Science.gov

Sample records for energetic ion-atom collisions

  1. Ionization Phenomena in Ion-Atom Collisions

    NASA Astrophysics Data System (ADS)

    Deveney, Edward Francis

    Two many-electron ion-atom collision systems are used to investigate atomic and molecular structure and collisional interactions. Electrons emitted from MeV/u C^{3+} projectile target -atom collisions were measured with a high-resolution position -sensitive electron spectrometer at Oak Ridge National Laboratory. The electrons are predominantly ionized by direct projectile -target interactions or autoionizing (AI) from doubly excited AI levels of the ion which were excited in the collision. The energy dependence of directly scattered target electrons, binary-encounter electrons (BEE), is investigated and compared with theory. AI levels of the projectile 1s to nl single electron excited series, (1s2snl) n = 2,3,4,....infty, including the series limit are identified uniquely using energy level calculations. Original Auger yield calculations using a code by Cowan were used to discover a 1/{n^3} scaling in intensities of Auger peaks in the aforementioned series. This is explained using scattering theory. A nonstatistical population of the terms in the (1s2s2l) configuration was identified and investigated as a function of the beam energy and for four different target atoms. Two electron excited configurations are identified and investigated. The angular distribution of a correlated transfer and excitation AI state is measured and compared to theory. The final scattered charge state distributions of Kr^ {n+}, n = 1, 2, 3, 4, 5, projectiles are measured following collisions with Kr targets in the Van de Graaff Laboratory here at The University of Connecticut. Average scattered charge states as high as 12 are observed. It appears that these electrons are ionized during the lifetime of the quasimolecular state but a complete picture of the ionization mechanism(s) is not known. Calculations using a statistical model of ionization, modified in several ways, are compared with the experimental results to see if it is possible to isolate whether or not the electrons originate

  2. Newly appreciated roles for electrons in ion-atom collisions

    SciTech Connect

    Sellin, I.A. . Dept. of Physics and Astronomy Oak Ridge National Lab., TN )

    1990-01-01

    Since the previous Debrecen workshop on High-Energy Ion-Atom Collisions there have been numerous experiments and substantial theoretical developments in the fields of fast ion-atom and ion- solid collisions concerned with explicating the previously largely underappreciated role of electrons as ionizing and exciting agents in such collisions. Examples to be discussed include the double electron ionization problem in He; transfer ionization by protons in He; double excitation in He; backward scattering of electrons in He; the role of electron-electron interaction in determining beta parameters for ELC; projectile K ionization by target electrons; electron spin exchange in transfer excitation; electron impact ionization in crystal channels; resonant coherent excitation in crystal channels; excitation and dielectronic recombination in crystal channels; resonant transfer and excitation; the similarity of recoil ion spectra observed in coincidence with electron capture vs. electron loss; and new research on ion-atom collisions at relativistic energies.

  3. Multiple-electron processes in fast ion-atom collisions

    SciTech Connect

    Schlachter, A.S.

    1989-03-01

    Research in atomic physics at the Lawrence Berkeley Laboratory Super-HILAC and Bevalac accelerators on multiple-electron processes in fast ion-atom collisions is described. Experiments have studied various aspects of the charge-transfer, ionization, and excitation processes. Examples of processes in which electron correlation plays a role are resonant transfer and excitation and Auger-electron emission. Processes in which electron behavior can generally be described as uncorrelated include ionization and charge transfer in high-energy ion-atom collisions. A variety of experiments and results for energies from 1 MeV/u to 420 MeV/u are presented. 20 refs., 15 figs.

  4. Ion-Atom Cold Collisions and Atomic Clocks

    NASA Technical Reports Server (NTRS)

    Prestage, John D.; Maleki, Lute; Tjoelker, Robert L.

    1997-01-01

    Collisions between ultracold neutral atoms have for some time been the subject of investigation, initially with hydrogen and more recently with laser cooled alkali atoms. Advances in laser cooling and trapping of neutral atoms in a Magneto-Optic Trap (MOT) have made cold atoms available as the starting point for many laser cooled atomic physics investigations. The most spectacularly successful of these, the observation of Bose-Einstein Condensation (BEC) in a dilute ultra-cold spin polarized atomic vapor, has accelerated the study of cold collisions. Experimental and theoretical studies of BEC and the long range interaction between cold alkali atoms is at the boundary of atomic and low temperature physics. Such studies have been difficult and would not have been possible without the development and advancement of laser cooling and trapping of neutral atoms. By contrast, ion-atom interactions at low temperature, also very difficult to study prior to modern day laser cooling, have remained largely unexplored. But now, many laboratories worldwide have almost routine access to cold neutral atoms. The combined technologies of ion trapping, together with laser cooling of neutrals has made these studies experimentally feasible and several very important, novel applications might come out of such investigations . This paper is an investigation of ion-atom interactions in the cold and ultra-cold temperature regime. Some of the collisional ion-atom interactions present at room temperature are very much reduced in the low temperature regime. Reaction rates for charge transfer between unlike atoms, A + B(+) approaches A(+) + B, are expected to fall rapidly with temperature, approximately as T(sup 5/2). Thus, cold mixtures of atoms and ions are expected to coexist for very long times, unlike room temperature mixtures of the same ion-atom combination. Thus, it seems feasible to cool ions via collisions with laser cooled atoms. Many of the conventional collisional interactions

  5. Treatment of Ion-Atom Collisions Using a Partial-Wave Expansion of the Projectile Wavefunction

    ERIC Educational Resources Information Center

    Wong, T. G.; Foster, M.; Colgan, J.; Madison, D. H.

    2009-01-01

    We present calculations of ion-atom collisions using a partial-wave expansion of the projectile wavefunction. Most calculations of ion-atom collisions have typically used classical or plane-wave approximations for the projectile wavefunction, since partial-wave expansions are expected to require prohibitively large numbers of terms to converge…

  6. Differential electron-Cu5+ elastic scattering cross sections extracted from electron emission in ion-atom collisions

    NASA Astrophysics Data System (ADS)

    Liao, C.; Hagmann, S.; Bhalla, C. P.; Grabbe, S. R.; Cocke, C. L.; Richard, P.

    1999-04-01

    We present a method of deriving energy and angle-dependent electron-ion elastic scattering cross sections from doubly differential cross sections for electron emission in ion-atom collisions. By analyzing the laboratory frame binary encounter electron production cross sections in energetic ion-atom collisions, we derive projectile frame differential cross sections for electrons elastically scattered from highly charged projectile ions in the range between 60° and 180°. The elastic scattering cross sections are observed to deviate strongly from the Rutherford cross sections for electron scattering from bare nuclei. They exhibit strong Ramsauer-Townsend electron diffraction in the angular distribution of elastically scattered electrons, providing evidence for the strong role of screening played in the collision. Experimental data are compared with partial-wave calculations using the Hartree-Fock model.

  7. Delta-ray production in ion-atom collisions

    SciTech Connect

    Wilson, W.E.; Toburen, L.H.

    1980-07-01

    The stochastic energy concentrations randomly deposited in submicron volumes in and near the paths of charged particles is needed. Computational methods, especially Monte Carlo methods, required a comprehensive set of basic interaction cross sections for the primary and all secondary radiation products. Of particular importance for high LET radiations are the cross sections for the production of energetic secondary electrons, delta-rays, in primary ionizing events. In this paper, we review the present state of available data on the production of delta-rays by fast positive ions in collision with targets of biological interest. The systematics in the cross sections for proton ionization of molecular targets are discussed, indicating what scaling is possible and summarizing what can be concluded regarding the dependence of the mean delta-ray energies on the chemical makeup of the medium. A comparison of typical data is made with the binary-encounter approximation to illustrate the limitations of this theoretical treatment of the ionization process. A bibliography of relevant published works on this topic is included.

  8. High charge state, ion-atom collision experiments using accel-decel

    SciTech Connect

    Bernstein, E.M.; Clark, M.W.; Tanis, J.A.; Graham, W.G.

    1987-01-01

    Recent studies of /sub 16/S/sup 13 +/ + He collisions between 2.5 and 200 MeV, which were made using the accel-decel technique with the Brookhaven National Laboratory coupled MP tandem Van de Graaff accelerators, are discussed. Cross sections were measured for single electron-capture and -loss as well as K x rays correlated to electron-capture. Other planned ion-atom collision experiments requiring accel-decel are also presented. 18 refs., 3 figs.

  9. Single electron capture in fast ion-atom collisions

    NASA Astrophysics Data System (ADS)

    Milojević, Nenad

    2014-12-01

    Single-electron capture cross sections in collisions between fast bare projectiles and heliumlike atomic systems are investigated by means of the four-body boundary-corrected first Born (CB1-4B) approximation. The prior and post transition amplitudes for single charge exchange encompassing symmetric and asymmetric collisions are derived in terms of twodimensional real integrals in the case of the prior form and five-dimensional quadratures for the post form. The dielectronic interaction V12 = 1/r12 = 1/|r1 - r2| explicitly appears in the complete perturbation potential Vf of the post transition probability amplitude T+if. An illustrative computation is performed involving state-selective and total single capture cross sections for the p - He (prior and post form) and He2+, Li3+Be4+B5+C6+ - He (prior form) collisions at intermediate and high impact energies. We have also studied differential cross sections in prior and post form for single electron transfer from helium by protons. The role of dynamic correlations is examined as a function of increased projectile energy. Detailed comparisons with the measurements are carried out and the obtained theoretical cross sections are in reasonable agreement with the available experimental data.

  10. Assessment of ion-atom collision data for magnetic fusion plasma edge modelling

    NASA Astrophysics Data System (ADS)

    Phaneuf, R. A.

    Cross-section data for ion-atom collision processes which play important roles in the edge plasma of magnetically-confined fusion devices are surveyed and reviewed. The species considered include H, He, Li, Be, C, O, Ne, Al, Si, Ar, Ti, Cr, Fe, Ni, Cu, Mo, W and their ions. The most important ion-atom collision processes occurring in the edge plasma are charge-exchange reactions. Excitation and ionization processes are also considered. The scope is limited to atomic species and to collision velocities corresponding to plasma ion temperatures in the 2 to 200 eV range. Sources of evaluated or recommended data are presented where possible, and deficiencies in the data base are indicated.

  11. Treatment of ion-atom collisions using a partial-wave expansion of the projectile wavefunction

    SciTech Connect

    Foster, M; Colgan, J; Wong, T G; Madison, D H

    2008-01-01

    We present calculations of ion-atom collisions using a partial-wave expansion of the projectile wavefunction. Most calculations of ion-atom collisions have typically used classical or plane-wave approximations for the projectile wavefunction, since partial-wave expansions are expected to require prohibitively large numbers of terms to converge scattering quantities. Here we show that such calculations are possible using modern high-performance computing. We demonstrate the utility of our method by examining elastic scattering of protons by hydrogen and helium atoms, problems familiar to undergraduate students of atomic scattering. Application to ionization of helium using partial-wave expansions of the projectile wavefunction, which has long been desirable in heavy-ion collision physics, is thus quite feasible.

  12. Coherence and correlations in fast ion-atom collisions

    SciTech Connect

    Burgdoerfer, J.

    1987-01-01

    This paper focusses on the description, classification and interpretation of coherent excitation of atomic or ionic systems with Coulombic two-body final state interactions. A group-theoretical approach is used to classify and interpret coherent excitation. The most significant result is that the state of excitation represented by a density operator can be mapped one to one onto expectation values of a set of operators. Examples are used to illustrate what can be learned about the collision process from investigations of coherent excitation. (JDH)

  13. Correlated charge-changing ion-atom collisions

    SciTech Connect

    Tanis, J.A.

    1992-04-01

    This report summarizes the progress and accomplishments in accelerator atomic physics research supported by DOE grant DE-FG02-87ER13778 from March 16, 1991 through March 15, 1992. This work involves the experimental investigation of fundamental atomic processes in collisions of charged projectiles with neutral targets or electrons, with particular emphasis on two-electron interactions and electron correlation effects. Processes involving combinations of excitation, ionization, and charge transfer are investigated utilizing coincidence techniques in which projectiles charge-changing events are associated with x-ray emission, target recoil ions, or electron emission. New results have been obtained for studies involving (1) resonant recombination of atomic ions, (2) double ionization of helium, and (3) continuum electron emission. Experiments were conducted using accelerators at the Lawrence Berkeley Laboratory, Argonne National Laboratory, Michigan State University, Western Michigan University, and the Institute of Nuclear Research, Debrecen, Hungary. Brief summaries of work completed and work in progress are given in this report.

  14. Atomic-orbital expansion model for describing ion-atom collisions at intermediate and low energies

    SciTech Connect

    Lin, C.D.; Fritsch, W.

    1983-01-01

    In the description of inelastic processes in ion-atom collisions at moderate energies, the semiclassical close-coupling method is well established as the standard method. Ever since the pioneering work on H/sup +/ + H in the early 60's, the standard procedure is to expand the electronic wavefunction in terms of molecular orbitals (MO) or atomic orbitals (AO) for describing collisions at, respectively, low or intermediate velocities. It has been recognized since early days that traveling orbitals are needed in the expansions in order to represent the asymptotic states in the collisions correctly. While the adoption of such traveling orbitals presents no conceptual difficulties for expansions using atomic orbitals, the situation for molecular orbitals is less clear. In recent years, various forms of traveling MO's have been proposed, but conflicting results for several well-studied systems have been reported.

  15. Forward electron production in heavy ion-atom and ion-solid collisions

    SciTech Connect

    Sellin, I.A.

    1984-01-01

    A sharp cusp in the velocity spectrum of electrons, ejected in ion-atom and ion-solid collisions, is observed when the ejected electron velocity vector v/sub e/ matches that of the emergent ion vector v/sub p/ in both speed and direction. In ion-atom collisions, the electrons originate from capture to low-lying, projectile-centered continuum states (ECC) for fast bare or nearly bare projectiles, and from loss to those low-lying continuum states (ELC) when loosely bound projectile electrons are available. Most investigators now agree that ECC cusps are strongly skewed toward lower velocities, and exhibit full widths half maxima roughly proportional to v/sub p/ (neglecting target-shell effects, which are sometimes strong). A close examination of recent ELC data shows that ELC cusps are instead nearly symmetric, with widths nearly independent on v/sub p/ in the velocity range 6 to 18 a.u., a result only recently predicted by theory. Convoy electron cusps produced in heavy ion-solid collisions at MeV/u energies exhibit approximately velocity-independent widths very similar to ELC cusp widths. While the shape of the convoy peaks is approximately independent of projectile Z, velocity, and of target material, it is found that the yields in polycrystalline targets exhibit a strong dependence on projectile Z and velocity. While attempts have been made to link convoy electron production to binary ECC or ELC processes, sometimes at the last layer, or alternatively to a solid-state wake-riding model, our measured dependences of cusp shape and yield on projectile charge state and energy are inconsistent with the predictions of available theories. 10 references, 8 figures, 1 table.

  16. Effect of electron-nuclei interaction on internuclear motions in slow ion-atom collisions

    NASA Astrophysics Data System (ADS)

    Tolstikhina, Inga Yu.; Tolstikhin, Oleg I.

    2015-10-01

    The electron-nuclei interaction affects the internuclear motion in slow ion-atom collisions, which in turn affects theoretical results for the cross sections of various collision processes. The results are especially sensitive to the details of the internuclear dynamics in the presence of a strong isotope effect on the cross sections, as is the case, e.g., for the charge transfer in low-energy collisions of He2+ with H, D, and T. By considering this system as an example, we show that internuclear trajectories defined by the Born-Oppenheimer (BO) potential in the entrance collision channel, which effectively accounts for the electron-nuclei interaction, are in much better agreement with trajectories obtained in the ab initio electron-nuclear dynamics approach [R. Cabrera-Trujillo et al., Phys. Rev. A 83, 012715 (2011), 10.1103/PhysRevA.83.012715] than the corresponding Coulomb trajectories. We also show that the use of the BO trajectory instead of the Coulomb trajectory in the calculations of the charge-transfer cross sections within the adiabatic approach improves the agreement of the results with ab initio calculations.

  17. Wave-packet continuum-discretization approach to ion-atom collisions: Nonrearrangement scattering

    NASA Astrophysics Data System (ADS)

    Abdurakhmanov, I. B.; Kadyrov, A. S.; Bray, I.

    2016-08-01

    A general single-center close-coupling approach based on a continuum-discretization procedure is developed to calculate excitation and ionization processes in ion-atom collisions. The continuous spectrum of the target is discretized using stationary wave packets constructed from the Coulomb wave functions, the eigenstates of the target Hamiltonian. Such continuum discretization allows one to generate pseudostates with arbitrary energies and distribution. These features are ideal for detailed differential ionization studies. The approach starts from the semiclassical three-body Schrödinger equation for the scattering wave function and leads to a set of coupled differential equations for the transition probability amplitudes. To demonstrate its utility the method is applied to calculate collisions of antiprotons with atomic hydrogen. A comprehensive set of benchmark results from integrated to fully differential cross sections for antiproton-impact ionization of hydrogen in the energy range from 1 keV to 1 MeV is provided. Contrary to previous predictions, we find that at low incident energies the singly differential cross section has a maximum away from the zero emission energy. This feature could not be seen without a fine discretization of the low-energy part of the continuum.

  18. A Investigation of a Possible Molecular Effect in Ion Atom Collision Using a Gaseous Argon Target

    NASA Astrophysics Data System (ADS)

    Arora, Sanjeev

    1992-01-01

    The present work deals with an investigation of the molecular effect, which is defined as the difference in experimental results using isotachic atomic ion and molecular ion beams in ion atom collisions. Previous studies have dealt almost exclusively with total cross section measurements. This thesis explores the idea that the molecular effect may be more pronounced in the differential ionization probability of the target atoms. Also, a gaseous argon target of sufficiently low density was used in order to ensure that the two correlated protons in the H _2^{+} beam did not interact with two adjacent target atoms simultaneously. We report that, contrary to the expectations noted above, the molecular effect in the K shell differential ionization probability of argon for scattering angles up to 90^circ appears to be no more than the molecular effect in the total ionization probability. The uncertainity in our results is statistical in nature and can be improved upon by running the experiment for a longer duration of time.

  19. Correlated charge-changing ion-atom collisions. Progress report, February 16, 1990--February 15, 1993

    SciTech Connect

    Tanis, J.A.

    1993-02-01

    This report summarizes the progress and accomplishments in accelerator atomic physics research supported by DOE grant DE-FG02-87ER13778 from February 16, 1990 through February 15, 1993. This work involves the experimental investigation of atomic interactions in collisions of charged projectiles with neutral targets or electrons, with particular emphasis on two-electron interactions and electron-correlation effects. The processes studied are of interest both from fundamental and applied points of view. In the latter case, results are obtained which are relevant to the understanding of laboratory and astrophysical plasmas, highly-excited (Rydberg) and continuum states of atoms and ions, atomic structure effects, the interaction of ions with surfaces, and the development of heavy-ion storage-rings. The results obtained have provided the basis for several M.A. thesis projects at Western Michigan and several Ph.D. dissertation projects are currently underway. Summaries of work completed and work in progress are given below in Section II. This research has resulted in 26 papers (in print and in press), 12 invited presentations at national and international meetings, and 28 contributed presentations as detailed in Section III.

  20. The role of prompt electrons in the post-collision effect in fast ion - atom collisions

    NASA Astrophysics Data System (ADS)

    Víkor, Gy; Ricz, S.; Kövér, Á.; Gulyás, L.; Pelicon, P.; Sulik, B.

    1997-10-01

    The influence of the post-collision Coulomb effect of direct-electrons on the Auger-line energy shift has been studied in fast proton - atom collisions. KLL and LMM Auger spectra of neon and krypton target have been measured and analysed with high precision. The semiclassical theory of the post-collision interaction (PCI) has been extended to include the effect of both the receeding projectile ion and the ejected prompt electron. Experimental and theoretical line-energy shifts exhibit a reasonable agreement in the entire angular range of the Auger emission. In a narrow cone around 0953-4075/30/19/020/img9, the line-energy shift is influenced mainly by the PCI with the projectile ion, while at backward angles, it is predominantly governed by the ejected electron - Auger - electron interaction.

  1. Near-threshold photoionization of hydrogenlike uranium studied in ion-atom collisions via the time-reversed process.

    PubMed

    Stöhlker, T; Ma, X; Ludziejewski, T; Beyer, H F; Bosch, F; Brinzanescu, O; Dunford, R W; Eichler, J; Hagmann, S; Ichihara, A; Kozhuharov, C; Krämer, A; Liesen, D; Mokler, P H; Stachura, Z; Swiat, P; Warczak, A

    2001-02-01

    Radiative electron capture, the time-reversed photoionization process occurring in ion-atom collisions, provides presently the only access to photoionization studies for very highly charged ions. By applying the deceleration mode of the ESR storage ring, we studied this process in low-energy collisions of bare uranium ions with low- Z target atoms. This technique allows us to extend the current information about photoionization to much lower energies than those accessible for neutral heavy elements in the direct reaction channel. The results prove that for high- Z systems, higher-order multipole contributions and magnetic corrections persist even at energies close to the threshold. PMID:11177990

  2. Inner shell contribution to multiple ionization in ion-atom collisions

    SciTech Connect

    DuBois, R.D.; Toburen, L.H.; Manson, S.T.

    1984-08-01

    Energetic proton impact ionization data for atomic targets is useful in testing our theoretical understanding of atomic collisions. In general, our understanding of bare projectile impact leading to single target ionization is quite good. Multiple ionization mechanisms are, however, less well understood. In certain cases, multiple ionization can account for as much as 50% of the total ionization cross section and thus cannot be neglected in modeling the collision process. Multiple target ionization can occur in a variety of ways. In order to fully analyze the collisional process, cross sections for each of these ionization pathways are necessary but, in general, are unavailable. However, in certain cases combining various experimental and theoretical data allows us to obtain some information about channels heretofore unmeasured. Our purpose here is to outline a procedure that we are currently using to unravel the complex multiple ionization process. In some cases, cross sections for specific ionization pathways can be obtained while in others only information about total contributions of specific ionization channels is available.

  3. Energetic ion, atom, and molecule reactions and excitation in low-current H2 discharges: H(alpha) Doppler profiles.

    PubMed

    Petrović, Z Lj; Phelps, A V

    2009-12-01

    Absolute spectral emissivities for Doppler broadened H(alpha) profiles are measured and compared with predictions of energetic hydrogen ion, atom, and molecule behavior in low-current electrical discharges in H2 at very high electric field E to gas density N ratios E/N and low values of Nd , where d is the parallel-plate electrode separation. These observations reflect the energy and angular distributions for the excited atoms and quantitatively test features of multiple-scattering kinetic models in weakly ionized hydrogen in the presence of an electric field that are not tested by the spatial distributions of H(alpha) emission. Absolute spectral intensities agree well with predictions. Asymmetries in Doppler profiles observed parallel to the electric field at 4

  4. Transport properties derived from ion-atom collisions: 6Li-6Li+ and 6Li-7Li+ Cases

    NASA Astrophysics Data System (ADS)

    Bouledroua, Moncef; Bouchelaghem, Fouzia; LPR Team

    2014-10-01

    This investigation treats quantum-mechanically the ion- atom collisions and computes the transport coefficients, such as the coefficients of mobility and diffusion. For the case of lithium, the calculations start by determining the gerade and ungerade potential curves through which ionic lithium approaches ground lithium. Then, by considering the isotopic effects and nuclear spins, the elastic and charge-transfer cross sections are calculated for the case of 6Li+and7Li+ colliding with 6Li. Finally, the temperature-dependent diffusion and mobility coefficients are analyzed, and the results are contrasted with those obtained from literature. The main results of this work have been recently published in. This work has been realized within the frames of the CNEPRU Project D01120110036 of the Algerian Ministry of Higher Education.

  5. Coincidence measurements of electron capture and loss in ion-atom collisions

    SciTech Connect

    DuBois, R.D.

    1990-09-01

    Collisions between fast, fully stripped projectiles and atomic targets predominantly result in target electrons being ejected to the continuum. For fast partially stripped projectiles which bring weakly bound electrons into the collision, projectile ionization can also contribute to the observed electron spectra. At lower impact velocities, electron capture by the projectile ion becomes important and higher order processes, often referred to as transfer ionization, can be a significant source of free electrons. In recent years, coincidence techniques have been used to evaluate the relative importance of electron capture and loss in free electron production, to separate the capture and loss contributions from those resulting from target ionization alone, and to provide more detailed information about electron capture and loss mechanisms than is available from total cross section measurements. A brief survey of these experiments will be presented. 23 refs., 9 figs.

  6. Studies of electron correlation effects in multicharged ion atom collisions involving double capture

    SciTech Connect

    Stolterfoht, N.; Sommer, K.; Griffin, D.C.; Havener, C.C.; Huq, M.S.; Phaneuf, R.A.; Swenson, J.K.; Meyer, F.W.

    1988-01-01

    We review measurements of L-Coster Kronig and Auger electron production in slow, multicharged collision systems to study electron correlation effects in the process of double electron capture. The n/sup /minus/3/ law was confirmed for the production of the Coster-Kronig configurations 1s/sup 2/2pn/ell/ (n greater than or equal to 6) in O/sup 6 +/ + He collisions. Enhancement of high angular momentum /ell/ in specific 1s/sup 2/2pn/ell/ configurations was observed by means of high-resolution measurements of the Coster-Kronig lines. The importance of electron correlation effects in couplings of potential energy curves leading to the 1s/sup 2/2pn/ell/ configurations is verified by means of Landau-Zener model calculations. 32 refs., 4 figs.

  7. Charge transfer reactions in multiply charged ion-atom collisions. [in interstellar clouds

    NASA Technical Reports Server (NTRS)

    Steigman, G.

    1975-01-01

    Charge-transfer reactions in collisions between highly charged ions and neutral atoms of hydrogen and/or helium may be rapid at thermal energies. If these reactions are rapid, they will suppress highly charged ions in H I regions and guarantee that the observed absorption features from such ions cannot originate in the interstellar gas. A discussion of such charge-transfer reactions is presented and compared with the available experimental data. The possible implications of these reactions for observations of the interstellar medium, H II regions, and planetary nebulae are outlined.

  8. Classical-quantum correspondence for ionization in fast ion-atom collisions

    SciTech Connect

    Burgdoerfer, J. |; Reinhold, C.O.

    1994-10-01

    We analyze the interplay between classical and quantum dynamics in ionization of atoms by fast charged particles The convergence to the classical limit is studied as a function of the momentum transferred to the electron during the collision, the impact parameter. the energy and angle of the emitted electron, and the initial state of the target. One goal is to assess the validity of exact classical (CTMC) methods and approximate classical models such as the Thomson model. Applications to data for electron ejection at large angles are presented. The connection between collisional ionization by charged particles and ionization by half-cycle pulses is discussed.

  9. Correlated charge-changing ion-atom collisions. Progress report, March 16, 1991--March 15, 1992

    SciTech Connect

    Tanis, J.A.

    1992-04-01

    This report summarizes the progress and accomplishments in accelerator atomic physics research supported by DOE grant DE-FG02-87ER13778 from March 16, 1991 through March 15, 1992. This work involves the experimental investigation of fundamental atomic processes in collisions of charged projectiles with neutral targets or electrons, with particular emphasis on two-electron interactions and electron correlation effects. Processes involving combinations of excitation, ionization, and charge transfer are investigated utilizing coincidence techniques in which projectiles charge-changing events are associated with x-ray emission, target recoil ions, or electron emission. New results have been obtained for studies involving (1) resonant recombination of atomic ions, (2) double ionization of helium, and (3) continuum electron emission. Experiments were conducted using accelerators at the Lawrence Berkeley Laboratory, Argonne National Laboratory, Michigan State University, Western Michigan University, and the Institute of Nuclear Research, Debrecen, Hungary. Brief summaries of work completed and work in progress are given in this report.

  10. The Role of High-Energy Ion-Atom/Molecule Collisions in Radiotherapy

    NASA Astrophysics Data System (ADS)

    Belkić, Dževad

    2014-12-01

    The need for ions in radiotherapy stems from the most favorable localization of the largest energy deposition, precisely at the tumor site with small energy losses away from the target. Such a dose conformity to the target is due to heavy masses of ions that scatter predominantly in the forward direction and lose maximal energy mainly near the end of their path in the vicinity of the Bragg peak. The heavy masses of nuclei preclude noticeable multiple scattering of the primary ion beam. This occurrence is responsible for only about 30% of ion efficiency in killing tumor cells. However, ionization of targets by fast ions yields electrons that might be of sufficient energy to produce further radiation damage. These δ-electrons, alongside radicals produced by ion-water collisions, can accomplish the remaining 70% of tumor cell eradication. Electrons achieve this chiefly through multiple scattering due to their small mass. Therefore, energy depositions by both heavy (nuclei) and light (electrons) particles as well as highly reactive radicals need to be simultaneously transported in Monte Carlo simulations. This threefold transport of particles is yet to be developed for the existing Monte Carlo codes. Critical to accomplishing this key goal is the availability of accurate cross section databases. To this end, the leading continuum distorted wave methodologies are poised to play a pivotal role in predicting energy losses of ions in tissue as discussed in this work.

  11. Measurements of scattering processes in negative ion: Atom collisions. Technical progress report, 1 September 1991--31 December 1994

    SciTech Connect

    Kvale, T.J.

    1994-09-27

    This report describes the progress made on the research objectives during the past three years of the grant. This research project is designed to study various scattering processes which occur in H{sup {minus}} collisions with atomic (specifically, noble gas and atomic hydrogen) targets in the intermediate energy region. These processes include: elastic scattering, single- and double-electron detachment, and target excitation/ionization. For the elastic and target inelastic processes where H{sup {minus}} is scattered intact, the experimental technique of Ion Energy-Loss Spectroscopy (IELS) will be employed to identify the final target state(s). In most of the above processes, cross sections are unknown both experimentally and theoretically. The measurements will provide total cross sections (TCS) initially, and once the angular positioning apparatus is installed, will provide angular differential cross sections (ADCS).

  12. Ionization at the Noble Gases Ion-Atom Collisions in the 1-7 KeV Energy Range

    NASA Astrophysics Data System (ADS)

    Kikiani, Boris; Chitaladze, Marika; Japaridze, Josif; Kavlashvili, Nana

    2002-10-01

    The absolute total cross sections for production of free electrons, all positive show target gas ions and partial cross sections for production of double charged slow target gas ions at these collisions have been measured. The measurements were carried out by improved transfers electric field ("condenser") and magnetic mass-analyzer methods[1]. It was shown that in the investigated energy range practically there are now slow ions with charged state more than two. Control experiments have been shown that process of electron's liberation from fast particles ("stripping" process) is unlikely in the investigated energy range. Therefore, one can to suppose that total cross sections for productions of free electrons are equal to the total cross sections of ionization of the target gas atoms. For symmetrical pairs of colliding particles (He+ _ He, Ne+ _ Ne , etc) and for pairs He+ _ Ne, Ar+ _ Kr and Kr+ _ Xe values of partial cross-sections are negligible. In the cases of He+ _ Kr and He+ _ Xe pairs value of these partial cross sections increases with colliding energy and reaches about three percent at the energy 4kev. However, in the cases of He+ _ Ar, Na+ _ Ar, Kr, Xe the values of relative portion of the double charged ions in the total amount of slow positive ions are significant (for example in He+ _ Ar collision at the energy of 4kev this portion is about 20-25 percent). Analyzes of the correlation diagrams of the diabetics terms of colliding particles system (MS) [2] show that the electron capture processes are accompanying by simultaneous excitation of auto- ionization states of target gas ions. The decay of these states are responsible for realize of double ionization process of the target gas atoms. 1. B. Kikiani, R.Lomsadze, N. Mosulishvili, Proceedings of Tbilisi State University, Physics, 34, 114, 1999; 2 M. Barat, W.Lichten, Phys. Rev, A6, 211, 1972.

  13. Fraunhofer-type diffraction patterns of matter-wave scattering of projectiles: Electron transfer in energetic ion-atom collisions

    NASA Astrophysics Data System (ADS)

    Agueny, Hicham

    2015-07-01

    We present results for single and double electron captures in intermediate energies H+ and 2H+ projectiles colliding with a helium target. The processes under investigations are treated using a nonperturbative semiclassical approach in combination with Eikonal approximation to calculate the scattering differential cross sections. The latter reveals pronounced minima and maxima in the scattering angles, in excellent agreement with the recent experimental data. It turns out that the present structure depends strongly on the projectile energy and shows only slight variations with different capture channels. The observed structure demonstrates the analogy of atomic de Broglie's matter-wave scattering with λd B=1.3 -3.2 ×10-3 a.u. and Fraunhofer-type diffraction of light waves.

  14. Ion-neutral chemistry at ultralow energies:Dynamics of reactive collisions between laser-cooled Ca+ or Ba+ ions and Rb atoms in an ion-atom hybrid trap

    NASA Astrophysics Data System (ADS)

    Dulieu, O.; Hall, F. H. J.; Eberle, P.; Hegi, G.; Raoult, M.; Aymar, M.; Willitsch, S.

    2013-05-01

    Cold chemical reactions between laser-cooled Ca+ or Ba+ ions and Rb atoms were studied in an ion-atom hybrid trap. Reaction rate constants were determined in the collision energy range Ecoll /kB = 20 mK-20 K. Product branching ratios were studied using resonant-excitation mass spectrometry. The dynamics of the reactive processes including the radiative formation of CaRb+ and BaRb+ molecular ions has been analyzed using accurate potential energy curves and quantum-scattering calculations for the radiative channels. It is shown that the energy dependence of the reaction rates is governed by long-range interactions, while its magnitude is determined by short-range non-adiabatic and radiative couplings. The quantum character of the collisions is predicted to manifest itself in the occurrence of narrow shape resonances at well-defined collision energies. The present results highlight both universal and system-specific phenomena in cold ion-neutral collisions. This work was supported by the Swiss National Science Foundation and the COST Action ''Ion Traps for Tomorrow's Applications''.

  15. Anisotropic mechanoresponse of energetic crystallites: a quantum molecular dynamics study of nano-collision

    NASA Astrophysics Data System (ADS)

    Li, Ying; Kalia, Rajiv K.; Misawa, Masaaki; Nakano, Aiichiro; Nomura, Ken-Ichi; Shimamura, Kohei; Shimojo, Fuyuki; Vashishta, Priya

    2016-05-01

    At the nanoscale, chemistry can happen quite differently due to mechanical forces selectively breaking the chemical bonds of materials. The interaction between chemistry and mechanical forces can be classified as mechanochemistry. An example of archetypal mechanochemistry occurs at the nanoscale in anisotropic detonating of a broad class of layered energetic molecular crystals bonded by inter-layer van der Waals (vdW) interactions. Here, we introduce an ab initio study of the collision, in which quantum molecular dynamic simulations of binary collisions between energetic vdW crystallites, TATB molecules, reveal atomistic mechanisms of anisotropic shock sensitivity. The highly sensitive lateral collision was found to originate from the twisting and bending to breaking of nitro-groups mediated by strong intra-layer hydrogen bonds. This causes the closing of the electronic energy gap due to an inverse Jahn-Teller effect. On the other hand, the insensitive collisions normal to multilayers are accomplished by more delocalized molecular deformations mediated by inter-layer interactions. Our nano-collision studies provide a much needed atomistic understanding for the rational design of insensitive energetic nanomaterials and the detonation synthesis of novel nanomaterials.At the nanoscale, chemistry can happen quite differently due to mechanical forces selectively breaking the chemical bonds of materials. The interaction between chemistry and mechanical forces can be classified as mechanochemistry. An example of archetypal mechanochemistry occurs at the nanoscale in anisotropic detonating of a broad class of layered energetic molecular crystals bonded by inter-layer van der Waals (vdW) interactions. Here, we introduce an ab initio study of the collision, in which quantum molecular dynamic simulations of binary collisions between energetic vdW crystallites, TATB molecules, reveal atomistic mechanisms of anisotropic shock sensitivity. The highly sensitive lateral collision

  16. Anisotropic mechanoresponse of energetic crystallites: a quantum molecular dynamics study of nano-collision.

    PubMed

    Li, Ying; Kalia, Rajiv K; Misawa, Masaaki; Nakano, Aiichiro; Nomura, Ken-Ichi; Shimamura, Kohei; Shimojo, Fuyuki; Vashishta, Priya

    2016-05-14

    At the nanoscale, chemistry can happen quite differently due to mechanical forces selectively breaking the chemical bonds of materials. The interaction between chemistry and mechanical forces can be classified as mechanochemistry. An example of archetypal mechanochemistry occurs at the nanoscale in anisotropic detonating of a broad class of layered energetic molecular crystals bonded by inter-layer van der Waals (vdW) interactions. Here, we introduce an ab initio study of the collision, in which quantum molecular dynamic simulations of binary collisions between energetic vdW crystallites, TATB molecules, reveal atomistic mechanisms of anisotropic shock sensitivity. The highly sensitive lateral collision was found to originate from the twisting and bending to breaking of nitro-groups mediated by strong intra-layer hydrogen bonds. This causes the closing of the electronic energy gap due to an inverse Jahn-Teller effect. On the other hand, the insensitive collisions normal to multilayers are accomplished by more delocalized molecular deformations mediated by inter-layer interactions. Our nano-collision studies provide a much needed atomistic understanding for the rational design of insensitive energetic nanomaterials and the detonation synthesis of novel nanomaterials. PMID:27110831

  17. Charge transfer in energetic Li^2+ - H collisions

    NASA Astrophysics Data System (ADS)

    Mancev, I.

    2008-07-01

    The total cross sections for charge transfer in Li^2+ - H collisions have been calculated, using the four-body first Born approximation with correct boundary conditions (CB1-4B) and four-body continuum distorted wave method (CDW-4B) in the energy range 10 - 5000 keV/amu. Present results call for additional experimental data at higher impact energies than presently available.

  18. Ion-atom association reactions in the rare gases.

    NASA Technical Reports Server (NTRS)

    Dickinson, A. S.; Roberts, R. E.; Bernstein, R. B.

    1972-01-01

    A simple resonance theory of three-body ion-atom association reactions is presented. The reaction is considered as proceeding through the formation of a long lived orbiting resonance complex between the atom and the ion. The population of these quasi-bound states is estimated assuming thermal equilibrium. A stable molecular ion may then be formed upon deactivation of the complex by collision with a third body. Various simplifying approximations to the potential curves and surfaces are employed. Furthermore, the deactivation cross sections for the relevant complexes are estimated from the corresponding atomic 'sizes.' A simple analytical formula for the three-body rate constant is thus derived. Reasonable agreement with experiment is obtained for He(+) in He and fair agreement for other light systems.

  19. Sixteenth International Conference on the physics of electronic and atomic collisions

    SciTech Connect

    Dalgarno, A.; Freund, R.S.; Lubell, M.S.; Lucatorto, T.B.

    1989-01-01

    This report contains abstracts of papers on the following topics: photons, electron-atom collisions; electron-molecule collisions; electron-ion collisions; collisions involving exotic species; ion- atom collisions, ion-molecule or atom-molecule collisions; atom-atom collisions; ion-ion collisions; collisions involving rydberg atoms; field assisted collisions; collisions involving clusters and collisions involving condensed matter.

