Science.gov

Sample records for energy calibration system

  1. Energy Calibration of the JLab Bremsstrahlung Tagging System

    SciTech Connect

    Stepan Stepanyan; S. Boyarinov; H. Egiyan; D. Dale; L. Guo; M. Gabrielyan; L. Gan; Ashot Gasparian; Bernhard Mecking; A. Teymurazyan; I. Nakagawa; Oleksandr Glamazdin; Michael Wood

    2007-03-01

    In this report, we present the energy calibration of the Hall B bremsstrahlung tagging system at the Thomas Jefferson National Accelerator Facility. The calibration was performed using a magnetic pair spectrometer. The tagged photon energy spectrum was measured in coincidence with e{sup +}e{sup -} pairs as a function of the pair spectrometer magnetic field. Taking advantage of the internal linearity of the pair spectrometer, the energy of the tagging system was calibrated at the level of {+-} 0.1% E{sub {gamma}}. The absolute energy scale was determined using the e{sup +}e{sup -} rate measurements close to the end-point of the photon spectrum. The energy variations across the full tagging range were found to be <3 MeV.

  2. Energy calibration via correlation

    NASA Astrophysics Data System (ADS)

    Maier, Daniel; Limousin, Olivier

    2016-03-01

    The main task of an energy calibration is to find a relation between pulse-height values and the corresponding energies. Doing this for each pulse-height channel individually requires an elaborated input spectrum with an excellent counting statistics and a sophisticated data analysis. This work presents an easy to handle energy calibration process which can operate reliably on calibration measurements with low counting statistics. The method uses a parameter based model for the energy calibration and concludes on the optimal parameters of the model by finding the best correlation between the measured pulse-height spectrum and multiple synthetic pulse-height spectra which are constructed with different sets of calibration parameters. A CdTe-based semiconductor detector and the line emissions of an 241Am source were used to test the performance of the correlation method in terms of systematic calibration errors for different counting statistics. Up to energies of 60 keV systematic errors were measured to be less than ~ 0.1 keV. Energy calibration via correlation can be applied to any kind of calibration spectra and shows a robust behavior at low counting statistics. It enables a fast and accurate calibration that can be used to monitor the spectroscopic properties of a detector system in near realtime.

  3. Precision Spectrophotometric Calibration System for Dark Energy Instruments

    SciTech Connect

    Schubnell, Michael S.

    2015-06-30

    For this research we build a precision calibration system and carried out measurements to demonstrate the precision that can be achieved with a high precision spectrometric calibration system. It was shown that the system is capable of providing a complete spectrophotometric calibration at the sub-pixel level. The calibration system uses a fast, high precision monochromator that can quickly and efficiently scan over an instrument’s entire spectral range with a spectral line width of less than 0.01 nm corresponding to a fraction of a pixel on the CCD. The system was extensively evaluated in the laboratory. Our research showed that a complete spectrophotometric calibration standard for spectroscopic survey instruments such as DESI is possible. The monochromator precision and repeatability to a small fraction of the DESI spectrograph LSF was demonstrated with re-initialization on every scan and thermal drift compensation by locking to multiple external line sources. A projector system that mimics telescope aperture for point source at infinity was demonstrated.

  4. The DECalS Software for the Dark Energy Survey Spectrophotometric Calibration System

    NASA Astrophysics Data System (ADS)

    Wise, Jason; Rheault, J. P.; DePoy, D. L.

    2012-01-01

    DECalS is a fully automated remote control program for the Dark Energy Survey spectrophotometric calibration system (DECal). Expected to be used roughly once a month to calibrate the Dark Energy Camera, DECalS provides a TCP/IP server with commands to give the user access to all aspects of the calibration. There is a separate "expert mode” used for installation and debugging purposes. Data gathered from the DECal system will track changes in the throughput of the compete optical path of the telescope system.

  5. Calibration of the Accuscan II IN Vivo System for High Energy Lung Counting

    SciTech Connect

    Ovard R. Perry; David L. Georgeson

    2011-07-01

    This report describes the April 2011 calibration of the Accuscan II HpGe In Vivo system for high energy lung counting. The source used for the calibration was a NIST traceable lung set manufactured at the University of Cincinnati UCLL43AMEU & UCSL43AMEU containing Am-241 and Eu-152 with energies from 26 keV to 1408 keV. The lung set was used in conjunction with a Realistic Torso phantom. The phantom was placed on the RMC II counting table (with pins removed) between the v-ridges on the backwall of the Accuscan II counter. The top of the detector housing was positioned perpendicular to the junction of the phantom clavicle with the sternum. This position places the approximate center line of the detector housing with the center of the lungs. The energy and efficiency calibrations were performed using a Realistic Torso phantom (Appendix I) and the University of Cincinnati lung set. This report includes an overview introduction and records for the energy/FWHM and efficiency calibration including performance verification and validation counting. The Accuscan II system was successfully calibrated for high energy lung counting and verified in accordance with ANSI/HPS N13.30-1996 criteria.

  6. Energy Performance Assessment of Radiant Cooling System through Modeling and Calibration at Component Level

    SciTech Connect

    Khan, Yasin; Mathur, Jyotirmay; Bhandari, Mahabir S

    2016-01-01

    The paper describes a case study of an information technology office building with a radiant cooling system and a conventional variable air volume (VAV) system installed side by side so that performancecan be compared. First, a 3D model of the building involving architecture, occupancy, and HVAC operation was developed in EnergyPlus, a simulation tool. Second, a different calibration methodology was applied to develop the base case for assessing the energy saving potential. This paper details the calibration of the whole building energy model to the component level, including lighting, equipment, and HVAC components such as chillers, pumps, cooling towers, fans, etc. Also a new methodology for the systematic selection of influence parameter has been developed for the calibration of a simulated model which requires large time for the execution. The error at the whole building level [measured in mean bias error (MBE)] is 0.2%, and the coefficient of variation of root mean square error (CvRMSE) is 3.2%. The total errors in HVAC at the hourly are MBE = 8.7% and CvRMSE = 23.9%, which meet the criteria of ASHRAE 14 (2002) for hourly calibration. Different suggestions have been pointed out to generalize the energy saving of radiant cooling system through the existing building system. So a base case model was developed by using the calibrated model for quantifying the energy saving potential of the radiant cooling system. It was found that a base case radiant cooling system integrated with DOAS can save 28% energy compared with the conventional VAV system.

  7. Calibration method for spectroscopic systems

    DOEpatents

    Sandison, David R.

    1998-01-01

    Calibration spots of optically-characterized material placed in the field of view of a spectroscopic system allow calibration of the spectroscopic system. Response from the calibration spots is measured and used to calibrate for varying spectroscopic system operating parameters. The accurate calibration achieved allows quantitative spectroscopic analysis of responses taken at different times, different excitation conditions, and of different targets.

  8. Calibration method for spectroscopic systems

    DOEpatents

    Sandison, D.R.

    1998-11-17

    Calibration spots of optically-characterized material placed in the field of view of a spectroscopic system allow calibration of the spectroscopic system. Response from the calibration spots is measured and used to calibrate for varying spectroscopic system operating parameters. The accurate calibration achieved allows quantitative spectroscopic analysis of responses taken at different times, different excitation conditions, and of different targets. 3 figs.

  9. Calibration Systems Final Report

    SciTech Connect

    Myers, Tanya L.; Broocks, Bryan T.; Phillips, Mark C.

    2006-02-01

    The Calibration Systems project at Pacific Northwest National Laboratory (PNNL) is aimed towards developing and demonstrating compact Quantum Cascade (QC) laser-based calibration systems for infrared imaging systems. These on-board systems will improve the calibration technology for passive sensors, which enable stand-off detection for the proliferation or use of weapons of mass destruction, by replacing on-board blackbodies with QC laser-based systems. This alternative technology can minimize the impact on instrument size and weight while improving the quality of instruments for a variety of missions. The potential of replacing flight blackbodies is made feasible by the high output, stability, and repeatability of the QC laser spectral radiance.

  10. Energy calibration of a multilayer photon detector

    SciTech Connect

    Johnson, R.A.

    1983-01-01

    The job of energy calibration was broken into three parts: gain normalization of all equivalent elements; determination of the functions for conversion of pulse height to energy; and gain stabilization. It is found that calorimeter experiments are no better than their calibration systems - calibration errors will be the major source of error at high energies. Redundance is found to be necessary - the system should be designed such that every element could be replaced during the life of the experiment. It is found to be important to have enough data taken during calibration runs and during the experiment to be able to sort out where the calibration problems were after the experiment is over. Each layer was normalized independently with electrons, and then the pulse height to energy conversion was determined with photons. The primary method of gain stabilization used the light flasher system. (LEW)

  11. Optical detector calibrator system

    NASA Technical Reports Server (NTRS)

    Strobel, James P. (Inventor); Moerk, John S. (Inventor); Youngquist, Robert C. (Inventor)

    1996-01-01

    An optical detector calibrator system simulates a source of optical radiation to which a detector to be calibrated is responsive. A light source selected to emit radiation in a range of wavelengths corresponding to the spectral signature of the source is disposed within a housing containing a microprocessor for controlling the light source and other system elements. An adjustable iris and a multiple aperture filter wheel are provided for controlling the intensity of radiation emitted from the housing by the light source to adjust the simulated distance between the light source and the detector to be calibrated. The geared iris has an aperture whose size is adjustable by means of a first stepper motor controlled by the microprocessor. The multiple aperture filter wheel contains neutral density filters of different attenuation levels which are selectively positioned in the path of the emitted radiation by a second stepper motor that is also controlled by the microprocessor. An operator can select a number of detector tests including range, maximum and minimum sensitivity, and basic functionality. During the range test, the geared iris and filter wheel are repeatedly adjusted by the microprocessor as necessary to simulate an incrementally increasing simulated source distance. A light source calibration subsystem is incorporated in the system which insures that the intensity of the light source is maintained at a constant level over time.

  12. Calibrating the imaging system of the high-energy solar spectroscopic imager (HESSI)

    NASA Astrophysics Data System (ADS)

    Thomsen, Knud; Bialkowski, Jacek; Burri, F.; Fivian, M.; Hajdas, W.; Mchedlishvili, A.; Ming, P.; Welte, J.; Zehnder, Alex

    2000-07-01

    The primary object of HESSI is to study the explosive energy release in solar flares. HESSI will image flares with spatial resolution ranging between 2 and 35 arcseconds over the energy range 3 keV to 20 MeV. The system is based on Fourier-transform imaging in connection with high-resolution Ge-detectors. HESSI uses 9 Rotating Modulation Collimators, each consisting of a pair of widely separated (1.55 m) grids mounted on the rotating spacecraft. The grid pitches range from 34 micron to 2.75 mm in steps of sqrt(3). This gives angular resolutions that are spaced logarithmically from 2.3 arcseconds to 3 arcmin, allowing sources to be imaged over a wide range of angular scales. In our design the most critical performance parameter, the relative twist between the two grids of each pair--can be very precisely monitored on ground (on a level of several arcseconds) by a special Twist Monitoring System (TMS). Extensive measurements and cross-calibrations between the TMS and several coordinate measuring machines before and after the environmental tests demonstrated the precision and stability of the alignment to be on the order of 5 arcseconds.

  13. Improvements in Clouds and the Earth's Radiant Energy System (CERES) Products Based on Instrument Calibrations

    NASA Astrophysics Data System (ADS)

    Smith, N. M.; Priestley, K.; Loeb, N. G.; Thomas, S.; Shankar, M.; Walikainen, D.

    2014-12-01

    The Clouds and the Earth's Radiant Energy System (CERES) mission is instrumental in providing highly accurate radiance measurements that are critical for monitoring the Earth's radiation budget. Two identical CERES instruments are deployed aboard NASA's Earth Observing System (EOS) satellites Terra and Aqua. Each CERES instrument consists of scanning thermistor bolometer sensors that measure broadband radiances in the shortwave (0.3 to 5 micron), total (0.3 to < 100 micron) and water vapor window (8 to 12 micron) regions. CERES instruments have the capability of scanning in either the cross-track or rotating azimuth plane (RAP) scan mode. Cross-track scanning, the primary mode of CERES operation, allows for the geographical mapping of the radiation fields while RAP scanning enables the acquisition of data over a more extensive combination of viewing configurations, needed for developing vastly improved angular distribution models used in radiance to flux conversion. To evaluate, achieve and maintain radiometric stability, a rigorous and comprehensive radiometric calibration and validation protocol is implemented. Calibrations and validation studies have indicated spectral changes in the reflected solar spectral regions of the shortwave and total sensors. Spectral darkening is detected in the shortwave channel optics, which is more prominent while the instrument operates in RAP mode. In the absence of a climatological explanation for this darkening, this likely occurs during part of the RAP scan cycle when the scan plane is aligned with the direction of motion, making the optics more susceptible to increased UV exposure and molecular contamination. Additionally, systematic daytime-nighttime longwave top-of-atmosphere (TOA) flux inconsistency was also detected during validation, which highlights the changes in the shortwave region of the total sensor. This paper briefly describes the strategy to correct for the sensor response changes and presents the improvements in

  14. Mercury Calibration System

    SciTech Connect

    John Schabron; Eric Kalberer; Joseph Rovani; Mark Sanderson; Ryan Boysen; William Schuster

    2009-03-11

    U.S. Environmental Protection Agency (EPA) Performance Specification 12 in the Clean Air Mercury Rule (CAMR) states that a mercury CEM must be calibrated with National Institute for Standards and Technology (NIST)-traceable standards. In early 2009, a NIST traceable standard for elemental mercury CEM calibration still does not exist. Despite the vacature of CAMR by a Federal appeals court in early 2008, a NIST traceable standard is still needed for whatever regulation is implemented in the future. Thermo Fisher is a major vendor providing complete integrated mercury continuous emissions monitoring (CEM) systems to the industry. WRI is participating with EPA, EPRI, NIST, and Thermo Fisher towards the development of the criteria that will be used in the traceability protocols to be issued by EPA. An initial draft of an elemental mercury calibration traceability protocol was distributed for comment to the participating research groups and vendors on a limited basis in early May 2007. In August 2007, EPA issued an interim traceability protocol for elemental mercury calibrators. Various working drafts of the new interim traceability protocols were distributed in late 2008 and early 2009 to participants in the Mercury Standards Working Committee project. The protocols include sections on qualification and certification. The qualification section describes in general terms tests that must be conducted by the calibrator vendors to demonstrate that their calibration equipment meets the minimum requirements to be established by EPA for use in CAMR monitoring. Variables to be examined include linearity, ambient temperature, back pressure, ambient pressure, line voltage, and effects of shipping. None of the procedures were described in detail in the draft interim documents; however they describe what EPA would like to eventually develop. WRI is providing the data and results to EPA for use in developing revised experimental procedures and realistic acceptance criteria based on

  15. The Calibration Reference Data System

    NASA Astrophysics Data System (ADS)

    Greenfield, P.; Miller, T.

    2016-07-01

    We describe a software architecture and implementation for using rules to determine which calibration files are appropriate for calibrating a given observation. This new system, the Calibration Reference Data System (CRDS), replaces what had been previously used for the Hubble Space Telescope (HST) calibration pipelines, the Calibration Database System (CDBS). CRDS will be used for the James Webb Space Telescope (JWST) calibration pipelines, and is currently being used for HST calibration pipelines. CRDS can be easily generalized for use in similar applications that need a rules-based system for selecting the appropriate item for a given dataset; we give some examples of such generalizations that will likely be used for JWST. The core functionality of the Calibration Reference Data System is available under an Open Source license. CRDS is briefly contrasted with a sampling of other similar systems used at other observatories.

  16. Automatic flowmeter calibration system

    NASA Technical Reports Server (NTRS)

    Lisle, R. V.; Wilson, T. L. (Inventor)

    1981-01-01

    A system for automatically calibrating the accuracy of a flowmeter is described. The system includes a calculator capable of performing mathematical functions responsive to receiving data signals and function command signals. A prover cylinder is provided for measuring the temperature, pressure, and time required for accumulating a predetermined volume of fluid. Along with these signals, signals representing the temperature and pressure of the fluid going into the meter are fed to a plurality of data registers. Under control of a progress controller, the data registers are read out and the information is fed through a data select circuit to the calculator. Command signals are also produced by a function select circuit and are fed to the calculator set indicating the desired function to be performed. The reading is then compared with the reading produced by the flowmeter.

  17. Automatic force balance calibration system

    NASA Technical Reports Server (NTRS)

    Ferris, Alice T. (Inventor)

    1996-01-01

    A system for automatically calibrating force balances is provided. The invention uses a reference balance aligned with the balance being calibrated to provide superior accuracy while minimizing the time required to complete the calibration. The reference balance and the test balance are rigidly attached together with closely aligned moment centers. Loads placed on the system equally effect each balance, and the differences in the readings of the two balances can be used to generate the calibration matrix for the test balance. Since the accuracy of the test calibration is determined by the accuracy of the reference balance and current technology allows for reference balances to be calibrated to within .+-.0.05%, the entire system has an accuracy of a .+-.0.2%. The entire apparatus is relatively small and can be mounted on a movable base for easy transport between test locations. The system can also accept a wide variety of reference balances, thus allowing calibration under diverse load and size requirements.

  18. Automatic force balance calibration system

    NASA Astrophysics Data System (ADS)

    Ferris, Alice T.

    1995-05-01

    A system for automatically calibrating force balances is provided. The invention uses a reference balance aligned with the balance being calibrated to provide superior accuracy while minimizing the time required to complete the calibration. The reference balance and the test balance are rigidly attached together with closely aligned moment centers. Loads placed on the system equally effect each balance, and the differences in the readings of the two balances can be used to generate the calibration matrix for the test balance. Since the accuracy of the test calibration is determined by the accuracy of the reference balance and current technology allows for reference balances to be calibrated to within +/-0.05% the entire system has an accuracy of +/-0.2%. The entire apparatus is relatively small and can be mounted on a movable base for easy transport between test locations. The system can also accept a wide variety of reference balances, thus allowing calibration under diverse load and size requirements.

  19. A variable acceleration calibration system

    NASA Astrophysics Data System (ADS)

    Johnson, Thomas H.

    2011-12-01

    A variable acceleration calibration system that applies loads using gravitational and centripetal acceleration serves as an alternative, efficient and cost effective method for calibrating internal wind tunnel force balances. Two proof-of-concept variable acceleration calibration systems are designed, fabricated and tested. The NASA UT-36 force balance served as the test balance for the calibration experiments. The variable acceleration calibration systems are shown to be capable of performing three component calibration experiments with an approximate applied load error on the order of 1% of the full scale calibration loads. Sources of error are indentified using experimental design methods and a propagation of uncertainty analysis. Three types of uncertainty are indentified for the systems and are attributed to prediction error, calibration error and pure error. Angular velocity uncertainty is shown to be the largest indentified source of prediction error. The calibration uncertainties using a production variable acceleration based system are shown to be potentially equivalent to current methods. The production quality system can be realized using lighter materials and a more precise instrumentation. Further research is needed to account for balance deflection, forcing effects due to vibration, and large tare loads. A gyroscope measurement technique is shown to be capable of resolving the balance deflection angle calculation. Long term research objectives include a demonstration of a six degree of freedom calibration, and a large capacity balance calibration.

  20. Atmospheric optical calibration system

    DOEpatents

    Hulstrom, Roland L.; Cannon, Theodore W.

    1988-01-01

    An atmospheric optical calibration system is provided to compare actual atmospheric optical conditions to standard atmospheric optical conditions on the basis of aerosol optical depth, relative air mass, and diffuse horizontal skylight to global horizontal photon flux ratio. An indicator can show the extent to which the actual conditions vary from standard conditions. Aerosol scattering and absorption properties, diffuse horizontal skylight to global horizontal photon flux ratio, and precipitable water vapor determined on a real-time basis for optical and pressure measurements are also used to generate a computer spectral model and for correcting actual performance response of a photovoltaic device to standard atmospheric optical condition response on a real-time basis as the device is being tested in actual outdoor conditions.

  1. Atmospheric optical calibration system

    DOEpatents

    Hulstrom, R.L.; Cannon, T.W.

    1988-10-25

    An atmospheric optical calibration system is provided to compare actual atmospheric optical conditions to standard atmospheric optical conditions on the basis of aerosol optical depth, relative air mass, and diffuse horizontal skylight to global horizontal photon flux ratio. An indicator can show the extent to which the actual conditions vary from standard conditions. Aerosol scattering and absorption properties, diffuse horizontal skylight to global horizontal photon flux ratio, and precipitable water vapor determined on a real-time basis for optical and pressure measurements are also used to generate a computer spectral model and for correcting actual performance response of a photovoltaic device to standard atmospheric optical condition response on a real-time basis as the device is being tested in actual outdoor conditions. 7 figs.

  2. Inspection system calibration methods

    DOEpatents

    Deason, Vance A.; Telschow, Kenneth L.

    2004-12-28

    An inspection system calibration method includes producing two sideband signals of a first wavefront; interfering the two sideband signals in a photorefractive material, producing an output signal therefrom having a frequency and a magnitude; and producing a phase modulated operational signal having a frequency different from the output signal frequency, a magnitude, and a phase modulation amplitude. The method includes determining a ratio of the operational signal magnitude to the output signal magnitude, determining a ratio of a 1st order Bessel function of the operational signal phase modulation amplitude to a 0th order Bessel function of the operational signal phase modulation amplitude, and comparing the magnitude ratio to the Bessel function ratio.

  3. An SLF magnetic antenna calibration system

    NASA Astrophysics Data System (ADS)

    Shimin, Feng; Suihua, Zhou; Zhiyi, Chen; Hongxin, Zhang

    2014-05-01

    Calibrating the super low frequency (SLF) magnetic antenna in magnetic free space or an outdoor environment is difficult and complicated due to the large size calibration instruments and lots of measurement times. Aiming to calibrate the SLF magnetic antenna simply and efficiently, a calibration system comprised of a multi-frequency source, an AC constant-current source and a solenoid is proposed according to the characteristic of an SLF magnetic antenna. The static magnetic transfer coefficient of the designed solenoid is calibrated. The measurement of the frequency response characteristics suggests the transfer coefficient remains unchanged in the range of the SLF band and is unaffected by the magnetic antenna internally installed. The CORDIC algorithm implemented in an FPGA is realized to generate a linear evenly-spaced multi-frequency signal with equal energy at each frequency. An AC constant weak current source circuit is designed in order to avoid the impact on the magnetic induction intensity of a calibration system affected by impedance variation when frequency changing, linearity and the precision of the source are measured. The frequency characteristic of a magnetic antenna calibrated by the proposed calibration system agrees with the theoretical result and the standard Glass ring calibration result. The calibration precision satisfies the experimental requirement.

  4. Using Lunar Observations to Validate In-Flight Calibrations of Clouds and Earth Radiant Energy System Instruments

    NASA Technical Reports Server (NTRS)

    Daniels, Janet L.; Smith, G. Louis; Priestley, Kory J.; Thomas, Susan

    2014-01-01

    The validation of in-orbit instrument performance requires stability in both instrument and calibration source. This paper describes a method of validation using lunar observations scanning near full moon by the Clouds and Earth Radiant Energy System (CERES) instruments. Unlike internal calibrations, the Moon offers an external source whose signal variance is predictable and non-degrading. From 2006 to present, in-orbit observations have become standardized and compiled for the Flight Models-1 and -2 aboard the Terra satellite, for Flight Models-3 and -4 aboard the Aqua satellite, and beginning 2012, for Flight Model-5 aboard Suomi-NPP. Instrument performance parameters which can be gleaned are detector gain, pointing accuracy and static detector point response function validation. Lunar observations are used to examine the stability of all three detectors on each of these instruments from 2006 to present. This validation method has yielded results showing trends per CERES data channel of 1.2% per decade or less.

  5. Energy Dependence of Measured CT Numbers on Substituted Materials Used for CT Number Calibration of Radiotherapy Treatment Planning Systems

    PubMed Central

    Mahmoudi, Reza; Jabbari, Nasrollah; aghdasi, Mehdi; Khalkhali, Hamid Reza

    2016-01-01

    Introduction For accurate dose calculations, it is necessary to provide a correct relationship between the CT numbers and electron density in radiotherapy treatment planning systems (TPSs). The purpose of this study was to investigate the energy dependence of measured CT numbers on substituted materials used for CT number calibration of radiotherapy TPSs and the resulting errors in the treatment planning calculation doses. Materials and Methods In this study, we designed a cylindrical water phantom with different materials used as tissue equivalent materials for the simulation of tissues and obtaining the related CT numbers. For evaluating the effect of CT number variations of substituted materials due to energy changing of scanner (kVp) on the dose calculation of TPS, the slices of the scanned phantom at three kVp's were imported into the desired TPSs (MIRS and CorePLAN). Dose calculations were performed on two TPSs. Results The mean absolute percentage differences between the CT numbers of CT scanner and two treatment planning systems for all the samples were 3.22%±2.57% for CorePLAN and 2.88%±2.11% for MIRS. It was also found that the maximum absolute percentage difference between all of the calculated doses from each photon beam of linac (6 and 15 MV) at three kVp's was less than 1.2%. Discussion The present study revealed that, for the materials with effective low atomic number, the mean CT number increased with increasing energy, which was opposite for the materials with an effective high atomic number. We concluded that the tissue substitute materials had a different behavior in the energy ranges from 80 to 130 kVp. So, it is necessary to consider the energy dependence of the substitute materials used for the measurement or calibration of CT number for radiotherapy treatment planning systems. PMID:27391672

  6. An automated vacuum gauge calibration system

    SciTech Connect

    Abbott, P.J.; Benner, M.S.

    1998-04-01

    An automated system for calibrating vacuum gauges over the pressure range of 10{sup {minus}6} to 0.1 Pa was designed and constructed at the National Institute of Standards and Technology (NIST) for the Department of Energy (DOE) Primary Standards Laboratory at Sandia National Laboratories (SNL). Calculable pressures are generated by passing a known flow of gas through an orifice of known conductance. The orifice conductance is derived from dimensional measurements and accurate flows are generated using metal capillary leaks. The expanded uncertainty (k = 2) in the generated pressure is estimated to be between 1% and 4% over the calibration range. The design, calibration results. and component uncertainties will be discussed.

  7. Energy calibration of the fly's eye detector

    NASA Technical Reports Server (NTRS)

    Baltrusaitis, R. M.; Cassiday, G. L.; Cooper, R.; Elbert, J. W.; Gerhardy, P. R.; Ko, S.; Loh, E. C.; Mizumoto, Y.; Sokolsky, P.; Steck, D.

    1985-01-01

    The methods used to calibrate the Fly's eye detector to evaluate the energy of EAS are discussed. The energy of extensive air showers (EAS) as seen by the Fly's Eye detector are obtained from track length integrals of observed shower development curves. The energy of the parent cosmic ray primary is estimated by applying corrections to account for undetected energy in the muon, neutrino and hadronic channels. Absolute values for E depend upon the measurement of shower sizes N sub e(x). The following items are necessary to convert apparent optical brightness into intrinsical optical brightness: (1) an assessment of those factors responsible for light production by the relativistic electrons in an EAS and the transmission of light thru the atmosphere, (2) calibration of the optical detection system, and (3) a knowledge of the trajectory of the shower.

  8. Tool calibration system for micromachining system

    DOEpatents

    Miller, Donald M.

    1979-03-06

    A tool calibration system including a tool calibration fixture and a tool height and offset calibration insert for calibrating the position of a tool bit in a micromachining tool system. The tool calibration fixture comprises a yokelike structure having a triangular head, a cavity in the triangular head, and a port which communicates a side of the triangular head with the cavity. Yoke arms integral with the triangular head extend along each side of a tool bar and a tool head of the micromachining tool system. The yoke arms are secured to the tool bar to place the cavity around a tool bit which may be mounted to the end of the tool head. Three linear variable differential transformer's (LVDT) are adjustably mounted in the triangular head along an X axis, a Y axis, and a Z axis. The calibration insert comprises a main base which can be mounted in the tool head of the micromachining tool system in place of a tool holder and a reference projection extending from a front surface of the main base. Reference surfaces of the calibration insert and a reference surface on a tool bar standard length are used to set the three LVDT's of the calibration fixture to the tool reference position. These positions are transferred permanently to a mastering station. The tool calibration fixture is then used to transfer the tool reference position of the mastering station to the tool bit.

  9. System for calibrating pressure transducer

    NASA Technical Reports Server (NTRS)

    Rollins, G. N. (Inventor)

    1973-01-01

    A system for calibrating a pressure transducer which has a reference portion and an active portion is reported. A miniature selector valve is positioned immediately adjacent the pressure transducer. A reference pressure, known pressure, and unknown pressure can be selectively admitted to the active side of the pressure transducer by the selector valve to enable calibration of the transducer. A valve admits pressure to the selector valve which has a piston and floating piston arrangement which allows proper selection with very small linear movement.

  10. Muon Energy Calibration of the MINOS Detectors

    SciTech Connect

    Miyagawa, Paul S.

    2004-09-01

    MINOS is a long-baseline neutrino oscillation experiment designed to search for conclusive evidence of neutrino oscillations and to measure the oscillation parameters precisely. MINOS comprises two iron tracking calorimeters located at Fermilab and Soudan. The Calibration Detector at CERN is a third MINOS detector used as part of the detector response calibration programme. A correct energy calibration between these detectors is crucial for the accurate measurement of oscillation parameters. This thesis presents a calibration developed to produce a uniform response within a detector using cosmic muons. Reconstruction of tracks in cosmic ray data is discussed. This data is utilized to calculate calibration constants for each readout channel of the Calibration Detector. These constants have an average statistical error of 1.8%. The consistency of the constants is demonstrated both within a single run and between runs separated by a few days. Results are presented from applying the calibration to test beam particles measured by the Calibration Detector. The responses are calibrated to within 1.8% systematic error. The potential impact of the calibration on the measurement of oscillation parameters by MINOS is also investigated. Applying the calibration reduces the errors in the measured parameters by {approx} 10%, which is equivalent to increasing the amount of data by 20%.

