Science.gov

Sample records for energy balance measurements

  1. Comprehensive Energy Balance Measurements in Mice.

    PubMed

    Moir, Lee; Bentley, Liz; Cox, Roger D

    2016-01-01

    In mice with altered body composition, establishing whether it is food intake or energy expenditure, or both, that is the major determinant resulting in changed energy balance is important. In order to ascertain where the imbalance is, the acquisition of reproducible data is critical. Therefore, here we provide detailed descriptions of how to determine energy balance in mice. This encompasses protocols for establishing energy intake from home cage measurement of food intake, determining energy lost in feces using bomb calorimetry, and using equations to calculate parameters such as energy intake (EI), digested energy intake (DEI), and metabolisable energy intake (MEI) to determine overall energy balance. We also discuss considerations that should be taken into account when planning these experiments, including diet and sample sizes. © 2016 by John Wiley & Sons, Inc. PMID:27584551

  2. Energy Balance Measurement: When Something is Not Better than Nothing

    PubMed Central

    Dhurandhar, Nikhil V.; Schoeller, Dale; Brown, Andrew W.; Heymsfield, Steven B.; Thomas, Diana; Sørensen, Thorkild I.A.; Speakman, John R.; Jeansonne, Madeline; Allison, David B.

    2014-01-01

    Energy intake (EI) and physical activity energy expenditure (PAEE) are key modifiable determinants of energy balance, traditionally assessed by self-report despite its repeated demonstration of considerable inaccuracies. We argue here that it is time to move from the common view that self-reports of EI and PAEE are imperfect, but nevertheless deserving of use, to a view commensurate with the evidence that self-reports of EI and PAEE are so poor that they are wholly unacceptable for scientific research on EI and PAEE. While new strategies for objectively determining energy balance are in their infancy, it is unacceptable to use decidedly inaccurate instruments, which may misguide health care policies, future research, and clinical judgment. The scientific and medical communities should discontinue reliance on self-reported EI and PAEE. Researchers and sponsors should develop objective measures of energy balance. PMID:25394308

  3. Determining aerodynamic conductance of spar chambers from energy balance measurements

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The aerodynamic conductance (gA) of SPAR chambers was determined from measurements of energy balance and canopy temperature over a peanut canopy. gA was calculated from the slope of sensible heat flux (H) versus canopy-to-air temperature difference. H and the canopy-to-air temperature were varied by...

  4. Validation of two energy balance closure parameterisations using field measurements

    NASA Astrophysics Data System (ADS)

    Eder, Fabian; De Roo, Frederik; Kohnert, Katrin; Desjardins, Raymond L.; Foken, Thomas; Schmid, Hans Peter; Mauder, Matthias

    2013-04-01

    Eddy Covariance (EC) measurements often do not close the energy balance. This indicates that surface heat fluxes are underestimated, likely because large-scale eddies and stationary circulations are not captured. Because EC is a widespread tool in environmental science to assess energy fluxes and trace gas budgets, it is essential to quantify the 'missing' fluxes. In the literature, two approaches to parameterise the lack of energy balance closure can be found. The first one by Huang et al (2008) is based on large-eddy simulations (LES) and perceives the energy imbalance as being the result of large-scale turbulent organized structures. The second approach by Panin and Bernhofer (2008) suggests an empirical approach which focuses on surface roughness heterogeneities on the landscape-scale. We tested both approaches with EC data from three sites, located in southern Germany, of the Terrestrial Environmental Observatories (TERENO) programme. Additionally, we applied the parameterisations to aircraft data from Canada, which were conducted as part of the Boreal Ecosystem-Atmosphere Study (BOREAS) experiment and the Boreal Ecosystem Research and Monitoring Sites (BERMS) programme. For each flight, the flux contribution of turbulent structures larger than 2 km, determined by wavelet analysis, serves as an estimate of the missing flux of conventional EC measurements. In most cases, the two parameterisations do not give a reliable prediction of the energy balance residual. The approach of Panin and Bernhofer (2008) disregards topographical effects, differences in surface moisture and surface temperature and thus, it cannot explain the poor energy balance closure of the TERENO sites. However, above the flat terrain of the airborne measurements in Canada, it works surprisingly well. The parameterisation by Huang et al (2008) was developed for homogeneous terrain, a condition which is almost never met in field studies. In addition, there is a general mismatch between LES and

  5. Urban Energy Balance Measurements During CalNex 2010

    NASA Astrophysics Data System (ADS)

    Vogel, C. A.; Pendergrass, W.

    2010-12-01

    A fundamental component to understanding air quality and air-surface exchange in urban environments is to understand the turbulent flow characteristics just above the canopy, and the local forcings which drive the exchange process. Studies have indicated UCP (urban canopy parameterization) may have significant ramifications for air-quality modeling because the dynamic characteristics of this volume into which pollutants are injected has been altered. Turbulent fluxes of momentum, heat, moisture, and other scalars of interest, need to be addressed for this complex setting, as well as other quantities involved in the surface energy balance. Further, in modeling the transport of chemical species fundamental scales of turbulent flow must either be directly measured or parameterized. The CalNex 2010 study provided an opportunity to satisfy a number of requirements for obtaining urban canopy model parameter data for mesoscale models in an alternate urban environment from ATDD's urban DCNet National Capital Region program. Specifically, within the CalNex science questions, these data address concerns of potential major deficiencies in the representation of chemistry and meteorology processes in research and operational models and support model development through the collection of additional measurements as well as defining physical and chemical processes not well captured by available models. NOAA/ATDD deployed an energy-balance flux system at the CalNex 2010 Pasadena , CA urban supersite. The e-balance system was roof-top mounted on the California Institute of Technology Keck Building in association with the CalNex urban particulate sampling effort. Observation of energy budgets were obtained between May 16 and June 16, 2010. Initial analysis has focused on evaluating sensible heat flux and determining an estimate for thermal roughness . Coupling of sampled rooftop skin temperatures, ambient temperatures, sensible heat flux, and friction coefficient provides an

  6. Careful Measurements and Energy Balance Closure - The Case of Soil Heat Flux

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An area of persistent concern in micrometeorological measurements is the failure to close the energy balance at surface flux stations. While most attention has focused on corrections associated with the eddy fluxes, none of the energy balance terms are measured without error. The flux plate method i...

  7. Symposium Papers-Progress in Radiation and Energy Balance Measurement Systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    On November 2, 2004, an all-day symposium entitled “Progress in Radiation and Energy Balance Measurement Systems” was convened at the ASA-CSSA-SSSA annual meetings in Seattle, WA. Interest in the measurement of radiation and energy balance components at soil and plant canopy surfaces has seen a res...

  8. Socioecological correlates of energy balance using urinary C-peptide measurements in wild female mountain gorillas.

    PubMed

    Grueter, Cyril C; Deschner, Tobias; Behringer, Verena; Fawcett, Katie; Robbins, Martha M

    2014-03-29

    Maintaining a balanced energy budget is important for survival and reproduction, but measuring energy balance in wild animals has been fraught with difficulties. Female mountain gorillas are interesting subjects to examine environmental correlates of energy balance because their diet is primarily herbaceous vegetation, their food supply shows little seasonal variation and is abundant, yet they live in cooler, high-altitude habitats that may bring about energetic challenges. Social and reproductive parameters may also influence energy balance. Urinary C-peptide (UCP) has emerged as a valuable non-invasive biomarker of energy balance in primates. Here we use this method to investigate factors influencing energy balance in mountain gorillas of the Virunga Volcanoes, Rwanda. We examined a range of socioecological variables on energy balance in adult females in three groups monitored by the Karisoke Research Center over nine months. Three variables had significant effects on UCP levels: habitat (highest levels in the bamboo zone), season (highest levels in November during peak of the bamboo shoot availability) and day time (gradually increasing from early morning to early afternoon). There was no significant effect of reproductive state and dominance rank. Our study indicates that even in species that inhabit an area with a seemingly steady food supply, ecological variability can have pronounced effects on female energy balance. PMID:24472322

  9. Coherent Structure Patterns Affect Energy Balance Closure: Evidence from Virtual Measurements for a Field Campaign

    NASA Astrophysics Data System (ADS)

    Zhang, S.; De Roo, F.; Heinze, R.; Eder, F.; Huq, S.; Schmidt, M.; Kalthoff, N.; Mauder, M.

    2015-12-01

    The energy balance closure problem is a well-known issue of eddy-covariance measurements. However, the underlying mechanisms are still under debate. Recent evidence suggests that organized low-frequency motion contributes significantly to the energy balance residual, because the associated transport cannot be captured by a point measurement. In this study, we carry out virtual measurements using a PArallelized Large-Eddy Simulation Model (PALM). In order to represent specific measurement days of the field campaign "High definition clouds and precipitation for advancing climate prediction" (HD(CP)²), which was part of the project "High Definition Clouds and Precipitation for Advancing Climate Prediction"(HOPE) in 2013, the simulations were driven by synoptic-scale COSMO-DE reanalysis data. Planet boundary layer height, the vertical profiles of variance and skewness of vertical wind were analyzed and a comparison with Doppler-lidar observations shows good agreement. Furthermore, simulated energy imbalances were compared with real-world imbalances from two eddy-covariance stations in the model domain. Particularly poor energy balance closure was found for a day with cellular organized structures in the surface layer, while the energy balance closure was better on other days with roll-like structures. This finding might be one explanation why the energy balance closure generally tends to improve with increasing friction velocity, since roll-like structures are typically associated with higher wind speeds. In order to gain insight into the partitioning of the energy balance residual between the sensible and latent heat fluxes, we further employed a control volume method within the numerical simulation. Hence, advection and storage terms were identified as the most important causes for the lack of energy balance closure by the eddy-covariance method. The results of the virtual measurements indicate that the "missing" part of the surface energy mainly comes from the

  10. Heart rate measurements as an index of energy expenditure and energy balance in ruminants: a review.

    PubMed

    Brosh, A

    2007-05-01

    A major part of the ME consumed by ruminants (MEI) is dissipated as heat. This fraction, called heat production or energy expenditure (EE), is assayed largely by measuring O2 consumption (VO2). Conventional measurement of EE in controlled conditions in chambers does not reflect the complexity of natural, environmental, and social conditions of free-ranging animals. In mammals, most of the measured VO2 is transferred to the tissues through the heart; therefore, regression of heart rate (HR) against VO2 can be used to estimate the EE of free-ranging animals. The present article reviews the current knowledge on the use of HR for estimating EE. Energy expenditure can be determined from HR measurements, recorded daily over the course of several days, multiplied by the VO2 per beat. When an animal does not perform significant exercise, a constant value of VO2 per beat [O2 pulse (O2P)] measured over a short period (10 to 15 min) is used; during exercise, O2P increases, and the regression equation of VO2 against HR is used. Under extreme heat load, HR increases to improve heat dissipation, and O2P decreases; therefore, the effect of heat load on O2P needs to be taken into account. Cold stress that doubles heat production does not affect O2P. Heart rate and EE are highly correlated with MEI, but there is significant individual variation in the relationship; therefore, the daily change in the HR of individual animals can be used as an indicator of changes in the individual energy status of a ruminant, and the average HR of the group can serve in the estimation of the energy status of the group. When O2P is measured, the average group EE is an indication of the energy balance of the whole group. Because the MEI of nondraft animals is the sum of EE and retained energy (RE), the MEI of free-ranging ruminants can be determined by measurement of EE by the HR method and adding the RE. Similarly, the RE can be determined without slaughtering the animals from measurements of EE and

  11. Improving surface energy balance closure by reducing errors in soil heat flux measurement

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The flux plate method is the most commonly employed method for measuring soil heat flux (G) in surface energy balance studies. Although relatively simple to use, the flux plate method is susceptible to significant errors. Two of the most common errors are heat flow divergence around the plate and fa...

  12. Snowpack energy balance analysis using field measurements in an Andean watershed

    NASA Astrophysics Data System (ADS)

    Stehr, Alejandra

    2014-05-01

    Depending on the relative altitude and ambient temperature, Andean watersheds present important snow coverage during winter season. Snowpack stores significant amount of water which is released to surface runoff and groundwater when solar radiation increases, mainly during the spring and summer season, controlling the shape of the annual hydrograph and affecting the water balance at monthly and shorter scales. Field measurements of snow cover in those areas are difficult to perform due to adverse climatic and topographic conditions. Therefore, it is useful to support the hydrological characterization of watersheds located in the high mountains with models representing runoff from melting, for example, models based on the energy balance of the snowpack. The objective of this work is to characterize and quantify the energy flows that control the accumulation and melting of snow cover, using field measurements. The work was done on the upper Malleco watershed, which is located in the Andes Mountain Range (38°20' - 38°41' S and 71°13' - 71°35' W) and has an area of 27 km2, elevations vary between 900 to 1789 m a.m.s.l. For the calculation of the different the energy balance components, two weather stations were installed in the study area, which recorded data every 15 minutes. The variables measured were: global solar radiation, net radiation, shortwave and longwave radiation, air temperature, relative humidity, wind speed and direction, soil heat flux, precipitation and snow depth. Two analyzes were performed: 1) Energy Balance 2010. Two representative periods of accumulation (1st July to 31st July) and melting (10 September to 10 October) were selected in one of the stations. 2) Energy Balance 2011. Energy balance for a 15 days period of accumulation (July 19 to August 3, 2011) was with the aim of comparing both meteorological stations. In all cases hourly energy fluxes, snow water equivalent and daily snow depth were calculated. The latter was compared with the

  13. CUES - A Study Site for Measuring Snowpack Energy Balance in the Sierra Nevada

    NASA Astrophysics Data System (ADS)

    Bair, Edward; Dozier, Jeff; Davis, Robert; Colee, Michael; Claffey, Keran

    2015-09-01

    Accurate measurement and modeling of the snowpack energy balance are critical to understanding the terrestrial water cycle. Most of the water resources in the western US come from snowmelt, yet statistical runoff models that rely on the historical record are becoming less reliable because of a changing climate. For physically based snow melt models that do not depend on past conditions, ground based measurements of the energy balance components are imperative for verification. For this purpose, the US Army Corps of Engineers Cold Regions Research and Engineering Laboratory (CRREL) and the University of California, Santa Barbara (UCSB) established the “CUES” snow study site (CRREL/UCSB Energy Site, http://www.snow.ucsb.edu/) at 2940 m elevation on Mammoth Mountain, California. We describe CUES, provide an overview of research, share our experience with scientific measurements, and encourage future collaborative research. Snow measurements began near the current CUES site for ski area operations in 1969. In the 1970s, researchers began taking scientific measurements. Today, CUES benefits from year round gondola access and a fiber optic internet connection. Data loggers and computers automatically record and store over 100 measurements from more than 50 instruments each minute. CUES is one of only five high altitude mountain sites in the Western US where a full suite of energy balance components are measured. In addition to measuring snow on the ground at multiple locations, extensive radiometric and meteorological measurements are recorded. Some of the more novel measurements include scans by an automated terrestrial LiDAR, passive and active microwave imaging of snow stratigraphy, microscopic imaging of snow grains, snowflake imaging with a multi-angle camera, fluxes from upward and downward looking radiometers, snow water equivalent from different types of snow pillows, snowmelt from lysimeters, and concentration of impurities in the snowpack. We give an

  14. Measurement of body composition as a surrogate evaluation of energy balance in obese patients.

    PubMed

    Rotella, Carlo Maria; Dicembrini, Ilaria

    2015-03-26

    In clinical practice obesity is primarily diagnosed through the body mass index. In order to characterize patients affected by obesity the use of traditional anthropometric measures appears misleading. Beyond the body mass index, there are overwhelming evidences towards the relevance of a more detailed description of the individual phenotype by characterizing the main body components as free-fat mass, muscle mass, and fat mass. Among the numerous techniques actually available, bioelectrical impedance analysis seems to be the most suitable in a clinical setting because it is simple, inexpensive, noninvasive, and highly reproducible. To date, there is no consensus concerning the use of one preferred equation for the resting energy expenditure in overweight and/or obese population. Energy restriction alone is an effective strategy to achieve an early and significant weight loss, however it results in a reduction of both fat and lean mass therefore promoting or aggravating an unfavourable body composition (as sarcobesity) in terms of mortality and comorbidities. Therefore the implementation of daily levels of physical activity should be simultaneously promoted. The major role of muscle mass in the energy balance has been recently established by the rising prevalence of the combination of two condition as sarcopenia and obesity. Physical exercise stimulates energy expenditure, thereby directly improving energy balance, and also promotes adaptations such as fiber type, mitochondrial biogenesis, improvement of insulin resistance, and release of myokines, which may influence different tissues, including muscle. PMID:25825693

  15. Measurement of body composition as a surrogate evaluation of energy balance in obese patients

    PubMed Central

    Rotella, Carlo Maria; Dicembrini, Ilaria

    2015-01-01

    In clinical practice obesity is primarily diagnosed through the body mass index. In order to characterize patients affected by obesity the use of traditional anthropometric measures appears misleading. Beyond the body mass index, there are overwhelming evidences towards the relevance of a more detailed description of the individual phenotype by characterizing the main body components as free-fat mass, muscle mass, and fat mass. Among the numerous techniques actually available, bioelectrical impedance analysis seems to be the most suitable in a clinical setting because it is simple, inexpensive, noninvasive, and highly reproducible. To date, there is no consensus concerning the use of one preferred equation for the resting energy expenditure in overweight and/or obese population. Energy restriction alone is an effective strategy to achieve an early and significant weight loss, however it results in a reduction of both fat and lean mass therefore promoting or aggravating an unfavourable body composition (as sarcobesity) in terms of mortality and comorbidities. Therefore the implementation of daily levels of physical activity should be simultaneously promoted. The major role of muscle mass in the energy balance has been recently established by the rising prevalence of the combination of two condition as sarcopenia and obesity. Physical exercise stimulates energy expenditure, thereby directly improving energy balance, and also promotes adaptations such as fiber type, mitochondrial biogenesis, improvement of insulin resistance, and release of myokines, which may influence different tissues, including muscle. PMID:25825693

  16. Energy Balance and Obesity

    PubMed Central

    Hill, James O.; Wyatt, Holly R.; Peters, John C.

    2012-01-01

    This paper describes the interplay among energy intake, energy expenditure and body energy stores and illustrates how an understanding of energy balance can help develop strategies to reduce obesity. First, reducing obesity will require modifying both energy intake and energy expenditure and not simply focusing on either alone. Food restriction alone will not be effective in reducing obesity if human physiology is biased toward achieving energy balance at a high energy flux (i.e. at a high level of energy intake and expenditure). In previous environments a high energy flux was achieved with a high level of physical activity but in today's sedentary environment it is increasingly achieved through weight gain. Matching energy intake to a high level of energy expenditure will likely be more a more feasible strategy for most people to maintain a healthy weight than restricting food intake to meet a low level of energy expenditure. Second, from an energy balance point of view we are likely to be more successful in preventing excessive weight gain than in treating obesity. This is because the energy balance system shows much stronger opposition to weight loss than to weight gain. While large behavior changes are needed to produce and maintain reductions in body weight, small behavior changes may be sufficient to prevent excessive weight gain. In conclusion, the concept of energy balance combined with an understanding of how the body achieves balance may be a useful framework in helping develop strategies to reduce obesity rates. PMID:22753534

  17. Measuring the Impact of Rising CO2 and CH4 on the Surface Energy Balance

    NASA Astrophysics Data System (ADS)

    Feldman, D.; Collins, W.; Biraud, S.; Turner, D. D.; Mlawer, E. J.; Gero, P. J.; Xie, S.; Shippert, T.; Torn, M. S.

    2015-12-01

    We use observations at the North Slope of Alaska (NSA) and Southern Great Plains (SGP) ARM sites to improve understanding both of the distribution of CO2 and CH4and their influence on the surface energy balance. We use aircraft and ground-based in situ data to characterize the temporal distribution of these greenhouse gases, and spectroscopic observations to derive their collocated surface radiative forcing. The spectroscopically-measured surface radiative forcing from rising CO2 is 0.2 W/m2/decade at both sites, with a seasonal cycle of 0.2 W/m2. This finding is largely consistent with theoretical predictions, providing robust evidence of radiative perturbations to the Earth's surface energy budget due to anthropogenic influences. The contribution from CH4 to the surface energy balance is more spatially and temporally heterogeneous. The ground-based measurements of CH4 at NSA and SGP indicate rising atmospheric concentrations except for a hiatus from 1995-2005, while more recent aircraft profiles indicate that concentrations in the boundary layer and free troposphere are correlated at NSA and decorrelated at SGP. The probability density functions of boundary layer concentrations of CH4 at NSA show little skew, but at SGP show positive skewness, which increased with the introduction of nearby fossil-fuel extraction. The correlated increases in atmospheric measurements of C2H6 and CH4that only occur at SGP are consistent with an anthropogenic influence there. Time-series of spectroscopically-measured CH4 surface radiative forcing at SGP and NSA also indicate positive trends of 0.1 W/m2/decade associated with the end of the hiatus, marked seasonal cycles, and little skew at NSA and a positive skew at SGP. The combination of in situ and spectroscopic measurements at these sites enables the quantification of surface radiative forcing from anthropogenic CH4. Implications are discussed for how advanced spectroscopic remote sensing measurements of CH4 can be used to

  18. Surface Energy Balance Measurements Above an Exurban Residential Neighbourhood of Kansas City, Missouri

    NASA Astrophysics Data System (ADS)

    Balogun, Ahmed A.; Adegoke, Jimmy O.; Vezhapparambu, Sajith; Mauder, Matthias; McFadden, Joseph P.; Gallo, Kevin

    2009-12-01

    Previous measurements of urban energy balances generally have been limited to densely built, central city sites and older suburban locations with mature tree canopies that are higher than the height of the buildings. In contrast, few data are available for the extensive, open vegetated types typical of low-density residential areas that have been newly converted from rural land use. We made direct measurements of surface energy fluxes using the eddy-covariance technique at Greenwood, a recently developed exurban neighbourhood near Kansas City, Missouri, USA, during an intensive field campaign in August 2004. Energy partitioning was dominated by the latent heat flux under both cloudy and near clear-sky conditions. The mean daytime Bowen ratio ( β) values were 0.46, 0.48, and 0.47 respectively for the cloudy, near clear-sky and all-sky conditions. Net radiation ( R n ) increased rapidly from dawn (-34 and -58W m-2) during the night to reach a maximum (423 and 630W m-2) after midday for cloudy and near clear-sky conditions respectively. Mean daytime values were 253 and 370W m-2, respectively for the cloudy and near clear-sky conditions, while mean daily values were 114 for cloudy and 171W m-2 for near clear-sky conditions, respectively. Midday surface albedo values were 0.25 and 0.24 for the cloudy and near clear-sky conditions, respectively. The site exhibited an angular dependence on the solar elevation angle, in contrast to previous observations over urban and suburban areas, but similar to vegetated surfaces. The latent heat flux ( Q E ), sensible heat flux ( Q H ), and the residual heat storage Δ Q s terms accounted for between 46-58%, 21-23%, and 18-31% of R n , respectively, for all-sky conditions and time averages. The observed albedo, R n , and Q E values are higher than the values that have been reported for suburban areas with high summer evapotranspiration rates in North America. These results suggest that the rapidly growing residential areas at the

  19. Regulation of Energy Balance.

    ERIC Educational Resources Information Center

    Bray, George A.

    1985-01-01

    Explains relationships between energy intake and expenditure focusing on the cellular, chemical and neural mechanisms involved in regulation of energy balance. Information is referenced specifically to conditions of obesity. (Physicians may earn continuing education credit by completing an appended test). (ML)

  20. Surface energy balance and turbulence measurements on Warszawa Icefield, King George Island, West Antarctica

    NASA Astrophysics Data System (ADS)

    Falk, U.; Sala, H.; Braun, M.

    2012-12-01

    The Antarctic Peninsula is amongst the fastest warming places on Earth and further temperature increase is to be expected. It has undergone rapid environmental changes in the past decades. Exceptional rates of surface air temperature increases (2.5K in 50 years) are concurrent with retreating glacier fronts, an increase in melt areas, surface lowering and rapid retreat of glaciers, break-up and disintegration of ice shelves. The South Shetland Islands are located on the northern tip of the Antarctic Peninsula and are especially vulnerable to climate change due to their maritime climate. For King George Island we have compiled a unique data set comprising direct measurements of evaporation and sensible heat flux by eddy covariance on the Warszawa Icefield over 1.5 years from November 2010 to 2012 in combination with a fully equipped automated weather station measuring long- and short-wave radiation components, profiles of temperature, humidity and wind velocities as well as glacier ice temperatures. The combination with the eddy covariance data allows for analysis of variability and seasonality of surface energy balance components on a glacier for one and a half years. Repeat measurements of snow accumulation and surface lowering along transects on the glacier and at different locations on King George Island are used for analysis of multi-sensor satellite data to identify melt patterns and bare ice areas during summer within the source area of the ground measurements. In combination with long-term time series of weather data, these data give indication of the sensitivity of the ice cap to the ongoing changes. This research is part of the ESF project IMCOAST funded by BMBF. Field work was carried out at the Dallmann laboratory (Carlini station, King George Island/Isla 25 de Mayo) in cooperation of the Instituto Antartico Argentino (Argentina) and the Alfred-Wegener Institute of Marine and Polar Research (Germany).

  1. Field evaluation of polymer capacitive humidity sensors for Bowen ratio energy balance flux measurements.

    PubMed

    Savage, Michael J

    2010-01-01

    The possibility of reliable, reasonably accurate and relatively inexpensive estimates of sensible heat and latent energy fluxes was investigated using a commercial combination thin-film polymer capacitive relative humidity and adjacent temperature sensor instrument. Long-term and unattended water vapour pressure profile difference measurements using low-power combination instruments were compared with those from a cooled dewpoint mirror hygrometer, the latter often used with Bowen ratio energy balance (BREB) systems. An error analysis, based on instrument relative humidity and temperature errors, was applied for various capacitive humidity instrument models. The main disadvantage of a combination capacitive humidity instrument is that two measurements, relative humidity and temperature, are required for estimation of water vapour pressure as opposed to one for a dewpoint hygrometer. In a laboratory experiment using an automated procedure, water vapour pressure differences generated using a reference dewpoint generator were measured using a commercial model (Dew-10) dewpoint hygrometer and a combination capacitive humidity instrument. The laboratory measurement comparisons showed that, potentially, an inexpensive model combination capacitive humidity instrument (CS500 or HMP50), or for improved results a slightly more expensive model (HMP35C or HMP45C), could substitute for the more expensive dewpoint hygrometer. In a field study, in a mesic grassland, the water vapour pressure measurement noise for the combination capacitive humidity instruments was greater than that for the dewpoint hygrometer. The average water vapour pressure profile difference measured using a HMP45C was highly correlated with that from a dewpoint hygrometer with a slope less than unity. Water vapour pressure measurements using the capacitive humidity instruments were not as accurate, compared to those obtained using a dewpoint hygrometer, but the resolution magnitudes for the profile

  2. Field Evaluation of Polymer Capacitive Humidity Sensors for Bowen Ratio Energy Balance Flux Measurements

    PubMed Central

    Savage, Michael J.

    2010-01-01

    The possibility of reliable, reasonably accurate and relatively inexpensive estimates of sensible heat and latent energy fluxes was investigated using a commercial combination thin-film polymer capacitive relative humidity and adjacent temperature sensor instrument. Long-term and unattended water vapour pressure profile difference measurements using low-power combination instruments were compared with those from a cooled dewpoint mirror hygrometer, the latter often used with Bowen ratio energy balance (BREB) systems. An error analysis, based on instrument relative humidity and temperature errors, was applied for various capacitive humidity instrument models. The main disadvantage of a combination capacitive humidity instrument is that two measurements, relative humidity and temperature, are required for estimation of water vapour pressure as opposed to one for a dewpoint hygrometer. In a laboratory experiment using an automated procedure, water vapour pressure differences generated using a reference dewpoint generator were measured using a commercial model (Dew-10) dewpoint hygrometer and a combination capacitive humidity instrument. The laboratory measurement comparisons showed that, potentially, an inexpensive model combination capacitive humidity instrument (CS500 or HMP50), or for improved results a slightly more expensive model (HMP35C or HMP45C), could substitute for the more expensive dewpoint hygrometer. In a field study, in a mesic grassland, the water vapour pressure measurement noise for the combination capacitive humidity instruments was greater than that for the dewpoint hygrometer. The average water vapour pressure profile difference measured using a HMP45C was highly correlated with that from a dewpoint hygrometer with a slope less than unity. Water vapour pressure measurements using the capacitive humidity instruments were not as accurate, compared to those obtained using a dewpoint hygrometer, but the resolution magnitudes for the profile

  3. Surface energy balance measurements and modeling on the ice cap of King George Island, West Antarctica

    NASA Astrophysics Data System (ADS)

    Falk, U.; Braun, M.; Sala, H.; Menz, G.

    2012-04-01

    The Antarctic Peninsula is amongst the fastest warming places on Earth and further temperature increase is to be expected. It has undergone rapid environmental changes in the past decades. Exceptional rates of surface air temperature increases (2.5K in 50 years) are concurrent with retreating glacier fronts, an increase in melt areas, surface lowering and rapid retreat, break-up and disintegration of ice shelves. The South Shetland Islands are located on the northern tip of the Peninsula and are especially vulnerable to climate change due to their maritime climate. For King George Island we have compiled a unique data set comprising direct measurements of evaporation and sensible heat flux by eddy covariance on the Warszawa Icefield for the austral summers November 2010 to March 2011 and January to February 2012 in combination with a fully equipped automated weather station measuring long- and short-wave radiation components, profiles of temperature, humidity and wind velocities as well as glacier ice temperatures in profile. The combination with the eddy covariance data allows for analysis of variability and seasonality of surface energy balance components on a glacier for an entire year. Repeat measurements of surface lowering at different locations on King George Island are used for analysis of multi-sensor satellite data to identify melt patterns and bare ice areas during summer. In combination with long-term time series of weather data, these data give indication of the sensitivity of the inland ice cap to the ongoing changes. This research is part of the ESF project IMCOAST funded by BMBF. Field work was carried out at the Dallmann laboratory (Jubany, King George Island) in cooperation of the Instituto Antartico Argentino (Argentina) and the Alfred-Wegener Institute (German).

  4. The use of a running wheel to measure activity in rodents: relationship to energy balance, general activity, and reward.

    PubMed

    Novak, Colleen M; Burghardt, Paul R; Levine, James A

    2012-03-01

    Running wheels are commonly employed to measure rodent physical activity in a variety of contexts, including studies of energy balance and obesity. There is no consensus on the nature of wheel-running activity or its underlying causes, however. Here, we will begin by systematically reviewing how running wheel availability affects physical activity and other aspects of energy balance in laboratory rodents. While wheel running and physical activity in the absence of a wheel commonly correlate in a general sense, in many specific aspects the two do not correspond. In fact, the presence of running wheels alters several aspects of energy balance, including body weight and composition, food intake, and energy expenditure of activity. We contend that wheel-running activity should be considered a behavior in and of itself, reflecting several underlying behavioral processes in addition to a rodent's general, spontaneous activity. These behavioral processes include defensive behavior, predatory aggression, and depression- and anxiety-like behaviors. As it relates to energy balance, wheel running engages several brain systems-including those related to the stress response, mood, and reward, and those responsive to growth factors-that influence energy balance indirectly. We contend that wheel-running behavior represents factors in addition to rodents' tendency to be physically active, engaging additional neural and physiological mechanisms which can then independently alter energy balance and behavior. Given the impact of wheel-running behavior on numerous overlapping systems that influence behavior and physiology, this review outlines the need for careful design and interpretation of studies that utilize running wheels as a means for exercise or as a measurement of general physical activity. PMID:22230703

  5. Eddy Covariance Measurements Over a Maize Field: The Contribution of Minor Flux Terms to the Energy Balance Gap

    NASA Astrophysics Data System (ADS)

    Smidt, J.; Ingwersen, J.; Streck, T.

    2015-12-01

    The lack of energy balance closure is a long-standing problem in eddy covariance (EC) measurements. The energy balance equation is defined as Rn - G = H + λE, where Rn is net radiation, G is the ground heat flux, H is the sensible heat flux and λE is the latent heat flux. In most cases of energy imbalance, either Rn is overestimated or the ground heat and turbulent fluxes are underestimated. Multiple studies have shown that calculations, incorrect instrument installation/calibration and measurement errors alone do not entirely account for this imbalance. Rather, research is now focused on previously neglected sources of heat storage in the soil, biomass and air beneath the EC station. This project examined the potential of five "minor flux terms" - soil heat storage, biomass heat storage, energy consumption by photosynthesis, air heat storage and atmospheric moisture change, to further close the energy balance gap. Eddy covariance measurements were conducted at a maize (Zea mays) field in southwest Germany during summer 2014. Soil heat storage was measured for six weeks at 11 sites around the field footprint. Biomass and air heat storage were measured for six subsequent weeks at seven sites around the field footprint. Energy consumption by photosynthesis was calculated using the CO2 flux data. Evapotranspiration was calculated using the water balance method and then compared to the flux data processed with three post-closure methods: the sensible heat flux, the latent heat flux and the Bowen ratio post-closure methods. An energy balance closure of 66% was achieved by the EC station measurements over the entire investigation period. During the soil heat flux campaign, EC station closure was 74.1%, and the field footprint soil heat storage contributed 3.3% additional closure. During the second minor flux term measurement period, closure with the EC station data was 91%. Biomass heat storage resulted in 1.1% additional closure, the photosynthesis flux closed the gap

  6. Influences of snow event on energy balance over temperate meadow in dormant season based on eddy covariance measurements

    NASA Astrophysics Data System (ADS)

    Chen, Nina; Guan, Dexin; Jin, Changjie; Wang, Anzhi; Wu, Jiabing; Yuan, Fenghui

    2011-03-01

    SummaryBased on the eddy flux and meteorological measurements, we analyzed variation of the components of energy balance before, during and after the snow coverage in dormant season over temperate meadow. The results showed that the energy balance ratio EBR was 0.76, lowest in the fresh snow phase and positively correlated with friction velocity u∗. Furthermore, the energy balance closure error had a diurnal cycle. The radiation partition and energy balance changed in the presence of the snow cover. The surface albedo was high during snow coverage (maximum in the fresh snow phase) and low in the snow-free period (including pre-snow and snow-melted phases). The ratio of net radiation R n to solar radiation Q was higher in the snow-melted phase, and lower in the fresh snow phase, so did the peaks in diurnal courses of the energy fluxes ( R n, latent heat flux LE, sensible heat flux H, and soil and storage heat flux G + S). The daily-integrated value of H increased followed by R n in the snow-melting phase, LE and G + S increased quickly followed by R n in the snow-melted phase. Daily average Bowen ratio β was large in the snow-melting phase and low in the snow-melted phase, indicating that more energy partitioning of R n into H in the snow-melting phase but LE in the snow-melted phase.