  20. JPL Ultrastable Trapped Ion Atomic Frequency Standards.

    PubMed

    Burt, Eric A; Yi, Lin; Tucker, Blake; Hamell, Robert; Tjoelker, Robert L

    2016-07-01

    Recently, room temperature trapped ion atomic clock development at the Jet Propulsion Laboratory (JPL) has focused on three directions: 1) ultrastable atomic clocks, usually for terrestrial applications emphasizing ultimate stability performance and autonomous timekeeping; 2) new atomic clock technology for space flight applications that require strict adherence to size, weight, and power requirements; and 3) miniature clocks. In this paper, we concentrate on the first direction and present a design and the initial results from a new ultrastable clock referred to as L10 that achieves a short-term stability of 4.5 ×10(-14)/τ(1/2) and an initial measurement of no significant drift with an uncertainty of 2.4 ×10(-16) /day over a two-week period. PMID:27249827

  1. Stripping Cross Sections of Fast Ions in Ion-Atom

    NASA Astrophysics Data System (ADS)

    Kecskemeti, S. R.; Kaganovich, I. D.; Startsev, E. A.; Davidson, R. C.

    2004-11-01

    Knowledge of ion-atom ionization cross sections is of great importance for many accelerator applications. We have recently investigated theoretically and experimentally the stripping of more than 18 different pairs of projectile and target particles in the range of 3-38 MeV/amu to study the range of validity of both the Born approximation and the classical trajectory calculation. In most cases, both approximations give similar results. However, for fast projectile velocities and low ionization potentials, the classical approach is not valid and can overestimate the stripping cross sections by neutral atoms by an order-of-magnitude [1]. Therefore, a hybrid approach has been developed, which automatically chooses between the Born approximation and the classical mechanics approximation depending on the parameters of the collision. When experimental data and theoretical calculations are not available, approximate formulas are frequently used. Based on experimental data and theoretical predictions, a new fit formula for ionization cross sections by fully stripped ions is proposed. [1] I. D. Kaganovich, E. A. Startsev and R. C. Davidson, Phys. Rev. A 68, 022707 (2003). [2] I. D. Kaganovich, E. A. Startsev and R. C. Davidson, Physics of Plasmas 11, 1229 (2004).

  2. Rotational excitation of hydrogen molecules by collisions with hydrogen atoms. [interstellar gas energetics

    NASA Technical Reports Server (NTRS)

    Green, S.; Truhlar, D. G.

    1979-01-01

    Rate constants for rotational excitation of hydrogen molecules by collisions with hydrogen atoms have been obtained from quantum-mechanical calculations for kinetic temperatures between 100 and 5000 K. These calculations involve the rigid-rotator approximation, but other possible sources of error should be small. The calculations indicate that the early values of Nishimura are larger than accurate rigid-rotator values by about a factor of 20 or more.

  3. Charge transfer in energetic Li2+-H and He+-He+ collisions

    NASA Astrophysics Data System (ADS)

    Mančev, I.

    2009-02-01

    The total cross sections for charge transfer in Li2+-H and He+-He+ collisions have been calculated, using the four body first Born approximation with correct boundary conditions (CB1-4B) and four body continuum distorted wave method (CDW-4B) in the energy range 10-5000 keV/amu. The role of dynamic electron correlations is examined as a function of the impact energy. The present results call for additional experimental data at higher impact energies than presently available.

  4. Theoretical investigation of electron-positive ion/atom interactions. [Clark Atlanta Univ. , Atlanta, Georgia

    SciTech Connect

    Msezane, A.Z.

    1992-01-01

    Very brief summaries are given on three research topics. Electron impact elastic, excitation, and total cross sections for K were investigated by using elaborate Cl target wave functions in the close-coupling approximation. Photoionization cross sections from ground-state Na were calculated near the 2s[sup 2]2p[sup 5]3s and 2s2p[sup 6]3s inner-shell thresholds; also, the photoionization cross sections of excited 3p [sup 2]P[sup o] and 3d [sup 2]D states were calculated with the R-matrix methodology near the 2s2p[sup 6]3s thresholds. A numerical approach was developed to calculate the charge transfer matrix elements for ion-atom(ion) collisions; this was used for the proton-hydrogen collision problem as an illustration.

  5. Compact, Highly Stable Ion Atomic Clock

    NASA Technical Reports Server (NTRS)

    Prestage, John

    2008-01-01

    A mercury-ion clock now at the breadboard stage of development (see figure) has a stability comparable to that of a hydrogen-maser clock: In tests, the clock exhibited an Allan deviation of between 2 x 10(exp -13) and 3 x 10(exp -13) at a measurement time of 1 second, averaging to about 10(exp -15) at 1 day. However, the clock occupies a volume of only about 2 liters . about a hundredth of the volume of a hydrogen-maser clock. The ion-handling parts of the apparatus are housed in a sealed vacuum tube, wherein only a getter pump is used to maintain the vacuum. Hence, this apparatus is a prototype of a generation of small, potentially portable high-precision clocks for diverse ground- and space-based navigation and radio science applications. Furthermore, this new ion-clock technology is about 100 times more stable and precise than the rubidium atomic clocks currently in use in the NAV STAR GPS Earth-orbiting satellites. In this clock, mercury ions are shuttled between a quadrupole and a 16-pole linear radio-frequency trap. In the quadrupole trap, the ions are tightly confined and optical state selection from a Hg-202 radio-frequency-discharge ultraviolet lamp is carried out. In the 16-pole trap, the ions are more loosely confined and atomic transitions resonant at frequency of about 40.507 GHz are interrogated by use of a microwave beam at that frequency. The trapping of ions effectively eliminates the frequency pulling caused by wall collisions inherent to gas-cell clocks. The shuttling of the ions between the two traps enables separation of the state-selection process from the clock microwave- resonance process, so that each of these processes can be optimized independently of the other. The basic ion-shuttling, two-trap scheme as described thus far is not new: it has been the basis of designs of prior larger clocks. The novelty of the present development lies in major redesigns of its physics package (the ion traps and the vacuum and optical subsystems) to effect

  6. Next Generation JPL Ultra-Stable Trapped Ion Atomic Clocks

    NASA Technical Reports Server (NTRS)

    Burt, Eric; Tucker, Blake; Larsen, Kameron; Hamell, Robert; Tjoelker, Robert

    2013-01-01

    Over the past decade, trapped ion atomic clock development at the Jet Propulsion Laboratory (JPL) has focused on two directions: 1) new atomic clock technology for space flight applications that require strict adherence to size, weight, and power requirements, and 2) ultra-stable atomic clocks, usually for terrestrial applications emphasizing ultimate performance. In this paper we present a new ultra-stable trapped ion clock designed, built, and tested in the second category. The first new standard, L10, will be delivered to the Naval Research Laboratory for use in characterizing DoD space clocks.

  7. Theoretical investigation of electron-positive ion/atom interactions. Progress report, November 15, 1991--July 14, 1992

    SciTech Connect

    Msezane, A.Z.

    1992-12-31

    Very brief summaries are given on three research topics. Electron impact elastic, excitation, and total cross sections for K were investigated by using elaborate Cl target wave functions in the close-coupling approximation. Photoionization cross sections from ground-state Na were calculated near the 2s{sup 2}2p{sup 5}3s and 2s2p{sup 6}3s inner-shell thresholds; also, the photoionization cross sections of excited 3p {sup 2}P{sup o} and 3d {sup 2}D states were calculated with the R-matrix methodology near the 2s2p{sup 6}3s thresholds. A numerical approach was developed to calculate the charge transfer matrix elements for ion-atom(ion) collisions; this was used for the proton-hydrogen collision problem as an illustration.

  8. Compact 2.45 GHz microwave ion/atom source

    SciTech Connect

    Sakamoto, Y.; Kasuya, T.; Wada, M.; Maeno, S.

    2008-02-15

    Characteristics of a microwave driven 3.4 cm diameter compact ion/atom source equipped with permanent magnets were tested. The source can be mounted to a standard copper gasket flange, and microwave power is supplied through an N-type microwave connector. The ion source plasma was observed through an ion extraction hole with an optical emission spectrometer. Peak height of an optical line spectrum emission corresponding to atomic nitrogen increased in proportion to the microwave input power. Quadrupole mass spectrometer showed that N{sup +} and N{sub 2}{sup +} were the dominant species in the extracted ion beam. Nitrogen ion current density of 0.23 mA/cm{sup 2} was obtained with only 10 W discharge power and 6x10{sup -3} Pa source surrounding pressure.

  9. Scaling Cross Sections for Ion-atom Impact Ionization

    SciTech Connect

    Igor D. Kaganovich; Edward Startsev; Ronald C. Davidson

    2003-06-06

    The values of ion-atom ionization cross sections are frequently needed for many applications that utilize the propagation of fast ions through matter. When experimental data and theoretical calculations are not available, approximate formulas are frequently used. This paper briefly summarizes the most important theoretical results and approaches to cross section calculations in order to place the discussion in historical perspective and offer a concise introduction to the topic. Based on experimental data and theoretical predictions, a new fit for ionization cross sections is proposed. The range of validity and accuracy of several frequently used approximations (classical trajectory, the Born approximation, and so forth) are discussed using, as examples, the ionization cross sections of hydrogen and helium atoms by various fully stripped ions.

  10. Centrarchid Energetics

    SciTech Connect

    Bevelhimer, Mark S; Breck, Dr. James

    2009-06-01

    This chapter contains sections titled: (1) Introduction; (2) Centrarchid bioenergetics models; (3) Food consumption and feeding energetics; (4) Metabolic rate; (5) Energetic wastes (egestion, excretion, and SDA); (6) Growth energetics; (7) Reproductive energetics; (8) Synthesis; (9) Research needs; and (10) References.

  11. Kuang's Semi-Classical Formalism for Electron Capture Cross-Sections in Ion-Ion Collisions at Approximately to MeV/amu: Application to ENA Modeling

    NASA Technical Reports Server (NTRS)

    Barghouty, A. F.

    2012-01-01

    Recent discovery by STEREO A/B of energetic neutral hydrogen is spurring an interest and need for reliable estimates of electron capture cross sections at few MeVs per nucleon as well as for multi-electron ions. Required accuracy in such estimates necessitates detailed and involved quantum-mechanical calculations or expensive numerical simulations. For ENA modeling and similar purposes, a semi-classical approach offers a middle-ground approach. Kuang's semiclassical formalism to calculate electron-capture cross sections for single and multi-electron ions is an elegant and efficient method, but has so far been applied to limited and specific laboratory measurements and at somewhat lower energies. Our goals are to test and extend Kuang s method to all ion-atom and ion-ion collisions relevant to ENA modeling, including multi-electron ions and for K-shell to K-shell transitions.

  12. Effects of Ion Atomic Number on Single-Event Gate Rupture (SEGR) Susceptibility of Power MOSFETs

    NASA Technical Reports Server (NTRS)

    Lauenstein, Jean-Marie; Goldsman, Neil; Liu, Sandra; Titus, Jeffrey L.; Ladbury, Raymond L.; Kim, Hak S.; Phan, Anthony M.; LaBel, Kenneth A.; Zafrani, Max; Sherman, Phillip

    2012-01-01

    The relative importance of heavy-ion interaction with the oxide, charge ionized in the epilayer, and charge ionized in the drain substrate, on the bias for SEGR failure in vertical power MOSFETs is experimentally investigated. The results indicate that both the charge ionized in the epilayer and the ion atomic number are important parameters of SEGR failure. Implications on SEGR hardness assurance are discussed.

  13. An estimating formula for ion-atom association rates in gases

    NASA Technical Reports Server (NTRS)

    Chatterjee, B. K.; Johnsen, R.

    1990-01-01

    A simple estimating formula is derived for rate coefficients of three-body ion atom association in gases and compare its predictions to experimental data on ion association and three-body radiative charge transfer reactions of singly- and doubly-charged rare-gas ions. The formula appears to reproduce most experimental data quite well. It may be useful for estimating the rates of reactions that have not been studied in the laboratory.

  14. Energetic ion, atom, and molecule reactions and excitation in low-current H2 discharges: Spatial distributions of emissions

    NASA Astrophysics Data System (ADS)

    Petrović, Z. Lj.; Phelps, A. V.

    2009-07-01

    Spatial distributions of Hα , Hβ , and the near-uv continuum emission from the H2 aΣ3g+ state are measured and compared with a model for low-current electrical discharges in H2 at high E/N and low Nd , where E is the spatially uniform electric field, N is the gas density, and d is the electrode separation. Data are analyzed for 300Td

  15. Energetic ion, atom, and molecule reactions and excitation in low-current H2 discharges: spatial distributions of emissions.

    PubMed

    Petrović, Z Lj; Phelps, A V

    2009-07-01

    Spatial distributions of H alpha , H beta , and the near-uv continuum emission from the H2 a ;{3}Sigma g;+ state are measured and compared with a model for low-current electrical discharges in H2 at high E/N and low Nd , where E is the spatially uniform electric field, N is the gas density, and d is the electrode separation. Data are analyzed for 300 Td

  16. Search for new phenomena in final states with an energetic jet and large missing transverse momentum in pp collisions at TeV with the ATLAS detector

    NASA Astrophysics Data System (ADS)