  11. Radiometric calibration and performance trends of the Clouds and Earth's Radiant Energy System (CERES) instrument sensors onboard the Terra and Aqua spacecraft

    NASA Astrophysics Data System (ADS)

    Shankar, Mohan; Priestley, Kory; Smith, Nathaniel; Smith, Nitchie; Thomas, Susan; Walikainen, Dale

    2015-10-01

    The Clouds and Earth's Radiant Energy System (CERES) instruments help to study the impact of clouds on the earth's radiation budget. There are currently five instruments- two each on board Aqua and Terra spacecraft and one on the Suomi NPP spacecraft to measure the earth's reflected shortwave and emitted longwave energy, which represent two components of the earth's radiation energy budget. Flight Models (FM) 1 and 2 are on Terra, FM 3 and 4 are on Aqua, and FM5 is on Suomi NPP. The measurements are made by three sensors on each instrument: a shortwave sensor that measures the 0.3-5 microns wavelength band, a window sensor that measures the water vapor window between 8-12 microns, and a total sensor that measures all incident energy (0.3- >100 microns). The required accuracy of CERES measurements of 0.5% in the longwave and 1% in the shortwave is achieved through an extensive pre-launch ground calibration campaign as well as on-orbit calibration and validation activities. Onorbit calibration is carried out using the Internal Calibration Module (ICM) that consists of a tungsten lamp, blackbodies, and a solar diffuser known as the Mirror Attenuator Mosaic (MAM). The ICM calibration provides information about the stability of the sensors' broadband radiometric gains on-orbit. Several validation studies are conducted in order to monitor the behavior of the instruments in various spectral bands. The CERES Edition-4 data products for the FM1-FM4 instruments incorporate the latest calibration methodologies to improve on the Edition-3 data products. In this paper, we discuss the updated calibration methodology and present some validation studies to demonstrate the improvement in the trends using the CERES Edition-4 data products for all four instruments.

  12. Calibration of a proton beam energy monitor

    SciTech Connect

    Moyers, M. F.; Coutrakon, G. B.; Ghebremedhin, A.; Shahnazi, K.; Koss, P.; Sanders, E.

    2007-06-15

    Delivery of therapeutic proton beams requires an absolute energy accuracy of {+-}0.64 to 0.27 MeV for patch fields and a relative energy accuracy of {+-}0.10 to 0.25 MeV for tailoring the depth dose distribution using the energy stacking technique. Achromatic switchyard tunes, which lead to better stability of the beam incident onto the patient, unfortunately limit the ability of switchyard magnet tesla meters to verify the correct beam energy within the tolerances listed above. A new monitor to measure the proton energy before each pulse is transported through the switchyard has been installed into a proton synchrotron. The purpose of this monitor is to correct and/or inhibit beam delivery when the measured beam energy is outside of the tolerances for treatment. The monitor calculates the beam energy using data from two frequency and eight beam position monitors that measure the revolution frequency of the proton bunches and the effective offset of the orbit from the nominal radius of the synchrotron. The new energy monitor has been calibrated by measuring the range of the beam through water and comparing with published range-energy tables for various energies. A relationship between depth dose curves and range-energy tables was first determined using Monte Carlo simulations of particle transport and energy deposition. To reduce the uncertainties associated with typical scanning water phantoms, a new technique was devised in which the beam energy was scanned while fixed thickness water tanks were sandwiched between two fixed parallel plate ionization chambers. Using a multitude of tank sizes, several energies were tested to determine the nominal accelerator orbit radius. After calibration, the energy reported by the control system matched the energy derived by range measurements to better than 0.72 MeV for all nine energies tested between 40 and 255 MeV with an average difference of -0.33 MeV. A study of different combinations of revolution frequency and radial

  13. Calibration of a proton beam energy monitor.

    PubMed

    Moyers, M F; Coutrakon, G B; Ghebremedhin, A; Shahnazi, K; Koss, P; Sanders, E

    2007-06-01

    Delivery of therapeutic proton beams requires an absolute energy accuracy of +/-0.64 to 0.27 MeV for patch fields and a relative energy accuracy of +/-0.10 to 0.25 MeV for tailoring the depth dose distribution using the energy stacking technique. Achromatic switchyard tunes, which lead to better stability of the beam incident onto the patient, unfortunately limit the ability of switchyard magnet tesla meters to verify the correct beam energy within the tolerances listed above. A new monitor to measure the proton energy before each pulse is transported through the switchyard has been installed into a proton synchrotron. The purpose of this monitor is to correct and/or inhibit beam delivery when the measured beam energy is outside of the tolerances for treatment. The monitor calculates the beam energy using data from two frequency and eight beam position monitors that measure the revolution frequency of the proton bunches and the effective offset of the orbit from the nominal radius of the synchrotron. The new energy monitor has been calibrated by measuring the range of the beam through water and comparing with published range-energy tables for various energies. A relationship between depth dose curves and range-energy tables was first determined using Monte Carlo simulations of particle transport and energy deposition. To reduce the uncertainties associated with typical scanning water phantoms, a new technique was devised in which the beam energy was scanned while fixed thickness water tanks were sandwiched between two fixed parallel plate ionization chambers. Using a multitude of tank sizes, several energies were tested to determine the nominal accelerator orbit radius. After calibration, the energy reported by the control system matched the energy derived by range measurements to better than 0.72 MeV for all nine energies tested between 40 and 255 MeV with an average difference of -0.33 MeV. A study of different combinations of revolution frequency and radial

  14. Calibration Monitor for Dark Energy Experiments

    SciTech Connect

    Kaiser, M. E.

    2009-11-23

    The goal of this program was to design, build, test, and characterize a flight qualified calibration source and monitor for a Dark Energy related experiment: ACCESS - 'Absolute Color Calibration Experiment for Standard Stars'. This calibration source, the On-board Calibration Monitor (OCM), is a key component of our ACCESS spectrophotometric calibration program. The OCM will be flown as part of the ACCESS sub-orbital rocket payload in addition to monitoring instrument sensitivity on the ground. The objective of the OCM is to minimize systematic errors associated with any potential changes in the ACCESS instrument sensitivity. Importantly, the OCM will be used to monitor instrument sensitivity immediately after astronomical observations while the instrument payload is parachuting to the ground. Through monitoring, we can detect, track, characterize, and thus correct for any changes in instrument senstivity over the proposed 5-year duration of the assembled and calibrated instrument.

  15. Electro-optical equivalent calibration technology for high-energy laser energy meters.

    PubMed

    Wei, Ji Feng; Chang, Yan; Sun, Li Qun; Zhang, Kai; Hu, Xiao Yang; Zhang, Wei

    2016-04-01

    Electro-optical equivalent calibration with high calibration power and high equivalence is particularly well-suited to the calibration of high-energy laser energy meters. A large amount of energy is reserved during this process, however, which continues to radiate after power-off. This study measured the radiation efficiency of a halogen tungsten lamp during power-on and after power-off in order to calculate the total energy irradiated by a lamp until the high-energy laser energy meter reaches thermal equilibrium. A calibration system was designed based on the measurement results, and the calibration equivalence of the system was analyzed in detail. Results show that measurement precision is significantly affected by the absorption factor of the absorption chamber and by heat loss in the energy meter. Calibration precision is successfully improved by enhancing the equivalent power and reducing power-on time. The electro-optical equivalent calibration system, measurement uncertainty of which was evaluated as 2.4% (k = 2), was used to calibrate a graphite-cone-absorption-cavity absolute energy meter, yielding a calibration coefficient of 1.009 and measurement uncertainty of 3.5% (k = 2). A water-absorption-type high-energy laser energy meter with measurement uncertainty of 4.8% (k = 2) was considered the reference standard, and compared to the energy meter calibrated in this study, yielded a correction factor of 0.995 (standard deviation of 1.4%). PMID:27131714

  16. Electro-optical equivalent calibration technology for high-energy laser energy meters

    NASA Astrophysics Data System (ADS)

    Wei, Ji Feng; Chang, Yan; Sun, Li Qun; Zhang, Kai; Hu, Xiao Yang; Zhang, Wei

    2016-04-01

    Electro-optical equivalent calibration with high calibration power and high equivalence is particularly well-suited to the calibration of high-energy laser energy meters. A large amount of energy is reserved during this process, however, which continues to radiate after power-off. This study measured the radiation efficiency of a halogen tungsten lamp during power-on and after power-off in order to calculate the total energy irradiated by a lamp until the high-energy laser energy meter reaches thermal equilibrium. A calibration system was designed based on the measurement results, and the calibration equivalence of the system was analyzed in detail. Results show that measurement precision is significantly affected by the absorption factor of the absorption chamber and by heat loss in the energy meter. Calibration precision is successfully improved by enhancing the equivalent power and reducing power-on time. The electro-optical equivalent calibration system, measurement uncertainty of which was evaluated as 2.4% (k = 2), was used to calibrate a graphite-cone-absorption-cavity absolute energy meter, yielding a calibration coefficient of 1.009 and measurement uncertainty of 3.5% (k = 2). A water-absorption-type high-energy laser energy meter with measurement uncertainty of 4.8% (k = 2) was considered the reference standard, and compared to the energy meter calibrated in this study, yielded a correction factor of 0.995 (standard deviation of 1.4%).

  17. Low energy stable plasma calibration facility

    NASA Astrophysics Data System (ADS)

    Frederick-Frost, K. M.; Lynch, K. A.

    2007-07-01

    We have designed and fabricated a low energy plasma calibration facility for testing and calibration of rocket-borne charged-particle detectors and for the investigation of plasma sheath formation in an environment with ionospheric plasma energies, densities, and Debye lengths. We describe the vacuum system and associated plasma source, which was modified from a Naval Research Laboratory design [Bowles et al. Rev. Sci. Instrum. 67, 455 (1996)]. Mechanical and electrical modifications to this cylindrical microwave resonant source are outlined together with a different method of operating the magnetron that achieves a stable discharge. This facility produces unmagnetized plasmas with densities from 1×103/cm3to6×105/cm3, electron temperatures from 0.1to1.7eV, and plasma potentials from 0.5to8V depending on varying input microwave power and neutral gas flow. For the range of input microwave power explored (350-600W), the energy density of the plasma remains constant because of an inverse relationship between density and temperature. This relationship allows a wide range of Debye lengths (0.3-8.4cm) to be investigated, which is ideal for simulating the ionospheric plasma sheaths we explore.

  18. Automatic calibration system for pressure transducers

    NASA Technical Reports Server (NTRS)

    1968-01-01

    Fifty-channel automatic pressure transducer calibration system increases quantity and accuracy for test evaluation calibration. The pressure transducers are installed in an environmental tests chamber and manifolded to connect them to a pressure balance which is uniform.

  19. Jet energy calibration at the LHC

    SciTech Connect

    Schwartzman, Ariel

    2015-11-10

    In this study, jets are one of the most prominent physics signatures of high energy proton–proton (p–p) collisions at the Large Hadron Collider (LHC). They are key physics objects for precision measurements and searches for new phenomena. This review provides an overview of the reconstruction and calibration of jets at the LHC during its first Run. ATLAS and CMS developed different approaches for the reconstruction of jets, but use similar methods for the energy calibration. ATLAS reconstructs jets utilizing input signals from their calorimeters and use charged particle tracks to refine their energy measurement and suppress the effects of multiple p–p interactions (pileup). CMS, instead, combines calorimeter and tracking information to build jets from particle flow objects. Jets are calibrated using Monte Carlo (MC) simulations and a residual in situ calibration derived from collision data is applied to correct for the differences in jet response between data and Monte Carlo.

  20. Jet energy calibration at the LHC

    DOE PAGESBeta

    Schwartzman, Ariel

    2015-11-10

    In this study, jets are one of the most prominent physics signatures of high energy proton–proton (p–p) collisions at the Large Hadron Collider (LHC). They are key physics objects for precision measurements and searches for new phenomena. This review provides an overview of the reconstruction and calibration of jets at the LHC during its first Run. ATLAS and CMS developed different approaches for the reconstruction of jets, but use similar methods for the energy calibration. ATLAS reconstructs jets utilizing input signals from their calorimeters and use charged particle tracks to refine their energy measurement and suppress the effects of multiplemore » p–p interactions (pileup). CMS, instead, combines calorimeter and tracking information to build jets from particle flow objects. Jets are calibrated using Monte Carlo (MC) simulations and a residual in situ calibration derived from collision data is applied to correct for the differences in jet response between data and Monte Carlo.« less

  1. Multi-Axis Accelerometer Calibration System

    NASA Technical Reports Server (NTRS)

    Finley, Tom; Parker, Peter

    2010-01-01

    A low-cost, portable, and simplified system has been developed that is suitable for in-situ calibration and/or evaluation of multi-axis inertial measurement instruments. This system overcomes facility restrictions and maintains or improves the calibration quality for users of accelerometer-based instruments with applications in avionics, experimental wind tunnel research, and force balance calibration applications. The apparatus quickly and easily positions a multi-axis accelerometer system into a precisely known orientation suitable for in-situ quality checks and calibration. In addition, the system incorporates powerful and sophisticated statistical methods, known as response surface methodology and statistical quality control. These methods improve calibration quality, reduce calibration time, and allow for increased calibration frequency, which enables the monitoring of instrument stability over time.

  2. Calibration of multi-camera photogrammetric systems

    NASA Astrophysics Data System (ADS)

    Detchev, I.; Mazaheri, M.; Rondeel, S.; Habib, A.

    2014-11-01

    Due to the low-cost and off-the-shelf availability of consumer grade cameras, multi-camera photogrammetric systems have become a popular means for 3D reconstruction. These systems can be used in a variety of applications such as infrastructure monitoring, cultural heritage documentation, biomedicine, mobile mapping, as-built architectural surveys, etc. In order to ensure that the required precision is met, a system calibration must be performed prior to the data collection campaign. This system calibration should be performed as efficiently as possible, because it may need to be completed many times. Multi-camera system calibration involves the estimation of the interior orientation parameters of each involved camera and the estimation of the relative orientation parameters among the cameras. This paper first reviews a method for multi-camera system calibration with built-in relative orientation constraints. A system stability analysis algorithm is then presented which can be used to assess different system calibration outcomes. The paper explores the required calibration configuration for a specific system in two situations: major calibration (when both the interior orientation parameters and relative orientation parameters are estimated), and minor calibration (when the interior orientation parameters are known a-priori and only the relative orientation parameters are estimated). In both situations, system calibration results are compared using the system stability analysis methodology.

  3. NPP Clouds and the Earth's Radiant Energy System (CERES) Predicted Sensor Performance Calibration and Preliminary Data Product Performance

    NASA Technical Reports Server (NTRS)

    Priestly, Kory; Smith, George L.; Thomas, Susan; Maddock, Suzanne L.

    2009-01-01

    Continuation of the Earth Radiation Budget (ERB) Climate Data Record (CDR) has been identified as critical in the 2007 NRC Decadal Survey, the Global Climate Observing System WCRP report, and in an assessment titled Impacts of NPOESS Nunn-McCurdy Certification on Joint NASA-NOAA Climate Goals. In response, NASA, NOAA and NPOESS agreed in early 2008 to fly the final existing CERES Flight Model (FM-5) on the NPP spacecraft for launch in 2010. Future opportunities for ERB CDR continuity consist of procuring an additional CERES Sensor with modest performance upgrades for flight on the NPOESS C1 spacecraft in 2013, followed by a new CERES follow-on sensor for flight in 2018 on the NPOESS C3 spacecraft. While science goals remain unchanged for the long-term ERB Climate Data Record, it is now understood that the task of achieving these goals is more difficult for two reasons. The first is an increased understanding of the dynamics of the Earth/atmosphere system which demonstrates that rigorous separation of natural variability from anthropogenic change on decadal time scales requires higher accuracy and stability than originally envisioned. Secondly, future implementation scenarios involve less redundancy in flight hardware (1 vs. 2 orbits and operational sensors) resulting in higher risk of loss of continuity and reduced number of independent observations to characterize performance of individual sensors. Although EOS CERES CDR's realize a factor of 2 to 4 improvement in accuracy and stability over previous ERBE CDR's, future sensors will require an additional factor of 2 improvement to answer rigorously the science questions moving forward. Modest investments, defined through the CERES Science Team s 30-year operational history of the EOS CERES sensors, in onboard calibration hardware and pre-flight calibration and test program will ensure meeting these goals while reducing costs in re-processing scientific datasets. The CERES FM-5 pre-flight radiometric

  4. Absolute calibration in vivo measurement systems

    SciTech Connect

    Kruchten, D.A.; Hickman, D.P.

    1991-02-01

    Lawrence Livermore National Laboratory (LLNL) is currently investigating a new method for obtaining absolute calibration factors for radiation measurement systems used to measure internally deposited radionuclides in vivo. Absolute calibration of in vivo measurement systems will eliminate the need to generate a series of human surrogate structures (i.e., phantoms) for calibrating in vivo measurement systems. The absolute calibration of in vivo measurement systems utilizes magnetic resonance imaging (MRI) to define physiological structure, size, and composition. The MRI image provides a digitized representation of the physiological structure, which allows for any mathematical distribution of radionuclides within the body. Using Monte Carlo transport codes, the emission spectrum from the body is predicted. The in vivo measurement equipment is calibrated using the Monte Carlo code and adjusting for the intrinsic properties of the detection system. The calibration factors are verified using measurements of existing phantoms and previously obtained measurements of human volunteers. 8 refs.

  5. FCC-ee: Energy Calibration

    SciTech Connect

    Koratzinos, M.; Blondel, A.; Gianfelice-Wendt, E.; Zimmermann, F.

    2015-06-02

    The FCC-ee aims to improve on electroweak precision measurements, with goals of 100 ke V on the Z mass and width, and a fraction of MeV on the W mass. Compared to LEP, this implies a much improved knowledge of the center-of-mass energy when operating at the Z peak and WW threshold. This can be achieved by making systematic use of resonant depolarization. A number of issues have been identified, due in particular to the long polarization times. However the smaller emittance and energy spread of FCC-ee with respect to LEP should help achieve a much improved performance.

  6. Calibration of Electric Field Induced Energy Level Shifts in Argon

    NASA Astrophysics Data System (ADS)

    Hebner, Greg

    1999-10-01

    Argon is a commonly used gas in a number of discharges. As such it is an ideal candidate for spectroscopic based electric field measurements within the sheath and bulk discharge regions. Recently, measurements demonstrated the use of the Stark induced shifts of high lying energy levels in Argon to make spatially and temporally resolved electric field measurements [1]. However, that method relied on the cross calibration of known and calculable shifts in helium discharges to calibrate, in-situ, the energy level shifts in Argon. This poster shows the use of an atomic beam system to calibrate the electric field induced shift of high lying energy levels directly. In addition, data on very high lying argon levels, up to the 20 F manifold, were obtained. Comparison of our electric field induced energy level shift calibration curves with previous work will be shown. The possibility of using this system to calibrate energy level shifts in other gases of technological interest to the microelectronics and lighting industry will be discussed. [1]. J. B. Kim, K. Kawamura, Y. W. Choi, M. D. Bowden, K. Muraoka and V. Helbig, IEEE Transactions on Plasma Science, 26(5), 1556 (1998). This work was performed at Sandia National Laboratories and supported by the United States Department of Energy (DE-AC04-94AL85000).

  7. Calibration method for an omnidirectional multicamera system

    NASA Astrophysics Data System (ADS)

    Ikeda, Sei; Sato, Tomokazu; Yokoya, Naokazu

    2003-05-01

    Telepresence systems using an omnidirectional image sensor enable us to experience remote site. A omnidirectional multi-camera system is more useful to acquire outdoor scenes than a monocular camera system, because the multi-camera system can easily capture high-resolution omnidirectional images. However, exact calibration of the camera system is necessary to virtualize the real world accurately. In this paper, we describe a geometric and photometric camera calibration and a panorama movie generation method for the omnidirectional multi-camera system. In the geometric calibration, intrinsic and extrinsic parameters of each camera are estimated using a calibration board and a laser measurement system called total station. In the photometric calibration, the limb darkening and color balances among the cameras are corrected. The result of the calibration is used in the panorama movie generation. In experiments, we have actually calibrated the multi-camera system and have generated spherical panorama movies by using the estimated camera parameters. A telepresence system was prototyped in order to confirm that the panorama movie can be used for telepresence well. In addition, we have evaluated the discontinuity in generated panoramic images.

  8. FY2008 Calibration Systems Final Report

    SciTech Connect

    Cannon, Bret D.; Myers, Tanya L.; Broocks, Bryan T.

    2009-01-01

    The Calibrations project has been exploring alternative technologies for calibration of passive sensors in the infrared (IR) spectral region. In particular, we have investigated using quantum cascade lasers (QCLs) because these devices offer several advantages over conventional blackbodies such as reductions in size and weight while providing a spectral source in the IR with high output power. These devices can provide a rapid, multi-level radiance scheme to fit any nonlinear behavior as well as a spectral calibration that includes the fore-optics, which is currently not available for on-board calibration systems.

  9. Energy deposition evaluation for ultra-low energy electron beam irradiation systems using calibrated thin radiochromic film and Monte Carlo simulations.

    PubMed

    Matsui, S; Mori, Y; Nonaka, T; Hattori, T; Kasamatsu, Y; Haraguchi, D; Watanabe, Y; Uchiyama, K; Ishikawa, M

    2016-05-01

    For evaluation of on-site dosimetry and process design in industrial use of ultra-low energy electron beam (ULEB) processes, we evaluate the energy deposition using a thin radiochromic film and a Monte Carlo simulation. The response of film dosimeter was calibrated using a high energy electron beam with an acceleration voltage of 2 MV and alanine dosimeters with uncertainty of 11% at coverage factor 2. Using this response function, the results of absorbed dose measurements for ULEB were evaluated from 10 kGy to 100 kGy as a relative dose. The deviation between the responses of deposit energy on the films and Monte Carlo simulations was within 15%. As far as this limitation, relative dose estimation using thin film dosimeters with response function obtained by high energy electron irradiation and simulation results is effective for ULEB irradiation processes management. PMID:27250416

  10. Atmospheric simulator and calibration system for remote sensing radiometers

    NASA Technical Reports Server (NTRS)

    Holland, J. A.

    1983-01-01

    A system for calibrating the MAPS (measurement of air pollution from satellites) instruments was developed. The design of the system provides a capability for simulating a broad range of radiant energy source temperatures and a broad range of atmospheric pressures, temperatures, and pollutant concentrations for a single slab atmosphere. The system design and the system operation are described.

  11. AUTOMATIC CALIBRATING SYSTEM FOR PRESSURE TRANSDUCERS

    DOEpatents

    Amonette, E.L.; Rodgers, G.W.

    1958-01-01

    An automatic system for calibrating a number of pressure transducers is described. The disclosed embodiment of the invention uses a mercurial manometer to measure the air pressure applied to the transducer. A servo system follows the top of the mercury column as the pressure is changed and operates an analog- to-digital converter This converter furnishes electrical pulses, each representing an increment of pressure change, to a reversible counterThe transducer furnishes a signal at each calibration point, causing an electric typewriter and a card-punch machine to record the pressure at the instant as indicated by the counter. Another counter keeps track of the calibration points so that a number identifying each point is recorded with the corresponding pressure. A special relay control system controls the pressure trend and programs the sequential calibration of several transducers.

  12. The JWST Calibration Reference Data System

    NASA Astrophysics Data System (ADS)

    Bushouse, H.; Greenfield, P.; Miller, T.

    2012-09-01

    The James Webb Space Telescope (JWST) Calibration Reference Data System (CRDS) will be used during the instrumental calibration phase of JWST data processing to select reference files (e.g. darks, flats, distortion models) to be used to calibrate each dataset. The CRDS will also be used in the delivery and management of reference files within the JWST data archive and to manage the rules that will be used to determine which files are to be used with each science dataset. The CRDS incorporates lessons learned from more than 20 years of use of the HST Calibration Database System (CDBS), allowing for easier management of the reference file mapping rules, web-based reference file delivery and retrieval procedures, on-line access by off-site users who are reprocessing their science data, and easier testing of new reference files in the operations environment.

  13. SSME Automated Engine Calibration System (AECS)

    NASA Astrophysics Data System (ADS)

    Greene, William D.

    1992-07-01

    An algorithm is derived for the real-time calibration of the engine fuel flowmeter and the engine mixture ratio during Space Shuttle Main Engine (SSME) ground testing. Because currently used calibration methods are post-test operations, there exists no fail-safe way of predicting at what mixture ratio a planned test will run. It is proposed that the algorithm developed here be used as part of an Automated Engine Calibration System (AECS) which could ensure that nearly all SSME tests are run at the proper mixture ratio. In this way, AECS has the potential of increasing the efficiency of the SSME ground test program. In addition to the derivation of the algorithm, an overview of this calibration system is presented along with the list of test stand facility instrumentation necessary for AECS implementation.

  14. Colorimetric calibration of coupled infrared simulation system

    NASA Astrophysics Data System (ADS)

    Zhang, Ying; Fei, Jindong; Gao, Yang; Du, Jian

    2015-10-01

    In order to test 2-color infrared sensors, a coupled infrared simulation system can generate radiometric outputs with wavelengths that range from less than 3 microns to more than 12 microns. There are two channels in the coupled simulation system, optically combined by a diachronic beam combiner. Each channel has an infrared blackbody, a filter, a diaphragm, and diaphragm-motors. The system is projected to the sensor under testing by a collimator. This makes it difficult to calibrate the system with only one-band thermal imager. Errors will be caused in the radiance levels measured by the narrow band thermal imager. This paper describes colorimetric temperature measurement techniques that have been developed to perform radiometric calibrations of these infrared simulation systems above. The calibration system consists of two infrared thermal imagers; one is operated at the wavelength range of MW-IR, and the other at the range of LW-IR.

  15. Definition of energy-calibrated spectra for national reachback

    SciTech Connect

    Kunz, Christopher L.; Hertz, Kristin L.

    2014-01-01

    Accurate energy calibration is critical for the timeliness and accuracy of analysis results of spectra submitted to National Reachback, particularly for the detection of threat items. Many spectra submitted for analysis include either a calibration spectrum using 137Cs or no calibration spectrum at all. The single line provided by 137Cs is insufficient to adequately calibrate nonlinear spectra. A calibration source that provides several lines that are well-spaced, from the low energy cutoff to the full energy range of the detector, is needed for a satisfactory energy calibration. This paper defines the requirements of an energy calibration for the purposes of National Reachback, outlines a method to validate whether a given spectrum meets that definition, discusses general source considerations, and provides a specific operating procedure for calibrating the GR-135.

  16. Calibration of sonic flowmeters for Ocean Thermal Energy Conversion (OTEC)

    NASA Astrophysics Data System (ADS)

    Lott, D. F.; Salsman, G. G.; Hodges, C. E.

    1980-12-01

    Scientists at the Naval Coastal Systems Center (NCSC) at Panama City, Florida, have used a commercially available acoustic flowmeter to monitor critical flow conditions during an OTEC (Ocean Thermal Energy Conversion) funded study of the effects of biofouling on the efficiency of a prototype heat transfer system. Flowmeters of this type are particularly useful in applications requiring unimpeded flow; i.e., no sensor projecting into the moving fluid. Unfortunately, sonic flowmeters are somewhat difficult to calibrate and may be subject to drift. A method of calibration devised by NCSC may thus be of some interest to other users. It is the purpose of this report to document the special procedures used by test personnel to calibrate the flowmeters. Briefly, the calibration consisted of pumping sea water through the flowmeter into a tank suspended beneath a special load cell which provided an output voltage proportional to the weight of water in the tank. A programmable desktop calculator system was used to monitor changes in voltage as a function of time and convert these changes into flow rates for direct comparison with values read from the sonic flowmeter's digital display. Calibration checks were made at metered flows of 8, 10, 12, 14, 16, and 18 gallons per minute (gpm). It was found that computed flows were essentially linear but differed from metered values by as much as 9.0 percent.

  17. Compton backscattering for the calibration of KEDR tagging system

    NASA Astrophysics Data System (ADS)

    Kaminskiy, V. V.; Muchnoi, N. Yu; Zhilich, V. N.

    2014-08-01

    KEDR detector has the tagging system (TS) to study the gamma-gamma processes. To determine the two-photon invariant mass, the energies of the scattered at small angles electrons and positrons are measured by the magnetic spectrometer embedded into the lattice of the VEPP-4M collider. The energy resolution (scattered electron/positron energy resolution divided by the beam energy) of this spectrometer varies from 0.6% to 0.03% depending on the electron/positron energy. The Compton backscattering of laser radiation on the electron/positron beam is used for the accurate energy scale and resolution calibration of the tagging system. The report covers the design, recent results and current status of the KEDR TS calibration system.