  7. Energy balance measurements over a small reservoir in Ghana's Upper East Region

    NASA Astrophysics Data System (ADS)

    van de Giesen, Nick; Ohene Annor, Frank

    2013-04-01

    Near the small village of Binaba (10.778927 deg N, 0.464859 deg E), a small irrigation reservoir has been instrumented to measure different parts of the energy balance of this water body. Instruments were placed on, or attached to, a spar platform. This platform consisted of a long PVC pipe, the spar, which is closed at the bottom. On the PVC pipe rests an aluminum frame platform that carries instrumentation and solar power panel. In turn, the platform rests partially on a large inflated tire. At the bottom of the PVC pipe, lead weights and batteries were placed to ensure a very low point of gravity to minimize wave impact on the platform movement. The tire ensures a large second moment of the water plane. The combination of large second momentum of the water plane and small displacement, ensures a high placement of the metacenter. The distance between the point of gravity and the metacenter is relatively long and the weight is large due to the weights and batteries. This ensures that the eigenfrequency of the platform is very low. On the platform, we fixed a WindMaster Pro (sonic anemometer for 3D wind speed and air temperature to perform eddy covariance measurements of sensible heat flux), a NR Lite (net radiometer), and air temperature and relative humidity sensors. Water temperature at different depths was measured with a string of TidbiT's (waterproof temperature sensors and loggers). The platform had a wind vane and the spar could turn freely around its anchor cable to ensure that the anemometer always faced upwind. A compass in the logger completed this setup. First results suggest, as expected, that the sensible heat flux is relatively small with on average 20 W/m2 over the course of a day. Sensible heat flux peaked around midnight at 35 W/m2, when the warm water warmed up the air from the colder surrounding land. The dynamics of heat storage during the daytime and longwave radiation during the night time, are important to calculate the latent heat flux.

  8. Energy balance in peridynamics.

    SciTech Connect

    Lehoucq, Richard B.; Silling, Stewart Andrew

    2010-09-01

    The peridynamic model of solid mechanics treats internal forces within a continuum through interactions across finite distances. These forces are determined through a constitutive model that, in the case of an elastic material, permits the strain energy density at a point to depend on the collective deformation of all the material within some finite distance of it. The forces between points are evaluated from the Frechet derivative of this strain energy density with respect to the deformation map. The resulting equation of motion is an integro-differential equation written in terms of these interparticle forces, rather than the traditional stress tensor field. Recent work on peridynamics has elucidated the energy balance in the presence of these long-range forces. We have derived the appropriate analogue of stress power, called absorbed power, that leads to a satisfactory definition of internal energy. This internal energy is additive, allowing us to meaningfully define an internal energy density field in the body. An expression for the local first law of thermodynamics within peridynamics combines this mechanical component, the absorbed power, with heat transport. The global statement of the energy balance over a subregion can be expressed in a form in which the mechanical and thermal terms contain only interactions between the interior of the subregion and the exterior, in a form anticipated by Noll in 1955. The local form of this first law within peridynamics, coupled with the second law as expressed in the Clausius-Duhem inequality, is amenable to the Coleman-Noll procedure for deriving restrictions on the constitutive model for thermomechanical response. Using an idea suggested by Fried in the context of systems of discrete particles, this procedure leads to a dissipation inequality for peridynamics that has a surprising form. It also leads to a thermodynamically consistent way to treat damage within the theory, shedding light on how damage, including the

  9. On-farm estimation of energy balance in dairy cows using only frequent body weight measurements and body condition score.

    PubMed

    Thorup, V M; Edwards, D; Friggens, N C

    2012-04-01

    Precise energy balance estimates for individual cows are of great importance to monitor health, reproduction, and feed management. Energy balance is usually calculated as energy input minus output (EB(inout)), requiring measurements of feed intake and energy output sources (milk, maintenance, activity, growth, and pregnancy). Except for milk yield, direct measurements of the other sources are difficult to obtain in practice, and estimates contain considerable error sources, limiting on-farm use. Alternatively, energy balance can be estimated from body reserve changes (EB(body)) using body weight (BW) and body condition score (BCS). Automated weighing systems exist and new technology performing semi-automated body condition scoring has emerged, so frequent automated BW and BCS measurements are feasible. We present a method to derive individual EB(body) estimates from frequently measured BW and BCS and evaluate the performance of the estimated EB(body) against the traditional EB(inout) method. From 76 Danish Holstein and Jersey cows, parity 1 or 2+, on a glycerol-rich or a whole grain-rich total mixed ration, BW was measured automatically at each milking. The BW was corrected for the weight of milk produced and for gutfill. Changes in BW and BCS were used to calculate changes in body protein, body lipid, and EB(body) during the first 150 d in milk. The EB(body) was compared with the traditional EB(inout) by isolating the term within EB(inout) associated with most uncertainty; that is, feed energy content (FEC); FEC=(EB(body)+EMilk+EMaintenance+Eactivity)/dry matter intake, where the energy requirements are for milk produced (EMilk), maintenance (EMaintenance), and activity (EActivity). Estimated FEC agreed well with FEC values derived from tables (the mean estimate was 0.21 MJ of effective energy/kg of dry matter or 2.2% higher than the mean table value). Further, the FEC profile did not suggest systematic bias in EB(body) with stage of lactation. The EB

  10. Energy balance in coronal funnels

    NASA Technical Reports Server (NTRS)

    Rabin, Douglas

    1991-01-01

    The energy balance in magnetic flux tubes is examined semianalytically for the case in which thermal conduction balances radiation or in which enthalpy transport occurs. Different values are considered for areal constriction, shape, length, and maximum temperature. The overall energy budget of the solar corona is not significantly affected by magnetic constriction. A bowl-shaped funnel with a constriction factor of 4 describes the empirical differential-emission measure for log-T values between approximately 5.3 and 6.0. Loop-scaling relationships are derived for the full range of models to illustrate the dependence of the constant of proportionality on the properties of the magnetic constriction. Constriction can reduce the total energy requirement of the funnel by a factor of 5 and not affect the differential emission in flow-dominated models.

  11. Estimation of Actual Crop ET of Paddy Using the Energy Balance Model SMARET and Validation with Field Water Balance Measurements and a Crop Growth Model (ORYZA)

    NASA Astrophysics Data System (ADS)

    Nallasamy, N. D.; Muraleedharan, B. V.; Kathirvel, K.; Narasimhan, B.

    2014-12-01

    Sustainable management of water resources requires reliable estimates of actual evapotranspiration (ET) at fine spatial and temporal resolution. This is significant in the case of rice based irrigation systems, one of the major consumers of surface water resources and where ET forms a major component of water consumption. However huge tradeoff in the spatial and temporal resolution of satellite images coupled with lack of adequate number of cloud free images within a growing season act as major constraints in deriving ET at fine spatial and temporal resolution using remote sensing based energy balance models. The scale at which ET is determined is decided by the spatial and temporal scale of Land Surface Temperature (LST) and Normalized Difference Vegetation Index (NDVI), which form inputs to energy balance models. In this context, the current study employed disaggregation algorithms (NL-DisTrad and DisNDVI) to generate time series of LST and NDVI images at fine resolution. The disaggregation algorithms aimed at generating LST and NDVI at finer scale by integrating temporal information from concurrent coarse resolution data and spatial information from a single fine resolution image. The temporal frequency of the disaggregated images is further improved by employing composite images of NDVI and LST in the spatio-temporal disaggregation method. The study further employed half-hourly incoming surface insolation and outgoing long wave radiation obtained from the Indian geostationary satellite (Kalpana-1) to convert the instantaneous ET into daily ET and subsequently to the seasonal ET, thereby improving the accuracy of ET estimates. The estimates of ET were validated with field based water balance measurements carried out in Gadana, a subbasin predominated by rice paddy fields, located in Tamil Nadu, India.

  12. Energy balance climate models

    NASA Technical Reports Server (NTRS)

    North, G. R.; Cahalan, R. F.; Coakley, J. A., Jr.

    1981-01-01

    An introductory survey of the global energy balance climate models is presented with an emphasis on analytical results. A sequence of increasingly complicated models involving ice cap and radiative feedback processes are solved, and the solutions and parameter sensitivities are studied. The model parameterizations are examined critically in light of many current uncertainties. A simple seasonal model is used to study the effects of changes in orbital elements on the temperature field. A linear stability theorem and a complete nonlinear stability analysis for the models are developed. Analytical solutions are also obtained for the linearized models driven by stochastic forcing elements. In this context the relation between natural fluctuation statistics and climate sensitivity is stressed.

  13. Dual-energy approach to contrast-enhanced mammography using the balanced filter method: Spectral optimization and preliminary phantom measurement

    SciTech Connect

    Saito, Masatoshi

    2007-11-15

    Dual-energy contrast agent-enhanced mammography is a technique of demonstrating breast cancers obscured by a cluttered background resulting from the contrast between soft tissues in the breast. The technique has usually been implemented by exploiting two exposures to different x-ray tube voltages. In this article, another dual-energy approach using the balanced filter method without switching the tube voltages is described. For the spectral optimization of dual-energy mammography using the balanced filters, we applied a theoretical framework reported by Lemacks et al. [Med. Phys. 29, 1739-1751 (2002)] to calculate the signal-to-noise ratio (SNR) in an iodinated contrast agent subtraction image. This permits the selection of beam parameters such as tube voltage and balanced filter material, and the optimization of the latter's thickness with respect to some critical quantity--in this case, mean glandular dose. For an imaging system with a 0.1 mm thick CsI:Tl scintillator, we predict that the optimal tube voltage would be 45 kVp for a tungsten anode using zirconium, iodine, and neodymium balanced filters. A mean glandular dose of 1.0 mGy is required to obtain an SNR of 5 in order to detect 1.0 mg/cm{sup 2} iodine in the resulting clutter-free image of a 5 cm thick breast composed of 50% adipose and 50% glandular tissue. In addition to spectral optimization, we carried out phantom measurements to demonstrate the present dual-energy approach for obtaining a clutter-free image, which preferentially shows iodine, of a breast phantom comprising three major components - acrylic spheres, olive oil, and an iodinated contrast agent. The detection of iodine details on the cluttered background originating from the contrast between acrylic spheres and olive oil is analogous to the task of distinguishing contrast agents in a mixture of glandular and adipose tissues.

  14. Energy balance of wheat conversion to ethanol

    SciTech Connect

    Stumborg, M.A.; Zentner, R.P.; Coxworth, E.

    1996-12-31

    The Western Canadian ethanol industry uses wheat as the preferred feed stock. The net energy balance of an ethanol system based on this starchy feed stock is of interest if Canada utilizes ethanol fuels from wheat as one of its measures to meet international commitments for greenhouse gas reduction and energy conservation under the Green Plan. The wheat to ethanol production systems for the Brown and Thin Black soil zones of the Canadian Prairies were analyzed from soil to processing completion to determine the net energy balance. The data clearly demonstrates the positive net energy balance, with the energy balance ranging from 1.32 to 1.63:1 for the Brown soil zone, and from 1.19 to 1.47:1 for the Thin Black soil zone. The final energy balance depends upon the agronomic practices and wheat variety assumed for the production system.

  15. Surface Energy Balance System (SEBS) Handbook

    SciTech Connect

    Cook, DR

    2011-02-14

    A Surface Energy Balance System (SEBS) has been installed collocated with each deployed ECOR system at the Southern Great Plains (SGP), North Slope of Alaska (NSA), Tropical Western Pacific (TWP), ARM Mobile Facility 1 (AMF1), and ARM Mobile Facility 2 (AMF2). The surface energy balance system consists of upwelling and downwelling solar and infrared radiometers within one net radiometer, a wetness sensor, and soil measurements. The SEBS measurements allow the comparison of ECOR sensible and latent heat fluxes with the energy balance determined from the SEBS and provide information on wetting of the sensors for data quality purposes.

  16. Energy Balance Closure Using Eddy Covariance Above Two Different Land Surfaces and Implications for CO2 Flux Measurements

    NASA Astrophysics Data System (ADS)

    Kidston, Joe; Brümmer, Christian; Black, T. Andrew; Morgenstern, Kai; Nesic, Zoran; McCaughey, J. Harry; Barr, Alan G.

    2010-08-01

    Components of the surface energy balance of a mature boreal jack pine forest and a jack pine clearcut were analysed to determine the causes of the imbalance that is commonly observed in micrometeorological measurements. At the clearcut site (HJP02), a significant portion of the imbalance was caused by: (i) the overestimation of net radiation ( R n ) due to the inclusion of the tower in the field of view of the downward facing radiometers, and (ii) the underestimation of the latent heat flux (λ E) due to the damping of high frequency fluctuations in the water vapour mixing ratio by the sample tube of the closed-path infrared gas analyzer. Loss of low-frequency covariance induced by insufficient averaging time as well as systematic advection of fluxes away from the eddy-covariance (EC) tower were discounted as significant issues. Spatial and temporal distributions of the total surface-layer heat flux ( T), i.e. the sum of sensible heat flux ( H) and λ E, were well behaved and differences between the relative magnitudes of the turbulent fluxes for several investigated energy balance closure ( C) classes were observed. Therefore, it can be assumed that micrometeorological processes that affected all turbulent fluxes similarly did not cause the variation in C. Turbulent fluxes measured at the clearcut site should not be forced to close the energy balance. However, at the mature forest site (OJP), loss of low-frequency covariance contributed significantly to the systematic imbalance when a 30-min averaging time was used, but the application of averaging times that were long enough to capture all of the low-frequency covariance was inadequate to resolve all of the high-frequency covariance. Although we found qualitative similarity between T and the net ecosystem exchange (NEE) of carbon dioxide (CO2), forcing T to closure while retaining the Bowen ratio and applying the same factor to CO2 fluxes ( F C ) cannot be generally recommended since it remains uncertain to what

  17. Is scintillometer measurement accurate enough for evaluating remote sensing based energy balance ET models?

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The three evapotranspiration (ET) measurement/retrieval techniques used in this study, lysimeter, scintillometer and remote sensing vary in their level of complexity, accuracy, resolution and applicability. The lysimeter with its point measurement is the most accurate and direct method to measure ET...

  18. Application of detailed temperature profile measurements for improving data quality check by Bowen Ratio/Energy Balance method

    NASA Astrophysics Data System (ADS)

    Pozníková, Gabriela; Fischer, Milan; Orság, Matěj; Trnka, Miroslav; Žalud, Zdeněk

    2015-04-01

    Water plays a key role in the functionality and sustainability of the ecosystems. In the light of the predicted climate change research should be focused on the water cycle and its individual components. Apart from the runoff, the major component of the water balance which drives the water from the ecosystems is represented by the evapotranspiration (ET). One of the standard methods for measuring ET is Bowen Ratio/Energy Balance method (BREB). It is based on the assumption that the water vapour and heat are transported by identical eddies with equal efficiency. In fact, this basic premise is based on a more complicated Monin-Obukhov similarity theory that explains the relationship between the profiles of wind, temperature and water vapour in the surface layer of the atmosphere. When BREB method is used we assume that the profiles of temperature and air humidity are ideally logarithmic or at least consistent. However, as this method is usually based on the measurements of temperature and humidity in only two heights, it is difficult to verify this assumption. We therefore conducted a field experiment using 4m high measurement-mast with 20 thermocouples connected to data-logger for detailed measurement of air temperature profile above different covers, e.g. grassland, spring barley, poplar plantation. The main goal of our effort was to capture so called "kink" in the profile of the temperature and verify if the assumptions made by BREB hold under various weather conditions and over different canopies testing the basic requirements of the BREB method use. Finally we devised a technique improving data selection for subsequent ET calculation. This study was funded by project "Building up a multidisciplinary scientific team focused on drought" No. CZ.1.07/2.3.00/20.0248,PASED - project supported by Czech program KONTAKT II No. LH12037 "Development of models for assessment of abiotic stresses in selected bioenergy plants" and LD130030 project supporting COST action ES1106.

  19. Evapotranspiration of a pine-switchgrass intercropping bioenergy system measured by combined surface renewal and energy balance method

    NASA Astrophysics Data System (ADS)

    Fischer, M.; Noormets, A.; Domec, J. C.; Rosa, R.; Williamson, J.; Boone, J.; Sucre, E.; Trnka, M.; King, J.

    2015-12-01

    Intercropping bioenergy grasses within traditional pine silvicultural systems provides an opportunity for economic diversification and regional bioenergy production in a way that complements existing land use systems. Bioenergy intercropping in pine plantations does not compete with food production for land and it is thought will increase ecosystem resource-use efficiencies. As the frequency and intensity of drought is expected to increase with the changing climate, maximizing water use-efficiency of intercropped bioenergy systems will become increasingly important for long-term economic and environmental sustainability. The presented study is focused on evapotranspiration (ET) of an experimental pine-switchgrass intercropping system in the Lower Coastal Plain of North Carolina. We measured ET of two pure switchgrass fields, two pure pine stands and two pine-switchgrass intercropping systems using combined surface renewal (SR) and energy balance (EB) method throughout 2015. SR is based on high-frequency measurement of air temperature at or above canopy. As previously demonstrated, temperature time series are associated with identifiable, repeated patterns called "turbulent coherent structures". These coherent structures are considered to be responsible for most of the turbulent transport. Statistical analysis of the coherent structures in temperature time series allows quantification of sensible heat flux density (H) from the investigated area. Information about H can be combined with measurement of net radiation and soil heat flux density to indirectly obtain ET estimates as a residual of the energy balance equation. Despite the recent progress in the SR method, there is no standard methodology and each method available includes assumptions which require more research. To validate our SR estimates of ET, we used an eddy covariance (EC) system placed temporarily next to the each SR station as a comparative measurement of H. The conference contribution will include

  20. Empirical Measurements of Loop Structures in the Sun's Transition Region Compared with Energy Balance Models

    NASA Astrophysics Data System (ADS)

    Chesny, David; Oluseyi, H. M.; Orange, N. B.; DeBoth, D.; Preuss, L.; Neira, C.; Ebert, M.; Cohen, L.

    2011-01-01

    We have measured the properties of solar upper transition region loop structures barely resolvable in 1-arcsecond resolution data from the Transition Region and Coronal Explorer (TRACE) satellite and from the Solar Ultraviolet Measurements of Emitted Radiation (SUMER) instrument aboard the SOHO satellite for the purpose of investigating the mechanisms that generate and energize these structures. The images were wavelet transformed to elucidate and isolate fine-scale loops, whose lengths, widths, emergent flux, flows, and underlying magnetic field were measured. It was found that the loops' magnetic geometries were well-fit by potential field models. However, hydrostatic models were unable to self-consistently reproduce the loop's observed properties for a wide range of parameter space.

  1. Measurement of surface energy balance components in dryland wheat/fallow and limited-irrigation corn

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Water evaporation from soil and plant surfaces and plant transpiration comprise land surface/canopy evapotranspiration (ET), which is essential to estimate for land-atmosphere interaction and crop water use. There are no direct measurements of ET, and the most direct methods (e.g., weighing lysimet...

  2. Energy and water balance determination in an advective environment:From direct measurement to microclimate based estimation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The contributions of John Monteith are perhaps nowhere more widely acknowledged than in the community of scientists and engineers concerned with estimation of evapotranspiration. His addition of surface energy balance flux resistance formulations to the evaporation estimation formula of Penman presa...

  3. Balancing the Energy Pendulum.

    ERIC Educational Resources Information Center

    MacKinnon, Sharon

    1987-01-01

    The city of Kitchener, Ontario, has installed a heat recovery loop in one indoor pool, all indoor swimming pools use pool covers, and two have solar heating. Energy is saved in two ice arenas by low-emissivity ceilings, and in the largest arena by a heat recovery system. (MLF)

  4. Surface energy balance and actual evapotranspiration of the transboundary Indus Basin estimated from satellite measurements and the ETLook model

    NASA Astrophysics Data System (ADS)

    Bastiaanssen, W. G. M.; Cheema, M. J. M.; Immerzeel, W. W.; Miltenburg, I. J.; Pelgrum, H.

    2012-11-01

    The surface energy fluxes and related evapotranspiration processes across the Indus Basin were estimated for the hydrological year 2007 using satellite measurements. The new ETLook remote sensing model (version 1) infers information on actual Evaporation (E) and actual Transpiration (T) from combined optical and passive microwave sensors, which can observe the land-surface even under persistent overcast conditions. A two-layer Penman-Monteith equation was applied for quantifying soil and canopy evaporation. The novelty of the paper is the computation of E and T across a vast area (116.2 million ha) by using public domain microwave data that can be applied under all weather conditions, and for which no advanced input data are required. The average net radiation for the basin was estimated as being 112 Wm-2. The basin average sensible, latent and soil heat fluxes were estimated to be 80, 32, and 0 Wm-2, respectively. The average evapotranspiration (ET) and evaporative fraction were 1.2 mm d-1 and 0.28, respectively. The basin wide ET was 496 ± 16.8 km3 yr-1. Monte Carlo analysis have indicated 3.4% error at 95% confidence interval for a dominant land use class. Results compared well with previously conducted soil moisture, lysimeter and Bowen ratio measurements at field scale (R2 = 0.70; RMSE = 0.45 mm d-1; RE = -11.5% for annual ET). ET results were also compared against earlier remote sensing and modeling studies for various regions and provinces in Pakistan (R2 = 0.76; RMSE = 0.29 mmd-1; RE = 6.5% for annual ET). The water balance for all irrigated areas together as one total system in Pakistan and India (26.02 million ha) show a total ET value that is congruent with the ET value from the ETLook surface energy balance computations. An unpublished validation of the same ETLook model for 23 jurisdictional areas covering the entire Australian continent showed satisfactory results given the quality of the watershed data and the diverging physiographic and climatic

  5. The energy balance of the nighttime thermosphere

    NASA Technical Reports Server (NTRS)

    Glenar, D. A.

    1977-01-01

    The discrepancy between the input from the day hemisphere and the observed loss rates is discussed in terms of ion-neutral processes and gravity wave inputs. There has been considerable speculation as to the energy balance of the thermosphere and in particular about the fraction of the total energy input supplied by ultraviolet radiation. The problem is considerably simplified by considering the energy balance of the nighttime hemisphere alone. Sunrise and sunset vapor trail measurements provide data on the wind systems at the terminator boundary, and temperature measurements provide information on the vertical energy conduction. North-south winds from high latitude vapor trail measurements provide a measure of the energy input from auroral processes.

  6. Meridional energy balance of Jupiter

    NASA Technical Reports Server (NTRS)

    Pirraglia, J. A.

    1984-01-01

    The meridional energy balance of Jupiter is calculated from high spatial resolution observations by the Voyager 1 infrared spectrometer and radiometer. On a hemispheric scale Jupiter radiates thermal energy to space approximately uniform with latitude while solar energy absorption varies approximately as the solar angle. This implies internal adjustment to the solar energy with a larger contribution poleward of + or - 45 deg than in the equatorial zone. The internal flux is modulated by the major visible features of the zone and belt system but, unlike the hemispheric scale where increased internal flux is correlated with decreased solar absorption, on smaller scales the inverse occurs. The energy balance is very likely to be controlled by dynamics, but the relative influence of the upper atmosphere and the interior is not yet clear.

  7. Verifying eddy-correlation measurements of dry deposition: A study of the energy-balance components of the Pawnee grasslands. Forest Service research paper

    SciTech Connect

    Massman, W.J.; Fox, D.G.; Zeller, K.F.; Lukens, D.

    1990-02-01

    At the Central Plains Experimental Range/Long-Term Ecological Research (CPER/LTER) site at the Pawnee National Grasslands, scientists from both the Rocky Mountain Station and the Natural Resources Ecology Laboratory of Colorado State University are independently attempting to measure several major components of the surface energy balance. The report describes how well independent measurements of radiation and the transport of heat and water vapor achieve closure of the surface energy balance and, thereby, account for the gross energy available to and processed by an ecosystem. The motivation behind the study is to evaluate the eddy correlation technology which the authors have been using to measure the exchange of gaseous pollutants (NO{sub 2}, NOx, and O{sub 3}) between the atmosphere and the grassland ecosystem.

  8. Assessment of the Global Monthly Mean Surface Insolation Estimated from Satellite Measurements Using Global Energy Balance Archive Data.

    NASA Astrophysics Data System (ADS)

    Li, Zhanqing; Whitlock, Charles H.; Charlock, Thomas P.

    1995-02-01

    Global datasets of surface radiation budget (SRB) have been obtained from satellite programs. These satellite-based estimates need validation with ground-truth observations. This study validates the estimates of monthly mean surface insolation contained in two satellite-based SRB datasets with the surface measurements made at worldwide radiation stations from the Global Energy Balance Archive (GEBA). One dataset was developed from the Earth Radiation Budget Experiment (ERBE) using the algorithm of Li et al. (ERBE/SRB), and the other from the International Satellite Cloud Climatology Project (ISCCP) using the algorithm of Pinker and Laszlo and that of Staylor (GEWEX/SRB). Since the ERBE/SRB data contain the surface net solar radiation only, the values of surface insolation were derived by making use of the surface albedo data contained in the GEWEX/SRB product. The resulting surface insolation has a bias error near zero and a root-mean-square error (RMSE) between 8 and 28 W m2. The RMSE is mainly associated with poor representation of surface observations within a grid cell. When the number of surface observations are sufficient, the random error is estimated to be about 5 W m2 with present satellite-based estimates. In addition to demonstrating the strength of the retrieving method, the small random error demonstrates how well the ERBE derives the monthly mean fluxes at the top of the atmosphere (TOA). A larger scatter is found for the comparison of transmissivity than for that of insolation. Month to month comparison of insolation reveals a weak seasonal trend in bias error with an amplitude of about 3 W m2. As for the insolation data from the GEWEX/SRB, larger bias errors of 5-10 W m2 are evident with stronger seasonal trends and almost identical RMSEs.

  9. Assessment of the global monthly mean surface insolation estimated from satellite measurements using global energy balance archive data

    NASA Technical Reports Server (NTRS)

    Li, Zhanqing; Whitlock, Charles H.; Charlock, Thomas P.

    1995-01-01

    Global sets of surface radiation budget (SRB) have been obtained from satellite programs. These satellite-based estimates need validation with ground-truth observations. This study validates the estimates of monthly mean surface insolation contained in two satellite-based SRB datasets with the surface measurements made at worldwide radiation stations from the Global Energy Balance Archive (GEBA). One dataset was developed from the Earth Radiation Budget Experiment (ERBE) using the algorithm of Li et al. (ERBE/SRB), and the other from the International Satellite Cloud Climatology Project (ISCCP) using the algorithm of Pinker and Laszlo and that of Staylor (GEWEX/SRB). Since the ERBE/SRB data contain the surface net solar radiation only, the values of surface insolation were derived by making use of the surface albedo data contained GEWEX/SRB product. The resulting surface insolation has a bias error near zero and a root-mean-square error (RMSE) between 8 and 28 W/sq m. The RMSE is mainly associated with poor representation of surface observations within a grid cell. When the number of surface observations are sufficient, the random error is estimated to be about 5 W/sq m with present satellite-based estimates. In addition to demonstrating the strength of the retrieving method, the small random error demonstrates how well the ERBE derives from the monthly mean fluxes at the top of the atmosphere (TOA). A larger scatter is found for the comparison of transmissivity than for that of insolation. Month to month comparison of insolation reveals a weak seasonal trend in bias error with an amplitude of about 3 W/sq m. As for the insolation data from the GEWEX/SRB, larger bias errors of 5-10 W/sq m are evident with stronger seasonal trends and almost identical RMSEs.

  10. Evaluation of measured and simulated turbulent components of a snow cover energy balance model in order to refine the turbulent transfer algorithm

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Energy balance models use physically based principles to simulate snow cover accumulation and melt. Snobal, a snow cover energy balance model, uses a flux-profile approach to calculating the turbulent flux (sensible and latent heat flux) components of the energy balance. Historically, validation dat...

  11. Surface Energy Balance System (SEBS) Handbook

    SciTech Connect

    Cook, D. R.

    2016-01-01

    A Surface Energy Balance System (SEBS) has been installed collocated with each deployed Eddy Correlation Flux Measurement System (ECOR) at the Atmospheric Radiation Measurement (ARM) Climate Research Facility’s Southern Great Plains (SGP) site, North Slope of Alaska (NSA) site, first ARM Mobile Facility (AMF1), second ARM Mobile Facility (AMF2), and third ARM Mobile Facility (AMF3) at Oliktok Point (OLI). A SEBS was also deployed with the Tropical Western Pacific (TWP) site, before it was decommissioned. Data from these sites, including the retired TWP, are available in the ARM Data Archive. The SEBS consists of upwelling and downwelling solar and infrared radiometers within one net radiometer, a wetness sensor, and soil measurements. The SEBS measurements allow the comparison of ECOR sensible and latent heat fluxes with the energy balance determined from the SEBS and provide information on wetting of the sensors for data quality purposes.

  12. Evaluation of Two Energy Balance Closure Parametrizations

    NASA Astrophysics Data System (ADS)

    Eder, Fabian; De Roo, Frederik; Kohnert, Katrin; Desjardins, Raymond L.; Schmid, Hans Peter; Mauder, Matthias

    2014-05-01

    A general lack of energy balance closure indicates that tower-based eddy-covariance (EC) measurements underestimate turbulent heat fluxes, which calls for robust correction schemes. Two parametrization approaches that can be found in the literature were tested using data from the Canadian Twin Otter research aircraft and from tower-based measurements of the German Terrestrial Environmental Observatories (TERENO) programme. Our analysis shows that the approach of Huang et al. (Boundary-Layer Meteorol 127:273-292, 2008), based on large-eddy simulation, is not applicable to typical near-surface flux measurements because it was developed for heights above the surface layer and over homogeneous terrain. The biggest shortcoming of this parametrization is that the grid resolution of the model was too coarse so that the surface layer, where EC measurements are usually made, is not properly resolved. The empirical approach of Panin and Bernhofer (Izvestiya Atmos Oceanic Phys 44:701-716, 2008) considers landscape-level roughness heterogeneities that induce secondary circulations and at least gives a qualitative estimate of the energy balance closure. However, it does not consider any feature of landscape-scale heterogeneity other than surface roughness, such as surface temperature, surface moisture or topography. The failures of both approaches might indicate that the influence of mesoscale structures is not a sufficient explanation for the energy balance closure problem. However, our analysis of different wind-direction sectors shows that the upwind landscape-scale heterogeneity indeed influences the energy balance closure determined from tower flux data. We also analyzed the aircraft measurements with respect to the partitioning of the "missing energy" between sensible and latent heat fluxes and we could confirm the assumption of scalar similarity only for Bowen ratios 1.

  13. [Energy and mass exchange and the productivity of the main ecosystems of Siberia (from eddy covariance measurements). 1. Heat balance structure in the vegetation season].

    PubMed

    Chebakova, N M; Vygodskaia, N N; Arnet, A; Belelli Markezini, L; Kolle, O; Kurbatova, Iu A; Parfenova, E I; Valentini, R; Vaganov, E A; Shul'tse, E D

    2013-01-01

    Direct measurements of heat balance (turbulent heat transfer and evaporation heat consumption) by the method of turbulent pulsations in 1998-2000 and 2002-2004 were used to obtain information on the daily, seasonal, and annual dynamics of energy fluxes and mass transfer between the atmosphere and the typical ecosystems of Siberia (middle-taiga pine forest and raised bog, true four-grass steppe, with the use of data for typical tundra) along the Yenisei meridian (90 degrees E). PMID:25518559

  14. Energy-balance climate models

    NASA Technical Reports Server (NTRS)

    North, G. R.; Cahalan, R. F.; Coakley, J. A., Jr.

    1980-01-01

    An introductory survey of the global energy balance climate models is presented with an emphasis on analytical results. A sequence of increasingly complicated models involving ice cap and radiative feedback processes are solved and the solutions and parameter sensitivities are studied. The model parameterizations are examined critically in light of many current uncertainties. A simple seasonal model is used to study the effects of changes in orbital elements on the temperature field. A linear stability theorem and a complete nonlinear stability analysis for the models are developed. Analytical solutions are also obtained for the linearized models driven by stochastic forcing elements. In this context the relation between natural fluctuation statistics and climate sensitivity is stressed.

  15. Energy balance of acoustic gravity waves above the polar caps according to the data of satellite measurements

    NASA Astrophysics Data System (ADS)

    Fedorenko, A. K.

    2010-02-01

    Wave disturbances of the Neutral Atmosphere above the polar caps are studied based on the Dynamic Explorer 2 satellite measurements. The characteristic spatial scales of these disturbances are 500— 600 km. Based on an analysis of the synchronous variations in different parameters, these disturbances were interpreted as propagating acoustic gravity waves (AGWs). The mass-spectrometer measurements of concentrations of individual atmospheric gases made it possible to determine the following AGW components: density of the acoustic compression, thermobaric, and average kinetic energies. It has been found out that the average (during the period) densities of the acoustic and thermobaric energies are approximately equal for polar AGWs. The results indicate that the contribution of these waves to the energy of the polar upper atmosphere is considerable.

  16. Glacier Mass Balance measurements in Bhutan

    NASA Astrophysics Data System (ADS)

    Jackson, Miriam; Tenzin, Sangay; Tashi, Tshering

    2014-05-01

    Long-term glacier measurements are scarce in the Himalayas, partly due to lack of resources as well as inaccessibility of most of the glaciers. There are over 600 glaciers in Bhutan in the Eastern Himalayas, but no long-term measurements. However, such studies are an important component of hydrological modelling, and especially relevant to the proposed expansion of hydropower resources in this area. Glaciological studies are also critical to understanding the risk of jøkulhlaups or GLOFS (glacier lake outburst floods) from glaciers in this region. Glacier mass balance measurements have been initiated on a glacier in the Chamkhar Chu region in central Bhutan by the Department of Hydro-Met Services in co-operation with the Norwegian Water Resources and Energy Directorate. Chamkhar Chu is the site of two proposed hydropower plants that will each generate over 700 MW, although the present and future hydrological regimes in this basin, and especially the contribution from glaciers, are not well-understood at present. There are about 94 glaciers in the Chamkhar Chhu basin and total glacier area is about 75 sq. km. The glaciers are relatively accessible for the Himalayas, most of them can be reached after only 4-5 days walk from the nearest road. One of the largest, Thana glacier, has been chosen as a mass balance glacier and measurements were initiated in 2013. The glacier area is almost 5 sq. km. and the elevation range is 500 m (5071 m a.s.l. to 5725 m a.s.l.) making it suitable as a benchmark glacier. Preliminary measurements on a smaller, nearby glacier that was visited in 2012 and 2013 showed 1 m of firn loss (about 0.6 m w.eq.) over 12 months.

  17. An intercomparison of three remote sensing-based energy balance models using large aperture scintillometer measurements over a wheat-corn production region

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This paper compares three remote sensing-based models for estimating evapotranspiration (ET), namely the Surface Energy Balance System (SEBS), the Two-Source Energy Balance (TSEB) model, and the surface Temperature-Vegetation index Triangle (TVT). The models used as input MODIS/TERRA products and gr...

  18. Measuring Racial Balance. Research Memorandum No. 1.

    ERIC Educational Resources Information Center

    Lefkowitz, Ben; D'Esopo, Tony

    The purpose of this research memorandum is to describe a means of measuring racial balance and to apply the measure to the distribution of public school population in San Francisco. The measure is derived from the definition that full integration would be achieved if each school had exactly the citywide racial mixture of students. The racial…

  19. Energy Expenditure and Caloric Balance After Burn

    PubMed Central

    Hart, David W.; Wolf, Steven E.; Herndon, David N.; Chinkes, David L.; Lal, Sophia O.; Obeng, Michael K.; Beauford, Robert B.; Mlcak RT, Ronald P.