    Aad, G.; Abbott, B.; Abdallah, J.; Abdel Khalek, S.; Abdinov, O.; Aben, R.; Abi, B.; Abolins, M.; AbouZeid, O. S.; Abramowicz, H.; Abreu, H.; Abreu, R.; Abulaiti, Y.; Acharya, B. S.; Adamczyk, L.; Adams, D. L.; Adelman, J.; Adomeit, S.; Adye, T.; Agatonovic-Jovin, T.; Aguilar-Saavedra, J. A.; Agustoni, M.; Ahlen, S. P.; Ahmadov, F.; Aielli, G.; Akerstedt, H.; Åkesson, T. P. A.; Akimoto, G.; Akimov, A. V.; Alberghi, G. L.; Albert, J.; Albrand, S.; Alconada Verzini, M. J.; Aleksa, M.; Aleksandrov, I. N.; Alexa, C.; Alexander, G.; Alexandre, G.; Alexopoulos, T.; Alhroob, M.; Alimonti, G.; Alio, L.; Alison, J.; Allbrooke, B. M. M.; Allison, L. J.; Allport, P. P.; Aloisio, A.; Alonso, A.; Alonso, F.; Alpigiani, C.; Altheimer, A.; Alvarez Gonzalez, B.; Alviggi, M. G.; Amako, K.; Amaral Coutinho, Y.; Amelung, C.; Amidei, D.; Amor Dos Santos, S. P.; Amorim, A.; Amoroso, S.; Amram, N.; Amundsen, G.; Anastopoulos, C.; Ancu, L. S.; Andari, N.; Andeen, T.; Anders, C. F.; Anders, G.; Anderson, K. J.; Andreazza, A.; Andrei, V.; Anduaga, X. S.; Angelidakis, S.; Angelozzi, I.; Anger, P.; Angerami, A.; Anghinolfi, F.; Anisenkov, A. V.; Anjos, N.; Annovi, A.; Antonelli, M.; Antonov, A.; Antos, J.; Anulli, F.; Aoki, M.; Aperio Bella, L.; Arabidze, G.; Arai, Y.; Araque, J. P.; Arce, A. T. H.; Arduh, F. A.; Arguin, J.-F.; Argyropoulos, S.; Arik, M.; Armbruster, A. J.; Arnaez, O.; Arnal, V.; Arnold, H.; Arratia, M.; Arslan, O.; Artamonov, A.; Artoni, G.; Asai, S.; Asbah, N.; Ashkenazi, A.; Åsman, B.; Asquith, L.; Assamagan, K.; Astalos, R.; Atkinson, M.; Atlay, N. B.; Auerbach, B.; Augsten, K.; Aurousseau, M.; Avolio, G.; Axen, B.; Ayoub, M. K.; Azuelos, G.; Baak, M. A.; Baas, A. E.; Bacci, C.; Bachacou, H.; Bachas, K.; Backes, M.; Backhaus, M.; Bagiacchi, P.; Bagnaia, P.; Bai, Y.; Bain, T.; Baines, J. T.; Baker, O. K.; Balek, P.; Balestri, T.; Balli, F.; Banas, E.; Banerjee, Sw.; Bannoura, A. A. E.; Bansil, H. S.; Barak, L.; Baranov, S. P.; Barberio, E. L.; Barberis, D.; Barbero, M.; Barillari, T.; Barisonzi, M.; Barklow, T.; Barlow, N.; Barnes, S. L.; Barnett, B. M.; Barnett, R. M.; Barnovska, Z.; Baroncelli, A.; Barone, G.; Barr, A. J.; Barreiro, F.; Barreiro Guimarães da Costa, J.; Bartoldus, R.; Barton, A. E.; Bartos, P.; Bassalat, A.; Basye, A.; Bates, R. L.; Batista, S. J.; Batley, J. R.; Battaglia, M.; Bauce, M.; Bauer, F.; Bawa, H. S.; Beacham, J. B.; Beattie, M. D.; Beau, T.; Beauchemin, P. H.; Beccherle, R.; Bechtle, P.; Beck, H. P.; Becker, K.; Becker, S.; Beckingham, M.; Becot, C.; Beddall, A. J.; Beddall, A.; Bednyakov, V. A.; Bee, C. P.; Beemster, L. J.; Beermann, T. A.; Begel, M.; Behr, K.; Belanger-Champagne, C.; Bell, P. J.; Bell, W. H.; Bella, G.; Bellagamba, L.; Bellerive, A.; Bellomo, M.; Belotskiy, K.; Beltramello, O.; Benary, O.; Benchekroun, D.; Bender, M.; Bendtz, K.; Benekos, N.; Benhammou, Y.; Benhar Noccioli, E.; Benitez Garcia, J. A.; Benjamin, D. P.; Bensinger, J. R.; Bentvelsen, S.; Beresford, L.; Beretta, M.; Berge, D.; Bergeaas Kuutmann, E.; Berger, N.; Berghaus, F.; Beringer, J.; Bernard, C.; Bernard, N. R.; Bernius, C.; Bernlochner, F. U.; Berry, T.; Berta, P.; Bertella, C.; Bertoli, G.; Bertolucci, F.; Bertsche, C.; Bertsche, D.; Besana, M. I.; Besjes, G. J.; Bessidskaia Bylund, O.; Bessner, M.; Besson, N.; Betancourt, C.; Bethke, S.; Bevan, A. J.; Bhimji, W.; Bianchi, R. M.; Bianchini, L.; Bianco, M.; Biebel, O.; Bieniek, S. P.; Biglietti, M.; Bilbao De Mendizabal, J.; Bilokon, H.; Bindi, M.; Binet, S.; Bingul, A.; Bini, C.; Black, C. W.; Black, J. E.; Black, K. M.; Blackburn, D.; Blair, R. E.; Blanchard, J.-B.; Blanco, J. E.; Blazek, T.; Bloch, I.; Blocker, C.; Blum, W.; Blumenschein, U.; Bobbink, G. J.; Bobrovnikov, V. S.; Bocchetta, S. S.; Bocci, A.; Bock, C.; Boddy, C. R.; Boehler, M.; Bogaerts, J. A.; Bogdanchikov, A. G.; Bohm, C.; Boisvert, V.; Bold, T.; Boldea, V.; Boldyrev, A. S.; Bomben, M.; Bona, M.; Boonekamp, M.; Borisov, A.; Borissov, G.; Borroni, S.; Bortfeldt, J.; Bortolotto, V.; Bos, K.; Boscherini, D.; Bosman, M.; Boterenbrood, H.; Boudreau, J.; Bouffard, J.; Bouhova-Thacker, E. V.; Boumediene, D.; Bourdarios, C.; Bousson, N.; Boutouil, S.; Boveia, A.; Boyd, J.; Boyko, I. R.; Bozic, I.; Bracinik, J.; Brandt, A.; Brandt, G.; Brandt, O.; Bratzler, U.; Brau, B.; Brau, J. E.; Braun, H. M.; Brazzale, S. F.; Brendlinger, K.; Brennan, A. J.; Brenner, L.; Brenner, R.; Bressler, S.; Bristow, K.; Bristow, T. M.; Britton, D.; Brochu, F. M.; Brock, I.; Brock, R.; Bronner, J.; Brooijmans, G.; Brooks, T.; Brooks, W. K.; Brosamer, J.; Brost, E.; Brown, J.; Bruckman de Renstrom, P. A.; Bruncko, D.; Bruneliere, R.; Bruni, A.; Bruni, G.; Bruschi, M.; Bryngemark, L.; Buanes, T.; Buat, Q.; Bucci, F.; Buchholz, P.; Buckley, A. G.; Buda, S. I.; Budagov, I. A.; Buehrer, F.; Bugge, L.; Bugge, M. K.; Bulekov, O.; Burckhart, H.; Burdin, S.; Burghgrave, B.; Burke, S.; Burmeister, I.; Busato, E.; Büscher, D.; Büscher, V.; Bussey, P.; Buszello, C. P.; Butler, J. M.; Butt, A. I.; Buttar, C. M.; Butterworth, J. M.; Butti, P.; Buttinger, W.; Buzatu, A.; Cabrera Urbán, S.; Caforio, D.; Cakir, O.; Calafiura, P.; Calandri, A.; Calderini, G.; Calfayan, P.; Caloba, L. P.; Calvet, D.; Calvet, S.; Camacho Toro, R.; Camarda, S.; Cameron, D.; Caminada, L. M.; Caminal Armadans, R.; Campana, S.; Campanelli, M.; Campoverde, A.; Canale, V.; Canepa, A.; Cano Bret, M.; Cantero, J.; Cantrill, R.; Cao, T.; Capeans Garrido, M. D. M.; Caprini, I.; Caprini, M.; Capua, M.; Caputo, R.; Cardarelli, R.; Carli, T.; Carlino, G.; Carminati, L.; Caron, S.; Carquin, E.; Carrillo-Montoya, G. D.; Carter, J. R.; Carvalho, J.; Casadei, D.; Casado, M. P.; Casolino, M.; Castaneda-Miranda, E.; Castelli, A.; Castillo Gimenez, V.; Castro, N. F.; Catastini, P.; Catinaccio, A.; Catmore, J. R.; Cattai, A.; Cattani, G.; Caudron, J.; Cavaliere, V.; Cavalli, D.; Cavalli-Sforza, M.; Cavasinni, V.; Ceradini, F.; Cerio, B.; Cerny, K.; Cerqueira, A. S.; Cerri, A.; Cerrito, L.; Cerutti, F.; Cerv, M.; Cervelli, A.; Cetin, S. A.; Chafaq, A.; Chakraborty, D.; Chalupkova, I.; Chang, P.; Chapleau, B.; Chapman, J. D.; Charfeddine, D.; Charlton, D. G.; Chau, C. C.; Chavez Barajas, C. A.; Cheatham, S.; Chegwidden, A.; Chekanov, S.; Chekulaev, S. V.; Chelkov, G. A.; Chelstowska, M. A.; Chen, C.; Chen, H.; Chen, K.; Chen, L.; Chen, S.; Chen, X.; Chen, Y.; Cheng, H. C.; Cheng, Y.; Cheplakov, A.; Cheremushkina, E.; Cherkaoui El Moursli, R.; Chernyatin, V.; Cheu, E.; Chevalier, L.; Chiarella, V.; Childers, J. T.; Chilingarov, A.; Chiodini, G.; Chisholm, A. S.; Chislett, R. T.; Chitan, A.; Chizhov, M. V.; Chouridou, S.; Chow, B. K. B.; Chromek-Burckhart, D.; Chu, M. L.; Chudoba, J.; Chwastowski, J. J.; Chytka, L.; Ciapetti, G.; Ciftci, A. K.; Cinca, D.; Cindro, V.; Ciocio, A.; Citron, Z. H.; Ciubancan, M.; Clark, A.; Clark, P. J.; Clarke, R. N.; Cleland, W.; Clement, C.; Coadou, Y.; Cobal, M.; Coccaro, A.; Cochran, J.; Coffey, L.; Cogan, J. G.; Cole, B.; Cole, S.; Colijn, A. P.; Collot, J.; Colombo, T.; Compostella, G.; Conde Muiño, P.; Coniavitis, E.; Connell, S. H.; Connelly, I. A.; Consonni, S. M.; Consorti, V.; Constantinescu, S.; Conta, C.; Conti, G.; Conventi, F.; Cooke, M.; Cooper, B. D.; Cooper-Sarkar, A. M.; Copic, K.; Cornelissen, T.; Corradi, M.; Corriveau, F.; Corso-Radu, A.; Cortes-Gonzalez, A.; Cortiana, G.; Costa, G.; Costa, M. J.; Costanzo, D.; Côté, D.; Cottin, G.; Cowan, G.; Cox, B. E.; Cranmer, K.; Cree, G.; Crépé-Renaudin, S.; Crescioli, F.; Cribbs, W. A.; Crispin Ortuzar, M.; Cristinziani, M.; Croft, V.; Crosetti, G.; Cuhadar Donszelmann, T.; Cummings, J.; Curatolo, M.; Cuthbert, C.; Czirr, H.; Czodrowski, P.; D'Auria, S.; D'Onofrio, M.; Cunha Sargedas De Sousa, M. J. Da; Via, C. Da; Dabrowski, W.; Dafinca, A.; Dai, T.; Dale, O.; Dallaire, F.; Dallapiccola, C.; Dam, M.; Dandoy, J. R.; Daniells, A. C.; Danninger, M.; Dano Hoffmann, M.; Dao, V.; Darbo, G.; Darmora, S.; Dassoulas, J.; Dattagupta, A.; Davey, W.; David, C.; Davidek, T.; Davies, E.; Davies, M.; Davignon, O.; Davison, P.; Davygora, Y.; Dawe, E.; Dawson, I.; Daya-Ishmukhametova, R. K.; De, K.; de Asmundis, R.; De Castro, S.; De Cecco, S.; De Groot, N.; de Jong, P.; De la Torre, H.; De Lorenzi, F.; De Nooij, L.; De Pedis, D.; De Salvo, A.; De Sanctis, U.; De Santo, A.; De Simone, A.; De Vivie De Regie, J. B.; Dearnaley, W. J.; Debbe, R.; Debenedetti, C.; Dedovich, D. V.; Deigaard, I.; Del Peso, J.; Del Prete, T.; Delgove, D.; Deliot, F.; Delitzsch, C. M.; Deliyergiyev, M.; Dell'Acqua, A.; Dell'Asta, L.; Dell'Orso, M.; Della Pietra, M.; della Volpe, D.; Delmastro, M.; Delsart, P. A.; Deluca, C.; DeMarco, D. A.; Demers, S.; Demichev, M.; Demilly, A.; Denisov, S. P.; Derendarz, D.; Derkaoui, J. E.; Derue, F.; Dervan, P.; Desch, K.; Deterre, C.; Deviveiros, P. O.; Dewhurst, A.; Dhaliwal, S.; Di Ciaccio, A.; Di Ciaccio, L.; Di Domenico, A.; Di Donato, C.; Di Girolamo, A.; Di Girolamo, B.; Di Mattia, A.; Di Micco, B.; Di Nardo, R.; Di Simone, A.; Di Sipio, R.; Di Valentino, D.; Diaconu, C.; Diamond, M.; Dias, F. A.; Diaz, M. A.; Diehl, E. B.; Dietrich, J.; Dietzsch, T. A.; Diglio, S.; Dimitrievska, A.; Dingfelder, J.; Dittus, F.; Djama, F.; Djobava, T.; Djuvsland, J. I.; do Vale, M. A. B.; Dobos, D.; Dobre, M.; Doglioni, C.; Doherty, T.; Dohmae, T.; Dolejsi, J.; Dolezal, Z.; Dolgoshein, B. A.; Donadelli, M.; Donati, S.; Dondero, P.; Donini, J.; Dopke, J.; Doria, A.; Dova, M. T.; Doyle, A. T.; Dris, M.; Dubreuil, E.; Duchovni, E.; Duckeck, G.; Ducu, O. A.; Duda, D.; Dudarev, A.; Duflot, L.; Duguid, L.; Dührssen, M.; Dunford, M.; Duran Yildiz, H.; Düren, M.; Durglishvili, A.; Duschinger, D.; Dwuznik, M.; Dyndal, M.; Ecker, K. M.; Edson, W.; Edwards, N. C.; Ehrenfeld, W.; Eifert, T.; Eigen, G.; Einsweiler, K.; Ekelof, T.; El Kacimi, M.; Ellert, M.; Elles, S.; Ellinghaus, F.; Elliot, A. A.; Ellis, N.; Elmsheuser, J.; Elsing, M.; Emeliyanov, D.; Enari, Y.; Endner, O. C.; Endo, M.; Engelmann, R.; Erdmann, J.; Ereditato, A.; Eriksson, D.; Ernis, G.; Ernst, J.; Ernst, M.; Errede, S.; Ertel, E.; Escalier, M.; Esch, H.; Escobar, C.; Esposito, B.; Etienvre, A. I.; Etzion, E.; Evans, H.; Ezhilov, A.; Fabbri, L.; Facini, G.; Fakhrutdinov, R. M.; Falciano, S.; Falla, R. J.; Faltova, J.; Fang, Y.; Fanti, M.; Farbin, A.; Farilla, A.; Farooque, T.; Farrell, S.; Farrington, S. M.; Farthouat, P.; Fassi, F.; Fassnacht, P.; Fassouliotis, D.; Favareto, A.; Fayard, L.; Federic, P.; Fedin, O. L.; Fedorko, W.; Feigl, S.; Feligioni, L.; Feng, C.; Feng, E. J.; Feng, H.; Fenyuk, A. B.; Fernandez Martinez, P.; Fernandez Perez, S.; Ferrag, S.; Ferrando, J.; Ferrari, A.; Ferrari, P.; Ferrari, R.; Ferreira de Lima, D. E.; Ferrer, A.; Ferrere, D.; Ferretti, C.; Ferretto Parodi, A.; Fiascaris, M.; Fiedler, F.; Filipčič, A.; Filipuzzi, M.; Filthaut, F.; Fincke-Keeler, M.; Finelli, K. D.; Fiolhais, M. C. N.; Fiorini, L.; Firan, A.; Fischer, A.; Fischer, C.; Fischer, J.; Fisher, W. C.; Fitzgerald, E. A.; Flechl, M.; Fleck, I.; Fleischmann, P.; Fleischmann, S.; Fletcher, G. T.; Fletcher, G.; Flick, T.; Floderus, A.; Flores Castillo, L. R.; Flowerdew, M. J.; Formica, A.; Forti, A.; Fournier, D.; Fox, H.; Fracchia, S.; Francavilla, P.; Franchini, M.; Francis, D.; Franconi, L.; Franklin, M.; Fraternali, M.; Freeborn, D.; French, S. T.; Friedrich, F.; Froidevaux, D.; Frost, J. A.; Fukunaga, C.; Fullana Torregrosa, E.; Fulsom, B. G.; Fuster, J.; Gabaldon, C.; Gabizon, O.; Gabrielli, A.; Gabrielli, A.; Gadatsch, S.; Gadomski, S.; Gagliardi, G.; Gagnon, P.; Galea, C.; Galhardo, B.; Gallas, E. J.; Gallop, B. J.; Gallus, P.; Galster, G.; Gan, K. K.; Gao, J.; Gao, Y. S.; Garay Walls, F. M.; Garberson, F.; García, C.; García Navarro, J. E.; Garcia-Sciveres, M.; Gardner, R. W.; Garelli, N.; Garonne, V.; Gatti, C.; Gaudio, G.; Gaur, B.; Gauthier, L.; Gauzzi, P.; Gavrilenko, I. L.; Gay, C.; Gaycken, G.; Gazis, E. N.; Ge, P.; Gecse, Z.; Gee, C. N. P.; Geerts, D. A. A.; Geich-Gimbel, Ch.; Gemme, C.; Genest, M. H.; Gentile, S.; George, M.; George, S.; Gerbaudo, D.; Gershon, A.; Ghazlane, H.; Ghodbane, N.; Giacobbe, B.; Giagu, S.; Giangiobbe, V.; Giannetti, P.; Gianotti, F.; Gibbard, B.; Gibson, S. M.; Gilchriese, M.; Gillam, T. P. S.; Gillberg, D.; Gilles, G.; Gingrich, D. M.; Giokaris, N.; Giordani, M. P.; Giorgi, F. M.; Giorgi, F. M.; Giraud, P. F.; Giugni, D.; Giuliani, C.; Giulini, M.; Gjelsten, B. K.; Gkaitatzis, S.; Gkialas, I.; Gkougkousis, E. L.; Gladilin, L. K.; Glasman, C.; Glatzer, J.; Glaysher, P. C. F.; Glazov, A.; Glonti, G. L.; Goblirsch-Kolb, M.; Goddard, J. R.; Godlewski, J.; Goldfarb, S.; Golling, T.; Golubkov, D.; Gomes, A.; Gonçalo, R.; Goncalves Pinto Firmino Da Costa, J.; Gonella, L.; González de la Hoz, S.; Gonzalez Parra, G.; Gonzalez-Sevilla, S.; Goossens, L.; Gorbounov, P. A.; Gordon, H. A.; Gorelov, I.; Gorini, B.; Gorini, E.; Gorišek, A.; Gornicki, E.; Goshaw, A. T.; Gössling, C.; Gostkin, M. I.; Gouighri, M.; Goujdami, D.; Goussiou, A. G.; Grabas, H. M. X.; Graber, L.; Grabowska-Bold, I.; Grafström, P.; Grahn, K.-J.; Gramling, J.; Gramstad, E.; Grancagnolo, S.; Grassi, V.; Gratchev, V.; Gray, H. M.; Graziani, E.; Greenwood, Z. D.; Gregersen, K.; Gregor, I. M.; Grenier, P.; Griffiths, J.; Grillo, A. A.; Grimm, K.; Grinstein, S.; Gris, Ph.; Grishkevich, Y. V.; Grivaz, J.-F.; Grohs, J. P.; Grohsjean, A.; Gross, E.; Grosse-Knetter, J.; Grossi, G. C.; Grout, Z. J.; Guan, L.; Guenther, J.; Guescini, F.; Guest, D.; Gueta, O.; Guido, E.; Guillemin, T.; Guindon, S.; Gul, U.; Gumpert, C.; Guo, J.; Gupta, S.; Gutierrez, P.; Gutierrez Ortiz, N. G.; Gutschow, C.; Guttman, N.; Guyot, C.; Gwenlan, C.; Gwilliam, C. B.; Haas, A.; Haber, C.; Hadavand, H. K.; Haddad, N.; Haefner, P.; Hageböck, S.; Hajduk, Z.; Hakobyan, H.; Haleem, M.; Haley, J.; Hall, D.; Halladjian, G.; Hallewell, G. D.; Hamacher, K.; Hamal, P.; Hamano, K.; Hamer, M.; Hamilton, A.; Hamilton, S.; Hamity, G. N.; Hamnett, P. G.; Han, L.; Hanagaki, K.; Hanawa, K.; Hance, M.; Hanke, P.; Hanna, R.; Hansen, J. B.; Hansen, J. D.; Hansen, P. H.; Hara, K.; Hard, A. S.; Harenberg, T.; Hariri, F.; Harkusha, S.; Harrington, R. D.; Harrison, P. F.; Hartjes, F.; Hasegawa, M.; Hasegawa, S.; Hasegawa, Y.; Hasib, A.; Hassani, S.; Haug, S.; Hauser, R.; Hauswald, L.; Havranek, M.; Hawkes, C. M.; Hawkings, R. J.; Hawkins, A. D.; Hayashi, T.; Hayden, D.; Hays, C. P.; Hays, J. M.; Hayward, H. S.; Haywood, S. J.; Head, S. J.; Heck, T.; Hedberg, V.; Heelan, L.; Heim, S.; Heim, T.; Heinemann, B.; Heinrich, L.; Hejbal, J.; Helary, L.; Heller, M.; Hellman, S.; Hellmich, D.; Helsens, C.; Henderson, J.; Henderson, R. C. W.; Heng, Y.; Hengler, C.; Henrichs, A.; Henriques Correia, A. M.; Henrot-Versille, S.; Herbert, G. H.; Hernández Jiménez, Y.; Herrberg-Schubert, R.; Herten, G.; Hertenberger, R.; Hervas, L.; Hesketh, G. G.; Hessey, N. P.; Hickling, R.; Higón-Rodriguez, E.; Hill, E.; Hill, J. C.; Hiller, K. H.; Hillier, S. J.; Hinchliffe, I.; Hines, E.; Hinman, R. R.; Hirose, M.; Hirschbuehl, D.; Hobbs, J.; Hod, N.; Hodgkinson, M. C.; Hodgson, P.; Hoecker, A.; Hoeferkamp, M. R.; Hoenig, F.; Hohlfeld, M.; Holmes, T. R.; Hong, T. M.; Hooft van Huysduynen, L.; Hopkins, W. H.; Horii, Y.; Horton, A. J.; Hostachy, J.-Y.; Hou, S.; Hoummada, A.; Howard, J.; Howarth, J.; Hrabovsky, M.; Hristova, I.; Hrivnac, J.; Hryn'ova, T.; Hrynevich, A.; Hsu, C.; Hsu, P. J.; Hsu, S.-C.; Hu, D.; Hu, Q.; Hu, X.; Huang, Y.; Hubacek, Z.; Hubaut, F.; Huegging, F.; Huffman, T. B.; Hughes, E. W.; Hughes, G.; Huhtinen, M.; Hülsing, T. A.; Huseynov, N.; Huston, J.; Huth, J.; Iacobucci, G.; Iakovidis, G.; Ibragimov, I.; Iconomidou-Fayard, L.; Ideal, E.; Idrissi, Z.; Iengo, P.; Igonkina, O.; Iizawa, T.; Ikegami, Y.; Ikematsu, K.; Ikeno, M.; Ilchenko, Y.; Iliadis, D.; Ilic, N.; Inamaru, Y.; Ince, T.; Ioannou, P.; Iodice, M.; Iordanidou, K.; Ippolito, V.; Irles Quiles, A.; Isaksson, C.; Ishino, M.; Ishitsuka, M.; Ishmukhametov, R.; Issever, C.; Istin, S.; Iturbe Ponce, J. M.; Iuppa, R.; Ivarsson, J.; Iwanski, W.; Iwasaki, H.; Izen, J. M.; Izzo, V.; Jabbar, S.; Jackson, B.; Jackson, M.; Jackson, P.; Jacques, T. D.; Jaekel, M. R.; Jain, V.; Jakobs, K.; Jakobsen, S.; Jakoubek, T.; Jakubek, J.; Jamin, D. O.; Jana, D. K.; Jansen, E.; Jansky, R. W.; Janssen, J.; Janus, M.; Jarlskog, G.; Javadov, N.; Javůrek, T.; Jeanty, L.; Jejelava, J.; Jeng, G.-Y.; Jennens, D.; Jenni, P.; Jentzsch, J.; Jeske, C.; Jézéquel, S.; Ji, H.; Jia, J.; Jiang, Y.; Pena, J.; Jin, S.; Jinaru, A.; Jinnouchi, O.; Joergensen, M. D.; Johansson, P.; Johns, K. A.; Jon-And, K.; Jones, G.; Jones, R. W. L.; Jones, T. J.; Jongmanns, J.; Jorge, P. M.; Joshi, K. D.; Jovicevic, J.; Ju, X.; Jung, C. A.; Jussel, P.; Juste Rozas, A.; Kaci, M.; Kaczmarska, A.; Kado, M.; Kagan, H.; Kagan, M.; Kahn, S. J.; Kajomovitz, E.; Kalderon, C. W.; Kama, S.; Kamenshchikov, A.; Kanaya, N.; Kaneda, M.; Kaneti, S.; Kantserov, V. A.; Kanzaki, J.; Kaplan, B.; Kapliy, A.; Kar, D.; Karakostas, K.; Karamaoun, A.; Karastathis, N.; Kareem, M. J.; Karnevskiy, M.; Karpov, S. N.; Karpova, Z. M.; Karthik, K.; Kartvelishvili, V.; Karyukhin, A. N.; Kashif, L.; Kass, R. D.; Kastanas, A.; Kataoka, Y.; Katre, A.; Katzy, J.; Kawagoe, K.; Kawamoto, T.; Kawamura, G.; Kazama, S.; Kazanin, V. F.; Kazarinov, M. Y.; Keeler, R.; Kehoe, R.; Keil, M.; Keller, J. S.; Kempster, J. J.; Keoshkerian, H.; Kepka, O.; Kerševan, B. P.; Kersten, S.; Keyes, R. A.; Khalil-zada, F.; Khandanyan, H.; Khanov, A.; Kharlamov, A. G.; Khodinov, A.; Khomich, A.; Khoo, T. J.; Khoriauli, G.; Khovanskiy, V.; Khramov, E.; Khubua, J.; Kim, H. Y.; Kim, H.; Kim, S. H.; Kimura, N.; Kind, O. M.; King, B. T.; King, M.; King, R. S. B.; King, S. B.; Kirk, J.; Kiryunin, A. E.; Kishimoto, T.; Kisielewska, D.; Kiss, F.; Kiuchi, K.; Kladiva, E.; Klein, M. H.; Klein, M.; Klein, U.; Kleinknecht, K.; Klimek, P.; Klimentov, A.; Klingenberg, R.; Klinger, J. A.; Klioutchnikova, T.; Klok, P. F.; Kluge, E.-E.; Kluit, P.; Kluth, S.; Kneringer, E.; Knoops, E. B. F. G.; Knue, A.; Kobayashi, D.; Kobayashi, T.; Kobel, M.; Kocian, M.; Kodys, P.; Koffas, T.; Koffeman, E.; Kogan, L. A.; Kohlmann, S.; Kohout, Z.; Kohriki, T.; Koi, T.; Kolanoski, H.; Koletsou, I.; Komar, A. A.; Komori, Y.; Kondo, T.; Kondrashova, N.; Köneke, K.; König, A. C.; König, S.; Kono, T.; Konoplich, R.; Konstantinidis, N.; Kopeliansky, R.; Koperny, S.; Köpke, L.; Kopp, A. K.; Korcyl, K.; Kordas, K.; Korn, A.; Korol, A. A.; Korolkov, I.; Korolkova, E. V.; Kortner, O.; Kosek, T.; Kortner, S.; Kostyukhin, V. V.; Kotov, V. M.; Kotwal, A.; Kourkoumeli-Charalampidi, A.; Kourkoumelis, C.; Kouskoura, V.; Koutsman, A.; Kowalewski, R.; Kowalski, T. Z.; Kozanecki, W.; Kozhin, A. S.; Kramarenko, V. A.; Kramberger, G.; Krasnopevtsev, D.; Krasny, M. W.; Krasznahorkay, A.; Kraus, J. K.; Kravchenko, A.; Kreiss, S.; Kretz, M.; Kretzschmar, J.; Kreutzfeldt, K.; Krieger, P.; Krizka, K.; Kroeninger, K.; Kroha, H.; Kroll, J.; Kroseberg, J.; Krstic, J.; Kruchonak, U.; Krüger, H.; Krumnack, N.; Krumshteyn, Z. V.; Kruse, A.; Kruse, M. C.; Kruskal, M.; Kubota, T.; Kucuk, H.; Kuday, S.; Kuehn, S.; Kugel, A.; Kuger, F.; Kuhl, A.; Kuhl, T.; Kukhtin, V.; Kulchitsky, Y.; Kuleshov, S.; Kuna, M.; Kunigo, T.; Kupco, A.; Kurashige, H.; Kurochkin, Y. A.; Kurumida, R.; Kus, V.; Kuwertz, E. S.; Kuze, M.; Kvita, J.; Kwan, T.; Kyriazopoulos, D.; La Rosa, A.; La Rosa Navarro, J. L.; La Rotonda, L.; Lacasta, C.; Lacava, F.; Lacey, J.; Lacker, H.; Lacour, D.; Lacuesta, V. R.; Ladygin, E.; Lafaye, R.; Laforge, B.; Lagouri, T.; Lai, S.; Lambourne, L.; Lammers, S.; Lampen, C. L.; Lampl, W.; Lançon, E.; Landgraf, U.; Landon, M. P. J.; Lang, V. S.; Lankford, A. J.; Lanni, F.; Lantzsch, K.; Laplace, S.; Lapoire, C.; Laporte, J. F.; Lari, T.; Manghi, F. Lasagni; Lassnig, M.; Laurelli, P.; Lavrijsen, W.; Law, A. T.; Laycock, P.; Le Dortz, O.; Le Guirriec, E.; Le Menedeu, E.; LeCompte, T.; Ledroit-Guillon, F.; Lee, C. A.; Lee, S. C.; Lee, L.; Lefebvre, G.; Lefebvre, M.; Legger, F.; Leggett, C.; Lehan, A.; Lehmann Miotto, G.; Lei, X.; Leight, W. A.; Leisos, A.; Leister, A. G.; Leite, M. A. L.; Leitner, R.; Lellouch, D.; Lemmer, B.; Leney, K. J. C.; Lenz, T.; Lenzen, G.; Lenzi, B.; Leone, R.; Leone, S.; Leonidopoulos, C.; Leontsinis, S.; Leroy, C.; Lester, C. G.; Levchenko, M.; Levêque, J.; Levin, D.; Levinson, L. J.; Levy, M.; Lewis, A.; Leyko, A. M.; Leyton, M.; Li, B.; Li, B.; Li, H.; Li, H. L.; Li, L.; Li, L.; Li, S.; Li, Y.; Liang, Z.; Liao, H.; Liberti, B.; Lichard, P.; Lie, K.; Liebal, J.; Liebig, W.; Limbach, C.; Limosani, A.; Lin, S. C.; Lin, T. H.; Linde, F.; Lindquist, B. E.; Linnemann, J. T.; Lipeles, E.; Lipniacka, A.; Lisovyi, M.; Liss, T. M.; Lissauer, D.; Lister, A.; Litke, A. M.; Liu, B.; Liu, D.; Liu, J.; Liu, J. B.; Liu, K.; Liu, L.; Liu, M.; Liu, M.; Liu, Y.; Livan, M.; Lleres, A.; Llorente Merino, J.; Lloyd, S. L.; Lo Sterzo, F.; Lobodzinska, E.; Loch, P.; Lockman, W. S.; Loebinger, F. K.; Loevschall-Jensen, A. E.; Loginov, A.; Lohse, T.; Lohwasser, K.; Lokajicek, M.; Long, B. A.; Long, J. D.; Long, R. E.; Looper, K. A.; Lopes, L.; Lopez Mateos, D.; Lopez Paredes, B.; Lopez Paz, I.; Lorenz, J.; Lorenzo Martinez, N.; Losada, M.; Loscutoff, P.; Lösel, P. J.; Lou, X.; Lounis, A.; Love, J.; Love, P. A.; Lu, N.; Lubatti, H. J.; Luci, C.; Lucotte, A.; Luehring, F.; Lukas, W.; Luminari, L.; Lundberg, O.; Lund-Jensen, B.; Lungwitz, M.; Lynn, D.; Lysak, R.; Lytken, E.; Ma, H.; Ma, L. L.; Maccarrone, G.; Macchiolo, A.; Machado Mi guens, J.; Macina, D.; Madaffari, D.; Madar, R.; Maddocks, H. J.; Mader, W. F.; Madsen, A.; Maeno, T.; Maevskiy, A.; Magradze, E.; Mahboubi, K.; Mahlstedt, J.; Mahmoud, S.; Maiani, C.; Maidantchik, C.; Maier, A. A.; Maio, A.; Majewski, S.; Makida, Y.; Makovec, N.; Malaescu, B.; Malecki, Pa.; Maleev, V. P.; Malek, F.; Mallik, U.; Malon, D.; Malone, C.; Maltezos, S.; Malyshev, V. M.; Malyukov, S.; Mamuzic, J.; Mandelli, B.; Mandelli, L.; Mandić, I.; Mandrysch, R.; Maneira, J.; Manfredini, A.; Manhaes de Andrade Filho, L.; Manjarres Ramos, J.; Mann, A.; Manning, P. M.; Manousakis-Katsikakis, A.; Mansoulie, B.; Mantifel, R.; Mantoani, M.; Mapelli, L.; March, L.; Marchiori, G.; Marcisovsky, M.; Marino, C. P.; Marjanovic, M.; Marroquim, F.; Marsden, S. P.; Marshall, Z.; Marti, L. F.; Marti-Garcia, S.; Martin, B.; Martin, T. A.; Martin, V. J.; Martin dit Latour, B.; Martinez, H.; Martinez, M.; Martin-Haugh, S.; Martyniuk, A. C.; Marx, M.; Marzano, F.; Marzin, A.; Masetti, L.; Mashimo, T.; Mashinistov, R.; Masik, J.; Maslennikov, A. L.; Massa, I.; Massa, L.; Massol, N.; Mastrandrea, P.; Mastroberardino, A.; Masubuchi, T.; Mättig, P.; Mattmann, J.; Maurer, J.; Maxfield, S. J.; Maximov, D. A.; Mazini, R.; Mazza, S. M.; Mazzaferro, L.; Mc Goldrick, G.; Mc Kee, S. P.; McCarn, A.; McCarthy, R. L.; McCarthy, T. G.; McCubbin, N. A.; McFarlane, K. W.; Mcfayden, J. A.; Mchedlidze, G.; McMahon, S. J.; McPherson, R. A.; Mechnich, J.; Medinnis, M.; Meehan, S.; Mehlhase, S.; Mehta, A.; Meier, K.; Meineck, C.; Meirose, B.; Melachrinos, C.; Mellado Garcia, B. R.; Meloni, F.; Mengarelli, A.; Menke, S.; Meoni, E.; Mercurio, K. M.; Mergelmeyer, S.; Meric, N.; Mermod, P.; Merola, L.; Meroni, C.; Merritt, F. S.; Merritt, H.; Messina, A.; Metcalfe, J.; Mete, A. S.; Meyer, C.; Meyer, C.; Meyer, J.-P.; Meyer, J.; Middleton, R. P.; Migas, S.; Miglioranzi, S.; Mijović, L.; Mikenberg, G.; Mikestikova, M.; Mikuž, M.; Milic, A.; Miller, D. W.; Mills, C.; Milov, A.; Milstead, D. A.; Minaenko, A. A.; Minami, Y.; Minashvili, I. A.; Mincer, A. I.; Mindur, B.; Mineev, M.; Ming, Y.; Mir, L. M.; Mirabelli, G.; Mitani, T.; Mitrevski, J.; Mitsou, V. A.; Miucci, A.; Miyagawa, P. S.; Mjörnmark, J. U.; Moa, T.; Mochizuki, K.; Mohapatra, S.; Mohr, W.; Molander, S.; Moles-Valls, R.; Mönig, K.; Monini, C.; Monk, J.; Monnier, E.; Montejo Berlingen, J.; Monticelli, F.; Monzani, S.; Moore, R. W.; Morange, N.; Moreno, D.; Moreno Llácer, M.; Morettini, P.; Morgenstern, M.; Morii, M.; Morisbak, V.; Moritz, S.; Morley, A. K.; Mornacchi, G.; Morris, J. D.; Morton, A.; Morvaj, L.; Moser, H. G.; Mosidze, M.; Moss, J.; Motohashi, K.; Mount, R.; Mountricha, E.; Mouraviev, S. V.; Moyse, E. J. W.; Muanza, S.; Mudd, R. D.; Mueller, F.; Mueller, J.; Mueller, K.; Mueller, R. S. P.; Mueller, T.; Muenstermann, D.; Mullen, P.; Munwes, Y.; Murillo Quijada, J. A.; Murray, W. J.; Musheghyan, H.; Musto, E.; Myagkov, A. G.; Myska, M.; Nackenhorst, O.; Nadal, J.; Nagai, K.; Nagai, R.; Nagai, Y.; Nagano, K.; Nagarkar, A.; Nagasaka, Y.; Nagata, K.; Nagel, M.; Nagy, E.; Nairz, A. M.; Nakahama, Y.; Nakamura, K.; Nakamura, T.; Nakano, I.; Namasivayam, H.; Nanava, G.; Naranjo Garcia, R. F.; Narayan, R.; Nattermann, T.; Naumann, T.; Navarro, G.; Nayyar, R.; Neal, H. A.; Nechaeva, P. Yu.; Neep, T. J.; Nef, P. D.; Negri, A.; Negrini, M.; Nektarijevic, S.; Nellist, C.; Nelson, A.; Nemecek, S.; Nemethy, P.; Nepomuceno, A. A.; Nessi, M.; Neubauer, M. S.; Neumann, M.; Neves, R. M.; Nevski, P.; Newman, P. R.; Nguyen, D. H.; Nickerson, R. B.; Nicolaidou, R.; Nicquevert, B.; Nielsen, J.; Nikiforou, N.; Nikiforov, A.; Nikolaenko, V.; Nikolic-Audit, I.; Nikolopoulos, K.; Nilsson, P.; Ninomiya, Y.; Nisati, A.; Nisius, R.; Nobe, T.; Nomachi, M.; Nomidis, I.; Norberg, S.; Nordberg, M.; Novgorodova, O.; Nowak, S.; Nozaki, M.; Nozka, L.; Ntekas, K.; Nunes Hanninger, G.; Nunnemann, T.; Nurse, E.; Nuti, F.; O'Brien, B. J.; O'grady, F.; O'Neil, D. C.; O'Shea, V.; Oakham, F. G.; Oberlack, H.; Obermann, T.; Ocariz, J.; Ochi, A.; Ochoa, I.; Oda, S.; Odaka, S.; Ogren, H.; Oh, A.; Oh, S. H.; Ohm, C. C.; Ohman, H.; Oide, H.; Okamura, W.; Okawa, H.; Okumura, Y.; Okuyama, T.; Olariu, A.; Olchevski, A. G.; Olivares Pino, S. A.; Oliveira Damazio, D.; Oliver Garcia, E.; Olszewski, A.; Olszowska, J.; Onofre, A.; Onyisi, P. U. E.; Oram, C. J.; Oreglia, M. J.; Oren, Y.; Orestano, D.; Orlando, N.; Oropeza Barrera, C.; Orr, R. S.; Osculati, B.; Ospanov, R.; Otero y Garzon, G.; Otono, H.; Ouchrif, M.; Ouellette, E. A.; Ould-Saada, F.; Ouraou, A.; Oussoren, K. P.; Ouyang, Q.; Ovcharova, A.; Owen, M.; Owen, R. E.; Ozcan, V. E.; Ozturk, N.; Pachal, K.; Pacheco Pages, A.; Padilla Aranda, C.; Pagáčová, M.; Pagan Griso, S.; Paganis, E.; Pahl, C.; Paige, F.; Pais, P.; Pajchel, K.; Palacino, G.; Palestini, S.; Palka, M.; Pallin, D.; Palma, A.; Pan, Y. B.; Panagiotopoulou, E.; Pandini, C. E.; Panduro Vazquez, J. G.; Pani, P.; Panikashvili, N.; Panitkin, S.; Paolozzi, L.; Papadopoulou, Th. D.; Papageorgiou, K.; Paramonov, A.; Paredes Hernandez, D.; Parker, M. A.; Parker, K. A.; Parodi, F.; Parsons, J. A.; Parzefall, U.; Pasqualucci, E.; Passaggio, S.; Pastore, F.; Pastore, Fr.; Pásztor, G.; Pataraia, S.; Patel, N. D.; Pater, J. R.; Pauly, T.; Pearce, J.; Pedersen, L. E.; Pedersen, M.; Pedraza Lopez, S.; Pedro, R.; Peleganchuk, S. V.; Pelikan, D.; Peng, H.; Penning, B.; Penwell, J.; Perepelitsa, D. V.; Perez Codina, E.; Pérez García-Estañ, M. T.; Perini, L.; Pernegger, H.; Perrella, S.; Peschke, R.; Peshekhonov, V. D.; Peters, K.; Peters, R. F. Y.; Petersen, B. A.; Petersen, T. C.; Petit, E.; Petridis, A.; Petridou, C.; Petrolo, E.; Petrucci, F.; Pettersson, N. E.; Pezoa, R.; Phillips, P. W.; Piacquadio, G.; Pianori, E.; Picazio, A.; Piccaro, E.; Piccinini, M.; Pickering, M. A.; Piegaia, R.; Pignotti, D. T.; Pilcher, J. E.; Pilkington, A. D.; Pina, J.; Pinamonti, M.; Pinfold, J. L.; Pingel, A.; Pinto, B.; Pires, S.; Pitt, M.; Pizio, C.; Plazak, L.; Pleier, M.-A.; Pleskot, V.; Plotnikova, E.; Plucinski, P.; Pluth, D.; Poettgen, R.; Poggioli, L.; Pohl, D.; Polesello, G.; Policicchio, A.; Polifka, R.; Polini, A.; Pollard, C. S.; Polychronakos, V.; Pommès, K.; Pontecorvo, L.; Pope, B. G.; Popeneciu, G. A.; Popovic, D. S.; Poppleton, A.; Pospisil, S.; Potamianos, K.; Potrap, I. N.; Potter, C. J.; Potter, C. T.; Poulard, G.; Poveda, J.; Pozdnyakov, V.; Pralavorio, P.; Pranko, A.; Prasad, S.; Prell, S.; Price, D.; Price, J.; Price, L. E.; Primavera, M.; Price, S.; Proissl, M.; Prokofiev, K.; Prokoshin, F.; Protopapadaki, E.; Protopopescu, S.; Proudfoot, J.; Przybycien, M.; Ptacek, E.; Puddu, D.; Pueschel, E.; Puldon, D.; Purohit, M.; Puzo, P.; Qian, J.; Qin, G.; Qin, Y.; Quadt, A.; Quarrie, D. R.; Quayle, W. B.; Queitsch-Maitland, M.; Quilty, D.; Qureshi, A.; Radeka, V.; Radescu, V.; Radhakrishnan, S. K.; Radloff, P.; Rados, P.; Ragusa, F.; Rahal, G.; Rajagopalan, S.; Rammensee, M.; Rangel-Smith, C.; Rauscher, F.; Rave, S.; Rave, T. C.; Ravenscroft, T.; Raymond, M.; Read, A. L.; Readioff, N. P.; Rebuzzi, D. M.; Redelbach, A.; Redlinger, G.; Reece, R.; Reeves, K.; Rehnisch, L.; Reisin, H.; Relich, M.; Rembser, C.; Ren, H.; Renaud, A.; Rescigno, M.; Resconi, S.; Rezanova, O. L.; Reznicek, P.; Rezvani, R.; Richter, R.; Richter-Was, E.; Ridel, M.; Rieck, P.; Riegel, C. J.; Rieger, J.; Rijssenbeek, M.; Rimoldi, A.; Rinaldi, L.; Riotto, A. W.; Ritsch, E.; Riu, I.; Rizatdinova, F.; Rizvi, E.; Robertson, S. H.; Robichaud-Veronneau, A.; Robinson, D.; Robinson, J. E. M.; Robson, A.; Roda, C.; Rodrigues, L.; Roe, S.; Røhne, O.; Rolli, S.; Romaniouk, A.; Romano, M.; Romano Saez, S. M.; Romero Adam, E.; Rompotis, N.; Ronzani, M.; Roos, L.; Ros, E.; Rosati, S.; Rosbach, K.; Rose, P.; Rosendahl, P. L.; Rosenthal, O.; Rossetti, V.; Rossi, E.; Rossi, L. P.; Rosten, R.; Rotaru, M.; Roth, I.; Rothberg, J.; Rousseau, D.; Royon, C. R.; Rozanov, A.; Rozen, Y.; Ruan, X.; Rubbo, F.; Rubinskiy, I.; Rud, V. I.; Rudolph, C.; Rudolph, M. S.; Rühr, F.; Ruiz-Martinez, A.; Rurikova, Z.; Rusakovich, N. A.; Ruschke, A.; Russell, H. L.; Rutherfoord, J. P.; Ruthmann, N.; Ryabov, Y. F.; Rybar, M.; Rybkin, G.; Ryder, N. C.; Saavedra, A. F.; Sabato, G.; Sacerdoti, S.; Saddique, A.; Sadrozinski, H. F.-W.; Sadykov, R.; Safai Tehrani, F.; Saimpert, M.; Sakamoto, H.; Sakurai, Y.; Salamanna, G.; Salamon, A.; Saleem, M.; Salek, D.; Sales De Bruin, P. H.; Salihagic, D.; Salnikov, A.; Salt, J.; Salvatore, D.; Salvatore, F.; Salvucci, A.; Salzburger, A.; Sampsonidis, D.; Sanchez, A.; Sánchez, J.; Sanchez Martinez, V.; Sandaker, H.; Sandbach, R. L.; Sander, H. G.; Sanders, M. P.; Sandhoff, M.; Sandoval, C.; Sandstroem, R.; Sankey, D. P. C.; Sansoni, A.; Santoni, C.; Santonico, R.; Santos, H.; Santoyo Castillo, I.; Sapp, K.; Sapronov, A.; Saraiva, J. G.; Sarrazin, B.; Sasaki, O.; Sasaki, Y.; Sato, K.; Sauvage, G.; Sauvan, E.; Savage, G.; Savard, P.; Sawyer, C.; Sawyer, L.; Saxon, D. H.; Saxon, J.; Sbarra, C.; Sbrizzi, A.; Scanlon, T.; Scannicchio, D. A.; Scarcella, M.; Scarfone, V.; Schaarschmidt, J.; Schacht, P.; Schaefer, D.; Schaefer, R.; Schaeffer, J.; Schaepe, S.; Schaetzel, S.; Schäfer, U.; Schaffer, A. C.; Schaile, D.; Schamberger, R. D.; Scharf, V.; Schegelsky, V. A.; Scheirich, D.; Schernau, M.; Schiavi, C.; Schillo, C.; Schioppa, M.; Schlenker, S.; Schmidt, E.; Schmieden, K.; Schmitt, C.; Schmitt, S.; Schneider, B.; Schnellbach, Y. J.; Schnoor, U.; Schoeffel, L.; Schoening, A.; Schoenrock, B. D.; Schorlemmer, A. L. S.; Schott, M.; Schouten, D.; Schovancova, J.; Schramm, S.; Schreyer, M.; Schroeder, C.; Schuh, N.; Schultens, M. J.; Schultz-Coulon, H.-C.; Schulz, H.; Schumacher, M.; Schumm, B. A.; Schune, Ph.; Schwanenberger, C.; Schwartzman, A.; Schwarz, T. A.; Schwegler, Ph.; Schwemling, Ph.; Schwienhorst, R.; Schwindling, J.; Schwindt, T.; Schwoerer, M.; Sciacca, F. G.; Scifo, E.; Sciolla, G.; Scuri, F.; Scutti, F.; Searcy, J.; Sedov, G.; Sedykh, E.; Seema, P.; Seidel, S. C.; Seiden, A.; Seifert, F.; Seixas, J. M.; Sekhniaidze, G.; Sekula, S. J.; Selbach, K. E.; Seliverstov, D. M.; Semprini-Cesari, N.; Serfon, C.; Serin, L.; Serkin, L.; Serre, T.; Seuster, R.; Severini, H.; Sfiligoj, T.; Sforza, F.; Sfyrla, A.; Shabalina, E.; Shamim, M.; Shan, L. Y.; Shang, R.; Shank, J. T.; Shapiro, M.; Shatalov, P. B.; Shaw, K.; Shcherbakova, A.; Shehu, C. Y.; Sherwood, P.; Shi, L.; Shimizu, S.; Shimmin, C. O.; Shimojima, M.; Shiyakova, M.; Shmeleva, A.; Saadi, D. Shoaleh; Shochet, M. J.; Shojaii, S.; Shrestha, S.; Shulga, E.; Shupe, M. A.; Shushkevich, S.; Sicho, P.; Sidiropoulou, O.; Sidorov, D.; Sidoti, A.; Siegert, F.; Sijacki, Dj.; Silva, J.; Silver, Y.; Silverstein, D.; Silverstein, S. B.; Simak, V.; Simard, O.; Simic, Lj.; Simion, S.; Simioni, E.; Simmons, B.; Simon, D.; Simoniello, R.; Sinervo, P.; Sinev, N. B.; Siragusa, G.; Sircar, A.; Sisakyan, A. N.; Sivoklokov, S. Yu.; Sjölin, J.; Sjursen, T. B.; Skinner, M. B.; Skottowe, H. P.; Skubic, P.; Slater, M.; Slavicek, T.; Slawinksa, M.; Sliwa, K.; Smakhtin, V.; Smart, B. H.; Smestad, L.; Smirnov, S. Yu.; Smirnov, Y.; Smirnova, L. N.; Smirnova, O.; Smith, K. M.; Smith, M. N. K.; Smizanska, M.; Smolek, K.; Snesarev, A. A.; Snidero, G.; Snyder, S.; Sobie, R.; Socher, F.; Soffer, A.; Soh, D. A.; Solans, C. A.; Solar, M.; Solc, J.; Soldatov, E. Yu.; Soldevila, U.; Solodkov, A. A.; Soloshenko, A.; Solovyanov, O. V.; Solovyev, V.; Sommer, P.; Song, H. Y.; Soni, N.; Sood, A.; Sopczak, A.; Sopko, B.; Sopko, V.; Sorin, V.; Sosa, D.; Sosebee, M.; Sotiropoulou, C. L.; Soualah, R.; Soueid, P.; Soukharev, A. M.; South, D.; Spagnolo, S.; Spanò, F.; Spearman, W. R.; Spettel, F.; Spighi, R.; Spigo, G.; Spiller, L. A.; Spousta, M.; Spreitzer, T.; Denis, R. D. St.; Staerz, S.; Stahlman, J.; Stamen, R.; Stamm, S.; Stanecka, E.; Stanescu, C.; Stanescu-Bellu, M.; Stanitzki, M. M.; Stapnes, S.; Starchenko, E. A.; Stark, J.; Staroba, P.; Starovoitov, P.; Staszewski, R.; Stavina, P.; Steinberg, P.; Stelzer, B.; Stelzer, H. J.; Stelzer-Chilton, O.; Stenzel, H.; Stern, S.; Stewart, G. A.; Stillings, J. A.; Stockton, M. C.; Stoebe, M.; Stoicea, G.; Stolte, P.; Stonjek, S.; Stradling, A. R.; Straessner, A.; Stramaglia, M. E.; Strandberg, J.; Strandberg, S.; Strandlie, A.; Strauss, E.; Strauss, M.; Strizenec, P.; Ströhmer, R.; Strom, D. M.; Stroynowski, R.; Strubig, A.; Stucci, S. A.; Stugu, B.; Styles, N. A.; Su, D.; Su, J.; Subramaniam, R.; Succurro, A.; Sugaya, Y.; Suhr, C.; Suk, M.; Sulin, V. V.; Sultansoy, S.; Sumida, T.; Sun, S.; Sun, X.; Sundermann, J. E.; Suruliz, K.; Susinno, G.; Sutton, M. R.; Suzuki, Y.; Svatos, M.; Swedish, S.; Swiatlowski, M.; Sykora, I.; Sykora, T.; Ta, D.; Taccini, C.; Tackmann, K.; Taenzer, J.; Taffard, A.; Tafirout, R.; Taiblum, N.; Takai, H.; Takashima, R.; Takeda, H.; Takeshita, T.; Takubo, Y.; Talby, M.; Talyshev, A. A.; Tam, J. Y. C.; Tan, K. G.; Tanaka, J.; Tanaka, R.; Tanaka, S.; Tanaka, S.; Tanasijczuk, A. J.; Tannenwald, B. B.; Tannoury, N.; Tapprogge, S.; Tarem, S.; Tarrade, F.; Tartarelli, G. F.; Tas, P.; Tasevsky, M.; Tashiro, T.; Tassi, E.; Tavares Delgado, A.; Tayalati, Y.; Taylor, F. E.; Taylor, G. N.; Taylor, W.; Teischinger, F. A.; Teixeira Dias Castanheira, M.; Teixeira-Dias, P.; Temming, K. K.; Ten Kate, H.; Teng, P. K.; Teoh, J. J.; Tepel, F.; Terada, S.; Terashi, K.; Terron, J.; Terzo, S.; Testa, M.; Teuscher, R. J.; Therhaag, J.; Theveneaux-Pelzer, T.; Thomas, J. P.; Thomas-Wilsker, J.; Thompson, E. N.; Thompson, P. D.; Thompson, R. J.; Thompson, A. S.; Thomsen, L. A.; Thomson, E.; Thomson, M.; Thong, W. M.; Thun, R. P.; Tian, F.; Tibbetts, M. J.; Ticse Torres, R. E.; Tikhomirov, V. O.; Tikhonov, Yu. A.; Timoshenko, S.; Tiouchichine, E.; Tipton, P.; Tisserant, S.; Todorov, T.; Todorova-Nova, S.; Tojo, J.; Tokár, S.; Tokushuku, K.; Tollefson, K.; Tolley, E.; Tomlinson, L.; Tomoto, M.; Tompkins, L.; Toms, K.; Topilin, N. D.; Torrence, E.; Torres, H.; Torró Pastor, E.; Toth, J.; Touchard, F.; Tovey, D. R.; Tran, H. L.; Trefzger, T.; Tremblet, L.; Tricoli, A.; Trigger, I. M.; Trincaz-Duvoid, S.; Tripiana, M. F.; Trischuk, W.; Trocmé, B.; Troncon, C.; Trottier-McDonald, M.; Trovatelli, M.; True, P.; Trzebinski, M.; Trzupek, A.; Tsarouchas, C.; Tseng, J. C.-L.; Tsiareshka, P. V.; Tsionou, D.; Tsipolitis, G.; Tsirintanis, N.; Tsiskaridze, S.; Tsiskaridze, V.; Tskhadadze, E. G.; Tsukerman, I. I.; Tsulaia, V.; Tsuno, S.; Tsybychev, D.; Tudorache, A.; Tudorache, V.; Tuna, A. N.; Tupputi, S. A.; Turchikhin, S.; Turecek, D.; Turra, R.; Turvey, A. J.; Tuts, P. M.; Tykhonov, A.; Tylmad, M.; Tyndel, M.; Ueda, I.; Ueno, R.; Ughetto, M.; Ugland, M.; Uhlenbrock, M.; Ukegawa, F.; Unal, G.; Undrus, A.; Unel, G.; Ungaro, F. C.; Unno, Y.; Unverdorben, C.; Urban, J.; Urquijo, P.; Urrejola, P.; Usai, G.; Usanova, A.; Vacavant, L.; Vacek, V.; Vachon, B.; Valencic, N.; Valentinetti, S.; Valero, A.; Valery, L.; Valkar, S.; Valladolid Gallego, E.; Vallecorsa, S.; Valls Ferrer, J. A.; Van Den Wollenberg, W.; Van Der Deijl, P. C.; van der Geer, R.; van der Graaf, H.; Van Der Leeuw, R.; van Eldik, N.; van Gemmeren, P.; Van Nieuwkoop, J.; van Vulpen, I.; van Woerden, M. C.; Vanadia, M.; Vandelli, W.; Vanguri, R.; Vaniachine, A.; Vannucci, F.; Vardanyan, G.; Vari, R.; Varnes, E. W.; Varol, T.; Varouchas, D.; Vartapetian, A.; Varvell, K. E.; Vazeille, F.; Vazquez Schroeder, T.; Veatch, J.; Veloso, F.; Velz, T.; Veneziano, S.; Ventura, A.; Ventura, D.; Venturi, M.; Venturi, N.; Venturini, A.; Vercesi, V.; Verducci, M.; Verkerke, W.; Vermeulen, J. C.; Vest, A.; Vetterli, M. C.; Viazlo, O.; Vichou, I.; Vickey, T.; Vickey Boeriu, O. E.; Viehhauser, G. H. A.; Viel, S.; Vigne, R.; Villa, M.; Villaplana Perez, M.; Vilucchi, E.; Vincter, M. G.; Vinogradov, V. B.; Virzi, J.; Vivarelli, I.; Vives Vaque, F.; Vlachos, S.; Vladoiu, D.; Vlasak, M.; Vogel, M.; Vokac, P.; Volpi, G.; Volpi, M.; von der Schmitt, H.; von Radziewski, H.; von Toerne, E.; Vorobel, V.; Vorobev, K.; Vos, M.; Voss, R.; Vossebeld, J. H.; Vranjes, N.; Vranjes Milosavljevic, M.; Vrba, V.; Vreeswijk, M.; Vuillermet, R.; Vukotic, I.; Vykydal, Z.; Wagner, P.; Wagner, W.; Wahlberg, H.; Wahrmund, S.; Wakabayashi, J.; Walder, J.; Walker, R.; Walkowiak, W.; Wang, C.; Wang, F.; Wang, H.; Wang, H.; Wang, J.; Wang, J.; Wang, K.; Wang, R.; Wang, S. M.; Wang, T.; Wang, X.; Wanotayaroj, C.; Warburton, A.; Ward, C. P.; Wardrope, D. R.; Warsinsky, M.; Washbrook, A.; Wasicki, C.; Watkins, P. M.; Watson, A. T.; Watson, I. J.; Watson, M. F.; Watts, G.; Watts, S.; Waugh, B. M.; Webb, S.; Weber, M. S.; Weber, S. W.; Webster, J. S.; Weidberg, A. R.; Weinert, B.; Weingarten, J.; Weiser, C.; Weits, H.; Wells, P. S.; Wenaus, T.; Wendland, D.; Wengler, T.; Wenig, S.; Wermes, N.; Werner, M.; Werner, P.; Wessels, M.; Wetter, J.; Whalen, K.; Wharton, A. M.; White, A.; White, M. J.; White, R.; White, S.; Whiteson, D.; Wicke, D.; Wickens, F. J.; Wiedenmann, W.; Wielers, M.; Wienemann, P.; Wiglesworth, C.; Wiik-Fuchs, L. A. M.; Wildauer, A.; Wilkens, H. G.; Williams, H. H.; Williams, S.; Willis, C.; Willocq, S.; Wilson, A.; Wilson, J. A.; Wingerter-Seez, I.; Winklmeier, F.; Winter, B. T.; Wittgen, M.; Wittkowski, J.; Wollstadt, S. J.; Wolter, M. W.; Wolters, H.; Wosiek, B. K.; Wotschack, J.; Woudstra, M. J.; Wozniak, K. W.; Wu, M.; Wu, S. L.; Wu, X.; Wu, Y.; Wyatt, T. R.; Wynne, B. M.; Xella, S.; Xu, D.; Xu, L.; Yabsley, B.; Yacoob, S.; Yakabe, R.; Yamada, M.; Yamaguchi, Y.; Yamamoto, A.; Yamamoto, S.; Yamanaka, T.; Yamauchi, K.; Yamazaki, Y.; Yan, Z.; Yang, H.; Yang, H.; Yang, Y.; Yanush, S.; Yao, L.; Yao, W.-M.; Yasu, Y.; Yatsenko, E.; Yau Wong, K. H.; Ye, J.; Ye, S.; Yeletskikh, I.; Yen, A. L.; Yildirim, E.; Yorita, K.; Yoshida, R.; Yoshihara, K.; Young, C.; Young, C. J. S.; Youssef, S.; Yu, D. R.; Yu, J.; Yu, J. M.; Yu, J.; Yuan, L.; Yurkewicz, A.; Yusuff, I.; Zabinski, B.; Zaidan, R.; Zaitsev, A. M.; Zaman, A.; Zambito, S.; Zanello, L.; Zanzi, D.; Zeitnitz, C.; Zeman, M.; Zemla, A.; Zengel, K.; Zenin, O.; Ženiš, T.; Zerwas, D.; Zhang, D.; Zhang, F.; Zhang, J.; Zhang, L.; Zhang, R.; Zhang, X.; Zhang, Z.; Zhao, X.; Zhao, Y.; Zhao, Z.; Zhemchugov, A.; Zhong, J.; Zhou, B.; Zhou, C.; Zhou, L.; Zhou, L.; Zhou, N.; Zhu, C. G.; Zhu, H.; Zhu, J.; Zhu, Y.; Zhuang, X.; Zhukov, K.; Zibell, A.; Zieminska, D.; Zimine, N. I.; Zimmermann, C.; Zimmermann, R.; Zimmermann, S.; Zinonos, Z.; Zinser, M.; Ziolkowski, M.; Živković, L.; Zobernig, G.; Zoccoli, A.; zur Nedden, M.; Zurzolo, G.; Zwalinski, L.

    2015-07-01

    Results of a search for new phenomena in final states with an energetic jet and large missing transverse momentum are reported. The search uses 20.3 fb of TeV data collected in 2012 with the ATLAS detector at the LHC. Events are required to have at least one jet with GeV and no leptons. Nine signal regions are considered with increasing missing transverse momentum requirements between GeV and GeV. Good agreement is observed between the number of events in data and Standard Model expectations. The results are translated into exclusion limits on models with either large extra spatial dimensions, pair production of weakly interacting dark matter candidates, or production of very light gravitinos in a gauge-mediated supersymmetric model. In addition, limits on the production of an invisibly decaying Higgs-like boson leading to similar topologies in the final state are presented.

  17. Alignment and orientation in ion/endash/atom collisions

    SciTech Connect

    Kimura, M.; Lane, N.F.

    1987-01-01

    Recent progress in the theoretical study of alignment and orientation in atom-atom and ion-atom collisions at intermediate energies is reviewed. Recent systematic studies of the alignment and orientation of electronic charge cloud distributions of excited states resulting from such collisions clearly have provided more detailed information about the underlying collision dynamics. However, since accurate determination of these parameters is quite difficult, both theoretically and experimentally, a close collaboration between theory and experiment is necessary for a deeper understanding of the collision dynamics. A more complete approach, where the full density matrix is determined, is also discussed.

  18. Femtosecond laser field induced modifications of electron-transfer processes in Ne{sup +}-He collisions

    SciTech Connect

    Lu Zhenzhong; Chen Deying; Fan Rongwei; Xia Yuanqin

    2012-01-02

    We demonstrate the presence of femtosecond laser induced charge transfer in Ne{sup +}-He collisions. Electron transfer in ion-atom collisions is considerably modified when the collision is embedded in a strong laser field with the laser intensity of {approx}10{sup 15} W/cm{sup 2}. The observed anisotropy of the He{sup +} angular distribution confirms the prediction of early work that the capture probability varies significantly with the laser polarization angle.

  19. Search for new phenomena in final states with an energetic jet and large missing transverse momentum in pp collisions at s=13TeV using the ATLAS detector

    DOE PAGESBeta

    Aaboud, M.; Aad, G.; Abbott, B.; Abdallah, J.; Abdinov, O.; Abeloos, B.; Aben, R.; AbouZeid, O. S.; Abraham, N. L.; Abramowicz, H.; et al

    2016-08-22

    Results of a search for new phenomena in final states with an energetic jet and large missing transverse momentum are reported. The search uses proton-proton collision data corresponding to an integrated luminosity of 3.2 fb–1 at √s=13 TeV collected in 2015 with the ATLAS detector at the Large Hadron Collider. Events are required to have at least one jet with a transverse momentum above 250 GeV and no leptons. Several signal regions are considered with increasing missing-transverse-momentum requirements between EmissT > 250 GeV and EmissT > 700 GeV. Good agreement is observed between the number of events in data andmore » Standard Model predictions. Here, the results are translated into exclusion limits in models with large extra spatial dimensions, pair production of weakly interacting dark-matter candidates, and the production of supersymmetric particles in several compressed scenarios.« less

  20. Energetic composites

    DOEpatents

    Danen, Wayne C.; Martin, Joe A.

    1993-01-01

    A method for providing chemical energy and energetic compositions of matter consisting of thin layers of substances which will exothermically react with one another. The layers of reactive substances are separated by thin layers of a buffer material which prevents the reactions from taking place until the desired time. The reactions are triggered by an external agent, such as mechanical stress or an electric spark. The compositions are known as metastable interstitial composites (MICs). This class of compositions includes materials which have not previously been capable of use as energetic materials. The speed and products of the reactions can be varied to suit the application.