  18. White Dwarfs for Calibrating the Dark Energy Survey

    NASA Astrophysics Data System (ADS)

    Allyn Smith, J.; Wester, William; Tucker, Douglas Lee; Fix, Mees B.; Tremblay, Pier-Emmanuel; Gulledge, Deborah J.; McDonald, Christopher P.; Allam, Sahar S.; James, David

    2016-01-01

    The Dark Energy Survey (DES) is surveying some 5000 square degrees in the southern hemisphere in the grizY filter system using the new Dark Energy Camera. In order to verify meeting photometric calibration requirements, we are obtaining imaging of several hundred white dwarfs (confirmed and candidates) to select nearly 100 or more hydrogen atmosphere (DA) white dwarfs for spectroscopy in the DES footprint. The spectra that are obtained will be extracted and used to derive synthetic spectra that can be compared with DES measurements from imaging in each of the DES grizY filters. This comparison should be able to verify and help calibrate the survey to a level better than 2% photometrically and to better than 0.5% in colors. We will discuss the observational and modeling effort required to develop a well-characterized DAs sample and present some preliminary results. This set would form the basis of a larger set of southern hemisphere survey calibration stars, and additionally serve as a legacy calibration set in the upcoming era of the LSST survey and the giant segmented mirror observatories. These stars will be used to establish and monitor the color zero points for the DES photometric system and can be used to search for systematic errors in the color zero points over the DES footprint. These stars will also be used as some of the primary standards for the DES photometric system which will allow nightly atmospheric monitoring during DES operations.

  19. Clouds and the Earth's Radiant Energy System (CERES) algorithm theoretical basis document. volume 2; Geolocation, calibration, and ERBE-like analyses (subsystems 1-3)

    NASA Technical Reports Server (NTRS)

    Wielicki, B. A. (Principal Investigator); Barkstrom, B. R. (Principal Investigator); Charlock, T. P.; Baum, B. A.; Green, R. N.; Minnis, P.; Smith, G. L.; Coakley, J. A.; Randall, D. R.; Lee, R. B., III

    1995-01-01

    The theoretical bases for the Release 1 algorithms that will be used to process satellite data for investigation of the Clouds and Earth's Radiant Energy System (CERES) are described. The architecture for software implementation of the methodologies is outlined. Volume 2 details the techniques used to geolocate and calibrate the CERES scanning radiometer measurements of shortwave and longwave radiance to invert the radiances to top-of-the-atmosphere (TOA) and surface fluxes following the Earth Radiation Budget Experiment (ERBE) approach, and to average the fluxes over various time and spatial scales to produce an ERBE-like product. Spacecraft ephemeris and sensor telemetry are used with calibration coefficients to produce a chronologically ordered data product called bidirectional scan (BDS) radiances. A spatially organized instrument Earth scan product is developed for the cloud-processing subsystem. The ERBE-like inversion subsystem converts BDS radiances to unfiltered instantaneous TOA and surface fluxes. The TOA fluxes are determined by using established ERBE techniques. Hourly TOA fluxes are computed from the instantaneous values by using ERBE methods. Hourly surface fluxes are estimated from TOA fluxes by using simple parameterizations based on recent research. The averaging process produces daily, monthly-hourly, and monthly means of TOA and surface fluxes at various scales. This product provides a continuation of the ERBE record.

  20. The TileCal Laser Calibration System

    NASA Astrophysics Data System (ADS)

    Giangiobbe, Vincent; On Behalf Of The Atlas Tile Calorimeter Group

    TileCal is the central hadronic calorimeter of the ATLAS detector operating at LHC. It is a sampling calorimeter whose active material is made of scintillating plastic tiles. Scintillation light is read by photomultipliers. A Laser system is used to monitor their gain stability. During dedicated calibration runs the Laser system sends via long optical fibers, a monitored amount of light simultaneously to all the ≈10000 photomultipliers of TileCal. This note describes two complementary methods to measure the stability of the photomultipliers gain using the Laser calibration runs. The results of validation tests are presented for both methods and theirrespective performances and limitations are discussed.

  1. Energy calibration issues in nuclear resonant vibrational spectroscopy: observing small spectral shifts and making fast calibrations.

    PubMed

    Wang, Hongxin; Yoda, Yoshitaka; Dong, Weibing; Huang, Songping D

    2013-09-01

    The conventional energy calibration for nuclear resonant vibrational spectroscopy (NRVS) is usually long. Meanwhile, taking NRVS samples out of the cryostat increases the chance of sample damage, which makes it impossible to carry out an energy calibration during one NRVS measurement. In this study, by manipulating the 14.4 keV beam through the main measurement chamber without moving out the NRVS sample, two alternative calibration procedures have been proposed and established: (i) an in situ calibration procedure, which measures the main NRVS sample at stage A and the calibration sample at stage B simultaneously, and calibrates the energies for observing extremely small spectral shifts; for example, the 0.3 meV energy shift between the 100%-(57)Fe-enriched [Fe4S4Cl4](=) and 10%-(57)Fe and 90%-(54)Fe labeled [Fe4S4Cl4](=) has been well resolved; (ii) a quick-switching energy calibration procedure, which reduces each calibration time from 3-4 h to about 30 min. Although the quick-switching calibration is not in situ, it is suitable for normal NRVS measurements. PMID:23955030

  2. Research on new dynamic torque calibration system

    NASA Astrophysics Data System (ADS)

    Zhang, Li; Wang, Zhong Yu; Yin, Xiao

    2016-06-01

    Dynamic torque calibration method based on rotating table and interferometric system is studied in this paper. A load mass with certain moment of inertia are screwed on the top of torque transducer, the dynamic torque is realized by load object are traceable to angular acceleration and moment of inertia of the object by M (t)=I θ ¨(t) , where I is the total moment of inertia acting on the sensing element of the torque transducer and θ ¨ is the time and spatial-dependent angular acceleration of the load object which is directly measured by a laser interferometer. This paper will introduce a dynamic torque calibration system developed at Changcheng Institute of Metrology and Measurement (CIMM). It uses servomotor to generate dynamic torque in the range from 0.1Nm to 200Nm, and heterodyne laser interferometers cooperated with column grating are used for angular acceleration measurement. An airbearing system is developed to increase the performance of the dynamic turque calibration system. This paper introduce the setup of the dynamic torque calibration system.

  3. The KamLAND Full-Volume Calibration System

    SciTech Connect

    KamLAND Collaboration; Berger, B. E.; Busenitz, J.; Classen, T.; Decowski, M. P.; Dwyer, D. A.; Elor, G.; Frank, A.; Freedman, S. J.; Fujikawa, B. K.; Galloway, M.; Gray, F.; Heeger, K. M.; Hsu, L.; Ichimura, K.; Kadel, R.; Keefer, G.; Lendvai, C.; McKee, D.; O'Donnell, T.; Piepke, A.; Steiner, H. M.; Syversrud, D.; Wallig, J.; Winslow, L. A.; Ebihara, T.; Enomoto, S.; Furuno, K.; Gando, Y.; Ikeda, H.; Inoue, K.; Kibe, Y.; Kishimoto, Y.; Koga, M.; Minekawa, Y.; Mitsui, T.; Nakajima, K.; Nakajima, K.; Nakamura, K.; Owada, K.; Shimizu, I.; Shimizu, Y.; Shirai, J.; Suekane, F.; Suzuki, A.; Tamae, K.; Yoshida, S.; Kozlov, A.; Murayama, H.; Grant, C.; Leonard, D. S.; Luk, K.-B.; Jillings, C.; Mauger, C.; McKeown, R. D.; Zhang, C.; Lane, C. E.; Maricic, J.; Miletic, T.; Batygov, M.; Learned, J. G.; Matsuno, S.; Pakvasa, S.; Foster, J.; Horton-Smith, G. A.; Tang, A.; Dazeley, S.; Downum, K. E.; Gratta, G.; Tolich, K.; Bugg, W.; Efremenko, Y.; Kamyshkov, Y.; Perevozchikov, O.; Karwowski, H. J.; Markoff, D. M.; Tornow, W.; Piquemal, F.; Ricol, J.-S.

    2009-03-05

    We have successfully built and operated a source deployment system for the KamLAND detector. This system was used to position radioactive sources throughout the delicate 1-kton liquid scintillator volume, while meeting stringent material cleanliness, material compatibility, and safety requirements. The calibration data obtained with this device were used to fully characterize detector position and energy reconstruction biases. As a result, the uncertainty in the size of the detector fiducial volume was reduced by a factor of two. Prior to calibration with this system, the fiducial volume was the largest source of systematic uncertainty in measuring the number of antineutrinos detected by KamLAND. This paper describes the design, operation and performance of this unique calibration system.

  4. Calibration

    NASA Astrophysics Data System (ADS)

    Kunze, Hans-Joachim

    Commercial spectrographic systems are usually supplied with some wave-length calibration, but it is essential that the experimenter performs his own calibration for reliable measurements. A number of sources emitting well-known emission lines are available, and the best values of their wavelengths may be taken from data banks accessible on the internet. Data have been critically evaluated for many decades by the National Institute of Standards and Technology (NIST) of the USA [13], see also p. 3. Special data bases have been established by the astronomy and fusion communities (Appendix B).

  5. Automated system for the calibration of magnetometers

    SciTech Connect

    Petrucha, Vojtech; Kaspar, Petr; Ripka, Pavel; Merayo, Jose M. G.

    2009-04-01

    A completely nonmagnetic calibration platform has been developed and constructed at DTU Space (Technical University of Denmark). It is intended for on-site scalar calibration of high-precise fluxgate magnetometers. An enhanced version of the same platform is being built at the Czech Technical University. There are three axes of rotation in this design (compared to two axes in the previous version). The addition of the third axis allows us to calibrate more complex devices. An electronic compass based on a vector fluxgate magnetometer and micro electro mechanical systems (MEMS) accelerometer is one example. The new platform can also be used to evaluate the parameters of the compass in all possible variations in azimuth, pitch, and roll. The system is based on piezoelectric motors, which are placed on a platform made of aluminum, brass, plastic, and glass. Position sensing is accomplished through custom-made optical incremental sensors. The system is controlled by a microcontroller, which executes commands from a computer. The properties of the system as well as calibration and measurement results will be presented.

  6. Calibration of the Urbana lidar system

    NASA Technical Reports Server (NTRS)

    Cerny, T.; Sechrist, C. F., Jr.

    1980-01-01

    A method for calibrating data obtained by the Urban sodium lidar system is presented. First, an expression relating the number of photocounts originating from a specific altitude range to the soodium concentration is developed. This relation is then simplified by normalizing the sodium photocounts with photocounts originating from the Rayleigh region of the atmosphere. To evaluate the calibration expression, the laser linewidth must be known. Therefore, a method for measuring the laser linewidth using a Fabry-Perot interferometer is given. The laser linewidth was found to be 6 + or - 2.5 pm. Problems due to photomultiplier tube overloading are discussed. Finally, calibrated data is presented. The sodium column abundance exhibits something close to a sinusoidal variation throughout the year with the winter months showing an enhancement of a factor of 5 to 7 over the summer months.

  7. Calibration of fluorescence resonance energy transfer in microscopy

    DOEpatents

    Youvan, Douglas C.; Silva, Christopher M.; Bylina, Edward J.; Coleman, William J.; Dilworth, Michael R.; Yang, Mary M.

    2002-09-24

    Imaging hardware, software, calibrants, and methods are provided to visualize and quantitate the amount of Fluorescence Resonance Energy Transfer (FRET) occurring between donor and acceptor molecules in epifluorescence microscopy. The MicroFRET system compensates for overlap among donor, acceptor, and FRET spectra using well characterized fluorescent beads as standards in conjunction with radiometrically calibrated image processing techniques. The MicroFRET system also provides precisely machined epifluorescence cubes to maintain proper image registration as the sample is illuminated at the donor and acceptor excitation wavelengths. Algorithms are described that pseudocolor the image to display pixels exhibiting radiometrically-corrected fluorescence emission from the donor (blue), the acceptor (green) and FRET (red). The method is demonstrated on samples exhibiting FRET between genetically engineered derivatives of the Green Fluorescent Protein (GFP) bound to the surface of Ni chelating beads by histidine-tags.

  8. Calibration of fluorescence resonance energy transfer in microscopy

    DOEpatents

    Youvan, Dougalas C.; Silva, Christopher M.; Bylina, Edward J.; Coleman, William J.; Dilworth, Michael R.; Yang, Mary M.

    2003-12-09

    Imaging hardware, software, calibrants, and methods are provided to visualize and quantitate the amount of Fluorescence Resonance Energy Transfer (FRET) occurring between donor and acceptor molecules in epifluorescence microscopy. The MicroFRET system compensates for overlap among donor, acceptor, and FRET spectra using well characterized fluorescent beads as standards in conjunction with radiometrically calibrated image processing techniques. The MicroFRET system also provides precisely machined epifluorescence cubes to maintain proper image registration as the sample is illuminated at the donor and acceptor excitation wavelengths. Algorithms are described that pseudocolor the image to display pixels exhibiting radiometrically-corrected fluorescence emission from the donor (blue), the acceptor (green) and FRET (red). The method is demonstrated on samples exhibiting FRET between genetically engineered derivatives of the Green Fluorescent Protein (GFP) bound to the surface of Ni chelating beads by histidine-tags.

  9. Calibration of a cadmium IVNAA system.

    PubMed

    Ralston, A; Utteridge, T; Paix, D; Beddoe, A

    1994-03-01

    An in vivo neutron activation analysis (IVNAA) system for the measurement of cadmium in the human liver and kidney was calibrated using cadmium doped liver and kidney phantoms in a water tank. The effect on the number of cadmium gammas detected with changes in organ position and cross-organ interference was assessed. The lower limits of detection were found to be 12 mg cadmium in the kidney and 7 ppm cadmium in the liver. This system was compared to five others using a performance index which considers equipment specifications and dose to the subject, and was found to rank second best for the liver measurements and second worst for the kidney measurements. The results from the organ position studies showed that the depth of the organs in the body has a great effect on the results, and differences between systems could be partially due to differences in calibration geometry. PMID:8198507

  10. Calibration of the RLS HPGe spectral gamma ray logging system

    SciTech Connect

    Koizumi, C.J.; Brodeur, J.R.; Ulbricht, W.H.; Price, R.K.

    1991-11-01

    Gamma-ray spectral data have been recorded with the Radionuclide Logging System (RLS) high purity germanium (HPGe) system at (1) the American Petroleum Institute (API) spectral gamma-ray calibration center in Houston, Texas; (2) the US Department of Energy (DOE) spectral gamma-ray field calibration facility in Spokane, Washington; and (3) the DOE spectral gamma-ray primary calibration center in Grand Junction, Colorado. Analyses of the Grand Junction data yielded: calibration constants for the natural gamma-ray sources (potassium, uranium and thorium), energy-dependent borehole diameter corrections for the aid-filled borehole, energy-dependent borehole casing corrections for steel casing over a range of thicknesses from 0 to 79 cm (5/16 in.), a casing index function that varies with casing thickness and provides a method for verifying that the correct casing correction is applied, and an energy-dependent inverse function that is the basis for assessment of subsurface concentrations of man-made gamma-ray emitters such as cesium-137 and cobalt-60.

  11. Integrated calibration of magnetic gradient tensor system

    NASA Astrophysics Data System (ADS)

    Gang, Yin; Yingtang, Zhang; Hongbo, Fan; GuoQuan, Ren; Zhining, Li

    2015-01-01

    Measurement precision of a magnetic gradient tensor system is not only connected with the imperfect performance of magnetometers such as bias, scale factor, non-orthogonality and misalignment errors, but also connected with the external soft-iron and hard-iron magnetic distortion fields when the system is used as a strapdown device. So an integrated scalar calibration method is proposed in this paper. In the first step, a mathematical model for scalar calibration of a single three-axis magnetometer is established, and a least squares ellipsoid fitting algorithm is proposed to estimate the detailed error parameters. For the misalignment errors existing at different magnetometers caused by the installation process and misalignment errors aroused by ellipsoid fitting estimation, a calibration method for combined misalignment errors is proposed in the second step to switch outputs of different magnetometers into the ideal reference orthogonal coordinate system. In order to verify effectiveness of the proposed method, simulation and experiment with a cross-magnetic gradient tensor system are performed, and the results show that the proposed method estimates error parameters and improves the measurement accuracy of magnetic gradient tensor greatly.

  12. Computer Generated Hologram System for Wavefront Measurement System Calibration

    NASA Technical Reports Server (NTRS)

    Olczak, Gene

    2011-01-01

    Computer Generated Holograms (CGHs) have been used for some time to calibrate interferometers that require nulling optics. A typical scenario is the testing of aspheric surfaces with an interferometer placed near the paraxial center of curvature. Existing CGH technology suffers from a reduced capacity to calibrate middle and high spatial frequencies. The root cause of this shortcoming is as follows: the CGH is not placed at an image conjugate of the asphere due to limitations imposed by the geometry of the test and the allowable size of the CGH. This innovation provides a calibration system where the imaging properties in calibration can be made comparable to the test configuration. Thus, if the test is designed to have good imaging properties, then middle and high spatial frequency errors in the test system can be well calibrated. The improved imaging properties are provided by a rudimentary auxiliary optic as part of the calibration system. The auxiliary optic is simple to characterize and align to the CGH. Use of the auxiliary optic also reduces the size of the CGH required for calibration and the density of the lines required for the CGH. The resulting CGH is less expensive than the existing technology and has reduced write error and alignment error sensitivities. This CGH system is suitable for any kind of calibration using an interferometer when high spatial resolution is required. It is especially well suited for tests that include segmented optical components or large apertures.

  13. FY07 Final Report for Calibration Systems

    SciTech Connect

    Myers, Tanya L.; Broocks, Bryan T.; Cannon, Bret D.; Ho, Nicolas

    2007-12-01

    Remote infrared (IR) sensing provides a valuable method for detection and identification of materials associated with nuclear proliferation. Current challenges for remote sensors include minimizing the size, mass, and power requirements for cheaper, smaller, and more deployable instruments without affecting the measurement performance. One area that is often overlooked is sensor calibration design that is optimized to minimize the cost, size, weight, and power of the payload. Yet, an on-board calibration system is essential to account for changes in the detector response once the instrument has been removed from the laboratory. The Calibration Systems project at Pacific Northwest National Laboratory (PNNL) is aimed towards developing and demonstrating compact quantum cascade (QC) laser-based calibration systems for infrared sensor systems in order to provide both a spectral and radiometric calibration while minimizing the impact on the instrument payload. In FY05, PNNL demonstrated a multi-level radiance scheme that provides six radiance levels for an enhanced linearity check compared to the currently accepted two-point scheme. PNNL began testing the repeatability of this scheme using a cryogenically cooled, single-mode quantum cascade laser (QCL). A cyclic variation in the power was observed that was attributed to the thermal cycling of the laser's dewar. In FY06, PNNL continued testing this scheme and installed an auxiliary liquid nitrogen reservoir to limit the thermal cycling effects. Although better repeatability was achieved over a longer time period, power fluctuations were still observed due to the thermal cycling. Due to the limitations with the cryogenic system, PNNL began testing Fabry-Perot QCLs that operate continuous-wave (cw) or quasi-cw at room temperature (RT) in FY06. PNNL demonstrated a multi-level scheme that provides five radiance levels in 105 seconds with excellent repeatability. We have continued testing this repeatability in FY07. A burn

  14. Rotary mode system initial instrument calibration

    SciTech Connect

    Johns, B.R.

    1994-10-01

    The attached report contains the vendor calibration procedures used for the initial instrument calibration of the rotary core sampling equipment. The procedures are from approved vendor information files.

  15. Calibration of Sound and Vibration Sensors and Vibration Testing Systems

    NASA Astrophysics Data System (ADS)

    Nicklich, H.

    2004-08-01

    SPEKTRA is a manufacturer of high quality calibration systems for sound and vibration. Under license No DKD-K-27801, a calibration lab was established at SPEKTRA to provide a calibration service. The paper gives a summary of 4 years experience in the calibration of vibration Sensors, measuring systems and vibration test equipment in the industrial field. In practice calibration is often treated as an unpleasant job that is solved by handing out a "Calibration certificate of every part of the system" to the Quality Manager. The paper comes to the conclusion that calibration can help to minimize costs and risks if the customer has basic knowledge in international standards, the used test equipment and the special requirements for testing with this configuration. It is not enough to calibrate one sen- sor of a system in a standard range. The requirements for calibration should be defined individually for every testing system and application.

  16. Calibration and characterization of spectral imaging systems

    NASA Astrophysics Data System (ADS)

    Polder, Gerrit; van der Heijden, Gerie W.

    2001-09-01

    Spectral image sensors provide images with a large umber of contiguous spectral channels per pixel. This paper describes the calibration of spectrograph based spectral imaging systems. The relation between pixel position and measured wavelength was determined using three different wavelength calibration sources. Results indicate that for spectral calibration a source with very small peaks,such as a HgAr source, is preferred to arrow band filters. A second order polynomial model gives a better fit than a linear model for the pixel to wavelength mapping. The signal to noise ratio (SNR)is determined per wavelength. In the blue part of the spectrum,the SNR was lower than in the green and red part.This is due to a decreased quantum efficiency of the CCD,a smaller transmission coefficient of the spectrograph,as well as poor performance of the illuminant. Increasing the amount of blue light,using additional Fluorescent tube with special coating increased the SNR considerably. Furthermore, the spatial and spectral resolution of the system are determined.These can be used to choose appropriate binning factors to decrease the image size without losing information.

  17. High Temperature Calibration Furnace System user's guide

    NASA Technical Reports Server (NTRS)

    1994-01-01

    The High Temperature Calibration Furnace System (HTCFS) was developed by Summitec Corporation. It is a high precision instrument providing a constant temperature which can be used to calibrate high temperature thermocouples. Incorporating the many recent technological advances from the fields of optical fiber thermometry, material science, computer systems interfacing, and process control, the engineers at Summitec Corporation have been able to create a system that can reach a steady operating temperature of 1700 C. The precision for the system requires the measurement of temperature to be within 1 C in two hours and within 2 C in 24 hours. As documented, the experimental result shows that this system has been able to stay within .5 C in 5 hours. No other systems commercially available have been able to achieve such high temperature precision. This manual provides an overview of the system design, instructions for instrument setup, and operation procedures. Also included are a vendor list and the source codes for the custom-designed software.

  18. Variable Acceleration Force Calibration System (VACS)

    NASA Technical Reports Server (NTRS)

    Rhew, Ray D.; Parker, Peter A.; Johnson, Thomas H.; Landman, Drew

    2014-01-01

    Conventionally, force balances have been calibrated manually, using a complex system of free hanging precision weights, bell cranks, and/or other mechanical components. Conventional methods may provide sufficient accuracy in some instances, but are often quite complex and labor-intensive, requiring three to four man-weeks to complete each full calibration. To ensure accuracy, gravity-based loading is typically utilized. However, this often causes difficulty when applying loads in three simultaneous, orthogonal axes. A complex system of levers, cranks, and cables must be used, introducing increased sources of systematic error, and significantly increasing the time and labor intensity required to complete the calibration. One aspect of the VACS is a method wherein the mass utilized for calibration is held constant, and the acceleration is changed to thereby generate relatively large forces with relatively small test masses. Multiple forces can be applied to a force balance without changing the test mass, and dynamic forces can be applied by rotation or oscillating acceleration. If rotational motion is utilized, a mass is rigidly attached to a force balance, and the mass is exposed to a rotational field. A large force can be applied by utilizing a large rotational velocity. A centrifuge or rotating table can be used to create the rotational field, and fixtures can be utilized to position the force balance. The acceleration may also be linear. For example, a table that moves linearly and accelerates in a sinusoidal manner may also be utilized. The test mass does not have to move in a path that is parallel to the ground, and no re-leveling is therefore required. Balance deflection corrections may be applied passively by monitoring the orientation of the force balance with a three-axis accelerometer package. Deflections are measured during each test run, and adjustments with respect to the true applied load can be made during the post-processing stage. This paper will

  19. Calibration of sound and vibration sensors and vibration testing systems

    NASA Astrophysics Data System (ADS)

    Nicklich, Holger

    2004-08-01

    SPEKTRA is a manufacturer of high quality calibration systems for sound and vibration. Under license No DKD-K-27801, a calibration lab was established at SPEKTRA to provide a calibration service. The paper gives a summary of 4 years experience in the calibration of vibration Sensors, measuring systems and vibration test equipment in the industrial field. In practice calibration is often treated as an unpleasant job that is solved by handing out a “Calibration certificate of every part of the system” to the Quality Manager. The paper comes to the conclusion that calibration can help to minimize costs and risks if the customer has basic knowledge in international standards, the used test equipment and the special requirements for testing with this configuration. It is not enough to calibrate one sensor of a system in a standard range. The requirements for calibration should be defined individually for every testing system and application.

  20. Calibration of a universal indicated turbulence system

    NASA Technical Reports Server (NTRS)

    Chapin, W. G.

    1977-01-01

    Theoretical and experimental work on a Universal Indicated Turbulence Meter is described. A mathematical transfer function from turbulence input to output indication was developed. A random ergodic process and a Gaussian turbulence distribution were assumed. A calibration technique based on this transfer function was developed. The computer contains a variable gain amplifier to make the system output independent of average velocity. The range over which this independence holds was determined. An optimum dynamic response was obtained for the tubulation between the system pitot tube and pressure transducer by making dynamic response measurements for orifices of various lengths and diameters at the source end.

  1. Characterization of calibration curves and energy dependence GafChromic{sup TM} XR-QA2 model based radiochromic film dosimetry system

    SciTech Connect

    Tomic, Nada Quintero, Chrystian; Aldelaijan, Saad; Bekerat, Hamed; Liang, LiHeng; DeBlois, François; Devic, Slobodan; Whiting, Bruce R.; Seuntjens, Jan

    2014-06-15

    Purpose: The authors investigated the energy response of XR-QA2 GafChromic{sup TM} film over a broad energy range used in diagnostic radiology examinations. The authors also made an assessment of the most suitable functions for both reference and relative dose measurements. Methods: Pieces of XR-QA2 film were irradiated to nine different values of air kerma in air, following reference calibration of a number of beam qualities ranging in HVLs from 0.16 to 8.25 mm Al, which corresponds to effective energy range from 12.7 keV to 56.3 keV. For each beam quality, the authors tested three functional forms (rational, linear exponential, and power) to assess the most suitable function by fitting the delivered air kerma in air as a function of film response in terms of reflectance change. The authors also introduced and tested a new parameterχ = netΔR·e{sup m} {sup netΔR} that linearizes the inherently nonlinear response of the film. Results: The authors have found that in the energy range investigated, the response of the XR-QA2 based radiochromic film dosimetry system ranges from 0.222 to 0.420 in terms of netΔR at K{sub air}{sup air} = 8 cGy. For beam qualities commonly used in CT scanners (4.03–8.25 mm Al), the variation in film response (netΔR at K{sub air}{sup air} = 8 cGy) amounts to ± 5%, while variation in K{sub air}{sup air} amounts to ± 14%. Conclusions: Results of our investigation revealed that the use of XR-QA2 GafChromic{sup TM} film is accompanied by a rather pronounced energy dependent response for beam qualities used for x-ray based diagnostic imaging purposes. The authors also found that the most appropriate function for the reference radiochromic film dosimetry would be the power function, while for the relative dosimetry one may use the exponential response function that can be easily linearized.

  2. 49 CFR 325.25 - Calibration of measurement systems.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 5 2010-10-01 2010-10-01 false Calibration of measurement systems. 325.25 Section... CARRIER NOISE EMISSION STANDARDS Instrumentation § 325.25 Calibration of measurement systems. (a)(1) The sound level measurement system must be calibrated and appropriately adjusted at one or more...

  3. 49 CFR 325.25 - Calibration of measurement systems.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 5 2013-10-01 2013-10-01 false Calibration of measurement systems. 325.25 Section... CARRIER NOISE EMISSION STANDARDS Instrumentation § 325.25 Calibration of measurement systems. (a)(1) The sound level measurement system must be calibrated and appropriately adjusted at one or more...

  4. 49 CFR 325.25 - Calibration of measurement systems.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 5 2011-10-01 2011-10-01 false Calibration of measurement systems. 325.25 Section... CARRIER NOISE EMISSION STANDARDS Instrumentation § 325.25 Calibration of measurement systems. (a)(1) The sound level measurement system must be calibrated and appropriately adjusted at one or more...

  5. Research on new dynamic force calibration system

    NASA Astrophysics Data System (ADS)

    Zhang, Li

    2008-06-01

    Sinusoidal force calibration method based on electrodynamic shaker and interferometric system was studied several years before at Physikalisch-Technische Bundesanstalt (PTB). In that system a load mass are screwed on the top of force transducer, the sinusoidal forces realized by accelerated load masses are traceable to acceleration and mass according to the force definition F(t) = ma(t), where m is the total mass acting on the sensing element of the force transducer and a is the time and spatial-dependent acceleration of the mass, which is directly measured by a laser interferometer. This paper will introduce a new dynamic force calibration system developed at Changcheng Institute of Metrology and Measurement (CIMM). It uses electrodynamic shakers to generate dynamic force in the range from 1N to 20kN, and heterodyne laser interferometers are used for acceleration measurement. A new air bearing system is developed to increase the performance of shakers and an active vibration isolator is used to reduce enviromental disturbance to the interferometric system.

