Sample records for energetic ion-atom collisions

  1. Ion-Atom Cold Collisions and Atomic Clocks

    NASA Technical Reports Server (NTRS)

    Prestage, John D.; Maleki, Lute; Tjoelker, Robert L.

    1997-01-01

    Collisions between ultracold neutral atoms have for some time been the subject of investigation, initially with hydrogen and more recently with laser cooled alkali atoms. Advances in laser cooling and trapping of neutral atoms in a Magneto-Optic Trap (MOT) have made cold atoms available as the starting point for many laser cooled atomic physics investigations. The most spectacularly successful of these, the observation of Bose-Einstein Condensation (BEC) in a dilute ultra-cold spin polarized atomic vapor, has accelerated the study of cold collisions. Experimental and theoretical studies of BEC and the long range interaction between cold alkali atoms is at the boundary of atomic and low temperature physics. Such studies have been difficult and would not have been possible without the development and advancement of laser cooling and trapping of neutral atoms. By contrast, ion-atom interactions at low temperature, also very difficult to study prior to modern day laser cooling, have remained largely unexplored. But now, many laboratories worldwide have almost routine access to cold neutral atoms. The combined technologies of ion trapping, together with laser cooling of neutrals has made these studies experimentally feasible and several very important, novel applications might come out of such investigations . This paper is an investigation of ion-atom interactions in the cold and ultra-cold temperature regime. Some of the collisional ion-atom interactions present at room temperature are very much reduced in the low temperature regime. Reaction rates for charge transfer between unlike atoms, A + B(+) approaches A(+) + B, are expected to fall rapidly with temperature, approximately as T(sup 5/2). Thus, cold mixtures of atoms and ions are expected to coexist for very long times, unlike room temperature mixtures of the same ion-atom combination. Thus, it seems feasible to cool ions via collisions with laser cooled atoms. Many of the conventional collisional interactions

  2. Ultracold collisions between Rb atoms and a Sr+ ion

    NASA Astrophysics Data System (ADS)

    Meir, Ziv; Sikorsky, Tomas; Ben-Shlomi, Ruti; Dallal, Yehonatan; Ozeri, Roee

    2015-05-01

    In last decade, a novel field emerged, in which ultracold atoms and ions in overlapping traps are brought into interaction. In contrast to the short ranged atom-atom interaction which scales as r-6, atom-ion potential persists for hundreds of μm's due to its lower power-law scaling - r-4. Inelastic collisions between the consistuents lead to spin and charge transfer and also to molecule formation. Elastic collisions control the energy transfer between the ion and the atoms. The study of collisions at the μK range has thus far been impeded by the effect of the ion's micromotion which limited collision energy to mK scale. Unraveling this limit will allow to investigate few partial wave and even S-wave collisions. Our system is capable of trapping Sr+ ions and Rb and Sr atoms and cooling them to their quantum ground state. Atoms and ions are trapped and cooled in separate chambers. Then, the atoms are transported using an optical conveyer belt to overlap the ions. In contrast to other experiments in this field where the atoms are used to sympathetic cool the ion, our system is also capable of ground state cooling the ion before immersing it into the atom cloud. By this method, we would be able to explore heating and cooling dynamics in the ultracold regime.

  3. Understanding Molecular Ion-Neutral Atom Collisions for the Production of Ultracold Molecular Ions

    DTIC Science & Technology

    2016-06-06

    Understanding Molecular Ion-Neutral Atom Collisions for the Production of Utracold Molecular Ions In the last five years, the study of ultracold...U.S. Army Research Office P.O. Box 12211 Research Triangle Park, NC 27709-2211 molecular ion, quantum chemistry, atom ion interaction...Molecular Ion-Neutral Atom Collisions for the Production of Utracold Molecular Ions Report Title In the last five years, the study of ultracold molecular

  4. Energy Deposition and Escape Fluxes Induced by Energetic Solar Wind Ions and ENAs Precipitating into Mars Atmosphere: Accurate Consideration of Energy Transfer Collisions

    NASA Astrophysics Data System (ADS)

    Kharchenko, V. A.; Lewkow, N.; Gacesa, M.

    2014-12-01

    Formation and evolution of neutral fluxes of atoms and molecules escaping from the Mars atmosphere have been investigated for the sputtering and photo-chemical mechanisms. Energy and momentum transfer in collisions between the atmospheric gas and fast atoms and molecules have been considered using our recently obtained angular and energy dependent cross sections[1]. We have showed that accurate angular dependent collision cross sections are critical for the description of the energy relaxation of precipitating keV energetic ions/ENAs and for computations of altitude profiles of the fast atom and molecule production rates in recoil collisions. Upward and escape fluxes of the secondary energetic He and O atoms and H2, N2, CO and CO2 molecules, induced by precipitating ENAs, have been determined and their non-thermal energy distribution functions have been computed at different altitudes for different solar conditions. Precipitation and energy deposition of the energetic H2O molecules and products of their dissociations into the Mars atmosphere in the Comet C/2013 A1 (Siding Spring) - Mars interaction have been modeled using accurate cross sections. Reflection of precipitating ENAs by the Mars atmosphere has been analyzed in detail. [1] N. Lewkow and V. Kharchenko, "Precipitation of Energetic Neutral Atoms and Escape Fluxes induced from the Mars Atmosphere, ApJ, v.790, p.98 (2014).

  5. Manipulating ion-atom collisions with coherent electromagnetic radiation.

    PubMed

    Kirchner, Tom

    2002-08-26

    Laser-assisted ion-atom collisions are considered in terms of a nonperturbative quantum mechanical description of the electronic motion. It is shown for the system He(2+) - H at 2 keV/amu that the collision dynamics depend strongly on the initial phase of the laser field and the applied wavelength. Whereas electronic transitions are caused by the concurrent action of the field and the projectile ion at relatively low frequencies, they can be separated into modified collisional capture and field ionization events in the region above the one-photon ionization threshold.

  6. Treatment of Ion-Atom Collisions Using a Partial-Wave Expansion of the Projectile Wavefunction

    ERIC Educational Resources Information Center

    Wong, T. G.; Foster, M.; Colgan, J.; Madison, D. H.

    2009-01-01

    We present calculations of ion-atom collisions using a partial-wave expansion of the projectile wavefunction. Most calculations of ion-atom collisions have typically used classical or plane-wave approximations for the projectile wavefunction, since partial-wave expansions are expected to require prohibitively large numbers of terms to converge…

  7. Sixteenth International Conference on the physics of electronic and atomic collisions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dalgarno, A.; Freund, R.S.; Lubell, M.S.

    1989-01-01

    This report contains abstracts of papers on the following topics: photons, electron-atom collisions; electron-molecule collisions; electron-ion collisions; collisions involving exotic species; ion- atom collisions, ion-molecule or atom-molecule collisions; atom-atom collisions; ion-ion collisions; collisions involving rydberg atoms; field assisted collisions; collisions involving clusters and collisions involving condensed matter.

  8. Scattered Ion Energetics for H atoms Impinging a Copper Surface

    NASA Astrophysics Data System (ADS)

    Defazio, J. N.; Stephen, T. M.; Peko, B. L.

    2002-05-01

    The energy loss and charge state of atomic hydrogen scattered from surfaces is important in a broad range of scientific endeavors. These include the charging of spacecraft, the detection of low energy neutrals in the space environment, energy transfer from magnetically confined plasmas and the modeling of low energy electric discharges. Measurements of scattered ions resulting from low energy (20 - 1000 eV) atomic hydrogen impacting a copper surface have been accomplished. Differential energy distributions and yields for H- and H+ resulting from these collisions are presented. The data show that the energy distributions develop a universal dependence, when scaled by the incident energy. These results are compared with studies involving incident hydrogen ions. For incident energies less than 100eV, there are obvious differences in the scattered ion energy distributions resulting from impacting atoms when compared to those resulting from ions.

  9. Ion-neutral chemistry at ultralow energies:Dynamics of reactive collisions between laser-cooled Ca+ or Ba+ ions and Rb atoms in an ion-atom hybrid trap

    NASA Astrophysics Data System (ADS)

    Dulieu, O.; Hall, F. H. J.; Eberle, P.; Hegi, G.; Raoult, M.; Aymar, M.; Willitsch, S.

    2013-05-01

    Cold chemical reactions between laser-cooled Ca+ or Ba+ ions and Rb atoms were studied in an ion-atom hybrid trap. Reaction rate constants were determined in the collision energy range Ecoll /kB = 20 mK-20 K. Product branching ratios were studied using resonant-excitation mass spectrometry. The dynamics of the reactive processes including the radiative formation of CaRb+ and BaRb+ molecular ions has been analyzed using accurate potential energy curves and quantum-scattering calculations for the radiative channels. It is shown that the energy dependence of the reaction rates is governed by long-range interactions, while its magnitude is determined by short-range non-adiabatic and radiative couplings. The quantum character of the collisions is predicted to manifest itself in the occurrence of narrow shape resonances at well-defined collision energies. The present results highlight both universal and system-specific phenomena in cold ion-neutral collisions. This work was supported by the Swiss National Science Foundation and the COST Action ''Ion Traps for Tomorrow's Applications''.

  10. Ion-neutral chemistry at ultralow energies: dynamics of reactive collisions between laser-cooled Ca+ ions and Rb atoms in an ion-atom hybrid trap†

    NASA Astrophysics Data System (ADS)

    Hall, Felix H. J.; Eberle, Pascal; Hegi, Gregor; Raoult, Maurice; Aymar, Mireille; Dulieu, Olivier; Willitsch, Stefan

    2013-08-01

    Cold chemical reactions between laser-cooled Ca+ ions and Rb atoms were studied in an ion-atom hybrid trap. Reaction rate constants were determined in the range of collision energies ⟨E coll⟩/k B=20 mK-20 K. The lowest energies were achieved in experiments using single localised Ca+ ions. Product branching ratios were studied using resonant-excitation mass spectrometry. The dynamics of the reactive processes in this system (non-radiative and radiative charge transfer as well as radiative association leading to the formation of CaRb+ molecular ions) have been analysed using high-level quantum-chemical calculations of the potential energy curves of CaRb+ and quantum-scattering calculations for the radiative channels. For the present low-energy scattering experiments, it is shown that the energy dependence of the reaction rate constants is governed by long-range interactions in line with the classical Langevin model, but their magnitude is determined by short-range non-adiabatic and radiative couplings which only weakly depend on the asymptotic energy. The quantum character of the collisions is predicted to manifest itself in the occurrence of narrow shape resonances at well-defined collision energies. The present results highlight both universal and system-specific phenomena in cold ion-neutral reactive collisions.

  11. Precipitation of energetic neutral atoms and induced non-thermal escape fluxes from the Martian atmosphere

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lewkow, N. R.; Kharchenko, V.

    2014-08-01

    The precipitation of energetic neutral atoms, produced through charge exchange collisions between solar wind ions and thermal atmospheric gases, is investigated for the Martian atmosphere. Connections between parameters of precipitating fast ions and resulting escape fluxes, altitude-dependent energy distributions of fast atoms and their coefficients of reflection from the Mars atmosphere, are established using accurate cross sections in Monte Carlo (MC) simulations. Distributions of secondary hot (SH) atoms and molecules, induced by precipitating particles, have been obtained and applied for computations of the non-thermal escape fluxes. A new collisional database on accurate energy-angular-dependent cross sections, required for description of themore » energy-momentum transfer in collisions of precipitating particles and production of non-thermal atmospheric atoms and molecules, is reported with analytic fitting equations. Three-dimensional MC simulations with accurate energy-angular-dependent cross sections have been carried out to track large ensembles of energetic atoms in a time-dependent manner as they propagate into the Martian atmosphere and transfer their energy to the ambient atoms and molecules. Results of the MC simulations on the energy-deposition altitude profiles, reflection coefficients, and time-dependent atmospheric heating, obtained for the isotropic hard sphere and anisotropic quantum cross sections, are compared. Atmospheric heating rates, thermalization depths, altitude profiles of production rates, energy distributions of SH atoms and molecules, and induced escape fluxes have been determined.« less

  12. Electron Emission in Highly Charged Ion-Atom Collisions

    NASA Astrophysics Data System (ADS)

    Liao, Chunlei

    1995-01-01

    This dissertation addresses the problem of electron emission in highly charged ion-atom collisions. The study is carried out by measuring doubly differential cross sections (DDCS) of emitted electrons for projectiles ranging from fluorine up to gold at ejection angles (theta _{L}) from 0^circ to 70^circ with respect to the beam direction. Prominent features are a very strong forward peaked angular distribution of emitted electrons and the appearance of strong diffraction structures in the binary encounter electron (BEe) region for projectiles heavier than chlorine. This is in clear contradiction to the results found with fluorine projectiles, where the BEe production increases slightly with increasing theta_{L} and no structure is observed in the BEe region. Both can be understood in the impulse approximation as elastic scattering of quasi free target electrons in the projectile potential. Our measurements also show that the violation of q ^2 scaling of the DDCS previously established for 0^circ electron spectra persists for all emission angles and almost all electron energies. In ion-atom collisions, besides electrons from target, electrons from projectile ionization are also presented in the emitted electron spectra. Using electron-projectile coincidence technique, different collision channels can be separated. In order to eliminate the speculations of contributions from projectile related capture and loss channels, coincidence studies of diffraction structures are initiated. In the 0^circ electron spectrum of 0.3 MeV/u I^{6+} impacting on H_2, strong autoionization peaks are observed on the shoulders of the cusp peak. The energies of these autoionization lines in the projectile rest frame are determined by high-resolution electron spectroscopy, and collision mechanism is probed by electron-charge state selected projectile coincidence technique.

  13. Direct pair production in heavy-ion--atom collisions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anholt, R.; Jakubassa-Amundsen, D.H.; Amundsen, P.A.

    1983-02-01

    Direct pair production in approx.5-MeV/amu heavy-ion--atom collisions with uranium target atoms is calculated with the plane-wave Born approximation and the semiclassical approximation. Briggs's approximation is used to obtain the electron and positron wave functions. Since pair production involves high momentum transfer q from the moving projectile to the vacuum, use is made of a high-q approximation to greatly simplify the numerical computations. Coulomb deflection of the projectile, the effect of finite nuclear size on the elec- tronic wave functions, and the energy loss by the projectile exciting the pair are all taken into account in these calculations.

  14. Two-Centre Convergent Close-Coupling Approach to Ion-Atom Collisions: Current Progress

    NASA Astrophysics Data System (ADS)

    Kadyrov, Alisher; Abdurakhmanov, Ilkhom; Bailey, Jackson; Bray, Igor

    2016-09-01

    There are two versions of the convergent close-coupling (CCC) approach to ion-atom collisions: quantum-mechanical (QM-CCC) and semi-classical (SC-CCC). Recently, both implementations have been extended to include electron-transfer channels. The SC-CCC approach has been applied to study the excitation and the electron-capture processes in proton-hydrogen collisions. The integral alignment parameter A20 for polarization of Lyman- α emission and the cross sections for excitation and electron-capture into the lowest excited states have been calculated for a wide range of the proton impact energies. It has been established that for convergence of the results a very wide range of impact parameters (typically, 0-50 a.u.) is required due to extremely long tails of transition probabilities for transitions into the 2 p states at high energies. The QM-CCC approach allowed to obtain an accurate solution of proton-hydrogen scattering problem including all underlying processes, namely, direct scattering and ionisation, and electron capture into bound and continuum states of the projectile. In this presentation we give a general overview of current progress in applications of the two-centre CCC approach to ion-atom and atom-atom collisions. The work is supported by the Australian Research Council.

  15. Energetic atomic and molecular ions of ionospheric origin observed in distant magnetotail flow-reversal events

    NASA Technical Reports Server (NTRS)

    Christon, S. P.; Gloeckler, G.; Williams, D. J.; Mukai, T.; Mcentire, R. W.; Jacquey, C.; Angelopoulos, V.; Lui, A. T. Y.; Kokubun, S.; Fairfield, D. H.

    1994-01-01

    Energetic atomic (O(+1) and N(+1)) and molecular (O2(+1), NO(+1), and N2(+1)) ions of ionospheric origin were observed in Earth's magnetotail at X approximately -146 R(sub E) during two plasma sheet sunward/tailward flow-reversal events measured by instruments on the GEOTAIL spacecraft. These events were associated with concurrent ground-measured geomagnetic disturbance intensification at auroral-and mid-latitudes (Kp = 7(-)). Energetic ions in the sunward-component and tailward flows were from both the solar wind and ionosphere. Plasma and energetic ions participated in the flows. During tailward flow, ionospheric origin ion abundance ratios at approximately 200-900 km/s in the rest frame were N(+1)/O(+1) = approximately 25-30% and ((O2(+1), NO(+1), and N2(+1))/O(+1) = approximately 1-2%. We argue that tailward flow most likely initiated approximately 80-100 R(sub E) tailward of Earth and molecular ions were in the plasma sheet prior to geomagnetic intensification onset.

  16. Near-threshold photoionization of hydrogenlike uranium studied in ion-atom collisions via the time-reversed process.

    PubMed

    Stöhlker, T; Ma, X; Ludziejewski, T; Beyer, H F; Bosch, F; Brinzanescu, O; Dunford, R W; Eichler, J; Hagmann, S; Ichihara, A; Kozhuharov, C; Krämer, A; Liesen, D; Mokler, P H; Stachura, Z; Swiat, P; Warczak, A

    2001-02-05

    Radiative electron capture, the time-reversed photoionization process occurring in ion-atom collisions, provides presently the only access to photoionization studies for very highly charged ions. By applying the deceleration mode of the ESR storage ring, we studied this process in low-energy collisions of bare uranium ions with low- Z target atoms. This technique allows us to extend the current information about photoionization to much lower energies than those accessible for neutral heavy elements in the direct reaction channel. The results prove that for high- Z systems, higher-order multipole contributions and magnetic corrections persist even at energies close to the threshold.

  17. Very strong Rydberg atom scattering in K(12p)-CH3NO2 collisions: Role of transient ion pair formation

    NASA Astrophysics Data System (ADS)

    Kelley, M.; Buathong, S.; Dunning, F. B.

    2017-05-01

    Collisions between K(12p) Rydberg atoms and CH3NO2 target molecules are studied. Whereas CH3NO2 can form long-lived valence-bound CH3NO2-ions, the data provide no evidence for production of long-lived K+⋯ CH3NO2 - ion pair states. Rather, the data show that collisions result in unusually strong Rydberg atom scattering. This behavior is attributed to ion-ion scattering resulting from formation of transient ion pair states through transitions between the covalent K(12p) + CH3NO2 and ionic K+ + (dipole bound) CH3NO2-terms in the quasimolecule formed during collisions. The ion-pair states are destroyed through rapid dissociation of the CH3NO2 - ions induced by the field of the K+ core ion, the detached electron remaining bound to the K+ ion in a Rydberg state. Analysis of the experimental data shows that ion pair lifetimes ≳10 ps are sufficient to account for the present observations. The present results are consistent with recent theoretical predictions that Rydberg collisions with CH3NO2 will result in strong collisional quenching. The work highlights a new mechanism for Rydberg atom scattering that could be important for collisions with other polar targets. For purposes of comparison, results obtained following K(12p)-SF6 collisions are also included.

  18. Spin-Orbit Interactions and Quantum Spin Dynamics in Cold Ion-Atom Collisions

    NASA Astrophysics Data System (ADS)

    Tscherbul, Timur V.; Brumer, Paul; Buchachenko, Alexei A.

    2016-09-01

    We present accurate ab initio and quantum scattering calculations on a prototypical hybrid ion-atom system Yb+ -Rb, recently suggested as a promising candidate for the experimental study of open quantum systems, quantum information processing, and quantum simulation. We identify the second-order spin-orbit (SO) interaction as the dominant source of hyperfine relaxation in cold Yb+ -Rb collisions. Our results are in good agreement with recent experimental observations [L. Ratschbacher et al., Phys. Rev. Lett. 110, 160402 (2013)] of hyperfine relaxation rates of trapped Yb+ immersed in an ultracold Rb gas. The calculated rates are 4 times smaller than is predicted by the Langevin capture theory and display a weak T-0.3 temperature dependence, indicating significant deviations from statistical behavior. Our analysis underscores the deleterious nature of the SO interaction and implies that light ion-atom combinations such as Yb+ -Li should be used to minimize hyperfine relaxation and decoherence of trapped ions in ultracold atomic gases.

  19. Electron-Atom Collisions in Gases

    ERIC Educational Resources Information Center

    Kraftmakher, Yaakov

    2013-01-01

    Electron-atom collisions in gases are an aspect of atomic physics. Three experiments in this field employing a thyratron are described: (i) the Ramsauer-Townsend effect, (ii) the excitation and ionization potentials of xenon and (iii) the ion-electron recombination after interrupting the electric discharge.

  20. Energetic Nitrogen Ions within the Inner Magnetosphere of Saturn

    NASA Astrophysics Data System (ADS)

    Sittler, E. C.; Johnson, R. E.; Richardson, J. D.; Jurac, S.; Moore, M.; Cooper, J. F.; Mauk, B. H.; Smith, H. T.; Michael, M.; Paranicus, C.; Armstrong, T. P.; Tsurutani, B.; Connerney, J. E. P.

    2003-05-01

    Titan's interaction with Saturn's magnetosphere will result in the energetic ejection of atomic nitrogen atoms into Saturn's magnetosphere due to dissociation of N2 by electrons, ions, and UV photons. The ejection of N atoms into Saturn's magnetosphere will form a nitrogen torus around Saturn with mean density of about 4 atoms/cm3 with source strength of 4.5x1025 atoms/sec. These nitrogen atoms are ionized by photoionization, electron impact ionization and charge exchange reactions producing an N+ torus of 1-4 keV suprathermal ions centered on Titan's orbital position. We will show Voyager plasma observations that demonstrate presence of a suprathermal ion component within Saturn's outer magnetosphere. The Voyager LECP data also reported the presence of inward diffusing energetic ions from the outer magnetosphere of Saturn, which could have an N+ contribution. If so, when one conserves the first and second adiabatic invariant the N+ ions will have energies in excess of 100 keV at Dione's L shell and greater than 400 keV at Enceladus' L shell. Energetic charged particle radial diffusion coefficients are also used to constrain the model results. But, one must also consider the solar wind as another important source of keV ions, in the form of protons and alpha particles, for Saturn's outer magnetosphere. Initial estimates indicate that a solar wind source could dominate in the outer magnetosphere, but various required parameters for this estimate are highly uncertain and will have to await Cassini results for confirmation. We show that satellite sweeping and charged particle precipitation within the middle and outer magnetosphere will tend to enrich N+ ions relative to protons within Saturn's inner magnetosphere as they diffuse radially inward for radial diffusion coefficients that do not violate observations. Charge exchange reactions within the inner magnetosphere can be an important loss mechanism for O+ ions, but to a lesser degree for N+ ions. Initial LECP

  1. Relativistic Collisions of Highly-Charged Ions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ionescu, Dorin; Belkacem, Ali

    1998-11-19

    The physics of elementary atomic processes in relativistic collisions between highly-charged ions and atoms or other ions is briefly discussed, and some recent theoretical and experimental results in this field are summarized. They include excitation, capture, ionization, and electron-positron pair creation. The numerical solution of the two-center Dirac equation in momentum space is shown to be a powerful nonperturbative method for describing atomic processes in relativistic collisions involving heavy and highly-charged ions. By propagating negative-energy wave packets in time the evolution of the QED vacuum around heavy ions in relativistic motion is investigated. Recent results obtained from numerical calculations usingmore » massively parallel processing on the Cray-T3E supercomputer of the National Energy Research Scientific Computer Center (NERSC) at Berkeley National Laboratory are presented.« less

  2. Low Altitude Emission (LAE) of Energetic Neutral Atoms (ENA) Observed by TWINS and its Relation to the CINEMA CubeSat Mission

    NASA Astrophysics Data System (ADS)

    Bazell, D.; Sotirelis, T.; Nair, H.; Roelof, E. C.; Brandt, P. C.

    2009-12-01

    The brightest source of energetic neutral atoms (ENAs) at energies >1keV is low altitude emission (LAE) from ~200-400km near auroral latitudes where precipitating energetic ions undergo multiple atomic collisions with the monatomic (O) exosphere. This emission is many times brighter than that from the high-altitude ring current region where the energetic ions interact only weakly with the much less dense monatomic (H) hydrogen geocorona. The recently selected NSF CubeSat mission CINEMA [Lin et al., this special session] has, as part of its science payload (STEIN), an ENA imager covering energies 4-100keV. From a high-inclination ~800km orbit, STEIN will view the LAE four times during every 90 minutes. The NASA TWINS stereo ENA imagers (2-40keV) will also view the LAE from their Molniya orbits (apogee radius~7Re). We have been analyzing the TWINS ENA images of LAE and comparing them with in situ ion measurements (1-40keV) from DMSP spacecraft when their tracks take them under the ion precipitation regions imaged by TWINS. We have developed an ENA emissivity function that relates the directionally-dependent emergent ENA spectrum to that of the precipitating ions. The TWINS/DMSP direct comparisons show good agreement. We offer suggestions on joint observing strategies for CINEMA, TWINS and DMSP after the CINEMA launch in the second half of 2011.

  3. Collisional Cooling of Light Ions by Cotrapped Heavy Atoms.

    PubMed

    Dutta, Sourav; Sawant, Rahul; Rangwala, S A

    2017-03-17

    We experimentally demonstrate cooling of trapped ions by collisions with cotrapped, higher-mass neutral atoms. It is shown that the lighter ^{39}K^{+} ions, created by ionizing ^{39}K atoms in a magneto-optical trap (MOT), when trapped in an ion trap and subsequently allowed to cool by collisions with ultracold, heavier ^{85}Rb atoms in a MOT, exhibit a longer trap lifetime than without the localized ^{85}Rb MOT atoms. A similar cooling of trapped ^{85}Rb^{+} ions by ultracold ^{133}Cs atoms in a MOT is also demonstrated in a different experimental configuration to validate this mechanism of ion cooling by localized and centered ultracold neutral atoms. Our results suggest that the cooling of ions by localized cold atoms holds for any mass ratio, thereby enabling studies on a wider class of atom-ion systems irrespective of their masses.

  4. Energy Scaling of Cold Atom-Atom-Ion Three-Body Recombination

    NASA Astrophysics Data System (ADS)

    Krükow, Artjom; Mohammadi, Amir; Härter, Arne; Denschlag, Johannes Hecker; Pérez-Ríos, Jesús; Greene, Chris H.

    2016-05-01

    We study three-body recombination of Ba++Rb +Rb in the mK regime where a single 138Ba+ ion in a Paul trap is immersed into a cloud of ultracold 87Rb atoms. We measure the energy dependence of the three-body rate coefficient k3 and compare the results to the theoretical prediction, k3∝Ecol-3 /4, where Ecol is the collision energy. We find agreement if we assume that the nonthermal ion energy distribution is determined by at least two different micromotion induced energy scales. Furthermore, using classical trajectory calculations we predict how the median binding energy of the formed molecules scales with the collision energy. Our studies give new insights into the kinetics of an ion immersed in an ultracold atom cloud and yield important prospects for atom-ion experiments targeting the s -wave regime.

  5. Electron collisions with atoms, ions, molecules, and surfaces: Fundamental science empowering advances in technology

    PubMed Central

    Bartschat, Klaus; Kushner, Mark J.

    2016-01-01

    Electron collisions with atoms, ions, molecules, and surfaces are critically important to the understanding and modeling of low-temperature plasmas (LTPs), and so in the development of technologies based on LTPs. Recent progress in obtaining experimental benchmark data and the development of highly sophisticated computational methods is highlighted. With the cesium-based diode-pumped alkali laser and remote plasma etching of Si3N4 as examples, we demonstrate how accurate and comprehensive datasets for electron collisions enable complex modeling of plasma-using technologies that empower our high-technology–based society. PMID:27317740

  6. Molecular Beam Studies of Hot Atom Chemical Reactions: Reactive Scattering of Energetic Deuterium Atoms

    DOE R&D Accomplishments Database

    Continetti, R. E.; Balko, B. A.; Lee, Y. T.

    1989-02-01

    A brief review of the application of the crossed molecular beams technique to the study of hot atom chemical reactions in the last twenty years is given. Specific emphasis is placed on recent advances in the use of photolytically produced energetic deuterium atoms in the study of the fundamental elementary reactions D + H{sub 2} -> DH + H and the substitution reaction D + C{sub 2}H{sub 2} -> C{sub 2}HD + H. Recent advances in uv laser and pulsed molecular beam techniques have made the detailed study of hydrogen atom reactions under single collision conditions possible.

  7. Modeling the near-Earth interaction between ring current ions and exospheric neutrals: escape through energetic neutral atoms (ENAs)

    NASA Astrophysics Data System (ADS)

    LLera, K.; Goldstein, J.; McComas, D. J.; Valek, P. W.

    2016-12-01

    The two major loss processes for ring current decay are precipitation and energetic neutral atoms (ENAs). Since the exospheric neutral density increases with decreasing altitudes, precipitating ring current ions (reaching down to 200 - 800 km in altitude) also produce low-altitude ENA signatures that can be stronger than the ring current emission at equatorial distances ( 2 - 9 Re). The higher density results in multiple collisions between the ring current ions and exospheric oxygen. The affect on hydrogen ions is the focus of this study. Since the H particle sustains energy loss ( 36 eV) at each neutralizing or re-ionizing interaction, the escaped ENAs do not directly reflect the ring current properties. We model the energy loss due to multiple charge exchange and electron stripping interactions of 1 - 100 keV precipitating ring current ions undergo before emerging as low-altitude ENAs. The H particle is either an ion or an ENA throughout the simulation. Their lifetime is analytically determined by the length of one mean free path. We track the ion state with Lorentz motion while the ENA travels ballistically across the geomagnetic field. Our simulations show the energy loss is greater than 20% for hydrogen ring current ions below 30 keV (60 keV for the simulations that wander equatorward). This is the first quantification of the energy loss associated with the creation of low-altitude ENAs. Our model (currently constrained in the meridional plane) has revealed characteristics on how precipitation is affected by the near-Earth neutral exosphere. This ion-neutral interaction removes particles from the loss cone but promotes loss through ENA generation. These findings should be implemented in models predicting the ring current decay and used as an analysis tool to reconstruct the ring current population from observed low-altitude ENAs.

  8. Collisions between ultracold metastable He atoms

    NASA Astrophysics Data System (ADS)

    Woestenenk, G.; Mastwijk, H. C.; Thomsen, J. W.; vna der Straten, P.; Pieksma, M.; van Rijnbach, M.; Niehaus, A.

    1999-06-01

    We present experimental data on collisions between excited He-atoms occurring in a magneto-optical trap (MOT) at a temperature of 1.1 mK. He(2 3S)-atoms produced in a discharge are pre-cooled and trapped using the He(2 3S)-He(2 3P 2) transition for laser manipulation. Measurements of the Penning ionization rate as a function of the MOT-laser frequency are presented and theoretically analyzed. The analysis, based on a model which is presented in detail for the first time, leads to a good understanding of the complex nature of optical collisions. Further, first and preliminary measurements of the kinetic energy distributions of He 2+- and He +-ions formed by Penning ionization in optical collisions are presented.

  9. Negative ion productions in high velocity collision between small carbon clusters and Helium atom target

    NASA Astrophysics Data System (ADS)

    M, Chabot; K, Béroff; T, Pino; G, Féraud; N, Dothi; Padellec A, Le; G, Martinet; S, Bouneau; Y, Carpentier

    2012-11-01

    We measured absolute double capture cross section of Cn+ ions (n=1,5) colliding, at 2.3 and 2.6 a.u velocities, with an Helium target atom and the branching ratios of fragmentation of the so formed electronically excited anions Cn-*. We also measured absolute cross section for the electronic attachment on neutral Cn clusters colliding at same velocities with He atom. This is to our knowledge the first measurement of neutral-neutral charge exchange in high velocity collision.

  10. Electron removal from H and He atoms in collisions with C q+ , O q+ ions

    NASA Astrophysics Data System (ADS)

    Janev, R. K.; McDowell, M. R. C.

    1984-06-01

    Cross sections for electron capture and ionisation in collision of partially and completely stripped C q+ , N q+ and O q+ ions with hydrogen and helium atoms have been calculated at selected energies. The classical trajectory Monte Carlo method was used with a variable-charge pseudopotential to describe the interaction of the active electron with the projectile ion. A scalling relationship has been derived for the electron removal (capture and ionisation) cross section which allows a unifield representation of the data.

  11. Shell- and subshell-resolved projectile excitation of hydrogenlike Au{sup 78+} ions in relativistic ion-atom collisions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gumberidze, A.; Frankfurt Institute for Advanced Studies FIAS, D-60438 Frankfurt am Main; Fritzsche, S.

    2010-11-15

    The projectile excitation of high-Z ions has been investigated in relativistic ion-atoms collisions by observing the subsequent x-ray emission. The x-ray spectra from the projectile excitation have been separated from the x-ray emission following electron capture into the excited states using a novel anticoincidence technique. For the particular case of hydrogenlike Au{sup 78+} ions colliding with Ar atoms, Coulomb excitation from the ground state into the fine-structure-resolved n=2 levels as well as into levels with principal quantum number n{>=}3 has been measured with excellent statistics. The observed spectra agree well with simulated spectra that are based on Dirac's relativistic equationmore » and the proper inclusion of the magnetic interaction into the amplitudes for projectile excitation. It is shown that a coherent inclusion of the magnetic part of the Lienard-Wiechert potential leads to the lowering of the excitation cross section by up to 35%. This effect is more pronounced for excitation into states with high angular momentum and is confirmed by our experimental data.« less

  12. Kinetic Simulation and Energetic Neutral Atom Imaging of the Magnetosphere

    NASA Technical Reports Server (NTRS)

    Fok, Mei-Ching H.

    2011-01-01

    Advanced simulation tools and measurement techniques have been developed to study the dynamic magnetosphere and its response to drivers in the solar wind. The Comprehensive Ring Current Model (CRCM) is a kinetic code that solves the 3D distribution in space, energy and pitch-angle information of energetic ions and electrons. Energetic Neutral Atom (ENA) imagers have been carried in past and current satellite missions. Global morphology of energetic ions were revealed by the observed ENA images. We have combined simulation and ENA analysis techniques to study the development of ring current ions during magnetic storms and substorms. We identify the timing and location of particle injection and loss. We examine the evolution of ion energy and pitch-angle distribution during different phases of a storm. In this talk we will discuss the findings from our ring current studies and how our simulation and ENA analysis tools can be applied to the upcoming TRIO-CINAMA mission.

  13. Synergistically-enhanced ion track formation in pre-damaged strontium titanate by energetic heavy ions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xue, Haizhou; Zarkadoula, Eva; Sachan, Ritesh

    Latent ion tracks created by energetic heavy ions (12 MeV Ti to 946 MeV Au) in single crystal SrTiO 3 are investigated in this paper using Rutherford backscattering spectrometry and scanning transmission electron microscopy. The results demonstrate that pre-existing irradiation damage, introduced via elastic collision processes, interacts synergistically with the electronic energy deposition from energetic heavy ions to enhance formation of latent ion tracks. The average amorphous cross-section increases with the level of pre-damage and is linearly proportional to the electronic energy loss of the ions, with a slope dependent on the pre-damage level. For the highest energy ions (629more » MeV Xe and 946 MeV Au), the tracks are continuous over the pre-damaged depth, but become discontinuous beyond the pre-damaged region. Finally, this work provides new understanding and insights on ion-solid interactions that significantly impact the interpretation of latent track formation processes, models of amorphization, and the fabrication of electro-ceramic devices.« less

  14. Synergistically-enhanced ion track formation in pre-damaged strontium titanate by energetic heavy ions

    DOE PAGES

    Xue, Haizhou; Zarkadoula, Eva; Sachan, Ritesh; ...

    2018-03-20

    Latent ion tracks created by energetic heavy ions (12 MeV Ti to 946 MeV Au) in single crystal SrTiO 3 are investigated in this paper using Rutherford backscattering spectrometry and scanning transmission electron microscopy. The results demonstrate that pre-existing irradiation damage, introduced via elastic collision processes, interacts synergistically with the electronic energy deposition from energetic heavy ions to enhance formation of latent ion tracks. The average amorphous cross-section increases with the level of pre-damage and is linearly proportional to the electronic energy loss of the ions, with a slope dependent on the pre-damage level. For the highest energy ions (629more » MeV Xe and 946 MeV Au), the tracks are continuous over the pre-damaged depth, but become discontinuous beyond the pre-damaged region. Finally, this work provides new understanding and insights on ion-solid interactions that significantly impact the interpretation of latent track formation processes, models of amorphization, and the fabrication of electro-ceramic devices.« less

  15. Interactions and low-energy collisions between an alkali ion and an alkali atom of a different nucleus

    NASA Astrophysics Data System (ADS)

    Rakshit, Arpita; Ghanmi, Chedli; Berriche, Hamid; Deb, Bimalendu

    2016-05-01

    We study theoretically interaction potentials and low-energy collisions between different alkali atoms and alkali ions. Specifically, we consider systems such as X + {{{Y}}}+, where X({{{Y}}}+) is either Li(Cs+) or Cs(Li+), Na(Cs+) or Cs(Na+) and Li(Rb+) or Rb(Li+). We calculate the molecular potentials of the ground and first two excited states of these three systems using a pseudopotential method and compare our results with those obtained by others. We derive ground-state scattering wave functions and analyze the cold collisional properties of these systems for a wide range of energies. We find that, in order to get convergent results for the total scattering cross sections for energies of the order 1 K, one needs to take into account at least 60 partial waves. The low-energy scattering properties calculated in this paper may serve as a precursor for experimental exploration of quantum collisions between an alkali atom and an alkali ion of a different nucleus.

  16. VISIONS: Remote Observations of a Spatially-Structured Filamentary Source of Energetic Neutral Atoms near the Polar Cap Boundary During an Auroral Substorm

    NASA Technical Reports Server (NTRS)

    Collier, Michael R.; Chornay, D.; Clemmons, J.; Keller, J. W.; Klenzing, J.; Kujawski, J.; McLain, J.; Pfaff, R.; Rowland, D.; Zettergren, M.

    2015-01-01

    We report initial results from the VISualizing Ion Outflow via Neutral atom imaging during a Substorm (VISIONS) rocket that flew through and near several regions of enhanced auroral activity and also sensed regions of ion outflow both remotely and directly. The observed neutral atom fluxes were largest at the lower energies and generally higher in the auroral zone than in the polar cap. In this paper, we focus on data from the latter half of the VISIONS trajectory when the rocket traversed the polar cap region. During this period, many of the energetic neutral atom spectra show a peak at 100 electronvolts. Spectra with peaks around 100 electronvolts are also observed in the Electrostatic Ion Analyzer (EIA) data consistent with these ions comprising the source population for the energetic neutral atoms. The EIA observations of this low energy population extend only over a few tens of kilometers. Furthermore, the directionality of the arriving energetic neutral atoms is consistent with either this spatially localized source of energetic ions extending from as low as about 300 kilometers up to above 600 kilometers or a larger source of energetic ions to the southwest.

  17. A screened independent atom model for the description of ion collisions from atomic and molecular clusters

    NASA Astrophysics Data System (ADS)

    Lüdde, Hans Jürgen; Horbatsch, Marko; Kirchner, Tom

    2018-05-01

    We apply a recently introduced model for an independent-atom-like calculation of ion-impact electron transfer and ionization cross sections to proton collisions from water, neon, and carbon clusters. The model is based on a geometrical interpretation of the cluster cross section as an effective area composed of overlapping circular disks that are representative of the atomic contributions. The latter are calculated using a time-dependent density-functional-theory-based single-particle description with accurate exchange-only ground-state potentials. We find that the net capture and ionization cross sections in p-X n collisions are proportional to n α with 2/3 ≤ α ≤ 1. For capture from water clusters at 100 keV impact energy α is close to one, which is substantially different from the value α = 2/3 predicted by a previous theoretical work based on the simplest-level electron nuclear dynamics method. For ionization at 100 keV and for capture at lower energies we find smaller α values than for capture at 100 keV. This can be understood by considering the magnitude of the atomic cross sections and the resulting overlaps of the circular disks that make up the cluster cross section in our model. Results for neon and carbon clusters confirm these trends. Simple parametrizations are found which fit the cross sections remarkably well and suggest that they depend on the relevant bond lengths.

  18. Two Azimuthally Separated Regions of Cusp Ion Injection Observed via Energetic Neutral Atoms

    NASA Technical Reports Server (NTRS)

    Abe, M.; Taguchi, S.; Collier, M. R.; Moore, T. E.

    2011-01-01

    The low-energy neutral atom (LENA) imager on the IMAGE spacecraft can detect energetic neutral atoms produced by ion injection into the cusp through a charge exchange with the Earth's hydrogen exosphere. We examined the occurrence of the LENA cusp signal during positive IMF B(sub z) in terms of the arrival direction and the IMF clock angle theta(sub CA). Results of statistical analyses show that the occurrence frequency is high on the postnoon side when theta(sub CA) is between approximately 20 degrees and approximately 50 degrees. This is ascribed to ion injection caused by cusp reconnection typical of positive IMF B(sub z). Our results also show that there is another situation of high occurrence frequency, which can be identified with theta(sub CA) of approximately 30 degrees to approximately 80 degrees. When theta(sub CA) is relatively large (60 degrees - 80 degrees), occurrence frequencies are high at relatively low latitudes over a wide extent spanning both prenoon and postnoon sectors. This feature suggests that the ion injection is caused by reconnection at the dayside magnetopause. Its postnoon side boundary shifts toward the prenoon as theta(sub CA) decreases. When theta(sub CA) is less than approximately 50 degrees, the high occurrence frequency exists well inside the prenoon sector, which is azimuthally separated from the postnoon region ascribed to cusp reconnection. The prenoon region, which is thought due to ion injection caused by dayside reconnection, may explain the recent report that proton aurora brightening occurs in the unanticipated prenoon sector of the northern high-latitude ionosphere for IMF B(sub y) greater than 0 and B(sub z) greater than 0.

  19. The terrestrial ring current - From in situ measurements to global images using energetic neutral atoms

    NASA Technical Reports Server (NTRS)

    Roelof, Edmond C.; Williams, Donald J.

    1988-01-01

    Electrical currents flowing in the equatorial magnetosphere, first inferred from ground-based magnetic disturbances, are carried by trapped energetic ions. Spacecraft measurements have determined the spectrum and composition of those currents, and the newly developed technique of energetic-neutral-atom imaging allows the global dynamics of that entire ion population to be viewed from a single spacecraft.

  20. How do energetic ions damage metallic surfaces?

    DOE PAGES

    Osetskiy, Yury N.; Calder, Andrew F.; Stoller, Roger E.

    2015-02-20

    Surface modification under bombardment by energetic ions observed under different conditions in structural and functional materials and can be either unavoidable effect of the conditions or targeted modification to enhance materials properties. Understanding basic mechanisms is necessary for predicting properties changes. The mechanisms activated during ion irradiation are of atomic scale and atomic scale modeling is the most suitable tool to study these processes. In this paper we present results of an extensive simulation program aimed at developing an understanding of primary surface damage in iron by energetic particles. We simulated 25 keV self-ion bombardment of Fe thin films withmore » (100) and (110) surfaces at room temperature. A large number of simulations, ~400, were carried out allow a statistically significant treatment of the results. The particular mechanism of surface damage depends on how the destructive supersonic shock wave generated by the displacement cascade interacts with the free surface. Three basic scenarios were observed, with the limiting cases being damage created far below the surface with little or no impact on the surface itself, and extensive direct surface damage on the timescale of a few picoseconds. In some instances, formation of large <100> vacancy loops beneath the free surface was observed, which may explain some earlier experimental observations.« less

  1. Electron loss from hydrogen-like highly charged ions in collisions with electrons, protons and light atoms

    NASA Astrophysics Data System (ADS)

    Lyashchenko, K. N.; Andreev, O. Yu; Voitkiv, A. B.

    2018-03-01

    We consider electron loss from a hydrogen-like highly charged ion (HCI) in relativistic collisions with hydrogen and helium in the range of impact velocities v min ≤ v ≤ v max (v min and v max correspond to the threshold energy ε th for electron loss in collisions with a free electron and to ≈5 ε th, respectively) where any reliable data for loss cross sections are absent. In this range, where the loss process is characterized by large momentum transfers, we express it in terms of electron loss in collisions with equivelocity protons and electrons and explore by performing a detailed comparative study of these subprocesses. Our results, in particular, show that: (i) compared to equivelocity electrons protons are more effective in inducing electron loss, (ii) the relative effectiveness of electron projectiles grows with increase in the atomic number of a HCI, (iii) collisions with protons and electrons lead to a qualitatively different population of the final-state-electron momentum space and even when the total loss cross sections in these collisions become already equal the spectra of the outgoing electrons still remain quite different in almost the entire volume of the final-state-electron momentum space, (iv) in collisions with hydrogen and helium the contributions to the loss process from the interactions with the nucleus and the electron(s) of the atom could be rather well separated in a substantial part of the final-state-electron momentum space.

  2. Energetic neutral atom emissions from Titan interaction with Saturn's magnetosphere.

    PubMed

    Mitchell, D G; Brandt, P C; Roelof, E C; Dandouras, J; Krimigis, S M; Mauk, B H

    2005-05-13

    The Cassini Magnetospheric Imaging Instrument (MIMI) observed the interaction of Saturn's largest moon, Titan, with Saturn's magnetosphere during two close flybys of Titan on 26 October and 13 December 2004. The MIMI Ion and Neutral Camera (INCA) continuously imaged the energetic neutral atoms (ENAs) generated by charge exchange reactions between the energetic, singly ionized trapped magnetospheric ions and the outer atmosphere, or exosphere, of Titan. The images reveal a halo of variable ENA emission about Titan's nearly collisionless outer atmosphere that fades at larger distances as the exospheric density decays exponentially. The altitude of the emissions varies, and they are not symmetrical about the moon, reflecting the complexity of the interactions between Titan's upper atmosphere and Saturn's space environment.

  3. Energetic neutral atoms from a trans-Europa gas torus at Jupiter.

    PubMed

    Mauk, B H; Mitchell, D G; Krimigis, S M; Roelof, E C; Paranicas, C P

    2003-02-27

    The space environments--or magnetospheres--of magnetized planets emit copious quantities of energetic neutral atoms (ENAs) at energies between tens of electron volts to hundreds of kiloelectron volts (keV). These energetic atoms result from charge exchange between magnetically trapped energetic ions and cold neutral atoms, and they carry significant amounts of energy and mass from the magnetospheres. Imaging their distribution allows us to investigate the structure of planetary magnetospheres. Here we report the analysis of 50-80 keV ENA images of Jupiter's magnetosphere, where two distinct emission regions dominate: the upper atmosphere of Jupiter itself, and a torus of emission residing just outside the orbit of Jupiter's satellite Europa. The trans-Europa component shows that, unexpectedly, Europa generates a gas cloud comparable in gas content to that associated with the volcanic moon Io. The quantity of gas found indicates that Europa has a much greater impact than hitherto believed on the structure of, and the energy flow within, Jupiter's magnetosphere.

  4. Helium Energetic Neutral Atoms from the Heliosphere: Perspectives for Future Observations

    NASA Astrophysics Data System (ADS)

    Swaczyna, Paweł; Grzedzielski, Stan; Bzowski, Maciej

    2017-05-01

    Observations of energetic neutral atoms (ENAs) allow for remote sensing of plasma properties in distant regions of the heliosphere. So far, most of the observations have concerned only hydrogen atoms. In this paper, we present perspectives for observations of helium energetic neutral atoms (He ENAs). We calculated the expected intensities of He ENAs created by the neutralization of helium ions in the inner heliosheath and through the secondary ENA mechanism in the outer heliosheath. We found that the dominant source region for He ENAs is the inner heliosheath. The obtained magnitudes of intensity spectra suggest that He ENAs can be observed with future ENA detectors, as those planned on Interstellar Mapping and Acceleration Probe. Observing He ENAs is most likely for energies from a few to a few tens of keV/nuc. Estimates of the expected count rates show that the ratio of helium to hydrogen atoms registered in the detectors can be as low as 1:104. Consequently, the detectors need to be equipped with an appropriate mass spectrometer capability, allowing for recognition of chemical elements. Due to the long mean free paths of helium ions in the inner heliosheath, He ENAs are produced also in the distant heliospheric tail. This implies that observations of He ENAs can resolve its structure, which seems challenging from observations of hydrogen ENAs since energetic protons are neutralized before they progress deeper in the heliospheric tail.

  5. Helium Energetic Neutral Atoms from the Heliosphere: Perspectives for Future Observations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Swaczyna, Paweł; Grzedzielski, Stan; Bzowski, Maciej, E-mail: pswaczyna@cbk.waw.pl

    2017-05-10

    Observations of energetic neutral atoms (ENAs) allow for remote sensing of plasma properties in distant regions of the heliosphere. So far, most of the observations have concerned only hydrogen atoms. In this paper, we present perspectives for observations of helium energetic neutral atoms (He ENAs). We calculated the expected intensities of He ENAs created by the neutralization of helium ions in the inner heliosheath and through the secondary ENA mechanism in the outer heliosheath. We found that the dominant source region for He ENAs is the inner heliosheath. The obtained magnitudes of intensity spectra suggest that He ENAs can bemore » observed with future ENA detectors, as those planned on Interstellar Mapping and Acceleration Probe . Observing He ENAs is most likely for energies from a few to a few tens of keV/nuc. Estimates of the expected count rates show that the ratio of helium to hydrogen atoms registered in the detectors can be as low as 1:10{sup 4}. Consequently, the detectors need to be equipped with an appropriate mass spectrometer capability, allowing for recognition of chemical elements. Due to the long mean free paths of helium ions in the inner heliosheath, He ENAs are produced also in the distant heliospheric tail. This implies that observations of He ENAs can resolve its structure, which seems challenging from observations of hydrogen ENAs since energetic protons are neutralized before they progress deeper in the heliospheric tail.« less

  6. Metastability of isoformyl ions in collisions with helium and hydrogen. [in interstellar molecular clouds

    NASA Technical Reports Server (NTRS)

    Green, S.

    1984-01-01

    The stability of HOC(+) ions under conditions in interstellar molecular clouds is considered. In particular, the possibility that collisions with helium or hydrogen will induce isomerization to the stable HCO(+) form is examined theoretically. Portions of the electronic potential energy surfaces for interaction with He and H atoms are obtained from standard quantum mechanical calculations. Collisions with He atoms are found to be totally ineffective for inducing isomerization. Collisions with H atoms are found to be ineffective at low interstellar temperatures owing to a small (about 500 K) barrier in the entrance channel; at higher temperatures where this barrier can be overcome, however, collisions with hydrogen atoms do result in conversion to the stable HCO(+) form. Although detailed calculations are not presented, it is argued that low-energy collisions with H2 molecules are also ineffective in destroying the metastable ion.

  7. Approach to thermal equilibrium in atomic collisions.

    PubMed

    Zhang, P; Kharchenko, V; Dalgarno, A; Matsumi, Y; Nakayama, T; Takahashi, K

    2008-03-14

    The energy relaxation of fast atoms moving in a thermal bath gas is explored experimentally and theoretically. Two time scales characterize the equilibration, one a short time, in which the isotropic energy distribution profile relaxes to a Maxwellian shape at some intermediate effective temperature, and the second, a longer time in which the relaxation preserves a Maxwellian distribution and its effective temperature decreases continuously to the bath gas temperature. The formation and preservation of a Maxwellian distribution does not depend on the projectile to bath gas atom mass ratio. This two-stage behavior arises due to the dominance of small angle scattering and small energy transfer in the collisions of neutral particles. Measurements of the evolving Doppler profiles of emission from excited initially energetic nitrogen atoms traversing bath gases of helium and argon confirm the theoretical predictions.

  8. Spectroscopic properties of the molecular ions BeX+ (X=Na, K, Rb): forming cold molecular ions from an ion-atom mixture by stimulated Raman adiabatic process

    NASA Astrophysics Data System (ADS)

    Ladjimi, Hela; Sardar, Dibyendu; Farjallah, Mohamed; Alharzali, Nisrin; Naskar, Somnath; Mlika, Rym; Berriche, Hamid; Deb, Bimalendu

    2018-07-01

    In this theoretical work, we calculate potential energy curves, spectroscopic parameters and transition dipole moments of molecular ions BeX+ (X=Na, K, Rb) composed of alkaline ion Be and alkali atom X with a quantum chemistry approach based on the pseudopotential model, Gaussian basis sets, effective core polarisation potentials and full configuration interaction. We study in detail collisions of the alkaline ion and alkali atom in quantum regime. Besides, we study the possibility of the formation of molecular ions from the ion-atom colliding systems by stimulated Raman adiabatic process and discuss the parameters regime under which the population transfer is feasible. Our results are important for ion-atom cold collisions and experimental realisation of cold molecular ion formation.

  9. Coordinate space translation technique for simulation of electronic process in the ion-atom collision.

    PubMed

    Wang, Feng; Hong, Xuhai; Wang, Jian; Kim, Kwang S

    2011-04-21

    Recently we developed a theoretical model of ion-atom collisions, which was made on the basis of a time-dependent density functional theory description of the electron dynamics and a classical treatment of the heavy particle motion. Taking advantage of the real-space grid method, we introduce a "coordinate space translation" technique to allow one to focus on a certain space of interest such as the region around the projectile or the target. Benchmark calculations are given for collisions between proton and oxygen over a wide range of impact energy. To extract the probability of charge transfer, the formulation of Lüdde and Dreizler [J. Phys. B 16, 3973 (1983)] has been generalized to ensemble-averaging application in the particular case of O((3)P). Charge transfer total cross sections are calculated, showing fairly good agreements between experimental data and present theoretical results.

  10. Energetic ion, atom, and molecule reactions and excitation in low-current H2 discharges: H(alpha) Doppler profiles.

    PubMed

    Petrović, Z Lj; Phelps, A V

    2009-12-01

    Absolute spectral emissivities for Doppler broadened H(alpha) profiles are measured and compared with predictions of energetic hydrogen ion, atom, and molecule behavior in low-current electrical discharges in H2 at very high electric field E to gas density N ratios E/N and low values of Nd , where d is the parallel-plate electrode separation. These observations reflect the energy and angular distributions for the excited atoms and quantitatively test features of multiple-scattering kinetic models in weakly ionized hydrogen in the presence of an electric field that are not tested by the spatial distributions of H(alpha) emission. Absolute spectral intensities agree well with predictions. Asymmetries in Doppler profiles observed parallel to the electric field at 4atoms directed toward the cathode and diffusely reflected from the cathode. (1 Td=10(-21) V m(2)) The effects of reflection of hydrogen particles and of changes with cathode material are modeled accurately without adjustable parameters. Maximum measured wavelength shifts result from acceleration of H+ ions and charge transfer to fast H atoms. The Doppler profiles are consistent with models of reactions among H+, H2+, H3 , H, and H2 leading to fast H atoms and then fast excited H(n=3) atoms.

  11. Energetic Ion Interactions with the Galilean Satellites

    NASA Technical Reports Server (NTRS)

    Cooper, John F.

    2000-01-01

    The principal research tasks of this investigation are: (1) specification of the energetic (keV to MeV) ion environments upstream of the four Galilean satellites and (2) data analysis and numerical modeling of observed ion interactions with the satellites. Differential flux spectra are being compiled for the most abundant ions (protons, oxygen, and sulfur) from measurements at 20 keV to 100 MeV total energy by the Energetic Particle Detector (EPD) experiment and at higher ion energies by the Heavy Ion Counter (HIC) experiment. Runge-Kutta and other numerical techniques are used to propagate test particles sampled from the measured upstream spectra to the satellite surface or spacecraft through the local magnetic and corotational electric field environment of each satellite. Modeling of spatial variations in directional flux anisotropies measured during each close flyby provides limits on atomic charge states for heavy (O, S) magnetospheric ions and on internal or induced magnetic fields of the satellites. Validation of models for magnetic and electric field configurations then allows computation of rates for ion implantation, sputtering, and energy deposition into the satellite surfaces for further modeling of observable chemical changes induced by irradiation. Our ongoing work on production of oxidants and other secondary species by ice irradiation on Europa's surface has significant applications, already acknowledged in current literature, to astrobiological evolution. Finally, the work will improve understanding of energetic ion sources and sinks at the satellite orbits for improved modeling of magnetospheric transport processes. The scope of the research effort mainly includes data from the primary Galileo mission (1995-1997) but may also include some later data where directly relevant (e.g., comparison of J0 and I27 data for Io) to the primary mission objectives. Funding for this contract also includes partial support for our related education and public

  12. Applications of beam-foil spectroscopy to atomic collisions in solids

    NASA Technical Reports Server (NTRS)

    Sellin, I. A.

    1976-01-01

    Some selected papers presented at the Fourth International Conference on Beam-Foil Spectroscopy, whose results are of particular pertinence to ionic collision phenomena in solids, are reviewed. The topics discussed include solid target effects and means of surmounting them in the measurement of excited projectile ion lifetimes for low-energy heavy element ions; the electron emission accompanying the passage of heavy particles through solid targets; the collision broadening of X rays emitted from 100 keV ions moving in solids; residual K-shell excitation in chlorine ions penetrating carbon; comparison between 40 MeV Si on gaseous SiH4 targets at 300 mtorr and 40 MeV Si on Al; and the emergent surface interaction in beam-foil spectroscopy. A distinct overlap of interests between the sciences of beam-foil spectroscopy and atomic collisions in solids is pointed out.

  13. Observation of enhanced radial transport of energetic ion due to energetic particle mode destabilized by helically-trapped energetic ion in the Large Helical Device

    NASA Astrophysics Data System (ADS)

    Ogawa, K.; Isobe, M.; Kawase, H.; Nishitani, T.; Seki, R.; Osakabe, M.; LHD Experiment Group

    2018-04-01

    A deuterium experiment was initiated to achieve higher-temperature and higher-density plasmas in March 2017 in the Large Helical Device (LHD). The central ion temperature notably increases compared with that in hydrogen experiments. However, an energetic particle mode called the helically-trapped energetic-ion-driven resistive interchange (EIC) mode is often excited by intensive perpendicular neutral beam injections on high ion-temperature discharges. The mode leads to significant decrease of the ion temperature or to limiting the sustainment of the high ion-temperature state. To understand the effect of EIC on the energetic ion confinement, the radial transport of energetic ions is studied by means of the neutron flux monitor and vertical neutron camera newly installed on the LHD. Decreases of the line-integrated neutron profile in core channels show that helically-trapped energetic ions are lost from the plasma.

  14. Heliospheric Observations of Energetic Particles

    NASA Technical Reports Server (NTRS)

    Summerlin, Errol J.

    2011-01-01

    Heliospheric observations of energetic particles have shown that, on long time averages, a consistent v^-5 power-law index arises even in the absence of transient events. This implies an ubiquitous acceleration process present in the solar wind that is required to generate these power-law tails and maintain them against adiabatic losses and coulomb-collisions which will cool and thermalize the plasma respectively. Though the details of this acceleration process are being debated within the community, most agree that the energy required for these tails comes from fluctuations in the magnetic field which are damped as the energy is transferred to particles. Given this source for the tail, is it then reasonable to assume that the turbulent LISM should give rise to such a power-law tail as well? IBEX observations clearly show a power-law tail of index approximately -5 in energetic neutral atoms. The simplest explanation for the origins of these ENAs are that they are energetic ions which have charge-exchanged with a neutral atom. However, this would imply that energetic ions possess a v^-5 power-law distribution at keV energies at the source of these ENAs. If the source is presumed to be the LISM, it provides additional options for explaining the, so called, IBEX ribbon. This presentation will discuss some of these options as well as potential mechanisms for the generation of a power-law spectrum in the LISM.

  15. Collision cross section measurements for biomolecules within a high-resolution FT-ICR cell: theory.

    PubMed

    Guo, Dan; Xin, Yi; Li, Dayu; Xu, Wei

    2015-04-14

    In this study, an energetic hard-sphere ion-neutral collision model was proposed to bridge-link ion collision cross section (CCS) with the image current collected from a high-resolution Fourier transform ion cyclotron resonance (FT-ICR) cell. By investigating the nonlinear effects induced by high-order electric fields and image charge forces, the energetic hard-sphere collision model was validated through experiments. Suitable application regions for the energetic hard-sphere collision model, as well as for the conventional Langevin and hard-sphere collision models, were also discussed. The energetic hard-sphere collision model was applied in the extraction of ion CCSs from high-resolution FT-ICR mass spectra. Discussions in the present study also apply to FT-Orbitraps and FT-quadrupole ion traps.

  16. Surface-induced dissociation: a unique tool for studying energetics and kinetics of the gas-phase fragmentation of large ions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Laskin, Julia

    2015-01-01

    Surface-induced dissociation (SID) is valuable tool for investigating activation and dissociation of large ions in tandem mass spectrometry. This account summarizes key findings from studies of the energetics and mechanisms of complex ion dissociation, in which SID experiments were combined with Rice-Ramsperger-Kassel-Marcus (RRKM) modeling of the experimental data. These studies used time- and collision-energy-resolved SID experiments and SID combined with resonant ejection of selected fragment ions on a specially designed Fourier transform ion cyclotron resonance mass spectrometer (FT-ICR MS). Fast ion activation by collision with a surface combined with the long and variable timescale of a FT-ICR MS is perfectlymore » suited for studying the energetics and dynamics of complex ion dissociation in the gas phase. Modeling of time- and collision-energy-resolved SID enables accurate determination of energy and entropy effects in the dissociation process. It has been demonstrated that entropy effects play an important role in determining the dissociation rates of both covalent and non-covalent bonds in large gaseous ions. SID studies have provided important insights on the competition between charge-directed and charge-remote fragmentation in even-electron peptide ions and the role of charge and radical site on the energetics of the dissociation of odd-electron peptide ions. Furthermore, this work examined factors that affect the strength of non-covalent binding, as well as the competition between covalent and non-covalent bond cleavages and between proton and electron transfer in model systems. Finally, SID studies have been used to understand the factors affecting nucleation and growth of clusters in solution and the gas phase.« less

  17. Wave-packet continuum-discretization approach to ion-atom collisions including rearrangement: Application to differential ionization in proton-hydrogen scattering

    NASA Astrophysics Data System (ADS)

    Abdurakhmanov, I. B.; Bailey, J. J.; Kadyrov, A. S.; Bray, I.

    2018-03-01

    In this work, we develop a wave-packet continuum-discretization approach to ion-atom collisions that includes rearrangement processes. The total scattering wave function is expanded using a two-center basis built from wave-packet pseudostates. The exact three-body Schrödinger equation is converted into coupled-channel differential equations for time-dependent expansion coefficients. In the asymptotic region these time-dependent coefficients represent transition amplitudes for all processes including elastic scattering, excitation, ionization, and electron capture. The wave-packet continuum-discretization approach is ideal for differential ionization studies as it allows one to generate pseudostates with arbitrary energies and distribution. The approach is used to calculate the double differential cross section for ionization in proton collisions with atomic hydrogen. Overall good agreement with experiment is obtained for all considered cases.

  18. Interchange mode excited by trapped energetic ions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nishimura, Seiya, E-mail: n-seiya@kobe-kosen.ac.jp

    2015-07-15

    The kinetic energy principle describing the interaction between ideal magnetohydrodynamic (MHD) modes with trapped energetic ions is revised. A model is proposed on the basis of the reduced ideal MHD equations for background plasmas and the bounce-averaged drift-kinetic equation for trapped energetic ions. The model is applicable to large-aspect-ratio toroidal devices. Specifically, the effect of trapped energetic ions on the interchange mode in helical systems is analyzed. Results show that the interchange mode is excited by trapped energetic ions, even if the equilibrium states are stable to the ideal interchange mode. The energetic-ion-induced branch of the interchange mode might bemore » associated with the fishbone mode in helical systems.« less

  19. Energetic ion losses caused by magnetohydrodynamic activity resonant and non-resonant with energetic ions in Large Helical Device

    NASA Astrophysics Data System (ADS)

    Ogawa, Kunihiro; Isobe, Mitsutaka; Toi, Kazuo; Shimizu, Akihiro; Spong, Donald A.; Osakabe, Masaki; Yamamoto, Satoshi; the LHD Experiment Group

    2014-09-01

    Experiments to reveal energetic ion dynamics associated with magnetohydrodynamic activity are ongoing in the Large Helical Device (LHD). Interactions between beam-driven toroidal Alfvén eigenmodes (TAEs) and energetic ions have been investigated. Energetic ion losses induced by beam-driven burst TAEs have been observed using a scintillator-based lost fast-ion probe (SLIP) in neutral beam-heated high β plasmas. The loss flux of co-going beam ions increases as the TAE amplitude increases. In addition to this, the expulsion of beam ions associated with edge-localized modes (ELMs) has been also recognized in LHD. The SLIP has indicated that beam ions having co-going and barely co-going orbits are affected by ELMs. The relation between ELM amplitude and ELM-induced loss has a dispersed structure. To understand the energetic ion loss process, a numerical simulation based on an orbit-following model, DELTA5D, that incorporates magnetic fluctuations is performed. The calculation result shows that energetic ions confined in the interior region are lost due to TAE instability, with a diffusive process characterizing their loss. For the ELM, energetic ions existing near the confinement/loss boundary are lost through a convective process. We found that the ELM-induced loss flux measured by SLIP changes with the ELM phase. This relation between the ELM amplitude and measured ELM-induced loss results in a more dispersed loss structure.

  20. Li-Ion Localization and Energetics as a Function of Anode Structure.

    PubMed

    McNutt, Nicholas W; McDonnell, Marshall; Rios, Orlando; Keffer, David J

    2017-03-01

    In this work, we study the effect of carbon composite anode structure on the localization and energetics of Li-ions. A computational molecular dynamics study is combined with experimental results from neutron scattering experiments to understand the effect of composite density, crystallite size, volume fraction of crystalline carbon, and ion loading on the nature of ion storage in novel, lignin-derived composite materials. In a recent work, we demonstrated that these carbon composites display a fundamentally different mechanism for Li-ion storage than traditional graphitic anodes. The edges of the crystalline and amorphous fragments of aromatic carbon that exist in these composites are terminated by hydrogen atoms, which play a crucial role in adsorption. In this work, we demonstrate how differences in composite structure due to changes in the processing conditions alter the type and extent of the interface between the amorphous and crystalline domains, thus impacting the nature of Li-ion storage. The effects of structural properties are evaluated using a suite of pair distribution functions as well as an original technique to extract archetypal structures, in the form of three-dimensional atomic density distributions, from highly disordered systems. The energetics of Li-ion binding are understood by relating changes in the energy and charge distributions to changes in structural properties. The distribution of Li-ion energies reveals that some structures lead to greater chemisorption, while others have greater physisorption. Carbon composites with a high volume fraction of small crystallites demonstrate the highest ion storage capacity because of the high interfacial area between the crystalline and amorphous domains. At these interfaces, stable H atoms, terminating the graphitic crystallites, provide favorable sites for reversible Li adsorption.

  1. An apparatus for immersing trapped ions into an ultracold gas of neutral atoms

    NASA Astrophysics Data System (ADS)

    Schmid, Stefan; Härter, Arne; Frisch, Albert; Hoinka, Sascha; Denschlag, Johannes Hecker

    2012-05-01

    We describe a hybrid vacuum system in which a single ion or a well-defined small number of trapped ions (in our case Ba+ or Rb+) can be immersed into a cloud of ultracold neutral atoms (in our case Rb). This apparatus allows for the study of collisions and interactions between atoms and ions in the ultracold regime. Our setup is a combination of a Bose-Einstein condensation apparatus and a linear Paul trap. The main design feature of the apparatus is to first separate the production locations for the ion and the ultracold atoms and then to bring the two species together. This scheme has advantages in terms of stability and available access to the region where the atom-ion collision experiments are carried out. The ion and the atoms are brought together using a moving one-dimensional optical lattice transport which vertically lifts the atomic sample over a distance of 30 cm from its production chamber into the center of the Paul trap in another chamber. We present techniques to detect and control the relative position between the ion and the atom cloud.

  2. Rydberg Molecules for Ion-Atom Scattering in the Ultracold Regime

    NASA Astrophysics Data System (ADS)

    Schmid, T.; Veit, C.; Zuber, N.; Löw, R.; Pfau, T.; Tarana, M.; Tomza, M.

    2018-04-01

    We propose a novel experimental method to extend the investigation of ion-atom collisions from the so far studied cold, essentially classical regime to the ultracold, quantum regime. The key aspect of this method is the use of Rydberg molecules to initialize the ultracold ion-atom scattering event. We exemplify the proposed method with the lithium ion-atom system, for which we present simulations of how the initial Rydberg molecule wave function, freed by photoionization, evolves in the presence of the ion-atom scattering potential. We predict bounds for the ion-atom scattering length from ab initio calculations of the interaction potential. We demonstrate that, in the predicted bounds, the scattering length can be experimentally determined from the velocity of the scattered wave packet in the case of 6Li+ = 6Li and from the molecular ion fraction in the case of 7Li+ - 7Li. The proposed method to utilize Rydberg molecules for ultracold ion-atom scattering, here particularized for the lithium ion-atom system, is readily applicable to other ion-atom systems as well.

  3. Rydberg Molecules for Ion-Atom Scattering in the Ultracold Regime.

    PubMed

    Schmid, T; Veit, C; Zuber, N; Löw, R; Pfau, T; Tarana, M; Tomza, M

    2018-04-13

    We propose a novel experimental method to extend the investigation of ion-atom collisions from the so far studied cold, essentially classical regime to the ultracold, quantum regime. The key aspect of this method is the use of Rydberg molecules to initialize the ultracold ion-atom scattering event. We exemplify the proposed method with the lithium ion-atom system, for which we present simulations of how the initial Rydberg molecule wave function, freed by photoionization, evolves in the presence of the ion-atom scattering potential. We predict bounds for the ion-atom scattering length from ab initio calculations of the interaction potential. We demonstrate that, in the predicted bounds, the scattering length can be experimentally determined from the velocity of the scattered wave packet in the case of ^{6}Li^{+}-^{6}Li and from the molecular ion fraction in the case of ^{7}Li^{+}-^{7}Li. The proposed method to utilize Rydberg molecules for ultracold ion-atom scattering, here particularized for the lithium ion-atom system, is readily applicable to other ion-atom systems as well.

  4. Transfer of a weakly bound electron in collisions of Rydberg atoms with neutral particles. II. Ion-pair formation and resonant quenching of the Rb(nl) and Ne(nl) States by Ca, Sr, and Ba atoms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Narits, A. A.; Mironchuk, E. S.; Lebedev, V. S., E-mail: vlebedev@sci.lebedev.ru

    2013-10-15

    Electron-transfer processes are studied in thermal collisions of Rydberg atoms with alkaline-earth Ca(4s{sup 2}), Sr(5s{sup 2}), and Ba(6s{sup 2}) atoms capable of forming negative ions with a weakly bound outermost p-electron. We consider the ion-pair formation and resonant quenching of highly excited atomic states caused by transitions between Rydberg covalent and ionic terms of a quasi-molecule produced in collisions of particles. The contributions of these reaction channels to the total depopulation cross section of Rydberg states of Rb(nl) and Ne(nl) atoms as functions of the principal quantum number n are compared for selectively excited nl-levels with l Much-Less-Than n andmore » for states with large orbital quantum numbers l = n - 1, n - 2. It is shown that the contribution from resonant quenching dominates at small values of n, and the ion-pair formation process begins to dominate with increasing n. The values and positions of the maxima of cross sections for both processes strongly depend on the electron affinity of an alkaline-earth atom and on the orbital angular momentum l of a highly excited atom. It is shown that in the case of Rydberg atoms in states with large l {approx} n - 1, the rate constants of ion-pair formation and collisional quenching are considerably lower than those for nl-levels with l Much-Less-Than n.« less

  5. Ion energetics at Saturn's magnetosphere using Cassini/MIMI measurements: A simple model for the energetic ion integral moments

    NASA Astrophysics Data System (ADS)

    Dialynas, K.; Paranicas, C.; Roussos, E.; Krimigis, S. M.; Kane, M.; Mitchell, D. G.

    2015-12-01

    We present a composite analysis (H+ and O+) of energetic ion spectra and kappa distribution fits, using combined ion measurements from Charge Energy Mass Spectrometer (CHEMS, 3 to 236 keV/e), Low Energy Magnetospheric Measurements System (LEMMS, 0.024 < E < 18 MeV), and the Ion Neutral Camera (INCA, ~5.2 to >220 keV for H+). The modeled expressions of these energetic ion distributions are then used to obtain the four integral particle moments (from zeroth to 3rd moment: n, In, P, IE, i.e. Density, Integral number intensity, Pressure, Integral energy intensity) as well as the characteristic energy (EC=IE/In) of these ions as a function of Local Time and L-Shell. We find that a) protons dominate the energetic ion (>30 keV) integral number and energy intensity at all radial distances (L>5 Rs) and local times, while the H+ and O+ partial pressures and densities are comparable; b) the 12ion energetics (compared to the contribution of charge exchange with the Saturnian neutral cloud); c) energetic ion bundles in the 12energetic particle blobs shown in previous studies, produce durable signatures (enhancements) in the H+ and O+ pressure, density and temperature; d) energetic ions are depleted inside the orbit of Rhea (~8 Rs), i.e. the energetic ion lifetimes due to charge exchange decrease significantly with decreasing distance in the innermost parts of Saturn's magnetosphere, so that pressure and density drop to minimum inside ~8 Rs. We then utilize a technique to retrieve the equatorial H+ and O+ pressure, density and temperature in Saturn's magnetosphere, using a modified version of the Roelof and Skinner [2000] model in both local time and L-shell. Roelof, E. C., and A. J. Skinner (2000), Space Sci. Rev., 91, 437-459.

  6. Collision Dynamics of Rydberg Atoms and Molecules at Ultralow Energies

    DTIC Science & Technology

    2005-12-31

    body recombination between electrons, ions and neural gas atoms. We wish to study the interaction and collisions between two Rydberg atoms in the...transitions, Exact solutions of Stark mixing in atomic hydro- where Ekjn is the Levi - Civita antisymmetric symbol gen induced by the time-dependent...L and U do not close under commutation to form a Lie algebra because [Ui, Uj] = (-2g)iCijkLk, where cijk is the Levi - Civita antisymmetric symbol for

  7. Negative ion formation in potassium-nitromethane collisions.

    PubMed

    Antunes, R; Almeida, D; Martins, G; Mason, N J; Garcia, G; Maneira, M J P; Nunes, Y; Limão-Vieira, P

    2010-10-21

    Ion-pair formation in gaseous nitromethane (CH(3)NO(2)) induced by electron transfer has been studied by investigating the products of collisions between fast potassium atoms and nitromethane molecules using a crossed molecular-beam technique. The negative ions formed in such collisions were analysed using time-of-flight mass spectroscopy. The six most dominant product anions are NO(2)(-), O(-), CH(3)NO(2)(-), OH(-), CH(2)NO(2)(-) and CNO(-). By using nitromethane-d(3) (CD(3)NO(2)), we found that previous mass 17 amu assignment to O(-) delayed fragment, is in the present experiment may be unambiguously assigned to OH(-). The formation of CH(2)NO(2)(-) may be explained in terms of dissociative electron attachment to highly vibrationally excited molecules.

  8. Dynamic of negative ions in potassium-D-ribose collisions.

    PubMed

    Almeida, D; Ferreira da Silva, F; García, G; Limão-Vieira, P

    2013-09-21

    We present negative ion formation from collisions of neutral potassium atoms with D-ribose (C5H10O5), the sugar unit in the DNA/RNA molecule. From the negative ion time-of-flight (TOF) mass spectra, OH(-) is the main fragment detected in the collision range 50-100 eV accounting on average for 50% of the total anion yield. Prominence is also given to the rich fragmentation pattern observed with special attention to O(-) (16 m/z) formation. These results are in sharp contrast to dissociative electron attachment experiments. The TOF mass spectra assignments show that these channels are also observed, albeit with a much lower relative intensity. Branching ratios of the most abundant fragment anions as a function of the collision energy are obtained, allowing to establish a rationale on the collision dynamics.

  9. A facility to produce an energetic, ground state atomic oxygen beam for the simulation of the Low-Earth Orbit environment

    NASA Technical Reports Server (NTRS)

    Ketsdever, Andrew D.; Weaver, David P.; Muntz, E. P.

    1994-01-01

    Because of the continuing commitment to activity in low-Earth orbit (LEO), a facility is under development to produce energetic atmospheric species, particularly atomic oxygen, with energies ranging from 5 to 80 eV. This relatively high flux facility incorporates an ion engine to produce the corresponding specie ion which is charge exchanged to produce a neutral atomic beam. Ion fluxes of around 10(exp 15) sec(exp -1) with energies of 20-70 eV have been achieved. A geometrically augmented inertially tethered charge exchanger (GAITCE) was designed to provide a large column depth of charge exchange gas while reducing the gas load to the low pressure portion of the atomic beam facility. This is accomplished using opposed containment jets which act as collisional barriers to the escape of the dense gas region formed between the jets. Leak rate gains to the pumping system on the order of 10 were achieved for moderate jet mass flows. This system provides an attractive means for the charge exchange of atomic ions with a variety of gases to produce energetic atomic beams.

  10. Atomic cluster collisions

    NASA Astrophysics Data System (ADS)

    Korol, Andrey V.; Solov'yov, Andrey

    2013-01-01

    Atomic cluster collisions are a field of rapidly emerging research interest by both experimentalists and theorists. The international symposium on atomic cluster collisions (ISSAC) is the premier forum to present cutting-edge research in this field. It was established in 2003 and the most recent conference was held in Berlin, Germany in July of 2011. This Topical Issue presents original research results from some of the participants, who attended this conference. This issues specifically focuses on two research areas, namely Clusters and Fullerenes in External Fields and Nanoscale Insights in Radiation Biodamage.

  11. Threshold collision-induced dissociation of diatomic molecules: a case study of the energetics and dynamics of O2- collisions with Ar and Xe.

    PubMed

    Ahu Akin, F; Ree, Jongbaik; Ervin, Kent M; Kyu Shin, Hyung

    2005-08-08

    The energetics and dynamics of collision-induced dissociation of O2- with Ar and Xe targets are studied experimentally using guided ion-beam tandem mass spectrometry. The cross sections and the collision dynamics are modeled theoretically by classical trajectory calculations. Experimental apparent threshold energies are 2.1 and 1.1 eV in excess of the thermochemical O2- bond dissociation energy for argon and xenon, respectively. Classical trajectory calculations confirm the observed threshold behavior and the dependence of cross sections on the relative kinetic energy. Representative trajectories reveal that the bond dissociation takes place on a short time scale of about 50 fs in strong direct collisions. Collision-induced dissociation is found to be remarkably restricted to the perpendicular approach of ArXe to the molecular axis of O2-, while collinear collisions do not result in dissociation. The higher collisional energy-transfer efficiency of xenon compared with argon is attributed to both mass and polarizability effects.

  12. Effect of elastic collisions and electronic excitation on lattice structure of NiTi bulk intermetallic compound irradiated with energetic ions

    NASA Astrophysics Data System (ADS)

    Ochi, M.; Kojima, H.; Hori, F.; Kaneno, Y.; Semboshi, S.; Saitoh, Y.; Okamoto, Y.; Ishikawa, N.; Iwase, A.

    2018-07-01

    NiTi bulk intermetallic compound with the B19‧ structure was irradiated with 1 MeV He, 5 MeV Al, 16 MeV Au and 200 MeV Xe ions, and the change in lattice structure near the surface by the ion bombardment was investigated by using the grazing incidence X-ray diffraction (GIXD) and the extended X-ray absorption fine structure (EXAFS). The lattice structure transformation by the irradiation strongly depends on ion species and/or energies. For the 1 MeV He irradiation, the lattice structure changed from B19‧ to the A2 structure, but did not show an amorphization even after the high fluence irradiation. For the 5 MeV Al irradiation, the samples are partially amorphized. For the 16 MeV Au irradiation, the lattice structure of the NiTi samples changed nearly completely from the B19‧ structure to the amorphous state via the A2 structure. The value of dpa (displacement per atom) which is needed for the amorphization is, however, much smaller than the case of the Al ion irradiation. For the 200 MeV Xe ion irradiation, the lattice structure completely changed to the A2 structure even by a small ion fluence. The dependence of the lattice structure transformation on elastic collisions (dpa), the spectrum of the primary knock-on (PKA) atoms and the density of energy deposited through electronic excitation was discussed.

  13. Electron capture by Ne3+ ions from atomic hydrogen

    NASA Astrophysics Data System (ADS)

    Rejoub, R.; Bannister, M. E.; Havener, C. C.; Savin, D. W.; Verzani, C. J.; Wang, J. G.; Stancil, P. C.

    2004-05-01

    Using the Oak Ridge National Laboratory ion-atom merged-beam apparatus, absolute total electron-capture cross sections have been measured for collisions of Ne3+ ions with hydrogen (deuterium) atoms at energies between 0.07 and 826 eV/u . Comparison to previous measurements shows large discrepancies between 50 and 400 eV/u . Previously published molecular-orbital close-coupling (MOCC) calculations were performed over limited energy ranges, but show good agreement with the present measurements. Here MOCC calculations are presented for energies between 0.01 and 1000 eV/u for collisions with both H and D. For energies below ˜1 eV/u , an enhancement in the magnitude of both the experimental and theoretical cross sections is observed which is attributed to the ion-induced dipole attraction between the reactants. Below ˜4 eV/u , the present calculations show a significant target isotope effect.

  14. Rotational excitation of hydrogen molecules by collisions with hydrogen atoms. [interstellar gas energetics

    NASA Technical Reports Server (NTRS)

    Green, S.; Truhlar, D. G.

    1979-01-01

    Rate constants for rotational excitation of hydrogen molecules by collisions with hydrogen atoms have been obtained from quantum-mechanical calculations for kinetic temperatures between 100 and 5000 K. These calculations involve the rigid-rotator approximation, but other possible sources of error should be small. The calculations indicate that the early values of Nishimura are larger than accurate rigid-rotator values by about a factor of 20 or more.

  15. Energetic ion production in high current hollow cathodes

    NASA Astrophysics Data System (ADS)

    Foster, John; Kovach, Yao; Arthur, Neil; Viges, Eric; Davis, Chris

    2015-09-01

    High power Hall and gridded ion thrusters are being considered as a propulsion option supporting human operations (cargo or tug) to Mars. These engines utilize hollow cathodes for plasma production and beam neutralization. It has now been well documented that these cathodes produce energetic ions when operated at high current densities. Such ions are observed with peak energies approaching 100 eV. Because these ions can drive erosion of the cathode assembly, they represent a credible failure mode. An understanding of energetic ion production and approaches to mitigation is therefore desired. Presented here are data documenting the presence of energetic ions for both a barium oxide and a lanthanum hexaboride cathode as measured using a retarding potential analyzer. Also presented are energetic ion mitigation approaches, which are designed to eliminate the ion energy transfer mechanism. NASA SBIR Contract NNX15CP62P.

  16. V. S. Lebedev and I. L. Beigman, Physics of Highly Excited Atoms and Ions

    NASA Astrophysics Data System (ADS)

    Mewe, R.

    1999-07-01

    This book contains a comprehensive description of the basic principles of the theoretical spectroscopy and experimental spectroscopic diagnostics of Rydberg atoms and ions, i.e., atoms in highly excited states with a very large principal quantum number (n≫1). Rydberg atoms are characterized by a number of peculiar physical properties as compared to atoms in the ground or a low excited state. They have a very small ionization potential (∝1/n2), the highly excited electron has a small orbital velocity (∝1/n), the radius (∝n2) is very large, the excited electron has a long orbital period (∝n3), and the radiation lifetime is very long (∝n3-5). At the same time the R. atom is very sensitive to perturbations from external fields in collisions with charged and neutral targets. In recent years, R. atoms have been observed in laboratory and cosmic conditions for n up to ˜1000, which means that the size amounts to about 0.1 mm, ˜106 times that of an atom in the ground state. The scope of this monograph is to familiarize the reader with today's approaches and methods for describing isolated R. atoms and ions, radiative transitions between highly excited states, and photoionization and photorecombination processes. The authors present a number of efficient methods for describing the structure and properties of R. atoms and calculating processes of collisions with neutral and charged particles as well as spectral-line broadening and shift of Rydberg atomic series in gases, cool and hot plasmas in laboratories and in astrophysical sources. Particular attention is paid to a comparison of theoretical results with available experimental data. The book contains 9 chapters. Chapter 1 gives an introduction to the basic properties of R. atoms (ions), Chapter 2 is devoted to an account of general methods describing an isolated Rydberg atom. Chapter 3 is focussed on the recent achievements in calculations of form factors and dipole matrix elements of different types of

  17. Anisotropic mechanoresponse of energetic crystallites: a quantum molecular dynamics study of nano-collision

    NASA Astrophysics Data System (ADS)

    Li, Ying; Kalia, Rajiv K.; Misawa, Masaaki; Nakano, Aiichiro; Nomura, Ken-Ichi; Shimamura, Kohei; Shimojo, Fuyuki; Vashishta, Priya

    2016-05-01

    At the nanoscale, chemistry can happen quite differently due to mechanical forces selectively breaking the chemical bonds of materials. The interaction between chemistry and mechanical forces can be classified as mechanochemistry. An example of archetypal mechanochemistry occurs at the nanoscale in anisotropic detonating of a broad class of layered energetic molecular crystals bonded by inter-layer van der Waals (vdW) interactions. Here, we introduce an ab initio study of the collision, in which quantum molecular dynamic simulations of binary collisions between energetic vdW crystallites, TATB molecules, reveal atomistic mechanisms of anisotropic shock sensitivity. The highly sensitive lateral collision was found to originate from the twisting and bending to breaking of nitro-groups mediated by strong intra-layer hydrogen bonds. This causes the closing of the electronic energy gap due to an inverse Jahn-Teller effect. On the other hand, the insensitive collisions normal to multilayers are accomplished by more delocalized molecular deformations mediated by inter-layer interactions. Our nano-collision studies provide a much needed atomistic understanding for the rational design of insensitive energetic nanomaterials and the detonation synthesis of novel nanomaterials.At the nanoscale, chemistry can happen quite differently due to mechanical forces selectively breaking the chemical bonds of materials. The interaction between chemistry and mechanical forces can be classified as mechanochemistry. An example of archetypal mechanochemistry occurs at the nanoscale in anisotropic detonating of a broad class of layered energetic molecular crystals bonded by inter-layer van der Waals (vdW) interactions. Here, we introduce an ab initio study of the collision, in which quantum molecular dynamic simulations of binary collisions between energetic vdW crystallites, TATB molecules, reveal atomistic mechanisms of anisotropic shock sensitivity. The highly sensitive lateral collision

  18. EUV emission spectra in collisions of highly charged tantalum ions with nitrogen and oxygen molecules

    NASA Astrophysics Data System (ADS)

    Tanuma, Hajime; Numadate, Naoki; Uchikura, Yoshiyuki; Shimada, Kento; Akutsu, Takuto; Long, Elaine; O'Sullivan, Gerry

    2017-10-01

    We have performed ion beam collision experiments using multiply charged tantalum ions and observed EUV (extreme ultra-violet) emission spectra in collisions of ions with molecular targets, N2 and O2. Broad UTAs (un-resolved transition arrays) from multiply charged Ta ions were observed, and the mean wavelengths of the UTAs shifted and became shorter at higher charge statea of Ta ions. These UTAs may be attributed to the 4f-5d and 4f-5g transitions. Not only the UTA emission from incident ions, but also the sharp emission lines from multiply charged fragment atomic ions were observed. Production of temporary highly charged molecular ions, their kinetic energy and fragmentation processes have been investigated with coincident detection technique. However, the observation of emission from the fragments might be for the first time. The formation mechanisms of the multiply charged fragment atomic ions from target molecules are discussed.

