indicating that they may be unique genera. Bioactivity testing and liquid chromatography-mass spectrometry (LC-MS) profiling of crude fermentation extracts were performed on 91 strains. About 60% of the extracts exhibited bioactivity or displayed LC-MS profiles with spectra indicative of secondary metabolites. The biosynthetic potential of 29 nonproductive strains was further investigated by the detection of putative polyketide synthase (PKS) and nonribosomal peptide synthetase (NRPS) genes. Despite their lack of detectable secondary metabolite production in fermentation, most were positive for type I (66%) and type II (79%) PKS genes, and all were positive for NRPS genes. These results suggest that tropical plants from New Guinea and the adjacent archipelago are hosts to unique endophytic actinomycetes that possess significant biosynthetic potential. PMID:20472734

  14. Endophytic fungi from medicinal plant Bauhinia forficata : Diversity and biotechnological potential

    PubMed Central

    Bezerra, Jadson D.P.; Nascimento, Carlos C.F.; Barbosa, Renan do N.; da Silva, Dianny C.V.; Svedese, Virgínia M.; Silva-Nogueira, Eliane B.; Gomes, Bruno S.; Paiva, Laura M.; Souza-Motta, Cristina M.

    2015-01-01

    Bauhinia forficata is native to South America and used with relative success in the folk medicine in Brazil. The diversity, antibacterial activity, and extracellular hydrolytic enzymes of endophytic fungi associated with this plant were studied. Plant samples, which included leaves, sepals, stems, and seeds, were used. Ninety-five endophytic fungal were isolated (18 from leaves, 22 from sepals, 46 from stems, and nine from seeds), comprising 28 species. The most frequently isolated species were Acremonium curvulum (9.5%), Aspergillus ochraceus (7.37%), Gibberella fujikuroi (10.53%), Myrothecium verrucaria (10.53%) and Trichoderma piluliferum (7.37%). Diversity and species richness were higher in stem tissues, and Sorensen’s index of similarity between the tissues was low. Eleven fungi showed antibacterial activity. Aspergillus ochraceus , Gibberella baccata , Penicillium commune , and P. glabrum were those with the greatest antibacterial activity against Staphylococcus aureus and/or Streptococcus pyogenes . Thirteen species showed proteolytic activity, particularly Phoma putaminum . Fourteen species were cellulase positive, particularly the Penicillium species and Myrmecridium schulzeri . All isolates tested were xylanase positive and 10 showed lipolytic activity, especially Penicillium glabrum . It is clear that the endophytic fungi from B. forficata have potential for the production of bioactive compounds and may be a source of new therapeutic agents for the effective treatment of diseases in humans, other animals, and plants. To our knowledge, this is the first study of endophytic fungi from different tissues of B. forficata and their biotechnological potential. PMID:26221088

  15. Endophytic fungi from medicinal plant Bauhinia forficata: Diversity and biotechnological potential.

    PubMed

    Bezerra, Jadson D P; Nascimento, Carlos C F; Barbosa, Renan do N; da Silva, Dianny C V; Svedese, Virgínia M; Silva-Nogueira, Eliane B; Gomes, Bruno S; Paiva, Laura M; Souza-Motta, Cristina M

    2015-03-01

    Bauhinia forficata is native to South America and used with relative success in the folk medicine in Brazil. The diversity, antibacterial activity, and extracellular hydrolytic enzymes of endophytic fungi associated with this plant were studied. Plant samples, which included leaves, sepals, stems, and seeds, were used. Ninety-five endophytic fungal were isolated (18 from leaves, 22 from sepals, 46 from stems, and nine from seeds), comprising 28 species. The most frequently isolated species were Acremonium curvulum (9.5%), Aspergillus ochraceus (7.37%), Gibberella fujikuroi (10.53%), Myrothecium verrucaria (10.53%) and Trichoderma piluliferum (7.37%). Diversity and species richness were higher in stem tissues, and Sorensen's index of similarity between the tissues was low. Eleven fungi showed antibacterial activity. Aspergillus ochraceus , Gibberella baccata , Penicillium commune , and P. glabrum were those with the greatest antibacterial activity against Staphylococcus aureus and/or Streptococcus pyogenes . Thirteen species showed proteolytic activity, particularly Phoma putaminum . Fourteen species were cellulase positive, particularly the Penicillium species and Myrmecridium schulzeri . All isolates tested were xylanase positive and 10 showed lipolytic activity, especially Penicillium glabrum . It is clear that the endophytic fungi from B. forficata have potential for the production of bioactive compounds and may be a source of new therapeutic agents for the effective treatment of diseases in humans, other animals, and plants. To our knowledge, this is the first study of endophytic fungi from different tissues of B. forficata and their biotechnological potential.

  16. Diversity of endophytic fungi associated with the foliar tissue of a hemi-parasitic plant Macrosolen cochinchinensis.