  6. Automatic Energy Calibration of Gamma-Ray Spectrometers

    Energy Science and Technology Software Center (ESTSC)

    2011-09-19

    The software provides automatic method for calibrating the energy scale of high-purity germanium (HPGe) and scintillation gamma-ray spectrometers, using natural background radiation as the source of calibration gamma rays. In field gamma-ray spectroscopy, radioactive check sources may not be available; temperature changes can shift detector electronic gain and scintillator light output; and a user’s experience and training may not include gamma-ray energy calibration. Hence, an automated method of calibrating the spectrometer using natural background wouldmore » simplify its operation, especially by technician-level users, and by enhancing spectroscopic data quality, it would reduce false detections. Following a typically one-minute count of background gamma-rays, the measured spectrum is searched for gamma-ray peaks, producing a list of peak centroids, in channels1. Next, the ratio algorithm attempts to match the peak centroids found in the search to a user-supplied list of calibration gamma-ray energies. Finally, if three or more calibration energies have been matched to peaks, the energy equation parameters are determined by a least-squares fit2, and the spectrum has been energy-calibrated. The ratio algorithm rests on the repeatable but irregular spacing of the background gammaray energies—together they form a unique set of ratios, when normalized to the highest energy calibration gamma ray; so too, the corresponding peak centroids in the spectrum. The algorithm matches energy ratios to peak centroid ratios, to determine which peak matches a given calibration energy.« less

  7. Automatic Energy Calibration of Gamma-Ray Spectrometers

    SciTech Connect

    2011-09-19

    The software provides automatic method for calibrating the energy scale of high-purity germanium (HPGe) and scintillation gamma-ray spectrometers, using natural background radiation as the source of calibration gamma rays. In field gamma-ray spectroscopy, radioactive check sources may not be available; temperature changes can shift detector electronic gain and scintillator light output; and a user’s experience and training may not include gamma-ray energy calibration. Hence, an automated method of calibrating the spectrometer using natural background would simplify its operation, especially by technician-level users, and by enhancing spectroscopic data quality, it would reduce false detections. Following a typically one-minute count of background gamma-rays, the measured spectrum is searched for gamma-ray peaks, producing a list of peak centroids, in channels1. Next, the ratio algorithm attempts to match the peak centroids found in the search to a user-supplied list of calibration gamma-ray energies. Finally, if three or more calibration energies have been matched to peaks, the energy equation parameters are determined by a least-squares fit2, and the spectrum has been energy-calibrated. The ratio algorithm rests on the repeatable but irregular spacing of the background gammaray energies—together they form a unique set of ratios, when normalized to the highest energy calibration gamma ray; so too, the corresponding peak centroids in the spectrum. The algorithm matches energy ratios to peak centroid ratios, to determine which peak matches a given calibration energy.

  8. Evaluation of “Autotune” calibration against manual calibration of building energy models

    DOE PAGESBeta

    Chaudhary, Gaurav; New, Joshua; Sanyal, Jibonananda; Im, Piljae; O’Neill, Zheng; Garg, Vishal

    2016-08-26

    Our paper demonstrates the application of Autotune, a methodology aimed at automatically producing calibrated building energy models using measured data, in two case studies. In the first case, a building model is de-tuned by deliberately injecting faults into more than 60 parameters. This model was then calibrated using Autotune and its accuracy with respect to the original model was evaluated in terms of the industry-standard normalized mean bias error and coefficient of variation of root mean squared error metrics set forth in ASHRAE Guideline 14. In addition to whole-building energy consumption, outputs including lighting, plug load profiles, HVAC energy consumption,more » zone temperatures, and other variables were analyzed. In the second case, Autotune calibration is compared directly to experts’ manual calibration of an emulated-occupancy, full-size residential building with comparable calibration results in much less time. Lastly, our paper concludes with a discussion of the key strengths and weaknesses of auto-calibration approaches.« less

  9. System for Automated Calibration of Vector Modulators

    NASA Technical Reports Server (NTRS)

    Lux, James; Boas, Amy; Li, Samuel

    2009-01-01

    Vector modulators are used to impose baseband modulation on RF signals, but non-ideal behavior limits the overall performance. The non-ideal behavior of the vector modulator is compensated using data collected with the use of an automated test system driven by a LabVIEW program that systematically applies thousands of control-signal values to the device under test and collects RF measurement data. The technology innovation automates several steps in the process. First, an automated test system, using computer controlled digital-to-analog converters (DACs) and a computer-controlled vector network analyzer (VNA) systematically can apply different I and Q signals (which represent the complex number by which the RF signal is multiplied) to the vector modulator under test (VMUT), while measuring the RF performance specifically, gain and phase. The automated test system uses the LabVIEW software to control the test equipment, collect the data, and write it to a file. The input to the Lab - VIEW program is either user-input for systematic variation, or is provided in a file containing specific test values that should be fed to the VMUT. The output file contains both the control signals and the measured data. The second step is to post-process the file to determine the correction functions as needed. The result of the entire process is a tabular representation, which allows translation of a desired I/Q value to the required analog control signals to produce a particular RF behavior. In some applications, corrected performance is needed only for a limited range. If the vector modulator is being used as a phase shifter, there is only a need to correct I and Q values that represent points on a circle, not the entire plane. This innovation has been used to calibrate 2-GHz MMIC (monolithic microwave integrated circuit) vector modulators in the High EIRP Cluster Array project (EIRP is high effective isotropic radiated power). These calibrations were then used to create

  10. Energy calibration of Cherenkov Telescopes using GLAST data

    SciTech Connect

    Bastieri, D.; Busetto, G.; Piano, G.; Rando, R.; Saggion, A.; De Angelis, A.; Longo, F.

    2007-07-12

    We discuss the possibility of using the observations by GLAST of steady gamma sources, as the Crab Nebula and some selected AGNs, to calibrate the Imaging Air Cherenkov Telescopes (IACT) and improve their energy resolution, in particular. We show that at around 100 GeV, exploiting the features in the spectrum of the Crab Nebula, the absolute energy calibration uncertainty of Cherenkov telescopes can be reduced to < 10%.

  11. Mark 3 VLBI system: Tropospheric calibration subsystems

    NASA Technical Reports Server (NTRS)

    Resch, G. M.

    1980-01-01

    Tropospheric delay calibrations are implemented in the Mark 3 system with two subsystems. Estimates of the dry component of tropospheric delay are provided by accurate barometric data from a subsystem of surface meteorological sensors (SMS). An estimate of the wet component of tropospheric delay is provided by a water vapor radiometer (WVR). Both subsystems interface directly to the ASCII Transceiver bus of the Mark 3 system and are operated by the control computer. Seven WVR's under construction are designed to operate in proximity to a radio telescope and can be commanded to point along the line-of-sight to a radio source. They should provide a delay estimate that is accurate to the + or - 2 cm level.

  12. Calibration of the Hydrological Simulation Program Fortran (HSPF) model using automatic calibration and geographical information systems

    NASA Astrophysics Data System (ADS)

    Al-Abed, N. A.; Whiteley, H. R.

    2002-11-01

    Calibrating a comprehensive, multi-parameter conceptual hydrological model, such as the Hydrological Simulation Program Fortran model, is a major challenge. This paper describes calibration procedures for water-quantity parameters of the HSPF version 10·11 using the automatic-calibration parameter estimator model coupled with a geographical information system (GIS) approach for spatially averaged properties. The study area was the Grand River watershed, located in southern Ontario, Canada, between 79° 30 and 80° 57W longitude and 42° 51 and 44° 31N latitude. The drainage area is 6965 km2. Calibration efforts were directed to those model parameters that produced large changes in model response during sensitivity tests run prior to undertaking calibration. A GIS was used extensively in this study. It was first used in the watershed segmentation process. During calibration, the GIS data were used to establish realistic starting values for the surface and subsurface zone parameters LZSN, UZSN, COVER, and INFILT and physically reasonable ratios of these parameters among watersheds were preserved during calibration with the ratios based on the known properties of the subwatersheds determined using GIS. This calibration procedure produced very satisfactory results; the percentage difference between the simulated and the measured yearly discharge ranged between 4 to 16%, which is classified as good to very good calibration. The average simulated daily discharge for the watershed outlet at Brantford for the years 1981-85 was 67 m3 s-1 and the average measured discharge at Brantford was 70 m3 s-1. The coupling of a GIS with automatice calibration produced a realistic and accurate calibration for the HSPF model with much less effort and subjectivity than would be required for unassisted calibration.

  13. Anatomical calibration for wearable motion capture systems: Video calibrated anatomical system technique.

    PubMed

    Bisi, Maria Cristina; Stagni, Rita; Caroselli, Alessio; Cappello, Angelo

    2015-08-01

    Inertial sensors are becoming widely used for the assessment of human movement in both clinical and research applications, thanks to their usability out of the laboratory. This work aims to propose a method for calibrating anatomical landmark position in the wearable sensor reference frame with an ease to use, portable and low cost device. An off-the-shelf camera, a stick and a pattern, attached to the inertial sensor, compose the device. The proposed technique is referred to as video Calibrated Anatomical System Technique (vCAST). The absolute orientation of a synthetic femur was tracked both using the vCAST together with an inertial sensor and using stereo-photogrammetry as reference. Anatomical landmark calibration showed mean absolute error of 0.6±0.5 mm: these errors are smaller than those affecting the in-vivo identification of anatomical landmarks. The roll, pitch and yaw anatomical frame orientations showed root mean square errors close to the accuracy limit of the wearable sensor used (1°), highlighting the reliability of the proposed technique. In conclusion, the present paper proposes and preliminarily verifies the performance of a method (vCAST) for calibrating anatomical landmark position in the wearable sensor reference frame: the technique is low time consuming, highly portable, easy to implement and usable outside laboratory. PMID:26077101

  14. Calibration of Micro Channel Plate Detector Systems

    NASA Astrophysics Data System (ADS)

    Dekat, S.; Kypreos, T.; Moore, J.; Gay, D.; Wiedenhoever, I.

    2004-10-01

    Two position-sensitive micro-channel plate (MCP) detector systems have been assembled and tested at the University of North Florida. These detectors track heavy-ions in Florida State University's radioactive beam facility, RESOLUT. Plans for the systems were supplied by C. J. Gross and D. Shapira of ORNL. Each system consists of an aluminized 0.9-micron Mylar foil facing a 40-mm diameter MCP sensor head with a resistive anode encoder (RAE). Delta electrons emitted as a heavy ion passes through the foil are accelerated toward the sensor head by an electric field. The divergence of the electrons is limited by a magnetic field from a NdFeB magnet which is coaxial with and behind the sensor head. A digital oscilloscope has been programmed to convert amplified and shaped pulses from the RAE into position coordinates. Calibration experiments were performed with the foil replaced by an aluminum grid of 1 mm wide strips. Using alpha particles from a ^241Am source incident on the grid, optimum operating parameters were established by resolving aluminum strips separated by 1 mm.

  15. Fission foil detector calibrations with high energy protons

    NASA Technical Reports Server (NTRS)

    Benton, E. V.; Frank, A. L.

    1995-01-01

    Fission foil detectors (FFD's) are passive devices composed of heavy metal foils in contact with muscovite mica films. The heavy metal nuclei have significant cross sections for fission when irradiated with neutrons and protons. Each isotope is characterized by threshold energies for the fission reactions and particular energy-dependent cross sections. In the FFD's, fission fragments produced by the reactions are emitted from the foils and create latent particle tracks in the adjacent mica films. When the films are processed surface tracks are formed which can be optically counted. The track densities are indications of the fluences and spectra of neutrons and/or protons. In the past, detection efficiencies have been calculated using the low energy neutron calibrated dosimeters and published fission cross sections for neutrons and protons. The problem is that the addition of a large kinetic energy to the (n,nucleus) or (p,nucleus) reaction could increase the energies and ranges of emitted fission fragments and increase the detector sensitivity as compared with lower energy neutron calibrations. High energy calibrations are the only method of resolving the uncertainties in detector efficiencies. At high energies, either proton or neutron calibrations are sufficient since the cross section data show that the proton and neutron fission cross sections are approximately equal. High energy proton beams have been utilized (1.8 and 4.9 GeV, 80 and 140 MeV) for measuring the tracks of fission fragments emitted backward and forward.

  16. Automated tank calibration system using a portable computer

    SciTech Connect

    Holt, S.H.; Harvel, C.D.; Clark, J.P.

    1990-12-31

    Manual tank calibrations often have variabilities of both a random and systematic nature that often affect the quality of the data collected for determining accurate calibration equations. When performing the calibration run, data omissions and transcriptions often occur (forgetting to tare weigh the prover vessel or miswriting a displayed value). A computer can be used to minimize these errors associated with the logging of data. This paper describes a IBM compatible, portable computer based system, developed at the Savannah River Site (SRS), that was used to calibrate three tanks in the second quarter 1990. It received data directly from instrumentation such as Ruska differential pressure sensors and electronic balances, while prompting the technicians to perform the various steps in the calibration procedure. This automated system greatly improved the quality of data for calculating the calibration equation for each of these tanks over previous calibration runs.

  17. Automated tank calibration system using a portable computer

    SciTech Connect

    Holt, S.H.; Harvel, C.D.; Clark, J.P.

    1990-01-01

    Manual tank calibrations often have variabilities of both a random and systematic nature that often affect the quality of the data collected for determining accurate calibration equations. When performing the calibration run, data omissions and transcriptions often occur (forgetting to tare weigh the prover vessel or miswriting a displayed value). A computer can be used to minimize these errors associated with the logging of data. This paper describes a IBM compatible, portable computer based system, developed at the Savannah River Site (SRS), that was used to calibrate three tanks in the second quarter 1990. It received data directly from instrumentation such as Ruska differential pressure sensors and electronic balances, while prompting the technicians to perform the various steps in the calibration procedure. This automated system greatly improved the quality of data for calculating the calibration equation for each of these tanks over previous calibration runs.

  18. Calibration Techniques for Accurate Measurements by Underwater Camera Systems.

    PubMed

    Shortis, Mark

    2015-01-01

    Calibration of a camera system is essential to ensure that image measurements result in accurate estimates of locations and dimensions within the object space. In the underwater environment, the calibration must implicitly or explicitly model and compensate for the refractive effects of waterproof housings and the water medium. This paper reviews the different approaches to the calibration of underwater camera systems in theoretical and practical terms. The accuracy, reliability, validation and stability of underwater camera system calibration are also discussed. Samples of results from published reports are provided to demonstrate the range of possible accuracies for the measurements produced by underwater camera systems. PMID:26690172

  19. Calibration Techniques for Accurate Measurements by Underwater Camera Systems

    PubMed Central

    Shortis, Mark

    2015-01-01

    Calibration of a camera system is essential to ensure that image measurements result in accurate estimates of locations and dimensions within the object space. In the underwater environment, the calibration must implicitly or explicitly model and compensate for the refractive effects of waterproof housings and the water medium. This paper reviews the different approaches to the calibration of underwater camera systems in theoretical and practical terms. The accuracy, reliability, validation and stability of underwater camera system calibration are also discussed. Samples of results from published reports are provided to demonstrate the range of possible accuracies for the measurements produced by underwater camera systems. PMID:26690172

  20. Calibration system for albedo neutron dosimeters

    SciTech Connect

    Rothermich, N.E.

    1981-01-01

    Albedo neutron dosimeters have proven to be effective as a method of measuring the dose from neutron exposures that other types of neutron detectors cannot measure. Results of research conducted to calibrate an albedo neutron dosemeter are presented. The calibration procedure consisted of exposing the TLD chips to a 46 curie /sup 238/PuBe source at known distances, dose rates and exposure periods. The response of the TLD's is related to the dose rate measured with a dose rate meter to obtain the calibration factor. This calibration factor is then related to the ratio of the counting rates determined by 9-inch and 3-inch Bonner spheres (also called remmeters) and a calibration curve was determined. 17 references, 10 figures, 3 tables.

  1. The new camera calibration system at the US Geological Survey

    USGS Publications Warehouse

    Light, D.L.

    1992-01-01

    Modern computerized photogrammetric instruments are capable of utilizing both radial and decentering camera calibration parameters which can increase plotting accuracy over that of older analog instrumentation technology from previous decades. Also, recent design improvements in aerial cameras have minimized distortions and increased the resolving power of camera systems, which should improve the performance of the overall photogrammetric process. In concert with these improvements, the Geological Survey has adopted the rigorous mathematical model for camera calibration developed by Duane Brown. An explanation of the Geological Survey's calibration facility and the additional calibration parameters now being provided in the USGS calibration certificate are reviewed. -Author

  2. Method for Ground-to-Satellite Laser Calibration System

    NASA Technical Reports Server (NTRS)

    Lukashin, Constantine (Inventor); Wielicki, Bruce A. (Inventor)

    2015-01-01

    The present invention comprises an approach for calibrating the sensitivity to polarization, optics degradation, spectral and stray light response functions of instruments on orbit. The concept is based on using an accurate ground-based laser system, Ground-to-Space Laser Calibration (GSLC), transmitting laser light to instrument on orbit during nighttime substantially clear-sky conditions. To minimize atmospheric contribution to the calibration uncertainty the calibration cycles should be performed in short time intervals, and all required measurements are designed to be relative. The calibration cycles involve ground operations with laser beam polarization and wavelength changes.

  3. Method for Ground-to-Space Laser Calibration System

    NASA Technical Reports Server (NTRS)

    Lukashin, Constantine (Inventor); Wielicki, Bruce A. (Inventor)

    2014-01-01

    The present invention comprises an approach for calibrating the sensitivity to polarization, optics degradation, spectral and stray light response functions of instruments on orbit. The concept is based on using an accurate ground-based laser system, Ground-to-Space Laser Calibration (GSLC), transmitting laser light to instrument on orbit during nighttime substantially clear-sky conditions. To minimize atmospheric contribution to the calibration uncertainty the calibration cycles should be performed in short time intervals, and all required measurements are designed to be relative. The calibration cycles involve ground operations with laser beam polarization and wavelength changes.

  4. How to calibrate the jet energy scale?

    SciTech Connect

    Hatakeyama, K.; /Rockefeller U.

    2006-01-01

    Top quarks dominantly decay into b-quark jets and W bosons, and the W bosons often decay into jets, thus the precise determination of the jet energy scale is crucial in measurements of many top quark properties. I present the strategies used by the CDF and D0 collaborations to determine the jet energy scale. The various cross checks performed to verify the determined jet energy scale and evaluate its systematic uncertainty are also discussed.

  5. Mammography calibration qualities establishment in a Mo- Mo clinical system

    NASA Astrophysics Data System (ADS)

    Corrêa, E. L.; dos Santos, L. R.; Vivolo, V.; Potiens, M. P. A.

    2016-07-01

    In this study the mammography calibration qualities were established in a clinical mammography system. The objective is to provide the IPEN instruments calibration laboratory with both mammography calibration methods (using a clinical and an industrial system). The results showed a good behavior of mammography equipment, in terms of kVp, PPV and exposure time. The additional filtration of molybdenum is adequate, air-kerma rates were determined and spectra were obtained.

  6. Radiometric calibration of the Earth observing system's imaging sensors

    NASA Technical Reports Server (NTRS)

    Slater, P. N.

    1987-01-01

    Philosophy, requirements, and methods of calibration of multispectral space sensor systems as applicable to the Earth Observing System (EOS) are discussed. Vicarious methods for calibration of low spatial resolution systems, with respect to the Advanced Very High Resolution Radiometer (AVHRR), are then summarized. Finally, a theoretical introduction is given to a new vicarious method of calibration using the ratio of diffuse-to-global irradiance at the Earth's surfaces as the key input. This may provide an additional independent method for in-flight calibration.

  7. Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) onboard calibration system

    NASA Technical Reports Server (NTRS)

    Chrien, Thomas G.; Eastwood, Mike; Green, Robert O.; Sarture, Charles; Johnson, Howell; Chovit, Chris; Hajek, Pavel

    1995-01-01

    The AVIRIS instrument uses an onboard calibration system to provide auxiliary calibration data. The system consist of a tungsten halogen cycle lamp imaged onto a fiber bundle through an eight position filter wheel. The fiber bundle illuminates the back side of the foreoptics shutter during a pre-run and post-run calibration sequence. The filter wheel contains two neutral density filters, five spectral filters and one blocked position. This paper reviews the general workings of the onboard calibrator system and discusses recent modifications.

  8. Upgraded Calibrations of the Thomson System at DIII-D

    SciTech Connect

    B. Bray; C. Hsieh; T.N. Carlstrom; C.C. Makariou

    2000-08-01

    The DIII-D Thomson system measures electron density and temperature with eight pulsed ND:YAG lasers along three paths through the plasma vessel. The components of the Thomson system are absolutely calibrated so the measurements can be combined into a single profile from a normalized plasma radius ({rho}) of about 0.1 to the edge of the plasma. A monochromator calibration and opto-electronic calibration measure the detectors' absolute sensitivity to background and pulsed light. A Rayleigh scattering calibration and transmission calibrations measure the transmission of light to the detectors. The calibration systems are being upgraded to reduce the effect of systematic errors on the temperature and density measurements. The systematic errors can be checked by a comparison of overlapping channels and estimated from fits to the profiles. The contributions of the systematic uncertainties relative to the statistical uncertainties of the measurement are discussed through simulations and experimental data.

  9. Method for in-situ calibration of electrophoretic analysis systems

    DOEpatents

    Liu, Changsheng; Zhao, Hequan

    2005-05-08

    An electrophoretic system having a plurality of separation lanes is provided with an automatic calibration feature in which each lane is separately calibrated. For each lane, the calibration coefficients map a spectrum of received channel intensities onto values reflective of the relative likelihood of each of a plurality of dyes being present. Individual peaks, reflective of the influence of a single dye, are isolated from among the various sets of detected light intensity spectra, and these can be used to both detect the number of dye components present, and also to establish exemplary vectors for the calibration coefficients which may then be clustered and further processed to arrive at a calibration matrix for the system. The system of the present invention thus permits one to use different dye sets to tag DNA nucleotides in samples which migrate in separate lanes, and also allows for in-situ calibration with new, previously unused dye sets.

  10. High Spectral Resolution Lidar: System Calibration

    NASA Astrophysics Data System (ADS)

    Vivek Vivekanandan, J.; Morley, Bruce; Spuler, Scott; Eloranta, Edwin

    2015-04-01

    One of the unique features of the high spectral resolution lidar (HSRL) is simultaneous measurements of backscatter and extinction of atmosphere. It separates molecular scattering from aerosol and cloud particle backscatter based on their Doppler spectrum width. Scattering from aerosol and cloud particle are referred as Mie scattering. Molecular or Rayleigh scattering is used as a reference for estimating aerosol extinction and backscatter cross-section. Absolute accuracy of the backscattered signals and their separation into Rayleigh and Mie scattering depends on spectral purity of the transmitted signals, accurate measurement of transmit power, and precise performance of filters. Internal calibration is used to characterize optical subsystems Descriptions of high spectral resolution lidar system and its measurement technique can be found in Eloronta (2005) and Hair et al.(2001). Four photon counting detectors are used to measure the backscatter from the combined Rayleigh and molecular scattering (high and low gain), molecular scattering and cross-polarized signal. All of the detectors are sensitive to crosstalk or leakage through the optical filters used to separate the received signals and special data files are used to remove these effects as much as possible. Received signals are normalized with respect to the combined channel response to Mie and Rayleigh scattering. The laser transmit frequency is continually monitored and tuned to the 1109 Iodine absorption line. Aerosol backscatter cross-section is measured by referencing the aerosol return signal to the molecular return signal. Extinction measurements are calculated based on the differences between the expected (theoretical) and actual change in the molecular return. In this paper an overview of calibration of the HSRL is presented. References: Eloranta, E. W., High Spectral Resolution Lidar in Lidar: Range-Resolved Optical Remote Sensing of the Atmosphere, Klaus Weitkamp editor, Springer Series in Optical

  11. GOSAT-2 and its Calibration System

    NASA Astrophysics Data System (ADS)

    Shimoda, Haruhisa; Nakajima, Teruyuki

    2014-05-01

    JAXA, MOE (Ministry of Environment) and NIES (National Institute of Environmental Studies) are now going to start the GOSAT follow on program, i.e. GOSAT-2. The sensors on- board the GOSAT-2 is TANSO-FTS2 and TANSO-CAI2. TANSO-FTS2 has several improvements from GOSAT TANSO-FTS. They are 1) addition of CO channel in SWIR bands, 2) increase of SNR for all channels, 3) intelligent pointing to avoid clouds, 4) optimal wavelength region for fluorescence measurements, etc. TANSO-CAI2 is a push broom imager with 7 to 9 channels. The improvements from GOSAT CAI are 1) addition of UV channel (340nm), 2) tilt operation to avoid sun glitter, etc. Calibration of FTS SWIR bands utilize on-board sun diffuser, deep space, LED for instrument function measurements and lunar calibration. Calibration of FTS TIR utilize on- board black body and deep space. CAI2 utilize lunar calibration and vicarious calibrations. Cross calibrations with OCO2 are also planned. The planned launch date of GOSAT-2 is fiscal 2017.

  12. 40 CFR 86.1318-84 - Engine dynamometer system calibrations.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 19 2011-07-01 2011-07-01 false Engine dynamometer system calibrations... (CONTINUED) Emission Regulations for New Otto-Cycle and Diesel Heavy-Duty Engines; Gaseous and Particulate Exhaust Test Procedures § 86.1318-84 Engine dynamometer system calibrations. (a) The engine...

  13. 40 CFR 86.1318-84 - Engine dynamometer system calibrations.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 20 2013-07-01 2013-07-01 false Engine dynamometer system calibrations... (CONTINUED) Emission Regulations for New Otto-Cycle and Diesel Heavy-Duty Engines; Gaseous and Particulate Exhaust Test Procedures § 86.1318-84 Engine dynamometer system calibrations. (a) The engine...

  14. 40 CFR 86.1318-84 - Engine dynamometer system calibrations.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 19 2010-07-01 2010-07-01 false Engine dynamometer system calibrations... (CONTINUED) Emission Regulations for New Otto-Cycle and Diesel Heavy-Duty Engines; Gaseous and Particulate Exhaust Test Procedures § 86.1318-84 Engine dynamometer system calibrations. (a) The engine...

  15. 40 CFR 86.1318-84 - Engine dynamometer system calibrations.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 20 2012-07-01 2012-07-01 false Engine dynamometer system calibrations... (CONTINUED) Emission Regulations for New Otto-Cycle and Diesel Heavy-Duty Engines; Gaseous and Particulate Exhaust Test Procedures § 86.1318-84 Engine dynamometer system calibrations. (a) The engine...

  16. Absolute radiometric calibration of advanced remote sensing systems

    NASA Technical Reports Server (NTRS)

    Slater, P. N.

    1982-01-01

    The distinction between the uses of relative and absolute spectroradiometric calibration of remote sensing systems is discussed. The advantages of detector-based absolute calibration are described, and the categories of relative and absolute system calibrations are listed. The limitations and problems associated with three common methods used for the absolute calibration of remote sensing systems are addressed. Two methods are proposed for the in-flight absolute calibration of advanced multispectral linear array systems. One makes use of a sun-illuminated panel in front of the sensor, the radiance of which is monitored by a spectrally flat pyroelectric radiometer. The other uses a large, uniform, high-radiance reference ground surface. The ground and atmospheric measurements required as input to a radiative transfer program to predict the radiance level at the entrance pupil of the orbital sensor are discussed, and the ground instrumentation is described.

  17. Calibration support for the Earth Observing System Project

    NASA Technical Reports Server (NTRS)

    Guenther, B. W.

    1988-01-01

    The Earth Observing System Project (EOS) program guidelines establishes significantly more stringent requirements on calibrations of instruments. This requirement is driven by the need for long-term continuity of acquired data sets and the use of measurements in interdisciplinary investigations. Personnel from the Standards and Calibration Office have been supporting the Program and Project in interpreting these goals into specific requirements. Contributions to EOS have included participation in the Panel of Experts which produced a list of consensus items necessary for accomplishing an accurate calibration and suggested EOS Project Calibration Policy, and drafting the announcement of opportunity and bidders information package positions on instrument calibration and data product validation. Technical staffing was provided to the NASA delegates to the Committee on Earth Orbiting Satellites (club of space-faring nations) for the standing working group on Calibration and Data Validation.

  18. System and method for calibrating a rotary absolute position sensor

    NASA Technical Reports Server (NTRS)

    Davis, Donald R. (Inventor); Permenter, Frank Noble (Inventor); Radford, Nicolaus A (Inventor)

    2012-01-01

    A system includes a rotary device, a rotary absolute position (RAP) sensor generating encoded pairs of voltage signals describing positional data of the rotary device, a host machine, and an algorithm. The algorithm calculates calibration parameters usable to determine an absolute position of the rotary device using the encoded pairs, and is adapted for linearly-mapping an ellipse defined by the encoded pairs to thereby calculate the calibration parameters. A method of calibrating the RAP sensor includes measuring the rotary position as encoded pairs of voltage signals, linearly-mapping an ellipse defined by the encoded pairs to thereby calculate the calibration parameters, and calculating an absolute position of the rotary device using the calibration parameters. The calibration parameters include a positive definite matrix (A) and a center point (q) of the ellipse. The voltage signals may include an encoded sine and cosine of a rotary angle of the rotary device.

  19. Polarization effects on hard target calibration of lidar systems

    NASA Technical Reports Server (NTRS)

    Kavaya, Michael J.

    1987-01-01

    The theory of hard target calibration of lidar backscatter data, including laboratory measurements of the pertinent target reflectance parameters, is extended to include the effects of polarization of the transmitted and received laser radiation. The bidirectional reflectance-distribution function model of reflectance is expanded to a 4 x 4 matrix allowing Mueller matrix and Stokes vector calculus to be employed. Target reflectance parameters for calibration of lidar backscatter data are derived for various lidar system polarization configurations from integrating sphere and monostatic reflectometer measurements. It is found that correct modeling of polarization effects is mandatory for accurate calibration of hard target reflectance parameters and, therefore, for accurate calibration of lidar backscatter data.