  19. Measurement of visible and UV emission from Energetic Neutral Atom Precipitation (ENAP), on Spacelab

    NASA Technical Reports Server (NTRS)

    Tinsley, B. A.

    1980-01-01

    The charge exchange of plasmaspheric ions and exospheric H and O and of solar wind ions with exospheric and interplanetary H are sources of precipitating neutrals whose faint emission may be observed by the imaging spectrometric observatory during dark periods of the SL-1 orbit. Measurements of the interactions of these precipitating atoms with the thermosphere are needed to evaluate the heating and ionization effects on the atmosphere as well as the selective loss of i energetic ions from the sources (predominantly the ring current).

  20. Excited State Atom-Ion Charge-Exchange

    NASA Astrophysics Data System (ADS)

    Li, Ming; Makrides, Constantinos; Petrov, Alexander; Kotochigova, Svetlana

    2017-04-01

    We theoretically investigate the exothermic charge-exchange reaction between an excited atom and a ground-state positive ion. In particular, we focus on MOT-excited Ca*(4s4p 1P) atoms colliding with ground-state Yb+ ions, which are under active study by the experimental group of E. Hudson at UCLA. Collisions between an excited atom and an ion are guided by two major contributions to the long-range interaction potentials, the induction C4 /R4 and charge-quadrupole C3 /R3 potentials, and their coupling by the electron-exchange interaction. Our model of these forces leads to close-coupling equations for multiple reaction channels. We find several avoided crossings between the potentials that couple to the nearby asymptotic limits of Yb*+Ca+, some of which can possibly provide large charge exchange rate coefficients above 10-10 cm3 / s. We acknowledge support from the US Army Research Office, MURI Grants W911NF-14-1-0378 and the US National Science Foundation, Grant PHY-1619788.

  1. Mapping energetics of atom probe evaporation events through first principles calculations.

    PubMed

    Peralta, Joaquín; Broderick, Scott R; Rajan, Krishna

    2013-09-01

    The purpose of this work is to use atomistic modeling to determine accurate inputs into the atom probe tomography (APT) reconstruction process. One of these inputs is evaporation field; however, a challenge occurs because single ions and dimers have different evaporation fields. We have calculated the evaporation field of Al and Sc ions and Al-Al and Al-Sc dimers from an L1₂-Al₃Sc surface using ab initio calculations and with a high electric field applied to the surface. The evaporation field is defined as the electric field at which the energy barrier size is calculated as zero, corresponding to the minimum field that atoms from the surface can break their bonds and evaporate from the surface. The evaporation field of the surface atoms are ranked from least to greatest as: Al-Al dimer, Al ion, Sc ion, and Al-Sc dimer. The first principles results were compared with experimental data in the form of an ion evaporation map, which maps multi-ion evaporations. From the ion evaporation map of L1₂-Al₃Sc, we extract relative evaporation fields and identify that an Al-Al dimer has a lower evaporation field than an Al-Sc dimer. Additionally, comparatively an Al-Al surface dimer is more likely to evaporate as a dimer, while an Al-Sc surface dimer is more likely to evaporate as single ions. These conclusions from the experiment agree with the ab initio calculations, validating the use of this approach for modeling APT energetics. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. Collision-based energetic comparison of rolling and hopping over obstacles

    PubMed Central

    Iida, Fumiya

    2018-01-01

    Locomotion of machines and robots operating in rough terrain is strongly influenced by the mechanics of the ground-machine interactions. A rolling wheel in terrain with obstacles is subject to collisional energy losses, which is governed by mechanics comparable to hopping or walking locomotion. Here we investigate the energetic cost associated with overcoming an obstacle for rolling and hopping locomotion, using a simple mechanics model. The model considers collision-based interactions with the ground and the obstacle, without frictional losses, and we quantify, analyse, and compare the sources of energetic costs for three locomotion strategies. Our results show that the energetic advantages of the locomotion strategies are uniquely defined given the moment of inertia and the Froude number associated with the system. We find that hopping outperforms rolling at larger Froude numbers and vice versa. The analysis is further extended for a comparative study with animals. By applying size and inertial properties through an allometric scaling law of hopping and trotting animals to our models, we found that the conditions at which hopping becomes energetically advantageous to rolling roughly corresponds to animals’ preferred gait transition speeds. The energetic collision losses as predicted by the model are largely verified experimentally. PMID:29538459

  3. Electron-electron interaction in ion-atom collisions studied by projectile state-resolved Auger-electron spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dohyung Lee.

    This dissertation addresses the problem of dynamic electron-electron interactions in fast ion-atom collisions using projectile Auger electron spectroscopy. The study was carried out by measuring high-resolution projectile KKL Auger electron spectra as a function of projectile energy for the various collision systems of 0.25-2 MeV/u O{sup q+} and F{sup q+} incident on H{sub 2} and He targets. The electrons were detected in the beam direction, where the kinematic broadening is minimized. A zero-degree tandem electron spectrometer system, was developed and showed the versatility of zero-degree measurements of collisionally-produced atomic states. The zero-degree binary encounter electrons (BEe), quasifree target electrons ionizedmore » by the projectiles in head-on collisions, were observed as a strong background in the KLL Auger electron spectrum. They were studied by treating the target ionization as 180{degree} Rutherford elastic scattering in the projectile frame, and resulted in a validity test of the impulse approximation (IA) and a way to determine the spectrometer efficiency. An anomalous q-dependence, in which the zero-degree BEe yields increase with decreasing projectile charge state (q), was observed. State-resolved KLL Auger cross sections were determined by using the BEe normalization and thus the cross section of the electron-electron interactions such as resonant transfer-excitation (RTE), electron-electron excitation (eeE), and electron-electron ionization (eeI) were determined. Projectile 2l capture with 1s {yields} 2p excitation by the captured target electron was observed as an RTE process with Li-like and He-like projectiles and the measured RTEA (RTE followed by Auger decay) cross sections showed good agreement with an RTE-IA treatment and RTE alignment theory.« less

  4. Selected bibliography on atomic collisions: Data collections, bibliographies, review articles, books, and papers of particular tutorial value

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McDaniel, E.W.; Flannery, M.R.; Thomas, E.W.

    This bibliography deals mainly with binary and ternary collisions involving electrons, photons, and heavy particles (i.e., atoms, molecules, and ions). The energy range covered for each kind of collision is such that the interactions might be described as electronic, atomic, or chemical--higher-energy collisions involving nuclear forces are not treated. Also covered are particle and photon impact on surfaces, the passage of particles and radiation through bulk matter, and transport phenomena in gases. Practically all of the references cited are data compilations, other bibliographies, review articles, or books. The main objective is to provide easy access to atomic collision data, althoughmore » some references are included principally for their tutorial value.« less

  5. Collisions of energetic particles with atoms, molecules & solids: A theoretical study

    NASA Astrophysics Data System (ADS)

    Quashie, Edwin Exam

    used in studying the ion-molecule interactions at lower ion velocities. We reported here H+ + CH4 collision dynamics at E = 30 eV. Different exchange-correlation (XC) approximations were implemented and their important roles are studied systematically. For a single orientation of CH4 our rainbow angle at E = 30 eV agrees well with experimental and other theoretical values.

  6. METHOD OF PRODUCING ENERGETIC PLASMA FOR NEUTRON PRODUCTION

    DOEpatents

    Bell, P.R.; Simon, A.; Mackin, R.J. Jr.

    1961-01-24

    A method is given for producing an energetic plasma for neutron production. An energetic plasma is produced in a small magnetically confined subvolume of the device by providing a selected current of energetic molecular ions at least greater than that required for producing a current of atomic ions sufficient to achieve "burnout" of neutral particles in the subvolume. The atomic ions are provided by dissociation of the molecular ions by an energetic arc discharge within the subvolume. After burnout, the arc discharge is terminated, the magnetic fields increased, and cold fuel feed is substituted for the molecular ions. After the subvolume is filled with an energetic plasma, the size of the magnetically confined subvolume is gradually increased until the entire device is filled with an energetic neutron producing plasma. The reactions which take place in the device to produce neutrons will generate a certain amount of heat energy which may be converted by the use of a conventional heat cycle to produce electrical energy.

  7. Multimillion Atom Reactive Simulations of Nanostructured Energetic Materials

    DTIC Science & Technology

    2007-08-01

    code) 2007 Reprint Aug 2006-Aug 2007 Multimillion Atom Reactive Simulations of Nanostructured Energetic Materials W911NF-04-1-0178 sub 2781-USC-DOA...Priya Vashishta 213 821 2663 Reset Multimillion Atom Reactive Simulations of Nanostructured Energetic Materials Priya Vashishta,∗ Rajiv K. Kalia...function of the particle velocity that drives the shock [18]. The MD and experimental data agree very well. Furthermore, the simulation shows a sudden

  8. Ion-polycyclic aromatic hydrocarbon collisions: kinetic energy releases for specific fragmentation channels

    NASA Astrophysics Data System (ADS)

    Reitsma, G.; Zettergren, H.; Boschman, L.; Bodewits, E.; Hoekstra, R.; Schlathölter, T.

    2013-12-01

    We report on 30 keV He2 + collisions with naphthalene (C10H8) molecules, which leads to very extensive fragmentation. To unravel such complex fragmentation patterns, we designed and constructed an experimental setup, which allows for the determination of the full momentum vector by measuring charged collision products in coincidence in a recoil ion momentum spectrometer type of detection scheme. The determination of fragment kinetic energies is found to be considerably more accurate than for the case of mere coincidence time-of-flight spectrometers. In fission reactions involving two cationic fragments, typically kinetic energy releases of 2-3 eV are observed. The results are interpreted by means of density functional theory calculations of the reverse barriers. It is concluded that naphthalene fragmentation by collisions with keV ions clearly is much more violent than the corresponding photofragmentation with energetic photons. The ion-induced naphthalene fragmentation provides a feedstock of various small hydrocarbonic species of different charge states and kinetic energy, which could influence several molecule formation processes in the cold interstellar medium and facilitates growth of small hydrocarbon species on pre-existing polycyclic aromatic hydrocarbons.

  9. Energetic ion bombardment of Ag surfaces by C60+ and Ga+ projectiles.

    PubMed

    Sun, Shixin; Szakal, Christopher; Winograd, Nicholas; Wucher, Andreas

    2005-10-01

    The ion bombardment-induced release of particles from a metal surface is investigated using energetic fullerene cluster ions as projectiles. The total sputter yield as well as partial yields of neutral and charged monomers and clusters leaving the surface are measured and compared with corresponding data obtained with atomic projectile ions of similar impact kinetic energy. It is found that all yields are enhanced by about one order of magnitude under bombardment with the C60+ cluster projectiles compared with Ga+ ions. In contrast, the electronic excitation processes determining the secondary ion formation probability are unaffected. The kinetic energy spectra of sputtered particles exhibit characteristic differences which reflect the largely different nature of the sputtering process for both types of projectiles. In particular, it is found that under C60+ impact (1) the energy spectrum of sputtered atoms peaks at significantly lower kinetic energies than for Ga+ bombardment and (2) the velocity spectra of monomers and dimers are virtually identical, a finding which is in pronounced contrast to all published data obtained for atomic projectiles. The experimental findings are in reasonable agreement with recent molecular dynamics simulations.

  10. Experimental apparatus for overlapping a ground-state cooled ion with ultracold atoms

    NASA Astrophysics Data System (ADS)

    Meir, Ziv; Sikorsky, Tomas; Ben-shlomi, Ruti; Akerman, Nitzan; Pinkas, Meirav; Dallal, Yehonatan; Ozeri, Roee

    2018-03-01

    Experimental realizations of charged ions and neutral atoms in overlapping traps are gaining increasing interest due to their wide research application ranging from chemistry at the quantum level to quantum simulations of solid state systems. In this paper, we describe our experimental system in which we overlap a single ground-state cooled ion trapped in a linear Paul trap with a cloud of ultracold atoms such that both constituents are in the ?K regime. Excess micromotion (EMM) currently limits atom-ion interaction energy to the mK energy scale and above. We demonstrate spectroscopy methods and compensation techniques which characterize and reduce the ion's parasitic EMM energy to the ?K regime even for ion crystals of several ions. We further give a substantial review on the non-equilibrium dynamics which governs atom-ion systems. The non-equilibrium dynamics is manifested by a power law distribution of the ion's energy. We also give an overview on the coherent and non-coherent thermometry tools which can be used to characterize the ion's energy distribution after single to many atom-ion collisions.

  11. Charge exchange cross sections in slow collisions of Si3+ with Hydrogen atom

    NASA Astrophysics Data System (ADS)

    Joseph, Dwayne; Quashie, Edwin; Saha, Bidhan

    2011-05-01

    In recent years both the experimental and theoretical studies of electron transfer in ion-atom collisions have progressed considerably. Accurate determination of the cross sections and an understanding of the dynamics of the electron-capture process by multiply charged ions from atomic hydrogen over a wide range of projectile velocities are important in various field ranging from fusion plasma to astrophysics. The soft X-ray emission from comets has been explained by charge transfer of solar wind ions, among them Si3+, with neutrals in the cometary gas vapor. The cross sections are evaluated using the (a) full quantum and (b) semi-classical molecular orbital close coupling (MOCC) methods. Adiabatic potentials and wave functions for relavent singlet and triplet states are generated using the MRDCI structure codes. Details will be presented at the conference. In recent years both the experimental and theoretical studies of electron transfer in ion-atom collisions have progressed considerably. Accurate determination of the cross sections and an understanding of the dynamics of the electron-capture process by multiply charged ions from atomic hydrogen over a wide range of projectile velocities are important in various field ranging from fusion plasma to astrophysics. The soft X-ray emission from comets has been explained by charge transfer of solar wind ions, among them Si3+, with neutrals in the cometary gas vapor. The cross sections are evaluated using the (a) full quantum and (b) semi-classical molecular orbital close coupling (MOCC) methods. Adiabatic potentials and wave functions for relavent singlet and triplet states are generated using the MRDCI structure codes. Details will be presented at the conference. Work supported by NSF CREST project (grant #0630370).

  12. Energetic ion leakage from foreshock transient cores

    NASA Astrophysics Data System (ADS)

    Liu, Terry Z.; Angelopoulos, Vassilis; Hietala, Heli

    2017-07-01

    Earth's foreshock is filled with backstreaming particles that can interact with the ambient solar wind and its discontinuities to form foreshock transients. Many foreshock transients have a core with low dynamic pressure that can significantly perturb the bow shock and the magnetosphere-ionosphere system. Foreshock transients have also been recently recognized as sites of particle acceleration, which may be important for seeding the parent shock with energetic particles. A relevant step of this seeding would be energetic ion leakage into the surrounding foreshock environment. On the other hand, such leakage would also suppress the energetic particle flux contrast across foreshock transients' boundaries masking their perceived contribution to ion energization. To further examine this hypothesis of ion leakage, we report on multipoint case studies of three foreshock transient events selected from a large database. The cases were selected to exemplify, in increasing complexity, the nature and consequences of energetic ion leakage. Ion energy dispersion, observed upstream and/or downstream of the foreshock transients, is explained with a simple, ballistic model of ions leaking from the foreshock transients. Larger energies are required for leaked ions to reach the spacecraft as the distance between the transient and spacecraft increases. Our model, which explains well the observed ion energy dispersion and velocity distributions, can also be used to reveal the shape of the foreshock transients in three dimensions. Our results suggest that ion leakage from foreshock transient cores needs to be accounted for both in statistical studies and in global models of ion acceleration under quasi-parallel foreshock conditions.

  13. PREFACE: XXV International Conference on Photonic, Electronic and Atomic Collisions

    NASA Astrophysics Data System (ADS)

    Becker, Uwe; Moshammer, Robert; Mokler, Paul; Ullrich, Joachim

    2007-07-01

    The XXVth ICPEAC in Freiburg marked a notable anniversary in collision physics: half a century ago the first conference in the series of International Conferences on the Physics of Electronic and Atomic Collisions (ICPEAC) was held in New York (1958). Since then, the development of electronic and atomic collision physics has seen tremendous progress. Starting during a time, when this field was regarded as somehow out-of-date, certainly not being in the main stream compared to particle and high-energy physics, it has expanded in a rather exceptional and unforeseen way. Over the years the original scope on electronic, atomic and heavy-ion collision physics was extended substantially to include upcoming expanding fields like synchrotron-radiation and strong-field laser-based atomic and molecular physics giving rise to a change of name to 'Photonic', Electronic and Atomic Collisions (ICPEAC) being used for the first time for the ICPEAC in Santa Fee in 2001. Nowadays, the ICPEAC has opened its agenda even more widely to other fields of atomic and molecular physics, such as interactions with clusters, bio-molecules and surfaces, to cold collisions, coherent control, femto- and attosecond physics and, with the Freiburg conference, to the application of free-electron lasers in the vacuum ultraviolet and soft x-ray regime, a field of potentially huge future impact in essentially all areas of science. In this larger context the XXVth ICPEAC in Freiburg with more than 800 participants set new standards. Representatives from all fields of Atomic, Molecular and Photon-based science came together and had very fruitful, inter-disciplinary discussions. This new forum of collision-based AMP physics will serve as a showcase example of future conferences, bridging not only the gap between different fields of collision physics but also, equally important, between different continents and cultures. The next ICPEAC is going to take place in Kalamazoo in North America, the one after that

  14. Simulation of Energetic Neutral Atom Images at Venus

    NASA Astrophysics Data System (ADS)

    Gunell, H.; Holmström, M.; Biernat, H. K.; Erkaev, N. V.; Lammer, H.; Lichtenegger, H.; Penz, T.

    2003-12-01

    We present simulated images of energetic neutral atoms (ENAs) produced in charge exchange collisions between solar wind protons and neutral atoms in the exosphere of Venus. The plasma flow around Venus is modelled by a semi-analytical MHD simulation that includes mass-loading (Biernat et al., J. Geophys. Res., vol. 104, 12617--12626, 1999; Biernat,et al., Adv. Space Res., 28, 2001). These results are compared with the results that are obtained when the Spreiter-Stahara flow model (Spreiter and Stahara, Adv Space Res., 14, 5--19, 1994) is used. The ENA images are calculated by combining the proton bulk flow and temperature results of the MHD model with a model of the neutral atmosphere using the energy dependent cross sections for the charge exchange collisions. The ENA production rate is integrated along lines of sight to a virtual instrument, thus simulating what could be measured by a space-craft-carried ENA instrument. The images are found to be dominated by two local maxima. One produced by charge exchange collisions in the solar wind, upstream of the bow shock, and the other close to the dayside ionopause. The main contribution to the ENA flux observed in the ENA images stems from a region of space between the ionopause and the bow shock on the dayside of the planet. The simulated ENA fluxes at Venus are lower than those obtained in similar simulations of ENA images at Mars (Holmström et al., J. Geophys. Res., 107, 1277, doi: 10.1029/2001JA000325, 2002). The reason for the lower ENA flux at Venus is thought to be the smaller extent of Venus' exosphere. The steeper falloff of the neutral gas density with altitude in the exosphere of Venus is caused by Venus' mass, which is 7.5 times greater than the mass of Mars. The dependence of the ENA flux on the altitude of the ionopause is studied numerically, and it is found that the ENA flux decreases as the ionopause altitude is increased.

  15. Midnight flash model of energetic neutral atom periodicities at Saturn

    NASA Astrophysics Data System (ADS)

    Carbary, J. F.; Mitchell, D. G.

    2017-07-01

    The Ion Neutral Camera on the Cassini spacecraft made images of energetic H atoms (25-55 keV) over a 3 day span in 2017. The images were projected onto the equatorial plane of Saturn, and a keogram was made by interpolating the projections in local time at 9 RS (1 RS = 60268 km). The keogram intensities show strong periodicities near the 10.79 h period of Saturn's energetic particles and exhibit a slope commensurate with corotation at that period. These periodic fluxes intensify near midnight but are weaker near noon. A "midnight flash" model can explain this behavior in terms of a searchlight rotating at 10.79 h that intensifies in the midnight sector. The model can also describe similar activity in Saturn's kilometric radiation and magnetic fields, although the "flash" must be shifted to the dawn-to-noon sector.

  16. Electron capture in collisions of Al2+ ions with He atoms at intermediate energies

    NASA Astrophysics Data System (ADS)

    Watanabe, A.; Sato, H.; Gu, J. P.; Hirsch, G.; Buenker, R. J.; Kimura, M.

    2001-09-01

    Electron capture resulting from collisions of Al2+ ions with He atoms from 0.15 to 1000 keV/u is investigated using a molecular-orbital representation within a semiclassical frame. Molecular electronic states and corresponding couplings are determined by the ALCHEMY program. Sixteen molecular states all connecting to single-electron-capture processes are included, and hence radial and rotational couplings among these channels are fully considered. The trajectory effect arising from the straight-line, Coulomb, and ground-state potential trajectories for electron-capture and excitation processes is carefully assessed. The electron-capture cross section by ground-state Al2+(2S) ions slowly increases before it reaches a maximum of 1.3×10-16 cm2 at 100 keV/u. Those for metastable Al2+(2P) ions sharply increase with increasing energy, and reach a peak at 1 keV/u with a value of 1.5×10-16 cm2. The earlier experimental data are found to be larger by an order of magnitude although their energy dependence is in good accord with the present result. Excitation cross sections for both the ground and metastable states are found to be much larger by a factor of 2-3 than corresponding capture cross sections above 1 keV/u although they become comparable below this energy.

  17. Low-energy charge transfer for collisions of Si3+ with atomic hydrogen

    NASA Astrophysics Data System (ADS)

    Bruhns, H.; Kreckel, H.; Savin, D. W.; Seely, D. G.; Havener, C. C.

    2008-06-01

    Cross sections of charge transfer for Si3+ ions with atomic hydrogen at collision energies of ≈40-2500eV/u were carried out using a merged-beam technique at the Multicharged Ion Research Facility at Oak Ridge National Laboratory. The data span an energy range in which both molecular orbital close coupling (MOCC) and classical trajectory Monte Carlo (CTMC) calculations are available. The influence of quantum mechanical effects of the ionic core as predicted by MOCC is clearly seen in our results. However, discrepancies between our experiment and MOCC results toward higher collision energies are observed. At energies above 1000 eV/u good agreement is found with CTMC results.

  18. SRAM As An Array Of Energetic-Ion Detectors

    NASA Technical Reports Server (NTRS)

    Buehler, Martin G.; Blaes, Brent R.; Lieneweg, Udo; Nixon, Robert H.

    1993-01-01

    Static random-access memory (SRAM) designed for use as array of energetic-ion detectors. Exploits well-known tendency of incident energetic ions to cause bit flips in cells of electronic memories. Design of ion-detector SRAM involves modifications of standard SRAM design to increase sensitivity to ions. Device fabricated by use of conventional complementary metal oxide/semiconductor (CMOS) processes. Potential uses include gas densimetry, position sensing, and measurement of cosmic-ray spectrum.

  19. Influence of asymmetries in the magnetic draping pattern at Titan on the emission of energetic neutral atoms

    NASA Astrophysics Data System (ADS)

    Kabanovic, Slawa; Feyerabend, Moritz; Simon, Sven; Meeks, Zachary; Wulms, Veit

    2018-03-01

    We model the emission of energetic neutral atoms (ENAs) that are generated by the interaction between energetic ions from Saturn's magnetosphere and neutrals from the upper atmosphere of the giant planet's largest moon Titan. The trajectories of the parent ions and the resulting ENA emission morphology are highly sensitive to the electromagnetic field configuration near the moon. We therefore compare the ENA emission pattern for spatially homogeneous fields to the emission obtained from a magnetohydrodynamic (MHD) and a hybrid (kinetic ions, fluid electrons) model of Titan's magnetospheric interaction, by computing the trajectories of several billion energetic test particles. While the MHD model takes into account the draping of the magnetic field lines around Titan, the hybrid approach also considers the significant asymmetries in the electromagnetic fields due to the large gyroradii of pick-up ions from Titan's ionosphere. In all three models, the upstream parameters correspond to the conditions during Cassini's TA flyby of Titan. The shape, magnitude, and location of the ENA emission maxima vary considerably between these three field configurations. The magnetic pile-up region at Titan's ramside deflects a large number of the energetic parent ions, thereby reducing the ENA flux. However, the draped magnetic field lines in Titan's lobes rotate the gyration planes of the incident energetic ions, thereby facilitating the observable ENA production. Overall, the ENA flux calculated for the MHD model is weaker than the emission obtained for the electromagnetic fields from the hybrid code. In addition, we systematically investigate the dependency of the ENA emission morphology on the energy of the parent ions and on the upstream magnetic field strength.

  20. κ -distributed protons in the solar wind and their charge-exchange coupling to energetic hydrogen

    DOE PAGES

    Heerikhuisen, J.; Zirnstein, Eric; Pogorelov, Nikolai

    2015-03-16

    The interaction between the solar wind and the interstellar medium represents a collision between two plasma flows, resulting in a heliosphere with an extended tail. While the solar wind is mostly ionized material from the corona, the interstellar medium is only partially ionized. The ion and neutral populations are coupled through charge-exchange collisions that operate on length scales of tens to hundreds of astronomical units. About half the interstellar hydrogen flows into the heliosphere where it may charge-exchange with solar wind protons. This process gives rise to a nonthermal proton, known as a pickup ion, which joins the plasma. Inmore » this paper we investigate the effects of approximating the total ion distribution of the subsonic solar wind as a generalized Lorentzian, or κ distribution, using an MHD neutral code. We illustrate the effect different values of the κ parameter have on both the structure of the heliosphere and the energetic neutral atom flux at 1 AU. We find that using a κ distribution in our simulations yields levels of energetic neutral atom flux that are within a factor of about 2 or 3 over the IBEX-Hi range of energies from 0.5 to 6 keV. In conclusion, while the presence of a suprathermal tail in the proton distribution leads to the production of high-energy neutrals, the sharp decline in the charge-exchange cross section around 10 keV mitigates the enhanced transfer of energy from the ions to the neutrals that might otherwise be expected.« less

  1. Insights on dramatic radial fluctuations in track formation by energetic ions

    DOE PAGES

    Sachan, Ritesh; Lang, Maik; Trautmann, Christina; ...

    2016-06-02

    We discuss the insights on the unexpected dramatic radial variations in the ion tracks formed by energetic ion (2.3 GeV 208Pb) irradiation at a constant electronic energy-loss (~42 keV/nm) in pyrochlore structured Gd 2TiZrO 7. Though previous studies have shown track formation and average track diameter measurements, this work brings further clarity on why quantitative analysis of ion track formation in Gd 2Ti xZr (1-x)O 7 systems can be more complicated than the currently accepted behavior for ion tracks. The ion track profile is usually considered to be diametrically uniform at constant values of the electronic energy-loss. This study showsmore » the diameter variations to be as large as ~40% within an extremely short incremental track length of ~20 nm. Our molecular dynamics simulations show that these fluctuations in diameter of amorphous core and overall track diameter are attributed to (i) the stochastic nature of inelastic energy loss along the track and (ii) the random substitution of Ti atoms by Zr atoms on the B-site in the pyrochlore lattice. Furthermore, the partial substitution of Ti by Zr increases the favorability of the defect-fluorite structure formation over amorphous phase stochastically, by introducing localized inhomogeneity in atomic structure, density and strain.« less

  2. Insights on dramatic radial fluctuations in track formation by energetic ions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sachan, Ritesh; Lang, Maik; Trautmann, Christina

    We discuss the insights on the unexpected dramatic radial variations in the ion tracks formed by energetic ion (2.3 GeV 208Pb) irradiation at a constant electronic energy-loss (~42 keV/nm) in pyrochlore structured Gd 2TiZrO 7. Though previous studies have shown track formation and average track diameter measurements, this work brings further clarity on why quantitative analysis of ion track formation in Gd 2Ti xZr (1-x)O 7 systems can be more complicated than the currently accepted behavior for ion tracks. The ion track profile is usually considered to be diametrically uniform at constant values of the electronic energy-loss. This study showsmore » the diameter variations to be as large as ~40% within an extremely short incremental track length of ~20 nm. Our molecular dynamics simulations show that these fluctuations in diameter of amorphous core and overall track diameter are attributed to (i) the stochastic nature of inelastic energy loss along the track and (ii) the random substitution of Ti atoms by Zr atoms on the B-site in the pyrochlore lattice. Furthermore, the partial substitution of Ti by Zr increases the favorability of the defect-fluorite structure formation over amorphous phase stochastically, by introducing localized inhomogeneity in atomic structure, density and strain.« less

  3. Electron transfer, ionization, and excitation in atomic collisions. Progress report, June 15, 1992--June 14, 1995

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Winter, T.G.; Alston, S.G.

    The research program of Winter and Alston addresses the fundamental processes of electron transfer, ionization, and excitation in ion-atom, ion-ion, and ion-molecule collisions. Attention is focussed on one- and two-electron systems and, more recently, quasi-one-electron systems whose electron-target-core interaction can be accurately modeled by one-electron potentials. The basic computational approaches can then be taken with few, if any, approximations, and the underlying collisional mechanisms can be more clearly revealed. Winter has focussed on intermediate collision energies (e.g., proton energies for p-He{sup +} collisions on the order of 100 kilo-electron volts), in which many electron states are strongly coupled during themore » collision and a coupled-state approach, such as a coupled-Sturmian-pseudostate approach, is appropriate. Alston has concentrated on higher collision energies (million electron-volt energies), or asymmetric collision systems, for which the coupling of the projectile is weaker with, however, many more target states being coupled together so that high-order perturbation theory is essential. Several calculations by Winter and Alston are described, as set forth in the original proposal.« less

  4. Fast calculator for X-ray emission due to Radiative Recombination and Radiative Electron Capture in relativistic heavy-ion atom collisions

    NASA Astrophysics Data System (ADS)

    Herdrich, M. O.; Weber, G.; Gumberidze, A.; Wu, Z. W.; Stöhlker, Th.

    2017-10-01

    In experiments with highly charged, fast heavy ions the Radiative Recombination (RR) and Radiative Electron Capture (REC) processes have significant cross sections in an energy range of up to a few GeV / u . They are some of the most important charge changing processes in collisions of heavy ions with atoms and electrons, leading to the emission of a photon along with the formation of the ground and excited atomic states. Hence, for the understanding and planning of experiments, in particular for X-ray spectroscopy studies, at accelerator ring facilities, such as FAIR, it is crucial to have a good knowledge of these cross sections and the associated radiation characteristics. In the frame of this work a fast calculator, named RECAL, for the RR and REC process is presented and its capabilities are demonstrated with the analysis of a recently conducted experiment at the Experimental Storage Ring (ESR) at the GSI Helmholtz Center for Heavy Ion Research in Darmstadt, Germany. A method is presented to determine unknown X-ray emission cross sections via normalization of the recorded spectra to REC cross sections calculated by RECAL.

  5. On the origins of energetic ions in the earth's dayside magnetosheath

    NASA Technical Reports Server (NTRS)

    Fuselier, S. A.; Klumpar, D. M.; Shelley, E. G.

    1991-01-01

    Energetic ion events in the earth's dayside subsolar magnetosheath (0900 - 1300 Local Time) are surveyed using data from the AMPTE/CCE Hot Plasma Composition Experiment. Ion species carrying the signature of their origin O(+) and energetic He(2+) are used to distinguish between magnetospheric and solar wind origins for the energetic ion events. The results of this survey indicate that the majority of energetic (10-17 keV/e) H(+) and He(2+) ions observed in the dayside magnetosheath are accelerated from the solar wind population. The energetic He(2+) to H(+) density ratio in the magnetosheath is consistent with that predicted from first-order Fermi acceleration of solar wind ions in the turbulent regions upstream and downstream from the earth's quasi-parallel bow shock. The simultaneous occurrence of both energetic He(2+) and magnetospheric O(+) indicates that, on occasion, both Fermi acceleration of solar wind ions and leakage of magnetospheric ions occurs in the dayside magnetosheath.

  6. Total Born approximation cross sections for single electron loss by atoms and ions colliding with atoms

    NASA Technical Reports Server (NTRS)

    Rule, D. W.

    1977-01-01

    The first born approximation (FBA) is applied to the calculation of single electron loss cross sections for various ions and atoms containing from one to seven electrons. Screened hydrogenic wave functions were used for the states of the electron ejected from the projectile, and Hartree-Fock elastic and incoherent scattering factors were used to describe the target. The effect of the target atom on the scaling of projectile ionization cross sections with respect to the projectile nuclear charge was explored in the case of hydrogen-like ions. Scaling of the cross section with respect to the target nuclear charge for electron loss by Fe (+25) in collision with neutral atoms ranging from H to Fe is also examined. These results were compared to those of the binary encounter approximation and to the FBA for the case of ionization by completely stripped target ions.

  7. Chapter 6 Quantum Mechanical Methods for Loss-Excitation and Loss-Ionization in Fast Ion-Atom Collisions

    NASA Astrophysics Data System (ADS)

    Belkic, Dzevad

    Inelastic collisions between bare nuclei and hydrogen-like atomic systems are characterized by three main channels: electron capture, excitation, and ionization. Capture dominates at lower energies, whereas excitation and ionization prevail at higher impact energies. At intermediate energies and in the region of resonant scattering near the Massey peak, all three channels become competitive. For dressed or clothed nuclei possessing electrons, such as hydrogen-like ions, several additional channels open up, including electron loss (projectile ionization or stripping). The most important aspect of electron loss is the competition between one- and two-electron processes. Here, in a typical one-electron process, the projectile emits an electron, whereas the target final and initial states are the same. A prototype of double-electron transitions in loss processes is projectile ionization accompanied with an alteration of the target state. In such a two-electron process, the target could be excited or ionized. The relative importance of these loss channels with single- and double-electron transitions involving collisions of dressed projectiles with atomic systems is also strongly dependent on the value of the impact energy. Moreover, impact energies determine which theoretical method is likely to be more appropriate to use for predictions of cross sections. At low energies, an expansion of total scattering wave functions in terms of molecular orbitals is adequate. This is because the projectile spends considerable time in the vicinity of the target, and as a result, a compound system comprised of the projectile and the target can be formed in a metastable molecular state which is prone to decay. At high energies, a perturbation series expansion is more appropriate in terms of powers of interaction potentials. In the intermediate energy region, atomic orbitals are often used with success while expanding the total scattering wave functions. The present work is focused on

  8. On the origins of energetic ions in the Earth's dayside magnetosheath

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fuselier, S.A.; Klumpar, D.M.; Shelley, E.G.

    1991-01-01

    Energetic ion events in the Earth's dayside subsolar magnetosheath (0900 - 1300 Local Time) are surveyed using data from the Active Magnetospheric Particle Tracer Explorers/Charge Composition Explorer (AMPTE/CCE) Hot Plasma Composition Experiment. Ion species carrying the signature of their origin (O{sup +} and energetic He{sup 2+}) are used to distinguish between magnetospheric and solar wind orgins for the energetic ion events. The results of this survey indicate that the majority of energetic (10-17 keV/e) H{sup +} and He{sup 2+} ions observed in the dayside magnetosheath are accelerated from the solar wind population. The energetic He{sup 2+} to H{sup +} densitymore » ratio in the magnetosheath is consistent with that predicted from first-order Fermi acceleration of solar wind ions in the turbulent regions upstream and downstream from the Earth's quasi-parallel bow shock. Although the majority of the energetic ions appear to be of solar wind origin, magnetospheric O{sup +} is also occasionally present in the magnetosheath. The simultaneous occurence of both energetic He{sup 2+} and magnetospheric O{sup +} indicates that, on occasion, both Fermi acceleration of solar wind ions and leakage of magnetospheric ions occurs in the dayside magnetosheath.« less

  9. Charge exchange collisions of slow C6 + with atomic and molecular H

    NASA Astrophysics Data System (ADS)

    Saha, Bidhan C.; Guevara, Nicolais L.; Sabin, John R.; Deumens, Erik; Öhrn, Yngve

    2016-04-01

    Charge exchange in collisions of C6+ ions with H and H2 is investigated theoretically at projectile energies 0.1 < E < 10 keV/amu, using electron nuclear dynamics (END) - a semi-classical approximation which not only includes electron translation factors for avoiding spurious couplings but also employs full dynamical trajectories to treat nuclear motions. Both the total and partial cross sections are reported for the collision of C6+ ions with atomic and molecular hydrogen. A comparison with other theoretical and experimental results shows, in general good agreement except at very low energy, considered here. For H2, the one- and two-electron charge exchange cross sections are calculated and compared with other theoretical and experimental results. Small but non-negligible isotope effects are found at the lowest energy studied in the charge transfer of C6+ with H. In low energy region, it is observed that H2 has larger isotope effects than H atom due to the polarizability effect which is larger than the mass effect.

  10. Materials characterization with MeV ions

    NASA Astrophysics Data System (ADS)

    Conlon, T. W.

    1989-04-01

    The inherent atomic and nuclear properties of energetic ions in materials can be exploited to characterize as well as to modify materials' properties. In nuclear reactors keV ions from neutron collisions damage containment materials. However, basic studies of the interactions of such ions has yielded improved understanding of their properties and has even led to a tailoring of conditions so that the ions can be made to beneficially modify structures (by ion implantation). At higher energies an understanding of the ion-material interaction provides techniques such as PIXE, RBS, and ERD for nondestructive analysis, either in broad beam or "microbeam" mode. At high energies still penetration of the Coulomb barrier opens up activation methods for materials' characterization (CPAA, NRA, TLA etc.). A short discussion of the general properties of energetic ions in materials is followed by a brief introduction to our generic work in these areas, and some examples of current work in the areas of: activation for the radioisotope labelling of nonmetals, mass resolved ERDA using TOF techniques and submicron MeV microprobes.

  11. Energetic neutral particles from Jupiter and Saturn

    NASA Astrophysics Data System (ADS)

    Cheng, A. F.

    1986-04-01

    The Voyager 1 spacecraft has detected energetic neutral particles escaping from the magnetospheres of Jupiter and Saturn. These energetic neutrals are created in charge exchange reactions between radiation belt ions and ambient atoms or molecules in the magnetosphere. If the Io torus is assumed to be the dominant Jovian source region for energetic neutrals, the Voyager observations can be used to infer upper limits to the average ion intensities there below about 200 keV. No readily interpretable in-situ measurements are available in the Io torus at these energies. The middle and outer Jovian magnetospheres may also be a significant source of energetic neutrals. At Saturn, the observed neutral particle count rates are too high to be explained by charge exchange between fast protons and H atoms of the Titan torus. Most of the energetic neutrals may be produced by charge exchanges between heavy ions and a neutral cloud containing H2O in Saturn's inner magnetosphere. If so, the Voyager measurements of energetic neutral fluxes would be the first detected emissions from this region of Saturn's magnetosphere.

  12. K-shell excitation studied for H- and He-like bismuth ions in collisions with low-Z target atoms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stoehlker, T.; Ionescu, D.C.; Rymuza, P.

    1998-02-01

    The formation of excited projectile states via Coulomb excitation is investigated for hydrogenlike and heliumlike bismuth projectiles (Z=83) in relativistic ion-atom collisions. The excitation process was unambiguously identified by observing the radiative decay of the excited levels to the vacant 1s shell in coincidence with ions that did not undergo charge exchange in the reaction target. In particular, owing to the large fine-structure splitting of Bi, the excitation cross sections to the various L-shell sublevels are determined separately. The results are compared with detailed relativistic calculations, showing that both the relativistic character of the bound-state wave functions and the magneticmore » interaction are of considerable importance for the K-shell excitation process in high-Z ions such as Bi. The experimental data confirm the result of the complete relativistic calculations, namely, that the magnetic part of the Li{acute e}nard-Wiechert interaction leads to a significant reduction of the K-shell excitation cross section. {copyright} {ital 1998} {ital The American Physical Society}« less

  13. Understanding Molecular-Ion Neutral Atom Collisions for the Production of Ultracold Molecular Ions

    DTIC Science & Technology

    2014-02-03

    SECURITY CLASSIFICATION OF: This project was superseded and replaced by another ARO-funded project of the same name, which is still continuing. The goal...cooled atoms," IOTA -COST Workshop on molecular ions, Arosa, Switzerland. 5. E.R. Hudson, "Sympathetic cooling of molecules with laser cooled

  14. Synergism between low-energy neutral particles and energetic ions in the pulsed glow discharge deposition of diamond-like carbon films

    NASA Astrophysics Data System (ADS)

    Afanasyev-Charkin, I. V.; Nastasi, M.

    2004-08-01

    Diamond-like carbon films were deposited using pulsed glow discharge deposition at 4kV. The duty factor was varied and all other parameters were kept constant. It was shown that the contribution of neutral particles to the total number of deposition atoms is much larger than that of energetic ions. At the same time, there is a relationship between the deposition of neutral particles and ion bombardment. The sticking coefficient of the neutral particles in proportional to the flux of energetic ions and does not exceed 5×10-4 for the deposition parameters used in our experiment.

  15. Need for reaction coordinates to ensure a complete basis set in an adiabatic representation of ion-atom collisions

    NASA Astrophysics Data System (ADS)

    Rabli, Djamal; McCarroll, Ronald

    2018-02-01

    This review surveys the different theoretical approaches, used to describe inelastic and rearrangement processes in collisions involving atoms and ions. For a range of energies from a few meV up to about 1 keV, the adiabatic representation is expected to be valid and under these conditions, inelastic and rearrangement processes take place via a network of avoided crossings of the potential energy curves of the collision system. In general, such avoided crossings are finite in number. The non-adiabatic coupling, due to the breakdown of the Born-Oppenheimer separation of the electronic and nuclear variables, depends on the ratio of the electron mass to the nuclear mass terms in the total Hamiltonian. By limiting terms in the total Hamiltonian correct to first order in the electron to nuclear mass ratio, a system of reaction coordinates is found which allows for a correct description of both inelastic channels. The connection between the use of reaction coordinates in the quantum description and the electron translation factors of the impact parameter approach is established. A major result is that only when reaction coordinates are used, is it possible to introduce the notion of a minimal basis set. Such a set must include all avoided crossings including both radial coupling and long range Coriolis coupling. But, only when reactive coordinates are used, can such a basis set be considered as complete. In particular when the centre of nuclear mass is used as centre of coordinates, rather than the correct reaction coordinates, it is shown that erroneous results are obtained. A few results to illustrate this important point are presented: one concerning a simple two-state Landau-Zener type avoided crossing, the other concerning a network of multiple crossings in a typical electron capture process involving a highly charged ion with a neutral atom.

  16. Status of Charge Exchange Cross Section Measurements for Highly Charged Ions on Atomic Hydrogen

    NASA Astrophysics Data System (ADS)

    Draganic, I. N.; Havener, C. C.; Schultz, D. R.; Seely, D. G.; Schultz, P. C.

    2011-05-01

    Total cross sections of charge exchange (CX) for C5+, N6+, and O7+ ions on ground state atomic hydrogen are measured in an extended collision energy range of 1 - 20,000 eV/u. Absolute CX measurements are performed using an improved merged-beams technique with intense highly charged ion beams extracted from a 14.5 GHz ECR ion source mounted on a high voltage platform. In order to improve the problematic H+ signal collection for these exoergic CX collisions at low relative energies, a new double focusing electrostatic analyzer was installed. Experimental CX data are in good agreement with all previous H-oven relative measurements at higher collision energies. We compare our results with the most recent molecular orbital close-coupling (MOCC) and atomic orbital close-coupling (AOCC) theoretical calculations. Work supported by the NASA Solar & Heliospheric Physics Program NNH07ZDA001N, the Office of Fusion Energy Sciences and the Division of Chemical Sciences, Geosciences, and Biosciences, and the Office of Basic Energy Sciences of the U.S. DoE.

  17. METHOD AND APPARATUS FOR TRAPPING IONS IN A MAGNETIC FIELD

    DOEpatents

    Luce, J.S.

    1962-04-17

    A method and apparatus are described for trapping ions within an evacuated container and within a magnetic field utilizing dissociation and/or ionization of molecular ions to form atomic ions and energetic neutral particles. The atomic ions are magnetically trapped as a result of a change of charge-to- mass ratio. The molecular ions are injected into the container and into the path of an energetic carbon arc discharge which dissociates and/or ionizes a portion of the molecular ions into atomic ions and energetic neutrals. The resulting atomic ions are trapped by the magnetic field to form a circulating beam of atomic ions, and the energetic neutrals pass out of the system and may be utilized in a particle accelerator. (AEC)

  18. Electronic excitation of ground state atoms by collision with heavy gas particles

    NASA Technical Reports Server (NTRS)

    Hansen, C. Frederick

    1993-01-01

    Most of the important chemical reactions which occur in the very high temperature air produced around space vehicles as they enter the atmosphere were investigated both experimentally and theoretically, to some extent at least. One remaining reaction about which little is known, and which could be quite important at the extremely high temperatures that will be produced by the class of space vehicles now contemplated - such as the AOTV - is the excitation of bound electron states due to collisions between heavy gas particles. Rates of electronic excitation due to free electron collisions are known to be very rapid, but because these collisions quickly equilibrate the free and bound electron energy, the approach to full equilibrium with the heavy particle kinetic energy will depend primarily on the much slower process of bound electron excitation in heavy particle collisions and the subsequent rapid transfer to free electron energy. This may be the dominant mechanism leading to full equilibrium in the gas once the dissociation process has depleted the molecular states so the transfer between molecular vibrational energy and free electron energy is no longer available as a channel for equilibration of free electron and heavy particle kinetic energies. Two mechanisms seem probable in electronic excitation by heavy particle impact. One of these is the collision excitation and deexcitation of higher electronic states which are Rydberg like. A report, entitled 'Semi-Classical Theory of Electronic Excitation Rates', was submitted previously. This presented analytic expressions for the transition probabilities, assuming that the interaction potential is an exponential repulsion with a perturbation ripple due to the dipole-induced dipole effect in the case of neutral-neutral collisions, and to the ion-dipole interaction in the case of ion-neutral collisions. However the above may be, there is little doubt that excitation of ground state species by collision occurs at the

  19. Cooling of trapped ions by resonant charge exchange

    NASA Astrophysics Data System (ADS)

    Dutta, Sourav; Rangwala, S. A.

    2018-04-01

    The two most widely used ion cooling methods are laser cooling and sympathetic cooling by elastic collisions (ECs). Here, we demonstrate another method of cooling ions that is based on resonant charge exchange (RCE) between the trapped ion and the ultracold parent atom. Specifically, trapped C s+ ions are cooled by collisions with cotrapped, ultracold Cs atoms and, separately, by collisions with cotrapped, ultracold Rb atoms. We observe that the cooling of C s+ ions by Cs atoms is more efficient than the cooling of C s+ ions by Rb atoms. This signals the presence of a cooling mechanism apart from the elastic ion-atom collision channel for the Cs-C s+ case, which is cooling by RCE. The efficiency of cooling by RCE is experimentally determined and the per-collision cooling is found to be two orders of magnitude higher than cooling by EC. The result provides the experimental basis for future studies on charge transport by electron hopping in atom-ion hybrid systems.

  20. Spacelab energetic ion mass spectrometer

    NASA Technical Reports Server (NTRS)

    Whalen, B. A.; Mcdiarmid, I. B.; Burrows, J. R.; Sharp, R. D.; Johnson, R. G.; Shelley, E. G.

    1980-01-01

    Basic design criteria are given for an ion mass spectrometer for use in studying magnetospheric ion populations. The proposed instrument is composed of an electrostatic analyzer followed by a magnetic spectrometer and simultaneously measures the energy per unit and mass per unit charge of the ion species. An electromagnet is used for momentum analysis to extend the operational energy range over a much wider domain than is possible with the permanent magnets used in previous flights. The energetic ion source regions, ion energization mechanisms, field line tracing, coordinated investigations, and orbit considerations are discussed and operations of the momentum analyzer and of the electrostatic energy analyzer are examined.

  1. The Shape and Flow of Heavy Ion Collisions (490th Brookhaven Lecture)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schenke, Bjoern

    2014-12-18

    The sun can’t do it, but colossal machines like the Relativistic Heavy Ion Collider (RHIC) at Brookhaven Lab and Large Hadron Collider (LHC) in Europe sure can. Quarks and gluons make up protons and neutrons found in the nucleus of every atom in the universe. At heavy ion colliders like RHIC and the LHC, scientists can create matter more than 100,000 times hotter than the center of the sun—so hot that protons and neutrons melt into a plasma of quarks and gluons. The particle collisions and emerging quark-gluon plasma hold keys to understanding how these fundamental particles interact with eachmore » other, which helps explain how everything is held together—from atomic nuclei to human beings to the biggest stars—how all matter has mass, and what the universe looked like microseconds after the Big Bang. Dr. Schenke discusses theory that details the shape and structure of heavy ion collisions. He will also explain how this theory and data from experiments at RHIC and the LHC are being used to determine properties of the quark-gluon plasma.« less

  2. Energetics and Dynamics of Dissociation of Deprotonated Peptides: Fragmentation of Angiotensin Analogs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Laskin, Julia; Yang, Zhibo

    2011-12-01

    We present a first study of the energetics and dynamics of dissociation of deprotonated peptides using time- and collision-energy resolved surface-induced dissociation (SID) experiments. SID of four model peptides: RVYIHPF, HVYIHPF, DRVYIHPF, and DHVYIHPF was studied using a specially designed Fourier transform ion cyclotron resonance mass spectrometer (FT-ICR MS) configured for studying ion-surface collisions. Energy and entropy effects for the overall decomposition of the precursor ion were deduced by modeling the time- and collision energy-resolved survival curves using an RRKM based approach developed in our laboratory. The results were compared to the energetics and dynamics of dissociation of the correspondingmore » protonated species. We demonstrate that acidic peptides are less stable in the negative mode because of the low threshold associated with the kinetically hindered loss of H2O from [M-H]- ions. Comparison between the two basic peptides indicates that the lower stability of the [M-H]- ion of RVYIHPF as compared to HVYIHPF towards fragmentation is attributed to the differences in fragmentation mechanisms. Specifically, threshold energy associated with losses of NH3 and NHCNH from RVYIHPF is lower than the barrier for backbone fragmentation that dominates gas-phase decomposition of HVYIHPF. The results provide a first quantitative comparison between the energetics and dynamics of dissociation of [M+H]+ and [M-H]- ions of acidic and basic peptides.« less

  3. Origins of Energetic Ions in the Earth's Magnetosheath

    NASA Technical Reports Server (NTRS)

    Fuselter, S. A.; Shelley, E. G.; Klumpar, D. M.

    1992-01-01

    The analysis and interpretation of the combined scientific data from the Hot Plasma Composition Experiment (HPCE) and the Charge Energy Mass (CHEM) spectrometer on the Active Mesospheric Particle Tracer Experiment (AMPTE) Charge Composition Explorer (CCE) spacecraft are discussed. These combined data sets have and will be used to survey the energetic ion environment in the Earth's magnetosheath to determine the origins and relative strengths of the energetic ion populations found there. A computer code was developed to analyze and interpret the data sets. The focus of the first year was on the determination of the contribution of leaked magnetospheric protons to the total energetic proton population. Emphasis was placed on intervals when the AMPTE spacecraft was in the plasma depletion layer because it was argued that in this region, only the leaked population contributes to the energetic ion population. Manipulation of the CHEM data and comparison of the CHEM and HPCE data over their common energy range near the magnetopause also contributed directly to a second study of that region.

  4. Solar Wind Charge Exchange Studies Of Highly Charged Ions On Atomic Hydrogen

    NASA Astrophysics Data System (ADS)

    Draganić, I. N.; Seely, D. G.; McCammon, D.; Havener, C. C.

    2011-06-01

    Accurate studies of low-energy charge exchange (CX) are critical to understanding underlying soft X-ray radiation processes in the interaction of highly charged ions from the solar wind with the neutral atoms and molecules in the heliosphere, cometary comas, planetary atmospheres, interstellar winds, etc.. Particularly important are the CX cross sections for bare, H-like, and He-like ions of C, N, O and Ne, which are the dominant charge states for these heavier elements in the solar wind. Absolute total cross sections for single electron capture by H-like ions of C, N, O and fully-stripped O ions from atomic hydrogen have been measured in an expanded range of relative collision energies (5 eV/u-20 keV/u) and compared to previous H-oven measurements. The present measurements are performed using a merged-beams technique with intense highly charged ion beams extracted from a 14.5 GHz ECR ion source installed on a high voltage platform at the Oak Ridge National Laboratory. For the collision energy range of 0.3 keV/u-3.3 keV/u, which corresponds to typical ion velocities in the solar wind, the new measurements are in good agreement with previous H-oven measurements. The experimental results are discussed in detail and compared with theoretical calculations where available.

  5. Energetic Neutral Atoms Measured by the Interstellar Boundary Explorer (IBEX): Evidence for Multiple Heliosheath Ion Populations

    NASA Astrophysics Data System (ADS)

    Desai, M. I.; Allegrini, F.; Bzowski, M.; Dayeh, M. A.; Funsten, H. O.; Fuselier, S.; Kubiak, M. A.; McComas, D. J.; Pogorelov, N. V.; Schwadron, N.; Sokol, J. M.; Zank, G. P.; Zirnstein, E. J.

    2013-12-01

    Energetic Neutral Atoms (ENAs) observed by the Interstellar Boundary Explorer (IBEX) provide powerful diagnostics about the origin of the progenitor ion populations and the physical mechanisms responsible for their production. In this paper, we extend the work of Desai et al. (2012) and Fuselier et al. (2012) and combine and compare ENA spectra from the first three years of observations by the IBEX-Hi and -Lo ENA imagers along the lines-of-sights (LOS) from the inner heliosphere through to the locations of Voyager 1 and 2 with results from an updated physics-based model of the 3D heliosphere and its constituent ion populations. Our results show that (1) IBEX ENA fluxes and spectra above ~0.7 keV measured along the LOS of the Voyagers are consistent with several models in which the parent pickup (PUI) populations originate in the inner heliosheath, and (2) a significant fraction of lower-energy ENAs between ~0.1-0.5 keV may originate from interstellar neutral gas charge-exchanging with a non-thermalized (hot) population of PUIs in the outer heliosheath beyond the heliopause. We discuss the implications of ENAs observed by IBEX originating from distinct parent populations as well as from two distinct locations in the heliospheric interface. These results indicate that ENA spectral measurements at various energies can be used to remotely probe distinct physical processes operating in vastly different regions of the distant heliosphere.

  6. Atomic Data and Spectral Line Intensities for Be-like Ions

    NASA Technical Reports Server (NTRS)

    Bhatia, Anand; Landi, E.

    2008-01-01

    Atomic data and collision rates are needed to model the spectrum of optically thin astrophysical sources. Recent observations from solar instrumentation such as SOH0 and Hinode have revealed the presence of hosts of lines emitted by high-energy configurations from ions belonging to the Be-like to the 0-like isoelectronic sequences. Data for such configurations are often unavailable in the literature. We have started a program to calculate the atomic parameters and rates for the high-energy configurations of Be-like ions of the type ls2.21.nl' where n=3,4,5. We report on the results of this project and on the diagnostic application of the predicted spectral lines.

  7. STEREO Observations of Energetic Neutral Hydrogen Atoms during the 5 December 2006 Solar Flare

    NASA Technical Reports Server (NTRS)

    Mewaldt, R. A.; Leske, R. A.; Stone, E. C.; Barghouty, A. F.; Labrador, A. W.; Cohen, C. M. S.; Cummings, A. C.; Davis, A. J.; vonRosenvinge, T. T.; Wiedenbeck, M. E.

    2009-01-01

    We report the discovery of energetic neutral hydrogen atoms emitted during the X9 solar event of December 5, 2006. Beginning 1 hour following the onset of this E79 flare, the Low Energy Telescopes (LETs) on both the STEREO A and B spacecraft observed a sudden burst of 1.6 to 15 MeV protons beginning hours before the onset of the main solar energetic particle (SEP) event at Earth. More than 70% of these particles arrived from a longitude within 10 of the Sun, consistent with the measurement resolution. The derived emission profile at the Sun had onset and peak times remarkably similar to the GOES soft X-ray profile and continued for more than an hour. The observed arrival directions and energy spectrum argue strongly that the particle events less than 5 MeV were due to energetic neutral hydrogen atoms (ENAs). To our knowledge, this is the first reported observation of ENA emission from a solar flare/coronal mass ejection. Possible origins for the production of ENAs in a large solar event are considered. We conclude that the observed ENAs were most likely produced in the high corona and that charge-transfer reactions between accelerated protons and partially-stripped coronal ions are an important source of ENAs in solar events.

  8. Effects of hydrogen atom spin exchange collisions on atomic hydrogen maser oscillation frequency

    NASA Technical Reports Server (NTRS)

    Crampton, S. B.

    1979-01-01

    Frequency shifts due to collisions between hydrogen atoms in an atomic hydrogen maser frequency standard are studied. Investigations of frequency shifts proportional to the spin exchange frequency shift cross section and those proportional to the duration of exchange collisions are discussed. The feasibility of operating a hydrogen frequency standard at liquid helium temperatures is examined.

  9. Inverse Energy Dispersion of Energetic Ions Observed in the Magnetosheath

    NASA Technical Reports Server (NTRS)

    Lee, S. H.; Sibeck, D. G.; Hwang, K.-J.; Wang, Y.; Silveira, M. V. D.; Fok, M.-C.; Mauk, B. H.; Cohen, I. J.; Ruohoniemi, J. M.; Kitamura, N.; hide

    2016-01-01

    We present a case study of energetic ions observed by the Energetic Particle Detector (EPD) on the Magnetospheric Multiscale spacecraft in the magnetosheath just outside the subsolar magnetopause that occurred at 1000 UT on 8 December 2015. As the magnetopause receded inward, the EPD observed a burst of energetic (approximately 50-1000 keV) proton, helium, and oxygen ions that exhibited an inverse dispersion, with the lowest energy ions appearing first. The prolonged interval of fast antisunward flow observed in the magnetosheath and transient increases in the H components of global ground magnetograms demonstrate that the burst appeared at a time when the magnetosphere was rapidly compressed. We attribute the inverse energy dispersion to the leakage along reconnected magnetic field lines of betatron-accelerated energetic ions in the magnetosheath, and a burst of reconnection has an extent of about 1.5 R(sub E) using combined Super Dual Auroral Radar Network radar and EPD observations.

  10. Modeling Emission of Heavy Energetic Neutral Atoms from the Heliosphere

    NASA Astrophysics Data System (ADS)

    Swaczyna, Paweł; Bzowski, Maciej

    2017-09-01

    Observations of energetic neutral atoms (ENAs) are a fruitful tool for remote diagnosis of the plasma in the heliosphere and its vicinity. So far, instruments detecting ENAs from the heliosphere were configured for observations of hydrogen atoms. Here, we estimate emissions of ENAs of the heavy chemical elements helium, oxygen, nitrogen, and neon. A large portion of the heliospheric ENAs is created in the inner heliosheath from neutralized interstellar pick-up ions (PUIs). We modeled this process and calculated full-sky intensities of ENAs for energies 0.2-130 keV/nuc. We found that the largest fluxes among considered species are expected for helium, smaller for oxygen and nitrogen, and smallest for neon. The obtained intensities are 50-106 times smaller than the hydrogen ENA intensities observed by IBEX. The detection of heavy ENAs will be possible if a future ENA detector is equipped with the capability to measure the masses of observed atoms. Because of different reaction cross-sections among the different species, observations of heavy ENAs can allow for a better understanding of global structure of the heliosphere as well as the transport and energization of PUIs in the heliosphere.

  11. High frequency fishbone driven by passing energetic ions in tokamak plasmas

    NASA Astrophysics Data System (ADS)

    Wang, Feng; Yu, L. M.; Fu, G. Y.; Shen, Wei

    2017-05-01

    High frequency fishbone instability driven by passing energetic ions was first reported in the Princeton beta experiment with tangential neutral-beam-injection (Heidbrink et al 1986 Phys. Rev. Lett. 57 835-8). It could play an important role for ITER-like burning plasmas, where α particles are mostly passing particles. In this work, a generalized energetic ion distribution function and finite drift orbit width effect are considered to improve the theoretical model for passing particle driving fishbone instability. For purely passing energetic ions with zero drift orbit width, the kinetic energy δ {{W}k} is derived analytically. The derived analytic expression is more accurate as compared to the result of previous work (Wang 2001 Phys. Rev. Lett. 86 5286-8). For a generalized energetic ion distribution function, the fishbone dispersion relation is derived and is solved numerically. Numerical results show that broad and off-axis beam density profiles can significantly increase the beam ion beta threshold {βc} for instability and decrease mode frequency.

  12. High frequency fishbone driven by passing energetic ions in tokamak plasmas

    DOE PAGES

    Wang, Feng; Yu, L. M.; Fu, G. Y.; ...

    2017-03-22

    High frequency fishbone instability driven by passing energetic ions was first reported in the Princeton beta experiment with tangential neutral-beam-injection (Heidbrink et al 1986 Phys. Rev. Lett. 57 835–8). It could play an important role for ITER-like burning plasmas, where α particles are mostly passing particles. In this work, a generalized energetic ion distribution function and finite drift orbit width effect are considered to improve the theoretical model for passing particle driving fishbone instability. For purely passing energetic ions with zero drift orbit width, the kinetic energymore » $$\\delta {{W}_{k}}$$ is derived analytically. The derived analytic expression is more accurate as compared to the result of previous work. For a generalized energetic ion distribution function, the fishbone dispersion relation is derived and is solved numerically. As a result, numerical results show that broad and off-axis beam density profiles can significantly increase the beam ion beta threshold $${{\\beta}_{c}}$$ for instability and decrease mode frequency.« less

  13. Atom-atom inelastic collisions and three-body atomic recombination in weakly ionized argon plasmas

    NASA Technical Reports Server (NTRS)

    Braun, C. G.; Kunc, J. A.

    1989-01-01

    A stationary collisional-radiative model including both inelastic electron-atom and atom-atom collisions is used to examine nonequilibrium weakly ionized argon plasmas with atomic densities 10 to the 16th to 10 to the 20th/cu cm, temperatures below 6000 K, and with different degrees of radiation trapping. It is shown that three-body atomic recombination becomes important at high particle densities. Comparison is made between the present approach and Thomson's theory for atomic recombination.

  14. Energetic heavy ion dominance in the outer magnetosphere

    NASA Astrophysics Data System (ADS)

    Cohen, Ian; Mitchell, Don; Mauk, Barry; Anderson, Brian; Ohtani, Shin; Kistler, Lynn; Hamilton, Doug; Turner, Drew; Blake, Bern; Fennell, Joe; Jaynes, Allison; Leonard, Trevor; Gerrard, Andy; Lanzerotti, Lou; Burch, Jim

    2017-04-01

    Despite the extensive study of ring current ion composition, little exists in the literature regarding the nature of energetic ions with energies >200 keV, especially in the outer magnetosphere (r > 9 RE). In particular, information on the relative fluxes and spectral shapes of the different ion species over these energy ranges is lacking. However, new observations from the Energetic Ion Spectrometer (EIS) instruments on the Magnetospheric Multiscale (MMS) spacecraft have revealed the dominance of heavy ion species (specifically oxygen and helium) at these energies in the outer magnetosphere. This result is supported by prior but previously unreported observations obtained by the Geotail spacecraft, which also show that these heavy ion species are primarily dominated by multiply-charged populations from the solar wind. Using additional observations from the inner magnetosphere obtained by the RBSPICE instrument on the Van Allen Probes suggest, we will investigate whether this effect is due to a preferential loss of protons in the outer magnetosphere.

  15. Energy transfer in O collisions with He isotopes and helium escape from Mars

    NASA Astrophysics Data System (ADS)

    Bovino, S.; Zhang, P.; Kharchenko, V.; Dalgarno, A.

    2010-12-01

    Helium is one of the dominant constituents in the upper atmosphere of Mars [1]. Thermal (Jeans’) escape of He is negligible on Mars [2] and major mechanism of escape is related to the collisional ejection of He atoms by energetic oxygen. Collisional ejection dominates over ion-related mechanisms [3] and evaluation of the escape flux of neutral He becomes an important issue. The dissociative recombination of O2+ is considered to be the major source of energetic oxygen atoms [4]. We report accurate data on energy-transfer collisions between hot oxygen atoms and the atmospheric helium gas. Angular dependent scattering cross sections for elastic collisions of O(3P) and O(1D) atoms with helium gas have been calculated quantum mechanically and found to be surprisingly similar. Cross sections, computed for collisions with both helium isotopes, 3He and 4He, have been used to construct the kernel of the Boltzmann equation, describing the energy relaxation of hot oxygen atoms. Computed rates of energy transfer in O + He collisions have been used to evaluate the flux of He atoms escaping from the Mars atmosphere at different solar conditions. We have identified atmospheric layers mostly responsible for production of the He escape flux. Our results are consistent with recent data from Monte Carlo simulations of the escape of O atoms: strong angular anisotropy of atomic cross sections leads to an increased transparency of the upper atmosphere for escaping O flux [5] and stimulate the collisional ejection of He atoms. References [1] Krasnopolsky, V. A., and G. R. Gladstone (2005), Helium on Mars and Venus: EUVE observations and modeling, Icarus, 176, 395. [2] Chassefiere E. and F. Leblanc (2004), Mars atmospheric escape and evolution; interaction with the solar wind, Planetary and Space Science, 52, 1039 [3] Krasnopolsky, V. (2010), Solar activity variations of thermospheric temperatures on Mars and a problem of CO in the lower atmoshpere, Icarus, 207, 638. [4] Fox, J. L

  16. Upstream energetic ions under radial IMF - A critical test of the Fermi model

    NASA Technical Reports Server (NTRS)

    Sarris, E. T.; Krimigis, S. M.

    1988-01-01

    Eight years of interplanetary magnetic field (IMF) and energetic particle observations obtained by the IMP-8 spacecraft upstream from the bow shock have been surveyed, and 63 cases when the upstream IMF remained radial for extended periods of time (greater than 1 hour) have been accumulated. Of these, two cases have been selected during which measurable fluxes of ambient solar or corotating energetic particle events were absent. These conditions provide an excellent test to the theories of the origin of upstream energetic ions. It is shown that there are extended periods with radial IMF when no upstream energetic ions were detected. It is further shown that energetic ions in the range E of between 50 keV and 1 MeV, inclusive, are not continuously present but appear in bursts of intensities varying by more than an order of magnitude under persistently radial IMF. These measurements contradict a fundamental prediction of the Fermi mechanism for the origin of the upstream energetic ions, namely that such ions should always be present on radial IMF lines. The observations are consistent with the hypothesis that energetic (greater than about 50 keV) ions leak out from, and appear in the upstream medium sporadically, following the onset of magnetic activity within the magnetosphere.

  17. High energy primary knock-on process in metal deuterium systems initiated by bombardment with noble gas ions

    NASA Astrophysics Data System (ADS)

    Gann, V. V.; Tolstolutskaya, G. D.

    2008-08-01

    An experimental study confirms the possibility of nuclear fusion reactions initiating in metal-deuterium targets by bombarding them with ions that are not the reagents of the fusion reaction, in particular, with noble gas ions. The yields of (d,d) and (d,t) reactions were measured as functions of energy (0.4-3.2 MeV) and mass of incident ions (He +, Ne +, Ar +, Kr + and Xe +). Irradiation by heavy ions produced a number of energetic deuterium atoms in the deuteride and deuterium + tritium metal targets. At ion energies of ˜0.1-1 MeV the d-d reaction yields are relatively high. A model of nuclear fusion reaction cross-sections in atomic collision cascades initiated by noble gas ion beam in metal-deuterium target is developed. The method for calculation tritium or deuterium recoil fluxes and the yield of d-d fusion reaction in subsequent collisions was proposed. It was shown that D(d,p)t and D(t,n) 4He reactions mainly occur in energy region of the recoiled D-atom from 10 keV to 250 keV. The calculated probabilities of d-d and d-t fusion reactions were found to be in a good agreement with the experimental data.

  18. Effect of Coulomb collision on the negative ion extraction mechanism in negative ion sources.

    PubMed

    Goto, I; Miyamoto, K; Nishioka, S; Mattei, S; Lettry, J; Abe, S; Hatayama, A

    2016-02-01

    To improve the H(-) ion beam optics, it is necessary to understand the energy relaxation process of surface produced H(-) ions in the extraction region of Cs seeded H(-) ion sources. Coulomb collisions of charged particles have been introduced to the 2D3V-PIC (two dimension in real space and three dimension in velocity space particle-in-cell) model for the H(-) extraction by using the binary collision model. Due to Coulomb collision, the lower energy part of the ion energy distribution function of H(-) ions has been greatly increased. The mean kinetic energy of the surface produced H(-) ions has been reduced to 0.65 eV from 1.5 eV. It has been suggested that the beam optics of the extracted H(-) ion beam is strongly affected by the energy relaxation process due to Coulomb collision.

  19. Interaction of boron cluster ions with water: Single collision dynamics and sequential etching

    NASA Astrophysics Data System (ADS)

    Hintz, Paul A.; Ruatta, Stephen A.; Anderson, Scott L.

    1990-01-01

    Reactions of mass-selected, cooled, boron cluster ions (B+n, n=1-14) with water have been studied for collision energies from 0.1 to 6.0 eV. Most work was done with D2O, however isotope effects were examined for selected reactant cluster ions. For all size clusters there are exoergic product channels, which in most cases have no activation barriers. Cross sections are generally large, however there are fluctuations with cluster size in total reactivity, collision energy dependences, and in product distributions. For small cluster ions, there is a multitude of product channels. For clusters larger than B+6, the product distributions are dominated by a single channel: Bn-1D++DBO. Under multiple collision conditions, the primary products undergo a remarkable sequence of secondary ``etching'' reactions. As these occur, boron atoms are continuously replaced by hydrogen, and the intermediate products retain the composition: Bn-mH+m. This highly efficient chemistry appears to continue unchanged as the composition changes from pure boron to mostly hydrogen. Comparison of these results is made with boron cluster ion reactions with O2 and D2, as well as reactions with water of aluminum and silicon cluster ions. Some discussion is given of the thermochemistry for these reactions, and a possible problem with the thermochemical data in the BOD/DBO system is discussed.

  20. Effects of Neutral Density on Energetic Ions Produced Near High-Current Hollow Cathodes

    NASA Technical Reports Server (NTRS)

    Kameyama, Ikuya

    1997-01-01

    Energy distributions of ion current from high-current, xenon hollow cathodes, which are essential information to understand erosion phenomena observed in high-power ion thrusters, were obtained using an electrostatic energy analyzer (ESA). The effects of ambient pressure and external flow rate introduced immediately downstream of hollow cathode on ion currents with energies greater than that associated with the cathode-to-anode potential difference were investigated. The results were analyzed to determine the changes in the magnitudes of ion currents to the ESA at various energies. Either increasing the ambient pressure or adding external flow induces an increase in the distribution of ion currents with moderate energies (epsilon less than 25 to 35 eV) and a decrease in the distribution for high energies (epsilon greater than 25 to 35 eV). The magnitude of the current distribution increase in the moderate energy range is greater for a cathode equipped with a toroidal keeper than for one without a keeper, but the distribution in the high energy range does not seem to be affected by a keeper. An MHD model, which has been proposed to describe energetic-ion production mechanism in hollow cathode at high discharge currents, was developed to describe these effects. The results show, however, that this model involves no mechanism by which a significant increase of ion current could occur at any energy. It was found, on the other hand, that the potential-hill model of energetic ion production, which assumes existence of a local maximum of plasma potential, could explain combined increases in the currents of ions with moderate energies and decreases in high energy ions due to increased neutral atom density using a charge-exchange mechanism. The existing, simplified version of the potential-hill model, however, shows poor quantitative agreement with measured ion-current-energy-distribution changes induced by neutral density changes.

  1. A search for energetic ion directivity in large solar flares

    NASA Astrophysics Data System (ADS)

    Vestrand, W. Thomas

    One of the key observational questions for solar flare physics is: What is the number, the energy spectrum, and the angular distribution of flare accelerated ions? The standard method for deriving ion spectral shape employs the ratio of influences observed on the 4-7 MeV band to the narrow neutron capture line at 2.223 MeV. The 4-7 MeV band is dominated by the principal nuclear de-excitation lines from C-12 and O-16 which are generated in the low chromosphere by the direct excitation or spallation of nuclei by energetic ions. In contrast, the narrow 2.223 MeV line is produced by the capture of thermal neutrons on protons in the photosphere. These capture neutrons are generated by energetic ion interactions and thermalized by scattering in the solar atmosphere. In a series of papers, Ramaty, Lingenfelter, and their collaborators have calculated the expected ratio of fluence in the 4-7 MeV band to the 2.223 MeV line for a wide range of energetic ion spectral shapes (see, e.g. Hua and Lingenfelter 1987). Another technique for deriving ion spectral shapes and angular distributions uses the relative strength of the Compton tail associated with the 2.223 MeV neutron capture line (Vestrand 1988, 1990). This technique can independently constrain both the angular and the energy distribution of the energetic parent ions. The combination of this tail/line strength diagnostic with the line/(4-7) MeV fluence ratio can allow one to constrain both properties of the energetic ion distributions. The primary objective of our Solar Maximum Mission (SMM) guest investigator program was to study measurements of neutron capture line emission and prompt nuclear de-excitation for large flares detected by the Solar Maximum Mission/ Gamma-Ray Spectrometer (SMM/GRS) and to use these established line diagnostics to study the properties of flare accelerated ions.

  2. Holographic heavy ion collisions with baryon charge

    DOE PAGES

    Casalderrey-Solana, Jorge; Mateos, David; van der Schee, Wilke; ...

    2016-09-19

    We numerically simulate collisions of charged shockwaves in Einstein-Maxwell theory in anti-de Sitter space as a toy model of heavy ion collisions with non-zero baryon charge. The stress tensor and the baryon current become well described by charged hydrodynamics at roughly the same time. The effect of the charge density on generic observables is typically no larger than 15%. Finally, we find significant stopping of the baryon charge and compare our results with those in heavy ion collision experiments.

  3. Modeling Emission of Heavy Energetic Neutral Atoms from the Heliosphere

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Swaczyna, Paweł; Bzowski, Maciej, E-mail: pswaczyna@cbk.waw.pl

    2017-09-10

    Observations of energetic neutral atoms (ENAs) are a fruitful tool for remote diagnosis of the plasma in the heliosphere and its vicinity. So far, instruments detecting ENAs from the heliosphere were configured for observations of hydrogen atoms. Here, we estimate emissions of ENAs of the heavy chemical elements helium, oxygen, nitrogen, and neon. A large portion of the heliospheric ENAs is created in the inner heliosheath from neutralized interstellar pick-up ions (PUIs). We modeled this process and calculated full-sky intensities of ENAs for energies 0.2–130 keV/nuc. We found that the largest fluxes among considered species are expected for helium, smallermore » for oxygen and nitrogen, and smallest for neon. The obtained intensities are 50–10{sup 6} times smaller than the hydrogen ENA intensities observed by IBEX . The detection of heavy ENAs will be possible if a future ENA detector is equipped with the capability to measure the masses of observed atoms. Because of different reaction cross-sections among the different species, observations of heavy ENAs can allow for a better understanding of global structure of the heliosphere as well as the transport and energization of PUIs in the heliosphere.« less

  4. Fast computation of high energy elastic collision scattering angle for electric propulsion plume simulation

    NASA Astrophysics Data System (ADS)

    Araki, Samuel J.

    2016-11-01

    In the plumes of Hall thrusters and ion thrusters, high energy ions experience elastic collisions with slow neutral atoms. These collisions involve a process of momentum exchange, altering the initial velocity vectors of the collision pair. In addition to the momentum exchange process, ions and atoms can exchange electrons, resulting in slow charge-exchange ions and fast atoms. In these simulations, it is particularly important to accurately perform computations of ion-atom elastic collisions in determining the plume current profile and assessing the integration of spacecraft components. The existing models are currently capable of accurate calculation but are not fast enough such that the calculation can be a bottleneck of plume simulations. This study investigates methods to accelerate an ion-atom elastic collision calculation that includes both momentum- and charge-exchange processes. The scattering angles are pre-computed through a classical approach with ab initio spin-orbit free potential and are stored in a two-dimensional array as functions of impact parameter and energy. When performing a collision calculation for an ion-atom pair, the scattering angle is computed by a table lookup and multiple linear interpolations, given the relative energy and randomly determined impact parameter. In order to further accelerate the calculations, the number of collision calculations is reduced by properly defining two cut-off cross-sections for the elastic scattering. In the MCC method, the target atom needs to be sampled; however, it is confirmed that initial target atom velocity does not play a significant role in typical electric propulsion plume simulations such that the sampling process is unnecessary. With these implementations, the computational run-time to perform a collision calculation is reduced significantly compared to previous methods, while retaining the accuracy of the high fidelity models.

  5. Modeling and Analysis of Ultrarelativistic Heavy Ion Collisions

    NASA Astrophysics Data System (ADS)

    McCormack, William; Pratt, Scott

    2014-09-01

    High-energy collisions of heavy ions, such as gold, copper, or uranium serve as an important means of studying quantum chromodynamic matter. When relativistic nuclei collide, a hot, energetic fireball of dissociated partonic matter is created; this super-hadronic matter is believed to be the quark gluon plasma (QGP), which is theorized to have comprised the universe immediately following the big bang. As the fireball expands and cools, it reaches freeze-out temperatures, and quarks hadronize into baryons and mesons. To characterize this super-hadronic matter, one can use balance functions, a means of studying correlations due to local charge conservation. In particular, the simple model used in this research assumed two waves of localized charge-anticharge production, with an abrupt transition from the QGP stage to hadronization. Balance functions were constructed as the sum of these two charge production components, and four parameters were manipulated to match the model's output with experimental data taken from the STAR Collaboration at RHIC. Results show that the chemical composition of the super-hadronic matter are consistent with that of a thermally equilibrated QGP. High-energy collisions of heavy ions, such as gold, copper, or uranium serve as an important means of studying quantum chromodynamic matter. When relativistic nuclei collide, a hot, energetic fireball of dissociated partonic matter is created; this super-hadronic matter is believed to be the quark gluon plasma (QGP), which is theorized to have comprised the universe immediately following the big bang. As the fireball expands and cools, it reaches freeze-out temperatures, and quarks hadronize into baryons and mesons. To characterize this super-hadronic matter, one can use balance functions, a means of studying correlations due to local charge conservation. In particular, the simple model used in this research assumed two waves of localized charge-anticharge production, with an abrupt transition

  6. Transport, charge exchange and loss of energetic heavy ions in the earth's radiation belts - Applicability and limitations of theory

    NASA Technical Reports Server (NTRS)

    Spjeldvik, W. N.

    1981-01-01

    Computer simulations of processes which control the relative abundances of ions in the trapping regions of geospace are compared with observations from discriminating ion detectors. Energy losses due to Coulomb collisions between ions and exospheric neutrals are considered, along with charge exchange losses and internal charge exchanges. The time evolution of energetic ion fluxes of equatorially mirroring ions under radial diffusion is modelled to include geomagnetic and geoelectric fluctutations. Limits to the validity of diffusion transport theory are discussed, and the simulation is noted to contain provisions for six ionic charge states and the source effect on the radiation belt oxygen ion distributions. Comparisons are made with ion flux data gathered on Explorer 45 and ISEE-1 spacecraft and results indicate that internal charge exchanges cause the radiation belt ion charge state to be independent of source charge rate characteristics, and relative charge state distribution is independent of the radially diffusive transport rate below the charge state redistribution zone.

  7. Charge Transfer Processes in Collisions of Si4+ Ions with He Atoms at Intermediate Energies

    NASA Astrophysics Data System (ADS)

    Suzuki, R.; Watanabe, A.; Sato, H.; Gu, J. P.; Hirsch, G.; Buenker, R. J.; Kimura, M.; Stancil, P. C.

    Charge transfer in collisions of Si4+ ions with He atoms below 100 keV/u is studied by using a molecular orbital representation within both the semiclassical and quantal representations. Single transfer reaction Si4++He →Si3++He+ has been studied by a number of theoretical investigations. In addition to the reaction (1), the first semiclassical MOCC calculations are performed for the double transfer channel Si4++HE→Si2++He2+ Nine molecular states that connect both with single and double electron transfer processes are considered in the present model. Electronic states and corresponding couplings are determined by the multireference single- and double- excitation configuration interaction method. The present cross sections tie well with the earlier calculations of Stancil et al., Phys. Rev. A 55, 1064 (1997) at lower energies, but show a rather different magnitude from those of Bacchus-Montabonel and Ceyzeriat, Phys. Rev. A 58, 1162 (1998). The present rate constant is found to be significantly different from the experimental finding of Fang and Kwong, Phys. Rev. A 59, 342 (1996) at 4,600 K, and hence does not support the experiment.

  8. Quasi-four-body treatment of charge transfer in the collision of protons with atomic helium: I. Thomas related mechanisms

    NASA Astrophysics Data System (ADS)

    Safarzade, Zohre; Fathi, Reza; Shojaei Akbarabadi, Farideh; Bolorizadeh, Mohammad A.

    2018-04-01

    The scattering of a completely bare ion by atoms larger than hydrogen is at least a four-body interaction, and the charge transfer channel involves a two-step process. Amongst the two-step interactions of the high-velocity single charge transfer in an anion-atom collision, there is one whose amplitude demonstrates a peak in the angular distribution of the cross sections. This peak, the so-called Thomas peak, was predicted by Thomas in a two-step interaction, classically, which could also be described through three-body quantum mechanical models. This work discusses a four-body quantum treatment of the charge transfer in ion-atom collisions, where two-step interactions illustrating a Thomas peak are emphasized. In addition, the Pauli exclusion principle is taken into account for the initial and final states as well as the operators. It will be demonstrated that there is a momentum condition for each two-step interaction to occur in a single charge transfer channel, where new classical interactions lead to the Thomas mechanism.

  9. Apparatus and method for extracting power from energetic ions produced in nuclear fusion

    DOEpatents

    Fisch, N.J.; Rax, J.M.

    1994-12-20

    An apparatus and method of extracting power from energetic ions produced by nuclear fusion in a toroidal plasma to enhance respectively the toroidal plasma current and fusion reactivity. By injecting waves of predetermined frequency and phase traveling substantially in a selected poloidal direction within the plasma, the energetic ions become diffused in energy and space such that the energetic ions lose energy and amplify the waves. The amplified waves are further adapted to travel substantially in a selected toroidal direction to increase preferentially the energy of electrons traveling in one toroidal direction which, in turn, enhances or generates a toroidal plasma current. In an further adaptation, the amplified waves can be made to preferentially increase the energy of fuel ions within the plasma to enhance the fusion reactivity of the fuel ions. The described direct, or in situ, conversion of the energetic ion energy provides an efficient and economical means of delivering power to a fusion reactor. 4 figures.

  10. Apparatus and method for extracting power from energetic ions produced in nuclear fusion

    DOEpatents

    Fisch, Nathaniel J.; Rax, Jean M.

    1994-01-01

    An apparatus and method of extracting power from energetic ions produced by nuclear fusion in a toroidal plasma to enhance respectively the toroidal plasma current and fusion reactivity. By injecting waves of predetermined frequency and phase traveling substantially in a selected poloidal direction within the plasma, the energetic ions become diffused in energy and space such that the energetic ions lose energy and amplify the waves. The amplified waves are further adapted to travel substantially in a selected toroidal direction to increase preferentially the energy of electrons traveling in one toroidal direction which, in turn, enhances or generates a toroidal plasma current. In an further adaptation, the amplified waves can be made to preferentially increase the energy of fuel ions within the plasma to enhance the fusion reactivity of the fuel ions. The described direct, or in situ, conversion of the energetic ion energy provides an efficient and economical means of delivering power to a fusion reactor.