    PubMed

    Zhou, Sheng-Liang; Yan, Shu-Zhen; Liu, Qi-Sha; Chen, Shuang-Lin

    2015-01-01

    Foliar fungal endophytes are an important plant-associated fungal group. However, little is known about these fungi in hemi-parasitic plants, a unique plant group which derive nutrients from living plants of its hosts by haustoria while are photosynthetic to some degree. In this paper, the endophytic fungi in the leaves of a species of hemi-parasitic plant, Macrosolen cochinchinensis, were studied by both culture-dependent and culture-independent methods. By culture-dependent method, a total of 511 isolates were recovered from 452 of 600 leaf fragments (colonization rate = 75.3 %) and were identified to be 51 taxa. Valsa sp. was the most abundant (relative abundance = 38.4 %), followed by Cladosporium sp. 1 (13.5 %), Ulocladium sp. (4.3 %), Phomopsis sp. 2 (3.7 %), Hendersonia sp. (3.5 %), and Diaporthe sp. 4 (3.5 %). The Shannon index (H') of the isolated endophytic fungi was 2.628, indicating a moderate diversity. By culture-independent method, Aspergillus spp., Cladosporium sp., Mycosphaerella sp., Acremonium strictum, and Tremella sp. were detected. To our knowledge, the Tremella species have never been detected as endophytes so far. In addition, a cloned sequence was not similar with any current sequence in the Genbank, which may represent a novel species. Altogether, this study documented endophytic fungal assemble in the leaves of M. cochinchinensis which was worthy of our attention, and may expand our knowledge about endophytic fungi within the photosynthetic tissues of plants.

  17. A search for antiplasmodial metabolites among fungal endophytes of terrestrial and marine plants of southern India.

    PubMed

    Kaushik, Naveen Kumar; Murali, Thokur Sreepathy; Sahal, Dinkar; Suryanarayanan, T S

    2014-10-01

    Eighty four different fungal endophytes isolated from sea grasses (5), marine algae (36) and leaves or barks of forest trees (43) were grown in vitro and the secondary metabolites secreted by them were harvested by immobilizing them on XAD beads. These metabolites were eluted with methanol and screened using SYBR Green I assay for their antiplasmodial activity against blood stage Plasmodium falciparum in human red blood cell culture. Our results revealed that fungal endophytes belonging to diverse genera elaborate antiplasmodial metabolites. A Fusarium sp. (580, IC50: 1.94 μg ml(-1)) endophytic in a marine alga and a Nigrospora sp. (151, IC50: 2.88 μg ml(-1)) endophytic in a tree species were subjected to antiplasmodial activity-guided reversed phase high performance liquid chromatography separation. Purification led to potentiation as reflected in IC50 values of 0.12 μg ml(-1) and 0.15 μg ml(-1) for two of the fractions obtained from 580. Our study adds further credence to the notion that fungal endophytes are a potential storehouse for a variety of novel secondary metabolites vested with different bioactivities including some that can stall the growth of the malaria parasite.

  18. Endophytic Paraconiothyrium sp. from Zingiber officinale Rosc. Displays Broad-Spectrum Antimicrobial Activity by Production of Danthron.

    PubMed

    Anisha, C; Sachidanandan, P; Radhakrishnan, E K

    2018-03-01

    The bioactivity spectrum of fungal endophytes isolated from Zingiber officinale was analyzed against clinical pathogens and against the phytopathogen Pythium myriotylum, which causes Pythium rot in ginger. One of the isolates GFM13 showed broad bioactivity against various pathogens tested including P. myriotylum. The spore suspension as well as the culture filtrate of the endophytic fungal isolate was found to effectively protect ginger rhizomes from Pythium rot. By molecular identification, the fungal endophyte was identified as Paraconiothyrium sp. The bioactive compound produced by the isolate was separated by bioactivity-guided fractionation and was identified by GC-MS as danthron, an anthraquinone derivative. PCR amplification showed the presence of non-reducing polyketide synthase gene (NR-PKS) in the endophyte GFM13, which is reported to be responsible for the synthesis of anthraquinones in fungi. This is the first report of danthron being produced as the biologically active component of Paraconiothyrium sp. Danthron is reported to have wide pharmaceutical and agronomic applications which include its use as a fungicide in agriculture. The broad-spectrum antimicrobial activity of danthron and the endophytic origin of Paraconiothyrium sp. offer immense applications of the study.

  19. Study of mural painting isolates, leading to the transfer of 'Bacillus maroccanus' and 'Bacillus carotarum' to Bacillus simplex, emended description of Bacillus simplex, re-examination of the strains previously attributed to 'Bacillus macroides' and description of Bacillus muralis sp. nov.