  20. Energy calibration issues in nuclear resonant vibrational spectroscopy: observing small spectral shifts and making fast calibrations

    PubMed Central

    Wang, Hongxin; Yoda, Yoshitaka; Dong, Weibing; Huang, Songping D.

    2013-01-01

    The conventional energy calibration for nuclear resonant vibrational spectroscopy (NRVS) is usually long. Meanwhile, taking NRVS samples out of the cryostat increases the chance of sample damage, which makes it impossible to carry out an energy calibration during one NRVS measurement. In this study, by manipulating the 14.4 keV beam through the main measurement chamber without moving out the NRVS sample, two alternative calibration procedures have been proposed and established: (i) an in situ calibration procedure, which measures the main NRVS sample at stage A and the calibration sample at stage B simultaneously, and calibrates the energies for observing extremely small spectral shifts; for example, the 0.3 meV energy shift between the 100%-57Fe-enriched [Fe4S4Cl4]= and 10%-57Fe and 90%-54Fe labeled [Fe4S4Cl4]= has been well resolved; (ii) a quick-switching energy calibration procedure, which reduces each calibration time from 3–4 h to about 30 min. Although the quick-switching calibration is not in situ, it is suitable for normal NRVS measurements. PMID:23955030

  1. A stoichiometric calibration method for dual energy computed tomography.

    PubMed

    Bourque, Alexandra E; Carrier, Jean-François; Bouchard, Hugo

    2014-04-21

    The accuracy of radiotherapy dose calculation relies crucially on patient composition data. The computed tomography (CT) calibration methods based on the stoichiometric calibration of Schneider et al (1996 Phys. Med. Biol. 41 111-24) are the most reliable to determine electron density (ED) with commercial single energy CT scanners. Along with the recent developments in dual energy CT (DECT) commercial scanners, several methods were published to determine ED and the effective atomic number (EAN) for polyenergetic beams without the need for CT calibration curves. This paper intends to show that with a rigorous definition of the EAN, the stoichiometric calibration method can be successfully adapted to DECT with significant accuracy improvements with respect to the literature without the need for spectrum measurements or empirical beam hardening corrections. Using a theoretical framework of ICRP human tissue compositions and the XCOM photon cross sections database, the revised stoichiometric calibration method yields Hounsfield unit (HU) predictions within less than ±1.3 HU of the theoretical HU calculated from XCOM data averaged over the spectra used (e.g., 80 kVp, 100 kVp, 140 kVp and 140/Sn kVp). A fit of mean excitation energy (I-value) data as a function of EAN is provided in order to determine the ion stopping power of human tissues from ED-EAN measurements. Analysis of the calibration phantom measurements with the Siemens SOMATOM Definition Flash dual source CT scanner shows that the present formalism yields mean absolute errors of (0.3 ± 0.4)% and (1.6 ± 2.0)% on ED and EAN, respectively. For ion therapy, the mean absolute errors for calibrated I-values and proton stopping powers (216 MeV) are (4.1 ± 2.7)% and (0.5 ± 0.4)%, respectively. In all clinical situations studied, the uncertainties in ion ranges in water for therapeutic energies are found to be less than 1.3 mm, 0.7 mm and 0.5 mm for protons, helium and carbon ions respectively, using a

  2. A stoichiometric calibration method for dual energy computed tomography

    NASA Astrophysics Data System (ADS)

    Bourque, Alexandra E.; Carrier, Jean-François; Bouchard, Hugo

    2014-04-01

    The accuracy of radiotherapy dose calculation relies crucially on patient composition data. The computed tomography (CT) calibration methods based on the stoichiometric calibration of Schneider et al (1996 Phys. Med. Biol. 41 111-24) are the most reliable to determine electron density (ED) with commercial single energy CT scanners. Along with the recent developments in dual energy CT (DECT) commercial scanners, several methods were published to determine ED and the effective atomic number (EAN) for polyenergetic beams without the need for CT calibration curves. This paper intends to show that with a rigorous definition of the EAN, the stoichiometric calibration method can be successfully adapted to DECT with significant accuracy improvements with respect to the literature without the need for spectrum measurements or empirical beam hardening corrections. Using a theoretical framework of ICRP human tissue compositions and the XCOM photon cross sections database, the revised stoichiometric calibration method yields Hounsfield unit (HU) predictions within less than ±1.3 HU of the theoretical HU calculated from XCOM data averaged over the spectra used (e.g., 80 kVp, 100 kVp, 140 kVp and 140/Sn kVp). A fit of mean excitation energy (I-value) data as a function of EAN is provided in order to determine the ion stopping power of human tissues from ED-EAN measurements. Analysis of the calibration phantom measurements with the Siemens SOMATOM Definition Flash dual source CT scanner shows that the present formalism yields mean absolute errors of (0.3 ± 0.4)% and (1.6 ± 2.0)% on ED and EAN, respectively. For ion therapy, the mean absolute errors for calibrated I-values and proton stopping powers (216 MeV) are (4.1 ± 2.7)% and (0.5 ± 0.4)%, respectively. In all clinical situations studied, the uncertainties in ion ranges in water for therapeutic energies are found to be less than 1.3 mm, 0.7 mm and 0.5 mm for protons, helium and carbon ions respectively, using a generic

  3. Double Chooz Neutron Detection Efficiency with Calibration System

    NASA Astrophysics Data System (ADS)

    Chang, Pi-Jung

    2012-03-01

    The Double Chooz experiment is designed to search for a non-vanishing mixing angle theta13 with unprecedented sensitivity. The first results obtained with the far detector only indicate a non-zero value of theta13. The Double Chooz detector system consists of a main detector, an outer veto system and a number of calibration systems. The main detector consists of a series of concentric cylinders. The target vessel, a liquid scintillator loaded with 0.1% Gd, is surrounded by the gamma-catcher, a non-loaded liquid scintillator. A buffer region of non-scintillating liquid surrounds the gamma-catcher and serves to decrease the level of accidental background. There is the Inner Veto region outside the buffer. The experiment is calibrated with light sources, radioactive point sources, cosmics and natural radioactivity. The radio-isotopes sealed in miniature capsules are deployed in the target and the gamma-catcher. Neutron detection efficiency is one of the major systematic components in the measurement of anti-neutrino disappearance. An untagged 252Cf source was used to determine fractions of neutron captures on Gd, neutron capture time systematic and neutron delayed energy systematic. The details will be explained in the talk.

  4. Single Vector Calibration System for Multi-Axis Load Cells and Method for Calibrating a Multi-Axis Load Cell

    NASA Technical Reports Server (NTRS)

    Parker, Peter A. (Inventor)

    2003-01-01

    A single vector calibration system is provided which facilitates the calibration of multi-axis load cells, including wind tunnel force balances. The single vector system provides the capability to calibrate a multi-axis load cell using a single directional load, for example loading solely in the gravitational direction. The system manipulates the load cell in three-dimensional space, while keeping the uni-directional calibration load aligned. The use of a single vector calibration load reduces the set-up time for the multi-axis load combinations needed to generate a complete calibration mathematical model. The system also reduces load application inaccuracies caused by the conventional requirement to generate multiple force vectors. The simplicity of the system reduces calibration time and cost, while simultaneously increasing calibration accuracy.

  5. Fast calibration of high-order adaptive optics systems

    NASA Astrophysics Data System (ADS)

    Kasper, Markus; Fedrigo, Enrico; Looze, Douglas P.; Bonnet, Henri; Ivanescu, Liviu; Oberti, Sylvain

    2004-06-01

    We present a new method of calibrating adaptive optics systems that greatly reduces the required calibration time or, equivalently, improves the signal-to-noise ratio. The method uses an optimized actuation scheme with Hadamard patterns and does not scale with the number of actuators for a given noise level in the wave-front sensor channels. It is therefore highly desirable for high-order systems and/or adaptive secondary systems on a telescope without a Gregorian focal plane. In the latter case, the measurement noise is increased by the effects of the turbulent atmosphere when one is calibrating on a natural guide star.

  6. Fast calibration of high-order adaptive optics systems.

    PubMed

    Kasper, Markus; Fedrigo, Enrico; Looze, Douglas P; Bonnet, Henri; Ivanescu, Liviu; Oberti, Sylvain

    2004-06-01

    We present a new method of calibrating adaptive optics systems that greatly reduces the required calibration time or, equivalently, improves the signal-to-noise ratio. The method uses an optimized actuation scheme with Hadamard patterns and does not scale with the number of actuators for a given noise level in the wavefront sensor channels. It is therefore highly desirable for high-order systems and/or adaptive secondary systems on a telescope without a Gregorian focal plane. In the latter case, the measurement noise is increased by the effects of the turbulent atmosphere when one is calibrating on a natural guide star. PMID:15191182

  7. Ground-Based Calibration Of A Microwave Landing System

    NASA Technical Reports Server (NTRS)

    Kiriazes, John J.; Scott, Marshall M., Jr.; Willis, Alfred D.; Erdogan, Temel; Reyes, Rolando

    1996-01-01

    System of microwave instrumentation and data-processing equipment developed to enable ground-based calibration of microwave scanning-beam landing system (MSBLS) at distances of about 500 to 1,000 ft from MSBLS transmitting antenna. Ensures accuracy of MSBLS near touchdown point, without having to resort to expense and complex logistics of aircraft-based testing. Modified versions prove useful in calibrating aircraft instrument landing systems.

  8. A Phantom Tissue System for the Calibration of Perfusion Measurements

    PubMed Central

    Mudaliar, Ashvinikumar V.; Ellis, Brent E.; Ricketts, Patricia L.; Lanz, Otto I.; Scott, Elaine P.; Diller, Thomas E.

    2008-01-01

    A convenient method for testing and calibrating surface perfusion sensors has been developed. A phantom tissue model is used to simulate the nondirectional blood flow of tissue perfusion. A computational fluid dynamics (CFD) model was constructed in Fluent® to design the phantom tissue and validate the experimental results. The phantom perfusion system was used with a perfusion sensor based on clearance of thermal energy. A heat flux gage measures the heat flux response of tissue when a thermal event (convective cooling) is applied. The blood perfusion and contact resistance are estimated by a parameter estimation code. From the experimental and analytical results, it was concluded that the probe displayed good measurement repeatability and sensitivity. The experimental perfusion measurements in the tissue were in good agreement with those of the CFD models and demonstrated the value of the phantom tissue system. PMID:19045509

  9. Calibrating LOFAR using the Black Board Selfcal System

    NASA Astrophysics Data System (ADS)

    Pandey, V. N.; van Zwieten, J. E.; de Bruyn, A. G.; Nijboer, R.

    2009-09-01

    The Black Board SelfCal (BBS) system is designed as the final processing system to carry out the calibration of LOFAR in an efficient way. In this paper we give a brief description of its architectural and software design including its distributed computing approach. A confusion limited deep all sky image (from 38-62 MHz) by calibrating LOFAR test data with the BBS suite is shown as a sample result. The present status and future directions of development of BBS suite are also touched upon. Although BBS is mainly developed for LOFAR, it may also be used to calibrate other instruments once their specific algorithms are plugged in.

  10. Toward an Automatic Calibration of Dual Fluoroscopy Imaging Systems

    NASA Astrophysics Data System (ADS)

    Al-Durgham, Kaleel; Lichti, Derek; Kuntze, Gregor; Sharma, Gulshan; Ronsky, Janet

    2016-06-01

    High-speed dual fluoroscopy (DF) imaging provides a novel, in-vivo solution to quantify the six-degree-of-freedom skeletal kinematics of humans and animals with sub-millimetre accuracy and high temporal resolution. A rigorous geometric calibration of DF system parameters is essential to ensure precise bony rotation and translation measurements. One way to achieve the system calibration is by performing a bundle adjustment with self-calibration. A first-time bundle adjustment-based system calibration was recently achieved. The system calibration through the bundle adjustment has been shown to be robust, precise, and straightforward. Nevertheless, due to the inherent absence of colour/semantic information in DF images, a significant amount of user input is needed to prepare the image observations for the bundle adjustment. This paper introduces a semi-automated methodology to minimise the amount of user input required to process calibration images and henceforth to facilitate the calibration task. The methodology is optimized for processing images acquired over a custom-made calibration frame with radio-opaque spherical targets. Canny edge detection is used to find distinct structural components of the calibration images. Edge-linking is applied to cluster the edge pixels into unique groups. Principal components analysis is utilized to automatically detect the calibration targets from the groups and to filter out possible outliers. Ellipse fitting is utilized to achieve the spatial measurements as well as to perform quality analysis over the detected targets. Single photo resection is used together with a template matching procedure to establish the image-to-object point correspondence and to simplify target identification. The proposed methodology provided 56,254 identified-targets from 411 images that were used to run a second-time bundle adjustment-based DF system calibration. Compared to a previous fully manual procedure, the proposed methodology has

  11. Solar Energy Systems

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Calibrated in kilowatt hours per square meter, the solar counter produced by Dodge Products, Inc. provides a numerical count of the solar energy that has accumulated on a surface. Solar energy sensing, measuring and recording devices in corporate solar cell technology developed by Lewis Research Center. Customers for their various devices include architects, engineers and others engaged in construction and operation of solar energy facilities; manufacturers of solar systems or solar related products, such as glare reducing windows; and solar energy planners in federal and state government agencies.

  12. Calibrating Building Energy Models Using Supercomputer Trained Machine Learning Agents

    SciTech Connect

    Sanyal, Jibonananda; New, Joshua Ryan; Edwards, Richard; Parker, Lynne Edwards

    2014-01-01

    Building Energy Modeling (BEM) is an approach to model the energy usage in buildings for design and retrofit purposes. EnergyPlus is the flagship Department of Energy software that performs BEM for different types of buildings. The input to EnergyPlus can often extend in the order of a few thousand parameters which have to be calibrated manually by an expert for realistic energy modeling. This makes it challenging and expensive thereby making building energy modeling unfeasible for smaller projects. In this paper, we describe the Autotune research which employs machine learning algorithms to generate agents for the different kinds of standard reference buildings in the U.S. building stock. The parametric space and the variety of building locations and types make this a challenging computational problem necessitating the use of supercomputers. Millions of EnergyPlus simulations are run on supercomputers which are subsequently used to train machine learning algorithms to generate agents. These agents, once created, can then run in a fraction of the time thereby allowing cost-effective calibration of building models.

  13. (Test, calibrate, and prepare a BGO photon detector system)

    SciTech Connect

    Awes, T.C.

    1990-10-19

    The traveler spent the year at CERN primarily to test, calibrate, and prepare a BGO photon detector system for use in the August 1990 run of WA80 with sulfur beams and for use in future planned runs with an expanded BGO detector. The BGO was used in test-beam runs in December 1989 and April--May 1990 and in the August data-taking run. The Midrapidity Calorimeters (MIRAC) were also prepared in a new geometry for the August run with a new transverse energy trigger. The traveler also continued to refine and carry out simulations of photon detector systems in present and future planned photon detection experiments. The traveler participated in several WA80 collaboration meetings, which were held at CERN throughout the period of stay. Invited talks were presented at the Workshop on High Resolution Electromagnetic Calorimetry in Stockholm, Sweden, November 9--11, 1989, and at the International Workshop on Software Engineering, Artificial Intelligence, and Expert Systems for High-Energy and Nuclear Physics at Lyon, France, March 19--24, 1990. The traveler participated in an experiment to measure particle--particle correlations at 30-MeV/nucleon incident energies at the SARA facility in Grenoble from November 11--24, 1989.

  14. Calibration of photometric systems from homogeneous spectrophotometric data.

    NASA Astrophysics Data System (ADS)

    Labhardt, L.; Buser, R.

    The atlas of stellar spectrophotometric data published by Gunn and Stryker (1983) constitutes an extremely valuable tool for the evaluation and calibration of photometric systems. Since RGU photometry is tightly linked to UBV data the Gunn-Stryker atlas has been used in the present paper to evaluate these two systems and subsequently investigate the resulting calibration of the RGU colors in terms of MK spectral classification.

  15. Systematic Calibration for a Backpacked Spherical Photogrammetry Imaging System

    NASA Astrophysics Data System (ADS)

    Rau, J. Y.; Su, B. W.; Hsiao, K. W.; Jhan, J. P.

    2016-06-01

    A spherical camera can observe the environment for almost 720 degrees' field of view in one shoot, which is useful for augmented reality, environment documentation, or mobile mapping applications. This paper aims to develop a spherical photogrammetry imaging system for the purpose of 3D measurement through a backpacked mobile mapping system (MMS). The used equipment contains a Ladybug-5 spherical camera, a tactical grade positioning and orientation system (POS), i.e. SPAN-CPT, and an odometer, etc. This research aims to directly apply photogrammetric space intersection technique for 3D mapping from a spherical image stereo-pair. For this purpose, several systematic calibration procedures are required, including lens distortion calibration, relative orientation calibration, boresight calibration for direct georeferencing, and spherical image calibration. The lens distortion is serious on the ladybug-5 camera's original 6 images. Meanwhile, for spherical image mosaicking from these original 6 images, we propose the use of their relative orientation and correct their lens distortion at the same time. However, the constructed spherical image still contains systematic error, which will reduce the 3D measurement accuracy. Later for direct georeferencing purpose, we need to establish a ground control field for boresight/lever-arm calibration. Then, we can apply the calibrated parameters to obtain the exterior orientation parameters (EOPs) of all spherical images. In the end, the 3D positioning accuracy after space intersection will be evaluated, including EOPs obtained by structure from motion method.

  16. Positioning system for single or multi-axis sensitive instrument calibration and calibration system for use therewith

    NASA Technical Reports Server (NTRS)

    Finley, Tom D. (Inventor); Parker, Peter A. (Inventor)

    2008-01-01

    A positioning and calibration system are provided for use in calibrating a single or multi axis sensitive instrument, such as an inclinometer. The positioning system includes a positioner that defines six planes of tangential contact. A mounting region within the six planes is adapted to have an inclinometer coupled thereto. The positioning system also includes means for defining first and second flat surfaces that are approximately perpendicular to one another with the first surface adapted to be oriented relative to a local or induced reference field of interest to the instrument being calibrated, such as a gravitational vector. The positioner is positioned such that one of its six planes tangentially rests on the first flat surface and another of its six planes tangentially contacts the second flat surface. A calibration system is formed when the positioning system is used with a data collector and processor.

  17. Time-of-flight spectroscopy: energy calibration and consistensy check

    NASA Astrophysics Data System (ADS)

    Stunault, A.; Andersen, K. H.; Blanc, Y.; Fåk, B.; Godfrin, H.; Guckelsberger, K.; Scherm, R.

    1992-06-01

    A method for calibration of the energy transfers at a time-of-flight (TOF) spectrometer is presented: flight pamths and wavelength are determined to 10 -3 using the arrival times of neutron pulses and prompt capture γs from the sample. We also developed a method to check the reproducibility of a series of TFO data sets, each with over 50 000 data points.

  18. Stochastic Modeling of Overtime Occupancy and Its Application in Building Energy Simulation and Calibration

    SciTech Connect

    Sun, Kaiyu; Yan, Da; Hong, Tianzhen; Guo, Siyue

    2014-02-28

    Overtime is a common phenomenon around the world. Overtime drives both internal heat gains from occupants, lighting and plug-loads, and HVAC operation during overtime periods. Overtime leads to longer occupancy hours and extended operation of building services systems beyond normal working hours, thus overtime impacts total building energy use. Current literature lacks methods to model overtime occupancy because overtime is stochastic in nature and varies by individual occupants and by time. To address this gap in the literature, this study aims to develop a new stochastic model based on the statistical analysis of measured overtime occupancy data from an office building. A binomial distribution is used to represent the total number of occupants working overtime, while an exponential distribution is used to represent the duration of overtime periods. The overtime model is used to generate overtime occupancy schedules as an input to the energy model of a second office building. The measured and simulated cooling energy use during the overtime period is compared in order to validate the overtime model. A hybrid approach to energy model calibration is proposed and tested, which combines ASHRAE Guideline 14 for the calibration of the energy model during normal working hours, and a proposed KS test for the calibration of the energy model during overtime. The developed stochastic overtime model and the hybrid calibration approach can be used in building energy simulations to improve the accuracy of results, and better understand the characteristics of overtime in office buildings.

  19. Radiometric calibration of the in-flight blackbody calibration system of the GLORIA interferometer

    NASA Astrophysics Data System (ADS)

    Monte, C.; Gutschwager, B.; Adibekyan, A.; Kehrt, M.; Ebersoldt, A.; Olschewski, F.; Hollandt, J.

    2014-01-01

    GLORIA (Gimballed Limb Observer for Radiance Imaging of the Atmosphere) is an airborne, imaging, infrared Fourier transform spectrometer that applies the limb-imaging technique to perform trace gas and temperature measurements in the Earth's atmosphere with three-dimensional resolution. To ensure the traceability of these measurements to the International Temperature Scale and thereby to an absolute radiance scale, GLORIA carries an on-board calibration system. Basically, it consists of two identical large-area and high-emissivity infrared radiators, which can be continuously and independently operated at two adjustable temperatures in a range from -50 °C to 0 °C during flight. Here we describe the radiometric and thermometric characterization and calibration of the in-flight calibration system at the Reduced Background Calibration Facility of the Physikalisch-Technische Bundesanstalt. This was performed with a standard uncertainty of less than 110 mK. Extensive investigations of the system concerning its absolute radiation temperature and spectral radiance, its temperature homogeneity and its short- and long-term stability are discussed. The traceability chain of these measurements is presented.

  20. Calibration of the Accuscan II In Vivo System for Whole Body Counting

    SciTech Connect

    Orval R. Perry; David L. Georgeson

    2011-08-01

    This report describes the April 2011 calibration of the Accuscan II HpGe In Vivo system for whole body counting. The source used for the calibration was a NIST traceable BOMAB manufactured by DOE as INL2006 BOMAB containing Eu-154, Eu-155, Eu-152, Sb-125 and Y-88 with energies from 27 keV to 1836 keV with a reference date of 11/29/2006. The actual usable energy range was 86.5 keV to 1597 keV on 4/21/2011. The BOMAB was constructed inside the Accuscan II counting 'tub' in the order of legs, thighs, abdomen, thorax/arms, neck, and head. Each piece was taped to the backwall of the counter. The arms were taped to the thorax. The phantom was constructed between the v-ridges on the backwall of the Accuscan II counter. The energy and efficiency calibrations were performed using the INL2006 BOMAB. The calibrations were performed with the detectors in the scanning mode. This report includes an overview introduction and records for the energy/FWHM and efficiency calibration including performance verification and validation counting. The Accuscan II system was successfully calibrated for whole body counting and verified in accordance with ANSI/HPS N13.30-1996 criteria.

  1. SSME Automated Engine Calibrating System (AECS) alternative algorithm

    NASA Astrophysics Data System (ADS)

    Greene, William D.

    1993-06-01

    An algorithm is derived for the real-time calibration of the engine mixture ratio during SSME ground testing. Because currently used calibration methods are post-test operations, there exists no fail-safe way of predicting at what mixture ratio a planned test will run. It is proposed that the algorithm developed here be used as part of an AECS which could ensure that nearly all SSME tests are run at the proper mixture ratio. In this way, AECS has the potential of increasing the efficiency of the SSME ground test program. This algorithm is an alternative to that presented in a previous paper. In addition to the derivation of the algorithm, an overview of this calibration system is presented along with a discussion of a possible single coefficient calibration system and the list of test stand facility instrumentation necessary for AECS implementation.

  2. Towards a Precise Energy Calibration of the CUORE Double Beta Decay Experiment

    NASA Astrophysics Data System (ADS)

    Dally, Adam G.

    The mass of the neutrino may hold the key to many problems in cosmology and astrophysics. The observation of neutrino oscillations shows that neutrinos have mass, which was something that was not accounted for in the Standard Model of particle physics. This thesis covers topics relating to measuring the value of neutrino mass directly using bolometers. The first section will discuss the neutrino mass and different experiments for measuring the mass using bolometers. The mass of the neutrino can be measured directly from beta-decay or inferred from observation of neutrinoless double beta decay (0nubetabeta). In this work I present Monte Carlo and analytic simulation of the MARE experiment including, pile-up and energy resolution effects. The mass measurement limits of a micro-calorimeter experiments as it relates to the quantity of decays measured is provided. A similar simulation is preformed for the HolMES experiment. The motivation is to determine the sensitivity of such experiments and the detector requirements to reach the goal sensitivity. Another possible method for determining the neutrino mass is to use neutrinoless double beta decay. The second section will cover the Cryogenic Underground Observatory for Rare Events (CUORE) detector calibration system (DCS). CUORE is a neutrinoless double beta decay (0nubetabeta) experiment with an active mass of 206 kg of 130Te. The detector consists of 988 TeO2 bolometers operating at 10 mK. The signature of 0 nubetabeta decay is an excess of events at the Q-value of 2528 keV. Understanding the energy response is critical for event identification, but this presents many challenges. Calibration is necessary to associate a known energy from a gamma with a voltage pulse from the detector. The DCS must overcome many design challenges. The calibration source must be placed safely and reliable within the detector. The temperature of the detector region of the cryostat must not be changed during calibration. To achieve this

  3. Landsat 8 on-orbit characterization and calibration system

    USGS Publications Warehouse

    Micijevic, Esad; Morfitt, Ron; Choate, Michael J.

    2011-01-01

    The Landsat Data Continuity Mission (LDCM) is planning to launch the Landsat 8 satellite in December 2012, which continues an uninterrupted record of consistently calibrated globally acquired multispectral images of the Earth started in 1972. The satellite will carry two imaging sensors: the Operational Land Imager (OLI) and the Thermal Infrared Sensor (TIRS). The OLI will provide visible, near-infrared and short-wave infrared data in nine spectral bands while the TIRS will acquire thermal infrared data in two bands. Both sensors have a pushbroom design and consequently, each has a large number of detectors to be characterized. Image and calibration data downlinked from the satellite will be processed by the U.S. Geological Survey (USGS) Earth Resources Observation and Science (EROS) Center using the Landsat 8 Image Assessment System (IAS), a component of the Ground System. In addition to extracting statistics from all Earth images acquired, the IAS will process and trend results from analysis of special calibration acquisitions, such as solar diffuser, lunar, shutter, night, lamp and blackbody data, and preselected calibration sites. The trended data will be systematically processed and analyzed, and calibration and characterization parameters will be updated using both automatic and customized manual tools. This paper describes the analysis tools and the system developed to monitor and characterize on-orbit performance and calibrate the Landsat 8 sensors and image data products.

  4. Comparative Analysis of Different LIDAR System Calibration Techniques

    NASA Astrophysics Data System (ADS)

    Miller, M.; Habib, A.

    2016-06-01

    With light detection and ranging (LiDAR) now being a crucial tool for engineering products and on the fly spatial analysis, it is necessary for the user community to have standardized calibration methods. The three methods in this study were developed and proven by the Digital Photogrammetry Research Group (DPRG) for airborne LiDAR systems and are as follows; Simplified, Quasi-Rigorous, and Rigorous. In lieu of using expensive control surfaces for calibration, these methods compare overlapping LiDAR strips to estimate the systematic errors. These systematic errors are quantified by these methods and include the lever arm biases, boresight biases, range bias and scan angle scale bias. These three methods comprehensively represent all of the possible flight configurations and data availability and this paper will test the limits of the method with the most assumptions, the simplified calibration, by using data that violates the assumptions it's math model is based on and compares the results to the quasi-rigorous and rigorous techniques. The overarching goal is to provide a LiDAR system calibration that does not require raw measurements which can be carried out with minimal control and flight lines to reduce costs. This testing is unique because the terrain used for calibration does not contain gable roofs, all other LiDAR system calibration testing and development has been done with terrain containing features with high geometric integrity such as gable roofs.

  5. 49 CFR 325.25 - Calibration of measurement systems.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... sound level measurement system must be calibrated and appropriately adjusted at one or more frequencies... 5-15 minutes thereafter, until it has been determined that the sound level measurement system has... the 0.3 dB drift has been met or exceeded. (2) The sound level measurement system must be...

  6. 49 CFR 325.25 - Calibration of measurement systems.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... sound level measurement system must be calibrated and appropriately adjusted at one or more frequencies... 5-15 minutes thereafter, until it has been determined that the sound level measurement system has... the 0.3 dB drift has been met or exceeded. (2) The sound level measurement system must be...

  7. Energy calibration of a linear accelerator with photonuclear reactions

    SciTech Connect

    St. George, F.; Anderson, D.W.

    1982-05-01

    Photonuclear reactions have been used to calibrate the energy of a Sagittaire clinical electron accelerator between 10 and 30 MeV. Thresholds at 10.8 MeV for the /sup 63/Cu(..gamma..,n)/sup 62/Cu reaction and 29.7 MeV for the /sup 32/S(..gamma..,3p)/sup 29/Al reaction provided two energy points. The break in the /sup 16/O(..gamma..,n)/sup 15/O activation yield curve at 17.3 MeV was determined as an intermediate point. The relationship between electron kinetic enegy and current through the energy-analyzing magnet was found to be linear within 1.0% in this energy range.

  8. Research Division flammable gas system calibration procedure and stability studies

    SciTech Connect

    Semenchenko, A.; Hojvat, C.

    1993-03-01

    The number of detectors which shifted from initial 50% LEL calibration by more than 5% over 90 days period is small enough in order to increase the time interval between calibrations at least to 120 days, but with any further increase in time between the calibrations probability of SC100 failure greatly increases. In order to keep the number of detectors with abnormal sensitivity low, we would recommend 120 days to be the maximum allowable interval for our present environmental conditions. Information is also presentd on the calibration of the SC100 Combustible Gas Sensor and the DC110 controller. The sensorand controlled form part of the flammable gas detecting systems installed at Fermilab.