  1. Energetic composites

    DOEpatents

    Danen, W.C.; Martin, J.A.

    1993-11-30

    A method for providing chemical energy and energetic compositions of matter consisting of thin layers of substances which will exothermically react with one another. The layers of reactive substances are separated by thin layers of a buffer material which prevents the reactions from taking place until the desired time. The reactions are triggered by an external agent, such as mechanical stress or an electric spark. The compositions are known as metastable interstitial composites (MICs). This class of compositions includes materials which have not previously been capable of use as energetic materials. The speed and products of the reactions can be varied to suit the application. 3 figures.

  2. Effects of substrate temperature, substrate orientation, and energetic atomic collisions on the structure of GaN films grown by reactive sputtering

    SciTech Connect

    Schiaber, Ziani S.; Lisboa-Filho, Paulo N.; Silva, José H. D. da; Leite, Douglas M. G.; Bortoleto, José R. R.

    2013-11-14

    The combined effects of substrate temperature, substrate orientation, and energetic particle impingement on the structure of GaN films grown by reactive radio-frequency magnetron sputtering are investigated. Monte-Carlo based simulations are employed to analyze the energies of the species generated in the plasma and colliding with the growing surface. Polycrystalline films grown at temperatures ranging from 500 to 1000 °C clearly showed a dependence of orientation texture and surface morphology on substrate orientation (c- and a-plane sapphire) in which the (0001) GaN planes were parallel to the substrate surface. A large increase in interplanar spacing associated with the increase in both a- and c-parameters of the hexagonal lattice and a redshift of the optical bandgap were observed at substrate temperatures higher than 600 °C. The results showed that the tensile stresses produced during the film's growth in high-temperature deposition ranges were much larger than the expected compressive stresses caused by the difference in the thermal expansion coefficients of the film and substrate in the cool-down process after the film growth. The best films were deposited at 500 °C, 30 W and 600 °C, 45 W, which corresponds to conditions where the out diffusion from the film is low. Under these conditions the benefits of the temperature increase because of the decrease in defect density are greater than the problems caused by the strongly strained lattice that occurr at higher temperatures. The results are useful to the analysis of the growth conditions of GaN films by reactive sputtering.

  3. Monte Carlo Collision method for low temperature plasma simulation

    NASA Astrophysics Data System (ADS)

    Taccogna, Francesco

    2015-01-01

    This work shows the basic foundation of the particle-based representation of low temperature plasma description. In particular, the Monte Carlo Collision (MCC) recipe has been described for the case of electron-atom and ion-atom collisions. The model has been applied to the problem of plasma plume expansion from an electric Hall-effect type thruster. The presence of low energy secondary electrons from electron-atom ionization on the electron energy distribution function (EEDF) have been identified in the first 3 mm from the exit plane where, due to the azimuthal heating the ionization continues to play an important role. In addition, low energy charge-exchange ions from ion-atom electron transfer collisions are evident in the ion energy distribution functions (IEDF) 1 m from the exit plane.

  4. Theory of inelastic ion-atom scattering at low and intermediate energies

    NASA Technical Reports Server (NTRS)

    Schmid, G. B.; Garcia, J. D.

    1977-01-01

    Ab initio calculations are presented of inelastic energy loss and ionization phenomena associated with Ar(+)-Ar collisions at small distances of closest approach and for laboratory collision energies ranging from several keV to several hundred keV. Outer-shell excitations are handled statistically; inner-shell excitations are calculated from the viewpoint of quasidiabatic molecular orbital promotion. Auger electron yield, average state of ionization, and average inelastic energy loss are calculated per collision as a function of distance of closest approach of the collision partners for several laboratory collision energies. Average charge-state probabilities per collision partner are calculated as a function of the average inelastic energy loss per atom. It is shown that the structure in the data is due to the underlying structure in the inner-shell independent-electron quasimolecular promotion probabilities.

  5. Influence of ion/atom arrival ratio on structure and optical properties of AlN films by ion beam assisted deposition

    NASA Astrophysics Data System (ADS)

    Meng, Jian-ping; Fu, Zhi-qiang; Liu, Xiao-peng; Yue, Wen; Wang, Cheng-biao

    2014-10-01

    In order to improve the optical properties of AlN films, the influence of the ion/atom arrival ratio on the structure and optical characteristics of AlN films deposited by dual ion beam sputtering was studied by using X-ray diffraction, scanning electron microscopy, X-ray photoelectron spectroscopy, spectroscopic ellipsometry and UV-vis spectroscopy. The films prepared at the ion/atom arrival ratio of 1.4 are amorphous while the crystalline quality is improved with the increase of the ion/atom arrival ratio. The films deposited at the ion/atom arrival ratio of no less than 1.8 have an approximately stoichiometric ratio and mainly consist of aluminum nitride with little aluminum oxynitride, while metallic aluminum component appears in the films deposited at the ion/atom arrival ratio of 1.4. When the ion/atom arrival ratio is not less than 1.8, films are smooth, high transmitting and dense. The films prepared with high ion/atom arrival ratio (≥1.8) display the characteristic of a dielectric. The films deposited at the ion/atom arrival ratio of 1.4 are coarse, opaque and show characteristic of cermet.

  6. Grazing Ion-Surface Collisions

    NASA Astrophysics Data System (ADS)

    Gravielle, M. S.

    Electron emission after grazing ion-surface collisions is studied for high impact velocities. We have focused on glancing angles of electron emission where the dominant mechanism is the ionization from atomic bound states. To describe this process, we introduce a quantum model called field distorted-wave (FDW) approximation, which takes into account the effect of the surface interaction on the electronic transition. The FDW model is applied to analyze electron distributions produced by impact of protons on Al and LiF surfaces, which are metal and insulator materials respectively. In the case of metals, we also evaluate the contibution coming from the valence band by employing the binary collisional formalism. Calculated electron emission yields are in reasonable agreement with the available experimental data. We find that the maximum of the convoy electron distribution is accelerated for Al and decelerated for LiF, with respect to its position in ion-atom collisions, in quantitative accordance with experiments.

  7. Energetic powder

    DOEpatents

    Jorgensen, Betty S.; Danen, Wayne C.

    2003-12-23

    Fluoroalkylsilane-coated metal particles. The particles have a central metal core, a buffer layer surrounding the core, and a fluoroalkylsilane layer attached to the buffer layer. The particles may be prepared by combining a chemically reactive fluoroalkylsilane compound with an oxide coated metal particle having a hydroxylated surface. The resulting fluoroalkylsilane layer that coats the particles provides them with excellent resistance to aging. The particles can be blended with oxidant particles to form energetic powder that releases chemical energy when the buffer layer is physically disrupted so that the reductant metal core can react with the oxidant.

  8. Origin, Evolution, and Imaging of Vortices in Proton-Hydrogen Collisions

    SciTech Connect

    Schultz, David Robert; Macek, J. H.; Sternberg, J. B.; Ovchinnikov, S. Yu.; Lee, Teck-Ghee

    2010-01-01

    Using a novel computational approach, we have elucidated the origin of unexpected vortices in the electronic wavefunction during ion-atom collisions. It is shown how they could be observed in experiments and how they play a new and wide ranging role in angular momentum transfer and other atomic processes.

  9. Ion-Atom and Atom-Atom Collisional Processes and Modeling of Stellar Atmospheres

    NASA Astrophysics Data System (ADS)

    Mihajlov, A. A.; Ignjatovic, Lj. M.; Sreckovic, V. A.; Dimitrijevic, M. S.; Dimitrijevic, M. S.

    2015-09-01

    We report the results obtained in our previous works on the influence of two groups of collisional processes (ion--atom and atom--atom) on the optical and kinetic properties of weakly ionised plasma. The first group includes radiative processes of the photodissociation/association type and radiative charge exchange, the second one -- chemi-ionisation/recombination processes. The effect of the radiative processed is assessed by comparing their intensities with those of the known competing processed in application to the solar photosphere and to the photospheres of DB white dwarfs. The studied chemi-ionisation/recombination processes are considered from the viewpoint of their influence on the populations of the excited states of the hydrogen atom (the Sun and an M-type red dwarf with an effective temperature of 3800~K) and helium atom (DB white dwarfs). The effect of these processes on the populations of the excited states of the hydrogen atom has been studied using the PHOENIX code, which generates the model of the considered atmosphere. The reported results demonstrate the unquestionable influence of the considered radiative and chemi- ionisation/recombination processes on the optical properties and on the kinetics of the weakly ionised layers in stellar atmospheres. It can be expected that the reported results will be a sufficient reason for including these processes in the models of stellar atmospheres.

  10. Optimization of ion-atomic beam source for deposition of GaN ultrathin films

    SciTech Connect

    Mach, Jindřich Kolíbal, Miroslav; Zlámal, Jakub; Voborny, Stanislav; Bartošík, Miroslav; Šikola, Tomáš; Šamořil, Tomáš

    2014-08-15

    We describe the optimization and application of an ion-atomic beam source for ion-beam-assisted deposition of ultrathin films in ultrahigh vacuum. The device combines an effusion cell and electron-impact ion beam source to produce ultra-low energy (20–200 eV) ion beams and thermal atomic beams simultaneously. The source was equipped with a focusing system of electrostatic electrodes increasing the maximum nitrogen ion current density in the beam of a diameter of ≈15 mm by one order of magnitude (j ≈ 1000 nA/cm{sup 2}). Hence, a successful growth of GaN ultrathin films on Si(111) 7 × 7 substrate surfaces at reasonable times and temperatures significantly lower (RT, 300 °C) than in conventional metalorganic chemical vapor deposition technologies (≈1000 °C) was achieved. The chemical composition of these films was characterized in situ by X-ray Photoelectron Spectroscopy and morphology ex situ using Scanning Electron Microscopy. It has been shown that the morphology of GaN layers strongly depends on the relative Ga-N bond concentration in the layers.

  11. Mass and isotopic effects in the Li-Li+ collision

    NASA Astrophysics Data System (ADS)

    Bouledroua, Moncef; Bouchelaghem, Fouzia

    2011-10-01

    We suggest in this work to deal with the ion-atom collision. More precisely, the transport coefficients, the temperature-dependant mobilities, and the charge-transfer phenomena are examined quatum-mechanically. Also is examined the mass and isotopic effects and their behaviour with temperature. To do so, the interatomic potentials are constructed and then injected in the radial wave equation to determine the phase shifts.

  12. Ion-Atom/Argon—Calculation of ionization cross sections by fast ion impact for neutral target atoms ranging from hydrogen to argon

    NASA Astrophysics Data System (ADS)

    McSherry, D. M.; O'Rourke, S. F. C.; Crothers, D. S. F.

    2003-10-01

    A FORTRAN 90 program is presented which calculates the total cross sections, and the electron energy spectra of the singly and doubly differential cross sections for the single target ionization of neutral atoms ranging from hydrogen up to and including argon. The code is applicable for the case of both high and low Z projectile impact in fast ion-atom collisions. The theoretical models provided for the program user are based on two quantum mechanical approximations which have proved to be very successful in the study of ionization in ion-atom collisions. These are the continuum-distorted-wave (CDW) and continuum-distorted-wave eikonal-initial-state (CDW-EIS) approximations. The codes presented here extend previously published codes for single ionization of target hydrogen [Crothers and McCartney, Comput. Phys. Commun. 72 (1992) 288], target helium [Nesbitt, O'Rourke and Crothers, Comput. Phys. Commun. 114 (1998) 385] and target atoms ranging from lithium to neon [O'Rourke, McSherry and Crothers, Comput. Phys. Commun. 131 (2000) 129]. Cross sections for all of these target atoms may be obtained as limiting cases from the present code. Program summaryTitle of program: ARGON Catalogue identifier: ADSE Program summary URL:http://cpc.cs.qub.ac.uk/cpc/summaries/ADSE Program obtainable from: CPC Program Library, Queen's University of Belfast, N. Ireland Licensing provisions: none Computer for which the program is designed and others on which it is operable: Computers: Four by 200 MHz Pro Pentium Linux server, DEC Alpha 21164; Four by 400 MHz Pentium 2 Xeon 450 Linux server, IBM SP2 and SUN Enterprise 3500 Installations: Queen's University, Belfast Operating systems under which the program has been tested: Red-hat Linux 5.2, Digital UNIX Version 4.0d, AIX, Solaris SunOS 5.7 Compilers: PGI workstations, DEC CAMPUS Programming language used: FORTRAN 90 with MPI directives No. of bits in a word: 64, except on Linux servers 32 Number of processors used: any number Has the

  13. Inelastic transitions in slow heavy-particle atomic collisions

    SciTech Connect

    Krstic, P. S.; Reinhold, C. O.; Burgdo''rfer, J.

    2001-05-01

    It is a generally held belief that inelastic transition probabilities and cross sections in slow, nearly adiabatic atomic collisions decrease exponentially with the inverse of the collision velocity v [i.e., {sigma}{proportional_to}exp(-const/v)]. This notion is supported by the Landau-Zener approximation and the hidden crossings approximation. We revisit the adiabatic limit of ion-atom collisions and show that for very slow collisions radial transitions are dominated by the topology of the branch points of the radial velocity rather than the branch points of the energy eigensurface. This can lead to a dominant power-law dependence of inelastic cross sections, {sigma}{proportional_to}v{sup n}. We illustrate the interplay between different contributions to the transition probabilities in a one-dimensional collision system for which the exact probabilities can be obtained from a direct numerical solution of the time-dependent Scho''dinger equation.

  14. Numerical Analyses of Energetic Particles in LHD

    SciTech Connect

    Todo, Yasushi; Murakami, S.; Yamamoto, T.; Fukuyama, A.; Spong, Donald A; Yamamoto, S.; Osakabe, M.; Nakajima, N.

    2010-01-01

    The confinement of energetic ions generated by neutral beam injection (NBI) and ion cyclotron resonance frequency heating is studied using GNET simulation code, in which the drift kinetic equation is solved in five-dimensional phase-space. The steady-state distributions of the energetic ions are obtained, and characteristics of the energetic-ion distribution depending on the plasma heating method are shown. The magnetic configuration effect on the energetic-ion confinement is also investigated, and it is found that the energetic-ion confinement is improved by a strong inward shift of the magnetic axis position in the major radius direction. The interaction between energetic particles and Alfven eigenmodes are investigated using the MEGA code and the AE3D code. A reduced version of the MEGA code has been developed to simulate the Alfven eigenmode (AE) evolution in the Large Helical Device (LHD) plasma with NBI and collisions taken into account. The spatial profile and frequency of the AE modes in the LHD plasma are analyzed with the AE3D code. The evolution of energetic particles and AE mode amplitude and phase are followed in a self-consistent way, while the AE spatial profiles are assumed to be constant. It is demonstrated that the AE bursts can be simulated with the new code.

  15. Relativistic theory for radiative forward electron emission in heavy ion-atom encounters

    NASA Astrophysics Data System (ADS)

    Jakubaßa-Amundsen, Doris; Müller, Robert; Surzhykov, Andrey; Yerokhin, Vladimir

    2014-12-01

    The forward electron emission with simultaneous photon production during the scattering of relativistic, highly stripped projectiles from light target atoms is calculated within the Dirac theory. The method of calculation is a simplification of the impulse approximation and is based on the relation of the cross section for radiative capture to continuum of loosely bound electrons to the frame-transformed electron bremsstrahlung cross section. It is demonstrated that such an approximation is well justified in a large region of energies and photon emission angles, with the exception of the extreme forward and backward emission and the soft-photon energy limit. The cusp spectrum and the corresponding angular distribution are compared to recent experimental data for the collision system 90.38 MeV/amu U88+ + N2.

  16. Laser-Phase Dependence for Electron Capture in Laser-Assisted Proton -- Hydrogen Collisions

    NASA Astrophysics Data System (ADS)

    Niederhausen, Thomas; Thumm, Uwe

    2006-05-01

    We calculate electron capture probabilities for ion--atom collisions in a strong laser field (5x10^13 W/cm^2) by numerically solving the 3-dimensional time--dependent Schr"odinger equation. For circularly polarized laser fields and an impact energy of 1.2 keV, we find a substantial modification of the electronic dynamics in the p--H collision system as compared to field-free collisions. In particular, we observe a strong dependence on the laser phase and the impact parameter for electron capture, which can be explained using semi-classical arguments.

  17. Collision cross section measurements for biomolecules within a high-resolution FT-ICR cell: theory.

    PubMed

    Guo, Dan; Xin, Yi; Li, Dayu; Xu, Wei

    2015-04-14

    In this study, an energetic hard-sphere ion-neutral collision model was proposed to bridge-link ion collision cross section (CCS) with the image current collected from a high-resolution Fourier transform ion cyclotron resonance (FT-ICR) cell. By investigating the nonlinear effects induced by high-order electric fields and image charge forces, the energetic hard-sphere collision model was validated through experiments. Suitable application regions for the energetic hard-sphere collision model, as well as for the conventional Langevin and hard-sphere collision models, were also discussed. The energetic hard-sphere collision model was applied in the extraction of ion CCSs from high-resolution FT-ICR mass spectra. Discussions in the present study also apply to FT-Orbitraps and FT-quadrupole ion traps. PMID:25754983

  18. Imaging space plasmas in energetic neutral atoms

    NASA Astrophysics Data System (ADS)

    Roelof, E. C.; Demajistre, R.; Mitchell, D. G.; C:Son Brandt, P.

    2004-11-01

    Many space plasmas contain energetic singly-charged ions immersed in a cold gas of neutral atoms and molecules. When the energetic ions undergo charge-exchange collisions with the background cold neutrals, they become energetic neutral atoms (ENAs). Thus the space plasma Â"glowsÂ" in the ENAs which escape the plasma on straight-line trajectories. Properly designed 2-dimentsional particle telescopes that deflect ions using electro-static fields become ENA Â"camerasÂ". Such cameras are now operating on the NASA IMAGE spacecraft in orbit around Earth and the NASA/ESA Cassini spacecraft in orbit around Saturn. They are providing all-sky global images of the singly-charged trapped ion populations of these planets with time resolution of a few minutes. Each pixel contains an energy spectra from 10 to 200 keV/nucleon of the major singly-charged ions (protons and O^+), thus providing a quantitative diagnostic of energetic ion injection, acceleration, and transport. ENA imaging has now taken its place as a fundamental tool in magnetospheric research, and new missions are moving forward to apply ENA imaging to the heliosphere itself (the domain of the solar wind) and its termination ˜100 AU from the Sun where it interacts with the local interstellar gas.

  19. Collision tectonics

    SciTech Connect

    Coward, M.P.; Ries, A.C.

    1985-01-01

    The motions of lithospheric plates have produced most existing mountain ranges, but structures produced as a result of, and following the collision of continental plates need to be distinguished from those produced before by subduction. If subduction is normally only stopped when collision occurs, then most geologically ancient fold belts must be collisional, so it is essential to recognize and understand the effects of the collision process. This book consists of papers that review collision tectonics, covering tectonics, structure, geochemistry, paleomagnetism, metamorphism, and magmatism.

  20. Search for new phenomena in final states with an energetic jet and large missing transverse momentum in pp collisions at √s = 8 TeV with the ATLAS detector

    SciTech Connect

    Aad, G.

    2015-07-01

    Results of a search for new phenomena in final states with an energetic jet and large missing transverse momentum are reported. The search uses 20.3 fb-1 of \\(\\sqrt{s{\\mathrm{}}} = 8\\) TeV data collected in 2012 with the ATLAS detector at the LHC. Events are required to have at least one jet with pT>120 GeV and no leptons. Nine signal regions are considered with increasing missing transverse momentum requirements between EmissT>150 GeV and EmissT>700 GeV. Good agreement is observed between the number of events in data and Standard Model expectations. Results are translated into exclusion limits on models with either large extra spatial dimensions, pair production of weakly interacting dark matter candidates, or production of very light gravitinos in a gauge-mediated supersymmetric model. In addition, limits on the production of an invisibly decaying Higgs-like boson leading to similar topologies in the final state are presented.

  1. Search for new phenomena in final states with an energetic jet and large missing transverse momentum in pp collisions at √s = 8 TeV with the ATLAS detector

    DOE PAGESBeta

    Aad, G.

    2015-07-01

    Results of a search for new phenomena in final states with an energetic jet and large missing transverse momentum are reported. The search uses 20.3 fb-1 of \\(\\sqrt{s{\\mathrm{}}} = 8\\) TeV data collected in 2012 with the ATLAS detector at the LHC. Events are required to have at least one jet with pT>120 GeV and no leptons. Nine signal regions are considered with increasing missing transverse momentum requirements between EmissT>150 GeV and EmissT>700 GeV. Good agreement is observed between the number of events in data and Standard Model expectations. Results are translated into exclusion limits on models with either largemore » extra spatial dimensions, pair production of weakly interacting dark matter candidates, or production of very light gravitinos in a gauge-mediated supersymmetric model. In addition, limits on the production of an invisibly decaying Higgs-like boson leading to similar topologies in the final state are presented.« less

  2. Linear Collisions

    ERIC Educational Resources Information Center

    Walkiewicz, T. A.; Newby, N. D., Jr.

    1972-01-01

    A discussion of linear collisions between two or three objects is related to a junior-level course in analytical mechanics. The theoretical discussion uses a geometrical approach that treats elastic and inelastic collisions from a unified point of view. Experiments with a linear air track are described. (Author/TS)

  3. Atomic-orbital close-coupling calculations for collisions involving fusion relevant highly charged impurity ions using very large basis sets

    SciTech Connect

    Igenbergs, Katharina; Wallerberger, Markus; Schweinzer, Josef; Aumayr, Friedrich

    2012-05-25

    The atomic-orbital close-coupling formalism is a well-known method for the semiclassical treatment of ion-atom collisions. Cross sections for these kinds of collisions are mainly needed in the analysis of certain spectroscopic data from nuclear fusion experiments as well as astrophysical data. We shall outline how the computational implementation can be improved in such a way that collisions involving heavy, highly charged impurity ions, such as Ar{sup 18+} can be treated. Furthermore we show and discuss exemplary results.

  4. Cookoff of energetic materials

    SciTech Connect

    Baer, M.R.; Hobbs, M.L.; Gross, R.J.; Schmitt, R.G.

    1998-09-01

    An overview of cookoff modeling at Sandia National Laboratories is presented aimed at assessing the violence of reaction following cookoff of confined energetic materials. During cookoff, the response of energetic materials is known to involve coupled thermal/chemical/mechanical processes which induce thermal damage to the energetic material prior to the onset of ignition. These damaged states enhance shock sensitivity and lead to conditions favoring self-supported accelerated combustion. Thus, the level of violence depends on the competition between pressure buildup and stress release due to the loss of confinement. To model these complex processes, finite element-based analysis capabilities are being developed which can resolve coupled heat transfer with chemistry, quasi-static structural mechanics and dynamic response. Numerical simulations that assess the level of violence demonstrate the importance of determining material damage in pre- and post-ignition cookoff events.

  5. Measurements of single-electron detachment cross-sections for Cu- and Ag- in collision with He and N2

    NASA Astrophysics Data System (ADS)

    Zhang, Xuemei; Wu, Shimin; Li, Guangwu; Lu, Fuquan; Tang, Jiayong; Yang, Fujia

    2001-12-01

    Electron detachment of negative ions, in collision with a static gas target, is known to be one of the most fundamental processes occurring in negative-ion-atom collisions. The experimental results of cross-section data for transition element ions in collision with gases are of great interest not only for their potential application value, but also as a challenge to a theoretical study of complex negative ions in collision with atoms or molecules. In the present work, the single-electron detachment (SED) cross-sections for Cu- and Ag- in collision with He, N2 have been obtained in the energy region of 10-30 keV. By using a single-particle detector for both neutral atoms and ions, the experimental uncertainty of the results is improved in this work.

  6. INTENSE ENERGETIC GAS DISCHARGE

    DOEpatents

    Luce, J.S.

    1960-03-01

    A method and apparatus for initiating and sustaining an energetic gas arc discharge are described. A hollow cathode and a hollow anode are provided. By regulating the rate of gas flow into the interior of the cathode, the arc discharge is caused to run from the inner surface of the cathode with the result that adequate space-charge neutralization is provided inside the cathode but not in the main arc volume. Thus, the gas fed to the cathode is substantially completely ionized before it leaves the cathode, with the result that an energetic arc discharge can be maintained at lower operating pressures.

  7. Tight-binding molecular-dynamics simulation of buckyball collisions

    SciTech Connect

    Zhang, B.L.; Wang, C.Z.; Chan, C.T.; Ho, K.M. )

    1993-04-01

    The collisions between C[sub 60] molecules are studied by tight-binding molecular-dynamics simulations. We observe three different regimes of behavior as the collisions become more and more energetic: bouncing, fusion, and fragmentation. The critical energies for fusion and fragmentation as well as details of the energy transfer during the collision process for the bouncing regime are investigated. The collisions at several specific energies and orientations produce interesting novel molecules, such as small baby cages, caps, and even a Russian-Doll molecule in which a small cage is trapped in a bigger one. 28 refs., 5 figs., 2 tabs.

  8. Energetically consistent collisional gyrokinetics

    SciTech Connect

    Burby, J. W.; Brizard, A. J.; Qin, H.

    2015-10-01

    We present a formulation of collisional gyrokinetic theory with exact conservation laws for energy and canonical toroidal momentum. Collisions are accounted for by a nonlinear gyrokinetic Landau operator. Gyroaveraging and linearization do not destroy the operator's conservation properties. Just as in ordinary kinetic theory, the conservation laws for collisional gyrokinetic theory are selected by the limiting collisionless gyrokinetic theory. (C) 2015 AIP Publishing LLC.

  9. Energetically consistent collisional gyrokinetics

    SciTech Connect

    Burby, J. W.; Brizard, A. J.; Qin, H.

    2015-10-15

    We present a formulation of collisional gyrokinetic theory with exact conservation laws for energy and canonical toroidal momentum. Collisions are accounted for by a nonlinear gyrokinetic Landau operator. Gyroaveraging and linearization do not destroy the operator's conservation properties. Just as in ordinary kinetic theory, the conservation laws for collisional gyrokinetic theory are selected by the limiting collisionless gyrokinetic theory.

  10. Photonic, Electronic and Atomic Collisions

    NASA Astrophysics Data System (ADS)

    Fainstein, Pablo D.; Lima, Marco Aurelio P.; Miraglia, Jorge E.; Montenegro, Eduardo C.; Rivarola, Roberto D.

    2006-11-01

    -coincidence technique / T. Kaneyasu, T. Azuma and K. Okuno. Recent developments in proton-transfer-reaction mass spectrometry / A. Wisthaler ... [et al.]. Interferences in electron emission from H[symbol] induced by fast ions / N. Stolterfoht. Atomic realization of the young single electron interference process in individual autoionization collisions / R. O. Barrachina and M. Šitnik. Multiple ionization processes related to irradiation of biological tissue / M. E. Galassi ... [et al.]. Atom-diatom collisions at cold and ultra-cold temperatures / F. D. Colavecchia, G. A. Parker and R. T. Pack. Interactions of ions with hydrogen atoms / A. Luca, G. Borodi and D. Gerlich. Analysis of all structures in the elastic and charge transfer cross sections for proton-hydrogen collisions in the range of 10[symbol]-10øeV / P. S. Krstić ... [et al.]. Ab-initio ion-atom collision calculations for many-electron systems / J. Anton and B. Fricke. Fully differential studies on single ionization of helium by slow proton impact / A. Hasan ... [et al.]. Dipole polarization effects on highly-charged-ion-atom electron capture / C. C. Havener ... [et al.]. Proton-, antiproton-, and photon-he collisions in the context of ultra fast processes / T. Morishita ... [et al.]. Impact parameter dependent charge exchange studies with channeled heavy ions / D. Dauvergne ... [et al.]. Crystal assisted atomic physics experiments using heavy ions / K. Komaki -- Collisions involving clusters and surfaces. Structure and dynamics of Van der Waal complexes: from triatomic to medium size clusters / G. Delgado Barrio ... [et al.]. Evaporation, fission and multifragmentation processes of multicharged C[symbol] ions versus excitation energies / S. Martin ... [et al.]. Fragmentation of collisionally excited fullerenes / M. Alcami, S. Diaz-Tendero and F. Martín. Lifetimes of C[symbol] and C[symbol] dianions in a storage ring / S. Tomita ... [et al.]. Clusters and clusters of clusters in collisions / B. Manil ... [et al

  11. Energetic component treatability study

    SciTech Connect

    Gildea, P.D.; Brandon, S.L.; Brown, B.G.

    1997-11-01

    The effectiveness of three environmentally sound processes for small energetic component disposal was examined experimentally in this study. The three destruction methods, batch reactor supercritical water oxidation, sodium hydroxide base hydrolysis and calcium carbonate cookoff were selected based on their potential for producing a clean solid residue and minimum release of toxic gases after component detonation. The explosive hazard was destroyed by all three processes. Batch supercritical water oxidation destroyed both the energetics and organics. Further development is desired to optimize process parameters. Sodium hydroxide base hydrolysis and calcium carbonate cookoff results indicated the potential for scrubbing gaseous detonation products. Further study and testing are needed to quantify the effectiveness of these later two processes for full-scale munition destruction. The preliminary experiments completed in this study have demonstrated the promise of these three processes as environmentally sound technologies for energetic component destruction. Continuation of these experimental programs is strongly recommended to optimize batch supercritical water oxidation processing, and to fully develop the sodium hydroxide base hydrolysis and calcium carbonate cookoff technologies.

  12. An ultra-low energy (30-200 eV) ion-atomic beam source for ion-beam-assisted deposition in ultrahigh vacuum.

    PubMed

    Mach, Jindrich; Samoril, Tomás; Voborný, Stanislav; Kolíbal, Miroslav; Zlámal, Jakub; Spousta, Jirí; Dittrichová, Libuse; Sikola, Tomás

    2011-08-01

    The paper describes the design and construction of an ion-atomic beam source with an optimized generation of ions for ion-beam-assisted deposition under ultrahigh vacuum (UHV) conditions. The source combines an effusion cell and an electron impact ion source and produces ion beams with ultra-low energies in the range from 30 eV to 200 eV. Decreasing ion beam energy to hyperthermal values (≈10(1) eV) without loosing optimum ionization conditions has been mainly achieved by the incorporation of an ionization chamber with a grid transparent enough for electron and ion beams. In this way the energy and current density of nitrogen ion beams in the order of 10(1) eV and 10(1) nA/cm(2), respectively, have been achieved. The source is capable of growing ultrathin layers or nanostructures at ultra-low energies with a growth rate of several MLs/h. The ion-atomic beam source will be preferentially applied for the synthesis of GaN under UHV conditions. PMID:21895238

  13. Attosecond timing the ultrafast charge-transfer process in atomic collisions

    SciTech Connect

    Hu, S. X.

    2011-04-15

    By solving the three-dimensional, time-dependent Schroedinger equation, we have demonstrated that the ultrafast charge-transfer process in ion-atom collisions can be mapped out with attosecond extreme uv (xuv) pulses. During the dynamic-charge transfer from the target atom to the projectile ion, the electron coherently populates the two sites of both nuclei, which can be viewed as a 'short-lived' molecular state. A probing attosecond xuv pulse can instantly unleash the delocalized electron from such a ''transient molecule,'' so that the resulting photoelectron may exhibit a ''double-slit'' interference. On the contrary, either reduced or no photoelectron interference will occur if the attosecond xuv pulse strikes well before or after the collision. Therefore, by monitoring the photoelectron interference visibility, one can precisely time the ultrafast charge-transfer process in atomic collisions with time-delayed attosecond xuv pulses.

  14. Energetically consistent collisional gyrokinetics

    DOE PAGESBeta

    Burby, J. W.; Brizard, A. J.; Qin, H.

    2015-10-30

    Here, we present a formulation of collisional gyrokinetic theory with exact conservation laws for energy and canonical toroidal momentum. Collisions are accounted for by a nonlinear gyrokinetic Landau operator. Gyroaveraging and linearization do not destroy the operator's conservation properties. Just as in ordinary kinetic theory, the conservation laws for collisional gyrokinetic theory are selected by the limiting collisionless gyrokinetic theory. (C) 2015 AIP Publishing LLC.

  15. Transport of energetic electrons in a fully ionized hydrogen plasma. [in solar flares

    NASA Technical Reports Server (NTRS)

    Bai, T.

    1982-01-01

    A Monte Carlo method for calculating energetic electron transport in a plasma is presented. The energy loss and angular deflection due to Coulomb collisions as a function of travel distance and energy are derived for energetic electrons in a fully ionized plasma with a uniform magnetic field. Formulas which include the effect of nonuniform B fields on the angular deflection are derived. The Monte Carlo method is applied to the thick-target beam model in which the energetic electrons are injected vertically downward.

  16. Nonadiabatic reaction of energetic molecules.

    PubMed

    Bhattacharya, Atanu; Guo, Yuanqing; Bernstein, Elliot R

    2010-12-21

    Energetic materials store a large amount of chemical energy that can be readily converted into mechanical energy via decomposition. A number of different ignition processes such as sparks, shocks, heat, or arcs can initiate the excited electronic state decomposition of energetic materials. Experiments have demonstrated the essential role of excited electronic state decomposition in the energy conversion process. A full understanding of the mechanisms for the decomposition of energetic materials from excited electronic states will require the investigation and analysis of the specific topography of the excited electronic potential energy surfaces (PESs) of these molecules. The crossing of multidimensional electronic PESs creates a funnel-like topography, known as conical intersections (CIs). CIs are well established as a controlling factor in the excited electronic state decomposition of polyatomic molecules. This Account summarizes our current understanding of the nonadiabatic unimolecular chemistry of energetic materials through CIs and presents the essential role of CIs in the determination of decomposition pathways of these energetic systems. Because of the involvement of more than one PES, a decomposition process involving CIs is an electronically nonadiabatic mechanism. Based on our experimental observations and theoretical calculations, we find that a nonadiabatic reaction through CIs dominates the initial decomposition process of energetic materials from excited electronic states. Although the nonadiabatic behavior of some polyatomic molecules has been well studied, the role of nonadiabatic reactions in the excited electronic state decomposition of energetic molecules has not been well investigated. We use both nanosecond energy-resolved and femtosecond time-resolved spectroscopic techniques to determine the decomposition mechanism and dynamics of energetic species experimentally. Subsequently, we employ multiconfigurational methodologies (such as, CASSCF

  17. Hadron thermodynamics in relativistic nuclear collisions

    NASA Technical Reports Server (NTRS)

    Ammiraju, P.

    1985-01-01

    Various phenomenological models based on statistical thermodynamical considerations were used to fit the experimental data at high P sub T to a two temperature distribution. Whether this implies that the two temperatures belong to two different reaction mechanisms, or consequences of Lorentz-contraction factor, or related in a fundamental way to the intrinsic thermodynamics of Space-Time can only be revealed by further theoretical and experimental investigations of high P sub T phenomena in extremely energetic hadron-hadron collisions.

  18. Overview on energetic polymers

    SciTech Connect

    Boileau, J.

    1996-07-01

    Energetic materials for missiles, gun munitions or pyrotechnic devices often are mixtures in a biphasic form, with a filler and a binder. To satisfy the user needs, an analysis of functional requirements together with constraints (safety, vulnerability, aging, environment, disposal, price) is useful to choose a convenient binder. From this point of view numerous synthetic energetic polymers proposed or developed as binders are reviewed with regard to their syntheses, processing, properties and possible uses. These polymers contain explosophore groups: C-NO{sub 2} aliphatic or aromatic, ONO{sub 2}, NNO{sub 2}, NF{sub 2} and N{sub 3}. Some research projects are suggested. Among them in the list of published polymers, following a NIMIC (NATO) suggestion, note the reason of a development interruption. Some dinitropolystyrene-polyvinyl nitrate mixtures or copolymers could exhibit interesting properties. For unknown reasons, some mixtures of crystalline filler with polymer binder, generally in a biphasic form, may also be monophasic for a same composition. What properties are modified between both forms (e.g. combustion mechanisms, erosion, ideal character of the detonation)? It is also interesting to pursue a newly open route to thermo-plastic elastomers. 50 refs., 1 tab.

  19. Energetic cost of communication

    PubMed Central

    Stoddard, Philip K.; Salazar, Vielka L.

    2011-01-01

    Communication signals may be energetically expensive or inexpensive to produce, depending on the function of the signal and the competitive nature of the communication system. Males of sexually selected species may produce high-energy advertisement signals, both to enhance detectability and to signal their size and body condition. Accordingly, the proportion of the energy budget allocated to signal production ranges from almost nothing for many signals to somewhere in excess of 50% for acoustic signals in short-lived sexually selected species. Recent data from gymnotiform electric fish reveal mechanisms that regulate energy allocated to sexual advertisement signals through dynamical remodeling of the excitable membranes in the electric organ. Further, males of the short-lived sexually selected species, Brachyhypopomus gauderio, trade off among different metabolic compartments, allocating energy to signal production while reducing energy used in other metabolic functions. Female B. gauderio, by contrast, do not trade off energy between signaling and other functions. To fuel energetically expensive signal production, we expect a continuum of strategies to be adopted by animals of different life history strategies. Future studies should explore the relation between life history and energy allocation trade-offs. PMID:21177941

  20. Energetics of Nanomaterials

    SciTech Connect

    Alexandra Navrotsky; Brian Woodfield; Juliana Boerio-Goates; Frances Hellman

    2005-01-28

    This project, "Energetics of Nanomaterials," represents a three-year collaboration among Alexandra Navrotsky (UC Davis), Brian Woodfield and Juliana Boerio-Goates (BYU), and Frances Hellman (UC Berkeley). It's purpose has been to explore the differences between bulk materials, nanoparticles, and thin films in term of their thermodynamic properties, with an emphasis on heat capaacities and entropies, as well as enthalpies. the three groups have brought very different expertise and capabilities to the project. Navrotsky is a solid-state chemist and geochemist, with a unique Thermochemistry Facility emphasizing enthalpy of formation measurements by high temperature oxide melt and room temperatue acid solution calorimetry. Boerio-Goates and Woodfield are calorimetry. Hellman is a physicist with expertise in magnetism and heat capacity measurements using microscale "detector on a chip" calorimetric technology that she pioneered. The overarching question of our work is "How does the free energy play out in nanoparticles?", or "How do differences in free energy affect overall nanoparticle behavior?" Because the free energy represents the temperature-dependent balance between the enthalpy of a system and its entropy, there are two separate, but related, components to the experimental investigations: Solution calorimetric measurements provide the energetics and two types of heat capacity measurements the entropy. We use materials that are well characterized in other ways (structurally, magnetically, and chemically), and samples are shared across the collaboration.

  1. Collisions of O+ with He at low energies

    NASA Astrophysics Data System (ADS)

    Joseph, Dwayne C.; Saha, B. C.; Zhao, L. B.

    2009-05-01

    We have investigated the following charge transfer processO^+( ^4S^0, ^2D^0, ^2P^0)+He->O( ^3P)+He^+-δE using the full quantum [1] and semi-classical molecular [2]orbital close-coupling (MOCC) approximations. The quantum MOCC equations are solved numerically in the adiabatic representation [3]. Using MRD-CI package [4] the ab initio configuration interaction calculation is carried out for potential energies. Details of our findings will be reported in the conference. [1] B. H. Bransden and M. R. C. McDowell, ``Charge Exchange and the Theory of Ion-Atom Collisions'', Clarendon Press, Oxford, 1992. [2] M. Kimura and N. F. Lane, At. Mol. Opt. Phys 26, 79 (1990). [3] J. P. Braga and J. C. Belchoir, J. Comput. Chem 17, 1559 (1996). [4] R. J. Buenker, ``Current Aspects of Quantum Chemistry 1981, Vol 21, edited by R. Carbo (Elsevier, Amsterdam), p 17.