  11. Low-energy collisions of helium clusters with size-selected cobalt cluster ions

    NASA Astrophysics Data System (ADS)

    Odaka, Hideho; Ichihashi, Masahiko

    2017-04-01

    Collisions of helium clusters with size-selected cobalt cluster ions, Com+ (m ≤ 5), were studied experimentally by using a merging beam technique. The product ions, Com+Hen (cluster complexes), were mass-analyzed, and this result indicates that more than 20 helium atoms can be attached onto Com+ at the relative velocities of 103 m/s. The measured size distributions of the cluster complexes indicate that there are relatively stable complexes: Co2+Hen (n = 2, 4, 6, and 12), Co3+Hen (n = 3, 6), Co4+He4, and Co5+Hen (n = 3, 6, 8, and 10). These stabilities are explained in terms of their geometric structures. The yields of the cluster complexes were also measured as a function of the relative velocity (1 × 102-4 × 103 m/s), and this result demonstrates that the main interaction in the collision process changes with the increase of the collision energy from the electrostatic interaction, which includes the induced deformation of HeN, to the hard-sphere interaction. Supplementary material in the form of one pdf file available from the Journal web page at http://https://doi.org/10.1140/epjd/e2017-80015-0

  12. Electron-ion collision-frequency for x-ray Thomson scattering in dense plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Faussurier, Gérald, E-mail: gerald.faussurier@cea.fr; Blancard, Christophe

    2016-01-15

    Two methods are presented to calculate the electron-ion collision-frequency in dense plasmas using an average-atom model. The first one is based on the Kubo-Greenwood approach. The second one uses the Born and Lenard-Balescu approximations. The two methods are used to calculate x-ray Thomson scattering spectra. Illustrations are shown for dense beryllium and aluminum plasmas. Comparisons with experiment are presented in the case of an x-ray Thomson scattering spectrum.

  13. Effects of Ion-ion Collisions and Inhomogeneity in Two-dimensional Simulations of Stimulated Brillouin Backscattering*

    NASA Astrophysics Data System (ADS)

    Cohen, B. I.

    2005-10-01

    Two-dimensional simulations of stimulated Brillouin backscattering (SBBS) with the BZOHAR^1 code have been extended to include ion-ion collisions and spatial nonuniformity in the mean ion flow. BZOHAR hybrid simulations (particle-in-cell kinetic ions and Boltzmann fluid electrons) have shown^2 that SBBS saturation is dominated by ion trapping effects and secondary instability of the primary ion wave (decay into subharmonic ion waves and ion quasi-modes). Here we address the effects of ion collisions^3 on SBBS saturation and employ the efficient Langevin ion collision algorithm of Ref. 4 and the Fokker-Planck collision operator of Ref. 5. We also report simulations of SBBS with a linear gradient in the mean ion drift, which in conjunction with the nonlinear frequency shift due to ion trapping can introduce auto-resonance effects that may enhance reflectivities.^6 For SBBS in a high-gain limit with ion collisions or inhomogeneity, we find that ion trapping and secondary ion wave instabilities are robust saturation mechanisms. *Work performed for US DOE by UC LLNL under Contr. W-7405-ENG-48. ^1B.I. Cohen, et al., Phys. Plasmas 4, 956 (1997). ^2B.I. Cohen, et al., Phys. Plasmas, 12, 052703 (2005),. ^ 3P.W. Rambo, et al., Phys. Rev. Lett. 79, 83 (1997). ^ 4M.E. Jones, et al., J. Comp. Phys. 123, 169, (1996). ^ 5W. M. Manheimer, et al., J. Comp. Phys. 138, 563 (1997). ^ 6E.A. Williams, et al., Phys. Plasmas 11, 231 (2004).

  14. Role of positive ions on the surface production of negative ions in a fusion plasma reactor type negative ion source--Insights from a three dimensional particle-in-cell Monte Carlo collisions model

    NASA Astrophysics Data System (ADS)

    Fubiani, G.; Boeuf, J. P.

    2013-11-01

    Results from a 3D self-consistent Particle-In-Cell Monte Carlo Collisions (PIC MCC) model of a high power fusion-type negative ion source are presented for the first time. The model is used to calculate the plasma characteristics of the ITER prototype BATMAN ion source developed in Garching. Special emphasis is put on the production of negative ions on the plasma grid surface. The question of the relative roles of the impact of neutral hydrogen atoms and positive ions on the cesiated grid surface has attracted much attention recently and the 3D PIC MCC model is used to address this question. The results show that the production of negative ions by positive ion impact on the plasma grid is small with respect to the production by atomic hydrogen or deuterium bombardment (less than 10%).

  15. Energetic Metastable Oxygen and Nitrogen Atoms in the Terrestrial Atmosphere

    NASA Technical Reports Server (NTRS)

    Kharchenko, Vasili; Dalgarno, A.

    2005-01-01

    This report summarizes our research performed under NASA Grant NAG5-11857. The three-year grant have been supported by the Geospace Sciences SR&T program. We have investigated the energetic metastable oxygen and nitrogen atoms in the terrestrial stratosphere, mesosphere and thermosphere. Hot atoms in the atmosphere are produced by solar radiation, the solar wind and various ionic reactions. Nascent hot atoms arise in ground and excited electronic states, and their translational energies are larger by two - three orders of magnitude than the thermal energies of the ambient gas. The relaxation kinetics of hot atoms determines the rate of atmospheric heating, the intensities of aeronomic reactions, and the rate of atom escape from the planet. Modeling of the non-Maxwellian energy distributions of metastable oxygen and nitrogen atoms have been focused on the determination of their impact on the energetics and chemistry of the terrestrial atmosphere between 25 and 250 km . At this altitudes, we have calculated the energy distribution functions of metastable O and N atoms and computed non-equilibrium rates of important aeronomic reactions, such as destruction of the water molecules by O(1D) atoms and production of highly excited nitric oxide molecules. In the upper atmosphere, the metastable O(lD) and N(2D) play important role in formation of the upward atomic fluxes. We have computed the upward fluxes of the metastable and ground state oxygen atoms in the upper atmosphere above 250 km. The accurate distributions of the metastable atoms have been evaluated for the day and night-time conditions.

  16. Electron capture in collisions of S4+ with atomic hydrogen

    NASA Astrophysics Data System (ADS)

    Stancil, P. C.; Turner, A. R.; Cooper, D. L.; Schultz, D. R.; Rakovic, M. J.; Fritsch, W.; Zygelman, B.

    2001-06-01

    Charge transfer processes due to collisions of ground state S4+(3s2 1S) ions with atomic hydrogen are investigated for energies between 1 meV u-1 and 10 MeV u-1 using the quantum mechanical molecular-orbital close-coupling (MOCC), atomic-orbital close-coupling, classical trajectory Monte Carlo (CTMC) and continuum distorted wave methods. The MOCC calculations utilize ab initio adiabatic potentials and nonadiabatic radial coupling matrix elements obtained with the spin-coupled valence-bond approach. A number of variants of the CTMC approach were explored, including different momentum and radial distributions for the initial state, as well as effective charge and quantum-defect models to determine the corresponding quantum state after capture into final partially stripped S3+ excited classical states. Hydrogen target isotope effects are explored and rate coefficients for temperatures between 100 and 106 K are also presented.

  17. H- and He-like Charge-Exchange Induced X-ray Emission due to Ion Collisions with H, He, and H2

    NASA Astrophysics Data System (ADS)

    Cumbee, Renata; Mullen, Patrick; Miller, Ansley; Lyons, David; Shelton, Robin L.; Schultz, David R.; Stancil, Phillip C.; Leutenegger, Maurice A.

    2017-08-01

    When a hot plasma collides with a cold neutral gas interactions occur between the microscopic constituents including charge exchange (CX). CX is a process in which an electron can be transferred from a neutral atom or molecule into an excited energy level of an ion. Following this transfer, the excited electron relaxes to lower energy levels, emitting X-rays. This process has been established as a primary source of X-ray emission within our solar system, such as when the solar wind interacts with cometary and planetary atmospheres, and outside of our solar system, such as in the hot outflows of starburst galaxies.Since the CX X-ray emission spectrum varies greatly with collision velocity, it is critical that realistic CX data are included in X-ray spectral models of astrophysical environments in which CX might be significant in order to correctly estimate the ion abundance and plasma velocities. Here, line ratios and spectra are computed using theoretical CX cross sections obtained with the multi-channel Landau-Zener, atomic-orbital close-coupling, and classical-trajectory Monte Carlo methods for a variety of collision energies relevant to various astrophysical environments. Collisions of bare and H-like C, N, O, Ne, Mg, Al, Si, P, S, and Cl ions are shown with H, He, and H2 as the neutral collision targets. An X-ray model using line ratios for C-Si ions is then performed within XSPEC for a region of the Cygnus Loop supernova remnant for 8 collision energies in order to highlight the variation in CX spectral models with collision energy.R. Cumbee’s research was partially supported by an appointment to the NASA Postdoctoral Program at NASA GSFC, administered by Universities Space Research Association under contract with NASA. Work at UGA was partially supported by NASA grants NNX09AC46G and NNG09WF24I.

  18. Effect of the helically-trapped energetic-ion-driven resistive interchange modes on energetic ion confinement in the Large Helical Device

    NASA Astrophysics Data System (ADS)

    Ogawa, K.; Isobe, M.; Kawase, H.; Nishitani, T.; Seki, R.; Osakabe, M.; LHD Experiment Group

    2018-04-01

    The effect of the helically-trapped energetic-ion-driven resistive interchange modes (EICs) on energetic ion confinement is studied in the Large Helical Device deuterium plasmas. Neutron diagnostics such as the neutron flux monitor and the vertical neutron camera (VNC) are used in order to measure neutrons mainly created by beam-plasma reactions. The line-integrated neutron profiles are obtained by VNC in magnetohydrodynamic-quiet plasma with various neutral beam (NB) injection patterns. The profiles are consistent with that expected by the beam ion density calculated using orbit-following simulations. Significant decreases of the total neutron emission rate (S n) and the neutron counting rate of the VNC (C n) in central cords are observed to be synchronized with EIC bursts with perpendicular-NB injection. The drop rates of both S n and C n increase with EIC amplitude and reach around 50%. The line-integrated neutron profiles before and after EIC burst show that in the central cords, C n decrease due to EIC burst whereas there is almost no change in the other cords. The experimental results suggests that the effect of EIC on helically-trapped beam ion is substantial, however the effect of passing beam ion is not significant.

  19. Global distribution of the Energetic Neutral Atom (ENA) / precipitating ion particulate albedo from Low Altitude Emission (LAE) source regions over the last solar maximum

    NASA Astrophysics Data System (ADS)

    Mackler, D. A.; Jahn, J.; Mukherjee, J.; Pollock, C. J.

    2012-12-01

    Charge exchange between ring current ions spiraling into the upper atmosphere and terrestrial neutral constituents produces a non-isotropic distribution of escaping Energetic Neutral Atoms (ENA). These ENA's are no longer tied to the magnetic field, and can therefore be observed remotely from orbiting platforms. Particularly of interest is Low Altitude Emissions (LAE) of ENA's. These ENA emissions occur near the oxygen exobase and constitute the brightest ENA signatures during geomagnetic storms. In this study we build on previous work described in Pollock et al. [2009] in which IMAGE/MENA data was used to compute the Invariant Latitude (IL) and Magnetic Local Time (MLT) distributions of ENA's observed in the 29 October 2003 storm. The algorithms developed in Pollock et al. [2009] are used to compute the IL and MLT of LAE source regions for 76 identified storms at different phases of solar cycle 23. The ENA flux from the source regions are divided by in-situ ion precipitation obtained by DMSP-SSJ4 and NOAA-TED to give a global mapping of the particulate albedo during storm times.

  20. Spectr-W3 Online Database On Atomic Properties Of Atoms And Ions

    NASA Astrophysics Data System (ADS)

    Faenov, A. Ya.; Magunov, A. I.; Pikuz, T. A.; Skobelev, I. Yu.; Loboda, P. A.; Bakshayev, N. N.; Gagarin, S. V.; Komosko, V. V.; Kuznetsov, K. S.; Markelenkov, S. A.

    2002-10-01

    Recent progress in the novel information technologies based on the World-Wide Web (WWW) gives a new possibility for a worldwide exchange of atomic spectral and collisional data. This facilitates joint efforts of the international scientific community in basic and applied research, promising technological developments, and university education programs. Special-purpose atomic databases (ADBs) are needed for an effective employment of large-scale datasets. The ADB SPECTR developed at MISDC of VNIIFTRI has been used during the last decade in several laboratories in the world, including RFNC-VNIITF. The DB SPECTR accumulates a considerable amount of atomic data (about 500,000 records). These data were extracted from publications on experimental and theoretical studies in atomic physics, astrophysics, and plasma spectroscopy during the last few decades. The information for atoms and ions comprises the ionization potentials, the energy levels, the wavelengths and transition probabilities, and, to a lesser extent, -- also the autoionization rates, and the electron-ion collision cross-sections and rates. The data are supplied with source references and comments elucidating the details of computations or measurements. Our goal is to create an interactive WWW information resource based on the extended and updated Web-oriented database version SPECTR-W3 and its further integration into the family of specialized atomic databases on the Internet. The version will incorporate novel experimental and theoretical data. An appropriate revision of the previously accumulated data will be performed from the viewpoint of their consistency to the current state-of-the-art. We are particularly interested in cooperation for storing the atomic collision data. Presently, a software shell with the up-to-date Web-interface is being developed to work with the SPECTR-W3 database. The shell would include the subsystems of information retrieval, input, update, and output in/from the database and

  1. Foreshock waves as observed in energetic ion flux

    NASA Astrophysics Data System (ADS)

    Petrukovich, A. A.; Chugunova, O. M.; Inamori, T.; Kudela, K.; Stetiarova, J.

    2017-05-01

    Oscillations of energetic ion fluxes with periods 10-100 s are often present in the Earth's foreshock. Detailed analysis of wave properties with Time History of Events and Macroscale Interactions during Substorms data and comparisons with other data sets confirm that these oscillations are the previously unnoticed part of well-known "30 s" waves but are observed mainly for higher-speed solar wind. Simultaneous magnetic oscillations have similar periods, large amplitudes, and nonharmonic unstable waveforms or shocklet-type appearance, suggesting their nonlinearity, also typical for high solar wind speed. Analysis of the general foreshock data set of Interball project shows that the average flux of the backstreaming energetic ions increases more than 1 order of magnitude, when solar wind speed increases from 400 to 500 km/s.

  2. Transfer-free synthesis of graphene-like atomically thin carbon films on SiC by ion beam mixing technique

    NASA Astrophysics Data System (ADS)

    Zhang, Rui; Chen, Fenghua; Wang, Jinbin; Fu, Dejun

    2018-03-01

    Here we demonstrate the synthesis of graphene directly on SiC substrates at 900 °C using ion beam mixing technique with energetic carbon cluster ions on Ni/SiC structures. The thickness of 7-8 nm Ni films was evaporated on the SiC substrates, followed by C cluster ion bombarding. Carbon cluster ions C4 were bombarded at 16 keV with the dosage of 4 × 1016 atoms/cm2. After thermal annealing process Ni silicides were formed, whereas C atoms either from the decomposition of the SiC substrates or the implanted contributes to the graphene synthesis by segregating and precipitating process. The limited solubility of carbon atoms in silicides, involving SiC, Ni2Si, Ni5Si2, Ni3Si, resulted in diffusion and precipitation of carbon atoms to form graphene on top of Ni and the interface of Ni/SiC. The ion beam mixing technique provides an attractive production method of a transfer-free graphene growth on SiC and be compatible with current device fabrication.

  3. Bose condensation of nuclei in heavy ion collisions

    NASA Technical Reports Server (NTRS)

    Tripathi, Ram K.; Townsend, Lawrence W.

    1994-01-01

    Using a fully self-consistent quantum statistical model, we demonstrate the possibility of Bose condensation of nuclei in heavy ion collisions. The most favorable conditions of high densities and low temperatures are usually associated with astrophysical processes and may be difficult to achieve in heavy ion collisions. Nonetheless, some suggestions for the possible experimental verification of the existence of this phenomenon are made.

  4. Chiral Magnetic Effect in Heavy Ion Collisions

    DOE PAGES

    Liao, Jinfeng

    2016-12-01

    The Chiral Magnetic Effect (CME) is a remarkable phenomenon that stems from highly nontrivial interplay of QCD chiral symmetry, axial anomaly, and gluonic topology. We show it is of fundamental importance to search for the CME in experiments. The heavy ion collisions provide a unique environment where a hot chiral-symmetric quark-gluon plasma is created, gluonic topological fluctuations generate chirality imbalance, and very strong magnetic fields |Β →|~m 2 π are present during the early stage of such collisions. Significant efforts have been made to look for CME signals in heavy ion collision experiments. Lastly, in this contribution we give amore » brief overview on the status of such efforts.« less

  5. On contribution of energetic and heavy ions to the plasma pressure: Storm Sept 27 - Oct 4, 2002

    NASA Astrophysics Data System (ADS)

    Kronberg, E. A.; Mouikis, C.; Kistler, L. M.; Dandouras, I. S.; Daly, P. W.; Welling, D. T.; Grigorenko, E. E.

    2015-12-01

    Contribution of the energetic ions (>> 40 keV) and of heavy ions into the total plasma pressure is often neglected. In this study we evaluate the contribution of these components for the storm observed from September 27 to October 4 in 2002. The thermal component of the pressure for the protons, helium and oxygen at 0--40 keV/q is measured by the Cluster/CIS/CODIF sensor. The contribution of the energetic ions at energies >> 40 keV is calculated from the Cluster/RAPID/IIMS observations. The results show that before the storm has initiated, the contribution of the energetic ions in to the total pressure is indeed negligible in the tail plasma sheet, less than ˜1%. However, with the storm development contribution of the energetic part becomes significant, up to ˜30%, towards the recovery phase and cannot be neglected. Heavy ions contribute to the 27% of the total pressure and half of them are energetic. The contribution of energetic ions to the pressure of the ring current (L≃5) is significant. The heavy ions play a dominant role in the plasma pressure, about 62% during the main phase of the magnetic storm. Half of them are energetic ions. The SWMF/BATS-R-US MHD model underestimates the contribution of the energetic and heavy ions in to the ion distribution in the magnetotail plasma sheet and the ring current. The ring current plasma pressure distorts the terrestrial internal magnetic field and defines magnetic storm. Therefore, it is essential to take in to account the contribution of the energetic and heavy ions.

  6. Thin Film Deposition Using Energetic Ions

    PubMed Central

    Manova, Darina; Gerlach, Jürgen W.; Mändl, Stephan

    2010-01-01

    One important recent trend in deposition technology is the continuous expansion of available processes towards higher ion assistance with the subsequent beneficial effects to film properties. Nowadays, a multitude of processes, including laser ablation and deposition, vacuum arc deposition, ion assisted deposition, high power impulse magnetron sputtering and plasma immersion ion implantation, are available. However, there are obstacles to overcome in all technologies, including line-of-sight processes, particle contaminations and low growth rates, which lead to ongoing process refinements and development of new methods. Concerning the deposited thin films, control of energetic ion bombardment leads to improved adhesion, reduced substrate temperatures, control of intrinsic stress within the films as well as adjustment of surface texture, phase formation and nanotopography. This review illustrates recent trends for both areas; plasma process and solid state surface processes. PMID:28883323

  7. A comparison of energetic ions in the plasma depletion layer and the quasi-parallel magnetosheath

    NASA Technical Reports Server (NTRS)

    Fuselier, Stephen A.

    1994-01-01

    Energetic ion spectra measured by the Active Magnetospheric Particle Tracer Explorers/Charge Composition Explorer (AMPTE/CCE) downstream from the Earth's quasi-parallel bow shock (in the quasi-parallel magnetosheath) and in the plasma depletion layer are compared. In the latter region, energetic ions are from a single source, leakage of magnetospheric ions across the magnetopause and into the plasma depletion layer. In the former region, both the magnetospheric source and shock acceleration of the thermal solar wind population at the quasi-parallel shock can contribute to the energetic ion spectra. The relative strengths of these two energetic ion sources are determined through the comparison of spectra from the two regions. It is found that magnetospheric leakage can provide an upper limit of 35% of the total energetic H(+) population in the quasi-parallel magnetosheath near the magnetopause in the energy range from approximately 10 to approximately 80 keV/e and substantially less than this limit for the energetic He(2+) population. The rest of the energetic H(+) population and nearly all of the energetic He(2+) population are accelerated out of the thermal solar wind population through shock acceleration processes. By comparing the energetic and thermal He(2+) and H(+) populations in the quasi-parallel magnetosheath, it is found that the quasi-parallel bow shock is 2 to 3 times more efficient at accelerating He(2+) than H(+). This result is consistent with previous estimates from shock acceleration theory and simulati ons.

  8. Surface normal velocity distribution of sputtered Zr-atoms for light-ion irradiation

    NASA Astrophysics Data System (ADS)

    Bay, H. L.; Berres, W.; Hintz, E.

    1982-03-01

    The velocity distribution of sputtered Zr-atoms has been measured for 8 keV Ar + and He + ions and 2.5 keV D + ion irradiation at normal incidence. The measurements were performed with the aid of laser induced fluorescence spectroscopy (LIFS) using a CW-laser pumped dye-laser. The influence of the measuring geometry was investigated and found to be in good agreement with calculation. For light-ion sputtering the collision-cascade theory is no longer applicable. Here a distinct shift in the velocity distributions towards lower velocities compared with the Ar results was found. The shift can be correlated to anisotropic effects in connection with the change in the maximum recoil energy Tm in the cascade.

  9. Energetic Neutral Atom Imaging of the Lunar Poles and Night-Side

    NASA Astrophysics Data System (ADS)

    Vorburger, Audrey; Wurz, Peter; Barabash, Stas; Wieser, Martin; Futaana, Yoshifumi; Bhardwaj, Anil; Dhanya, Mb; Asamura, Kazushi

    2016-04-01

    So far all reported scientific results derived from measurements of the Chandrayaan-1 Energetic Neutral Analyzer (CENA) on board the Indian lunar mission Chandrayaan-1 focused on the sun-lit part of the Moon. Here, for the first time, we present the analysis of the Moon - solar wind interaction in Energetic Neutral Atoms (ENAs) from measurements over the poles and the night-side of the Moon. The Moon, not being protected by a global magnetic field or an atmosphere, is constantly bombarded by solar wind ions. Until recently, it was tacitly assumed that the solar wind ions that impinge onto the lunar surface are almost completely absorbed ( < 1% reflection) by the lunar surface (e.g. Crider and Vondrak [Adv. Space Res., 2002]; Feldman et al. [J. Geophys. Res., 2000]). However, recent observations conducted by the two ENA sensors of NASA's Interstellar Boundary Explorer and by Chandrayaan-1/CENA showed an average global energetic neutral atom (ENA) albedo of 10% - 20% (e.g. McComas et al. [Geophys. Res. Lett., 2009], Wieser et al. [Planet. Space Sci., 2009], Vorburger et al. [J. Geophys. Res., 2013]). In the past 6 years, several studies have closely investigated this solar wind - lunar surface interaction from various viewpoints. The main findings of these studies include (1) the dependency of the hydrogen reflection ratio on the local crustal magnetic fields (e.g., Wieser et al. [Geophys. Res. Lett. ,2010] and Vorburger et al. [J. Geophys. Res., 2012]), (2) the determination of the energy spectra of backscattered neutralized solar wind protons (Futaana et al. [J. Geophys. Res., 2012]) (3) the use of the spectra shape to remotely define an electric potential above a lunar magnetic anomaly (Futaana et al. [Geophys. Res. Lett., 2012]), (4) the favouring of backscattering over forward-scattering of impinging solar wind hydrogen particles (Vorburger et al. [Geophys. Res. Lett., 2011]), (5) the first-ever measurements of sputtered lunar oxygen (Vorburger et al. [J

  10. Observations of energetic ions near the Venus ionopause

    NASA Technical Reports Server (NTRS)

    Kasprzak, W. T.; Taylor, H. A.; Brace, L. H.; Niemann, H. B.; Scarf, F. L.

    1982-01-01

    Ions (primarily O/+/) with spacecraft rest frame energies greater than 40 eV have been observed by the Pioneer Venus Neutral Mass Spectrometer. The signature occurs in about 13% of the 700 orbits examined, primarily near the ionopause and at all solar zenith angles. The energetic ions coincide in location with superthermal ions observed by the Ion Mass Spectrometer and more rarely occur in some of the plasma clouds observed by the Electron Temperature Probe. These observations in conjunction with measurements by the Plasma Wave Instrument near the ionopause suggest that the ions are accelerated out of ionospheric plasma by the shocked solar wind through plasma wave-particle interactions.

  11. Heating rates in collisionally opaque alkali-metal atom traps: Role of secondary collisions

    NASA Astrophysics Data System (ADS)

    Beijerinck, H. C. W.

    2000-12-01

    Grazing collisions with background gas are the major cause of trap loss and trap heating in atom traps. To first order, these effects do not depend on the trap density. In collisionally opaque trapped atom clouds, however, scattered atoms with an energy E larger than the effective trap depth Eeff, which are destined to escape from the atom cloud, will have a finite probability for a secondary collision. This results in a contribution to the heating rate that depends on the column density of the trapped atoms, i.e., the product of density and characteristic size of the trap. For alkali-metal atom traps, secondary collisions are quite important due to the strong long-range interaction with like atoms. We derive a simple analytical expression for the secondary heating rate, showing a dependency proportional to E1/2eff. When extrapolating to a vanishing column density, only primary collisions with the background gas will contribute to the heating rate. This contribution is rather small, due to the weak long-range interaction of the usual background gas species in an ultrahigh-vacuum system-He, Ne, or Ar-with the trapped alkali-metal atoms. We conclude that the transition between trap-loss collisions and heating collisions is determined by a cutoff energy 200 μK<=Eeff<=400 μK, much smaller than the actual trap depth E in most magnetic traps. Atoms with an energy Eeffatoms Li through Cs as a function of the effective trap depth, the column density of the trap, and the species in the background gas. The predictions of our model are in good agreement with the experimental data of Myatt for heating rates in high-density 87Rb-atom magnetic traps at JILA, including the effect of the rf shield and the composition of the background gas. It is shown that collisions with atoms from the Oort

  12. Energetic-ion acceleration and transport in the upstream region of Jupiter: Voyager 1 and 2

    NASA Technical Reports Server (NTRS)

    Baker, D. N.; Zwickl, R. D.; Carbary, J. F.; Krimigis, S. M.; Lepping, R. P.

    1982-01-01

    Long-lived upstream energetic ion events at Jupiter appear to be very similar in nearly all respects to upstream ion events at Earth. A notable difference between the two planetary systems is the enhanced heavy ion compositional signature reported for the Jovian events. This compositional feature has suggested that ions escaping from the Jovian magnetosphere play an important role in forming upstream ion populations at Jupiter. In contrast, models of energetic upstream ions at Earth emphasize in situ acceleration of reflected solar wind ions within the upstream region itself. Using Voyager 1 and 2 energetic ( approximately 30 keV) ion measurements near the magnetopause, in the magnetosheath, and immediately upstream of the bow shock, the compositional patterns are examined together with typical energy spectra in each of these regions. A model involving upstream Fermi acceleration early in events and emphasizing energetic particle escape in the prenoon part of the Jovian magnetosphere late in events is presented to explain many of the features in the upstream region of Jupiter.

  13. High-Energy Electron-Ion and Photon-Ion Collisions: Status and Challenges

    NASA Technical Reports Server (NTRS)

    Kallman, Timothy R.

    2010-01-01

    Non-LTE plasmas are ubiquitous in objects studied in the UV and X-ray energy bands. Collisional and photoionization cross sections for atoms and ions are fundamental to our ability to model such plasmas. Modeling is key in the X-ray band, where detector properties and limited spectral resolution limit the ability to measure model-independent line strengths, or other spectral features. Much of the motivation for studying such collisions and many of the tools, are not new. However, the motivation for such studies and their applications, have been affected by the advent of X-ray spectroscopy with the gratings on Chandra and XMM-Newton. In this talk I will review this motivation and describe the tools currently in use for such studies. I will also describe some current unresolved problems and the likely future needs for such data.

  14. Determination of Collision Cross Sections Using a Fourier Transform Electrostatic Linear Ion Trap Mass Spectrometer

    NASA Astrophysics Data System (ADS)

    Dziekonski, Eric T.; Johnson, Joshua T.; Lee, Kenneth W.; McLuckey, Scott A.

    2018-02-01

    Collision cross sections (CCSs) were determined from the frequency-domain linewidths in a Fourier transform electrostatic linear ion trap. With use of an ultrahigh-vacuum precision leak valve and nitrogen gas, transients were recorded as the background pressure in the mass analyzer chamber was varied between 4× 10-8 and 7 × 10-7 Torr. The energetic hard-sphere ion-neutral collision model, described by Xu and coworkers, was used to relate the recorded image charge to the CCS of the molecule. In lieu of our monoisotopically isolating the mass of interest, the known relative isotopic abundances were programmed into the Lorentzian fitting algorithm such that the linewidth was extracted from a sum of Lorentzians. Although this works only if the isotopic distribution is known a priori, it prevents ion loss, preserves the high signal-to-noise ratio, and minimizes the experimental error on our homebuilt instrument. Six tetraalkylammonium cations were used to correlate the CCS measured in the electrostatic linear ion trap with that measured by drift-tube ion mobility spectrometry, for which there was an excellent correlation ( R 2 ≈ 0.9999). Although the absolute CCSs derived with our method differ from those reported, the extracted linear correlation can be used to correct the raw CCS. With use of [angiotensin II]2+ and reserpine, the corrected CCSs (334.9 ± 2.1 and 250.1 ± 0.5, respectively) were in good agreement with the reported ion mobility spectrometry CCSs (335 and 254.3, respectively). With sufficient signal-to-noise ratio, the CCSs determined are reproducible to within a fraction of a percent, comparable to the uncertainties reported on dedicated ion mobility instruments.

  15. Cooling atomic ions with visible and infra-red light

    NASA Astrophysics Data System (ADS)

    Lindenfelser, F.; Marinelli, M.; Negnevitsky, V.; Ragg, S.; Home, J. P.

    2017-06-01

    We demonstrate the ability to load, cool and detect singly charged calcium ions in a surface electrode trap using only visible and infrared lasers for the trapped-ion control. As opposed to the standard methods of cooling using dipole-allowed transitions, we combine power broadening of a quadrupole transition at 729 nm with quenching of the upper level using a dipole allowed transition at 854 nm. By observing the resulting 393 nm fluorescence we are able to perform background-free detection of the ion. We show that this system can be used to smoothly transition between the Doppler cooling and sideband cooling regimes, and verify theoretical predictions throughout this range. We achieve scattering rates which reliably allow recooling after collision events and allow ions to be loaded from a thermal atomic beam. This work is compatible with recent advances in optical waveguides, and thus opens a path in current technologies for large-scale quantum information processing. In situations where dielectric materials are placed close to trapped ions, it carries the additional advantage of using wavelengths which do not lead to significant charging, which should facilitate high rate optical interfaces between remotely held ions.

  16. Collision cross sections and diffusion parameters for H and D in atomic oxygen. [in upper earth and Venus atmospheres

    NASA Technical Reports Server (NTRS)

    Hodges, R. R., Jr.

    1993-01-01

    Modeling the behavior of H and D in planetary exospheres requires detailed knowledge of the differential scattering cross sections for all of the important neutral-neutral and ion-neutral collision processes affecting these species over their entire ranges of interaction energies. In the upper atmospheres of Earth, Venus, and other planets as well, the interactions of H and D with atomic oxygen determine the rates of diffusion of escaping hydrogen isotopes through the thermosphere, the velocity distributions of exospheric atoms that encounter the upper thermosphere, the lifetimes of exospheric orbiters with periapsides near the exobase, and the transfer of momentum in collisions with hot O. The nature of H-O and D-O collisions and the derivation of a data base consisting of phase shifts and the differential, total, and momentum transfer cross sections for these interactions in the energy range 0.001 - 10 eV are discussed. Coefficients of mutual diffusion and thermal diffusion factors are calculated for temperatures of planetary interest.

  17. High baryon densities in heavy ion collisions at energies attainable at the BNL Relativistic Heavy-Ion Collider and the CERN Large Hadron Collider

    NASA Astrophysics Data System (ADS)

    Li, Ming; Kapusta, Joseph I.

    2017-01-01

    In very high-energy collisions nuclei are practically transparent to each other but produce very hot nearly baryon-free matter in the so-called central rapidity region. The energy in the central rapidity region comes from the kinetic energy of the colliding nuclei. We calculate the energy and rapidity loss of the nuclei using the color glass condensate model. This model also predicts the excitation energy of the nuclear fragments. Using a space-time picture of the collision we calculate the baryon and energy densities of the receding baryonic fireballs. For central collisions of gold nuclei at the highest energy attainable at the Relativistic Heavy-Ion Collider, for example, we find baryon densities more than ten times that of atomic nuclei over a large volume.

  18. Electron collisions with coherently prepared atomic targets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Trajmar, S.; Kanik, I.; LeClair, L.R.

    1998-02-01

    The subject of electron scattering by laser-excited atoms is briefly reviewed. To demonstrate some aspects of these electron collision processes, the authors describe the procedures and the results of a joint experimental and theoretical study concerning elastic scattering by coherently excited {sup 138}Ba (...6s6p {sup 1}P{sub 1}) atoms. Examples of experimental and theoretical collision parameters and magnetic sublevel differential cross sections for elastic scattering are given and compared. The convergent close coupling calculations (with the neglect of spin-orbit interaction) are in good agreement with experiment at 20 eV impact energy and 10, 15 and 20{degree} scattering angles and can bemore » expected to yield reliable integral magnetic sublevel and alignment creation cross sections. The role of these quantities in plasma polarization spectroscopy is pointed out.« less

  19. Characterization of epoxy carotenoids by fast atom bombardment collision-induced dissociation MS/MS.

    PubMed

    Maoka, Takashi; Fujiwara, Yasuhiro; Hashimoto, Keiji; Akimoto, Naoshige

    2004-02-01

    The characterization and structure of epoxy carotenoids possessing 5,6-epoxy, 5,8-epoxy and 3,6-epoxy end groups conjugated to the polyene chain were investigated using high-energy fast atom bombardment collision-induced dissociation MS/MS methods. In addition to [M - 80](+*), a characteristic fragment ion of an epoxy carotenoid, product ions resulting from the cleavage of C-C bonds in the polyene chain from the epoxy end group, such as m/z 181 (b ion) and 121 (c ion), were detected. On the other hand, diagnostic ions of m/z 286 (e-H ion) and 312 (f-H ion) were observed, not in the 5,6-epoxy or 5,8-epoxy carotenoid but in the 3,6-epoxy carotenoid. These fragmentation patterns can be used to distinguish 3,6-epoxy carotenoids from 5,6-epoxy or 5,8-epoxy carotenoids. The structure of an epoxy carotenoid, 3,6-epoxy-5,6-dihydro-7',8'-didehydro-beta,beta-carotene-5,3'-diol (8), isolated from oyster, was characterized using FAB CID-MS/MS by comparing fragmentation patterns with those of related known compounds.

  20. Production and decay of K -shell hollow krypton in collisions with 52-197-MeV/u bare xenon ions

    NASA Astrophysics Data System (ADS)

    Shao, Caojie; Yu, Deyang; Cai, Xiaohong; Chen, Xi; Ma, Kun; Evslin, Jarah; Xue, Yingli; Wang, Wei; Kozhedub, Yury S.; Lu, Rongchun; Song, Zhangyong; Zhang, Mingwu; Liu, Junliang; Yang, Bian; Guo, Yipan; Zhang, Jianming; Ruan, Fangfang; Wu, Yehong; Zhang, Yuezhao; Dong, Chenzhong; Chen, Ximeng; Yang, Zhihu

    2017-07-01

    X-ray spectra of K -shell hollow krypton atoms produced in single collisions with 52-197-MeV/u X e54 + ions are measured in a heavy-ion storage ring equipped with an internal gas-jet target. Energy shifts of the K α1,2 s , K α1,2 h ,s , and K β1,3 s transitions are obtained. Thus the average number of the spectator L vacancies presented during the x-ray emission is deduced. From the relative intensities of the K α1,2 s and K α1,2 h ,s transitions, the ratio of K -shell hollow krypton to singly K -shell ionized atoms is determined to be 14 %-24 % . In the considered collisions, the K vacancies are mainly created by the direct ionization which cannot be calculated within the perturbation descriptions. The experimental results are compared with a relativistic coupled-channel calculation performed within the independent particle approximation.

  1. Hydrodynamic flow of ions and atoms in partially ionized plasmas.

    PubMed

    Nemirovsky, R A; Fredkin, D R; Ron, A

    2002-12-01

    We have derived the hydrodynamic equations of motion for a partially ionized plasma, when the ionized component and the neutral components have different flow velocities and kinetic temperatures. Starting from the kinetic equations for a gas of ions and a gas of atoms we have considered various processes of encounters between the two species: self-collisions, interspecies collisions, ionization, recombination, and charge exchange. Our results were obtained by developing a general approach for the hydrodynamics of a gas in a binary mixture, in particular when the components drift with respect to each other. This was applied to a partially ionized plasma, when the neutral-species gas and the charged-species gas have separate velocities. We have further suggested a generalized version of the relaxation time approximation and obtained the contributions of the interspecies encounters to the transport equations.

  2. Energetic Neutral Atom (ENA) Imaging of Mercury's Magnetosphere Onboard BepiColombo

    NASA Astrophysics Data System (ADS)

    Barabash, S.; Wieser, M.; Futaana, Y.; Holmström, M.; Asamura, K.; Saito, Y.; Wurz, P.

    2018-05-01

    We describe how energetic neutral atoms (ENA) are produced in Mercury’s magnetosphere, how they can be used to image the magnetosphere and surface, and how they are measured onboard the BepiColombo mission.

  3. Reactions of atomic oxygen with the chlorate ion and the perchlorate ion

    NASA Astrophysics Data System (ADS)

    Anan'ev, Vladimir; Miklin, Mikhail; Kriger, Ludmila

    2014-06-01

    The reactions of the chlorate ion with atomic oxygen formed under photolysis of the nitrate ion introduced to potassium chlorate crystal by co-crystallization were studied by optical and infrared absorption spectroscopy. The perchlorate ion was found to form in solids as product of addition reaction of singlet atomic oxygen, formed under dissociation of the peroxynitrite ion - the product of isomerization of the excited nitrate ion. Triplet atomic oxygen does not react with the chlorate ion. The atomic oxygen formed under photolysis of the nitrate ion introduced to potassium perchlorate crystal by co-crystallization does not react with the perchlorate ion.

  4. Spin relaxation in ultracold collisions of molecular radicals with alkali-metal atoms

    NASA Astrophysics Data System (ADS)

    Tscherbul, Timur; Klos, Jacek; Zukowski, Piotr

    2016-05-01

    We present accurate quantum scattering calculations of spin relaxation in ultracold collisions of alkali-metal atoms and polar 2 Σ molecules CaH, SrF, and SrOH. The calculations employ state-of-the-art ab initio interaction potentials and a rigorous quantum theory of atom-molecule collisions in a magnetic field based on the total angular momentum representation. We will further discuss the relevance of the results to atom-molecule sympathetic cooling experiments in a magnetic trap.

  5. Time-of-flight mass spectrographs—From ions to neutral atoms

    NASA Astrophysics Data System (ADS)

    Möbius, E.; Galvin, A. B.; Kistler, L. M.; Kucharek, H.; Popecki, M. A.

    2016-12-01

    After their introduction to space physics in the mid 1980s time-of-flight (TOF) spectrographs have become a main staple in spaceborne mass spectrometry. They have largely replaced magnetic spectrometers, except when extremely high mass resolution is required to identify complex molecules, for example, in the vicinity of comets or in planetary atmospheres. In combination with electrostatic analyzers and often solid state detectors, TOF spectrographs have become key instruments to diagnose space plasma velocity distributions, mass, and ionic charge composition. With a variety of implementation schemes that also include isochronous electric field configurations, TOF spectrographs can respond to diverse science requirements. This includes a wide range in mass resolution to allow the separation of medium heavy isotopes or to simply provide distributions of the major species, such as H, He, and O, to obtain information on source tracers or mass fluxes. With a top-hat analyzer at the front end, or in combination with deflectors for three-axis stabilized spacecraft, the distribution function of ions can be obtained with good time resolution. Most recently, the reach of TOF ion mass spectrographs has been extended to include energetic neutral atoms. After selecting the arrival direction with mechanical collimation, followed by conversion to ions, adapted TOF sensors form a new branch of the spectrograph family tree. We review the requirements, challenges, and implementation schemes for ion and neutral atom spectrographs, including potential directions for the future, while largely avoiding overlap with complementary contributions in this special issue.

  6. Calculation of extracted ion beam particle distribution including within-extractor collisions from H-alpha Doppler shift measurements.

    PubMed

    Kim, Tae-Seong; Kim, Jinchoon; In, Sang Ryul; Jeong, Seung Ho

    2008-02-01

    Prototype long pulse ion sources are being developed and tested toward the goal of a deuterium beam extraction of 120 keV/65 A. The latest prototype source consists of a magnetic bucket plasma generator and a four-grid copper accelerator system with multicircular apertures of 568 holes. To measure the angular divergence and the ion species of the ion beam, an optical multichannel analyzer (OMA) system for a Doppler-shifted H-alpha lights was set up at the end of a gas-cell neutralizer. But the OMA data are very difficult to analyze due to a large background level on the top of the three energy peaks (coming from H(+), H(2) (+), and H(3) (+)). These background spectra in the OMA signals seem to result from partially accelerated ion beams in the accelerator. Extracted ions could undergo a premature charge exchange as the accelerator column tends to have a high hydrogen partial pressure from the unused gas from the plasma generator, resulting in a continuous background of partially accelerated beam particles at the accelerator exit. This effect is calculated by accounting for all the possible atomic collision processes and numerically summing up three ion species across the accelerator column. The collection of all the atomic reaction cross sections and the numerical summing up will be presented. The result considerably depends on the background pressure and the ion beam species ratio (H(+), H(2) (+), and H(3) (+)). This effect constitutes more than 20% of the whole particle distribution. And the energy distribution of those suffering from collisions is broad and shows a broad maximum in the vicinity of the half and the third energy region.

  7. Energetic Ion Beam Production by a Low-Pressure Plasma Focus Discharge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lim, L. K.; Yap, S. L.; Wong, C. S.

    Energetic ion beam emissions in a 3 kJ Mather type plasma focus operating at low-pressure regime are investigated. Deuterium gas is used and the discharge is operated in a low-pressure regime of below 1 mbar. Formation of the current sheath during the breakdown phase at the back wall is assisted by a set delayed trigger pulse. Energetic and intense ion beams with good reproducibility have been obtained for the operating pressure ranging from 0.05 mbar to 0.5 mbar. Deuteron beam is determined by time resolved measurement by making use of three biased ion collectors placed at the end on direction.more » The average energies of deuteron beams are resolved by using time-of flight method. Correlation between the ion emissions and the current sheath dynamics is also discussed.« less

  8. Direct Depth- and Lateral- Imaging of Nanoscale Magnets Generated by Ion Impact

    PubMed Central

    Röder, Falk; Hlawacek, Gregor; Wintz, Sebastian; Hübner, René; Bischoff, Lothar; Lichte, Hannes; Potzger, Kay; Lindner, Jürgen; Fassbender, Jürgen; Bali, Rantej

    2015-01-01

    Nanomagnets form the building blocks for a variety of spin-transport, spin-wave and data storage devices. In this work we generated nanoscale magnets by exploiting the phenomenon of disorder-induced ferromagnetism; disorder was induced locally on a chemically ordered, initially non-ferromagnetic, Fe60Al40 precursor film using  nm diameter beam of Ne+ ions at 25 keV energy. The beam of energetic ions randomized the atomic arrangement locally, leading to the formation of ferromagnetism in the ion-affected regime. The interaction of a penetrating ion with host atoms is known to be spatially inhomogeneous, raising questions on the magnetic homogeneity of nanostructures caused by ion-induced collision cascades. Direct holographic observations of the flux-lines emergent from the disorder-induced magnetic nanostructures were made in order to measure the depth- and lateral- magnetization variation at ferromagnetic/non-ferromagnetic interfaces. Our results suggest that high-resolution nanomagnets of practically any desired 2-dimensional geometry can be directly written onto selected alloy thin films using a nano-focussed ion-beam stylus, thus enabling the rapid prototyping and testing of novel magnetization configurations for their magneto-coupling and spin-wave properties. PMID:26584789

  9. Quantification of evaporation induced error in atom probe tomography using molecular dynamics simulation.

    PubMed

    Chen, Shu Jian; Yao, Xupei; Zheng, Changxi; Duan, Wen Hui

    2017-11-01

    Non-equilibrium molecular dynamics was used to simulate the dynamics of atoms at the atom probe surface and five objective functions were used to quantify errors. The results suggested that before ionization, thermal vibration and collision caused the atoms to displace up to 1Å and 25Å respectively. The average atom displacements were found to vary between 0.2 and 0.5Å. About 9 to 17% of the atoms were affected by collision. Due to the effects of collision and ion-ion repulsion, the back-calculated positions were on average 0.3-0.5Å different from the pre-ionized positions of the atoms when the number of ions generated per pulse was minimal. This difference could increase up to 8-10Å when 1.5ion/nm 2 were evaporated per pulse. On the basis of the results, surface ion density was considered an important factor that needed to be controlled to minimize error in the evaporation process. Copyright © 2017. Published by Elsevier B.V.

  10. Probing interactions of thermal Sr Rydberg atoms using simultaneous optical and ion detection

    NASA Astrophysics Data System (ADS)

    Hanley, Ryan K.; Bounds, Alistair D.; Huillery, Paul; Keegan, Niamh C.; Faoro, Riccardo; Bridge, Elizabeth M.; Weatherill, Kevin J.; Jones, Matthew P. A.

    2017-06-01

    We demonstrate a method for probing interaction effects in a thermal beam of strontium atoms using simultaneous measurements of Rydberg EIT and spontaneously created ions or electrons. We present a Doppler-averaged optical Bloch equation model that reproduces the optical signals and allows us to connect the optical coherences and the populations. We use this to determine that the spontaneous ionization process in our system occurs due to collisions between Rydberg and ground state atoms in the EIT regime. We measure the cross section of this process to be 0.6+/- 0.2 {σ }{geo}, where {σ }{geo} is the geometrical cross section of the Rydberg atom. This result adds complementary insight to a range of recent studies of interacting thermal Rydberg ensembles.

  11. Complexified boost invariance and holographic heavy ion collisions

    DOE PAGES

    Gubser, Steven S.; van der Schee, Wilke

    2015-01-08

    At strong coupling holographic studies have shown that heavy ion collisions do not obey normal boost invariance. Here we study a modified boost invariance through a complex shift in time, and show that this leads to surprisingly good agreement with numerical holographic computations. When including perturbations the agreement becomes even better, both in the hydrodynamic and the far-from-equilibrium regime. Finally, one of the main advantages is an analytic formulation of the stress-energy tensor of the longitudinal dynamics of holographic heavy ion collisions.

  12. Plasma wave interactions with energetic ions near the magnetic equator

    NASA Technical Reports Server (NTRS)

    Gurnett, D. A.

    1975-01-01

    An intense band of electromagnetic noise is frequently observed near the magnetic equatorial plane at radial distance from about 2 to 5 Re. Recent wideband wave-form measurements with the IMP-6 and Hawkeye-1 satellites have shown that the equatorial noise consists of a complex superposition of many harmonically spaced lines. Several distinctly different frequency spacings are often evident in the same spectrum. The frequency spacing typically ranges from a few Hz to a few tens of Hz. It is suggested that these waves are interacting with energetic protons, alpha particles, and other heavy ions trapped near the magnetic equator. The possible role these waves play in controlling the distribution of the energetic ions is considered.

  13. Ab Initio Study of Chemical Reactions of Cold SrF and CaF Molecules with Alkali-Metal and Alkaline-Earth-Metal Atoms: The Implications for Sympathetic Cooling.

    PubMed

    Kosicki, Maciej Bartosz; Kędziera, Dariusz; Żuchowski, Piotr Szymon

    2017-06-01

    We investigate the energetics of the atom exchange reaction in the SrF + alkali-metal atom and CaF + alkali-metal atom systems. Such reactions are possible only for collisions of SrF and CaF with the lithium atoms, while they are energetically forbidden for other alkali-metal atoms. Specifically, we focus on SrF interacting with Li, Rb, and Sr atoms and use ab initio methods to demonstrate that the SrF + Li and SrF + Sr reactions are barrierless. We present potential energy surfaces for the interaction of the SrF molecule with the Li, Rb, and Sr atoms in their energetically lowest-lying electronic spin states. The obtained potential energy surfaces are deep and exhibit profound interaction anisotropies. We predict that the collisions of SrF molecules in the rotational or Zeeman excited states most likely have a strong inelastic character. We discuss the prospects for the sympathetic cooling of SrF and CaF molecules using ultracold alkali-metal atoms.

  14. Atomic force microscopy study on topography of films produced by ion-based techniques

    NASA Astrophysics Data System (ADS)

    Wang, X.; Liu, X. H.; Zou, S. C.; Martin, P. J.; Bendavid, A.

    1996-09-01

    The evolution of surface morphologies of films prepared by ion-based deposition techniques has been investigated by atomic force microscopy. Two deposition processes, filtered arc deposition (FAD) and ion-beam-assisted deposition, where low-energy (<100 eV) ion irradiation and high-energy (several tens of keV) ion-beam bombardment concurrent with film growth were involved, respectively, have been employed to prepare TiN and Al films. Comparative studies on the effect of energetic ions on the development of topography have been performed between the low-ion-energy regime and high-ion-energy regime. In addition, the relationship between topography and mechanical properties of thin films has been revealed, by involving thin films prepared by thermal evaporation deposition (TED), where almost all depositing particles are neutral. In the images of the TED TiN and Al films, a large number of porous and deep boundaries between columnar grains was observed, suggesting a very rough and loose surface. In contrast, the FAD films exhibited much denser surface morphologies, although still columnar. The root-mean-square roughness of the FAD films was less than 1 Å. Hardness test and optical parameter measurement indicated that the FAD films were much harder and, in the case of optical films, much more transparent than the TED films, which was considered to arise from the denser surface morphologies rather than crystallization of the films. The high density and super smoothness of the FAD films, and the resultant mechanical and optical properties superior to those of the TED films, were attributed to the enhancement of surface migration of the deposited adatoms in the FAD process, which could provide intensive low-energy ion irradiation during film growth. As for topography modification by high-energy ion-beam bombardment concurrent with film growth, in addition to the increase of surface diffusion due to elastic collision and thermal spikes, physical sputtering must be

  15. Optical radiation from the interaction of energetic atoms, ions, electrons, and photons with surfaces

    NASA Technical Reports Server (NTRS)

    Tolk, N. H.; Albridge, R. G.; Haglund, R. F., Jr.; Mendenhall, M. H.

    1985-01-01

    Heavy particle, electron, and UV photon bombardment of solid surfaces has been recently observed to result in the emission of infrared, visible, and ultraviolet radiation. This effect occurs over a wide range of incident projectile energies. Line radiation arising from transitions between discrete atomic or molecular levels may be attributed to the decay of excited particles which have been sputtered or electronically/chemically desorbed from the surface. Broadband continuum radiation, which is also observed, is believed to arise either from fluorescence of the near surface bulk or from the radiative decay of desorbed excited clusters. Spacecraft, in the ambient near Earth environment, are subject to such bombardment. The dynamics of energetic particle and photon beam interactions with surfaces which lead to surface erosion and glow phenomena will be treated. In addition, projected experimental and theoretical studies of oxygen and nitrogen beam surface interactions on materials characteristic of spacecraft surfaces will be discussed.

  16. Universal pion freeze-out in heavy-ion collisions.

    PubMed

    Adamová, D; Agakichiev, G; Appelshäuser, H; Belaga, V; Braun-Munzinger, P; Castillo, A; Cherlin, A; Damjanović, S; Dietel, T; Dietrich, L; Drees, A; Esumi, S I; Filimonov, K; Fomenko, K; Fraenkel, Z; Garabatos, C; Glässel, P; Hering, G; Holeczek, J; Kushpil, V; Lenkeit, B; Ludolphs, W; Maas, A; Marín, A; Milosević, J; Milov, A; Miśkowiec, D; Panebrattsev, Yu; Petchenova, O; Petrácek, V; Pfeiffer, A; Rak, J; Ravinovich, I; Rehak, P; Sako, H; Schmitz, W; Schukraft, J; Sedykh, S; Shimansky, S; Slívová, J; Specht, H J; Stachel, J; Sumbera, M; Tilsner, H; Tserruya, I; Wessels, J P; Wienold, T; Windelband, B; Wurm, J P; Xie, W; Yurevich, S; Yurevich, V

    2003-01-17

    Based on an evaluation of data on pion interferometry and on particle yields at midrapidity, we propose a universal condition for thermal freeze-out of pions in heavy-ion collisions. We show that freeze-out occurs when the mean free path of pions lambda(f) reaches a value of about 1 fm, which is much smaller than the spatial extent of the system at freeze-out. This critical mean free path is independent of the centrality of the collision and beam energy from the Alternating Gradient Synchrotron to the Relativistic Heavy Ion Collider.

  17. Suppressing Loss of Ions in an Atomic Clock

    NASA Technical Reports Server (NTRS)

    Prestage, John; Chung, Sang

    2010-01-01

    An improvement has been made in the design of a compact, highly stable mercury- ion clock to suppress a loss of ions as they are transferred between the quadrupole and higher multipole ion traps. Such clocks are being developed for use aboard spacecraft for navigation and planetary radio science. The modification is also applicable to ion clocks operating on Earth: indeed, the success of the modification has been demonstrated in construction and operation of a terrestrial breadboard prototype of the compact, highly stable mercury-ion clock. Selected aspects of the breadboard prototype at different stages of development were described in previous NASA Tech Briefs articles. The following background information is reviewed from previous articles: In this clock as in some prior ion clocks, mercury ions are shuttled between two ion traps, one a 16- pole linear radio-frequency trap, while the other is a quadrupole radio-frequency trap. In the quadrupole trap, ions are tightly confined and optical state selection from a 202Hg lamp is carried out. In the 16-pole trap, the ions are more loosely confined and atomic transitions are interrogated by use of a microwave beam at approximately 40.507 GHz. The trapping of ions effectively eliminates the frequency pulling that would otherwise be caused by collisions between clock atoms and the wall of a gas cell. The shuttling of the ions between the two traps enables separation of the state-selection process from the clock microwave-resonance process, so that each of these processes can be optimized independently of the other. This is similar to the operation of an atomic beam clock, except that with ions the beam can be halted and reversed as ions are shuttled back and forth between the two traps. When the two traps are driven at the same radio frequency, the strength of confinement can be reduced near the junction between the two traps, depending upon the relative phase of the RF voltage used to operate each of the two traps, and

  18. Energetic-ion-driven global instabilities in stellarator/helical plasmas and comparison with tokamak plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Toi, K.; Ogawa, K.; Isobe, M.

    2011-01-01

    Comprehensive understanding of energetic-ion-driven global instabilities such as Alfven eigenmodes (AEs) and their impact on energetic ions and bulk plasma is crucially important for tokamak and stellarator/helical plasmas and in the future for deuterium-tritium (DT) burning plasma experiments. Various types of global modes and their associated enhanced energetic ion transport are commonly observed in toroidal plasmas. Toroidicity-induced AEs and ellipticity-induced AEs, whose gaps are generated through poloidal mode coupling, are observed in both tokamak and stellarator/helical plasmas. Global AEs and reversed shear AEs, where toroidal couplings are not as dominant were also observed in those plasmas. Helicity induced AEs thatmore » exist only in 3D plasmas are observed in the large helical device (LHD) and Wendelstein 7 Advanced Stellarator plasmas. In addition, the geodesic acoustic mode that comes from plasma compressibility is destabilized by energetic ions in both tokamak and LHD plasmas. Nonlinear interaction of these modes and their influence on the confinement of the bulk plasma as well as energetic ions are observed in both plasmas. In this paper, the similarities and differences in these instabilities and their consequences for tokamak and stellarator/helical plasmas are summarized through comparison with the data sets obtained in LHD. In particular, this paper focuses on the differences caused by the rotational transform profile and the 2D or 3D geometrical structure of the plasma equilibrium. Important issues left for future study are listed.« less

  19. Semi-empirical scaling for ion-atom single charge exchange cross sections in the intermediate velocity regime

    NASA Astrophysics Data System (ADS)

    Friedman, B.; DuCharme, G.

    2017-06-01

    We present a semi-empirical scaling law for non-resonant ion-atom single charge exchange cross sections for collisions with velocities from {10}7 {{t}}{{o}} {10}9 {cm} {{{s}}}-1 and ions with positive charge q< 8. Non-resonant cross sections tend to have a velocity peak at collision velocities v≲ 1 {{a}}{{u}} with exponential decay around this peak. We construct a scaling formula for the location of this peak then choose a functional form for the cross section curve and scale it. The velocity at which the cross section peaks, v m, is proportional to the energy defect of the collision, {{Δ }}E, which we predict with the decay approximation. The value of the cross section maximum is proportional to the charge state q, inversely proportional to the target ionization energy I T, and inversely proportional to v m. For the shape of the cross section curve, we use a function that decays exponentially asymptotically at high and low velocities. We scale this function with parameters {v}{{m}},{I}{{T}},{Z}{{T}},{and} {Z}{{P}}, where the {Z}{{T},{{P}}} are the target and projectile atomic numbers. For the more than 100 cross section curves that we use to find the scaling rules, the scaling law predicts cross sections within a little over a factor of 2 on average.

  20. Universal behavior of charged particle production in heavy ion collisions

    NASA Astrophysics Data System (ADS)

    Phobos Collaboration; Steinberg, Peter A.; Back, B. B.; Baker, M. D.; Barton, D. S.; Betts, R. R.; Ballintijn, M.; Bickley, A. A.; Bindel, R.; Budzanowski, A.; Busza, W.; Carroll, A.; Decowski, M. P.; Garcia, E.; George, N.; Gulbrandsen, K.; Gushue, S.; Halliwell, C.; Hamblen, J.; Heintzelman, G. A.; Henderson, C.; Hofman, D. J.; Hollis, R. S.; Hołński, R.; Holzman, B.; Iordanova, A.; Johnson, E.; Kane, J. L.; Katzy, J.; Khan, N.; Kucewicz, W.; Kulinich, P.; Kuo, C. M.; Lin, W. T.; Manly, S.; McLeod, D.; Michałowski, J.; Mignerey, A. C.; Nouicer, R.; Olszewski, A.; Pak, R.; Park, I. C.; Pernegger, H.; Reed, C.; Remsberg, L. P.; Reuter, M.; Roland, C.; Roland, G.; Rosenberg, L.; Sagerer, J.; Sarin, P.; Sawicki, P.; Skulski, W.; Steadman, S. G.; Steinberg, P.; Stephans, G. S. F.; Stodulski, M.; Sukhanov, A.; Tang, J.-L.; Teng, R.; Trzupek, A.; Vale, C.; van Nieuwenhuizen, G. J.; Verdier, R.; Wadsworth, B.; Wolfs, F. L. H.; Wosiek, B.; Woźniak, K.; Wuosmaa, A. H.; Wysłouch, B.

    2003-03-01

    The PHOBOS experiment at RHIC has measured the multiplicity of primary charged particles as a function of centrality and pseudorapidity in Au+Au collisions at sqrt(s_NN) = 19.6, 130 and 200 GeV. Two kinds of universal behavior are observed in charged particle production in heavy ion collisions. The first is that forward particle production, over a range of energies, follows a universal limiting curve with a non-trivial centrality dependence. The second arises from comparisons with pp/pbar-p and e+e- data. N_tot/(N_part/2) in nuclear collisions at high energy scales with sqrt(s) in a similar way as N_tot in e+e- collisions and has a very weak centrality dependence. This feature may be related to a reduction in the leading particle effect due to the multiple collisions suffered per participant in heavy ion collisions.

  1. Manipulating Energetic Ion Velocity Space to Control Instabilities and Improve Tokamak Performance

    NASA Astrophysics Data System (ADS)

    Pace, David C.

    2017-10-01

    The first-ever demonstration of independent current (I) and voltage (V) control of high power neutral beams in tokamak plasma shots has successfully reduced the prevalence of instabilities and improved energetic ion confinement in experiments at the DIII-D tokamak. Energetic ions drive Alfvén eigenmode (AE) instabilities through a resonant energy exchange that can increase radial diffusion of the ions, thereby reducing beam heating and current drive efficiency. This resonance is incredibly sensitive to the ion velocity and orbit topology, which then allows changes in beam voltage (keeping the injected power constant through compensating changes in current) to remove nearly all instability drive. The implementation of temporal control of beam current and voltage allows for a reduction in the resonant energetic ion velocity space while maintaining the ability to inject maximum power. DIII-D low confinement (L-mode) plasmas demonstrate a nearly complete avoidance of AE activity in plasmas with 55 kV beam injection compared to the many AEs that are observed in plasmas featuring similar total beam power at 70 kV. Across the experimental range of beam settings, resulting increases in beam divergence have been inconsequential. High performance steady-state scenarios featuring equilibria that are conducive to dense arrays of Alfvén waves benefit the most from instability control mechanisms. One such scenario, the so-called high qmin scenario, demonstrates improved confinement and equilibrium evolution when the injected beam voltage begins at lower values (i.e., fewer resonances) and then increases as the plasma reaches its stationary period. These results suggest a future in which plasma confinement and performance is improved through continuous feedback control of auxiliary heating systems such that the energetic ion distribution is constantly adapted to produce an optimal plasma state. Work supported by US DOE under DE-FC02-04ER54698.

  2. Mechanisms of Stochastic Diffusion of Energetic Ions in Spherical Tori

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ya.I. Kolesnichenko; R.B. White; Yu.V. Yakovenko

    Stochastic diffusion of the energetic ions in spherical tori is considered. The following issues are addressed: (I) Goldston-White-Boozer diffusion in a rippled field; (ii) cyclotron-resonance-induced diffusion caused by the ripple; (iii) effects of non-conservation of the magnetic moment in an axisymmetric field. It is found that the stochastic diffusion in spherical tori with a weak magnetic field has a number of peculiarities in comparison with conventional tokamaks; in particular, it is characterized by an increased role of mechanisms associated with non-conservation of the particle magnetic moment. It is concluded that in current experiments on National Spherical Torus eXperiment (NSTX) themore » stochastic diffusion does not have a considerable influence on the confinement of energetic ions.« less

  3. Differences between Doppler velocities of ions and neutral atoms in a solar prominence

    NASA Astrophysics Data System (ADS)

    Anan, T.; Ichimoto, K.; Hillier, A.

    2017-05-01

    Context. In astrophysical systems with partially ionized plasma, the motion of ions is governed by the magnetic field while the neutral particles can only feel the magnetic field's Lorentz force indirectly through collisions with ions. The drift in the velocity between ionized and neutral species plays a key role in modifying important physical processes such as magnetic reconnection, damping of magnetohydrodynamic waves, transport of angular momentum in plasma through the magnetic field, and heating. Aims: This paper aims to investigate the differences between Doppler velocities of calcium ions and neutral hydrogen in a solar prominence to look for velocity differences between the neutral and ionized species. Methods: We simultaneously observed spectra of a prominence over an active region in H I 397 nm, H I 434 nm, Ca II 397 nm, and Ca II 854 nm using a high dispersion spectrograph of the Domeless Solar Telescope at Hida observatory. We compared the Doppler velocities, derived from the shift of the peak of the spectral lines presumably emitted from optically-thin plasma. Results: There are instances when the difference in velocities between neutral atoms and ions is significant, for example 1433 events ( 3% of sets of compared profiles) with a difference in velocity between neutral hydrogen atoms and calcium ions greater than 3σ of the measurement error. However, we also found significant differences between the Doppler velocities of two spectral lines emitted from the same species, and the probability density functions of velocity difference between the same species is not significantly different from those between neutral atoms and ions. Conclusions: We interpreted the difference of Doppler velocities as being a result of the motions of different components in the prominence along the line of sight, rather than the decoupling of neutral atoms from plasma. The movie attached to Fig. 1 is available at http://www.aanda.org

  4. Multiple-collision analysis of characteristic X-rays from low-energy Ar 2+ travelling in solid targets

    NASA Astrophysics Data System (ADS)

    Cipolla, Sam J.; Mildebrath, Mark E.

    1983-12-01

    The density of atoms in a solid target fosters a multiple-collision mechanism that leads to the production of an equilibrium fraction of L-shell vacancies in an incident heavy ion. It is then possiblein a subsequent ion-atom collision in the solid for an L-vacancy to be transferred to the K-shell of a target atom via rotational coupling of the 2p π-2p σ molecular orbitals formed in the ion-atom quasimolecule. The vacancy-transfer cross section and the equilibrium fraction and lifetime of the vacancies can be found by using an appropriate multiple-collision analysis of the characteristic target and projectile X-rays. Results will be presented for 160-380 keV Ar 2+ incident of targets of Mg, Al, and Si.

  5. Synthesis, Characterization, and Multimillion-Atom Simulation of Halogen-Based Energetic Materials for Agent Defeat

    DTIC Science & Technology

    2013-04-01

    DTRA-TR-13-23 Synthesis, Characterization, and Multimillion -Atom Simulation of Halogen-Based Energetic Materials for Agent Defeat Approved for...reagents for the destruction of biologically active materials and a simulation of their reactions on a multimillion atom scale with quantum...explosives for destruction of chemical & biological agents. Multimillion -atom molecular dynamics simulations with quantum mechanical accuracy were

  6. Dynamics Explorer 1: Energetic Ion Composition Spectrometer (EICS)

    NASA Technical Reports Server (NTRS)

    Shelley, E. G.; Peterson, W. K.; Collin, H. L.

    1994-01-01

    The Energetic Ion Composition Spectrometer (EICS) experiment was selected as part of the Dynamics Explorer (DE) Program. One of the primary goals of the DE program was to investigate in detail the plasma physics processes responsible for energizing thermal (approximately 1 eV) ionospheric ions and transporting them to the earth's plasma sheet and distant polar cap. The results of the EICS data analysis (including support of other investigators) and of the archiving efforts supported by this contract are summarized in this document. Also reported are some aspects of our operational support activities.

  7. Studying Thermodynamics in Heavy Ion Collisions

    NASA Astrophysics Data System (ADS)

    Bialas, A.; Czyz, W.; Wosiek, J.

    1999-01-01

    We discuss the possibility of measuring entropy of the system created in heavy ion collisions using the Ma coincidence method. The same method can also be used to test whether the system in question is in a state of equilibrium.

  8. Pulsed source of energetic atomic oxygen

    NASA Technical Reports Server (NTRS)

    Caledonia, George E.; Krech, Robert H.

    1987-01-01

    A pulsed high flux source of nearly monoenergetic atomic oxygen was designed, built, and successfully demonstrated. Molecular oxygen at several atmospheres pressure is introduced into an evacuated supersonic expansion nozzle through a pulsed molecular beam valve. An 18 J pulsed CO2 TEA laser is focused to intensities greater than 10(9) W/sq cm in the nozzle throat to generate a laser-induced breakdown. The resulting plasma is heated in excess of 20,000 K by a laser supported detonation wave, and then rapidly expands and cools. Nozzle geometry confines the expansion to provide rapid electron-ion recombination into atomic oxygen. Average O atom beam velocities from 5 to 13 km/s were measured at estimated fluxes to 10(18) atoms per pulse. Preliminary materials testing has produced the same surface oxygen enrichment in polyethylene samples as obtained on the STS-8 mission. Scanning electron microscope examinations of irradiated polymer surfaces reveal an erosion morphology similar to that obtained in low Earth orbit, with an estimated mass removal rate of approx. 10(-24) cu cm/atom. The characteristics of the O atom source and the results of some preliminary materials testing studies are reviewed.

  9. Collision-spike sputtering of Au nanoparticles

    DOE PAGES

    Sandoval, Luis; Urbassek, Herbert M.

    2015-08-06

    Ion irradiation of nanoparticles leads to enhanced sputter yields if the nanoparticle size is of the order of the ion penetration depth. While this feature is reasonably well understood for collision-cascade sputtering, we explore it in the regime of collision-spike sputtering using molecular-dynamics simulation. For the particular case of 200-keV Xe bombardment of Au particles, we show that collision spikes lead to abundant sputtering with an average yield of 397 ± 121 atoms compared to only 116 ± 48 atoms for a bulk Au target. Only around 31 % of the impact energy remains in the nanoparticles after impact; themore » remainder is transported away by the transmitted projectile and the ejecta. As a result, the sputter yield of supported nanoparticles is estimated to be around 80 % of that of free nanoparticles due to the suppression of forward sputtering.« less

  10. Diffusion of non-Gaussianity in heavy ion collisions

    NASA Astrophysics Data System (ADS)

    Kitazawa, Masakiyo; Asakawa, Masayuki; Ono, Hirosato

    2014-05-01

    We investigate the time evolution of higher order cumulants of bulk fluctuations of conserved charges in the hadronic stage in relativistic heavy ion collisions. The dynamical evolution of non-Gaussian fluctuations is modeled by the diffusion master equation. Using this model we predict that the fourth-order cumulant of net-electric charge is suppressed compared with the recently observed second-order one at ALICE for a reasonable parameter range. Significance of the measurements of various cumulants as functions of rapidity window to probe dynamical history of the hot medium created by heavy ion collisions is emphasized.

  11. A model of energetic ion effects on pressure driven tearing modes in tokamaks

    DOE PAGES

    Halfmoon, M. R.; Brennan, D. P.

    2017-06-05

    Here, the effects that energetic trapped ions have on linear resistive magnetohydrodynamic (MHD) instabilities are studied in a reduced model that captures the essential physics driving or damping the modes through variations in the magnetic shear. The drift-kinetic orbital interaction of a slowing down distribution of trapped energetic ions with a resistive MHD instability is integrated to a scalar contribution to the perturbed pressure, and entered into an asymptotic matching formalism for the resistive MHD dispersion relation. Toroidal magnetic field line curvature is included to model trapping in the particle distribution, in an otherwise cylindrical model. The focus is onmore » a configuration that is driven unstable to the m/n = 2/1 mode by increasing pressure, where m is the poloidal mode number and n is the toroidal. The particles and pressure can affect the mode both in the core region where there can be low and reversed shear and outside the resonant surface in significant positive shear. The results show that the energetic ions damp and stabilize the mode when orbiting in significant positive shear, increasing the marginal stability boundary. However, the inner core region contribution with low and reversed shear can drive the mode unstable. This effect of shear on the energetic ion pressure contribution is found to be consistent with the literature. These results explain the observation that the 2/1 mode was found to be damped and stabilized by energetic ions in delta δf-MHD simulations of tokamak experiments with positive shear throughout, while the 2/1 mode was found to be driven unstable in simulations of experiments with weakly reversed shear in the core. This is also found to be consistent with related experimental observations of the stability of the 2/1 mode changing significantly with core shear.« less

  12. A model of energetic ion effects on pressure driven tearing modes in tokamaks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Halfmoon, M. R.; Brennan, D. P.

    Here, the effects that energetic trapped ions have on linear resistive magnetohydrodynamic (MHD) instabilities are studied in a reduced model that captures the essential physics driving or damping the modes through variations in the magnetic shear. The drift-kinetic orbital interaction of a slowing down distribution of trapped energetic ions with a resistive MHD instability is integrated to a scalar contribution to the perturbed pressure, and entered into an asymptotic matching formalism for the resistive MHD dispersion relation. Toroidal magnetic field line curvature is included to model trapping in the particle distribution, in an otherwise cylindrical model. The focus is onmore » a configuration that is driven unstable to the m/n = 2/1 mode by increasing pressure, where m is the poloidal mode number and n is the toroidal. The particles and pressure can affect the mode both in the core region where there can be low and reversed shear and outside the resonant surface in significant positive shear. The results show that the energetic ions damp and stabilize the mode when orbiting in significant positive shear, increasing the marginal stability boundary. However, the inner core region contribution with low and reversed shear can drive the mode unstable. This effect of shear on the energetic ion pressure contribution is found to be consistent with the literature. These results explain the observation that the 2/1 mode was found to be damped and stabilized by energetic ions in delta δf-MHD simulations of tokamak experiments with positive shear throughout, while the 2/1 mode was found to be driven unstable in simulations of experiments with weakly reversed shear in the core. This is also found to be consistent with related experimental observations of the stability of the 2/1 mode changing significantly with core shear.« less

  13. Coherent J /ψ photoproduction in hadronic heavy-ion collisions

    NASA Astrophysics Data System (ADS)

    Zha, W.; Klein, S. R.; Ma, R.; Ruan, L.; Todoroki, T.; Tang, Z.; Xu, Z.; Yang, C.; Yang, Q.; Yang, S.

    2018-04-01

    Significant excesses of J /ψ yield at very low transverse momentum (pT<0.3 GeV/c ) were observed by the ALICE and STAR collaborations in peripheral hadronic A +A collisions. This is a sign of coherent photoproduction of J /ψ in violent hadronic interactions. Theoretically, the photoproduction of J /ψ in hadronic collisions raises questions about how spectator and nonspectator nucleons participate in the coherent reaction. We argue that the strong interactions in the overlapping region of incoming nuclei may disturb the coherent production, leaving room for different coupling assumptions. The destructive interference between photoproduction on ions moving in opposite directions also needs to be included. This paper presents calculations of J /ψ production from coherent photon-nucleus (γ +A →J /ψ +A ) interactions in hadronic A +A collisions at BNL Relativistic Heavy Ion Collider and CERN Large Hadron Collider energies with both nucleus and spectator coupling hypotheses. The integrated yield of coherent J /ψ as a function of centrality is found to be significantly different, especially towards central collisions, for different coupling scenarios. Differential distributions as a function of transverse momentum, azimuthal angle, and rapidity in different centrality bins are also shown, and found to be more sensitive to the Pomeron coupling than to the photon coupling. These predictions call for future experimental measurements to help better understand the coherent interaction in hadronic heavy-ion collisions.

  14. The role of electronic energy loss in ion beam modification of materials

    DOE PAGES

    Weber, William J.; Duffy, Dorothy M.; Thome, Lionel; ...

    2014-10-05

    The interaction of energetic ions with solids results in energy loss to both atomic nuclei and electrons in the solid. In this article, recent advances in understanding and modeling the additive and competitive effects of nuclear and electronic energy loss on the response of materials to ion irradiation are reviewed. Experimental methods and large-scale atomistic simulations are used to study the separate and combined effects of nuclear and electronic energy loss on ion beam modification of materials. The results demonstrate that nuclear and electronic energy loss can lead to additive effects on irradiation damage production in some materials; while inmore » other materials, the competitive effects of electronic energy loss leads to recovery of damage induced by elastic collision cascades. Lastly, these results have significant implications for ion beam modification of materials, non-thermal recovery of ion implantation damage, and the response of materials to extreme radiation environments.« less

  15. Ab initio study of charge transfer in B2+ low-energy collisions with atomic hydrogen

    NASA Astrophysics Data System (ADS)

    Turner, A. R.; Cooper, D. L.; Wang, J. G.; Stancil, P. C.

    2003-07-01

    Charge transfer processes due to collisions of ground state B2+(2s 2S) ions with atomic hydrogen are investigated using the quantum-mechanical molecular-orbital close-coupling (MOCC) method. The MOCC calculations utilize ab initio adiabatic potentials and nonadiabatic radial and rotational coupling matrix elements obtained with the spin-coupled valence-bond approach. Total and state-selective cross sections and rate coefficients are presented. Comparison with the existing experiments shows our results to be in good agreement. When E<80 eV/u, the differences between the current total MOCC cross sections with and without rotational coupling are small (<3%). Rotational coupling becomes more important with increasing energy: for collision energies E>400 eV/u, inclusion of rotational coupling increases the total cross section by 50% 80%, improving the agreement between the current calculations and experiments. For state-selective cross sections, rotational coupling induces mixing between different symmetries; however, its effect, especially at low collision energies, is not as important as had been suggested in previous work.

  16. Relativistic Many-Body Approach to Calculating Radiation and Autoionization Probabilities, Electron Collision Strengths For Multicharged Ions in a Plasma: Debae Approximation

    NASA Astrophysics Data System (ADS)

    Glushkov, Alexander; Loboda, Andrey; Nikola, Ludmila

    2011-10-01

    We present the uniform energy approach, formally based on the gauge-invariant relativistic many-body perturbation theory for the calculation of the radiative and autoionization probabilities, electron collision strengths and rate coefficients in a multicharged ions (in a collisionally pumped plasma). An account for the plasma medium influence is carried out within a Debae shielding approach. The aim is to study, in a uniform manner, elementary processes responsible for emission-line formation in a plasma. The energy shift due to the collision is arisen at first in the second PT order in the form of integral on the scattered electron energy. The cross-section is linked with imaginary part of the scattering energy shift. The electron collision excitation cross-sections and rate coefficients for some plasma Ne-, Ar-like multicharged ions are calculated within relativistic energy approach. We present the results of calculation the autoionization resonances energies and widths in heavy He-like multicharged ions and rare-earth atoms of Gd and Tm. To test the results of calculations we compare the obtained data for some Ne-like ions with other authors' calculations and available experimental data for a wide range of plasma conditions.

  17. The GOES-16 Energetic Heavy Ion Sensor (EHIS) Ion Composition and Flux Measurements

    NASA Astrophysics Data System (ADS)

    Connell, J. J.; Lopate, C.

    2017-12-01

    The Energetic Heavy Ion Sensor (EHIS) was built by the University of New Hampshire, subcontracted to Assurance Technology Corporation, as part of the Space Environmental In-Situ Suite (SEISS) on the new GOES-16 satellite (formerly GOES-R) in Geostationary orbit. EHIS measures energetic ions over the range 10-200 MeV for protons, and energy ranges for heavy ions corresponding to the same stopping range (e.g., 19-207 MeV/u for carbon and 38-488 MeV/u for iron). EHIS uses the Angle Detecting Inclined Sensors (ADIS) technique to provide single-element charge resolution. Though on an operational mission for Space Weather monitoring, EHIS can thus provide a new source of high quality Solar Particle Event (SPE) data for science studies. With a high rate of on-board processing ( 2000 events/s), EHIS will provide exceptional statistics for ion composition measurements in large SPEs. For the GOES Level 1-B and Level 2 data products, heavy ions are distinguished in EHIS using pulse-height analysis with on-board processing producing charge histograms for five energy bands. Fits to these data are normalized to priority rate data on the ground. The instrumental cadence for histograms is 1 minute and the primary Level 1-B heavy ion data products are 1-minute and 5-minute averages. We discuss the preliminary EHIS heavy ion data results which show elemental peaks from H to Fe, with peaks for the isotopes D and 3He. (GOES-16 was launched in 19 November, 2016 and data has, though July 2017, been dominated by Galactic Cosmic Rays.) The EHIS instrument development project was funded by NASA under contract NNG06HX01C.