  9. Polarization effects on hard target calibration of lidar systems.

    PubMed

    Kavaya, M J

    1987-03-01

    The theory of hard target calibration of lidar backscatter data, including laboratory measurements of the pertinent target reflectance parameters, is extended to include the effects of polarization of the transmitted and received laser radiation. The bidirectional reflectance-distribution function model of reflectance is expanded to a 4 x 4 matrix allowing Mueller matrix and Stokes vector calculus to be employed. Target reflectance parameters for calibration of lidar backscatter data are derived for various lidar system polarization configurations from integrating sphere and monostatic reflectometer measurements. It is found that correct modeling of polarization effects is mandatory for accurate calibration of hard target reflectance parameters and, therefore, for accurate calibration of lidar backscatter data. PMID:20454226

  10. The calibration and monitoring system for the PHENIX lead-scintillator electromagnetic calorimeter

    SciTech Connect

    David, G.; Kistenev, E.; Stoll, S.

    1997-11-01

    A system for calibrating the PHENIX lead-scintillator electromagnetic calorimeter modules with cosmic rays and monitoring the stability during operation is described. The system is based on a UV laser which delivers light to each module through a network of optical fibers and splutters and is monitored at various points with silicon and vacuum photodiodes. Results are given from a prototype system which used a nitrogen laser to set the initial phototube gains and to establish the energy calibration of calorimeter modules and monitor their stability. A description of the final system to be used in PHENIX based on a high power YAG laser, is also given.

  11. The habitable-zone planet finder calibration system

    NASA Astrophysics Data System (ADS)

    Halverson, Samuel; Mahadevan, Suvrath; Ramsey, Lawrence; Terrien, Ryan; Roy, Arpita; Schwab, Christian; Bender, Chad; Hearty, Fred; Levi, Eric; Osterman, Steve; Ycas, Gabe; Diddams, Scott

    2014-08-01

    We present the design concept of the wavelength calibration system for the Habitable-zone Planet Finder instrument (HPF), a precision radial velocity (RV) spectrograph designed to detect terrestrial-mass planets around M-dwarfs. HPF is a stabilized, fiber-fed, R~50,000 spectrograph operating in the near-infrared (NIR) z/Y/J bands from 0.84 to 1.3 microns. For HPF to achieve 1 m s-1 or better measurement precision, a unique calibration system, stable to several times better precision, will be needed to accurately remove instrumental effects at an unprecedented level in the NIR. The primary wavelength calibration source is a laser frequency comb (LFC), currently in development at NIST Boulder, discussed separately in these proceedings. The LFC will be supplemented by a stabilized single-mode fiber Fabry-Perot interferometer reference source and Uranium-Neon lamp. The HPF calibration system will combine several other new technologies developed by the Penn State Optical-Infrared instrumentation group to improve RV measurement precision including a dynamic optical coupling system that significantly reduces modal noise effects. Each component has been thoroughly tested in the laboratory and has demonstrated significant performance gains over previous NIR calibration systems.

  12. A machine vision system for the calibration of digital thermometers

    NASA Astrophysics Data System (ADS)

    Vázquez-Fernández, Esteban; Dacal-Nieto, Angel; González-Jorge, Higinio; Martín, Fernando; Formella, Arno; Alvarez-Valado, Victor

    2009-06-01

    Automation is a key point in many industrial tasks such as calibration and metrology. In this context, machine vision has shown to be a useful tool for automation support, especially when there is no other option available. A system for the calibration of portable measurement devices has been developed. The system uses machine vision to obtain the numerical values shown by displays. A new approach based on human perception of digits, which works in parallel with other more classical classifiers, has been created. The results show the benefits of the system in terms of its usability and robustness, obtaining a success rate higher than 99% in display recognition. The system saves time and effort, and offers the possibility of scheduling calibration tasks without excessive attention by the laboratory technicians.

  13. Calibration and Epipolar Geometry of Generic Heterogenous Camera Systems

    NASA Astrophysics Data System (ADS)

    Luber, A.; Rueß, D.; Manthey, K.; Reulke, R.

    2012-07-01

    The application of perspective camera systems in photogrammetry and computer vision is state of the art. In recent years nonperspective and especially omnidirectional camera systems were increasingly used in close-range photogrammetry tasks. In general perspective camera model, i. e. pinhole model, cannot be applied when using non-perspective camera systems. However, several camera models for different omnidirectional camera systems are proposed in literature. Using different types of cameras in a heterogeneous camera system may lead to an advantageous combination. The advantages of different camera systems, e. g. field of view and resolution, result in a new enhanced camera system. If these different kinds of cameras can be modeled, using a unified camera model, the total calibration process can be simplified. Sometimes it is not possible to give the specific camera model in advance. In these cases a generic approach is helpful. Furthermore, a simple stereo reconstruction becomes possible using a fisheye and a perspective camera for example. In this paper camera models for perspective, wide-angle and omnidirectional camera systems are evaluated. The crucial initialization of the model's parameters is conducted using a generic method that is independent of the particular camera system. The accuracy of this generic camera calibration approach is evaluated by calibration of a dozen of real camera systems. It will be shown, that a unified method of modeling, parameter approximation and calibration of interior and exterior orientation can be applied to derive 3D object data.

  14. Calibrated Ultra Fast Image Simulations for the Dark Energy Survey

    NASA Astrophysics Data System (ADS)

    Bruderer, Claudio; Chang, Chihway; Refregier, Alexandre; Amara, Adam; Bergé, Joel; Gamper, Lukas

    2016-01-01

    Image simulations are becoming increasingly important in understanding the measurement process of the shapes of galaxies for weak lensing and the associated systematic effects. For this purpose we present the first implementation of the Monte Carlo Control Loops (MCCL), a coherent framework for studying systematic effects in weak lensing. It allows us to model and calibrate the shear measurement process using image simulations from the Ultra Fast Image Generator (UFig) and the image analysis software SExtractor. We apply this framework to a subset of the data taken during the Science Verification period (SV) of the Dark Energy Survey (DES). We calibrate the UFig simulations to be statistically consistent with one of the SV images, which covers ∼0.5 square degrees. We then perform tolerance analyses by perturbing six simulation parameters and study their impact on the shear measurement at the one-point level. This allows us to determine the relative importance of different parameters. For spatially constant systematic errors and point-spread function, the calibration of the simulation reaches the weak lensing precision needed for the DES SV survey area. Furthermore, we find a sensitivity of the shear measurement to the intrinsic ellipticity distribution, and an interplay between the magnitude-size and the pixel value diagnostics in constraining the noise model. This work is the first application of the MCCL framework to data and shows how it can be used to methodically study the impact of systematics on the cosmic shear measurement.

  15. Flight and ground calibrations: TRMM and EOS-AM1 clouds and the Earth's radiant energy system (CERES) instrument zero radiance offsets determination

    NASA Astrophysics Data System (ADS)

    Thomas, Susan; Barkstrom, Bruce R.; Lee, Robert B., III; Priestley, Kory J.; Bitting, Herbert C.; Paden, Jack; Pandey, Dhirendra K.; Smith, G. Louis; Thornhill, K. L.; Wilson, Robert S.

    1998-10-01

    The Clouds and the Earth's Radiant Energy System (CERES) instrument has scanning thermistor bolometers that measure broadband radiances in the shortwave, total and 8-12 micron water vapor window regions. On November 27, 1997, the CERES Protoflight model (PFM) instrument was launched aboard the Tropical Rainfall measuring Mission spacecraft. In December 1998, the CERES FLight models I and II instruments are scheduled for launch on the Earth Observing System-AM1 platform. The instrument generally operates in three scan modes; crosstrack normal, rotating azimuth normal and rotating azimuth short modes, while measuring the earth reflected and emitted radiances. The sensor measurements have shown a dependency on observation geometry during each of these scan modes of operation. At each elevation observation angle, the zero radiance offsets of the sensors were measured on the ground using end caps and a constant radiance reference source, consisting of a curved strip blackbody. On-orbit, offsets were determined from observations of cold space. This paper describes the procedures and facilities used to determine the zero radiance offsets. The offset values calculated from ground and in-flight data for TRMM sensors, as well as the ground measurements for the FM1 and FM2 sensors are presented.

  16. National and international standards and calibration of thermoluminescence dosimetry systems.

    PubMed

    Soares, C G

    2002-01-01

    Radiation protection for radiation workers, the public, and the environment is of international concern. The use of thermoluminescence dosemeters (TLD) is an acceptable method for dose recording in most countries. For reasons of consistency and data gathering (research) it is important that a Sievert (Sv) in one part of the world equals an Sv on the other side of the globe. To this end, much work has gone into the development of standards and calibration practices for TLD systems so that they compare not only with similar systems, but also with other forms of radiation measurement. While most national laboratories provide calibration services for these systems some, as in the United States, depend on services of secondary calibration laboratories that are traceable to the national laboratories through accreditation programmes. The purpose of this paper is to explain how TLD measurements are traceable to their respective national standards for both personnel and environmental dosimetry. PMID:12382728

  17. Peristaltic pump-based low range pressure sensor calibration system

    SciTech Connect

    Vinayakumar, K. B.; Naveen Kumar, G.; Rajanna, K. E-mail: krajanna2011@gmail.com; Nayak, M. M.; Dinesh, N. S.

    2015-11-15

    Peristaltic pumps were normally used to pump liquids in several chemical and biological applications. In the present study, a peristaltic pump was used to pressurize the chamber (positive as well negative pressures) using atmospheric air. In the present paper, we discuss the development and performance study of an automatic pressurization system to calibrate low range (millibar) pressure sensors. The system includes a peristaltic pump, calibrated pressure sensor (master sensor), pressure chamber, and the control electronics. An in-house developed peristaltic pump was used to pressurize the chamber. A closed loop control system has been developed to detect and adjust the pressure leaks in the chamber. The complete system has been integrated into a portable product. The system performance has been studied for a step response and steady state errors. The system is portable, free from oil contaminants, and consumes less power compared to existing pressure calibration systems. The veracity of the system was verified by calibrating an unknown diaphragm based pressure sensor and the results obtained were satisfactory.

  18. Peristaltic pump-based low range pressure sensor calibration system

    NASA Astrophysics Data System (ADS)

    Vinayakumar, K. B.; Naveen Kumar, G.; Nayak, M. M.; Dinesh, N. S.; Rajanna, K.

    2015-11-01

    Peristaltic pumps were normally used to pump liquids in several chemical and biological applications. In the present study, a peristaltic pump was used to pressurize the chamber (positive as well negative pressures) using atmospheric air. In the present paper, we discuss the development and performance study of an automatic pressurization system to calibrate low range (millibar) pressure sensors. The system includes a peristaltic pump, calibrated pressure sensor (master sensor), pressure chamber, and the control electronics. An in-house developed peristaltic pump was used to pressurize the chamber. A closed loop control system has been developed to detect and adjust the pressure leaks in the chamber. The complete system has been integrated into a portable product. The system performance has been studied for a step response and steady state errors. The system is portable, free from oil contaminants, and consumes less power compared to existing pressure calibration systems. The veracity of the system was verified by calibrating an unknown diaphragm based pressure sensor and the results obtained were satisfactory.

  19. Peristaltic pump-based low range pressure sensor calibration system.

    PubMed

    Vinayakumar, K B; Naveen Kumar, G; Nayak, M M; Dinesh, N S; Rajanna, K

    2015-11-01

    Peristaltic pumps were normally used to pump liquids in several chemical and biological applications. In the present study, a peristaltic pump was used to pressurize the chamber (positive as well negative pressures) using atmospheric air. In the present paper, we discuss the development and performance study of an automatic pressurization system to calibrate low range (millibar) pressure sensors. The system includes a peristaltic pump, calibrated pressure sensor (master sensor), pressure chamber, and the control electronics. An in-house developed peristaltic pump was used to pressurize the chamber. A closed loop control system has been developed to detect and adjust the pressure leaks in the chamber. The complete system has been integrated into a portable product. The system performance has been studied for a step response and steady state errors. The system is portable, free from oil contaminants, and consumes less power compared to existing pressure calibration systems. The veracity of the system was verified by calibrating an unknown diaphragm based pressure sensor and the results obtained were satisfactory. PMID:26628178

  20. A harvester based calibration system for cotton yield monitors

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objective of this work was to develop a system for measuring seed cotton weight on a cotton harvester to facilitate on-farm research efforts and provide information for use in semi-real-time calibration of yield monitors. The system tested in 2014 was improved from the original design developed...

  1. A Calibration Method for Wide-Field Multicolor Photometric Systems

    NASA Astrophysics Data System (ADS)

    Zhou, Xu; Chen, Jiansheng; Xu, Wen; Zhang, Mei; Jiang, Zhaoji; Zheng, Zhongyuan; Zhu, Jin

    1999-07-01

    The purpose of this paper is to present a method to self-calibrate the spectral energy distribution (SED) of objects in a survey based on the fitting of a SED library to observed multicolor photometry. We adopt, for illustrative purposes, the Vilnius and Gunn & Stryker SED libraries. The self-calibration technique can improve the quality of observations which are not taken under perfectly photometric conditions. The more passbands used for the photometry, the better the results. This technique has been applied to the BATC 15 passband CCD survey.

  2. Novel Calibration System with Sparse Wires for CMB Polarization Receivers

    NASA Astrophysics Data System (ADS)

    Tajima, O.; Nguyen, H.; Bischoff, C.; Brizius, A.; Buder, I.; Kusaka, A.

    2012-06-01

    A curl competent (also known as B-modes) in the cosmic microwave background (CMB) polarization is a smoking gun signature of the inflationary universe. To achieve better sensitivity to this faint signal, CMB polarization experiments aim to maximize the number of detector elements, resulting in a large focal plane receiver. Detector calibration of the polarization response becomes essential. It is extremely useful to be able to calibrate "simultaneously" all detectors on the large focal plane. We developed a novel calibration system that rotates a large "sparse" grid of metal wires, in front of and fully covering the field of view of the focal plane receiver. Polarized radiation is created via the reflection of ambient temperature photons from the wire surface. Since the detector has a finite beam size, the observed signal is convolved with the beam property. The intensity of the of the calibrator is reasonable (a few Kelvin or less) compared to sky temperature for typical observing conditions (˜10 K). The system played a successful role for receiver calibration of QUIET, a CMB polarization experiment located in the Atacama desert in Chile. The successful performance revealed that this system is applicable to other experiments based on different technologies, e.g. TES bolometers.

  3. Alignment and calibration of a focal neurotransmitter uncaging system.

    PubMed

    Sarkisov, Dmitry V; Wang, Samuel S-H

    2006-01-01

    Photolysis of caged compounds is a powerful tool for studying subcellular physiological functions. Here we describe protocols for the alignment and calibration of a focal uncaging system. We also report procedures for convenient quantitative calibration of uncaging. Using these methods, we can achieve submicron lateral resolution of photolysis and probe biological function in spines, the smallest signaling compartments of neurons. Initially, the entire alignment procedure takes 4-6 h to perform; periodic fine-tuning of the system takes 1-2 h. PMID:17406314

  4. U.S. Department of Energy Office of Legacy Management Calibration Facilities - 12103

    SciTech Connect

    Barr, Deborah; Traub, David; Widdop, Michael

    2012-07-01

    This paper describes radiometric calibration facilities located in Grand Junction, Colorado, and at three secondary calibration sites. These facilities are available to the public for the calibration of radiometric field instrumentation for in-situ measurements of radium (uranium), thorium, and potassium. Both borehole and hand-held instruments may be calibrated at the facilities. Aircraft or vehicle mounted systems for large area surveys may be calibrated at the Grand Junction Regional Airport facility. These calibration models are recognized internationally as stable, well-characterized radiation sources for calibration. Calibration models built in other countries are referenced to the DOE models, which are also widely used as a standard for calibration within the U.S. Calibration models are used to calibrate radiation detectors used in uranium exploration, remediation, and homeland security. (authors)

  5. Radiometric Calibration of the Earth Observing System's Imaging Sensors

    NASA Technical Reports Server (NTRS)

    Slater, Philip N. (Principal Investigator)

    1997-01-01

    The work on the grant was mainly directed towards developing new, accurate, redundant methods for the in-flight, absolute radiometric calibration of satellite multispectral imaging systems and refining the accuracy of methods already in use. Initially the work was in preparation for the calibration of MODIS and HIRIS (before the development of that sensor was canceled), with the realization it would be applicable to most imaging multi- or hyper-spectral sensors provided their spatial or spectral resolutions were not too coarse. The work on the grant involved three different ground-based, in-flight calibration methods reflectance-based radiance-based and diffuse-to-global irradiance ratio used with the reflectance-based method. This continuing research had the dual advantage of: (1) developing several independent methods to create the redundancy that is essential for the identification and hopefully the elimination of systematic errors; and (2) refining the measurement techniques and algorithms that can be used not only for improving calibration accuracy but also for the reverse process of retrieving ground reflectances from calibrated remote-sensing data. The grant also provided the support necessary for us to embark on other projects such as the ratioing radiometer approach to on-board calibration (this has been further developed by SBRS as the 'solar diffuser stability monitor' and is incorporated into the most important on-board calibration system for MODIS)- another example of the work, which was a spin-off from the grant funding, was a study of solar diffuser materials. Journal citations, titles and abstracts of publications authored by faculty, staff, and students are also attached.

  6. Radiometric absolute noise-temperature measurement system features improved accuracy and calibration ease

    NASA Technical Reports Server (NTRS)

    Brown, W.; Ewen, H.; Haroules, G.

    1970-01-01

    Radiometric receiver system, which measures noise temperatures in degrees Kelvin, does not require cryogenic noise sources for routine operation. It eliminates radiometer calibration errors associated with RF attenuation measurements. Calibrated noise source is required only for laboratory adjustment and calibration.

  7. Calibration of NASA Turbulent Air Motion Measurement System

    NASA Technical Reports Server (NTRS)

    Barrick, John D. W.; Ritter, John A.; Watson, Catherine E.; Wynkoop, Mark W.; Quinn, John K.; Norfolk, Daniel R.

    1996-01-01

    A turbulent air motion measurement system (TAMMS) was integrated onboard the Lockheed 188 Electra airplane (designated NASA 429) based at the Wallops Flight Facility in support of the NASA role in global tropospheric research. The system provides air motion and turbulence measurements from an airborne platform which is capable of sampling tropospheric and planetary boundary-layer conditions. TAMMS consists of a gust probe with free-rotating vanes mounted on a 3.7-m epoxy-graphite composite nose boom, a high-resolution inertial navigation system (INS), and data acquisition system. A variation of the tower flyby method augmented with radar tracking was implemented for the calibration of static pressure position error and air temperature probe. Additional flight calibration maneuvers were performed remote from the tower in homogeneous atmospheric conditions. System hardware and instrumentation are described and the calibration procedures discussed. Calibration and flight results are presented to illustrate the overall ability of the system to determine the three-component ambient wind fields during straight and level flight conditions.

  8. Calibration technology in application of robot-laser scanning system

    NASA Astrophysics Data System (ADS)

    Ren, YongJie; Yin, ShiBin; Zhu, JiGui

    2012-11-01

    A system composed of laser sensor and 6-DOF industrial robot is proposed to obtain complete three-dimensional (3-D) information of the object surface. Suitable for the different combining ways of laser sensor and robot, a new method to calibrate the position and pose between sensor and robot is presented. By using a standard sphere with known radius as a reference tool, the rotation and translation matrices between the laser sensor and robot are computed, respectively in two steps, so that many unstable factors introduced in conventional optimization methods can be avoided. The experimental results show that the accuracy of the proposed calibration method can be achieved up to 0.062 mm. The calibration method is also implemented into the automated robot scanning system to reconstruct a car door panel.

  9. Improving Photometric Calibration of Meteor Video Camera Systems

    NASA Technical Reports Server (NTRS)

    Ehlert, Steven; Kingery, Aaron; Cooke, William

    2016-01-01

    Current optical observations of meteors are commonly limited by systematic uncertainties in photometric calibration at the level of approximately 0.5 mag or higher. Future improvements to meteor ablation models, luminous efficiency models, or emission spectra will hinge on new camera systems and techniques that significantly reduce calibration uncertainties and can reliably perform absolute photometric measurements of meteors. In this talk we discuss the algorithms and tests that NASA's Meteoroid Environment Office (MEO) has developed to better calibrate photometric measurements for the existing All-Sky and Wide-Field video camera networks as well as for a newly deployed four-camera system for measuring meteor colors in Johnson-Cousins BV RI filters. In particular we will emphasize how the MEO has been able to address two long-standing concerns with the traditional procedure, discussed in more detail below.

  10. Energy Calibration of the Scintillating Optical Fiber Calorimeter Chamber (SOFCAL)

    NASA Technical Reports Server (NTRS)

    Christl, M. C.; Fountain, W. F.; Parnell, T.; Roberts, F. E.; Gregory, J. C.; Johnson, J.; Takahashi, Y.

    1997-01-01

    The Scintillating Optical Fiber Calorimeter (SOFCAL) detector is designed to make direct measures of the primary cosmic ray spectrum from -200 GeV/amu - 20 TeV/amu. The primary particles are resolved into groups according to their charge (p, He, CNO, Medium Z, Heavy Z) using both active and passive components integrated into the detector. The principal part of SOFCAL is a thin ionization calorimeter that measures the electromagnetic cascades that result from these energetic particles interacting in the detector. The calorimeter is divided into two sections: a thin passive emulsion/x-ray film calorimeter, and a fiber calorimeter that uses crossing layers of small scintillating optical fibers to sample the energy deposition of the cascades. The energy determination is made by fitting the fiber data to transition curves generated by Monte Carlo simulations. The fiber data must first be calibrated using the electron counts from the emulsion plates in the calorimeter for a small number of events. The technique and results of this calibration will be presented together with samples of the data from a balloon flight.

  11. Confinement Vessel Assay System: Calibration and Certification Report

    SciTech Connect

    Frame, Katherine C.; Bourne, Mark M.; Crooks, William J.; Evans, Louise; Gomez, Cipriano; Mayo, Douglas R.; Miko, David K.; Salazar, William R.; Stange, Sy; Vigil, Georgiana M.

    2012-07-17

    Los Alamos National Laboratory has a number of spherical confinement vessels (CVs) remaining from tests involving nuclear materials. These vessels have an inner diameter of 6 feet with 1 to 2 inch thick steel walls. The goal of the Confinement Vessel Disposition (CVD) project is to remove debris and reduce contamination inside the vessels. The Confinement Vessel Assay System (CVAS) was developed to measure the amount of SNM in CVs before and after cleanout. Prior to cleanout, the system will be used to perform a verification measurement of each vessel. After cleanout, the system will be used to perform safeguards-quality assays of {le} 100-g {sup 239}Pu equivalent in a vessel for safeguards termination. The system was calibrated in three different mass regions (low, medium, and high) to cover the entire plutonium mass range that will be assayed. The low mass calibration and medium mass calibration were verified for material positioned in the center of an empty vessel. The systematic uncertainty due to position bias was estimated using an MCNPX model to simulate the response of the system to material localized at various points along the inner surface of the vessel. The background component due to cosmic ray spallation was determined by performing measurements of an empty vessel and comparing to measurements in the same location with no vessel present. The CVAS has been tested and calibrated in preparation for verification and safeguards measurements of CVs before and after cleanout.

  12. Novel ignition systems for heavy calibre guns

    NASA Astrophysics Data System (ADS)

    Bowden, C. N.; Cook, G. G.; Henning, P. S.

    1986-01-01

    In recent years there was a trend towards steadily rising gun pressures, especially in direct fire weapons and this has caused many functional problems to arise with conventional vent tube ignition systems. To overcome these problems and to allow the process of gun development to continue, the United Kingdom is performing a program of research into a number of ignition systems for heavy caliber guns. These include: spark ignition, laser ignition, and electrical impulse ignition. A number of different spark plug configurations were evaluated. Extensive trials were performed on the ignition characteristics of black powders and black powder substitutes using an experimental 4 J neodymium laser. Work was also performed on the development of high pressure sapphire windows. A study into methods of charge ignition by electrical impulse techniques was also performed.

  13. In-situ calibration: migrating control system IP module calibration from the bench to the storage ring

    SciTech Connect

    Weber, Jonah M.; Chin, Michael

    2002-04-30

    The Control System for the Advanced Light Source (ALS) at Lawrence Berkeley National Lab (LBNL) uses in-house designed IndustryPack(registered trademark) (IP) modules contained in compact PCI (cPCI) crates with 16-bit analog I/O to control instrumentation. To make the IP modules interchangeable, each module is calibrated for gain and offset compensation. We initially developed a method of verifying and calibrating the IP modules in a lab bench test environment using a PC with LabVIEW. The subsequent discovery that the ADCs have significant drift characteristics over periods of days of installed operation prompted development of an ''in-situ'' calibration process--one in which the IP modules can be calibrated without removing them from the cPCI crates in the storage ring. This paper discusses the original LabVIEW PC calibration and the migration to the proposed in-situ EPICS control system calibration.

  14. Calibration of the Accuscan II In Vivo System for I-125 Thyroid Counting

    SciTech Connect

    Ovard R. Perry; David L. Georgeson

    2011-07-01

    This report describes the March 2011 calibration of the Accuscan II HpGe In Vivo system for I-125 thyroid counting. The source used for the calibration was a DOE manufactured Am-241/Eu-152 source contained in a 22 ml vial BEA Am-241/Eu-152 RMC II-1 with energies from 26 keV to 344 keV. The center of the detector housing was positioned 64 inches from the vault floor. This position places the approximate center line of the detector housing at the center line of the source in the phantom thyroid tube. The energy and efficiency calibration were performed using an RMC II phantom (Appendix J). Performance testing was conducted using source BEA Am-241/Eu-152 RMC II-1 and Validation testing was performed using an I-125 source in a 30 ml vial (I-125 BEA Thyroid 002) and an ANSI N44.3 phantom (Appendix I). This report includes an overview introduction and records for the energy/FWHM and efficiency calibration including performance verification and validation counting. The Accuscan II system was successfully calibrated for counting the thyroid for I-125 and verified in accordance with ANSI/HPS N13.30-1996 criteria.

  15. Seismic margins and calibration of piping systems

    SciTech Connect

    Shieh, L.C.; Tsai, N.C.; Yang, M.S.; Wong, W.L.

    1985-01-01

    The Seismic Safety Margins Research Program (SSMRP) is a US Nuclear Regulatory Commission-funded, multiyear program conducted by Lawrence Livermore National Laboratory (LLNL). Its objective is to develop a complete, fully coupled analysis procedure for estimating the risk of earthquake-induced radioactive release from a commercial nuclear power plant and to determine major contributors to the state-of-the-art seismic and systems analysis process and explicitly includes the uncertainties in such a process. The results will be used to improve seismic licensing requirements for nuclear power plants. In Phase I of SSMRP, the overall seismic risk assessment methodology was developed and assembled. The application of this methodology to the seismic PRA (Probabilistic Risk Assessment) at the Zion Nuclear Power Plant has been documented. This report documents the method deriving response factors. The response factors, which relate design calculated responses to best estimate values, were used in the seismic response determination of piping systems for a simplified seismic probablistic risk assessment. 13 references, 31 figures, 25 tables.

  16. 40 CFR 92.116 - Engine output measurement system calibrations.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 20 2011-07-01 2011-07-01 false Engine output measurement system calibrations. 92.116 Section 92.116 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF AIR POLLUTION FROM LOCOMOTIVES AND LOCOMOTIVE ENGINES Test Procedures §...

  17. Numerical Analysis of a Radiant Heat Flux Calibration System

    NASA Technical Reports Server (NTRS)

    Jiang, Shanjuan; Horn, Thomas J.; Dhir, V. K.

    1998-01-01

    A radiant heat flux gage calibration system exists in the Flight Loads Laboratory at NASA's Dryden Flight Research Center. This calibration system must be well understood if the heat flux gages calibrated in it are to provide useful data during radiant heating ground tests or flight tests of high speed aerospace vehicles. A part of the calibration system characterization process is to develop a numerical model of the flat plate heater element and heat flux gage, which will help identify errors due to convection, heater element erosion, and other factors. A 2-dimensional mathematical model of the gage-plate system has been developed to simulate the combined problem involving convection, radiation and mass loss by chemical reaction. A fourth order finite difference scheme is used to solve the steady state governing equations and determine the temperature distribution in the gage and plate, incident heat flux on the gage face, and flat plate erosion. Initial gage heat flux predictions from the model are found to be within 17% of experimental results.

  18. Online Sensor Calibration Assessment in Nuclear Power Systems

    SciTech Connect

    Coble, Jamie B.; Ramuhalli, Pradeep; Meyer, Ryan M.; Hashemian, Hash

    2013-06-01

    Safe, efficient, and economic operation of nuclear systems (nuclear power plants, fuel fabrication and storage, used fuel processing, etc.) relies on transmission of accurate and reliable measurements. During operation, sensors degrade due to age, environmental exposure, and maintenance interventions. Sensor degradation can affect the measured and transmitted signals, including sensor failure, signal drift, sensor response time, etc. Currently, periodic sensor recalibration is performed to avoid these problems. Sensor recalibration activities include both calibration assessment and adjustment (if necessary). In nuclear power plants, periodic recalibration of safety-related sensors is required by the plant technical specifications. Recalibration typically occurs during refueling outages (about every 18 to 24 months). Non-safety-related sensors also undergo recalibration, though not as frequently. However, this approach to maintaining sensor calibration and performance is time-consuming and expensive, leading to unnecessary maintenance, increased radiation exposure to maintenance personnel, and potential damage to sensors. Online monitoring (OLM) of sensor performance is a non-invasive approach to assess instrument calibration. OLM can mitigate many of the limitations of the current periodic recalibration practice by providing more frequent assessment of calibration and identifying those sensors that are operating outside of calibration tolerance limits without removing sensors or interrupting operation. This can support extended operating intervals for unfaulted sensors and target recalibration efforts to only degraded sensors.