  2. Utilization of FEP energetics

    NASA Technical Reports Server (NTRS)

    Frederking, T. H. K.; Abbassi, P.; Afifi, F.; Khandhar, P. K.; Ono, D. Y.; Chen, W. E. W.

    1987-01-01

    The research and development work on Fountain Effect Pump Systems (FEP systems) has been of interest in the competition between mechanical pumps for He II and FEP units. The latter do not have moving parts. In the course of the work, the energetics have been addressed using one part of a simple four-changes-of-state cycle. One option is the FEP ideal change of state at constant chemical potential (mu). The other option is the two-state sequence mu-P with a d mu=0 state change followed by an isobar. Questions of pump behavior, of flow rate response to temperature difference at the hot end, and related questions of thermodynamic cycle completion and heat transfer have been addressed. Porous media data obtained elucidate differences between vapor-liquid phase separation (VLPS) and Zero Net Mass Transfer (ZNMF).

  3. Energetics of Nanomaterials

    SciTech Connect

    Hellman, Frances

    2004-12-13

    This project, ''Energetics of Nanomaterials'', represents a three-year collaboration among Alexandra Navrotsky (University of California at Davis), Brian Woodfield and Juliana Boerio-Goates (Brigham Young University) and Frances Hellman (University of California at San Diego). Its purpose has been to explore the differences between bulk materials, nanoparticles, and thin films in terms of their thermodynamic properties, with an emphasis on heat capacities and entropies, as well as enthalpies. We used our combined experimental techniques to address the following questions: How does energy and entropy depend on particle size and crystal structure? Do entropic differences have their origins in changes in vibrational densities of states or configurational (including surface configuration) effects? Do material preparation and sample geometry, i.e., nanoparticles versus thin films, change these quantities? How do the thermodynamics of magnetic and structural transitions change in nanoparticles and thin films? Are different crystal structures stabilized for a given composition at the nanoscale, and are the responsible factors energetic, entropic, or both? How do adsorption energies (for water and other gases) depend on particle size and crystal structure in the nanoregime? What are the energetics of formation and strain energies in artificially layered thin films? Do the differing structures of grain boundaries in films and nanocomposites alter the energetics of nanoscale materials? Of the several directions we first proposed, we initially concentrated on a few systems: TiO(sub 2), CoO, and CoO-MgO. In these systems, we were able to clearly identify particle size-dependent effects on energy and vibrational entropy, and to separate out the effect of particle size and water content on the enthalpy of formation of the various TiO(sub 2) polymorphs. With CoO, we were able to directly compare nanoparticle films and bulk materials; this comparison is important because films can

  4. Energetics and systems

    SciTech Connect

    Mitsch, W.J.; Ragade, R.K.; Bosserman, R.W.; Dillon, J.A. Jr.

    1982-01-01

    To those wrestling with environmental problems and those involved with the holistic approaches of general-systems research, energy must be approached from a variety of viewpoints, some with immediate pragmatic connotations, some with long-term scientific and philosophical implications. During April 1981, there were held in Louisville, Kentucky under the auspices of the Systems Science Institute of the University of Louisville, meetings of the International Society for Ecological Modelling and the Society for General Systems Research, Southeast Region. On Earth Day, April 22, a joint symposium of the two societies was held under the title, Energetics and Systems. A number of the foremost researchers in this broad field were involved in that symposium, and the material of this volume is based on those presentations. The first chapter was devoted to introduction and overview; a separate abstract was prepared for each of the other 7 chapters.

  5. Puck collisions

    NASA Astrophysics Data System (ADS)

    Hauge, E. H.

    2012-09-01

    Collisions between two ice hockey pucks sliding on frictionless ice are studied, with both inelasticity and frictional contact between the colliding surfaces of the two pucks taken into account. The latter couples translational and rotational motion. The full solution depends on the sign and magnitude of the initial mismatch between the surface velocities at the point of contact. The initial state defines two physically distinct regimes for the friction coefficient. To illustrate the complexities, we discuss at length the typical situation (well known from curling) when puck number 1 is initially at rest, and is hit by puck number 2 with an arbitrary impact parameter, velocity and angular velocity. We find that the total outgoing angle between the pucks exceeds \\frac{1}{2}\\pi if and only if the collision leads to a net increase in the translational part of the kinetic energy. The conditions for this to happen are scrutinized, and the results are presented both analytically and numerically by a set of representative curves. This paper is written with an ambitious undergraduate, and her teacher, in mind.

  6. Electrical initiation of an energetic nanolaminate film

    DOEpatents

    Tringe, Joseph W.; Gash, Alexander E.; Barbee, Jr., Troy W.

    2010-03-30

    A heating apparatus comprising an energetic nanolaminate film that produces heat when initiated, a power source that provides an electric current, and a control that initiates the energetic nanolaminate film by directing the electric current to the energetic nanolaminate film and joule heating the energetic nanolaminate film to an initiation temperature. Also a method of heating comprising providing an energetic nanolaminate film that produces heat when initiated, and initiating the energetic nanolaminate film by directing an electric current to the energetic nanolaminate film and joule heating the energetic nanolaminate film to an initiation temperature.

  7. Electron transfer, ionization, and excitation in atomic collisions. Progress report, June 15, 1992--June 14, 1995

    SciTech Connect

    Winter, T.G.; Alston, S.G.

    1995-08-01

    The research program of Winter and Alston addresses the fundamental processes of electron transfer, ionization, and excitation in ion-atom, ion-ion, and ion-molecule collisions. Attention is focussed on one- and two-electron systems and, more recently, quasi-one-electron systems whose electron-target-core interaction can be accurately modeled by one-electron potentials. The basic computational approaches can then be taken with few, if any, approximations, and the underlying collisional mechanisms can be more clearly revealed. Winter has focussed on intermediate collision energies (e.g., proton energies for p-He{sup +} collisions on the order of 100 kilo-electron volts), in which many electron states are strongly coupled during the collision and a coupled-state approach, such as a coupled-Sturmian-pseudostate approach, is appropriate. Alston has concentrated on higher collision energies (million electron-volt energies), or asymmetric collision systems, for which the coupling of the projectile is weaker with, however, many more target states being coupled together so that high-order perturbation theory is essential. Several calculations by Winter and Alston are described, as set forth in the original proposal.

  8. Synthesis of Advanced Energetic Materials

    NASA Astrophysics Data System (ADS)

    Wilson, Rebecca

    2015-06-01

    For a given energetic material, performance is a combination of the rate of energy release and total energy content. Organic and metal-based energetics, respectively, represent the limiting cases, exhibiting strength in one area and weakness in the other. Many organic energetic materials readily detonate, but increasing total energy content using only known energetic functional groups is difficult. In contrast, combustion of aluminum metal can release more than three times the energy available from the same mass of organic explosive, but the rate of energy release is slow relative to detonation, and combustion is often incomplete. Current research in our department seeks to improve both the total energy content of organic explosives and the rate of combustion of aluminum-based materials. Novel arrangements of atoms within energetic molecules, along with new assembly methods for materials, are employed to improve both aspects of performance. In the case of organic energetic materials, novel functional groups can yield compounds with higher density, and therefore greater power, relative to conventional, nitro group-based materials. For aluminum-based materials, progressively smaller particles undergo more rapid and complete combustion. To prevent surface oxidation, one approach is to shield a core of low-valent aluminum atoms with a shell of ligands, while another is to develop aluminum-based fuels that are inherently air-stable. These methods will be discussed in the context of novel energetic materials synthesis. Research Department, NSWC IHEODTD.

  9. Stab Sensitivity of Energetic Nanolaminates

    SciTech Connect

    Gash, A; Barbee, T; Cervantes, O

    2006-05-22

    This work details the stab ignition, small-scale safety, and energy release characteristics of bimetallic Al/Ni(V) and Al/Monel energetic nanolaminate freestanding thin films. The influence of the engineered nanostructural features of the energetic multilayers is correlated with both stab initiation and small-scale energetic materials testing results. Structural parameters of the energetic thin films found to be important include the bi-layer period, total thickness of the film, and presence or absence of aluminum coating layers. In general the most sensitive nanolaminates were those that were relatively thick, possessed fine bi-layer periods, and were not coated. Energetic nanolaminates were tested for their stab sensitivity as freestanding continuous parts and as coarse powders. The stab sensitivity of mock M55 detonators loaded with energetic nanolaminate was found to depend strongly upon both the particle size of the material and the configuration of nanolaminate material, in the detonator cup. In these instances stab ignition was observed with input energies as low as 5 mJ for a coarse powder with an average particle dimension of 400 {micro}m. Selected experiments indicate that the reacting nanolaminate can be used to ignite other energetic materials such as sol-gel nanostructured thermite, and conventional thermite that was either coated onto the multilayer substrate or pressed on it. These results demonstrate that energetic nanolaminates can be tuned to have precise and controlled ignition thresholds and can initiate other energetic materials and therefore are viable candidates as lead-free impact initiated igniters or detonators.

  10. Circular dichroism in laser-assisted proton-hydrogen collisions

    NASA Astrophysics Data System (ADS)

    Niederhausen, Thomas; Feuerstein, Bernold; Thumm, Uwe

    2004-08-01

    We investigate the effects of a strong laser field on the dynamics of electron capture and emission in ion-atom collisions within a reduced dimensionality model of the scattering system in which the motion of the active electron and the laser electric field vector are confined to the scattering plane. We examine the probabilities for electron capture and ionization as a function of the laser intensity, the projectile impact parameter b , and the laser phase ϕ that determines the orientation of the laser electric field with respect to the internuclear axis at the time of closest approach between target and projectile. Our results for the b -dependent ionization and capture probabilities show a strong dependence on both ϕ and the helicity of the circularly polarized laser light. For intensities above 5×1012W/cm2 our model predicts a noticeable circular dichroism in the capture probability for slow proton-hydrogen collisions, which persists after averaging over ϕ . Capture and electron emission probabilities defer significantly from results for laser-unassisted collisions. Furthermore, we find evidence for a charge-resonance-enhanced ionization mechanism that may enable the measurement of the absolute laser phase ϕ .

  11. Circular dichroism in laser-assisted proton-hydrogen collisions

    SciTech Connect

    Niederhausen, Thomas; Feuerstein, Bernold; Thumm, Uwe

    2004-08-01

    We investigate the effects of a strong laser field on the dynamics of electron capture and emission in ion-atom collisions within a reduced dimensionality model of the scattering system in which the motion of the active electron and the laser electric field vector are confined to the scattering plane. We examine the probabilities for electron capture and ionization as a function of the laser intensity, the projectile impact parameter b, and the laser phase {phi} that determines the orientation of the laser electric field with respect to the internuclear axis at the time of closest approach between target and projectile. Our results for the b-dependent ionization and capture probabilities show a strong dependence on both {phi} and the helicity of the circularly polarized laser light. For intensities above 5x10{sup 12} W/cm{sup 2} our model predicts a noticeable circular dichroism in the capture probability for slow proton-hydrogen collisions, which persists after averaging over {phi}. Capture and electron emission probabilities defer significantly from results for laser-unassisted collisions. Furthermore, we find evidence for a charge-resonance-enhanced ionization mechanism that may enable the measurement of the absolute laser phase {phi}.

  12. Description of ionization in the molecular approach to atomic collisions

    SciTech Connect

    Harel, C.; Jouin, H.; Pons, B.; Errea, L.F.; Mendez, L.; Riera, A.

    1997-01-01

    Molecular treatments of atomic collisions have traditionally been restricted to low nuclear velocities because of their failure to reproduce the fall of the capture cross sections at higher velocities. The limitation has recently been seen to be due to their description of ionizing processes. This feature is shown here to be a general one for multicharged ion-atom collisions. Its origin and characteristics are described and illustrated for the prototypical Li{sup 3+}+H(1s) reaction. Ionization appears as a result of the inertia of the electron cloud to adiabatically follow the nuclear motion. This gives rise to nonadiabatic transitions, which represent an ionizing flux whenever the nuclear velocity is high enough that the energy of the traveling molecular orbitals involved is positive in both moving atomic reference frames. Two strongly connected mechanisms appear, corresponding to the relative translational and rotational nuclear motions. Because of the finiteness of the basis, these mechanisms terminate with unphysical trapping effects. While interesting {ital per se}, knowledge of these features is also useful with respect to improving molecular treatments of atomic collisions with the addition of pseudostates. {copyright} {ital 1996} {ital The American Physical Society}

  13. Charge transfer in slow collisions between hydrogen atoms and metal surfaces

    NASA Astrophysics Data System (ADS)

    Bahrim, B.; Thumm, U.

    2002-05-01

    We have developed a new two-center close-coupling approach [1] for slow ion (atom)-surface collision in which the continuum of metal conduction-band states is discretized by using Weyl wave packets [2] to represent the motion of the active electron in the metal subspace. Results for the time evolution of the atomic and metallic population amplitudes for a hydrogen atom in colliding at perpendicular incidence with an model aluminum surface are shown and discussed. For the n=2 hydrogenic manifold, we have obtained converged atomic populations amplitudes by including all projectile levels up to the n=5 manifold and 480 Weyl wave packets in the close-coupling expansion. We will discuss the electron dynamics in particular in view of possible dephasing effects (in distance and time) and recurrence effects that may arrise due to our continuum discretization in term of a finite number of localized Weyl packets. [1] B. Bahrim and U. Thumm, Surf. Sci. 451, 1 (2000), and to appear in Phys. Rev. A. [2] B.H. Bransden and M.R.C. McDowell, "Charge Exchange and the Theory of Ion-Atom Collisions" Clarendon Press (Oxford 1992). Supported by NSF and by the Division of Chemical Sciences, Office of Basic Energy Sciences, Office of Energy Research, U.S. DOE

  14. Dynamic screening and wake effects on electronic excitation in ion-solid and ion-surface collisions

    SciTech Connect

    Burgdoerfer, J. . Dept. of Physics Oak Ridge National Lab., TN )

    1991-01-01

    The collective electronic response in a solid effectively alters ionic and atomic potentials giving rise to dynamic screening and to a wake'' of density fluctuations trailing ions as they propagate through the solid. The presence of dynamic screening modifies electronic excitation processes of projectiles in ion-solid collisions as compared to binary ion-atom collisions. We review recent theoretical and experimental studies directed at the search for and identification of signatures of dynamic screening and wake effects. Examples include the formation of excited projectile bound states under channeling conditions, radiative electron capture, the search for wake riding'' electrons in antiproton-solid collisions, and the neutralization of highly charged ions near surfaces. 42 refs., 7 figs.

  15. Energetic spacetime: the new aether

    NASA Astrophysics Data System (ADS)

    Macken, John A.

    2015-09-01

    A model of the universe based on energetic spacetime (zero point energy) is expanded. The energy density of spacetime is calculated using only general relativity and acoustic equations. This energetic spacetime is shown to possess the properties required to be the new aether (Lorentz invariance, quantization of angular momentum, impedance, and quantum mechanical energy density.) The contradictory wave-particle duality properties of a photon are resolved by a model where a photon is a wave propagating in energetic spacetime but appearing to have particle properties because it possesses quantized angular momentum. Compton scattering and the photoelectric effect are examined and found to be compatible with the proposed wave-based photon model.

  16. Energetic particles at Uranus

    NASA Technical Reports Server (NTRS)

    Cheng, Andrew F.; Krimigis, S. M.; Lanzerotti, L. J.

    1991-01-01

    The energetic particle measurements by the low-energy charged-particle and cosmic-ray instruments on the Voyager 2 spacecraft in the magnetosphere of Uranus are reviewed. Upstream events were observed outside the Uranian bow shock, probably produced by ion escape from the magnetosphere. Evidence of earthlike substorm activity was discovered within the Uranian magnetosphere. A proton injection event was observed within the orbit of Umbriel and proton events were observed in the magnetotail plasma-sheet boundary layer that are diagnostic of earthlike substorms. The magnetospheric composition is totally dominated by protons, with only a trace abundance of H(2+) and no evidence for He or heavy ions; the Uranian atmophere is argued to be the principal plasma source. Phase-space densities of medium energy protons show inward radial diffusion and are quantitatively similar to those observed at the earth, Jupiter, and Saturn. These findings and plasma wave data suggest the existence of structures analogous to the earth's plasmasphere and plasmapause.

  17. ENERGETICS, EPIGENETICS, MITOCHONDRIAL GENETICS

    PubMed Central

    Wallace, Douglas C.; Fan, Weiwei

    2011-01-01

    The epigenome has been hypothesized to provide the interface between the environment and the nuclear DNA (nDNA) genes. Key factors in the environment are the availability of calories and demands on the organism’s energetic capacity. Energy is funneled through glycolysis and mitochondrial oxidative phosphorylation (OXPHOS), the cellular bioenergetic systems. Since there are thousands of bioenergetic genes dispersed across the chromosomes and mitochondrial DNA (mtDNA), both cis and trans regulation of the nDNA genes is required. The bioenergetic systems convert environmental calories into ATP, acetyl-Coenzyme A (acetyl-CoA), S-adenosyl-methionine (SAM), and reduced NAD+. When calories are abundant, ATP and acetyl-CoA phosphorylate and acetylate chromatin, opening the nDNA for transcription and replication. When calories are limiting, chromatin phosphorylation and acetylation are lost and gene expression is suppressed. DNA methylaton via SAM can also be modulated by mitochondrial function. Phosphorylation and acetylation are also pivotal to regulating cellular signal transduction pathways. Therefore, bioenergetics provides the interface between the environment and the epigenome. Consistent with this conclusion, the clinical phenotypes of bioenergetic diseases are strikingly similar to those observed in epigenetic diseases (Angelman, Rett, Fragile X Syndromes, the laminopathies, cancer, etc.), and an increasing number of epigenetic diseases are being associated with mitochondrial dysfunction. This bioenergetic-epigenomic hypothesis has broad implications for the etiology, pathophysiology, and treatment of a wide range of common diseases. PMID:19796712

  18. "Energetics of Nanomaterials"

    SciTech Connect

    Professor Alexandra Navrotsky

    2005-01-31

    This project represents a three-year collaboration among Alexandra Navrotsky, Brian Woodfield, Juliana Bocrio-Goates and Frances Hellman. It's purpose has been to explore the differences between bulk materials, nanoparticles, and thin films in terms of their thermodynamic properties, with an emphasis on heat capacities and entropies, as well as enthalpies. The three groups have brought very different expertise and capabilities to the project. Navrotsky is a solid-state chemist and geochemist, with a unique Thermochemistry Facility emphasizing enthalpy of formation measurements by high temperature oxide melt and room temperature acid solution calorimetry. Bocrio-Goates and Woodfield are physical chemists with unique capabilities in accurate cryogenic heat capacity measurements using adiabatic calorimetry. Hellman is a physicist with expertise in magnetism and heat capacity measurements using microscale ''detector on a chip'' calorimetric technology that she pioneered. The overarching question of the work is ''How does the free energy play out in nanoparticles''? or ''How do differences in free energy affect overall nanoparticle behavior''? Because the free energy represents the temperature-dependent balance between the enthalpy of a system and its entropy, there are two separate, but related, components to the experimental investigations: Solution calorimetric measurements provide the energetics and two types of heat capacity measurements the entropy. They use materials that are well characterized in other ways (structurally, magnetically, and chemically), and samples are shared across the collaboration.

  19. Solar Eruptions and Energetic Particles

    NASA Astrophysics Data System (ADS)

    Gopalswamy, Natchimuthukonar; Mewaldt, Richard; Torsti, Jarmo

    Coronal mass ejections (CMEs) are the most energetic events in the heliosphere. During solar cycle 23, the close connection between CMEs and solar energetic particles (SEPs) was studied in much greater detail than was previously possible, including effects on space weather. This book reviews extensive observations of solar eruptions and SEPs from orbiting and ground-based systems. From SOHO and ACE to RHESSI and TRACE, we now have measurements of unprecedented sensitivity by which to test assumptions and refine models. Discussion and analysis of: • Coronal mass ejections and energetic particles over one solar cycle • Implications of solar eruptions for space weather and human space exploration • The elemental, isotopic, and ionic charge state composition of accelerated particles • Complex interconnections among CMEs, flares, shocks, and energetic particles will make this book an indispensable resource for scientists working on the Sun-Earth connection, including space physicists, magnetospheric physicists, atmospheric physicists, astrophysicists, and aeronomists.

  20. Voyager 2 Observes Energetic Electrons

    NASA Video Gallery

    This animation shows the Voyager 2 observations of energetic electrons. Voyager 2 detected a dramatic drop of the flux of electrons as it left the sector region. The intense flux came back as soon ...

  1. Energetic Atomic Oxygen in the Region of the Terrestrial Exobase

    NASA Astrophysics Data System (ADS)

    Shizgal, B.; Sospedra-Alfonso, R.

    2012-12-01

    Translationally energetic atoms in the terrestrial exosphere with energies considerably above thermal energies are responsible for nonthermal emissions and enhanced nonthermal escape of atmospheric species. These escape mechanisms play an important role in the evolution of Earth's atmosphere. The existence of an extended coronae of translationally energetic oxygen atoms O* has been firmly established [1]. One mechanism to produce energetic oxygen atoms is the dissociative recombination reaction, O2+ + e- -> O* + O*. There is a continued interest in a better understanding of the physics of this process for the terrestrial exosphere. The terrestrial atmosphere can be divided into three main regions characterized by their relaxation properties [1]. The lower thermosphere (200-250 km), the upper exosphere (700-800 km) and the transition region (300-700). The lower thermosphere has a predominance of elastic collisions and therefore the particles are essentially in local equilibrium. In contrast, the thermalization in the upper exosphere is less predominant, although the production rate of nonthermal particles is also low. In the transition region, the production rate of nonthermal particles is significant and there is a decrease in the thermalization rate. This region is the main source of the nonthermal geocorona [1]. The relaxation properties of this region implies that the particle distribution can deviate from statistical equilibrium, and the distribution of nonthermal particles can be described with kinetic theory. In [2], we modeled the energetic oxygen distribution with a linear Boltzmann equation that included a source term for the production of hot oxygen owing to dissociative recombination. The distribution function was assumed to be isotropic and the objective was to determine the departure of the distribution function from Maxwellian and the departure of the density profile from barometric. In the present work, we consider a two component system of

  2. Photodecomposition of energetic nitro compounds

    SciTech Connect

    Mialocq, J.C.

    1989-03-14

    The photodecomposition of energetic nitrocompounds depends on the excitation energy, the light intensity which determines the mono-, bi- or multiphotonic character of the initial process and their gaseous, liquid or solid state. The initial processes of the photodecomposition of nitromethane and nitroalcanes are reviewed and their relevance to the initiation of energetic nitrocompounds detonation is discussed. The case of nitramines (dimethylnitramine and tutorial) is also briefly introduced.

  3. Solar Energetic Particle Variations

    NASA Technical Reports Server (NTRS)

    Reames, D. V.

    2003-01-01

    In the largest solar energetic-particle (SEP) events, acceleration occurs at shock waves driven out from the Sun by coronal mass ejections (CMEs). In fact, the highest proton intensities directly measured near Earth at energies up to approximately 1 GeV occur at the time of passage of shocks, which arrive about a day after the CMEs leave the Sun. CME-driven shocks expanding across magnetic fields can fill over half of the heliosphere with SEPs. Proton-generated Alfven waves trap particles near the shock for efficient acceleration but also throttle the intensities at Earth to the streaming limit early in the events. At high energies, particles begin to leak from the shock and the spectrum rolls downward to form an energy-spectral 'knee' that can vary in energy from approximately 1 MeV to approximately 1 GeV in different events. All of these factors affect the radiation dose as a function of depth and latitude in the Earth's atmosphere and the risk to astronauts and equipment in space. SEP ionization of the polar atmosphere produces nitrates that precipitate to become trapped in the polar ice. Observations of nitrate deposits in ice cores reveal individual large SEP events and extend back approximately 400 years. Unlike sunspots, SEP events follow the approximately 80-100-year Gleissberg cycle rather faithfully and are now at a minimum in that cycle. The largest SEP event in the last 400 years appears to be related to the flare observed by Carrington in 1859, but the probability of SEP events with such large fluences falls off sharply because of the streaming limit.

  4. Research on new energetic materials

    SciTech Connect

    Miller, R.S.

    1996-07-01

    Fluorine and oxygen rich energetic crystals and polymers will provide a new approach to increasing composite propellant and explosive energy density and energy release rates. This class of energetic materials will be used to demonstrate that advances in computational chemistry and solid state physics can be used to begin to understand detonation and combustion processes. It is anticipated that fluorinated as well as the oxygenated combustion and detonation products will accelerate the rates of metal particle consumption in composite propellants and explosives. Enhanced and tailorable energy release rates and critical diameters of metallized composite explosives will provide new technological opportunities for both military and civilian applications. Environmentally friendly energetic materials are of great current interest to reduce life cycle waste and pollution as well as life cycle cost. Thermoplastic elastomers, which have reversible crosslinking mechanisms, are one of the required keys to the gate and pathway to achieving substantial waste and pollution reduction goals. The goal in this paper is to review progress in two emerging topics in energetic materials science. These emerging two areas are fluorine and oxygen rich energetic crystals and polymers and environmentally friendly energetic material classes. 33 refs., 12 figs.

  5. Ternary drop collisions

    NASA Astrophysics Data System (ADS)

    Hinterbichler, Hannes; Planchette, Carole; Brenn, Günter

    2015-10-01

    It has been recently proposed to use drop collisions for producing advanced particles or well-defined capsules, or to perform chemical reactions where the merged drops constitute a micro-reactor. For all these promising applications, it is essential to determine whether the merged drops remain stable after the collision, forming a single entity, or if they break up. This topic, widely investigated for binary drop collisions of miscible and immiscible liquid, is quite unexplored for ternary drop collisions. The current study aims to close this gap by experimentally investigating collisions between three equal-sized drops of the same liquid arranged centri-symmetrically. Three drop generators are simultaneously operated to obtain controlled ternary drop collisions. The collision outcomes are observed via photographs and compared to those of binary collisions. Similar to binary collisions, a regime map is built, showing coalescence and bouncing as well as reflexive and stretching separation. Significant differences are observed in the transitions between these regimes.

  6. Calculations of fast ion collisions with multi-center molecular targets

    NASA Astrophysics Data System (ADS)

    Kirchner, Tom

    2011-05-01

    The theoretical treatment of ion-molecule collisions is challenging for several reasons: the systems have many degrees of freedom, a rather complex geometry, and the electron dynamics might be nonperturbative and involve electron-electron interaction effects. However, the interest in accurate calculations has been growing recently. An important reason for this development is the relevance of ion-molecule collisions for a number of fields, such as atmospheric science, and the understanding of radiation damage of biological tissue. We have developed a new approach to meet these challenges. It disregards rovibrational motion, but it does address the multi-center geometry of the system and the generally nonperturbative nature of the electron dynamics. The key ingredients are an expansion of the initially populated molecular orbitals in terms of a single-center basis and a spectral representation of the molecular Hamiltonian. This facilitates a separation of molecular geometry and collision dynamics and makes it possible to use well-established ion-atom methods with relatively minor modifications. We have extended our basis generator method to deal with the collision dynamics and report on results for ionization and fragmentation of water molecules by proton and He+ ion impact over wide ranges of collision energies. For the case of He+ impact this will include a discussion of effects due to the presence of the projectile electron. This work has been supported by the Natural Sciences and Engineering Research Council of Canada.

  7. Multielectron transitions resulting from interactions between target and projectile electrons in ionizing collisions

    SciTech Connect

    Manson, S.T. ); DuBois, R.D. )

    1992-12-01

    Interactions between target and projectile electrons leading to ionization of one of the collision partners and simultaneous excitation of the other are investigated for fast clothed-particle--clothed-particle collisions. For H-atom impact, the first Born approximation is used to demonstrate that the low-energy-electron emission is dominated by electron-electron rather than by electron-nucleus interaction processes. For a broad class of structured particle collision systems, the electron-electron interaction is shown to play an important, non-neglibible, role. Doubly differential cross sections for energetic H-He collisions illustrate this point.

  8. Solar flares and energetic particles.

    PubMed

    Vilmer, Nicole

    2012-07-13

    Solar flares are now observed at all wavelengths from γ-rays to decametre radio waves. They are commonly associated with efficient production of energetic particles at all energies. These particles play a major role in the active Sun because they contain a large amount of the energy released during flares. Energetic electrons and ions interact with the solar atmosphere and produce high-energy X-rays and γ-rays. Energetic particles can also escape to the corona and interplanetary medium, produce radio emissions (electrons) and may eventually reach the Earth's orbit. I shall review here the available information on energetic particles provided by X-ray/γ-ray observations, with particular emphasis on the results obtained recently by the mission Reuven Ramaty High-Energy Solar Spectroscopic Imager. I shall also illustrate how radio observations contribute to our understanding of the electron acceleration sites and to our knowledge on the origin and propagation of energetic particles in the interplanetary medium. I shall finally briefly review some recent progress in the theories of particle acceleration in solar flares and comment on the still challenging issue of connecting particle acceleration processes to the topology of the complex magnetic structures present in the corona. PMID:22665901

  9. Zeolite synthesis: an energetic perspective.

    PubMed

    Zwijnenburg, Martijn A; Bromley, Stefan T

    2010-11-21

    Taking |D(H(2)O)(x)|[AlSiO(4)] based materials (where D is Li, Na, K, Rb or Cs) as an archetypal aluminosilicate system, we use accurate density functional theory calculations to demonstrate how the substitution of silicon cations in silica, with pairs of aluminium and (alkali metal) cations, changes the energetic ordering of different competing structure-types. For large alkali metal cations we further show that the formation of porous aluminosilicate structures, the so-called zeolites, is energetically favored. These findings unequivocally demonstrate that zeolites can be energetic preferred reaction products, rather than being kinetically determined, and that the size of the (hydrated) cations in the pore, be it inorganic or organic, is critical for directing zeolite synthesis. PMID:20938518

  10. Collision Energy Dependence of Defect Formation in Graphene

    SciTech Connect

    Mao, Fei; Zhang, Chao; Zhang, Yanwen; Zhang, Fenf-Shou

    2012-01-01

    Molecular dynamics simulations are performed using an empirical potential to simulate the collision process of an energetic carbon atom hitting a graphene sheet. According to the different impact locations within the graphene sheet, the incident threshold energies of different defects caused by the collision are determined to be 22 eV for a single vacancy, 36 eV for a divacancy, 60 eV for a Stone-Wales defect, and 65 eV for a hexavacancy. Study of the evolution and stability of the defects formed by these collisions suggests that the single vacancy reconstructs into a pentagon pair and the divacancy transforms into a pentagon-octagon-pentagon configuration. The displacement threshold energy in graphene is investigated by using the dynamical method, and a reasonable value 22.42 eV is clarified by eliminating the heating effect induced by the collision.

  11. Collision experiments with fullerenes

    NASA Astrophysics Data System (ADS)

    Campbell, E. E. B.; Ehlich, R.; Westerburg, M.; Hertel, I. V.

    1993-12-01

    Relative fragmentation cross sections for fullerene ion collisions with rare gas atoms and SF6 are presented over a range of collision energies. Structure in the cross sections and threshold energy determinations can shed some light on the fragmentation dynamics. Cluster cluster collisions with fullerenes are also described which show evidence of fusion reactions.

  12. Transport theory for energetic alpha particles in finite aspect ratio tokamaks with broken symmetry

    NASA Astrophysics Data System (ADS)

    Shaing, K. C.; Schlutt, M.; Lai, A. L.

    2016-02-01

    Transport theory for the energetic alpha particles in finite aspect ratio tokamaks with broken symmetry is developed for the case where the slowing down collision operator dominates. The transport fluxes in the 1 /ν and superbanana plateau regimes are derived. Here, ν is the typical collision frequency. They can be used in modeling the energy loss of the alpha particles in thermonuclear fusion reactors. Numerical realizations of the superbanana orbits of alpha particles in tokamaks with broken symmetry are also presented. The existence of the superbananas corroborates the predictions of the theories presented here and elsewhere.

  13. Jet propagation through energetic materials

    SciTech Connect

    Pincosy, P; Poulsen, P

    2004-01-08

    In applications where jets propagate through energetic materials, they have been observed to become sufficiently perturbed to reduce their ability to effectively penetrate subsequent material. Analytical calculations of the jet Bernoulli flow provides an estimate of the onset and extent of such perturbations. Although two-dimensional calculations show the back-flow interaction pressure pulses, the symmetry dictates that the flow remains axial. In three dimensions the same pressure impulses can be asymmetrical if the jet is asymmetrical. The 3D calculations thus show parts of the jet having a significant component of radial velocity. On the average the downstream effects of this radial flow can be estimated and calculated by a 2D code by applying a symmetrical radial component to the jet at the appropriate position as the jet propagates through the energetic material. We have calculated the 3D propagation of a radio graphed TOW2 jet with measured variations in straightness and diameter. The resultant three-dimensional perturbations on the jet result in radial flow, which eventually tears apart the coherent jet flow. This calculated jet is compared with jet radiographs after passage through the energetic material for various material thickness and plate thicknesses. We noted that confinement due to a bounding metal plate on the energetic material extends the pressure duration and extent of the perturbation.

  14. The Giotto Energetic Particle Experiment.

    NASA Astrophysics Data System (ADS)

    McKenna-Lawlor, S.; Thompson, A.; O'Sullivan, D.; Kirsch, E.; Melrose, D.; Wenzel, K.-P.

    The Energetic Particle Experiment (EPA) onboard Giotto will measure the energy distribution of electrons, protons and heavier nuclei with E ≥ 20 keV during the cruise phase and in the cometary environment during Halley encounter. The detector system and the main scientific objectives of EPA are described.

  15. Measurement of the force on microparticles in a beam of energetic ions and neutral atoms

    SciTech Connect

    Trottenberg, Thomas; Schneider, Viktor; Kersten, Holger

    2010-10-15

    The force on microparticles in an energetic ion beam is investigated experimentally. Hollow glass microspheres are injected into the vertically upward directed beam and their trajectories are recorded with a charge-coupled device camera. The net force on the particles is determined by means of the measured vertical acceleration. The resulting beam pressures are compared with Faraday cup measurements of the ion current density and calorimetric measurements of the beam power density. Due to the neutral gas background, the beam consists, besides the ions, of energetic neutral atoms produced by charge-exchange collisions. It is found that the measured composition of the drag force by an ion and a neutral atom component agrees with a beam model that takes charge-exchange collisions into account. Special attention is paid to the momentum contribution from sputtered atoms, which is shown to be negligible in this experiment, but should become measurable in case of materials with high sputtering yields.

  16. Elastic Collisions and Gravity

    NASA Astrophysics Data System (ADS)

    Ball, Steven

    2009-04-01

    Elastic collisions are fascinating demonstrations of conservation principles. The mediating force must be conservative in an elastic collision. Truly elastic collisions take place only when the objects in collision do not touch, e.g. magnetic bumpers on low friction carts. This requires that we define a collision as a momentum transfer. Elastic collisions in 1-D can be solved in general and the implications are quite remarkable. For example, a heavy object moving initially towards a light object followed by an elastic collision results in a final velocity of the light object greater than either initial velocity. This is easily demonstrated with low friction carts. Gravitational elastic collisions involving a light spacecraft and an extremely massive body like a moon or planet can be approximated as 1-D collisions, such as the ``free return'' trajectory of Apollo 13 around the moon. The most fascinating gravitational collisions involve the gravitational slingshot effect used to boost spacecraft velocities. The maximum gravitational slingshot effect occurs when approaching a nearly 1-D collision, revealing that the spacecraft can be boosted to greater than twice the planet velocity, enabling the spacecraft to travel much further away from the Sun.

  17. Vortex-Surface Collisions^

    NASA Astrophysics Data System (ADS)

    Conlisk, A. T.

    1998-11-01

    The interaction of vortices with solid surfaces occurs in many different situations including, but not limited to tornadoes, propeller wakes, flows over swept wings and missile forebodies, turbomachinery flows, blade-vortex interactions and tip vortex-surface interactions on helicopters. Often, parts of a system must operate within such flows and thus encounter these vortices. In the present paper we discuss the nature of a particular subset of interactions called ``collisions''. A ``collision'' is characterized by the fact that the core of the vortex is permanently altered; usually the core is locally destroyed. The focus is on fully three-dimensional collisions although two-dimensional collisions are discussed as well. Examples of collisions in helicopter aerodynamics and turbomachinery flows are discussed and the dynamics of the vortex core during a collision process are illustrated for a 90^o collision. ^Supported by the US Army Research Office

  18. The location of energetic compartments affects energetic communication in cardiomyocytes

    PubMed Central

    Birkedal, Rikke; Laasmaa, Martin; Vendelin, Marko

    2014-01-01

    The heart relies on accurate regulation of mitochondrial energy supply to match energy demand. The main regulators are Ca2+ and feedback of ADP and Pi. Regulation via feedback has intrigued for decades. First, the heart exhibits a remarkable metabolic stability. Second, diffusion of ADP and other molecules is restricted specifically in heart and red muscle, where a fast feedback is needed the most. To explain the regulation by feedback, compartmentalization must be taken into account. Experiments and theoretical approaches suggest that cardiomyocyte energetic compartmentalization is elaborate with barriers obstructing diffusion in the cytosol and at the level of the mitochondrial outer membrane (MOM). A recent study suggests the barriers are organized in a lattice with dimensions in agreement with those of intracellular structures. Here, we discuss the possible location of these barriers. The more plausible scenario includes a barrier at the level of MOM. Much research has focused on how the permeability of MOM itself is regulated, and the importance of the creatine kinase system to facilitate energetic communication. We hypothesize that at least part of the diffusion restriction at the MOM level is not by MOM itself, but due to the close physical association between the sarcoplasmic reticulum (SR) and mitochondria. This will explain why animals with a disabled creatine kinase system exhibit rather mild phenotype modifications. Mitochondria are hubs of energetics, but also ROS production and signaling. The close association between SR and mitochondria may form a diffusion barrier to ADP added outside a permeabilized cardiomyocyte. But in vivo, it is the structural basis for the mitochondrial-SR coupling that is crucial for the regulation of mitochondrial Ca2+-transients to regulate energetics, and for avoiding Ca2+-overload and irreversible opening of the mitochondrial permeability transition pore. PMID:25324784

  19. SIMULATION OF ENERGETIC NEUTRAL ATOMS FROM SOLAR ENERGETIC PARTICLES

    SciTech Connect

    Wang, Linghua; Li, Gang; Shih, Albert Y.; Lin, Robert P.; Wimmer-Schweingruber, Robert F.

    2014-10-01

    Energetic neutral atoms (ENAs) provide the only way to observe the acceleration site of coronal-mass-ejection-driven (CME-driven) shock-accelerated solar energetic particles (SEPs). In gradual SEP events, energetic protons can charge exchange with the ambient solar wind or interstellar neutrals to become ENAs. Assuming a CME-driven shock with a constant speed of 1800 km s{sup –1} and compression ratio of 3.5, propagating from 1.5 to 40 R{sub S} , we calculate the accelerated SEPs at 5-5000 keV and the resulting ENAs via various charge-exchange interactions. Taking into account the ENA losses in the interplanetary medium, we obtain the flux-time profiles of these solar ENAs reaching 1 AU. We find that the arriving ENAs at energies above ∼100 keV show a sharply peaked flux-time profile, mainly originating from the shock source below 5 R{sub S} , whereas the ENAs below ∼20 keV have a flat-top time profile, mostly originating from the source beyond 10 R{sub S} . Assuming the accelerated protons are effectively trapped downstream of the shock, we can reproduce the STEREO ENA fluence observations at ∼2-5 MeV/nucleon. We also estimate the flux of ENAs coming from the charge exchange of energetic storm protons, accelerated by the fast CME-driven shock near 1 AU, with interstellar hydrogen and helium. Our results suggest that appropriate instrumentation would be able to detect ENAs from SEPs and to even make ENA images of SEPs at energies above ∼10-20 keV.