  18. Efficient generation of energetic ions in multi-ion plasmas by radio-frequency heating

    NASA Astrophysics Data System (ADS)

    Kazakov, Ye. O.; Ongena, J.; Wright, J. C.; Wukitch, S. J.; Lerche, E.; Mantsinen, M. J.; van Eester, D.; Craciunescu, T.; Kiptily, V. G.; Lin, Y.; Nocente, M.; Nabais, F.; Nave, M. F. F.; Baranov, Y.; Bielecki, J.; Bilato, R.; Bobkov, V.; Crombé, K.; Czarnecka, A.; Faustin, J. M.; Felton, R.; Fitzgerald, M.; Gallart, D.; Giacomelli, L.; Golfinopoulos, T.; Hubbard, A. E.; Jacquet, Ph.; Johnson, T.; Lennholm, M.; Loarer, T.; Porkolab, M.; Sharapov, S. E.; Valcarcel, D.; van Schoor, M.; Weisen, H.; Marmar, E. S.; Baek, S. G.; Barnard, H.; Bonoli, P.; Brunner, D.; Candy, J.; Canik, J.; Churchill, R. M.; Cziegler, I.; Dekow, G.; Delgado-Aparicio, L.; Diallo, A.; Edlund, E.; Ennever, P.; Faust, I.; Fiore, C.; Gao, Chi; Golfinopoulos, T.; Greenwald, M.; Hartwig, Z. S.; Holland, C.; Hubbard, A. E.; Hughes, J. W.; Hutchinson, I. H.; Irby, J.; Labombard, B.; Lin, Yijun; Lipschultz, B.; Loarte, A.; Mumgaard, R.; Parker, R. R.; Porkolab, M.; Reinke, M. L.; Rice, J. E.; Scott, S.; Shiraiwa, S.; Snyder, P.; Sorbom, B.; Terry, D.; Terry, J. L.; Theiler, C.; Vieira, R.; Walk, J. R.; Wallace, G. M.; White, A.; Whyte, D.; Wolfe, S. M.; Wright, G. M.; Wright, J.; Wukitch, S. J.; Xu, P.; Abduallev, S.; Abhangi, M.; Abreu, P.; Afzal, M.; Aggarwal, K. M.; Ahlgren, T.; Ahn, J. H.; Aho-Mantila, L.; Aiba, N.; Airila, M.; Albanese, R.; Aldred, V.; Alegre, D.; Alessi, E.; Aleynikov, P.; Alfier, A.; Alkseev, A.; Allinson, M.; Alper, B.; Alves, E.; Ambrosino, G.; Ambrosino, R.; Amicucci, L.; Amosov, V.; Sundén, E. Andersson; Angelone, M.; Anghel, M.; Angioni, C.; Appel, L.; Appelbee, C.; Arena, P.; Ariola, M.; Arnichand, H.; Arshad, S.; Ash, A.; Ashikawa, N.; Aslanyan, V.; Asunta, O.; Auriemma, F.; Austin, Y.; Avotina, L.; Axton, M. D.; Ayres, C.; Bacharis, M.; Baciero, A.; Baião, D.; Bailey, S.; Baker, A.; Balboa, I.; Balden, M.; Balshaw, N.; Bament, R.; Banks, J. W.; Baranov, Y. F.; Barnard, M. A.; Barnes, D.; Barnes, M.; Barnsley, R.; Wiechec, A. Baron; Orte, L. Barrera; Baruzzo, M.; Basiuk, V.; Bassan, M.; Bastow, R.; Batista, A.; Batistoni, P.; Baughan, R.; Bauvir, B.; Baylor, L.; Bazylev, B.; Beal, J.; Beaumont, P. S.; Beckers, M.; Beckett, B.; Becoulet, A.; Bekris, N.; Beldishevski, M.; Bell, K.; Belli, F.; Bellinger, M.; Belonohy, É.; Ayed, N. Ben; Benterman, N. A.; Bergsåker, H.; Bernardo, J.; Bernert, M.; Berry, M.; Bertalot, L.; Besliu, C.; Beurskens, M.; Bieg, B.; Bielecki, J.; Biewer, T.; Bigi, M.; Bílková, P.; Binda, F.; Bisoffi, A.; Bizarro, J. P. S.; Björkas, C.; Blackburn, J.; Blackman, K.; Blackman, T. R.; Blanchard, P.; Blatchford, P.; Bobkov, V.; Boboc, A.; Bodnár, G.; Bogar, O.; Bolshakova, I.; Bolzonella, T.; Bonanomi, N.; Bonelli, F.; Boom, J.; Booth, J.; Borba, D.; Borodin, D.; Borodkina, I.; Botrugno, A.; Bottereau, C.; Boulting, P.; Bourdelle, C.; Bowden, M.; Bower, C.; Bowman, C.; Boyce, T.; Boyd, C.; Boyer, H. J.; Bradshaw, J. M. A.; Braic, V.; Bravanec, R.; Breizman, B.; Bremond, S.; Brennan, P. D.; Breton, S.; Brett, A.; Brezinsek, S.; Bright, M. D. J.; Brix, M.; Broeckx, W.; Brombin, M.; Brosławski, A.; Brown, D. P. D.; Brown, M.; Bruno, E.; Bucalossi, J.; Buch, J.; Buchanan, J.; Buckley, M. A.; Budny, R.; Bufferand, H.; Bulman, M.; Bulmer, N.; Bunting, P.; Buratti, P.; Burckhart, A.; Buscarino, A.; Busse, A.; Butler, N. K.; Bykov, I.; Byrne, J.; Cahyna, P.; Calabrò, G.; Calvo, I.; Camenen, Y.; Camp, P.; Campling, D. C.; Cane, J.; Cannas, B.; Capel, A. J.; Card, P. J.; Cardinali, A.; Carman, P.; Carr, M.; Carralero, D.; Carraro, L.; Carvalho, B. B.; Carvalho, I.; Carvalho, P.; Casson, F. J.; Castaldo, C.; Catarino, N.; Caumont, J.; Causa, F.; Cavazzana, R.; Cave-Ayland, K.; Cavinato, M.; Cecconello, M.; Ceccuzzi, S.; Cecil, E.; Cenedese, A.; Cesario, R.; Challis, C. D.; Chandler, M.; Chandra, D.; Chang, C. S.; Chankin, A.; Chapman, I. T.; Chapman, S. C.; Chernyshova, M.; Chitarin, G.; Ciraolo, G.; Ciric, D.; Citrin, J.; Clairet, F.; Clark, E.; Clark, M.; Clarkson, R.; Clatworthy, D.; Clements, C.; Cleverly, M.; Coad, J. P.; Coates, P. A.; Cobalt, A.; Coccorese, V.; Cocilovo, V.; Coda, S.; Coelho, R.; Coenen, J. W.; Coffey, I.; Colas, L.; Collins, S.; Conka, D.; Conroy, S.; Conway, N.; Coombs, D.; Cooper, D.; Cooper, S. R.; Corradino, C.; Corre, Y.; Corrigan, G.; Cortes, S.; Coster, D.; Couchman, A. S.; Cox, M. P.; Craciunescu, T.; Cramp, S.; Craven, R.; Crisanti, F.; Croci, G.; Croft, D.; Crombé, K.; Crowe, R.; Cruz, N.; Cseh, G.; Cufar, A.; Cullen, A.; Curuia, M.; Czarnecka, A.; Dabirikhah, H.; Dalgliesh, P.; Dalley, S.; Dankowski, J.; Darrow, D.; Davies, O.; Davis, W.; Day, C.; Day, I. E.; de Bock, M.; de Castro, A.; de La Cal, E.; de La Luna, E.; Masi, G. De; de Pablos, J. L.; de Temmerman, G.; de Tommasi, G.; de Vries, P.; Deakin, K.; Deane, J.; Agostini, F. Degli; Dejarnac, R.; Delabie, E.; den Harder, N.; Dendy, R. O.; Denis, J.; Denner, P.; Devaux, S.; Devynck, P.; Maio, F. Di; Siena, A. Di; Troia, C. Di; Dinca, P.; D'Inca, R.; Ding, B.; Dittmar, T.; Doerk, H.; Doerner, R. P.; Donné, T.; Dorling, S. E.; Dormido-Canto, S.; Doswon, S.; Douai, D.; Doyle, P. T.; Drenik, A.; Drewelow, P.; Drews, P.; Duckworth, Ph.; Dumont, R.; Dumortier, P.; Dunai, D.; Dunne, M.; Ďuran, I.; Durodié, F.; Dutta, P.; Duval, B. P.; Dux, R.; Dylst, K.; Dzysiuk, N.; Edappala, P. V.; Edmond, J.; Edwards, A. M.; Edwards, J.; Eich, Th.; Ekedahl, A.; El-Jorf, R.; Elsmore, C. G.; Enachescu, M.; Ericsson, G.; Eriksson, F.; Eriksson, J.; Eriksson, L. G.; Esposito, B.; Esquembri, S.; Esser, H. G.; Esteve, D.; Evans, B.; Evans, G. E.; Evison, G.; Ewart, G. D.; Fagan, D.; Faitsch, M.; Falie, D.; Fanni, A.; Fasoli, A.; Faustin, J. M.; Fawlk, N.; Fazendeiro, L.; Fedorczak, N.; Felton, R. C.; Fenton, K.; Fernades, A.; Fernandes, H.; Ferreira, J.; Fessey, J. A.; Février, O.; Ficker, O.; Field, A.; Fietz, S.; Figueiredo, A.; Figueiredo, J.; Fil, A.; Finburg, P.; Firdaouss, M.; Fischer, U.; Fittill, L.; Fitzgerald, M.; Flammini, D.; Flanagan, J.; Fleming, C.; Flinders, K.; Fonnesu, N.; Fontdecaba, J. M.; Formisano, A.; Forsythe, L.; Fortuna, L.; Fortuna-Zalesna, E.; Fortune, M.; Foster, S.; Franke, T.; Franklin, T.; Frasca, M.; Frassinetti, L.; Freisinger, M.; Fresa, R.; Frigione, D.; Fuchs, V.; Fuller, D.; Futatani, S.; Fyvie, J.; Gál, K.; Galassi, D.; Gałązka, K.; Galdon-Quiroga, J.; Gallagher, J.; Gallart, D.; Galvão, R.; Gao, X.; Gao, Y.; Garcia, J.; Garcia-Carrasco, A.; García-Muñoz, M.; Gardarein, J.-L.; Garzotti, L.; Gaudio, P.; Gauthier, E.; Gear, D. F.; Gee, S. J.; Geiger, B.; Gelfusa, M.; Gerasimov, S.; Gervasini, G.; Gethins, M.; Ghani, Z.; Ghate, M.; Gherendi, M.; Giacalone, J. C.; Giacomelli, L.; Gibson, C. S.; Giegerich, T.; Gil, C.; Gil, L.; Gilligan, S.; Gin, D.; Giovannozzi, E.; Girardo, J. B.; Giroud, C.; Giruzzi, G.; Glöggler, S.; Godwin, J.; Goff, J.; Gohil, P.; Goloborod'Ko, V.; Gomes, R.; Gonçalves, B.; Goniche, M.; Goodliffe, M.; Goodyear, A.; Gorini, G.; Gosk, M.; Goulding, R.; Goussarov, A.; Gowland, R.; Graham, B.; Graham, M. E.; Graves, J. P.; Grazier, N.; Grazier, P.; Green, N. R.; Greuner, H.; Grierson, B.; Griph, F. S.; Grisolia, C.; Grist, D.; Groth, M.; Grove, R.; Grundy, C. N.; Grzonka, J.; Guard, D.; Guérard, C.; Guillemaut, C.; Guirlet, R.; Gurl, C.; Utoh, H. H.; Hackett, L. J.; Hacquin, S.; Hagar, A.; Hager, R.; Hakola, A.; Halitovs, M.; Hall, S. J.; Cook, S. P. Hallworth; Hamlyn-Harris, C.; Hammond, K.; Harrington, C.; Harrison, J.; Harting, D.; Hasenbeck, F.; Hatano, Y.; Hatch, D. R.; Haupt, T. D. V.; Hawes, J.; Hawkes, N. C.; Hawkins, J.; Hawkins, P.; Haydon, P. W.; Hayter, N.; Hazel, S.; Heesterman, P. J. L.; Heinola, K.; Hellesen, C.; Hellsten, T.; Helou, W.; Hemming, O. N.; Hender, T. C.; Henderson, M.; Henderson, S. S.; Henriques, R.; Hepple, D.; Hermon, G.; Hertout, P.; Hidalgo, C.; Highcock, E. G.; Hill, M.; Hillairet, J.; Hillesheim, J.; Hillis, D.; Hizanidis, K.; Hjalmarsson, A.; Hobirk, J.; Hodille, E.; Hogben, C. H. A.; Hogeweij, G. M. D.; Hollingsworth, A.; Hollis, S.; Homfray, D. A.; Horáček, J.; Hornung, G.; Horton, A. R.; Horton, L. D.; Horvath, L.; Hotchin, S. P.; Hough, M. R.; Howarth, P. J.; Hubbard, A.; Huber, A.; Huber, V.; Huddleston, T. M.; Hughes, M.; Huijsmans, G. T. A.; Hunter, C. L.; Huynh, P.; Hynes, A. M.; Iglesias, D.; Imazawa, N.; Imbeaux, F.; Imríšek, M.; Incelli, M.; Innocente, P.; Irishkin, M.; Ivanova-Stanik, I.; Jachmich, S.; Jacobsen, A. S.; Jacquet, P.; Jansons, J.; Jardin, A.; Järvinen, A.; Jaulmes, F.; Jednoróg, S.; Jenkins, I.; Jeong, C.; Jepu, I.; Joffrin, E.; Johnson, R.; Johnson, T.; Johnston, Jane; Joita, L.; Jones, G.; Jones, T. T. C.; Hoshino, K. K.; Kallenbach, A.; Kamiya, K.; Kaniewski, J.; Kantor, A.; Kappatou, A.; Karhunen, J.; Karkinsky, D.; Karnowska, I.; Kaufman, M.; Kaveney, G.; Kazakov, Y.; Kazantzidis, V.; Keeling, D. L.; Keenan, T.; Keep, J.; Kempenaars, M.; Kennedy, C.; Kenny, D.; Kent, J.; Kent, O. N.; Khilkevich, E.; Kim, H. T.; Kim, H. S.; Kinch, A.; King, C.; King, D.; King, R. F.; Kinna, D. J.; Kiptily, V.; Kirk, A.; Kirov, K.; Kirschner, A.; Kizane, G.; Klepper, C.; Klix, A.; Knight, P.; Knipe, S. J.; Knott, S.; Kobuchi, T.; Köchl, F.; Kocsis, G.; Kodeli, I.; Kogan, L.; Kogut, D.; Koivuranta, S.; Kominis, Y.; Köppen, M.; Kos, B.; Koskela, T.; Koslowski, H. R.; Koubiti, M.; Kovari, M.; Kowalska-Strzęciwilk, E.; Krasilnikov, A.; Krasilnikov, V.; Krawczyk, N.; Kresina, M.; Krieger, K.; Krivska, A.; Kruezi, U.; Książek, I.; Kukushkin, A.; Kundu, A.; Kurki-Suonio, T.; Kwak, S.; Kwiatkowski, R.; Kwon, O. J.; Laguardia, L.; Lahtinen, A.; Laing, A.; Lam, N.; Lambertz, H. T.; Lane, C.; Lang, P. T.; Lanthaler, S.; Lapins, J.; Lasa, A.; Last, J. R.; Łaszyńska, E.; Lawless, R.; Lawson, A.; Lawson, K. D.; Lazaros, A.; Lazzaro, E.; Leddy, J.; Lee, S.; Lefebvre, X.; Leggate, H. J.; Lehmann, J.; Lehnen, M.; Leichtle, D.; Leichuer, P.; Leipold, F.; Lengar, I.; Lennholm, M.; Lerche, E.; Lescinskis, A.; Lesnoj, S.; Letellier, E.; Leyland, M.; Leysen, W.; Li, L.; Liang, Y.; Likonen, J.; Linke, J.; Linsmeier, Ch.; Lipschultz, B.; Litaudon, X.; Liu, G.; Liu, Y.; Lo Schiavo, V. P.; Loarer, T.; Loarte, A.; Lobel, R. C.; Lomanowski, B.; Lomas, P. J.; Lönnroth, J.; López, J. M.; López-Razola, J.; Lorenzini, R.; Losada, U.; Lovell, J. J.; Loving, A. B.; Lowry, C.; Luce, T.; Lucock, R. M. A.; Lukin, A.; Luna, C.; Lungaroni, M.; Lungu, C. P.; Lungu, M.; Lunniss, A.; Lupelli, I.; Lyssoivan, A.; MacDonald, N.; Macheta, P.; Maczewa, K.; Magesh, B.; Maget, P.; Maggi, C.; Maier, H.; Mailloux, J.; Makkonen, T.; Makwana, R.; Malaquias, A.; Malizia, A.; Manas, P.; Manning, A.; Manso, M. E.; Mantica, P.; Mantsinen, M.; Manzanares, A.; Maquet, Ph.; Marandet, Y.; Marcenko, N.; Marchetto, C.; Marchuk, O.; Marinelli, M.; Marinucci, M.; Markovič, T.; Marocco, D.; Marot, L.; Marren, C. A.; Marshal, R.; Martin, A.; Martin, Y.; Martín de Aguilera, A.; Martínez, F. J.; Martín-Solís, J. R.; Martynova, Y.; Maruyama, S.; Masiello, A.; Maslov, M.; Matejcik, S.; Mattei, M.; Matthews, G. F.; Maviglia, F.; Mayer, M.; Mayoral, M. L.; May-Smith, T.; Mazon, D.; Mazzotta, C.; McAdams, R.; McCarthy, P. J.; McClements, K. G.; McCormack, O.; McCullen, P. A.; McDonald, D.; McIntosh, S.; McKean, R.; McKehon, J.; Meadows, R. C.; Meakins, A.; Medina, F.; Medland, M.; Medley, S.; Meigh, S.; Meigs, A. G.; Meisl, G.; Meitner, S.; Meneses, L.; Menmuir, S.; Mergia, K.; Merrigan, I. R.; Mertens, Ph.; Meshchaninov, S.; Messiaen, A.; Meyer, H.; Mianowski, S.; Michling, R.; Middleton-Gear, D.; Miettunen, J.; Militello, F.; Militello-Asp, E.; Miloshevsky, G.; Mink, F.; Minucci, S.; Miyoshi, Y.; Mlynář, J.; Molina, D.; Monakhov, I.; Moneti, M.; Mooney, R.; Moradi, S.; Mordijck, S.; Moreira, L.; Moreno, R.; Moro, F.; Morris, A. W.; Morris, J.; Moser, L.; Mosher, S.; Moulton, D.; Murari, A.; Muraro, A.; Murphy, S.; Asakura, N. N.; Na, Y. S.; Nabais, F.; Naish, R.; Nakano, T.; Nardon, E.; Naulin, V.; Nave, M. F. F.; Nedzelski, I.; Nemtsev, G.; Nespoli, F.; Neto, A.; Neu, R.; Neverov, V. S.; Newman, M.; Nicholls, K. J.; Nicolas, T.; Nielsen, A. H.; Nielsen, P.; Nilsson, E.; Nishijima, D.; Noble, C.; Nocente, M.; Nodwell, D.; Nordlund, K.; Nordman, H.; Nouailletas, R.; Nunes, I.; Oberkofler, M.; Odupitan, T.; Ogawa, M. T.; O'Gorman, T.; Okabayashi, M.; Olney, R.; Omolayo, O.; O'Mullane, M.; Ongena, J.; Orsitto, F.; Orszagh, J.; Oswuigwe, B. I.; Otin, R.; Owen, A.; Paccagnella, R.; Pace, N.; Pacella, D.; Packer, L. W.; Page, A.; Pajuste, E.; Palazzo, S.; Pamela, S.; Panja, S.; Papp, P.; Paprok, R.; Parail, V.; Park, M.; Diaz, F. Parra; Parsons, M.; Pasqualotto, R.; Patel, A.; Pathak, S.; Paton, D.; Patten, H.; Pau, A.; Pawelec, E.; Soldan, C. Paz; Peackoc, A.; Pearson, I. J.; Pehkonen, S.-P.; Peluso, E.; Penot, C.; Pereira, A.; Pereira, R.; Puglia, P. P. Pereira; von Thun, C. Perez; Peruzzo, S.; Peschanyi, S.; Peterka, M.; Petersson, P.; Petravich, G.; Petre, A.; Petrella, N.; Petržilka, V.; Peysson, Y.; Pfefferlé, D.; Philipps, V.; Pillon, M.; Pintsuk, G.; Piovesan, P.; Dos Reis, A. Pires; Piron, L.; Pironti, A.; Pisano; Pitts, R.; Pizzo, F.; Plyusnin, V.; Pomaro, N.; Pompilian, O. G.; Pool, P. J.; Popovichev, S.; Porfiri, M. T.; Porosnicu, C.; Porton, M.; Possnert, G.; Potzel, S.; Powell, T.; Pozzi, J.; Prajapati, V.; Prakash, R.; Prestopino, G.; Price, D.; Price, M.; Price, R.; Prior, P.; Proudfoot, R.; Pucella, G.; Puglia, P.; Puiatti, M. E.; Pulley, D.; Purahoo, K.; Pütterich, Th.; Rachlew, E.; Rack, M.; Ragona, R.; Rainford, M. S. J.; Rakha, A.; Ramogida, G.; Ranjan, S.; Rapson, C. J.; Rasmussen, J. J.; Rathod, K.; Rattá, G.; Ratynskaia, S.; Ravera, G.; Rayner, C.; Rebai, M.; Reece, D.; Reed, A.; Réfy, D.; Regan, B.; Regaña, J.; Reich, M.; Reid, N.; Reimold, F.; Reinhart, M.; Reinke, M.; Reiser, D.; Rendell, D.; Reux, C.; Cortes, S. D. A. Reyes; Reynolds, S.; Riccardo, V.; Richardson, N.; Riddle, K.; Rigamonti, D.; Rimini, F. G.; Risner, J.; Riva, M.; Roach, C.; Robins, R. J.; Robinson, S. A.; Robinson, T.; Robson, D. W.; Roccella, R.; Rodionov, R.; Rodrigues, P.; Rodriguez, J.; Rohde, V.; Romanelli, F.; Romanelli, M.; Romanelli, S.; Romazanov, J.; Rowe, S.; Rubel, M.; Rubinacci, G.; Rubino, G.; Ruchko, L.; Ruiz, M.; Ruset, C.; Rzadkiewicz, J.; Saarelma, S.; Sabot, R.; Safi, E.; Sagar, P.; Saibene, G.; Saint-Laurent, F.; Salewski, M.; Salmi, A.; Salmon, R.; Salzedas, F.; Samaddar, D.; Samm, U.; Sandiford, D.; Santa, P.; Santala, M. I. K.; Santos, B.; Santucci, A.; Sartori, F.; Sartori, R.; Sauter, O.; Scannell, R.; Schlummer, T.; Schmid, K.; Schmidt, V.; Schmuck, S.; Schneider, M.; Schöpf, K.; Schwörer, D.; Scott, S. D.; Sergienko, G.; Sertoli, M.; Shabbir, A.; Sharapov, S. E.; Shaw, A.; Shaw, R.; Sheikh, H.; Shepherd, A.; Shevelev, A.; Shumack, A.; Sias, G.; Sibbald, M.; Sieglin, B.; Silburn, S.; Silva, A.; Silva, C.; Simmons, P. A.; Simpson, J.; Simpson-Hutchinson, J.; Sinha, A.; Sipilä, S. K.; Sips, A. C. C.; Sirén, P.; Sirinelli, A.; Sjöstrand, H.; Skiba, M.; Skilton, R.; Slabkowska, K.; Slade, B.; Smith, N.; Smith, P. G.; Smith, R.; Smith, T. J.; Smithies, M.; Snoj, L.; Soare, S.; Solano, E. R.; Somers, A.; Sommariva, C.; Sonato, P.; Sopplesa, A.; Sousa, J.; Sozzi, C.; Spagnolo, S.; Spelzini, T.; Spineanu, F.; Stables, G.; Stamatelatos, I.; Stamp, M. F.; Staniec, P.; Stankūnas, G.; Stan-Sion, C.; Stead, M. J.; Stefanikova, E.; Stepanov, I.; Stephen, A. V.; Stephen, M.; Stevens, A.; Stevens, B. D.; Strachan, J.; Strand, P.; Strauss, H. R.; Ström, P.; Stubbs, G.; Studholme, W.; Subba, F.; Summers, H. P.; Svensson, J.; Świderski, Ł.; Szabolics, T.; Szawlowski, M.; Szepesi, G.; Suzuki, T. T.; Tál, B.; Tala, T.; Talbot, A. R.; Talebzadeh, S.; Taliercio, C.; Tamain, P.; Tame, C.; Tang, W.; Tardocchi, M.; Taroni, L.; Taylor, D.; Taylor, K. A.; Tegnered, D.; Telesca, G.; Teplova, N.; Terranova, D.; Testa, D.; Tholerus, E.; Thomas, J.; Thomas, J. D.; Thomas, P.; Thompson, A.; Thompson, C.-A.; Thompson, V. K.; Thorne, L.; Thornton, A.; Thrysøe, A. S.; Tigwell, P. A.; Tipton, N.; Tiseanu, I.; Tojo, H.; Tokitani, M.; Tolias, P.; Tomeš, M.; Tonner, P.; Towndrow, M.; Trimble, P.; Tripsky, M.; Tsalas, M.; Tsavalas, P.; Jun, D. Tskhakaya; Turner, I.; Turner, M. M.; Turnyanskiy, M.; Tvalashvili, G.; Tyrrell, S. G. J.; Uccello, A.; Ul-Abidin, Z.; Uljanovs, J.; Ulyatt, D.; Urano, H.; Uytdenhouwen, I.; Vadgama, A. P.; Valcarcel, D.; Valentinuzzi, M.; Valisa, M.; Olivares, P. Vallejos; Valovic, M.; van de Mortel, M.; van Eester, D.; van Renterghem, W.; van Rooij, G. J.; Varje, J.; Varoutis, S.; Vartanian, S.; Vasava, K.; Vasilopoulou, T.; Vega, J.; Verdoolaege, G.; Verhoeven, R.; Verona, C.; Rinati, G. Verona; Veshchev, E.; Vianello, N.; Vicente, J.; Viezzer, E.; Villari, S.; Villone, F.; Vincenzi, P.; Vinyar, I.; Viola, B.; Vitins, A.; Vizvary, Z.; Vlad, M.; Voitsekhovitch, I.; Vondráček, P.; Vora, N.; Vu, T.; de Sa, W. W. Pires; Wakeling, B.; Waldon, C. W. F.; Walkden, N.; Walker, M.; Walker, R.; Walsh, M.; Wang, E.; Wang, N.; Warder, S.; Warren, R. J.; Waterhouse, J.; Watkins, N. W.; Watts, C.; Wauters, T.; Weckmann, A.; Weiland, J.; Weisen, H.; Weiszflog, M.; Wellstood, C.; West, A. T.; Wheatley, M. R.; Whetham, S.; Whitehead, A. M.; Whitehead, B. D.; Widdowson, A. M.; Wiesen, S.; Wilkinson, J.; Williams, J.; Williams, M.; Wilson, A. R.; Wilson, D. J.; Wilson, H. R.; Wilson, J.; Wischmeier, M.; Withenshaw, G.; Withycombe, A.; Witts, D. M.; Wood, D.; Wood, R.; Woodley, C.; Wray, S.; Wright, J.; Wright, J. C.; Wu, J.; Wukitch, S.; Wynn, A.; Xu, T.; Yadikin, D.; Yanling, W.; Yao, L.; Yavorskij, V.; Yoo, M. G.; Young, C.; Young, D.; Young, I. D.; Young, R.; Zacks, J.; Zagorski, R.; Zaitsev, F. S.; Zanino, R.; Zarins, A.; Zastrow, K. D.; Zerbini, M.; Zhang, W.; Zhou, Y.; Zilli, E.; Zoita, V.; Zoletnik, S.; Zychor, I.

    2017-10-01

    We describe a new technique for the efficient generation of high-energy ions with electromagnetic ion cyclotron waves in multi-ion plasmas. The discussed `three-ion' scenarios are especially suited for strong wave absorption by a very low number of resonant ions. To observe this effect, the plasma composition has to be properly adjusted, as prescribed by theory. We demonstrate the potential of the method on the world-largest plasma magnetic confinement device, JET (Joint European Torus, Culham, UK), and the high-magnetic-field tokamak Alcator C-Mod (Cambridge, USA). The obtained results demonstrate efficient acceleration of 3He ions to high energies in dedicated hydrogen-deuterium mixtures. Simultaneously, effective plasma heating is observed, as a result of the slowing-down of the fast 3He ions. The developed technique is not only limited to laboratory plasmas, but can also be applied to explain observations of energetic ions in space-plasma environments, in particular, 3He-rich solar flares.

  19. Potential Energy Curves and Collisions Integrals of Air Components. 2; Interactions Involving Ionized Atoms

    NASA Technical Reports Server (NTRS)

    Stallcop, James R.; Partridge, Harry; Levin, Eugene; Langhoff, Stephen R. (Technical Monitor)

    1995-01-01

    Collision integrals are fundamental quantities required to determine the transport properties of the environment surrounding aerospace vehicles in the upper atmosphere. These collision integrals can be determined as a function of temperature from the potential energy curves describing the atomic and molecular collisions. Ab initio calculations provide a practical method of computing the required interaction potentials. In this work we will discuss recent advances in scattering calculations with an emphasis on the accuracy that is obtainable. Results for interactions of the atoms and ionized atoms of nitrogen and oxygen will be reviewed and their application to the determination of transport properties, such as diffusion and viscosity coefficients, will be examined.

  20. Physics Division annual review, 1 April 1980-31 March 1981

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1982-06-01

    Progress in nuclear physics research is reported in the following areas: medium-energy physics (pion reaction mechanisms, high-resolution studies and nuclear structure, and two-nucleon physics with pions and electrons); heavy-ion research at the tandem and superconducting linear accelerator (resonant structure in heavy-ion reactions, fusion cross sections, high angular momentum states in nuclei, and reaction mechanisms and distributions of reaction strengths); charged-particle research; neutron and photonuclear physics; theoretical physics (heavy-ion direct-reaction theory, nuclear shell theory and nuclear structure, nuclear matter and nuclear forces, intermediate-energy physics, microscopic calculations of high-energy collisions of heavy ions, and light ion direct reactions); the superconducting linac; acceleratormore » operations; and GeV electron linac. Progress in atomic and molecular physics research is reported in the following areas: dissociation and other interactions of energetic molecular ions in solid and gaseous targets, beam-foil research and collision dynamics of heavy ions, photoionization- photoelectron research, high-resolution laser rf spectroscopy with atomic and molecular beams, moessbauer effect research, and theoretical atomic physics. Studies on interactions of energetic particles with solids are also described. Publications are listed. (WHK)« less

  1. Non-Lorentzian ion cyclotron resonance line shapes arising from velocity-dependent ion-neutral collision frequencies

    NASA Technical Reports Server (NTRS)

    Whealton, J. H.; Mason, E. A.

    1973-01-01

    An asymptotic solution of the Boltzmann equation is developed for ICR absorption, without restrictions on the ion-neutral collision frequency or mass ratio. Velocity dependence of the collision frequency causes deviations from Lorentzian line shape.

  2. Selected Topics in the Physics of Heavy Ion Collisions (1/3)

    ScienceCinema

    Wiedemann, Urs Achim

    2017-12-15

    In these lectures, I discuss some classes of measurements accessible in heavy ion collisions at the LHC. How can these observables be measured, to what extent can they be calculated, and what do they tell us about the dense mesoscopic system created during the collision? In the first lecture, I shall focus in particular on measurements that constrain the spatio-temporal picture of the collisions and that measure centrality, orientations and extensions. In the subsequent lectures, I then discuss on how classes of measurements allow one to characterize collective phenomena, and to what extent these measurements can constrain the properties of matter produced in heavy ion collisions.

  3. Collision Cross Sections and Ion Mobility Separation of Fragment Ions from Complex N-Glycans.

    PubMed

    Harvey, David J; Watanabe, Yasunori; Allen, Joel D; Rudd, Pauline; Pagel, Kevin; Crispin, Max; Struwe, Weston B

    2018-06-01

    Ion mobility mass spectrometry (IM-MS) holds great potential for structural glycobiology, in particular in its ability to resolve glycan isomers. Generally, IM-MS has largely been applied to intact glycoconjugate ions with reports focusing on the separation of different adduct types. Here, we explore IM separation and report the collision cross section (CCS) of complex type N-glycans and their fragments in negative ion mode following collision-induced dissociation (CID). CCSs of isomeric fragment ions were found, in some cases, to reveal structural details that were not present in CID spectra themselves. Many fragment ions were confirmed as possessing multiple structure, details of which could be obtained by comparing their drift time profiles to different glycans. By using fragmentation both before and after mobility separation, information was gathered on the fragmentation pathways producing some of the ions. These results help demonstrate the utility of IM and will contribute to the growing use of IM-MS for glycomics. Graphical Abstract ᅟ.

  4. Collision Cross Sections and Ion Mobility Separation of Fragment Ions from Complex N-Glycans

    NASA Astrophysics Data System (ADS)

    Harvey, David J.; Watanabe, Yasunori; Allen, Joel D.; Rudd, Pauline; Pagel, Kevin; Crispin, Max; Struwe, Weston B.

    2018-04-01

    Ion mobility mass spectrometry (IM-MS) holds great potential for structural glycobiology, in particular in its ability to resolve glycan isomers. Generally, IM-MS has largely been applied to intact glycoconjugate ions with reports focusing on the separation of different adduct types. Here, we explore IM separation and report the collision cross section (CCS) of complex type N-glycans and their fragments in negative ion mode following collision-induced dissociation (CID). CCSs of isomeric fragment ions were found, in some cases, to reveal structural details that were not present in CID spectra themselves. Many fragment ions were confirmed as possessing multiple structure, details of which could be obtained by comparing their drift time profiles to different glycans. By using fragmentation both before and after mobility separation, information was gathered on the fragmentation pathways producing some of the ions. These results help demonstrate the utility of IM and will contribute to the growing use of IM-MS for glycomics. [Figure not available: see fulltext.

  5. Relativistic Hydrodynamics for Heavy-Ion Collisions

    ERIC Educational Resources Information Center

    Ollitrault, Jean-Yves

    2008-01-01

    Relativistic hydrodynamics is essential to our current understanding of nucleus-nucleus collisions at ultrarelativistic energies (current experiments at the Relativistic Heavy Ion Collider, forthcoming experiments at the CERN Large Hadron Collider). This is an introduction to relativistic hydrodynamics for graduate students. It includes a detailed…

  6. Kinetic theory of passing energetic ion transport in presence of the resonant interactions with a rotating magnetic island

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cao, Jinjia; Gong, Xueyu; Xiang, Dong

    The enhanced transport of passing energetic ions (PEIs) in presence of the resonant interactions with a rotating magnetic island is investigated within the drift kinetic framework. When the island rotation plays a role in the resonant interaction, we find that the velocities of PEIs satisfy a constraint relation of resonant flux surface in phase space. The resonant flux surfaces overlap with the magnetic flux surfaces in real space. A new transport channel responsible for the PEIs moving across the magnetic flux surfaces, i.e., continuously overlapping, is found. Two kinds of radial motions can be induced by the surface overlapping: onemore » arises from the coupling between the resonance and the collision with the background plasma and the other from not completely overlapping of the two surfaces. The two radial motions and the symmetry-breaking induced radial motion constitute the total radial motion. When the pitch-angle scattering rate is very weak, the surface-shear induced transport is dominant. Only a small increase in the collision rate can significantly influence the total transport.« less

  7. Energetic ion mass analysis using a radio-frequency quadrupole filter.

    PubMed

    Medley, S S

    1978-06-01

    In conventional applications of the radio-frequency quadrupole mass analyzer, the ion injection energy is usually limited to less than the order of 100 eV due to constraints on the dimensions and power supply of the device. However, requirements often arise, for example in fusion plasma ion diagnostics, for mass analysis of much more energetic ions. A technique easily adaptable to any conventional quadrupole analyzer which circumvents the limitation on injection energy is documented in this paper. Briefly, a retarding potential applied to the pole assembly is shown to facilitate mass analysis of multikiloelectron volt ions without altering the salient characteristics of either the quadrupole filter or the ion beam.

  8. Enabling High Fidelity Measurements of Energy and Pitch Angle for Escaping Energetic Ions with a Fast Ion Loss Detector

    NASA Astrophysics Data System (ADS)

    Chaban, R.; Pace, D. C.; Marcy, G. R.; Taussig, D.

    2016-10-01

    Energetic ion losses must be minimized in burning plasmas to maintain fusion power, and existing tokamaks provide access to energetic ion parameter regimes that are relevant to burning machines. A new Fast Ion Loss Detector (FILD) probe on the DIII-D tokamak has been optimized to resolve beam ion losses across a range of 30 - 90 keV in energy and 40° to 80° in pitch angle, thereby providing valuable measurements during many different experiments. The FILD is a magnetic spectrometer; once inserted into the tokamak, the magnetic field allows energetic ions to pass through a collimating aperture and strike a scintillator plate that is imaged by a wide view camera and narrow view photomultiplier tubes (PMTs). The design involves calculating scintillator strike patterns while varying probe geometry. Calculated scintillator patterns are then used to design an optical system that allows adjustment of the focus regions for the 1 MS/s resolved PMTs. A synthetic diagnostic will be used to determine the energy and pitch angle resolution that can be attained in DIII-D experiments. Work supported in part by US DOE under the Science Undergraduate Laboratory Internship (SULI) program and under DE-FC02-04ER54698.

  9. An ab initio study of ion induced charge transfer dynamics in collision of carbon ions with thymine.

    PubMed

    Bacchus-Montabonel, Marie-Christine; Tergiman, Yvette Suzanne

    2011-05-28

    Charge transfer in collisions of carbon ions on a thymine target has been studied theoretically in a wide collision range by means of ab initio quantum chemistry molecular methods. The process appears markedly anisotropic in the whole energy domain, significantly favoured in the perpendicular orientation. A specific decrease of the charge transfer cross sections at low collision energies may be pointed out and could induce an enhancement of the complementary fragmentation processes for collision energies down to about 10 eV, as observed for the low-electron fragmentation process. Such feature may be of important interest in ion-induced biomolecular radiation damage. This journal is © the Owner Societies 2011

  10. Bias in bonding behavior among boron, carbon, and nitrogen atoms in ion implanted a-BN, a-BC, and diamond like carbon films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Genisel, Mustafa Fatih; Uddin, Md. Nizam; Say, Zafer

    2011-10-01

    In this study, we implanted N{sup +} and N{sub 2}{sup +} ions into sputter deposited amorphous boron carbide (a-BC) and diamond like carbon (DLC) thin films in an effort to understand the chemical bonding involved and investigate possible phase separation routes in boron carbon nitride (BCN) films. In addition, we investigated the effect of implanted C{sup +} ions in sputter deposited amorphous boron nitride (a-BN) films. Implanted ion energies for all ion species were set at 40 KeV. Implanted films were then analyzed using x-ray photoelectron spectroscopy (XPS). The changes in the chemical composition and bonding chemistry due to ion-implantationmore » were examined at different depths of the films using sequential ion-beam etching and high resolution XPS analysis cycles. A comparative analysis has been made with the results from sputter deposited BCN films suggesting that implanted nitrogen and carbon atoms behaved very similar to nitrogen and carbon atoms in sputter deposited BCN films. We found that implanted nitrogen atoms would prefer bonding to carbon atoms in the films only if there is no boron atom in the vicinity or after all available boron atoms have been saturated with nitrogen. Implanted carbon atoms also preferred to either bond with available boron atoms or, more likely bonded with other implanted carbon atoms. These results were also supported by ab-initio density functional theory calculations which indicated that carbon-carbon bonds were energetically preferable to carbon-boron and carbon-nitrogen bonds.« less

  11. Generation of high energetic ions from hollow cathode discharge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Atta, M.; El Nadai, L.; Lie, Y.T.

    1995-12-31

    High energetic beams of ions can be produced by using the dense and highly ionized plasma that is generated by the vacuum arc. Ian G. Brown (1993) described the general features and performance characteristics of the ion sources and their use for accelerator injection and ion implantation applications. Atta, at al. (1993) found that the ratio of ion density to electron density has been decreased beside the hollow cathode at different hole diameter due to increasing the ionization degree. Here we have evaluated the ion velocity distribution F(v) = S{Upsilon}(t)/V{sup 2}, where {Upsilon}(t) is the ion flux intensity, S ismore » the distance between the hollow cathode spot and the quadrupole maps spectrometer, and V is the ion velocity. The ion energy (E=mV{sup 2}/2, in is the mass of the ion), and the ion fraction due to the total number of ions for different ion species emitted from graphite and titanium hollow cathode have been determined.« less

  12. Phenomenology of anomalous chiral transports in heavy-ion collisions

    NASA Astrophysics Data System (ADS)

    Huang, Xu-Guang

    2018-01-01

    High-energy Heavy-ion collisions can generate extremely hot quark-gluon matter and also extremely strong magnetic fields and fluid vorticity. Once coupled to chiral anomaly, the magnetic fields and fluid vorticity can induce a variety of novel transport phenomena, including the chiral magnetic effect, chiral vortical effect, etc. Some of them require the environmental violation of parity and thus provide a means to test the possible parity violation in hot strongly interacting matter. We will discuss the underlying mechanism and implications of these anomalous chiral transports in heavy-ion collisions.

  13. On the treatment of ℓ-changing proton-hydrogen Rydberg atom collisions

    NASA Astrophysics Data System (ADS)

    Vrinceanu, D.; Onofrio, R.; Sadeghpour, H. R.

    2017-11-01

    Energy-conserving, angular momentum changing collisions between protons and highly excited Rydberg hydrogen atoms are important for precise understanding of atomic recombination at the photon decoupling era and the elemental abundance after primordial nucleosynthesis. Early approaches to ℓ-changing collisions used perturbation theory only for dipole-allowed (Δℓ = ±1) transitions. An exact non-perturbative quantum mechanical treatment is possible, but it comes at a computational cost for highly excited Rydberg states. In this paper, we show how to obtain a semiclassical limit that is accurate and simple, and develop further physical insights afforded by the non-perturbative quantum mechanical treatment.

  14. Warm Breeze due to Charge Exchange Collisions Between Neutral He Atoms and He+ Ions in the Outer Heliosheath.

    NASA Astrophysics Data System (ADS)

    Kubiak, M. A.; Bzowski, M.; Czechowski, A.; Grygorczuk, J.

    2017-12-01

    We simulated the signal due to neutral He atoms, observed by Interstellar Boundary Explorer (IBEX), assuming that charge exchange collisions between neutral He atoms and He+ ions operate everywhere between the heliopause and a distant source region in the local interstellar cloud (LIC). We chose the limiting distance of calculations at 5000 AU, where the neutral and charged components are in thermal equilibrium. From that distance we integrated the signal for test particles that we know they reach the IBEX detector, calculating for each particle the balance of losses and gains in the LIC, the ionization losses inside the HP, and the distribution function at 5000 AU. The resulting statistical weights were integrated over speed, inflow direction, collimator transmission, observation times, and IBEX spin angle bins to simulate the count rate actually observed by IBEX. We simulated several test cases of the plasma flow within the outer heliosheath and investigated the signal generation for plasma flows both in the presence and in the absence of the interstellar magnetic field. We found that a signal in the portion of IBEX data identified as due to the Warm Breeze does not arise when a homogeneous plasma flow in front of the heliopause is assumed. However, it appears immediately when any reasonable disturbance in the plasma flow due to the presence of the heliosphere is assumed. We obtained a good qualitative agreement between the data and the simulations for a model flow with the velocity vector of the unperturbed gas and the direction and intensity of magnetic field adopted from recent determinations. We conclude that direct-sampling observations of neutral He atoms at 1 AU from the Sun are a sensitive tool for investigating the flow of interstellar matter in the outer heliosheath; the Warm Breeze is indeed the secondary population of interstellar helium, as it was hypothesized earlier; the WB signal is consistent with that predicted by comet-like models of the

  15. Nanocrystalline SnO2 formation using energetic ion beam.

    PubMed

    Mohanty, T; Batra, Y; Tripathi, A; Kanjilal, D

    2007-06-01

    Nanocrystalline tin oxide (SnO2) thin films grown by RF magnetron sputtering technique were characterized by UV-Visible absorption spectroscopy and Photoluminescence spectroscopy. From atomic force microscopic (AFM) and Glancing angle X-ray diffraction (GAXRD) measurements, the radius of grains was found to be approximately 6+/-2 nm. The thin films were bombarded with 250 keV Xe2+ ion beam to observe the stability of nanophases against radiation. For ion bombarded films, optical absorption band edge is shifted towards red region. Atomic force microscopy studies show that the radius of the grains was increased to approximately 8 +/- 1 nm and the grains were nearly uniform in size. The size of the grains has been reduced after ion bombardment in the case of films grown on Si. During this process, defects such as vacancies, voids were generated in the films as well as in the substrates. Ion bombardment induces local temperature increase of thin films causing melting of films. Ion beam induced defects enhances the diffusion of atoms leading to uniformity in size of grains. The role of matrix on ion beam induced grain growth is discussed.

  16. Division B Commission 14 Working Group: Collision Processes

    NASA Astrophysics Data System (ADS)

    Peach, Gillian; Dimitrijevic, Milan S.; Barklem, Paul S.

    2016-04-01

    Since our last report (Peach & Dimitrijević 2012), a large number of new publications on the results of research in atomic and molecular collision processes and spectral line broadening have been published. Due to the limited space available, we have only included work of importance for astrophysics. Additional relevant papers, not included in this report, can be found in the databases at the web addresses provided in Section 6. Elastic and inelastic collisions between electrons, atoms, ions, and molecules are included, as well as charge transfer in collisions between heavy particles which can be very important.

  17. Atoms-for-Peace: A Galactic Collision in Action

    NASA Astrophysics Data System (ADS)

    2010-11-01

    European Southern Observatory astronomers have produced a spectacular new image of the famous Atoms-for-Peace galaxy (NGC 7252). This galactic pile-up, formed by the collision of two galaxies, provides an excellent opportunity for astronomers to study how mergers affect the evolution of the Universe. Atoms-for-Peace is the curious name given to a pair of interacting and merging galaxies that lie around 220 million light-years away in the constellation of Aquarius. It is also known as NGC 7252 and Arp 226 and is just bright enough to be seen by amateur astronomers as a very faint small fuzzy blob. This very deep image was produced by ESO's Wide Field Imager on the MPG/ESO 2.2-metre telescope at ESO's La Silla Observatory in Chile. A galaxy collision is one of the most important processes influencing how our Universe evolves, and studying them reveals important clues about galactic ancestry. Luckily, such collisions are long drawn-out events that last hundreds of millions of years, giving astronomers plenty of time to observe them. This picture of Atoms-for-Peace represents a snapshot of its collision, with the chaos in full flow, set against a rich backdrop of distant galaxies. The results of the intricate interplay of gravitational interactions can be seen in the shapes of the tails made from streams of stars, gas and dust. The image also shows the incredible shells that formed as gas and stars were ripped out of the colliding galaxies and wrapped around their joint core. While much material was ejected into space, other regions were compressed, sparking bursts of star formation. The result was the formation of hundreds of very young star clusters, around 50 to 500 million years old, which are speculated to be the progenitors of globular clusters. Atoms-for-Peace may be a harbinger of our own galaxy's fate. Astronomers predict that in three or four billion years the Milky Way and the Andromeda Galaxy will collide, much as has happened with Atoms-for-Peace. But don

  18. The precipitation of energetic heavy ions into the upper atmosphere of Jupiter

    NASA Technical Reports Server (NTRS)

    Horanyi, M.; Cravens, T. E.; Waite, J. H., Jr.

    1987-01-01

    Evidence for auroral particle precipitation at Jupiter was provided by the ultraviolet spectrometers onboard the Voyagers 1 and 2 spacecraft and by the International Ultraviolet Explorer (IUE). Magnetospheric measurements made by instruments onboard the Voyager spacecraft show that energetic sulfur and oxygen ions are precipitating into the upper atmosphere of Jupiter. A theoretical model has been constructed describing the interaction of precipitating oxygen with the Jovian atmosphere. The auroral energy is deposited in the atmosphere by means of ionization, excitation, and dissociation and heating of the atmospheric gas. Energetic ion and electron precipitation are shown to have similar effects on the atmosphere and ionosphere of Jupiter.

  19. Control of magnetohydrodynamic stability by phase space engineering of energetic ions in tokamak plasmas.

    PubMed

    Graves, J P; Chapman, I T; Coda, S; Lennholm, M; Albergante, M; Jucker, M

    2012-01-10

    Virtually collisionless magnetic mirror-trapped energetic ion populations often partially stabilize internally driven magnetohydrodynamic disturbances in the magnetosphere and in toroidal laboratory plasma devices such as the tokamak. This results in less frequent but dangerously enlarged plasma reorganization. Unique to the toroidal magnetic configuration are confined 'circulating' energetic particles that are not mirror trapped. Here we show that a newly discovered effect from hybrid kinetic-magnetohydrodynamic theory has been exploited in sophisticated phase space engineering techniques for controlling stability in the tokamak. These theoretical predictions have been confirmed, and the technique successfully applied in the Joint European Torus. Manipulation of auxiliary ion heating systems can create an asymmetry in the distribution of energetic circulating ions in the velocity orientated along magnetic field lines. We show the first experiments in which large sawtooth collapses have been controlled by this technique, and neoclassical tearing modes avoided, in high-performance reactor-relevant plasmas.

  20. Energetic ion loss detector on the Alcator C-Mod tokamak.

    PubMed

    Pace, D C; Granetz, R S; Vieira, R; Bader, A; Bosco, J; Darrow, D S; Fiore, C; Irby, J; Parker, R R; Parkin, W; Reinke, M L; Terry, J L; Wolfe, S M; Wukitch, S J; Zweben, S J

    2012-07-01

    A scintillator-based energetic ion loss detector has been successfully commissioned on the Alcator C-Mod tokamak. This probe is located just below the outer midplane, where it captures ions of energies up to 2 MeV resulting from ion cyclotron resonance heating. After passing through a collimating aperture, ions impact different regions of the scintillator according to their gyroradius (energy) and pitch angle. The probe geometry and installation location are determined based on modeling of expected lost ions. The resulting probe is compact and resembles a standard plasma facing tile. Four separate fiber optic cables view different regions of the scintillator to provide phase space resolution. Evolving loss levels are measured during ion cyclotron resonance heating, including variation dependent upon individual antennae.

  1. The ion environment near Europa and its role in surface energetics

    NASA Astrophysics Data System (ADS)

    Paranicas, C.; Ratliff, J. M.; Mauk, B. H.; Cohen, C.; Johnson, R. E.

    2002-03-01

    This paper gives the composition, energy spectra, and time variability of energetic ions measured just upstream of Europa. From 100 keV to 100 MeV, ion intensities vary by less than a factor of ~5 among Europa passes considered between 1997 and 2000. We use the data to estimate the radiation dose rate into Europa's surface for depths 0.01 mm - 1 m. We find that in a critical fraction of the upper layer on Europa's trailing hemisphere, energetic electrons are the principal agent for radiolysis, and their bremsstrahlung photon products, not included in previous studies, dominate the dose below about 1 m. Because ion bombardment is more uniform across Europa's surface, the radiation dose on the leading hemisphere is dominated by the proton flux. Differences exist between this calculation and published doses based on the E4 wake pass. For instance, proton doses presented here are much greater below 1 mm.

  2. Collision induced dissociation of protonated N-nitrosodimethylamine by ion trap mass spectrometry: Ultimate carcinogens in gas phase

    NASA Astrophysics Data System (ADS)

    Kulikova, Natalia; Baker, Michael; Gabryelski, Wojciech

    2009-12-01

    Collision induced dissociation of protonated N-nitrosodimethylamine (NDMA) and isotopically labeled N-nitrosodimethyl-d6-amine (NDMA-d6) was investigated by sequential ion trap mass spectrometry to establish mechanisms of gas phase reactions leading to intriguing products of this potent carcinogen. The fragmentation of (NDMA + H+) occurs via two dissociation pathways. In the alkylation pathway, homolytic cleavage of the N-O bond of N-dimethyl, N'-hydroxydiazenium ion generates N-dimethyldiazenium distonic ion which reacts further by a CH3 radical loss to form methanediazonium ion. Both methanediazonium ion and its precursor are involved in ion/molecule reactions. Methanediazonium ion showed to be capable of methylating water and methanol molecules in the gas phase of the ion trap and N-dimethyldiazenium distonic ion showed to abstract a hydrogen atom from a solvent molecule. In the denitrosation pathway, a tautomerization of N-dimethyl, N'-hydroxydiazenium ion to N-nitrosodimethylammonium intermediate ion results in radical cleavage of the N-N bond of the intermediate ion to form N-dimethylaminium radical cation which reacts further through [alpha]-cleavage to generate N-methylmethylenimmonium ion. Although the reactions of NDMA in the gas phase are different to those for enzymatic conversion of NDMA in biological systems, each activation method generates the same products. We will show that collision induced dissociation of N-nitrosodiethylamine (NDEA) and N-nitrosodipropylamine (NDPA) is also a feasible approach to gain information on formation, stability, and reactivity of alkylating agents originating from NDEA and NDPA. Investigating such biologically relevant, but highly reactive intermediates in the condensed phase is hampered by the short life-times of these transient species.

  3. Ion implantation for deterministic single atom devices

    NASA Astrophysics Data System (ADS)

    Pacheco, J. L.; Singh, M.; Perry, D. L.; Wendt, J. R.; Ten Eyck, G.; Manginell, R. P.; Pluym, T.; Luhman, D. R.; Lilly, M. P.; Carroll, M. S.; Bielejec, E.

    2017-12-01

    We demonstrate a capability of deterministic doping at the single atom level using a combination of direct write focused ion beam and solid-state ion detectors. The focused ion beam system can position a single ion to within 35 nm of a targeted location and the detection system is sensitive to single low energy heavy ions. This platform can be used to deterministically fabricate single atom devices in materials where the nanostructure and ion detectors can be integrated, including donor-based qubits in Si and color centers in diamond.

  4. Ion implantation for deterministic single atom devices

    DOE PAGES

    Pacheco, J. L.; Singh, M.; Perry, D. L.; ...

    2017-12-04

    Here, we demonstrate a capability of deterministic doping at the single atom level using a combination of direct write focused ion beam and solid-state ion detectors. The focused ion beam system can position a single ion to within 35 nm of a targeted location and the detection system is sensitive to single low energy heavy ions. This platform can be used to deterministically fabricate single atom devices in materials where the nanostructure and ion detectors can be integrated, including donor-based qubits in Si and color centers in diamond.

  5. Target Z dependence of Xe L x-ray emission in heavy ion-atom collision near the Bohr velocity: influence of level matching

    NASA Astrophysics Data System (ADS)

    Ren, Jieru; Zhao, Yongtao; Zhou, Xianming; Cheng, Rui; Lei, Yu; Sun, Yuanbo; Wang, Xing; Xu, Ge; Wang, Yuyu; Liu, Shidong; Yu, Yang; Li, Yongfeng; Zhang, Xiaoan; Xu, Zhongfeng; Xiao, Guoqing

    2013-09-01

    X-ray yields for the projectile L-shell have been measured for collisions between Xe20+ and thick solid targets throughout the periodic table with incident energies near the Bohr velocity. The yields show a very pronounced cyclic dependence on the target atomic number. This result indicates that Xe L x-ray emission intensity is greatly enhanced either in near-symmetric collisions or if the binding energy of the Xe M-shell matches the L- or N-shell binding energy of the target.

  6. Measuring an entropy in heavy ion collisions

    NASA Astrophysics Data System (ADS)

    Bialas, A.; Czyz, W.; Wosiek, J.

    1999-03-01

    We propose to use the coincidence method of Ma to measure an entropy of the system created in heavy ion collisions. Moreover we estimate, in a simple model, the values of parameters for which the thermodynamical behaviour sets in.

  7. Numerical analysis of effects of ion-neutral collision processes on RF ICP discharge

    NASA Astrophysics Data System (ADS)

    Nishida, K.; Mattei, S.; Lettry, J.; Hatayama, A.

    2018-01-01

    The discharge process of a radiofrequency (RF) inductively coupled plasma (ICP) has been modeled by an ElectroMagnetic Particle-in-Cell Monte Carlo Collision method (EM PIC-MCC). Although the simulation had been performed by our previous model to investigate the discharge mode transition of the RF ICP from a kinetic point of view, the model neglected the collision processes of ions (H+ and H2+) with neutral particles. In this study, the RF ICP discharge process has been investigated by the latest version of the model which takes the ion-neutral collision processes into account. The basic characteristics of the discharge mode transition provided by the previous model have been verified by the comparison between the previous and present results. As for the H-mode discharge regime, on the other hand, the ion-neutral collisions play an important role in evaluating the growth of the plasma. Also, the effect of the ion-neutral collisions on the kinetic feature of the plasma has been investigated, which has highlighted the importance of kinetic perspective for modeling the RF ICP discharge.

  8. Resonance Production in Heavy-Ion Collisions

    NASA Astrophysics Data System (ADS)

    Knospe, Anders G.

    2018-02-01

    Hadronic resonances are unique probes that allow the properties of heavyion collisions to be studied. Topics that can be studied include modification of spectral shapes, in-medium energy loss of parsons, vector-meson spin alignment, hydrodynamic flow, recombination, strangeness production, and the properties of the hadronic phase. Measurements of resonances in p+p, p+A, and d+A collisions serve as baselines for heavy-ion studies and also permit searches for possible collective effects in these smaller systems. These proceedings present a selection of results related to these topics from experiments at RHIC, LHC, and other facilities, as well as comparisons to theoretical models.

  9. Energetic Metastable Oxygen and Nitrogen Atoms in the Terrestrial Atmosphere

    NASA Technical Reports Server (NTRS)

    Kharchenko, Vasili

    2004-01-01

    We have investigated the impact of hot metastable oxygen atoms on the product yields and rate coefficients of atmospheric reactions involving O( (sup 1)D). The contribution of the metastable oxygen atoms to the thermal balance of the terrestrial atmosphere between 50 and 200 km has been determined. We found that the presence of hot O((sup l)D) atoms in the mesosphere and lower thermosphere significantly increases the production rate of the rotationally-vibrationally excited NO molecules. The computed yield of the NO molecules in N2O+ O((sup 1)D) atmospheric collisions, involving non-Maxwellian distributions of the metastable oxygen atoms, is more than two times larger than the NO-yield at a thermal equilibrium. The calculated non-equilibrium rate and yield functions are important for ozone and nitrous oxide modeling in the stratosphere, mesosphere and lower thermosphere.

  10. Photons from the early stages of relativistic heavy-ion collisions

    NASA Astrophysics Data System (ADS)

    Oliva, L.; Ruggieri, M.; Plumari, S.; Scardina, F.; Peng, G. X.; Greco, V.

    2017-07-01

    We present results about photon-production in relativistic heavy-ion collisions. The main novelty of our study is the calculation of the contribution of the early-stage photons to the photon spectrum. The initial stage is modeled by an ensemble of classical gluon fields which decay to a quark-gluon plasma via the Schwinger mechanism, and the evolution of the system is studied by coupling classical field equations to relativistic kinetic theory; photon production is then computed by including the pertinent collision processes into the collision integral. We find that the contribution of the early-stage photons to the direct photon spectrum is substantial for pT≈2 GeV and higher, the exact value depending on the collision energy; therefore, we identify this part of the photon spectrum as the sign of the early stage. Moreover, the amount of photons produced during the early stage is not negligible with respect to those produced by a thermalized quark-gluon plasma: We support the idea that there is no dark age in relativistic heavy-ion collisions.

  11. Rapidity dependence in holographic heavy ion collisions

    DOE PAGES

    Wilke van der Schee; Schenke, Bjorn

    2015-12-11

    We present an attempt to closely mimic the initial stage of heavy ion collisions within holography, assuming a decoupling of longitudinal and transverse dynamics in the very early stage. We subsequently evolve the obtained initial state using state-of-the-art hydrodynamic simulations and compare results with experimental data. We present results for charged hadron pseudorapidity spectra and directed and elliptic flow as functions of pseudorapidity for √s NN = 200GeV Au-Au and 2.76TeV Pb-Pb collisions. As a result, the directed flow interestingly turns out to be quite sensitive to the viscosity. The results can explain qualitative features of the collisions, but themore » rapidity spectra in our current model is narrower than the experimental data.« less

  12. Atomic data on inelastic processes in low-energy manganese-hydrogen collisions

    NASA Astrophysics Data System (ADS)

    Belyaev, Andrey K.; Voronov, Yaroslav V.

    2017-10-01

    Aims: The aim of this paper is to calculate cross sections and rate coefficients for inelastic processes in low-energy Mn + H and Mn+ + H- collisions, especially, for processes with high and moderate rate coefficients. These processes are required for non-local thermodynamic equilibrium (non-LTE) modeling of manganese spectra in cool stellar atmospheres, and in particular, for metal-poor stars. Methods: The calculations of the cross sections and the rate coefficients were performed by means of the quantum model approach within the framework of the Born-Oppenheimer formalism, that is, the asymptotic semi-empirical method for the electronic MnH molecular structure calculation followed by the nonadiabatic nuclear dynamical calculation by means of the multichannel analytic formulas. Results: The cross sections and the rate coefficients for low-energy inelastic processes in manganese-hydrogen collisions are calculated for all transitions between 21 low-lying covalent states and one ionic state. We show that the highest values of the cross sections and the rate coefficients correspond to the mutual neutralization processes into the final atomic states Mn(3d54s(7S)5s e 6S), Mn(3d54s(7S)5p y 8P°), Mn(3d54s(7S)5s e 8S), Mn(3d54s(7S)4d e 8D) [the first group], the processes with the rate coefficients (at temperature T = 6000 K) of the values 4.38 × 10-8, 2.72 × 10-8, 1.98 × 10-8, and 1.59 × 10-8 cm3/ s, respectively, that is, with the rate coefficients exceeding 10-8 cm3/ s. The processes with moderate rate coefficients, that is, with values between 10-10 and 10-8 cm3/ s include many excitation, de-excitation, mutual neutralization and ion-pair formation processes. In addition to other processes involving the atomic states from the first group, the processes from the second group include those involving the following atomic states: Mn(3d5(6S)4s4p (1P°) y 6P°), Mn(3d54s(7S)4d e 6D), Mn(3d54s(7S)5p w 6P°), Mn(3d5(4P)4s4p (3P°) y 6D°), Mn(3d5(4G)4s4p (3P°) y 6F

  13. Energetic Analysis of Conjugated Hydrocarbons Using the Interacting Quantum Atoms Method.

    PubMed

    Jara-Cortés, Jesús; Hernández-Trujillo, Jesús

    2018-07-05

    A number of aromatic, antiaromatic, and nonaromatic organic molecules was analyzed in terms of the contributions to the electronic energy defined in the quantum theory of atoms in molecules and the interacting quantum atoms method. Regularities were found in the exchange and electrostatic interatomic energies showing trends that are closely related to those of the delocalization indices defined in the theory. In particular, the CC interaction energies between bonded atoms allow to rationalize the energetic stabilization associated with the bond length alternation in conjugated polyenes. This approach also provides support to Clar's sextet rules devised for aromatic systems. In addition, the H⋯H bonding found in some of the aromatic molecules studied was of an attractive nature, according to the stabilizing exchange interaction between the bonded H atoms. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  14. Rotationally inelastic collisions of H2+ ions with He buffer gas: Computing cross sections and rates

    NASA Astrophysics Data System (ADS)

    Hernández Vera, Mario; Gianturco, F. A.; Wester, R.; da Silva, H.; Dulieu, O.; Schiller, S.

    2017-03-01

    We present quantum calculations for the inelastic collisions between H2+ molecules, in rotationally excited internal states, and He atoms. This work is motivated by the possibility of experiments in which the molecular ions are stored and translationally cooled in an ion trap and a He buffer gas is added for deactivation of the internal rotational population, in particular at low (cryogenic) translational temperatures. We carry out an accurate representation of the forces at play from an ab initio description of the relevant potential energy surface, with the molecular ion in its ground vibrational state, and obtain the cross sections for state-changing rotationally inelastic collisions by solving the coupled channel quantum scattering equations. The presence of hyperfine and fine structure effects in both ortho- and para-H2+ molecules is investigated and compared to the results where such a contribution is disregarded. An analysis of possible propensity rules that may predict the relative probabilities of inelastic events involving rotational state-changing is also carried out, together with the corresponding elastic cross sections from several initial rotational states. Temperature-dependent rotationally inelastic rates are then computed and discussed in terms of relative state-changing collisional efficiency under trap conditions. The results provide the essential input data for modeling different aspects of the experimental setups which can finally produce internally cold molecular ions interacting with a buffer gas.

  15. High-frequency shear Alfven instability driven by circulating energetic ions in NSTX

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kolesnichenko, Ya. I.; White, R. B.; Yakovenko, Yu. V.

    2006-12-15

    It is shown that a number of features of an instability with the frequency comparable to the ion gyrofrequency observed in the National Spherical Torus Experiment [E. D. Fredrickson et al., 'Observation of hole-clump pair generation by global or compressional Alfven eigenmodes', Contributed Papers, 33rd European Physical Society Conference on Plasma Physics, Rome, 2006, Europhysics Conference Abstracts (European Physical Society, Petit-Lancy, 2006), Report P5.058 (unpublished)] is consistent with the features of the Alfven instability with large, about the inverse, Larmor radius of the energetic ions ({rho}{sub b}{sup -1}) longitudinal wavenumbers. The conclusions drawn are based on an analysis of themore » resonant interaction of the energetic circulating ions and the waves, as well as on the calculation of the instability growth rate taking into account effects of the finite Larmor radius, {rho}{sub b}.« less

  16. Modeling of the energetic ion observations in the vicinity of Rhea and Dione

    NASA Astrophysics Data System (ADS)

    Kotova, Anna; Roussos, Elias; Krupp, Norbert; Dandouras, Iannis

    2015-09-01

    During several flybys of the Cassini spacecraft by the saturnian moons Rhea and Dione the energetic particle detector MIMI/LEMMS measured a significant reduction of energetic ion fluxes (20-300 keV) in their vicinity, which is caused by the absorption of those ions at the moon surfaces. In order to simulate the observed depletion profiles we developed an energetic particle tracer, which can be used to simulate the charged particle trajectories considering different models of the saturnian magnetosphere. This particle tracer is using an adaptive fourth order Gauss Runge-Kutta calculation method and its background magnetospheric model can be varied from that of a simple dipole, to a more complex one that includes also non-dipolar perturbations. The electromagnetic environment of each local, moon-magnetosphere interaction region is modeled through a hybrid plasma simulation code. Using this energetic particle tracer we explore which of these magnetospheric characteristics are more important in shaping the MIMI/LEMMS ion profiles. We also examine if MIMI/LEMMS responds primarily to protons (as typically assumed in many studies) or also to heavier ions, using calibration information, observations of the energy flux spectrum by the MIMI/CHEMS instrument (on board of Cassini as well) and different simulation results. Our results show that MIMI/LEMMS indeed measures heavier ions as well. Also we discovered that wrapping of magnetic field lines, even if it caused local perturbations only about few percent of the background magnetic field, can cause measurable changes in the spatial and energy distribution of fluxes measured by MIMI/LEMMS. These results are important for correct interpretation of MIMI/LEMMS data, and offer capabilities for a precise in-flight instruments' cross-calibration. Besides that, our simulation approach can be employed in similar environments (Titan, Enceladus, jovian moons, etc.) for constraining the magnetic topology of their interaction region and

  17. N-Ω Interaction from High-Energy Heavy Ion Collisions

    NASA Astrophysics Data System (ADS)

    Morita, Kenji; Ohnishi, Akira; Hatsuda, Tetsuo

    We discuss possible observation of the N-Ω interaction from intensity correlation function in high energy heavy ion collisions. Recently a lattice QCD simulation by the HAL QCD collaboration predicts the existence of a N-Ω bound state in the 5S2 channel. We adopt the N-Ω interaction potential obtained by the lattice simulation and use it to calculate the N-Ω correlation function. We also study the variation of the correlation function with respect to the change of the binding energy and scattering parameters. Our result indicates that heavy ion collisions at RHIC and LHC may provide information on the possible existence of the N-Ω dibaryon.

  18. Improving atomic displacement and replacement calculations with physically realistic damage models.

    PubMed

    Nordlund, Kai; Zinkle, Steven J; Sand, Andrea E; Granberg, Fredric; Averback, Robert S; Stoller, Roger; Suzudo, Tomoaki; Malerba, Lorenzo; Banhart, Florian; Weber, William J; Willaime, Francois; Dudarev, Sergei L; Simeone, David

    2018-03-14

    Atomic collision processes are fundamental to numerous advanced materials technologies such as electron microscopy, semiconductor processing and nuclear power generation. Extensive experimental and computer simulation studies over the past several decades provide the physical basis for understanding the atomic-scale processes occurring during primary displacement events. The current international standard for quantifying this energetic particle damage, the Norgett-Robinson-Torrens displacements per atom (NRT-dpa) model, has nowadays several well-known limitations. In particular, the number of radiation defects produced in energetic cascades in metals is only ~1/3 the NRT-dpa prediction, while the number of atoms involved in atomic mixing is about a factor of 30 larger than the dpa value. Here we propose two new complementary displacement production estimators (athermal recombination corrected dpa, arc-dpa) and atomic mixing (replacements per atom, rpa) functions that extend the NRT-dpa by providing more physically realistic descriptions of primary defect creation in materials and may become additional standard measures for radiation damage quantification.

  19. Energetic O+ and H+ Ions in the Plasma Sheet: Implications for the Transport of Ionospheric Ions

    NASA Technical Reports Server (NTRS)

    Ohtani, S.; Nose, M.; Christon, S. P.; Lui, A. T.

    2011-01-01

    The present study statistically examines the characteristics of energetic ions in the plasma sheet using the Geotail/Energetic Particle and Ion Composition data. An emphasis is placed on the O+ ions, and the characteristics of the H+ ions are used as references. The following is a summary of the results. (1) The average O+ energy is lower during solar maximum and higher during solar minimum. A similar tendency is also found for the average H+ energy, but only for geomagnetically active times; (2) The O+ -to -H+ ratios of number and energy densities are several times higher during solar maximum than during solar minimum; (3) The average H+ and O+ energies and the O+ -to -H+ ratios of number and energy densities all increase with geomagnetic activity. The differences among different solar phases not only persist but also increase with increasing geomagnetic activity; (4) Whereas the average H+ energy increases toward Earth, the average O+ energy decreases toward Earth. The average energy increases toward dusk for both the H+ and O+ ions; (5) The O+ -to -H+ ratios of number and energy densities increase toward Earth during all solar phases, but most clearly during solar maximum. These results suggest that the solar illumination enhances the ionospheric outflow more effectively with increasing geomagnetic activity and that a significant portion of the O+ ions is transported directly from the ionosphere to the near ]Earth region rather than through the distant tail.

  20. Observing Planets and Small Bodies in Sputtered High Energy Atom (SHEA) Fluxes

    NASA Technical Reports Server (NTRS)

    Milillo, A.; Orsini, S.; Hsieh, K. C.; Baragiola, R.; Fama, M.; Johnson, R.; Mura, A.; Plainaki, Ch.; Sarantos, M.; Cassidy, T. A.; hide

    2012-01-01

    The evolution of the surfaces of bodies unprotected by either strong magnetic fields or thick atmospheres in the Solar System is caused by various processes, induced by photons, energetic ions and micrometeoroids. Among these processes, the continuous bombardment of the solar wind or energetic magnetospheric ions onto the bodies may significantly affect their surfaces, with implications for their evolution. Ion precipitation produces neutral atom releases into the exosphere through ion sputtering, with velocity distribution extending well above the particle escape limits. We refer to this component of the surface ejecta as sputtered high-energy atoms (SHEA). The use of ion sputtering emission for studying the interaction of exposed bodies (EB) with ion environments is described here. Remote sensing in SHEA in the vicinity of EB can provide mapping of the bodies exposed to ion sputtering action with temporal and mass resolution. This paper speculates on the possibility of performing remote sensing of exposed bodies using SHEA The evolution of the surfaces of bodies unprotected by either strong magnetic fields or thick atmospheres in the Solar System is caused by various processes, induced by photons, energetic ions and micrometeoroids. Among these processes, the continuous bombardment of the solar wind or energetic magnetospheric ions onto the bodies may significantly affect their surfaces, with implications for their evolution. Ion precipitation produces neutral atom releases into the exosphere through ion sputtering, with velocity distribution extending well above the particle escape limits. We refer to this component of the surface ejecta as sputtered high-energy atoms (SHEA). The use of ion sputtering emission for studying the interaction of exposed bodies (EB) with ion environments is described here. Remote sensing in SHEA in the vicinity of EB can provide mapping of the bodies exposed to ion sputtering action with temporal and mass resolution. This paper

  1. Investigation of energy deposited by femtosecond electron transfer in collisions using hydrated ion nanocalorimetry.

    PubMed

    Holm, Anne I S; Donald, William A; Hvelplund, Preben; Larsen, Mikkel K; Nielsen, Steen Brøndsted; Williams, Evan R

    2008-10-30

    Ion nanocalorimetry is used to investigate the internal energy deposited into M (2+)(H 2O) n , M = Mg ( n = 3-11) and Ca ( n = 3-33), upon 100 keV collisions with a Cs or Ne atom target gas. Dissociation occurs by loss of water molecules from the precursor (charge retention) or by capture of an electron to form a reduced precursor (charge reduction) that can dissociate either by loss of a H atom accompanied by water molecule loss or by exclusively loss of water molecules. Formation of bare CaOH (+) and Ca (+) by these two respective dissociation pathways occurs for clusters with n up to 33 and 17, respectively. From the threshold dissociation energies for the loss of water molecules from the reduced clusters, obtained from binding energies calculated using a discrete implementation of the Thomson liquid drop model and from quantum chemistry, estimates of the internal energy deposition can be obtained. These values can be used to establish a lower limit to the maximum and average energy deposition. Not taking into account effects of a kinetic shift, over 16 eV can be deposited into Ca (2+)(H 2O) 33, the minimum energy necessary to form bare CaOH (+) from the reduced precursor. The electron capture efficiency is at least a factor of 40 greater for collisions of Ca (2+)(H 2O) 9 with Cs than with Ne, reflecting the lower ionization energy of Cs (3.9 eV) compared to Ne (21.6 eV). The branching ratio of the two electron capture dissociation pathways differs significantly for these two target gases, but the distributions of water molecules lost from the reduced precursors are similar. These results suggest that the ionization energy of the target gas has a large effect on the electron capture efficiency, but relatively little effect on the internal energy deposited into the ion. However, the different branching ratios suggest that different electronic excited states may be accessed in the reduced precursor upon collisions with these two different target gases.

  2. A Monte Carlo simulation of the effect of ion self-collisions on the ion velocity distribution function in the high-latitude F-region

    NASA Technical Reports Server (NTRS)

    Barghouthi, I. A.; Barakat, A. R.; Schunk, R. W.

    1994-01-01

    Non-Maxwellian ion velocity distribution functions have been theoretically predicted and confirmed by observations, to occur at high latitudes. These distributions deviate from Maxwellian due to the combined effect of the E x B drift and ion-neutral collisions. At high altitude and/or for solar maximum conditions, the ion-to-neutral density ratio increases and, hence, the role of ion self-collisions becomes appreciable. A Monte Carlo simulation was used to investigate the behavior of O(+) ions that are E x B-drifting through a background of neutral O, with the effect of O(+) (Coulomb) self-collisions included. Wide ranges of the ion-to-neutral density ratio n(sub i)/n(sub n) and the electrostatic field E were considered in order to investigate the change of ion behavior with solar cycle and with altitude. For low altitudes and/or solar minimum (n(sub i)/n(sub n) less than or equal to 10(exp -5)), the effect of self-collisions is negligible. For higher values of n(sub i)/n(sub n), the effect of self-collisions becomes significant and, hence, the non-Maxwellian features of the O(+) distribution are reduced. The Monte Carlo results were compared to those that used simplified collision models in order to assess their validity. In general, the simple collision models tend to be more accurate for low E and for high n(sub i)/n(sub n).

  3. Charge Transfer Rate in Collisions of H + Ions with Si Atoms

    NASA Astrophysics Data System (ADS)

    Kimura, M.; Sannigrahi, A. B.; Gu, J. P.; Hirsch, G.; Buenker, R. J.; Shimamura, I.

    1996-12-01

    Charge transfer in Si(3P, 1D) + H+ collisions is studied theoretically by using a semiclassical molecular representation with six molecular channels for the triplet manifold and four channels for the singlet manifold at collision energies above 30 eV, and by using a fully quantum mechanical approach with two molecular channels for both triplet and singlet manifolds below 30 eV. The ab initio potential curves and nonadiabatic coupling matrix elements for the HSi+ system are obtained from multireference single- and double-excitation configuration interaction (MRD-CI) calculations employing a relatively large basis set. The present rate coefficients for charge transfer to Si+(4P) formation resulting from H+ + Si(3P) collisions are found to be large with values from 1 x 10-10 cm-3 s-1 at 1000 K to 1 x 10-8 cm-3 s-1 at 100,000 K. The rate coefficient for Si+(2P) formation, resulting from H+ + Si(3P) collisions, is found to be much smaller because of a larger energy defect from the initial state. These calculated rates are much larger than those reported by Baliunas & Butler, who estimated a value of 10-11 cm-3 s-1 in their coronal plasma study. The present result may be relevant to the description of the silicon ionization equilibrium.

  4. Self-assembly of magnetic nanoclusters in diamond-like carbon by diffusion processes enhanced by collision cascades

    NASA Astrophysics Data System (ADS)

    Gupta, P.; Williams, G. V. M.; Hübner, R.; Vajandar, S.; Osipowicz, T.; Heinig, K.-H.; Becker, H.-W.; Markwitz, A.

    2017-04-01

    Mono-energetic cobalt implantation into hydrogenated diamond-like carbon at room temperature results in a bimodal distribution of implanted atoms without any thermal treatment. The ˜100 nm thin films were synthesised by mass selective ion beam deposition. The films were implanted with cobalt at an energy of 30 keV and an ion current density of ˜5 μA cm-2. Simulations suggest the implantation profile to be single Gaussian with a projected range of ˜37 nm. High resolution Rutherford backscattering measurements reveal that a bimodal distribution evolves from a single near-Gaussian distribution as the fluence increases from 1.2 to 7 × 1016 cm-2. Cross-sectional transmission electron microscopy further reveals that the implanted atoms cluster into nanoparticles. At high implantation doses, the nanoparticles assemble primarily in two bands: one near the surface with nanoparticle diameters of up to 5 nm and the other beyond the projected range with ˜2 nm nanoparticles. The bimodal distribution along with the nanoparticle formation is explained with diffusion enhanced by energy deposited during collision cascades, relaxation of thermal spikes, and defects formed during ion implantation. This unique distribution of magnetic nanoparticles with the bimodal size and range is of significant interest to magnetic semiconductor and sensor applications.

  5. A tandem mass spectrometer for crossed-beam irradiation of mass-selected molecular systems by keV atomic ions

    NASA Astrophysics Data System (ADS)

    Schwob, Lucas; Lalande, Mathieu; Chesnel, Jean-Yves; Domaracka, Alicja; Huber, Bernd A.; Maclot, Sylvain; Poully, Jean-Christophe; Rangama, Jimmy; Rousseau, Patrick; Vizcaino, Violaine; Adoui, Lamri; Méry, Alain

    2018-04-01

    In the present paper, we describe a new home-built crossed-beam apparatus devoted to ion-induced ionization and fragmentation of isolated biologically relevant molecular systems. The biomolecular ions are produced by an electrospray ionization source, mass-over-charge selected, accumulated in a 3D ion trap, and then guided to the extraction region of an orthogonal time-of-flight mass spectrometer. Here, the target molecular ions interact with a keV atomic ion beam produced by an electron cyclotron resonance ion source. Cationic products from the collision are detected on a position sensitive detector and analyzed by time-of-flight mass spectrometry. A detailed description of the operation of the setup is given, and early results from irradiation of a protonated pentapeptide (leucine-enkephalin) by a 7 keV He+ ion beam are presented as a proof-of-principle.

  6. The dependence of stress in IBAD films on the ion-irradiation energy and flux

    NASA Astrophysics Data System (ADS)

    Schweitz, K. O.; Arndt, J.; Bøttiger, J.; Chevallier, J.

    1997-05-01

    Systematic experimental studies of the stress build-up during e-gun deposition of Ni with simultaneous bombardment by energetic Ar + ions (IBAD) have been carried out. The ion energy E was varied from 60 to 800 eV, and the ratio of the arrival rates of Ni atoms and Ar + ions, {R}/{J}, was varied from 0.5 to 6.4. The Ni-deposition rate was in the range from 0.5 to 2.0 Å/s, with all the depositions carried out near room temperature in a chamber with the base pressure of 5 × 10 -6 Pa. The film stress was measured by use of profilometry and the application of Stoney's equation. The experimental results were compared with predictions of a simple model proposed by Davis. This model assumes that the compressive stress build-up, due to knock-on implantation of film atoms being proportional to E {1}/{2}, is balanced by relaxation by collision-cascade-excited atom migration proportional to E {5}/{3}. To obtain agreement between model and experiment in the investigated ranges of E and {R}/{J}, an additional model parameter had to be added which takes into account that without irradiation, tensile stresses arise.

  7. Magnetic Monopole Mass Bounds from Heavy-Ion Collisions and Neutron Stars

    NASA Astrophysics Data System (ADS)

    Gould, Oliver; Rajantie, Arttu

    2017-12-01

    Magnetic monopoles, if they exist, would be produced amply in strong magnetic fields and high temperatures via the thermal Schwinger process. Such circumstances arise in heavy-ion collisions and in neutron stars, both of which imply lower bounds on the mass of possible magnetic monopoles. In showing this, we construct the cross section for pair production of magnetic monopoles in heavy-ion collisions, which indicates that they are particularly promising for experimental searches such as MoEDAL.

  8. Compact, Highly Stable Ion Atomic Clock

    NASA Technical Reports Server (NTRS)

    Prestage, John

    2008-01-01

    A mercury-ion clock now at the breadboard stage of development (see figure) has a stability comparable to that of a hydrogen-maser clock: In tests, the clock exhibited an Allan deviation of between 2 x 10(exp -13) and 3 x 10(exp -13) at a measurement time of 1 second, averaging to about 10(exp -15) at 1 day. However, the clock occupies a volume of only about 2 liters . about a hundredth of the volume of a hydrogen-maser clock. The ion-handling parts of the apparatus are housed in a sealed vacuum tube, wherein only a getter pump is used to maintain the vacuum. Hence, this apparatus is a prototype of a generation of small, potentially portable high-precision clocks for diverse ground- and space-based navigation and radio science applications. Furthermore, this new ion-clock technology is about 100 times more stable and precise than the rubidium atomic clocks currently in use in the NAV STAR GPS Earth-orbiting satellites. In this clock, mercury ions are shuttled between a quadrupole and a 16-pole linear radio-frequency trap. In the quadrupole trap, the ions are tightly confined and optical state selection from a Hg-202 radio-frequency-discharge ultraviolet lamp is carried out. In the 16-pole trap, the ions are more loosely confined and atomic transitions resonant at frequency of about 40.507 GHz are interrogated by use of a microwave beam at that frequency. The trapping of ions effectively eliminates the frequency pulling caused by wall collisions inherent to gas-cell clocks. The shuttling of the ions between the two traps enables separation of the state-selection process from the clock microwave- resonance process, so that each of these processes can be optimized independently of the other. The basic ion-shuttling, two-trap scheme as described thus far is not new: it has been the basis of designs of prior larger clocks. The novelty of the present development lies in major redesigns of its physics package (the ion traps and the vacuum and optical subsystems) to effect

  9. Quantum chaos in ultracold collisions of gas-phase erbium atoms.

    PubMed

    Frisch, Albert; Mark, Michael; Aikawa, Kiyotaka; Ferlaino, Francesca; Bohn, John L; Makrides, Constantinos; Petrov, Alexander; Kotochigova, Svetlana

    2014-03-27

    Atomic and molecular samples reduced to temperatures below one microkelvin, yet still in the gas phase, afford unprecedented energy resolution in probing and manipulating the interactions between their constituent particles. As a result of this resolution, atoms can be made to scatter resonantly on demand, through the precise control of a magnetic field. For simple atoms, such as alkalis, scattering resonances are extremely well characterized. However, ultracold physics is now poised to enter a new regime, where much more complex species can be cooled and studied, including magnetic lanthanide atoms and even molecules. For molecules, it has been speculated that a dense set of resonances in ultracold collision cross-sections will probably exhibit essentially random fluctuations, much as the observed energy spectra of nuclear scattering do. According to the Bohigas-Giannoni-Schmit conjecture, such fluctuations would imply chaotic dynamics of the underlying classical motion driving the collision. This would necessitate new ways of looking at the fundamental interactions in ultracold atomic and molecular systems, as well as perhaps new chaos-driven states of ultracold matter. Here we describe the experimental demonstration that random spectra are indeed found at ultralow temperatures. In the experiment, an ultracold gas of erbium atoms is shown to exhibit many Fano-Feshbach resonances, of the order of three per gauss for bosons. Analysis of their statistics verifies that their distribution of nearest-neighbour spacings is what one would expect from random matrix theory. The density and statistics of these resonances are explained by fully quantum mechanical scattering calculations that locate their origin in the anisotropy of the atoms' potential energy surface. Our results therefore reveal chaotic behaviour in the native interaction between ultracold atoms.

  10. Examining nonextensive statistics in relativistic heavy-ion collisions

    NASA Astrophysics Data System (ADS)

    Simon, A.; Wolschin, G.

    2018-04-01

    We show in detailed numerical solutions of the nonlinear Fokker-Planck equation (FPE), which has been associated with nonextensive q statistics, that the available data on rapidity distributions for stopping in relativistic heavy-ion collisions cannot be reproduced with any permitted value of the nonextensivity parameter (1 ion physics.

  11. Neutral-neutral and neutral-ion collision integrals for Y2O3-Ar plasma system

    NASA Astrophysics Data System (ADS)

    Dhamale, Gayatri D.; Nath, Swastik; Mathe, Vikas L.; Ghorui, Srikumar

    2017-06-01

    A detailed investigation on the neutral-neutral and neutral-ion collision integrals is reported for Y2O3-Ar plasma, an important system of functional material with unique properties having a wide range of processing applications. The calculated integrals are indispensible pre-requisite for the estimation of transport properties needed in CFD modelling of associated plasma processes. Polarizability plays an important role in determining the integral values. Ambiguity in selecting appropriate polarizability data available in the literature and calculating effective number of electrons in the ionized species contributing to the polarizability are addressed. The integrals are evaluated using Lennard-Jones like phenomenological potential up to (l,s) = (4,4). Used interaction potential is suitable for both neutral-neutral and neutral-ion interactions. For atom-parent ion interactions, contribution coming from the inelastic resonant charge transfer process has been accounted properly together with that coming from the elastic counterpart. A total of 14 interacting species and 60 different interactions are considered. Key contributing factors like basic electronic properties of the interacting species and associated polarizability values are accounted carefully. Adopted methodology is first benchmarked against data reported in the literature and then applied to the Y2O3-Ar plasma system for estimating the collision integrals. Results are presented in the temperature range of 100 K-100 000 K.

  12. AMPTE/CCE CHEM observations of the energetic ion population at geosynchronous altitudes

    NASA Technical Reports Server (NTRS)

    Daglis, Ioannis A.; Sarris, Emmanuel T.; Wilken, Berend

    1993-01-01

    The paper presents results of a statistical study of average characteristics of the energetic ion population at geosynchronous altitudes, using energetic-ion (1-300 keV/e) measurements from the CHEM spectrometer aboard the AMPTE Charge Composition Explorer between January 1985 and June 1987. Data were sorted into four MLT groups and two extreme geomagnetic activity levels ('very quiet' for AE less than 30 nT and 'very active' for AE greater than 700 nT). A clear quiet-time dayside feature found in the measurements was a dip in H(+) and He(2+) spectra, at 6.6 keV/e in the prenoon sector and at 3.5 keV/e in the postnoon sector. During active times, the ion fluxes increased (except for He(+)), and the O(+) contribution to the total energy density increased dramatically. The pitch angle distributions were normal during quiet times and isotropic or field-aligned during active times.

  13. Coherent J / ψ photoproduction in hadronic heavy-ion collisions

    DOE PAGES

    Zha, W.; Klein, S. R.; Ma, R.; ...

    2018-04-19

    Significant excesses of J/ yield at very low transverse momentum (p T < 0:3 GeV/c) were observed by the ALICE and STAR collaborations in peripheral hadronic A+A collisions. This is a Sign of coherent photoproduction of J/ψ in violent hadronic interactions. Theoretically, the photoproduction of J= in hadronic collisions raises questions about how spectator and non-spectator nucleons participate in the coherent reaction. We argue that the strong interactions in the overlapping region of incoming nuclei may disturb the coherent production, leaving room for different coupling assumptions. The destructive interference between photoproduction on ions moving in opposite directions also needs tomore » be included. This letter presents calculations of J/ψ production from coherent photon-nucleus (γ+A → J/ψ +A) interactions in hadronic A+A collisions at RHIC and LHC energies with both nucleus and spectator coupling hypotheses. The integrated yield of coherent J/ψ as a function of centrality is found to be significantly different, especially towards central collisions, for different coupling scenarios. Differential distributions as a function of transverse momentum, azimuthal angle and rapidity in different centrality bins are also shown, and found to be more sensitive to the Pomeron coupling than to the photon coupling. Lastly, these predictions call for future experimental measurements to help better understand the coherent interaction in hadronic heavy-ion collisions.« less

  14. Coherent J / ψ photoproduction in hadronic heavy-ion collisions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zha, W.; Klein, S. R.; Ma, R.

    Significant excesses of J/ yield at very low transverse momentum (p T < 0:3 GeV/c) were observed by the ALICE and STAR collaborations in peripheral hadronic A+A collisions. This is a Sign of coherent photoproduction of J/ψ in violent hadronic interactions. Theoretically, the photoproduction of J= in hadronic collisions raises questions about how spectator and non-spectator nucleons participate in the coherent reaction. We argue that the strong interactions in the overlapping region of incoming nuclei may disturb the coherent production, leaving room for different coupling assumptions. The destructive interference between photoproduction on ions moving in opposite directions also needs tomore » be included. This letter presents calculations of J/ψ production from coherent photon-nucleus (γ+A → J/ψ +A) interactions in hadronic A+A collisions at RHIC and LHC energies with both nucleus and spectator coupling hypotheses. The integrated yield of coherent J/ψ as a function of centrality is found to be significantly different, especially towards central collisions, for different coupling scenarios. Differential distributions as a function of transverse momentum, azimuthal angle and rapidity in different centrality bins are also shown, and found to be more sensitive to the Pomeron coupling than to the photon coupling. Lastly, these predictions call for future experimental measurements to help better understand the coherent interaction in hadronic heavy-ion collisions.« less

  15. Single and multiple ionization of C60 fullerenes and collective effects in collisions with highly charged C, F, and Si ions with energy 3 MeV/u

    NASA Astrophysics Data System (ADS)

    Kelkar, A. H.; Kadhane, U.; Misra, D.; Gulyas, L.; Tribedi, L. C.