  19. System for characterizing semiconductor materials and photovoltaic devices through calibration

    DOEpatents

    Sopori, B.L.; Allen, L.C.; Marshall, C.; Murphy, R.C.; Marshall, T.

    1998-05-26

    A method and apparatus are disclosed for measuring characteristics of a piece of material, typically semiconductor materials including photovoltaic devices. The characteristics may include dislocation defect density, grain boundaries, reflectance, external LBIC, internal LBIC, and minority carrier diffusion length. The apparatus includes a light source, an integrating sphere, and a detector communicating with a computer. The measurement or calculation of the characteristics is calibrated to provide accurate, absolute values. The calibration is performed by substituting a standard sample for the piece of material, the sample having a known quantity of one or more of the relevant characteristics. The quantity measured by the system of the relevant characteristic is compared to the known quantity and a calibration constant is created thereby. 44 figs.

  20. System for characterizing semiconductor materials and photovoltaic devices through calibration

    DOEpatents

    Sopori, Bhushan L.; Allen, Larry C.; Marshall, Craig; Murphy, Robert C.; Marshall, Todd

    1998-01-01

    A method and apparatus for measuring characteristics of a piece of material, typically semiconductor materials including photovoltaic devices. The characteristics may include dislocation defect density, grain boundaries, reflectance, external LBIC, internal LBIC, and minority carrier diffusion length. The apparatus includes a light source, an integrating sphere, and a detector communicating with a computer. The measurement or calculation of the characteristics is calibrated to provide accurate, absolute values. The calibration is performed by substituting a standard sample for the piece of material, the sample having a known quantity of one or more of the relevant characteristics. The quantity measured by the system of the relevant characteristic is compared to the known quantity and a calibration constant is created thereby.

  1. Calibration of low-level beta-gamma coincidence detector systems for xenon isotope detection.

    PubMed

    Khrustalev, K; Wieslander, J S E; Auer, M; Gheddou, A

    2016-03-01

    The beta-gamma coincidence detector systems used for the measurement of the CTBT-relevant xenon isotopes (Xe-131m, Xe-133m, Xe-133 and Xe-135) in the International Monitoring System network and in the On-Site Inspection are reviewed. These detectors typically consist of a well-type or bore-through NaI crystal into which a measurement cell, serving also as a sample container, is inserted. This work describes the current calibration procedure for energy, resolution and efficiency, implementation challenges, availability and uncertainties of the specific nuclear decay data and the path forward to full calibration validation using GEANT4. PMID:26702548

  2. Device for calibrating a radiation detector system

    DOEpatents

    Mc Fee, Matthew C.; Kirkham, Tim J.; Johnson, Tippi H.

    1994-01-01

    A device for testing a radiation detector system that includes at least two arrays of radiation detectors that are movable with respect to each other. The device includes a "shield plate" or shell, and an opposing "source plate" containing a source of ionizing radiation. Guides are attached to the outer surface of the shell for engaging the forward ends of the detectors, thereby reproducibly positioning the detectors with respect to the source and with respect to each other, thereby ensuring that a predetermined portion of the radiation emitted by the source passes through the shell and reaches the detectors. The shell is made of an hydrogenous material having approximately the same radiological attenuation characteristics as composite human tissue. The source represents a human organ such as the lungs, heart, kidneys, heart, liver, spleen, pancreas, thyroid, testes, prostate, or ovaries. The source includes a source of ionizing radiation having a long half-life and an activity that is within the range typically searched for in human subjects.

  3. Device for calibrating a radiation detector system

    DOEpatents

    McFee, M.C.; Kirkham, T.J.; Johnson, T.H.

    1994-12-27

    A device is disclosed for testing a radiation detector system that includes at least two arrays of radiation detectors that are movable with respect to each other. The device includes a ''shield plate'' or shell, and an opposing ''source plate'' containing a source of ionizing radiation. Guides are attached to the outer surface of the shell for engaging the forward ends of the detectors, thereby reproducibly positioning the detectors with respect to the source and with respect to each other, thereby ensuring that a predetermined portion of the radiation emitted by the source passes through the shell and reaches the detectors. The shell is made of an hydrogenous material having approximately the same radiological attenuation characteristics as composite human tissue. The source represents a human organ such as the lungs, heart, kidneys, liver, spleen, pancreas, thyroid, testes, prostate, or ovaries. The source includes a source of ionizing radiation having a long half-life and an activity that is within the range typically searched for in human subjects. 3 figures.

  4. Novel calibration system with sparse wires for CMB polarization receivers

    SciTech Connect

    Tajima, O.; Nguyen, H.; Bischoff, C.; Brizius, A.; Buder, I.; Kusaka, A. /Chicago U., KICP

    2011-07-01

    B-modes in the cosmic microwave background (CMB) polarization is a smoking gun signature of the inflationary universe. To achieve better sensitivity to this faint signal, CMB polarization experiments aim to maximize the number of detector elements, resulting in a large focal plane receiver. Detector calibration of the polarization response becomes essential. It is extremely useful to be able to calibrate 'simultaneously' all detectors on the large focal plane. We developed a novel calibration system that rotates a large 'sparse' grid of metal wires, in front of and fully covering the field of view of the focal plane receiver. Polarized radiation is created via the reflection of ambient temperature from the wire surface. Since the detector has a finite beam size, the observed signal is smeared according to the beam property. The resulting smeared polarized radiation has a reasonable intensity (a few Kelvin or less) compared to the sky temperature ({approx}10 K observing condition). The system played a successful role for receiver calibration of QUIET, a CMB polarization experiment located in the Atacama desert in Chile. The successful performance revealed that this system is applicable to other experiments based on different technologies, e.g. TES bolometers.

  5. Method of calibrating a fluid-level measurement system

    NASA Technical Reports Server (NTRS)

    Woodard, Stanley E. (Inventor); Taylor, Bryant D. (Inventor)

    2010-01-01

    A method of calibrating a fluid-level measurement system is provided. A first response of the system is recorded when the system's sensor(s) is (are) not in contact with a fluid of interest. A second response of the system is recorded when the system's sensor(s) is (are) fully immersed in the fluid of interest. Using the first and second responses, a plurality of expected responses of the system's sensor(s) is (are) generated for a corresponding plurality of levels of immersion of the sensor(s) in the fluid of interest.

  6. Mass calibration of the energy axis in ToF-E elastic recoil detection analysis

    NASA Astrophysics Data System (ADS)

    Meersschaut, J.; Laricchiuta, G.; Sajavaara, T.; Vandervorst, W.

    2016-03-01

    We report on procedures that we have developed to mass-calibrate the energy axis of ToF-E histograms in elastic recoil detection analysis. The obtained calibration parameters allow one to transform the ToF-E histogram into a calibrated ToF-M histogram.

  7. An accurate continuous calibration system for high voltage current transformer

    SciTech Connect

    Tong Yue; Li Binhong

    2011-02-15

    A continuous calibration system for high voltage current transformers is presented in this paper. The sensor of this system is based on a kind of electronic instrument current transformer, which is a clamp-shape air core coil. This system uses an optical fiber transmission system for its signal transmission and power supply. Finally the digital integrator and fourth-order convolution window algorithm as error calculation methods are realized by the virtual instrument with a personal computer. It is found that this system can calibrate a high voltage current transformer while energized, which means avoiding a long calibrating period in the power system and the loss of power metering expense. At the same time, it has a wide dynamic range and frequency band, and it can achieve a high accuracy measurement in a complex electromagnetic field environment. The experimental results and the on-site operation results presented in the last part of the paper, prove that it can reach the 0.05 accuracy class and is easy to operate on site.

  8. An accurate continuous calibration system for high voltage current transformer.

    PubMed

    Tong, Yue; Li, Bin Hong

    2011-02-01

    A continuous calibration system for high voltage current transformers is presented in this paper. The sensor of this system is based on a kind of electronic instrument current transformer, which is a clamp-shape air core coil. This system uses an optical fiber transmission system for its signal transmission and power supply. Finally the digital integrator and fourth-order convolution window algorithm as error calculation methods are realized by the virtual instrument with a personal computer. It is found that this system can calibrate a high voltage current transformer while energized, which means avoiding a long calibrating period in the power system and the loss of power metering expense. At the same time, it has a wide dynamic range and frequency band, and it can achieve a high accuracy measurement in a complex electromagnetic field environment. The experimental results and the on-site operation results presented in the last part of the paper, prove that it can reach the 0.05 accuracy class and is easy to operate on site. PMID:21361633

  9. Calibration of the Accuscan II In Vivo System for I-131 Thyroid Counting

    SciTech Connect

    Orval R. Perry; David L. Georgeson

    2011-07-01

    This report describes the March 2011 calibration of the Accuscan II HpGe In Vivo system for I-131 thyroid counting. The source used for the calibration was an Analytics mixed gamma source 82834-121 distributed in an epoxy matrix in a Wheaton Liquid Scintillation Vial with energies from 88.0 keV to 1836.1 keV. The center of the detectors was position 64-feet from the vault floor. This position places the approximate center line of the detectors at the center line of the source in the thyroid tube. The calibration was performed using an RMC II phantom (Appendix J). Validation testing was performed using a Ba-133 source and an ANSI N44.3 Phantom (Appendix I). This report includes an overview introduction and records for the energy/FWHM and efficiency calibrations including verification counting. The Accuscan II system was successfully calibrated for counting the thyroid for I-131 and verified in accordance with ANSI/HPS N13.30-1996 criteria.

  10. Icing research tunnel rotating bar calibration measurement system

    NASA Technical Reports Server (NTRS)

    Gibson, Theresa L.; Dearmon, John M.

    1993-01-01

    In order to measure icing patterns across a test section of the Icing Research Tunnel, an automated rotating bar measurement system was developed at the NASA Lewis Research Center. In comparison with the previously used manual measurement system, this system provides a number of improvements: increased accuracy and repeatability, increased number of data points, reduced tunnel operating time, and improved documentation. The automated system uses a linear variable differential transformer (LVDT) to measure ice accretion. This instrument is driven along the bar by means of an intelligent stepper motor which also controls data recording. This paper describes the rotating bar calibration measurement system.

  11. Ice thickness measurement system for the icing research tunnel calibration

    NASA Technical Reports Server (NTRS)

    Gibson, Theresa L.; Dearmon, John M.

    1993-01-01

    To measure icing patterns across a test section of the Icing Research Tunnel, an automated rotating bar measurement system was developed at NASA LeRC. In comparison with the previously used manual measurement system, this system provides a number of improvements: increased accuracy and repeatability, increased number of data points, reduced tunnel operating time, and improved documentation. The automated system uses a linear variable differential transformer (LVDT) to measure ice accretion. This instrument is driven along the bar by means of an intelligent stepper motor which also controls data recording. This paper describes the rotating bar calibration measurement system.

  12. Exploring the calibration of a wind forecast ensemble for energy applications

    NASA Astrophysics Data System (ADS)

    Heppelmann, Tobias; Ben Bouallegue, Zied; Theis, Susanne

    2015-04-01

    In the German research project EWeLiNE, Deutscher Wetterdienst (DWD) and Fraunhofer Institute for Wind Energy and Energy System Technology (IWES) are collaborating with three German Transmission System Operators (TSO) in order to provide the TSOs with improved probabilistic power forecasts. Probabilistic power forecasts are derived from probabilistic weather forecasts, themselves derived from ensemble prediction systems (EPS). Since the considered raw ensemble wind forecasts suffer from underdispersiveness and bias, calibration methods are developed for the correction of the model bias and the ensemble spread bias. The overall aim is to improve the ensemble forecasts such that the uncertainty of the possible weather deployment is depicted by the ensemble spread from the first forecast hours. Additionally, the ensemble members after calibration should remain physically consistent scenarios. We focus on probabilistic hourly wind forecasts with horizon of 21 h delivered by the convection permitting high-resolution ensemble system COSMO-DE-EPS which has become operational in 2012 at DWD. The ensemble consists of 20 ensemble members driven by four different global models. The model area includes whole Germany and parts of Central Europe with a horizontal resolution of 2.8 km and a vertical resolution of 50 model levels. For verification we use wind mast measurements around 100 m height that corresponds to the hub height of wind energy plants that belong to wind farms within the model area. Calibration of the ensemble forecasts can be performed by different statistical methods applied to the raw ensemble output. Here, we explore local bivariate Ensemble Model Output Statistics at individual sites and quantile regression with different predictors. Applying different methods, we already show an improvement of ensemble wind forecasts from COSMO-DE-EPS for energy applications. In addition, an ensemble copula coupling approach transfers the time-dependencies of the raw

  13. Comparison of proton energy loss in thick absorbers in terms of a reduced calibration curve

    NASA Astrophysics Data System (ADS)

    Yevseyeva, O.; de Assis, J. T.; Evseev, I. G.; Schelin, H. R.; Ahmann, F.; Paschuk, S. A.; Milhoretto, E.; Setti, J. A. P.; Diaz, K. S.; Hormaza, J. M.; Lopes, R. T.

    2011-10-01

    Monte Carlo simulations are essential for the support of particle experiments and developments of novel particle registration systems ranging from detectors developed for high-energy physics experiments at CERN to those for medical tomography. For proton beams, popular Monte Carlo codes like TRIM/SRIM, MCNPX and GEANT4 generate very similar final energy spectra for relatively thin absorbers, with differences unlikely to be detected in experiments. For thick absorbers, however, the disagreement is much larger, even for a moderate energy resolution. The reason for this is unclear because the actual overall accuracy of the proton stopping power in the Bethe-Bloch domain is known to be about 1%. One approach to investigate these differences is to compare, for example, the data from the NIST PSTAR and the SRIM reference data tables with the output of the Monte Carlo codes. When the various codes are validated against these tables, the differences in the simulated spectra mainly reflect the differences in the reference tables. Of more practical interest is the validation of the codes against experimental data for thick absorbers. However, only few experimental data sets are available here, and the existing data have been acquired at different initial proton energies and for different absorber materials. In order to compare the results of Monte Carlo simulations with existing experimental data, we applied the so-called reduced calibration method. This reduced calibration curve represents the range-energy dependence normalizing the range scale to the full projected range (for a given initial proton energy in a given material), and the proton energy scale to the given initial proton energy. The advantage of this approach is that the reduced calibration curve is nearly energy and material independent, and, thus, experimental, simulated and published reference data obtained at different energies and for different materials can be compared in one graph.

  14. Design of a novel digital phantom for EIT system calibration.

    PubMed

    Li, Nan; Wang, Wei; Xu, Hui

    2011-01-01

    This paper presented the design method of a novel digital phantom for electrical impedance tomography system calibration. By current sensing, voltage generating circuitry and digital processing algorithms implemented in FPGA, the digital phantom can simulate different impedances of tissues. The hardware of the digital phantom mainly consists of current sensing section, voltage generating section, electrodes switching section and a FPGA. Concerning software, the CORDIC algorithm is implemented in the FPGA to realize direct digital synthesis (DDS) technique and related algorithms. Simulation results show that the suggested system exhibits sufficient accuracy in the frequency range 10 Hz to 2 MHz. With the advantages offered by digital techniques, our approach has the potential of speed, accuracy and flexibility of the EIT system calibration process. PMID:22255412

  15. The laser calibration system of the TOP detector

    NASA Astrophysics Data System (ADS)

    Benettoni, M.; Gaz, A.; Lacaprara, S.; Posocco, M.; Sartori, P.; Stroili, R.; Torassa, E.; Mussa, R.; Tamponi, U.

    2015-07-01

    The TOP detector at the Belle II Experiment is a particle identification detector, devoted mainly to the separation of charged pions and kaons. The charged particles emit Cherenkov photons when traversing a quartz radiator and these photons are converted inside micro-channel plates photomultipliers. The time of arrival and position of the photoelectrons, detected with excellent spatial and time resolution, are used to reconstruct the angle of the Cherenkov light emitted by the charged particle. The monitoring of the time stability and the measurement of the quantum efficiency of the photomultipliers are performed with a laser calibration system, with a target time resolution better than 50 ps. The system is a combination of a picosecond laser source, long single mode fibers, fiber bundles, and microlenses, which are needed to illuminate all the channels of the photomultipliers. A detailed description of the laser calibration system and its properties is given.

  16. Global space-based inter-calibration system reflective solar calibration reference: from Aqua MODIS to S-NPP VIIRS

    NASA Astrophysics Data System (ADS)

    Xiong, Xiaoxiong; Angal, Amit; Butler, James; Cao, Changyong; Doelling, David; Wu, Aisheng; Wu, Xiangqian

    2016-05-01

    The MODIS has successfully operated on-board the NASA's EOS Terra and Aqua spacecraft for more than 16 and 14 years, respectively. MODIS instrument was designed with stringent calibration requirements and comprehensive on-board calibration capability. In the reflective solar spectral region, Aqua MODIS has performed better than Terra MODIS and, therefore, has been chosen by the Global Space-based Inter- Calibration System (GSICS) operational community as the calibration reference sensor in cross-sensor calibration and calibration inter-comparisons. For the same reason, it has also been used by a number of earth-observing sensors as their calibration reference. Considering that Aqua MODIS has already operated for nearly 14 years, it is essential to transfer its calibration to a follow-on reference sensor with a similar calibration capability and stable performance. The VIIRS is a follow-on instrument to MODIS and has many similar design features as MODIS, including their on-board calibrators (OBC). As a result, VIIRS is an ideal candidate to replace MODIS to serve as the future GSICS reference sensor. Since launch, the S-NPP VIIRS has already operated for more than 4 years and its overall performance has been extensively characterized and demonstrated to meet its overall design requirements. This paper provides an overview of Aqua MODIS and S-NPP VIIRS reflective solar bands (RSB) calibration methodologies and strategies, traceability, and their on-orbit performance. It describes and illustrates different methods and approaches that can be used to facilitate the calibration reference transfer, including the use of desert and Antarctic sites, deep convective clouds (DCC), and the lunar observations.

  17. CMR Shuffler System: Passive Mode Calibration and Certification Report

    SciTech Connect

    Frame, Katherine C.; Gomez, Cipriano D.; Salazar, William R.; Mayo, Douglas R.; Vigil, Georgiana M.; Crooks, William J.; Stange, Sy

    2012-07-20

    Los Alamos National Laboratory has a number of spherical confinement vessels (CVs) remaining from tests involving nuclear materials. These vessels have an inner diameter of 6 feet with 1 to 2 inch thick steel walls. The goal of the Confinement Vessel Disposition (CVD) project is to remove debris and reduce contamination inside the vessels. As debris is removed from the vessels, material will be placed in waste drums. Far-field gamma ray assay will be used to determine when a drum is nearing a {sup 239}Pu equivalent mass of less than 200 g. The drum will then be assayed using a waste drum shuffler operated in passive mode using a neutron coincidence counting method for accountability. This report focuses on the testing and calibration of the CMR waste drum shuffler in passive mode operation. Initial testing was performed to confirm previously accepted measurement parameters. The system was then calibrated using a set of weapons grade Pu (WGPu, {sup 239}Pu > 93%) oxide standards placed inside a 55 gallon drum. The calibration data ranges from Pu mass of 0.5 g to 188.9 g. The CMR waste drum shuffler has been tested and calibrated in passive mode in preparation for safeguards accountability measurements of waste drums containing material removed from CVs for the CVD project.

  18. Comparison of energy calibration of Prognoz 5, 6, 7, and 8 and other hard-X-ray solar photometers

    NASA Astrophysics Data System (ADS)

    Farnik, F.; Valnicek, B.; Sylwester, B.; Sylwester, J.; Jakimiec, J.

    1984-08-01

    The data obtained by the Prognoz 5, 6, 7, and 8 hard-X-ray photometers are compared with the measurements carried out by similar instruments aboard Solrad 11, ISEE 3, SMM, and Hinotori satellites. Using the method of relative-amplitude analysis, the apparent disagreement in the energy-discrimination-level calibration between the instruments is pointed out. The results of the comparison and possible sources of disagreement are given. An international effort to develop a system of uniform prelaunch calibration of photometers based on a reference calibration source is suggested.

  19. Method and system for calibrating acquired spectra for use in spectral analysis

    DOEpatents

    Reber, Edward L.; Rohde, Kenneth W.; Blackwood, Larry G.

    2010-09-14

    A method for calibrating acquired spectra for use in spectral analysis includes performing Gaussian peak fitting to spectra acquired by a plurality of NaI detectors to define peak regions. A Na and annihilation doublet may be located among the peak regions. A predetermined energy level may be applied to one of the peaks in the doublet and a location of a hydrogen peak may be predicted based on the location of at least one of the peaks of the doublet. Control systems for calibrating spectra are also disclosed.

  20. Precise calibration of binocular vision system used for vision measurement.

    PubMed

    Cui, Yi; Zhou, Fuqiang; Wang, Yexin; Liu, Liu; Gao, He

    2014-04-21

    Binocular vision calibration is of great importance in 3D machine vision measurement. With respect to binocular vision calibration, the nonlinear optimization technique is a crucial step to improve the accuracy. The existing optimization methods mostly aim at minimizing the sum of reprojection errors for two cameras based on respective 2D image pixels coordinate. However, the subsequent measurement process is conducted in 3D coordinate system which is not consistent with the optimization coordinate system. Moreover, the error criterion with respect to optimization and measurement is different. The equal pixel distance error in 2D image plane leads to diverse 3D metric distance error at different position before the camera. To address these issues, we propose a precise calibration method for binocular vision system which is devoted to minimizing the metric distance error between the reconstructed point through optimal triangulation and the ground truth in 3D measurement coordinate system. In addition, the inherent epipolar constraint and constant distance constraint are combined to enhance the optimization process. To evaluate the performance of the proposed method, both simulative and real experiments have been carried out and the results show that the proposed method is reliable and efficient to improve measurement accuracy compared with conventional method. PMID:24787804

  1. Focal spot calibration in a digital breast tomosynthesis system

    NASA Astrophysics Data System (ADS)

    Choi, Jaegu; Hwang, Sun-Jo; Choi, Young-Wook

    2012-05-01

    Digital breast tomosynthesis (DBT) technology is a promising modality for the early detection of breast cancer and could provide clear diagnostic images in which the effect of tissue overlap is alleviated. Accurate calibration of the system geometry is essential for successful image reconstruction in DBT systems. The geometrical calibration of the focal spot in the X-ray tube at the detector plane is one of the most critical parameters of a DBT system. In this paper, a new method using a multi-hole collimator and an iterative calibration algorithm is reported in order to estimate the position of the focal spot at the detector plane. The iterative algorithm is based on the area-distance relationship in the collimator image. The linearity of this relationship has been verified both empirically and theoretically. A focal spot estimate has been achieved regardless of the location of the focal spot in the image. A total of 15 projection images acquired with the DBT system have been successfully reconstructed with geometric information about the focal spot position provided by our new method, and the focal spot estimate method proposed in this paper could be a useful solution for locating optical sources that cannot be viewed or accessed.

  2. Precision ozone calibration system based on vapor pressures of ozone

    NASA Technical Reports Server (NTRS)

    Mauersberger, K.; Hanson, D.; Morton, J.

    1987-01-01

    A precision ozone calibration system for stratospheric research has been developed and evaluated. Vapor pressures above solid ozone are mixed with a carrier gas (N2) to produce stratospheric ozone mixing ratios at total pressures of 1 to cover 20 torr. The uncertainty in the ozone mixing ratios is approximately + or - 1.5 percent, the stability of ozone is + or - 0.3 percent. Experiments to be calibrated may sample the gas mixture over a wide range of flow rates; the maximum throughput of gas with corrections of less than 1 percent to ozone is about 200 torr 1/min. A mass spectrometer system continuously monitors the purity and stability of the N2-O3 gas mixture.

  3. An integrated development facility for the calibration of low-energy charged particle flight instrumentation

    NASA Technical Reports Server (NTRS)

    Biddle, A. P.; Reynolds, J. M.

    1985-01-01

    A system was developed for the calibration and development of thermal ion instrumentation. The system provides an extended beam with usable current rates, approx. 1 pA/sq cm, at beam energies as low as 1 eV, with much higher values available with increasing energy. A tandem electrostatic and variable geometry magnetic mirror configuration within the ion source optimizes the use of the ionizing electrons. The system is integrated under microcomputer control to allow automatic control and monitoring of the beam energy and composition and the mass and angle-dependent response of the instrument under test. The system is pumped by a combination of carbon vane and cryogenic sorption roughing pumps and ion and liquid helium operating pumps.

  4. Calibration of Viking imaging system pointing, image extraction, and optical navigation measure

    NASA Technical Reports Server (NTRS)

    Breckenridge, W. G.; Fowler, J. W.; Morgan, E. M.

    1977-01-01

    Pointing control and knowledge accuracy of Viking Orbiter science instruments is controlled by the scan platform. Calibration of the scan platform and the imaging system was accomplished through mathematical models. The calibration procedure and results obtained for the two Viking spacecraft are described. Included are both ground and in-flight scan platform calibrations, and the additional calibrations unique to optical navigation.

  5. Development of a Calibration Strip for Immunochromatographic Assay Detection Systems

    PubMed Central

    Gao, Yue-Ming; Wei, Jian-Chong; Mak, Peng-Un; Vai, Mang-I.; Du, Min; Pun, Sio-Hang

    2016-01-01

    With many benefits and applications, immunochromatographic (ICG) assay detection systems have been reported on a great deal. However, the existing research mainly focuses on increasing the dynamic detection range or application fields. Calibration of the detection system, which has a great influence on the detection accuracy, has not been addressed properly. In this context, this work develops a calibration strip for ICG assay photoelectric detection systems. An image of the test strip is captured by an image acquisition device, followed by performing a fuzzy c-means (FCM) clustering algorithm and maximin-distance algorithm for image segmentation. Additionally, experiments are conducted to find the best characteristic quantity. By analyzing the linear coefficient, an average value of hue (H) at 14 min is chosen as the characteristic quantity and the empirical formula between H and optical density (OD) value is established. Therefore, H, saturation (S), and value (V) are calculated by a number of selected OD values. Then, H, S, and V values are transferred to the RGB color space and a high-resolution printer is used to print the strip images on cellulose nitrate membranes. Finally, verification of the printed calibration strips is conducted by analyzing the linear correlation between OD and the spectral reflectance, which shows a good linear correlation (R2 = 98.78%). PMID:27367694

  6. Calibration of SQUID vector magnetometers in full tensor gradiometry systems

    NASA Astrophysics Data System (ADS)

    Schiffler, M.; Queitsch, M.; Stolz, R.; Chwala, A.; Krech, W.; Meyer, H.-G.; Kukowski, N.

    2014-08-01

    Measurement of magnetic vector or tensor quantities, namely of field or field gradient, delivers more details of the underlying geological setting in geomagnetic prospection than a scalar measurement of a single component or of the scalar total magnetic intensity. Currently, highest measurement resolutions are achievable with superconducting quantum interference device (SQUID)-based systems. Due to technological limitations, it is necessary to suppress the parasitic magnetic field response from the SQUID gradiometer signals, which are a superposition of one tensor component and all three orthogonal magnetic field components. This in turn requires an accurate estimation of the local magnetic field. Such a measurement can itself be achieved via three additional orthogonal SQUID reference magnetometers. It is the calibration of such a SQUID reference vector magnetometer system that is the subject of this paper. A number of vector magnetometer calibration methods are described in the literature. We present two methods that we have implemented and compared, for their suitability of rapid data processing and integration into a full tensor magnetic gradiometry, SQUID-based, system. We conclude that the calibration routines must necessarily model fabrication misalignments, field offset and scale factors, and include comparison with a reference magnetic field. In order to enable fast processing on site, the software must be able to function as a stand-alone toolbox.

  7. Development of a Calibration Strip for Immunochromatographic Assay Detection Systems.

    PubMed

    Gao, Yue-Ming; Wei, Jian-Chong; Mak, Peng-Un; Vai, Mang-I; Du, Min; Pun, Sio-Hang

    2016-01-01

    With many benefits and applications, immunochromatographic (ICG) assay detection systems have been reported on a great deal. However, the existing research mainly focuses on increasing the dynamic detection range or application fields. Calibration of the detection system, which has a great influence on the detection accuracy, has not been addressed properly. In this context, this work develops a calibration strip for ICG assay photoelectric detection systems. An image of the test strip is captured by an image acquisition device, followed by performing a fuzzy c-means (FCM) clustering algorithm and maximin-distance algorithm for image segmentation. Additionally, experiments are conducted to find the best characteristic quantity. By analyzing the linear coefficient, an average value of hue (H) at 14 min is chosen as the characteristic quantity and the empirical formula between H and optical density (OD) value is established. Therefore, H, saturation (S), and value (V) are calculated by a number of selected OD values. Then, H, S, and V values are transferred to the RGB color space and a high-resolution printer is used to print the strip images on cellulose nitrate membranes. Finally, verification of the printed calibration strips is conducted by analyzing the linear correlation between OD and the spectral reflectance, which shows a good linear correlation (R² = 98.78%). PMID:27367694

  8. Residential vertical geothermal heat pump system models: Calibration to data

    SciTech Connect

    Thornton, J.W.; McDowell, T.P.; Shonder, J.A.; Hughes, P.J.; Pahud, D.; Hellstroem, G.A.J.