    PubMed

    Heyrman, Jeroen; Logan, Niall A; Rodríguez-Díaz, Marina; Scheldeman, Patsy; Lebbe, Liesbeth; Swings, Jean; Heyndrickx, Marc; De Vos, Paul

    2005-01-01

    A group of 24 strains was isolated from deteriorated mural paintings situated in Spain (necropolis of Carmona) and Germany (church of Greene-Kreiensen). (GTG)5-PCR genomic fingerprinting was performed on these strains to assess their genomic variability and the strains were delineated into four groups. Representatives were studied by 16S rRNA gene sequencing and were found to be closely related to Bacillus simplex and the species 'Bacillus macroides' (strain NCIMB 8796) and 'Bacillus maroccanus' (names not validly published) according to a fasta search. The close similarity between B. simplex, 'B. macroides' NCIMB 8796, 'B. maroccanus' and the mural painting isolates was confirmed by additional (GTG)5-PCR, ARDRA, FAME and SDS-PAGE analyses. Furthermore, these techniques revealed that strains of 'Bacillus carotarum', another name that has not been validly published, also showed high similarity to this group of organisms. On the other hand, it was shown that the strains labelled 'B. macroides' in different collections do not all belong to the same species. Strain NCIMB 8796 can be allocated to B. simplex, while strain DSM 54 (=ATCC 12905) shares the highest 16S rRNA gene sequence similarity with Bacillus sphaericus and Bacillus fusiformis (both around 98.6 %). On the basis of further DNA-DNA hybridization data and the study of phenotypic characteristics, one group of five mural painting strains was attributed to a novel species in the genus Bacillus, for which the name Bacillus muralis sp. nov. is proposed. Finally, the remaining mural painting strains, one (LMG 18508=NCIMB 8796) of two strains belonging to 'B. macroides' and strains belonging to 'B. maroccanus' and 'B. carotarum' are allocated to the species B. simplex and an emended description of B. simplex is given.

  20. The secret world of endophytes in perspective

    USDA-ARS?s Scientific Manuscript database

    This work in Fungal Ecology is focused on the group of plant symbionts that have been termed collectively ‘microbial endophytes’. Broadly, microbial endophytes are commonly considered to be any of a diverse group of bacteria, cyanobacteria, or fungi that colonize internal tissues of plants. After ...

  1. [Effects of endophytic fungi from Dendrobium officinale on host growth and components metabolism of tissue culture seedlings].

    PubMed

    Zhu, Bo; Liu, Jing-Jing; Si, Jin-Ping; Qin, Lu-Ping; Han, Ting; Zhao, Li; Wu, Ling-Shang

    2016-05-01

    The paper aims to study the effects of endophytic fungi from D. officinale cultivated on living trees on growth and components metabolism of tissue culture seedlings. Morphological characteristics and agronomic characters of tissue culture seedlings infected and uninfected by endophytic fungus were observed and measured. Polysaccharides and alcohol-soluble extracts contents were determined by phenol-sulfuric acid method and hot-dipmethod, respectively. Monosacchride composition of polysaccharides and alcohol-soluble extracts components were analyzed by pre-column derivatives HPLC and HPLC method, respectively. It showed that effects of turning to purple of stem nodes could be changed by endophytic fungus. Besides, the endophytic fungus could affect the contents and constitutions of polysaccharides and alcohol-soluble extracts. The strains tested, expect DO34, could promote growth and polysaccharides content of tissue culture seedlings. The strains tested, expect DO12, could promote the accumulation of mannose. Furthermore, DO18, DO19 and DO120 could increase alcohol-soluble extracts. On the basis, four superior strains were selected for mechanism research between endophytic fungus and their hosts and microbiology engineering. Copyright© by the Chinese Pharmaceutical Association.

  2. Fungi as Endophytes in Artemisia thuscula: Juxtaposed Elements of Diversity and Phylogeny.

    PubMed

    Cosoveanu, Andreea; Rodriguez Sabina, Samuel; Cabrera, Raimundo

    2018-01-27

    Artemisia is a plant genus highly studied for its medicinal applications. The studies on the associated fungal endophytes are scarce. Ten plants specimens of Artemisia thuscula from Tenerife and La Palma were sampled to isolate the endophytic fungi. Identification of the endophytic fungi was based on morphology, Internal Transcribed Spacer (ITS) and Large Subunit (LSU) regions sequencing and indicates 37 fungal species affiliated to 25 fungal genera. Colonization rate varied among plants (CR = 25% to 92.11%). The most dominant colonizers found were Alternaria alternata (CF = 18.71%), Neofusicoccum sp. (CF = 8.39%) and Preussia sp. (CF = 3.23). Tendency for host specificity of most endophytic fungal species was observed. Sorensen-Dice index revealed that of 45 cases in the matrix, 27 of them were of zero similarity. Further, only one case was found to have 57% similarity (TF2 and TF7) and one case with 50% similarity (TF1 and TF4). The rest of the cases had values ranging between 11% and 40% similarity. Diversity indices like Brillouin, Margalef species richness, Simpson index of diversity and Fisher's alpha, revealed plants from La Palma with higher values than plants from Tenerife. Three nutrient media (i.e., potato dextrose agar-PDA, lignocellulose agar-LCA, and tomato juice agar-V8) were used in a case study and revealed no differences in terms of colonization rate when data was averaged. Colonization frequency showed several species with preference for nutrient medium (63% of the species were isolated from only one nutrient medium). For the phylogenetic reconstruction using the Bayesian method, 54 endophytic fungal ITS sequences and associated GenBank sequences were analyzed. Ten orders (Diaporthales, Dothideales, Botryosphaeriales, Hypocreales, Trichosphaeriales, Amphisphaeriales, Xylariales, Capnodiales, Pleosporales and Eurotiales) were recognized. Several arrangements of genera draw the attention, like Aureobasidium (Dothideales) and Aplosporella

  3. Biological nitrogen fixation and biomass accumulation within poplar clones as a result of inoculations with diazotrophic endophyte consortia.