    2002-01-01

    Objective Resting energy expenditure (REE) is commonly measured in critical illness to determine caloric “demands” and thus nutritive needs. Summary Background Data The purpose of this study was to 1) determine whether REE is associated with clinical outcomes and 2) determine whether an optimal caloric delivery rate based on REE exists to offset erosion of lean mass after burn. Methods From 1995 to 2001, REE was measured by indirect calorimetry in 250 survivors of 10 to 99%TBSA burns. Caloric intake and REE were correlated with muscle protein catabolism, length of stay, ventilator dependence, sepsis, and mortality. From 1998 to 2000, 42 patients (>60%TBSA burns) received continuous enteral nutrition at a spectrum of caloric balance between 1.0x REE kcal/d –1.8x REE kcal/d. Serial body composition was measured by dual energy x-ray absorptiometry. Lean mass, fat mass, morbidity, and mortality were determined. Results REE/predicted basal metabolic rate correlated directly with burn size, sepsis, ventilator dependence, and muscle protein catabolism (P < .05). Declining REE correlated with mortality (P < .05). 2) Erosion of lean body mass was not attenuated by increased caloric balance, however, fat mass increased with caloric supply (P < .05). Conclusion In surviving burned patients, caloric delivery beyond 1.2 × REE results in increased fat mass without changes in lean body mass. Declining energy expenditure appears to be a harbinger of mortality in severely burned patients. PMID:11753055

  20. Energy balance and non-turbulent fluxes

    NASA Astrophysics Data System (ADS)

    Moderow, Uta; Feigenwinter, Christian; Bernhofer, Christian

    2010-05-01

    Often, the sum of the turbulent fluxes of sensible heat and latent heat from eddy covariance (EC) measurements does not match the available energy (sum of net radiation, ground heat flux and storage changes). This is referred to as energy balance closure gap. The reported imbalances vary between 0% and 50% (Laubach 1996). In various publications, it has been shown that the uncertainty of the available energy itself does not explain the gap (Vogt et al. 1996; Moderow et al. 2009). Among other reasons, the underestimation is attributed to an underestimation of turbulent fluxes and undetected non-turbulent transport processes, i.e. advection (e.g. Foken et al. 2006). The imbalance is typically larger during nighttime than during daytime as the EC method fails to capture non-turbulent transports that can be significant during night (e.g. Aubinet 2008). Results for the budget of CO2 showed that including non-turbulent fluxes can change the budgets considerably. Hence, it is interesting to see how the budget of energy is changed. Here, the consequences of including advective fluxes of sensible heat and latent heat in the energy balance are explored with focus on nighttime conditions. Non-turbulent fluxes will be inspected critically regarding their plausibility. Following Bernhofer et al. (2003), a ratio similar to Bowen's ratio of the turbulent fluxes are defined for the non-turbulent fluxes and compared to each other. This might have implications for the partitioning of the available energy into sensible heat and latent heat. Data of the ADVEX-campaigns (Feigenwinter et al. 2008) of three different sites across Europe are used and selected periods are inspected. References Aubinet M (2008) Eddy covariance CO2-flux measurements in nocturnal conditions: An analysis of the problem. Ecol Appl 18: 1368-1378 Bernhofer C, Grünwald T, Schwiebus A, Vogt R (2003) Exploring the consequences of non-zero energy balance closure for total surface flux. In: Bernhofer C (ed

  1. Energy balance comparison of sorghum and sunflower

    NASA Astrophysics Data System (ADS)

    Rachidi, F.; Kirkham, M. B.; Kanemasu, E. T.; Stone, L. R.

    1993-03-01

    An understanding of the energy exchange processes at the surface of the earth is necessary for studies of global climate change. If the climate becomes drier, as is predicted for northern mid-latitudes, it is important to know how major agricultural crops will play a role in the budget of heat and moisture. Thus, the energy balance components of sorghum [ Sorghum bicolor (L.) Moench.] and sunflower ( Helianthus annuus L.), two drought-resistant crops grown in the areas where summertime drying is forecasted, were compared. Soil water content and evapotranspiration ( ET) rates also were determined. Net radiation was measured with net radiometers. Soil heat flux was analyzed with heat flux plates and thermocouples. The Bowen ratio method was used to determine sensible and latent heat fluxes. Sunflower had a higher evapotranspiration rate and depleted more water from the soil than sorghum. Soil heat flux into the soil during the daytime was greater for sorghum than sunflower, which was probably the result of the more erect leaves of sorghum. Nocturnal net radiation loss from the sorghum crop was greater than that from the sunflower crop, perhaps because more heat was stored in the soil under the sorghum crop. But daytime net radiation values were similar for the two crops. The data indicated that models of climate change must differentiate nighttime net radiation of agricultural crops. Sensible heat flux was not always less (or greater) for sorghum compared to sunflower. Sunflower had greater daytime values for latent heat flux, reflecting its greater depletion of water from the soil. Evapotranspiration rates determined by the energy balance method agreed relatively well with those found by the water balance method. For example, on 8 July (43 days after planting), the ET rates found by the energy-balance and water-balance methods were 4.6 vs. 5.5 mm/day for sunflower, respectively; for sorghum, these values were 4.0 vs. 3.5 mm/day, respectively. If the climate does

  2. Failure of correct evapotranspiration measurements by eddy covariance under certain conditions and energy balance closure in open-oak savanna ecosystems

    NASA Astrophysics Data System (ADS)

    Pérez-Priego, Oscar; Migliavacca, Mirco; El-Madany, Tarek; Carrara, Arnaud; Moreno, Gerardo; Kolle, Olaf; Reichstein, Markus

    2016-04-01

    Separation of evapotranspiration (ET) into its components represents one of the main ecohydrological challenges in heterogeneous ecosystems (i.e. tree-grass savanna), where two main evaporative layers consisting of tree canopy (ETabove) and its underlying surface (ETsubcanopy) dominate ET. The challenge arises from the fact that classical eddy covariance 1) directly only measures total ET and 2) biases in the respective energy balance are often observed. Here, we address these challenges in a Mediterranean savannah tree-grass ecosystem, by synchronous, combined measurements via classical eddy covariance, sub-canopy eddy covariance, sap-flow, and replicated lysimeters. To this end, half-hourly latent heat fluxes of the grass layer estimated using six novel lower boundary-tension and -temperature controlled lysimeters (LEsubcanopy‑lysimeter)were compared to those measured by a sub-canopy eddy covariance tower placed at 1.8 m (LEsubcanopy‑eddy) over a year. To explain the residuals (epsilon) between LEsubcanopy‑lysimeter and LEsubcanopy‑eddy , we trained a random forest model (RF) using soil moisture (SM), ground-heat fluxes (G), net radiation (Rn), air relative humidity (RH) and friction velocity (u*) as main predictor variables. The degree of energy closure was evaluated by comparing residual LE (LEresidual, estimated as Rn-H-G; H denotes sensible heat flux) against total LE measured by a tall tower installed above the canopy at 15 m (LEeddy). In parallel, we contrasted this using independent, upscaled LE (LEupscaled= LEsubcanopy‑lysimeter + LEabove‑sapflow; being LEabove‑sapflow the tree component derived from sap-flow measurements) to test whether failures in LEeddy explain the lack of energy balance closure. In such a case, we test the use of RF as a generalized approach to estimate epsilon and correct for LEeddy (LEeddy‑corrected = LEeddy + epsilon). As main results, the comparison of independent LEsubcanopy‑eddy and LEsubcanopy

  3. [Energy balance among female athletes].

    PubMed

    Arieli, Rakefet; Constantini, Naama

    2012-02-01

    Athletes need to consume sufficient energy to meet their training demands, maintain their health, and if young, to ensure their growth and development. Athletes are often preoccupied by their body weight and shape, and in some sports might be subjected to pressure to lose weight by coaches, peers or themselves. Eating disorders and poor eating habits are prevalent among female athletes, especially in sport disciplines where low body weight is required to improve performance or for "aesthetic" appearance or in weight category sports. Low energy intake has deleterious effects on many systems, including the cardiovascular system, several hormonal pathways, musculoskeletal system, fluids and electrolytes, thermoregulation, growth and development. Various fitness components and overall performance are also negatively affected. All these, together with poor nutritional status that causes vitamin and mineral deficiencies, poor concentration and depression, put the athlete at an increased injury risk. Energy availability is now recognized as the primary factor initiating these health problems. Energy availability is defined as dietary energy intake minus exercise energy expenditure. If below 30 kcal/kg fat free mass per day, reproductive system functions, as well as other metabolic systems, might be suppressed. The case presented is of a young female Judoka, who complained of fatigue and weakness. Medical and nutritional assessment revealed that she suffered from low energy availability, which slowed her growth and development, and negatively affected her health and athletic performance. This case study emphasizes the importance of adequate energy availability in young female athletes in order to ensure their health. PMID:22741207

  4. Energy Landscape of Social Balance

    NASA Astrophysics Data System (ADS)

    Marvel, Seth A.; Strogatz, Steven H.; Kleinberg, Jon M.

    2009-11-01

    We model a close-knit community of friends and enemies as a fully connected network with positive and negative signs on its edges. Theories from social psychology suggest that certain sign patterns are more stable than others. This notion of social “balance” allows us to define an energy landscape for such networks. Its structure is complex: numerical experiments reveal a landscape dimpled with local minima of widely varying energy levels. We derive rigorous bounds on the energies of these local minima and prove that they have a modular structure that can be used to classify them.

  5. Energy Balance of Rural Ecosystems In India

    NASA Astrophysics Data System (ADS)

    Chhabra, A.; Madhava Rao, V.; Hermon, R. R.; Garg, A.; Nag, T.; Bhaskara Rao, N.; Sharma, A.; Parihar, J. S.

    2014-11-01

    India is predominantly an agricultural and rural country. Across the country, the villages vary in geographical location, area, human and livestock population, availability of resources, agricultural practices, livelihood patterns etc. This study presents an estimation of net energy balance resulting from primary production vis-a-vis energy consumption through various components in a "Rural Ecosystem". Seven sites located in different agroclimatic regions of India were studied. An end use energy accounting "Rural Energy Balance Model" is developed for input-output analysis of various energy flows of production, consumption, import and export through various components of crop, trees outside forest plantations, livestock, rural households, industry or trade within the village system boundary. An integrated approach using field, ancillary, GIS and high resolution IRS-P6 Resourcesat-2 LISS IV data is adopted for generation of various model inputs. The primary and secondary field data collection of various energy uses at household and village level were carried out using structured schedules and questionnaires. High resolution multi-temporal Resourcesat-2 LISS IV data (2013-14) was used for generating landuse/landcover maps and estimation of above-ground Trees Outside Forests phytomass. The model inputs were converted to energy equivalents using country-specific energy conversion factors. A comprehensive geotagged database of sampled households and available resources at each study site was also developed in ArcGIS framework. Across the study sites, the estimated net energy balance ranged from -18.8 Terra Joules (TJ) in a high energy consuming Hodka village, Gujarat to 224.7 TJ in an agriculture, aquaculture and plantation intensive Kollaparru village, Andhra Pradesh. The results indicate that the net energy balance of a Rural Ecosystem is largely driven by primary production through crops and natural vegetation. This study provides a significant insight to policy

  6. Balancing model complexity and measurements in hydrology

    NASA Astrophysics Data System (ADS)

    Van De Giesen, N.; Schoups, G.; Weijs, S. V.

    2012-12-01

    The Data Processing Inequality implies that hydrological modeling can only reduce, and never increase, the amount of information available in the original data used to formulate and calibrate hydrological models: I(X;Z(Y)) ≤ I(X;Y). Still, hydrologists around the world seem quite content building models for "their" watersheds to move our discipline forward. Hydrological models tend to have a hybrid character with respect to underlying physics. Most models make use of some well established physical principles, such as mass and energy balances. One could argue that such principles are based on many observations, and therefore add data. These physical principles, however, are applied to hydrological models that often contain concepts that have no direct counterpart in the observable physical universe, such as "buckets" or "reservoirs" that fill up and empty out over time. These not-so-physical concepts are more like the Artificial Neural Networks and Support Vector Machines of the Artificial Intelligence (AI) community. Within AI, one quickly came to the realization that by increasing model complexity, one could basically fit any dataset but that complexity should be controlled in order to be able to predict unseen events. The more data are available to train or calibrate the model, the more complex it can be. Many complexity control approaches exist in AI, with Solomonoff inductive inference being one of the first formal approaches, the Akaike Information Criterion the most popular, and Statistical Learning Theory arguably being the most comprehensive practical approach. In hydrology, complexity control has hardly been used so far. There are a number of reasons for that lack of interest, the more valid ones of which will be presented during the presentation. For starters, there are no readily available complexity measures for our models. Second, some unrealistic simplifications of the underlying complex physics tend to have a smoothing effect on possible model

  7. Energy balance: an overview with emphasis on children.

    PubMed

    Tam, Charmaine S; Ravussin, Eric

    2012-01-01

    Childhood obesity is a significant public health problem, affecting one in five children in the United States. At the crux of this issue is a dysregulation of energy intake and energy expenditure. This review will provide an overview on energy and nutrient balance. We discuss energy balance studies in children using indirect and direct measures, and focus particularly on obesity as a deleterious consequence in childhood survivors of cancer. Obesity affects 11-57% of children with acute lymphoblastic leukemia, probably due to increased energy intake and reduced energy expenditure secondary to reduced habitual activity caused by fatigue. However, most of the studies in children with leukemia are retrospective, use BMI as a measure of obesity, and are inconclusive about the impact of the type of treatment on the development of obesity later in life. To better understand the etiology of obesity in both healthy and sick children, we need to undertake nutrient balance studies with appropriate measures of fat mass and fat distribution while keeping in mind the influence of normal tissue growth and puberty on energy balance. PMID:22021150

  8. An Energy Balance Concept for Habitability

    NASA Astrophysics Data System (ADS)

    Hoehler, Tori M.

    2007-12-01

    Habitability can be formulated as a balance between the biological demand for energy and the corresponding potential for meeting that demand by transduction of energy from the environment into biological process. The biological demand for energy is manifest in two requirements, analogous to the voltage and power requirements of an electrical device, which must both be met if life is to be supported. These requirements exhibit discrete (non-zero) minima whose magnitude is set by the biochemistry in question, and they are increased in quantifiable fashion by (i) deviations from biochemically optimal physical and chemical conditions and (ii) energy-expending solutions to problems of resource limitation. The possible rate of energy transduction is constrained by (i) the availability of usable free energy sources in the environment, (ii) limitations on transport of those sources into the cell, (iii) upper limits on the rate at which energy can be stored, transported, and subsequently liberated by biochemical mechanisms (e.g., enzyme saturation effects), and (iv) upper limits imposed by an inability to use ``power'' and ``voltage'' at levels that cause material breakdown. A system is habitable when the realized rate of energy transduction equals or exceeds the biological demand for energy. For systems in which water availability is considered a key aspect of habitability (e.g., Mars), the energy balance construct imposes additional, quantitative constraints that may help to prioritize targets in search-for-life missions. Because the biological need for energy is universal, the energy balance construct also helps to constrain habitability in systems (e.g., those envisioned to use solvents other than water) for which little constraint currently exists.

  9. Nexus of Poverty, Energy Balance and Health

    PubMed Central

    Mishra, C. P.

    2012-01-01

    Since the inception of planning process in India, health planning was an integral component of socio-economic planning. Recommendations of several committees, policy documents and Millennium development goals were instrumental in development of impressive health infrastructure. Several anti-poverty and employment generation programmes were instituted to remove poverty. Spectacular achievements took place in terms of maternal and child health indicators and expectancy of life at birth. However, communicable diseases and undernutrition remain cause of serious concern and non-communicable diseases are imposing unprecedented challenge to planners and policy makers. Estimates of poverty based on different criteria point that it has remained a sustained problem in the country and emphasizes on revisiting anti-poverty programmes, economic policies and social reforms. Poverty affects purchasing power and thereby, food consumption. Energy intake data has inherent limitations. It must be assessed in terms of energy expenditure. Energy balance has been least explored area of research. The studies conducted in three different representative population group of Eastern Uttar Pradesh revealed that 69.63% rural adolescent girls (10-19 years), 79.9% rural reproductive age group females and 62.3% rural geriatric subjects were in negative energy balance. Negative energy balance was significantly less in adolescent girls belonging to high SES (51.37%), having main occupation of family as business (55.3%), and highest per capita income group (57.1%) with respect to their corresponding sub-categories. In case of rural reproductive age groups, this was maximum (93.0%) in SC/ST category and least (65.7%) in upper caste group. In case of geriatric group, higher adjusted Odd's Ratio for negative energy balance for subjects not cared by family members (AOR 23.43, CI 3.93-139.56), not kept money (AOR 5.27, CI 1.58-17.56), belonging to lower and upper middle SES by Udai Pareekh Classification

  10. Runoff, precipitation, mass balance, and ice velocity measurements at South Cascade Glacier, Washington, 1993 balance year

    USGS Publications Warehouse

    Krimmel, R.M.

    1994-01-01

    Winter snow accumulation and summer snow, firn, and ice ablation were measured at South Cascade Glacier, Wash., to determine the winter and net balance for the 1993 balance year. The 1993 winter balance, averaged over the glacier, was 1.98 meters, and the net balance was -1.23 meters. This negative valance continued a trend of negative balance years beginning in 1977. Air temperature, barometric pressure, and runoff from this glacier basin and an adjacent non-glacierized basin were also continuously measured. Surface ice velocity was measured over an annual period. This report makes all these data available to users throughout the glaciological and climato1ogical community.

  11. Neuropeptides controlling energy balance: orexins and neuromedins

    PubMed Central

    Nixon, Joshua P.; Kotz, Catherine M.; Novak, Colleen M.; Billington, Charles J.; Teske, Jennifer A.

    2016-01-01

    In this section we review the feeding and energy expenditure effects of orexin (also known as hypocretin) and neuromedin. Orexins are multifunctional neuropeptides that affect energy balance by participating in regulation of appetite, arousal, and spontaneous physical activity. Central orexin signaling for all functions originates in the lateral hypothalamus–perifornical area, and is likely functionally differentiated based on site of action and on interacting neural influences. The effect of orexin on feeding is likely related to arousal in some ways, but is nonetheless a separate neural process that depends on interactions with other feeding related neuropeptides. In a pattern distinct from other neuropeptides, orexin stimulates both feeding and energy expenditure. Orexin increases in energy expenditure are mainly by increasing spontaneous physical activity, and this energy expenditure effect is more potent than the effect on feeding. Global orexin manipulations, such as in transgenic models, produce energy balance changes consistent with a dominant energy expenditure effect of orexin. Neuromedins are gut-brain peptides that reduce appetite. There are gut sources of neuromedin, but likely the key appetite related neuromedin producing neurons are in hypothalamus and parallel other key anorectic neuropeptide expression in the arcuate to paraventricular hypothalamic projection. As with other hypothalamic feeding related peptides, hindbrain sites are likely also important sources and targets of neuromedin anorectic action. Neuromedin increases physical activity in addition to reducing appetite, thus producing a consistent negative energy balance effect. Together with the various other neuro-peptides, -transmitters, -modulators and –hormones, neuromedin and orexin act in the appetite network to produce changes in food intake and energy expenditure, which ultimately influences the regulation of body weight. PMID:22249811

  12. Importance of energy balance in agriculture.

    NASA Astrophysics Data System (ADS)

    Meco, R.; Moreno, M. M.; Lacasta, C.; Tarquis, A. M.; Moreno, C.

    2012-04-01

    Since the beginning, man has tried to control nature and the environment, and the use of energy, mainly from non-renewable sources providing the necessary power for that. The consequences of this long fight against nature has reached a critical state of unprecedented worldwide environmental degradation, as evidenced by the increasing erosion of fertile lands, the deforestation processes, the pollution of water, air and land by agrochemicals, the loss of plant and animal species, the progressive deterioration of the ozone layer and signs of global warming. This is exacerbated by the increasing population growth, implying a steady increase in consumption, and consequently, in the use of energy. Unfortunately, all these claims are resulting in serious economic and environmental problems worldwide. Because the economic and environmental future of the countries is interrelated, it becomes necessary to adopt sustainable development models based on the use of renewable and clean energies, the search for alternative resources and the use of productive systems more efficient from an energy standpoint, always with a reduction of greenhouse gas emissions. In relation to the agricultural sector, the question we ask is: how long can we keep the current energy-intensive agricultural techniques in developed countries? To analyze this aspect, energy balance is a very helpful tool because can lead to more efficient, sustainable and environment-friendly production systems for each agro-climatic region. This requires the identification of all the inputs and the outputs involved and their conversion to energy values by means of corresponding energy coefficients or equivalents (International Federation of Institutes for Advanced Studies). Energy inputs (EI) can be divided in direct (energy directly used in farms as fuel, machines, fertilizers, seeds, herbicides, human labor, etc.) and indirect (energy not consumed in the farm but in the elaboration, manufacturing or manipulation of

  13. Effects of Hypothalamic Neurodegeneration on Energy Balance

    PubMed Central

    2005-01-01

    Normal aging in humans and rodents is accompanied by a progressive increase in adiposity. To investigate the role of hypothalamic neuronal circuits in this process, we used a Cre-lox strategy to create mice with specific and progressive degeneration of hypothalamic neurons that express agouti-related protein (Agrp) or proopiomelanocortin (Pomc), neuropeptides that promote positive or negative energy balance, respectively, through their opposing effects on melanocortin receptor signaling. In previous studies, Pomc mutant mice became obese, but Agrp mutant mice were surprisingly normal, suggesting potential compensation by neuronal circuits or genetic redundancy. Here we find that Pomc-ablation mice develop obesity similar to that described for Pomc knockout mice, but also exhibit defects in compensatory hyperphagia similar to what occurs during normal aging. Agrp-ablation female mice exhibit reduced adiposity with normal compensatory hyperphagia, while animals ablated for both Pomc and Agrp neurons exhibit an additive interaction phenotype. These findings provide new insight into the roles of hypothalamic neurons in energy balance regulation, and provide a model for understanding defects in human energy balance associated with neurodegeneration and aging. PMID:16296893

  14. Disruptions in Energy Balance: Does Nature overcome Nurture?

    PubMed Central

    Fernández, José R.; Casazza, Krista; Divers, Jasmin; López-Alarcón, Mardya

    2008-01-01

    Fat accumulation, in general, is the result of a breakdown in the homeostatic regulation of energy balance. Although, the specific factors influencing the disruption of energy balance and why these factors affect individuals differently are not completely understood, numerous studies have identified multiple contributors. Environmental components influence food acquisition, eating, and lifestyle habits. However, the variability in obesity-related outcomes observed among individuals placed in similar controlled environments support the notion that genetic components also wield some control. Multiple genetic regions have been associated with measures related to energy balance; however, the replication of these genetic contributors to energy intake and energy expenditure in humans is relatively small perhaps because of the heterogeneity of human populations. Genetic tools such as genetic admixture account for individual’s genetic background in gene association studies, reducing the confounding effect of population stratification, and promise to be a relevant tool on the identification of genetic contributions to energy balance, particularly among individuals of diverse racial/ethnic backgrounds. Although it has been recognized that genes are expressed according to environmental influences, the search toward the understanding of nature and nurture in obesity will require the detailed study of the effect of genes under diverse physiologic and behavioral environments. It is evident that more research is needed to elucidate the methodological and statistical issues that underlie the interactions between genes and environments in obesity and its related comorbidities. PMID:18096193

  15. The Energy Balance Study: The Design and Baseline Results for a Longitudinal Study of Energy Balance

    ERIC Educational Resources Information Center

    Hand, Gregory A.; Shook, Robin P.; Paluch, Amanda E.; Baruth, Meghan; Crowley, E. Patrick; Jaggers, Jason R.; Prasad, Vivek K.; Hurley, Thomas G.; Hebert, James R.; O'Connor, Daniel P.; Archer, Edward; Burgess, Stephanie; Blair, Steven N.

    2013-01-01

    Purpose: The Energy Balance Study (EBS) was a comprehensive study designed to determine over a period of 12 months the associations of caloric intake and energy expenditure on changes in body weight and composition in a population of healthy men and women. Method: EBS recruited men and women aged 21 to 35 years with a body mass index between 20…

  16. Assessment of Global Annual Atmospheric Energy Balance from Satellite Observations

    NASA Technical Reports Server (NTRS)

    Lin, Bing; Stackhouse, Paul; Minnis, Patrick; Wielicki, Bruce A.; Hu, Yongxiang; Sun, Wenbo; Fan, Tai-Fang (Alice); Hinkelman, Laura

    2008-01-01

    Global atmospheric energy balance is one of the fundamental processes for the earth's climate system. This study uses currently available satellite data sets of radiative energy at the top of atmosphere (TOA) and surface and latent and sensible heat over oceans for the year 2000 to assess the global annual energy budget. Over land, surface radiation data are used to constrain assimilated results and to force the radiation, turbulent heat, and heat storage into balance due to a lack of observation-based turbulent heat flux estimations. Global annual means of the TOA net radiation obtained from both direct measurements and calculations are close to zero. The net radiative energy fluxes into the surface and the surface latent heat transported into the atmosphere are about 113 and 86 Watts per square meter, respectively. The estimated atmospheric and surface heat imbalances are about -8 9 Watts per square meter, values that are within the uncertainties of surface radiation and sea surface turbulent flux estimates and likely systematic biases in the analyzed observations. The potential significant additional absorption of solar radiation within the atmosphere suggested by previous studies does not appear to be required to balance the energy budget the spurious heat imbalances in the current data are much smaller (about half) than those obtained previously and debated at about a decade ago. Progress in surface radiation and oceanic turbulent heat flux estimations from satellite measurements significantly reduces the bias errors in the observed global energy budgets of the climate system.

  17. Assessment of global annual atmospheric energy balance from satellite observations

    NASA Astrophysics Data System (ADS)

    Lin, Bing; Stackhouse, Paul W.; Minnis, Patrick; Wielicki, Bruce A.; Hu, Yongxiang; Sun, Wenbo; Fan, Tai-Fang; Hinkelman, Laura M.

    2008-08-01

    Global atmospheric energy balance is one of the fundamental processes for the earth's climate system. This study uses currently available satellite data sets of radiative energy at the top of atmosphere (TOA) and surface as well as latent and sensible heat over the oceans for the year 2000 to assess the global annual energy budget. Over land, surface radiation data are used to constrain assimilated results and to force the radiation, turbulent heat, and heat storage into balance due to a lack of observation-based turbulent heat flux estimates. Global annual means of the TOA net radiation obtained from both satellite direct measurements and calculations are close to zero. The net radiative energy fluxes into the surface and the surface latent heat transported into the atmosphere are about 113 and 86 W/m2, respectively. The estimated atmospheric and surface heat imbalances are about -8 and 9 W/m2, respectively, values that are within the uncertainties of surface radiation and sea surface turbulent flux estimates and the likely systematic biases in the analyzed observations. The potential significant additional absorption of solar radiation within the atmosphere suggested by previous studies does not appear to be required to balance the energy budget: the spurious heat imbalances in the current data are much smaller (about half) than those obtained previously and debated about a decade ago. Progress in surface radiation and oceanic turbulent heat flux estimations from satellite measurements has significantly reduced the bias errors in the observed global energy budgets of the climate system.

  18. Energy balance in the WTC collapse

    NASA Astrophysics Data System (ADS)

    Zhu, Kaiqi; Xu, Kang; Ansourian, Peter; Tahmasebinia, Faham; Alonso-Marroquin, Fernando

    2016-08-01

    The main aim of this report is to provide an analysis of Twin Towers of the New York City's World Trade Centre collapsed after attacked by two jet aircrafts. The approach mainly focused on the effect of temperature on mechanical properties of the building, by modelling heat energy in the south tower. Energy balance during the collapse between the energy inputs by aircraft petrol and the transient heat to the towers was conducted. Both the overall structure between 80 to 83 stories and individual elements was modelled. The main elements contributed to the heat transition includes external and internal columns. Heat applied in 2D and 3D models for single elements was through convection and conduction. Analysis of transient heat was done using Strand7.

  19. Energy Balance in Clusters of Galaxies

    NASA Astrophysics Data System (ADS)

    Motl, P. M.; Burns, J. M.

    2005-04-01

    We review different physical mechanisms that are likely to play a significant role in determining the detailed thermal state of gas in clusters of galaxies. Mergers are the dominant process impacting clusters and these collisions significantly perturb the cluster state. The continual loss of energy from the gas to radiation must also be accounted for and cooling gas can drive several positive feedback mechanisms. From simple energy arguments, AGN are likely to make a significant contribution to balance the energy lost from cluster cores. We also explore additional positive feedback mechanisms including supernovae feedback and thermal conduction. If AGN are the sole feedback mechanism, what are to be made of clusters that lack evidence for AGN activity yet have canonical cool cores? As cluster samples with high-resolution X-ray data grow larger, it is likely to be the properties of relaxed, cool-core clusters that will be the best guides to numerical simulations.

  20. Energy Balance Bowen Ratio Station (EBBR) Handbook

    SciTech Connect

    Cook, DR

    2011-02-23

    The energy balance Bowen ratio (EBBR) system produces 30-minute estimates of the vertical fluxes of sensible and latent heat at the local surface. Flux estimates are calculated from observations of net radiation, soil surface heat flux, and the vertical gradients of temperature and relative humidity (RH). Meteorological data collected by the EBBR are used to calculate bulk aerodynamic fluxes, which are used in the Bulk Aerodynamic Technique (BA) EBBR value-added product (VAP) to replace sunrise and sunset spikes in the flux data. A unique aspect of the system is the automatic exchange mechanism (AEM), which helps to reduce errors from instrument offset drift.

  1. Energy Balance Bowen Ratio (EBBR) Handbook

    SciTech Connect

    Cook, D. R.

    2016-01-01

    The Energy Balance Bowen Ratio (EBBR) system produces 30-minute estimates of the vertical fluxes of sensible and latent heat at the local surface. Flux estimates are calculated from observations of net radiation, soil surface heat flux, and the vertical gradients of temperature and relative humidity (RH). Meteorological data collected by the EBBR are used to calculate bulk aerodynamic fluxes, which are used in the Bulk Aerodynamic Technique (BA) EBBR value-added product (VAP) to replace sunrise and sunset spikes in the flux data. A unique aspect of the system is the automatic exchange mechanism (AEM), which helps to reduce errors from instrument offset drift.

  2. The Global Energy Balance of Titan

    NASA Technical Reports Server (NTRS)

    Li, Liming; Nixon, Conor A.; Achterberg, Richard K.; Smith, Mark A.; Gorius, Nicolas J. P.; Jiang, Xun; Conrath, Barney J.; Gierasch, Peter J.; Simon-Miller, Amy A.; Flasar, F. Michael; Baines, Kevin H.; Ingersoll, Andrew P.; West, Robert A.; Vasavada, Ashwin R.; Ewald, Shawn P.

    2011-01-01

    We report the first measurement of the global emitted power of Titan. Longterm (2004-2010) observations conducted by the Composite Infrared Spectrometer (CIRS) onboard Cassini reveal that the total emitted power by Titan is (2.84 plus or minus 0.01) x 10(exp 8) watts. Together with previous measurements of the global absorbed solar power of Titan, the CIRS measurements indicate that the global energy budget of Titan is in equilibrium within measurement error. The uncertainty in the absorbed solar energy places an upper limit on the energy imbalance of 5.3%.

  3. Mass balance, meteorological, and runoff measurements at South Cascade Glacier, Washington, 1992 balance year

    USGS Publications Warehouse

    Krimmel, R.M.

    1993-01-01

    Values of winter snow accumulation and summer snow, firn, and ice ablation were measured at South Cascade Glacier, WA, to determine the winter and net balance for the 1992 balance year. The 1992 winter balance, averaged over the glacier, was 1.91 m, and the net balance was -2.01 m. This extremely negative balance continued a trend of negative balance years beginning in 1977. Air temperature (at 1,615 m and 1,867 m), barometric pressure, precipitation, and runoff from this glacier basin and an adjacent non-glacierized basin were also continuously measured. This report makes all these data, in tabular, graphical, and machine-readable forms, available to users.

  4. Accounting for minor storage terms in an attempt to close the measured surface energy balance over a winter wheat field in Southwest Germany

    NASA Astrophysics Data System (ADS)

    Eshonkulov, Ravshan; Poyda, Arne; Ingwersen, Joachim; Streck, Thilo

    2016-04-01

    Studies of energy and water exchange between the land surface and the atmospheric boundary layer are important to understand weather dynamics and climate change. Energy and water fluxes were measured on a winter wheat field in Kraichgau, Southern Germany, using the eddy covariance (EC) method. It is well known that EC measurements suffer from incomplete closure of the energy budget. In addition to the common ground heat flux measurements we measured heat storage in soil and the wheat canopy using high-precision temperature loggers within the EC footprint. Ground heat flux was re-calculated by calorimetric and harmonic analysis. First results obtained by the two methods will be compared. Based on measured data we calculated the contribution of photosynthesis, the air heat storage inside the canopy as well as the atmospheric moisture change to the energy budget. Our results show that accounting for minor storage terms improves the closure of the energy budget, but only to a limited extent. Further investigations will be necessary to identify additional sources of the energy gap typical for EC measurements.

  5. High-Intensity Sweeteners and Energy Balance

    PubMed Central

    Swithers, Susan E.; Martin, Ashley A.; Davidson, Terry L.

    2010-01-01

    Recent epidemiological evidence points to a link between a variety of negative health outcomes (e.g. metabolic syndrome, diabetes and cardiovascular disease) and the consumption of both calorically sweetened beverages and beverages sweetened with high-intensity, non-caloric sweeteners. Research on the possibility that non-nutritive sweeteners promote food intake, body weight gain, and metabolic disorders has been hindered by the lack of a physiologically-relevant model that describes the mechanistic basis for these outcomes. We have suggested that based on Pavlovian conditioning principles, consumption of non-nutritive sweeteners could result in sweet tastes no longer serving as consistent predictors of nutritive postingestive consequences. This dissociation between the sweet taste cues and the caloric consequences could lead to a decrease in the ability of sweet tastes to evoke physiological responses that serve to regulate energy balance. Using a rodent model, we have found that intake of foods or fluids containing non-nutritive sweeteners was accompanied by increased food intake, body weight gain, accumulation of body fat, and weaker caloric compensation, compared to consumption of foods and fluids containing glucose. Our research also provided evidence consistent with the hypothesis that these effects of consuming saccharin may be associated with a decrement in the ability of sweet taste to evoke thermic responses, and perhaps other physiological, cephalic phase, reflexes that are thought to help maintain energy balance. PMID:20060008

  6. High-intensity sweeteners and energy balance.

    PubMed

    Swithers, Susan E; Martin, Ashley A; Davidson, Terry L

    2010-04-26

    Recent epidemiological evidence points to a link between a variety of negative health outcomes (e.g. metabolic syndrome, diabetes and cardiovascular disease) and the consumption of both calorically sweetened beverages and beverages sweetened with high-intensity, non-caloric sweeteners. Research on the possibility that non-nutritive sweeteners promote food intake, body weight gain, and metabolic disorders has been hindered by the lack of a physiologically-relevant model that describes the mechanistic basis for these outcomes. We have suggested that based on Pavlovian conditioning principles, consumption of non-nutritive sweeteners could result in sweet tastes no longer serving as consistent predictors of nutritive postingestive consequences. This dissociation between the sweet taste cues and the caloric consequences could lead to a decrease in the ability of sweet tastes to evoke physiological responses that serve to regulate energy balance. Using a rodent model, we have found that intake of foods or fluids containing non-nutritive sweeteners was accompanied by increased food intake, body weight gain, accumulation of body fat, and weaker caloric compensation, compared to consumption of foods and fluids containing glucose. Our research also provided evidence consistent with the hypothesis that these effects of consuming saccharin may be associated with a decrement in the ability of sweet taste to evoke thermic responses, and perhaps other physiological, cephalic phase, reflexes that are thought to help maintain energy balance. PMID:20060008

  7. Can an energy balance model provide additional constraints on how to close the energy imbalance?

    PubMed

    Wohlfahrt, Georg; Widmoser, Peter

    2013-02-15

    Elucidating the causes for the energy imbalance, i.e. the phenomenon that eddy covariance latent and sensible heat fluxes fall short of available energy, is an outstanding problem in micrometeorology. This paper tests the hypothesis that the full energy balance, through incorporation of additional independent measurements which determine the driving forces of and resistances to energy transfer, provides further insights into the causes of the energy imbalance and additional constraints on energy balance closure options. Eddy covariance and auxiliary data from three different biomes were used to test five contrasting closure scenarios. The main result of our study is that except for nighttime, when fluxes were low and noisy, the full energy balance generally did not contain enough information to allow further insights into the causes of the imbalance and to constrain energy balance closure options. Up to four out of the five tested closure scenarios performed similarly and in up to 53% of all cases all of the tested closure scenarios resulted in plausible energy balance values. Our approach may though provide a sensible consistency check for eddy covariance energy flux measurements. PMID:24465072

  8. Observations in energy balance in man during spaceflight

    NASA Technical Reports Server (NTRS)

    Rambaut, P. C.; Leach, C. S.; Leonard, J. I.