  20. K-shell processes in heavy-ion collisions in solids and the local plasma approximation

    NASA Astrophysics Data System (ADS)

    Kadhane, Umesh; Montanari, C. C.; Tribedi, Lokesh C.

    2003-03-01

    We have investigated K-shell vacancy production due to ionization and electron transfer processes, in collisions of highly charged oxygen ions with various solid targets such as Cl, K, Ti, Fe, and Cu at energies between 1.5 and 6.0 MeV/u. The K-shell ionization cross sections were derived from the measured K x-ray cross sections. An ab initio theoretical model based on the local plasma approximation (LPA), which is an extension of the dielectric formalism to consider core electrons, provides an explanation of the measured data only qualitatively. In case of asymmetric collisions (Zp/Zt<0.35, Zp, Zt being the atomic numbers of the projectile and target, respectively) and at higher energies, the LPA model explains the data to some extent but deviates for more symmetric collision systems. On the other hand, a perturbed-stationary-state (PSS) calculation (ECPSSR), including the corrective terms due to energy (E) loss, Coulomb (C) deflection, and relativistic (R) wave functions designed for ion-atom collisions agree quite well with the data for different combinations of target and projectile elements. In addition, we have also measured the K(target)-K(projectile) electron transfer cross sections and compared them with a model based on perturbed-stationary-state approximation.

  1. Constraints on the density dependence of the symmetry energy from heavy-ion collisions

    NASA Astrophysics Data System (ADS)

    Tsang, M. B.; Chajecki, Z.; Coupland, D.; Danielewicz, P.; Famiano, F.; Hodges, R.; Kilburn, M.; Lu, F.; Lynch, W. G.; Winkelbauer, J.; Youngs, M.; Zhang, Y. X.

    2011-04-01

    Constraints on the equation of state (EoS) for symmetric matter (equal neutron and proton numbers) have been extracted from energetic collisions of heavy ions over a range of energies. Collisions of neutron-deficient and neutron-rich heavy ions now provide initial constraints on the EoS of neutron-rich matter at subsaturation densities from isospin diffusions and neutron proton ratios. This article reviews the experimental constraints on the density dependence of symmetry energy at subsaturation density.

  2. Energetics and Dynamics of Dissociation of Deprotonated Peptides: Fragmentation of Angiotensin Analogs

    SciTech Connect

    Laskin, Julia; Yang, Zhibo

    2011-12-01

    We present a first study of the energetics and dynamics of dissociation of deprotonated peptides using time- and collision-energy resolved surface-induced dissociation (SID) experiments. SID of four model peptides: RVYIHPF, HVYIHPF, DRVYIHPF, and DHVYIHPF was studied using a specially designed Fourier transform ion cyclotron resonance mass spectrometer (FT-ICR MS) configured for studying ion-surface collisions. Energy and entropy effects for the overall decomposition of the precursor ion were deduced by modeling the time- and collision energy-resolved survival curves using an RRKM based approach developed in our laboratory. The results were compared to the energetics and dynamics of dissociation of the corresponding protonated species. We demonstrate that acidic peptides are less stable in the negative mode because of the low threshold associated with the kinetically hindered loss of H2O from [M-H]- ions. Comparison between the two basic peptides indicates that the lower stability of the [M-H]- ion of RVYIHPF as compared to HVYIHPF towards fragmentation is attributed to the differences in fragmentation mechanisms. Specifically, threshold energy associated with losses of NH3 and NHCNH from RVYIHPF is lower than the barrier for backbone fragmentation that dominates gas-phase decomposition of HVYIHPF. The results provide a first quantitative comparison between the energetics and dynamics of dissociation of [M+H]+ and [M-H]- ions of acidic and basic peptides.

  3. The energetic significance of cooking.

    PubMed

    Carmody, Rachel N; Wrangham, Richard W

    2009-10-01

    While cooking has long been argued to improve the diet, the nature of the improvement has not been well defined. As a result, the evolutionary significance of cooking has variously been proposed as being substantial or relatively trivial. In this paper, we evaluate the hypothesis that an important and consistent effect of cooking food is a rise in its net energy value. The pathways by which cooking influences net energy value differ for starch, protein, and lipid, and we therefore consider plant and animal foods separately. Evidence of compromised physiological performance among individuals on raw diets supports the hypothesis that cooked diets tend to provide energy. Mechanisms contributing to energy being gained from cooking include increased digestibility of starch and protein, reduced costs of digestion for cooked versus raw meat, and reduced energetic costs of detoxification and defence against pathogens. If cooking consistently improves the energetic value of foods through such mechanisms, its evolutionary impact depends partly on the relative energetic benefits of non-thermal processing methods used prior to cooking. We suggest that if non-thermal processing methods such as pounding were used by Lower Palaeolithic Homo, they likely provided an important increase in energy gain over unprocessed raw diets. However, cooking has critical effects not easily achievable by non-thermal processing, including the relatively complete gelatinisation of starch, efficient denaturing of proteins, and killing of food borne pathogens. This means that however sophisticated the non-thermal processing methods were, cooking would have conferred incremental energetic benefits. While much remains to be discovered, we conclude that the adoption of cooking would have led to an important rise in energy availability. For this reason, we predict that cooking had substantial evolutionary significance. PMID:19732938

  4. Process for preparing energetic materials

    DOEpatents

    Simpson, Randall L.; Lee, Ronald S.; Tillotson, Thomas M.; Swansiger, Rosalind W.; Fox, Glenn A.

    2011-12-13

    Sol-gel chemistry is used for the preparation of energetic materials (explosives, propellants and pyrotechnics) with improved homogeneity, and/or which can be cast to near-net shape, and/or made into precision molding powders. The sol-gel method is a synthetic chemical process where reactive monomers are mixed into a solution, polymerization occurs leading to a highly cross-linked three dimensional solid network resulting in a gel. The energetic materials can be incorporated during the formation of the solution or during the gel stage of the process. The composition, pore, and primary particle sizes, gel time, surface areas, and density may be tailored and controlled by the solution chemistry. The gel is then dried using supercritical extraction to produce a highly porous low density aerogel or by controlled slow evaporation to produce a xerogel. Applying stress during the extraction phase can result in high density materials. Thus, the sol-gel method can be used for precision detonator explosive manufacturing as well as producing precision explosives, propellants, and pyrotechnics, along with high power composite energetic materials.

  5. Energetic ions in ITER plasmas

    SciTech Connect

    Pinches, S. D.; Chapman, I. T.; Sharapov, S. E.; Lauber, Ph. W.; Oliver, H. J. C.; Shinohara, K.; Tani, K.

    2015-02-15

    This paper discusses the behaviour and consequences of the expected populations of energetic ions in ITER plasmas. It begins with a careful analytic and numerical consideration of the stability of Alfvén Eigenmodes in the ITER 15 MA baseline scenario. The stability threshold is determined by balancing the energetic ion drive against the dominant damping mechanisms and it is found that only in the outer half of the plasma (r/a>0.5) can the fast ions overcome the thermal ion Landau damping. This is in spite of the reduced numbers of alpha-particles and beam ions in this region but means that any Alfvén Eigenmode-induced redistribution is not expected to influence the fusion burn process. The influence of energetic ions upon the main global MHD phenomena expected in ITER's primary operating scenarios, including sawteeth, neoclassical tearing modes and Resistive Wall Modes, is also reviewed. Fast ion losses due to the non-axisymmetric fields arising from the finite number of toroidal field coils, the inclusion of ferromagnetic inserts, the presence of test blanket modules containing ferromagnetic material, and the fields created by the Edge Localised Mode (ELM) control coils in ITER are discussed. The greatest losses and associated heat loads onto the plasma facing components arise due to the use of the ELM control coils and come from neutral beam ions that are ionised in the plasma edge.

  6. Energetic ion observations on Rhea

    NASA Astrophysics Data System (ADS)

    Kotova, A.; Roussos, E.; Krupp, N.; Dandouras, I.; Khurana, K. K.

    2012-09-01

    Cassini flew by Saturn's moon Rhea four times between 2005 and today. During two of these flybys MIMI/LEMMS energetic particle detector onboard Cassini detected significant reduction of energetic ion fluxes (20 keV - 300 keV) in vicinity of Rhea, which is probably caused by plasma absorption by the moon. The profile of the flux dropout shows differences in the different energy channels of LEMMS, primarily due to finite gyroradius effects. Other factors that contribute to the shape of the depletion profile are the properties of the background magnetospheric magnetic and electric fields, the structure of Rhea's interaction region, the ion composition and the response function of the different LEMMS channels. We will use a test-particle approach, taking into account all these factors, in order to simulate the observed depletion profiles. We will explore whether non-dipolar effects and field time variations are important in shaping the ion profile, and will also examine if LEMMS responds primarily to protons (as assumed until today) or to heavier ions. We will use several numerical techniques (e.g. fourth order Gauss Runge-Kutta and Boris particle tracking methods) and evaluate which method is the best (in terms of accuracy and computational resources) that will allow us to have good "particle statistics" and more reliable results. The same approach could be used to trace energetic charged particles and simulate observations at other Saturnian moons, such as Enceladus, Dione and Titan.

  7. Energetic electrons in the magnetosphere of Saturn

    NASA Technical Reports Server (NTRS)

    Randall, B. A.

    1994-01-01

    The energy spectra and angular distributions of electrons observed by Pioneer 11 as a function of radial distance in the inner magnetosphere of Saturn are reanalyzed and phase space densities are then calculated. The radial dependence of phase space density requires a distributed loss process. The loss is greatest in the region of the E ring (5.5 less than L less than 8.5) and is attributed to collisions with the ring particles in agreement with earlier work by Van Allen et al. (1980). Quantitative analysis yields the following properties of the E ring: the particle radii are in the range of 4 x 10(exp -5) to 3.2 x 10(exp -4) cm and the thickness of the ring is approximately 3 R(sub s). Between the inner edge of the E ring (5.5 R(sub s)) and the outer edge of the A ring (2.3 R(sub s)) there are more energetic electrons than can be supplied by radial diffusion from an external source. Detailed calculations show that a cosmic ray albedo neutron decay (CRAND) source in the A and B rings is a plausible source for this excess. The radial diffusion coefficient required to explain the E ring absorption and CRAND source for electrons is 1 x 10(exp -12) greater than D(sub 0) greater than 3 x 10(exp -12) R(exp 2, sub s)/s, assuming that D(sub LL) = D(sub 0)L(exp 3). As part of the reanalysis program, a method for the deconvolution of pitch angle distributions observed by simple detectors on a rotating spacecraft is developed. This process removes the instrumental response and rotational smear due to finite sampling periods and yields true angular distributions.

  8. Energetic electrons in the magnetophere of Saturn

    NASA Technical Reports Server (NTRS)

    Randall, B. A.

    1994-01-01

    The energy spectra and angular distributions of electrons observed by Pioneer 11 as a function of radial distance in the inner magnetosphere of Saturn are reanalyzed and phase space densities are then calculated. The radial dependence of phase space density requires a distributed loss process. The loss is greatest in the region of the E ring (5.5 less than L less than 8.5) and is attributed to collisions with the ring particles in agreement with earlier work by Van Allen et al. (1980b). Quantitative analysis yields the following properties of the E ring: the particle radii are in the range of 4 x 10(exp -5) to 3.2 x 10(exp -4) cm and the thickness of the ring is approximately 3 R(sub s). Between the inner edge of the E ring (5.5 R(sub s)) and the outer edge of the A ring (2.3 R(sub s)) there are more energetic electrons than can be supplied by radial diffusion from an external source. Detailed calculations show that a cosmic ray albedo neutron decay (CRAND) source in the A and B rings is a plausible source for this excess. The radial diffusion coefficient required to explain the E ring absorption and CRAND source for electrons is 1 x 10(exp -12) greater than D(sub 0) greater than 3 x 10(exp -12) R(sub s)(exp 2)/s, assuming that D(sub LL) = D(sub 0)L(exp 3). As part of the reanalysis program, a method for the deconvolution of pitch angle distributions observed by simple detectors on a rotating spacecraft is developed. This process removes the instrumental response and rotational smear due to finite sampling periods and yields true angular distributions.

  9. Virtual Energetic Particle Observatory (VEPO)

    NASA Technical Reports Server (NTRS)

    Cooper, John F.; Lal, Nand; McGuire, Robert E.; Szabo, Adam; Narock, Thomas W.; Armstrong, Thomas P.; Manweiler, Jerry W.; Patterson, J. Douglas; Hill, Matthew E.; Vandergriff, Jon D.; McKibben, Robert B.; Lopate, Clifford; Tranquille, Cecil

    2008-01-01

    The Virtual Energetic Particle Observatory (VEPO) focuses on improved discovery, access, and usability of heliospheric energetic particle and ancillary data products from selected spacecraft and sub-orbital instruments of the heliophysics data environment. The energy range of interest extends over the full range of particle acceleration from keV energies of suprathermal seed particles to GeV energies of galactic cosmic ray particles. Present spatial coverage is for operational and legacy spacecraft operating from the inner to the outer heliosphere, e.g. from measurements by the two Helios spacecraft to 0.3 AU to the inner heliosheath region now being traversed by the two Voyager spacecraft. This coverage will eventually be extended inward to ten solar radii by the planned NASA solar probe mission and at the same time beyond the heliopause into the outer heliosheath by continued Voyager operations. The geospace fleet of spacecraft providing near-Earth interplanetary measurements, selected magnetospheric spacecraft providing direct measurements of penetrating interplanetary energetic particles, and interplanetary cruise measurements from planetary spacecraft missions further extend VEPO resources to the domain of geospace and planetary interactions. Ground-based (e.g., neutron monitor) and high-altitude suborbital measurements can expand coverage to the highest energies of galactic cosmic rays affected by heliospheric interaction and of solar energetic particles. Science applications include investigation of solar flare and coronal mass ejection events. acceleration and transport of interplanetary particles within the inner heliosphere, cosmic ray interactions with planetary surfaces and atmospheres, sources of suprathermal and anomalous cosmic ray ions in the outer heliosphere, and solar cycle modulation of galactic cosmic rays. Robotic and human exploration, and eventual habitation, of planetary and space environments beyond the Earth require knowledge of radiation

  10. Virtual Energetic Particle Observatory (VEPO)

    NASA Astrophysics Data System (ADS)

    Cooper, J. F.; Lal, N.; McGuire, R. E.; Szabo, A.; Narock, T. W.; Armstrong, T. P.; Manweiler, J. W.; Patterson, J. D.; Hill, M. E.; Vandergriff, J. D.; McKibben, R. B.; Lopate, C.; Tranquille, C.

    2008-12-01

    The Virtual Energetic Particle Observatory (VEPO) focuses on improved discovery, access, and usability of heliospheric energetic particle and ancillary data products from selected spacecraft and sub-orbital instruments of the heliophysics data environment. The energy range of interest extends over the full range of particle acceleration from keV energies of suprathermal seed particles to GeV energies of galactic cosmic ray particles. Present spatial coverage is for operational and legacy spacecraft operating from the inner to the outer heliosphere, e.g. from measurements by the two Helios spacecraft to 0.3 AU to the inner heliosheath region now being traversed by the two Voyager spacecraft. This coverage will eventually be extended inward to ten solar radii by the planned NASA solar probe mission and at the same time beyond the heliopause into the outer heliosheath by continued Voyager operations. The geospace fleet of spacecraft providing near-Earth interplanetary measurements, selected magnetospheric spacecraft providing direct measurements of penetrating interplanetary energetic particles, and interplanetary cruise measurements from planetary spacecraft missions further extend VEPO resources to the domain of geospace and planetary interactions. Ground-based (e.g., neutron monitor) and high-altitude suborbital measurements can expand coverage to the highest energies of galactic cosmic rays affected by heliospheric interaction and of solar energetic particles. Science applications include investigation of solar flare and coronal mass ejection events, acceleration and transport of interplanetary particles within the inner heliosphere, cosmic ray interactions with planetary surfaces and atmospheres, sources of suprathermal and anomalous cosmic ray ions in the outer heliosphere, and solar cycle modulation of galactic cosmic rays. Robotic and human exploration, and eventual habitation, of planetary and space environments beyond the Earth require knowledge of radiation

  11. Disequilibration by Planetary Collision

    NASA Astrophysics Data System (ADS)

    Asphaug, E. I.; Jutzi, M.

    2010-12-01

    Molten planets equilibrate gravitationally, chemically, and thermally. Large scale collisions (a.k.a. giant impacts, similar-sized collisions) can upset the apple cart by bringing core material, late in the game, into mixture with mantle products, and by shredding stratified planets into strands of mantle and clumps of core (c.g. Asphaug et al. Nature 2006). Atmophiles and volatiles come along for the ride, and can find themselves in disequilibrium mixtures not anticipated by one-dimensional models of planetary evolution, or by planet growth models in which planets stick, merge, and mix perfectly in the aftermath of a collision. We present very high resolution case studies of such collisions.

  12. Models of Electron Energetics in the Enceladus Torus

    NASA Astrophysics Data System (ADS)

    Cravens, T. E.; Ozak, N.; Richard, M. S.; Robertson, I. P.; Perry, M. E.; Campbell, M. E.

    2010-12-01

    The inner magnetosphere of Saturn contains a mixture of plasma and neutral gas, the dominant source of which is the icy satellite Enceladus. Water vapor and water dissociation products are present throughout the magnetosphere but they are particularly concentrated in a torus surrounding Saturn at the orbit of Enceladus. The Hubble Space Telescope observed OH in the torus and other neutral species (mainly water) have been measured by the Ion and Neutral Mass Spectrometer (INMS) and the Ultraviolet Imaging Spectrometer (UVIS) onboard the Cassini spacecraft. Relatively cold plasma, dominated by water group ion species, was measured by instruments onboard both the Voyager and Cassini spacecraft. The electron distribution function in this torus appears to include both a colder thermal population (seen for example by the Cassini Radio and Plasma Wave Spectrometer’s Langmuir probe -- RPWS/LP) and hotter suprathermal populations (seen by the electron spectrometer part of the Cassini plasma analyzer -- CAPS/ELS). We present a model of electron energetics in the torus. One part of this model utilizes an electron energy deposition code to determine electron fluxes versus energy. The model includes photoelectron production from the absorption of solar radiation as well as electron impact collisional processes for water and other neutral species. Another part of the model consists of an energetics code for thermal electrons that generates electron temperatures. Heating from Coulomb collisions with photoelectrons and with hot pick-up ions was included, as was cooling due to electron impact collisions with water. We show that solar radiation is the dominant source of suprathermal electrons in the core neutral torus, in agreement with recently published CAPS-ELS data. We predict electron thermal energies of about 2 eV, which is somewhat low in comparison with recently published RPWS-LP data. The implications of these results for plasma densities in the torus will also be

  13. Thermal-spectrum recriticality energetics

    SciTech Connect

    Schwinkendorf, K.N.

    1993-12-01

    Large computer codes have been created in the past to predict the energy release in hypothetical core disruptive accidents (CDA), postulated to occur in liquid metal reactors (LMR). These codes, such as SIMMER, are highly specific to LMR designs. More recent attention has focused on thermal-spectrum criticality accidents, such as for fuel storage basins and waste tanks containing fissile material. This paper resents results from recent one-dimensional kinetics simulations, performed for a recriticality accident in a thermal spectrum. Reactivity insertion rates generally are smaller than in LMR CDAs, and the energetics generally are more benign. Parametric variation of input was performed, including reactivity insertion and initial temperature.

  14. Active interrogation using energetic protons

    SciTech Connect

    Morris, Christopher L; Chung, Kiwhan; Greene, Steven J; Hogan, Gary E; Makela, Mark; Mariam, Fesseha; Milner, Edward C; Murray, Matthew; Saunders, Alexander; Spaulding, Randy; Wang, Zhehui; Waters, Laurie; Wysocki, Frederick

    2010-01-01

    Energetic proton beams provide an attractive alternative when compared to electromagnetic and neutron beams for active interrogation of nuclear threats because they have large fission cross sections, long mean free paths and high penetration, and they can be manipulated with magnetic optics. We have measured time-dependent cross sections and neutron yields for delayed neutrons and gamma rays using 800 MeV and 4 GeV proton beams with a set of bare and shielded targets. The results show significant signals from both unshielded and shielded nuclear materials. Measurements of neutron energies yield suggest a signature unique to fissile material. Results are presented in this paper.

  15. Method for calculating alloy energetics

    NASA Technical Reports Server (NTRS)

    Bozzolo, Guillermo; Ferrante, John; Smith, John R.

    1992-01-01

    A semiempirical method for the computation of alloy energies is introduced. It is based on the equivalent-crystal theory of defect-formation energies in elemental solids. The method is both simple and accurate. Heats of formation as a function of composition are computed for some binary alloys of Cu, Ni, Al, Ag, Pd, Pt, and Au using the heats of solution in the dilute limit as experimental input. The separation of heats into strain and chemical components helps in understanding the energetics. In addition, lattice-parameter contractions seen in solid solutions of Ag and Au are accurately predicted. Good agreement with experiment is obtained in all cases.

  16. Statistical analysis of the energetic ion and ENA data for the Titan environment

    NASA Astrophysics Data System (ADS)

    Garnier, P.; Dandouras, I.; Toublanc, D.; Roelof, E. C.; Brandt, P. C.; Mitchell, D. G.; Krimigis, S. M.; Krupp, N.; Hamilton, D. C.; Wahlund, J.-E.

    2010-12-01

    The MIMI experiment (Magnetosphere Imaging Instrument) onboard Cassini is dedicated to the study of energetic particles, with in particular LEMMS analyzing charged particles, or the INCA detector which can image the Energetic Neutral Atoms produced by charge exchange collisions between cold neutrals and energetic ions. The MIMI experiment is thus well adapted to the study of the interaction between the Titan nitrogen rich atmosphere and the energetic Saturnian magnetospheric plasma. We analyze here the energetic protons at the Titan orbit crossings before January 2008 (MIMI-LEMMS data; 27-255 keV), which are very dynamic, with tri-modal flux spectra and probably quasi-isotropic pitch angle distributions. We provide statistical parameters for the proton fluxes, leading to estimates of the average energy deposition into Titan's atmosphere, before we discuss the possible influence of Titan on the magnetopause. We then analyze the H ENA images (24-55 keV) during the Titan flybys before June 2006 to obtain a better diagnostic of the Titan interaction: the ENAs variability is mostly related to the magnetospheric variability (the exosphere being roughly stable) or the distance from the moon, the ENAs halo around Titan is very stable (corresponding to a lower limit for ENAs emission at the exobase), and strong asymmetries are observed, due to finite gyroradii effects for the parent ions.

  17. Elastic and Inelastic Collisions

    ERIC Educational Resources Information Center

    Gluck, Paul

    2010-01-01

    There have been two articles in this journal that described a pair of collision carts used to demonstrate vividly the difference between elastic and inelastic collisions. One cart had a series of washers that were mounted rigidly on a rigid wooden framework, the other had washers mounted on rubber bands stretched across a framework. The rigidly…

  18. Ball Collision Experiments

    ERIC Educational Resources Information Center

    Cross, R.

    2015-01-01

    Experiments are described on collisions between two billiard balls and between a bat and a ball. The experiments are designed to extend a student's understanding of collision events and could be used either as a classroom demonstration or for a student project.

  19. Interactions of energetic particles and clusters with solids

    SciTech Connect

    Averback, R.S.; Hsieh, Horngming . Dept. of Materials Science and Engineering); Diaz de la Rubia, T. ); Benedek, R. )

    1990-12-01

    Ion beams are being applied for surface modifications of materials in a variety of different ways: ion implantation, ion beam mixing, sputtering, and particle or cluster beam-assisted deposition. Fundamental to all of these processes is the deposition of a large amount of energy, generally some keV's, in a localized area. This can lead to the production of defects, atomic mixing, disordering and in some cases, amorphization. Recent results of molecular dynamics computer simulations of energetic displacement cascades in Cu and Ni with energies up to 5 keV suggest that thermal spikes play an important role in these processes. Specifically, it will be shown that many aspects of defect production, atomic mixing and cascade collapse'' can be understood as a consequence of local melting of the cascade core. Included in this discussion will be the possible role of electron-phonon coupling in thermal spike dynamics. The interaction of energetic clusters of atoms with solid surfaces has also been studied by molecular dynamics simulations. this process is of interest because a large amount of energy can be deposited in a small region and possibly without creating point defects in the substrate or implanting cluster atoms. The simulations reveal that the dynamics of the collision process are strongly dependent on cluster size and energy. Different regimes where defect production, local melting and plastic flow dominate will be discussed. 43 refs., 7 figs.

  20. Solar Energetic Particle Spectrometer (SEPS)

    NASA Technical Reports Server (NTRS)

    Christl, Mark J.

    2009-01-01

    An outstanding problem of solar and heliospheric physics is the transport of solar energetic particles. The more energetic particles arriving early in the event can be used to probe the transport processes. The arrival direction distribution of these particles carries information about scattering during their propagation to Earth that can be used to test models of interplanetary transport. Also, of considerable importance to crewed space missions is the level of ionizing radiation in the interplanetary medium, and the dose that the crew experiences during an intense solar particle event, as well as the risk to space systems. A recent study concludes that 90% of the absorbed dose results from particles in the energy range 20-550 MeV. We will describe a new compact instrument concept, SEPS, that can cover the energy range from 50-600 MeV with a single compact detector. This energy range has been difficult to cover. There are only limited data, generally available only in broad energy bins, from a few past and present instruments outside Earth s magnetosphere. The SEPS concept can provide improved measurements for this energy range and its simple light-weight design could be easily accommodated on future missions.

  1. The Giotto energetic particle experiment

    NASA Astrophysics Data System (ADS)

    McKenna-Lawlor, S.; Thompson, A.; Sullivan, D.; Kirsch, E.; Melrose, D.; Wenzel, K. P.

    1986-03-01

    The Energetic Particle Experiment (EPA) onboard Giotto will measure the energy distribution of electrons, protons, and heavier nuclei (E is greater than 20 keV) during the cruise phase and in the cometary environment during the Halley encounter. The detector system consists of three particle telescopes each incorporating totally depleted silicon surface barrier layer detectors, and employing active and passive background shielding. In-situ measurements will be made of the flux and spatial distribution of energetic electrons and cometary ions in the Halley environment. Particle acceleration due to magnetic-field-line reconnection processes will, if present, be detected. The occurrence of a solar-particle event during the encounter would provide special opportunities to study the comet/solar-wind interaction and dust distribution around the comet, while the EPA would act as a reference for onboard instruments that are sensitive to particle radiation. Cruise-phase studies provide interplanetary particle flux levels since switch-on, and flare-related particle enhancements are detected.

  2. National Ignition Campaign Hohlraum Energetics

    SciTech Connect

    Meezan, N B; Atherton, L J; Callahan, D A; Dewald, E L; Dixit, S N; Dzenitis, E G; Edwards, M J; Haynam, C A; Hinkel, D E; Jones, O S; Landen, O; London, R A; Michel, P A; Moody, J D; Milovich, J L; Schneider, M B; Thomas, C A; Town, R J; Warrick, A L; Weber, S V; Widmann, K; Glenzer, S H; Suter, L J; MacGowan, B J; Kline, J L; Kyrala, G A; Nikroo, A

    2009-11-16

    The first series of experiments on the National Ignition Facility (NIF) [E. I. Moses, R. N. Boyd, B. A. Remington, C. J. Keane, and R. Al-Ayat, 'The National Ignition Facility: ushering in a new age for high energy density science,' Phys. Plasmas 16, 041006 (2009)] tested ignition hohlraum 'energetics,' a term described by four broad goals: (1) Measurement of laser absorption by the hohlraum; (2) Measurement of the x-ray radiation flux (T{sub RAD}{sup 4}) on the surrogate ignition capsule; (3) Quantitative understanding of the laser absorption and resultant x-ray flux; and (4) Determining whether initial hohlraum performance is consistent with requirements for ignition. This paper summarizes the status of NIF hohlraum energetics experiments. The hohlraum targets and experimental design are described, as well as the results of the initial experiments. The data demonstrate low backscattered energy (< 10%) for hohlraums filled with helium gas. A discussion of our current understanding of NIF hohlraum x-ray drive follows, including an overview of the computational tools, i.e., radiation-hydrodynamics codes, that have been used to design the hohlraums. The performance of the codes is compared to x-ray drive and capsule implosion data from the first NIF experiments. These results bode well for future NIF ignition hohlraum experiments.

  3. National Ignition Campaign Hohlraum energetics

    SciTech Connect

    Meezan, N. B.; Atherton, L. J.; Callahan, D. A.; Dewald, E. L.; Dixit, S.; Dzenitis, E. G.; Edwards, M. J.; Haynam, C. A.; Hinkel, D. E.; Jones, O. S.; Landen, O.; London, R. A.; Michel, P. A.; Moody, J. D.; Milovich, J. L.; Schneider, M. B.; Thomas, C. A.; Town, R. P. J.; Warrick, A. L.; Weber, S. V.

    2010-05-15

    The first series of experiments of the National Ignition Facility (NIF) [E. I. Moses et al., Phys. Plasmas 16, 041006 (2009)] tested ignition Hohlraum 'energetics', a term described by four broad goals: (1) measurement of laser absorption by the Hohlraum; (2) measurement of the x-ray radiation flux (T{sub RAD}{sup 4}) on the surrogate ignition capsule; (3) quantitative understanding of the laser absorption and resultant x-ray flux; and (4) determining whether initial Hohlraum performance is consistent with requirements for ignition. This paper summarizes the status of NIF Hohlraum energetics experiments. The Hohlraum targets and experimental design are described, as well as the results of the initial experiments. The data demonstrate low backscattered energy (<10%) for Hohlraums filled with helium gas. A discussion of our current understanding of NIF Hohlraum x-ray drive follows, including an overview of the computational tools, i.e., radiation-hydrodynamics codes that have been used to design the Hohlraums. The performance of the codes is compared to x-ray drive and capsule implosion data from the first NIF experiments. These results bode well for future NIF ignition Hohlraum experiments.

  4. Dynamics of energetic plasma sheet electrons

    NASA Astrophysics Data System (ADS)

    Burin Des Roziers, Edward

    2009-06-01

    The dynamics of energetic plasma sheet electrons plays an important role in many geomagnetic processes. The intent of this thesis is to extend the current understanding of the relationship between the solar wind and energetic plasma sheet electrons (~> 40 keV ), as well as the variability of these electrons within the plasma sheet. The statistical relationship between tens of keV plasma sheet electrons and the solar wind, as well as > 2 MeV geosynchronous electrons, is investigated, using plasma sheet measurements from Cluster (2001 - 2005) and Geotail (1998 - 2005), and concurrent solar wind measurements from ACE. Statistically, plasma sheet electron flux variations are compared to solar wind velocity, density, dynamic pressure, IMF B z , and solar wind energetic electrons, as well as > 2 MeV electrons at geosynchronous orbit. Several new results are revealed: (1) there is a strong positive correlation between energetic plasma sheet electrons and solar wind velocity; (2) this correlation is valid throughout the plasma sheet and extends to distances of X GSM =-30 R E ; (3) there is evidence of a weak negative correlation between energetic plasma sheet electrons and solar wind density; (4) energetic plasma sheet electrons are enhanced during times of southward interplanetary magnetic field (IMF); (5) there is no clear correlation between energetic plasma sheet electrons and solar wind electrons of comparable energies; and (6) there is a strong correlation between energetic electrons in the plasma sheet and > 2 MeV electrons at geosynchronous orbit measured 2 days later. In addition, the variability of energetic electron fluxes within the plasma sheet is explored. Interesting events were found using a combination of automated methods and visual inspection. Events are classified into 4 main types: (1) plasma sheet empty of energetic electrons; (2) decreasing plasma sheet energetic electron fluxes; (3) increasing plasma sheet energetic electron fluxes; and (4) sharp

  5. Influence of Energetic Ions on Tearing Modes

    SciTech Connect

    Cai Huishan; Wang Shaojie; Xu Yinfeng; Cao Jintao; Li Ding

    2011-02-18

    In contrast with the stability effects of trapped energetic ions on tearing modes, the effects of circulating energetic ions (CEI) on tearing modes depend on the toroidal circulating direction, and are closely related to the momentum of energetic ions. CEI provide an additional source or sink of momentum to affect tearing modes. For co-CEI, tearing modes can be stabilized if the momentum of energetic ions is large enough. On the other hand, the growth of tearing modes can be enhanced by counter-CEI. Further, a possibility to suppress the island growth of neoclassical tearing modes by co-CEI is pointed out.

  6. Lattice, Time-Dependent Schrodinger Equation Approach for Charge Transfer in Collisions of Be4+ with Atomic Hydrogen

    SciTech Connect

    Minami, Tatsuya; Pindzola, Michael S; Lee, Teck G; Schultz, David Robert

    2006-01-01

    A test of the lattice, time-dependent Schrodinger equation (LTDSE) method for treating inelastic ion-atom collisions is performed by treating state-selective charge transfer in 10-1000 keV/u Be4+ + H collisions. This system possessesa greater charge asymmetry of the colliding nuclei than has been treated in previous applications of the method. Consequently, its ability to represent well the dynamical evolution of the electronic wavefunction within the combination of a shallow and a deep potential well with a single coordinate- and momentumspace discretization is tested. New results are also computed using other, standard approaches, the atomic-orbital close-coupling and classical trajectory Monte Carlo methods, to provide comparisons with the LTDSE results owing to their well-established regimes of applicability and behaviours.

  7. Extreme solar energetic particle events

    NASA Astrophysics Data System (ADS)

    Vainio, Rami; Afanasiev, Alexandr; Battarbee, Markus

    2016-04-01

    Properties of extreme solar energetic particle (SEP) events, here defined as those leading to ground level enhancements (GLEs) of cosmic rays, are reviewed. We review recent efforts on modeling SEP acceleration to relativistic energies and present simulation results on particle acceleration at shocks driven by fast coronal mass ejections (CMEs) in different types of coronal magnetic structures and turbulent downstream compression regions. Based on these modeling results, we discuss the possible role of solar and CME parameters in the lack of GLEs during the present sunspot cycle. This work has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 637324 (HESPERIA). The Academy of Finland is thanked for financial support.

  8. Nuclear gamma rays from energetic particle interactions

    NASA Technical Reports Server (NTRS)

    Ramaty, R.; Kozlovsky, B.; Lingenfelter, R. E.

    1978-01-01

    Gamma ray line emission from nuclear deexcitation following energetic particle reactions is evaluated. The compiled nuclear data and the calculated gamma ray spectra and intensities can be used for the study of astrophysical sites which contain large fluxes of energetic protons and nuclei. A detailed evaluation of gamma ray line production in the interstellar medium is made.

  9. Energetic Particle-induced Geodesic Acoustic Mode

    SciTech Connect

    Fu, G.Y.

    2008-09-12

    A new energetic particle-induced Geodesic Acoustic Mode (EGAM) is shown to exist. The mode frequency, mode structure, and mode destabilization are determined non-perturbatively by energetic particle kinetic effects. In particular the EGAM frequency is found to be substantially lower than the standard GAM frequency. The radial mode width is determined by the energetic particle drift orbit width and can be fairly large for high energetic particle pressure and large safety factor. These results are consistent with the recent experimental observation of the beam- driven n=0 mode in DIII-D. The new mode is important since it can degrade energetic particle confinement as shown in the DIII-D experiments. The new mode may also affect the thermal plasma confinement via its interaction with plasma micro-turbulence.

  10. Interchange mode excited by trapped energetic ions

    SciTech Connect

    Nishimura, Seiya

    2015-07-15

    The kinetic energy principle describing the interaction between ideal magnetohydrodynamic (MHD) modes with trapped energetic ions is revised. A model is proposed on the basis of the reduced ideal MHD equations for background plasmas and the bounce-averaged drift-kinetic equation for trapped energetic ions. The model is applicable to large-aspect-ratio toroidal devices. Specifically, the effect of trapped energetic ions on the interchange mode in helical systems is analyzed. Results show that the interchange mode is excited by trapped energetic ions, even if the equilibrium states are stable to the ideal interchange mode. The energetic-ion-induced branch of the interchange mode might be associated with the fishbone mode in helical systems.

  11. Observations and Modeling of Geospace Energetic Particles

    NASA Astrophysics Data System (ADS)

    Li, Xinlin

    2016-07-01

    Comprehensive measurements of energetic particles and electric and magnetic fields from state-of-art instruments onboard Van Allen Probes, in a geo-transfer-like orbit, revealed new features of the energetic particles and the fields in the inner magnetosphere and impose new challenges to any quantitative modeling of the physical processes responsible for these observations. Concurrent measurements of energetic particles by satellites in highly inclined low Earth orbits and plasma and fields by satellites in farther distances in the magnetospheres and in the up stream solar wind are the critically needed information for quantitative modeling and for leading to eventual accurate forecast of the variations of the energetic particles in the magnetosphere. In this presentation, emphasis will be on the most recent advance in our understanding of the energetic particles in the magnetosphere and the missing links for significantly advance in our modeling and forecasting capabilities.

  12. Energetic particle influences in Earth's atmosphere

    NASA Astrophysics Data System (ADS)

    Aplin, Karen; Harrison, R. Giles; Nicoll, Keri; Rycroft, Michael; Briggs, Aaron

    2016-04-01

    Energetic particles from outer space, known as galactic cosmic rays, constantly ionise the entire atmosphere. During strong solar storms, solar energetic particles can also reach the troposphere and enhance ionisation. Atmospheric ionisation generates cluster ions. These facilitate current flow in the global electric circuit, which arises from charge separation in thunderstorms driven by meteorological processes. Energetic particles, whether solar or galactic in origin, may influence the troposphere and stratosphere through a range of different mechanisms, each probably contributing a small amount. Some of the suggested processes potentially acting over a wide spatial area in the troposphere include enhanced scavenging of charged aerosol particles, modification of droplet or droplet-droplet behavior by charging, and the direct absorption of infra-red radiation by the bending and stretching of hydrogen bonds inside atmospheric cluster-ions. As well as reviewing the proposed mechanisms by which energetic particles modulate atmospheric properties, we will also discuss new instrumentation for measurement of energetic particles in the atmosphere.

  13. Femtosecond Laser Interaction with Energetic Materials

    SciTech Connect

    Roos, E; Benterou, J; Lee, R; Roeske, F; Stuart, B

    2002-03-25

    Femtosecond laser ablation shows promise in machining energetic materials into desired shapes with minimal thermal and mechanical effects to the remaining material. We will discuss the physical effects associated with machining energetic materials and assemblies containing energetic materials, based on experimental results. Interaction of ultra-short laser pulses with matter will produce high temperature plasma at high-pressure which results in the ablation of material. In the case of energetic material, which includes high explosives, propellants and pyrotechnics, this ablation process must be accomplished without coupling energy into the energetic material. Experiments were conducted in order to characterize and better understand the phenomena of femtosecond laser pulse ablation on a variety of explosives and propellants. Experimental data will be presented for laser fluence thresholds, machining rates, cutting depths and surface quality of the cuts.