    PubMed

    Knoth, Jenny L; Kim, Soo-Hyung; Ettl, Gregory J; Doty, Sharon L

    2014-01-01

    Sustainable production of biomass for bioenergy relies on low-input crop production. Inoculation of bioenergy crops with plant growth-promoting endophytes has the potential to reduce fertilizer inputs through the enhancement of biological nitrogen fixation (BNF). Endophytes isolated from native poplar growing in nutrient-poor conditions were selected for a series of glasshouse and field trials designed to test the overall hypothesis that naturally occurring diazotrophic endophytes impart growth promotion of the host plants. Endophyte inoculations contributed to increased biomass over uninoculated control plants. This growth promotion was more pronounced with multi-strain consortia than with single-strain inocula. Biological nitrogen fixation was estimated through (15)N isotope dilution to be 65% nitrogen derived from air (Ndfa). Phenotypic plasticity in biomass allocation and branch production observed as a result of endophyte inoculations may be useful in bioenergy crop breeding and engineering programs. © 2013 The Authors. New Phytologist © 2013 New Phytologist Trust.

  4. Modelling the Ozone-Based Treatments for Inactivation of Microorganisms

    PubMed Central

    Brodowska, Agnieszka Joanna; Nowak, Agnieszka; Kondratiuk-Janyska, Alina; Piątkowski, Marcin; Śmigielski, Krzysztof

    2017-01-01

    The paper presents the development of a model for ozone treatment in a dynamic bed of different microorganisms (Bacillus subtilis, B. cereus, B. pumilus, Escherichia coli, Pseudomonas fluorescens, Aspergillus niger, Eupenicillium cinnamopurpureum) on a heterogeneous matrix (juniper berries, cardamom seeds) initially treated with numerous ozone doses during various contact times was studied. Taking into account various microorganism susceptibility to ozone, it was of great importance to develop a sufficiently effective ozone dose to preserve food products using different strains based on the microbial model. For this purpose, we have chosen the Weibull model to describe the survival curves of different microorganisms. Based on the results of microorganism survival modelling after ozone treatment and considering the least susceptible strains to ozone, we selected the critical ones. Among tested strains, those from genus Bacillus were recognized as the most critical strains. In particular, B. subtilis and B. pumilus possessed the highest resistance to ozone treatment because the time needed to achieve the lowest level of its survival was the longest (up to 17.04 min and 16.89 min for B. pumilus reduction on juniper berry and cardamom seed matrix, respectively). Ozone treatment allow inactivate microorganisms to achieving lower survival rates by ozone dose (20.0 g O3/m3 O2, with a flow rate of 0.4 L/min) and contact time (up to 20 min). The results demonstrated that a linear correlation between parameters p and k in Weibull distribution, providing an opportunity to calculate a fitted equation of the process. PMID:28991199

  5. Modelling the Ozone-Based Treatments for Inactivation of Microorganisms.

    PubMed

    Brodowska, Agnieszka Joanna; Nowak, Agnieszka; Kondratiuk-Janyska, Alina; Piątkowski, Marcin; Śmigielski, Krzysztof

    2017-10-09

    The paper presents the development of a model for ozone treatment in a dynamic bed of different microorganisms ( Bacillus subtilis , B. cereus , B. pumilus , Escherichia coli , Pseudomonas fluorescens , Aspergillus niger , Eupenicillium cinnamopurpureum ) on a heterogeneous matrix (juniper berries, cardamom seeds) initially treated with numerous ozone doses during various contact times was studied. Taking into account various microorganism susceptibility to ozone, it was of great importance to develop a sufficiently effective ozone dose to preserve food products using different strains based on the microbial model. For this purpose, we have chosen the Weibull model to describe the survival curves of different microorganisms. Based on the results of microorganism survival modelling after ozone treatment and considering the least susceptible strains to ozone, we selected the critical ones. Among tested strains, those from genus Bacillus were recognized as the most critical strains. In particular, B. subtilis and B. pumilus possessed the highest resistance to ozone treatment because the time needed to achieve the lowest level of its survival was the longest (up to 17.04 min and 16.89 min for B. pumilus reduction on juniper berry and cardamom seed matrix, respectively). Ozone treatment allow inactivate microorganisms to achieving lower survival rates by ozone dose (20.0 g O₃/m³ O₂, with a flow rate of 0.4 L/min) and contact time (up to 20 min). The results demonstrated that a linear correlation between parameters p and k in Weibull distribution, providing an opportunity to calculate a fitted equation of the process.