    2010-10-01

    We have measured absolute cross sections for single, double, triple, and quadruple ionization of C60 in collisions with 3 MeV/u C, F, and Si projectile ions at various projectile charge states. The experiment was performed using the recoil-ion time-of-flight technique. Projectile charge state dependence of the ionization yields was compared mainly with a model based on the giant dipole plasmon resonance (GDPR). In some cases, the continuum-distorted-wave-eikonal-initial-state (CDW-EIS) model which is normally applied for ion-atom collisions was also used as a reference. An excellent qualitative agreement between the experimental data for single and double ionization and the GDPR model predictions was found for all projectile charge states.

  16. Low energy electron spectroscopy of C60 in collisions with fast bare ions: Observation of GDPR peak and its angular distribution

    NASA Astrophysics Data System (ADS)

    Kelkar, A. H.; Misra, D.; Chatterjee, S.; Kasthurirangan, S.; Agnihotri, A.; Tribedi, L. C.

    2009-11-01

    We report the first direct measurement of GDPR peak in heavy ion (4 MeV/u F9+) induced secondary electron DDCS (double differential cross section) spectrum of C60 fullerene. A peak corresponding to GDPR is seen at all angles and the angular distribution, showing a dip at 90°, is in contrast with ion-atom collisions, indicating plasmon oscillations along beam direction. A comparison has also been done between C60 and other gaseous targets as well as with state-of-the art theoretical models, based on density functional methods.

  17. Kinetic and spectral descriptions of autoionization phenomena associated with atomic processes in plasmas

    NASA Astrophysics Data System (ADS)

    Jacobs, Verne L.

    2017-06-01

    This investigation has been devoted to the theoretical description and computer modeling of atomic processes giving rise to radiative emission in energetic electron and ion beam interactions and in laboratory plasmas. We are also interested in the effects of directed electron and ion collisions and of anisotropic electric and magnetic fields. In the kinetic-theory description, we treat excitation, de-excitation, ionization, and recombination in electron and ion encounters with partially ionized atomic systems, including the indirect contributions from processes involving autoionizing resonances. These fundamental collisional and electromagnetic interactions also provide particle and photon transport mechanisms. From the spectral perspective, the analysis of atomic radiative emission can reveal detailed information on the physical properties in the plasma environment, such as non-equilibrium electron and charge-state distributions as well as electric and magnetic field distributions. In this investigation, a reduced-density-matrix formulation is developed for the microscopic description of atomic electromagnetic interactions in the presence of environmental (collisional and radiative) relaxation and decoherence processes. Our central objective is a fundamental microscopic description of atomic electromagnetic processes, in which both bound-state and autoionization-resonance phenomena can be treated in a unified and self-consistent manner. The time-domain (equation-of-motion) and frequency-domain (resolvent-operator) formulations of the reduced-density-matrix approach are developed in a unified and self-consistent manner. This is necessary for our ultimate goal of a systematic and self-consistent treatment of non-equilibrium (possibly coherent) atomic-state kinetics and high-resolution (possibly overlapping) spectral-line shapes. We thereby propose the introduction of a generalized collisional-radiative atomic-state kinetics model based on a reduced

  18. The Energetic Particle Detector Suite for Solar Orbiter

    NASA Astrophysics Data System (ADS)

    Wimmer-Schweingruber, Robert F.; Rodriguez-Pacheco, J.; Lin, R. P.; Mason, G. M.; Heber, B.; Valtonen, E.; Sanchez, S.; Blanco, J.; Prieto, M.; Martin, C.; Ho, G.; Andrews, B.; Burmeister, S.; Boettcher, S.; Kulkarni, S. R.; Seimetz, L.; Schuster, B.

    Multiple processes in the solar atmosphere or near the Sun are capable of energizing electrons and ions which are remotely observed as Solar Energetic Particle (SEP) events. SEP events are of great interest not only because they can cause large radiation increases in the interplanetary space and over the Earth's polar regions, but also because they are part of a broad range of astrophysical sources of energetic particles. Since astrophysical particle accelerators cannot be studied directly, SEPs provide the best opportunity to study all aspects of the problem, namely the acceleration process itself and the ways in which the particles escape the source and travel to remote sites. The Energetic Particle Detector (EPD) addresses two primary science goals of Solar Orbiter: 1) What are the sources of energetic particles and how are they accelerated to high energy? 2) How are solar energetic particles released from their sources and distributed in time? To address these questions, the Energetic Particle Detector (EPD) suite consists of five sensors measuring electrons, protons, and ions from helium to iron, and operating at partly overlapping energy ranges from 2 keV up to 200 MeV/n. The five EPD sensors are the SupraThermal Elec-trons, Ions, Neutrals (STEIN) sensor, the Suprathermal Ion Spectrograph (SIS), the Electron Proton Telescope (EPT), the Low Energy Telescope (LET), and the High Energy Telescope (HET). All sensors share a Common Data Processing Unit (CDPU), and EPT and HET share a common E-Box. EPT/HET and LET consist of two separate sensors with multiple viewing directions. The overall energy coverage achieved with the EPD sensors is 0.002 MeV to 20 MeV for electrons, 0.003 MeV to 100 MeV for protons, 0.008 MeV/n to 200 MeV/n for heavy ions (species-dependent), and 3 keV 30 keV for neutral atoms.

  19. Probing subnucleon scale fluctuations in ultraperipheral heavy ion collisions

    DOE PAGES

    Mantysaari, Heikki; Schenke, Bjorn

    2017-08-02

    We show that introducing subnucleon scale fluctuations constrained by HERA diffractive J/Ψ production data significantly affects the incoherent diffractive J/Ψ production cross section in ul-traperipheral heavy ion collisions. We find that the inclusion of the additional fluctuations increases the ratio of the incoherent to the coherent cross section approximately by a factor of 2, and modifies the transverse momentum spectra of the produced J/Ψ at momenta larger than the scale that corresponds to the distance scale of the subnucleonic fluctuations. We present predictions for J/Ψ production in ultraperipheral heavy ion collisions at √sNN = 5.02 TeV at the LHC andmore » 200 GeV at RHIC.« less

  20. n l -> n' l' transition rates in electron and proton - Rydberg atom collision

    NASA Astrophysics Data System (ADS)

    Vrinceanu, Daniel

    2017-04-01

    Electrons and protons drive the recombination dynamics of highly excited Rydberg atoms in cold rarefied plasmas found in astrophysical conditions such as primordial recombination or star formation in H-II clouds. It has been recognized that collisions induce both energy and angular momentum transitions in Rydberg atoms, although in different proportions, depending on the initial state, temperature and the given species considered in the collision (electron or proton). Most studies focused on one collision type at a time, under the assumption that collision types are independent or their effects are not competing. The classical Monte-Carlo trajectory simulations presented in this work calculate the rates for both energy and angular momentum transfers and show their interdependence. For example, energy transfer with small angular momentum change are more efficient for target states with initial large angular momentum. The author acknowledges support received from the National Science Foundation through a Grant for the Center for Research on Complex Networks (HRD-1137732).

  1. Improved momentum-transfer theory for ion mobility. 1. Derivation of the fundamental equation.

    PubMed

    Siems, William F; Viehland, Larry A; Hill, Herbert H

    2012-11-20

    For the first time the fundamental ion mobility equation is derived by a bottom-up procedure, with N real atomic ion-atomic neutral collisions replaced by N repetitions of an average collision. Ion drift velocity is identified as the average of all pre- and postcollision velocities in the field direction. To facilitate velocity averaging, collisions are sorted into classes that "cool" and "heat" the ion. Averaging over scattering angles establishes mass-dependent relationships between pre- and postcollision velocities for the cooling and heating classes, and a combined expression for drift velocity is obtained by weighted addition according to relative frequencies of the cooling and heating encounters. At zero field this expression becomes identical to the fundamental low-field ion mobility equation. The bottom-up derivation identifies the low-field drift velocity as 3/4 of the average precollision ion velocity in the field direction and associates the passage from low-field to high-field conditions with the increasing dominance of "cooling" collisions over "heating" collisions. Most significantly, the analysis provides a direct path for generalization to fields of arbitrary strength.

  2. Universal behavior of charged particle production in heavy ion collisions at RHIC energies

    NASA Astrophysics Data System (ADS)

    Steinberg, Peter A.; Back, B. B.; Baker, M. D.; Barton, D. S.; Betts, R. R.; Ballintijn, M.; Bickley, A. A.; Bindel, R.; Budzanowski, A.; Busza, W.; Carroll, A.; Decowski, M. P.; García, E.; George, N.; Gulbrandsen, K.; Gushue, S.; Halliwell, C.; Hamblen, J.; Heintzelman, G. A.; Henderson, C.; Hofman, D. J.; Hollis, R. S.; Holyński, R.; Holzman, B.; Iordanova, A.; Johnson, E.; Kane, J. L.; Katzy, J.; Khan, N.; Kucewicz, W.; Kulinich, P.; Kuo, C. M.; Lin, W. T.; Manly, S.; McLeod, D.; Michałowski, J.; Mignerey, A. C.; Nouicer, R.; Olszewski, A.; Pak, R.; Park, I. C.; Pernegger, H.; Reed, C.; Remsberg, L. P.; Reuter, M.; Roland, C.; Roland, G.; Rosenberg, L.; Sagerer, J.; Sarin, P.; Sawicki, P.; Skulski, W.; Steadman, S. G.; Steinberg, P.; Stephans, G. S. F.; Stodulski, M.; Sukhanov, A.; Tang, J.-L.; Teng, R.; Trzupek, A.; Vale, C.; van Nieuwenhuizen, G. J.; Verdier, R.; Wadsworth, B.; Wolfs, F. L. H.; Wosiek, B.; Woźniak, K.; Wuosmaa, A. H.; Wysłouch, B.; Phobos Collaboration

    2003-04-01

    The PHOBOS experiment at RHIC has measured the multiplicity of primary charged particles as a function of centrality and pseudorapidity in Au+Au collisions at √ SNN = 19.6, 130 and 200 GeV. Two kinds of universal behavior are observed in charged particle production in heavy ion collisions. The first is that forward particle production, over a range of energies, follows a universal limiting curve with a non-trivial centrality dependence. The second arises from comparisons with pp/ overlinepp and e +e - data. < Nch>/< Npart/2> in nuclear collisions at high energy scales with √ s in a similar way as Nch in e +e - collisions and has a very weak centrality dependence. This feature may be related to a reduction in the leading particle effect due to the multiple collisions suffered per participant in heavy ion collisions.

  3. Kinetics of Fast Atoms in the Terrestrial Atmosphere

    NASA Technical Reports Server (NTRS)

    Kharchenko, Vasili A.; Dalgarno, A.; Mellott, Mary (Technical Monitor)

    2002-01-01

    This report summarizes our investigations performed under NASA Grant NAG5-8058. The three-year research supported by the Geospace Sciences SR&T program (Ionospheric, Thermospheric, and Mesospheric Physics) has been designed to investigate fluxes of energetic oxygen and nitrogen atoms in the terrestrial thermosphere. Fast atoms are produced due to absorption of the solar radiation and due to coupling between the ionosphere and the neutral thermospheric gas. We have investigated the impact of hot oxygen and nitrogen atoms on the thermal balance, chemistry and radiation properties of the terrestrial thermosphere. Our calculations have been focused on the accurate quantitative description of the thermalization of O and N energetic atoms in collisions with atom and molecules of the ambient neutral gas. Upward fluxes of oxygen and nitrogen atoms, the rate of atmospheric heating by hot oxygen atoms, and the energy input into translational and rotational-vibrational degrees of atmospheric molecules have been evaluated. Altitude profiles of hot oxygen and nitrogen atoms have been analyzed and compared with available observational data. Energetic oxygen atoms in the terrestrial atmosphere have been investigated for decades, but insufficient information on the kinetics of fast atmospheric atoms has been a main obstacle for the interpretation of observational data and modeling of the hot geocorona. The recent development of accurate computational methods of the collisional kinetics is seen as an important step in the quantitative description of hot atoms in the thermosphere. Modeling of relaxation processes in the terrestrial atmosphere has incorporated data of recent observations, and theoretical predictions have been tested by new laboratory measurements.

  4. The composition of heavy ions in solar energetic particle events

    NASA Technical Reports Server (NTRS)

    Fan, C. Y.; Gloeckler, G.; Hovestadt, D.

    1983-01-01

    Recent advances in determining the elemental, charge state, and isotopic composition of or approximate to 1 to or approximate to 20 MeV per nucleon ions in solar energetic particle (SEP) events and outline our current understanding of the nature of solar and interplanetary processes which may explain the observations. Average values of relative abundances measured in a large number of SEP events were found to be roughly energy independent in the approx. 1 to approx. 20 MeV per nucleon range, and showed a systematic deviation from photospheric abundances which seems to be organized in terms of the first ionization potential of the ion. Direct measurements of the charge states of SEPs revealed the surprisingly common presence of energetic He(+) along with heavy ion with typically coronal ionization states. High resolution measurements of isotopic abundance ratios in a small number of SEP events showed these to be consistent with the universal composition except for the puzzling overabundance of the SEP(22)Ne/(20)Ne relative to this isotopes ratio in the solar wind. The broad spectrum of observed elemental abundance variations, which in their extreme result in composition anomalies characteristic of (3)He rich, heavy ion rich and carbon poor SEP events, along with direct measurements of the ionization states of SEPs provided essential information on the physical characteristics of, and conditions in the source regions, as well as important constraints to possible models for SEP production.

  5. Atomic data and line intensities for the S V ion

    NASA Astrophysics Data System (ADS)

    Iorga, C.; Stancalie, V.

    2017-05-01

    The energy levels, oscillator strengths, spontaneous radiative decay rates, lifetimes and electron impact collision strengths have been obtained for the [ Ne ] 3s nl, [ Ne ] 3p nl, [ Ne ] 3d nl configurations belonging to S V ion, with n ≤ 7 and l ≤ 4, resulting in 567 fine-structure levels. The calculations have been performed within the fully relativistic Flexible Atomic Code (FAC, Gu, 2008) framework and the distorted wave approximation. To attain the desired accuracy for the levels energy, the valence-valence and valence-core correlations have been taken care of by including 96 configuration state functions (CSFs) in the model, reaching a total of 3147 fine-structure levels. Two separate calculations have been performed with the local central potential computed for two different average configurations. A third calculation is also performed without the addition of the core-excited states in the atomic model for completeness. The effects of slightly different mean configurations and valence-core correlations on the energy levels and decay rates are investigated. The collision data have been computed employing the relativistic distorted-wave method along with the atomic model containing the 96 CSFs and corresponding to the ground state mean configuration. The collision strengths corresponding to excitation from the first four fine-structure levels are given for five energy values of the scattered electron 2.65, 6.18, 11.02, 17.36, 25.43 Rydberg, plus an additional variable small energy value near the threshold. A collisional-radiative model has been employed to solve the rate equations for the populations of the 567 fine-structure levels, for a temperature of LogTE(K) = 5.2 corresponding to the maximum abundance of S V, and at densities 106-1016cm-3, assuming a Maxwellian electron energy distribution function and black body radiation of temperature 6000 K and dilution factor 0.35 for the photon distribution function. The main processes responsible for the

  6. Subauroral polarization stream on the outer boundary of the ring current during an energetic ion injection event

    NASA Astrophysics Data System (ADS)

    Yuan, Zhigang; Qiao, Zheng; Li, Haimeng; Huang, Shiyong; Wang, Dedong; Yu, Xiongdong; Yu, Tao