  14. Energetic Particle Influence on the Earth's Atmosphere

    NASA Astrophysics Data System (ADS)

    Mironova, Irina A.; Aplin, Karen L.; Arnold, Frank; Bazilevskaya, Galina A.; Harrison, R. Giles; Krivolutsky, Alexei A.; Nicoll, Keri A.; Rozanov, Eugene V.; Turunen, Esa; Usoskin, Ilya G.

    2015-11-01

    This manuscript gives an up-to-date and comprehensive overview of the effects of energetic particle precipitation (EPP) onto the whole atmosphere, from the lower thermosphere/mesosphere through the stratosphere and troposphere, to the surface. The paper summarizes the different sources and energies of particles, principally galactic cosmic rays (GCRs), solar energetic particles (SEPs) and energetic electron precipitation (EEP). All the proposed mechanisms by which EPP can affect the atmosphere are discussed, including chemical changes in the upper atmosphere and lower thermosphere, chemistry-dynamics feedbacks, the global electric circuit and cloud formation. The role of energetic particles in Earth's atmosphere is a multi-disciplinary problem that requires expertise from a range of scientific backgrounds. To assist with this synergy, summary tables are provided, which are intended to evaluate the level of current knowledge of the effects of energetic particles on processes in the entire atmosphere.

  15. Newton's Strange Collisions.

    ERIC Educational Resources Information Center

    Erlichson, Herman

    1995-01-01

    Discusses Newton's apparent oversight of the role of energy considerations in collisions between two spherical bodies related to the third corollary of his "Laws of Motion." Investigates several theories that provide solutions to the mysterious oversight. (LZ)

  16. Time rate collision matrix

    SciTech Connect

    Stoenescu, M.L.; Smith, T.M.

    1980-02-01

    The collision integral terms in Boltzmann equation are reformulated numerically leading to the substitution of the multiple integrals with a multiplicative matrix of the two colliding species velocity distribution functions which varies with the differential collision cross section. A matrix of lower rank may be constructed when one of the distribution functions is specified, in which case the matrix elements represent kinetic transition probabilities in the velocity space and the multiplication of the time rate collision matrix with the unknown velocity distribution function expresses the time rate of change of the distribution. The collision matrix may be used to describe the time evolution of systems in nonequilibrium conditions, to evaluate the rate of momentum and energy transfer between given species, or to generate validity criteria for linearized kinetic equations.

  17. Atomistic Simulation of Collision Cascades in Zircon

    SciTech Connect

    Devanathan, Ram; Corrales, Louis R.; Weber, William J.; Chartier, Alain; Meis, Constantin

    2006-09-01

    Defect production in energetic collision cascades in zircon has been studied by molecular dynamics simulation using a partial charge model combined with the Ziegler-Biersack-Littmark potential. Energy dissipation, defect accumulation, Si-O-Si polymerization, and Zr coordination number were examined for 10 keV and 30 keV U recoils simulated in the constant NVE ensemble. For both energies an amorphous core was produced with features similar to that of melt quenched zircon. Disordered Si ions in this core were polymerized with an average degree of polymerization of 1.5, while disordered Zr ions showed a coordination number of about 6 in agreement with EXAFS results. These results suggest that nano-scale phase separation into silica- and zirconia-rich regions occurs in the amorphous core.

  18. Photon-photon collisions

    SciTech Connect

    Burke, D.L.

    1982-10-01

    Studies of photon-photon collisions are reviewed with particular emphasis on new results reported to this conference. These include results on light meson spectroscopy and deep inelastic e..gamma.. scattering. Considerable work has now been accumulated on resonance production by ..gamma gamma.. collisions. Preliminary high statistics studies of the photon structure function F/sub 2//sup ..gamma../(x,Q/sup 2/) are given and comments are made on the problems that remain to be solved.

  19. Preheating in bubble collisions

    SciTech Connect

    Zhang Jun; Piao Yunsong

    2010-08-15

    In a landscape with metastable minima, the bubbles will inevitably nucleate. We show that when the bubbles collide, due to the dramatic oscillation of the field at the collision region, the energy deposited in the bubble walls can be efficiently released by the explosive production of the particles. In this sense, the collision of bubbles is actually highly inelastic. The cosmological implications of this result are discussed.

  20. Launch Collision Probability

    NASA Technical Reports Server (NTRS)

    Bollenbacher, Gary; Guptill, James D.

    1999-01-01

    This report analyzes the probability of a launch vehicle colliding with one of the nearly 10,000 tracked objects orbiting the Earth, given that an object on a near-collision course with the launch vehicle has been identified. Knowledge of the probability of collision throughout the launch window can be used to avoid launching at times when the probability of collision is unacceptably high. The analysis in this report assumes that the positions of the orbiting objects and the launch vehicle can be predicted as a function of time and therefore that any tracked object which comes close to the launch vehicle can be identified. The analysis further assumes that the position uncertainty of the launch vehicle and the approaching space object can be described with position covariance matrices. With these and some additional simplifying assumptions, a closed-form solution is developed using two approaches. The solution shows that the probability of collision is a function of position uncertainties, the size of the two potentially colliding objects, and the nominal separation distance at the point of closest approach. ne impact of the simplifying assumptions on the accuracy of the final result is assessed and the application of the results to the Cassini mission, launched in October 1997, is described. Other factors that affect the probability of collision are also discussed. Finally, the report offers alternative approaches that can be used to evaluate the probability of collision.

  1. Solar impulsive energetic electron events

    NASA Astrophysics Data System (ADS)

    Wang, Linghua

    The Sun is capable of accelerating ions from ~ tens of keV up to tens of GeV and electrons from ~ tens of eV up to hundreds of MeVs in transient events such as flares and fast coronal mass ejections (CMEs). The energized particles escaping into the interplanetary medium are referred to as Solar Energetic Particle (SEP) events. The great majority of SEP events are impulsive SEP events that are dominated by ~1-100 keV electrons and ~MeV/nucleon ion emissions, with enhanced 3 He/ 4 He ratios up to 10 4 times the coronal values (also called electron/ 3 He-rich SEP events). This thesis is focused on solar impulsive energetic electron events, the electron part of impulsive SEP events, using electron observations from the 3-D Plasma and Energetic Particle instrument (3DP) on the WIND spacecraft near the Earth. First, I present the first comprehensive statistical study of solar energetic electron events over almost one solar cycle. I find that the occurrence rate of solar electron events shows a strong solar-cycle variation; after correction for the background effect, the estimated occurrence frequency exhibits a good power-law distribution, and the estimated occurrence rate near the Earth is ~1000/year at solar maximum and ~30/year at solar minimum for the instrumental sensitivity (~2.9×10^-4 (cm 2 s str eV) -1 for the 40 keV channel) of WIND/3DP, about one order of magnitude larger than the observed occurrence rate. Solar energetic electron events have a one-to-one association with type III radio bursts and a poor association with flares, but a close association with 3 He- rich ion emissions. These 3 He-rich electron events also have a poor association with flares but a close (~ 60%) association with west-limb CMEs. Then I present two case studies: one investigating the temporal relationship between solar impulsive electrons and type III radio emissions, and the second studying the temporal relationship between solar impulsive electrons and 3 He- rich ions. For both

  2. Subsatellite measurements of plasma and energetic particles

    NASA Technical Reports Server (NTRS)

    Anderson, K. A.; Chase, L. M.; Lin, R. P.; Mccoy, J. E.; Mcguire, R. E.

    1972-01-01

    The Apollo 16 particles and fields subsatellite is instrumented to measure (1) plasma and energetic-particle fluxes, (2) vector magnetic fields, and (3) velocity of the subsatellite to a high precision for the purpose of determining lunar gravitational anomalies. Results from the magnetic-field and gravitational-field experiments are discussed. The results obtained from the plasma and energetic-particle detectors are discussed briefly. The plasma and energetic-particles experiment describes the various plasma regimes in which the moon moves, and determines how the moon interacts with the plasma and magnetic fields in the environment.

  3. Cosmic Ray Energetics And Mass

    NASA Astrophysics Data System (ADS)

    Seo, Eun-Suk

    The 6 flights of the Cosmic Ray Energetics and Mass (CREAM) balloon payload over Antarctica accumulated 161 days of exposure. The instrument is configured with complementary and redundant particle detectors for direct measurements of high energy cosmic ray elemental spectra. The calorimeter and Silicon Charge Detectors (SCD) from one of the two instruments are being re-configured for the International Space Station, dubbed ISS-CREAM. The other calorimeter and detectors that are too large to fit in the ISS Japanese Experiment Module Exposed Facility envelope are kept for balloon flights. The large area Timing Charged Detector (TCD) and newly developed Transition Radiation Detector (TRD) will be used for studying the propagation history of cosmic rays by measuring relative abundances of secondary particles, e.g., Boron. This Boron and Carbon Cosmic Rays in the Upper Stratosphere (BACCUS) balloon payload will provide in-flight cross calibration of the calorimeter and TRD for Z > 3 particles. The status of the payload construction and flight preparation will be reported.

  4. Cosmic Ray Energetics And Mass

    NASA Astrophysics Data System (ADS)

    Seo, Eun-Suk

    2014-08-01

    The balloon-borne Cosmic Ray Energetics And Mass (CREAM) experiment was flown for ~161 days in six flights over Antarctica. High energy cosmic-ray data were collected over a wide energy range from ~ 10^10 to > 10^14 eV at an average altitude of ~38.5 km with ~3.9 g/cm2 atmospheric overburden. Cosmic-ray elements from protons (Z = 1) to iron nuclei (Z = 26) are separated with excellent charge resolution. Building on success of the balloon flights, the payload is being reconfigured for exposure on the International Space Station (ISS). This ISS-CREAM instrument is configured with the CREAM calorimeter for energy measurements, and four finely segmented Silicon Charge Detector layers for precise charge measurements. In addition, the Top and Bottom Counting Detectors (TCD and BCD) and Boronated Scintillator Detector (BSD) have been newly developed. The TCD and BCD are scintillator based segmented detectors to separate electrons from nuclei using the shower profile differences, while BSD distinguishes electrons from nuclei by detecting thermal neutrons that are dominant in nuclei induced showers. An order of magnitude increase in data collecting power is possible by utilizing the ISS to reach the highest energies practical with direct measurements. The project status including results from on-going analysis of existing data and future plans will be discussed.

  5. POET: POlarimeters for Energetic Transients

    NASA Technical Reports Server (NTRS)

    Hill, J. E.; McConnell, M. L.; Bloser, P.; Legere, J.; Macri, J.; Ryan, J.; Barthelmy, S.; Angelini, L.; Sakamoto, T.; Black, J. K.; Hartmann, D. H.; Kaaret, P.; Zhang, B.; Ioka, K.; Nakamura, T.; Toma, K.; Yamazaki, R.; Wu, X.

    2008-01-01

    POET (Polarimeters for Energetic Transients) is a Small Explorer mission concept proposed to NASA in January 2008. The principal scientific goal of POET is to measure GRB polarization between 2 and 500 keV. The payload consists of two wide FoV instruments: a Low Energy Polarimeter (LEP) capable of polarization measurements in the energy range from 2-15 keV and a high energy polarimeter (Gamma-Ray Polarimeter Experiment - GRAPE) that will measure polarization in the 60-500 keV energy range. Spectra will be measured from 2 keV up to 1 MeV. The POET spacecraft provides a zenith-pointed platform for maximizing the exposure to deep space. Spacecraft rotation will provide a means of effectively dealing with systematics in the polarization response. POET will provide sufficient sensitivity and sky coverage to measure statistically significant polarization for up to 100 GRBs in a two-year mission. Polarization data will also be obtained for solar flares, pulsars and other sources of astronomical interest.

  6. The Galileo Energetic Particles Detector

    NASA Technical Reports Server (NTRS)

    Williams, D. J.; Mcentire, R. W.; Jaskulek, S.; Wilken, B.

    1992-01-01

    Amongst its complement of particles and fields instruments, the Galileo spacecraft carries an Energetic Particles Detector (EPD) designed to measure the characteristics of particle populations important in determining the size, shape, and dynamics of the Jovian magnetosphere. To do this the EPD provides 4pi angular coverage and spectral measurements for Z greater than or equal to 1 ions from 20 keV to 55 MeV, for electrons from 15 keV to greater than 11 MeV, and for the elemental species helium through iron from approximately 10 keV/nucl to 15 MeV/nucl. Two bidirectional telescopes, mounted on a stepping platform, employ magnetic deflection, energy loss versus energy, and time-of-flight techniques to provide 64 rate channels and pulse height analysis of priority selected events. The EPD data system provides a large number of possible operational modes from which a small number will be selected to optimize data collection during the many encounter and cruise phases of the mission. The EPD employs a number of safeing algorithms that are to be used in the event that its self-checking procedures indicate a problem. The instrument and its operation are described.

  7. Hypothalamic lipophagy and energetic balance.

    PubMed

    Singh, Rajat

    2011-10-01

    Autophagy is a conserved cellular turnover process that degrades unwanted cytoplasmic material within lysosomes. Through "in bulk" degradation of cytoplasmic proteins and organelles, including lipid droplets, autophagy helps provide an alternative fuel source, in particular, when nutrients are scarce. Recent work demonstrates a role for autophagy in hypothalamic agouti-related peptide (AgRP) neurons in regulation of food intake and energy balance. The induction of autophagy in hypothalamic neurons during starvation mobilizes neuronal neutral lipids to generate neuron-intrinsic free fatty acids that serve to upregulate fasting-induced AgRP levels. Blocking autophagy in AgRP neurons in mice reduces fasting-induced food intake, and increases constitutive levels of anorexigenic hypothalamic proopiomelanocortin and its cleavage product α-melanocyte stimulating hormone. The energetic consequences of these molecular events are decreased body weight and reduced adiposity. The present article discusses this recent finding, as well as considers possible future directions that may help better understand how neuronal autophagy, and its possible reduction during aging, may affect whole body energy balance. PMID:22024462

  8. The Energetics of Centrifugal Instability

    NASA Astrophysics Data System (ADS)

    Dewar, W. K.; Jiao, Y.

    2014-12-01

    A recent study has argued that the California Undercurrent, and poleward eastern boundary currents in general, generate mixing events through centrifugal instability (CI). Conditions favorable for CI are created by the strong horizontal shears developed in turbulent bottom layers of currents flowing in the direction of topographic waves. At points of abrupt topographic change, like promontories and capes, the coastal current separates from the boundary and injects gravitationally stable but dynamically unstable flow into the interior. The resulting finite amplitude development of the instability involves overturnings and diabatic mixing. The purpose of this study is to examine the energetics of CI in order to characterize it as has been done for other instabilities and develop a framework in which to estimate its regional and global impacts. We argue that CI is roughly twice as efficient at mixing as is Kelvin-Helmholtz instability, and that roughly 10% of the initial energy in a CUC-like current is lost to either local mixing or the generation of unbalanced flows. The latter probably leads to non-local mixing. Thus centrifugal instability is an effective process by which energy is lost from the balanced flow and spent in mixing neighboring water masses. We argue the importance of the mixing is regional in nature, but of less importance to the global budgets given its regional specificity.

  9. Electron capture in very low energy collisions of multicharged ions with H and D in merged beams

    SciTech Connect

    Havener, C.C.; Meyer, F.W.; Phaneuf, R.A.

    1991-01-01

    An ion-atom merged-beams technique is being used to measure total absolute electron-capture cross sections for multicharged ions in collisions with H (or D) in the energy range between 0.1 and 1000 eV/amu. Comparison between experiment and theory over such a large energy range constitutes a critical test for both experiment and theory. Total capture cross-section measurements for O{sup 3+} H(D) and O{sup 5+} + H(D) are presented and compared to state selective and differential cross section calculations. Landau-Zener calculations show that for O{sup 5+} the sharp increase in the measured cross section below 1 eV/amu is partly due to trajectory effects arising from the ion-induced dipole interaction between the reactants. 20 refs., 8 figs.

  10. Ion Collision, Theory

    SciTech Connect

    Shukla, Anil K.

    2013-09-11

    The outcome of a collision between an ion and neutral species depends on the chemical and physical properties of the two reactants, their relative velocities, and the impact parameter of their trajectories. These include elastic and inelastic scattering of the colliding particles, charge transfer (including dissociative charge transfer), atom abstraction, complex formation and dissociation of the colliding ion. Each of these reactions may be characterized in terms of their energy-dependent rate coefficients, cross sections and reaction kinetics. A theoretical framework that emphasizes simple models and classical mechanics is presented for these processes. Collision processes are addressed in two categories of low-energy and high-energy collisions. Experiments under thermal or quasi-thermal conditions–swarms, drift tubes, chemical ionization and ion cyclotron resonance are strongly influenced by long-range forces and often involve collisions in which atom exchange and extensive energy exchange are common characteristics. High-energy collisions are typically impulsive, involve short-range intermolecular forces and are direct, fast processes.

  11. Applications and implications of ecological energetics.

    PubMed

    Tomlinson, Sean; Arnall, Sophie G; Munn, Adam; Bradshaw, S Don; Maloney, Shane K; Dixon, Kingsley W; Didham, Raphael K

    2014-05-01

    The ecological processes that are crucial to an animal's growth, survival, and reproductive fitness have energetic costs. The imperative for an animal to meet these costs within the energetic constraints of the environment drives many aspects of animal ecology and evolution, yet has largely been overlooked in traditional ecological paradigms. The field of 'ecological energetics' is bringing comparative physiology out of the laboratory and, for the first time, is becoming broadly accessible to field ecologists addressing real-world questions at many spatial and temporal scales. In an era of unprecedented global environmental challenges, ecological energetics opens up the tantalising prospect of a more predictive, mechanistic understanding of the drivers of threatened species decline, delivering process-based modelling approaches to natural resource management. PMID:24725438

  12. Energetic particle characteristics of magnetotail flux ropes

    NASA Technical Reports Server (NTRS)

    Scholer, M.; Klecker, B.; Hovestadt, D.; Gloeckler, G.; Ipavich, F. M.; Galvin, A. B.

    1985-01-01

    During the recent ISEE-3 Geotail Mission three events have been identified from the magnetometer data which are consistent with a spacecraft crossing of a magnetotail flux rope. Energetic electron and proton observations obtained by the Max-Planck-Institut/University of Maryland sensor system during two of the possible flux rope events are presented. During one event remote sensing of the flux rope with energetic protons reveals that the flux rope is crossed by the spacecraft from south to north. This allows determination of the bandedness of the magnetic field twist and of the flux rope velocity relative to the spacecraft. A minimal flux rope radius of 3 earth radii is derived. Energetic proton intensity is highest just inside of the flux rope and decreases towards the core. Energetic electrons are streaming tailward near the outer boundary, indicating openness of the field lines, and are isotropic through the inner part of the flux rope.

  13. Molecular beam studies of hot atom chemical reactions: Reactive scattering of energetic deuterium atoms

    SciTech Connect

    Continetti, R.E.; Balko, B.A.; Lee, Y.T.

    1989-02-01

    A brief review of the application of the crossed molecular beams technique to the study of hot atom chemical reactions in the last twenty years is given. Specific emphasis is placed on recent advances in the use of photolytically produced energetic deuterium atoms in the study of the fundamental elementary reactions D + H/sub 2/ /minus/> DH + H and the substitution reaction D + C/sub 2/H/sub 2/ /minus/> C/sub 2/HD + H. Recent advances in uv laser and pulsed molecular beam techniques have made the detailed study of hydrogen atom reactions under single collision conditions possible. 18 refs., 9 figs.

  14. Molecular Beam Studies of Hot Atom Chemical Reactions: Reactive Scattering of Energetic Deuterium Atoms

    DOE R&D Accomplishments Database

    Continetti, R. E.; Balko, B. A.; Lee, Y. T.

    1989-02-01

    A brief review of the application of the crossed molecular beams technique to the study of hot atom chemical reactions in the last twenty years is given. Specific emphasis is placed on recent advances in the use of photolytically produced energetic deuterium atoms in the study of the fundamental elementary reactions D + H{sub 2} -> DH + H and the substitution reaction D + C{sub 2}H{sub 2} -> C{sub 2}HD + H. Recent advances in uv laser and pulsed molecular beam techniques have made the detailed study of hydrogen atom reactions under single collision conditions possible.

  15. Energetics of the protonation of CO - Implications for the observation of HOC(+) in dense interstellar clouds

    NASA Technical Reports Server (NTRS)

    Dixon, D.; Komornicki, A.; Kraemer, W. P.

    1984-01-01

    A number of molecular species on the H3CO(+) energy hypersurface is examined. Ab initio molecular orbital theory is used to determine the structures and relative energetics of the two isomers of HCO(+) and HOC(+) together with the affinity of CO for protonation at either end. The proton affinities of H2 and H2CO are also examined. The calculations are performed using large basis sets and include the effects of electron correlation. The calculated vibrational frequencies are used to correct for zero point energy differences. The results show that the proton affinities of H2 and CO to form HOC(+) are within 1 kcal of each other. The calculations demonstrate that there is no thermodynamic driving force to form HOC(+) in collisions of H3(+) with CO, and that the formation of HCO(+) in such collisions is very exoergic. A plausible mechanism is suggested to explain the differences observed between the laboratory and the interstellar medium.

  16. Size distributions of solar energetic particle events

    NASA Technical Reports Server (NTRS)

    Cliver, E.; Reames, D.; Kahler, S.; Cane, H.

    1991-01-01

    NASA particle detectors on the IMP-8 are employed to determine the size distributions of the peak fluxes of events related to solar-energetic particles including protons and electrons. The energetic proton events show a flatter size distribution which suggests that not all flares are proton flares. Both the electron and proton events are classified as either 'impulsive' or 'gradual', and the impulsive events tend to have a steeper power-law distribution.

  17. Safer energetic materials by a nanotechnological approach

    NASA Astrophysics Data System (ADS)

    Siegert, Benny; Comet, Marc; Spitzer, Denis

    2011-09-01

    Energetic materials - explosives, thermites, populsive powders - are used in a variety of military and civilian applications. Their mechanical and electrostatic sensitivity is high in many cases, which can lead to accidents during handling and transport. These considerations limit the practical use of some energetic materials despite their good performance. For industrial applications, safety is one of the main criteria for selecting energetic materials. The sensitivity has been regarded as an intrinsic property of a substance for a long time. However, in recent years, several approaches to lower the sensitivity of a given substance, using nanotechnology and materials engineering, have been described. This feature article gives an overview over ways to prepare energetic (nano-)materials with a lower sensitivity.Energetic materials - explosives, thermites, populsive powders - are used in a variety of military and civilian applications. Their mechanical and electrostatic sensitivity is high in many cases, which can lead to accidents during handling and transport. These considerations limit the practical use of some energetic materials despite their good performance. For industrial applications, safety is one of the main criteria for selecting energetic materials. The sensitivity has been regarded as an intrinsic property of a substance for a long time. However, in recent years, several approaches to lower the sensitivity of a given substance, using nanotechnology and materials engineering, have been described. This feature article gives an overview over ways to prepare energetic (nano-)materials with a lower sensitivity. Electronic supplementary information (ESI) available: Experimental details for the preparation of the V2O5@CNF/Al nanothermite; X-ray diffractogram of the V2O5@CNF/Al combustion residue; installation instructions and source code for the nt-timeline program. See DOI: 10.1039/c1nr10292c

  18. Molecular thermometry of energetic materials

    SciTech Connect

    Fishbine, B.H.; Lippert, T.; Dick, J.J.

    1997-07-01

    When a solid object with a velocity <1 km/s strikes a solid high explosive, the increase in the bulk temperature of the explosive is usually too low to thermally initiate it. It is believed, however, that the energy in the stress or shock wave created by the impact can heat individual microscopic regions that ignite and cause detonation. Although many mechanisms have been suggested for how the impact energy creates these hot spots, there has been no real-time observation of their growth at early times because of their small dimensions (estimated to be 0.1--10 {micro}m), the short times required for their growth (estimated to be 0.5 {micro}s--1 ms), and because their temperatures are too low (estimated to be <2,000 K) for them to radiate much energy in the visible. One possible way to observe early hot-spot growth is to measure temperature-dependent changes in the optical properties--absorbance, diffuse reflection, Raman spectra--of either the components of the explosive or of molecules attached to them. This temperature measurement technique is called molecular thermometry. Molecular thermometers can respond to heating within a few picoseconds with spatial resolution that can, in principle, approach the diameter of a single molecule. Temperatures as high as 900 C have been measured by molecular thermometers in laser-pulse-heated polymers. The authors discuss the literature pertaining to molecular thermometry, the effect of stress on the optical properties of some molecules that may be used as thermometers, and experiments that have used molecular thermometry to probe, on the picosecond time scale, shock excitation of the vibrational modes of molecules of energetic material. The authors also suggest ways to use molecular thermometers to observe hot-spot formation in PBX9501, a plastic-bonded explosive, subjected to impact.

  19. The energetics of Titan's ionosphere

    NASA Astrophysics Data System (ADS)

    Roboz, A.; Nagy, A. F.

    1994-02-01

    We have developed a comprehensive model to study the dynamics and energetics of the ionosphere of Titan. We solved the one-dimensional, time-dependent, coupled continuity and momentum equations for several ion species, together with single ion and electron energy equations, in order to calculate density, velocity, and temperature profiles. Calculations were carried out for several cases corresponding to different local times and configurations of the Titan-Saturn system. In our model the effects of horizontal magnetic fields were assumed to be negligible, except for their effect on reducing the electron and ion thermal conductivities and inhibiting vertical transport in the subram region. The ionospheric density peak was found to be at an altitude of about 1100 km, in accordance with earlier model calculations. The ionosphere is chemically controlled below an altitude of about 1500 km. Above this level, ion densities differ significantly from their chemical equilibrium values due to strong upward ion velocities. Heat is deposited in a narrow region around the ionospheric peak, resulting in temperature profiles increasing sharply and reaching nearly constant values of 800-1000 deg K for electrons and 300 deg K for ions in the topside, assuming conditions appropriate for the wake region. In the subram region magnetic correction factors make the electron heat conductivities negligible, resulting in electron temperatures increasing strongly with altitude and reaching values in the order of 5000 deg K at our upper boundary located at 2200 km. Ion chemical heating is found to play an important role in shaping the ion energy balance in Titan's ionosphere.

  20. Microscope collision protection apparatus

    DOEpatents

    DeNure, Charles R.

    2001-10-23

    A microscope collision protection apparatus for a remote control microscope which protects the optical and associated components from damage in the event of an uncontrolled collision with a specimen, regardless of the specimen size or shape. In a preferred embodiment, the apparatus includes a counterbalanced slide for mounting the microscope's optical components. This slide replaces the rigid mounts on conventional upright microscopes with a precision ball bearing slide. As the specimen contacts an optical component, the contacting force will move the slide and the optical components mounted thereon. This movement will protect the optical and associated components from damage as the movement causes a limit switch to be actuated, thereby stopping all motors responsible for the collision.

  1. Collision of cosmic superstrings

    SciTech Connect

    Copeland, E. J.; Firouzjahi, H.; Kibble, T. W. B.; Steer, D. A.

    2008-03-15

    We study the formation of three-string junctions between (p,q)-cosmic superstrings, and collisions between such strings and show that kinematic constraints analogous to those found previously for collisions of Nambu-Goto strings apply here too, with suitable modifications to take account of the additional requirements of flux conservation. We examine in detail several examples involving collisions between strings with low values of p and q, and also examine the rates of growth or shrinkage of strings at a junction. Finally, we briefly discuss the formation of junctions for strings in a warped space, specifically with a Klebanov-Strassler throat, and show that similar constraints still apply with changes to the parameters taking account of the warping and the background flux.

  2. Photoactive energetic materials: linear and nonlinear photochemistry of chromophore linked energetic materials

    NASA Astrophysics Data System (ADS)

    Greenfield, Margo; McGrane, Shawn; Bolme, Cindy; Chavez, David; Veauthier, Jacqueline; Hanson, Susan; Myers, Thomas; Scharff, Jason

    2015-06-01

    In general, conventional molecular explosives are white to off-white in color and only absorb ultraviolet light. A novel approach to synthetically link optically active energetic chromophores to existing molecular energetic materials has resulted in increased photoactivity in the visible (532 nm) region of the electromagnetic spectrum. Tetrazine, an energetic optically active chromophore, which absorbs around 532 nm, has been derivatized with various energetic materials including pentaeythritol tetranitrate (PETN), nitroglycerine (NG) and dinitroazetidine (DNAZ). We report the corresponding photochemistry and photochemical quantum yields of these new materials under various wavelength and intensity regimes.

  3. A microscopic description of absorption in high-energy string-brane collisions

    NASA Astrophysics Data System (ADS)

    D'Appollonio, Giuseppe; Di Vecchia, Paolo; Russo, Rodolfo; Veneziano, Gabriele

    2016-03-01

    We study the collision of a highly energetic light closed string off a stack of D p-branes at (sub)string-scale impact parameters and in a regime justifying a perturbative treatment. Unlike at larger impact parameters — where elastic scattering and/or tidal excitations dominate — here absorption of the closed string by the brane system, with the associated excitation of open strings living on it, becomes important. As a first step, we study this phenomenon at the disk level, in which the energetic closed string turns into a single heavy open string at rest whose particularly simple properties are described.

  4. Reduced quasilinear models for energetic particles interaction with Alfvenic eigenmodes

    NASA Astrophysics Data System (ADS)

    Ghantous, Katy

    The Line Broadened Quasilinear (LBQ) and the 1.5D reduced models are able to predict the effect of Alfvenic eigenmodes' interaction with energetic particles in burning plasmas. This interaction can result in energetic-particle losses that can damage the first wall, deteriorate the plasma performance, and even prevent ignition. The 1.5D model assumes a broad spectrum of overlapping modes and, based on analytic expressions for the growth and damping rates, calculates the pressure profiles that the energetic particles relax to upon interacting with the modes. 1.5D is validated with DIII-D experiments and predicted neutron losses consistent with observation. The model is employed to predict alpha-particle fusion-product losses in a large-scale operational parameter-space for burning plasmas. The LBQ model captures the interaction both in the regime of isolated modes as well as in the conventional regime of overlapping modes. Rules were established that allow quasilinear equations to replicate the expected steady-state saturation levels of isolated modes. The fitting formula is improved and the model is benchmarked with a Vlasov code, BOT. The saturation levels are accurately predicted and the mode evolution is well-replicated in the case of steady-state evolution where the collisions are high enough that coherent structures do not form. When the collisionality is low, oscillatory behavior can occur. LBQ can also exhibit non-steady behavior, but the onset of oscillations occurs for much higher collisional rates in BOT than in LBQ. For certain parameters of low collisionality, hole-clump creation and frequency chirping can occur which are not captured by the LBQ model. Also, there are cases of non-steady evolution without chirping which is possible for LBQ to study. However the results are inconclusive since the periods and amplitudes of the oscillations in the mode evolution are not well-replicated. If multiple modes exist, they can grow to the point of overlap which

  5. ZERO IMPACT PARAMETER WHITE DWARF COLLISIONS IN FLASH

    SciTech Connect

    Hawley, W. P.; Athanassiadou, T.; Timmes, F. X.

    2012-11-01

    We systematically explore zero impact parameter collisions of white dwarfs (WDs) with the Eulerian adaptive grid code FLASH for 0.64 + 0.64 M {sub Sun} and 0.81 + 0.81 M {sub Sun} mass pairings. Our models span a range of effective linear spatial resolutions from 5.2 Multiplication-Sign 10{sup 7} to 1.2 Multiplication-Sign 10{sup 7} cm. However, even the highest resolution models do not quite achieve strict numerical convergence, due to the challenge of properly resolving small-scale burning and energy transport. The lack of strict numerical convergence from these idealized configurations suggests that quantitative predictions of the ejected elemental abundances that are generated by binary WD collision and merger simulations should be viewed with caution. Nevertheless, the convergence trends do allow some patterns to be discerned. We find that the 0.64 + 0.64 M {sub Sun} head-on collision model produces 0.32 M {sub Sun} of {sup 56}Ni and 0.38 M {sub Sun} of {sup 28}Si, while the 0.81 + 0.81 M {sub Sun} head-on collision model produces 0.39 M {sub Sun} of {sup 56}Ni and 0.55 M {sub Sun} of {sup 28}Si at the highest spatial resolutions. Both mass pairings produce {approx}0.2 M {sub Sun} of unburned {sup 12}C+{sup 16}O. We also find the 0.64 + 0.64 M {sub Sun} head-on collision begins carbon burning in the central region of the stalled shock between the two WDs, while the more energetic 0.81 + 0.81 M {sub Sun} head-on collision raises the initial post-shock temperature enough to burn the entire stalled shock region to nuclear statistical equilibrium.

  6. Analysis and Consequences of the Iridium 33-Cosmos 2251 Collision

    NASA Technical Reports Server (NTRS)

    Anz-Meador, P. D.; Liou, Jer-Chi

    2010-01-01

    The collision of Iridium 33 and Cosmos 2251, on 10 February 2009, was the first known unintentional hypervelocity collision in space of intact satellites. Iridium 33 was an active commercial telecommunications satellite, while Cosmos 2251 was a derelict communication satellite of the Strela-2M class. The collision occurred at a relative velocity of 11.6 km/s at an altitude of approximately 790 km over the Great Siberian Plain and near the northern apex of Cosmos 2251 s orbit. This paper describes the physical and orbital characteristics of the relevant spacecraft classes and reports upon our analysis of the resulting debris clouds size, mass, area-to-mass ratio, and relative velocity/directionality distributions. We compare these distributions to those predicted by the NASA breakup model and notable recent fragmentation events; in particular, we compare the area-to-mass ratio distribution for each spacecraft to that exhibited by the FY-1C debris cloud for the purpose of assessing the relative contribution of modern aerospace materials to debris clouds resulting from energetic collisions. In addition, we examine the long-term consequences of this event for the low Earth orbit (LEO) environment. Finally, we discuss "lessons learned", which may be incorporated into NASA s environmental models.

  7. Atomic collisions, inelastic indeed

    NASA Astrophysics Data System (ADS)

    Bercegol, Herve; Ferrando, Gwenael; Lehoucq, Roland

    At the turn of the twentieth century, a hot controversy raged about the ability of Boltzmann's framework to take care of irreversibility. The so-called Loschmidt's paradox progressively faded with time during the last hundred years, due to the predictive efficiency of statistical mechanics. However, one detail at the origin of the controversy - the elasticity of atomic collisions - was not completely challenged. A semi-classical treatment of two atoms interacting with the vacuum zero-point field permits to predict a friction force acting against the rotation of the pair of atoms. By its form and its level, the calculated torque is a candidate as a physical cause for diffusion of energy and angular momentum, and consequently for entropy growth. It opens the way to a revision of the standard vision of irreversibility. This presentation will focus on two points. First we will discuss the recent result in a broader context of electromagnetic interactions during microscopic collisions. The predicted friction phenomenon can be compared to and distinguished from Collision-Induced Emission and other types of inelastic collisions. Second we will investigate the consequences of the friction torque on calculated trajectories of colliding atoms, quantifying the generation of dimers linked by dispersion forces.

  8. Photon-photon collisions

    SciTech Connect

    Brodsky, S.J.

    1988-07-01

    Highlights of the VIIIth International Workshop on Photon-Photon Collisions are reviewed. New experimental and theoretical results were reported in virtually every area of ..gamma gamma.. physics, particularly in exotic resonance production and tests of quantum chromodynamics where asymptotic freedom and factorization theorems provide predictions for both inclusive and exclusive ..gamma gamma.. reactions at high momentum transfer. 73 refs., 12 figs.

  9. Neutrino-atom collisions

    NASA Astrophysics Data System (ADS)

    Kouzakov, Konstantin A.; Studenikin, Alexander I.

    2016-05-01

    Neutrino-atom scattering provides a sensitive tool for probing nonstandard interactions of massive neutrinos in laboratory measurements. The ionization channel of this collision process plays an important role in experiments searching for neutrino magnetic moments. We discuss some theoretical aspects of atomic ionization by massive neutrinos. We also outline possible manifestations of neutrino electromagnetic properties in coherent elastic neutrino-nucleus scattering.

  10. Modelling of the energetic ion observations in the vicinity of Rhea and Dione

    NASA Astrophysics Data System (ADS)

    Kotova, Anna; Roussos, Elias; Krupp, Norbert; Dandouras, Iannis; Khurana, Krishan K.

    2013-04-01

    During several flybys of CASSINI by the saturnian moons Rhea and Dione energetic particle detector MIMI/LEMMS confirmed significant reduction of energetic ion fluxes (20 keV - 300 keV) in vicinity of these moons, which is mainly caused by plasma absorption by the moons. In order to simulate the observed depletion profiles we developed an energetic particle tracer, which is able to simulate the charged particle trajectories considering different models of the saturnian magnetosphere. Currently we are using the fourth order Gauss Runge-Kutta calculation method and our background magnetospheric model is based on dipole magnetic field, co-rotation electric fields and can include the effects of the current sheet or other non-dipolar effects. Using this energetic particle tracer we explore which of these magnetospheric characteristics are more important in shaping the ion profiles. We also examine if LEMMS responds primarily to protons (as assumed until today) or to heavier ions, using the calibration experiments data, observations of the energy flux spectrum by CHEMS instrument (on board of CASSINI as well) and different simulation results. Here we will present results of our modeling and discuss other scientific problems, where the charged particle tracer can be applied: simulation of the ion observations on Enceladus and Titan, and simulation of the charged particles motion in the inner magnetosphere of Saturn (preparation for the CASSINI "Proximal Orbits"), where we will study different diffusion effects, influence of dust and scattering collisions and possible particles input mechanisms to the magnetosphere of Saturn. As the primary energetic particle detector that will be used to monitor the innermost belts during the proximal orbits is LEMMS, understanding through the current work its complex responses to different ion species is essential for interpreting the planned observations inside Saturn's D-ring.

  11. Computational design of fused heterocyclic energetic materials

    NASA Astrophysics Data System (ADS)

    Tsyshevskiy, Roman; Pagoria, Philip; Batyrev, Iskander; Kuklja, Maija

    A continuous traditional search for effective energetic materials is often based on a trial and error approach. Understanding of fundamental correlations between the structure and sensitivity of the materials remains the main challenge for design of novel energetics due to the complexity of the behavior of energetic materials. State of the art methods of computational chemistry and solid state physics open new compelling opportunities in simulating and predicting a response of the energetic material to various external stimuli. Hence, theoretical and computational studies can be effectively used not only for an interpretation of sensitivity mechanisms of widely used explosives, but also for identifying criteria for material design prior to its synthesis and experimental characterization. We report here, how knowledge on thermal stability of recently synthesized materials of LLM series is used for design of novel fused heterocyclic energetic materials, including DNBTT (2,7-dinitro-4H,9H-bis([1, 2, 4"]triazolo)[1,5-b:1',5'-e][1, 2, 4, 5]tetrazine), compound with high thermal stability, which is on par or better than that of TATB. This research is supported by ONR (Grant N00014-12-1-0529), NSF XSEDE resources (Grant DMR-130077) and DOE NERSC resources (Contract DE-AC02-05CH11231).

  12. Energetic electron observations of Rhea's magnetospheric interaction

    NASA Astrophysics Data System (ADS)

    Roussos, E.; Krupp, N.; Kollmann, P.; Paranicas, C.; Mitchell, D. G.; Krimigis, S. M.