  6. Metal complexes of diisopropylthiourea: synthesis, characterization and antibacterial studies.

    PubMed

    Ajibade, Peter A; Zulu, Nonkululeko H

    2011-01-01

    Co(II), Cu(II), Zn(II) and Fe(III) complexes of diisopropylthiourea have been synthesized and characterized by elemental analyses, molar conductivity, magnetic susceptibility, FTIR and electronic spectroscopy. The compounds are non-electrolytes in solution and spectroscopic data of the complexes are consistent with 4-coordinate geometry for the metal(II) complexes and six coordinate octahedral for Fe(III) complex. The complexes were screened for their antibacterial activities against six bacteria: Escherichia coli, Pseudomonas auriginosa, Klebsiella pneumoniae, Bacillus cereus, Staphylococcus aureus and Bacillus pumilus. The complexes showed varied antibacterial activities and their minimum inhibitory concentrations (MICs) were determined.

  7. Endophyte-infected fescue alters components of the acute phase response to lipopolysaccharide in beef heifers

    USDA-ARS?s Scientific Manuscript database

    Sixteen Angus and 8 Hereford X Angus (334.7 +/- 10.7 kilograms body weight) heifers were stratified by sire breed, temperament (using weaning exit velocity), and body weight and randomly assigned within strata to either an endophyte-infected (E+) or endophyte-free (E-) diet for 10 days to determine ...

  8. Control of clavicipitaceous anamorphic endophytes with fungicides, aerated steam and supercritical fluid CO2-seed extraction

    Treesearch

    A. Dan Wilson; Donald G. Lester; Brian K. Luckenbill

    2008-01-01

    The effects of soil drenches with systemic fungicides on viability of clavicipitaceous anamorphic endophytes, non-choke inducing endosymbiotic fungi of the genus Neotyphodium that systemically infect grasses, were tested in endophyte-infected seedlings of Hordeum brevisubulatum subsp. violaceum, Lolium perenne...

  9. Combination of endophytic Bacillus and Beauveria for the management of Fusarium wilt and fruit borer in tomato.

    PubMed

    Prabhukarthikeyan, Rathinam; Saravanakumar, Duraisamy; Raguchander, Thiruvengadam

    2014-11-01

    Most of the approaches for biocontrol of pests and diseases have used a single biocontrol agent as antagonist to a single pest or pathogen. This accounts for the inconsistency in the performance of biocontrol agents. The development of a bioformulation possessing a mixture of bioagents could be a viable option for the management of major pests and diseases in crop plants. A bioformulation containing a mixture of Beauveria bassiana (B2) and Bacillus subtilis (EPC8) was tested against Fusarium wilt and fruit borer in tomato under glasshouse and field conditions. The bioformulation with B2 and EPC8 isolates effectively reduced the incidence of Fusarium wilt (Fusarium oxysporum f. sp. lycopersici) and fruit borer (Helicoverpa armigera) under glasshouse and field conditions compared with the individual application of B2 and EPC8 isolates and control treatments. In vitro studies showed a higher larval mortality of H. armigera when fed with B2 + EPC8-treated leaves. Further, plants treated with the B2 + EPC8 combination showed a greater accumulation of defence enzymes such as lipoxygenase, peroxidase and polyphenol oxidase against wilt pathogen and fruit borer pest than the other treatments. Moreover, a significant increase in growth parameters and yield was observed in tomato plants treated with B2 + EPC8 compared with the individual bioformulations and untreated control. The combined application of Beauveria and Bacillus isolates B2 and EPC8 effectively reduced wilt disease and fruit borer attack in tomato plants. Results show the possibility of synchronous management of tomato fruit borer pest and wilt disease in a sustainable manner. © 2013 Society of Chemical Industry.

  10. Fungal endophyte communities reflect environmental structuring across a Hawaiian landscape

    PubMed Central

    Zimmerman, Naupaka B.; Vitousek, Peter M.

    2012-01-01

    We surveyed endophytic fungal communities in leaves of a single tree species (Metrosideros polymorpha) across wide environmental gradients (500–5,500 mm of rain/y; 10–22 °C mean annual temperature) spanning short geographic distances on Mauna Loa Volcano, Hawai’i. Using barcoded amplicon pyrosequencing at 13 sites (10 trees/site; 10 leaves/tree), we found very high levels of diversity within sites (a mean of 551 ± 134 taxonomic units per site). However, among-site diversity contributed even more than did within-site diversity to the overall richness of more than 4,200 taxonomic units observed in M. polymorpha, and this among-site variation in endophyte community composition correlated strongly with temperature and rainfall. These results are consistent with suggestions that foliar endophytic fungi are hyperdiverse. They further suggest that microbial diversity may be even greater than has been assumed and that broad-scale environmental controls such as temperature and rainfall can structure eukaryotic microbial diversity. Appropriately constrained study systems across strong environmental gradients present a useful means to understand the environmental factors that structure the diversity of microbial communities. PMID:22837398

  11. Interactions between Co-Habitating fungi Elicit Synthesis of Taxol from an Endophytic Fungus in Host Taxus Plants

    PubMed Central

    Soliman, Sameh S. M.; Raizada, Manish N.