    1977-01-01

    An investigation was undertaken of the changes in metabolic energy balance which occur in weightlessness. Daily energy intake was determined each day throughout the 28-, 59-, and 84-day flights for each of the nine Skylab astronauts. The energy content of the urine and feces was also measured. Changes in body composition were inferred from measurements of weight, volume, water, and total exchangeable potassium before and after flight. During flight, changes were followed by a daily measurement of body mass and by metabolic balance. Examination of the data reveal losses in body weight during the 1st and 2nd months of flight, a loss in body water and protein during the 1st month and a loss of fat during the 1st, 2nd, and 3rd months of flight. The energy input was about 41.7 kcal/kg per day on the ground, and 43.7 kcal/kg per day after 3 months in space. The increase in net energy input of about 1.6% per month is significant (P less than 0.05). When the net energy input is expressed on the basis of total body potassium, the increase in the resulting normalized net energy input of about 3.7% per month is also significant (P less than 0.05).

  9. Components of surface energy balance in a temperate grassland ecosystem

    NASA Technical Reports Server (NTRS)

    Kim, Joon; Verma, Shashi B.

    1990-01-01

    Eddy correlation measurements of moisture, heat, and momentum fluxes were made at a tall grassland site in Kansas during the First International Satellite Land Surface Climatology Project Field Experiment. The fluxes, stomatal conductance, and leaf water potential of three grass species are reported. The species are big bluestem, indiangrass, and switchgrass. The daily and seasonal variation in the components of the surface energy balance and the aerodynamic and canopy surface conductances for prairie vegetation are examined.

  10. Exercise, energy balance and the shift worker.

    PubMed

    Atkinson, Greg; Fullick, Sarah; Grindey, Charlotte; Maclaren, Don

    2008-01-01

    Shift work is now common in society and is not restricted to heavy industry or emergency services, but is increasingly found amongst 'white collar' occupations and the growing number of service industries. Participation in shift work is associated with increased body mass index, prevalence of obesity and other health problems. We review the behavioural and biological disturbances that occur during shift work and discuss their impact on leisure-time physical activity and energy balance. Shift work generally decreases opportunities for physical activity and participation in sports. For those shift workers who are able to exercise, subjective and biological responses can be altered if the exercise is taken at unusual times of day and/or if the shift worker is sleep deprived. These altered responses may in turn impact on the longer-term adherence to an exercise programme. The favourable effects of exercise on body mass control and sleep quality in shift workers have not been confirmed. Similarly, recent reports of relationships between sleep duration and obesity have not been examined in a shift work context. There is no evidence that exercise can mediate certain circadian rhythm characteristics (e.g. amplitude or timing) for improved tolerance to shift work. Total energy intake and meal composition do not seem to be affected by participation in shift work. Meal frequency is generally reduced but snacking is increased on the night shift. Unavailability of preferred foods in the workplace, a lack of time, and a reduced desire to eat at night explain these findings. 'Normal' eating habits with the family are also disrupted. The metabolic responses to food are also altered by shift work-mediated disruptions to sleep and circadian rhythms. Whether any interactions on human metabolism exist between timing or content of food intake and physical activity during shift work is not known at present. There are very few randomized controlled studies on the efficacy of physical

  11. Exercise, Energy Balance and the Shift Worker

    PubMed Central

    Atkinson, Greg; Fullick, Sarah; Grindey, Charlotte; Maclaren, Don; Waterhouse, Jim

    2009-01-01

    Shift work is now common in society and is not restricted to heavy industry or emergency services, but is increasingly found amongst ‘white collar’ occupations and the growing number of service industries. Participation in shift work is associated with increased body mass index, prevalence of obesity and other health problems. We review the behavioural and biological disturbances that occur during shift work and discuss their impact on leisure-time physical activity and energy balance. Shift work generally decreases opportunities for physical activity and participation in sports. For those shift workers who are able to exercise, subjective and biological responses can be altered if the exercise is taken at unusual times of day and/or if the shift worker is sleep-deprived. These altered responses may in turn impact on the longer-term adherence to an exercise programme. The favourable effects of exercise on body mass control and sleep quality have not been confirmed in shift workers. Similarly, recent reports of relationships between sleep duration and obesity have not been examined in a shift work context. There is no evidence that exercise can mediate certain circadian rhythm characteristics (e.g. amplitude or timing) for improved tolerance to shift work. Total energy intake and meal composition do not seem to be affected by participation in shift work. Meal frequency is generally reduced but snacking is increased on the night shift. Unavailability of preferred foods in the workplace, a lack of time, and a reduced desire to eat at night explain these findings. ‘Normal’ eating habits with the family are also disrupted. The metabolic responses to food are also altered by shift work-mediated disruptions to sleep and circadian rhythms. Whether any interactions on human metabolism exist between timing or content of food intake and physical activity during shift work is not known at present. There are very few randomised controlled studies on the efficacy of

  12. 30 CFR 817.45 - Hydrologic balance: Sediment control measures.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Hydrologic balance: Sediment control measures. 817.45 Section 817.45 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT...-UNDERGROUND MINING ACTIVITIES § 817.45 Hydrologic balance: Sediment control measures. (a) Appropriate...

  13. 30 CFR 816.45 - Hydrologic balance: Sediment control measures.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 3 2011-07-01 2011-07-01 false Hydrologic balance: Sediment control measures. 816.45 Section 816.45 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT...-SURFACE MINING ACTIVITIES § 816.45 Hydrologic balance: Sediment control measures. (a) Appropriate...

  14. 30 CFR 816.45 - Hydrologic balance: Sediment control measures.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 3 2012-07-01 2012-07-01 false Hydrologic balance: Sediment control measures. 816.45 Section 816.45 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT...-SURFACE MINING ACTIVITIES § 816.45 Hydrologic balance: Sediment control measures. (a) Appropriate...

  15. 30 CFR 816.45 - Hydrologic balance: Sediment control measures.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Hydrologic balance: Sediment control measures. 816.45 Section 816.45 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT...-SURFACE MINING ACTIVITIES § 816.45 Hydrologic balance: Sediment control measures. (a) Appropriate...

  16. 30 CFR 817.45 - Hydrologic balance: Sediment control measures.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 3 2013-07-01 2013-07-01 false Hydrologic balance: Sediment control measures. 817.45 Section 817.45 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT...-UNDERGROUND MINING ACTIVITIES § 817.45 Hydrologic balance: Sediment control measures. (a) Appropriate...

  17. 30 CFR 816.45 - Hydrologic balance: Sediment control measures.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 3 2013-07-01 2013-07-01 false Hydrologic balance: Sediment control measures. 816.45 Section 816.45 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT...-SURFACE MINING ACTIVITIES § 816.45 Hydrologic balance: Sediment control measures. (a) Appropriate...

  18. 30 CFR 816.45 - Hydrologic balance: Sediment control measures.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 3 2014-07-01 2014-07-01 false Hydrologic balance: Sediment control measures. 816.45 Section 816.45 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT...-SURFACE MINING ACTIVITIES § 816.45 Hydrologic balance: Sediment control measures. (a) Appropriate...

  19. 30 CFR 817.45 - Hydrologic balance: Sediment control measures.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 3 2012-07-01 2012-07-01 false Hydrologic balance: Sediment control measures. 817.45 Section 817.45 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT...-UNDERGROUND MINING ACTIVITIES § 817.45 Hydrologic balance: Sediment control measures. (a) Appropriate...

  20. 30 CFR 817.45 - Hydrologic balance: Sediment control measures.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 3 2011-07-01 2011-07-01 false Hydrologic balance: Sediment control measures. 817.45 Section 817.45 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT...-UNDERGROUND MINING ACTIVITIES § 817.45 Hydrologic balance: Sediment control measures. (a) Appropriate...

  1. 30 CFR 817.45 - Hydrologic balance: Sediment control measures.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 3 2014-07-01 2014-07-01 false Hydrologic balance: Sediment control measures. 817.45 Section 817.45 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT...-UNDERGROUND MINING ACTIVITIES § 817.45 Hydrologic balance: Sediment control measures. (a) Appropriate...

  2. Evaporation Measured In Situ by Sensible Heat Balance

    NASA Astrophysics Data System (ADS)

    Heitman, Josh; Xiao, Xinhua; Sauer, Thomas; Ren, Tusheng; Horton, Robert

    2016-04-01

    Measurement of evaporation independent from evapotranspiration remains a major challenge for quantifying water fluxes in the soil-plant-atmosphere system. Methodology based on soil sensible heat balance (SHB) has been developed to measure in situ, sub-surface soil water evaporation with heat-pulse sensors. Soil sensible heat flux and change in heat storage are measured at multiple depths near the soil surface, and a simple energy balance calculation is applied to determine latent heat flux (i.e., evaporation) as a residual. For bare surface conditions, comparison of SHB to micrometerological (Bowen ratio) and micro-lysimeter approaches indicates strong correlation (r2 = 0.96) with near 1:1 relationship and root mean square error of 0.2 mm/d. Recent efforts to apply SHB methodology in row-crop (maize) and vineyard systems demonstrate the potential for quantifying evaporation separate from evapotranspiration. For the maize system, SHB evaporation estimates differed from micro-lysimeters by < 0.2 mm/d. The SHB approach is one of very few measurement approaches that may be applied to partition evaporation from evapotranspiration.

  3. Measurement of balance function and community participation in stroke survivors

    PubMed Central

    Ahn, Sinae

    2016-01-01

    [Purpose] This study aimed to investigate the relationship between balance function and community participation in stroke survivors. [Subjects and Methods] Sixty-three patients diagnosed with hemiparetic stroke participated in this study (36 males, 27 females, aged 58.6 ± 15.2 years). The participants were assessed for balance function and their level of participation in the community, using activity card sorting and the Berg Balance Scale. A regression analysis was used to identify the influence of balance function on instrumental activities of daily living and leisure and social activities. [Results] The results of the regression analysis indicated that balance function measured by using the Berg Balance Scale affected community participation of patients with hemiparetic stroke. Participation in instrumental activities of daily living and leisure and social activities was affected by balance function. [Conclusion] This study provides useful information for designing efficient programs and identifying their effectiveness for enhancement of community participation in stroke survivors.

  4. Energy expenditure and balance during spaceflight on the space shuttle

    NASA Technical Reports Server (NTRS)

    Stein, T. P.; Leskiw, M. J.; Schluter, M. D.; Hoyt, R. W.; Lane, H. W.; Gretebeck, R. E.; LeBlanc, A. D.

    1999-01-01

    The objectives of this study were as follows: 1) to measure human energy expenditure (EE) during spaceflight on a shuttle mission by using the doubly labeled water (DLW) method; 2) to determine whether the astronauts were in negative energy balance during spaceflight; 3) to use the comparison of change in body fat as measured by the intake DLW EE, 18O dilution, and dual energy X-ray absorptiometry (DEXA) to validate the DLW method for spaceflight; and 4) to compare EE during spaceflight against that found with bed rest. Two experiments were conducted: a flight experiment (n = 4) on the 16-day 1996 life and microgravity sciences shuttle mission and a 6 degrees head-down tilt bed rest study with controlled dietary intake (n = 8). The bed rest study was designed to simulate the flight experiment and included exercise. Two EE determinations were done before flight (bed rest), during flight (bed rest), and after flight (recovery). Energy intake and N balance were monitored for the entire period. Results were that body weight, water, fat, and energy balance were unchanged with bed rest. For the flight experiment, decreases in weight (2.6 +/- 0.4 kg, P < 0.05) and N retention (-2. 37 +/- 0.45 g N/day, P < 0.05) were found. Dietary intake for the four astronauts was reduced in flight (3,025 +/- 180 vs. 1,943 +/- 179 kcal/day, P < 0.05). EE in flight was 3,320 +/- 155 kcal/day, resulting in a negative energy balance of 1,355 +/- 80 kcal/day (-15. 7 +/- 1.0 kcal. kg-1. day-1, P < 0.05). This corresponded to a loss of 2.1 +/- 0.4 kg body fat, which was within experimental error of the fat loss determined by 18O dilution (-1.4 +/- 0.5 kg) and DEXA (-2.4 +/- 0.4 kg). All three methods showed no change in body fat with bed rest. In conclusion, 1) the DLW method for measuring EE during spaceflight is valid, 2) the astronauts were in severe negative energy balance and oxidized body fat, and 3) in-flight energy (E) requirements can be predicted from the equation: E = 1.40 x resting

  5. Energy Balance Models and Planetary Dynamics

    NASA Technical Reports Server (NTRS)

    Domagal-Goldman, Shawn

    2012-01-01

    We know that planetary dynamics can have a significant affect on the climate of planets. Planetary dynamics dominate the glacial-interglacial periods on Earth, leaving a significant imprint on the geological record. They have also been demonstrated to have a driving influence on the climates of other planets in our solar system. We should therefore expect th.ere to be similar relationships on extrasolar planets. Here we describe a simple energy balance model that can predict the growth and thickness of glaciers, and their feedbacks on climate. We will also describe model changes that we have made to include planetary dynamics effects. This is the model we will use at the start of our collaboration to handle the influence of dynamics on climate.

  6. Measuring pictorial balance perception at first glance using Japanese calligraphy.

    PubMed

    Gershoni, Sharon; Hochstein, Shaul

    2011-01-01

    According to art theory, pictorial balance acts to unify picture elements into a cohesive composition. For asymmetrical compositions, balancing elements is thought to be similar to balancing mechanical weights in a framework of symmetry axes. Assessment of preference for balance (APB), based on the symmetry-axes framework suggested in Arnheim R, 1974 Art and Visual Perception: A Psychology of the Creative Eye (Berkeley, CA: University of California Press), successfully matched subject balance ratings of images of geometrical shapes over unlimited viewing time. We now examine pictorial balance perception of Japanese calligraphy during first fixation, isolated from later cognitive processes, comparing APB measures with results from balance-rating and comparison tasks. Results show high between-task correlation, but low correlation with APB. We repeated the rating task, expanding the image set to include five rotations of each image, comparing balance perception of artist and novice participant groups. Rotation has no effect on APB balance computation but dramatically affects balance rating, especially for art experts. We analyze the variety of rotation effects and suggest that, rather than depending on element size and position relative to symmetry axes, first fixation balance processing derives from global processes such as grouping of lines and shapes, object recognition, preference for horizontal and vertical elements, closure, and completion, enhanced by vertical symmetry. PMID:23145242

  7. Covering Conflict and Controversy: Measuring Balance, Fairness, Defamation.

    ERIC Educational Resources Information Center

    Simon, Todd F.; And Others

    1989-01-01

    Measures balance, fairness, and defamation in local stories containing controversy and covering law enforcement, education, local government, and business. Finds that most stories lack balance and that the opposing side of the controversy was not contacted in 28 percent of the instances. (RS)

  8. Evapotranspiration: Mass balance measurements compared with flux estimation methods

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Evapotranspiration (ET) may be measured by mass balance methods and estimated by flux sensing methods. The mass balance methods are typically restricted in terms of the area that can be represented (e.g., surface area of weighing lysimeter (LYS) or equivalent representative area of neutron probe (NP...

  9. Introducing the Balanced Scorecard: Creating Metrics to Measure Performance

    ERIC Educational Resources Information Center

    Gumbus, Andra

    2005-01-01

    This experiential exercise presents the concept of the Balanced Scorecard (BSC) and applies it in a university setting. The Balanced Scorecard was developed 12 years ago and has grown in popularity and is used by more than 50% of the Fortune 500 companies as a performance measurement and strategic management tool. The BSC expands the traditional…

  10. Toward energy-aware balancing of mobile graphics

    NASA Astrophysics Data System (ADS)

    Stavrakis, Efstathios; Polychronis, Marios; Pelekanos, Nectarios; Artusi, Alessandro; Hadjichristodoulou, Panayiotis; Chrysanthou, Yiorgos

    2015-03-01

    In the area of computer graphics the design of hardware and software has primarily been driven by the need to achieve maximum performance. Energy efficiency was usually neglected, assuming that a stable always-on power source was available. However, the advent of the mobile era has brought into question these ideas and designs in computer graphics since mobile devices are both limited by their computational capabilities and their energy sources. Aligned to this emerging need in computer graphics for energy efficiency analysis we have setup a software framework to obtain power measurements from 3D scenes using off-the-shelf hardware that allows for sampling the energy consumption over the power rails of the CPU and GPU. Our experiments include geometric complexity, texture resolution and common CPU and GPU workloads. The goal of this work is to combine the knowledge obtained from these measurements into a prototype energy-aware balancer of processing resources. The balancer dynamically selects the rendering parameters and uses a simple framerate-based dynamic frequency scaling strategy. Our experimental results demonstrate that our power saving framework can achieve savings of approximately 40%.

  11. Energy balance for uranium recovery from seawater

    SciTech Connect

    Schneider, E.; Lindner, H.

    2013-07-01

    The energy return on investment (EROI) of an energy resource is the ratio of the energy it ultimately produces to the energy used to recover it. EROI is a key viability measure for a new recovery technology, particularly in its early stages of development when financial cost assessment would be premature or highly uncertain. This paper estimates the EROI of uranium recovery from seawater via a braid adsorbent technology. In this paper, the energy cost of obtaining uranium from seawater is assessed by breaking the production chain into three processes: adsorbent production, adsorbent deployment and mooring, and uranium elution and purification. Both direct and embodied energy inputs are considered. Direct energy is the energy used by the processes themselves, while embodied energy is used to fabricate their material, equipment or chemical inputs. If the uranium is used in a once-through fuel cycle, the braid adsorbent technology EROI ranges from 12 to 27, depending on still-uncertain performance and system design parameters. It is highly sensitive to the adsorbent capacity in grams of U captured per kg of adsorbent as well as to potential economies in chemical use. This compares to an EROI of ca. 300 for contemporary terrestrial mining. It is important to note that these figures only consider the mineral extraction step in the fuel cycle. At a reference performance level of 2.76 g U recovered per kg adsorbent immersed, the largest energy consumers are the chemicals used in adsorbent production (63%), anchor chain mooring system fabrication and operations (17%), and unit processes in the adsorbent production step (12%). (authors)

  12. Balancing Energy-Water-Agriculture Tradeoffs

    NASA Astrophysics Data System (ADS)

    Tidwell, V.; Hightower, M.

    2011-12-01

    In 2005 thermoelectric power production accounted for withdrawals of 201 billion gallons per day (BGD) representing 49% of total withdrawals, making it the largest user of water in the U.S. In terms of freshwater withdrawals thermoelectric power production is the second largest user at 140 BGD just slightly behind freshwater withdrawals for irrigation (USGS 2005). In contrast thermoelectric water consumption is projected at 3.7 BGD or about 3% of total U.S. consumption (NETL 2008). Thermoelectric water consumption is roughly equivalent to that of all other industrial demands and represents one of the fastest growing sectors since 1980. In fact thermoelectric consumption is projected to increase by 42 to 63% between 2005 and 2030 (NETL 2008). Agricultural water consumption has remained relatively constant at roughly 84 BGD or about 84% of total water consumption. While long-term regional electricity transmission planning has traditionally focused on cost, infrastructure utilization, and reliability, issues concerning the availability of water represent an emerging issue. Thermoelectric expansion must be considered in the context of competing demands from other water use sectors balanced with fresh and non-fresh water supplies subject to climate variability. Often such expansion targets water rights transfers from irrigated agriculture. To explore evolving tradeoffs an integrated energy-water-agriculture decision support system has been developed. The tool considers alternative expansion scenarios for the future power plant fleet and the related demand for water. The availability of fresh and non-fresh water supplies, subject to local institutional controls is then explored. This paper addresses integrated energy-water-agriculture planning in the western U.S. and Canada involving an open and participatory process comprising decision-makers, regulators, utility and water managers.

  13. Alterations in energy balance following exenatide administration.

    PubMed

    Bradley, David P; Kulstad, Roger; Racine, Natalie; Shenker, Yoram; Meredith, Melissa; Schoeller, Dale A

    2012-10-01

    Exenatide is a medication similar in structure and effect to native glucagon-like peptide-1, an incretin hormone with glucose-lowering properties. The aim of the study was to measure the change in total energy expenditure (TEE) and body composition during exenatide administration and by deduction the relative contributions of energy expenditure and energy intake to exenatide-induced weight loss. Forty-five obese (body mass index, 30-40 kg·m⁻²) subjects were identified. After exclusion criteria application, 28 subjects entered into the study and 18 subjects (12 female, 6 male) completed the study, which consisted of 6 visits over 14 weeks and injection of exenatide for an average of 84 ± 5 days. Respiratory gas analysis and doubly labeled water measurements were performed before initiation of exenatide and after approximately 3 months of exenatide administration. The average weight loss from the beginning of injection period to the end of the study in completed subjects was 2.0 ± 2.8 kg (p = 0.01). Fat mass declined by 1.3 ± 1.8 kg (p = 0.01) while the fat-free mass trended downward but was not significant (0.8 ± 2.2 kg, p = 0.14). There was no change in weight-adjusted TEE (p = 0.20), resting metabolic rate (p = 0.51), or physical activity energy expenditure (p = 0.38) and no change in the unadjusted thermic effect of a meal (p = 0.37). The significant weight loss because of exenatide administration was thus the result of decreasing energy intake. In obese nondiabetic subjects, exenatide administration did not increase TEE and by deduction the significant weight loss and loss of fat mass was due to decreased energy intake. PMID:22735035

  14. Energy and Mass Balance At Gran Campo Nevado, Patagonia, Chile

    NASA Astrophysics Data System (ADS)

    Schneider, C.; Kilian, R.; Casassa, G.

    The Gran Campo Nevado (GCN) Ice Cap on Peninsula Muñoz Gamero, Chile, is lo- cated in the southernmost part of the Patagonian Andes at 53S. It comprises an ice cap and numerous outlet glaciers which mostly end in proglacial lakes at sea level. The total ice covered area sums up to approximately 250 km2. GCN forms the only major ice body between the Southern Patagonian Icefield and the Street of Magallan. Its almost unique location in the zone of the all-year westerlies makes it a region of key interest in terms of glacier and climate change studies of the westwind zone of the Southern Hemisphere. Mean annual temperature of approximately +5C at sea level and high precipitation of about 8.000 mm per year lead to an extreme turn-over of ice mass from the accumulation area of the GCN Ice Cap to the ablation areas of the outlet glaciers. Since October 1999 an automated weather station (AWS) is run continuously in the area at Bahia Bahamondes for monitoring climate parameters. From February to April 2000 an additional AWS was operated on Glaciar Lengua a small outlet glacier of GCN to the north-west. Ablation has been measured at stakes during the same pe- riod. The aim of this study, was to obtain point energy and mass balance on Glaciar Lengua. The work was conducted as part of the international and interdisciplinary working group SGran Campo NevadoT and supported by the German Research Foun- & cedil;dation (DFG). Energy balance was calculated using the bulk approach formulas and calibrated to the measured ablation. It turns out, that sensible heat transfer is the major contribution to the energy balance. Since high cloud cover rates prevail, air tempera- ture is the key factor for the energy balance of the glacier. Despite high rain fall rates, energy input from rain fall is of only minor importance to the overall energy balance. From the energy balance computed, it was possible to derive summer-time degree-day factors for Glaciar Lengua. With data from the nearby

  15. The balanced scorecard--measures that drive performance.

    PubMed

    Kaplan, R S; Norton, D P

    1992-01-01

    Frustrated by the inadequacies of traditional performance measurement systems, some managers have abandoned financial measures like return on equity and earnings per share. "Make operational improvements and the numbers will follow," the argument goes. But managers do not want to choose between financial and operational measures. Executives want a balanced presentation of measures that allow them to view the company from several perspectives simultaneously. During a year-long research project with 12 companies at the leading edge of performance measurement, the authors developed a "balanced scorecard," a new performance measurement system that gives top managers a fast but comprehensive view of the business. The balanced scorecard includes financial measures that tell the results of actions already taken. And it complements those financial measures with three sets of operational measures having to do with customer satisfaction, internal processes, and the organization's ability to learn and improve--the activities that drive future financial performance. Managers can create a balanced scorecard by translating their company's strategy and mission statements into specific goals and measures. To create the part of the scorecard that focuses on the customer perspective, for example, executives at Electronic Circuits Inc. established general goals for customer performance: get standard products to market sooner, improve customers' time-to-market, become customers' supplier of choice through partnerships, and develop innovative products tailored to customer needs. Managers translated these elements of strategy into four specific goals and identified a measure for each. PMID:10119714

  16. Dual strain gage balance system for measuring light loads

    NASA Technical Reports Server (NTRS)

    Roberts, Paul W. (Inventor)

    1991-01-01

    A dual strain gage balance system for measuring normal and axial forces and pitching moment of a metric airfoil model imparted by aerodynamic loads applied to the airfoil model during wind tunnel testing includes a pair of non-metric panels being rigidly connected to and extending towards each other from opposite sides of the wind tunnel, and a pair of strain gage balances, each connected to one of the non-metric panels and to one of the opposite ends of the metric airfoil model for mounting the metric airfoil model between the pair of non-metric panels. Each strain gage balance has a first measuring section for mounting a first strain gage bridge for measuring normal force and pitching moment and a second measuring section for mounting a second strain gage bridge for measuring axial force.

  17. Alternative energy balances for Bulgaria to mitigate climate change

    NASA Astrophysics Data System (ADS)

    Christov, Christo

    1996-01-01

    Alternative energy balances aimed to mitigate greenhouse gas (GHG) emissions are developed as alternatives to the baseline energy balance. The section of mitigation options is based on the results of the GHG emission inventory for the 1987 1992 period. The energy sector is the main contributor to the total CO2 emissions of Bulgaria. Stationary combustion for heat and electricity production as well as direct end-use combustion amounts to 80% of the total emissions. The parts of the energy network that could have the biggest influence on GHG emission reduction are identified. The potential effects of the following mitigation measures are discussed: rehabilitation of the combustion facilities currently in operation; repowering to natural gas; reduction of losses in thermal and electrical transmission and distribution networks; penetration of new combustion technologies; tariff structure improvement; renewable sources for electricity and heat production; wasteheat utilization; and supply of households with natural gas to substitute for electricity in space heating and cooking. The total available and the achievable potentials are estimated and the implementation barriers are discussed.

  18. [Energy balance, body composition and the female athlete triad syndrome].

    PubMed

    Weinstein, Yitzhak; Weinstein, Ayelet

    2012-02-01

    With the rising participation of women in sports events, the prevalence of eating disorders and the female athlete triad (FTS), a syndrome of disordered eating, amenorrhea, and osteoporosis, have also increased in recent years. FTS is often seen in sports that emphasize thinness (e.g. gymnastics, figure skating and dancing) and also in endurance events. Elements of the FTS are pathophysiologically linked, leading to several disease risks and even to mortality. In spite of the considerable knowledge about sports nutrition, there is no consensus as to the correct nutrition regime for the female athlete. There is consensus that minimizing fluctuations in 'target-body-weight' is an indication of a long-term energy balance. Female athletes (e.g. in endurance events and gymnastics) are less likely to achieve the recommended carbohydrates (CHO) and fat consumption due to chronic or episodic constraints of total energy intake while struggling to achieve or maintain low levels of body fat. It is recommended that dietary CHO and fat content be increased to preserve fat-free mass thus enhancing health and performance. Energy balance should also be maintained during recesses. Furthermore, within-day episodes of energy deficits/surplus (measured by the frequency and/or magnitude of the episodes) should be monitored and treated closest to the time of the incidents. PMID:22741211

  19. Surface heat flux data from energy balance Bowen ratio systems

    SciTech Connect

    Wesely, M.L.; Cook, D.R.; Coulter, R.L.

    1995-06-01

    The 350 {times} 400 km domain of the Atmospheric Radiation Measurement (ARM) Program`s Clouds and Radiation Testbed (CART) site in the southern Great Plains is equipped with 10 energy balance Bowen ratio (EBBR) stations at grassland sites; they measure the net radiation, ground heat flux, and temperature/humidity differences between 1.0 and 2.0 m heights. The latter differences provide estimates of the geometric Bowen ratio ({beta}), which are used to estimate sensible and latent heat fluxes. This paper addresses the problem that occurs when the value of {beta} is near {minus}1 and to demonstrate the effectiveness of the EBBR stations in collecting energy flux data at the CART site.

  20. Investigation of the Impacts of Measured and Calculated Radiation Balance Components on Evapotranspiration

    NASA Astrophysics Data System (ADS)

    Akataş, Nilcan; Yeşilköy, Serhan; Şaylan, Levent

    2016-04-01

    Determination of surface energy balance over agricultural lands plays a crucial role to better investigation of sustainable agriculture and food security which are related to evapotranspiration. Surface energy balance components that include net shortwave and longwave radiation depend on surface conditions like surface albedo and climate of a region. Surface albedo is ratio between reflected longwave radiation and incoming shortwave radiation. There are many different crops in agriculture ecosystem. Thus, surface energy balance components vary by vegetation surfaces. Net radiation is most important component of surface energy balance which is difference between net shortwave and longwave radiation. These are calculated by commonly used equations and applied to the FAO Penman& Monteith equation using meteorological stations' data located in cities. However, there are differences between urban areas and agricultural ecosystems. This situation causes to the calculation errors. In this research, it is aimed to investigate the changes between estimated and measured surface energy balance components which are estimated by meteorological stations' data in the urban area and measurements from an rural area over winter wheat surface 2014-2015 growing season in Thrace Region located in the Northwestern part of Turkey, Kırklareli city. Keywords: Surface energy balance, winter wheat, FAO Penman-Monteith, Kırklareli/Turkey

  1. Energy balance and dietary habits of America's Cup sailors.

    PubMed

    Bernardi, Elisabetta; Delussu, Sofia A; Quattrini, Filippo M; Rodio, Angelo; Bernardi, Marco

    2007-08-01

    This research, which was conducted with crew members of an America's Cup team, had the following objectives: (a) to assess energy expenditure and intake during training; (b) to evaluate the sailors' diet, and (c) to identify any dietary flaws to determine the appropriate intake of nutrients, correct possible dietary mistakes, and improve their food habits. Energy expenditure was estimated on 15 sailors using direct measurements (oxygen consumption) and a 3-day activity questionnaire. Oxygen consumption was measured on sailors during both on-water America's Cup sailing training and dry-land fitness training. Composition of the diet was estimated using a 3-day food record. Average daily energy expenditure of the sailors ranged from 14.95 to 24.4 MJ, depending on body mass and boat role, with the highest values found in grinders and mastmen. Daily energy intake ranged from 15.7 to 23.3 MJ (from +6% to -18% of energy expenditure). The contributions of carbohydrate, protein, and fat to total energy intake were 43%, 18%, and 39% respectively, values that are not in accord with the recommended guidelines for athletes. Our results show the importance of assessing energy balance and food habits for America's Cup sailors performing different roles. The practical outcome of this study was that the sailors were given dietary advice and prescribed a Mediterranean diet, explained in specific nutrition lectures. PMID:17613739

  2. Interplanetary magnetic flux - Measurement and balance

    NASA Technical Reports Server (NTRS)

    Mccomas, D. J.; Gosling, J. T.; Phillips, J. L.

    1992-01-01

    A new method for determining the approximate amount of magnetic flux in various solar wind structures in the ecliptic (and solar rotation) plane is developed using single-spacecraft measurements in interplanetary space and making certain simplifying assumptions. The method removes the effect of solar wind velocity variations and can be applied to specific, limited-extent solar wind structures as well as to long-term variations. Over the 18-month interval studied, the ecliptic plane flux of coronal mass ejections was determined to be about 4 times greater than that of HFDs.

  3. Serotonin and the regulation of mammalian energy balance

    PubMed Central

    Donovan, Michael H.; Tecott, Laurence H.

    2013-01-01

    Maintenance of energy balance requires regulation of the amount and timing of food intake. Decades of experiments utilizing pharmacological and later genetic manipulations have demonstrated the importance of serotonin signaling in this regulation. Much progress has been made in recent years in understanding how central nervous system (CNS) serotonin systems acting through a diverse array of serotonin receptors impact feeding behavior and metabolism. Particular attention has been paid to mechanisms through which serotonin impacts energy balance pathways within the hypothalamus. How upstream factors relevant to energy balance regulate the release of hypothalamic serotonin is less clear, but work addressing this issue is underway. Generally, investigation into the central serotonergic regulation of energy balance has had a predominantly “hypothalamocentric” focus, yet non-hypothalamic structures that have been implicated in energy balance regulation also receive serotonergic innervation and express multiple subtypes of serotonin receptors. Moreover, there is a growing appreciation of the diverse mechanisms through which peripheral serotonin impacts energy balance regulation. Clearly, the serotonergic regulation of energy balance is a field characterized by both rapid advances and by an extensive and diverse set of central and peripheral mechanisms yet to be delineated. PMID:23543912

  4. ANALYSIS OF WATER AND ENERGY FLUXES USING SATELLITE, ENERGY BALANCE MODELING AND OBSERVATIONS (Invited)

    NASA Astrophysics Data System (ADS)

    Irmak, A.