    2017-04-01

    Subauroral polarization stream (SAPS) electric field can play an important role in the coupling between the inner magnetosphere and ionosphere; however, the production mechanism of SAPS has not been yet solved. During an energetic ion injection event on 26 March 2004, at latitudes lower than the equatorward boundaries of precipitating plasma sheet electrons and ions, the Defense Meteorological Satellite Program (DMSP) F13 satellite simultaneously observed a strong SAPS with the peak velocity of 1294 m/s and downward flowing field-aligned currents (FACs). Conjugate observations of DMSP F13 and NOAA 15 satellites have shown that FACs flowing into the ionosphere just lie in the outer boundary of the ring current (RC). The downward flowing FACs were observed in a region of positive latitudinal gradients of the ion energy density, implying that the downward flowing FACs are more likely linked to the azimuthal gradient than the radial gradient of the RC ion pressure. Our result demonstrates that RC ion pressure gradients on the outer boundary of the RC in the evening sector during energetic ion injection events can lead to downward flowing FACs so as to cause strong SAPS in condition of low ionospheric conductivities.Plain Language SummaryThis paper provides a good case that the SAPS and FAC occurred in the outer boundary of the ring current during an <span class="hlt">energetic</span> <span class="hlt">ion</span> injection event. Our result demonstrates that RC <span class="hlt">ion</span> pressure gradients on the outer boundary of the RC in the evening sector during <span class="hlt">energetic</span> <span class="hlt">ion</span> injection events can lead to downward flowing FACs so as to cause strong SAPS in condition of low ionospheric conductivities.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1437895-sculpting-nanoscale-functional-channels-complex-oxides-using-energetic-ions-electrons','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1437895-sculpting-nanoscale-functional-channels-complex-oxides-using-energetic-ions-electrons"><span>Sculpting Nanoscale Functional Channels in Complex Oxides Using <span class="hlt">Energetic</span> <span class="hlt">Ions</span> and Electrons</span></a></p> <p><a target="_blank" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Sachan, Ritesh; Zarkadoula, Eva; Ou, Xin; ...</p> <p>2018-04-26</p> <p>The formation of metastable phases has attracted significant attention because of their unique properties and potential functionalities. In the present study, we demonstrate the phase conversion of <span class="hlt">energetic-ion</span>-induced amorphous nanochannels/tracks into a metastable defect fluorite in A 2B 2O 7 structured complex oxides by electron irradiation. Through in situ electron irradiation experiments in a scanning transmission electron microscope, we observe electron-induced epitaxial crystallization of the amorphous nanochannels in Yb 2Ti 2O 7 into the defect fluorite. This <span class="hlt">energetic</span>-electron-induced phase transformation is attributed to the coupled effect of ionization-induced electronic excitations and local heating, along with subthreshold elastic energy transfers. Wemore » also show the role of ionic radii of A-site cations (A = Yb, Gd, and Sm) and B-site cations (Ti and Zr) in facilitating the electron-beam-induced crystallization of the amorphous phase to the defect-fluorite structure. The formation of the defect-fluorite structure is eased by the decrease in the difference between ionic radii of A- and B-site cations in the lattice. Molecular dynamics simulations of thermal annealing of the amorphous phase nanochannels in A 2B 2O 7 draw parallels to the electron-irradiation-induced crystallization and confirm the role of ionic radii in lowering the barrier for crystallization. Furthermore, these results suggest that employing guided electron irradiation with <span class="hlt">atomic</span> precision is a useful technique for selected area phase formation in nanoscale printed devices.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/biblio/1437895-sculpting-nanoscale-functional-channels-complex-oxides-using-energetic-ions-electrons','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/1437895-sculpting-nanoscale-functional-channels-complex-oxides-using-energetic-ions-electrons"><span>Sculpting Nanoscale Functional Channels in Complex Oxides Using <span class="hlt">Energetic</span> <span class="hlt">Ions</span> and Electrons</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Sachan, Ritesh; Zarkadoula, Eva; Ou, Xin</p> <p></p> <p>The formation of metastable phases has attracted significant attention because of their unique properties and potential functionalities. In the present study, we demonstrate the phase conversion of <span class="hlt">energetic-ion</span>-induced amorphous nanochannels/tracks into a metastable defect fluorite in A 2B 2O 7 structured complex oxides by electron irradiation. Through in situ electron irradiation experiments in a scanning transmission electron microscope, we observe electron-induced epitaxial crystallization of the amorphous nanochannels in Yb 2Ti 2O 7 into the defect fluorite. This <span class="hlt">energetic</span>-electron-induced phase transformation is attributed to the coupled effect of ionization-induced electronic excitations and local heating, along with subthreshold elastic energy transfers. Wemore » also show the role of ionic radii of A-site cations (A = Yb, Gd, and Sm) and B-site cations (Ti and Zr) in facilitating the electron-beam-induced crystallization of the amorphous phase to the defect-fluorite structure. The formation of the defect-fluorite structure is eased by the decrease in the difference between ionic radii of A- and B-site cations in the lattice. Molecular dynamics simulations of thermal annealing of the amorphous phase nanochannels in A 2B 2O 7 draw parallels to the electron-irradiation-induced crystallization and confirm the role of ionic radii in lowering the barrier for crystallization. Furthermore, these results suggest that employing guided electron irradiation with <span class="hlt">atomic</span> precision is a useful technique for selected area phase formation in nanoscale printed devices.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/biblio/22606225-controlled-nanopatterning-modifications-materials-energetic-ions','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22606225-controlled-nanopatterning-modifications-materials-energetic-ions"><span>Controlled nanopatterning & modifications of materials by <span class="hlt">energetic</span> <span class="hlt">ions</span></span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Sinha, O. P.</p> <p></p> <p>Compound semiconductors (InP, InAs and GaSb) has been exposed to <span class="hlt">energetic</span> 3 keV Ar{sup +} <span class="hlt">ions</span> for a varying fluence range of 10{sup 13} <span class="hlt">ions</span>/cm{sup 2} to 10{sup 18} <span class="hlt">ions</span>/cm{sup 2} at room temperature. Morphological modifications of the irradiated surfaces have been investigated by Scanning Tunneling Microscopy (STM) in UHV conditions. It is observed that InP and GaSb have fluence dependent nanopattering e.g. nanoneedle, aligned nanodots, superimposed nanodots ripple like structures while InAs has little fluence dependent behaviour indicating materials dependent growth of features on irradiated surfaces. Moreover, surface roughness and wavelength of the features are also depending on themore » materials and fluences. The RMS surface roughness has been found to be increased rapidly in the early stage of irradiation followed by slower escalate rate and later tends to saturate indicating influence of the nonlinear processes.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016JPhB...49w5202B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016JPhB...49w5202B"><span>Determination of the 1s2{\\ell }2{{\\ell }}^{\\prime } state production ratios {{}^{4}P}^{o}/{}^{2}P, {}^{2}D/{}^{2}P and {{}^{2}P}_{+}/{{}^{2}P}_{-} from fast (1{s}^{2},1s2s\\,{}^{3}S) mixed-state He-like <span class="hlt">ion</span> beams in <span class="hlt">collisions</span> with H2 targets</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Benis, E. P.; Zouros, T. J. M.</p> <p>2016-12-01</p> <p>New results are presented on the ratio {R}m={σ }{T2p}( {}4P)/{σ }{T2p}({}2P) concerning the production cross sections of Li-like 1s2s2p quartet and doublet P states formed in <span class="hlt">energetic</span> <span class="hlt">ion-atom</span> <span class="hlt">collisions</span> by single 2p electron transfer to the metastable 1s2s {}3S component of the He-like <span class="hlt">ion</span> beam. Spin statistics predict a value of R m = 2 independent of the <span class="hlt">collision</span> system in disagreement with most reported measurements of {R}m≃ 1{--}9. A new experimental approach is presented for the evaluation of R m having some practical advantages over earlier approaches. It also allows for the determination of the separate contributions of ground- and metastable-state beam components to the measured spectra. Applying our technique to zero-degree Auger projectile spectra from 4.5 MeV {{{B}}}3+ (Benis et al 2002 Phys. Rev. A 65 064701) and 25.3 MeV {{{F}}}7+ (Zamkov et al 2002 Phys. Rev. A 65 062706) mixed state (1{s}2 {}1S,1s2s {}3S) He-like <span class="hlt">ion</span> <span class="hlt">collisions</span> with H2 targets, we report new values of {R}m=3.5+/- 0.4 for boron and {R}m=1.8+/- 0.3 for fluorine. In addition, the ratios of {}2D/{}2P and {{}2P}+/{{}2P}- populations from either the metastable and/or ground state beam component, also relevant to this analysis, are evaluated and compared to previously reported results for carbon <span class="hlt">collisions</span> on helium (Strohschein et al 2008 Phys. Rev. A 77 022706) including a critical comparison to theory.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20100003420','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20100003420"><span>Observations and Interpretations of <span class="hlt">Energetic</span> Neutral Hydrogen <span class="hlt">Atoms</span> from the December 5, 2006 Solar Event</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Mewaldt, R. A.; Leske, R. A.; Shih, A. Y.; Stone, E. C.; Barghouty, A. f.; Cohen, C. M. S.; Cummings, A. c.; Labrador, A. W.; vonRosenvinge, T. T.</p> <p>2009-01-01</p> <p>We discuss recently reported observations of <span class="hlt">energetic</span> neutral hydrogen <span class="hlt">atoms</span> (ENAs) from an X9 solar flare/coronal mass ejection event on 5 December 2006, located at E79. The observations were made by the Low Energy Telescopes (LETs) on STEREO A and B. Prior to the arrival of the main solar <span class="hlt">energetic</span> particle (SEP) event at Earth, both LETs observed a sudden burst of 1.6 to 15 MeV <span class="hlt">energetic</span> neutral hydrogen <span class="hlt">atoms</span> produced by either flare or shock-accelerated protons. RHESSI measurements of the 2.2-MeV gamma-ray line provide an estimate of the number of interacting flare-accelerated protons in this event, which leads to an improved estimate of ENA production by flare-accelerated protons. Taking into account ENA losses, we find that the observed ENAs must have been produced in the high corona at heliocentric distances > or equal to 2 solar radii. Although there are no CME images from this event, it is shown that CME-shock-accelerated protons can, in principle, produce a time-history consistent with the observations.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/biblio/21450794-single-multiple-ionization-sub-fullerenes-collective-effects-collisions-highly-charged-si-ions-energy-mev','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/21450794-single-multiple-ionization-sub-fullerenes-collective-effects-collisions-highly-charged-si-ions-energy-mev"><span>Single and multiple ionization of C{sub 60} fullerenes and collective effects in <span class="hlt">collisions</span> with highly charged C, F, and Si <span class="hlt">ions</span> with energy 3 MeV/u</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Kelkar, A. H.; Kadhane, U.; Misra, D.</p> <p>2010-10-15</p> <p>We have measured absolute cross sections for single, double, triple, and quadruple ionization of C{sub 60} in <span class="hlt">collisions</span> with 3 MeV/u C, F, and Si projectile <span class="hlt">ions</span> at various projectile charge states. The experiment was performed using the recoil-<span class="hlt">ion</span> time-of-flight technique. Projectile charge state dependence of the ionization yields was compared mainly with a model based on the giant dipole plasmon resonance (GDPR). In some cases, the continuum-distorted-wave-eikonal-initial-state (CDW-EIS) model which is normally applied for <span class="hlt">ion-atom</span> <span class="hlt">collisions</span> was also used as a reference. An excellent qualitative agreement between the experimental data for single and double ionization and the GDPR modelmore » predictions was found for all projectile charge states.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016PhDT.......191R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016PhDT.......191R"><span>Studies of Rotationally and Vibrationally Inelastic <span class="hlt">Collisions</span> of NaK with <span class="hlt">Atomic</span> Perturbers</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Richter, Kara M.</p> <p></p> <p>This dissertation discusses investigations of vibrationally and rotationally inelastic <span class="hlt">collisions</span> of NaK with argon, helium and potassium as <span class="hlt">collision</span> partners. We have investigated <span class="hlt">collisions</span> of NaK molecules in the 2(A) 1Sigma+, state with argon and helium <span class="hlt">collision</span> partners in a laser-induced fluorescence (LIF) experiment. The pump laser prepares the molecules in particular ro-vibrational (v, J) levels in the 2(A) 1Sigma+, state. These excited molecules then emit fluorescence as they make transitions back to the ground [2(X)1Sigma +] state, and this fluorescence is collected by a Bomem Fourier-transform spectrometer. Weak collisional satellite lines appear flanking strong, direct lines in the recorded spectra. These satellite lines are due to <span class="hlt">collisions</span> of the NaK molecule in the 2(A)1Sigma+, state with noble gas and alkali <span class="hlt">atom</span> perturbers, which carry population to nearby rotational levels [(v, J) →(v, J + DeltaJ)] or to various rotational levels of nearby vibrational levels, [(v, J)→ (v + Deltav, J + DeltaJ)]. Ratios of the intensity of each collisional line to the intensity of the direct line then yields information pertaining to the transfer of population in the <span class="hlt">collision</span>. Our results show a propensity for DeltaJ = even <span class="hlt">collisions</span> of NaK with noble gas <span class="hlt">atoms</span>, which is slightly more pronounced for <span class="hlt">collisions</span> with helium than with argon. Such a DeltaJ = even propensity was not observed in the vibrationally inelastic <span class="hlt">collisions</span>. Although it would be desirable to operate in the single <span class="hlt">collision</span> regime, practical considerations make that difficult to achieve. Therefore, we have developed a method to estimate the effects of multiple <span class="hlt">collisions</span> on our measured rate coefficients and have obtained approximate corrected values.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018PhRvA..97a2704C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018PhRvA..97a2704C"><span>Two-body loss rates for reactive <span class="hlt">collisions</span> of cold <span class="hlt">atoms</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Cop, C.; Walser, R.</p> <p>2018-01-01</p> <p>We present an effective two-channel model for reactive <span class="hlt">collisions</span> of cold <span class="hlt">atoms</span>. It augments elastic molecular channels with an irreversible, inelastic loss channel. Scattering is studied with the distorted-wave Born approximation and yields general expressions for angular momentum resolved cross sections as well as two-body loss rates. Explicit expressions are obtained for piecewise constant potentials. A pole expansion reveals simple universal shape functions for cross sections and two-body loss rates in agreement with the Wigner threshold laws. This is applied to <span class="hlt">collisions</span> of metastable 20Ne and 21Ne <span class="hlt">atoms</span>, which decay primarily through exothermic Penning or associative ionization processes. From a numerical solution of the multichannel Schrödinger equation using the best currently available molecular potentials, we have obtained synthetic scattering data. Using the two-body loss shape functions derived in this paper, we can match these scattering data very well.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011ppya.conf...17L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011ppya.conf...17L"><span>Thermal Effects for Quark and Gluon Distributions in Heavy-<span class="hlt">Ion</span> <span class="hlt">Collisions</span> at Nica</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lykasov, G. I.; Sissakian, A. N.; Sorin, A. S.; Teryaev, O. V.</p> <p>2011-10-01</p> <p>In-medium effects for distributions of quarks and gluons in central A+A <span class="hlt">collisions</span> are considered. We suggest a duality principle, which means similarity of thermal spectra of hadrons produced in heavy-<span class="hlt">ion</span> <span class="hlt">collisions</span> and inclusive spectra which can be obtained within the dynamic quantum scattering theory. Within the suggested approach we show that the mean square of the transverse momentum for these partons grows and then saturates when the initial energy increases. It leads to the energy dependence of hadron transverse mass spectra which is similar to that observed in heavy <span class="hlt">ion</span> <span class="hlt">collisions</span>.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017NPPP..289..401Y','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017NPPP..289..401Y"><span>ϒ Production in Heavy-<span class="hlt">Ion</span> <span class="hlt">Collisions</span> from the STAR Experiment</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ye, Zaochen; STAR Collaboration</p> <p>2017-08-01</p> <p>In these proceedings, we present recent results of ϒ measurements in heavy-<span class="hlt">ion</span> <span class="hlt">collisions</span> from the STAR experiment at RHIC. Nuclear modification factors (RAA) for ϒ (1 S) and ϒ (1 S + 2 S + 3 S) in U+U <span class="hlt">collisions</span> at √{sNN } = 193 GeV are measured through the di-electron channel and compared to those in Au+Au <span class="hlt">collisions</span> at √{sNN } = 200 GeV and Pb+Pb <span class="hlt">collisions</span> at √{sNN } = 2.76 TeV. The ratio between the ϒ (2 S + 3 S) and ϒ (1 S) yields in Au+Au <span class="hlt">collisions</span> at √{sNN } = 200 GeV is measured in the di-muon channel and compared to those in p+p <span class="hlt">collisions</span> and in Pb+Pb <span class="hlt">collisions</span> at √{sNN } = 2.76 TeV. Prospects for future ϒ measurements with the STAR experiment are also discussed.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19790033927&hterms=1055&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3D%2526%25231055','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19790033927&hterms=1055&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3D%2526%25231055"><span>Evidence for solar wind origin of <span class="hlt">energetic</span> heavy <span class="hlt">ions</span> in the earth's radiation belt</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Hovestadt, D.; Klecker, B.; Scholer, M.; Gloeckler, G.; Ipavich, F. M.; Fan, C. Y.; Fisk, L. A.; Ogallagher, J. J.</p> <p>1978-01-01</p> <p>Analysis of data from our <span class="hlt">energetic</span> <span class="hlt">ion</span> composition experiment on ISEE-1 has revealed the presence of substantial fluxes of carbon, oxygen, and heavier <span class="hlt">ions</span> above 400 keV/nucleon at L values between approximately 2.5 and 4 earth radii. The measured C/O ratio varies systematically from 1.3 at 450 keV/nucleon to 4.1 at 1.3 MeV/nucleon, and no iron is observed above 200 keV/nucleon. These results provide strong evidence for a solar wind origin for <span class="hlt">energetic</span> <span class="hlt">ions</span> in the outer radiation belt. The absence of iron and the increase of the carbon-to-oxygen ratio with energy suggest that the condition for the validity of the first adiabatic invariant may have a strong influence on the trapping of these particles.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/biblio/241124-guide-bibliographies-books-reviews-compendia-data-atomic-collisions','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/241124-guide-bibliographies-books-reviews-compendia-data-atomic-collisions"><span>Guide to bibliographies, books, reviews and compendia of data on <span class="hlt">atomic</span> <span class="hlt">collisions</span></span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>McDaniel, E.W.; Mansky, E.J.</p> <p></p> <p>In 1985, the Atlanta <span class="hlt">atomic</span> physics group published an extensive bibliography on <span class="hlt">atomic</span> <span class="hlt">collisions</span>. It differed from the usual in that it contained few references to individual research papers, but instead concentrated on data collections, bibliographies, review articles and books. The present work updates the 1985 from August 1984 to September 1992.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/biblio/6144985-resonant-recombination-autoionization-electron-ion-collisions','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/6144985-resonant-recombination-autoionization-electron-ion-collisions"><span>Resonant recombination and autoionization in electron-<span class="hlt">ion</span> <span class="hlt">collisions</span></span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Mueller, A.</p> <p>1990-06-01</p> <p>The occurence of resonances in elastic and inelastic electron-<span class="hlt">ion</span> <span class="hlt">collisions</span> is discussed. Resonant processes involve excitation of the <span class="hlt">ion</span> with simultaneous capture of the initially free electron. The decay mechanism subsequent to the formation of the intermediate multiply excited state determines whether a resonance is found in recombination, excitation, elastic scattering, in single or even in multiple ionization. This review concentrates on resonances in the ionization channel. Correlated two-electron transitions are considered.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012JPhCS.388.1001W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012JPhCS.388.1001W"><span>PREFACE: XXVII International Conference on Photonic, Electronic and <span class="hlt">Atomic</span> <span class="hlt">Collisions</span> (ICPEAC 2011)</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Williams, I. D.; van der Hart, H. W.; McCann, J. F.; Crothers, D. S. F.</p> <p>2012-11-01</p> <p>The XXVII International Conference on Photonic, Electronic and <span class="hlt">Atomic</span> <span class="hlt">Collisions</span> was held at Queen's University Belfast, Northern Ireland, 27 July - 2 August 2011. Members of the Local Organising Committee were drawn from the School of Mathematics and Physics of Queen's University Belfast, the School of Physical Sciences at Dublin City University, the School of Physics at University College Dublin and the Department of Experimental Physics at the National University of Ireland, Maynooth. The Conference was attended by 566 participants with contributions from 54 countries. The meeting attracted 786 contributed papers for presentation in the poster sessions. The conference included 20 Special Reports selected from the contributed papers, and these are included in part 1 of this volume. During the meeting a total of 65 Progress Reports were also presented, and the authors invited to submit written versions of their talks (see Part 1). Of the total number of contributed papers, 663 are included as refereed abstracts in parts 2 to 15 of this volume of Journal of Physics: Conference Series. Part 1 of this volume includes detailed write-ups of the majority of plenary lectures, progress reports and special reports, constituting a comprehensive tangible record of the meeting, and is additionally published in hard-copy as the Conference Proceedings. There were 5 plenary lectures given by Margaret Murnane on Ultrafast processes in <span class="hlt">atomic</span> dynamics; Chris Greene on Few-body highly-correlated dynamics; Michael Allan on Electron-molecule <span class="hlt">collisions</span>; Yasunori Yamazaki on Antiproton and positron <span class="hlt">collisions</span> and Thomas Stöhlker on Relativistic <span class="hlt">ion</span> <span class="hlt">collisions</span>. Ian Spielman, winner of the IUPAP Young Scientist Prize for 2011, gave a special lecture entitled Modifying interatomic interactions using Raman coupling: a tale of slowly colliding Bose-Einstein condensates. In addition an evening public lecture by Mike Baillie on How precise tree-ring dating raises issues concerning the</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li class="active"><span>15</span></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_15 --> <div id="page_16" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li class="active"><span>16</span></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="301"> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20110023485','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20110023485"><span><span class="hlt">Atomic</span> <span class="hlt">ion</span> clock with two <span class="hlt">ion</span> traps, and method to transfer <span class="hlt">ions</span></span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Prestage, John D. (Inventor); Chung, Sang K. (Inventor)</p> <p>2011-01-01</p> <p>An <span class="hlt">atomic</span> <span class="hlt">ion</span> clock with a first <span class="hlt">ion</span> trap and a second <span class="hlt">ion</span> trap, where the second <span class="hlt">ion</span> trap is of higher order than the first <span class="hlt">ion</span> trap. In one embodiment, <span class="hlt">ions</span> may be shuttled back and forth from one <span class="hlt">ion</span> trap to the other by application of voltage ramps to the electrodes in the <span class="hlt">ion</span> traps, where microwave interrogation takes place when the <span class="hlt">ions</span> are in the second <span class="hlt">ion</span> trap, and fluorescence is induced and measured when the <span class="hlt">ions</span> are in the first <span class="hlt">ion</span> trap. In one embodiment, the RF voltages applied to the second <span class="hlt">ion</span> trap to contain the <span class="hlt">ions</span> are at a higher frequency than that applied to the first <span class="hlt">ion</span> trap. Other embodiments are described and claimed.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014EPJWC..6611020K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014EPJWC..6611020K"><span>Facility for Heavy <span class="hlt">Ion</span> <span class="hlt">Collision</span> Experiment at RAON</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kim, Young Jin; Kim, Do Gyun; Kim, Gi Dong; Kim, Yong Hak; Kim, Young-Jin; Kim, Yong Kyun; Kwon, Young Kwan; Yun, Chong Cheol; Hong, Byungsik; Sei Lee, Kyung; Kim, Eun Joo; Ahn, Jung Keun; Lee, Hyo Sang</p> <p>2014-03-01</p> <p>The Rare Isotope Science Project (RISP) was established in December 2011 in order to carry out the technical design and the establishment of the accelerator complex (RAON) for the rare isotope science in Korea. The rare isotope accelerator at RAON will provide both stable and rare isotope heavy-<span class="hlt">ion</span> beams the energy range from a few MeV/nucleon to a few hundreds of MeV/nucleon for researches in fields of basic and applied science. Large Acceptance Multipurpose Spectrometer (LAMPS) at RAON is a heavy-<span class="hlt">ion</span> <span class="hlt">collision</span> experimental facility for studying nuclear symmetry energy by using rare isotope beams. Two different experimental setups of LAMPS are designed for covering entire energy range at RAON. One is for low energy (< 18.5 MeV/nucleon) heavy-<span class="hlt">ion</span> <span class="hlt">collision</span> experiment for day-1 experiments. This experimental setup consists of an array of ΔE-E Si-CsI detectors, a gamma array to cover backward polar angle, and a forward neutron wall. The other is for completing an event reconstruction by detecting all the particles produced in high energy heavy-<span class="hlt">ion</span> <span class="hlt">collisions</span> within a large acceptance angle to measure particle spectrum, yield, ratio and collective flow of pions, protons, neutrons, and intermediate fragments at the same time. The experimental setup consists of a superconducting spectrometer, a dipole spectrometer, and a forward neutron wall. A Time Projection Chamber (TPC) will be placed inside of superconducting solenoid magnet of 0.6 T for charged particle tracking. The dipole spectrometer will be located forward of the superconducting spectrometer and it will be composed of a combination of quadrupole, dipole magnets, focal plane detector, tracking stations, and Time-of-Flight (ToF) detector at the end. The neutron wall will be made of 10 layers of plastic scintillators for neutron tracking. In this presentation, the detail physics and design of LAMPS at RAON will be discussed.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018PhRvC..97c4908C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018PhRvC..97c4908C"><span>Reduction of the K* meson abundance in heavy <span class="hlt">ion</span> <span class="hlt">collisions</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Cho, Sungtae; Lee, Su Houng</p> <p>2018-03-01</p> <p>We study the K* meson reduction in heavy-<span class="hlt">ion</span> <span class="hlt">collisions</span> by focusing on the hadronic effects on the K* meson abundance. We evaluate the absorption cross sections of the K* and K meson by light mesons in the hadronic matter, and further investigate the variation in the meson abundances for both particles during the hadronic stage of heavy-<span class="hlt">ion</span> <span class="hlt">collisions</span>. We show how the interplay between the interaction of the K* meson and kaon with light mesons in the hadronic medium determines the final yield difference of the statistical hadronization model to the experimental measurements. For the central Au+Au <span class="hlt">collision</span> at √{sN N}=200 GeV, we find that the K*/K yield ratio at chemical freeze-out decreases by 37 % during the expansion of the hadronic matter, resulting in the final ratio comparable to STAR measurements of 0.23 ±0.05 .</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/19136722','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/19136722"><span><span class="hlt">Collisions</span> of slow <span class="hlt">ions</span> C3Hn+ and C3Dn+ (n = 2-8) with room temperature carbon surfaces: mass spectra of product <span class="hlt">ions</span> and the <span class="hlt">ion</span> survival probability.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Pysanenko, Andriy; Zabka, Jan; Feketeová, Linda; Märk, Tilmann D; Herman, Zdenek</p> <p>2008-01-01</p> <p><span class="hlt">Collisions</span> of C3Hn+ (n = 2-8) <span class="hlt">ions</span> and some of their per- deuterated analogs with room temperature carbon (HOPG) surfaces (hydrocarbon-covered) were investigated over the incident energy range 13-45 eV in beam scattering experiments. The mass spectra of product <span class="hlt">ions</span> were measured and main fragmentation paths of the incident projectile <span class="hlt">ions</span>, energized in the surface <span class="hlt">collision</span>, were determined. The extent of fragmentation increased with increasing incident energy. Mass spectra of even-electron <span class="hlt">ions</span> C3H7+ and C3H5+ showed only fragmentations, mass spectra of radical cations C3H8*+ and C3H6*+ showed both simple fragmentations of the projectile <span class="hlt">ion</span> and formation of products of its surface chemical reaction (H-<span class="hlt">atom</span> transfer between the projectile <span class="hlt">ion</span> and hydrocarbons on the surface). No carbon-chain build-up reaction (formation of C4 hydrocarbons) was detected. The survival probability of the incident <span class="hlt">ions</span>, S(a), was usually found to be about 1-2% for the radical cation projectile <span class="hlt">ions</span> C3H8*+, C3H6*+, C3H4*+ and C3H2*+ and several percent up to about 20% for the even-electron projectile <span class="hlt">ions</span> C3H7+, C3H5+, C3H3+. A plot of S(a) values of C1, C2, C3, some C7 hydrocarbon <span class="hlt">ions</span>, Ar+ and CO2+ on hydrocarbon-covered carbon surfaces as a function of the ionization energies (IE) of the projectile species showed a drop from about 10% to about 1% and less at IE 8.5-9.5 eV and further decrease with increasing IE. A strong correlation was found between log S(a) and IE, a linear decrease over the entire range of IE investigated (7-16 eV), described by log S(a) = (3.9 +/- 0.5)-(0.39 +/- 0.04) IE.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2005JAP....97b3510M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2005JAP....97b3510M"><span>Formation of inorganic electride thin films via site-selective extrusion by <span class="hlt">energetic</span> inert gas <span class="hlt">ions</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Miyakawa, Masashi; Toda, Yoshitake; Hayashi, Katsuro; Hirano, Masahiro; Kamiya, Toshio; Matsunami, Noriaki; Hosono, Hideo</p> <p>2005-01-01</p> <p>Inert gas <span class="hlt">ion</span> implantation (acceleration voltage 300kV) into polycrystalline 12CaO.7Al2O3 (C12A7) films was investigated with fluences from 1×1016 to 1×1017cm-2 at elevated temperatures. Upon hot implantation at 600°C with fluences greater than 1×1017cm-2, the obtained films were colored and exhibited high electrical conductivity in the as-implanted state. The extrusion of O2- <span class="hlt">ions</span> encaged in the crystallographic cages of C12A7 crystal, which leaves electrons in the cages at concentrations up to ˜1.4×1021cm-3, may cause the high electrical conductivity. On the other hand, when the fluence is less than 1×1017cm-2, the as-implanted films are optically transparent and electrically insulating. The conductivity is enhanced and the films become colored by irradiating with ultraviolet light due to the formation of F +-like centers. The electrons forming the F+-like centers are photo released from the encaged H- <span class="hlt">ions</span>, which are presumably derived from the preexisting OH- groups. The induced electron concentration is proportional to the calculated displacements per <span class="hlt">atom</span>, which suggests that nuclear <span class="hlt">collision</span> effects of the implanted <span class="hlt">ions</span> play a dominant role in forming the electron and H- <span class="hlt">ion</span> in the films. The hot <span class="hlt">ion</span> implantation technique provides a nonchemical process for preparing electronic conductive C12A7 films.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2008ChPhC..32..984W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2008ChPhC..32..984W"><span>Azimuthal correlations between directed and elliptic flow in heavy <span class="hlt">ion</span> <span class="hlt">collisions</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wu, Feng-Juan; Shan, Lian-Qiang; Zhang, Jing-Bo; Tang, Gui-Xin; Huo, Lei</p> <p>2008-12-01</p> <p>A method for investigating the azimuthal correlations between directed and elliptic flow in heavy <span class="hlt">ion</span> <span class="hlt">collisions</span> is described. The transverse anisotropy of particle emission at AGS energies is investigated within the RQMD model. It is found that the azimuthal correlations between directed and elliptic flow are sensitive to the incident energy and impact parameter. The fluctuations in the initial stage and dynamical evolution of heavy <span class="hlt">ion</span> <span class="hlt">collisions</span> are not negligible. Supported by Natural Science Foundation of Heilongjiang Province (A0208) and Science Foundation of Harbin Institute of Technology (HIT.2002.47, HIT.2003.33)</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/biblio/21296523-martini-event-generator-relativistic-heavy-ion-collisions','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/21296523-martini-event-generator-relativistic-heavy-ion-collisions"><span>MARTINI: An event generator for relativistic heavy-<span class="hlt">ion</span> <span class="hlt">collisions</span></span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Schenke, Bjoern; Gale, Charles; Jeon, Sangyong</p> <p>2009-11-15</p> <p>We introduce the modular algorithm for relativistic treatment of heavy <span class="hlt">ion</span> interactions (MARTINI), a comprehensive event generator for the hard and penetrating probes in high-energy nucleus-nucleus <span class="hlt">collisions</span>. Its main components are a time-evolution model for the soft background, PYTHIA 8.1, and the McGill-Arnold, Moore, and Yaffe (AMY) parton-evolution scheme, including radiative as well as elastic processes. This allows us to generate full event configurations in the high p{sub T} region that take into account thermal quantum chromodynamic (QCD) and quantum electrodynamic (QED) effects as well as effects of the evolving medium. We present results for the neutral pion nuclear modificationmore » factor in Au+Au <span class="hlt">collisions</span> at the BNL Relativistic Heavy <span class="hlt">Ion</span> Collider as a function of p{sub T} for different centralities and also as a function of the angle with respect to the reaction plane for noncentral <span class="hlt">collisions</span>. Furthermore, we study the production of high-transverse-momentum photons, incorporating a complete set of photon-production channels.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018EPJWC.17301008M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018EPJWC.17301008M"><span>Mathematical Modeling of Resonant Processes in Confined Geometry of <span class="hlt">Atomic</span> and <span class="hlt">Atom-Ion</span> Traps</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Melezhik, Vladimir S.</p> <p>2018-02-01</p> <p>We discuss computational aspects of the developed mathematical models for resonant processes in confined geometry of <span class="hlt">atomic</span> and <span class="hlt">atom-ion</span> traps. The main attention is paid to formulation in the nondirect product discrete-variable representation (npDVR) of the multichannel scattering problem with nonseparable angular part in confining traps as the boundary-value problem. Computational efficiency of this approach is demonstrated in application to <span class="hlt">atomic</span> and <span class="hlt">atom-ion</span> confinement-induced resonances we predicted recently.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016NPPP..276...66N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016NPPP..276...66N"><span>Experimental Overview of Direct Photon Results in Heavy <span class="hlt">Ion</span> <span class="hlt">Collisions</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Novitzky, Norbert</p> <p>2016-07-01</p> <p>Direct photons are color blind probes and thus they provide unique opportunities to study the colored medium created in heavy <span class="hlt">ion</span> <span class="hlt">collisions</span>. There are many different sources of direct photons each probing different physics processes as the system evolves. In basic 2 → 2 processes the prompt photons from primary hard scatterings offer the most precise measurements of the outgoing parton energy in the opposite direction. In heavy <span class="hlt">ion</span> <span class="hlt">collisions</span> the created medium emits photons as thermal radiation, whose rate and anisotropies provide a unique prospective on the properties and evolution of the system. Recent results on direct photons from the LHC and RHIC experiments are briefly summarized in this paper.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017PhRvA..96c2712F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017PhRvA..96c2712F"><span>Quasiclassical treatment of the Auger effect in slow <span class="hlt">ion-atom</span> <span class="hlt">collisions</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Frémont, F.</p> <p>2017-09-01</p> <p>A quasiclassical model based on the resolution of Hamilton equations of motion is used to get evidence for Auger electron emission following double-electron capture in 150-keV N e10 ++He <span class="hlt">collisions</span>. Electron-electron interaction is taken into account during the <span class="hlt">collision</span> by using pure Coulombic potential. To make sure that the helium target is stable before the <span class="hlt">collision</span>, phenomenological potentials for the electron-nucleus interactions that simulate the Heisenberg principle are included in addition to the Coulombic potential. First, single- and double-electron captures are determined and compared with previous experiments and theories. Then, integration time evolution is calculated for autoionizing and nonautoionizing double capture. In contrast with single capture, the number of electrons originating from autoionization slowly increases with integration time. A fit of the calculated cross sections by means of an exponential function indicates that the average lifetime is 4.4 ×10-3a .u . , in very good agreement with the average lifetime deduced from experiments and a classical model introduced to calculate individual angular momentum distributions. The present calculation demonstrates the ability of classical models to treat the Auger effect, which is a pure quantum effect.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1329721-probing-transverse-momentum-broadening-heavy-ion-collisions','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1329721-probing-transverse-momentum-broadening-heavy-ion-collisions"><span>Probing transverse momentum broadening in heavy <span class="hlt">ion</span> <span class="hlt">collisions</span></span></a></p> <p><a target="_blank" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Mueller, A. H.; Wu, Bin; Xiao, Bo -Wen; ...</p> <p>2016-10-20</p> <p>We study the dijet azimuthal de-correlation in relativistic heavy <span class="hlt">ion</span> <span class="hlt">collisions</span> as an important probe of the transverse momentum broadening effects of a high energy jet traversing the quark–gluon plasma. We take into account both the soft gluon radiation in vacuum associated with the Sudakov logarithms and the jet P T-broadening effects in the QCD medium. We find that the Sudakov effects are dominant at the LHC, while the medium effects can play an important role at RHIC energies. This explains why the LHC experiments have not yet observed sizable P T-broadening effects in the measurement of dijet azimuthal correlationsmore » in heavy <span class="hlt">ion</span> <span class="hlt">collisions</span>. Future investigations at RHIC will provide a unique opportunity to study the -broadening effects and help to pin down the underlying mechanism for jet energy loss in a hot and dense medium.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EPJD...70..130R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EPJD...70..130R"><span>Kinetic-energy release distributions of fragment anions from <span class="hlt">collisions</span> of potassium <span class="hlt">atoms</span> with D-Ribose and tetrahydrofuran*</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Rebelo, André; Cunha, Tiago; Mendes, Mónica; da Silva, Filipe Ferreira; García, Gustavo; Limão-Vieira, Paulo</p> <p>2016-06-01</p> <p>Kinetic-energy release distributions have been obtained from the width and shapes of the time-of-flight (TOF) negative <span class="hlt">ion</span> mass peaks formed in <span class="hlt">collisions</span> of fast potassium <span class="hlt">atoms</span> with D-Ribose (DR) and tetrahydrofuran (THF) molecules. Recent dissociative <span class="hlt">ion</span>-pair formation experiments yielding anion formation have shown that the dominant fragment from D-Ribose is OH- [D. Almeida, F. Ferreira da Silva, G. García, P. Limão-Vieira, J. Chem. Phys. 139, 114304 (2013)] whereas in the case of THF is O- [D. Almeida, F. Ferreira da Silva, S. Eden, G. García, P. Limão-Vieira, J. Phys. Chem. A 118, 690 (2014)]. The results for DR and THF show an energy distribution profile reminiscent of statistical degradation via vibrational excitation and partly due to direct transformation of the excess energy in translational energy.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018IJMPS..4660020S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018IJMPS..4660020S"><span>Jets in Heavy <span class="hlt">Ion</span> <span class="hlt">Collisions</span> with the ATLAS Detector</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Santos, Helena</p> <p></p> <p>Jets constitute a golden probe to study the quark gluon plasma produced in heavy <span class="hlt">ion</span> <span class="hlt">collisions</span> at the LHC. Being produced at the early stages of the <span class="hlt">collisions</span>, they are expected to be modified as propagating through the hot and dense medium. A signature of the modification is the energy loss lowering the jet yields at a given transverse momentum. A factor of two suppression is observed in central Pb+Pb <span class="hlt">collisions</span> with respect to pp <span class="hlt">collisions</span>. Other signatures are the modification of the dijet momentum balance and the modification of fragmentation functions. These proceedings describe results on these observables from ATLAS in Runs 1 and 2. The high statistical significance of these data samples collected by ATLAS allows precision measurements of these observables in a wide range of transverse momentum and centrality.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1427709','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1427709"><span>Improving <span class="hlt">atomic</span> displacement and replacement calculations with physically realistic damage models</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Nordlund, Kai; Zinkle, Steven J.; Sand, Andrea E.</p> <p></p> <p><span class="hlt">Atomic</span> <span class="hlt">collision</span> processes are fundamental to numerous advanced materials technologies such as electron microscopy, semiconductor processing and nuclear power generation. Extensive experimental and computer simulation studies over the past several decades provide the physical basis for understanding the <span class="hlt">atomic</span>-scale processes occurring during primary displacement events. The current international standard for quantifying this <span class="hlt">energetic</span> particle damage, the Norgett-Robinson-Torrens displacements per <span class="hlt">atom</span> (NRT-dpa) model, has nowadays several well-known limitations. In particular, the number of radiation defects produced in <span class="hlt">energetic</span> cascades in metals is only ~1/3 the NRT-dpa prediction, while the number of <span class="hlt">atoms</span> involved in <span class="hlt">atomic</span> mixing is about a factor ofmore » 30 larger than the dpa value. Here we propose two new complementary displacement production estimators (athermal recombination corrected dpa, arc-dpa) and <span class="hlt">atomic</span> mixing (replacements per <span class="hlt">atom</span>, rpa) functions that extend the NRT-dpa by providing more physically realistic descriptions of primary defect creation in materials and may become additional standard measures for radiation damage quantification.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1427709-improving-atomic-displacement-replacement-calculations-physically-realistic-damage-models','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1427709-improving-atomic-displacement-replacement-calculations-physically-realistic-damage-models"><span>Improving <span class="hlt">atomic</span> displacement and replacement calculations with physically realistic damage models</span></a></p> <p><a target="_blank" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Nordlund, Kai; Zinkle, Steven J.; Sand, Andrea E.; ...</p> <p>2018-03-14</p> <p><span class="hlt">Atomic</span> <span class="hlt">collision</span> processes are fundamental to numerous advanced materials technologies such as electron microscopy, semiconductor processing and nuclear power generation. Extensive experimental and computer simulation studies over the past several decades provide the physical basis for understanding the <span class="hlt">atomic</span>-scale processes occurring during primary displacement events. The current international standard for quantifying this <span class="hlt">energetic</span> particle damage, the Norgett-Robinson-Torrens displacements per <span class="hlt">atom</span> (NRT-dpa) model, has nowadays several well-known limitations. In particular, the number of radiation defects produced in <span class="hlt">energetic</span> cascades in metals is only ~1/3 the NRT-dpa prediction, while the number of <span class="hlt">atoms</span> involved in <span class="hlt">atomic</span> mixing is about a factor ofmore » 30 larger than the dpa value. Here we propose two new complementary displacement production estimators (athermal recombination corrected dpa, arc-dpa) and <span class="hlt">atomic</span> mixing (replacements per <span class="hlt">atom</span>, rpa) functions that extend the NRT-dpa by providing more physically realistic descriptions of primary defect creation in materials and may become additional standard measures for radiation damage quantification.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28221791','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28221791"><span>Adiabatic Variational Theory for Cold <span class="hlt">Atom</span>-Molecule <span class="hlt">Collisions</span>: Application to a Metastable Helium <span class="hlt">Atom</span> Colliding with ortho- and para-Hydrogen Molecules.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Pawlak, Mariusz; Shagam, Yuval; Klein, Ayelet; Narevicius, Edvardas; Moiseyev, Nimrod</p> <p>2017-03-16</p> <p>We recently developed an adiabatic theory for cold molecular <span class="hlt">collision</span> experiments. In our previous application of this theory ( Pawlak, M.; et al. J. Chem. Phys. 2015 , 143 , 074114 ), we assumed that during the experiment the <span class="hlt">collision</span> of an <span class="hlt">atom</span> with a diatom takes place when the diatom is in the ground rotational state and is located in a plane. In this paper, we present how the variational approach of the adiabatic theory for low-temperature <span class="hlt">collision</span> experiments can be used for the study a 5D <span class="hlt">collision</span> between the <span class="hlt">atom</span> and the diatomic molecule with no limitations on its rotational quantum states and no plane restrictions. Moreover, we show here the dramatic differences in the measured reaction rates of He(2 3 S 1 ) + ortho/para-H 2 → He(1s 2 ) + ortho/para-H 2 + + e - resulting from the anisotropic long-range interactions in the reaction. In <span class="hlt">collisions</span> of metastable helium with molecular hydrogen in the ground rotational state, the isotropic potential term dominates the dynamics. When the <span class="hlt">collision</span> is with molecular hydrogen in the first excited rotational state, the nonisotropic interactions play an important role in the dynamics. The agreement of our results with the latest experimental findings ( Klein , A. ; et al. Nat. Phys. 2017 , 13 , 35 - 38 ) is very good.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2003PhRvA..67a2710W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2003PhRvA..67a2710W"><span>Charge transfer of O3+ <span class="hlt">ions</span> with <span class="hlt">atomic</span> hydrogen</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wang, J. G.; Stancil, P. C.; Turner, A. R.; Cooper, D. L.</p> <p>2003-01-01</p> <p>Charge transfer processes due to <span class="hlt">collisions</span> of ground state O3+(2s22p 2P) <span class="hlt">ions</span> with <span class="hlt">atomic</span> hydrogen are investigated using the quantum-mechanical molecular-orbital close-coupling (MOCC) method. The MOCC calculations utilize ab initio adiabatic potentials and nonadiabatic radial and rotational coupling matrix elements obtained with the spin-coupled valence-bond approach. Total and state-selective cross sections and rate coefficients are presented. Comparison with existing experimental and theoretical data shows our results to be in better agreement with the measurements than the previous calculations, although problems with some of the state-selective measurements are noted. Our calculations demonstrate that rotational coupling is not important for the total cross section, but for state-selective cross sections, its relevance increases with energy. For the ratios of triplet to singlet cross sections, significant departures from a statistical value are found, generally in harmony with experiment.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017NPPP..289..433D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017NPPP..289..433D"><span>Productions of η, ρ0 and ϕ at large transverse momentum in Heavy <span class="hlt">ion</span> <span class="hlt">Collisions</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Dai, Wei; Zhang, Ben-Wei</p> <p>2017-08-01</p> <p>The suppression of the productions of the η meson in relativistic heavy-<span class="hlt">ion</span> <span class="hlt">collisions</span> and its ratio of η /π0 are computed theoretically in the framework of the perturbative QCD(pQCD) to confront the experimental data which matches well. We explore how the hadron production ratios as η /π0 would further disclose the informations of the production suppressions due to the energy loss of the <span class="hlt">energetic</span> jet that propagating though the QGP medium. Also, we present our further studies on vector mesons such as ρ0 and ϕ within the same framework. The theoretical predictions based on pQCD are thus firstly given which give a decent description on the experimental measurements. It paved the way to the uniformly understanding of the strong suppression of single hadron productions at large transverse momentum which is a convincing evidence of the jet quenching effect.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMSH31B2727C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMSH31B2727C"><span>The GOES-16 <span class="hlt">Energetic</span> Heavy <span class="hlt">Ion</span> Instrument Proton and Helium Fluxes for Space Weather Applications</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Connell, J. J.; Lopate, C.</p> <p>2017-12-01</p> <p>The <span class="hlt">Energetic</span> Heavy <span class="hlt">Ion</span> Sensor (EHIS) was built by the University of New Hampshire, subcontracted to Assurance Technology Corporation, as part of the Space Environmental In-Situ Suite (SEISS) on the new GOES-16 satellite, in geostationary Earth orbit. The EHIS measures <span class="hlt">energetic</span> <span class="hlt">ions</span> in space over the range 10-200 MeV for protons, and energy ranges for heavy <span class="hlt">ions</span> corresponding to the same stopping range. Though an operational satellite instrument, EHIS will supply high quality data for scientific studies. For the GOES Level 1-B and Level 2 data products, protons and helium are distinguished in the EHIS using discriminator trigger logic. Measurements are provided in five energy bands. The instrumental cadence of these rates is 3 seconds. However, the primary Level 1-B proton and helium data products are 1-minute and 5-minute averages. The data latency is 1 minute, so data products can be used for real-time predictions as well as general science studies. Protons and helium, comprising approximately 99% of all <span class="hlt">energetic</span> <span class="hlt">ions</span> in space are of great importance for Space Weather predictions. We discuss the preliminary EHIS proton and helium data results and their application to Space Weather. The EHIS instrument development project was funded by NASA under contract NNG06HX01C.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1991PhDT........67Y','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1991PhDT........67Y"><span>The Effect of Intense Laser Radiation on <span class="hlt">Atomic</span> <span class="hlt">Collisions</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Young, Stephen Michael Radley</p> <p>1991-02-01</p> <p>Available from UMI in association with The British Library. Requires signed TDF. We have carried out theoretical and experimental studies into the effect of intense laser radiation on <span class="hlt">atomic</span> <span class="hlt">collisions</span>. The first experiment used neon. Excitation by electron impact in a gas discharge demanded a pressure of at least 0.075 Torr. Measurement of the intensity of 3^1S_0to 3^1P_1 fluorescence has been made for the case where high intensity ASE wings in the laser profile and background laser scatter are unimportant, with the laser tuned to resonance. The field intensity required to produce strong field fluorescence (exemplified by the Mollow triplet) was found to give rise to complications capable of screening the effects sought. Our theoretical model has suggested that at finite detunings, line-centre fluorescence will dominate Rayleigh scatter and omega_3 fluorescence. Our measurements provide information on the saturation of neon fluorescence but not of the variation of the intense field <span class="hlt">collision</span> rate. Absorption of weak field 253.7 nm laser photons by ground state mercury <span class="hlt">atoms</span> yielded a high 6 ^3P_1 population at a lower pressure of 0.02 Torr. The Mollow triplet has been observed in the self-broadened mercury system. Dressing of the upper transition (6^3P_1rightarrow 7^3S_1) by an intense laser close to 435.8 nm yielded the strong field signal. Polarisation studies were made possible by the 3-level mercury system (radiation trapping in a 2-level system would depolarise fluorescence) perturbed by argon. The studies yielded results that were explainable in terms of the selective population of Stark shifted dressed states by a detuned, weak probe field. Use has been made of the electric-dipole radiation selection rule m_{J}=0 rightarrow m_{J^' } = 0 unless J=J^' to devise a 'Stark shift <span class="hlt">collision</span> switch'. The competition between <span class="hlt">collision</span> and radiation induced transitions within the mercury <span class="hlt">atom</span> has then been studied. The resonant, strong lambda 435.8 nm field was used</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li class="active"><span>16</span></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_16 --> <div id="page_17" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li class="active"><span>17</span></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="321"> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/881870','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/881870"><span>Femtoscopy in Relativistic Heavy <span class="hlt">Ion</span> <span class="hlt">Collisions</span></span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Lisa, M; Pratt, S; Soltz, R A</p> <p>2005-07-29</p> <p>Analyses of two-particle correlations have provided the chief means for determining spatio-temporal characteristics of relativistic heavy <span class="hlt">ion</span> <span class="hlt">collisions</span>. We discuss the theoretical formalism behind these studies and the experimental methods used in carrying them out. Recent results from RHIC are put into context in a systematic review of correlation measurements performed over the past two decades. The current understanding of these results are discussed in terms of model comparisons and overall trends.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/biblio/1412044-coupled-electronic-atomic-effects-defect-evolution-silicon-carbide-under-ion-irradiation','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/1412044-coupled-electronic-atomic-effects-defect-evolution-silicon-carbide-under-ion-irradiation"><span>Coupled electronic and <span class="hlt">atomic</span> effects on defect evolution in silicon carbide under <span class="hlt">ion</span> irradiation</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Zhang, Yanwen; Xue, Haizhou; Zarkadoula, Eva</p> <p></p> <p>Understanding energy dissipation processes in electronic/<span class="hlt">atomic</span> subsystems and subsequent non-equilibrium defect evolution is a long-standing challenge in materials science. In the intermediate energy regime, <span class="hlt">energetic</span> particles simultaneously deposit a significant amount of energy to both electronic and <span class="hlt">atomic</span> subsystems of silicon carbide (SiC). Here we show that defect evolution in SiC closely depends on the electronic-to-nuclear energy loss ratio (S e/S n), nuclear stopping powers ( dE/dx nucl), electronic stopping powers ( dE/dx ele), and the temporal and spatial coupling of electronic and <span class="hlt">atomic</span> subsystem for energy dissipation. The integrated experiments and simulations reveal that: (1) increasing S e/S nmore » slows damage accumulation; (2) the transient temperatures during the ionization-induced thermal spike increase with dE/dx ele, which causes efficient damage annealing along the <span class="hlt">ion</span> trajectory; and (3) for more condensed displacement damage within the thermal spike, damage production is suppressed due to the coupled electronic and <span class="hlt">atomic</span> dynamics. Ionization effects are expected to be more significant in materials with covalent/ionic bonding involving predominantly well-localized electrons. Here, insights into the complex electronic and <span class="hlt">atomic</span> correlations may pave the way to better control and predict SiC response to extreme energy deposition« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018EPJP..133..172S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018EPJP..133..172S"><span>Quasi-four-body treatment of charge transfer in the <span class="hlt">collision</span> of protons with <span class="hlt">atomic</span> helium: II. Second-order non-Thomas mechanisms and the cross sections</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Safarzade, Zohre; Akbarabadi, Farideh Shojaei; Fathi, Reza; Brunger, Michael J.; Bolorizadeh, Mohammad A.</p> <p>2018-05-01</p> <p>A fully quantum mechanical four-body treatment of charge transfer <span class="hlt">collisions</span> between <span class="hlt">energetic</span> protons and <span class="hlt">atomic</span> helium is developed here. The Pauli exclusion principle is applied to both the wave function of the initial and final states as well as the operators involved in the interaction. Prior to the <span class="hlt">collision</span>, the helium <span class="hlt">atom</span> is assumed as a two-body system composed of the nucleus, He2+, and an electron cloud composed of two electrons. Nonetheless, four particles are assumed in the final state. As the double interactions contribute extensively in single charge transfer <span class="hlt">collisions</span>, the Faddeev-Lovelace-Watson scattering formalism describes it best physically. The treatment of the charge transfer cross section, under this quasi-four-body treatment within the FWL formalism, showed that other mechanisms leading to an effect similar to the Thomas one occur at the same scattering angle. Here, we study the two-body interactions which are not classically described but which lead to an effect similar to the Thomas mechanism and finally we calculate the total singlet and triplet amplitudes as well as the angular distributions of the charge transfer cross sections. As the incoming projectiles are assumed to be plane waves, the present results are calculated for high energies; specifically a projectile energy of 7.42 MeV was assumed as this is where experimental results are available in the literature for comparison. Finally, when possible we compare the present results with the other available theoretical data.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017PhPl...24j2701F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017PhPl...24j2701F"><span>Electronic transport coefficients in plasmas using an effective energy-dependent electron-<span class="hlt">ion</span> <span class="hlt">collision</span>-frequency</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Faussurier, G.; Blancard, C.; Combis, P.; Decoster, A.; Videau, L.</p> <p>2017-10-01</p> <p>We present a model to calculate the electrical and thermal electronic conductivities in plasmas using the Chester-Thellung-Kubo-Greenwood approach coupled with the Kramers approximation. The divergence in photon energy at low values is eliminated using a regularization scheme with an effective energy-dependent electron-<span class="hlt">ion</span> <span class="hlt">collision</span>-frequency. Doing so, we interpolate smoothly between the Drude-like and the Spitzer-like regularizations. The model still satisfies the well-known sum rule over the electrical conductivity. Such kind of approximation is also naturally extended to the average-<span class="hlt">atom</span> model. A particular attention is paid to the Lorenz number. Its nondegenerate and degenerate limits are given and the transition towards the Drude-like limit is proved in the Kramers approximation.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018MNRAS.475.5480D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018MNRAS.475.5480D"><span>Hyperfine excitation of CH in <span class="hlt">collisions</span> with <span class="hlt">atomic</span> and molecular hydrogen</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Dagdigian, Paul J.</p> <p>2018-04-01</p> <p>We investigate here the excitation of methylidene (CH) induced by <span class="hlt">collisions</span> with <span class="hlt">atomic</span> and molecular hydrogen (H and H2). The hyperfine-resolved rate coefficients were obtained from close coupling nuclear-spin-free scattering calculations. The calculations are based upon recent, high-accuracy calculations of the CH(X2Π)-H(2S) and CH(X2Π)-H2 potential energy surfaces. Cross-sections and rate coefficients for <span class="hlt">collisions</span> with <span class="hlt">atomic</span> H, para-H2, and ortho-H2 were computed for all transitions between the 32 hyperfine levels for CH(X2Π) involving the n ≤ 4 rotational levels for temperatures between 10 and 300 K. These rate coefficients should significantly aid in the interpretation of astronomical observations of CH spectra. As a first application, the excitation of CH is simulated for conditions in typical molecular clouds.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1326045-energetic-neutral-atoms-measured-interstellar-boundary-explorer-ibex-evidence-multiple-heliosheath-populations','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1326045-energetic-neutral-atoms-measured-interstellar-boundary-explorer-ibex-evidence-multiple-heliosheath-populations"><span><span class="hlt">Energetic</span> neutral <span class="hlt">atoms</span> measured by the interstellar boundary explorer (IBEX): evidence for multiple heliosheath populations</span></a></p> <p><a target="_blank" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Desai, M. I.; Allegrini, F. A.; Bzowski, M.; ...</p> <p>2013-12-13</p> <p><span class="hlt">Energetic</span> neutral <span class="hlt">atoms</span> (ENAs) observed by the Interstellar Boundary Explorer (IBEX) provide powerful diagnostics about the origin of the progenitor <span class="hlt">ion</span> populations and the physical mechanisms responsible for their production. In this paper, we extend the work of Desai et al. and Fuselier et al. and combine and compare ENA spectra from the first 3 yr of observations by the IBEX-Hi and -Lo ENA imagers along the lines-of-sight (LOSs) from the inner heliosphere through to the locations of Voyager 1 and 2 with results from an updated physics-based model of the three-dimensional heliosphere and its constituent <span class="hlt">ion</span> populations. Our resultsmore » show that (1) IBEX ENA fluxes and spectra above ~0.7 keV measured along the LOSs of the Voyagers are consistent with several models in which the parent pickup <span class="hlt">ion</span> (PUI) populations originate in the inner heliosheath, and (2) a significant fraction of lower energy ENAs between ~0.1-0.5 keV may originate from interstellar neutral gas charge-exchanging with a non-thermalized (hot) population of PUIs in the outer heliosheath beyond the heliopause. Here we discuss the implications of ENAs observed by IBEX originating from distinct parent populations as well as from two distinct locations in the heliospheric interface. In conclusion, these results indicate that ENA spectral measurements at various energies can be used to remotely probe distinct physical processes operating in vastly different regions of the distant heliosphere.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014ApJ...780...98D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014ApJ...780...98D"><span><span class="hlt">Energetic</span> Neutral <span class="hlt">Atoms</span> Measured by the Interstellar Boundary Explorer (IBEX): Evidence for Multiple Heliosheath Populations</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Desai, M. I.; Allegrini, F. A.; Bzowski, M.; Dayeh, M. A.; Funsten, H.; Fuselier, S. A.; Heerikhuisen, J.; Kubiak, M. A.; McComas, D. J.; Pogorelov, N. V.; Schwadron, N. A.; Sokół, J. M.; Zank, G. P.; Zirnstein, E. J.</p> <p>2014-01-01</p> <p><span class="hlt">Energetic</span> neutral <span class="hlt">atoms</span> (ENAs) observed by the Interstellar Boundary Explorer (IBEX) provide powerful diagnostics about the origin of the progenitor <span class="hlt">ion</span> populations and the physical mechanisms responsible for their production. In this paper, we extend the work of Desai et al. and Fuselier et al. and combine and compare ENA spectra from the first 3 yr of observations by the IBEX-Hi and -Lo ENA imagers along the lines-of-sight (LOSs) from the inner heliosphere through to the locations of Voyager 1 and 2 with results from an updated physics-based model of the three-dimensional heliosphere and its constituent <span class="hlt">ion</span> populations. Our results show that (1) IBEX ENA fluxes and spectra above ~0.7 keV measured along the LOSs of the Voyagers are consistent with several models in which the parent pickup <span class="hlt">ion</span> (PUI) populations originate in the inner heliosheath, and (2) a significant fraction of lower energy ENAs between ~0.1-0.5 keV may originate from interstellar neutral gas charge-exchanging with a non-thermalized (hot) population of PUIs in the outer heliosheath beyond the heliopause. We discuss the implications of ENAs observed by IBEX originating from distinct parent populations as well as from two distinct locations in the heliospheric interface. These results indicate that ENA spectral measurements at various energies can be used to remotely probe distinct physical processes operating in vastly different regions of the distant heliosphere.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010AGUFMSM32A..02C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010AGUFMSM32A..02C"><span>Models of Electron <span class="hlt">Energetics</span> in the Enceladus Torus</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Cravens, T. E.; Ozak, N.; Richard, M. S.; Robertson, I. P.; Perry, M. E.; Campbell, M. E.</p> <p>2010-12-01</p> <p>The inner magnetosphere of Saturn contains a mixture of plasma and neutral gas, the dominant source of which is the icy satellite Enceladus. Water vapor and water dissociation products are present throughout the magnetosphere but they are particularly concentrated in a torus surrounding Saturn at the orbit of Enceladus. The Hubble Space Telescope observed OH in the torus and other neutral species (mainly water) have been measured by the <span class="hlt">Ion</span> and Neutral Mass Spectrometer (INMS) and the Ultraviolet Imaging Spectrometer (UVIS) onboard the Cassini spacecraft. Relatively cold plasma, dominated by water group <span class="hlt">ion</span> species, was measured by instruments onboard both the Voyager and Cassini spacecraft. The electron distribution function in this torus appears to include both a colder thermal population (seen for example by the Cassini Radio and Plasma Wave Spectrometer’s Langmuir probe -- RPWS/LP) and hotter suprathermal populations (seen by the electron spectrometer part of the Cassini plasma analyzer -- CAPS/ELS). We present a model of electron <span class="hlt">energetics</span> in the torus. One part of this model utilizes an electron energy deposition code to determine electron fluxes versus energy. The model includes photoelectron production from the absorption of solar radiation as well as electron impact collisional processes for water and other neutral species. Another part of the model consists of an <span class="hlt">energetics</span> code for thermal electrons that generates electron temperatures. Heating from Coulomb <span class="hlt">collisions</span> with photoelectrons and with hot pick-up <span class="hlt">ions</span> was included, as was cooling due to electron impact <span class="hlt">collisions</span> with water. We show that solar radiation is the dominant source of suprathermal electrons in the core neutral torus, in agreement with recently published CAPS-ELS data. We predict electron thermal energies of about 2 eV, which is somewhat low in comparison with recently published RPWS-LP data. The implications of these results for plasma densities in the torus will also be</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017NIMPB.406..391S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017NIMPB.406..391S"><span>Six decades of <span class="hlt">atomic</span> <span class="hlt">collisions</span> in solids</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sigmund, Peter</p> <p>2017-09-01</p> <p>In response to an invitation by the organizers of the 27th international conference on <span class="hlt">atomic</span> <span class="hlt">collisions</span> in solids, a brief survey is presented, starting from the roots of the field in the 1950s and 1960s, of some major discoveries, longstanding problems, surprising findings and memorable controversies in topics covered by the conference. Considering the breadth of the field, the selection of topics is necessarily subjective, but with the emphasis on channeling, stopping and sputtering, three topical areas are discussed which have been active from the early 1960s until now.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20090033104','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20090033104"><span>Observation and Interpretation of <span class="hlt">Energetic</span> Neutral Hydrogen <span class="hlt">Atoms</span> from the December 5, 2006 Solar Flare</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Barghouty, A. F.; Mewaldt, R. A.; Leske, R. A.; Shih, A. Y.; Stone, E. C.; Cohen, C. M. S.; Cummings, A. C.; Labrador, A. W.; vonRosenvinge, T. T.; Wiedenbeck, M. E.</p> <p>2009-01-01</p> <p>We discuss observations of <span class="hlt">energetic</span> neutral hydrogen <span class="hlt">atoms</span> (ENAs) from a solar flare/coronal mass ejection event reported by Mewaldt et al. (2009). The observations were made during the 5 December 2006 X9 solar flare, located at E79, by the Low Energy Telescopes (LETs) on STEREO A and B. Prior to the arrival of the main solar <span class="hlt">energetic</span> particle (SEP) event at Earth, both LETs observed a sudden burst of 1.6 to 15 MeV particles arriving from the Sun. The derived solar emission profile, arrival directions, and energy spectrum all show that the <5 MeV particles were due to <span class="hlt">energetic</span> neutral hydrogen <span class="hlt">atoms</span> produced by either flare or shock-accelerated protons. RHESSI measurements of the 2.2-MeV gamma-ray line provide an estimate of the number of interacting flare-accelerated protons in this event, which leads to an improved estimate of ENA production by flare-accelerated protons. CME-driven shock acceleration is also considered. Taking into account ENA losses, we conclude that the observed ENAs must have been produced in the high corona at heliocentric distances .2 solar radii.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/biblio/20718371-recoil-ion-momentum-distributions-transfer-ionization-fast-proton-he-collisions','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/20718371-recoil-ion-momentum-distributions-transfer-ionization-fast-proton-he-collisions"><span>Recoil-<span class="hlt">ion</span> momentum distributions for transfer ionization in fast proton-He <span class="hlt">collisions</span></span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Schmidt, H.T.; Reinhed, P.; Schuch, R.</p> <p>2005-07-15</p> <p>We present high-luminosity experimental investigations of the transfer ionization (TI:p+He{yields}H{sup 0}+He{sup 2+}+e{sup -}) process in <span class="hlt">collisions</span> between fast protons and neutral helium <span class="hlt">atoms</span> in the earlier inaccessibly high-energy range 1.4-5.8 MeV. The protons were stored in the heavy-<span class="hlt">ion</span> storage and cooler ring CRYRING, where they intersected a narrow supersonic helium gas jet. We discuss the longitudinal recoil-<span class="hlt">ion</span> momentum distribution, as measured by means of cold-target recoil-<span class="hlt">ion</span> momentum spectroscopy and find that this distribution splits into two completely separated peaks at the high end of our energy range. These separate contributions are discussed in terms of the earlier proposed Thomas TImore » (TTI) and kinematic TI mechansims. The cross section of the TTI process is found to follow a {sigma}{proportional_to}v{sup -b} dependence with b=10.78{+-}0.27 in accordance with the expected v{sup -11} asymptotic behavior. Further, we discuss the probability for shake-off accompanying electron transfer and the relation of this TI mechanism to photodouble ionization. Finally the influence of the initial-state electron velocity distribution on the TTI process is discussed.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26263308','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26263308"><span>Molecular Growth Inside of Polycyclic Aromatic Hydrocarbon Clusters Induced by <span class="hlt">Ion</span> <span class="hlt">Collisions</span>.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Delaunay, Rudy; Gatchell, Michael; Rousseau, Patrick; Domaracka, Alicja; Maclot, Sylvain; Wang, Yang; Stockett, Mark H; Chen, Tao; Adoui, Lamri; Alcamí, Manuel; Martín, Fernando; Zettergren, Henning; Cederquist, Henrik; Huber, Bernd A</p> <p>2015-05-07</p> <p>The present work combines experimental and theoretical studies of the <span class="hlt">collision</span> between keV <span class="hlt">ion</span> projectiles and clusters of pyrene, one of the simplest polycyclic aromatic hydrocarbons (PAHs). Intracluster growth processes induced by <span class="hlt">ion</span> <span class="hlt">collisions</span> lead to the formation of a wide range of new molecules with masses larger than that of the pyrene molecule. The efficiency of these processes is found to strongly depend on the mass and velocity of the incoming projectile. Classical molecular dynamics simulations of the entire <span class="hlt">collision</span> process-from the <span class="hlt">ion</span> impact (nuclear scattering) to the formation of new molecular species-reproduce the essential features of the measured molecular growth process and also yield estimates of the related absolute cross sections. More elaborate density functional tight binding calculations yield the same growth products as the classical simulations. The present results could be relevant to understand the physical chemistry of the PAH-rich upper atmosphere of Saturn's moon Titan.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFMSM51F2559D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFMSM51F2559D"><span>Equatorial distributions of <span class="hlt">energetic</span> <span class="hlt">ion</span> moments in Saturn's magnetosphere using Cassini/MIMI measurements</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Dialynas, K.; Roussos, E.; Regoli, L.; Paranicas, C.; Krimigis, S. M.; Kane, M.; Mitchell, D. G.; Hamilton, D. C.</p> <p>2016-12-01</p> <p>We use kappa distribution fits to combined Charge Energy Mass Spectrometer (CHEMS, 3 to 236 keV/e), Low Energy Magnetosphere Measurements System (LEMMS, 0.024 < E < 18 MeV), and <span class="hlt">Ion</span> Neutral Camera (INCA, 5.2 to >220 keV for H+) proton and singly ionized <span class="hlt">energetic</span> <span class="hlt">ion</span> spectra to calculate the >20 keV <span class="hlt">energetic</span> <span class="hlt">ion</span> moments inside Saturn's magnetosphere. Using a realistic magnetic field model (Khurana et al. 2007) and data from the entire Cassini mission to date (2004-2016), we map the <span class="hlt">ion</span> measurements to the equatorial plane and via the modeled kappa distribution spectra we produce the equatorial distributions of all <span class="hlt">ion</span> integral moments, focusing on partial density, integral intensity, partial pressure, integral energy intensity; as well as the characteristic energy (EC=IE/In), Temperature and κ-index of these <span class="hlt">ions</span> as a function of Local Time (00:00 to 24:00 hrs) and L-Shell (5-20). A modified version of the semi-empirical Roelof and Skinner [2000] model is then utilized to retrieve the equatorial H+ and O+ pressure, density and temperature in Saturn's magnetosphere in both local time and L-shell. We find that a) although the H+ and O+ partial pressures and densities are nearly comparable, the >20 keV protons have higher number and energy intensities at all radial distances (L>5) and local times; b) the 12</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4770588','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4770588"><span>Dense blocks of <span class="hlt">energetic</span> <span class="hlt">ions</span> driven by multi-petawatt lasers</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Weng, S. M.; Liu, M.; Sheng, Z. M.; Murakami, M.; Chen, M.; Yu, L. L.; Zhang, J.</p> <p>2016-01-01</p> <p>Laser-driven <span class="hlt">ion</span> accelerators have the advantages of compact size, high density, and short bunch duration over conventional accelerators. Nevertheless, it is still challenging to simultaneously enhance the yield and quality of laser-driven <span class="hlt">ion</span> beams for practical applications. Here we propose a scheme to address this challenge via the use of emerging multi-petawatt lasers and a density-modulated target. The density-modulated target permits its <span class="hlt">ions</span> to be uniformly accelerated as a dense block by laser radiation pressure. In addition, the beam quality of the accelerated <span class="hlt">ions</span> is remarkably improved by embedding the target in a thick enough substrate, which suppresses hot electron refluxing and thus alleviates plasma heating. Particle-in-cell simulations demonstrate that almost all <span class="hlt">ions</span> in a solid-density plasma of a few microns can be uniformly accelerated to about 25% of the speed of light by a laser pulse at an intensity around 1022 W/cm2. The resulting dense block of <span class="hlt">energetic</span> <span class="hlt">ions</span> may drive fusion ignition and more generally create matter with unprecedented high energy density. PMID:26924793</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA626028','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA626028"><span>Modeling of Elastic <span class="hlt">Collisions</span> between High Energy and Slow Neutral <span class="hlt">Atoms</span></span></a></p> <p><a target="_blank" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2015-07-01</p> <p>cylindrical test cell, and the currents on the four different electrodes-Inner Cylinder , Exit Plate, Back Aperture, and Collector Plat~were measured...Inner Cylinder electrode. Nevertheless, the neutral <span class="hlt">atom</span> current to the Inner Cylinder electrode predicted by the VHS model is comparable to the...Figure 9. Normalized curre nt at the Inner Cylinder e lectrode. the point of <span class="hlt">collision</span>. T he discrepancy in the Exit Plate neutral <span class="hlt">atom</span> current is due to</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2006cosp...36.2397W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2006cosp...36.2397W"><span>Painting analysis of chromosome aberrations induced by <span class="hlt">energetic</span> heavy <span class="hlt">ions</span> in human cells</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wu, H.; Hada, M.; Cucinotta, F. A.</p> <p></p> <p><span class="hlt">Energetic</span> heavy <span class="hlt">ions</span> pose a great health risk to astronauts in extended ISS and future exploration missions High-LET heavy <span class="hlt">ions</span> are particularly effective in causing various biological effects including cell inactivation genetic mutations and cancer induction Most of these biological endpoints are closely related to chromosomal damage which can be utilized as a biomarker for radiation insults Over the years we have studied chromosomal damage in human fibroblast epithelia and lymphocyte cells exposed in vitro to <span class="hlt">energetic</span> charged particles generated at several accelerator facilities in the world Various fluorescence in situ hybridization painting techniques have been used to identify from only the telomere region of the chromosome to every chromosome in a human cell We will summarize the results of the investigations and discuss the unique radiation signatures and biomarkers for space radiation exposure</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011JASMS..22.1088C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011JASMS..22.1088C"><span>Metastable <span class="hlt">Atom</span>-Activated Dissociation Mass Spectrometry of Phosphorylated and Sulfonated Peptides in Negative <span class="hlt">Ion</span> Mode</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Cook, Shannon L.; Jackson, Glen P.</p> <p>2011-06-01</p> <p>The dissociation behavior of phosphorylated and sulfonated peptide anions was explored using metastable <span class="hlt">atom</span>-activated dissociation mass spectrometry (MAD-MS) and <span class="hlt">collision</span>-induced dissociation (CID). A beam of high kinetic energy helium (He) metastable <span class="hlt">atoms</span> was exposed to isolated phosphorylated and sulfonated peptides in the 3- and 2- charge states. Unlike CID, where phosphate losses are dominant, the major dissociation channels observed using MAD were Cα - C peptide backbone cleavages and neutral losses of CO2, H2O, and [CO2 + H2O] from the charge reduced (oxidized) product <span class="hlt">ion</span>, consistent with an electron detachment dissociation (EDD) mechanism such as Penning ionization. Regardless of charge state or modification, MAD provides ample backbone cleavages with little modification loss, which allows for unambiguous PTM site determination. The relative abundance of certain fragment <span class="hlt">ions</span> in MAD is also demonstrated to be somewhat sensitive to the number and location of deprotonation sites, with backbone cleavage somewhat favored adjacent to deprotonated sites like aspartic acid residues. MAD provides a complementary dissociation technique to CID, ECD, ETD, and EDD for peptide sequencing and modification identification. MAD offers the unique ability to analyze highly acidic peptides that contain few to no basic amino acids in either negative or positive <span class="hlt">ion</span> mode.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMSH23B2655D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMSH23B2655D"><span>From the Outside Looking In - Looking Back at Our Heliosphere in <span class="hlt">Energetic</span> Neutral <span class="hlt">Atoms</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Demajistre, R.; Brandt, P. C.; Gruntman, M.; McNutt, R. L., Jr.; Opher, M.; Roelof, E. C.; Wood, B. E.</p> <p>2017-12-01</p> <p><span class="hlt">Energetic</span> Neutral <span class="hlt">Atoms</span> (ENAs) have been used over the past two decades to image space plasmas in planetary magnetospheres as well as the structure of the heliosheath. Any <span class="hlt">energetic</span> plasma containing singly charged <span class="hlt">ions</span> embedded in a cold neutral gas will 'glow' in ENAs, and this glow can be analyzed to infer the properties of the source plasma, giving us insight into processes that are difficult to study with the more traditional sensors that use photons/electromagnetic waves as an information carrier. ENA measurements of the heliosphere have (obviously) all been taken from vantage points in the inner heliosphere. ENAs created in the inner heliosphere from the solar wind and Pick Up <span class="hlt">Ions</span> (PUIs) generally have large outward velocity, and thus do not reach sensors closer to the sun. Thus, the plasma is only 'visible' in ENAs to an inner heliosphere observer after it reaches the termination shock, where its outward motion is slowed and it is heated. This perspective from the inside looking out is convenient to study the outer boundary of the heliophere, but contains no direct information about the plasma and processes occurring in the inner heliosphere. ENA sensors placed outside the heliosphere, conversely would allow us to remotely sense both the inner and outer heliosphere, allowing us full access to the evolution of the solar wind and PUIs as they travel from the sun outward. Further, such a perspective would allow us to more directly measure the boundaries of the heliosphere with the LISM without the obscuration of the inner heliosheath. In this paper, we present modeled views of ENA images from the outside looking in at energies between 0.5 and 100 keV. It is important to note that while measurements of the outer heliosphere have been made by IBEX, Cassini/INCA, SoHO/HSTOF and the Voyagers, there are still important outstanding questions about the global structure and plasma flow patterns in the heliosphere. We will show here how new observations from the</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1992PhDT.......152G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1992PhDT.......152G"><span>Antiproton Production in Relativistic Heavy <span class="hlt">Ion</span> <span class="hlt">Collisions</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Greene, Senta Victoria</p> <p></p> <p>The E814 collaboration has made a systematic study of antiproton production in <span class="hlt">collisions</span> of ^ {28}Si <span class="hlt">ions</span> at 14.6 GeV per nucleon with targets of Pb, Cu, and Al. This study was motivated by the expectation that antiprotons will be a useful probe of the system produced in relativistic heavy <span class="hlt">ion</span> <span class="hlt">collisions</span>. The large annihilation cross section for antiprotons makes the antiproton survival probability sensitive to the baryon density of the system in which they are created. It has also been suggested that a transition to the quark-gluon plasma phase may produce an enhancement of antibaryon production. The E814 spectrometer consists of three tracking chambers for momentum measurement, a scintillator hodoscope to measure charge and time of flight, and a sampling calorimeter. The spectrometer accepts all particles produced within a rectangular aperture centered on the beam axis, with delta theta_{x}=37.6mr and deltatheta_{y}=24.1mr. A trigger based on the flight time of particles through the spectrometer enhances the selection of events which produce negatively charged particles having a rapidity within 0.5 units of the center of mass rapidity. Measurements of the antiproton yield per interaction and the invariant cross section for production at zero degrees are presented and discussed. The time-of-flight trigger allows for an unbiased measurement of the probability to produce antiprotons as a function of the impact parameter of the <span class="hlt">collision</span>. Several measures of <span class="hlt">collision</span> centrality are used. The energy produced transverse to the beam direction is measured with the target calorimeter, an array of NaI crystals surrounding the target assembly with a pseudorapidity coverage of -0.5<eta <0.8. A second measurement of the event transverse energy is made using the participant calorimeter, a lead-scintillator sampling calorimeter sensitive to particles with pseudorapidities in the range 0.83< eta <3.9. Charged particle multiplicity is measured by a pair of annular silicon pad</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1335418-importance-bulk-viscosity-qcd-ultrarelativistic-heavy-ion-collisions','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1335418-importance-bulk-viscosity-qcd-ultrarelativistic-heavy-ion-collisions"><span>Importance of the Bulk Viscosity of QCD in Ultrarelativistic Heavy-<span class="hlt">Ion</span> <span class="hlt">Collisions</span></span></a></p> <p><a target="_blank" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Ryu, S.; Paquet, J. -F.; Shen, C.; ...</p> <p>2015-09-22</p> <p>In this study, we investigate the consequences of a nonzero bulk viscosity coefficient on the transverse momentum spectra, azimuthal momentum anisotropy, and multiplicity of charged hadrons produced in heavy <span class="hlt">ion</span> <span class="hlt">collisions</span> at LHC energies. The agreement between a realistic 3D hybrid simulation and the experimentally measured data considerably improves with the addition of a bulk viscosity coefficient for strongly interacting matter. Lastly, this paves the way for an eventual quantitative determination of several QCD transport coefficients from the experimental heavy <span class="hlt">ion</span> and hadron-nucleus <span class="hlt">collision</span> programs.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li class="active"><span>17</span></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_17 --> <div id="page_18" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li class="active"><span>18</span></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="341"> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017RvMP...89c5001S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017RvMP...89c5001S"><span>Strongly coupled quark-gluon plasma in heavy <span class="hlt">ion</span> <span class="hlt">collisions</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Shuryak, Edward</p> <p>2017-07-01</p> <p>A decade ago, a brief summary of the field of the relativistic heavy <span class="hlt">ion</span> physics could be formulated as the discovery of strongly coupled quark-gluon plasma, sQGP for short, a near-perfect fluid with surprisingly large entropy-density-to-viscosity ratio. Since 2010, the LHC heavy <span class="hlt">ion</span> program added excellent new data and discoveries. Significant theoretical efforts have been made to understand these phenomena. Now there is a need to consolidate what we have learned and formulate a list of issues to be studied next. Studies of angular correlations of two and more secondaries reveal higher harmonics of flow, identified as the sound waves induced by the initial state perturbations. As in cosmology, detailed measurements and calculations of these correlations helped to make our knowledge of the explosion much more quantitative. In particular, their damping had quantified the viscosity. Other kinetic coefficients—the heavy-quark diffusion constants and the jet quenching parameters—also show enhancements near the critical point T ≈Tc. Since densities of QGP quarks and gluons strongly decrease at this point, these facts indicate large role of nonperturbative mechanisms, e.g., scattering on monopoles. New studies of the p p and p A <span class="hlt">collisions</span> at high multiplicities reveal collective explosions similar to those in heavy <span class="hlt">ion</span> A A <span class="hlt">collisions</span>. These "smallest drops of the sQGP" revived debates about the initial out-of-equilibrium stage of the <span class="hlt">collisions</span> and mechanisms of subsequent equilibration.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/20678945','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/20678945"><span>Unusual <span class="hlt">ion</span> UO(4)(-) formed upon <span class="hlt">collision</span> induced dissociation of [UO(2)(NO(3))(3)](-), [UO(2)(ClO(4))(3)](-), [UO(2)(CH(3)COO)(3)](-) <span class="hlt">ions</span>.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Sokalska, Marzena; Prussakowska, Małgorzata; Hoffmann, Marcin; Gierczyk, Błazej; Frański, Rafał</p> <p>2010-10-01</p> <p>The following <span class="hlt">ions</span> [UO(2)(NO(3))(3)](-), [UO(2)(ClO(4))(3)](-), [UO(2)(CH(3)COO)(3)](-) were generated from respective salts (UO(2)(NO(3))(2), UO(2)(ClO(4))(3), UO(2)(CH(3)COO)(2)) by laser desorption/ionization (LDI). <span class="hlt">Collision</span> induced dissociation of the <span class="hlt">ions</span> has led, among others, to the formation of UO(4)(-) <span class="hlt">ion</span> (m/z 302). The undertaken quantum mechanical calculations showed this <span class="hlt">ion</span> is most likely to possess square planar geometry as suggested by MP2 results or strongly deformed geometry in between tetrahedral and square planar as indicated by DFT results. Interestingly, geometrical parameters and analysis of electron density suggest it is an U(VI) compound, in which oxygen <span class="hlt">atoms</span> bear unpaired electron and negative charge. Copyright © 2010 American Society for Mass Spectrometry. Published by Elsevier Inc. All rights reserved.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010JPhCS.257a2027K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010JPhCS.257a2027K"><span>Influence of inelastic Rydberg <span class="hlt">atom-atom</span> collisional process on kinetic and optical properties of low-temperature laboratory and astrophysical plasmas</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Klyucharev, A. N.; Bezuglov, N. N.; Mihajlov, A. A.; Ignjatović, Lj M.</p> <p>2010-11-01</p> <p>Elementary processes in plasma phenomena traditionally attract physicist's attention. The channel of charged-particle formation in Rydberg <span class="hlt">atom-atom</span> thermal and sub-thermal <span class="hlt">collisions</span> (the low temperature plasmas conditions) leads to creation of the molecular <span class="hlt">ions</span> - associative ionization (AI). <span class="hlt">atomic</span> <span class="hlt">ions</span> - Penning-like ionization (PI) and the pair of the negative and positive <span class="hlt">ions</span>. In our universe the chemical composition of the primordial gas consists mainly of Hydrogen and Helium (H, H-, H+, H2, He,He+). Hydrogen-like alkali-metal Lithium (Li, Li+,Li-) and combinations (HeH+, LiH-, LiH+). There is a wide range of plasma parameters in which the Rydberg <span class="hlt">atoms</span> of the elements mentioned above make the dominant contribution to ionization and that process may be regarded as a prototype of the elementary process of light excitation energy transformation into electric one. The latest stochastic version of chemi-ionisation (AI+PI) on Rydberg <span class="hlt">atom-atom</span> <span class="hlt">collisions</span> extends the treatment of the "dipole resonant" model by taking into account redistribution of population over a range of Rydberg states prior to ionization. This redistribution is modelled as diffusion within the frame of stochastic dynamic of the Rydberg electron in the Rydberg energy spectrum. This may lead to anomalies of Rydberg <span class="hlt">atom</span> spectra. Another result obtained in recent time is understanding that experimental results on chemi-ionization relate to the group of mixed Rydberg <span class="hlt">atom</span> closed to the primary selected one. The Rydberg <span class="hlt">atoms</span> ionisation theory today makes a valuable contribution in the deterministic and stochastic approaches correlation in <span class="hlt">atomic</span> physic.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018PhRvA..97d3620Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018PhRvA..97d3620Z"><span>Properties of <span class="hlt">atomic</span> pairs produced in the <span class="hlt">collision</span> of Bose-Einstein condensates</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ziń, Paweł; Wasak, Tomasz</p> <p>2018-04-01</p> <p>During a <span class="hlt">collision</span> of Bose-Einstein condensates correlated pairs of <span class="hlt">atoms</span> are emitted. The scattered massive particles, in analogy to photon pairs in quantum optics, might be used in the violation of Bell's inequalities, demonstration of Einstein-Podolsky-Rosen correlations, or sub-shot-noise <span class="hlt">atomic</span> interferometry. Usually, a theoretical description of the <span class="hlt">collision</span> relies either on stochastic numerical methods or on analytical treatments involving various approximations. Here, we investigate elastic scattering of <span class="hlt">atoms</span> from colliding elongated Bose-Einstein condensates within the Bogoliubov method, carefully controlling performed approximations at every stage of the analysis. We derive expressions for the one- and two-particle correlation functions. The obtained formulas, which relate the correlation functions to the condensate wave function, are convenient for numerical calculations. We employ the variational approach for condensate wave functions to obtain analytical expressions for the correlation functions, whose properties we analyze in detail. We also present a useful semiclassical model of the process and compare its results with the quantum one. The results are relevant for recent experiments with excited helium <span class="hlt">atoms</span>, as well as for planned experiments aimed at investigating the nonclassicality of the system.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012APS..DMP.D1081Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012APS..DMP.D1081Z"><span>Quantum information processing between different <span class="hlt">atomic</span> <span class="hlt">ions</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zhang, Xiang; Zheng, Bo; Zhang, Junhua; Um, Mark; An, Shuoming; Zhao, Tianji; Duan, Luming; Kim, Kihwan</p> <p>2012-06-01</p> <p>There is increasing interest in utilizing and combining the advantages of different quantum systems. Here, we discuss the experimental generation of entanglement between the quantum states of different <span class="hlt">atomic</span> <span class="hlt">ions</span> through the Coulomb interaction at the same linear radio-frequency trap. This scheme would be extended to implement the teleportation of quantum information from one kind of <span class="hlt">atom</span> to the other. Moreover, the hybrid system of trapped <span class="hlt">ions</span> is expected to play an essential role in the realization of a large quantum system, where a quantum state of one species is used for quantum operation and that of the other is for the cooling and stabilization of the whole <span class="hlt">ion</span> chain. Finally, we will report the experimental progress on building the hybrid trapped <span class="hlt">ion</span> system.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012EPJD...66..114D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012EPJD...66..114D"><span>Electron-<span class="hlt">ion</span> <span class="hlt">collision</span> rates in noble gas clusters irradiated by femtosecond laser pulse</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Dey, R.; Roy, A. C.</p> <p>2012-05-01</p> <p>We report a theoretical analysis of electron-<span class="hlt">ion</span> <span class="hlt">collision</span> rates in xenon gas clusters irradiated by femtosecond laser pulses. The present analysis is based on the eikonal approximation (EA), the first Born approximation (FBA) and the classical (CL) methods. The calculations are performed using the plasma-screened Rogers potential introduced by Moll et al. [J. Phys. B. 43, 135103 (2010)] as well as the Debye potential for a wide range of experimental parameters. We find that the magnitudes of electron-<span class="hlt">ion</span> <span class="hlt">collision</span> frequency obtained in the EA do not fall as rapidly with the kinetic energy of electrons as in the FBA and CL methods for higher charge states of xenon <span class="hlt">ion</span> (Xe8+ and Xe14+). Furthermore, EA shows that the effect of the inner structure of <span class="hlt">ion</span> is most dominant for the lowest charge state of xenon <span class="hlt">ion</span> (Xe1+). In the case of the present effective potential, FBA overestimates the CL results for all three different charge states of xenon, whereas for the Debye potential, both the FBA and CL methods predict <span class="hlt">collision</span> frequencies which are nearly close to each other.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018PrPNP..99..120M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018PrPNP..99..120M"><span>Shannon information entropy in heavy-<span class="hlt">ion</span> <span class="hlt">collisions</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ma, Chun-Wang; Ma, Yu-Gang</p> <p>2018-03-01</p> <p>The general idea of information entropy provided by C.E. Shannon "hangs over everything we do" and can be applied to a great variety of problems once the connection between a distribution and the quantities of interest is found. The Shannon information entropy essentially quantify the information of a quantity with its specific distribution, for which the information entropy based methods have been deeply developed in many scientific areas including physics. The dynamical properties of heavy-<span class="hlt">ion</span> <span class="hlt">collisions</span> (HICs) process make it difficult and complex to study the nuclear matter and its evolution, for which Shannon information entropy theory can provide new methods and observables to understand the physical phenomena both theoretically and experimentally. To better understand the processes of HICs, the main characteristics of typical models, including the quantum molecular dynamics models, thermodynamics models, and statistical models, etc., are briefly introduced. The typical applications of Shannon information theory in HICs are collected, which cover the chaotic behavior in branching process of hadron <span class="hlt">collisions</span>, the liquid-gas phase transition in HICs, and the isobaric difference scaling phenomenon for intermediate mass fragments produced in HICs of neutron-rich systems. Even though the present applications in heavy-<span class="hlt">ion</span> <span class="hlt">collision</span> physics are still relatively simple, it would shed light on key questions we are seeking for. It is suggested to further develop the information entropy methods in nuclear reactions models, as well as to develop new analysis methods to study the properties of nuclear matters in HICs, especially the evolution of dynamics system.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19960021463&hterms=GERD&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3DGERD','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19960021463&hterms=GERD&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3DGERD"><span>Stream interfaces and <span class="hlt">energetic</span> <span class="hlt">ions</span> 2: Ulysses test of Pioneer results</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Intriligator, Devrie S.; Siscoe, George L.; Wibberez, Gerd; Kunow, Horst; Gosling, John T.</p> <p>1995-01-01</p> <p>Ulysses measurements of <span class="hlt">energetic</span> and solar wind particles taken near 5 AU between 20 and 30 degrees south latitude during a well-developed recurring corotating interaction region (CIR) show that the CIR's corotating <span class="hlt">energetic</span> <span class="hlt">ion</span> population (CEIP) associated with the trailing reverse shock starts within the CIR at the stream interface. This is consistent with an earlier result obtained by Pioneers 10 and 11 in the ecliptic plane between 4 and 6 AU. The Ulysses/Pioneer finding noteworthy since the stream interface is not magnetically connected to the reverse shock but lies 12-17 corotation hours from it. Thus, the finding to be inconsistent with the basic model that generates CEIP particles at the reverse shock and propagates them along field lines Eliminating the inconsistency probably entails an extension of the standard model. We consider two possible extensions cross-field diffusion and <span class="hlt">energetic</span> particles generation closer to the sun in the gap between the stream interface and the reverse shock.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013JPhCS.422a1001A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013JPhCS.422a1001A"><span>FOREWORD: International Conference on Heavy <span class="hlt">Ion</span> <span class="hlt">Collisions</span> in the LHC Era</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Arleo, Francois; Salgado, Carlos A.; Tran Thanh Van, Jean</p> <p>2013-03-01</p> <p>The International Conference on Heavy <span class="hlt">Ion</span> <span class="hlt">Collisions</span> in the LHC Era was held in Quy Nhon, Vietnam, on 16-20 July 2012. The series Rencontres du Vietnam, created by Jean Tran Thanh Van in 1993, consists of international meetings aimed to stimulate the development of advanced research in Vietnam and more generally in South East Asia, and to establish collaborative research networks with Western scientific communities. This conference, as the whole series, also supports the International Center for Interdisciplinary Science Education being built in Quy Nhon. The articles published in this volume present the latest results from the heavy-<span class="hlt">ion</span> <span class="hlt">collision</span> programs of RHIC and LHC as well as the corresponding theoretical interpretation and future perspectives. Lower energy nuclear programs were also reviewed, providing a rather complete picture of the state-of-the-art in the field. We wish to thank the sponsors of the Conference on Heavy <span class="hlt">Ion</span> <span class="hlt">Collisions</span> in the LHC Era: the European Research Council; Xunta de Galicia (Spain); EMMI (Germany) and Agence Nationale de la Recherche (France) François Arleo (Laboratoire d'Annecy-le-Vieux de Physique Théorique, France) Francois Arleo, Carlos A Salgado and Jean Tran Thanh Van Conference photograph</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1295200-physics-perspectives-heavy-ion-collisions-very-high-energy','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1295200-physics-perspectives-heavy-ion-collisions-very-high-energy"><span>Physics perspectives of heavy-<span class="hlt">ion</span> <span class="hlt">collisions</span> at very high energy</span></a></p> <p><a target="_blank" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Chang, Ning-bo; Cao, ShanShan; Chen, Bao-yi; ...</p> <p>2016-01-15</p> <p>We expect heavy-<span class="hlt">ion</span> <span class="hlt">collisions</span> at very high colliding energies to produce a quark-gluon plasma (QGP) at the highest temperature obtainable in a laboratory setting. Experimental studies of these reactions can provide an unprecedented range of information on properties of the QGP at high temperatures. We also report theoretical investigations of the physics perspectives of heavy-<span class="hlt">ion</span> <span class="hlt">collisions</span> at a future high-energy collider. These include initial parton production, collective expansion of the dense medium, jet quenching, heavy-quark transport, dissociation and regeneration of quarkonia, photon and dilepton production. Here, we illustrate the potential of future experimental studies of the initial particle production andmore » formation of QGP at the highest temperature to provide constraints on properties of strongly interaction matter.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015JASTP.127..103F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015JASTP.127..103F"><span>Fe embedded in ice: The impacts of sublimation and <span class="hlt">energetic</span> particle bombardment</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Frankland, Victoria L.; Plane, John M. C.</p> <p>2015-05-01</p> <p>Icy particles containing a variety of Fe compounds are present in the upper atmospheres of planets such as the Earth and Saturn. In order to explore the role of ice sublimation and <span class="hlt">energetic</span> <span class="hlt">ion</span> bombardment in releasing Fe species into the gas phase, Fe-dosed ice films were prepared under UHV conditions in the laboratory. Temperature-programmed desorption studies of Fe/H2O films revealed that no Fe <span class="hlt">atoms</span> or Fe-containing species co-desorbed along with the H2O molecules. This implies that when noctilucent ice cloud particles sublimate in the terrestrial mesosphere, the metallic species embedded in them will coalesce to form residual particles. Sputtering of the Fe-ice films by <span class="hlt">energetic</span> Ar+ <span class="hlt">ions</span> was shown to be an efficient mechanism for releasing Fe into the gas phase, with a yield of 0.08 (Ar+ energy=600 eV). Extrapolating with a semi-empirical sputtering model to the conditions of a proton aurora indicates that sputtering by <span class="hlt">energetic</span> protons (>100 keV) should also be efficient. However, the proton flux in even an intense aurora will be too low for the resulting injection of Fe species into the gas phase to compete with that from meteoric ablation. In contrast, sputtering of the icy particles in the main rings of Saturn by <span class="hlt">energetic</span> O+ <span class="hlt">ions</span> may be the source of recently observed Fe+ in the Saturnian magnetosphere. Electron sputtering (9.5 keV) produced no detectable Fe <span class="hlt">atoms</span> or Fe-containing species. Finally, it was observed that Fe(OH)2 was produced when Fe was dosed onto an ice film at 140 K (but not at 95 K). Electronic structure theory shows that the reaction which forms this hydroxide from adsorbed Fe has a large barrier of about 0.7 eV, from which we conclude that the reaction requires both translationally hot Fe <span class="hlt">atoms</span> and mobile H2O molecules on the ice surface.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/biblio/4315812-itfits-model-vibration-translation-energy-partitioning-atom-polyatomic-molecule-collisions','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/4315812-itfits-model-vibration-translation-energy-partitioning-atom-polyatomic-molecule-collisions"><span>ITFITS model for vibration--translation energy partitioning in <span class="hlt">atom</span>-- polyatomic molecule <span class="hlt">collisions</span></span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Shobatake, K.; Rice, S.A.; Lee, Y.T.</p> <p>1973-09-01</p> <p>A model for vibration-translation energy partitioning in the collinear <span class="hlt">collision</span> of an <span class="hlt">atom</span> and an axially symmetric polyatonaic molecule is proposed. The model is based on an extension of the ideas of Mahan and Heidrich, Wilson, and Rapp. Comparison of energy transfers computed from classical trajesctory calculations and the model proposed indicate good agreement when the mass of the free <span class="hlt">atom</span> is small relative to the mass of the bound <span class="hlt">atom</span> it strikes. The agreement is less satisfactory when that mass ratio becomes large. (auth)</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016JGRA..121..190W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016JGRA..121..190W"><span>Emission of hydrogen <span class="hlt">energetic</span> neutral <span class="hlt">atoms</span> from the Martian subsolar magnetosheath</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wang, X.-D.; Alho, M.; Jarvinen, R.; Kallio, E.; Barabash, S.; Futaana, Y.</p> <p>2016-01-01</p> <p>We have simulated the hydrogen <span class="hlt">energetic</span> neutral <span class="hlt">atom</span> (ENA) emissions from the subsolar magnetosheath of Mars using a hybrid model of the proton plasma charge exchanging with the Martian exosphere to study statistical features revealed from the observations of the Neutral Particle Detectors on Mars Express. The simulations reproduce well the observed enhancement of the hydrogen ENA emissions from the dayside magnetosheath in directions perpendicular to the Sun-Mars line. Our results show that the neutralized protons from the shocked solar wind are the dominant ENA population rather than those originating from the pickup planetary <span class="hlt">ions</span>. The simulation also suggests that the observed stronger ENA emissions in the direction opposite to the solar wind convective electric field result from a stronger proton flux in the same direction at the lower magnetosheath; i.e., the proton fluxes in the magnetosheath are not cylindrically symmetric. We also confirm the observed increasing of the ENA fluxes with the solar wind dynamical pressure in the simulations. This feature is associated with a low altitude of the induced magnetic boundary when the dynamic pressure is high and the magnetosheath protons can reach to a denser exosphere, and thus, the charge exchange rate becomes higher. Overall, the analysis suggests that kinetic effects play an important and pronounced role in the morphology of the hydrogen ENA distribution and the plasma environment at Mars, in general.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017NuPhA.967..884K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017NuPhA.967..884K"><span>Feasibility study of heavy-<span class="hlt">ion</span> <span class="hlt">collision</span> physics at NICA JINR</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kekelidze, V.; Kovalenko, A.; Lednicky, R.; Matveev, V.; Meshkov, I.; Sorin, A.; Trubnikov, G.</p> <p>2017-11-01</p> <p>The project NICA (Nuclotron-based <span class="hlt">Ion</span> Collider fAcility) is aimed to study hot and baryon rich QCD matter in heavy <span class="hlt">ion</span> <span class="hlt">collisions</span> in the energy range up to √{sNN} = 11GeV. The heavy <span class="hlt">ion</span> program includes a study of collective phenomena, dilepton, hyperon and hypernuclei production under extreme conditions of highest baryonic density. This program will be performed at a fixed target experiment BM@N and with MPD detector at the NICA collider.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2005EP%26S...57..515B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2005EP%26S...57..515B"><span>Incoherent radar spectra in the auroral ionosphere in the presence of a large electric field: The effect of O+-O+ Coulomb <span class="hlt">collisions</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Barghouthi, I. A.</p> <p>2005-06-01</p> <p>We have used Monte Carlo simulations of O+ velocity distributions in the high latitude F- region to improve the calculation of incoherent radar spectra in auroral ionosphere. The Monte Carlo simulation includes ionneutral, O+-O <span class="hlt">collisions</span> (resonant charge exchange and polarization interaction) as well as O+-O+ Coulomb self-<span class="hlt">collisions</span>. At high altitudes, <span class="hlt">atomic</span> oxygen O and <span class="hlt">atomic</span> oxygen <span class="hlt">ion</span> O+ dominate the composition of the auroral ionosphere and consequently, the influence of O+-O+ Coulomb <span class="hlt">collisions</span> becomes significant. In this study we consider the effect of O+-O+ Coulomb <span class="hlt">collisions</span> on the incoherent radar spectra in the presence of large electric field (100 mVm-1). As altitude increases (i.e. the <span class="hlt">ion</span>-to-neutral density ratio increases) the role of O+-O+ Coulomb self-<span class="hlt">collisions</span> becomes significant, therefore, the one-dimensional, 1-D, O+ <span class="hlt">ion</span> velocity distribution function becomes more Maxwellian and the features of the radar spectrum corresponding to non-Maxwellian <span class="hlt">ion</span> velocity distribution (e.g. baby bottle and triple hump shapes) evolve to Maxwellian <span class="hlt">ion</span> velocity distribution (single and double hump shapes). Therefore, O+-O+ Coulomb self-<span class="hlt">collisions</span> act to isotropize the 1-D O+ velocity distribution by transferring thermal energy from the perpendicular direction to the parallel direction, however the convection electric field acts to drive the O+ <span class="hlt">ions</span> away from equilibrium and consequently, non-Maxwellian O+ <span class="hlt">ion</span> velocity distributions appeared. Therefore, neglecting O+-O+ Coulomb self-<span class="hlt">collisions</span> overestimates the effect of convection electric field.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018AnPhy.394...50S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018AnPhy.394...50S"><span>Anomalous chiral transport in heavy <span class="hlt">ion</span> <span class="hlt">collisions</span> from Anomalous-Viscous Fluid Dynamics</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Shi, Shuzhe; Jiang, Yin; Lilleskov, Elias; Liao, Jinfeng</p> <p>2018-07-01</p> <p>Chiral anomaly is a fundamental aspect of quantum theories with chiral fermions. How such microscopic anomaly manifests itself in a macroscopic many-body system with chiral fermions, is a highly nontrivial question that has recently attracted significant interest. As it turns out, unusual transport currents can be induced by chiral anomaly under suitable conditions in such systems, with the notable example of the Chiral Magnetic Effect (CME) where a vector current (e.g. electric current) is generated along an external magnetic field. A lot of efforts have been made to search for CME in heavy <span class="hlt">ion</span> <span class="hlt">collisions</span>, by measuring the charge separation effect induced by the CME transport. A crucial challenge in such effort, is the quantitative prediction for the CME signal. In this paper, we develop the Anomalous-Viscous Fluid Dynamics (AVFD) framework, which implements the anomalous fluid dynamics to describe the evolution of fermion currents in QGP, on top of the neutral bulk background described by the VISH2+1 hydrodynamic simulations for heavy <span class="hlt">ion</span> <span class="hlt">collisions</span>. With this new tool, we quantitatively and systematically investigate the dependence of the CME signal to a series of theoretical inputs and associated uncertainties. With realistic estimates of initial conditions and magnetic field lifetime, the predicted CME signal is quantitatively consistent with measured change separation data in 200GeV Au-Au <span class="hlt">collisions</span>. Based on analysis of Au-Au <span class="hlt">collisions</span>, we further make predictions for the CME observable to be measured in the planned isobaric (Ru-Ru v.s. Zr-Zr) <span class="hlt">collision</span> experiment, which could provide a most decisive test of the CME in heavy <span class="hlt">ion</span> <span class="hlt">collisions</span>.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20080048168','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20080048168"><span>Making More-Complex Molecules Using Superthermal <span class="hlt">Atom</span>/Molecule <span class="hlt">Collisions</span></span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Shortt, Brian; Chutjian, Ara; Orient, Otto</p> <p>2008-01-01</p> <p>A method of making more-complex molecules from simpler ones has emerged as a by-product of an experimental study in outer-space <span class="hlt">atom</span>/surface <span class="hlt">collision</span> physics. The subject of the study was the formation of CO2 molecules as a result of impingement of O <span class="hlt">atoms</span> at controlled kinetic energies upon cold surfaces onto which CO molecules had been adsorbed. In this study, the O/CO system served as a laboratory model, not only for the formation of CO2 but also for the formation of other compounds through impingement of rapidly moving <span class="hlt">atoms</span> upon molecules adsorbed on such cold interstellar surfaces as those of dust grains or comets. By contributing to the formation of increasingly complex molecules, including organic ones, this study and related other studies may eventually contribute to understanding of the origins of life.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/biblio/1349531-inclusive-production-small-radius-jets-heavy-ion-collisions','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/1349531-inclusive-production-small-radius-jets-heavy-ion-collisions"><span>Inclusive production of small radius jets in heavy-<span class="hlt">ion</span> <span class="hlt">collisions</span></span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Kang, Zhong-Bo; Ringer, Felix; Vitev, Ivan</p> <p></p> <p>Here, we develop a new formalism to describe the inclusive production of small radius jets in heavy-<span class="hlt">ion</span> <span class="hlt">collisions</span>, which is consistent with jet calculations in the simpler proton–proton system. Only at next-to-leading order (NLO) and beyond, the jet radius parameter R and the jet algorithm dependence of the jet cross section can be studied and a meaningful comparison to experimental measurements is possible. We are able to consistently achieve NLO accuracy by making use of the recently developed semi-inclusive jet functions within Soft Collinear Effective Theory (SCET). Additionally, single logarithms of the jet size parameter αmore » $$n\\atop{s}$$ln nR leading logarithmic (NLL R) accuracy in proton–proton <span class="hlt">collisions</span>. The medium modified semi-inclusive jet functions are obtained within the framework of SCET with Glauber gluons that describe the interaction of jets with the medium. We also present numerical results for the suppression of inclusive jet cross sections in heavy <span class="hlt">ion</span> <span class="hlt">collisions</span> at the LHC and the formalism developed here can be extended directly to corresponding jet substructure observables.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1349531-inclusive-production-small-radius-jets-heavy-ion-collisions','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1349531-inclusive-production-small-radius-jets-heavy-ion-collisions"><span>Inclusive production of small radius jets in heavy-<span class="hlt">ion</span> <span class="hlt">collisions</span></span></a></p> <p><a target="_blank" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Kang, Zhong-Bo; Ringer, Felix; Vitev, Ivan</p> <p>2017-03-31</p> <p>Here, we develop a new formalism to describe the inclusive production of small radius jets in heavy-<span class="hlt">ion</span> <span class="hlt">collisions</span>, which is consistent with jet calculations in the simpler proton–proton system. Only at next-to-leading order (NLO) and beyond, the jet radius parameter R and the jet algorithm dependence of the jet cross section can be studied and a meaningful comparison to experimental measurements is possible. We are able to consistently achieve NLO accuracy by making use of the recently developed semi-inclusive jet functions within Soft Collinear Effective Theory (SCET). Additionally, single logarithms of the jet size parameter αmore » $$n\\atop{s}$$ln nR leading logarithmic (NLL R) accuracy in proton–proton <span class="hlt">collisions</span>. The medium modified semi-inclusive jet functions are obtained within the framework of SCET with Glauber gluons that describe the interaction of jets with the medium. We also present numerical results for the suppression of inclusive jet cross sections in heavy <span class="hlt">ion</span> <span class="hlt">collisions</span> at the LHC and the formalism developed here can be extended directly to corresponding jet substructure observables.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012JPhB...45f5701H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012JPhB...45f5701H"><span>On the role of <span class="hlt">atomic</span> metastability in the production of Balmer line radiation from ‘cold’ <span class="hlt">atomic</span> hydrogen, deuterium and hydrogenic <span class="hlt">ion</span> impurities in fusion edge plasmas</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hey, J. D.