    2012-01-01

    Within a plant, there can exist an ecosystem of pathogens and endophytes, the latter described as bacterial and fungal inhabitants that thrive without causing disease to the host. Interactions between microbial inhabitants represent a novel area of study for natural products research. Here we analyzed the interactions between the fungal endophytes of Taxus (yew) trees. Fungal endophytes of Taxus have been proposed to produce the terpenoid secondary metabolite, Taxol, an anti-cancer drug. It is widely reported that plant extracts stimulate endophytic fungal Taxol production, but the underlying mechanism is not understood. Here, Taxus bark extracts stimulated fungal Taxol production 30-fold compared to a 10-fold induction with wood extracts. However, candidate plant-derived defense compounds (i.e., salicylic acid, benzoic acid) were found to act only as modest elicitors of fungal Taxol production from the endophytic fungus Paraconiothyrium SSM001, consistent with previous studies. We hypothesized the Taxus plant extracts may contain elicitors derived from other microbes inhabiting these tissues. We investigated the effects of co-culturing SSM001 with other fungi observed to inhabit Taxus bark, but not wood. Surprisingly, co-culture of SSM001 with a bark fungus (Alternaria) caused a ∼threefold increase in Taxol production. When SSM001 was pyramided with both the Alternaria endophyte along with another fungus (Phomopsis) observed to inhabit Taxus, there was an ∼eightfold increase in fungal Taxol production from SSM001. These results suggest that resident fungi within a host plant interact with one another to stimulate Taxol biosynthesis, either directly or through their metabolites. More generally, our results suggest that endophyte secondary metabolism should be studied in the context of its native ecosystem. PMID:23346084

  12. Fungal endophytes in aboveground tissues of desert plants: infrequent in culture, but highly diverse and distinctive symbionts.

    PubMed

    Massimo, Nicholas C; Nandi Devan, M M; Arendt, Kayla R; Wilch, Margaret H; Riddle, Jakob M; Furr, Susan H; Steen, Cole; U'Ren, Jana M; Sandberg, Dustin C; Arnold, A Elizabeth

    2015-07-01

    In hot deserts, plants cope with aridity, high temperatures, and nutrient-poor soils with morphological and biochemical adaptations that encompass intimate microbial symbioses. Whereas the root microbiomes of arid-land plants have received increasing attention, factors influencing assemblages of symbionts in aboveground tissues have not been evaluated for many woody plants that flourish in desert environments. We evaluated the diversity, host affiliations, and distributions of endophytic fungi associated with photosynthetic tissues of desert trees and shrubs, focusing on nonsucculent woody plants in the species-rich Sonoran Desert. To inform our strength of inference, we evaluated the effects of two different nutrient media, incubation temperatures, and collection seasons on the apparent structure of endophyte assemblages. Analysis of >22,000 tissue segments revealed that endophytes were isolated four times more frequently from photosynthetic stems than leaves. Isolation frequency was lower than expected given the latitude of the study region and varied among species a function of sampling site and abiotic factors. However, endophytes were very species-rich and phylogenetically diverse, consistent with less arid sites of a similar latitudinal position. Community composition differed among host species, but not as a function of tissue type, sampling site, sampling month, or exposure. Estimates of abundance, diversity, and composition were not influenced by isolation medium or incubation temperature. Phylogenetic analyses of the most commonly isolated genus (Preussia) revealed multiple evolutionary origins of desert-plant endophytism and little phylogenetic structure with regard to seasonality, tissue preference, or optimal temperatures and nutrients for growth in vitro. Together, these results provide insight into endophytic symbioses in desert-plant communities and can be used to optimize strategies for capturing endophyte biodiversity at regional scales.

  13. Growth Effect of Cinnamomum kanehirae Cuttings Associated with its Dark Septate Endophytes.

    PubMed

    Lin, Lei-Chen

    Stout camphor tree (Cinnamomum kanehirae Hay.) is an endemic specie in Taiwan and cutting is the major propagation of C. kanehirae for plantation. Mycorrhiza can accelerate the growth of the host plant, especially in root of the host plant. The objective of this study was to investigate the growth effect of the 2 dark septate endophytes isolated from C. kanehirae. To measure the effects of stains CkDB2 and CkDB5 on growth performance of cuttings, the cuttings were carefully removed from their substrate after 9 months of incubation. Each treatment had three replicates. After 9 month incubation, the mycorrhizal synthesis experiment showed that the roots of synthesized cuttings produced microsclerotia, a characteristic of dark septate endophyte, but nothing was found in the control. All inoculated cuttings had higher values of net height growth, dry weight, leaf area and chlorophyll concentration than the control. This study demonstrated that the 2 endophytes, strains CkDB2 and CkDB5, capable of forming microsclerotia with C. kanehirae cuttings were dark septate endophytes. Based on the results, CkDB5 had a better growth response than CkDB2. Cuttings inoculated with CkDB5 showed a 200% increase in the root dry weight and therefore, CkDB5 could presumably be a prerequisite for the survival of C. kanehirae cutting plantation.