    2009-12-01

    Surface energy fluxes, including net radiation (Rn), sensible heat (H), latent heat (LE), and soil heat flux (G) are critical in surface energy balance of any terrain or landscapes. Estimation or measurement of these energy fluxes is important for completing the water balance in terrestrial ecosystems, and therefore accurately predicting the effects of global climate and land use change. The objectives of this study were to (1) use METRICtm (Mapping Evapotranspiration at high Resolution using Internalized Calibration) model for estimating land surface energy fluxes in Nebraska (NE) by utilizing satellite remote sensing data, (2) identify model bias in energy balance components compared with measurements from Bowen Ratio Energy Balance System (BREBS) in a subsurface drip-irrigated maize field in South-central Nebraska, and (3) understand the partitioning of available energy into latent heat for corn and soybean cropping systems at large scale. A total of 15 Landsat images were processed to estimate instantaneous surface energy fluxes at Landsat overpasses with METRIC model. Results showed that the model predictions of the surface energy fluxes and daily evapotranspiration were correlated well with the BREBS measurements. There is a need, however, to test the performance of the model with in-situ observations in other locations with different dataset before utilizing it for crucial water regulatory and policy decisions. The METRICtm approach illustrated how an ‘off-the-shelf’ model can be applied operationally over a significant time period and how that model behaves. The findings makes considerable contribution to our understanding of estimating land surface energy fluxes using remote sensing approach and experimentally describes the operational characteristics of METRICtm and presents its limitations.

  5. Top 10 research questions related to energy balance.

    PubMed

    Shook, Robin P; Hand, Gregory A; Blair, Steven N

    2014-03-01

    Obesity is the result of a mismatch between the amount of calories consumed and the amount of calories expended during an extended period of time. This relationship is described by the energy balance equation, which states the rate of change in energy storage depots in the body are equal to the rate of energy intake minus the rate of energy expenditure. Although this relationship may appear easy to understand based on simple mathematics, in reality, a variety of known and unknown systems influence the components of energy balance (energy storage, energy intake, energy expenditure). Clearly, if a complete understanding of energy balance was apparent, worldwide levels of obesity would not have reached pandemic proportions due to effective prevention and treatment strategies. The aim of the present article is to provide a brief overview of the components of energy balance and to identify 10 key topics and unanswered questions that would move the research field forward if addressed. These topics are intentionally diverse and range from general themes (e.g., methodological issues) to specific areas (e.g., intensity of exercise required to alter energy intake). Although this list is not meant to be exhaustive, it does provide a research agenda for scientists involved in the study of energy balance and recommendations for public health professionals developing obesity interventions. PMID:24749236

  6. Intelligent Cooperative MAC Protocol for Balancing Energy Consumption

    NASA Astrophysics Data System (ADS)

    Wu, S.; Liu, K.; Huang, B.; Liu, F.

    To extend the lifetime of wireless sensor networks, we proposed an intelligent balanced energy consumption cooperative MAC protocol (IBEC-CMAC) based on the multi-node cooperative transmission model. The protocol has priority to access high-quality channels for reducing energy consumption of each transmission. It can also balance the energy consumption among cooperative nodes by using high residual energy nodes instead of excessively consuming some node's energy. Simulation results show that IBEC-CMAC can obtain longer network lifetime and higher energy utilization than direct transmission.

  7. Energy balance of trade in New Zealand

    SciTech Connect

    Stephenson, J.; Saha, G.P.

    1980-01-01

    This paper described an analysis made to determine the energy content of New Zealand's imported and exported goods for the year 1976 and the underlying energy imbalance of trade. It is shown that the energy content of imports is considerably higher than that of exports. The difference, expressed as a fraction of net energy consumption, is 16%. The significance of this energy imbalance for the nation's future energy policy and program is discussed. Finally, a normalized GNP/energy use per capita plot, taking into account indirect energy, is presented. Accounting for the energy content of nonenergy trade significantly changes New Zealand's position on the plot. 12 references, 1 figure, 3 tables.

  8. BALANCE

    DOEpatents

    Carmichael, H.

    1953-01-01

    A torsional-type analytical balance designed to arrive at its equilibrium point more quickly than previous balances is described. In order to prevent external heat sources creating air currents inside the balance casing that would reiard the attainment of equilibrium conditions, a relatively thick casing shaped as an inverted U is placed over the load support arms and the balance beam. This casing is of a metal of good thernnal conductivity characteristics, such as copper or aluminum, in order that heat applied to one portion of the balance is quickly conducted to all other sensitive areas, thus effectively preventing the fornnation of air currents caused by unequal heating of the balance.

  9. Analysis of energy balance models using the ERBE data set

    NASA Technical Reports Server (NTRS)

    Graves, Charles E.; North, Gerald R.

    1991-01-01

    A review of Energy Balance Models is presented. Results from the Outgoing Longwave Radiation parameterization are discussed. The albedo parameterizations and the consequences of the new parameterizations are examined.

  10. Teaching a Model-based Climatology Using Energy Balance Simulation.

    ERIC Educational Resources Information Center

    Unwin, David

    1981-01-01

    After outlining the difficulties of teaching climatology within an undergraduate geography curriculum, the author describes and evaluates the use of a computer assisted simulation to model surface energy balance and the effects of land use changes on local climate. (AM)

  11. Mass and energy balance in the 1973 August 9 flare

    NASA Technical Reports Server (NTRS)

    Dere, K. P.; Cook, J. W.

    1983-01-01

    The mass and energy balance of the thermal plasma during the decay phase of the solar flare of August 9, 1973, are studied. The analysis is based on observationally determined values for the differential emission measure, density, turbulent and bulk velocities, and physical dimensions. The total particle content and total thermal energy content of the flare plasmas with temperatures above 100,000 K and their variation with time are calculated. The particle loss and the energy losses through radiation, conduction, and convection are evaluated. The decrease in total particle content can be accounted for by the convective losses through the loop footprints at 100,000 K. Radiation is the dominant energy loss mechanism although convective losses at 100,000 K can be important. Conductive losses at 100,000 K into cooler chromospheric material appear to be negligible. The decrease in the total energy content during the decay phase is equal to the sum of the energy losses over the period of observation. No requirement is found for continued heating during the decay phase.

  12. Relations between environmental conditions and the ability to close the energy balance

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Any estimates of the transport of mass and energy at the surface must be analyzed to assess reliability and accuracy. A direct approach to this issue is problematic with eddy covariance measurements. However, one approach that offers a measure of self-consistency is to examine the energy balance clo...

  13. Neural Control of Energy Balance: Translating Circuits to Therapies

    PubMed Central

    Gautron, Laurent; Elmquist, Joel K.; Williams, Kevin W.

    2015-01-01

    Recent insights into the neural circuits controlling energy balance and glucose homeostasis have rekindled the hope for development of novel treatments for obesity and diabetes. However, many therapies contribute relatively modest beneficial gains with accompanying side effects, and the mechanisms of action for other interventions remain undefined. This Review summarizes current knowledge linking the neural circuits regulating energy and glucose balance with current and potential pharmacotherapeutic and surgical interventions for the treatment of obesity and diabetes. PMID:25815991

  14. Reciprocal Compensation to Changes in Dietary Intake and Energy Expenditure within the Concept of Energy Balance.

    PubMed

    Drenowatz, Clemens

    2015-09-01

    An imbalance between energy intake and energy expenditure is the primary etiology for excess weight gain. Increased energy expenditure via exercise and energy restriction via diet are commonly used approaches to induce weight loss. Such behavioral interventions, however, have generally resulted in a smaller than expected weight loss, which in part has been attributed to compensatory adaptations in other components contributing to energy balance. Current research points to a loose coupling between energy intake and energy expenditure on a daily basis, and evidence for long-term adaptations has been inconsistent. The lack of conclusive evidence on compensatory adaptations in response to alterations in energy balance can be attributed to differences in intervention type and study population. Physical activity (PA) levels may be reduced in response to aerobic exercise but not in response to resistance exercise. Furthermore, athletic and lean adults have been shown to increase their energy intake in response to exercise, whereas no such response was observed in obese adults. There is also evidence that caloric restriction is associated with a decline in PA. Generally, humans seem to be better equipped to defend against weight loss than avoid weight gain, but results also show a large individual variability. Therefore, individual differences rather than group means should be explored to identify specific characteristics of "compensators" and "noncompensators." This review emphasizes the need for more research with simultaneous measurements of all major components contributing to energy balance to enhance the understanding of the regulation of energy balance, which is crucial to address the current obesity epidemic. PMID:26374181

  15. Nitrogen: the key to biofuel energy balance

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Vigorous debate continues regarding the net energy that can be gained in producing liquid fuels from crop materials. However, it is clear that the net energy gain from the process is small relative to the energy demands of producing the fuel. Thus, a small reduction in the energy required to produ...

  16. Development of a torsion balance for measuring charging noise

    NASA Astrophysics Data System (ADS)

    Campsie, P.; Hammond, G. D.; Hough, J.; Rowan, S.

    2012-06-01

    Noise due to surface charge on gravitational wave detector test masses could potentially become a limiting low frequency noise source in future detectors. It is therefore very important that the behavior of charging noise is experimentally verified so that accurate predictions of charging noise can be made. A torsion balance that is sensitive to small forces has been constructed at the University of Glasgow in order to measure charging noise. In this article the torsion balance apparatus being developed will be described in detail. There will also be a description of the calibration of the instrument and preliminary measurements that have been taken. These measurements show that it is possible to distinguish between the surface charge and polarisation charge on a silica sample. From this measurement it was possible to estimate the surface charge on the silica disc. The remainder of the article will discuss the improvements in sensitivity that have been made which will allow initial measurements of charging noise to begin.

  17. Top 10 Research Questions Related to Energy Balance

    ERIC Educational Resources Information Center

    Shook, Robin P.; Hand, Gregory A.; Blair, Steven N.

    2014-01-01

    Obesity is the result of a mismatch between the amount of calories consumed and the amount of calories expended during an extended period of time. This relationship is described by the energy balance equation, which states the rate of change in energy storage depots in the body are equal to the rate of energy intake minus the rate of energy…

  18. Capsaicin increases sensation of fullness in energy balance, and decreases desire to eat after dinner in negative energy balance.

    PubMed

    Janssens, Pilou L H R; Hursel, Rick; Westerterp-Plantenga, Margriet S

    2014-06-01

    Addition of capsaicin (CAPS) to the diet has been shown to increase satiety; therefore, CAPS is of interest for anti-obesity therapy. We investigated the effects of CAPS on appetite profile and ad libitum energy intake in relation to energy balance. Fifteen subjects (seven women and eight men, age: 29.7 ± 10.8yrs, BMI: 23.3 ± 2.9 kg/m(2)) underwent four conditions in a randomized crossover design in 36 hour sessions in a respiration chamber; they received 100% of their daily energy requirements in the conditions "100%Control" and "100%CAPS", and 75% of their daily energy requirements in the conditions "75%Control" and "75%CAPS", followed by an ad libitum dinner. In the 100%CAPS and 75%CAPS conditions, CAPS was given at a dose of 2.56 mg (1.03 g of red chili pepper, 39,050 Scoville heat units) with every meal. Satiety (P < 0.05) and fullness (P = 0.01) were measured every waking hour and before and after every meal using visual analogue scales, and were higher in the 100%CAPS versus 100%Control condition. After dinner desire to eat, satiety and fullness did not differ between 75%CAPS and 100%Control, while desire to eat was higher (P < 0.05) and satiety (P = 0.06) and fullness (P = 0.06) tended to be lower in the 75%Control versus 100%Control condition. Furthermore, ad libitum intake (P = 0.07) and overconsumption (P = 0.06) tended to decrease in 100%CAPS versus 100%Control. In energy balance, addition of capsaicin to the diet increases satiety and fullness, and tends to prevent overeating when food intake is ad libitum. After dinner, capsaicin prevents the effects of the negative energy balance on desire to eat. PMID:24630935

  19. Soil Moisture Modeling Using Two Energy Balance Approaches with Thermal Infrared Satellite Inputs

    NASA Astrophysics Data System (ADS)

    Neale, C. M.; Gonzalez Dugo, M. P.; Anderson, M.; Li, F.; Kustas, W. P.

    2006-12-01

    The paper describes the results from a modeling effort using two energy balance approaches for estimating latent heat fluxes and daily evapotranspiration. The two models are (1) a one-layer empirically based energy balance model (OLEM) described by Chavez et al, (2005) and (2) the Two-source model (TSM) by Norman et al, (1995) modified by Li et al, (2005). The instantaneous derived latent heat fluxes are extrapolated to daily values of evapotranspiration using different approaches and over time in between Landsat TM acquisition dates. The energy balance model results are used as inputs to a soil moisture balance model. Comparisons of the remotely sensed fluxes with tower measured fluxes are conducted along with comparisons between modeled and measured soil moisture during the intensive period of the SMACEX study (Kustas et al, 2005), in a rain fed corn and soybean cropped area close to Ames, Iowa.

  20. Energy Balance during Taekwondo Practice in Elite Male Taekwondo Players

    PubMed Central

    Cho, Kang Ok; Garber, Carol Ewing; Lee, Sukho; Kim, Yeon Soo

    2013-01-01

    Background The goal of this study was to evaluate energy expenditure and dietary intake of nutrients during Taekwondo practice in elite Korean male Taekwondo players. Methods: Elite Korean male high school (high school player: HP; n = 59) and college players (college player: CP; n = 58) wore an accelerometer to measure energy expenditure and recorded their daily dietary intake for nutritional analysis over the course of five days. Results: Nutritional adequacy ratios for total energy (0.82), vitamin C (0.97), calcium (0.78), and folate (0.75) were below recommended levels for all players. When comparing daily nutrient intake and energy expenditure between HP and CP, the HP group had significantly higher total calorie intake (402.7 kcal, p < 0.001), calcium (126.3 mg, p = 0.018), phosphorus (198.0 mg, p = 0.002), iron (1.3 mg, p = 0.002), and vitamin B2 (0.4 mg, p < 0.001) than the CP group. Although there was no significant difference in the estimated energy requirement during Taekwondo practice, the total energy expenditure (151.2 kcal, p = 0.001), total activity counts (130,674 counts, p = 0.038) and energy expenditure during Taekwondo practice (257.7 kcal, p < 0.001) were significantly higher in the HP than in the CP. Conclusion: The results indicate that a sports nutrition program based on energy balance is necessary to achieve optimal health and performance in elite male Taekwondo players. PMID:26064838

  1. Energy balance for sustained spheromak plasmas in SSPX

    NASA Astrophysics Data System (ADS)

    Hill, D. N.; Auerbach, D.; Bulmer, R.; McLean, H.; Wood, R.; Woodruff, S.

    2001-10-01

    Formation of self-organized spheromak plasmas requires, at a minimum, that the input power exceed the loss power in order to increase magnetic field strength. Other factors, such as injector geometry or low-order MHD modes, are also thought to affect the formation process. In SSPX we measure both the input power at the coaxial source, and the loss power to the flux conserver (radiation and plasma conduction) to obtain the global power balance which we can relate to the field buildup. The radiation loss is determined by wide field-of-view bolometers, both time-integrated and time-resolved. Radiation losses are dominated by low-Z impurities and are typically less than 20energy input for clean discharges. We use edge magnetic probe measurements as input to the CORSICA code to determine the total stored magnetic energy and ohmic heating power, which then allows us to compute the energy confinement time from density and temperature profiles obtained by Thomson scattering. This work was performed under the auspices of US DOE by the University of California Lawrence Livermore National Laboratory under Contract No. W-7405-ENG-48.

  2. Scalable load-balance measurement for SPMD codes

    SciTech Connect

    Gamblin, T; de Supinski, B R; Schulz, M; Fowler, R; Reed, D

    2008-08-05

    Good load balance is crucial on very large parallel systems, but the most sophisticated algorithms introduce dynamic imbalances through adaptation in domain decomposition or use of adaptive solvers. To observe and diagnose imbalance, developers need system-wide, temporally-ordered measurements from full-scale runs. This potentially requires data collection from multiple code regions on all processors over the entire execution. Doing this instrumentation naively can, in combination with the application itself, exceed available I/O bandwidth and storage capacity, and can induce severe behavioral perturbations. We present and evaluate a novel technique for scalable, low-error load balance measurement. This uses a parallel wavelet transform and other parallel encoding methods. We show that our technique collects and reconstructs system-wide measurements with low error. Compression time scales sublinearly with system size and data volume is several orders of magnitude smaller than the raw data. The overhead is low enough for online use in a production environment.

  3. Acute effect of ephedrine on 24-h energy balance

    NASA Technical Reports Server (NTRS)

    Shannon, J. R.; Gottesdiener, K.; Jordan, J.; Chen, K.; Flattery, S.; Larson, P. J.; Candelore, M. R.; Gertz, B.; Robertson, D.; Sun, M.

    1999-01-01

    Ephedrine is used to help achieve weight control. Data on its true efficacy and mechanisms in altering energy balance in human subjects are limited. We aimed to determine the acute effect of ephedrine on 24-h energy expenditure, mechanical work and urinary catecholamines in a double-blind, randomized, placebo-controlled, two-period crossover study. Ten healthy volunteers were given ephedrine (50 mg) or placebo thrice daily during each of two 24-h periods (ephedrine and placebo) in a whole-room indirect calorimeter, which accurately measures minute-by-minute energy expenditure and mechanical work. Measurements were taken of 24-h energy expenditure, mechanical work, urinary catecholamines and binding of (+/-)ephedrine in vitro to human beta1-, beta2- and beta3-adrenoreceptors. Twenty-four-hour energy expenditure was 3.6% greater (8965+/-1301 versus 8648+/-1347 kJ, P<0.05) with ephedrine than with placebo, but mechanical work was not different between the ephedrine and placebo periods. Noradrenaline excretion was lower with ephedrine (0.032+/-0.011 microg/mg creatinine) compared with placebo (0.044+/-0.012 microg/mg creatinine) (P<0.05). (+/-)Ephedrine is a relatively weak partial agonist of human beta1- and beta2-adrenoreceptors, and had no detectable activity at human beta3-adrenoreceptors. Ephedrine (50 mg thrice daily) modestly increases energy expenditure in normal human subjects. A lack of binding of ephedrine to beta3-adrenoreceptors and the observed decrease in urinary noradrenaline during ephedrine treatment suggest that the thermogenic effect of ephedrine results from direct beta1-/beta2-adrenoreceptor agonism. An indirect beta3-adrenergic effect through the release of noradrenaline seems unlikely as urinary noradrenaline decreased significantly with ephedrine.

  4. Implications of the In-Situ Measured Mass Absorption Cross Section of Organic Aerosols in Mexico City on the Atmospheric Energy Balance, Satellite Retrievals, and Photochemistry

    SciTech Connect

    Dix, B.; Volkamer, R.; Barnard, J. C.

    2009-03-11

    The absorption of short wave incoming solar radiation by the organic component of aerosols has been examined by using data from the MCMA-2003 and the 2006 MILAGRO field campaigns. Both field efforts took place in and around Mexico City. Single Scattering Albedo (SSA) was derived as a function of wavelength (300-870 nm) by combining irradiance measurements from a Multi-Filter Rotating Shadowband Radiometer (MFRSR) and spectrally resolved actinic flux measurements by spectroradiometry with a radiative transfer model (TUV). In addition, organic aerosol mass measured by a surface deployed aerodyne aerosol mass spectrometer was used to estimate the Mass Absorption Cross-section (MAC) of Organic Carbon (OC). It was found that the MAC for OC is about 10.5 m{sup 2}/g at 300 nm and falls close to zero at about 500 nm; these values are roughly consistent with previous MAC estimates of OC, and present first in-situ observations of this quantity.

  5. Model Engine Performance Measurement From Force Balance Instrumentation

    NASA Technical Reports Server (NTRS)

    Jeracki, Robert J.

    1998-01-01

    A large scale model representative of a low-noise, high bypass ratio turbofan engine was tested for acoustics and performance in the NASA Lewis 9- by 15-Foot Low-Speed Wind Tunnel. This test was part of NASA's continuing Advanced Subsonic Technology Noise Reduction Program. The low tip speed fan, nacelle, and an un-powered core passage (with core inlet guide vanes) were simulated. The fan blades and hub are mounted on a rotating thrust and torque balance. The nacelle, bypass duct stators, and core passage are attached to a six component force balance. The two balance forces, when corrected for internal pressure tares, measure the total thrust-minus-drag of the engine simulator. Corrected for scaling and other effects, it is basically the same force that the engine supports would feel, operating at similar conditions. A control volume is shown and discussed, identifying the various force components of the engine simulator thrust and definitions of net thrust. Several wind tunnel runs with nearly the same hardware installed are compared, to identify the repeatability of the measured thrust-minus-drag. Other wind tunnel runs, with hardware changes that affected fan performance, are compared to the baseline configuration, and the thrust and torque effects are shown. Finally, a thrust comparison between the force balance and nozzle gross thrust methods is shown, and both yield very similar results.

  6. An observationally based energy balance for the Earth since 1950

    NASA Astrophysics Data System (ADS)

    Murphy, D. M.; Solomon, S.; Portmann, R. W.; Rosenlof, K. H.; Forster, P. M.; Wong, T.

    2009-09-01

    We examine the Earth's energy balance since 1950, identifying results that can be obtained without using global climate models. Important terms that can be constrained using only measurements and radiative transfer models are ocean heat content, radiative forcing by long-lived trace gases, and radiative forcing from volcanic eruptions. We explicitly consider the emission of energy by a warming Earth by using correlations between surface temperature and satellite radiant flux data and show that this term is already quite significant. About 20% of the integrated positive forcing by greenhouse gases and solar radiation since 1950 has been radiated to space. Only about 10% of the positive forcing (about 1/3 of the net forcing) has gone into heating the Earth, almost all into the oceans. About 20% of the positive forcing has been balanced by volcanic aerosols, and the remaining 50% is mainly attributable to tropospheric aerosols. After accounting for the measured terms, the residual forcing between 1970 and 2000 due to direct and indirect forcing by aerosols as well as semidirect forcing from greenhouse gases and any unknown mechanism can be estimated as -1.1 ± 0.4 W m-2 (1σ). This is consistent with the Intergovernmental Panel on Climate Change's best estimates but rules out very large negative forcings from aerosol indirect effects. Further, the data imply an increase from the 1950s to the 1980s followed by constant or slightly declining aerosol forcing into the 1990s, consistent with estimates of trends in global sulfate emissions. An apparent increase in residual forcing in the late 1990s is discussed.

  7. Energy Balance and Metabolism after Cancer Treatment

    PubMed Central

    Tonorezos, Emily S.; Jones, Lee W.

    2013-01-01

    Unfavorable physiological, biological, and behavioral alterations during and following treatment for cancer may lead to chronic energy imbalance predisposing to a myriad of deleterious health conditions including obesity, dyslipidemia, and the metabolic syndrome. In addition to the cardiovascular and musculoskeletal effects of these conditions, energy imbalance and metabolic changes after cancer treatment can also affect cancer-related morbidity and mortality. To this end, lifestyle interventions such as diet and physical activity are especially relevant to mitigate the deleterious impact of chronic energy imbalance in cancer survivors. PMID:24331194

  8. Isospin effects on the mass dependence of the balance energy

    SciTech Connect

    Gautam, Sakshi; Sood, Aman D.

    2010-07-15

    We study the effect of isospin degree of freedom on balance energy throughout the mass range between 50 and 350 for two sets of isotopic systems with N/A= 0.54 and 0.57 as well as isobaric systems with N/A= 0.5 and 0.58. Our findings indicate that different values of balance energy for two isobaric systems may be mainly due to the Coulomb repulsion. We also demonstrate clearly the dominance of Coulomb repulsion over symmetry energy.

  9. Free energy balance in gyrokinetic turbulence

    SciTech Connect

    Banon Navarro, A.; Morel, P.; Albrecht-Marc, M.; Carati, D.; Merz, F.; Goerler, T.; Jenko, F.

    2011-09-15

    Free energy plays an important role in gyrokinetic theory, since it is known to be a nonlinear invariant. Its evolution equations are derived and analyzed for the case of ion temperature gradient driven turbulence, using the formalism adopted in the Gene code. In particular, the ion temperature gradient drive, the collisional dissipation as well as entropy/electrostatic energy transfer channels represented by linear curvature and parallel terms are analyzed in detail.

  10. Surface-Parallel Sensor Orientation for Assessing Energy Balance Components on Mountain Slopes

    NASA Astrophysics Data System (ADS)

    Serrano-Ortiz, P.; Sánchez-Cañete, E. P.; Olmo, F. J.; Metzger, S.; Pérez-Priego, O.; Carrara, A.; Alados-Arboledas, L.; Kowalski, A. S.

    2016-03-01

    The consistency of eddy-covariance measurements is often evaluated in terms of the degree of energy balance closure. Even over sloping terrain, instrumentation for measuring energy balance components is commonly installed horizontally, i.e. perpendicular to the geo-potential gradient. Subsequently, turbulent fluxes of sensible and latent heat are rotated perpendicular to the mean streamlines using tilt-correction algorithms. However, net radiation (Rn) and soil heat fluxes ( G) are treated differently, and typically only Rn is corrected to account for slope. With an applied case study, we show and argue several advantages of installing sensors surface-parallel to measure surface-normal Rn and G. For a 17 % south-west-facing slope, our results show that horizontal installation results in hysteresis in the energy balance closure and errors of up to 25 %. Finally, we propose an approximation to estimate the surface-normal Rn, when only vertical Rn measurements are available.

  11. Force Measurements in Magnetic Suspension and Balance System

    NASA Technical Reports Server (NTRS)

    Kuzin, Alexander; Shapovalov, George; Prohorov, Nikolay

    1996-01-01

    The description of an infrared telemetry system for measurement of drag forces in Magnetic Suspension and Balance Systems (MSBS) is presented. This system includes a drag force sensor, electronic pack and transmitter placed in the model which is of special construction, and receiver with a microprocessor-based measuring device, placed outside of the test section. Piezosensitive resonators as sensitive elements and non-magnetic steel as the material for the force sensor are used. The main features of the proposed system for load measurements are discussed and the main characteristics are presented.

  12. Two source energy balance model:Refinements and lysimeter tests in the Southern High Plains

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A thermal two-source energy balance model (TSM) was evaluated for predicting daily evapotranspiration (ET) of alfalfa, corn, cotton, grain sorghum, soybean, and wheat in a semiarid, advective environment. Crop ET was measured with large, monolythic weighing lysimeters. The TSM solved the energy budg...

  13. Two source energy balance model-refinements and lysimeter tests in the Southern High Plains

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A thermal two-source energy balance model (TSM) was evaluated for predicting daily evapotranspiration (ET) of alfalfa, corn, cotton, grain sorghum, soybean, and wheat in a semiarid, advective environment. Crop ET was measured with large, monolythic weighing lysimeters. The TSM solved the energy budg...

  14. Thermal structure and energy balance of Uranus

    NASA Technical Reports Server (NTRS)

    Conrath, B. J.; Pearl, J. C.; Appleby, J. F.; Lindal, G. F.; Orton, G. S.; Bezard, B.

    1991-01-01

    The present study determines the basic properties of the atmospheric temperature field of Uranus through a combination of earth-based and Voyager measurements. Stellar occultation observations indicate both spatial and temporal variability at microbar pressure levels. The tropospheric and stratospheric vertical structure are established via Voyager radio occultation and infrared measurements as well as earth-based full-disk infrared observations. It is found that the measured lapse rate at pressures greater than about 600 microbar exceeds that for fully equilibrated ortho and para hydrogen. The latitude dependence of the upper tropospheric temperatures is determined from Voyager infrared measurements; remarkably little contrast is found. The weak horizontal structure is consistent with tropospheric zonal winds which decay with height and are directed prograde at midlatitudes but retrograde at low latitudes.

  15. Dietary(sensory)variety and energy balance

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The prevalence of overweight and obesity in US adults is currently 68%, compared with about 47% in the early 1970s. Many dietary factors have been proposed to contribute to the US obesity epidemic, including the percentage of energy intake from fat, carbohydrate and protein; glycemic index; fruit a...

  16. Confinement time and energy balance in the CTX spheromak

    SciTech Connect

    Barnes, C.W.; Henins, I.; Hoida, H.W.; Jarboe, T.R.

    1984-01-01

    The multipoint Thomson scattering diagnostic on CTX allows measurement of electron plasma pressure. The pressure correlates well with the poloidal flux function. Analysis using equilibrium models allows the (..beta..)/sub vol/ to be calculated from over 100 Thomson scattering profiles taken under standard conditions of spheromak operation where the plasma parameters vary widely within the discharge. The calculated tau/sub E/ increases with central core temperature and with density. The global magnetic energy decay time tau/sub B/2 is consistent with Spitzer-Harm resistivity, but with an anomaly factor of 2 to 4 which may decrease at small ratios of B/n. The n tau/sub E/ product reaches 4 x 10/sup 9/ s cm/sup -3/ during the hottest part of the discharge. A zero-dimensional energy balance code, which accurately includes all the major atomic physics processes and whose parameters have been constrained by comparision to experimental data, is used to identify the causes of energy loss that contribute to the observed confinement time. The most important power loss is that needed to replace the particles being lost and to maintain the constant density of the plateau.

  17. Reconnoitering the effect of shallow groundwater on land surface temperature and surface energy balance using MODIS and SEBS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The possibility of observing shallow groundwater depth and areal extent using satellite measurements can support groundwater models and vast irrigation systems management. Besides, these measurements help to integrate groundwater effects on surface energy balance within land surface models and clima...

  18. Evaluation of surface energy and radiation balance systems for FIFE

    NASA Technical Reports Server (NTRS)

    Fritschen, Leo J.; Qian, Ping

    1988-01-01

    The energy balance and radiation balance components were determined at six sites during the First International Satellite Land Surface Climatology Project Field Experiment (FIFE) conducted south of Manhattan, Kansas during the summer of 1987. The objectives were: to determine the effect of slope and aspect, throughout a growing season, on the magnitude of the surface energy balance fluxes as determined by the Energy Balance Method (EBM); to investigate the calculation of the soil heat flux density at the surface as calculated from the heat capacity and the thermal conductivity equations; and to evaluate the performance of the Surface Energy and Radiation Balance System (SERBS). A total of 17 variables were monitored at each site. They included net, solar (up and down), total hemispherical (up and down), and diffuse radiation, soil temperature and heat flux density, air and wet bulb temperature gradients, wind speed and direction, and precipitation. A preliminary analysis of the data, for the season, indicate that variables including net radiation, air temperature, vapor pressure, and wind speed were quite similar at the sites even though the sites were as much as 16 km apart and represented four cardinal slopes and the top of a ridge.

  19. Melanocortin receptors as drug targets for disorders of energy balance.

    PubMed

    Adan, Roger A H; van Dijk, Gertjan

    2006-06-01

    There is overwhelming evidence that the brain melanocortin system is a key regulator of energy balance, and dysregulations in the brain melanocortin system can lead to obesity. The melanocortin system is one of the major downstream leptin signaling pathways in the brain. In contrast to leptin, preclinical studies indicate that diet-induced obese animals are still responsive to the anorectic effects of melanocortin receptor agonists, suggesting the melanocortin system is an interesting therapeutic opportunity. Besides regulating energy balance, melanocortins are involved in a variety of other neuroendocrine processes, including inflammation, blood pressure regulation, addictive and sexual behavior, and sensation of pain. This review evaluates the melanocortin system function from the perspective to use specific melanocortin (MC) receptors as drug targets, with a focus on the treatment of obesity and eating disorders in humans, and the implications this may have on mechanisms beyond the control of energy balance. PMID:16787227

  20. Remote sensing of global snowpack energy and mass balance: In-situ measurements on the snow of interior and Arctic Alaska

    NASA Technical Reports Server (NTRS)

    Benson, Carl S.

    1989-01-01

    Observations led to a study of the physical properties of snow and the processes which operate on it. These observations included microwave brightness temperatures in interior Alaska which revealed: (1) up to three times more variability from one cell (1/2 degree latitude x 1/2 degree longitude) to the next in winter than in summer (5 to 15 K in winter and about 5 K in summer); (2) the overall range of temperature from week to week is about seven times greater in winter than in summer; (3) the microwave brightness temperature is about 25 K less than air temperature during summer but 35 to 60 K less during winter; and (4) the presence of snow cover appears to contribute to increasing the difference between air temperature and brightness temperature. The role of irregular substrate under the snow in enhancing convection has been studied with particular attention to variations in snow cover on water surfaces and in forested regions. LANDSAT imagery has been obtained to prepare a classification of ground surface types of the area. The extreme conditions of the 1988 to 1989 winter are discussed with respect to comparing the microwave data sets from 1985, and before, up to the present. The use of the Mt. Wrangell area as aerial photogrammetric controls for glacier measurements is given attention.

  1. On the study of energy imbalance and its influence on estimation of heat fluxes using energy balance based models

    NASA Astrophysics Data System (ADS)

    Jia, L.; Zhang, T.; Su, Z.

    2003-04-01

    The modeling of evapotranspiration from land surface has long been an important issue in many research fields, e.g. the energy partition and water cycles of the global climate system. Two methods are widely used to estimate evapotranspiration in hydrology and climatology. In the residual method the latent heat flux is estimated as the residual of energy balance equation, while in the combination equation the energy balance is combined with a transfer equation to calculate the evaporative fraction. Both methods are built up on the basis of energy balance between the available energy and the sum of sensible and latent heat fluxes if photosynthesis, the heat storage and the advection are neglected. However, the imbalance between the available energy (the residual of net radiation and the soil heat flux) and the sum of sensible and latent heat fluxes has been often observed during several field experiments, such as FIFE, HEIFE, and GAME-Tibet and the TIPEX. The reasons of the lack of closure in energy balance may attribute to various sources and can be put into two categories: (1) incompleteness in measurements including inadequate instrumentation and less representative fetch and insufficient sampling and too short averaging time; (2) incompleteness in the consideration of energy balance terms because many other processes may have non negligible contributions to the energy budget to some degrees depending on the complexity of the land surface. These may bring problem both to the evaluation of energy balance based models and to the framework on which the model is constructed. In this study, the imbalance problem is investigated by the analysis of the data collected in the filed measurements during GAME-Tibet and TIPEX. As a further study, a validated model SEBS using many other datasets is used to clarify the impact of such imbalance to the energy-balance based models. A correction method is proposed to solve the imbalance problems existing in collected data.

  2. Development of Energy Balances for the State of California

    SciTech Connect

    Murtishaw, Scott; Price, Lynn; de la Rue du Can, Stephane; Masanet, Eric; Worrell, Ernst; Sahtaye, Jayant

    2005-12-01

    Analysts assessing energy policies and energy modelers forecasting future trends need to have access to reliable and concise energy statistics. Lawrence Berkeley National Laboratory evaluated several sources of California energy data, primarily from the California Energy Commission and the U.S. Energy Information Administration, to develop the California Energy Balance Database (CALEB). This database manages highly disaggregated data on energy supply, transformation, and end-use consumption for each type of energy commodity from 1990 to the most recent year available (generally 2001) in the form of an energy balance, following the methodology used by the International Energy Agency. This report presents the data used for CALEB and provides information on how the various data sources were reconciled. CALEB offers the possibility of displaying all energy flows in numerous ways (e.g.,physical units, Btus, petajoules, different levels of aggregation), facilitating comparisons among the different types of energy commodities and different end-use sectors. In addition to displaying energy data, CALEB can also be used to calculate state-level energy-related carbon dioxide emissions using the methodology of the Intergovernmental Panel on Climate Change.

  3. ISEE observations of the magnetopause - Reconnection and the energy balance

    NASA Technical Reports Server (NTRS)

    Paschmann, G.; Papamastorakis, I.; Sckopki, N.; Sonnerup, B. U. O.; Bame, S. J.