</p> <p>2012-03-01</p> <p>Published arguments, which assign an important role to <span class="hlt">atomic</span> metastability in the production of ‘narrow’ Zeeman component radiation from the boundary region of fusion plasmas, are examined critically in relation to l-redistribution by proton and electron <span class="hlt">collisions</span>, and mixing of unperturbed <span class="hlt">atomic</span> states by the <span class="hlt">ion</span> microfield and microfield gradient. It is concluded that these important processes indeed severely constrain the contribution from ‘metastable’ states to the generation of the hydrogen Balmer spectra, for electron concentrations above 1012 cm-3, as pointed out before by the present author (Hey et al 1999 J. Phys. B: At. Mol. Opt. Phys. 32 3555). The analysis of <span class="hlt">collision</span>-induced l-redistribution represents an extension of that used previously (Hey et al 1996 Contrib. Plasma Phys. 36 583), applicable up to higher electron densities. For comparison purposes, we also consider the question of metastability of ionized helium in a low-temperature plasma, and that of some common hydrogenic impurities (C5+ and Ne9+) in a hydrogen (deuterium) fusion plasma. While for low nuclear charge Z the metastability of 2s1/2 levels is quenched by the plasma environment, it is much reduced in high-Z <span class="hlt">ions</span> owing to the rapid increase with Z of the two-photon electric dipole (2E1) and magnetic dipole (M1) spontaneous transition rates to the ground state, whereas the role of the plasma in these cases is less important. The main new principle elaborated in this work is the sensitivity of <span class="hlt">atomic</span> line strengths, and hence <span class="hlt">collision</span> strengths, to perturbation by the plasma environment for transitions between fine-structure sublevels of the same principal quantum number. As the plasma microfield strength grows, ‘allowed’ transitions diminish in strength, while ‘forbidden’ transitions grow. However, owing to violation of the parity selection rule, there is an overall loss of <span class="hlt">collision</span> strength available to transitions, resulting from the appearance of significant </p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li class="active"><span>18</span></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_18 --> <div id="page_19" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li class="active"><span>19</span></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="361"> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26314765','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26314765"><span>Extracting biomolecule <span class="hlt">collision</span> cross sections from the high-resolution FT-ICR mass spectral linewidths.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Jiang, Ting; Chen, Yu; Mao, Lu; Marshall, Alan G; Xu, Wei</p> <p>2016-01-14</p> <p>It is known that the <span class="hlt">ion</span> <span class="hlt">collision</span> cross section (CCS) may be calculated from the linewidth of a Fourier transform <span class="hlt">ion</span> cyclotron resonance (FT-ICR) mass spectral peak at elevated pressure (e.g., ∼10(-6) Torr). However, the high mass resolution of FT-ICR is sacrificed in those experiments due to high buffer gas pressure. In this study, we describe a linewidth correction method to eliminate the windowing-induced peak broadening effect. Together with the <span class="hlt">energetic</span> <span class="hlt">ion</span>-neutral <span class="hlt">collision</span> model previously developed by our group, this method enables the extraction of CCSs of biomolecules from high-resolution FT-ICR mass spectral linewidths, obtained at a typical operating buffer gas pressure of modern FT-ICR instruments (∼10(-10) Torr). CCS values of peptides including MRFA, angiotensin I, and bradykinin measured by the proposed method agree well with <span class="hlt">ion</span> mobility measurements, and the unfolding of protein <span class="hlt">ions</span> (ubiquitin) at higher charge states is also observed.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1369172-efficient-acceleration-neutral-atoms-laser-produced-plasma','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1369172-efficient-acceleration-neutral-atoms-laser-produced-plasma"><span>Efficient acceleration of neutral <span class="hlt">atoms</span> in laser produced plasma</span></a></p> <p><a target="_blank" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Dalui, M.; Trivikram, T. M.; Colgan, James Patrick; ...</p> <p>2017-06-20</p> <p>Recent advances in high-intensity laser-produced plasmas have demonstrated their potential as compact charge particle accelerators. Unlike conventional accelerators, transient quasi-static charge separation acceleration fields in laser produced plasmas are highly localized and orders of magnitude larger. Manipulating these <span class="hlt">ion</span> accelerators, to convert the fast <span class="hlt">ions</span> to neutral <span class="hlt">atoms</span> with little change in momentum, transform these to a bright source of MeV <span class="hlt">atoms</span>. The emittance of the neutral <span class="hlt">atom</span> beam would be similar to that expected for an <span class="hlt">ion</span> beam. Since intense laser-produced plasmas have been demonstrated to produce high-brightness-low-emittance beams, it is possible to envisage generation of high-flux, low-emittance, highmore » energy neutral <span class="hlt">atom</span> beams in length scales of less than a millimeter. Here, we show a scheme where more than 80% of the fast <span class="hlt">ions</span> are reduced to <span class="hlt">energetic</span> neutral <span class="hlt">atoms</span> and demonstrate the feasibility of a high energy neutral <span class="hlt">atom</span> accelerator that could significantly impact applications in neutral <span class="hlt">atom</span> lithography and diagnostics.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMSM33C2690T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMSM33C2690T"><span>Distribution and Energization of the Heavy <span class="hlt">Ions</span> in Saturn's Magnetosphere</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Tenishev, V.; Gombosi, T. I.; Combi, M. R.; Borovikov, D.; Regoli, L.</p> <p>2017-12-01</p> <p>Observations by Pioneer 11 and Voyager collected during their flybys of Saturn and Cassini observations during Saturn Orbit Insertion (SOI) indicate that Saturn's magnetosphere contains a significant population of <span class="hlt">energetic</span> heavy <span class="hlt">ions</span>, which originate in neutral tori of the moons orbiting in Saturn's magnetosphere and act as agents for the surface erosion and chemical alternation via sputtering, implantation, and radiolysis of objects embedded in Saturn's magnetosphere. The composition of these <span class="hlt">energetic</span> heavy <span class="hlt">ions</span> is dominated by the water group <span class="hlt">ions</span> with a small nitrogen contribution as have been shown by observations performed with MIMI onboard Cassini, which indicate that Saturn's magnetosphere possesses a ring current located approximately between 8 and 15 RS, primarily composed of O+ <span class="hlt">ions</span> that originate from Enceladus' neutral torus. Similarly, the <span class="hlt">energetic</span> nitrogen <span class="hlt">ions</span> are produced via ionization of the volatiles ejected by Titan and then accelerated in Saturn's magnetosphere. Is it suggested that the primary mechanism of energization of the heavy <span class="hlt">ions</span> is their inward diffusion conserving the first and second adiabatic invariants. Such, nitrogen <span class="hlt">ions</span> that have been picked up at the orbit of Titan and diffuse radially inward, could attain energies of 100 keV at Dione's Mcllwain L shell and 400 keV at Enceladus' L shell. At the same time radial transport of <span class="hlt">energetic</span> <span class="hlt">ions</span> will result in various loss processes such as satellite sweeping, <span class="hlt">collisions</span> with dust and neutral clouds and precipitation into Saturn's atmosphere via wave-particle interactions. This work is focused on characterizing the global distribution and acceleration of the <span class="hlt">energetic</span> water group and nitrogen <span class="hlt">ions</span> produced via ionizing of the volatiles ejected by Enceladus and Titan, respectively. In our approach we will consider acceleration of the newly created pickup <span class="hlt">ions</span> affected by the magnetic field derived from the Khurana et al. (2006) model and the convection electric field. Here we will</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2004JChPh.121.9536S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2004JChPh.121.9536S"><span>Separation of metal <span class="hlt">ions</span> in nitrate solution by ultrasonic <span class="hlt">atomization</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sato, Masanori; Ikeno, Masayuki; Fujii, Toshitaka</p> <p>2004-11-01</p> <p>In the ultrasonic <span class="hlt">atomization</span> of metal nitrate solutions, the molar ratio of metal <span class="hlt">ions</span> is changed between solution and mist. Small molar metal <span class="hlt">ions</span> tend to be transferred to mist by ultrasonic wave acceleration, while large molar <span class="hlt">ions</span> tend to remain in solution. As a result, metal <span class="hlt">ions</span> can be separated by ultrasonic <span class="hlt">atomization</span>. We show experimental data and propose a conceptual mechanism for the ultrasonic separation of metal <span class="hlt">ions</span>.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017NuPhA.967..760U','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017NuPhA.967..760U"><span>Observation of Global Hyperon Polarization in Ultrarelativistic Heavy-<span class="hlt">Ion</span> <span class="hlt">Collisions</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Upsal, Isaac; STAR Collaboration</p> <p>2017-11-01</p> <p><span class="hlt">Collisions</span> between heavy nuclei at ultra-relativistic energies form a color-deconfined state of matter known as the quark-gluon plasma. This state is well described by hydrodynamics, and non-central <span class="hlt">collisions</span> are expected to produce a fluid characterized by strong vorticity in the presence of strong external magnetic fields. The STAR Collaboration at Brookhaven National Laboratory's Relativistic Heavy <span class="hlt">Ion</span> Collider (RHIC) has measured <span class="hlt">collisions</span> between gold nuclei at center of mass energies √{sNN} = 7.7- 200 GeV. We report the first observation of globally polarized Λ and Λ bar hyperons, aligned with the angular momentum of the colliding system. These measurements provide important information on partonic spin-orbit coupling, the vorticity of the quark-gluon plasma, and the magnetic field generated in the <span class="hlt">collision</span>.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2001ApSS..183..301S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2001ApSS..183..301S"><span>Secondary <span class="hlt">ion</span> emission from phosphatidic acid sandwich films under <span class="hlt">atomic</span> and molecular primary <span class="hlt">ion</span> bombardment</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Stapel, D.; Benninghoven, A.</p> <p>2001-11-01</p> <p>Secondary <span class="hlt">ion</span> yields increase considerably when changing from <span class="hlt">atomic</span> to molecular primary <span class="hlt">ions</span>. Since secondary <span class="hlt">ion</span> emission from deeper layers could result in a pronounced yield increase, the secondary <span class="hlt">ion</span> emission depth of molecular fragments was investigated. A phosphatidic acid Langmuir-Blodgett (LB) sandwich system was applied. The well-defined layer structure of the applied sample allows the assignment of different depths of origin to the selected fragment <span class="hlt">ions</span>. At least 93% of the detected characteristic molecular fragment <span class="hlt">ions</span> originate from the first and second layers. This holds true for all applied <span class="hlt">atomic</span> and molecular primary <span class="hlt">ions</span>.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2008APS..GECFT1108K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2008APS..GECFT1108K"><span>Alignment relaxation of Ne*(2pi[J=1]) <span class="hlt">atoms</span> due to <span class="hlt">collisions</span> with He(1s^2) <span class="hlt">atoms</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Khadilkar, Vaibhav; Matsukuma, Hiraku; Hasuo, Masahiro; Bahrim, Cristian</p> <p>2008-10-01</p> <p>Alignment relaxation of <span class="hlt">atoms</span> induced by <span class="hlt">collisions</span> offers accurate information regarding the anisotropic <span class="hlt">atom-atom</span> potentials and has many applications in <span class="hlt">atomic</span> and plasma physics. Here we report the energy-averaged cross sections for destruction of alignment σ^(2) and the rate coefficients for disalignment KDA of Ne^*(2p^5 3p; 2pi [J=1]) <span class="hlt">atoms</span> due to He <span class="hlt">atom</span> <span class="hlt">collisions</span> using a many-channels close-coupling method based on a modified model potential for the HeNe^*(2p^5 3p) system [1]. Comparison with measurements using laser-induced fluorescence spectroscopy (LIFS) [2] and Hanle signals [3] is reported. The LIFS method measures KDA due to intra-multiplet transitions, while the analysis of Hanle signals gives σ^(2), which incorporates both the intra- and inter-multiplet transitions. Good agreement between theory and experiments was found for the 2p2, 2p5, and 2p7 states at 77 K < T < 350 K when a static polarizability for each Ne^*(2pi) state is added to the long-range potentials of the HeNe^*(2p^5 3p) system given in Ref.[4]. [1] Bahrim C and Khadilkar V 2008 J. Phys. B 41 035203 [2] Seo M, Shimamura T, Furatani T, Hasuo M, Bahrim C and Fujimoto T 2003 J. Phys. B 36 1885 [3] Carrington C G and Corney A 1971 J. Phys. B 4 869 [4] Bahrim C, Kucal H and Masnou-Seeuws F 1997 Phys. Rev. A 56 1305</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/biblio/22584180-energetics-li-atom-adsorbed-doped-graphene-monovacancy','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22584180-energetics-li-atom-adsorbed-doped-graphene-monovacancy"><span><span class="hlt">Energetics</span> of a Li <span class="hlt">Atom</span> adsorbed on B/N doped graphene with monovacancy</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Rani, Babita, E-mail: babitabaghla15@gmail.com; Department of Physics, Punjabi University, Patiala 147002; Jindal, V.K.</p> <p></p> <p>We use density functional theory (DFT) to study the adsorption properties and diffusion of Li <span class="hlt">atom</span> across B/N-pyridinic graphene. Regardless of the dopant type, B <span class="hlt">atoms</span> of B-pyridinic graphene lose electron density. On the other hand, N <span class="hlt">atoms</span> (p-type dopants) have tendency to gain electron density in N-pyridinic graphene. Higher chemical reactivity and electronic conductivity of B/N-pyridinic graphene are responsible for stronger binding of Li with the substrates as compared to pristine graphene. The binding energy of Li with B/N-pyridinic graphene exceeds the cohesive energy of bulk Li, making it <span class="hlt">energetically</span> unfavourable for Li to form clusters on these substrates.more » Li <span class="hlt">atom</span> gets better adsorbed on N-pyridinic graphene due to an additional p-p hybridization of the orbitals while Li on B-pyridinic prefers the ionic bonding. Also, significant distortion of N-pyridinic graphene upon Li adsorption is a consequence of the change in bonding mechanism between Li <span class="hlt">atom</span> and the substrate. Our results show that bonding character and hence binding energies between Li and graphene can be tuned with the help of B/N doping of monovacancy defects. Further, the sites for most stable adsorption are different for the two types of doped and defective graphene, leading to greater Li uptake capacity of B-pyridinic graphene near the defect. In addition, B-pyridinic graphene offering lower diffusion barrier, ensures better Li kinetics. Thus, B-pyridinic graphene presents itself as a better anode material for LIBs as compared to N-pyridinic graphene. - Graphical abstract: Adsorption and diffusion of Li <span class="hlt">atom</span> across the B/N doped monovacancy graphene is studied using ab-initio DFT calculations. Our results show that bonding mechanism and binding of Li with graphene can be tuned with the help of N/B doping of defects. Also, B-pyridinic graphene presents itself as a better anode material for lithium <span class="hlt">ion</span> batteries as compared to N-pyridinic graphene. Display Omitted - Highlights: </p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017NIMPB.408...27G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017NIMPB.408...27G"><span>Impact parameter sensitive study of inner-shell <span class="hlt">atomic</span> processes in the experimental storage ring</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gumberidze, A.; Kozhuharov, C.; Zhang, R. T.; Trotsenko, S.; Kozhedub, Y. S.; DuBois, R. D.; Beyer, H. F.; Blumenhagen, K.-H.; Brandau, C.; Bräuning-Demian, A.; Chen, W.; Forstner, O.; Gao, B.; Gassner, T.; Grisenti, R. E.; Hagmann, S.; Hillenbrand, P.-M.; Indelicato, P.; Kumar, A.; Lestinsky, M.; Litvinov, Yu. A.; Petridis, N.; Schury, D.; Spillmann, U.; Trageser, C.; Trassinelli, M.; Tu, X.; Stöhlker, Th.</p> <p>2017-10-01</p> <p>In this work, we present a pilot experiment in the experimental storage ring (ESR) at GSI devoted to impact parameter sensitive studies of inner shell <span class="hlt">atomic</span> processes for low-energy (heavy-) <span class="hlt">ion-atom</span> <span class="hlt">collisions</span>. The experiment was performed with bare and He-like xenon <span class="hlt">ions</span> (Xe54+, Xe52+) colliding with neutral xenon gas <span class="hlt">atoms</span>, resulting in a symmetric <span class="hlt">collision</span> system. This choice of the projectile charge states was made in order to compare the effect of a filled K-shell with the empty one. The projectile and target X-rays have been measured at different observation angles for all impact parameters as well as for the impact parameter range of ∼35-70 fm.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2004cosp...35.2976B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2004cosp...35.2976B"><span>Monte Carlo Calculations of F-region Incoherent Radar Spectra at High Latitudes: the Effect of O+-O+ Coulomb <span class="hlt">Collisions</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Barghouthi, I.; Barakat, A.</p> <p></p> <p>We have used Monte Carlo simulations of O+ velocity distributions in the high latitude F-region to improve the calculation of incoherent radar spectra in auroral ionosphere. The Monte Carlo simulation includes <span class="hlt">ion</span>-neutral O+ -- O resonant charge exchange and polarization interactions as well as Coulomb self-<span class="hlt">collisions</span> O+ -- O+. At a few hundreds kilometers of altitude, <span class="hlt">atomic</span> oxygen O and <span class="hlt">atomic</span> oxygen <span class="hlt">ion</span> O+ dominate the composition of the auroral ionosphere and, consequently, the influence of O+ -- O+ Coulomb <span class="hlt">collisions</span> becomes significant. In this study we consider the effect of O+ -- O+ <span class="hlt">collisions</span> on the incoherent radar spectra in the presence of large electric field (˜ 100 mVm-1). As altitude increases, (i.e. the role of O+ -- O+ becomes significant), the 1-D O+ <span class="hlt">ion</span> velocity distribution function becomes more Maxwellian and the features of the radar spectrum corresponding to non-Maxwellian <span class="hlt">ion</span> velocity distribution (e.g. baby bottle and triple hump shapes) evolve to Maxwellian <span class="hlt">ion</span> velocity distribution (single and double hump shapes). Therefore, O+ -- O+ Coulomb <span class="hlt">collisions</span> act to istropize the 1-D O+ velocity distribution, and modify the radar spectrum accordingly, by transferring thermal energy from the perpendicular direction to the parallel direction.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016JChPh.145a4701K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016JChPh.145a4701K"><span>Geometric and <span class="hlt">energetic</span> considerations of surface fluctuations during <span class="hlt">ion</span> transfer across the water-immiscible organic liquid interface</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Karnes, John J.; Benjamin, Ilan</p> <p>2016-07-01</p> <p>Molecular dynamics simulations and umbrella sampling free energy calculations are used to examine the thermodynamics, <span class="hlt">energetics</span>, and structural fluctuations that accompany the transfer of a small hydrophilic <span class="hlt">ion</span> (Cl-) across the water/nitrobenzene interface. By examining several constrained interface structures, we isolate the <span class="hlt">energetic</span> costs of interfacial deformation and co-transfer of hydration waters during the <span class="hlt">ion</span> transfer. The process is monitored using both energy-based solvation coordinates and a geometric coordinate recently introduced by Morita and co-workers to describe surface fluctuations. Our simulations show that these coordinates provide a complimentary description of the water surface fluctuations during the transfer and are necessary for elucidating the mechanism of the <span class="hlt">ion</span> transfer.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/18512849','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/18512849"><span>Generation and <span class="hlt">collision</span>-induced dissociation of ammonium tetrafluoroborate cluster <span class="hlt">ions</span>.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Dain, Ryan P; Van Stipdonk, Michael J</p> <p>2008-07-01</p> <p>Singly and doubly charged cluster <span class="hlt">ions</span> of ammonium tetrafluoroborate (NH4BF4) with general formula [(NH4BF4)nNH4]+ and [(NH4BF4)m(NH4)2]2+, respectively, were generated by electrospray ionization (ESI) and their fragmentation examined using <span class="hlt">collision</span>-induced dissociation (CID) and <span class="hlt">ion</span>-trap tandem mass spectrometry. CID of [(NH4BF4)nNH4]+ caused the loss of one or more neutral NH4BF4 units. The n = 2 cluster, [(NH4BF4)2NH4]+, was unique in that it also exhibited a dissociation pathway in which HBF4 was eliminated to create [(NH4BF4)(NH3)NH4]+. Dissociation of [(NH4BF4)m(NH4)2]2+ occurred through two general pathways: (a) 'fission' to produce singly charged cluster <span class="hlt">ions</span> and (b) elimination of one or more neutral NH4BF4 units to leave doubly charged product <span class="hlt">ions</span>. CID profiles, and measurements of changing precursor and product <span class="hlt">ion</span> signal intensity as a function of applied <span class="hlt">collision</span> voltage, were collected for [(NH4BF4)nNH4]+ and compared with those for analogous [(NaBF4)nNa]+ and [(KBF4)nK]+ <span class="hlt">ions</span> to determine the influence of the cation on the relative stability of cluster <span class="hlt">ions</span>. In general, the [(NH4BF4)nNH4]+ clusters were found to be easier to dissociate than both the sodium and potassium clusters of comparable size, with [(KBF4)nK]+ <span class="hlt">ions</span> the most difficult to dissociate.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/6647245','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/6647245"><span>Theoretical <span class="hlt">atomic</span> physics code development I: CATS: Cowan <span class="hlt">Atomic</span> Structure Code</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Abdallah, J. Jr.; Clark, R.E.H.; Cowan, R.D.</p> <p></p> <p>An adaptation of R.D. Cowan's <span class="hlt">Atomic</span> Structure program, CATS, has been developed as part of the Theoretical <span class="hlt">Atomic</span> Physics (TAPS) code development effort at Los Alamos. CATS has been designed to be easy to run and to produce data files that can interface with other programs easily. The CATS produced data files currently include wave functions, energy levels, oscillator strengths, plane-wave-Born electron-<span class="hlt">ion</span> <span class="hlt">collision</span> strengths, photoionization cross sections, and a variety of other quantities. This paper describes the use of CATS. 10 refs.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018AAS...23122604V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018AAS...23122604V"><span>On the Treatment of l-changing Proton-hydrogen Rydberg <span class="hlt">Atom</span> <span class="hlt">Collisions</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Vrinceanu, Daniel; Onofrio, Roberto; Sadeghpour, Hossein</p> <p>2018-01-01</p> <p>Energy-conserving, angular momentum-changing <span class="hlt">collisions</span> between protons and highly excited Rydberg hydrogen <span class="hlt">atoms</span> are important for precise understanding of the primordial recombination cascade, and the elemental abundance.Early approaches to l-changing <span class="hlt">collisions</span> used perturbation theory for only dipole-allowed (Δl = ±1) transitions. An exact non-perturbative quantum mechanical treatment is possible, but it comes at computational cost for highly excited Rydberg states. In this note we show how to obtain a semi-classical limit that is accurate and simple, and develop further physical insights afforded by the non-perturbative quantum mechanical treatment.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1004139','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1004139"><span>From many body wee partons dynamics to perfect fluid: a standard model for heavy <span class="hlt">ion</span> <span class="hlt">collisions</span></span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Venugopalan, R.</p> <p>2010-07-22</p> <p>We discuss a standard model of heavy <span class="hlt">ion</span> <span class="hlt">collisions</span> that has emerged both from experimental results of the RHIC program and associated theoretical developments. We comment briefly on the impact of early results of the LHC program on this picture. We consider how this standard model of heavy <span class="hlt">ion</span> <span class="hlt">collisions</span> could be solidified or falsified in future experiments at RHIC, the LHC and a future Electro-<span class="hlt">Ion</span> Collider.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1983PhST....6....3S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1983PhST....6....3S"><span>PREFACE: Fourth International Workshop on Inelastic <span class="hlt">Ion</span>-Surface <span class="hlt">Collisions</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sigmund, Peter</p> <p>1983-01-01</p> <p>The Fourth International Workshop on Inelastic <span class="hlt">Ion</span>-Surface <span class="hlt">Collisions</span> was held at Hindsgavl Manor near Middelfart, Denmark from 21 to 24 September 1982, following previous workshops held in Murray Hill, New Jersey (1976), Hamilton, Ontario (1978) and Feldkirchen-Westerham, Bavaria (1980). Like in the previous meetings, the underlying idea was to gather a moderately small group of researchers to discuss fundamental physical and chemical problems in a number of areas that are related, but are normally represented at separate conferences focusing on different aspects. The area of inelastic <span class="hlt">ion</span>-surface <span class="hlt">collisions</span> has a wide diversity of applications ranging from surface analysis by particle impact through microelectronic and controlled thermonuclear fusion devices to biomolecule identification and solar wind effects in planetary space. There are strong links to surface science and <span class="hlt">atomic</span> <span class="hlt">collision</span> physics and their respective applications. The present series of workshops is an attempt to focus on fundamental problems common to all these areas and thus to provide a forum for fruitful interaction. At Middelfart, we were lucky to have an exceptional number of well-presented and stimulating summary talks covering a rather broad range of fundamental processes with the emphasis shifting back and forth between collisional and surface aspects. Moreover, there was a wealth of short contributions on current research, of which many were submitted to the present proceedings. Thanks to the speakers, an active audience, and considerate session chairmen, we had extensive and lively but friendly discussions in an always stimulating atmosphere. This volume contains 11 of 13 invited papers and 15 of the 30 contributions presented orally at the workshop. It should, like the proceedings of the previous workshops, give a balanced survey of the current status of the field, with a slight bias toward recent developments like those in the theory of charge states of sputtered <span class="hlt">atoms</span>, and others</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1328463-experimental-review-heavy-flavor-heavy-ion-collision','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1328463-experimental-review-heavy-flavor-heavy-ion-collision"><span>An Experimental Review on Heavy-Flavor v 2 in Heavy-<span class="hlt">Ion</span> <span class="hlt">Collision</span></span></a></p> <p><a target="_blank" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Nasim, Md.; Esha, Roli; Huang, Huan Zhong</p> <p>2016-01-01</p> <p>For overmore » a decade now, the primary purpose of relativistic heavy-<span class="hlt">ion</span> <span class="hlt">collisions</span> at the Relativistic Heavy-<span class="hlt">Ion</span> Collider (RHIC) and the Large Hadron Collider (LHC) has been to study the properties of QCD matter under extreme conditions—high temperature and high density. The heavy-<span class="hlt">ion</span> experiments at both RHIC and LHC have recorded a wealth of data in p+p, p+Pb, d+Au, Cu+Cu, Cu+Au, Au+Au, Pb+Pb, and U+U <span class="hlt">collisions</span> at energies ranging from s N N = 7.7  GeV to 7 TeV. Heavy quarks are considered good probe to study the QCD matter created in relativistic <span class="hlt">collisions</span> due to their very large mass and other unique properties. A precise measurement of various properties of heavy-flavor hadrons provides an insight into the fundamental properties of the hot and dense medium created in these nucleus-nucleus <span class="hlt">collisions</span>, such as transport coefficient and thermalization and hadronization mechanisms. The main focus of this paper is to present a review on the measurements of azimuthal anisotropy of heavy-flavor hadrons and to outline the scientific opportunities in this sector due to future detector upgrade. We will mainly discuss the elliptic flow of open charmed meson ( D -meson), J / ψ , and leptons from heavy-flavor decay at RHIC and LHC energy.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018PhRvD..97g4003Y','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018PhRvD..97g4003Y"><span>Doubly charmed baryon production in heavy <span class="hlt">ion</span> <span class="hlt">collisions</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Yao, Xiaojun; Müller, Berndt</p> <p>2018-04-01</p> <p>We give an estimate of Ξcc ++ production rate and transverse momentum spectra in relativistic heavy <span class="hlt">ion</span> <span class="hlt">collisions</span>. We use Boltzmann transport equations to describe the dynamical evolution of charm quarks and diquarks inside quark-gluon plasma. In-medium formation and dissociation rates of charm diquarks are calculated from potential nonrelativistic QCD for the diquark sector. We solve the transport equations by Monte Carlo simulations. For 2.76 TeV Pb-Pb <span class="hlt">collisions</span> with 0-10% centrality, the number of Ξcc ++ produced in the transverse momentum range 0-5 GeV and rapidity from -1 to 1 is roughly 0.02 per <span class="hlt">collision</span>. We repeat the calculation with a melting temperature 250 MeV above which no diquarks can be formed. The number of Ξcc ++ produced in the same kinematic region is about 0.0125 per <span class="hlt">collision</span>. We discuss how to study diquarks at finite temperature on a lattice and construct the antitriplet free energy in a gauge invariant but path dependent way. We also comment on extensions of the calculation to other doubly heavy baryons and doubly heavy tetraquarks and the feasibility of experimental measurements.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JInst..12C1025V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JInst..12C1025V"><span>Synthetic NPA diagnostic for <span class="hlt">energetic</span> particles in JET plasmas</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Varje, J.; Sirén, P.; Weisen, H.; Kurki-Suonio, T.; Äkäslompolo, S.; contributors, JET</p> <p>2017-11-01</p> <p>Neutral particle analysis (NPA) is one of the few methods for diagnosing fast <span class="hlt">ions</span> inside a plasma by measuring neutral <span class="hlt">atom</span> fluxes emitted due to charge exchange reactions. The JET tokamak features an NPA diagnostic which measures neutral <span class="hlt">atom</span> fluxes and energy spectra simultaneously for hydrogen, deuterium and tritium species. A synthetic NPA diagnostic has been developed and used to interpret these measurements to diagnose <span class="hlt">energetic</span> particles in JET plasmas with neutral beam injection (NBI) heating. The synthetic NPA diagnostic performs a Monte Carlo calculation of the neutral <span class="hlt">atom</span> fluxes in a realistic geometry. The 4D fast <span class="hlt">ion</span> distributions, representing NBI <span class="hlt">ions</span>, were simulated using the Monte Carlo orbit-following code ASCOT. Neutral <span class="hlt">atom</span> density profiles were calculated using the FRANTIC neutral code in the JINTRAC modelling suite. Additionally, for rapid analysis, a scan of neutral profiles was precalculated with FRANTIC for a range of typical plasma parameters. These were taken from the JETPEAK database, which includes a comprehensive set of data from the flat-top phases of nearly all discharges in recent JET campaigns. The synthetic diagnostic was applied to various JET plasmas in the recent hydrogen campaign where different hydrogen/deuterium mixtures and NBI configurations were used. The simulated neutral fluxes from the fast <span class="hlt">ion</span> distributions were found to agree with the measured fluxes, reproducing the slowing-down profiles for different beam isotopes and energies and quantitatively estimating the fraction of hydrogen and deuterium fast <span class="hlt">ions</span>.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013ApPhA.111..653H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013ApPhA.111..653H"><span>The role of phase separation for self-organized surface pattern formation by <span class="hlt">ion</span> beam erosion and metal <span class="hlt">atom</span> co-deposition</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hofsäss, H.; Zhang, K.; Pape, A.; Bobes, O.; Brötzmann, M.</p> <p>2013-05-01</p> <p>We investigate the ripple pattern formation on Si surfaces at room temperature during normal incidence <span class="hlt">ion</span> beam erosion under simultaneous deposition of different metallic co-deposited surfactant <span class="hlt">atoms</span>. The co-deposition of small amounts of metallic <span class="hlt">atoms</span>, in particular Fe and Mo, is known to have a tremendous impact on the evolution of nanoscale surface patterns on Si. In previous work on <span class="hlt">ion</span> erosion of Si during co-deposition of Fe <span class="hlt">atoms</span>, we proposed that chemical interactions between Fe and Si <span class="hlt">atoms</span> of the steady-state mixed Fe x Si surface layer formed during <span class="hlt">ion</span> beam erosion is a dominant driving force for self-organized pattern formation. In particular, we provided experimental evidence for the formation of amorphous iron disilicide. To confirm and generalize such chemical effects on the pattern formation, in particular the tendency for phase separation, we have now irradiated Si surfaces with normal incidence 5 keV Xe <span class="hlt">ions</span> under simultaneous gracing incidence co-deposition of Fe, Ni, Cu, Mo, W, Pt, and Au surfactant <span class="hlt">atoms</span>. The selected metals in the two groups (Fe, Ni, Cu) and (W, Pt, Au) are very similar regarding their <span class="hlt">collision</span> cascade behavior, but strongly differ regarding their tendency to silicide formation. We find pronounced ripple pattern formation only for those co deposited metals (Fe, Mo, Ni, W, and Pt), which are prone to the formation of mono and disilicides. In contrast, for Cu and Au co-deposition the surface remains very flat, even after irradiation at high <span class="hlt">ion</span> fluence. Because of the very different behavior of Cu compared to Fe, Ni and Au compared to W, Pt, phase separation toward amorphous metal silicide phases is seen as the relevant process for the pattern formation on Si in the case of Fe, Mo, Ni, W, and Pt co-deposition.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li class="active"><span>19</span></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_19 --> <div id="page_20" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li class="active"><span>20</span></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="381"> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29486526','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29486526"><span><span class="hlt">Collision</span> cross section (CCS) measurement by <span class="hlt">ion</span> cyclotron resonance mass spectrometry with short-time Fourier transform.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Hu, Miao; Zhang, Linzhou; He, Shan; Xu, Chunming; Shi, Quan</p> <p>2018-05-15</p> <p>The <span class="hlt">collision</span> cross section (CCS) is an important shape parameter which is often used in molecular structure investigation. In Fourier transform <span class="hlt">ion</span> cyclotron resonance mass spectrometry (FTICR-MS), the CCS affects the <span class="hlt">ion</span> signal damping shape due to the effect of <span class="hlt">ion</span>-neutral <span class="hlt">collisions</span>. It is potential to obtain <span class="hlt">ion</span> CCS values from FTICR-MS with the help of a proper <span class="hlt">ion-collision</span> model. We have developed a rapid method to obtain the <span class="hlt">ion</span> damping profile and CCS for mixtures by only one FTICR-MS measurement. The method utilizes short-time Fourier transform (STFT) to process FTICR-MS time domain signals. The STFT-processed result is a three-dimensional (3D) spectrum which has an additional time axis in addition to the conventional mass-to-charge ratio and intensity domains. The damping profile of each <span class="hlt">ion</span> can be recognized from the 3D spectrum. After extracting the decay profile of a specified <span class="hlt">ion</span>, all the three <span class="hlt">ion</span>-neutral <span class="hlt">collision</span> models were tested in curve fitting. The hard-sphere model was proven to be suitable for our experimental setup. A linear relationship was observed between the CCS value and hard-sphere model parameters. Therefore, the CCS values of all the peaks were obtained through the addition of internal model compounds and linear calibration. The proposed method was successfully applied to determine the CCSs of fatty acids and polyalanines in a petroleum gas oil matrix. This technique can be used for simultaneous measurement of cross sections for many <span class="hlt">ions</span> in congested spectra. Copyright © 2018 John Wiley & Sons, Ltd.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1227168-pseudorapidity-correlations-heavy-ion-collisions-from-viscous-fluid-dynamics','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1227168-pseudorapidity-correlations-heavy-ion-collisions-from-viscous-fluid-dynamics"><span>Pseudorapidity correlations in heavy <span class="hlt">ion</span> <span class="hlt">collisions</span> from viscous fluid dynamics</span></a></p> <p><a target="_blank" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Monnai, A.; Schenke, B.</p> <p>2015-11-26</p> <p>We demonstrate by explicit calculations in 3+1 dimensional viscous relativistic fluid dynamics how two-particle pseudorapidity correlation functions in heavy <span class="hlt">ion</span> <span class="hlt">collisions</span> at the LHC and RHIC depend on the number of particle producing sources and the transport properties of the produced medium. In particular, we present results for the Legendre coefficients of the two-particle pseudorapidity correlation function, a n,m, in Pb+Pb <span class="hlt">collisions</span> at 2760 GeV and Au+Au <span class="hlt">collisions</span> at 200 GeV from viscous hydrodynamics with three dimensionally fluctuating initial conditions. Our results suggest that the a n,m provide important constraints on initial state fluctuations and the transport properties of themore » quark gluon plasma.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/16599714','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/16599714"><span>Quantum study of Eley-Rideal reaction and <span class="hlt">collision</span> induced desorption of hydrogen <span class="hlt">atoms</span> on a graphite surface. II. H-physisorbed case.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Martinazzo, Rocco; Tantardini, Gian Franco</p> <p>2006-03-28</p> <p>Following previous investigation of <span class="hlt">collision</span> induced (CI) processes involving hydrogen <span class="hlt">atoms</span> chemisorbed on graphite [R. Martinazzo and G. F. Tantardini, J. Chem. Phys. 124, 124702 (2006)], the case in which the target hydrogen <span class="hlt">atom</span> is initially physisorbed on the surface is considered here. Several adsorbate-substrate initial states of the target H <span class="hlt">atom</span> in the physisorption well are considered, and CI processes are studied for projectile energies up to 1 eV. Results show that (i) Eley-Rideal cross sections at low <span class="hlt">collision</span> energies may be larger than those found in the H-chemisorbed case but they rapidly decrease as the <span class="hlt">collision</span> energy increases; (ii) product hydrogen molecules are vibrationally very excited; (iii) <span class="hlt">collision</span> induced desorption cross sections rapidly increase, reaching saturation values greater than 10 A2; (iv) trapping of the incident <span class="hlt">atoms</span> is found to be as efficient as the Eley-Rideal reaction at low energies and remains sizable (3-4 A2) at high energies. The latter adsorbate-induced trapping results mainly in formation of metastable hot hydrogen <span class="hlt">atoms</span>, i.e., <span class="hlt">atoms</span> with an excess energy channeled in the motion parallel to the surface. These <span class="hlt">atoms</span> might contribute in explaining hydrogen formation on graphite.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JGRA..122.9427K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JGRA..122.9427K"><span>Contribution of <span class="hlt">energetic</span> and heavy <span class="hlt">ions</span> to the plasma pressure: The 27 September to 3 October 2002 storm</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kronberg, E. A.; Welling, D.; Kistler, L. M.; Mouikis, C.; Daly, P. W.; Grigorenko, E. E.; Klecker, B.; Dandouras, I.</p> <p>2017-09-01</p> <p>Magnetospheric plasma sheet <span class="hlt">ions</span> drift toward the Earth and populate the ring current. The ring current plasma pressure distorts the terrestrial internal magnetic field at the surface, and this disturbance strongly affects the strength of a magnetic storm. The contribution of <span class="hlt">energetic</span> <span class="hlt">ions</span> (>40 keV) and of heavy <span class="hlt">ions</span> to the total plasma pressure in the near-Earth plasma sheet is not always considered. In this study, we evaluate the contribution of low-energy and <span class="hlt">energetic</span> <span class="hlt">ions</span> of different species to the total plasma pressure for the storm observed by the Cluster mission from 27 September until 3 October 2002. We show that the contribution of <span class="hlt">energetic</span> <span class="hlt">ions</span> (>40 keV) and of heavy <span class="hlt">ions</span> to the total plasma pressure is ≃76-98.6% in the ring current and ≃14-59% in the magnetotail. The main source of oxygen <span class="hlt">ions</span>, responsible for ≃56% of the plasma pressure of the ring current, is located at distances earthward of XGSE ≃ -13.5 RE during the main phase of the storm. The contribution of the ring current particles agrees with the observed Dst index. We model the magnetic storm using the Space Weather Modeling Framework (SWMF). We assess the plasma pressure output in the ring current for two different <span class="hlt">ion</span> outflow models in the SWMF through comparison with observations. Both models yield reasonable results. The model which produces the most heavy <span class="hlt">ions</span> agrees best with the observations. However, the data suggest that there is still potential for refinement in the simulations.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018A%26A...612A..90B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018A%26A...612A..90B"><span>Excitation and charge transfer in low-energy hydrogen <span class="hlt">atom</span> <span class="hlt">collisions</span> with neutral iron</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Barklem, P. S.</p> <p>2018-05-01</p> <p>Data for inelastic processes due to hydrogen <span class="hlt">atom</span> <span class="hlt">collisions</span> with iron are needed for accurate modelling of the iron spectrum in late-type stars. Excitation and charge transfer in low-energy Fe+H <span class="hlt">collisions</span> is studied theoretically using a previously presented method based on an asymptotic two-electron linear combination of <span class="hlt">atomic</span> orbitals model of ionic-covalent interactions in the neutral <span class="hlt">atom-hydrogen-atom</span> system, together with the multi-channel Landau-Zener model. An extensive calculation including 166 covalent states and 25 ionic states is presented and rate coefficients are calculated for temperatures in the range 1000-20 000 K. The largest rates are found for charge transfer processes to and from two clusters of states around 6.3 and 6.6 eV excitation, corresponding in both cases to active 4d and 5p electrons undergoing transfer. Excitation and de-excitation processes among these two sets of states are also significant. Full Tables and rate coefficient data are only available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/612/A90</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29031279','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29031279"><span>Rotationally inelastic <span class="hlt">collisions</span> of excited NaK and NaCs molecules with noble gas and alkali <span class="hlt">atom</span> perturbers.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Jones, J; Richter, K; Price, T J; Ross, A J; Crozet, P; Faust, C; Malenda, R F; Carlus, S; Hickman, A P; Huennekens, J</p> <p>2017-10-14</p> <p>We report measurements of rate coefficients at T ≈ 600 K for rotationally inelastic <span class="hlt">collisions</span> of NaK molecules in the 2(A) 1 Σ + electronic state with helium, argon, and potassium <span class="hlt">atom</span> perturbers. Several initial rotational levels J between 14 and 44 were investigated. <span class="hlt">Collisions</span> involving molecules in low-lying vibrational levels (v = 0, 1, and 2) of the 2(A) 1 Σ + state were studied using Fourier-transform spectroscopy. <span class="hlt">Collisions</span> involving molecules in a higher vibrational level, v = 16, were studied using pump/probe, optical-optical double resonance spectroscopy. In addition, polarization spectroscopy measurements were carried out to study the transfer of orientation in these <span class="hlt">collisions</span>. Many, but not all, of the measurements were carried out in the "single-<span class="hlt">collision</span> regime" where more than one <span class="hlt">collision</span> is unlikely to occur within the lifetime of the excited molecule. The analysis of the experimental data, which is described in detail, includes an estimate of effects of multiple <span class="hlt">collisions</span> on the reported rate coefficients. The most significant result of these experiments is the observation of a strong propensity for ΔJ = even transitions in <span class="hlt">collisions</span> involving either helium or argon <span class="hlt">atoms</span>; the propensity is much stronger for helium than for argon. For the initial rotational levels studied experimentally, almost all initial orientation is preserved in <span class="hlt">collisions</span> of NaK 2(A) 1 Σ + molecules with helium. Roughly between 1/3 and 2/3 of the orientation is preserved in <span class="hlt">collisions</span> with argon, and almost all orientation is destroyed in <span class="hlt">collisions</span> with potassium <span class="hlt">atoms</span>. Complementary measurements on rotationally inelastic <span class="hlt">collisions</span> of NaCs 2(A) 1 Σ + with argon do not show a ΔJ = even propensity. The experimental results are compared with new theoretical calculations of <span class="hlt">collisions</span> of NaK 2(A) 1 Σ + with helium and argon. The calculations are in good agreement with the absolute magnitudes of the experimentally determined rate coefficients and accurately</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JChPh.147n4303J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JChPh.147n4303J"><span>Rotationally inelastic <span class="hlt">collisions</span> of excited NaK and NaCs molecules with noble gas and alkali <span class="hlt">atom</span> perturbers</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Jones, J.; Richter, K.; Price, T. J.; Ross, A. J.; Crozet, P.; Faust, C.; Malenda, R. F.; Carlus, S.; Hickman, A. P.; Huennekens, J.</p> <p>2017-10-01</p> <p>We report measurements of rate coefficients at T ≈ 600 K for rotationally inelastic <span class="hlt">collisions</span> of NaK molecules in the 2(A)1Σ+ electronic state with helium, argon, and potassium <span class="hlt">atom</span> perturbers. Several initial rotational levels J between 14 and 44 were investigated. <span class="hlt">Collisions</span> involving molecules in low-lying vibrational levels (v = 0, 1, and 2) of the 2(A)1Σ+ state were studied using Fourier-transform spectroscopy. <span class="hlt">Collisions</span> involving molecules in a higher vibrational level, v = 16, were studied using pump/probe, optical-optical double resonance spectroscopy. In addition, polarization spectroscopy measurements were carried out to study the transfer of orientation in these <span class="hlt">collisions</span>. Many, but not all, of the measurements were carried out in the "single-<span class="hlt">collision</span> regime" where more than one <span class="hlt">collision</span> is unlikely to occur within the lifetime of the excited molecule. The analysis of the experimental data, which is described in detail, includes an estimate of effects of multiple <span class="hlt">collisions</span> on the reported rate coefficients. The most significant result of these experiments is the observation of a strong propensity for ΔJ = even transitions in <span class="hlt">collisions</span> involving either helium or argon <span class="hlt">atoms</span>; the propensity is much stronger for helium than for argon. For the initial rotational levels studied experimentally, almost all initial orientation is preserved in <span class="hlt">collisions</span> of NaK 2(A)1Σ+ molecules with helium. Roughly between 1/3 and 2/3 of the orientation is preserved in <span class="hlt">collisions</span> with argon, and almost all orientation is destroyed in <span class="hlt">collisions</span> with potassium <span class="hlt">atoms</span>. Complementary measurements on rotationally inelastic <span class="hlt">collisions</span> of NaCs 2(A)1Σ+ with argon do not show a ΔJ = even propensity. The experimental results are compared with new theoretical calculations of <span class="hlt">collisions</span> of NaK 2(A)1Σ+ with helium and argon. The calculations are in good agreement with the absolute magnitudes of the experimentally determined rate coefficients and accurately reproduce the very</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2003APS..GECTR2008G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2003APS..GECTR2008G"><span>Validity of Binary <span class="hlt">Collision</span> Theory in <span class="hlt">Ion</span>-Surface Interactions at 50-500 eV</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gordon, Michael; Giapis, Kostas</p> <p>2003-10-01</p> <p><span class="hlt">Ion</span>-surface interactions in the 50-500 eV regime have become increasingly important in plasma processing. Concerns exist in literature about the validity of the binary <span class="hlt">collision</span> approximation (BCA) at low impact energies because peculiarities are frequently seen in the scattered <span class="hlt">ion</span> energy distribution. Sub-surface processes, multiple bouncing, and super-elastic phenomena have all been hypothesized. This talk will explore the usefulness of BCA theory in predicting energy transfer during <span class="hlt">ion</span>-surface <span class="hlt">collisions</span> in the 50-500 eV energy range. Well-defined beams of rare gas <span class="hlt">ions</span> (Ne, Ar, Kr) were scattered off semiconductor (Si, Ge) and metal surfaces (Ag, Au, Ni, Nb) to measure energy loss upon impact. The <span class="hlt">ion</span> beams were produced from a floating ICP reactor coupled to a small accelerator beamline for transport and mass filtering. Exit channel energies were measured using a 90 gegree electrostatic sector coupled to a quadrupole mass filter with single <span class="hlt">ion</span> detection capability. Although the BCA presents an over-simplified picture of the <span class="hlt">collision</span> process, our results demonstrate that it is remarkably accurate in the low energy range for a variety of projectile-target combinations. In addition, reactive <span class="hlt">ion</span> scattering of O2+ and O+ on inert and reactive surfaces (Au vs. Ag, Pt) suggests there may be rather high energy threshold processes which determine exit channel selectivity.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19930005572','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19930005572"><span><span class="hlt">Atomic</span> data and spectral analysis of carbon, nitrogen, oxygen and silicon <span class="hlt">ions</span> observed with the International Ultraviolet Explorer</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Pradhan, Anil K.</p> <p>1992-01-01</p> <p>According to the plan presented in the original proposal we have now completed most of the <span class="hlt">atomic</span> calculations involving <span class="hlt">collision</span> strengths and rate coefficients for electron impact excitation of C II, N III, and O IV <span class="hlt">ions</span>. These have been reported in the first two publications appended with this report. We have now moved into the applications phase of the project with the new data being used to analyze the International Ultraviolet Explorer (IUE) observations of a variety of objects, as described in the third publication recently submitted (also appended). The analysis and interpretation of archival data will continue well into the next year with several collaborators that the PI and Co-PI are involved with. In addition, the <span class="hlt">atomic</span> calculations on Si II have been started.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19840002855','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19840002855"><span>Matrix effects in <span class="hlt">ion</span>-induced emission as observed in Ne <span class="hlt">collisions</span> with Cu-Mg and Cu-Al alloys</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Ferrante, J.; Pepper, S. V.</p> <p>1983-01-01</p> <p><span class="hlt">Ion</span> induced Auger electron emission is used to study the surfaces of Al, Mg, Cu - 10 at. % Al, Cu - 19.6 at. % Al, and Cu - 7.4 at. % Mg. A neon (Ne) <span class="hlt">ion</span> beam whose energy is varied from 0.5 to 3 keV is directed at the surface. Excitation of the lighter Ne occurs by the promotion mechanism of Barat and Lichten in asymmetric <span class="hlt">collisions</span> with Al or Mg <span class="hlt">atoms</span>. Two principal Auger peaks are observed in the Ne spectrum: one at 22 eV and one at 25 eV. Strong matrix effects are observed in the alloys as a function of energy in which the population of the second peak is greatly enhanced relative to the first over the pure materials. For the pure material over this energy range this ratio is 1.0. For the alloys it can rise to the electronic structure of alloys and to other surface tools such as secondary <span class="hlt">ion</span> mass spectroscopy.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20080040760','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20080040760"><span>Convergent Close-Coupling Approach to Electron-<span class="hlt">Atom</span> <span class="hlt">Collisions</span></span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Bray, Igor; Stelbovics, Andris</p> <p>2007-01-01</p> <p>It was with great pleasure and honour to accept the invitation to make a presentation at the symposium celebrating the life-long work of Aaron Temkin and Richard Drachman. The work of Aaron Temkin was particularly influential on our own during the development of the CCC method for electron-<span class="hlt">atom</span> <span class="hlt">collisions</span>. There are a number of key problems that need to be dealt with when developing a general computational approach to such <span class="hlt">collisions</span>. Traditionally, the electron energy range was subdivided into the low, intermediate, and high energies. At the low energies only a finite number of channels are open and variational or close-coupling techniques could be used to obtain accurate results. At high energies an infinite number of discrete channels and the target continuum are open, but perturbative techniques are able to yield accurate results. However, at the intermediate energies perturbative techniques fail and computational approaches need to be found for treating the infinite number of open channels. In addition, there are also problems associated with the identical nature of electrons and the difficulty of implementing the boundary conditions for ionization processes. The beauty of the Temkin-Poet model of electron-hydrogen scattering is that it simplifies the full computational problem by neglecting any non-zero orbital angular momenta in the partial-wave expansion, without loosing the complexity associated with the above-mentioned problems. The unique nature of the problem allowed for accurate solution leading to benchmark results which could then be used to test the much more general approaches to electron-<span class="hlt">atom</span> <span class="hlt">collision</span> problems. The immense value of the Temkin-Poet model is readily summarised by the fact that the initial papers of Temkin and Poet have been collectively cited around 250 times to date and are still being cited in present times. Many of the citations came from our own work during the course of the development of the CCC method, which we now describe.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20120011692','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20120011692"><span>Positron Interactions with <span class="hlt">Atoms</span> and <span class="hlt">Ions</span></span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Bhatia, Anand K.</p> <p>2012-01-01</p> <p>Dirac, in 1928, combining the ideas of quantum mechanics and the ideas of relativity invented the well-known relativistic wave equation. In his formulation, he predicted an antiparticle of the electron of spin n-bar/2. He thought that this particle must be a proton. Dirac published his interpretation in a paper 'A theory of electrons and protons.' It was shown later by the mathematician Hermann Weyl that the Dirac theory was completely symmetric between negative and positive particles and the positive particle must have the same mass as that of the electron. In his J. Robert Oppenheimer Memorial Prize Acceptance Speech, Dirac notes that 'Blackett was really the first person to obtain hard evidence for the existence of a positron but he was afraid to publish it. He wanted confirmation, he was really over cautious.' Positron, produced by the <span class="hlt">collision</span> of cosmic rays in a cloud chamber, was detected experimentally by Anderson in 1932. His paper was published in Physical Review in 1933. The concept of the positron and its detection were the important discoveries of the 20th century. I have tried to discuss various processes involving interactions of positrons with <span class="hlt">atoms</span> and <span class="hlt">ions</span>. This includes scattering, bound states and resonances. It has not been possible to include the enormous work which has been carried out during the last 40 or 50 years in theory and measurements.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19860016941','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19860016941"><span>Analysis of the physical <span class="hlt">atomic</span> forces between noble gas <span class="hlt">atoms</span>, alkali <span class="hlt">ions</span> and halogen <span class="hlt">ions</span></span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Wilson, J. W.; Heinbockel, J. H.; Outlaw, R. A.</p> <p>1986-01-01</p> <p>The physical forces between <span class="hlt">atoms</span> and molecules are important in a number of processes of practical importance, including line broadening in radiative processes, gas and crystal properties, adhesion, and thin films. The components of the physical forces between noble gas <span class="hlt">atoms</span>, alkali <span class="hlt">ions</span>, and halogen <span class="hlt">ions</span> are analyzed and a data base for the dispersion forces is developed from the literature based on evaluations with the harmonic oscillator dispersion model for higher order coefficients. The Zener model of the repulsive core is used in the context of the recent asymptotic wave functions of Handler and Smith; and an effective ionization potential within the Handler and Smith wave functions is defined to analyze the two body potential data of Waldman and Gordon, the alkali-halide molecular data, and the noble gas crystal and salt crystal data. A satisfactory global fit to this molecular and crystal data is then reproduced by the model to within several percent. Surface potentials are evaluated for noble gas <span class="hlt">atoms</span> on noble gas and salt crystal surfaces with surface tension neglected. Within this context, the noble gas surface potentials on noble gas and salt crystals are considered to be accurate to within several percent.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1326050-charge-exchange-coupling-between-pickup-ions-across-heliopause-its-effect-energetic-neutral-hydrogen-flux','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1326050-charge-exchange-coupling-between-pickup-ions-across-heliopause-its-effect-energetic-neutral-hydrogen-flux"><span>Charge-exchange coupling between pickup <span class="hlt">ions</span> across the heliopause and its effect on <span class="hlt">energetic</span> neutral hydrogen flux</span></a></p> <p><a target="_blank" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Zirnstein, Eric J.; Heerikhuisen, J.; Zank, G. P.; ...</p> <p>2014-02-24</p> <p>Pickup <span class="hlt">ions</span> (PUIs) appear to play an integral role in the multi-component nature of the plasma in the interaction between the solar wind (SW) and local interstellar medium (LISM). Three-dimensional (3D) MHD simulations with a kinetic treatment for neutrals and PUIs are currently still not viable. In light of recent <span class="hlt">energetic</span> neutral <span class="hlt">atom</span> (ENA) observations by the Interstellar Boundary EXplorer, the purpose of this paper is to illustrate the complex coupling between PUIs across the heliopause (HP) as facilitated by ENAs using estimates of PUI properties extracted from a 3D MHD simulation of the SW-LISM interaction with kinetic neutrals. First,more » we improve upon the multi-component treatment of the inner heliosheath (IHS) plasma from Zank et al. by including the extinction of PUIs through charge-exchange. We find a significant amount of energy is transferred away from hot, termination shock-processed PUIs into a colder, "freshly injected" PUI population. Second, we extend the multi-component approach to estimate ENA flux from the outer heliosheath (OHS), formed from charge-exchange between interstellar hydrogen <span class="hlt">atoms</span> and <span class="hlt">energetic</span> PUIs. These PUIs are formed from ENAs in the IHS that crossed the HP and experienced charge-exchange. Lastly, our estimates, based on plasma-neutral simulations of the SW-LISM interaction and a post-processing analysis of ENAs and PUIs, suggest the majority of flux visible at 1 AU from the front of the heliosphere, between ~0.02 and 10 keV, originates from OHS PUIs, indicating strong coupling between the IHS and OHS plasmas through charge-exchange.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017PhPl...24c4504L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017PhPl...24c4504L"><span>Temporal characteristics of electrostatic surface waves in a cold complex plasma containing <span class="hlt">collision</span>-dominated <span class="hlt">ion</span> flow</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lee, Myoung-Jae; Jung, Young-Dae</p> <p>2017-03-01</p> <p>The influence of electron-<span class="hlt">ion</span> <span class="hlt">collision</span> frequency and dust charge on the growth rate of two-stream instability of the electrostatic surface wave propagating at the interface of semi-infinite complex plasma whose constituents are electrons, negatively charged dust, and streaming <span class="hlt">ions</span>. It is found that the surface wave can be unstable if the multiplication of wave number and <span class="hlt">ion</span> flow velocity is greater than the total plasma frequency of electrons and dusts. The analytical solution of the growth rate is derived as a function of <span class="hlt">collision</span> frequency, dust charge, and <span class="hlt">ion</span>-to-electron density ratio. It is found that the growth rate is inversely proportional to the <span class="hlt">collision</span> rate, but it is enhanced as the number of electrons residing on the dust grain surface is increased. The growth rate of surface wave is compared to that of the bulk wave.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017NuPhA.967..836M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017NuPhA.967..836M"><span>Evidence for chiral symmetry restoration in heavy-<span class="hlt">ion</span> <span class="hlt">collisions</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Moreau, P.; Palmese, A.; Cassing, W.; Seifert, E.; Steinert, T.; Bratkovskaya, E. L.</p> <p>2017-11-01</p> <p>We study the effect of the chiral symmetry restoration (CSR) on heavy-<span class="hlt">ion</span> <span class="hlt">collisions</span> observables in the energy range √{sNN} = 3- 20GeV within the Parton-Hadron-String Dynamics (PHSD) transport approach. The PHSD includes the deconfinement phase transition as well as essential aspects of CSR in the dense and hot hadronic medium, which are incorporated in the Schwinger mechanism for particle production. Our systematic studies show that chiral symmetry restoration plays a crucial role in the description of heavy-<span class="hlt">ion</span> <span class="hlt">collisions</span> at √{sNN} = 3- 20GeV, realizing an increase of the hadronic particle production in the strangeness sector with respect to the non-strange one. Our results provide a microscopic explanation for the horn structure in the excitation function of the K+ /π+ ratio: the CSR in the hadronic phase produces the steep increase of this particle ratio up to √{sNN} ≈ 7GeV, while the drop at higher energies is associated to the appearance of a deconfined partonic medium. Furthermore, the appearance/disappearance of the horn structure is investigated as a function of the system size. We additionally present an analysis of strangeness production in the (T ,μB)-plane (as extracted from the PHSD for central Au+Au <span class="hlt">collisions</span>) and discuss the perspectives to identify a possible critical point in the phase diagram.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018PhRvC..97d4909J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018PhRvC..97d4909J"><span>Effect of an anisotropic escape mechanism on elliptic flow in relativistic heavy-<span class="hlt">ion</span> <span class="hlt">collisions</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Jaiswal, Amaresh; Bhaduri, Partha Pratim</p> <p>2018-04-01</p> <p>We study the effect of an anisotropic escape mechanism on elliptic flow in relativistic heavy-<span class="hlt">ion</span> <span class="hlt">collisions</span>. We use the Glauber model to generate initial conditions and ignore hydrodynamic expansion in the transverse direction. We employ the Beer-Lambert law to allow for the transmittance of produced hadrons in the medium and calculate the anisotropy generated due to the suppression of particles traversing through the medium. To separate non-flow contribution due to surface bias effects, we ignore hydrodynamic expansion in the transverse direction and consider purely longitudinal boost-invariant expansion. We calculate the transverse momentum dependence of elliptic flow, generated from an anisotropic escape mechanism due to surface bias effects, for various centralities in √{sN N}=200 GeV Au +Au <span class="hlt">collisions</span> at the Relativistic Heavy <span class="hlt">Ion</span> Collider and √{sN N}=2.76 TeV Pb +Pb <span class="hlt">collisions</span> at the Large Hadron Collider. We find that the surface bias effects make a sizable contribution to the total elliptic flow observed in heavy-<span class="hlt">ion</span> <span class="hlt">collisions</span>, indicating that the viscosity of the QCD matter extracted from hydrodynamic simulations may be underestimated.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19920030899&hterms=potential+difference&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D90%26Ntt%3Dpotential%2Bdifference','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19920030899&hterms=potential+difference&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D90%26Ntt%3Dpotential%2Bdifference"><span>On the differences in element abundances of <span class="hlt">energetic</span> <span class="hlt">ions</span> from corotating events and from large solar events</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Reames, D. V.; Richardson, I. G.; Barbier, L. M.</p> <p>1991-01-01</p> <p>The abundances of <span class="hlt">energetic</span> <span class="hlt">ions</span> accelerated from high-speed solar wind streams by shock waves formed at corotating interaction regions (CIRs) where high-speed streams overtake the lower-speed solar wind are examined. The observed element abundances appear to represent those of the high-speed solar wind, unmodified by the shock acceleration. These abundances, relative to those in the solar photosphere, are organized by the first ionization potential (FIP) of the <span class="hlt">ions</span> in a way that is different from the FIP effect commonly used to describe differences between abundances in the solar photosphere and those in the solar corona, solar <span class="hlt">energetic</span> particles (SEPs), and the low-speed solar wind. In contrast, the FIP effect of the <span class="hlt">ion</span> abundances in the CIR events is characterized by a smaller amplitude of the differences between high-FIP and low-FIP <span class="hlt">ions</span> and by elevated abundances of He, C, and S.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JMOp...65..622D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JMOp...65..622D"><span>Single-<span class="hlt">ion</span>, transportable optical <span class="hlt">atomic</span> clocks</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Delehaye, Marion; Lacroûte, Clément</p> <p>2018-03-01</p> <p>For the past 15 years, tremendous progress within the fields of laser stabilization, optical frequency combs and <span class="hlt">atom</span> cooling and trapping have allowed the realization of optical <span class="hlt">atomic</span> clocks with unrivaled performances. These instruments can perform frequency comparisons with fractional uncertainties well below ?, finding applications in fundamental physics tests, relativistic geodesy and time and frequency metrology. Even though most optical clocks are currently laboratory setups, several proposals for using these clocks for field measurements or within an optical clock network have been published, and most of time and frequency metrology institutes have started to develop transportable optical clocks. For the purpose of this special issue, we chose to focus on trapped-<span class="hlt">ion</span> optical clocks. Even though their short-term fractional frequency stability is impaired by a lower signal-to-noise ratio, they offer a high potential for compactness: trapped <span class="hlt">ions</span> demand low optical powers and simple loading schemes, and can be trapped in small vacuum chambers. We review recent advances on the clock key components, including <span class="hlt">ion</span> trap and ultra-stable optical cavity, as well as existing projects and experiments which draw the picture of what future transportable, single-<span class="hlt">ion</span> optical clocks may resemble.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1425948','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1425948"><span>Chemical freeze-out in relativistic heavy-<span class="hlt">ion</span> <span class="hlt">collisions</span></span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Xu, Jun; Ko, Che Ming</p> <p>2017-06-26</p> <p>One surprising result in relativistic heavy-<span class="hlt">ion</span> <span class="hlt">collisions</span> is that the abundance of various particles measured in experiments is consistent with the picture that they reach chemical equilibrium at a temperature much higher than the temperature they freeze out kinetically. Using a multiphase transport model to study particle production in these <span class="hlt">collisions</span>, we find, as an example, that the effective pion to nucleon ratio, which includes those from resonance decays, indeed changes very little during the evolution of the hadronic matter from the chemical to the kinetic freeze-out, and it is also accompanied by an almost constant specific entropy. Finally, wemore » further use a hadron resonance gas model to illustrate the results from the transport model study.« less</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li class="active"><span>20</span></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_20 --> <div id="page_21" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li class="active"><span>21</span></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="401"> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/871175','DOE-PATENT-XML'); return false;" href="https://www.osti.gov/servlets/purl/871175"><span>Solenoid and monocusp <span class="hlt">ion</span> source</span></a></p> <p><a target="_blank" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p>Brainard, John Paul; Burns, Erskine John Thomas; Draper, Charles Hadley</p> <p>1997-01-01</p> <p>An <span class="hlt">ion</span> source which generates hydrogen <span class="hlt">ions</span> having high <span class="hlt">atomic</span> purity incorporates a solenoidal permanent magnets to increase the electron path length. In a sealed envelope, electrons emitted from a cathode traverse the magnetic field lines of a solenoid and a monocusp magnet between the cathode and a reflector at the monocusp. As electrons collide with gas, the molecular gas forms a plasma. An anode grazes the outer boundary of the plasma. Molecular <span class="hlt">ions</span> and high energy electrons remain substantially on the cathode side of the cusp, but as the <span class="hlt">ions</span> and electrons are scattered to the aperture side of the cusp, additional <span class="hlt">collisions</span> create <span class="hlt">atomic</span> <span class="hlt">ions</span>. The increased electron path length allows for smaller diameters and lower operating pressures.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/biblio/541756','DOE-PATENT-XML'); return false;" href="https://www.osti.gov/biblio/541756"><span>Solenoid and monocusp <span class="hlt">ion</span> source</span></a></p> <p><a target="_blank" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p>Brainard, J.P.; Burns, E.J.T.; Draper, C.H.</p> <p>1997-10-07</p> <p>An <span class="hlt">ion</span> source which generates hydrogen <span class="hlt">ions</span> having high <span class="hlt">atomic</span> purity incorporates a solenoidal permanent magnets to increase the electron path length. In a sealed envelope, electrons emitted from a cathode traverse the magnetic field lines of a solenoid and a monocusp magnet between the cathode and a reflector at the monocusp. As electrons collide with gas, the molecular gas forms a plasma. An anode grazes the outer boundary of the plasma. Molecular <span class="hlt">ions</span> and high energy electrons remain substantially on the cathode side of the cusp, but as the <span class="hlt">ions</span> and electrons are scattered to the aperture side of the cusp, additional <span class="hlt">collisions</span> create <span class="hlt">atomic</span> <span class="hlt">ions</span>. The increased electron path length allows for smaller diameters and lower operating pressures. 6 figs.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/866762','DOE-PATENT-XML'); return false;" href="https://www.osti.gov/servlets/purl/866762"><span>Detector and energy analyzer for <span class="hlt">energetic</span>-hydrogen in beams and plasmas</span></a></p> <p><a target="_blank" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p>Bastasz, Robert J.; Hughes, Robert C.; Wampler, William R.</p> <p>1988-01-01</p> <p>A detector for detecting <span class="hlt">energetic</span> hydrogen <span class="hlt">ions</span> and <span class="hlt">atoms</span> ranging in energy from about 1 eV up to 1 keV in an evacuated environment includes a Schottky diode with a palladium or palladium-alloy gate metal applied to a silicondioxide layer on an n-silicon substrate. An array of the <span class="hlt">energetic</span>-hydrogen detectors having a range of energy sensitivities form a plasma energy analyzer having a rapid response time and a sensitivity for measuring fluxes of <span class="hlt">energetic</span> hydrogen. The detector is sensitive to hydrogen and its isotopes but is insensitive to non-hydrogenic particles. The array of <span class="hlt">energetic</span>-hydrogen detectors can be formed on a single silicon chip, with thin-film layers of gold metal applied in various thicknesses to successive detectors in the array. The gold layers serve as particle energy-filters so that each detector is sensitive to a different range of hydrogen energies.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/biblio/7068106','DOE-PATENT-XML'); return false;" href="https://www.osti.gov/biblio/7068106"><span>Detector and energy analyzer for <span class="hlt">energetic</span>-hydrogen in beams and plasmas</span></a></p> <p><a target="_blank" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p>Bastasz, R.J.; Hughes, R.C.; Wampler, W.R.</p> <p>1988-11-01</p> <p>A detector for detecting <span class="hlt">energetic</span> hydrogen <span class="hlt">ions</span> and <span class="hlt">atoms</span> ranging in energy from about 1 eV up to 1 keV in an evacuated environment includes a Schottky diode with a palladium or palladium-alloy gate metal applied to a silicon-dioxide layer on an n-silicon substrate. An array of the <span class="hlt">energetic</span>-hydrogen detectors having a range of energy sensitivities form a plasma energy analyzer having a rapid response time and a sensitivity for measuring fluxes of <span class="hlt">energetic</span> hydrogen. The detector is sensitive to hydrogen and its isotopes but is insensitive to non-hydrogenic particles. The array of <span class="hlt">energetic</span>-hydrogen detectors can be formed on a single silicon chip, with thin-film layers of gold metal applied in various thicknesses to successive detectors in the array. The gold layers serve as particle energy-filters so that each detector is sensitive to a different range of hydrogen energies. 4 figs.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009JPhCS.194.1001O','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009JPhCS.194.1001O"><span>PREFACE: XXVIth International Conference on Photonic, Electronic and <span class="hlt">Atomic</span> <span class="hlt">Collisions</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Orel, Ann; Starace, Anthony F.; Nikolić, Dragan; Berrah, Nora; Gorczyca, Thomas W.; Kamber, Emanuel Y.; Tanis, John A.</p> <p>2009-12-01</p> <p>The XXVIth International Conference on Photonic, Electronic and <span class="hlt">Atomic</span> <span class="hlt">Collisions</span> was held on the campus of Western Michigan University (WMU) in Kalamazoo during 22-28 July 2009. Kalamazoo, the home of a major state university amid pleasant surroundings, was a delightful place for the conference. The 473 scientific participants, 111 of whom were students, had many fruitful discussions and exchanges that contributed to the success of the conference. Participants from 43 countries made the conference truly international in scope. The 590 abstracts that were presented on the first four days formed the heart of the conference and provided ample opportunity for discussion. This change, allowing the conference to end with invited talks, was a departure from the format used at previous ICPEAC gatherings in which the conferences ended with a poster session. The abstracts were split almost equally between the three main conference areas, i.e., photonic, electronic, and <span class="hlt">atomic</span> <span class="hlt">collisions</span>, and the posters were distributed across the days of the conference so that approximately equal numbers of abstracts in the different areas were scheduled for each day. Of the total number of presented abstracts, 517 of these are included in this proceedings volume, the first time that abstracts have been published by ICPEAC. There were 5 plenary lectures covering the different areas of the conference: Paul Corkum (University of Ottawa) talked on attosecond physics with <span class="hlt">atoms</span> and molecules, Serge Haroche (Collège de France) on non-destructive photon counting, Toshiyuki Azuma (Tokyo Metropolitan University) on resonant coherent excitation of highly-charged <span class="hlt">ions</span> in crystals, Eva Lindroth (Stockholm University) on <span class="hlt">atomic</span> structure effects, and Alfred Müller (Justus Liebig University) on resonance phenomena in electron- and photon-<span class="hlt">ion</span> <span class="hlt">collisions</span>. Two speakers gave very illuminating public lectures that drew many people from the local area, as well as conference participants: Patricia Dehmer</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010APS..APRY14008P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010APS..APRY14008P"><span>Modeling of Momentum Correlations in Heavy <span class="hlt">Ion</span> <span class="hlt">Collisions</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Pruneau, Claude; Sharma, Monika</p> <p>2010-02-01</p> <p>Measurements of transverse momentum (pt) correlations and fluctuations in heavy <span class="hlt">ion</span> <span class="hlt">collisions</span> (HIC) are of interest because they provide information on the <span class="hlt">collision</span> dynamics not readily available from number correlations. For instance, pt fluctuations are expected to diverge for a system near its tri-critical point [1]. Integral momentum correlations may also be used to estimate the shear viscosity of the quark gluon plasma produced in HIC [2]. Integral correlations measured over large fractions of the particle phase space average out several dynamical contributions and as such may be difficult to interpret. It is thus of interest to seek extensions of integral correlation variables that may provide more detailed information about the <span class="hlt">collision</span> dynamics. We introduce a variety of differential momentum correlations and discuss their basic properties in the light of simple toy models. We also present theoretical predictions based on the PYTHIA, HIJING, AMPT, and EPOS models. Finally, we discuss the interplay of various dynamical effects that may play a role in the determination of the shear viscosity based on the broadening of momentum correlations measured as function of <span class="hlt">collision</span> centrality. [1] L. Stodolsky, Phys. Rev. Lett. 75 (1995) 1044. [2] S. Gavin and M. A. Aziz, Phys. Rev. Lett. 97 (2006) 162302. )</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016APS..GECQR2006R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016APS..GECQR2006R"><span><span class="hlt">Atomic</span> Precision Plasma Processing - Modeling Investigations</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Rauf, Shahid</p> <p>2016-09-01</p> <p>Sub-nanometer precision is increasingly being required of many critical plasma processes in the semiconductor industry. Some of these critical processes include <span class="hlt">atomic</span> layer etch and plasma enhanced <span class="hlt">atomic</span> layer deposition. Accurate control over <span class="hlt">ion</span> energy and <span class="hlt">ion</span> / radical composition is needed during plasma processing to meet the demanding <span class="hlt">atomic</span>-precision requirements. While improvements in mainstream inductively and capacitively coupled plasmas can help achieve some of these goals, newer plasma technologies can expand the breadth of problems addressable by plasma processing. Computational modeling is used to examine issues relevant to <span class="hlt">atomic</span> precision plasma processing in this paper. First, a molecular dynamics model is used to investigate <span class="hlt">atomic</span> layer etch of Si and SiO2 in Cl2 and fluorocarbon plasmas. Both planar surfaces and nanoscale structures are considered. It is shown that accurate control of <span class="hlt">ion</span> energy in the sub-50 eV range is necessary for <span class="hlt">atomic</span> scale precision. In particular, if the <span class="hlt">ion</span> energy is greater than 10 eV during plasma processing, several <span class="hlt">atomic</span> layers get damaged near the surface. Low electron temperature (Te) plasmas are particularly attractive for <span class="hlt">atomic</span> precision plasma processing due to their low plasma potential. One of the most attractive options in this regard is <span class="hlt">energetic</span>-electron beam generated plasma, where Te <0.5 eV has been achieved in plasmas of molecular gases. These low Te plasmas are computationally examined in this paper using a hybrid fluid-kinetic model. It is shown that such plasmas not only allow for sub-5 eV <span class="hlt">ion</span> energies, but also enable wider range of <span class="hlt">ion</span> / radical composition. Coauthors: Jun-Chieh Wang, Jason Kenney, Ankur Agarwal, Leonid Dorf, and Ken Collins.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/biblio/21191964-superhorizon-fluctuations-acoustic-oscillations-relativistic-heavy-ion-collisions','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/21191964-superhorizon-fluctuations-acoustic-oscillations-relativistic-heavy-ion-collisions"><span>Superhorizon fluctuations and acoustic oscillations in relativistic heavy-<span class="hlt">ion</span> <span class="hlt">collisions</span></span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Mishra, Ananta P.; Mohapatra, Ranjita K.; Saumia, P. S.</p> <p>2008-06-15</p> <p>We focus on the initial-state spatial anisotropies, originating at the thermalization stage, for central <span class="hlt">collisions</span> in relativistic heavy-<span class="hlt">ion</span> <span class="hlt">collisions</span>. We propose that a plot of the root-mean-square values of the flow coefficients {radical}(v{sub n}{sup 2}){identical_to}v{sub n}{sup rms}, calculated in a laboratory fixed coordinate system, for a large range of n from 1 to about 30, can give nontrivial information about the initial stages of the system and its evolution. We also argue that for all wavelengths {lambda} of the anisotropy (at the surface of the plasma region) much larger than the acoustic horizon size H{sub s}{sup fr} at the freeze-outmore » stage, the resulting values of v{sub n}{sup rms} should be suppressed by a factor of order 2H{sub s}{sup fr}/{lambda}. For noncentral <span class="hlt">collisions</span>, these arguments naturally imply a certain amount of suppression of the elliptic flow. Further, by assuming that initial flow velocities are negligible at thermalization stage, we discuss the possibility that the resulting flow could show imprints of coherent oscillations in the plot of v{sub n}{sup rms} for subhorizon modes. For gold-gold <span class="hlt">collision</span> at 200 GeV/nucleon center-of-mass energy, these features are expected to occur for n{>=}5, with n<4 modes showing suppression due to being superhorizon. This has strong similarities with the physics of the anisotropies of the cosmic microwave background radiation (CMBR) resulting from inflationary density fluctuations in the universe (despite important differences such as the absence of gravity effects for the heavy-<span class="hlt">ion</span> case). It seems possible that the statistical fluctuations due to finite multiplicity may not be able to mask such features in the flow data or at least a nontrivial overall shape of the plot of v{sub n}{sup rms} may be inferred. In that case, the successes of analysis of CMBR anisotropy power spectrum to get cosmological parameters can be applied for relativistic heavy-<span class="hlt">ion</span> <span class="hlt">collisions</span> to learn about various</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/biblio/993657-effect-basic-residue-energetics-dynamics-mechanisms-gas-phase-fragmentation-protonated-peptides','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/993657-effect-basic-residue-energetics-dynamics-mechanisms-gas-phase-fragmentation-protonated-peptides"><span>Effect of the Basic Residue on the <span class="hlt">Energetics</span>, Dynamics and Mechanisms of Gas- Phase Fragmentation of Protonated Peptides</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Laskin, Julia; Yang, Zhibo; Song, Tao</p> <p>2010-11-17</p> <p>The effect of the basic residue on the <span class="hlt">energetics</span>, dynamics and mechanisms of backbone fragmentation of protonated peptides was investigated. Time- and <span class="hlt">collision</span> energy-resolved surface-induced dissociation (SID) of singly protonated peptides with the N-terminal arginine residue and their analogs, in which arginine is replaced with less basic lysine and histidine residues was examined using in a specially configured Fourier transform <span class="hlt">ion</span> cyclotron resonance mass spectrometer (FT-ICR MS). SID experiments demonstrated very different kinetics of formation of several primary product <span class="hlt">ions</span> of peptides with and without arginine residue. The <span class="hlt">energetics</span> and dynamics of these pathways were determined from the RRKM modelingmore » of the experimental data. Comparison between the kinetics and <span class="hlt">energetics</span> of fragmentation of arginine-containing peptides and the corresponding methyl ester derivatives provides important information on the effect of dissociation pathways involving salt bridge (SB) intermediates on the observed fragmentation behavior. It is found that because pathways involving SB intermediates are characterized by low threshold energies, they efficiently compete with classical oxazolone pathways of arginine-containing peptides on a long timescale of the FT-ICR instrument. In contrast, fragmentation of histidine- and lysine-containing peptides is largely determined by classical oxazolone pathways. Because SB pathways are characterized by negative activation entropies, fragmentation of arginine-containing peptides is kinetically hindered and observed at higher <span class="hlt">collision</span> energies as compared to their lysine- and histidine-containing analogs.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19890019791','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19890019791"><span>An optical model description of momentum transfer in heavy <span class="hlt">ion</span> <span class="hlt">collisions</span></span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Khan, F.; Khandelwal, G. S.; Townsend, Lawrence W.; Wilson, J. W.; Norbury, John W.</p> <p>1989-01-01</p> <p>An optical model description of momentum transfer in relativistic heavy <span class="hlt">ion</span> <span class="hlt">collisions</span>, based upon composite particle multiple scattering theory, is presented. The imaginary component of the complex momentum transfer, which comes from the absorptive part of the optical potential, is identified as the longitudinal momentum downshift of the projectile. Predictions of fragment momentum distribution observables are made and compared with experimental data. Use of the model as a tool for estimating <span class="hlt">collision</span> impact parameters is discussed.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017PhRvC..96b4906S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017PhRvC..96b4906S"><span>Λ hyperon polarization in relativistic heavy <span class="hlt">ion</span> <span class="hlt">collisions</span> from a chiral kinetic approach</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sun, Yifeng; Ko, Che Ming</p> <p>2017-08-01</p> <p>Using a chiral kinetic approach based on initial conditions from a multiphase transport model, we study the spin polarizations of quarks and antiquarks in noncentral heavy <span class="hlt">ion</span> <span class="hlt">collisions</span> at the BNL Relativistic Heavy <span class="hlt">Ion</span> Collider. Because of the nonvanishing vorticity field in these <span class="hlt">collisions</span>, quarks and antiquarks are found to acquire appreciable spin polarizations in the direction perpendicular to the reaction plane. Converting quarks and antiquarks to hadrons via the coalescence model, we further calculate the spin polarizations of Λ and anti-Λ hyperons and find their values comparable to those measured in experiments by the STAR Collaboration.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009APS..DMP.E1023S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009APS..DMP.E1023S"><span>Quantum mechanical models for the Fermi shuttle</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sternberg, James; Ovchinnikov, S. Yu.; Macek, J. H.</p> <p>2009-05-01</p> <p>Although the Fermi shuttle was originally proposed as an explanation for highly <span class="hlt">energetic</span> cosmic rays, it is also a mechanism for the production of high energy electrons in <span class="hlt">atomic</span> <span class="hlt">collisions</span> [1]. The Fermi shuttle is usually thought of as a classical effect and most models of this process rely on classical or semi-classical approximations. In this work we explore several quantum mechanical models for <span class="hlt">ion-atom</span> <span class="hlt">collisions</span> and examine the evidence for the Fermi shuttle in these models. [4pt] [1] B. Sulik, Cs. Koncz, K. Tok'esi, A. Orb'an, and D. Ber'enyi, Phys Rev. Lett. 88 073201 (2002)</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19790023201','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19790023201"><span>Survey of <span class="hlt">ion</span> plating sources. [conferences</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Spalvins, T.</p> <p>1979-01-01</p> <p>Based on the type of evaporation source, gaseous media and mode of transport, the following is discussed: resistance, electron beam, sputtering, reactive and <span class="hlt">ion</span> beam evaporation. Ionization efficiencies and <span class="hlt">ion</span> energies in the glow discharge determine the percentage of <span class="hlt">atoms</span> which are ionized under typical <span class="hlt">ion</span> plating conditions. The plating flux consists of a small number of <span class="hlt">energetic</span> <span class="hlt">ions</span> and a large number of <span class="hlt">energetic</span> neutrals. The energy distribution ranges from thermal energies up to a maximum energy of the discharge. The various reaction mechanisms which contribute to the exceptionally strong adherence - formation of a graded sustrate/coating interface are not fully understood, however the controlling factors are evaluated. The influence of process variables on the nucleation and growth characteristics are illustrated in terms of morphological changes which affect the mechanical and tribological properties of the coating.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018PPCF...60c5002G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018PPCF...60c5002G"><span>Effect of <span class="hlt">ion</span>-neutral <span class="hlt">collisions</span> on the evolution of kinetic Alfvén waves in plasmas</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Goyal, R.; Sharma, R. P.</p> <p>2018-03-01</p> <p>This paper studies the effect of <span class="hlt">ion</span>-neutral <span class="hlt">collisions</span> on the propagation of kinetic Alfvén waves (KAWs) in inhomogeneous magnetized plasma. The inhomogeneity in the plasma imposed by background density in a direction transverse as well as parallel to the ambient magnetic field plays a vital role in the localization process. The mass loading of <span class="hlt">ions</span> takes place due to their <span class="hlt">collisions</span> with neutral fluid leading to the damping of the KAWs. Numerical analysis of linear KAWs in inhomogeneous magnetized plasma is done for a fixed finite frequency taking into consideration the <span class="hlt">ion</span>-neutral <span class="hlt">collisions</span>. There is a prominent effect of collisional damping on the wave localization, wave magnetic field, and frequency spectrum. A semi-analytical technique has been employed to study the magnetic field amplitude decay process and the effect of wave frequency in the range of <span class="hlt">ion</span> cyclotron frequency on the propagation of waves leading to damping.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2006P%26SS...54..144M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2006P%26SS...54..144M"><span>Neutral <span class="hlt">atom</span> imaging at Mercury</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Mura, A.; Orsini, S.; Milillo, A.; Di Lellis, A. M.; De Angelis, E.</p> <p>2006-02-01</p> <p>The feasibility of neutral <span class="hlt">atom</span> detection and imaging in the Hermean environment is discussed in this study. In particular, we consider those <span class="hlt">energetic</span> neutral <span class="hlt">atoms</span> (ENA) whose emission is directly related to solar wind entrance into Mercury's magnetosphere. In fact, this environment is characterised by a weak magnetic field; thus, cusp regions are extremely large if compared to the Earth's ones, and intense proton fluxes are expected there. Our study includes a model of H + distribution in space, energy and pitch angle, simulated by means of a single-particle, Monte-Carlo simulation. Among processes that could generate neutral <span class="hlt">atom</span> emission, we focus our attention on charge-exchange and <span class="hlt">ion</span> sputtering, which, in principle, are able to produce directional ENA fluxes. Simulated neutral <span class="hlt">atom</span> images are investigated in the frame of the neutral particle analyser-<span class="hlt">ion</span> spectrometer (NPA-IS) SERENA experiment, proposed to fly on board the ESA mission BepiColombo/MPO. The ELENA (emitted low-energy neutral <span class="hlt">atoms</span>) unit, which is part of this experiment, will be able to detect such fluxes; instrumental details and predicted count rates are given.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20150008013&hterms=atomic&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Datomic','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20150008013&hterms=atomic&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Datomic"><span>Next Generation JPL Ultra-Stable Trapped <span class="hlt">Ion</span> <span class="hlt">Atomic</span> Clocks</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Burt, Eric; Tucker, Blake; Larsen, Kameron; Hamell, Robert; Tjoelker, Robert</p> <p>2013-01-01</p> <p>Over the past decade, trapped <span class="hlt">ion</span> <span class="hlt">atomic</span> clock development at the Jet Propulsion Laboratory (JPL) has focused on two directions: 1) new <span class="hlt">atomic</span> clock technology for space flight applications that require strict adherence to size, weight, and power requirements, and 2) ultra-stable <span class="hlt">atomic</span> clocks, usually for terrestrial applications emphasizing ultimate performance. In this paper we present a new ultra-stable trapped <span class="hlt">ion</span> clock designed, built, and tested in the second category. The first new standard, L10, will be delivered to the Naval Research Laboratory for use in characterizing DoD space clocks.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1990GMS....58..385S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1990GMS....58..385S"><span><span class="hlt">Energetic</span> <span class="hlt">ion</span> and cosmic ray characteristics of a magnetic cloud</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sanderson, T. R.; Beeck, J.; Marsden, R. G.; Tranquille, C.; Wenzel, K.-P.; McKibben, R. B.; Smith, E. J.</p> <p></p> <p>The large interplanetary shock event of February 11, 1982, has yielded ISEE-3 <span class="hlt">energetic</span> <span class="hlt">ion</span> and magnetic field data as well as ground-based neutron-monitor cosmic-ray data. The timing and the onset of the Forbush decrease associated with this shock event coincide with the arrival at the earth of its magnetic cloud component; the duration of the decrease, similarly, corresponds to that of the cloud's passage past the earth. The large scattering mean free path readings suggest that while magnetic cloud <span class="hlt">ions</span> can easily travel along magnetic field lines, they cannot travel across them, so that they cannot escape the cloud after entering it. Similarly, the cloud field lines prevented cosmic ray entrance, and could have prevented their reaching the earth. The cloud is therefore a major basis for the Forbush decrease.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMSA43B2654F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMSA43B2654F"><span>Molecular <span class="hlt">Ions</span> in <span class="hlt">Ion</span> Upflows and their Effects on Hot <span class="hlt">Atomic</span> Oxygen Production</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Foss, V.; Yau, A. W.; Shizgal, B.</p> <p>2017-12-01</p> <p>We present new direct <span class="hlt">ion</span> composition observations of molecular <span class="hlt">ions</span> in auroral <span class="hlt">ion</span> upflows from the CASSIOPE Enhanced Polar Outflow Probe (e-POP). These observed molecular <span class="hlt">ions</span> are N2+, NO+, and possibly O2+, and are found to occur at all e-POP altitudes starting at about 400 km, during auroral substorms and the different phases of magnetic storms, sometimes with upflow velocities exceeding a few hundred meters per second and abundances of 5-10%. The dissociative recombination of both O2+ and NO+ was previously proposed as an important source of hot oxygen <span class="hlt">atoms</span> in the topside thermosphere [Hickey et al., 1995]. We investigate the possible effect of the observed molecular <span class="hlt">ions</span> on the production of hot oxygen <span class="hlt">atoms</span> in the storm and substorm-time auroral thermosphere. We present numerical solutions of the Boltzmann equation for the steady-state oxygen energy distribution function, taking into account both the production of the hot <span class="hlt">atoms</span> and their subsequent collisional relaxation. Our result suggests the formation of a hot oxygen population with a characteristic temperature on the order of 0.3 eV and constituting 1-5% of the oxygen density near the exobase. We discuss the implication of this result in the context of magnetosphere-ionosphere-thermosphere coupling.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMSH31C2743D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMSH31C2743D"><span>Kappa distributions in Saturn's magnetosphere: <span class="hlt">energetic</span> <span class="hlt">ion</span> moments using Cassini/MIMI measurements</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Dialynas, K.; Roussos, E.; Regoli, L.; Paranicas, C.; Krimigis, S. M.; Kane, M.; Mitchell, D. G.; Hamilton, D. C.</p> <p>2017-12-01</p> <p>Moments of the charged particle distribution function are a compact way of characterizing some of the properties of different magnetospheric regions. Following our previous analyses (Dialynas et al. 2009) and the techniques described in Dialynas et al. (2017), in the present study we use κ-Distribution fits to combine CHEMS (3 to 236 keV/e), LEMMS (0.024 < E < 18 MeV), and INCA (5.2 to >220 keV) H+ and O+ <span class="hlt">energetic</span> <span class="hlt">ion</span> spectra covering measurements made in 2004-2016 to calculate the >20 keV <span class="hlt">energetic</span> <span class="hlt">ion</span> moments inside Saturn's magnetosphere. We use the Khurana et al. [2007] magnetic field model to map the <span class="hlt">ion</span> measurements to the equatorial plane and produce the equatorial distributions of all <span class="hlt">ion</span> integral moments, focusing on partial density (n), integral intensity (In), partial pressure (P), integral energy intensity (IE); as well as the characteristic energy (Ec=Ie/In), Temperature and κ-index of these <span class="hlt">ions</span> as a function of Local Time (00:00 to 24:00 hrs) and L-Shell (5-20 Rs). The Roelof and Skinner [2000] model is then utilized to retrieve the equatorial H+ and O+ P, n and T in both local time and L-shell. We find that a) although the PH+ and PO+ are nearly comparable, H+ have higher IE and In at all radial distances (L>5) and local times; b) the 12Η+, ΓΟ+), are consistent with the Arridge et al. [2009] results. Dialynas K. et al. 2009, JGR, 114, A01212 Dialynas K. et al. 2017, Elsevier, ISBN: 9780128046388 Khurana K. K. et al. 2007, AGU, abstract #P44A-01 Roelof E. & A. Skinner 2000, SSR, 91, 437-459 Arridge C. S. et al. 2009, PSS, 57, 2032-2047</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EPJD...70...91W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EPJD...70...91W"><span><span class="hlt">Ion</span> formation upon electron <span class="hlt">collisions</span> with valine embedded in helium nanodroplets</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Weinberger, Nikolaus; Ralser, Stefan; Renzler, Michael; Harnisch, Martina; Kaiser, Alexander; Denifl, Stefan; Böhme, Diethard K.; Scheier, Paul</p> <p>2016-04-01</p> <p>We report here experimental results for the electron ionization of large superfluid helium nanodroplets with sizes of about 105 <span class="hlt">atoms</span> that are doped with valine and clusters of valine. Spectra of both cations and anions were monitored with high-resolution time-of-flight mass spectrometry (mass resolution >4000). Clear series of peaks with valine cluster sizes up to at least 40 and spaced by the mass of a valine molecule are visible in both the cation and anion spectra. <span class="hlt">Ion</span> efficiency curves are presented for selected cations and anions at electron energies up to about 40 eV and these provide insight into the mode of <span class="hlt">ion</span> formation. The measured onset of 24.59 eV for cations is indicative of valine ionization by He+ whereas broad resonances at 2, 10 and 22 eV (and beyond) in the formation of anions speak to the occurrence of various modes of dissociative electron attachment by <span class="hlt">collisions</span> with electrons or He*- and the influence of droplet size on the relative importance of these processes. Comparisons are also made with gas phase results and these provide insight into a matrix effect within the superfluid helium nanodroplet. Contribution to the Topical Issue "Advances in Positron and Electron Scattering", edited by Paulo Limao-Vieira, Gustavo Garcia, E. Krishnakumar, James Sullivan, Hajime Tanuma and Zoran Petrovic.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li class="active"><span>21</span></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_21 --> <div id="page_22" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li class="active"><span>22</span></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="421"> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012PhDT........55E','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012PhDT........55E"><span>Radiative double electron capture in <span class="hlt">collisions</span> of fully-stripped fluorine <span class="hlt">ions</span> with thin carbon foils</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Elkafrawy, Tamer Mohammad Samy</p> <p></p> <p>Radiative double electron capture (RDEC) is a one-step process in <span class="hlt">ion-atom</span> <span class="hlt">collisions</span> occurring when two target electrons are captured to a bound state of the projectile simultaneously with the emission of a single photon. The emitted photon has approximately double the energy of the photon emitted due to radiative electron capture (REC), which occurs when a target electron is captured to a projectile bound state with simultaneous emission of a photon. REC and RDEC can be treated as time-reversed photoionization (PI) and double photoionization (DPI), respectively, if loosely-bound target electrons are captured. This concept can be formulated with the principle of detailed balance, in which the processes of our interest can be described in terms of their time-reversed ones. Fully-stripped <span class="hlt">ions</span> were used as projectiles in the performed RDEC experiments, providing a recipient system free of electron-related Coulomb fields. This allows the target electrons to be transferred without interaction with any of the projectile electrons, enabling accurate investigation of the electron-electron interaction in the vicinity of electromagnetic field. In this dissertation, RDEC was investigated during the <span class="hlt">collision</span> of fully-stripped fluorine <span class="hlt">ions</span> with a thin carbon foil and the results are compared with the recent experimental and theoretical studies. In the current work, x rays associated with projectile charge-changing by single and double electron capture and no charge change by F9+ <span class="hlt">ions</span> were observed and compared with recent work for O8+ <span class="hlt">ions</span> and with theory. Both the F 9+ and O8+ <span class="hlt">ions</span> had energies in the ˜MeV/u range. REC, in turn, was investigated as a means to compare with the theoretical predictions of the RDEC/REC cross section ratio. The most significant background processes including various mechanisms of x-ray emission that may interfere with the energy region of interest are addressed in detail. This enables isolation of the contributions of REC and RDEC from the</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018MNRAS.477..802D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018MNRAS.477..802D"><span>Collisional excitation of ArH+ by hydrogen <span class="hlt">atoms</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Dagdigian, Paul J.</p> <p>2018-06-01</p> <p>The rotational excitation of the 36ArH+ <span class="hlt">ion</span> in <span class="hlt">collisions</span> with hydrogen <span class="hlt">atoms</span> is investigated in this work. The potential energy surface (PES) describing the 36ArH+-H interaction, with the <span class="hlt">ion</span> bond length r fixed at the average of r over the radial v = 0 vibrational state distribution, was obtained with a coupled cluster method that included single, double, and (perturbatively) triple excitations [RCCSD(T)]. A deep minimum (De = 3135 cm-1) in the PES was found in linear H-ArH+ geometry at an <span class="hlt">ion-atom</span> separation Re = 4.80a0. Energy-dependent cross-sections and rate coefficients as a function of temperature for this <span class="hlt">collision</span> pair were computed in close-coupling (CC) calculations. Since the PES possesses a deep well, this is a good system to test the performance of the quantum statistical (QS) method developed by Manolopoulos and co-workers as a more efficient method to compute the cross-sections. Good agreement was found between rate coefficients obtained by the CC and QS methods at several temperatures. In a simple application, the excitation of ArH+ is simulated for conditions under which this <span class="hlt">ion</span> is observed in absorption.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/765102','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/765102"><span>[12th International workshop on Inelastic <span class="hlt">Ion</span>-Surface <span class="hlt">Collisions</span></span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Rabalais, J.W.; Nordlander, P.</p> <p>1999-10-15</p> <p>The twelfth international workshop on inelastic <span class="hlt">ion</span> surface <span class="hlt">collisions</span> was held at the Bahia Mar Resort and Conference Center on South Padre Island, Texas (USA) from January 24-29, 1999. The workshop brought together most of the leading researchers from around the world to focus on both the theoretical and experimental aspects of particle - surface interactions and related topics.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/biblio/21502500-identity-method-study-chemical-fluctuations-relativistic-heavy-ion-collisions','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/21502500-identity-method-study-chemical-fluctuations-relativistic-heavy-ion-collisions"><span>Identity method to study chemical fluctuations in relativistic heavy-<span class="hlt">ion</span> <span class="hlt">collisions</span></span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Gazdzicki, Marek; Grebieszkow, Katarzyna; Mackowiak, Maja</p> <p></p> <p>Event-by-event fluctuations of the chemical composition of the hadronic final state of relativistic heavy-<span class="hlt">ion</span> <span class="hlt">collisions</span> carry valuable information on the properties of strongly interacting matter produced in the <span class="hlt">collisions</span>. However, in experiments incomplete particle identification distorts the observed fluctuation signals. The effect is quantitatively studied and a new technique for measuring chemical fluctuations, the identity method, is proposed. The method fully eliminates the effect of incomplete particle identification. The application of the identity method to experimental data is explained.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JPhB...51h5202T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JPhB...51h5202T"><span>Low energy <span class="hlt">collisions</span> of spin-polarized metastable argon <span class="hlt">atoms</span> with ground state argon <span class="hlt">atoms</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Taillandier-Loize, T.; Perales, F.; Baudon, J.; Hamamda, M.; Bocvarski, V.; Ducloy, M.; Correia, F.; Fabre, N.; Dutier, G.</p> <p>2018-04-01</p> <p>The <span class="hlt">collision</span> between a spin-polarized metastable argon <span class="hlt">atom</span> in Ar* (3p54s, 3P2, M = +2) state slightly decelerated by the Zeeman slower-laser technique and a co-propagating thermal ground state argon <span class="hlt">atom</span> Ar (3p6, 1S0), both merged from the same supersonic beam, but coming through adjacent slots of a rotating disk, is investigated at the center of mass energies ranging from 1 to 10 meV. The duration of the laser pulse synchronised with the disk allows the tuning of the relative velocity and thus the <span class="hlt">collision</span> energy. At these sub-thermal energies, the ‘resonant metastability transfer’ signal is too small to be evidenced. The explored energy range requires using indiscernibility amplitudes for identical isotopes to have a correct interpretation of the experimental results. Nevertheless, excitation transfers are expected to increase significantly at much lower energies as suggested by previous theoretical predictions of potentials 2g(3P2) and 2u(3P2). Limits at ultra-low collisional energies of the order of 1 mK (0.086 μeV) or less, where gigantic elastic cross sections are expected, will also be discussed. The experimental method is versatile and could be applied using different isotopes of Argon like 36Ar combined with 40Ar, as well as other rare gases among which Krypton should be of great interest thanks to the available numerous isotopes present in a natural gas mixture.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018ApJ...852....7C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018ApJ...852....7C"><span>Charge Exchange X-Ray Emission due to Highly Charged <span class="hlt">Ion</span> <span class="hlt">Collisions</span> with H, He, and H2: Line Ratios for Heliospheric and Interstellar Applications</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Cumbee, R. S.; Mullen, P. D.; Lyons, D.; Shelton, R. L.; Fogle, M.; Schultz, D. R.; Stancil, P. C.</p> <p>2018-01-01</p> <p>The fundamental collisional process of charge exchange (CX) has been established as a primary source of X-ray emission from the heliosphere, planetary exospheres, and supernova remnants. In this process, X-ray emission results from the capture of an electron by a highly charged <span class="hlt">ion</span> from a neutral <span class="hlt">atom</span> or molecule, to form a highly excited, high-charge state <span class="hlt">ion</span>. As the captured electron cascades down to the lowest energy level, photons are emitted, including X-rays. To provide reliable CX-induced X-ray spectral models to realistically simulate these environments, line ratios and spectra are computed using theoretical CX cross sections obtained with the multi-channel Landau-Zener, <span class="hlt">atomic</span>-orbital close-coupling, molecular-orbital close-coupling, and classical trajectory Monte Carlo methods for various collisional velocities relevant to astrophysics. X-ray spectra were computed for <span class="hlt">collisions</span> of bare and H-like C to Al <span class="hlt">ions</span> with H, He, and H2 with results compared to available experimental data. Using these line ratios, XSPEC models of CX emission in the northeast rim of the Cygnus Loop supernova remnant and the heliosphere are shown as examples with <span class="hlt">ion</span> velocity dependence.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/biblio/5590863-theory-stopping-power-fast-multicharged-ions','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/5590863-theory-stopping-power-fast-multicharged-ions"><span>Theory of the stopping power of fast multicharged <span class="hlt">ions</span></span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Yudin, G.L.</p> <p>1991-12-01</p> <p>The processes of Coulomb excitation and ionization of <span class="hlt">atoms</span> by a fast charged particle moving along a classical trajectory are studied. The target electrons are described by the Dirac equation, while the field of the incident particle is described by the Lienard-Wiechert potential. The theory is formulated in the form most convenient for investigation of various characteristics of semiclassical <span class="hlt">atomic</span> <span class="hlt">collisions</span>. The theory of sudden perturbations, which is valid at high enough velocities for a high projectile charge, is employed to obtain probabilities and cross sections of the Coulomb excitation and ionization of <span class="hlt">atomic</span> hydrogen by fast multiply charged <span class="hlt">ions</span>.more » Based on the semiclassical sudden Born approximation, the ionization cross section and the average electronic energy loss of a fast <span class="hlt">ion</span> in a single <span class="hlt">collision</span> with an <span class="hlt">atom</span> are investigated over a wide specific energy range from 500 keV/amu to 50 MeV/amu.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19910065185&hterms=ev&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Dev','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19910065185&hterms=ev&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Dev"><span>Experimental investigations of low-energy (4-40 eV) <span class="hlt">collisions</span> of O-(2P) <span class="hlt">ions</span> and O(3P) <span class="hlt">atoms</span> with surfaces</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Orient, O. J.; Chutjian, A.; Murad, E.</p> <p>1990-01-01</p> <p>Using a newly-developed, magnetically confined source, low-energy, ground state oxygen negative <span class="hlt">ions</span> and neutral <span class="hlt">atoms</span> are generated. The energy range is variable, and <span class="hlt">atom</span> and neutrals have been generated at energies varying from 2 eV to 40 eV and higher. It was found that the interaction of these low-energy species with a solid magnesium fluoride target leads to optical emissions in the (at least) visible and infrared regions of the spectrum. Researchers describe y details of the photodetachment source, and present spectra of the neutral and <span class="hlt">ion</span> glows in the wavelength range 250 to 850 nm (for O/-/) and 600 to 850 nm (for O), and discuss the variability of the emissions for incident energies between 4 and 40 eV.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMSA43B2660A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMSA43B2660A"><span>Kinetic modeling of auroral <span class="hlt">ion</span> outflows observed by the VISIONS sounding rocket</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Albarran, R. M.; Zettergren, M. D.</p> <p>2017-12-01</p> <p>The VISIONS (VISualizing <span class="hlt">Ion</span> Outflow via Neutral <span class="hlt">atom</span> imaging during a Substorm) sounding rocket was launched on Feb. 7, 2013 at 8:21 UTC from Poker Flat, Alaska, into an auroral substorm with the objective of identifying the drivers and dynamics of the <span class="hlt">ion</span> outflow below 1000km. <span class="hlt">Energetic</span> <span class="hlt">ion</span> data from the VISIONS polar cap boundary crossing show evidence of an <span class="hlt">ion</span> "pressure cooker" effect whereby <span class="hlt">ions</span> energized via transverse heating in the topside ionosphere travel upward and are impeded by a parallel potential structure at higher altitudes. VISIONS was also instrumented with an <span class="hlt">energetic</span> neutral <span class="hlt">atom</span> (ENA) detector which measured neutral particles ( 50-100 eV energy) presumably produced by charge-exchange with the energized outflowing <span class="hlt">ions</span>. Hence, inferences about <span class="hlt">ion</span> outflow may be made via remotely-sensing measurements of ENAs. This investigation focuses on modeling <span class="hlt">energetic</span> outflowing <span class="hlt">ion</span> distributions observed by VISIONS using a kinetic model. This kinetic model traces large numbers of individual particles, using a guiding-center approximation, in order to allow calculation of <span class="hlt">ion</span> distribution functions and moments. For the present study we include mirror and parallel electric field forces, and a source of <span class="hlt">ion</span> cyclotron resonance (ICR) wave heating, thought to be central to the transverse energization of <span class="hlt">ions</span>. The model is initiated with a steady-state <span class="hlt">ion</span> density altitude profile and Maxwellian velocity distribution characterizing the initial phase-space conditions for multiple particle trajectories. This project serves to advance our understanding of the drivers and particle dynamics in the auroral ionosphere and to improve data analysis methods for future sounding rocket and satellite missions.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFMSM33C2519A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFMSM33C2519A"><span>Kinetic modeling of auroral <span class="hlt">ion</span> Outflows observed by the VISIONS sounding rocket</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Albarran, R. M.; Zettergren, M. D.; Rowland, D. E.; Klenzing, J.; Clemmons, J. H.</p> <p>2016-12-01</p> <p>The VISIONS (VISualizing <span class="hlt">Ion</span> Outflow via Neutral <span class="hlt">atom</span> imaging during a Substorm) sounding rocket was launched on Feb. 7, 2013 at 8:21 UTC from Poker Flat, Alaska, into an auroral substorm with the objective of identifying the drivers and dynamics of the <span class="hlt">ion</span> outflow below 1000km. <span class="hlt">Energetic</span> <span class="hlt">ion</span> data from the VISIONS polar cap boundary crossing show evidence of an <span class="hlt">ion</span> "pressure cooker" effect whereby <span class="hlt">ions</span> energized via transverse heating in the topside ionosphere travel upward and are impeded by a parallel potential structure at higher altitudes. VISIONS was also instrumented with an <span class="hlt">energetic</span> neutral <span class="hlt">atom</span> (ENA) detector which measured neutral particles ( 50-100 eV energy) presumably produced by charge-exchange with the energized outflowing <span class="hlt">ions</span>. Hence, inferences about <span class="hlt">ion</span> outflow may be made via remotely-sensing measurements of ENAs. This investigation focuses on modeling <span class="hlt">energetic</span> outflowing <span class="hlt">ion</span> distributions observed by VISIONS using a kinetic model. This kinetic model traces large numbers of individual particles, using a guiding-center approximation, in order to allow calculation of <span class="hlt">ion</span> distribution functions and moments. For the present study we include mirror and parallel electric field forces, and a source of <span class="hlt">ion</span> cyclotron resonance (ICR) wave heating, thought to be central to the transverse energization of <span class="hlt">ions</span>. The model is initiated with a steady-state <span class="hlt">ion</span> density altitude profile and Maxwellian velocity distribution characterizing the initial phase-space conditions for multiple particle trajectories. This project serves to advance our understanding of the drivers and particle dynamics in the auroral ionosphere and to improve data analysis methods for future sounding rocket and satellite missions.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2002mudy.conf..145S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2002mudy.conf..145S"><span>Systematics of Charged Particle Production in Heavy-<span class="hlt">Ion</span> <span class="hlt">Collisions</span> with the PHOBOS Detector at Rhic</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Steinberg, Peter A.; Back, B. B.; Baker, M. D.; Barton, D. S.; Betts, R. R.; Bindel, R.; Budzanowski, A.; Busza, W.; Carroll, A.; Corbo, J.; Decowski, M. P.; Garcia, E.; George, N.; Gulbrandsen, K.; Gushue, S.; Halliwell, C.; Hamblen, J.; Henderson, C.; Hicks, D.; Hofman, D.; Hollis, R. S.; Hołyński, R.; Holzman, B.; Iordanova, A.; Johnson, E.; Kane, J.; Katzy, J.; Khan, N.; Kucewicz, W.; Kulinich, P.; Kuo, C. M.; Lin, W. T.; Manly, S.; McLeod, D.; Michałowski, J.; Mignerey, A.; Mülmenstädt, J.; Nouicer, R.; Olszewski, A.; Pak, R.; Park, I. C.; Pernegger, H.; Rafelski, M.; Rbeiz, M.; Reed, C.; Remsberg, L. P.; Reuter, M.; Roland, C.; Roland, G.; Rosenberg, L.; Sagerer, J.; Sarin, P.; Sawicki, P.; Skulski, W.; Steadman, S. G.; Steinberg, P.; Stephans, G. S. F.; Stodulski, M.; Sukhanov, A.; Tang, J.-L.; Teng, R.; Trzupek, A.; Vale, C.; van Nieuwenhuizen, G. J.; Verdier, R.; Wadsworth, B.; Wolfs, F. L. H.; Wosiek, B.; Woźniak, K.; Wuosmaa, A. H.; Wysłouch, B.</p> <p>2002-03-01</p> <p>The multiplicity of charged particles produced in Au+Au <span class="hlt">collisions</span> as a function of energy, centrality, rapidity and azimuthal angle has been measured with the PHOBOS detector at RHIC. These results contribute to our understanding of the initial state of heavy <span class="hlt">ion</span> <span class="hlt">collisions</span> and provide a means to compare basic features of particle production in nuclear <span class="hlt">collisions</span> with more elementary systems.