  14. Metabolomic Tools to Assess the Chemistry and Bioactivity of Endophytic Aspergillus Strain.

    PubMed

    Tawfike, Ahmed F; Tate, Rothwelle; Abbott, Gráinne; Young, Louise; Viegelmann, Christina; Schumacher, Marc; Diederich, Marc; Edrada-Ebel, RuAngelie

    2017-10-01

    Endophytic fungi associated with medicinal plants are a potential source of novel chemistry and biology that may find applications as pharmaceutical and agrochemical drugs. In this study, a combination of metabolomics and bioactivity-guided approaches were employed to isolate secondary metabolites with cytotoxicity against cancer cells from an endophytic Aspergillus aculeatus. The endophyte was isolated from the Egyptian medicinal plant Terminalia laxiflora and identified using molecular biological methods. Metabolomics and dereplication studies were accomplished by utilizing the MZmine software coupled with the universal Dictionary of Natural Products database. Metabolic profiling, with aid of multivariate data analysis, was performed at different stages of the growth curve to choose the optimized method suitable for up-scaling. The optimized culture method yielded a crude extract abundant with biologically-active secondary metabolites. Crude extracts were fractionated using different high-throughput chromatographic techniques. Purified compounds were identified by HR-ESI-MS, 1D- and 2D-NMR. This study introduced a new method of dereplication utilizing both high-resolution mass spectrometry and NMR spectroscopy. The metabolites were putatively identified by applying a chemotaxonomic filter. We also present a short review on the diverse chemistry of terrestrial endophytic strains of Aspergillus, which has become a part of our dereplication work and this will be of wide interest to those working in this field. © 2017 Wiley-VHCA AG, Zurich, Switzerland.

  15. Indoleacetic acid production and plant growth promoting potential of bacterial endophytes isolated from rice (Oryza sativa L.) seeds.

    PubMed

    Shahzad, Raheem; Waqas, Muhammad; Khan, Abdul Latif; Al-Hosni, Khadija; Kang, Sang-Mo; Seo, Chang-Woo; Lee, In-Jung

    2017-06-01

    Bacterial endophytes from the phyllosphere and rhizosphere have been used to produce bioactive metabolites and to promote plant growth. However, little is known about the endophytes residing in seeds. This study aimed to isolate and identify seed-borne bacterial endophytes from rice and elucidate their potential for phytohormone production and growth enhancement. The isolated endophytes included Micrococcus yunnanensis RWL-2, Micrococcus luteus RWL-3, Enterobacter soli RWL-4, Leclercia adecarboxylata RWL-5, Pantoea dispersa RWL-6, and Staphylococcus epidermidis RWL-7, which were identified using 16S rRNA sequencing and phylogenetic analysis. These strains were analyzed for indoleacetic acid (IAA) production by using GC-MS and IAA was found in the range of 11.50 ± 0.77 μg ml -1 to 38.80 ± 1.35 μg ml -1 . We also assessed the strains for plant growth promoting potential because these isolates were able to produce IAA in pure culture. Most of the growth attributes of rice plants (shoot and root length, fresh and dry biomass, and chlorophyll content) were significantly increased by bacterial endophytes compared to the controls. These results show that IAA producing bacterial endophytes can improve hostplant growth traits and can be used as bio-fertilizers.

  16. Indentification of huperzine A-producing endophytic fungi isolated from Huperzia serrata.

    PubMed

    Dong, Li-Hui; Fan, San-Wei; Ling, Qing-Zhi; Huang, Bei-Bei; Wei, Zhao-Jun

    2014-03-01

    This present study was designed to investigate the production of huperzine A (HupA), an acetylcholine inhibitor, which was produced by an endophytic fungi isolated from Huperzia serrata. Screening of 94 endophytic fungal isolates obtained from plant H. serrata was carried out for the production of HupA. Their morphological characteristics were studied and rDNA sequence analysis was carried out. The cultures were grown in liquid culture medium and the extracted metabolites were analyzed by thin layer chromatography and high performance liquid chromatograph for the presence of HupA. The DPPH scavenging ratio and inhibition ratio of acetylcholinesterase (AchE) of the same were determined. 3 out of 94 strains i.e. S29, L44 and S94 showed significant AchE-inhibitory activity and antioxidant activity. Strain L44 which exhibited maximum yield of HupA (37.63 μg/g on dry weight basis) was identified as Trichoderma species by ITS sequence analysis. In conclusion, endophytic fungi from H. serrata can be used as a new resource of HupA.

  17. The endophytic bacterium Serratia sp. PW7 degrades pyrene in wheat.

    PubMed

    Zhu, Xuezhu; Wang, Wanqing; Crowley, David E; Sun, Kai; Hao, Shupeng; Waigi, Michael Gatheru; Gao, Yanzheng

    2017-03-01

    This research was conducted to isolate polycyclic aromatic hydrocarbon-degrading (PAH-degrading) endophytic bacteria and investigate their potential in protecting plants against PAH contamination. Pyrene-degrading endophytic bacteria were isolated from plants grown in PAH-contaminated soil. Among these endophytic bacteria, strain PW7 (Serratia sp.) isolated from Plantago asiatica was selected to investigate the suppression of pyrene accumulation in Triticum aestivum L. In the in vitro tests, strain PW7 degraded 51.2% of the pyrene in the media within 14 days. The optimal biodegradation conditions were pH 7.0, 30 °C, and MS medium supplemented with additional glucose, maltose, sucrose, and peptones. In the in vivo tests, strain PW7 successfully colonized the roots and shoots of inoculated (E + ) wheat plants, and its colonization decreased pyrene accumulation and pyrene transportation from roots to shoots. Remarkably, the concentration of pyrene in shoots decreased much more than that in roots, suggesting that strain PW7 has the potential for protecting wheat against pyrene contamination and mitigating the threat of pyrene to human health via food consumption.