    1985-01-01

    The total energy balance for two events with the objective of obtaining check on the interpretation in terms of reconnection is examined. To within experimental uncertainties, the plasma and magnetic field data are consistent with reconnection. An enthalpy increase comparable to the kinetic energy increase occurs in the magnetopause. Thus substantial dissipation is present in the rotational discontinuity. An ion heat flow associated with a beam of reflected magnetosheath particles carried away some 20 percent of the total converted electromagnetic energy.

  4. Evaporation and the mass and energy balances of the Dead Sea (Invited)

    NASA Astrophysics Data System (ADS)

    Lensky, N.; Gavrieli, I.; Gertman, I.; Nehorai, R.; Lensky, I. M.; Lyakhovsky, V.; Dvorkin, Y.

    2009-12-01

    The Dead Sea is a hypersaline terminal lake experiencing a water level drop of about 1 m/yr over the last decade. The existing estimations for the water balance of the lake are widely variable, reflecting the unknown subsurface water inflow, the rate of evaporation, and the rate of salt accumulation at the lake bottom. To estimate these we calculate the energy and mass balances for the Dead Sea utilizing measured meteorological and hydrographical data from 1996 to 2009. The data is measured from a buoy located in the Dead Sea 5, km from the nearest shore. The data includes solar radiation (incoming), long wave radiation (downward and upward looking), wind velocity, relative humidity, air temperature, air pressure and water temperature profile. Using energy balance we calculate the evaporation rate, taking into account the impact of lowered surface water activity. From mass balance considerations we calculate the salt precipitation rate, which was about 0.1 m/yr during this period. Using an overall mass balance we get the relation between water inflows, which are the least constrained quantity, and the evaporation rate. The average annual inflow is 265-325 mcm/yr, corresponding to an evaporation rate of 1.1-1.2 m/yr. Higher inflows, suggested in previous studies, call for increased evaporation rate and are therefore not in line with the energy balance. We also take into account the spatial variations and discuss how well the data measured in the buoy represent the Dead Sea surface conditions.

  5. Surface energy balance and turbulence characteristics observed at the SHEBA Ice Camp during FIRE III

    NASA Astrophysics Data System (ADS)

    Duynkerke, Peter G.; de Roode, Stephan R.

    2001-07-01

    The Institute for Marine and Atmospheric Research Utrecht (IMAU) participated in the First International Satellite Cloud Climatology Project (ISCCP) Regional Experiment (FIRE III) in May 1998. In this paper we describe surface layer measurements performed on the sea ice at the Surface Heat and Energy Balance of the Arctic Ocean (SHEBA) camp and compare these with measurements collected above a grass-covered surface in Cabauw, the Netherlands. The observations consist of both high-frequency turbulence measurements and mean-profile measurements of wind, temperature, and humidity. In addition, we measured the upward and downward components of both the longwave and the shortwave radiation, and the snow and ice temperatures in the upper 40 cm. The observations give a detailed picture of all components of the energy balance of the Arctic sea-ice surface. The turbulence measurements are used to study the surface layer scaling of the turbulence variables in the stable boundary layer. More specifically, we showed that the integral length scale of the vertical velocity fluctuations serves as the relevant turbulence length scale. The monthly averaged energy balance of the Arctic sea-ice was dominated by radiative fluxes, whereas the sensible and latent heat flux and the energy flux into the surface were rather small. A detailed inspection of the diurnal variations in the turbulent fluxes, however, indicates that although the monthly averaged values are small, the hourly averaged values for these fluxes are significant in the surface energy balance.

  6. Energy balance closure on a winter wheat stand: comparing the eddy covariance technique with the soil water balance method

    NASA Astrophysics Data System (ADS)

    Imukova, K.; Ingwersen, J.; Hevart, M.; Streck, T.

    2016-01-01

    The energy balance of eddy covariance (EC) flux data is typically not closed. The nature of the gap is usually not known, which hampers using EC data to parameterize and test models. In the present study we cross-checked the evapotranspiration data obtained with the EC method (ETEC) against ET rates measured with the soil water balance method (ETWB) at winter wheat stands in southwest Germany. During the growing seasons 2012 and 2013, we continuously measured, in a half-hourly resolution, latent heat (LE) and sensible (H) heat fluxes using the EC technique. Measured fluxes were adjusted with either the Bowen-ratio (BR), H or LE post-closure method. ETWB was estimated based on rainfall, seepage and soil water storage measurements. The soil water storage term was determined at sixteen locations within the footprint of an EC station, by measuring the soil water content down to a soil depth of 1.5 m. In the second year, the volumetric soil water content was additionally continuously measured in 15 min resolution in 10 cm intervals down to 90 cm depth with sixteen capacitance soil moisture sensors. During the 2012 growing season, the H post-closed LE flux data (ETEC = 3.4 ± 0.6 mm day-1) corresponded closest with the result of the WB method (3.3 ± 0.3 mm day-1). ETEC adjusted by the BR (4.1 ± 0.6 mm day-1) or LE (4.9 ± 0.9 mm day-1) post-closure method were higher than the ETWB by 24 and 48 %, respectively. In 2013, ETWB was in best agreement with ETEC adjusted with the H post-closure method during the periods with low amount of rain and seepage. During these periods the BR and LE post-closure methods overestimated ET by about 46 and 70 %, respectively. During a period with high and frequent rainfalls, ETWB was in-between ETEC adjusted by H and BR post-closure methods. We conclude that, at most observation periods on our site, LE is not a major component of the energy balance gap. Our results indicate that the energy balance gap is made up by

  7. Energy balance in solar and stellar chromospheres

    NASA Technical Reports Server (NTRS)

    Avrett, E. H.

    1981-01-01

    Net radiative cooling rates for quiet and active regions of the solar chromosphere and for two stellar chromospheres are calculated from corresponding atmospheric models. Models of chromospheric temperature and microvelocity distributions are derived from observed spectra of a dark point within a cell, the average sun and a very bright network element on the quiet sun, a solar plage and flare, and the stars Alpha Boo and Lambda And. Net radiative cooling rates due to the transitions of various atoms and ions are then calculated from the models as a function of depth. Large values of the net radiative cooling rate are found at the base of the chromosphere-corona transition region which are due primarily to Lyman alpha emission, and a temperature plateau is obtained in the transition region itself. In the chromospheric regions, the calculated cooling rate is equal to the mechanical energy input as a function of height and thus provides a direct constraint on theories of chromospheric heating.

  8. Evaluation of a two source snow-vegetation energy balance model for estimating surface energy fluxes in a rangeland ecosystem

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The utility of a two source snow-vegetation energy balance model for estimating surface energy fluxes is evaluated with field measurements at two sites in a rangeland ecosystem in southwestern Idaho during the winter of 2007: one site dominated by aspen vegetation and the other by sagebrush. Model ...

  9. Fat intake and energy-balance effects.

    PubMed

    Westerterp-Plantenga, M S

    2004-12-30

    This paper focuses on the effects of dietary fats or fatty acids on key targets of metabolic intermediates for body-weight control, i.e. satiety, thermogenesis, fat oxidation and body composition. With respect to sensory satiety, it appeared, e.g. that linoleic acid tasters showed a different mechanism for meal termination than non-tasters did. They stopped eating linoleic acid containing food based upon satiety, whereas the non-tasters stopped eating based upon the change in pleasantness of taste. Moreover, in the normal range of body mass index, an inverse relationship was shown between % 'tasters' and BMI. In a high fat diet vs. a low fat high protein high carbohydrate diet, metabolic satiety appeared to be continuously lower and correlated positively to diet-induced energy expenditure. However, with respect to the intermeal interval, satiety appeared to be more sustained following a high fat vs. a high CHO preload, resulting in a lower meal frequency. Covert fat replacement during breakfast by sucrose polyester was successful in combination with dietary restraint, yet overt fat replacement in snacks was successful in the dietary-unrestrained subjects, i.e. those who habitually ate snacks. With respect to fat oxidation, from a respiration-chamber experiment on the effects of diacylglycerol compared (DG) to triacylglycerol (TG) intake, it was concluded that consumption of DG increased fat oxidation and beta-hydroxy-butyrate levels, but did not affect energy metabolism or triacylglycerol level. Parameters of appetite were all lowered by DG compared to TG. With respect to body composition, the effects of 13 weeks CLA supplementation in overweight subjects during weight regain were assessed. Although CLA did not affect %body-weight regain, the regain of fat-free mass was increased by CLA, independently of %body-weight regain and physical activity, and as a consequence resting metabolic rate was increased. At the same time, appetite was reduced and satiety and

  10. Balanced Flow Measurement and Conditioning Technology (Balanced Orifice Plate 7,051,765 B1) for NASA Inventions and Contributions Board Invention of the Year Evaluation

    NASA Technical Reports Server (NTRS)

    Kelley, Anthony R.

    2008-01-01

    This viewgraph document reviews the Balanced Flow Measurement (BFM) and Conditioning Technology, and makes the case for this as the NASA Invention of the Year. The BFM technology makes use of a thin, multi-hole orifice plate with holes sized and placed per a unique set of equations. It produces mass flow, volumetric flow,kinelic energy,or momentum BALANCE across the face of the plate. The flow is proportional.to the square root of upstream to downstream differential pressure. Multiple holes lead to smoother pressure measurement. Measures and conditions or can limit fluid flow. This innovation has many uses in and out of NASA.

  11. [The effect of chemotherapy on energy and nitrogen balance in patients with hematologic neoplasms].

    PubMed

    Tomíska, M; Dastych, M; Dolezalová, J; Vorlícek, J

    1997-01-01

    Energy balance and nitrogen balance were evaluated within the opening week of standard induction chemotherapy in 26 haematooncological patients. The patients were uncomplicated in good nutritional status and nutritional requirements were covered by oral diet under the daily assistance of specially trained dietary nurse. Resting energy expenditure (REE) measured by indirect calorimetry under standard circumstances was elevated to 113.1% of predicted value by Harris-Benedict equation. We found a significant decrease in REE to 106.1% of predicted value (p < 0.01) on day 7 after the beginning of induction chemotherapy. Total energy requirements calculated on the basis of measured REE were not elevated during chemotherapy and mean energy balance was balanced. On the other hand mean nitrogen balance was markedly negative during chemotherapy even on the second day of treatment (-6.9 gN/day, cumulative nitrogen balance -28.0 gN/5 days). The negativity correlated will with markedly elevated urinary nitrogen output but worse with nitrogen intake in the diet. Significant correlation was found between the negativity of cumulative nitrogen balance for the whole period of follow up and the magnitude of decrease in REE after chemotherapy (r = 0.74, p < 0.01). This dependence may give evidence of the decay of tumor mass as the main factor of changes shown. Findings described here may support the assumption that energy requirements of haematooncological patients in good nutrition status during chemotherapy may be covered by oral diet even though this usually does not prevent the negativity of nitrogen balance. PMID:9221560

  12. Energy balancing by fat Pik3ca.

    PubMed

    Nelson, Victoria Lb; Ballou, Lisa M; Lin, Richard Z

    2015-01-01

    Obesity is often associated with systemic insulin resistance, and the decline of insulin sensitivity marks the progression of obesity into a disease state. We recently generated a mouse with adipose-specific ablation of the p110α phosphoinositide 3-kinase (PI3K) catalytic subunit to model insulin resistance in this organ. The phenotypes of this animal revealed novel roles of adipose PI3K signaling in regulating body weight and systemic glucose and lipid homeostasis. Loss of p110α in the brown adipose tissue resulted in reduced expression of mitochondrial-associated genes and decreased respiration in brown adipocytes. Reduced activity of the brown adipose tissue in p110α-null mice lowered their energy expenditure, which promoted obesity and systemic metabolic dysfunction with increased lipid deposition in the liver. Loss of PI3K activity did not affect adiposity until sexual maturation, suggesting that the effect of adipose PI3K on obesity might be linked to the development of puberty. Elevated leptin in the p110α knockout mice might interfere with the reproductive axis to delay pubertal development. The increase in adiposity induced by adipose-specific loss of p110α provides a link between insulin resistance and obesity onset and may also provide deeper insight into changes in prepubescent insulin sensitivity that can affect metabolism later in life. PMID:26167406

  13. Energy balancing by fat Pik3ca

    PubMed Central

    Nelson, Victoria LB; Ballou, Lisa M; Lin, Richard Z

    2014-01-01

    Obesity is often associated with systemic insulin resistance, and the decline of insulin sensitivity marks the progression of obesity into a disease state. We recently generated a mouse with adipose-specific ablation of the p110α phosphoinositide 3-kinase (PI3K) catalytic subunit to model insulin resistance in this organ. The phenotypes of this animal revealed novel roles of adipose PI3K signaling in regulating body weight and systemic glucose and lipid homeostasis. Loss of p110α in the brown adipose tissue resulted in reduced expression of mitochondrial-associated genes and decreased respiration in brown adipocytes. Reduced activity of the brown adipose tissue in p110α-null mice lowered their energy expenditure, which promoted obesity and systemic metabolic dysfunction with increased lipid deposition in the liver. Loss of PI3K activity did not affect adiposity until sexual maturation, suggesting that the effect of adipose PI3K on obesity might be linked to the development of puberty. Elevated leptin in the p110α knockout mice might interfere with the reproductive axis to delay pubertal development. The increase in adiposity induced by adipose-specific loss of p110α provides a link between insulin resistance and obesity onset and may also provide deeper insight into changes in prepubescent insulin sensitivity that can affect metabolism later in life. PMID:26167406

  14. Energy balance closure on a winter wheat stand: comparing the eddy covariance technique with the soil water balance method

    NASA Astrophysics Data System (ADS)

    Imukova, K.; Ingwersen, J.; Hevart, M.; Streck, T.

    2015-05-01

    The energy balance of eddy covariance (EC) flux data is typically not closed. The nature of the gap is usually not known, which hampers using EC data to parameterize and test models. The present study elucidates the nature of the energy gap of EC flux data from winter wheat stands in southwest Germany. During the vegetation periods 2012 and 2013, we continuously measured, in a half-hourly resolution, latent (LE) and sensible (H) heat fluxes using the EC technique. Measured fluxes were adjusted with either the Bowen-ratio (BR), H or LE post-closure method. The adjusted LE fluxes were tested against evapotranspiration data (ETWB) calculated using the soil water balance (WB) method. At sixteen locations within the footprint of an EC station, the soil water storage term was determined by measuring the soil water content down to a soil depth of 1.5 m. In the second year, the volumetric soil water content was also continuously measured in 15 min resolution in 10 cm intervals down to 90 cm depth with sixteen capacitance soil moisture sensors. During the 2012 vegetation period, the H post-closed LE flux data (ETEC = 3.4 ± 0.6 mm day-1) corresponded closest with the result of the WB method (3.3 ± 0.3 mm day-1). ETEC adjusted by the BR (4.1 ± 0.6 mm day-1) or LE (4.9 ± 0.9 mm day-1) post-closure method were higher than the ETWB by 20 and 33%, respectively. In 2013, ETWB was in best agreement with ETEC adjusted with the H post-closure method during the periods with low amount of rain and seepage. During these periods the BR and LE post-closure methods overestimated ET by about 30 and 40%, respectively. During a period with high and frequent rainfalls, ETWB was in-between ETEC adjusted by H and BR post-closure methods. We conclude that, at most vegetation periods on our site, LE is not a~major component of the energy balance gap. Our results indicate that the energy balance gap other energy fluxes and unconsidered or biased energy storage terms.

  15. Deducing high-altitude precipitation from glacier mass balance measurements

    NASA Astrophysics Data System (ADS)

    Giesen, Rianne H.; Immerzeel, Walter W.; Wanders, Niko

    2016-04-01

    The spatial distribution of precipitation in mountainous terrain is generally not well known due to underrepresentation of gauge observations at higher elevations. Precipitation tends to increase with elevation, but since observations are mainly performed in the valleys, the vertical precipitation gradient cannot be deduced from these measurements. Furthermore, the spatial resolution of gridded meteorological data is often too coarse to resolve individual mountain chains. Still, a reliable estimate of high-elevation precipitation is required for many hydrological applications. We present a method to determine the vertical precipitation gradient in mountainous terrain, making use of glacier mass balance observations. These measurements have the advantage that they provide a basin-wide precipitation estimate at high elevations. The precipitation gradient is adjusted until the solid precipitation over the glacier area combined with the calculated melt gives the measured annual glacier mass balance. Results for the glacierized regions in Central Europe and Scandinavia reveal spatially coherent patterns, with predominantly positive precipitation gradients ranging from -4 to +28 % (100 m)‑1. In some regions, precipitation amounts at high elevations are up to four times as large as in the valleys. A comparison of the modelled winter precipitation with observed snow accumulation on glaciers shows a good agreement. Precipitation measured at the few high-altitude meteorological stations is generally lower than our estimate, which may result from precipitation undercatch. Our findings will improve the precipitation forcing for glacier modelling and hydrological studies in mountainous terrain.

  16. Analysis of the energy balance in lung cancer patients.

    PubMed

    Staal-van den Brekel, A J; Schols, A M; ten Velde, G P; Buurman, W A; Wouters, E F

    1994-12-15

    Previous studies have shown that an elevated resting energy expenditure (REE) frequently occurs in lung cancer patients. The aim of the present study was to assess the balance between REE and dietary intake and to analyze the contributing factors of elevated REE in newly detected lung cancer patients. One hundred newly detected lung cancer patients were evaluated. Measured values of REE were adjusted for the values predicted by the Harris-Benedict formula and for fat-free mass assessed by the bioelectrical impedance method. Dietary intake was measured using a dietary history. A substantial number of patients (30%) had a weight loss of 10% or more from their preillness stable weight. An elevated REE was found in 74% of the patients. Stratification by tumor localization revealed that patients with a central tumor had a significantly higher REE [121 +/- 13% (SD) versus 110 +/- 10% of predicted, P < 0.001] and significantly higher level of C-reactive protein (35 +/- 35 mg/liter versus 16 +/- 26 mg/liter, P = 0.006) compared with patients with a peripheral tumor. Dietary intake was significantly lower in the weight-losing group (1872 +/- 542 kcal/day versus 2169 +/- 782 kcal/day, P < 0.05) compared with the weight-stable group. We conclude that both elevated REE and decreased dietary intake contribute to weight loss in lung cancer patients. Tumor localization and inflammation were found to be contributing factors to the elevated REE. PMID:7987838

  17. Pedometer and Human Energy Balance Applications for Science Instruction

    ERIC Educational Resources Information Center

    Rye, James A.; Smolski, Stefan

    2007-01-01

    Teachers can use pedometers to facilitate inquiry learning and show students the need for mathematics in scientific investigation. The authors conducted activities with secondary students that investigated intake and expenditure components of the energy balance algorithm, which led to inquiries about pedometers and related data. By investigating…

  18. Intergenerational Energy Balance Interventions: A Systematic Literature Review

    ERIC Educational Resources Information Center

    Swanson, Mark; Studts, Christina R.; Bardach, Shoshana H.; Bersamin, Andrea; Schoenberg, Nancy E.

    2011-01-01

    Many nations have witnessed a dramatic increase in the prevalence of obesity and overweight across their population. Recognizing the influence of the household environment on energy balance has led many researchers to suggest that intergenerational interventions hold promise for addressing this epidemic. Yet few comprehensive reviews of…

  19. An Analysis of Turbulent Heat Fluxes and the Energy Balance During the REFLEX Campaign

    NASA Astrophysics Data System (ADS)

    Tol, Christiaan van der; Timmermans, Wim; Corbari, Chiara; Carrara, Arnaud; Timmermans, Joris; Su, Zhongbo

    2015-12-01

    Three eddy covariance stations were installed at the Barrax experimental farm during the Land-Atmosphere Exchanges (REFLEX) airborne training and measurement campaign to provide ground truth data of energy balance fluxes and vertical temperature and wind profiles. The energy balance closure ratio (EBR) was 105% for a homogeneous camelina site, 86% at a sparse reforestation site, and 73% for a vineyard. We hypothesize that the lower closure in the last site was related to the limited fetch. Incorporating a vertical gradient of soil thermal properties decreased the RMSE of the energy balance at the camelina site by 16 W m-2. At the camelina site, eddy covariance estimates of sensible and latent heat fluxes could be reproduced well using mean vertical profiles of wind and temperature, provided that the Monin-Obukhov length is known. Measured surface temperature and sensible heat fluxes suggested high excess resistance for heat (kB-1 = 17).

  20. Evaluation of surface energy and radiation balance systems on the Konza Prairie

    NASA Technical Reports Server (NTRS)

    Fritschen, Leo J.

    1987-01-01

    Four Surface Energy and Radiation Balance Systems (SERBS) were installed and operated for two weeks in Kansas during July of 1986. Surface energy and radiation balances were investigated on six sites on the Konza Prairie about 3 km south of Manhattan, Kansas. Measurements were made to allow the computation of these radiation components: total solar and diffuse radiation, reflected solar radiation, net radiation, and longwave radiation upward and downward. Measurements were made to allow the computation of the sensible and latent heat fluxes by the Bowen ratio method using differential psychrometers on automatic exchange mechanisms. The report includes a description of the experimental sites, data acquisition systems and sensors, data acquisitions system operating instructions, and software used for data acquisition and analysis. In addition, data listings and plots of the energy balance components for all days and systems are given.

  1. Mass and energy balance of the cold Io torus

    NASA Technical Reports Server (NTRS)

    Moreno, M. A.; Barbosa, D. D.

    1986-01-01

    A new model of the cold Io torus is described. Ions and energy are injected into the system by independent processes so that the mass balance is isolated from the energy balance. The primary source of energy is local ionization and acceleration of hot pickup ions resulting from charge exchange between thermal ions and an extended cloud of Iogenic sulfur and oxygen atoms. The primary energy loss mechanism of the plasma is collisionally excited line emission at optical wavelengths. The primary ion source is radial diffusion inward from the hot torus on a time scale of 140-710 days. The primary ion loss mechanism is a novel two-step enhanced recombination mechanism involving charge exchange between thermal ions and an extended cloud of neutral SO2 molecules, followed by rapid dissociative recombination of the resultant molecular ion. The model provides a self-consistent solution which reconciles a number of diverse observations with known physical processes.

  2. Dynamical horizons: energy, angular momentum, fluxes, and balance laws.

    PubMed

    Ashtekar, Abhay; Krishnan, Badri

    2002-12-23

    Dynamical horizons are considered in full, nonlinear general relativity. Expressions of fluxes of energy and angular momentum carried by gravitational waves across these horizons are obtained. Fluxes are local, the energy flux is positive, and change in the horizon area is related to these fluxes. The flux formulas also give rise to balance laws analogous to the ones obtained by Bondi and Sachs at null infinity and provide generalizations of the first and second laws of black-hole mechanics. PMID:12484807

  3. Estimates of fluid and energy balances of Apollo 17

    NASA Technical Reports Server (NTRS)

    Johnson, P. C.; Leach, C. S.; Rambaut, P. C.

    1973-01-01

    Fluid and caloric balance has been calculated for the Apollo 17 crew. This included measurement of nitrogen, water, and caloric value of the ingested food and the volume and nitrogen content of the excreted urine and feces. Body composition changes were determined from total body water and extracellular fluid volume differences. The body composition measurements made it possible to divide the weight loss into lean body mass and adipose tissue losses. From this division a caloric equivalent was calculated. These tissue losses indicated that the caloric requirements of the mission were considerably greater than the actual caloric intake. The 3.3 kilo mean loss of body weight represented 1 kilo of lean body mass and 2.3 kilos of adipose tissue. Calculated fluid balance was more positive during the mission than during the control period. These changes are unlike the body composition and fluid balance changes reported in bedrested subjects.

  4. Quality Measures for Dialysis: Time for a Balanced Scorecard.

    PubMed

    Kliger, Alan S

    2016-02-01

    Recent federal legislation establishes a merit-based incentive payment system for physicians, with a scorecard for each professional. The Centers for Medicare and Medicaid Services evaluate quality of care with clinical performance measures and have used these metrics for public reporting and payment to dialysis facilities. Similar metrics may be used for the future merit-based incentive payment system. In nephrology, most clinical performance measures measure processes and intermediate outcomes of care. These metrics were developed from population studies of best practice and do not identify opportunities for individualizing care on the basis of patient characteristics and individual goals of treatment. The In-Center Hemodialysis (ICH) Consumer Assessment of Healthcare Providers and Systems (CAHPS) survey examines patients' perception of care and has entered the arena to evaluate quality of care. A balanced scorecard of quality performance should include three elements: population-based best clinical practice, patient perceptions, and individually crafted patient goals of care. PMID:26316622

  5. Water balance measurements and simulations of maize plants on lysimeters

    NASA Astrophysics Data System (ADS)

    Heinlein, Florian; Biernath, Christian; Klein, Christian; Thieme, Christoph; Priesack, Eckart

    2016-04-01

    In Central Europe expected major aspects of climate change are a shift of precipitation events and amounts towards winter months, and the general increase of extreme weather events like heat waves or summer droughts. This will lead to strongly changing regional water availability and will have an impact on future crop growth, water use efficiency and yields. Therefore, to estimate future crop yields by growth models accurate descriptions of transpiration as part of the water balance is important. In this study, maize was grown on weighing lysimeters (sowdate: 24 April 2013). Transpiration was determined by sap flow measurement devices (ICT International Pty Ltd, Australia) using the Heat-Ratio-Method: two temperature probes, 0.5 cm above and below a heater, detect a heat pulse and its speed which allows the calculation of sap flow. Water balance simulations were executed with different applications of the model framework Expert-N. The same pedotransfer and hydraulic functions and the same modules to simulate soil water flow, soil heat and nitrogen transport, nitrification, denitrification and mineralization were used. Differences occur in the chosen potential evapotranspiration ETpot (Penman-Monteith ASCE, Penman-Monteith FAO, Haude) and plant modules (SPASS, CERES). In all simulations ETpot is separated into a soil and a plant part using the leaf are index (LAI). In a next step, these parts are reduced by soil water availability. The sum of these parts is the actual evapotranspiration ETact which is compared to the lysimeter measurements. The results were analyzed from Mid-August to Mid-September 2013. The measured sap flow rates show clear diurnal cycles except on rainy days. The SPASS model is able to simulate these diurnal cycles, overestimates the measurements on rainy days and at the beginning of the analyzed period, and underestimates transpiration on the other days. The main reason is an overestimation of potential transpiration Tpot due to too high

  6. Balancing

    NASA Astrophysics Data System (ADS)

    Harteveld, Casper

    At many occasions we are asked to achieve a “balance” in our lives: when it comes, for example, to work and food. Balancing is crucial in game design as well as many have pointed out. In games with a meaningful purpose, however, balancing is remarkably different. It involves the balancing of three different worlds, the worlds of Reality, Meaning, and Play. From the experience of designing Levee Patroller, I observed that different types of tensions can come into existence that require balancing. It is possible to conceive of within-worlds dilemmas, between-worlds dilemmas, and trilemmas. The first, the within-world dilemmas, only take place within one of the worlds. We can think, for example, of a user interface problem which just relates to the world of Play. The second, the between-worlds dilemmas, have to do with a tension in which two worlds are predominantly involved. Choosing between a cartoon or a realistic style concerns, for instance, a tension between Reality and Play. Finally, the trilemmas are those in which all three worlds play an important role. For each of the types of tensions, I will give in this level a concrete example from the development of Levee Patroller. Although these examples come from just one game, I think the examples can be exemplary for other game development projects as they may represent stereotypical tensions. Therefore, to achieve harmony in any of these forthcoming games, it is worthwhile to study the struggles we had to deal with.

  7. Global Sea Level Rise and the Earth's Energy Balance

    NASA Astrophysics Data System (ADS)

    Willis, J.; Hobbs, W. R.

    2012-12-01

    As the oceans warm due to human-caused climate change, they contribute to both global and regional sea level rise. But the uptake of heat by the ocean also reflects the net radiative imbalance of the planet due to human interference with the climate. Global sea level rise and its components therefore provide a constraint on the Earth's Energy Balance, and vice versa. We will present an assessment of the sea level and energy budgets and their implications for the magnitude of deep ocean warming and net radiative forcing over the past decade. Observations from satellite altimeters and the GRACE gravity mission will be compared with in situ observations of ocean warming. In addition, we will consider observations from the Clouds and the Earth's Radiant Energy System (CERES) instruments to assess the Earth's net radiation balance. Finally, a new estimate of bias corrections for the XBT observations will be assessed and presented.

  8. Development of a torsion balance for adhesion measurements

    NASA Technical Reports Server (NTRS)

    Miyoshi, Kazuhisa; Maeda, Chikayoshi; Masuo, Ryuichi

    1988-01-01

    A new torsion balance for study of adhesion in ceramics is discussed. A torsion wire and a linear variable differential transformer are used to monitor load and to measure pull-off force (adhesion force). The investigation suggests that this torsion balance is valuable in studying the interfacial properties of ceramics in controlled environments such as in ultrahigh vacuum. The pull-off forces measured in dry, moist, and saturated nitrogen atmosphere demonstrate that the adhesion of silicon nitride contacts remains low at humidities below 80 percent but rises rapidly above that. The adhesion at saturation is 10 times or more greater than that below 80 percent relative humidity. The adhesion in a saturated atmosphere arises primarily from the surface tension effects of a thin film of water adsorbed on the surface. The surface tension of the water film was 58 x 10 to the minus 5 to 65 x 10 to the minus 5 power. The accepted value for water is 72.7 x 10 to the minus 5 power N/cm. Adhesion characteristics of silicon nitride in contact with metals, like the friction characteristics of silicon carbide to metal contacts, can be related to the relative chemical activity of metals in ultrahigh vacuum. The more active the metal, the higher the adhesion.

  9. Gas permeability measurements on asphalts using the electrodynamic balance

    SciTech Connect

    Periasamy, R.; Newsome, J.R.; Andrady, A.L.; Ensor, D.S. )

    1990-07-01

    Volatilization, oxide degradation, and steric hardening are the degradation processes believed to be responsible for the weathering of asphalts. The fundamental mechanisms that govern the rates at which these degradation processes occur are not understood, but the transport of oxygen through the asphalt matrix is an important aspect of the weathering of asphalts under field conditions. Therefore, the measurement of diffusion, solubility, and permeability constants for oxygen in asphalts is crucial to better understand the long-term weathering of the asphalt materials. A novel and precise gravimetric technique, hitherto not applied in asphalt research is described here: an electrodynamic balance is used in this technique for the measurement of key transport properties for oxygen in micrometer-size asphalt particle samples.

  10. Low protein diets produce divergent effects on energy balance.

    PubMed

    Pezeshki, Adel; Zapata, Rizaldy C; Singh, Arashdeep; Yee, Nicholas J; Chelikani, Prasanth K

    2016-01-01

    Diets deficient in protein often increase food consumption, body weight and fat mass; however, the underlying mechanisms remain poorly understood. We compared the effects of diets varying in protein concentrations on energy balance in obesity-prone rats. We demonstrate that protein-free (0% protein calories) diets decreased energy intake and increased energy expenditure, very low protein (5% protein) diets increased energy intake and expenditure, whereas moderately low protein (10% protein) diets increased energy intake without altering expenditure, relative to control diet (15% protein). These diet-induced alterations in energy expenditure are in part mediated through enhanced serotonergic and β-adrenergic signaling coupled with upregulation of key thermogenic markers in brown fat and skeletal muscle. The protein-free and very low protein diets decreased plasma concentrations of multiple essential amino acids, anorexigenic and metabolic hormones, but these diets increased the tissue expression and plasma concentrations of fibroblast growth factor-21. Protein-free and very low protein diets induced fatty liver, reduced energy digestibility, and decreased lean mass and body weight that persisted beyond the restriction period. In contrast, moderately low protein diets promoted gain in body weight and adiposity following the period of protein restriction. Together, our findings demonstrate that low protein diets produce divergent effects on energy balance. PMID:27122299

  11. Low protein diets produce divergent effects on energy balance

    PubMed Central

    Pezeshki, Adel; Zapata, Rizaldy C.; Singh, Arashdeep; Yee, Nicholas J.; Chelikani, Prasanth K.

    2016-01-01

    Diets deficient in protein often increase food consumption, body weight and fat mass; however, the underlying mechanisms remain poorly understood. We compared the effects of diets varying in protein concentrations on energy balance in obesity-prone rats. We demonstrate that protein-free (0% protein calories) diets decreased energy intake and increased energy expenditure, very low protein (5% protein) diets increased energy intake and expenditure, whereas moderately low protein (10% protein) diets increased energy intake without altering expenditure, relative to control diet (15% protein). These diet-induced alterations in energy expenditure are in part mediated through enhanced serotonergic and β-adrenergic signaling coupled with upregulation of key thermogenic markers in brown fat and skeletal muscle. The protein-free and very low protein diets decreased plasma concentrations of multiple essential amino acids, anorexigenic and metabolic hormones, but these diets increased the tissue expression and plasma concentrations of fibroblast growth factor-21. Protein-free and very low protein diets induced fatty liver, reduced energy digestibility, and decreased lean mass and body weight that persisted beyond the restriction period. In contrast, moderately low protein diets promoted gain in body weight and adiposity following the period of protein restriction. Together, our findings demonstrate that low protein diets produce divergent effects on energy balance. PMID:27122299

  12. Albedo, internal heat, and energy balance of Jupiter, preliminary results of the Voyager infrared investigation

    NASA Technical Reports Server (NTRS)

    Hanel, R. A.; Conrath, B. J.; Herath, L. W.; Kunde, V. G.; Pirraglia, J. A.

    1980-01-01

    The in flight calibration of the radiometer and the Michelson interferometer of the Voyager 1 infrared instrument is discussed. The calibrated full disk measurements are applied to derive values of the albedo, the thermal emission and the global energy balance of Jupiter.

  13. Energy balance of irrigated and dryland cotton in the Southern High Plains

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cotton (Gossypium hirsutum) is a major crop in the Southern High Plains that is produced under both irrigated and dryland cultures. In 2008, the energy balance components (net radiation, soil heat flux, sensible heat flux, and latent heat flux) were measured at Bushland, Texas. Four precision weighi...

  14. Energy Balance in DC Arc Plasma Melting Furnace

    NASA Astrophysics Data System (ADS)

    Zhao, Peng; Meng, Yuedong; Yu, Xinyao; Chen, Longwei; Jiang, Yiman; Ni, Guohua; Chen, Mingzhou

    2009-04-01

    In order to treat hazardous municipal solid waste incinerator's (MSWI) fly ash, a new DC arc plasma furnace was developed. Taking an arc of 100 V/1000 A DC as an example, the heat transfer characteristics of the DC arc plasma, ablation of electrodes, heat properties of the fly ash during melting, heat transfer characteristics of the flue gas, and heat loss of the furnace were analyzed based on the energy conservation law, so as to achieve the total heat information and energy balance during plasma processing, and to provide a theoretical basis for an optimized design of the structure and to improve energy efficiency.

  15. Atomic Oxygen and Energy Balance in the Mesosphere and Lower Thermosphere

    NASA Astrophysics Data System (ADS)

    Mlynczak, M. G.; Hunt, L. A.; Marshall, T.; Mertens, C. J.; Russell, J. M.; Mast, J. C.; Thompson, R. E.