    2011-10-01

    More specifically, we show results of a phase-space density analysis, looking for evidence of energetic electron transport processes in the vicinity of Rhea's wake. We also perform energetic electron trajectory tracings in order to map regions where access of energetic electrons in Rhea's interaction region is forbidden. Such regions form because of complex energetic particle magnetic drifts downstream of Rhea, where the magnetospheric electric and magnetic fields are disturbed. We show that while our approach provides some qualitative explanation for some of the observations of electrons with energies above 100 keV, the lowest energy features in the MIMI/LEMMS dataset (20-100 keV) cannot be explained, especially those that extend upstream of Rhea and in a region that a plasma absorbing moon should, in theory, have no effect on the magnetospheric populations. Given that, in addition to the fact that Rhea orbits in a region of the magnetosphere that is thought be unstable against centrifugal interchange, we propose that the formation of Rhea's wake acts as a disturbance that helps enhance local magnetospheric interchange. Interchange driven disturbances, may then actually be the source of some of the unusual energetic electron observations. We also discuss this scenario in the context of additional published observations by the Cassini's cold plasma detector.

  13. Internal Energy Exchange and Dissociation Probability in DSMC Molecular Collision Models

    NASA Astrophysics Data System (ADS)

    Chabut, E.

    2008-12-01

    The present work is related to the gas—gas collision models used in DSMC. It especially concerns the relaxation rates and the reactivity for diatomic molecules (but most of the models can be extended to polyatomic molecules). The Larsen-Borgnakke [1] model is often used in DSMC to describe the way of redistribution of the energies during collisions. A lot of information is provided by literature about links existing between macroscopic collision number, the fraction of inelastic collisions and the probability for a molecule to exchange energy during a collision in a specific mode. We then expose the main relations able to reproduce macroscopic relaxation rates. During collisions, the energy brought by the collision partners can be sufficient to generate a chemical reaction. The problematic is at first to determine an energetic condition for a possible reaction: which energy we have to consider and which threshold we have to compare with; and in second how to calculate the reaction probabilities. Then we often use the experimental results which put in light some phenomena (vibration—dissociation coupling for example) to built a qualitative basis for the models and, in a quantitative point of view, we determine probabilities such they can reproduce the macroscopic experimental rates reflected by the modified Arrhenius law. Some of the different chemical models used in DSMC will be exposed as the "TCE" [2]-3], "EAE" [3], "ME" [4] and "VFD" [5] models.

  14. Effect of dynamical friction on nonlinear energetic particle modes

    SciTech Connect

    Lilley, M. K.; Breizman, B. N.; Sharapov, S. E.

    2010-09-15

    A fully nonlinear model is developed for the bump-on-tail instability including the effects of dynamical friction (drag) and velocity space diffusion on the energetic particles driving the wave. The results show that drag provides a destabilizing effect on the nonlinear evolution of waves. Specifically, in the early nonlinear phase of the instability, the drag facilitates the explosive scenario of the wave evolution, leading to the creation of phase space holes and clumps that move away from the original eigenfrequency. Later in time, the electric field associated with a hole is found to be enhanced by the drag, whereas for a clump it is reduced. This leads to an asymmetry of the frequency evolution between holes and clumps. The combined effect of drag and diffusion produces a diverse range of nonlinear behaviors including hooked frequency chirping, undulating, and steady state regimes. An analytical model is presented, which explains the aforementioned diversity. A continuous production of hole-clump pairs in the absence of collisions is also observed.

  15. Precipitation of energetic neutral atoms and induced non-thermal escape fluxes from the Martian atmosphere

    SciTech Connect

    Lewkow, N. R.; Kharchenko, V.

    2014-08-01

    The precipitation of energetic neutral atoms, produced through charge exchange collisions between solar wind ions and thermal atmospheric gases, is investigated for the Martian atmosphere. Connections between parameters of precipitating fast ions and resulting escape fluxes, altitude-dependent energy distributions of fast atoms and their coefficients of reflection from the Mars atmosphere, are established using accurate cross sections in Monte Carlo (MC) simulations. Distributions of secondary hot (SH) atoms and molecules, induced by precipitating particles, have been obtained and applied for computations of the non-thermal escape fluxes. A new collisional database on accurate energy-angular-dependent cross sections, required for description of the energy-momentum transfer in collisions of precipitating particles and production of non-thermal atmospheric atoms and molecules, is reported with analytic fitting equations. Three-dimensional MC simulations with accurate energy-angular-dependent cross sections have been carried out to track large ensembles of energetic atoms in a time-dependent manner as they propagate into the Martian atmosphere and transfer their energy to the ambient atoms and molecules. Results of the MC simulations on the energy-deposition altitude profiles, reflection coefficients, and time-dependent atmospheric heating, obtained for the isotropic hard sphere and anisotropic quantum cross sections, are compared. Atmospheric heating rates, thermalization depths, altitude profiles of production rates, energy distributions of SH atoms and molecules, and induced escape fluxes have been determined.

  16. Reactive Collision Avoidance Algorithm

    NASA Technical Reports Server (NTRS)

    Scharf, Daniel; Acikmese, Behcet; Ploen, Scott; Hadaegh, Fred

    2010-01-01

    The reactive collision avoidance (RCA) algorithm allows a spacecraft to find a fuel-optimal trajectory for avoiding an arbitrary number of colliding spacecraft in real time while accounting for acceleration limits. In addition to spacecraft, the technology can be used for vehicles that can accelerate in any direction, such as helicopters and submersibles. In contrast to existing, passive algorithms that simultaneously design trajectories for a cluster of vehicles working to achieve a common goal, RCA is implemented onboard spacecraft only when an imminent collision is detected, and then plans a collision avoidance maneuver for only that host vehicle, thus preventing a collision in an off-nominal situation for which passive algorithms cannot. An example scenario for such a situation might be when a spacecraft in the cluster is approaching another one, but enters safe mode and begins to drift. Functionally, the RCA detects colliding spacecraft, plans an evasion trajectory by solving the Evasion Trajectory Problem (ETP), and then recovers after the collision is avoided. A direct optimization approach was used to develop the algorithm so it can run in real time. In this innovation, a parameterized class of avoidance trajectories is specified, and then the optimal trajectory is found by searching over the parameters. The class of trajectories is selected as bang-off-bang as motivated by optimal control theory. That is, an avoiding spacecraft first applies full acceleration in a constant direction, then coasts, and finally applies full acceleration to stop. The parameter optimization problem can be solved offline and stored as a look-up table of values. Using a look-up table allows the algorithm to run in real time. Given a colliding spacecraft, the properties of the collision geometry serve as indices of the look-up table that gives the optimal trajectory. For multiple colliding spacecraft, the set of trajectories that avoid all spacecraft is rapidly searched on

  17. Energetic particle pressure in intense ESP events

    NASA Astrophysics Data System (ADS)

    Lario, D.; Decker, R. B.; Roelof, E. C.; Viñas, A.-F.

    2015-09-01

    We study three intense energetic storm particle (ESP) events in which the energetic particle pressure PEP exceeded both the pressure of the background thermal plasma Pth and the pressure of the magnetic field PB. The region upstream of the interplanetary shocks associated with these events was characterized by a depression of the magnetic field strength coincident with the increase of the energetic particle intensities and, when plasma measurements were available, a depleted solar wind density. The general feature of cosmic-ray mediated shocks such as the deceleration of the upstream background medium into which the shock propagates is generally observed. However, for those shocks where plasma parameters are available, pressure balance is not maintained either upstream of or across the shock, which may result from the fact that PEP is not included in the calculation of the shock parameters.

  18. The MAVEN Solar Energetic Particle Investigation

    NASA Astrophysics Data System (ADS)

    Larson, Davin E.; Lillis, Robert J.; Lee, Christina O.; Dunn, Patrick A.; Hatch, Kenneth; Robinson, Miles; Glaser, David; Chen, Jianxin; Curtis, David; Tiu, Christopher; Lin, Robert P.; Luhmann, Janet G.; Jakosky, Bruce M.

    2015-12-01

    The MAVEN Solar Energetic Particle (SEP) instrument is designed to measure the energetic charged particle input to the Martian atmosphere. SEP consists of two sensors mounted on corners of the spacecraft deck, each utilizing a dual, double-ended solid-state detector telescope architecture to separately measure fluxes of electrons from 20 to 1000 keV and ions from 20-6000 keV, in four orthogonal look directions, each with a field of view of 42° by 31°. SEP, along with the rest of the MAVEN instrument suite, allows the effects of high energy solar particle events on Mars' upper atmospheric structure, temperatures, dynamics and atmospheric escape rates, to be quantified and understood. Given that solar activity was likely substantially higher in the early solar system, understanding the relationship between energetic particle input and atmospheric loss today will enable more confident estimates of total atmospheric loss over Mars' history.

  19. Laser Ignition of Energetic Materials Workshop

    NASA Astrophysics Data System (ADS)

    Devries, Nora M.; Oreilly, John J.; Forch, Brad E.

    1993-11-01

    Lasers inherently possess many desirable attributes making them excellent igniters for a wide range of energetic materials such as pyrotechnics, explosives, and gun propellants. Lasers can be made very small, have modest powereD requirements, are invulnerable to external stimuli, are very reliable, and can deliver radiative energy to remote locations through optical fibers. Although the concept of using lasers for the initiation of energetic materials is not new, successful integration of laser technology into military systems has the potential to provide significant benefits. In order to efficiently expedite the evolution of the laser ignition technology for military applications, it was desirable to coordinate the effort with the JANNAF combustion community. The laser ignition of Energetic Materials Workshop was originated by Brad Forch, Austin Barrows, Richard Beyer and Arthur Cohen of the Army Research Laboratory (ARL).

  20. Energetic electron components at geosynchronous orbit

    NASA Technical Reports Server (NTRS)

    Cayton, T. E.; Belian, R. D.; Gary, S. P.; Fritz, T. A.; Baker, D. N.

    1989-01-01

    Energy distribution functions have been derived from energetic (30-2000 keV) electron fluxes observed simultaneously by three geosynchronous orbit satellites throughout the year 1986. These distributions, as well as others derived from empirical models of outer magnetospheric electron fluxes, can be resolved into two distinct relativistic Maxwellian components which are each fully parameterized by a density and a temperature. A four-parameter characterization is presented which provides a new, simplified procedure for the interpretation of energetic electron data in the outer magnetosphere.

  1. EDITORIAL: Energetic particles in magnetic confinement systems

    NASA Astrophysics Data System (ADS)

    Toi, K.

    2006-10-01

    Energetic alpha particle physics plays an obviously crucial role in burning fusion plasmas. Good confinement of them is required to sustain fusion burn and to avoid damage of the first wall. Because of this importance for nuclear fusion research, Y. Kolesnichenko and the late D. Sigmar initiated a series of IAEA technical (committee) meetings (TCM, since the 8th meeting TM) in order to exchange information on the behaviour of energetic particles in magnetic confinement devices. The role of the TMs has become increasingly important since burning plasma projects such as ITER are in preparation. After every TM, invited speakers are encouraged to publish an adapted and extended version of their contributions to the meeting as an article in a special issue of Nuclear Fusion. An exception was the 8th TM the articles of which were published in a special issue of Plasma Physics and Controlled Fusion (2004 46 S1-118). These special issues attract much interest in the subject. The 9th IAEA TM of this series was held in Takayama, Japan, 9-11 November 2005, and 53 papers including 16 invited talks were presented. A total of 11 papers based on these invited talks are included in this special issue of Nuclear Fusion and are preceded by a conference summary. Experimental results of energetic ion driven global instabilities such as Alfvén eigenmodes (AEs), energetic particle modes (EPMs) and fishbone instabilities were presented from several tokamaks (JET, JT-60U, DIII-D and ASDEX Upgrade), helical/stellarator devices (LHD and CHS) and spherical tori (NSTX and MAST). Experimental studies from JET and T-10 tokamaks on the interaction of ion cyclotron waves with energetic ions and runaway electrons were also presented. Theoretical works on AEs, EPMs and nonlinear phenomena induced by energetic particles were presented and compared with experimental data. Extensive numerical codes have been developed and applied to obtain predictions of energetic particle behaviour in future ITER

  2. A TPC detector for the study of high multiplicity heavy ion collisions

    SciTech Connect

    Rai, G.; Arthur, A.; Beiser, F.; Harnden, C.W.; Jones, R.; Kleinfelder, S.; Lee, K.; Matis, H.S.; Nakamura, M.; McParland, C.; Nesbitt, D.; Odyniec, G.; Olson, D.; Pugh, H.G.; Ritter, H.G.; Symons, T.J.M.; Weiman, H.; Wright, R. ); Rudge, A. )

    1990-04-01

    The design of the time projection chamber (TPC) detector with complete pad coverage is presented. The TPC will allow the measurements of high multiplicity ({approx}200 tracks) relativistic nucleus-nucleus collisions initiated with the heaviest, most energetic projectiles available at the LBL BEVALAC accelerator facility. The front end electronics, composed of over 15,000 time sampling channels, will be located on the chamber. The highly integrated, custom designed, electronics and the VME based data acquisition system are described.

  3. Understanding the interaction between energetic ions and freestanding graphene towards practical 2D perforation

    NASA Astrophysics Data System (ADS)

    Buchheim, Jakob; Wyss, Roman M.; Shorubalko, Ivan; Park, Hyung Gyu

    2016-04-01

    We report experimentally and theoretically the behavior of freestanding graphene subjected to bombardment of energetic ions, investigating the capability of large-scale patterning of freestanding graphene with nanometer sized features by focused ion beam technology. A precise control over the He+ and Ga+ irradiation offered by focused ion beam techniques enables investigating the interaction of the energetic particles and graphene suspended with no support and allows determining sputter yields of the 2D lattice. We found a strong dependency of the 2D sputter yield on the species and kinetic energy of the incident ion beams. Freestanding graphene shows material semi-transparency to He+ at high energies (10-30 keV) allowing the passage of >97% He+ particles without creating destructive lattice vacancy. Large Ga+ ions (5-30 keV), in contrast, collide far more often with the graphene lattice to impart a significantly higher sputter yield of ~50%. Binary collision theory applied to monolayer and few-layer graphene can successfully elucidate this collision mechanism, in great agreement with experiments. Raman spectroscopy analysis corroborates the passage of a large fraction of He+ ions across graphene without much damaging the lattice whereas several colliding ions create single vacancy defects. Physical understanding of the interaction between energetic particles and suspended graphene can practically lead to reproducible and efficient pattern generation of unprecedentedly small features on 2D materials by design, manifested by our perforation of sub-5 nm pore arrays. This capability of nanometer-scale precision patterning of freestanding 2D lattices shows the practical applicability of focused ion beam technology to 2D material processing for device fabrication and integration.We report experimentally and theoretically the behavior of freestanding graphene subjected to bombardment of energetic ions, investigating the capability of large-scale patterning of

  4. High energy nuclear collisions

    SciTech Connect

    Plasil, F.

    1998-01-01

    This presentation covers three broad topics: a brief introduction to the field of nucleus-nucleus collisions at relativistic energies; a discussion of several topics illustrating what`s been learned after more than a decade of fixed target experiments; and an indication of what the future may bring at the Relativistic Heavy Ion Collider (RHIC) under construction at the Brookhaven National Laboratory (BNL) and at the Large Hadron Collider (LHC) planned at CERN.

  5. Operational Collision Avoidance

    NASA Technical Reports Server (NTRS)

    Guit, Bill

    2015-01-01

    This presentation will describe the early days of the EOS Aqua and Aura operational collision avoidance process. It will highlight EOS debris avoidance maneuvers, EOS high interest event statistic and A-Train systematic conjunctions and conclude with future challenges. This is related to earlier e-DAA (tracking number 21692) that an abstract was submitted to a different conference. Eric Moyer, ESMO Deputy Project Manager has reviewed and approved this presentation on May 6, 2015

  6. Interstellar Cloud Collisions

    NASA Astrophysics Data System (ADS)

    Lattanzio, J. C.; Monaghan, J. J.; Pongracic, H.; Schwarz, M. P.

    1985-07-01

    We describe the results of a three-dimensional numerical simulation of isothermal interstellar clouds in the absence of magnetic fields. A wide variety of high and low Mach number, head-on and off-centre collisions of clouds with mass ratios 1, 2.5, 5.0 and 10.1 have been studied. The results show that a necessary, but not sufficient, condition for the gravitational instability of a substantial fraction of the matter is that the initial clouds should be either marginally stable or unstable according to the usual Jeans criterion. The collisions, in general, do not result in one or more clouds. Instead we find, in most cases, that the matter disperses in an irregular way. The calculations therefore suggest that if the initial state of the interstellar medium is one of cool dense clouds in a hotter more tenuous background, collisions will rapidly mix the medium rather than produce a steady-state spectrum of cool clouds.

  7. Collision and mountain building

    NASA Astrophysics Data System (ADS)

    Trifonov, V. G.

    2016-01-01

    The spatial, chronological, and genetic relationships of recent (Late Alpine) collisions to mountain building are considered at three levels of scale: (i) in separate zones of the Arabian-Caucasus segment of the Alpine-Himalayan Orogenic Belt, (ii) throughout the central segment of this belt from the Alps to the Himalalayas, and (iii) in Central Asia and other mountain belts of continents. Three stages of mountain building are distinguished at all three levels. The first stage starts with widespread collision and similar plate interactions from the end of the Eocene to the middle Miocene and is expressed in the formation of uplifts, commonly no higher than the moderately elevated level in regions that concentrate deformations of transverse shortening induced by compression. The second short stage, which embraces the Pliocene-Quaternary and occasionally the end of the Miocene, differs in general, though differentiated in the value and intensification of vertical movements, when the height of mountains increases by 2-3 times. Elevations are spread over certain platform territories and even frameworks of rift zones. This is related not so much to the intensity of compression and shortening as to the compositional transformation of the upper mantle and the lower crust, leading to their decompaction. Comparison with the Hercynian and Caledonian orogenic stages shows that the second phase, predetermined by widespread collision, reflects a more important geodynamic event expressed in a change of the global plate interaction system and its deep-seated sources.

  8. Understanding the interaction between energetic ions and freestanding graphene towards practical 2D perforation.

    PubMed

    Buchheim, Jakob; Wyss, Roman M; Shorubalko, Ivan; Park, Hyung Gyu

    2016-04-21

    We report experimentally and theoretically the behavior of freestanding graphene subjected to bombardment of energetic ions, investigating the capability of large-scale patterning of freestanding graphene with nanometer sized features by focused ion beam technology. A precise control over the He(+) and Ga(+) irradiation offered by focused ion beam techniques enables investigating the interaction of the energetic particles and graphene suspended with no support and allows determining sputter yields of the 2D lattice. We found a strong dependency of the 2D sputter yield on the species and kinetic energy of the incident ion beams. Freestanding graphene shows material semi-transparency to He(+) at high energies (10-30 keV) allowing the passage of >97% He(+) particles without creating destructive lattice vacancy. Large Ga(+) ions (5-30 keV), in contrast, collide far more often with the graphene lattice to impart a significantly higher sputter yield of ∼50%. Binary collision theory applied to monolayer and few-layer graphene can successfully elucidate this collision mechanism, in great agreement with experiments. Raman spectroscopy analysis corroborates the passage of a large fraction of He(+) ions across graphene without much damaging the lattice whereas several colliding ions create single vacancy defects. Physical understanding of the interaction between energetic particles and suspended graphene can practically lead to reproducible and efficient pattern generation of unprecedentedly small features on 2D materials by design, manifested by our perforation of sub-5 nm pore arrays. This capability of nanometer-scale precision patterning of freestanding 2D lattices shows the practical applicability of focused ion beam technology to 2D material processing for device fabrication and integration. PMID:27043304

  9. Effect of the Basic Residue on the Energetics, Dynamics and Mechanisms of Gas- Phase Fragmentation of Protonated Peptides

    SciTech Connect

    Laskin, Julia; Yang, Zhibo; Song, Tao; Lam, Corey; Chu, Ivan K.

    2010-11-17

    The effect of the basic residue on the energetics, dynamics and mechanisms of backbone fragmentation of protonated peptides was investigated. Time- and collision energy-resolved surface-induced dissociation (SID) of singly protonated peptides with the N-terminal arginine residue and their analogs, in which arginine is replaced with less basic lysine and histidine residues was examined using in a specially configured Fourier transform ion cyclotron resonance mass spectrometer (FT-ICR MS). SID experiments demonstrated very different kinetics of formation of several primary product ions of peptides with and without arginine residue. The energetics and dynamics of these pathways were determined from the RRKM modeling of the experimental data. Comparison between the kinetics and energetics of fragmentation of arginine-containing peptides and the corresponding methyl ester derivatives provides important information on the effect of dissociation pathways involving salt bridge (SB) intermediates on the observed fragmentation behavior. It is found that because pathways involving SB intermediates are characterized by low threshold energies, they efficiently compete with classical oxazolone pathways of arginine-containing peptides on a long timescale of the FT-ICR instrument. In contrast, fragmentation of histidine- and lysine-containing peptides is largely determined by classical oxazolone pathways. Because SB pathways are characterized by negative activation entropies, fragmentation of arginine-containing peptides is kinetically hindered and observed at higher collision energies as compared to their lysine- and histidine-containing analogs.

  10. Energetic electrons generated during solar flares

    NASA Astrophysics Data System (ADS)

    Mann, Gottfried

    2015-12-01

    > electrons are accelerated up to energies beyond 30 keV is one of the open questions in solar physics. A flare is considered as the manifestation of magnetic reconnection in the solar corona. Which mechanisms lead to the production of energetic electrons in the magnetic reconnection region is discussed in this paper. Two of them are described in more detail.

  11. Physics with energetic radioactive ion beams

    SciTech Connect

    Henning, W.F.

    1996-12-31

    Beams of short-lived, unstable nuclei have opened new dimensions in studies of nuclear structure and reactions. Such beams also provide key information on reactions that take place in our sun and other stars. Status and prospects of the physics with energetic radioactive beams are summarized.

  12. Piezoelectric Ignition of Nanocomposite Energetic Materials

    SciTech Connect

    Eric Collins; Michelle Pantoya; Andreas A. Neuber; Michael Daniels; Daniel Prentice

    2014-01-01

    Piezoelectric initiators are a unique form of ignition for energetic material because the current and voltage are tied together by impact loading on the crystal. This study examines the ignition response of an energetic composite composed of aluminum and molybdenum trioxide nanopowders to the arc generated from a lead zirconate and lead titanate piezocrystal. The mechanical stimuli used to activate the piezocrystal varied to assess ignition voltage, power, and delay time of aluminum–molybdenum trioxide for a range of bulk powder densities. Results show a high dielectric strength leads to faster ignition times because of the higher voltage delivered to the energetic. Ignition delay is under 0.4 ms, which is faster than observed with thermal or shock ignition. Electric ignition of composite energetic materials is a strong function of interparticle connectivity, and thus the role of bulk density on electrostatic discharge ignition sensitivity is a focus of this study. Results show that the ignition delay times are dependent on the powder bulk density with an optimum bulk density of 50%. Packing fractions and electrical conductivity were analyzed and aid in explaining the resulting ignition behavior as a function of bulk density.

  13. Error propagation in energetic carrying capacity models

    USGS Publications Warehouse

    Pearse, Aaron T.; Stafford, Joshua D.

    2014-01-01

    Conservation objectives derived from carrying capacity models have been used to inform management of landscapes for wildlife populations. Energetic carrying capacity models are particularly useful in conservation planning for wildlife; these models use estimates of food abundance and energetic requirements of wildlife to target conservation actions. We provide a general method for incorporating a foraging threshold (i.e., density of food at which foraging becomes unprofitable) when estimating food availability with energetic carrying capacity models. We use a hypothetical example to describe how past methods for adjustment of foraging thresholds biased results of energetic carrying capacity models in certain instances. Adjusting foraging thresholds at the patch level of the species of interest provides results consistent with ecological foraging theory. Presentation of two case studies suggest variation in bias which, in certain instances, created large errors in conservation objectives and may have led to inefficient allocation of limited resources. Our results also illustrate how small errors or biases in application of input parameters, when extrapolated to large spatial extents, propagate errors in conservation planning and can have negative implications for target populations.

  14. The Energetic Brain: Understanding and Managing ADHD

    ERIC Educational Resources Information Center

    Reynolds, Cecil R.; Vannest, Kimberly J.; Harrison, Judith R.

    2012-01-01

    ADHD affects millions of people-some 3 to 5% of the general population. Written by a neuroscientist who has studied ADHD, a clinician who has diagnosed and treated it for 30 years, and a special educator who sees it daily, "The Energetic Brain" provides the latest information from neuroscience on how the ADHD brain works and shows how to harness…

  15. Chapter 4: Measuring Energetics of Biological Processes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Measurement of the energetics of biological processes is the key component in understanding the thermodynamic responses of homoeothermic animals to the environment. For these animals to achieve body temperature control, they must adapt to thermal-environmental conditions and variations caused by wea...

  16. Cryocycling of energetic materials. Final report

    SciTech Connect

    Griffiths, S.; Nilson, R.; Handrock, J.; Revelli, V.; Weingarten, L.

    1997-08-01

    The Cryocycling of Energetic Materials Project was executed in the period FY`94-96 as a Life Cycle Engineering activity in the Memorandum of Understanding (MOU) on advanced conventional munitions. This MOU is an agreement between the Departments of Energy and Defense (Office of Munitions) that facilitates the development of technologies of mutual interest to the two Departments. The cryocycling process is a safe, environmentally friendly, and cost effective means of rubblizing bulk energetic materials so that they can be easily reused in a variety of new products. For this reason, cryocycling of excess solid energetic materials is one of the recycle/reuse strategies under study for demilitarized munitions in the Departments of Energy and Defense. These strategies seek to minimize the environmental damage associated with disposal of decommissioned energetic materials. In addition, they encourage technologies that can be used to derive economic benefit from reuse/reapplication of materials that would otherwise be treated as hazardous wastes. 45 refs., 38 figs., 7 tabs.

  17. Energetics of geostrophic adjustment in rotating flow

    NASA Astrophysics Data System (ADS)

    Juan, Fang; Rongsheng, Wu

    2002-09-01

    Energetics of geostrophic adjustment in rotating flow is examined in detail with a linear shallow water model. The initial unbalanced flow considered first falls tinder two classes. The first is similar to that adopted by Gill and is here referred to as a mass imbalance model, for the flow is initially motionless but with a sea surface displacement. The other is the same as that considered by Rossby and is referred to as a momentum imbalance model since there is only a velocity perturbation in the initial field. The significant feature of the energetics of geostrophic adjustment for the above two extreme models is that although the energy conversion ratio has a large case-to-case variability for different initial conditions, its value is bounded below by 0 and above by 1 / 2. Based on the discussion of the above extreme models, the energetics of adjustment for an arbitrary initial condition is investigated. It is found that the characteristics of the energetics of geostrophic adjustment mentioned above are also applicable to adjustment of the general unbalanced flow under the condition that the energy conversion ratio is redefined as the conversion ratio between the change of kinetic energy and potential energy of the deviational fields.

  18. Energetics of the Semiconductor-Electrolyte Interface.

    ERIC Educational Resources Information Center

    Turner, John A.

    1983-01-01

    The use of semiconductors as electrodes for electrochemistry requires an understanding of both solid-state physics and electrochemistry, since phenomena associated with both disciplines are seen in semiconductor/electrolyte systems. The interfacial energetics of these systems are discussed. (JN)

  19. Catching Collisions in the LHC

    SciTech Connect

    Fruguiele, Claudia; Hirschauer, Jim

    2015-06-16

    Now that the Large Hadron Collider has officially turned back on for its second run, within every proton collision could emerge the next new discovery in particle physics. Learn how the detectors on the Compact Muon Solenoid, or CMS, experiment capture and track particles as they are expelled from a collision. Talking us through these collisions are Claudia Fruguiele and Jim Hirschauer of Fermi National Accelerator Laboratory, the largest U.S. institution collaborating on the LHC.

  20. Enforced Layer-by-Layer Stacking of Energetic Salts towards High-Performance Insensitive Energetic Materials.

    PubMed

    Zhang, Jiaheng; Mitchell, Lauren A; Parrish, Damon A; Shreeve, Jean'ne M

    2015-08-26

    Development of modern high-performance insensitive energetic materials is significant because of the increasing demands for both military and civilian applications. Here we propose a rapid and facile strategy called the "layer hydrogen bonding pairing approach" to organize energetic molecules via layer-by-layer stacking, which grants access to tunable energetic materials with targeted properties. Using this strategy, an unusual energetic salt, hydroxylammonium 4-amino-furazan-3-yl-tetrazol-1-olate, with good detonation performances and excellent sensitivities, was designed, synthesized, and fully characterized. In addition, the expected unique layer-by-layer structure with a high crystal packing coefficient was confirmed by single-crystal X-ray crystallography. Calculations indicate that the layer-stacking structure of this material can absorb the mechanical stimuli-induced kinetic energy by converting it to layer sliding, which results in low sensitivity. PMID:26262555

  1. Resonant-transfer-and-excitation for highly charged ions (16 less than or equal to Z less than or equal to 23) in collisions with helium

    SciTech Connect

    Tanis, J.A.; Bernstein, E.M.; Oglesby, C.S.; Graham, W.G.; Clark, M.; McFarland, R.H.; Morgan, T.J.; Stockli, M.P.; Berkner, K.H.; Johnson, B.M.

    1984-01-01

    Significant new evidence is presented for resonant-transfer-and-excitation (RTE) in ion-atom collisions. This process occurs when a target electron is captured simultaneously with the excitation of the projectile followed by deexcitation via photon emission. RTE, which is analogous to dielectronic recombination (DR), proceeds via the inverse of an Auger transition, and is expected to be resonant for projectile velocities corresponding to the energy of the ejected electron in the Auger process. RTE was investigated by measuring cross sections for projectile K x-ray emission coincident with single electron capture for 15 to 200 MeV /sub 16/S/sup 13 +/, 100 to 360 MeV /sub 20/Ca/sup 16 +/ /sup 17 +/ /sup 18 +/ and 180 to 460 MeV /sub 23/V/sup 19 +/ /sup 20 +/ /sup 21 +/ ions colliding with helium. Strong resonant behavior, in agreement with theoretical calculations of RTE, was observed in the coincidence cross sections.

  2. Rocket observation of energetic electrons in the low-altitude auroral ionosphere during the DELTA campaign

    NASA Astrophysics Data System (ADS)

    Ogasawara, K.; Asamura, K.; Takashima, T.; Saito, Y.; Mukai, T.

    2006-09-01

    This paper reports on properties of energetic electrons observed by the Auroral Particle Detector (APD) on board the sounding rocket S-310-35, which was launched from And/0ya Rocket Range, Norway, at 0033:00 UT on 13 December 2004 during the DELTA campaign. The APD was designed to measure energy spectra of energetic electrons in the range of 3.5 to 65 keV every 10 ms using avalanche photodiodes. The measurement was done at altitudes of 90-140 km (apogee height of the rocket flight), which corresponded to the collisional interaction region of precipitating electrons with the atmospheric constituents. The overall profile of energetic electron precipitations was consistent with auroral images taken from the ground. The downward fluxes almost always exceeded those of upward electrons, and the ratio of downward to upward fluxes increased with energy and also with altitude. This is reasonably understood in terms of the effect of collisions between the energetic electrons and the atmospheric constituents. An interesting feature in energy spectra of precipitating electrons is the existence of non-thermal electrons at higher energies, regardless of inside or outside of auroral arcs. In order to predict the incident downward spectra at the top of the atmosphere, we have applied an analytic method of Luhmann (1976) to evaluate the collisional effect on the electron spectra. As a result, most of the observed energy spectra of precipitating electrons are well expressed by kappa distributions with the thermal energy of a few hundreds of eV and kappa of 5-8, while the spectrum inside a strong arc is better fitted by the sum of a Maxwellian distribution on the lower energy side and a power law at higher energies. To the authors' knowledge, this is the first direct and reliable measurement of energy spectra of electrons in the 10-keV energy range in the auroral ionosphere.

  3. Relativistic nuclear collisions: theory

    SciTech Connect

    Gyulassy, M.

    1980-07-01

    Some of the recent theoretical developments in relativistic (0.5 to 2.0-GeV/nucleon) nuclear collisions are reviewed. The statistical model, hydrodynamic model, classical equation of motion calculations, billiard ball dynamics, and intranuclear cascade models are discussed in detail. Inclusive proton and pion spectra are analyzed for a variety of reactions. Particular attention is focused on how the complex interplay of the basic reaction mechanism hinders attempts to deduce the nuclear matter equation of state from data. 102 references, 19 figures.

  4. Laser-induced reactions in energetic materials

    NASA Astrophysics Data System (ADS)

    Ling, Ping

    1999-07-01

    Several energetic materials have been investigated under shock wave loading, heating, and photodissociation. This dissertation highlights some efforts to understand energetic material from an angle of basic physical processes and elementary chemical reactions. The first series of experiments was performed to study laser-generated shock waves in energetic materials. Shock waves are generated by pulsed laser vaporization of thin aluminum films. The rapidly expanding aluminum plasma launches a shock wave into the adjacent layer of energetic material, initiating chemical reactions. The shock velocity has been measured by a velocity interferometer. Shock pressures as high as 8 GPa have been generated in this manner. A simple model is proposed to predict laser-generated shock pressure. Several energetic materials have been studied under laser- generated shock wave. The second series of experiments was conducted to study thermal decomposition and photodissociation of energetic materials. Glycidyl azide polymer (GAP) and poly(glycidyl nitrate) (PGN) have been investigated by pulsed infrared laser pyrolysis and ultraviolet laser photolysis of thin films at 17-77 K. Reactions are monitored by transmission infrared spectroscopy. Photolysis of GAP at 266 nm shows that the initial reaction steps are elimination of molecular nitrogen with subsequent formation of imines. Thermal decomposition of GAP by infrared laser pyrolysis reveals products similar to the UV experiments after warming. Laser pyrolysis of PGN indicated that the main steps of decomposition are elimination of NO2 and CH2O from the nitrate ester functional group. It seems that the initial thermal decomposition mechanism of GAP and PGN are the same from heating rate of several degrees per second to 107 oC/s. The third series of experiments is about detailed study of photodissociation mechanism of methyl nitrate. Photodissociation of methyl nitrate isolated in an argon matrix at 17 K has been investigated by 266 nm

  5. Energetic electrons, hard x-ray emission and MHD activity studies in the IR-T1 tokamak.

    PubMed

    Agah, K Mikaili; Ghoranneviss, M; Elahi, A Salar

    2015-01-01

    Determinations of plasma parameters as well as the Magnetohydrodynamics (MHD) activity, energetic electrons energy and energy confinement time are essential for future fusion reactors experiments and optimized operation. Also some of the plasma information can be deduced from these parameters, such as plasma equilibrium, stability, and MHD instabilities. In this contribution we investigated the relation between energetic electrons, hard x-ray emission and MHD activity in the IR-T1 Tokamak. For this purpose we used the magnetic diagnostics and a hard x-ray spectroscopy in IR-T1 tokamak. A hard x-ray emission is produced by collision of the runaway electrons with the plasma particles or limiters. The mean energy was calculated from the slope of the energy spectrum of hard x-ray photons. PMID:25882736

  6. Collision in space

    NASA Technical Reports Server (NTRS)

    Ellis, S. R.

    2000-01-01

    On June 25, 1997, the Russian supply spacecraft Progress 234 collided with the Mir space station, rupturing Mir's pressure hull, throwing it into an uncontrolled attitude drift, and nearly forcing evacuation of the station. Like many high-profile accidents, this collision was the consequence of a chain of events leading to the final piloting errors that were its immediate cause. The discussion in this article does not resolve the relative contributions of the actions and decisions in this chain. Neither does it suggest corrective measures, many of which are straightforward and have already been implemented by the National Aeronautics and Space Administration (NASA) and the Russian Space Agency. Rather, its purpose is to identify the human factors that played a pervasive role in the incident. Workplace stress, fatigue, and sleep deprivation were identified by NASA as contributory factors in the Mir-Progress collision (Culbertson, 1997; NASA, forthcoming), but other contributing factors, such as requiring crew to perform difficult tasks for which their training is not current, could potentially become important factors in future situations.

  7. Photon-photon collisions

    SciTech Connect

    Brodsky, S.J.

    1985-01-01

    The study of photon-photon collisions has progressed enormously, stimulated by new data and new calculational tools for QCD. In the future we can expect precise determinations of ..cap alpha../sub s/ and ..lambda../sup ms/ from the ..gamma..*..gamma.. ..-->.. ..pi../sup 0/ form factor and the photon structure function, as well as detailed checks of QCD, determination of the shape of the hadron distribution amplitudes from ..gamma gamma.. ..-->.. H anti H, reconstruction of sigma/sub ..gamma gamma../ from exclusive channels at low W/sub ..gamma gamma../, definitive studies of high p/sub T/ hadron and jet production, and studies of threshold production of charmed systems. Photon-photon collisions, along with radiative decays of the psi and UPSILON, are ideal for the study of multiquark and gluonic resonances. We have emphasized the potential for resonance formation near threshold in virtually every hadronic exclusive channel, including heavy quark states c anti c c anti c, c anti c u anti u, etc. At higher energies SLC, LEP, ...) parity-violating electroweak effects and Higgs production due to equivalent Z/sup 0/ and W/sup + -/ beams from e ..-->.. eZ/sup 0/ and e ..-->.. nu W will become important. 44 references.

  8. Micromechanical modeling of heterogeneous energetic materials

    SciTech Connect

    Baer, M.R.; Kipp, M.E.; Swol, F. van

    1998-09-01

    In this work, the mesoscale processes of consolidation, deformation and reaction of shocked porous energetic materials are studied using shock physics analysis of impact on a collection of discrete HMX crystals. High resolution three-dimensional CTH simulations indicate that rapid deformation occurs at material contact points causing large amplitude fluctuations of stress states having wavelengths of the order of several particle diameters. Localization of energy produces hot-spots due to shock focusing and plastic work near grain boundaries as material flows to interstitial regions. These numerical experiments demonstrate that hot-spots are strongly influenced by multiple crystal interactions. Chemical reaction processes also produce multiple wave structures associated with particle distribution effects. This study provides new insights into the micromechanical behavior of heterogeneous energetic materials strongly suggesting that initiation and reaction of shocked heterogeneous materials involves states distinctly different than single jump state descriptions.

  9. Kinetic versus Energetic Discrimination in Biological Copying

    NASA Astrophysics Data System (ADS)

    Sartori, Pablo; Pigolotti, Simone

    2013-05-01

    We study stochastic copying schemes in which discrimination between a right and a wrong match is achieved via different kinetic barriers or different binding energies of the two matches. We demonstrate that, in single-step reactions, the two discrimination mechanisms are strictly alternative and cannot be mixed to further reduce the error fraction. Close to the lowest error limit, kinetic discrimination results in a diverging copying velocity and dissipation per copied bit. On the other hand, energetic discrimination reaches its lowest error limit in an adiabatic regime where dissipation and velocity vanish. By analyzing experimentally measured kinetic rates of two DNA polymerases, T7 and Polγ, we argue that one of them operates in the kinetic and the other in the energetic regime. Finally, we show how the two mechanisms can be combined in copying schemes implementing error correction through a proofreading pathway.

  10. Geodesic Acoustic Modes Induced by Energetic Particles

    NASA Astrophysics Data System (ADS)

    Zhou, Tianchun; Berk, Herbert

    2009-11-01

    A global geodesic acoustic mode driven by energetic particles (EGAM) has been observed in JET[1, 2] and DIII D[3, 4]. The mode is to be treated fully kinetically. The descriptions of the background electrons and ions are based on standard high and low bounce frequency expansion respectively with respect to the mode frequency. However, the energetic ions must be treated without any expansion of ratio between their bounce frequency and the mode frequency since they are comparable. Under electrostatic perturbation, we construct a quadratic form for the wave amplitude, from which an integro-differential equation is derived. In the limit where the drift orbit width is small comparison with the mode width, a differential equation for perturbed electrostatic field is obtained. Solution is obtained both analytically and numerically. We find that beam counterinjection enhances the instability of the mode. Landau damping due to thermal species is investigated.