  18. Isolation and characterization of endophytic taxol-producing fungi from Taxus chinensis.

    PubMed

    Liu, Kaihui; Ding, Xiaowei; Deng, Baiwan; Chen, Wenqiang

    2009-09-01

    This study investigated the endophytic fungi diversity of Taxus chinensis and screened the taxol-producing fungi in the host. A total of 115 endophytic fungi isolates obtained from bark segments of T. chinensis were grouped into 23 genera based on the morphological traits and sequence analysis of the internal transcribed spacers (ITS1-5.8S-ITS2), indicating endophytic fungi in T. chinensis are diverse and abundant. Diaporthe, Phomopsis (anamorph of Diaporthe), Acremonium, and Pezicula were the dominant genera, whereas the remaining genera were infrequent groups. The 13 representative species of the distinct genera were capable of producing taxol verified by reverse-phase high performance liquid chromatography (HPLC). Among the taxol-producing fungi, the yield of taxol produced by the Metarhizium anisopliae, H-27 was 846.1 microg l(-1) in reformative potato dextrose liquid medium, and the fungal taxol was further validated by mass spectrometry (MS). The taxol-producing fungi (92.3%) were infrequent communities, suggesting that infrequent fungi associated with T. chinensis might be a fascinating reservoir of taxol-generating fungi.

  19. Exploitation of Endophytic Bacteria to Enhance the Phytoremediation Potential of the Wetland Helophyte Juncus acutus

    PubMed Central

    Syranidou, Evdokia; Christofilopoulos, Stavros; Gkavrou, Georgia; Thijs, Sofie; Weyens, Nele; Vangronsveld, Jaco; Kalogerakis, Nicolas

    2016-01-01

    This study investigated the potential of indigenous endophytic bacteria to improve the efficiency of the wetland helophyte Juncus acutus to deal with a mixed pollution consisting of emerging organic contaminants (EOCs) and metals. The beneficial effect of bioaugmentation with selected endophytic bacteria was more prominent in case of high contamination: most of the inoculated plants (especially those inoculated with the mixed culture) removed higher percentages of organics and metals from the liquid phase in shorter times compared to the non-inoculated plants without exhibiting significant oxidative stress. When exposed to the lower concentrations, the tailored mixed culture enhanced the performance of the plants to decrease the organics and metals from the water. The composition of the root endophytic community changed in response to increased levels of contaminants while the inoculated bacteria did not modify the community structure. Our results indicate that the synergistic relationships between endophytes and the macrophyte enhance plants’ performance and may be exploited in constructed wetlands treating water with mixed contaminations. Taking into account that the concentrations of EOCs used in this study are much higher than the average contents of typical wastewaters, we can conclude that the macrophyte J. acutus with the aid of a mixed culture of tailored endophytic bacteria represents a suitable environmentally friendly alternative for treating pharmaceuticals and metals. PMID:27458433

  20. Effect of plant growth-promoting rhizobacteria (PGPRs) on plant growth, yield, and quality of tomato (Lycopersicon esculentum Mill.) under simulated seawater irrigation.

    PubMed

    Shen, Min; Jun Kang, Yi; Li Wang, Huan; Sheng Zhang, Xiang; Xin Zhao, Qing

    2012-01-01

    To determine the effects of three PGPRs on plant growth, yield, and quality of tomato under simulated seawater irrigation, a two consecutive seasons' field experiment was conducted in Yancheng Teachers University plot from April to June and August to October, 2011. The results showed that Erwinia persicinus RA2 containing ACC deaminase exhibited the best ability compared with Bacillus pumilus WP8 and Pseudomonas putida RBP1 which had no ACC deaminase activity to enhance marketable yields of fresh and dried fruits in tomato under simulated seawater irrigation especially under HS condition. B. pumilus WP8 had significant effects on improving tomato fruit quality under the conditions of irrigating with 1.0% NaCl solution (MS) and with 2.0% NaCl solution (HS). Na(+) contents were generally accumulated much more in tomato plant mid-shoot leaves than in fruits whatever the salt concentration. More sodium accumulation in leaves of E. persicinus RA2 and B. pumilus WP8 treatments under HS condition were found than in control. E. persicinus RA2 and B. pumilus WP8 can promote tomato growth, improve fruit quality more firmly than P. putida RBP1 during two consecutive seasons. Our study suggested that E. persicinus RA2 and B. pumilus WP8 are considered to be promising PGPR strains which are suited for application in salt marsh planting, ACC deaminase activity was not unique index on screening for PGPRs with the aim of salt stress tolerance, and plant growth promoting activities may be relevant to different growth indices and different stress conditions.