    2012-12-01

    We use atomic oxygen concentrations measured by SABER in conjunction with measurements of infrared radiative cooling and solar heating to assess the energy balance in the Earth's mesosphere and lower thermosphere. Atomic oxygen plays a central role, particularly in the mesopause region, through heating due to exothermic chemical reactions. The SABER data reveal approximate balance in global heating and cooling on annual timescales. In the 11-year SABER record there is also clear evidence of the solar cycle variation in all of the heat budget terms including atomic oxygen. Long-term changes in heating and cooling rates appear consistent with each other. Uncertainty in the energy budget is due largely to uncertainty in recombination rate coefficients governing exothermic chemical reactions at mesospheric temperatures. In this talk we will show the multitude of energy budget terms derived from SABER observations, the global energy budget, the variability due to the solar cycle, and the uncertainty in the energy balance. We also examine the constraints on the global atomic oxygen concentration based on energy balance considerations.

  16. Canopy radiation transmission for an energy balance snowmelt model

    NASA Astrophysics Data System (ADS)

    Mahat, Vinod; Tarboton, David G.

    2012-01-01

    To better estimate the radiation energy within and beneath the forest canopy for energy balance snowmelt models, a two stream radiation transfer model that explicitly accounts for canopy scattering, absorption and reflection was developed. Upward and downward radiation streams represented by two differential equations using a single path assumption were solved analytically to approximate the radiation transmitted through or reflected by the canopy with multiple scattering. This approximation results in an exponential decrease of radiation intensity with canopy depth, similar to Beer's law for a deep canopy. The solution for a finite canopy is obtained by applying recursive superposition of this two stream single path deep canopy solution. This solution enhances capability for modeling energy balance processes of the snowpack in forested environments, which is important when quantifying the sensitivity of hydrologic response to input changes using physically based modeling. The radiation model was included in a distributed energy balance snowmelt model and results compared with observations made in three different vegetation classes (open, coniferous forest, deciduous forest) at a forest study area in the Rocky Mountains in Utah, USA. The model was able to capture the sensitivity of beneath canopy net radiation and snowmelt to vegetation class consistent with observations and achieve satisfactory predictions of snowmelt from forested areas from parsimonious practically available information. The model is simple enough to be applied in a spatially distributed way, but still relatively rigorously and explicitly represent variability in canopy properties in the simulation of snowmelt over a watershed.

  17. Surface energy and radiation balance systems - General description and improvements

    NASA Technical Reports Server (NTRS)

    Fritschen, Leo J.; Simpson, James R.

    1989-01-01

    Surface evaluation of sensible and latent heat flux densities and the components of the radiation balance were desired for various vegetative surfaces during the ASCOT84 experiment to compare with modeled results and to relate these values to drainage winds. Five battery operated data systems equipped with sensors to determine the above values were operated for 105 station days during the ASCOT84 experiment. The Bowen ratio energy balance technique was used to partition the available energy into the sensible and latent heat flux densities. A description of the sensors and battery operated equipment used to collect and process the data is presented. In addition, improvements and modifications made since the 1984 experiment are given. Details of calculations of soil heat flow at the surface and an alternate method to calculate sensible and latent heat flux densities are provided.

  18. Distributed energy balance modeling of South Cascade Glacier, Washington and assessment of model uncertainty

    USGS Publications Warehouse

    Anslow, Faron S.; Hostetler, S.; Bidlake, W.R.; Clark, P.U.

    2008-01-01

    We have developed a physically based, distributed surface energy balance model to simulate glacier mass balance under meteorological and climatological forcing. Here we apply the model to estimate summer ablation on South Cascade Glacier, Washington, for the 2004 and 2005 mass balance seasons. To arrive at optimal mass balance simulations, we investigate and quantify model uncertainty associated with selecting from a range of physical parameter values that are not commonly measured in glaciological mass balance field studies. We optimize the performance of the model by varying values for atmospheric transmissivity, the albedo of surrounding topography, precipitation-elevation lapse rate, surface roughness for turbulent exchange of momentum, and snow albedo aging coefficient. Of these the snow aging parameter and precipitation lapse rates have the greatest influence on the modeled ablation. We examined model sensitivity to varying parameters by performing an additional 103 realizations with parameters randomly chosen over a ??5% range centered about the optimum values. The best fit suite of model parameters yielded a net balance of -1.69??0.38 m water equivalent (WE) for the 2004 water year and -2.10??0.30 m WE up to 11 September 2005. The 2004 result is within 3% of the measured value. These simulations account for 91% and 93% of the variance in measured ablation for the respective years. Copyright 2008 by the American Geophysical Union.

  19. Battery model for electrical power system energy balance

    NASA Technical Reports Server (NTRS)

    Hafen, D. P.

    1983-01-01

    A model to simulate nickel-cadmium battery performance and response in a spacecraft electrical power system energy balance calculation was developed. The voltage of the battery is given as a function of temperature, operating depth-of-charge (DOD), and battery state-of-charge. Also accounted for is charge inefficiency. A battery is modeled by analysis of the results of a multiparameter battery cycling test at various temperatures and DOD's.

  20. Energy Balance, Climate, and Life - Work of M. Budyko

    NASA Technical Reports Server (NTRS)

    Cahalan, Robert F.

    2004-01-01

    This talk will review the work of Mikhail I. Budyko, author of "Climate and Life" and many other works, who died recently at age 81, in St Petersburg, Russia. He directed the Division for Climate Change Research at the State Hydrological Institute. We will explore Budyko's work in clarifying the role of energy balance in determining planetary climate, and the role of climate in regulating Earth s biosphere.

  1. Drought sensitivity of Amazonian carbon balance revealed by atmospheric measurements.

    PubMed

    Gatti, L V; Gloor, M; Miller, J B; Doughty, C E; Malhi, Y; Domingues, L G; Basso, L S; Martinewski, A; Correia, C S C; Borges, V F; Freitas, S; Braz, R; Anderson, L O; Rocha, H; Grace, J; Phillips, O L; Lloyd, J

    2014-02-01

    Feedbacks between land carbon pools and climate provide one of the largest sources of uncertainty in our predictions of global climate. Estimates of the sensitivity of the terrestrial carbon budget to climate anomalies in the tropics and the identification of the mechanisms responsible for feedback effects remain uncertain. The Amazon basin stores a vast amount of carbon, and has experienced increasingly higher temperatures and more frequent floods and droughts over the past two decades. Here we report seasonal and annual carbon balances across the Amazon basin, based on carbon dioxide and carbon monoxide measurements for the anomalously dry and wet years 2010 and 2011, respectively. We find that the Amazon basin lost 0.48 ± 0.18 petagrams of carbon per year (Pg C yr(-1)) during the dry year but was carbon neutral (0.06 ± 0.1 Pg C yr(-1)) during the wet year. Taking into account carbon losses from fire by using carbon monoxide measurements, we derived the basin net biome exchange (that is, the carbon flux between the non-burned forest and the atmosphere) revealing that during the dry year, vegetation was carbon neutral. During the wet year, vegetation was a net carbon sink of 0.25 ± 0.14 Pg C yr(-1), which is roughly consistent with the mean long-term intact-forest biomass sink of 0.39 ± 0.10 Pg C yr(-1) previously estimated from forest censuses. Observations from Amazonian forest plots suggest the suppression of photosynthesis during drought as the primary cause for the 2010 sink neutralization. Overall, our results suggest that moisture has an important role in determining the Amazonian carbon balance. If the recent trend of increasing precipitation extremes persists, the Amazon may become an increasing carbon source as a result of both emissions from fires and the suppression of net biome exchange by drought. PMID:24499918

  2. Measuring Energy Sustainability

    SciTech Connect

    Greene, David L

    2009-01-01

    For the purpose of measurement, energy sustainability is defined as ensuring that future generations have energy resources that enable them to achieve a level of well-being at least as good as that of the current generation. It is recognized that there are valid, more comprehensive understandings of sustainability and that energy sustainability as defined here is only meaningful when placed in a broader context. Still, measuring energy sustainability is important to society because the rates of consumption of some fossil resources are now substantial in relation to measures of ultimate resources, and because conflicts between fossil energy use and environmental sustainability are intensifying. Starting from the definition, an equation for energy sustainability is derived that reconciles renewable fl ows and nonrenewable stocks, includes the transformation of energy into energy services, incorporates technological change and, at least notionally, allows for changes in the relationship between energy services and societal well-being. Energy sustainability must be measured retrospectively as well as prospectively, and methods for doing each are discussed. Connections to the sustainability of other resources are also critical. The framework presented is merely a starting point; much remains to be done to make it operational.

  3. Irreversibility in energy processes: Non-dimensional quantification and balance

    NASA Astrophysics Data System (ADS)

    Pons, Michel

    2004-06-01

    The concept of thermodynamic efficiency (ratio of real cycle efficiency by Carnot efficiency) is well-known. The concept of numbers of entropy-production and of exergy-loss proposed by A. Bejan are also known, but rarely used. The present study firstly evidences that these two last numbers are actually identical, thus being a common number of irreversibility, independent of the method used for obtaining it. The study also evidences a non-dimensional irreversibility balance that applies to any energy conversion process. This balance correlates the thermodynamic efficiency of a whole process (which in most cases equals the exergetic efficiency) and the numbers of irreversibility of the different components or sub-processes involved in this process. Moreover, the basic additivity of entropy-productions and exergy-losses is maintained in this balance. This balance applies to the basic cycles (heat-engines, refrigerators, heat-pumps and heat-transformers), either work- or heat-powered. It also applies to more complex cycles (heat-powered cycles consuming electricity, four-temperature heat-powered cycles, cogeneration processes), thus giving a robust framework for analyzing these cycles.

  4. Effects of winter military training on energy balance, whole-body protein balance, muscle damage, soreness, and physical performance.

    PubMed

    Margolis, Lee M; Murphy, Nancy E; Martini, Svein; Spitz, Marissa G; Thrane, Ingjerd; McGraw, Susan M; Blatny, Janet-Martha; Castellani, John W; Rood, Jennifer C; Young, Andrew J; Montain, Scott J; Gundersen, Yngvar; Pasiakos, Stefan M

    2014-12-01

    Physiological consequences of winter military operations are not well described. This study examined Norwegian soldiers (n = 21 males) participating in a physically demanding winter training program to evaluate whether short-term military training alters energy and whole-body protein balance, muscle damage, soreness, and performance. Energy expenditure (D2(18)O) and intake were measured daily, and postabsorptive whole-body protein turnover ([(15)N]-glycine), muscle damage, soreness, and performance (vertical jump) were assessed at baseline, following a 4-day, military task training phase (MTT) and after a 3-day, 54-km ski march (SKI). Energy intake (kcal·day(-1)) increased (P < 0.01) from (mean ± SD (95% confidence interval)) 3098 ± 236 (2985, 3212) during MTT to 3461 ± 586 (3178, 3743) during SKI, while protein (g·kg(-1)·day(-1)) intake remained constant (MTT, 1.59 ± 0.33 (1.51, 1.66); and SKI, 1.71 ± 0.55 (1.58, 1.85)). Energy expenditure increased (P < 0.05) during SKI (6851 ± 562 (6580, 7122)) compared with MTT (5480 ± 389 (5293, 5668)) and exceeded energy intake. Protein flux, synthesis, and breakdown were all increased (P < 0.05) 24%, 18%, and 27%, respectively, during SKI compared with baseline and MTT. Whole-body protein balance was lower (P < 0.05) during SKI (-1.41 ± 1.11 (-1.98, -0.84) g·kg(-1)·10 h) than MTT and baseline. Muscle damage and soreness increased and performance decreased progressively (P < 0.05). The physiological consequences observed during short-term winter military training provide the basis for future studies to evaluate nutritional strategies that attenuate protein loss and sustain performance during severe energy deficits. PMID:25386980

  5. Assessment of dynamic balance via measurement of lower extremities tortuosity.

    PubMed

    Eltoukhy, Moataz; Kuenze, Christopher; Jun, Hyung-Pil; Asfour, Shihab; Travascio, Francesco

    2015-03-01

    Tortuosity describes how twisted or how much curvature is present in an observed movement or path. The purpose of this study was to investigate the differences in segmental tortuosity between Star Excursion Balance Test (SEBT) reach directions. Fifteen healthy participants completed this study. Participants completed the modified three direction (anterior, posteromedial, posterolateral) SEBT with three-dimensional motion analysis using an 8 camera BTS Smart 7000DX motion analysis system. The tortuosity of stance limb retro-reflective markers was then calculated and compared between reach directions using a 1 × 3 ANOVA with repeated measures, while the relationship between SEBT performance and tortuosity was established using Pearson product moment correlations. Anterior superior iliac spine tortuosity was significantly greater (p < 0.001) and lateral knee tortuosity was lesser (p = 0.018) in the anterior direction compared to the posteromedial and posterolateral directions. In addition, second metatarsal tortuosity was greater in the anterior reach direction when compared to posteromedial direction (p = 0.024). Tortuosity is a novel biomechanical measurement technique that provides an assessment of segmental movement during common dynamic tasks such as the SEBT. This enhanced level of detail compared to more global measures of joint kinematic may provide insight into compensatory movement strategies adopted following lower extremity joint injury. PMID:25895607

  6. Water, ice, meteorological, and speed measurements at South Cascade Glacier, Washington, 1999 balance year

    USGS Publications Warehouse

    Krimmel, Robert M.

    2001-01-01

    Winter snow accumulation and summer snow, firn, and ice melt were measured at South Cascade Glacier, Washington, to determine the winter and net balances for the 1999 balance year. The 1999 winter snow balance, averaged over the glacier, was 3.59 meters, and the net balance was 1.02 meters. Since the winter balance record began in 1959, only three winters have had a higher winter balance. Since the net balance record began in 1953, only 2 years have had a greater positive net balance than 1999. Runoff was measured from the glacier and an adjacent non-glacierized basin. Air temperature, precipitation, and humidity were measured nearby, and ice speed was measured. This report makes these data available to the glaciological and climatological community.

  7. Dietary energy balance modulates ovarian cancer progression and metastasis

    PubMed Central

    Al-Wahab, Zaid; Tebbe, Calvin; Chhina, Jasdeep; Dar, Sajad A.; Morris, Robert T.; Ali-Fehmi, Rouba; Giri, Shailendra; Munkarah, Adnan R.; Rattan, Ramandeep

    2014-01-01

    A high energy balance, or caloric excess, accounts as a tumor promoting factor, while a negative energy balance via caloric restriction, has been shown to delay cancer progression. The effect of energy balance on ovarian cancer progression was investigated in an isogeneic immunocompetent mouse model of epithelial ovarian cancer kept on a regimen of regular diet, high energy diet (HED) and calorie restricted diet (CRD), prior to inoculating the animals intraperitoneally with the mouse ovarian surface epithelial ID8 cancer cells. Tumor evaluation revealed that mice group on HED displayed the most extensive tumor formation with the highest tumor score at all organ sites (diaphragm, peritoneum, bowel, liver, kidney, spleen), accompanied with increased levels of insulin, leptin, insulin growth factor-1 (IGF-1), monocyte chemoattractant protein-1 (MCP-1), VEGF and interleukin 6 (IL-6). On the other hand, the mice group on CRD exhibited the least tumor burden associated with a significant reduction in levels of insulin, IGF-1, leptin, MCP-1, VEGF and IL-6. Immunohistochemistry analysis of tumors from HED mice showed higher activation of Akt and mTOR with decreased adenosine monophosphate activated kinase (AMPK) and SIRT1 activation, while tumors from the CRD group exhibited the reverse profile. In conclusion, ovarian cancer growth and metastasis occurred more aggressively under HED conditions and was significantly curtailed under CRD. The suggested mechanism involves modulated secretion of growth factors, cytokines and altered regulation of AMPK and SIRT1 that converges on mTOR inhibition. While the role of a high energy state in ovarian cancer has not been confirnmed in the literature, the current findings support investigating the potential impact of diet modulation as adjunct to other anticancer therapies and as possible individualized treatment strategy of epithelial ovarian cancer. PMID:25026276

  8. Gender Differences in Insulin Resistance, Body Composition, and Energy Balance

    PubMed Central

    Geer, Eliza B.; Shen, Wei

    2010-01-01

    Background Men and women differ substantially in regard to degrees of insulin resistance, body composition, and energy balance. Adipose tissue distribution, in particular the presence of elevated visceral and hepatic adiposity, plays a central role in the development of insulin resistance and obesity-related complications. Objective This review summarizes published data on gender differences in insulin resistance, body composition, and energy balance, to provide insight into novel gender-specific avenues of research as well as gender-tailored treatments of insulin resistance, visceral adiposity, and obesity. Methods English-language articles were identified from searches of the PubMed database through November 2008, and by reviewing the references cited in these reports. Searches included combinations of the following terms: gender, sex, insulin resistance, body composition, energy balance, and hepatic adipose tissue. Results For a given body mass index, men were reported to have more lean mass, women to have higher adiposity. Men were also found to have more visceral and hepatic adipose tissue, whereas women had more peripheral or subcutaneous adipose tissue. These differences, as well as differences in sex hormones and adipokines, may contribute to a more insulin-sensitive environment in women than in men. When normalized to kilograms of lean body mass, men and women had similar resting energy expenditure, but physical energy expenditure was more closely related to percent body fat in men than in women. Conclusion Greater amounts of visceral and hepatic adipose tissue, in conjunction with the lack of a possible protective effect of estrogen, may be related to higher insulin resistance in men compared with women. PMID:19318219

  9. Walk-based measure of balance in signed networks: Detecting lack of balance in social networks

    NASA Astrophysics Data System (ADS)

    Estrada, Ernesto; Benzi, Michele

    2014-10-01

    There is a longstanding belief that in social networks with simultaneous friendly and hostile interactions (signed networks) there is a general tendency to a global balance. Balance represents a state of the network with a lack of contentious situations. Here we introduce a method to quantify the degree of balance of any signed (social) network. It accounts for the contribution of all signed cycles in the network and gives, in agreement with empirical evidence, more weight to the shorter cycles than to the longer ones. We found that, contrary to what is generally believed, many signed social networks, in particular very large directed online social networks, are in general very poorly balanced. We also show that unbalanced states can be changed by tuning the weights of the social interactions among the agents in the network.

  10. Hippocampal lipoprotein lipase regulates energy balance in rodents☆

    PubMed Central

    Picard, Alexandre; Rouch, Claude; Kassis, Nadim; Moullé, Valentine S.; Croizier, Sophie; Denis, Raphaël G.; Castel, Julien; Coant, Nicolas; Davis, Kathryn; Clegg, Deborah J.; Benoit, Stephen C.; Prévot, Vincent; Bouret, Sébastien; Luquet, Serge; Le Stunff, Hervé; Cruciani-Guglielmacci, Céline; Magnan, Christophe

    2013-01-01

    Brain lipid sensing is necessary to regulate energy balance. Lipoprotein lipase (LPL) may play a role in this process. We tested if hippocampal LPL regulated energy homeostasis in rodents by specifically attenuating LPL activity in the hippocampus of rats and mice, either by infusing a pharmacological inhibitor (tyloxapol), or using a genetic approach (adeno-associated virus expressing Cre-GFP injected into Lpllox/lox mice). Decreased LPL activity by either method led to increased body weight gain due to decreased locomotor activity and energy expenditure, concomitant with increased parasympathetic tone (unchanged food intake). Decreased LPL activity in both models was associated with increased de novo ceramide synthesis and neurogenesis in the hippocampus, while intrahippocampal infusion of de novo ceramide synthesis inhibitor myriocin completely prevented body weight gain. We conclude that hippocampal lipid sensing might represent a core mechanism for energy homeostasis regulation through de novo ceramide synthesis. PMID:24634821

  11. Motor Energy Conservation Measures

    Energy Science and Technology Software Center (ESTSC)

    2010-12-31

    This software requires inputs of simple motor inventory information and calculates the energy and cost benefits of various retrofit opportunities. This tool includes energy conservation measures for: High Efficiency Motor retrofit and Cogged V-belts retrofit. This tool calculates energy savings, demand reduction, cost savings, and building life cycle costs including: simple payback, discounted payback, net-present value, and savings to investment ratio. In addition this tool also displays the environmental benefits of a project.

  12. Seasonal Contrasts in the Surface Energy Balance of the Sahel

    SciTech Connect

    Miller, Ron; Slingo, A.; Barnard, James C.; Kassianov, Evgueni I.

    2009-03-14

    Over most of the world ocean, heating of the surface by sunlight is balanced predominately by evaporative cooling. Even over land, moisture for evaporation is available from vegetation or the soil reservoir. However, at the ARM Mobile Facility in Niamey, Niger, soil moisture is so depleted that evaporation makes a significant contribution to the surface energy balance only at the height of the rainy season, when precipitation has replenished the soil reservoir. Using observations at the Mobile Facility from late 2005 to early 2007, we describe how the surface balances radiative forcing. How the surface compensates time-averaged solar heating varies with seasonal changes in atmospheric water vapor, which modulates the greenhouse effect and the ability of the surface to radiate thermal energy directly to space. During the dry season, sunlight is balanced mainly by longwave radiation and the turbulent flux of sensible heat. The ability of longwave radiation to cool the surface drops after the onset of the West African summer monsoon, when moist, oceanic air flows onshore, increasing local column moisture and atmospheric opacity at these wavelengths. After the monsoon onset, but prior to significant rainfall, solar heating is compensated mainly by the sensible heat flux. During the rainy season, the magnitude of evaporation is initially controlled by the supply of moisture from precipitation. However, by the height of the rainy season, sufficient precipitation has accumulated at the surface that evaporation is related to the flux demanded by solar radiation, and radiative forcing of the surface is balanced comparably by the latent, sensible, and longwave fluxes. Radiative forcing of the surface also varies on a subseasonal time scale due to fluctuations in water vapor, clouds, and aerosol concentration. Except at the height of the rainy season, subseasonal forcing is balanced mainly by sensible heating and longwave anomalies. The efficacy of the sensible heat flux

  13. Measuring and Modelling the Carbon Balance of Pinus palustris Savannas

    NASA Astrophysics Data System (ADS)

    Wright, J. K.; Williams, M. D.; Mitchell, R. J.; Starr, G.; McGee, J.; Whelan, A.

    2011-12-01

    Longleaf pine savannas currently occupy 1.4 million hectares in the South Eastern USA - only 2.6% of their original range. These fire-dependent ecosystems are highly biodiverse and of economic and ecological importance to the region. This region of the United States, however, is increasingly prone to severe drought, including a classified "exceptional" drought in 2011. Drought occurrence and severity are likely to increase in future climate scenarios. Moreover, increasing drought and accompanying wildfire will influence the carbon balance of the South East, a region identified as having the highest carbon sequestration potential in the USA. Thus, understanding the effects of drought on the native longleaf pine savanna land cover, therefore, is of both scientific and economic interest. Longleaf pine exists over a wide soil moisture gradient, driven by the texture and drainage capacity of the soils. These ecosystems therefore provide a natural laboratory for exploring the interaction between productivity, fire and water use. Here we present results of a 3 year study comparing the ecophysiology and carbon balance of two adjacent (5 mile separation) longleaf pine savanna flux sites, one xeric, one mesic. A process-based model (Soil-Plant-Atmosphere - SPA) and leaf-level measurements of photosynthesis and water use in drought and non-drought periods have enabled the authors to partition the carbon fluxes observed at each site into three functional groups (C4 understorey, C3 canopy and mid-storey). Results of this study show that the comparative overall productivity of wet and dry longleaf pine savannas varies through the year, with both wet and dry sites achieving similar productivity in the summer months but with the wet site exceeding the dry site during winter. We hypothesise that this difference is due to the activity of the seasonal C4 understorey. Results from SPA, flux data and field measurements suggest the understorey, dominated by the C4 grass Aristida stricta

  14. The energy balance of plasmoids in the solar atmosphere

    NASA Technical Reports Server (NTRS)

    Cargill, P. J.; Pneuman, G. W.

    1986-01-01

    The properties of an isolated magnetized plasmoid in a nonuniform magnetic field such as arises in stellar atmospheres are studied. The work of Pneuman and Cargill (1985) on the so-called melon-seed effect is extended to include an equation describing the energy balance, so giving a unified picture of the shape, motion, and energetics of the plasmoid. Three treatments of plasmoid energy balance are considered: (1) a polytropic law, (P = about N to the gamma); (2) one in which the plasmoid cools radiatively; and (3) one in which a heating function proportional to the local density balances the radiation. For a gamma = 4/3 polytrope the evolution is self-similar, so that the plasmoid maintains its shape as it moves out from the stellar surface. If gamma is less than 4/3, the final shape is a long thin cigar-shaped body, whereas if gamma is greater than or equal to 4/3, it ultimately becomes self-similar. In cases with radiation and also with heating, the ultimate shape of the plasmoid is determined by whether its gas or magnetic pressure dominate. The former is equivalent to the gamma-less-than-4/3 polytrope, and the latter to the gamma-greater-than-4/3 one. If radiation alone is present, the plasmoid cools rapidly and subsequently evolves self-similarly. If heating balances radiation initially, then the plasmoid heats up as it moves out, but, if the ratio of the transit of time of Alfven waves across it is much less than the radiative cooling time, it ultimately evolves as a gamma = 5/3 polytrope. In each case the plasmoid can be ejected to large distances (several radii) in a stellar atmosphere, for a reasonable choice of surface parameters.

  15. Appetite control and energy balance: impact of exercise.

    PubMed

    Blundell, J E; Gibbons, C; Caudwell, P; Finlayson, G; Hopkins, M

    2015-02-01

    Exercise is widely regarded as one of the most valuable components of behaviour that can influence body weight and therefore help in the prevention and management of obesity. Indeed, long-term controlled trials show a clear dose-related effect of exercise on body weight. However, there is a suspicion, particularly fuelled by media reports, that exercise serves to increase hunger and drive up food intake thereby nullifying the energy expended through activity. Not everyone performing regular exercise will lose weight and several investigations have demonstrated a huge individual variability in the response to exercise regimes. What accounts for this heterogeneous response? First, exercise (or physical activity) through the expenditure of energy will influence the energy balance equation with the potential to generate an energy deficit. However, energy expenditure also influences the control of appetite (i.e. the physiological and psychological regulatory processes underpinning feeding) and energy intake. This dynamic interaction means that the prediction of a resultant shift in energy balance, and therefore weight change, will be complicated. In changing energy intake, exercise will impact on the biological mechanisms controlling appetite. It is becoming recognized that the major influences on the expression of appetite arise from fat-free mass and fat mass, resting metabolic rate, gastric adjustment to ingested food, changes in episodic peptides including insulin, ghrelin, cholecystokinin, glucagon-like peptide-1 and tyrosine-tyrosine, as well as tonic peptides such as leptin. Moreover, there is evidence that exercise will influence all of these components that, in turn, will influence the drive to eat through the modulation of hunger (a conscious sensation reflecting a mental urge to eat) and adjustments in postprandial satiety via an interaction with food composition. The specific actions of exercise on each physiological component will vary in strength from

  16. Energy balance framework for Net Zero Energy buildings

    EPA Science Inventory

    Approaching a Net Zero Energy (NZE) building goal based on current definitions is flawed for two principal reasons - they only deal with energy quantities required for operations, and they do not establish a threshold, which ensures that buildings are optimized for reduced consum...

  17. The radiation balance of the earth-atmosphere system from Nimbus 3 radiation measurements

    NASA Technical Reports Server (NTRS)

    Raschke, E.; Vonderhaar, T. H.; Pasternak, M.; Bandeen, W. R.

    1973-01-01

    The radiation balance of the earth-atmosphere system and its components was computed from global measurements of radiation reflected and emitted from the earth to space. These measurements were made from the meteorological satellite Nimbus 3 during the periods from April 16 to August 15, 1969; October 3 to 17, 1969; and January 21 to February 3, 1970. Primarily the method of evaluation, its inherent assumptions, and possible error sources were discussed. Results are presented by various methods: (1) global, hemispherical, and zonal averages obtained from measurements in all semimonthly periods and (2) global maps of the absorbed solar radiation, the albedo, the outgoing longwave radiation, and the radiation balance obtained from measurements during semimonthly periods in each season (May 1 to 15, July 16 to 31, and October 3 to 17, 1969, and January 21 to February 3, 1970). Annual global averages of the albedo and of the outgoing longwave radiation were determined. These values balance to within 1 percent the annual global energy input by solar radiation that was computed for a solar constant.

  18. Control and Size Energy Storage for Managing Energy balance of Variable Generation Resources

    SciTech Connect

    Ke, Xinda; Lu, Ning; Jin, Chunlian

    2015-01-01

    This paper presents control algorithms and sizing strategies for using energy storage to manage energy balance for variable generation resources. The control objective is to minimize the hourly generation imbalance between the actual and the scheduled generation of the wind farm. Three control algorithms are compared: tracking power imbalance, post-compensation, and pre-compensation. Measurement data from a wind farm located in South-central Washington State are used in the study. The results show that tracking power imbalance yields the best performance by keeping the hourly energy imbalances zero. However, the energy storage system (ESS) will be significantly oversized. Post-compensation reduces power rating of the ESS but the hourly imbalance may not be kept as zero when large and long-lasting energy imbalances occur. A linear regression forecasting algorithm is developed for the pre-compensation algorithm to pre-charge or pre-discharge the ESS based on predicted energy imbalances. The performance comparison shows that the pre-compensation method significantly reduces the size of the ESS while maintaining satisfactory performance.

  19. Recycling legislation: A balanced approach for opening biomass energy opportunities

    SciTech Connect

    Easterly, J.L.

    1995-09-01

    State recycling legislation represents one of the barriers to using wood wastes for energy. Although many states are setting recycling goals that often mandate a significant portion of the waste stream be recycled, legislation in the same states specifically excludes wood-to-energy as a recycling option. A significant supply of yard waste and wood waste could be available for biomass power generation of recycling legislation credited the use of wood-to-energy as an acceptable recycling alternative. This article discusses in some detail the approach Florida legislation has pursued. It could be a model for other innovative recycling programs. It provides checks and balances as well as reasonable compromises that help to avoid or minimize objections by the environmental community.

  20. Energy balance and ovulation: small cages versus natural habitats.

    PubMed

    Bronson, F H

    1998-01-01

    In the laboratory, ovulation is suppressed when a mammal is in negative energy balance whether that state is caused by inadequate food intake, excessive locomotor activity or heavy thermoregulatory costs. In this paper, knowledge generated in the laboratory about the link between ovulation and energy balance is examined in relation to the kinds of energetic challenges mammals actually face in natural habitats. When viewed in that context, several conclusions can be drawn. First, females ovulate whenever extant energetic conditions permit unless the process is blocked by non-metabolic stress, social cues or a predictive seasonal cue such as photoperiod. In the latter case, most mammals show at least a seasonal tendency in their reproduction and the majority do not use a predictive cue; they reproduce opportunistically in relation to seasonal variation in the energetic characteristics of their environment. Second, the widely held assumption that a female's fat reserves must exceed a critical level in order that she may ovulate finds no support in the literature dealing with natural populations. Third, the surprisingly rapid responsiveness of the gonadotrophin releasing hormone (GnRH) pulse generator to energetic manipulation probably reflects the study of animals that are in a pure survival mode. Fourth, the complexity of the energetic challenges mammals face in the wild suggests that there are probably multiple metabolic and neural pathways coupling ovulation to energy balance and that these pathways are probably characterized by considerable overlap and redundancy. Thus, fifth, to develop a more realistic overview of these pathways there is a need for experimental designs that present mammals with the kinds of complex challenges they actually face in the wild habitats in which they evolved. PMID:9801265

  1. Amylin-mediated control of glycemia, energy balance, and cognition.

    PubMed

    Mietlicki-Baase, Elizabeth G

    2016-08-01

    Amylin, a peptide hormone produced in the pancreas and in the brain, has well-established physiological roles in glycemic regulation and energy balance control. It improves postprandial blood glucose levels by suppressing gastric emptying and glucagon secretion; these beneficial effects have led to the FDA-approved use of the amylin analog pramlintide in the treatment of diabetes mellitus. Amylin also acts centrally as a satiation signal, reducing food intake and body weight. The ability of amylin to promote negative energy balance, along with its unique capacity to cooperatively facilitate or enhance the intake- and body weight-suppressive effects of other neuroendocrine signals like leptin, have made amylin a leading target for the development of novel pharmacotherapies for the treatment of obesity. In addition to these more widely studied effects, a growing body of literature suggests that amylin may play a role in processes related to cognition, including the neurodegeneration and cognitive deficits associated with Alzheimer's disease (AD). Although the function of amylin in AD is still unclear, intriguing recent reports indicate that amylin may improve cognitive ability and reduce hallmarks of neurodegeneration in the brain. The frequent comorbidity of diabetes mellitus and obesity, as well as the increased risk for and occurrence of AD associated with these metabolic diseases, suggests that amylin-based pharmaceutical strategies may provide multiple therapeutic benefits. This review will discuss the known effects of amylin on glycemic regulation, energy balance control, and cognitive/motivational processes. Particular focus will be devoted to the current and/or potential future clinical use of amylin pharmacotherapies for the treatment of diseases in each of these realms. PMID:26922873

  2. Primary cilia in energy balance signaling and metabolic disorder

    PubMed Central

    Lee, Hankyu; Song, Jieun; Jung, Joo Hyun; Ko, Hyuk Wan

    2015-01-01

    Energy homeostasis in our body system is maintained by balancing the intake and expenditure of energy. Excessive accumulation of fat by disrupting the balance system causes overweight and obesity, which are increasingly becoming global health concerns. Understanding the pathogenesis of obesity focused on studying the genes related to familial types of obesity. Recently, a rare human genetic disorder, ciliopathy, links the role for genes regulating structure and function of a cellular organelle, the primary cilium, to metabolic disorder, obesity and type II diabetes. Primary cilia are microtubule based hair-like membranous structures, lacking motility and functions such as sensing the environmental cues, and transducing extracellular signals within the cells. Interestingly, the subclass of ciliopathies, such as Bardet-Biedle and Alström syndrome, manifest obesity and type II diabetes in human and mouse model systems. Moreover, studies on genetic mouse model system indicate that more ciliary genes affect energy homeostasis through multiple regulatory steps such as central and peripheral actions of leptin and insulin. In this review, we discuss the latest findings in primary cilia and metabolic disorders, and propose the possible interaction between primary cilia and the leptin and insulin signal pathways which might enhance our understanding of the unambiguous link of a cell’s antenna to obesity and type II diabetes. [BMB Reports 2015; 48(12): 647-654] PMID:26538252

  3. Life cycle assessment of biofuels: energy and greenhouse gas balances.

    PubMed

    Gnansounou, E; Dauriat, A; Villegas, J; Panichelli, L

    2009-11-01

    The promotion of biofuels as energy for transportation in the industrialized countries is mainly driven by the perspective of oil depletion, the concerns about energy security and global warming. However due to sustainability constraints, biofuels will replace only 10 to 15% of fossil liquid fuels in the transport sector. Several governments have defined a minimum target of GHG emissions reduction for those biofuels that will be eligible to public incentives, for example a 35% emissions reduction in case of biofuels in Members States of the European Union. This article points out the significant biases in estimating GHG balances of biofuels stemming from modelling choices about system definition and boundaries, functional unit, reference systems and allocation methods. The extent to which these choices influence the results is investigated. After performing a comparison and constructive criticism of various modelling choices, the LCA of wheat-to-bioethanol is used as an illustrative case where bioethanol is blended with gasoline at various percentages (E5, E10 and E85). The performance of these substitution options is evaluated as well. The results show a large difference in the reduction of the GHG emissions with a high sensitivity to the following factors: the method used to allocate the impacts between the co-products, the type of reference systems, the choice of the functional unit and the type of blend. The authors come out with some recommendations for basing the estimation of energy and GHG balances of biofuels on principles such as transparency, consistency and accuracy. PMID:19553106

  4. The Precession Index and a Nonlinear Energy Balance Climate Model

    NASA Technical Reports Server (NTRS)

    Rubincam, David

    2004-01-01

    A simple nonlinear energy balance climate model yields a precession index-like term in the temperature. Despite its importance in the geologic record, the precession index e sin (Omega)S, where e is the Earth's orbital eccentricity and (Omega)S is the Sun's perigee in the geocentric frame, is not present in the insolation at the top of the atmosphere. Hence there is no one-for-one mapping of 23,000 and 19,000 year periodicities from the insolation to the paleoclimate record; a nonlinear climate model is needed to produce these long periods. A nonlinear energy balance climate model with radiative terms of form T n, where T is surface temperature and n less than 1, does produce e sin (omega)S terms in temperature; the e sin (omega)S terms are called Seversmith psychroterms. Without feedback mechanisms, the model achieves extreme values of 0.64 K at the maximum orbital eccentricity of 0.06, cooling one hemisphere while simultaneously warming the other; the hemisphere over which perihelion occurs is the cooler. In other words, the nonlinear energy balance model produces long-term cooling in the northern hemisphere when the Sun's perihelion is near northern summer solstice and long-term warming in the northern hemisphere when the aphelion is near northern summer solstice. (This behavior is similar to the inertialess gray body which radiates like T 4, but the amplitude is much lower for the energy balance model because of its thermal inertia.) This seemingly paradoxical behavior works against the standard Milankovitch model, which requires cool northern summers (Sun far from Earth in northern summer) to build up northern ice sheets, so that if the standard model is correct it must be more efficient than previously thought. Alternatively, the new mechanism could possibly be dominant and indicate southern hemisphere control of the northern ice sheets, wherein the southern oceans undergo a long-term cooling when the Sun is far from the Earth during northern summer. The cold

  5. Hypothalamic miRNAs: emerging roles in energy balance control

    PubMed Central

    Schneeberger, Marc; Gomez-Valadés, Alicia G.; Ramirez, Sara; Gomis, Ramon; Claret, Marc

    2015-01-01

    The hypothalamus is a crucial central nervous system area controlling appetite, body weight and metabolism. It consists in multiple neuronal types that sense, integrate and generate appropriate responses to hormonal and nutritional signals partly by fine-tuning the expression of specific batteries of genes. However, the mechanisms regulating these neuronal gene programmes in physiology and pathophysiology are not completely understood. MicroRNAs (miRNAs) are key regulators of gene expression that recently emerged as pivotal modulators of systemic metabolism. In this article we will review current evidence indicating that miRNAs in hypothalamic neurons are also implicated in appetite and whole-body energy balance control. PMID:25729348

  6. A Near Perfect Spin Balance (Measurement in Chaos)

    NASA Technical Reports Server (NTRS)

    Luntz, R. A.