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018ChPhC..42d2001Y','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018ChPhC..42d2001Y"><span>A flow paradigm in heavy-<span class="hlt">ion</span> <span class="hlt">collisions</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Yan, Li</p> <p>2018-04-01</p> <p>The success of hydrodynamics in high energy heavy-<span class="hlt">ion</span> <span class="hlt">collisions</span> leads to a flow paradigm, to understand the observed features of harmonic flow in terms of the medium collective expansion with respect to initial state geometrical properties. In this review, we present some essential ingredients in the flow paradigm, including the hydrodynamic modeling, the characterization of initial state geometry and the medium response relations. The extension of the flow paradigm to small colliding systems is also discussed. Supported by Natural Sciences and Engineering Research Council of Canada</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19900009647','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19900009647"><span>Inelastic <span class="hlt">collisions</span> of positrons with one-valence-electron targets</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Abdel-Raouf, Mohamed Assad</p> <p>1990-01-01</p> <p>The total elastic and positronium formation cross sections of the inelastic <span class="hlt">collisions</span> between positrons and various one-valence-electron <span class="hlt">atoms</span>, (namely hydrogen, lithium, sodium, potassium and rubidium), and one-valence-electron <span class="hlt">ions</span>, (namely hydrogen-like, lithium-like and alkaline-earth positive <span class="hlt">ions</span>) are determined using an elaborate modified coupled-static approximation. Special attention is devoted to the behavior of the Ps cross sections at the energy regions lying above the Ps formation thresholds.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1326821','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1326821"><span>Collaborative Research: A Model of Partially Ionized Plasma Flows with Kinetic Treatment of Neutral <span class="hlt">Atoms</span> and Nonthermal <span class="hlt">Ions</span></span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Pogorelov, Nikolai; Zhang, Ming; Borovikov, Sergey</p> <p></p> <p>Interactions of flows of partially ionized, magnetized plasma are frequently accompanied by the presence of both thermal and non-thermal (pickup) <span class="hlt">ion</span> components. Such interactions cannot be modeled using traditional MHD equations and require more advanced approaches to treat them. If a nonthermal component of <span class="hlt">ions</span> is formed due to charge exchange and <span class="hlt">collisions</span> between the thermal (core) <span class="hlt">ions</span> and neutrals, it experiences the action of magnetic field, its distribution function is isotropized, and it soon acquires the velocity of the ambient plasma without being thermodynamically equilibrated. This situation, e. g., takes place in the outer heliosphere - the part ofmore » interstellar space beyond the solar system whose properties are determined by the solar wind interaction with the local interstellar medium. This is also possible in laboratory, at million degrees and above, when plasma is conducting electricity far too well, which makes Ohmic heating ineffective. To attain the target temperatures one needs additional heating eventually playing a dominant role. Among such sources is a so-called neutral particle beam heating. This is a wide-spread technique (Joint European Torus and International Thermonuclear Experimental Reactor experiments) based on the injection of powerful beams of neutral <span class="hlt">atoms</span> into ohmically preheated plasma. In this project we have investigated the energy and density separation between the thermal and nonthermal components in the solar wind and interstellar plasmas. A new model has been developed in which we solve the ideal MHD equations for mixture of all <span class="hlt">ions</span> and the kinetic Boltzmann equation to describe the transport of neutral <span class="hlt">atoms</span>. As a separate capability, we can treat the flow of neutral <span class="hlt">atoms</span> in a multi-component fashion, where neutral <span class="hlt">atoms</span> born in each thermodynamically distinct regions are governed by the Euler gas dynamic equations. We also describe the behavior of pickup <span class="hlt">ions</span> either kinetically, using the Fokker</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1326403','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1326403"><span>Collaborative Research: A Model of Partially Ionized Plasma Flows with Kinetic Treatment of Neutral <span class="hlt">Atoms</span> and Nonthermal <span class="hlt">Ions</span></span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Pogorelov, Nikolai; Zhang, Ming</p> <p></p> <p>Interactions of flows of partially ionized, magnetized plasma are frequently accompanied by the presence of both thermal and non-thermal (pickup) <span class="hlt">ion</span> components. Such interactions cannot be modeled using traditional MHD equations and require more advanced approaches to treat them. If a nonthermal component of <span class="hlt">ions</span> is formed due to charge exchange and <span class="hlt">collisions</span> between the thermal (core) <span class="hlt">ions</span> and neutrals, it experiences the action of magnetic field, its distribution function is isotropized, and it soon acquires the velocity of the ambient plasma without being thermodynamically equilibrated. This situation, e. g., takes place in the outer heliosphere –- the part ofmore » interstellar space beyond the solar system whose properties are determined by the solar wind interaction with the local interstellar medium. This is also possible in laboratory, at million degrees and above, when plasma is conducting electricity far too well, which makes Ohmic heating ineffective. To attain the target temperatures one needs additional heating eventually playing a dominant role. Among such sources is a so-called neutral particle beam heating. This is a wide-spread technique (Joint European Torus and International Thermonuclear Experimental Reactor experiments) based on the injection of powerful beams of neutral <span class="hlt">atoms</span> into ohmically preheated plasma. In this project we have investigated the energy and density separation between the thermal and nonthermal components in the solar wind and interstellar plasmas. A new model has been developed in which we solve the ideal MHD equations for mixture of all <span class="hlt">ions</span> and the kinetic Boltzmann equation to describe the transport of neutral <span class="hlt">atoms</span>. As a separate capability, we can treat the flow of neutral <span class="hlt">atoms</span> in a multi-component fashion, where neutral <span class="hlt">atoms</span> born in each thermodynamically distinct region are governed by the Euler gas dynamic equations. We also describe the behavior of pickup <span class="hlt">ions</span> either kinetically, using the Fokker</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/biblio/21410603-trails-kilovolt-ions-created-subsurface-channeling','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/21410603-trails-kilovolt-ions-created-subsurface-channeling"><span>Trails of Kilovolt <span class="hlt">Ions</span> Created by Subsurface Channeling</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Redinger, Alex; Standop, Sebastian; Michely, Thomas</p> <p>2010-02-19</p> <p>Using scanning tunneling microscopy, we observe the damage trails produced by keV noble-gas <span class="hlt">ions</span> incident at glancing angles onto Pt(111). Surface vacancies and adatoms aligned along the <span class="hlt">ion</span> trajectory constitute the <span class="hlt">ion</span> trails. Atomistic simulations reveal that these straight trails are produced by nuclear (elastic) <span class="hlt">collisions</span> with surface layer <span class="hlt">atoms</span> during subsurface channeling of the projectiles. In a small energy window around 5 keV, Xe{sup +} <span class="hlt">ions</span> create vacancy grooves that mark the <span class="hlt">ion</span> trajectory with <span class="hlt">atomic</span> precision. The asymmetry of the adatom production on the two sides of the projectile path is traced back to the asymmetry of themore » <span class="hlt">ion</span>'s subsurface channel.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFMSM43C..01K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFMSM43C..01K"><span>Effects of <span class="hlt">Energetic</span> <span class="hlt">Ion</span> Outflow on Magnetospheric Dynamics</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kistler, L. M.; Mouikis, C.; Lund, E. J.; Menz, A.; Nowrouzi, N.</p> <p>2016-12-01</p> <p>There are two dominant regions of <span class="hlt">energetic</span> <span class="hlt">ion</span> outflow: the nightside auroral region and the dayside cusp. Processes in these regions can accelerate <span class="hlt">ions</span> up to keV energies. Outflow from the nightside has direct access to the plasma sheet, while outflow from the cusp is convected over the polar cap and into the lobes. The cusp population can enter the plasma sheet from the lobe, with higher energy <span class="hlt">ions</span> entering further down the tail than lower energy <span class="hlt">ions</span>. During storm times, the O+ enhanced plasma sheet population is convected into the inner magnetosphere. The plasma that does not get trapped in the inner magnetosphere convects to the magnetopause where reconnection is taking place. An enhanced O+ population can change the plasma mass density, which may have the effect of decreasing the reconnection rate. In addition O+ has a larger gyroradius than H+ at the same velocity or energy. Because of this, there are larger regions where the O+ is demagnetized, which can lead to larger acceleration because the O+ can move farther in the direction of the electric field. In this talk we will review results from Cluster, Van Allen Probes, and MMS, on how outflow from the two locations affects magnetospheric dynamics. We will discuss whether enhanced O+ from either population has an effect on the reconnection rate in the tail or at the magnetopause. We will discuss how the two populations impact the inner magnetosphere during storm times. And finally, we will discuss whether either population plays a role in triggering substorms, particularly during sawtooth events.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015ApJ...812...73B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015ApJ...812...73B"><span>Isotropic Inelastic <span class="hlt">Collisions</span> in a Multiterm <span class="hlt">Atom</span> with Hyperfine Structure</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Belluzzi, Luca; Landi Degl'Innocenti, Egidio; Trujillo Bueno, Javier</p> <p>2015-10-01</p> <p>A correct modeling of the scattering polarization profiles observed in some spectral lines of diagnostic interest, the sodium doublet being one of the most important examples, requires taking hyperfine structure (HFS) and quantum interference between different J-levels into account. An <span class="hlt">atomic</span> model suitable for taking these physical ingredients into account is the so-called multiterm <span class="hlt">atom</span> with HFS. In this work, we introduce and study the transfer and relaxation rates due to isotropic inelastic <span class="hlt">collisions</span> with electrons, which enter the statistical equilibrium equations (SEE) for the <span class="hlt">atomic</span> density matrix of this <span class="hlt">atomic</span> model. Under the hypothesis that the electron-<span class="hlt">atom</span> interaction is described by a dipolar operator, we provide useful relations between the rates describing the transfer and relaxation of quantum interference between different levels (whose numerical values are in most cases unknown) and the usual rates for the <span class="hlt">atomic</span> level populations, for which experimental data and/or approximate theoretical expressions are generally available. For the particular case of a two-term <span class="hlt">atom</span> with HFS, we present an analytical solution of the SEE for the spherical statistical tensors of the upper term, including both radiative and collisional processes, and we derive the expression of the emission coefficient in the four Stokes parameters. Finally, an illustrative application to the Na i D1 and D2 lines is presented.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/biblio/22525273-isotropic-inelastic-collisions-multiterm-atom-hyperfine-structure','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22525273-isotropic-inelastic-collisions-multiterm-atom-hyperfine-structure"><span>ISOTROPIC INELASTIC <span class="hlt">COLLISIONS</span> IN A MULTITERM <span class="hlt">ATOM</span> WITH HYPERFINE STRUCTURE</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Belluzzi, Luca; Landi Degl’Innocenti, Egidio; Bueno, Javier Trujillo</p> <p>2015-10-10</p> <p>A correct modeling of the scattering polarization profiles observed in some spectral lines of diagnostic interest, the sodium doublet being one of the most important examples, requires taking hyperfine structure (HFS) and quantum interference between different J-levels into account. An <span class="hlt">atomic</span> model suitable for taking these physical ingredients into account is the so-called multiterm <span class="hlt">atom</span> with HFS. In this work, we introduce and study the transfer and relaxation rates due to isotropic inelastic <span class="hlt">collisions</span> with electrons, which enter the statistical equilibrium equations (SEE) for the <span class="hlt">atomic</span> density matrix of this <span class="hlt">atomic</span> model. Under the hypothesis that the electron–<span class="hlt">atom</span> interaction ismore » described by a dipolar operator, we provide useful relations between the rates describing the transfer and relaxation of quantum interference between different levels (whose numerical values are in most cases unknown) and the usual rates for the <span class="hlt">atomic</span> level populations, for which experimental data and/or approximate theoretical expressions are generally available. For the particular case of a two-term <span class="hlt">atom</span> with HFS, we present an analytical solution of the SEE for the spherical statistical tensors of the upper term, including both radiative and collisional processes, and we derive the expression of the emission coefficient in the four Stokes parameters. Finally, an illustrative application to the Na i D{sub 1} and D{sub 2} lines is presented.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27387789','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27387789"><span>Probing <span class="hlt">Ion</span> Transfer across Liquid-Liquid Interfaces by Monitoring <span class="hlt">Collisions</span> of Single Femtoliter Oil Droplets on Ultramicroelectrodes.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Deng, Haiqiang; Dick, Jeffrey E; Kummer, Sina; Kragl, Udo; Strauss, Steven H; Bard, Allen J</p> <p>2016-08-02</p> <p>We describe a method of observing <span class="hlt">collisions</span> of single femtoliter (fL) oil (i.e., toluene) droplets that are dispersed in water on an ultramicroelectrode (UME) to probe the <span class="hlt">ion</span> transfer across the oil/water interface. The oil-in-water emulsion was stabilized by an ionic liquid, in which the oil droplet trapped a highly hydrophobic redox probe, rubrene. The ionic liquid also functions as the supporting electrolyte in toluene. When the potential of the UME was biased such that rubrene oxidation would be possible when a droplet collided with the electrode, no current spikes were observed. This implies that the rubrene radical cation is not hydrophilic enough to transfer into the aqueous phase. We show that current spikes are observed when tetrabutylammonium trifluoromethanesulfonate or tetrahexylammonium hexafluorophosphate are introduced into the toluene phase and when tetrabutylammonium perchlorate is introduced into the water phase, implying that the <span class="hlt">ion</span> transfer facilitates electron transfer in the droplet <span class="hlt">collisions</span>. The current (i)-time (t) behavior was evaluated quantitatively, which indicated the <span class="hlt">ion</span> transfer is fast and reversible. Furthermore, the size of these emulsion droplets can also be calculated from the electrochemical <span class="hlt">collision</span>. We further investigated the potential dependence on the electrochemical <span class="hlt">collision</span> response in the presence of tetrabutylammonium trifluoromethanesulfonate in toluene to obtain the formal <span class="hlt">ion</span> transfer potential of tetrabutylammonium across the toluene/water interface, which was determined to be 0.754 V in the inner potential scale. The results yield new physical insights into the charge balance mechanism in emulsion droplet <span class="hlt">collisions</span> and indicate that the electrochemical <span class="hlt">collision</span> technique can be used to probe formal <span class="hlt">ion</span> transfer potentials between water and solvents with very low (ε < 5) dielectric constants.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li class="active"><span>22</span></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_22 --> <div id="page_23" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li class="active"><span>23</span></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="441"> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/867096','DOE-PATENT-XML'); return false;" href="https://www.osti.gov/servlets/purl/867096"><span>Photo <span class="hlt">ion</span> spectrometer</span></a></p> <p><a target="_blank" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p>Gruen, Dieter M.; Young, Charles E.; Pellin, Michael J.</p> <p>1989-01-01</p> <p>A method and apparatus for extracting for quantitative analysis <span class="hlt">ions</span> of selected <span class="hlt">atomic</span> components of a sample. A lens system is configured to provide a slowly diminishing field region for a volume containing the selected <span class="hlt">atomic</span> components, enabling accurate energy analysis of <span class="hlt">ions</span> generated in the slowly diminishing field region. The lens system also enables focusing on a sample of a charged particle beam, such as an <span class="hlt">ion</span> beam, along a path length perpendicular to the sample and extraction of the charged particles along a path length also perpendicular to the sample. Improvement of signal to noise ratio is achieved by laser excitation of <span class="hlt">ions</span> to selected autoionization states before carrying out quantitative analysis. Accurate energy analysis of <span class="hlt">energetic</span> charged particles is assured by using a preselected resistive thick film configuration disposed on an insulator substrate for generating predetermined electric field boundary conditions to achieve for analysis the required electric field potential. The spectrometer also is applicable in the fields of SIMS, ISS and electron spectroscopy.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012EPJA...48..152S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012EPJA...48..152S"><span>Nuclear quantum many-body dynamics. From collective vibrations to heavy-<span class="hlt">ion</span> <span class="hlt">collisions</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Simenel, Cédric</p> <p>2012-11-01</p> <p>A summary of recent researches on nuclear dynamics with realistic microscopic quantum approaches is presented. The Balian-Vénéroni variational principle is used to derive the time-dependent Hartree-Fock (TDHF) equation describing the dynamics at the mean-field level, as well as an extension including small-amplitude quantum fluctuations which is equivalent to the time-dependent random-phase approximation (TDRPA). Such formalisms as well as their practical implementation in the nuclear physics framework with modern three-dimensional codes are discussed. Recent applications to nuclear dynamics, from collective vibrations to heavy-<span class="hlt">ion</span> <span class="hlt">collisions</span> are presented. Particular attention is devoted to the interplay between collective motions and internal degrees of freedom. For instance, the harmonic nature of collective vibrations is questioned. Nuclei are also known to exhibit superfluidity due to pairing residual interaction. Extensions of the theoretical approach to study such pairing vibrations are now available. Large amplitude collective motions are investigated in the framework of heavy-<span class="hlt">ion</span> <span class="hlt">collisions</span> leading, for instance, to the formation of a compound system. How fusion is affected by the internal structure of the <span class="hlt">collision</span> partners, such as their deformation, is discussed. Other mechanisms in competition with fusion, and responsible for the formation of fragments which differ from the entrance channel (transfer reactions, deep-inelastic <span class="hlt">collisions</span>, and quasi-fission) are investigated. Finally, studies of actinide <span class="hlt">collisions</span> forming, during very short times of few zeptoseconds, the heaviest nuclear systems available on Earth, are presented.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018PhRvC..97d4606L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018PhRvC..97d4606L"><span>Impact parameter smearing effects on isospin sensitive observables in heavy <span class="hlt">ion</span> <span class="hlt">collisions</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Li, Li; Zhang, Yingxun; Li, Zhuxia; Wang, Nan; Cui, Ying; Winkelbauer, Jack</p> <p>2018-04-01</p> <p>The validity of impact parameter estimation from the multiplicity of charged particles at low-intermediate energies is checked within the framework of the improved quantum molecular dynamics model. The simulations show that the multiplicity of charged particles cannot estimate the impact parameter of heavy <span class="hlt">ion</span> <span class="hlt">collisions</span> very well, especially for central <span class="hlt">collisions</span> at the beam energies lower than ˜70 MeV/u due to the large fluctuations of the multiplicity of charged particles. The simulation results for the central <span class="hlt">collisions</span> defined by the charged particle multiplicity are compared to those by using impact parameter b =2 fm and it shows that the charge distribution for 112Sn+112Sn at the beam energy of 50 MeV/u is different evidently for two cases; and the chosen isospin sensitive observable, the coalescence invariant single neutron to proton yield ratio, reduces less than 15% for neutron-rich systems Sn,132124+124Sn at Ebeam=50 MeV/u, while the coalescence invariant double neutron to proton yield ratio does not have obvious difference. The sensitivity of the chosen isospin sensitive observables to effective mass splitting is studied for central <span class="hlt">collisions</span> defined by the multiplicity of charged particles. Our results show that the sensitivity is enhanced for 132Sn+124Sn relative to that for 124Sn+124Sn , and this reaction system should be measured in future experiments to study the effective mass splitting by heavy <span class="hlt">ion</span> <span class="hlt">collisions</span>.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1213383-photon-dilepton-production-high-energy-heavy-ion-collisions','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1213383-photon-dilepton-production-high-energy-heavy-ion-collisions"><span>Photon and dilepton production in high energy heavy <span class="hlt">ion</span> <span class="hlt">collisions</span></span></a></p> <p><a target="_blank" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Sakaguchi, Takao</p> <p>2015-05-07</p> <p>The recent results on direct photons and dileptons in high energy heavy <span class="hlt">ion</span> <span class="hlt">collisions</span>, obtained particularly at RHIC and LHC are reviewed. The results are new not only in terms of the probes, but also in terms of the precision. We shall discuss the physics learned from the results.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19810050980&hterms=attention+span&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3Dattention%2Bspan','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19810050980&hterms=attention+span&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3Dattention%2Bspan"><span>Winter nighttime <span class="hlt">ion</span> temperatures and <span class="hlt">energetic</span> electrons from OGO 6 plasma measurements</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Sanatani, S.; Breig, E. L.</p> <p>1981-01-01</p> <p>In the reported investigation, <span class="hlt">ion</span> temperature and suprathermal electron flux data were acquired with the retarding potential analyzer on board the OGO 6 satellite when it was in solar eclipse. Attention is given to measurements in the 400- to 800-km height interval between midnight and predawn in the northern winter nonpolar ionosphere. Statistical analysis of data recorded during a 1 month time span permits a decoupling of horizontal and altitude effects. A distinct longitudinal variation is observed for <span class="hlt">ion</span> temperature above 500 km, with a significant relative enhancement over the western North Atlantic. Altitude distributions of <span class="hlt">ion</span> temperature are compatible with Millstone Hill profiles within the common region of this enhancement. Large fluxes of <span class="hlt">energetic</span> electrons are observed and extend to much lower geomagnetic latitudes in the same longitude sector.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1029250','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1029250"><span>Ekpyrosis and inflationary dynamics in heavy <span class="hlt">ion</span> <span class="hlt">collisions</span>: the role of quantum fluctuations</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Dusling, K.; Venugopalan, R.; Gelis, F.</p> <p></p> <p>We summarize recent significant progress in the development of a first-principles formalism to describe the formation and evolution of matter in very high energy heavy <span class="hlt">ion</span> <span class="hlt">collisions</span>. The key role of quantum fluctuations both before and after a <span class="hlt">collision</span> is emphasized. Systematic computations are now feasible to address early time isotropization, flow, parton energy loss and the Chiral Magnetic Effect.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1413929-probing-qcd-critical-fluctuations-from-light-nuclei-production-relativistic-heavy-ion-collisions','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1413929-probing-qcd-critical-fluctuations-from-light-nuclei-production-relativistic-heavy-ion-collisions"><span>Probing QCD critical fluctuations from light nuclei production in relativistic heavy-<span class="hlt">ion</span> <span class="hlt">collisions</span></span></a></p> <p><a target="_blank" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Sun, Kai-Jia; Chen, Lie-Wen; Ko, Che Ming; ...</p> <p>2017-09-22</p> <p>Based on the coalescence model for light nuclei production, we show that the yield ratio O p-d-t = N3HNp/Nmore » $$2\\atop{d}$$ of p, d, and 3H in heavy-<span class="hlt">ion</span> <span class="hlt">collisions</span> is sensitive to the neutron relative density fluctuation Δn = $$\\langle$$(δn) 2 $$\\rangle$$/ $$\\langle$$n$$\\rangle$$ at kinetic freeze-out. From recent experimental data in central Pb + Pb <span class="hlt">collisions</span> at $$\\sqrt{s}$$$_ {NN}$$ =6.3 GeV, 7.6 GeV, 8.8 GeV, 12.3 GeV and 17.3 GeV measured by the NA49 Collaboration at the CERN Super Proton Synchrotron (SPS), we find a possible non-monotonic behavior of Δn as a function of the <span class="hlt">collision</span> energy with a peak at $$\\sqrt{s}$$$_ {NN}$$ 8.8 GeV, indicating that the density fluctuations become the largest in <span class="hlt">collisions</span> at this energy. With the known chemical freeze-out conditions determined from the statistical model fit to experimental data, we obtain a chemical freeze-out temperature of ~ 144 MeV and baryon chemical potential of ~385 MeV at this <span class="hlt">collision</span> energy, which are close to the critical endpoint in the QCD phase diagram predicted by various theoretical studies. Our results thus suggest the potential usefulness of the yield ratio of light nuclei in relativistic heavy-<span class="hlt">ion</span> <span class="hlt">collisions</span> as a direct probe of the large density fluctuations associated with the QCD critical phenomena.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1413929','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1413929"><span>Probing QCD critical fluctuations from light nuclei production in relativistic heavy-<span class="hlt">ion</span> <span class="hlt">collisions</span></span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Sun, Kai-Jia; Chen, Lie-Wen; Ko, Che Ming</p> <p></p> <p>Based on the coalescence model for light nuclei production, we show that the yield ratio O p-d-t = N3HNp/Nmore » $$2\\atop{d}$$ of p, d, and 3H in heavy-<span class="hlt">ion</span> <span class="hlt">collisions</span> is sensitive to the neutron relative density fluctuation Δn = $$\\langle$$(δn) 2 $$\\rangle$$/ $$\\langle$$n$$\\rangle$$ at kinetic freeze-out. From recent experimental data in central Pb + Pb <span class="hlt">collisions</span> at $$\\sqrt{s}$$$_ {NN}$$ =6.3 GeV, 7.6 GeV, 8.8 GeV, 12.3 GeV and 17.3 GeV measured by the NA49 Collaboration at the CERN Super Proton Synchrotron (SPS), we find a possible non-monotonic behavior of Δn as a function of the <span class="hlt">collision</span> energy with a peak at $$\\sqrt{s}$$$_ {NN}$$ 8.8 GeV, indicating that the density fluctuations become the largest in <span class="hlt">collisions</span> at this energy. With the known chemical freeze-out conditions determined from the statistical model fit to experimental data, we obtain a chemical freeze-out temperature of ~ 144 MeV and baryon chemical potential of ~385 MeV at this <span class="hlt">collision</span> energy, which are close to the critical endpoint in the QCD phase diagram predicted by various theoretical studies. Our results thus suggest the potential usefulness of the yield ratio of light nuclei in relativistic heavy-<span class="hlt">ion</span> <span class="hlt">collisions</span> as a direct probe of the large density fluctuations associated with the QCD critical phenomena.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011NuPhA.853..135Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011NuPhA.853..135Z"><span>P and CP violation and new thermalization scenario in heavy <span class="hlt">ion</span> <span class="hlt">collisions</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zhitnitsky, Ariel R.</p> <p>2011-03-01</p> <p>The violation of local P and CP invariance in QCD has been a subject of intense discussions for the last couple of years as a result of very interesting ongoing results coming from RHIC. Separately, a new thermalization scenario for heavy <span class="hlt">ion</span> <span class="hlt">collisions</span> through the event horizon as a manifestation of the Unruh effect, has been also suggested. In this paper we argue that these two, naively unrelated phenomena, are actually two sides of the same coin as they are deeply rooted into the same fundamental physics related to some very nontrivial topological features of QCD. We formulate the universality conjecture for P and CP odd effects in heavy <span class="hlt">ion</span> <span class="hlt">collisions</span> analogous to the universal thermal behaviour observed in all other high energy interactions.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JPhCS1014a2009N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JPhCS1014a2009N"><span>Mass and angular distributions of the reaction products in heavy <span class="hlt">ion</span> <span class="hlt">collisions</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Nasirov, A. K.; Giardina, G.; Mandaglio, G.; Kayumov, B. M.; Tashkhodjaev, R. B.</p> <p>2018-05-01</p> <p>The optimal reactions and beam energies leading to synthesize superheavy elements is searched by studying mass and angular distributions of fission-like products in heavy-<span class="hlt">ion</span> <span class="hlt">collisions</span> since the evaporation residue cross section consists an ignorable small part of the fusion cross section. The intensity of the yield of fission-like products allows us to estimate the probability of the complete fusion of the interacting nuclei. The overlap of the mass and angular distributions of the fusion-fission and quasifission products causes difficulty at estimation of the correct value of the probability of the compound nucleus formation. A study of the mass and angular distributions of the reaction products is suitable key to understand the interaction mechanism of heavy <span class="hlt">ion</span> <span class="hlt">collisions</span>.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/biblio/22080486-kinetics-color-center-formation-silica-irradiated-swift-heavy-ions-thresholding-formation-efficiency','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22080486-kinetics-color-center-formation-silica-irradiated-swift-heavy-ions-thresholding-formation-efficiency"><span>Kinetics of color center formation in silica irradiated with swift heavy <span class="hlt">ions</span>: Thresholding and formation efficiency</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Manzano-Santamaria, J.; Euratom/CIEMAT Fusion Association, Madrid; Olivares, J.</p> <p>2012-10-08</p> <p>We have determined the cross-section {sigma} for color center generation under single Br <span class="hlt">ion</span> impacts on amorphous SiO{sub 2}. The evolution of the cross-sections, {sigma}(E) and {sigma}(S{sub e}), show an initial flat stage that we associate to <span class="hlt">atomic</span> <span class="hlt">collision</span> mechanisms. Above a certain threshold value (S{sub e} > 2 keV/nm), roughly coinciding with that reported for the onset of macroscopic disorder (compaction), {sigma} shows a marked increase due to electronic processes. In this regime, a <span class="hlt">energetic</span> cost of around 7.5 keV is necessary to create a non bridging oxygen hole center-E Prime (NBOHC/E Prime ) pair, whatever the input energy.more » The data appear consistent with a non-radiative decay of self-trapped excitons.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2006POBeo..80..207S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2006POBeo..80..207S"><span>Test measurement on <span class="hlt">ion</span>-molecule reactions in a ringelectrode <span class="hlt">ion</span> trap</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Savic, I.; Lukic, S. R.; Guth, I.; Gerlich, D.</p> <p>2006-05-01</p> <p>Very recently a new experimental setup has been developed allowing studies of astrophysically relevant <span class="hlt">collisions</span> between neutral <span class="hlt">atoms</span> and small pure carbon molecules from one side and <span class="hlt">ions</span> from the other side and first results are obtained (Savić et al., 2005). The <span class="hlt">ions</span> are stored in a radio- frequency (rf) ring-electrode trap and during reaction time exposed to the effusive carbon beam. In this paper, one of the final tests of the experimental setup is presented.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010POBeo..89..340K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010POBeo..89..340K"><span>Influence Of Inelastic Ridberg <span class="hlt">Atom-Atom</span> Collisional Process On Kinetic And Optical Properties Of Low-Temperature Laboratory And Astrophysical Plasmas</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Klyucharev, A. N.; Bezuglov, N. N.; Mihajlov, A. A.; Ignjatovic, Lj. M.</p> <p>2010-07-01</p> <p>Elementary processes in plasma phenomena traditionally attract physicist`s attention. The channel of charged-particle formation in Rydberg <span class="hlt">Atom-Atom</span> thermal and subthermal <span class="hlt">collisions</span> (the low temperature plasmas conditions) leads to creation of the molecular <span class="hlt">ions</span> - associative ionization (AI), <span class="hlt">atomic</span> <span class="hlt">ions</span> - penning-like ionization (PI) and the pair of the negative and positive <span class="hlt">ions</span>. In our universe the chemical composition of the primordial gas consists mainly of Hydrogen and Helium (H, H- , H+, H2, He, He+ ), Hydrogen-like alkali-metal Litium (Li, Li+, Li-) and combinations (HeH+ , LiH- , LiH+). There is a wide range of plasma parameters in which the Rydberg <span class="hlt">Atoms</span> of the elements called above make the dominant construction to ionization and that process may be regarded as a prototype of the elementary process of light excitation energy transformation into electric one. The first series of quantitative measurements of the rate constants for Rydberg <span class="hlt">Atoms</span> starts in 1978 (Devdariani, Klyucharev et al.). The method of AI and PI calculations, so-called "dipole resonant" mechanism proposed in 1971 (Smirnov, Mihaylov) was used in semiclassical (Mihailov and Janev 1981) and quantum mechanical theories (Duman, Shmatov, 1980). The latest stochastic version of chemi-ionisation (AI+PI) on Rydberg <span class="hlt">Atom</span> - <span class="hlt">Atom</span> <span class="hlt">collisions</span> extends the treatment of the "dipole resonant" model by taking into account redistribution of population over a range of Rydberg states prior to ionization. This redistribution is modeled as diffusion in the frame of stochastic dynamic of the Rydberg electron in the Rydberg energy spectrum (Bezuglov, Borodin, Klyucharev et al. 1997). Such approach makes it possible to operate on efficiently of inelastic collisional processes and sometimes to operate on time of Rydberg <span class="hlt">Atoms</span> life. This may lead to anomalies of Rydberg <span class="hlt">Atoms</span> spectra. Another result obtained in recent time is understanding that experimental results on chemi-ionization relate to the group of mixed</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1999JGR...104.2367B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1999JGR...104.2367B"><span><span class="hlt">Energetic</span> neutral <span class="hlt">atom</span> imaging at low altitudes from the Swedish microsatellite Astrid: Images and spectral analysis</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Brandt, Pontus C.:son; Barabash, Stas; Norberg, Olle; Lundin, Rickard; Roelof, Edmond C.; Chase, Christopher J.</p> <p>1999-02-01</p> <p>Observations of <span class="hlt">energetic</span> neutral <span class="hlt">atoms</span> (ENA) in the energy range 26-52 keV are reported from four occasions during geomagnetically disturbed periods. The data were acquired by the ENA imager flown on the Swedish microsatellite Astrid in a 1000 km circular orbit with 83° inclination. The ENA imager separates charged particles from neutrals through an electrostatic deflection system in the energy range between 0.1 and 114 keV. ENA images obtained from vantage points in the polar cap and in the afternoon magnetic local time (MLT) hours looking into the antisunward hemisphere show intense ENA fluxes (~104(cm2srs)-1 over 26-37 keV) coming from the dusk region and low altitudes (~300 km). The morphology shows no relation to local magnetic field excluding the possibility of charged particle detection. It is concluded that the source of these ENAs are precipitating/mirroring <span class="hlt">ions</span> from the ring current/trapped radiation interacting with the exobase on auroral L-shells and in the dusk region. The observed ENA fluxes show a relation with Kp and Dst geomagnetic indices. The observed ENA spectrum from a geomagnetic storm on February 8, 1995, is investigated in more detail and compared to the parent <span class="hlt">ion</span> spectrum obtained by the Defense Meteorological Satellite Project (DMSP) satellite, F12, during the same period on L=6+/-2 around dusk. The observed ENA spectral slope is used to derive the parent <span class="hlt">ion</span> spectral temperature. The derived <span class="hlt">ion</span> temperatures range is 3.0-6.0 keV for H and 4.5-8.5 keV for O. The higher of these <span class="hlt">ion</span> temperatures comes closest in agreement to the extrapolated DMSP spectrum leading us to favor O over H as the species of the detected ENAs. It is shown that the detected ENAs must have been produced at L>=6 to reach the detector without atmospheric attenuation and that the main energy dependence of the ENA spectrum, apart from the parent <span class="hlt">ion</span> spectrum, is governed by the energy dependence of the charge exchange cross section between <span class="hlt">ions</span> and exospheric oxygen.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/biblio/22364485-symmetry-ibex-ribbon-enhanced-energetic-neutral-atom-ena-flux','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22364485-symmetry-ibex-ribbon-enhanced-energetic-neutral-atom-ena-flux"><span>SYMMETRY OF THE IBEX RIBBON OF ENHANCED <span class="hlt">ENERGETIC</span> NEUTRAL <span class="hlt">ATOM</span> (ENA) FLUX</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Funsten, H. O.; Cai, D. M.; Higdon, D. M.</p> <p>2015-01-20</p> <p>The circular ribbon of enhanced <span class="hlt">energetic</span> neutral <span class="hlt">atom</span> (ENA) emission observed by the Interstellar Boundary Explorer (IBEX) mission remains a critical signature for understanding the interaction between the heliosphere and the interstellar medium. We study the symmetry of the ribbon flux and find strong, spectrally dependent reflection symmetry throughout the energy range 0.7-4.3 keV. The distribution of ENA flux around the ribbon is predominantly unimodal at 0.7 and 1.1 keV, distinctly bimodal at 2.7 and 4.3 keV, and a mixture of both at 1.7 keV. The bimodal flux distribution consists of partially opposing bilateral flux lobes, located at highest and lowest heliographic latitude extentsmore » of the ribbon. The vector between the ribbon center and heliospheric nose (which defines the so-called BV plane) appears to play an organizing role in the spectral dependence of the symmetry axis locations as well as asymmetric contributions to the ribbon flux. The symmetry planes at 2.7 and 4.3 keV, derived by projecting the symmetry axes to a great circle in the sky, are equivalent to tilting the heliographic equatorial plane to the ribbon center, suggesting a global heliospheric ordering. The presence and energy dependence of symmetric unilateral and bilateral flux distributions suggest strong spectral filtration from processes encountered by an <span class="hlt">ion</span> along its journey from the source plasma to its eventual detection at IBEX.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=1636470','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=1636470"><span><span class="hlt">Collision</span> events between RNA polymerases in convergent transcription studied by <span class="hlt">atomic</span> force microscopy</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Crampton, Neal; Bonass, William A.; Kirkham, Jennifer; Rivetti, Claudio; Thomson, Neil H.</p> <p>2006-01-01</p> <p><span class="hlt">Atomic</span> force microscopy (AFM) has been used to image, at single molecule resolution, transcription events by Escherichia coli RNA polymerase (RNAP) on a linear DNA template with two convergently aligned λpr promoters. For the first time experimentally, the outcome of <span class="hlt">collision</span> events during convergent transcription by two identical RNAP has been studied. Measurement of the positions of the RNAP on the DNA, allows distinction of open promoter complexes (OPCs) and elongating complexes (EC) and collided complexes (CC). This discontinuous time-course enables subsequent analysis of <span class="hlt">collision</span> events where both RNAP remain bound on the DNA. After <span class="hlt">collision</span>, the elongating RNAP has caused the other (usually stalled) RNAP to back-track along the template. The final positions of the two RNAP indicate that these are <span class="hlt">collisions</span> between an EC and a stalled EC (SEC) or OPC (previously referred to as sitting-ducks). Interestingly, the distances between the two RNAP show that they are not always at closest approach after ‘collision’ has caused their arrest. PMID:17012275</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014PhRvA..90a2708L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014PhRvA..90a2708L"><span>Electron capture in <span class="hlt">collisions</span> of Si3+ <span class="hlt">ions</span> with <span class="hlt">atomic</span> hydrogen from low to intermediate energies</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Liu, C. H.; Liu, L.; Wang, J. G.</p> <p>2014-07-01</p> <p>The electron capture process for the Si3+(3s) + H(1s) <span class="hlt">collisions</span> is investigated by the quantum-mechanical molecular orbital close-coupling (MOCC) method and by the two-center <span class="hlt">atomic</span> orbital close-coupling (AOCC) method in the energy range of 10-5-10 keV/u and 0.8-200 keV/u, respectively. Total and state-selective cross sections are presented and compared with the available theoretical and experimental results. The present MOCC and AOCC results agree well with the experimental measurements, but show some discrepancy with the calculations of Wang et al. [Phys. Rev. A 74, 052709 (2006), 10.1103/PhysRevA.74.052709] at E > 40 eV/u because of the inclusion of rotational couplings, which play important roles in the electron capture process. At lower energies, the present results are about three to five times smaller than those of Wang et al. due to the difference in the molecular data at large internuclear distances. The energy behaviors of the electron capture cross sections are discussed on the basis of identified reaction mechanisms.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19740059164&hterms=ionized+atoms&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dionized%2Batoms','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19740059164&hterms=ionized+atoms&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dionized%2Batoms"><span>Effect of inelastic electron-<span class="hlt">atom</span> <span class="hlt">collisions</span> on the Balmer decrement</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Adams, W. M.; Petrosian, V.</p> <p>1974-01-01</p> <p>Calculation of the Balmer decrement in radiatively ionized hydrogen gas as a function of temperature and density, taking into account the effect of electron-<span class="hlt">atom</span> <span class="hlt">collisions</span>. It is found that once the electron density exceeds 10 to the 10th power per cu cm significant deviations from the normal radiative recombination decrement begin to occur. Implications of these results for the physical conditions in the line-emitting region of the Seyfert galaxy NGC 4151 are discussed briefly.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011AGUFMSM14A..02S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011AGUFMSM14A..02S"><span><span class="hlt">Energetic</span> particle configuration in the magnetosphere of Saturn: Advances and open questions.</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sergis, N.</p> <p>2011-12-01</p> <p>The <span class="hlt">energetic</span> particle population in Saturn's magnetosphere was initially sampled during the Pioneer 11 and Voyager 1 and 2 flybys in the early 1980s. It was, however, the far more sophisticated <span class="hlt">energetic</span> particle suite, the Magnetospheric Imaging Instrument (MIMI) on the Cassini spacecraft that offered new insight of the <span class="hlt">energetic</span> particles in Saturn's environment. Since July 2004, the three <span class="hlt">energetic</span> particle detectors of MIMI, the Low Energy Magnetospheric Measurement System (LEMMS), the Charge Energy Mass Spectrometer (CHEMS) and the <span class="hlt">Ion</span> and Neutral Camera (INCA), provide <span class="hlt">energetic</span> <span class="hlt">ion</span> directional intensities, <span class="hlt">ion</span> and electron energy spectra and <span class="hlt">ion</span> composition in a keV-to-MeV energy range. In particular, through detailed <span class="hlt">energetic</span> neutral <span class="hlt">atoms</span> (ENA) imaging, INCA resolved the perennial limitation of in situ data (spatial vs. temporal variability), offering an overview of large parts of the magnetosphere and capturing the ongoing dynamical activity (e.g. hot plasma injections), regardless of the spacecraft's position. The results obtained so far have clearly revealed that hot plasma plays a key role in several processes active in a wide range of spatial scales in the Saturnian magnetosphere, such as the formation of high energy trapped particle radiation belts in the inner magnetosphere and of a partial, rotating ring current in the middle and outer magnetosphere, the plasma energization in the midnight-to-dawn local time sector and the variability of the Saturnian auroral UV and radio emissions. The extended coverage provided by the numerous (over 150 as of August 2011) revolutions of Cassini has helped us construct a comprehensive (yet not complete) picture of the hot plasma distribution and composition in Saturn's magnetosphere. The most surprising characteristic was the direct observation that the <span class="hlt">energetic</span> <span class="hlt">ion</span> distribution is strongly asymmetric with local time, forming a broadened dayside plasma sheet which becomes thinner and more intense in the</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016ChPhB..25a5204M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016ChPhB..25a5204M"><span>Conversion of an <span class="hlt">atomic</span> to a molecular argon <span class="hlt">ion</span> and low pressure argon relaxation</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>M, N. Stankov; A, P. Jovanović; V, Lj Marković; S, N. Stamenković</p> <p>2016-01-01</p> <p>The dominant process in relaxation of DC glow discharge between two plane parallel electrodes in argon at pressure 200 Pa is analyzed by measuring the breakdown time delay and by analytical and numerical models. By using the approximate analytical model it is found that the relaxation in a range from 20 to 60 ms in afterglow is dominated by <span class="hlt">ions</span>, produced by <span class="hlt">atomic</span>-to-molecular conversion of Ar+ <span class="hlt">ions</span> in the first several milliseconds after the cessation of the discharge. This conversion is confirmed by the presence of double-Gaussian distribution for the formative time delay, as well as conversion maxima in a set of memory curves measured in different conditions. Finally, the numerical one-dimensional (1D) model for determining the number densities of dominant particles in stationary DC glow discharge and two-dimensional (2D) model for the relaxation are used to confirm the previous assumptions and to determine the corresponding <span class="hlt">collision</span> and transport coefficients of dominant species and processes. Project supported by the Ministry of Education, Science and Technological Development of the Republic of Serbia (Grant No. ON171025).</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li class="active"><span>23</span></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_23 --> <div id="page_24" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li class="active"><span>24</span></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="461"> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016JChPh.145p4311S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016JChPh.145p4311S"><span>Modeling <span class="hlt">collision</span> energy transfer in APCI/CID mass spectra of PAHs using thermal-like post-<span class="hlt">collision</span> internal energy distributions</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Solano, Eduardo A.; Mohamed, Sabria; Mayer, Paul M.</p> <p>2016-10-01</p> <p>The internal energy transferred when projectile molecular <span class="hlt">ions</span> of naphthalene collide with argon gas <span class="hlt">atoms</span> was extracted from the APCI-CID (atmospheric-pressure chemical ionization <span class="hlt">collision</span>-induced dissociation) mass spectra acquired as a function of <span class="hlt">collision</span> energy. <span class="hlt">Ion</span> abundances were calculated by microcanonical integration of the differential rate equations using the Rice-Ramsperger-Kassel-Marcus rate constants derived from a UB3LYP/6-311G+(3df,2p)//UB3LYP/6-31G(d) fragmentation mechanism and thermal-like vibrational energy distributions p M (" separators=" E , T char ) . The mean vibrational energy excess of the <span class="hlt">ions</span> was characterized by the parameter Tchar ("characteristic temperature"), determined by fitting the theoretical <span class="hlt">ion</span> abundances to the experimental breakdown graph (a plot of relative abundances of the <span class="hlt">ions</span> as a function of kinetic energy) of activated naphthalene <span class="hlt">ions</span>. According to these results, the APCI <span class="hlt">ion</span> source produces species below Tchar = 1457 K, corresponding to 3.26 eV above the vibrational ground state. Subsequent <span class="hlt">collisions</span> heat the <span class="hlt">ions</span> up further, giving rise to a sigmoid curve of Tchar as a function of Ecom (center-of-mass-frame kinetic energy). The differential internal energy absorption per kinetic energy unit (dEvib/dEcom) changes with Ecom according to a symmetric bell-shaped function with a maximum at 6.38 ± 0.32 eV (corresponding to 6.51 ± 0.27 eV of vibrational energy excess), and a half-height full width of 6.30 ± 1.15 eV. This function imposes restrictions on the amount of energy that can be transferred by <span class="hlt">collisions</span>, such that a maximum is reached as kinetic energy is increased. This behavior suggests that the collisional energy transfer exhibits a pronounced increase around some specific value of energy. Finally, the model is tested against the CID mass spectra of anthracene and pyrene <span class="hlt">ions</span> and the corresponding results are discussed.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27802636','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27802636"><span>Modeling <span class="hlt">collision</span> energy transfer in APCI/CID mass spectra of PAHs using thermal-like post-<span class="hlt">collision</span> internal energy distributions.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Solano, Eduardo A; Mohamed, Sabria; Mayer, Paul M</p> <p>2016-10-28</p> <p>The internal energy transferred when projectile molecular <span class="hlt">ions</span> of naphthalene collide with argon gas <span class="hlt">atoms</span> was extracted from the APCI-CID (atmospheric-pressure chemical ionization <span class="hlt">collision</span>-induced dissociation) mass spectra acquired as a function of <span class="hlt">collision</span> energy. <span class="hlt">Ion</span> abundances were calculated by microcanonical integration of the differential rate equations using the Rice-Ramsperger-Kassel-Marcus rate constants derived from a UB3LYP/6-311G+(3df,2p)//UB3LYP/6-31G(d) fragmentation mechanism and thermal-like vibrational energy distributions p M E,T char . The mean vibrational energy excess of the <span class="hlt">ions</span> was characterized by the parameter T char ("characteristic temperature"), determined by fitting the theoretical <span class="hlt">ion</span> abundances to the experimental breakdown graph (a plot of relative abundances of the <span class="hlt">ions</span> as a function of kinetic energy) of activated naphthalene <span class="hlt">ions</span>. According to these results, the APCI <span class="hlt">ion</span> source produces species below T char = 1457 K, corresponding to 3.26 eV above the vibrational ground state. Subsequent <span class="hlt">collisions</span> heat the <span class="hlt">ions</span> up further, giving rise to a sigmoid curve of T char as a function of E com (center-of-mass-frame kinetic energy). The differential internal energy absorption per kinetic energy unit (dE vib /dE com ) changes with E com according to a symmetric bell-shaped function with a maximum at 6.38 ± 0.32 eV (corresponding to 6.51 ± 0.27 eV of vibrational energy excess), and a half-height full width of 6.30 ± 1.15 eV. This function imposes restrictions on the amount of energy that can be transferred by <span class="hlt">collisions</span>, such that a maximum is reached as kinetic energy is increased. This behavior suggests that the collisional energy transfer exhibits a pronounced increase around some specific value of energy. Finally, the model is tested against the CID mass spectra of anthracene and pyrene <span class="hlt">ions</span> and the corresponding results are discussed.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19770039814&hterms=947&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3D%2526%2523947','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19770039814&hterms=947&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3D%2526%2523947"><span>Reactions between NO/+/ and metal <span class="hlt">atoms</span> using magnetically confined afterglows</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Lo, H. H.; Clendenning, L. M.; Fite, W. L.</p> <p>1977-01-01</p> <p>A new method of studying thermal energy <span class="hlt">ion</span>-neutral <span class="hlt">collision</span> processes involving nongaseous neutral <span class="hlt">atoms</span> is described. A long magnetic field produced by a solenoid in a vacuum chamber confines a thermal-energy plasma generated by photoionization of gas at very low pressure. As the plasma moves toward the end of the field, it is crossed by a metal <span class="hlt">atom</span> beam. Ionic products of <span class="hlt">ion-atom</span> reactions are trapped by the field and both the reactant and product <span class="hlt">ions</span> move to the end of the magnetic field where they are detected by a quadrupole mass filter. The cross sections for charge transfer between NO(+) and Na, Mg, Ca, and Sr and that for rearrangement between NO(+) and Ca have been obtained. The charge-transfer reaction is found strongly dominant over the rearrangement reaction that forms metallic oxide <span class="hlt">ions</span>.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014PhRvC..89c4917N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014PhRvC..89c4917N"><span>Determining fundamental properties of matter created in ultrarelativistic heavy-<span class="hlt">ion</span> <span class="hlt">collisions</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Novak, J.; Novak, K.; Pratt, S.; Vredevoogd, J.; Coleman-Smith, C. E.; Wolpert, R. L.</p> <p>2014-03-01</p> <p>Posterior distributions for physical parameters describing relativistic heavy-<span class="hlt">ion</span> <span class="hlt">collisions</span>, such as the viscosity of the quark-gluon plasma, are extracted through a comparison of hydrodynamic-based transport models to experimental results from 100AGeV+100AGeV Au +Au <span class="hlt">collisions</span> at the Relativistic Heavy <span class="hlt">Ion</span> Collider. By simultaneously varying six parameters and by evaluating several classes of observables, we are able to explore the complex intertwined dependencies of observables on model parameters. The methods provide a full multidimensional posterior distribution for the model output, including a range of acceptable values for each parameter, and reveal correlations between them. The breadth of observables and the number of parameters considered here go beyond previous studies in this field. The statistical tools, which are based upon Gaussian process emulators, are tested in detail and should be extendable to larger data sets and a higher number of parameters.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/814022','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/814022"><span>Scaling Cross Sections for <span class="hlt">Ion-atom</span> Impact Ionization</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Igor D. Kaganovich; Edward Startsev; Ronald C. Davidson</p> <p>2003-06-06</p> <p>The values of <span class="hlt">ion-atom</span> ionization cross sections are frequently needed for many applications that utilize the propagation of fast <span class="hlt">ions</span> through matter. When experimental data and theoretical calculations are not available, approximate formulas are frequently used. This paper briefly summarizes the most important theoretical results and approaches to cross section calculations in order to place the discussion in historical perspective and offer a concise introduction to the topic. Based on experimental data and theoretical predictions, a new fit for ionization cross sections is proposed. The range of validity and accuracy of several frequently used approximations (classical trajectory, the Born approximation,more » and so forth) are discussed using, as examples, the ionization cross sections of hydrogen and helium <span class="hlt">atoms</span> by various fully stripped <span class="hlt">ions</span>.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018PhPl...25f2108P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018PhPl...25f2108P"><span>Characterization of xenon <span class="hlt">ion</span> and neutral interactions in a well-characterized experiment</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Patino, Marlene I.; Wirz, Richard E.</p> <p>2018-06-01</p> <p>Interactions between fast <span class="hlt">ions</span> and slow neutral <span class="hlt">atoms</span> are commonly dominated by charge-exchange and momentum-exchange <span class="hlt">collisions</span>, which are important to understanding and simulating the performance and behavior of many plasma devices. To investigate these interactions, this work developed a simple, well-characterized experiment that accurately measures the behavior of high energy xenon <span class="hlt">ions</span> incident on a background of xenon neutral <span class="hlt">atoms</span>. By using well-defined operating conditions and a simple geometry, these results serve as canonical data for the development and validation of plasma models and models of neutral beam sources that need to ensure accurate treatment of angular scattering distributions of charge-exchange and momentum-exchange <span class="hlt">ions</span> and neutrals. The energies used in this study are relevant for electric propulsion devices ˜1.5 keV and can be used to improve models of <span class="hlt">ion</span>-neutral interactions in the plume. By comparing these results to both analytical and computational models of <span class="hlt">ion</span>-neutral interactions, we discovered the importance of (1) accurately treating the differential cross-sections for momentum-exchange and charge-exchange <span class="hlt">collisions</span> over a large range of neutral background pressures and (2) properly considering commonly overlooked interactions, such as <span class="hlt">ion</span>-induced electron emission from nearby surfaces and neutral-neutral ionization <span class="hlt">collisions</span>.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2006RaPC...75..656B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2006RaPC...75..656B"><span>The pair-production channel in <span class="hlt">atomic</span> processes</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Belkacem, Ali; Sørensen, Allan H.</p> <p>2006-06-01</p> <p>Assisted by the creation of electron-positron pairs, new channels for ionization, excitation, and charge transfer open in <span class="hlt">atomic</span> <span class="hlt">collisions</span> when the energy is raised to relativistic values. At extreme energies these pair-production channels usually dominate the "traditional" contributions to cross sections that involve only "positive-energy" electrons. An extensive body of theoretical and experimental work has been performed over the last two decades to investigate charge-changing processes catalyzed by pair production in relativistic heavy <span class="hlt">ion</span> <span class="hlt">collisions</span>. We review some of these studies.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28498682','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28498682"><span>Searching for Axionlike Particles with Ultraperipheral Heavy-<span class="hlt">Ion</span> <span class="hlt">Collisions</span>.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Knapen, Simon; Lin, Tongyan; Lou, Hou Keong; Melia, Tom</p> <p>2017-04-28</p> <p>We show that ultraperipheral heavy-<span class="hlt">ion</span> <span class="hlt">collisions</span> at the Large Hadron Collider (LHC) can be used to search for axionlike particles with mass below 100 GeV. The Z^{4} enhanced photon-photon luminosity from the <span class="hlt">ions</span> provides a large exclusive production rate, with a signature of a resonant pair of back-to-back photons and no other activity in the detector. In addition, we present both new and updated limits from recasting multiphoton searches at LEP II and the LHC, which are more stringent than those currently in the literature for the mass range 100 MeV to 100 GeV.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29790511','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29790511"><span><span class="hlt">Ion</span> <span class="hlt">collision</span>-induced chemistry in pure and mixed loosely bound clusters of coronene and C60 molecules.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Domaracka, Alicja; Delaunay, Rudy; Mika, Arkadiusz; Gatchell, Michael; Zettergren, Henning; Cederquist, Henrik; Rousseau, Patrick; Huber, Bernd A</p> <p>2018-05-23</p> <p>Ionization, fragmentation and molecular growth have been studied in <span class="hlt">collisions</span> of 22.5 keV He2+- or 3 keV Ar+-projectiles with pure loosely bound clusters of coronene (C24H12) molecules or with loosely bound mixed C60-C24H12 clusters by using mass spectrometry. The heavier and slower Ar+ projectiles induce prompt knockout-fragmentation - C- and/or H-losses - from individual molecules and highly efficient secondary molecular growth reactions before the clusters disintegrate on picosecond timescales. The lighter and faster He2+ projectiles have a higher charge and the main reactions are then ionization by <span class="hlt">ions</span> that are not penetrating the clusters. This leads mostly to cluster fragmentation without molecular growth. However, here penetrating <span class="hlt">collisions</span> may also lead to molecular growth but to a much smaller extent than with 3 keV Ar+. Here we present fragmentation and molecular growth mass distributions with 1 mass unit resolution, which reveals that the same numbers of C- and H-<span class="hlt">atoms</span> often participate in the formation and breaking of covalent bonds inside the clusters. We find that masses close to those with integer numbers of intact coronene molecules, or with integer numbers of both intact coronene and C60 molecules, are formed where often one or several H-<span class="hlt">atoms</span> are missing or have been added on. We also find that super-hydrogenated coronene is formed inside the clusters.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1364386','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1364386"><span>Stern Layer Structure and <span class="hlt">Energetics</span> at Mica-Water Interfaces</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Bourg, Ian C.; Lee, Sang Soo; Fenter, Paul</p> <p>2017-04-11</p> <p>The screening of surface charge by dissolved <span class="hlt">ions</span> at solid liquid interfaces in the region of interfacial fluid known as the electrical double layer (EDL)-plays a recurrent role in surface science, from <span class="hlt">ion</span> adsorption to colloidal mechanics to the transport properties of nanoporous media. A persistent unknown in theories of EDL-related phenomena is the structure of the Stern layer, the near-surface portion of the EDL where water molecules and adsorbed <span class="hlt">ions</span> form specific short-range interactions with surface <span class="hlt">atoms</span>. Here, we describe a set of synchrotron X-ray reflectivity (XRR) experiments and molecular dynamics (MD) simulations carried out under identical conditions formore » a range of 0.1 M alkali chloride (Li-, Na-, K-, Rb-, or CsCl) solutions on the basal surface of muscovite mica, a mineral isostructural to phyllosilicate clay minerals and one of the most widely studied reference surfaces in interfacial science. Our XRR and MD simulation results provide a remarkably consistent view of the structure and <span class="hlt">energetics</span> of the Stern layer, with some discrepancy on the fraction of the minor outer-sphere component of Rb and on the adsorption <span class="hlt">energetics</span> of Li. The results of both techniques, along with surface complexation model calculations, provide insight into the sensitivity of water structure and <span class="hlt">ion</span> adsorption to surface topography and the type of adsorbed counterion.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19800025870&hterms=plating&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Dplating','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19800025870&hterms=plating&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Dplating"><span>Survey of <span class="hlt">ion</span> plating sources</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Spalvins, T.</p> <p>1979-01-01</p> <p><span class="hlt">Ion</span> plating is a plasma deposition technique where <span class="hlt">ions</span> of the gas and the evaporant have a decisive role in the formation of a coating in terms of adherence, coherence, and morphological growth. The range of materials that can be <span class="hlt">ion</span> plated is predominantly determined by the selection of the evaporation source. Based on the type of evaporation source, gaseous media and mode of transport, the following will be discussed: resistance, electron beam sputtering, reactive and <span class="hlt">ion</span> beam evaporation. Ionization efficiencies and <span class="hlt">ion</span> energies in the glow discharge determine the percentage of <span class="hlt">atoms</span> which are ionized under typical <span class="hlt">ion</span> plating conditions. The plating flux consists of a small number of <span class="hlt">energetic</span> <span class="hlt">ions</span> and a large number of <span class="hlt">energetic</span> neutrals. The energy distribution ranges from thermal energies up to a maximum energy of the discharge. The various reaction mechanisms which contribute to the exceptionally strong adherence - formation of a graded substrate/coating interface are not fully understood, however the controlling factors are evaluated. The influence of process variables on the nucleation and growth characteristics are illustrated in terms of morphological changes which affect the mechanical and tribological properties of the coating.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMSH51D2535K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMSH51D2535K"><span>The <span class="hlt">Energetic</span> Neutral <span class="hlt">Atoms</span> of the "Croissant" Heliosphere with Jets</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kornbleuth, M. Z.; Opher, M.; Michael, A.</p> <p>2017-12-01</p> <p>Opher et al. (2015) suggests the heliosphere may have two jets in the tail-ward direction driven to the north and south. This new model, the "Croissant Heliosphere", is in contrast to the classically accepted view of a comet-like tail. We investigate the effect of the heliosphere with jets model on <span class="hlt">energetic</span> neutral <span class="hlt">atom</span> (ENA) maps. Regardless of the existence of a split tail, other models show heliosheath plasma confined by the toroidal magnetic field in a "slinky" structure, similar to astrophysical jets bent by the interstellar medium. Therefore, the confinement of the plasma should appear in the ENA maps. ENA maps from the Interstellar Boundary Explorer (IBEX) have recently shown two high latitude lobes with excess ENA flux at higher energies in the tail of the heliosphere. These lobes could be a signature of the two jet structure of the heliosphere, while some have argued they are cause by the fast/slow solar wind profile. Here we present the ENA maps of the "Croissant Heliosphere" using initially a uniform solar wind. We incorporate pick-up <span class="hlt">ions</span> (PUIs) into our model based on the kinetic modeling of Malama et al. (2006). We include the extinction of PUIs in the heliosheath and describe a locally created PUI population resulting from this extinction process. Additionally, we include the angular dependence of the PUIs based on the work of Vasyliunas & Siscoe (1976). With our model, we find that, in the presence of a uniform solar wind, the "heliosphere with jets" model is able to qualitatively reproduce the lobe structure of the tail seen in IBEX measurements. Turbulence also manifests itself within the lobes of the simulated ENA maps on the order of years. Finally we will present ENA maps using a time-dependent model of the heliosphere with the inclusion of solar cycle.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19950056916&hterms=GERD&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3DGERD','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19950056916&hterms=GERD&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3DGERD"><span>Stream interfaces and <span class="hlt">energetic</span> <span class="hlt">ions</span> II: Ulysses test of Pioneer results</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Intriligator, Devrie S.; Siscoe, George L.; Wibberenz, Gerd; Kunow, Horst; Gosling, John T.</p> <p>1995-01-01</p> <p>Ulysses measurements of <span class="hlt">energetic</span> and solar wind particles taken near 5 AU between 20 and 30 degrees south latitude during a well-developed recurring corotating interaction region (CIR) show that the CIR's corotating <span class="hlt">energetic</span> <span class="hlt">ion</span> population (CEIP) associated with the trailing reverse shock starts within the CIR at the stream interface. This is consistent with an earlier result obtained by Pioneers 10 and 11 in the ecliptic plane between 4 and 6 AU. The Ulysses/Pioneer finding is noteworthy since the stream interface is not magnetically connected to the reverse shock, but lies 12-17 corotation hours from it. Thus, the finding seems to be inconsistent with the basic model that generates CEIP particles at the reverse shock and propagates them along field lines. Eliminating the inconsistency probably entails an extension of the standard model such as cross-field diffusion or a non-shock energization process operating near the stream interface closer to the sun.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018PhRvA..97d3427S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018PhRvA..97d3427S"><span>All-optical <span class="hlt">atom</span> trap as a target for MOTRIMS-like <span class="hlt">collision</span> experiments</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sharma, S.; Acharya, B. P.; De Silva, A. H. N. C.; Parris, N. W.; Ramsey, B. J.; Romans, K. L.; Dorn, A.; de Jesus, V. L. B.; Fischer, D.</p> <p>2018-04-01</p> <p>Momentum-resolved scattering experiments with laser-cooled <span class="hlt">atomic</span> targets have been performed since almost two decades with magneto-optical trap recoil <span class="hlt">ion</span> momentum spectroscopy (MOTRIMS) setups. Compared to experiments with gas-jet targets, MOTRIMS features significantly lower target temperatures allowing for an excellent recoil <span class="hlt">ion</span> momentum resolution. However, the coincident and momentum-resolved detection of electrons was long rendered impossible due to incompatible magnetic field requirements. Here we report on an experimental approach which is based on an all-optical 6Li <span class="hlt">atom</span> trap that—in contrast to magneto-optical traps—does not require magnetic field gradients in the trapping region. <span class="hlt">Atom</span> temperatures of about 2 mK and number densities up to 109 cm-3 make this trap ideally suited for momentum-resolved electron-<span class="hlt">ion</span> coincidence experiments. The overall configuration of the trap is very similar to conventional magneto-optical traps. It mainly requires small modifications of laser beam geometries and polarization which makes it easily implementable in other existing MOTRIMS experiments.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19900016214','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19900016214"><span>Experimental investigations of low-energy (4 to 40 eV) <span class="hlt">collisions</span> of O(-)(P2) <span class="hlt">ions</span> and O(P3) <span class="hlt">atoms</span> with surfaces</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Chutjian, A.; Orient, O. J.; Murad, E.</p> <p>1990-01-01</p> <p>Using a newly-developed, magnetically confined source, low-energy, ground state oxygen negative <span class="hlt">ions</span> and neutral <span class="hlt">atoms</span> are generated. The energy range is variable, and <span class="hlt">atom</span> and neutrals have been generated at energies varying from 2 eV to 40 eV and higher. It was found that the interaction of these low-energy species with a solid magnesium fluoride target leads to optical emissions in the (at least) visible and infrared regions of the spectrum. Researchers describe y details of the photodetachment source, and present spectra of the neutral and <span class="hlt">ion</span> glows in the wavelength range 250 to 850 nm (for O(-)) and 600 to 850 nm (for O), and discuss the variability of the emissions for incident energies between 4 and 40 eV.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017PhRvC..96b4901B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017PhRvC..96b4901B"><span>Implications of p +Pb measurements on the chiral magnetic effect in heavy <span class="hlt">ion</span> <span class="hlt">collisions</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Belmont, R.; Nagle, J. L.</p> <p>2017-08-01</p> <p>The chiral magnetic effect (CME) is a fundamental prediction of QCD, and various observables have been proposed in heavy <span class="hlt">ion</span> <span class="hlt">collisions</span> to access this physics. Recently the CMS Collaboration [V. Khachatryan et al., Phys. Rev. Lett. 118, 122301 (2017), 10.1103/PhysRevLett.118.122301] has reported results from p +Pb <span class="hlt">collisions</span> at 5.02 TeV on one such observable, the three-point correlator. The results are strikingly similar to those measured at the same particle multiplicity in Pb +Pb <span class="hlt">collisions</span>, which have been attributed to the CME. This similarity, combined with two key assumptions about the magnetic field in p +Pb <span class="hlt">collisions</span>, presents a major challenge to the CME picture. These two assumptions as stated in the CMS paper are (i) that the magnetic field in p +Pb <span class="hlt">collisions</span> is smaller than that in Pb +Pb <span class="hlt">collisions</span> and (ii) that the magnetic field direction is uncorrelated with the flow angle. We test these two postulates in the Monte Carlo-Glauber framework and find that the magnetic fields are not significantly smaller in central p +Pb <span class="hlt">collisions</span>; however the magnetic field direction and the flow angle are indeed uncorrelated. The second finding alone gives strong evidence that the three-point correlator signal in Pb +Pb and p +Pb <span class="hlt">collisions</span> is not an indication of the CME. Similar measurements in d +Au over a range of energies accessible at the BNL Relativistic Heavy <span class="hlt">Ion</span> Collider would be elucidating. In the same calculational framework, we find that even in Pb +Pb <span class="hlt">collisions</span>, where the magnetic field direction and the flow angle are correlated, there exist large inhomogeneities that are on the size scale of topological domains. These inhomogeneities need to be incorporated in any detailed CME calculation.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009JGRA..114.2214S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009JGRA..114.2214S"><span><span class="hlt">Energetic</span> particle pressure in Saturn's magnetosphere measured with the Magnetospheric Imaging Instrument on Cassini</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sergis, N.; Krimigis, S. M.; Mitchell, D. G.; Hamilton, D. C.; Krupp, N.; Mauk, B. H.; Roelof, E. C.; Dougherty, M. K.</p> <p>2009-02-01</p> <p>The Magnetospheric Imaging Instrument on board Cassini has been providing measurements of <span class="hlt">energetic</span> <span class="hlt">ion</span> intensities, energy spectra, and <span class="hlt">ion</span> composition, combining the Charge Energy Mass Spectrometer over the range 3 to 236 keV/e, the Low Energy Magnetospheric Measurements System for <span class="hlt">ions</span> in the range 0.024 to 18 MeV, and the <span class="hlt">Ion</span> and Neutral Camera for <span class="hlt">ions</span> and <span class="hlt">energetic</span> neutral <span class="hlt">atoms</span> in the range 3 to > 200 keV. Results of the <span class="hlt">energetic</span> (E > 3 keV) particle pressure distribution throughout the Saturnian magnetosphere and comparison with in situ measurements of the magnetic pressure are presented. The study offers a comprehensive depiction of the average, steady state hot plasma environment of Saturn over the 3 years since orbit insertion on 1 July 2004, with emphasis on ring current characteristics. The results may be summarized as follows: (1) The Saturnian magnetosphere possesses a dynamic, high-beta ring current located approximately between 8 and ~15 RS, primarily composed of O+ <span class="hlt">ions</span>, and characterized by suprathermal (E > 3 keV) particle pressure, with typical values of 10-9 dyne/cm2. (2) The planetary plasma sheet shows significant asymmetries, with the dayside region being broadened in latitude (+/-50°) and extending to the magnetopause, and the nightside appearing well confined, with a thickness of ~10 RS and a northward tilt of some 10° with respect to the equatorial plane beyond ~20 RS. (3) The average radial suprathermal pressure gradient appears sufficient to modify the radial force balance and subsequently the azimuthal currents. (4) The magnetic perturbation due to the trapped <span class="hlt">energetic</span> particle population is ~7 nT, similar to values from magnetic field-based studies (9 to 13 nT).</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23215376','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23215376"><span>Freeze-out conditions in heavy <span class="hlt">ion</span> <span class="hlt">collisions</span> from QCD thermodynamics.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Bazavov, A; Ding, H-T; Hegde, P; Kaczmarek, O; Karsch, F; Laermann, E; Mukherjee, Swagato; Petreczky, P; Schmidt, C; Smith, D; Soeldner, W; Wagner, M</p> <p>2012-11-09</p> <p>We present a determination of freeze-out conditions in heavy <span class="hlt">ion</span> <span class="hlt">collisions</span> based on ratios of cumulants of net electric charge fluctuations. These ratios can reliably be calculated in lattice QCD for a wide range of chemical potential values by using a next-to-leading order Taylor series expansion around the limit of vanishing baryon, electric charge and strangeness chemical potentials. From a computation of up to fourth order cumulants and charge correlations we first determine the strangeness and electric charge chemical potentials that characterize freeze-out conditions in a heavy <span class="hlt">ion</span> <span class="hlt">collision</span> and confirm that in the temperature range 150 MeV ≤ T ≤ 170 MeV the hadron resonance gas model provides good approximations for these parameters that agree with QCD calculations on the 5%-15% level. We then show that a comparison of lattice QCD results for ratios of up to third order cumulants of electric charge fluctuations with experimental results allows us to extract the freeze-out baryon chemical potential and the freeze-out temperature.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018PhLB..780..191Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018PhLB..780..191Z"><span>Hypertriton production in relativistic heavy <span class="hlt">ion</span> <span class="hlt">collisions</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zhang, Zhen; Ko, Che Ming</p> <p>2018-05-01</p> <p>Based on the phase-space distributions of freeze-out nucleons and Λ hyperons from a blast-wave model, we study hypertriton production in the coalescence model. Including both the coalescence of Λ with proton and neutron as well as with deuteron, which is itself formed from the coalescence of proton and neutron, we study how the production of hypertriton is affected if nucleons and deuterons are allowed to stream freely after freeze-out. Using central Pb+Pb <span class="hlt">collisions</span> at √{sNN } = 2.76 as an example, we find that this only reduces slightly the hypertriton yield, which has a value consistent with the experimental data, even if the volume of the system has expanded to a size similar to the freeze-out volume for a hyertriton if its dissociation cross section by pions in the system is given by its geometric size. Our results thus suggest that the hypertriton yield in relativistic heavy <span class="hlt">ion</span> <span class="hlt">collisions</span> is essentially determined at the time when nucleons and deuterons freeze out, although it still undergoes reactions with pions.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013PhRvC..88f4904S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013PhRvC..88f4904S"><span>Emission source functions in heavy <span class="hlt">ion</span> <span class="hlt">collisions</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Shapoval, V. M.; Sinyukov, Yu. M.; Karpenko, Iu. A.</p> <p>2013-12-01</p> <p>Three-dimensional pion and kaon emission source functions are extracted from hydrokinetic model (HKM) simulations of central Au+Au <span class="hlt">collisions</span> at the top Relativistic Heavy <span class="hlt">Ion</span> Collider (RHIC) energy sNN=200 GeV. The model describes well the experimental data, previously obtained by the PHENIX and STAR collaborations using the imaging technique. In particular, the HKM reproduces the non-Gaussian heavy tails of the source function in the pair transverse momentum (out) and beam (long) directions, observed in the pion case and practically absent for kaons. The role of rescatterings and long-lived resonance decays in forming the mentioned long-range tails is investigated. The particle rescattering contribution to the out tail seems to be dominating. The model calculations also show substantial relative emission times between pions (with mean value 13 fm/c in the longitudinally comoving system), including those coming from resonance decays and rescatterings. A prediction is made for the source functions in Large Hadron Collider (LHC) Pb+Pb <span class="hlt">collisions</span> at sNN=2.76 TeV, which are still not extracted from the measured correlation functions.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li class="active"><span>24</span></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_24 --> <div id="page_25" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li class="active"><span>25</span></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="481"> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20010012166&hterms=rbs&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Drbs','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20010012166&hterms=rbs&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Drbs"><span>Sputtering Erosion in the <span class="hlt">Ion</span> Thruster</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Ray, Pradosh K.; Mantenieks, Maris A. (Technical Monitor)</p> <p>2000-01-01</p> <p>During the first phase of this research, the sputtering yields of molybdenum by low energy (100 eV and higher) xenon <span class="hlt">ions</span> were measured by using the methods of secondary neutral mass spectrometry (SNMS) and Rutherford backscattering spectrometry (RBS). However, the measured sputtering yields were found to be far too low to explain the sputtering erosions observed in the long-duration tests of <span class="hlt">ion</span> thrusters. The only difference between the sputtering yield measurement experiments and the <span class="hlt">ion</span> thruster tests was that the later are conducted at high <span class="hlt">ion</span> fluences. Hence, a study was initiated to investigate if any linkage exists between high <span class="hlt">ion</span> fluence and an enhanced sputtering yield. The objective of this research is to gain an understanding of the causes of the discrepancies between the sputtering rates of molybdenum grids in an <span class="hlt">ion</span> thruster and those measured from our experiments. We are developing a molecular dynamics simulation technique for studying low-energy xenon <span class="hlt">ion</span> interactions with molybdenum. It is difficult to determine <span class="hlt">collision</span> sequences analytically for primary <span class="hlt">ions</span> below the 200 eV energy range where the <span class="hlt">ion</span> energy is too low to be able to employ a random cascade model with confidence and it is too high to have to consider only single <span class="hlt">collision</span> at or near the surface. At these low energies, the range of primary <span class="hlt">ions</span> is about 1 to 2 nm from the surface and it takes less than 4 <span class="hlt">collisions</span> on the average to get an <span class="hlt">ion</span> to degrade to such an energy that it can no longer migrate. The fine details of <span class="hlt">atomic</span> motion during the sputtering process are revealed through computer simulation schemes. By using an appropriate interatomic potential, the positions and velocities of the incident <span class="hlt">ion</span> together with a sufficient number of target <span class="hlt">atoms</span> are determined in small time steps. Hence, it allows one to study the evolution of damages in the target and its effect on the sputtering yield. We are at the preliminary stages of setting up the simulation program.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20010046488&hterms=ACCOUNTS+CHARGE&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3DACCOUNTS%2BBY%2BCHARGE','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20010046488&hterms=ACCOUNTS+CHARGE&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3DACCOUNTS%2BBY%2BCHARGE"><span>Charge Exchange Contribution to the Decay of the Ring Current, Measured by <span class="hlt">Energetic</span> Neutral <span class="hlt">Atoms</span> (ENAs)</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Jorgensen, A. M.; Henderson, M. G.; Roelof, E. C.; Reeves, G. D.; Spence, H. E.</p> <p>2001-01-01</p> <p>In this paper we calculate the contribution of charge exchange to the decay of the ring current. Past works have suggested that charge exchange of ring current protons is primarily responsible for the decay of the ring current during the late recovery phase, but there is still much debate about the fast decay of the early recovery phase. We use <span class="hlt">energetic</span> neutral <span class="hlt">atom</span> (ENA) measurements from Polar to calculate the total ENA energy escape. To get the total ENA escape we apply a forward modeling technique, and to estimate the total ring current energy escape we use the Dessler-Parker-Sckopke relationship. We find that during the late recovery phase of the March 10, 1998 storm ENAs with energies greater than 17.5 keV can account for 75% of the estimated energy loss from the ring current. During the fast recovery the measured ENAs can only account for a small portion of the total energy loss. We also find that the lifetime of the trapped <span class="hlt">ions</span> is significantly shorter during the fast recovery phase than during the late recovery phase, suggesting that different processes are operating during the two phases.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018A%26A...610A..57B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018A%26A...610A..57B"><span>Excitation and charge transfer in low-energy hydrogen <span class="hlt">atom</span> <span class="hlt">collisions</span> with neutral oxygen</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Barklem, P. S.</p> <p>2018-02-01</p> <p>Excitation and charge transfer in low-energy O+H <span class="hlt">collisions</span> is studied; it is a problem of importance for modelling stellar spectra and obtaining accurate oxygen abundances in late-type stars including the Sun. The <span class="hlt">collisions</span> have been studied theoretically using a previously presented method based on an asymptotic two-electron linear combination of <span class="hlt">atomic</span> orbitals (LCAO) model of ionic-covalent interactions in the neutral <span class="hlt">atom-hydrogen-atom</span> system, together with the multichannel Landau-Zener model. The method has been extended to include configurations involving excited states of hydrogen using an estimate for the two-electron transition coupling, but this extension was found to not lead to any remarkably high rates. Rate coefficients are calculated for temperatures in the range 1000-20 000 K, and charge transfer and (de)excitation processes involving the first excited S-states, 4s.5So and 4s.3So, are found to have the highest rates. Data are available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/vizbin/qcat?J/A+A/610/A57. The data are also available at http://https://github.com/barklem/public-data</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/21989741','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/21989741"><span><span class="hlt">Atomic</span> switch: <span class="hlt">atom/ion</span> movement controlled devices for beyond von-neumann computers.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Hasegawa, Tsuyoshi; Terabe, Kazuya; Tsuruoka, Tohru; Aono, Masakazu</p> <p>2012-01-10</p> <p>An <span class="hlt">atomic</span> switch is a nanoionic device that controls the diffusion of metal <span class="hlt">ions/atoms</span> and their reduction/oxidation processes in the switching operation to form/annihilate a conductive path. Since metal <span class="hlt">atoms</span> can provide a highly conductive channel even if their cluster size is in the nanometer scale, <span class="hlt">atomic</span> switches may enable downscaling to smaller than the 11 nm technology node, which is a great challenge for semiconductor devices. <span class="hlt">Atomic</span> switches also possess novel characteristics, such as high on/off ratios, very low power consumption and non-volatility. The unique operating mechanisms of these devices have enabled the development of various types of <span class="hlt">atomic</span> switch, such as gap-type and gapless-type two-terminal <span class="hlt">atomic</span> switches and three-terminal <span class="hlt">atomic</span> switches. Novel functions, such as selective volatile/nonvolatile, synaptic, memristive, and photo-assisted operations have been demonstrated. Such <span class="hlt">atomic</span> switch characteristics can not only improve the performance of present-day electronic systems, but also enable development of new types of electronic systems, such as beyond von- Neumann computers. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1421840-heavy-light-hadron-production-hadron-correlation-relativistic-heavy-ion-collisions','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1421840-heavy-light-hadron-production-hadron-correlation-relativistic-heavy-ion-collisions"><span>Heavy and light hadron production and D-hadron correlation in relativistic heavy-<span class="hlt">ion</span> <span class="hlt">collisions</span></span></a></p> <p><a target="_blank" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Cao, Shanshan; Luo, Tan; He, Yayun; ...</p> <p>2017-09-25</p> <p>We establish a linear Boltzmann transport (LBT) model coupled to hydrodynamical background to study hard parton evolution in heavy-<span class="hlt">ion</span> <span class="hlt">collisions</span>. Both elastic and inelastic scatterings are included in our calculations; and heavy and light flavor partons are treated on the same footing. Within this LBT model, we provide good descriptions of heavy and light hadron suppression and anisotropic flow in heavy-<span class="hlt">ion</span> <span class="hlt">collisions</span>. Angular correlation functions between heavy and light flavor hadrons are studied for the first time and shown able to quantify not only the amount of heavy quark energy loss, but also how the parton energy is re-distributed inmore » parton showers.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1421840','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1421840"><span>Heavy and light hadron production and D-hadron correlation in relativistic heavy-<span class="hlt">ion</span> <span class="hlt">collisions</span></span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Cao, Shanshan; Luo, Tan; He, Yayun</p> <p></p> <p>We establish a linear Boltzmann transport (LBT) model coupled to hydrodynamical background to study hard parton evolution in heavy-<span class="hlt">ion</span> <span class="hlt">collisions</span>. Both elastic and inelastic scatterings are included in our calculations; and heavy and light flavor partons are treated on the same footing. Within this LBT model, we provide good descriptions of heavy and light hadron suppression and anisotropic flow in heavy-<span class="hlt">ion</span> <span class="hlt">collisions</span>. Angular correlation functions between heavy and light flavor hadrons are studied for the first time and shown able to quantify not only the amount of heavy quark energy loss, but also how the parton energy is re-distributed inmore » parton showers.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016cosp...41E1523P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016cosp...41E1523P"><span>Modeling Planetary Atmospheric Energy Deposition By <span class="hlt">Energetic</span> <span class="hlt">Ions</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Parkinson, Christopher; Bougher, Stephen; Gronoff, Guillaume; Barthelemy, Mathieu</p> <p>2016-07-01</p> <p>The structure, dynamics, chemistry, and evolution of planetary upper atmospheres are in large part determined by the available sources of energy. In addition to the solar EUV flux, the solar wind and solar <span class="hlt">energetic</span> particle (SEP) events are also important sources. Both of these particle populations can significantly affect an atmosphere, causing atmospheric loss and driving chemical reactions. Attention has been paid to these sources from the standpoint of the radiation environment for humans and electronics, but little work has been done to evaluate their impact on planetary atmospheres. At unmagnetized planets or those with crustal field anomalies, in particular, the solar wind and SEPs of all energies have direct access to the atmosphere and so provide a more substantial energy source than at planets having protective global magnetic fields. Additionally, solar wind and <span class="hlt">energetic</span> particle fluxes should be more significant for planets orbiting more active stars, such as is the case in the early history of the solar system for paleo-Venus and Mars. Therefore quantification of the atmospheric energy input from the solar wind and SEP events is an important component of our understanding of the processes that control their state and evolution. We have applied a full Lorentz motion particle transport model to study the effects of particle precipitation in the upper atmospheres of Mars and Venus. Such modeling has been previously done for Earth and Mars using a guiding center precipitation model. Currently, this code is only valid for particles with small gyroradii in strong uniform magnetic fields. There is a clear necessity for a Lorentz formulation, hence, a systematic study of the ionization, excitation, and energy deposition has been conducted, including a comparison of the influence relative to other energy sources (namely EUV photons). The result is a robust examination of the influence of <span class="hlt">energetic</span> <span class="hlt">ion</span> transport on the Venus and Mars upper atmosphere which</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19740026077','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19740026077"><span>Effects of anisotropic electron-<span class="hlt">ion</span> interactions in <span class="hlt">atomic</span> photoelectron angular distributions</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Dill, D.; Starace, A. F.; Manson, S. T.</p> <p>1974-01-01</p> <p>The photoelectron asymmetry parameter beta in LS-coupling is obtained as an expansion into contributions from alternative angular momentum transfers j sub t. The physical significance of this expansion of beta is shown to be that: (1) the electric dipole interaction transfers to the <span class="hlt">atom</span> a charcteristic single angular momentum j sub t = sub o, where sub o is the photoelectron's initial orbital momentum; and (2) angular momentum transfers indicate the presence of anisotropic interaction of the outgoing photoelectron with the residual <span class="hlt">ion</span>. For open shell <span class="hlt">atoms</span> the photoelectron-<span class="hlt">ion</span> interaction is generally anisotropic; photoelectron phase shifts and electric dipole matrix elements depend on both the multiplet term of the residual <span class="hlt">ion</span> and the total orbital momentum of the <span class="hlt">ion</span>-photoelectron final state channel. Consequently beta depends on the term levels of the residual <span class="hlt">ion</span> and contains contributions from all allowed values of j sub t. Numerical calculations of the asymmetry parameters and partial cross sections for photoionization of <span class="hlt">atomic</span> sulfur are presented.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19950054424&hterms=Per&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3DPer','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19950054424&hterms=Per&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3DPer"><span>The mean ionic charge state of solar <span class="hlt">energetic</span> Fe <span class="hlt">ions</span> above 200 MeV per nucleon</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Tylka, A. J.; Boberg, P. R.; Adams, J. H., Jr.; Beahm, L. P.; Dietrich, W. F.; Kleis, T.</p> <p>1995-01-01</p> <p>We have analyzed the geomagnetic transmission of solar <span class="hlt">energetic</span> Fe <span class="hlt">ions</span> at approximately 200-600 MeV per nucleon during the great solar <span class="hlt">energetic</span> particle (SEP) events of 1989 September-October. By comparing fluences from the Chicago charged-particle telescope on IMP-8 in interplanetary space and from NRL's Heavy <span class="hlt">Ions</span> in Space (HIIS) experiment aboard the Long Duration Exposure Facility (LDEF) in low-Earth orbit, we obtain a mean ionic charge (Q(sub 3)) = 14.2 +/- 1.4. This result is significantly lower than (Q) observed at approximately 1 MeV per nucleon in impulsive, He-3 rich SEP events, indicating that neither acceleration at the flare site nor flare-heated plasma significantly contributes to the high-energy Fe <span class="hlt">ions</span> we observe. But it agrees well with the (Q) observed in gradual SEP events at approximately 1 MeV per nucleon, in which <span class="hlt">ions</span> are accelerated by shocks driven by fast coronal mass ejections, and hence shows that particles are accelerated to very high energies in this way. We also note apparent differences between solar wind and SEP charge state distributions, which may favor a coronal (rather than solar wind) seed population or may suggest additional ionization in the ambient shock-region plasma.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFM.P13A3800K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFM.P13A3800K"><span><span class="hlt">Energetic</span> Neutral <span class="hlt">Atom</span> (ENA) Movies and Other Cool Data from Cassini's Magnetosphere Imaging Instrument (MIMI)</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kusterer, M. B.; Mitchell, D. G.; Krimigis, S. M.; Vandegriff, J. D.</p> <p>2014-12-01</p> <p>Having been at Saturn for over a decade, the MIMI instrument on Cassini has created a rich dataset containing many details about Saturn's magnetosphere. In particular, the images of <span class="hlt">energetic</span> neutral <span class="hlt">atoms</span> (ENAs) taken by the <span class="hlt">Ion</span> and Neutral Camera (INCA) offer a global perspective on Saturn's plasma environment. The MIMI team is now regularly making movies (in MP4 format) consisting of consecutive ENA images. The movies correct for spacecraft attitude changes by projecting the images (whose viewing angles can substantially vary from one image to the next) into a fixed inertial frame that makes it easy to view spatial features evolving in time. These movies are now being delivered to the PDS and are also available at the MIMI team web site. Several other higher order products are now also available, including 20-day energy-time spectrograms for the Charge-Energy-Mass Spectrometer (CHEMS) sensor, and daily energy-time spectrograms for the Low Energy Magnetospheric Measurements system (LEMMS) sensor. All spectrograms are available as plots or digital data in ASCII format. For all MIMI sensors, a Data User Guide is also available. This paper presents details and examples covering the specifics of MIMI higher order data products. URL: http://cassini-mimi.jhuapl.edu/</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017Natur.548...62A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017Natur.548...62A"><span>Global Λ hyperon polarization in nuclear <span class="hlt">collisions</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Adamczyk, L.; Adkins, J. K.; Agakishiev, G.; Aggarwal, M. M.; Ahammed, Z.; Ajitanand, N. N.; Alekseev, I.; Anderson, D. M.; Aoyama, R.; Aparin, A.; Arkhipkin, D.; Aschenauer, E. C.; Ashraf, M. U.; Attri, A.; Averichev, G. S.; Bai, X.; Bairathi, V.; Behera, A.; Bellwied, R.; Bhasin, A.; Bhati, A. K.; Bhattarai, P.; Bielcik, J.; Bielcikova, J.; Bland, L. C.; Bordyuzhin, I. G.; Bouchet, J.; Brandenburg, J. D.; Brandin, A. V.; Brown, D.; Bunzarov, I.; Butterworth, J.; Caines, H.; de La Barca Sánchez, M. Calderón; Campbell, J. M.; Cebra, D.; Chakaberia, I.; Chaloupka, P.; Chang, Z.; Chankova-Bunzarova, N.; Chatterjee, A.; Chattopadhyay, S.; Chen, X.; Chen, J. H.; Chen, X.; Cheng, J.; Cherney, M.; Christie, W.; Contin, G.; Crawford, H. J.; Das, S.; de Silva, L. C.; Debbe, R. R.; Dedovich, T. G.; Deng, J.; Derevschikov, A. A.; Didenko, L.; Dilks, C.; Dong, X.; Drachenberg, J. L.; Draper, J. E.; Dunkelberger, L. E.; Dunlop, J. C.; Efimov, L. G.; Elsey, N.; Engelage, J.; Eppley, G.; Esha, R.; Esumi, S.; Evdokimov, O.; Ewigleben, J.; Eyser, O.; Fatemi, R.; Fazio, S.; Federic, P.; Federicova, P.; Fedorisin, J.; Feng, Z.; Filip, P.; Finch, E.; Fisyak, Y.; Flores, C. E.; Fulek, L.; Gagliardi, C. A.; Garand, D.; Geurts, F.; Gibson, A.; Girard, M.; Grosnick, D.; Gunarathne, D. S.; Guo, Y.; Gupta, A.; Gupta, S.; Guryn, W.; Hamad, A. I.; Hamed, A.; Harlenderova, A.; Harris, J. W.; He, L.; Heppelmann, S.; Heppelmann, S.; Hirsch, A.; Hoffmann, G. W.; Horvat, S.; Huang, T.; Huang, B.; Huang, X.; Huang, H. Z.; Humanic, T. J.; Huo, P.; Igo, G.; Jacobs, W. W.; Jentsch, A.; Jia, J.; Jiang, K.; Jowzaee, S.; Judd, E. G.; Kabana, S.; Kalinkin, D.; Kang, K.; Kauder, K.; Ke, H. W.; Keane, D.; Kechechyan, A.; Khan, Z.; Kikoła, D. P.; Kisel, I.; Kisiel, A.; Kochenda, L.; Kocmanek, M.; Kollegger, T.; Kosarzewski, L. K.; Kraishan, A. F.; Kravtsov, P.; Krueger, K.; Kulathunga, N.; Kumar, L.; Kvapil, J.; Kwasizur, J. H.; Lacey, R.; Landgraf, J. M.; Landry, K. D.; Lauret, J.; Lebedev, A.; Lednicky, R.; Lee, J. H.; Li, X.; Li, C.; Li, W.; Li, Y.; Lidrych, J.; Lin, T.; Lisa, M. A.; Liu, H.; Liu, P.; Liu, Y.; Liu, F.; Ljubicic, T.; Llope, W. J.; Lomnitz, M.; Longacre, R. S.; Luo, S.; Luo, X.; Ma, G. L.; Ma, L.; Ma, Y. G.; Ma, R.; Magdy, N.; Majka, R.; Mallick, D.; Margetis, S.; Markert, C.; Matis, H. S.; Meehan, K.; Mei, J. C.; Miller, Z. W.; Minaev, N. G.; Mioduszewski, S.; Mishra, D.; Mizuno, S.; Mohanty, B.; Mondal, M. M.; Morozov, D. A.; Mustafa, M. K.; Nasim, Md.; Nayak, T. K.; Nelson, J. M.; Nie, M.; Nigmatkulov, G.; Niida, T.; Nogach, L. V.; Nonaka, T.; Nurushev, S. B.; Odyniec, G.; Ogawa, A.; Oh, K.; Okorokov, V. A.; Olvitt, D.; Page, B. S.; Pak, R.; Pandit, Y.; Panebratsev, Y.; Pawlik, B.; Pei, H.; Perkins, C.; Pile, P.; Pluta, J.; Poniatowska, K.; Porter, J.; Posik, M.; Poskanzer, A. M.; Pruthi, N. K.; Przybycien, M.; Putschke, J.; Qiu, H.; Quintero, A.; Ramachandran, S.; Ray, R. L.; Reed, R.; Rehbein, M. J.; Ritter, H. G.; Roberts, J. B.; Rogachevskiy, O. V.; Romero, J. L.; Roth, J. D.; Ruan, L.; Rusnak, J.; Rusnakova, O.; Sahoo, N. R.; Sahu, P. K.; Salur, S.; Sandweiss, J.; Saur, M.; Schambach, J.; Schmah, A. M.; Schmidke, W. B.; Schmitz, N.; Schweid, B. R.; Seger, J.; Sergeeva, M.; Seyboth, P.; Shah, N.; Shahaliev, E.; Shanmuganathan, P. V.; Shao, M.; Sharma, A.; Sharma, M. K.; Shen, W. Q.; Shi, Z.; Shi, S. S.; Shou, Q. Y.; Sichtermann, E. P.; Sikora, R.; Simko, M.; Singha, S.; Skoby, M. J.; Smirnov, N.; Smirnov, D.; Solyst, W.; Song, L.; Sorensen, P.; Spinka, H. M.; Srivastava, B.; Stanislaus, T. D. S.; Strikhanov, M.; Stringfellow, B.; Sugiura, T.; Sumbera, M.; Summa, B.; Sun, Y.; Sun, X. M.; Sun, X.; Surrow, B.; Svirida, D. N.; Tang, A. H.; Tang, Z.; Taranenko, A.; Tarnowsky, T.; Tawfik, A.; Thäder, J.; Thomas, J. H.; Timmins, A. R.; Tlusty, D.; Todoroki, T.; Tokarev, M.; Trentalange, S.; Tribble, R. E.; Tribedy, P.; Tripathy, S. K.; Trzeciak, B. A.; Tsai, O. D.; Ullrich, T.; Underwood, D. G.; Upsal, I.; van Buren, G.; van Nieuwenhuizen, G.; Vasiliev, A. N.; Videbæk, F.; Vokal, S.; Voloshin, S. A.; Vossen, A.; Wang, G.; Wang, Y.; Wang, F.; Wang, Y.; Webb, J. C.; Webb, G.; Wen, L.; Westfall, G. D.; Wieman, H.; Wissink, S. W.; Witt, R.; Wu, Y.; Xiao, Z. G.; Xie, W.; Xie, G.; Xu, J.; Xu, N.; Xu, Q. H.; Xu, Y. F.; Xu, Z.; Yang, Y.; Yang, Q.; Yang, C.; Yang, S.; Ye, Z.; Ye, Z.; Yi, L.; Yip, K.; Yoo, I.-K.; Yu, N.; Zbroszczyk, H.; Zha, W.; Zhang, Z.; Zhang, X. P.; Zhang, J. B.; Zhang, S.; Zhang, J.; Zhang, Y.; Zhang, J.; Zhang, S.; Zhao, J.; Zhong, C.; Zhou, L.; Zhou, C.; Zhu, X.; Zhu, Z.; Zyzak, M.</p> <p>2017-08-01</p> <p>The extreme energy densities generated by ultra-relativistic <span class="hlt">collisions</span> between heavy <span class="hlt">atomic</span> nuclei produce a state of matter that behaves surprisingly like a fluid, with exceptionally high temperature and low viscosity. Non-central <span class="hlt">collisions</span> have angular momenta of the order of 1,000ћ, and the resulting fluid may have a strong vortical structure that must be understood to describe the fluid properly. The vortical structure is also of particular interest because the restoration of fundamental symmetries of quantum chromodynamics is expected to produce novel physical effects in the presence of strong vorticity. However, no experimental indications of fluid vorticity in heavy <span class="hlt">ion</span> <span class="hlt">collisions</span> have yet been found. Since vorticity represents a local rotational structure of the fluid, spin-orbit coupling can lead to preferential orientation of particle spins along the direction of rotation. Here we present measurements of an alignment between the global angular momentum of a non-central <span class="hlt">collision</span> and the spin of emitted particles (in this case the <span class="hlt">collision</span> occurs between gold nuclei and produces Λ baryons), revealing that the fluid produced in heavy <span class="hlt">ion</span> <span class="hlt">collisions</span> is the most vortical system so far observed. (At high energies, this fluid is a quark-gluon plasma.) We find that Λ and hyperons show a positive polarization of the order of a few per cent, consistent with some hydrodynamic predictions. (A hyperon is a particle composed of three quarks, at least one of which is a strange quark; the remainder are up and down quarks, found in protons and neutrons.) A previous measurement that reported a null result, that is, zero polarization, at higher <span class="hlt">collision</span> energies is seen to be consistent with the trend of our observations, though with larger statistical uncertainties. These data provide experimental access to the vortical structure of the nearly ideal liquid created in a heavy <span class="hlt">ion</span> <span class="hlt">collision</span> and should prove valuable in the development of hydrodynamic models that</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018PhRvB..97o5307H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018PhRvB..97o5307H"><span>Crater function moments: Role of implanted noble gas <span class="hlt">atoms</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hobler, Gerhard; Maciążek, Dawid; Postawa, Zbigniew</p> <p>2018-04-01</p> <p>Spontaneous pattern formation by <span class="hlt">energetic</span> <span class="hlt">ion</span> beams is usually explained in terms of surface-curvature dependent sputtering and <span class="hlt">atom</span> redistribution in the target. Recently, the effect of <span class="hlt">ion</span> implantation on surface stability has been studied for nonvolatile <span class="hlt">ion</span> species, but for the case of noble gas <span class="hlt">ion</span> beams it has always been assumed that the implanted <span class="hlt">atoms</span> can be neglected. In this work, we show by molecular dynamics (MD) and Monte Carlo (MC) simulations that this assumption is not valid in a wide range of implant conditions. Sequential-impact MD simulations are performed for 1-keV Ar, 2-keV Kr, and 2-keV Xe bombardments of Si, starting with a pure single-crystalline Si target and running impacts until sputtering equilibrium has been reached. The simulations demonstrate the importance of the implanted <span class="hlt">ions</span> for crater-function estimates. The <span class="hlt">atomic</span> volumes of Ar, Kr, and Xe in Si are found to be a factor of two larger than in the solid state. To extend the study to a wider range of energies, MC simulations are performed. We find that the role of the implanted <span class="hlt">ions</span> increases with the <span class="hlt">ion</span> energy although the increase is attenuated for the heavier <span class="hlt">ions</span>. The analysis uses the crater function formalism specialized to the case of sputtering equilibrium.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/11082572','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/11082572"><span>Spontaneous evolution of rydberg <span class="hlt">atoms</span> into an ultracold plasma</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Robinson; Tolra; Noel; Gallagher; Pillet</p> <p>2000-11-20</p> <p>We have observed the spontaneous evolution of a dense sample of Rydberg <span class="hlt">atoms</span> into an ultracold plasma, in spite of the fact that each of the <span class="hlt">atoms</span> may initially be bound by up to 100 cm(-1). When the <span class="hlt">atoms</span> are initially bound by 70 cm(-1), this evolution occurs when most of the <span class="hlt">atoms</span> are translationally cold, <1 mK, but a small fraction, approximately 1%, is at room temperature. Ionizing <span class="hlt">collisions</span> between hot and cold Rydberg <span class="hlt">atoms</span> and blackbody photoionization produce an essentially stationary cloud of cold <span class="hlt">ions</span>, which traps electrons produced later. The trapped electrons rapidly collisionally ionize the remaining cold Rydberg <span class="hlt">atoms</span> to form a cold plasma.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017PhRvC..95e4915I','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017PhRvC..95e4915I"><span>Vorticity in heavy-<span class="hlt">ion</span> <span class="hlt">collisions</span> at the JINR Nuclotron-based <span class="hlt">Ion</span> Collider fAcility</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ivanov, Yu. B.; Soldatov, A. A.</p> <p>2017-05-01</p> <p>Vorticity of matter generated in noncentral heavy-<span class="hlt">ion</span> <span class="hlt">collisions</span> at energies of the Nuclotron-based <span class="hlt">Ion</span> Collider fAcility (NICA) at the Joint Institute for Nuclear Research (JINR) in Dubna is studied. Simulations are performed within the model of the three-fluid dynamics (3FD) which reproduces the major part of bulk observables at these energies. Comparison with earlier calculations is done. The qualitative pattern of the vorticity evolution is analyzed. It is demonstrated that the vorticity is mainly located at the border between participants and spectators. In particular, this implies that the relative Λ -hyperon polarization should be stronger at rapidities of the fragmentation regions than that in the midrapidity region.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011ChPhC..35..741Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011ChPhC..35..741Z"><span>Hypertriton and light nuclei production at Λ-production subthreshold energy in heavy-<span class="hlt">ion</span> <span class="hlt">collisions</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zhang, Song; Chen, Jin-Hui; Ma, Yu-Gang; Xu, Zhang-Bu; Cai, Xiang-Zhou; Ma, Guo-Liang; Zhong, Chen</p> <p>2011-08-01</p> <p>High-energy heavy-<span class="hlt">ion</span> <span class="hlt">collisions</span> produce abundant hyperons and nucleons. A dynamical coalescence model coupled with the ART model is employed to study the production probabilities of light clusters, deuteron (d), triton (t), helion (3He), and hypertriton (3ΛH) at subthreshold energy of Aproduction (≈ 1 GeV per nucleon). We study the dependence on the reaction system size of the coalescence penalty factor per additional nucleon and entropy per nucleon. The Strangeness Population Factor shows an extra suppression of hypertriton comparing to light clusters of the same mass number. This model predicts a hypertriton production cross-section of a few μb in 36Ar+36Ar, 40Ca+40Ca and 56Ni+56Ni in 1 A GeV reactions. The production rate is as high as a few hypertritons per million <span class="hlt">collisions</span>, which shows that the fixed-target heavy-<span class="hlt">ion</span> <span class="hlt">collisions</span> at CSR (Lanzhou/China) at Λ subthreshold energy are suitable for breaking new ground in hypernuclear physics.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017PSST...26b4002W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017PSST...26b4002W"><span><span class="hlt">Ion</span> velocity distribution functions in argon and helium discharges: detailed comparison of numerical simulation results and experimental data</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wang, Huihui; Sukhomlinov, Vladimir S.; Kaganovich, Igor D.; Mustafaev, Alexander S.</p> <p>2017-02-01</p> <p>Using the Monte Carlo <span class="hlt">collision</span> method, we have performed simulations of <span class="hlt">ion</span> velocity distribution functions (IVDF) taking into account both elastic <span class="hlt">collisions</span> and charge exchange <span class="hlt">collisions</span> of <span class="hlt">ions</span> with <span class="hlt">atoms</span> in uniform electric fields for argon and helium background gases. The simulation results are verified by comparison with the experiment data of the <span class="hlt">ion</span> mobilities and the <span class="hlt">ion</span> transverse diffusion coefficients in argon and helium. The recently published experimental data for the first seven coefficients of the Legendre polynomial expansion of the <span class="hlt">ion</span> energy and angular distribution functions are used to validate simulation results for IVDF. Good agreement between measured and simulated IVDFs shows that the developed simulation model can be used for accurate calculations of IVDFs.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/biblio/7164556','DOE-PATENT-XML'); return false;" href="https://www.osti.gov/biblio/7164556"><span>Photo <span class="hlt">ion</span> spectrometer</span></a></p> <p><a target="_blank" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p>Gruen, D.M.; Young, C.E.; Pellin, M.J.</p> <p>1989-08-08</p> <p>A method and apparatus are described for extracting for quantitative analysis <span class="hlt">ions</span> of selected <span class="hlt">atomic</span> components of a sample. A lens system is configured to provide a slowly diminishing field region for a volume containing the selected <span class="hlt">atomic</span> components, enabling accurate energy analysis of <span class="hlt">ions</span> generated in the slowly diminishing field region. The lens system also enables focusing on a sample of a charged particle beam, such as an <span class="hlt">ion</span> beam, along a path length perpendicular to the sample and extraction of the charged particles along a path length also perpendicular to the sample. Improvement of signal to noise ratio is achieved by laser excitation of <span class="hlt">ions</span> to selected auto-ionization states before carrying out quantitative analysis. Accurate energy analysis of <span class="hlt">energetic</span> charged particles is assured by using a preselected resistive thick film configuration disposed on an insulator substrate for generating predetermined electric field boundary conditions to achieve for analysis the required electric field potential. The spectrometer also is applicable in the fields of SIMS, ISS and electron spectroscopy. 8 figs.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017PhRvC..95e4622G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017PhRvC..95e4622G"><span>Isovector dipole resonance and shear viscosity in low energy heavy-<span class="hlt">ion</span> <span class="hlt">collisions</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Guo, C. Q.; Ma, Y. G.; He, W. B.; Cao, X. G.; Fang, D. Q.; Deng, X. G.; Zhou, C. L.</p> <p>2017-05-01</p> <p>The ratio of shear viscosity over entropy density in low energy heavy-<span class="hlt">ion</span> <span class="hlt">collision</span> has been calculated by using the Green-Kubo method in the framework of an extended quantum molecular dynamics model. After the system almost reaches a local equilibration for a head-on 40Ca+100Mo <span class="hlt">collision</span>, thermodynamic and transport properties are extracted. Meanwhile, the isovector giant dipole resonance (IVGDR) of the <span class="hlt">collision</span> system also is studied. By the Gaussian fits to the IVGDR photon spectra, the peak energies of the IVGDR are extracted at different incident energies. The result shows that the IVGDR peak energy has a positive correlation with the ratio of shear viscosity over entropy density. This is a quantum effect and indicates a difference between nuclear matter and classical fluid.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016PhPl...23f3510G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016PhPl...23f3510G"><span><span class="hlt">Ion</span> temperature profiles in front of a negative planar electrode studied by a one-dimensional two-fluid model</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gyergyek, T.; Kovačič, J.</p> <p>2016-06-01</p> <p>Plasma-wall transition is studied by a one-dimensional steady state two-fluid model. Continuity and momentum exchange equations are used for the electrons, while the continuity, momentum exchange, and energy transport equation are used for the <span class="hlt">ions</span>. Electrons are assumed to be isothermal. The closure of <span class="hlt">ion</span> equations is made by the assumption that the heat flux is zero. The model equations are solved for potential, <span class="hlt">ion</span> and electron density, and velocity and <span class="hlt">ion</span> temperature as independent variables. The model includes coulomb <span class="hlt">collisions</span> between <span class="hlt">ions</span> and electrons and charge exchange <span class="hlt">collisions</span> between <span class="hlt">ions</span> and neutral <span class="hlt">atoms</span> of the same species and same mass. The neutral <span class="hlt">atoms</span> are assumed to be essentially at rest. The model is solved for finite ratio ɛ = /λ D L between the Debye length and λD and ionization length L in the pre-sheath and in the sheath at the same time. Charge exchange <span class="hlt">collisions</span> heat the <span class="hlt">ions</span> in the sheath and the pre-sheath. Even a small increase of the frequency of charge exchange <span class="hlt">collisions</span> causes a substantial increase of <span class="hlt">ion</span> temperature. Coulomb <span class="hlt">collisions</span> have negligible effect on <span class="hlt">ion</span> temperature in the pre-sheath, while in the sheath they cause a small cooling of <span class="hlt">ions</span>. The increase of ɛ causes the increase of <span class="hlt">ion</span> temperature. From the <span class="hlt">ion</span> density and temperature profiles, the polytropic function κ is calculated according to its definition given by Kuhn et al. [Phys. Plasmas 13, 013503 (2006)]. The obtained profiles of κ indicate that the <span class="hlt">ion</span> flow is isothermal only in a relatively narrow region in the pre-sheath, while close to the sheath edge and in the sheath it is closer to adiabatic. The <span class="hlt">ion</span> sound velocity is space dependent and exhibits a maximum. This maximum indicates the location of the sheath edge only in the limit ɛ → 0 .</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20070036625&hterms=atom&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Datom','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20070036625&hterms=atom&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Datom"><span><span class="hlt">Energetic</span> Neutral <span class="hlt">Atom</span> Emissions From Venus: VEX Observations and Theoretical Modeling</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Fok, M.-C.; Galli, A.; Tanaka, T.; Moore, T. E.; Wurz, P.; Holmstrom, M.</p> <p>2007-01-01</p> <p>Venus has almost no intrinsic magnetic field to shield itself from its surrounding environment. The solar wind thus directly interacts with the planetary ionosphere and atmosphere. One of the by-products of this close encounter is the production of <span class="hlt">energetic</span> neutral <span class="hlt">atom</span> (ENA) emissions. Theoretical studies have shown that significant amount of ENAs are emanated from the planet. The launch of the Venus Express (VEX) in 2005 provided the first light ever of the Venus ENA emissions. The observed ENA flux level and structure are in pretty good agreement with the theoretical studies. In this paper, we present VEX ENA data and the comparison with numerical simulations. We seek to understand the solar wind interaction with the planet and the impacts on its atmospheres.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li class="active"><span>25</span></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_25 --> <div class="footer-extlink text-muted" style="margin-bottom:1rem; text-align:center;">Some links on this page may take you to non-federal websites. Their policies may differ from this site.</div> </div><!-- container --> <footer><a id="backToTop" href="#top"> </a><nav><a id="backToTop" href="#top"> </a><ul class="links"><a id="backToTop" href="#top"> </a><li><a id="backToTop" href="#top"></a><a href="/sitemap.html">Site Map</a></li> <li><a href="/members/index.html">Members Only</a></li> <li><a href="/website-policies.html">Website Policies</a></li> <li><a href="https://doe.responsibledisclosure.com/hc/en-us" target="_blank">Vulnerability Disclosure Program</a></li> <li><a href="/contact.html">Contact Us</a></li> </ul> <div class="small">Science.gov is maintained by the U.S. Department of Energy's <a href="https://www.osti.gov/" target="_blank">Office of Scientific and Technical Information</a>, in partnership with <a href="https://www.cendi.gov/" target="_blank">CENDI</a>.</div> </nav> </footer> <script type="text/javascript"><!-- // var lastDiv = ""; function showDiv(divName) { // hide last div if (lastDiv) { document.getElementById(lastDiv).className = "hiddenDiv"; } //if value of the box is not nothing and an object with that name exists, then change the class if (divName && document.getElementById(divName)) { document.getElementById(divName).className = "visibleDiv"; lastDiv = divName; } } //--> </script> <script> /** * Function that tracks a click on an outbound link in Google Analytics. * This function takes a valid URL string as an argument, and uses that URL string * as the event label. */ var trackOutboundLink = function(url,collectionCode) { try { h = window.open(url); setTimeout(function() { ga('send', 'event', 'topic-page-click-through', collectionCode, url); }, 1000); } catch(err){} }; </script> <!-- Google Analytics --> <script> (function(i,s,o,g,r,a,m){i['GoogleAnalyticsObject']=r;i[r]=i[r]||function(){ (i[r].q=i[r].q||[]).push(arguments)},i[r].l=1*new Date();a=s.createElement(o), m=s.getElementsByTagName(o)[0];a.async=1;a.src=g;m.parentNode.insertBefore(a,m) })(window,document,'script','//www.google-analytics.com/analytics.js','ga'); ga('create', 'UA-1122789-34', 'auto'); ga('send', 'pageview'); </script> <!-- End Google Analytics --> <script> showDiv('page_1') </script> </body> </html>