    1997-01-01

    The stringent spin balance requirements arise from the predecessor of SSMIS, the SSMI. The SSMI sensor spinning portion weighed only 85 pounds and contained 7 channels of radiometric data. The Aerospace Corporation recommended to pass on the same requirements from the smaller SSMI to our larger SSMIS (with slight change for increased weight). The SSMIS spinning portion will weigh about 155 pounds and contain 24 channels of radiometeric data. The SSMIS, on orbit, spins a CCW direction at 31.6 RPM its own drive motor. The packaging of this SSMIS is unique, as it combines three sensor into one unit. This combination allows for concurrently reading data in one beam. The unit will have a polar orbit about 500 miles above the earths surface. One of the primary influences for our receipt of the follow-on contract for the next generation sensor, was the ability to package 24 channels of radiometeric data into about the some volume as its predecessor. The data from SSMIS will be used to measure the following: (1) Ocean surface wind speed, (2) Rain over land an ocean, (3) Cloud water over Ocean, (4) Soil moisture, (5) Ice Concentration, (6) Ice age, (7) Ice Edge and snow edge, (8) Water vapor over Ocean, (9) Surface type, (10) Snow water content, (11) Land surface Temperature, (12) Cloud amount over ocean.

  7. Evolution effects on parton energy loss with detailed balance

    SciTech Connect

    Cheng Luan; Wang Enke

    2010-07-15

    The initial conditions in the chemically nonequilibrated medium and Bjorken expanding medium at Relativistic Heavy Ion Collider (RHIC) are determined. With a set of rate equations describing the chemical equilibration of quarks and gluons based on perturbative QCD, we investigate the consequence for parton evolution at RHIC. With considering parton evolution, it is shown that the Debye screening mass and the inverse mean free-path of gluons reduce with increasing proper time in the QGP medium. The parton evolution affects the parton energy loss with detailed balance, both parton energy loss from stimulated emission in the chemically nonequilibrated expanding medium and in Bjorken expanding medium are linear dependent on the propagating distance rather than square dependent in the static medium. The energy absorption cannot be neglected at intermediate jet energies and small propagating distance of the energetic parton in contrast with that it is important only at intermediate jet energy in the static medium. This will increase the energy and propagating distance dependence of the parton energy loss and will affect the shape of suppression of moderately high P{sub T} hadron spectra.

  8. Directed energy deflection laboratory measurements

    NASA Astrophysics Data System (ADS)

    Brashears, Travis; Lubin, Phillip; Hughes, Gary B.; Meinhold, Peter; Suen, Jonathan; Batliner, Payton; Motta, Caio; Griswold, Janelle; Kangas, Miikka; Johansson, Isbella; Alnawakhtha, Yusuf; Prater, Kenyon; Lang, Alex; Madajian, Jonathan

    2015-09-01

    We report on laboratory studies of the effectiveness of directed energy planetary defense as a part of the DESTAR (Directed Energy System for Targeting of Asteroids and exploRation) program. DE-STAR [1][5][6] and DE-STARLITE [2][5][6] are directed energy "stand-off" and "stand-on" programs, respectively. These systems consist of a modular array of kilowatt-class lasers powered by photovoltaics, and are capable of heating a spot on the surface of an asteroid to the point of vaporization. Mass ejection, as a plume of evaporated material, creates a reactionary thrust capable of diverting the asteroid's orbit. In a series of papers, we have developed a theoretical basis and described numerical simulations for determining the thrust produced by material evaporating from the surface of an asteroid [1][2][3][4][5][6]. In the DE-STAR concept, the asteroid itself is used as the deflection "propellant". This study presents results of experiments designed to measure the thrust created by evaporation from a laser directed energy spot. We constructed a vacuum chamber to simulate space conditions, and installed a torsion balance that holds an "asteroid" sample. The sample is illuminated with a fiber array laser with flux levels up to 60 MW/m2 which allows us to simulate a mission level flux but on a small scale. We use a separate laser as well as a position sensitive centroid detector to readout the angular motion of the torsion balance and can thus determine the thrust. We compare the measured thrust to the models. Our theoretical models indicate a coupling coefficient well in excess of 100 μN/Woptical, though we assume a more conservative value of 80 μN/Woptical and then degrade this with an optical "encircled energy" efficiency of 0.75 to 60 μN/Woptical in our deflection modeling. Our measurements discussed here yield about 45 μN/Wabsorbed as a reasonable lower limit to the thrust per optical watt absorbed.

  9. Reciprocal Compensation to Changes in Dietary Intake and Energy Expenditure within the Concept of Energy Balance123

    PubMed Central

    Drenowatz, Clemens

    2015-01-01

    An imbalance between energy intake and energy expenditure is the primary etiology for excess weight gain. Increased energy expenditure via exercise and energy restriction via diet are commonly used approaches to induce weight loss. Such behavioral interventions, however, have generally resulted in a smaller than expected weight loss, which in part has been attributed to compensatory adaptations in other components contributing to energy balance. Current research points to a loose coupling between energy intake and energy expenditure on a daily basis, and evidence for long-term adaptations has been inconsistent. The lack of conclusive evidence on compensatory adaptations in response to alterations in energy balance can be attributed to differences in intervention type and study population. Physical activity (PA) levels may be reduced in response to aerobic exercise but not in response to resistance exercise. Furthermore, athletic and lean adults have been shown to increase their energy intake in response to exercise, whereas no such response was observed in obese adults. There is also evidence that caloric restriction is associated with a decline in PA. Generally, humans seem to be better equipped to defend against weight loss than avoid weight gain, but results also show a large individual variability. Therefore, individual differences rather than group means should be explored to identify specific characteristics of “compensators” and “noncompensators.” This review emphasizes the need for more research with simultaneous measurements of all major components contributing to energy balance to enhance the understanding of the regulation of energy balance, which is crucial to address the current obesity epidemic. PMID:26374181

  10. The structure and energy balance of cool star atmospheres

    NASA Technical Reports Server (NTRS)

    Linsky, J. L.

    1982-01-01

    The atmospheric structure and energy balance phenomena associated with magnetic fields in the Sun are reviewed and it is shown that similar phenomena occur in cool stars. The evidence for the weakening or disappearance of transition regions and coronae is discussed together with the appearance of extended cool chromospheres with large mass loss, near V-R = 0.80 in the H-R diagram. Like the solar atmosphere, these atmospheres are not homogeneous and there is considerable evidence for plage regions with bright TR emission lines that overlie dark (presumably magnetic) star spots. The IUE observations are providing important information on the energy balance in these atmospheres that should guide theoretical calculations of the nonradiative heating rate. Recent high dispersion spectra are providing unique information concerning which components of close binary systems are the dominant contributors to the observed emission. A recent unanticipated discovery is that the transition lines are redshifted (an antiwind) in DRa (G2 Ib) and perhaps other stars. Finally, the G and K giants and supergiants are classified into three groups depending on whether their atmospheres are dominated by closed magnetic flux tubes, open field geometries, or a predominately open geometry with a few closed flux tubes embedded.

  11. Modelling The Energy And Mass Balance Of A Black Glacier

    NASA Astrophysics Data System (ADS)

    Grossi, G.; Taschner, S.; Ranzi, R.

    A distributed energy balance hydrologic model has been implemented to simulate the melting season of the Belvedere glacier, situated in the Anza river basin (North- Western Italy) for a few years. The Belvedere Glacier is an example of SblackS glacier, ´ since the ablation zone is covered by a significant debris layer. The glacierSs termi- nus has an altitude of 1785 m asl which is very unusual for the Southern side of the European Alps. The model accounts for the energy exchange processes at the inter- face between the atmospheric boundary layer and the snow/ice/debris layer. To run the model hydrometeorological and physiographic data were collected, including the depth of the debris cover and the tritium (3H) concentration in the glacial river. Mea- surements of the soil thermal conductivity were carried out during a field campaign organised within the glaciers monitoring GLIMS project, at the time of the passage of the Landsat and the Terra satellites last 15 August 2001. A comparison of the different energy terms simulated by the model assigns a dominant role to the shortwave radia- tion, which provides the highest positive contribution to the energy available for snow- and ice-melt, while the sensible heat turns out to be the second major source of heat. Longwave radiation balance and latent heat seem to be less relevant and often nega- tive. The role of the debris cover is not negligible, since its thermal insulation causes, on average, a decrease in the ice melt volume. One of the model variables is the tem- perature of the debris cover, which can be a useful information when a black glacier is to be monitored through remote sensing techniques. The visible and near infrared radi- ation data do not always provide sufficient information to detect the glaciers' margins beneath the debris layer. For this reason the information of the different thermal sur- face characteristics (pure ice, debris covered ice, rock), proved by the energy balance model results was

  12. Pedometer and Human Energy Balance Applications for Science Instruction

    PubMed Central

    Rye, James A.; Smolski, Stefan

    2008-01-01

    Teachers can use pedometers to facilitate inquiry learning and show students the need for mathematics in scientific investigation. The authors conducted activities with secondary students that investigated intake and expenditure components of the energy balance algorithm, which led to inquiries about pedometers and related data. By investigating the accuracy of pedometers and variables that may impact reported step counts, students can better understand experimental design and statistical concepts. Students can also examine other data (distance walked, kilocalories expended) using multifunction pedometers and apply the concepts of correlation and regression. This topic fits well with thematic learning and responds to concerns about excess energy intake and insufficient physical activity in the U.S. population. PMID:19081754

  13. Simulating the surface energy balance in a soybean canopy with SHAW and RZ-SHAW models

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Correct simulation of surface energy balance in a crop canopy is critical for better understanding of soil water balance, canopy and soil temperature, plant water stress, and plant growth. One existing effort is to incorporate the surface energy balance in the Simultaneous Heat And Water (SHAW) into...

  14. Surface Energy Balance Methods for Evapotranspiration - Some Enhancements and Applications

    NASA Astrophysics Data System (ADS)

    Gutschick, V. P.; Wang, J.; Sammis, T. W.

    2007-05-01

    Satellite-received radiances and auxiliary ground-based information are routinely used to estimate the evapotranspiration rate (ET, or LE as a latent heat energy flux density) on landscape elements. Many methods compute LE as a residual, computing the terms Rn, G, and H in the full energy-balance equation, S = Rn - G ¬ H - LE, where S is surface (canopy) heat storage (often assumed near zero), Rn is net radiation, G is heat flux into the (soil) surface, and H is the sensible heat flux. Computation of H is prone to errors in obtaining accurate radiometric temperatures, TR, of the surface and in relating TR to the true kinetic temperature of the surface heat source. The Surface Energy BAlance Land (SEBAL) method avoids the offset errors by introducing an assumption of a linear relation of TR to the surface-to-air temperature difference. This assumption, and several others, can introduce distinct errors and operational problems, which will be discussed, along with several improvements under development. The latter include direct regression solutions for LE, correcting for advection of energy and for the lapse rate of the surface (not air) temperature, and the use of auxiliary radiance-based information on vegetation water stress. Also to be discussed are potential applications of enhanced ET methods to estimate hydrologic redistributions (runon, runoff), the consequent spatial patterning of vegetation, and the implications of both for ecological studies (equilibrium canopy development, long-term acclimation of stomatal control) and ecosystem management (estimating forest water stress and its relations to stand density, forest thinning exercises, and hazards of fire and insect outbreaks).

  15. Modeling the snow surface temperature with a one-layer energy balance snowmelt model

    NASA Astrophysics Data System (ADS)

    You, J.; Tarboton, D. G.; Luce, C. H.

    2014-12-01

    Snow surface temperature is a key control on and result of dynamically coupled energy exchanges at the snow surface. The snow surface temperature is the result of the balance between external forcing (incoming radiation) and energy exchanges above the surface that depend on surface temperature (outgoing longwave radiation and turbulent fluxes) and the transport of energy into the snow by conduction and meltwater influx. Because of the strong insulating properties of snow, thermal gradients in snow packs are large and nonlinear, a fact that has led many to advocate multiple layer snowmelt models over single layer models. In an effort to keep snowmelt modeling simple and parsimonious, the Utah Energy Balance (UEB) snowmelt model used only one layer but allowed the snow surface temperature to be different from the snow average temperature by using an equilibrium gradient parameterization based on the surface energy balance. Although this procedure was considered an improvement over the ordinary single layer snowmelt models, it still resulted in discrepancies between modeled and measured snowpack energy contents. In this paper we evaluate the equilibrium gradient approach, the force-restore approach, and a modified force-restore approach when they are integrated as part of a complete energy and mass balance snowmelt model. The force-restore and modified force-restore approaches have not been incorporated into the UEB in early versions, even though Luce and Tartoton have done work in calculating the energy components using these approaches. In addition, we evaluate a scheme for representing the penetration of a refreezing front in cold periods following melt. We introduce a method to adjust effective conductivity to account for the presence of ground near to a shallow snow surface. These parameterizations were tested against data from the Central Sierra Snow Laboratory, CA, Utah State University experimental farm, UT, and subnivean snow laboratory at Niwot Ridge, CO

  16. Mapping surface energy balance components by combining Landsat Thematic Mapper and ground-based meteorological data

    NASA Technical Reports Server (NTRS)

    Moran, M. Susan; Jackson, Ray D.; Raymond, Lee H.; Gay, Lloyd W.; Slater, Philip N.

    1989-01-01

    Surface energy balance components were evaluated by combining satellite-based spectral data with on-site measurements of solar irradiance, air temperature, wind speed, and vapor pressure. Maps of latent heat flux density and net radiant flux density were produced using Landsat TM data for three dates. The TM-based estimates differed from Bowen-ratio and aircraft-based estimates by less than 12 percent over mature fields of cotton, wheat, and alfalfa.

  17. Global Energy and Water Balances in the Latest Reanalyses

    NASA Astrophysics Data System (ADS)

    Ahn, Joong-Bae; Kang, Suchul; Park, Hye-Jin

    2016-04-01

    The recently released Japanese 55-year Reanalysis (JRA-55) data are evaluated and compared with three other global reanalyses, namely Interim version of the next European Centre for Medium-Range Weather Forecasts (ECMWF) Re-Analysis (ERRA-Interim), Modern Era Retrospective-Analysis for Research and Applications (MERRA) and Climate Forecast System Reanalysis (CFSR), in terms of global energy and water balances. All four reanalyses show an energy imbalance at TOA and surface. Especially, clouds in JRA-55 are optically weaker than those in the three other reanalyses, leading to excessive outgoing longwave radiation, which in turn causes negative net energy flux at TOA. Moreover, JRA-55 has a negative imbalance at surface and at TOA, which is attributed to systematic positive biases in latent heat flux over the ocean. As for the global water balance, all reanalyses present a similar spatial pattern of the difference between evaporation and precipitation (E-P). However, JRA-55 has a relatively strong negative (positive) E-P in the Intertropical Convergence Zone and South Pacific Convergence Zone (extratropical regions) due to overestimated precipitation (evaporation), in spite of the global net being close to zero. In time series analysis, especially in E-P, significant stepwise changes occur in MERRA, CFSR and ERA-Interim due to the changes occur in MERRA, CFRS and ERA-Interim due to the changes in the satellite observing system used in the data assimilation. Both MERRA and CFSR show a strong downward E-P shift in 1998, simultaneously with the start of the assimilation of AMSU-A sounding radiances. ERA-Interim exhibits an upward E-P shift in 1992 due to changes in observations from the SSM/I of new DMSP satellites. On the contrary, JRA-55 exhibits less trends and remains stable over time, which may be caused by newly available, homogenized observations and advances in data assimilation technique. Acknowledgements This work was funded by the Korea Meteorological

  18. The Role of Clinical and Instrumented Outcome Measures in Balance Control of Individuals with Multiple Sclerosis

    PubMed Central

    Kanekar, Neeta; Aruin, Alexander S.

    2013-01-01

    Purpose. The aim of the study was to investigate differences in balance control between individuals with multiple sclerosis (MS) and healthy control subjects using clinical scales and instrumented measures of balance and determine relationships between balance measures, fatigue, and disability levels in individuals with MS with and without a history of falls. Method. Twelve individuals with MS and twelve healthy controls were evaluated using the Berg Balance and Activities-specific Balance Confidence Scales, Modified Clinical Test of Sensory Interaction on Balance, and Limits of Stability Tests as well as Fatigue Severity Scale and Barthel Index. Results. Mildly affected individuals with MS had significant balance performance deficits and poor balance confidence levels (P < 0.05). MS group had higher sway velocities and diminished stability limits (P < 0.05), significant sensory impairments, high fatigue and disability levels (P < 0.05). Sway velocity was a significant predictor of balance performance and the ability to move towards stability limits for the MS group. For the MS-fallers group, those with lower disability levels had faster movement velocities and better balance performance. Conclusion. Implementation of both clinical and instrumented tests of balance is important for the planning and evaluation of treatment outcomes in balance rehabilitation of people with MS. PMID:23766907

  19. Enforcing elemental mass and energy balances for reduced order models

    SciTech Connect

    Ma, J.; Agarwal, K.; Sharma, P.; Lang, Y.; Zitney, S.; Gorton, I.; Agawal, D.; Miller, D.

    2012-01-01

    Development of economically feasible gasification and carbon capture, utilization and storage (CCUS) technologies requires a variety of software tools to optimize the designs of not only the key devices involved (e., g., gasifier, CO{sub 2} adsorber) but also the entire power generation system. High-fidelity models such as Computational Fluid Dynamics (CFD) models are capable of accurately simulating the detailed flow dynamics, heat transfer, and chemistry inside the key devices. However, the integration of CFD models within steady-state process simulators, and subsequent optimization of the integrated system, still presents significant challenges due to the scale differences in both time and length, as well the high computational cost. A reduced order model (ROM) generated from a high-fidelity model can serve as a bridge between the models of different scales. While high-fidelity models are built upon the principles of mass, momentum, and energy conservations, ROMs are usually developed based on regression-type equations and hence their predictions may violate the mass and energy conservation laws. A high-fidelity model may also have the mass and energy balance problem if it is not tightly converged. Conservations of mass and energy are important when a ROM is integrated to a flowsheet for the process simulation of the entire chemical or power generation system, especially when recycle streams are connected to the modeled device. As a part of the Carbon Capture Simulation Initiative (CCSI) project supported by the U.S. Department of Energy, we developed a software framework for generating ROMs from CFD simulations and integrating them with Process Modeling Environments (PMEs) for system-wide optimization. This paper presents a method to correct the results of a high-fidelity model or a ROM such that the elemental mass and energy are conserved perfectly. Correction factors for the flow rates of individual species in the product streams are solved using a

  20. Preliminary approach of the MELiSSA loop energy balance

    NASA Astrophysics Data System (ADS)

    Poulet, Lucie; Lamaze, Brigitte; Lebrun, Jean

    Long duration missions, such as the establishment of permanent bases on the lunar surface or the travel to Mars, require a huge amount of life support consumables (e.g. food, water and oxygen). Current rockets are at the moment unable to launch such a mass from Earth. Consequently Regenerative Life Support Systems are necessary to sustain long-term manned space mission to increase recycling rates and so reduce the launched mass. Thus the European and Canadian research has been concentrating on the MELiSSA (Micro-Ecological Life Support System Alternative) project over the last 20 years. MELiSSA is an Environmental Controlled Life Support System (ECLSS), i.e. a closed regenerative loop inspired of a lake ecosystem. Using light as a source of energy, MELiSSA's goal is the recovery of food, water and oxygen from CO2 and organic wastes, using microorganisms and higher plants. The architecture of a ECLSS depends widely on the mission scenario. To compare several ECLSS architectures and in order to be able to evaluate them, ESA is developing a multi criteria evaluation tool: ALISSE (Advanced LIfe Support System Evaluator). One of these criteria is the energy needed to operate the ECLSS. Unlike other criteria like the physical mass, the energy criterion has not been investigated yet and needs hence a detailed analysis. It will consequently be the focus of this study. The main objective of the work presented here is to develop a dynamic tool able to estimate the energy balance for several configurations of the MELiSSA loop. The first step consists in establishing the energy balance using concrete figures from the MELiSSA Pilot Plant (MPP). This facility located at the Universitat Autonoma de Barcelona (UAB) is aimed at the ground demonstration of the MELiSSA loop. The MELiSSA loop is structured on several subsystems; each of them is characterized by supplies, exhausts and process reactions. For the purpose of this study (i.e. a generic tool) the solver EES (Engineering

  1. An improved sensing element for skin-friction balance measurements. [supersonic drag measuring instrument

    NASA Technical Reports Server (NTRS)

    Allen, J. M.

    1980-01-01

    A nulling, parallel-linkage sensing element has been developed for a skin-friction balance in order to minimize the introduction of extraneous forces. Advantages of the present element over the conventional single-pivot sensing element include its insensitivity to element misalignment and off-center normal forces. Wind tunnel tests of the effects of gap size and element misalignment on parallel-linkage balance measurements indicate the greater sensitivity of the device to misalignment at small gap sizes and large lip sizes, as well as its relative insensitivity to off-center normal forces. It is concluded that a parallel-linkage device with a small lip is virtually insensitive to gap size and element misalignment, representing an improvement in skin-friction-measuring characteristics.

  2. Global energy and water balances in the latest reanalyses

    NASA Astrophysics Data System (ADS)

    Kang, Suchul; Ahn, Joong-Bae

    2015-11-01

    The recently released Japanese 55-year Reanalysis (JRA- 55) data are evaluated and compared with three other global reanalyses, namely Interim version of the next European Centre for Medium-Range Weather Forecasts (ECMWF) Re-Analysis (ERA-Interim), Modern Era Retrospective-Analysis for Research and Applications (MERRA) and Climate Forecast System Reanalysis (CFSR), in terms of global energy and water balances. All four reanalyses show an energy imbalance at TOA and surface. Especially, clouds in JRA-55 are optically weaker than those in the three other reanalyses, leading to excessive outgoing longwave radiation, which in turn causes negative net energy flux at TOA. Moreover, JRA-55 has a negative imbalance at surface and at TOA, which is attributed to systematic positive biases in latent heat flux over the ocean. As for the global water balance, all reanalyses present a similar spatial pattern of the difference between evaporation and precipitation (E-P). However, JRA-55 has a relatively strong negative (positive) E-P in the Intertropical Convergence Zone and South Pacific Convergence Zone (extratropical regions) due to overestimated precipitation (evaporation), in spite of the global net being close to zero. In time series analysis, especially in E-P, significant stepwise changes occur in MERRA, CFSR and ERA-Interim due to the changes in the satellite observing system used in the data assimilation. Both MERRA and CFSR show a strong downward E-P shift in 1998, simultaneously with the start of the assimilation of AMSU-A sounding radiances. ERA-Interim exhibits an upward E-P shift in 1992 due to changes in observations from the SSM/I of new DMSP satellites. On the contrary, JRA-55 exhibits less trends and remains stable over time, which may be caused by newly available, homogenized observations and advances in data assimilation technique.

  3. A Satellite Based Study of Surface Energy Fluxes and Closing the Energy Balance

    NASA Astrophysics Data System (ADS)

    Didari, S.; Skoko-Dobryansky, S.; Norouzi, H.

    2014-12-01

    All agricultural, hydrological and biological processes are affected by the amount of available energy. Spatially distributed air temperature is one of the most important variables in various scientific fields. Although meteorological stations provide accurate data observations, their spatial coverage is limited and thus often insufficient for environmental modeling. Remote sensing provides the spatial data and it fills the spatial and temporal gaps left by the meteorological stations. In this study, the surface energy balance and Moderate Resolution Imaging Spectroradiometer (MODIS) products through the years 2003-2013 are used in order to estimate air temperature for New York City region and Fars Province region in south of Iran. Land surface temperature, evapotranspiration and surface reflectance data were obtained from MODIS, and by using the surface energy balance equation the air temperature is computed and analyzed. The amount of fluxes seasonally is investigated as one the most important and governing components of the energy balance.

  4. The global land and ocean mean energy balance

    NASA Astrophysics Data System (ADS)

    Wild, Martin; Folini, Doris

    2016-04-01

    The energy balance over land and oceans governs a diversity of terrestrial and maritime processes and is the key determinant of climatic conditions in these areas. Despite its crucial role, climate models show significant differences in the individual components of the energy balance over both land and oceans, particularly at the surface. Here we combine a comprehensive set of radiation observations from GEBA and BSRN with 43 state-of-the-art climate models to infer best estimates for present day annual mean downward solar and thermal radiation averaged over land and ocean surfaces, together with their uncertainty ranges. Over land (including the polar ice sheets), where most direct observations are available to constrain the surface fluxes, we obtain 184 and 306 Wm-2 for solar and thermal downward radiation, respectively. Over oceans, with weaker observational constraints, corresponding estimates are around 185 and 356 Wm-2. These values closely agree, mostly within 3 Wm-2, with the respective quantities independently derived by a state-of-the-art reanalysis (ERA-Interim) and satellite-derived product (surface CERES EBAF). This remarkable consistency enhances confidence in the determined flux magnitudes, which so far stated large uncertainty sources in the energy budgets. The estimated downward solar radiation averaged over land and ocean surfaces is almost identical despite differences in the incoming solar flux at the Top-of-Atmosphere (TOA) around 20 Wm-2, indicative of an overall less transparent atmosphere over oceans than land. Considering additionally surface albedo and emissivity, we infer a surface absorbed solar and net thermal radiation of 136 and -66 Wm-2 over land, and 170 and -53 Wm-2 over oceans, respectively. The surface net radiation is thus estimated at 70 Wm-2 over land and 117 Wm-2 over oceans, which may impose additional constraints on the poorly known sensible and latent heat flux magnitudes. These are estimated here near 32 and 38 Wm-2 over

  5. p75 neurotrophin receptor regulates energy balance in obesity

    PubMed Central

    Baeza-Raja, Bernat; Sachs, Benjamin D.; Li, Pingping; Christian, Frank; Vagena, Eirini; Davalos, Dimitrios; Le Moan, Natacha; Ryu, Jae Kyu; Sikorski, Shoana L.; Chan, Justin P.; Scadeng, Miriam; Taylor, Susan S.; Houslay, Miles D.; Baillie, George S.; Saltiel, Alan R.; Olefsky, Jerrold M.; Akassoglou, Katerina

    2015-01-01

    Summary Obesity and metabolic syndrome reflect the dysregulation of molecular pathways that control energy homeostasis. Here we show that upon high-fat diet (HFD), the p75 neurotrophin receptor (p75NTR) controls energy expenditure in obese mice. Despite no changes in food intake, p75NTR-null mice were protected from HFD-induced obesity and remained lean due to increased energy expenditure, without developing insulin resistance or liver steatosis. p75NTR directly interacts with the catalytic subunit of protein kinase A (PKA) and regulates cAMP signaling in adipocytes, leading to decreased lipolysis and thermogenesis. Adipocyte-specific depletion of p75NTR or transplantation of p75NTR-null white adipose tissue (WAT) into wild-type mice fed a HFD protected against weight gain and insulin resistance. Our results reveal that signaling from p75NTR to cAMP/PKA regulates energy balance and suggest that non-neuronal functions of neurotrophin receptor signaling could be a new target for treating obesity and the metabolic syndrome. PMID:26748707

  6. Data Input, Processing and Presentation. [helicopter rotor balance measurement

    NASA Technical Reports Server (NTRS)

    Langer, H. J.

    1984-01-01

    The problems of data acquisition, processing and display are investigated in the case of a helicopter rotor balance. The types of sensors to be employed are discussed in addition to their placement and application in wind tunnel trials. Finally, the equipment for data processing, evaluation and storage are presented with a description of methods.

  7. An energy balance climate model with cloud feedbacks

    NASA Technical Reports Server (NTRS)

    Roads, J. O.; Vallis, G. K.

    1984-01-01

    The present two-level global climate model, which is based on the atmosphere-surface energy balance, includes physically based parameterizations for the exchange of heat and moisture across latitude belts and between the surface and the atmosphere, precipitation and cloud formation, and solar and IR radiation. The model field predictions obtained encompass surface and atmospheric temperature, precipitation, relative humidity, and cloudiness. In the model integrations presented, it is noted that cloudiness is generally constant with changing temperature at low latitudes. High altitude cloudiness increases with temperature, although the cloud feedback effect on the radiation field remains small because of compensating effects on thermal and solar radiation. The net global feedback by the cloud field is negative, but small.

  8. Geospatial and Contextual Approaches to Energy Balance and Health

    PubMed Central

    Berrigan, David; Hipp, J. Aaron; Hurvitz, Philip M.; James, Peter; Jankowska, Marta M.; Kerr, Jacqueline; Laden, Francine; Leonard, Tammy; McKinnon, Robin A.; Powell-Wiley, Tiffany M.; Tarlov, Elizabeth; Zenk, Shannon N.

    2016-01-01

    In the past 15 years, a major research enterprise has emerged that is aimed at understanding associations between geographic and contextual features of the environment (especially the built environment) and elements of human energy balance, including diet, weight, and physical activity. Here we highlight aspects of this research area with a particular focus on research and opportunities in the United States as an example. We address four main areas: 1) The importance of valid and comparable data concerning behavior across geographies, 2) The ongoing need to identify and explore new environmental variables, 3) The challenge of identifying the causally relevant context, and 4) The pressing need for stronger study designs and analytical methods. Additionally, we discuss existing sources of geo-referenced health data which might be exploited by interdisciplinary research teams, personnel challenges and some aspects of funding for geospatial research by the US National Institutes of Health in the past decade, including funding for international collaboration and training opportunities. PMID:27076868

  9. Energy Balance of Triathletes during an Ultra-Endurance Event

    PubMed Central

    Barrero, Anna; Erola, Pau; Bescós, Raúl

    2014-01-01

    The nutritional strategy during an ultra-endurance triathlon (UET) is one of the main concerns of athletes competing in such events. The purpose of this study is to provide a proper characterization of the energy and fluid intake during real competition in male triathletes during a complete UET and to estimate the energy expenditure (EE) and the fluid balance through the race. Methods: Eleven triathletes performed a UET. All food and drinks ingested during the race were weighed and recorded in order to assess the energy intake (EI) during the race. The EE was estimated from heart rate (HR) recordings during the race, using the individual HR-oxygen uptake (Vo2) regressions developed from three incremental tests on the 50-m swimming pool, cycle ergometer, and running treadmill. Additionally, body mass (BM), total body water (TBW) and intracellular (ICW) and extracellular water (ECW) were assessed before and after the race using a multifrequency bioimpedance device (BIA). Results: Mean competition time and HR was 755 ± 69 min and 137 ± 6 beats/min, respectively. Mean EI was 3643 ± 1219 kcal and the estimated EE was 11,009 ± 664 kcal. Consequently, athletes showed an energy deficit of 7365 ± 1286 kcal (66.9% ± 11.7%). BM decreased significantly after the race and significant losses of TBW were found. Such losses were more related to a reduction of extracellular fluids than intracellular fluids. Conclusions: Our results confirm the high energy demands of UET races, which are not compensated by nutrient and fluid intake, resulting in a large energy deficit. PMID:25558906

  10. An energy balance simulation tool for TOMS-EP

    SciTech Connect

    Mackowski, M.J.; Martin, D.K.

    1996-12-31

    A computer analysis tool has been developed to perform energy balance simulations of a spacecraft power subsystem. The purpose of the tool is to predict the battery state-of-charge as a function of time for different mission scenarios, particularly during the first few orbits. The load profile (power use versus time) and the solar array power available for charging the battery were both time-varying functions that were different for each scenario. Therefore an analysis tool was needed that could easily make changes to the load profile and select different levels of solar array power. This was accomplished by developing a simple spreadsheet that defined the load profiles, which would then be imported into another spreadsheet that performed the energy balance calculations, including the adjustments to the solar array output. The development of these relatively simple spreadsheets replaced a laborious manual process of defining the load profiles which were then sued in a less sophisticated spreadsheet.The improved version also added a capability to include loads prior to satellite separation from the launch vehicle. A more elaborate simulation program had also been used in the past, but it was inconvenient to use and was not as precise as the new spreadsheet. In summary, the new tool made it easy to quickly develop and evaluate many different operational scenarios. This process has been used to evaluate responses to various failure modes and to develop contingency plans for the first few orbits of the Total Ozone Mapping Spectrometer--Earth Probe (TOMS-EP) mission.