    1997-12-31

    A detailed component-based simulation model of a geothermal heat pump system has been calibrated to monitored data taken from a family housing unit located at Fort Polk, Louisiana. The simulation model represents the housing unit, geothermal heat pump, ground heat exchanger, thermostat, blower, and ground-loop pump. Each of these component models was tuned to better match the measured data from the site. These tuned models were then interconnected to form the system model. The system model was then exercised in order to demonstrate its capabilities.

  9. Residential Vertical Geothermal Heat Pump System Models: Calibration to Data:

    SciTech Connect

    Thornton, Jeff W.; McDowell, T. P.; Shonder, John A; Hughes, Patrick; Pahud, D.; Hellstrom, G.

    1997-06-01

    A detailed component-based simulation model of a geothermal heat pump system has been calibrated to monitored data taken from a family housing unit located at Fort Polk, Louisiana. The simulation model represents the housing unit, geothermal heat pump, ground heat exchanger, thermostat, blower, and ground-loop pump. Each of these component models was 'tuned' to better match the measured data from the site. These tuned models were then interconnect to form the system model. The system model was then exercised in order to demonatrate its capabilities.

  10. Advanced Self-Calibrating, Self-Repairing Data Acquisition System

    NASA Technical Reports Server (NTRS)

    Medelius, Pedro J. (Inventor); Eckhoff, Anthony J. (Inventor); Angel, Lucena R. (Inventor); Perotti, Jose M. (Inventor)

    2002-01-01

    An improved self-calibrating and self-repairing Data Acquisition System (DAS) for use in inaccessible areas, such as onboard spacecraft, and capable of autonomously performing required system health checks, failure detection. When required, self-repair is implemented utilizing a "spare parts/tool box" system. The available number of spare components primarily depends upon each component's predicted reliability which may be determined using Mean Time Between Failures (MTBF) analysis. Failing or degrading components are electronically removed and disabled to reduce power consumption, before being electronically replaced with spare components.

  11. A field test and calibration system for production safety monitoring systems

    NASA Astrophysics Data System (ADS)

    Liu, Yang; Xing, Weiwei; Fan, Shangchun

    2008-10-01

    This paper introduces a field testing and calibrating system that serves the national industrial standards of production safety. The system supervises the monitoring systems of hazardous sources by measuring and evaluating them in the field. The system is designed as a cabinet that can be carried by an automobile. The front end parts of the system are designed as intrinsically safe handset instruments, so that they can be moved into Zone 0 independently and measure the supervised devices as close as possible. Measurement accuracy of the instruments is guaranteed by design. The system also provides a calibration interface with upper standard devices to facilitate periodically automatic calibration itself.

  12. The CHEOPS instrument on-ground calibration system

    NASA Astrophysics Data System (ADS)

    Wildi, F. P.; Chazelas, B.; Deline, A.; Sordet, M.; Sarajlic, M.

    2015-09-01

    The CHaracterising ExOPlanet Satellite (CHEOPS) is a joint ESA-Switzerland space mission dedicated to the search for exoplanet photometric transits. Its launch readiness is expected at the end of 2017. The CHEOPS instrument will be the first space telescope dedicated to search for transits on bright stars already known to host planets. By being able to point at nearly any location on the sky, it will provide the unique capability of determining accurate radii for a subset of those planets for which the mass has already been estimated from ground-based spectroscopic surveys. To reach its goals CHEOPS will measure photometric signals with a precision of 20 ppm in 6 hours of integration time for a 9th magnitude star. This corresponds to a signal-to-noise ratio of 5 for a transit of an Earth-sized planet orbiting a solar-sized star. Achieving the precision goal requires thorough post-processing of the data acquired by the CHEOPS' instrument system (CIS) in order to remove as much as possible the instrument's signature. To this purpose, a rigorous calibration campaign will be conducted after the CIS tests in order to measure, its behavior under the different environmental conditions. The main tool of this calibration campaign is a custom-made calibration system that will inject a stimulus beam in the CIS and measure its response to the variation of electrical and environmental parameters. These variations will be compiled in a correction model. Ultimately, the CIS photometric performance will be measured on an artificial star, applying the correction model This paper addresses the requirements applicable to the calibration system, its design and its design performance.

  13. New Method for Calibration for Hyperspectral Pushbroom Imaging Systems

    NASA Technical Reports Server (NTRS)

    Ryan, Robert; Olive, Dan; ONeal, Duane; Schere, Chris; Nixon, Thomas; May, Chengye; Ryan, Jim; Stanley, Tom; Witcher, Kern

    1999-01-01

    A new, easy-to-implement approach for achieving highly accurate spectral and radiometric calibration of array-based, hyperspectral pushbroom imagers is presented in this paper. The equivalence of the plane of the exit port of an integrating sphere to a Lambertian surface is utilized to provide a field-filling radiance source for the imager. Several different continuous wave lasers of various wavelengths and a quartz-tungsten-halogen lamp internally illuminate the sphere. The imager is positioned to "stare" into the port, and the resultant data cube is analyzed to determine wavelength calibrations, spectral widths of channels, radiometric characteristics, and signal-to-noise ratio, as well as an estimate of signal-to-noise performance in the field. The "smile" (geometric distortion of spectra) of the system can be quickly ascertained using this method. As the price and availability of solid state laser sources improve, this technique could gain wide acceptance.

  14. Calibration system for measuring the radon flux density.

    PubMed

    Onishchenko, A; Zhukovsky, M; Bastrikov, V

    2015-06-01

    The measurement of radon flux from soil surface is the useful tool for the assessment of radon-prone areas and monitoring of radon releases from uranium mining and milling residues. The accumulation chambers with hollow headspace and chambers with activated charcoal are the most used devices for these purposes. Systematic errors of the measurements strongly depend on the geometry of the chamber and diffusion coefficient of the radon in soil. The calibration system for the attestation of devices for radon flux measurements was constructed. The calibration measurements of accumulation chambers and chambers with activated charcoal were conducted. The good agreement between the results of 2D modelling of radon flux and measurements results was observed. It was demonstrated that reliable measurements of radon flux can be obtained by chambers with activated charcoal (equivalent volume ~75 l) or by accumulation chambers with hollow headspace of ~7-10 l and volume/surface ratio (height) of >15 cm. PMID:25977351

  15. Black-box calibration for complex-system simulation.

    PubMed

    Forrester, Alexander I J

    2010-08-13

    Predicting or measuring the output of complex systems is an important and challenging part of many areas of science. If multiple observations are required for parameter studies and optimization, accurate, computationally intensive predictions or expensive experiments are intractable. This paper looks at the use of Gaussian-process-based correlations to correct simple computer models with sparse data from physical experiments or more complex computer models. In essence, physics-based computer codes and experiments are replaced by fast problem-specific statistics-based codes. Two aerodynamic design examples are presented. First, a cheap two-dimensional potential-flow solver is calibrated to represent the flow over the wing of an unmanned air vehicle. The rear wing of a racing car is then optimized using rear-wing simulations calibrated to include the effects of the flow over the whole car. PMID:20603368

  16. Plasma Diagnostic Calibration and Characterizations with High Energy X-rays

    SciTech Connect

    Zaheer Ali

    2009-06-05

    National Security Technologies’ High Energy X-ray (HEX) Facility is unique in the U.S. Department of Energy complex. The HEX provides fluorescent X-rays of 5 keV to 100 keV with fluence of 10^5–10^6 photons/cm^2/second at the desired line energy. Low energy lines can be filtered, and both filters and fluorescers can be changed rapidly. We present results of calibrating image plates (sensitivity and modulation transfer function), a Bremsstrahlung spectrometer (stacked filters and image plates), and the National Ignition Facility’s Filter- Fluorescer Experiment (FFLEX) high energy X-ray spectrometer. We also show results of a scintillator light yield and alignment study for a neutron imaging system.

  17. Design and development of an ultrasound calibration phantom and system

    NASA Astrophysics Data System (ADS)

    Cheng, Alexis; Ackerman, Martin K.; Chirikjian, Gregory S.; Boctor, Emad M.

    2014-03-01

    Image-guided surgery systems are often used to provide surgeons with informational support. Due to several unique advantages such as ease of use, real-time image acquisition, and no ionizing radiation, ultrasound is a common medical imaging modality used in image-guided surgery systems. To perform advanced forms of guidance with ultrasound, such as virtual image overlays or automated robotic actuation, an ultrasound calibration process must be performed. This process recovers the rigid body transformation between a tracked marker attached to the ultrasound transducer and the ultrasound image. A phantom or model with known geometry is also required. In this work, we design and test an ultrasound calibration phantom and software. The two main considerations in this work are utilizing our knowledge of ultrasound physics to design the phantom and delivering an easy to use calibration process to the user. We explore the use of a three-dimensional printer to create the phantom in its entirety without need for user assembly. We have also developed software to automatically segment the three-dimensional printed rods from the ultrasound image by leveraging knowledge about the shape and scale of the phantom. In this work, we present preliminary results from using this phantom to perform ultrasound calibration. To test the efficacy of our method, we match the projection of the points segmented from the image to the known model and calculate a sum squared difference between each point for several combinations of motion generation and filtering methods. The best performing combination of motion and filtering techniques had an error of 1.56 mm and a standard deviation of 1.02 mm.

  18. Surface moisture measurement system electromagnetic induction probe calibration technique

    SciTech Connect

    Crowe, R.D., Westinghouse Hanford

    1996-07-08

    The Surface Moisture Measurement System (SMMS) is designed to measure the moisture concentration near the surfaces of the wastes located in the Hanford Site tank farms. This document describes a calibration methodology to demonstrate that the Electromagnetic Induction (EMI) moisture probe meets relevant requirements in the `Design Requirements Document (DRD) for the Surface Moisture Measurement System.` The primary purpose of the experimental tests described in this methodology is to make possible interpretation of EMI in-tank surface probe data to estimate the surface moisture.

  19. A Self Calibrating Remote Controllable Water Monitoring System

    NASA Astrophysics Data System (ADS)

    Croft, J. E.; Heath, G. L.

    2006-12-01

    The Idaho National Laboratory (INL) has been asked to support Mountain States Environmental (MSE) by providing an automated remote monitoring system for a treatment process of acid mine discharge from the Susie mine, which is located outside of Rimini near Helena, Montana. The mine, now abandoned, produces water year around that is contaminated with lead, zinc, cadmium and arsenic (Pb, Zn, Cd, and As). MSE is managing a project to install and test a pilot scale treatment system that will operate year around treating the discharge water to remove the metal contaminants of concern. The treatment system employs a combination of lime addition, iron addition, settling chambers, sand filters and polishing to treat the contaminated water. The system requires routine monitoring to ensure that process controls remain functional. The INL is developing a monitoring system capable of self calibrating, with two way communication, in a remote location that will provide physical and chemical water quality measurements throughout the treatment system.

  20. 40 CFR 92.116 - Engine output measurement system calibrations.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... calibration. (1) The engine flywheel torque and engine speed measurement transducers shall be calibrated with the calibration equipment described in this section. (2) The engine flywheel torque feedback signals... engineering practice. (4) When calibrating the engine flywheel torque transducer, any lever arm used...

  1. 40 CFR 92.116 - Engine output measurement system calibrations.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... calibration. (1) The engine flywheel torque and engine speed measurement transducers shall be calibrated with the calibration equipment described in this section. (2) The engine flywheel torque feedback signals... engineering practice. (4) When calibrating the engine flywheel torque transducer, any lever arm used...

  2. 40 CFR 92.116 - Engine output measurement system calibrations.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... calibration. (1) The engine flywheel torque and engine speed measurement transducers shall be calibrated with the calibration equipment described in this section. (2) The engine flywheel torque feedback signals... engineering practice. (4) When calibrating the engine flywheel torque transducer, any lever arm used...

  3. High-energy x-ray backlighter spectrum measurements using calibrated image plates

    SciTech Connect

    Maddox, B.R.; Park, H.S.; Remington, B.A.; Izumi, N.; Chen, S.; Chen, C.; Kimminau, G.; Ali, Z.; Haugh, M.J.; Ma, Q.

    2012-10-10

    The x-ray spectrum between 18 and 88 keV generated by a petawatt laser driven x-ray backlighter target was measured using a 12-channel differential filter pair spectrometer. The spectrometer consists of a series of filter pairs on a Ta mask coupled with an x-ray sensitive image plate. A calibration of Fuji{trademark} MS and SR image plates was conducted using a tungsten anode x-ray source and the resulting calibration applied to the design of the Ross pair spectrometer. Additionally, the fade rate and resolution of the image plate system were measured for quantitative radiographic applications. The conversion efficiency of laser energy into silver K{alpha} x rays from a petawatt laser target was measured using the differential filter pair spectrometer and compared to measurements using a single photon counting charge coupled device.

  4. 49 CFR 229.29 - Air brake system calibration, maintenance, and testing.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 4 2012-10-01 2012-10-01 false Air brake system calibration, maintenance, and... Inspections and Tests § 229.29 Air brake system calibration, maintenance, and testing. (a) A locomotive's air brake system shall receive the calibration, maintenance, and testing as prescribed in this section....

  5. 49 CFR 229.29 - Air brake system calibration, maintenance, and testing.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 4 2013-10-01 2013-10-01 false Air brake system calibration, maintenance, and... Inspections and Tests § 229.29 Air brake system calibration, maintenance, and testing. (a) A locomotive's air brake system shall receive the calibration, maintenance, and testing as prescribed in this section....

  6. 49 CFR 229.29 - Air brake system calibration, maintenance, and testing.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 4 2014-10-01 2014-10-01 false Air brake system calibration, maintenance, and... Inspections and Tests § 229.29 Air brake system calibration, maintenance, and testing. (a) A locomotive's air brake system shall receive the calibration, maintenance, and testing as prescribed in this section....

  7. Accurate pose estimation using single marker single camera calibration system

    NASA Astrophysics Data System (ADS)

    Pati, Sarthak; Erat, Okan; Wang, Lejing; Weidert, Simon; Euler, Ekkehard; Navab, Nassir; Fallavollita, Pascal

    2013-03-01

    Visual marker based tracking is one of the most widely used tracking techniques in Augmented Reality (AR) applications. Generally, multiple square markers are needed to perform robust and accurate tracking. Various marker based methods for calibrating relative marker poses have already been proposed. However, the calibration accuracy of these methods relies on the order of the image sequence and pre-evaluation of pose-estimation errors, making the method offline. Several studies have shown that the accuracy of pose estimation for an individual square marker depends on camera distance and viewing angle. We propose a method to accurately model the error in the estimated pose and translation of a camera using a single marker via an online method based on the Scaled Unscented Transform (SUT). Thus, the pose estimation for each marker can be estimated with highly accurate calibration results independent of the order of image sequences compared to cases when this knowledge is not used. This removes the need for having multiple markers and an offline estimation system to calculate camera pose in an AR application.

  8. A geometric calibration method for cone beam CT systems

    SciTech Connect

    Yang, Kai; Kwan, Alexander L. C.; Miller, DeWitt F.; Boone, John M.

    2006-06-15

    Cone beam CT systems are being deployed in large numbers for small animal imaging, dental imaging, and other specialty applications. A new high-precision method for cone beam CT system calibration is presented in this paper. It uses multiple projection images acquired from rotating point-like objects (metal ball bearings) and the angle information generated from the rotating gantry system is also used. It is assumed that the whole system has a mechanically stable rotation center and that the detector does not have severe out-of-plane rotation (<2 deg.). Simple geometrical relationships between the orbital paths of individual BBs and five system parameters were derived. Computer simulations were employed to validate the accuracy of this method in the presence of noise. Equal or higher accuracy was achieved compared with previous methods. This method was implemented for the geometrical calibration of both a micro CT scanner and a breast CT scanner. The reconstructed tomographic images demonstrated that the proposed method is robust and easy to implement with high precision.

  9. Laser Tracker Calibration - Testing the Angle Measurement System -

    SciTech Connect

    Gassner, Georg; Ruland, Robert; /SLAC

    2008-12-05

    Physics experiments at the SLAC National Accelerator Laboratory (SLAC) usually require high accuracy positioning, e. g. 100 {micro}m over a distance of 150 m or 25 {micro}m in a 10 x 10 x 3 meter volume. Laser tracker measurement systems have become one of the most important tools for achieving these accuracies when mapping components. The accuracy of these measurements is related to the manufacturing tolerances of various individual components, the resolutions of measurement systems, the overall precision of the assembly, and how well imperfections can be modeled. As with theodolites and total stations, one can remove the effects of most assembly and calibration errors by measuring targets in both direct and reverse positions and computing the mean to obtain the result. However, this approach does not compensate for errors originating from the encoder system. In order to improve and gain a better understanding of laser tracker angle measurement tolerances we extended our laboratory's capabilities with the addition of a horizontal angle calibration test stand. This setup is based on the use of a high precision rotary table providing an angular accuracy of better than 0.2 arcsec. Presently, our setup permits only tests of the horizontal angle measurement system. A test stand for vertical angle calibration is under construction. Distance measurements (LECOCQ & FUSS, 2000) are compared to an interferometer bench for distances of up to 32 m. Together both tests provide a better understanding of the instrument and how it should be operated. The observations also provide a reasonable estimate of covariance information of the measurements according to their actual performance for network adjustments.

  10. Calibration of a Bonner sphere extension (BSE) for high-energy neutron spectrometry

    PubMed Central

    Howell, R.M.; Burgett, E.A.; Wiegel, B.; Hertel, N.E.

    2011-01-01

    In a recent work, we constructed modular multisphere system which expands upon the design of an existing, commercially available Bonner sphere system by adding concentric shells of copper, tungsten, or lead. Our modular multisphere system is referred to as the Bonner Sphere Extension (BSE). The BSE was tested in a high energy neutron beam (thermal to 800 MeV) at Los Alamos Neutron Science Center and provided improvement in the measurement of the neutron spectrum in the energy regions above 20 MeV when compared to the standard BSS (Burgett, 2008 and Howell et al., 2009). However, when the initial test of the system was carried-out at LANSCE, the BSE had not yet been calibrated. Therefore the objective of the present study was to perform calibration measurements. These calibration measurements were carried out using monoenergetic neutron ISO 8529-1 reference beams at the Physikalisch-Technische Bundesanstalt (PTB), Braunschweig, Germany. The following monoenergetic reference beams were used for these experiments: 14.8 MeV, 1.2 MeV, 565 keV, and 144 keV. Response functions for the BSE were calculated using the Monte Carlo N-Particle Code, eXtended (MCNPX). The percent difference between the measured and calculated responses was calculated for each sphere and energy. The difference between measured and calculated responses for individual spheres ranged between 7.9 % and 16.7 % and the arithmetic mean for all spheres was (10.9 ± 1.8) %. These sphere specific correction factors will be applied for all future measurements carried-out with the BSE. PMID:22888283

  11. Triangulation-Based Camera Calibration For Machine Vision Systems

    NASA Astrophysics Data System (ADS)

    Bachnak, Rafic A.; Celenk, Mehmet

    1990-04-01

    This paper describes a camera calibration procedure for stereo-based machine vision systems. The method is based on geometric triangulation using only a single image of three distinctive points. Both the intrinsic and extrinsic parameters of the system are determined. The procedure is performed only once at the initial set-up using a simple camera model. The effective focal length is extended in such a way that a linear transformation exists between the camera image plane and the output digital image. Only three world points are needed to find the extended focal length and the transformation matrix elements that relates the camera position and orientation to a real world coordinate system. The parameters of the system are computed by solving a set of linear equations. Experimental results show that the method, when used in a stereo system developed in this research, produces reasonably accurate 3-D measurements.

  12. Instrument calibration and data processing systems of Gaia

    NASA Astrophysics Data System (ADS)

    Castañeda-Pons, J.; Torra, J.; Fabricius, C.

    2013-05-01

    The Gaia mission will provide unprecedented positional and velocity measurements of about one billion stars in our Galaxy and throughout the local group. The data processing system is an integral and critical part of the mission. We are developing the Initial Data Treatment system, which will process the raw data arriving from the satellite in near-real-time. It will provide a first estimation of the satellite attitude, the image parameters, and a first cross-match with the Gaia catalogue. We are also developing the Intermediate Data Updating system, which calibrates the instrument response and refines image parameters and cross-match by running on the complete set of raw data, once or twice a year during the mission. Such massive re-processing needs a super-computer such as MareNostrum, where it is planned to run the system. In this paper we describe these data processing systems and the preliminary tests and results obtained with simulated data.

  13. The calibration and monitoring system for the PHENIX lead-scintillator electromagnetic calorimeter

    SciTech Connect

    David, G.; Kistenev, E.; Stoll, S.; White, S.; Woody, C.; Bazilevsky, A.; Belikov, S.; Chernichenkov, S.; Denisov, A.; Gilitzky, Y.; Kochetkov, V.; Melnikov, Y.; Onuchin, V.; Semenov, A.; Shelikhov, V.; Soldatov, A.

    1998-11-01

    A system for calibrating the PHENIX lead-scintillator electromagnetic calorimeter modules with cosmic rays and monitoring the stability during operation is described. The system is based on a UV laser which delivers light to each module through a network of optical fibers and splitters and is monitored at various points with silicon and vacuum photodiodes. Results are given from a prototype system which used a nitrogen laser to set the initial phototube gains and to establish the energy calibration of calorimeter modules and monitor their stability. A description of the final system to be used in PHENIX, based on a high power YAG laser, is also given. {copyright} {ital 1998 American Institute of Physics.}

  14. Calibration Telescope System of CWD NEVOD as a Detector of Electron and Muon Components of EAS

    NASA Astrophysics Data System (ADS)

    Amelchakov, M. B.; Bogdanov, A. G.; Zadeba, E. A.; Khokhlov, S. S.; Kokoulin, R. P.; Kompaniets, K. G.; Shulzhenko, I. A.; Shutenko, V. V.; Yashin, I. I.

    The paper describes the system of calibration telescopes as a part of the experimental complex NEVOD. The setup operation parameters were analysed during experimental series from 01/06/2013 to 21/01/2015. The technique of the charged particle local density spectrum reconstruction is described. The results of the local density spectrum measurements are presented for the EAS electron and muon components in different energy ranges of primary cosmic rays.

  15. System-Wide Calibration of River System Models: Opportunities and Challenges

    NASA Astrophysics Data System (ADS)

    Kim, S. S. H.; Hughes, J. D.; Dutta, D.; Vaze, J.

    2014-12-01

    Semi-distributed river system models are traditionally calibrated using a reach-by-reach calibration approach from that starts from headwater gauges and moves downstream toward the end of the system. Such a calibration method poses a unique problem since errors related to over-fitting, poor gauging data and uncertain physical connection are passed downstream. Reach-by-reach calibration, while efficient, cannot compensate for limited/poor calibration data of some gauges. To overcome the limitations of reach-by-reach calibration, a system calibration approach is proposed in which all the river reaches within a river basin are calibrated together using a global objective function for all stream flow gauges. In this approach, relative weights can be assigned in the global objective function for different gauges based on the magnitude and quality of available data. The system calibration approach was implemented in a river network covering 11 stream flow gauges within Murrumbidgee catchment (Australia). This study optimises flow at the selected gauges within the river network simultaneously (36 calibrated parameters) utilising a process-based semi-distributed river system model. The model includes processes such as routing, localised runoff, irrigation diversion, overbank flow and losses to groundwater. Goodness of fit is evaluated at the 11 gauges and a flow based weighting scheme is employed to find posterior distributions of parameters using an Approximate Bayesian Computation. The method is evaluated against a reach-by-reach calibration scheme. The comparison shows that the system calibration approach provides an overall improved goodness-of-fit by systematically de-valuing poor quality gauges providing an overall improved basin-wide performance. Clusters of viable parameter sets are determined from the posterior distributions and each examined to assess the effects of parameter uncertainty on internal model states. Such a method of calibration provides a lot more

  16. Image synthesis for SAR system, calibration and processor design

    NASA Technical Reports Server (NTRS)

    Holtzman, J. C.; Abbott, J. L.; Kaupp, V. H.; Frost, V. S.

    1978-01-01

    The Point Scattering Method of simulating radar imagery rigorously models all aspects of the imaging radar phenomena. Its computational algorithms operate on a symbolic representation of the terrain test site to calculate such parameters as range, angle of incidence, resolution cell size, etc. Empirical backscatter data and elevation data are utilized to model the terrain. Additionally, the important geometrical/propagation effects such as shadow, foreshortening, layover, and local angle of incidence are rigorously treated. Applications of radar image simulation to a proposed calibrated SAR system are highlighted: soil moisture detection and vegetation discrimination.

  17. Metrology system for the calibration of multi-dof mechanisms

    NASA Astrophysics Data System (ADS)

    Zago, Lorenzo; Sarajlic, Mirsad; Chevalley, Fabien

    2014-07-01

    This paper presents a novel absolute position metrology system developed in our institute based on a concept using industrial vision by which USB cameras observe targets provided with special dots patterns. The system was originally devised for precision 2D measurements, then extended to 6-degree-of-freedom setups. This particular metrology system has been developed for testing and calibrating the precision hexapods aligning the secondary mirrors of the ESO VLTI auxiliary telescopes but its principle can be used for measuring the accuracy of any multi-degree-of-freedom mechanisms. The accuracy/resolution of the metrology system is typically 2-5 μm along linear degrees of freedom, respectively 5 arcsec for tip-tilt. This method is particularly affordable in cost, robust, yet accurate enough for most precision measurements in astronomical optomechanics.

  18. Issues in energy calibration, nonlinearity, and signal processing for gamma-ray microcalorimeter

    SciTech Connect

    Rabin, Mike W; Hoover, Andrew S; Bacrania, Mnesh K; Hoteling, Nathan; Croce, M; Karpius, P J; Ullom, J N; Bennett, D A; Horansky, R D; Vale, L R; Doriese, W B

    2009-01-01

    Issues regarding the energy calibration of high dynamic range microcalorimeter detector arrays are presented with respect to new results from a minor actinide-mixed oxide radioactive source. The need to move to larger arrays of such detectors necessitates the implementation of automated analysis procedures, which turn out to be nontrivial due to complex calibration shapes and pixel-to-pixel variability. Some possible avenues for improvement, including a more physics-based calibration procedure, are suggested.

  19. Results of the use of an automated electrical measuring instrument calibration system

    NASA Astrophysics Data System (ADS)

    Barbier, Pierre

    A system for calibrating digital multimeter and stimulus generators was developed. Software was written for fully automated machines, nonautomated instruments with digital output, and entirely manual machines. The advantages in terms of calibration quality, productivity, and operator motivation are stressed.

  20. The calibration unit and detector system tests for MUSE

    NASA Astrophysics Data System (ADS)

    Kelz, A.; Bauer, S. M.; Biswas, I.; Fechner, T.; Hahn, T.; Olaya, J.-C.; Popow, E.; Roth, M. M.; Streicher, O.; Weilbacher, P.; Bacon, R.; Laurent, F.; Laux, U.; Lizon, J. L.; Loupias, M.; Reiss, R.; Rupprecht, G.

    2010-07-01

    The Multi-Unit Spectroscopic Explorer (MUSE) is an integral-field spectrograph for the ESO Very Large Telescope. After completion of the Final Design Review in 2009, MUSE is now in its manufacture and assembly phase. To achieve a relative large field-of-view with fine spatial sampling, MUSE features 24 identical spectrograph-detector units. The acceptance tests of the detector sub-systems, the design and manufacture of the calibration unit and the development of the Data Reduction Software for MUSE are under the responsibility of the AIP. The optical design of the spectrograph implies strict tolerances on the alignment of the detector systems to minimize aberrations. As part of the acceptance testing, all 24 detector systems, developed by ESO, are mounted to a MUSE reference spectrograph, which is illuminated by a set of precision pinholes. Thus the best focus is determined and the image quality of the spectrograph-detector subsystem across wavelength and field angle is measured.

  1. Mars Entry Atmospheric Data System Modeling, Calibration, and Error Analysis

    NASA Technical Reports Server (NTRS)

    Karlgaard, Christopher D.; VanNorman, John; Siemers, Paul M.; Schoenenberger, Mark; Munk, Michelle M.

    2014-01-01

    The Mars Science Laboratory (MSL) Entry, Descent, and Landing Instrumentation (MEDLI)/Mars Entry Atmospheric Data System (MEADS) project installed seven pressure ports through the MSL Phenolic Impregnated Carbon Ablator (PICA) heatshield to measure heatshield surface pressures during entry. These measured surface pressures are used to generate estimates of atmospheric quantities based on modeled surface pressure distributions. In particular, the quantities to be estimated from the MEADS pressure measurements include the dynamic pressure, angle of attack, and angle of sideslip. This report describes the calibration of the pressure transducers utilized to reconstruct the atmospheric data and associated uncertainty models, pressure modeling and uncertainty analysis, and system performance results. The results indicate that the MEADS pressure measurement system hardware meets the project requirements.

  2. PreCam: A Step Towards the Photometric Calibration of the Dark Energy Survey

    NASA Astrophysics Data System (ADS)

    Allam, S. S.; Tucker, D. L.; PreCam Team; DES Collaboration

    2016-05-01

    The Dark Energy Survey (DES) will be taking the next step in probing the properties of Dark Energy and in understanding the physics of cosmic acceleration. A step towards the photometric calibration of DES is to have a quick, bright survey in the DES footprint (PreCam), using a pre-production set of the Dark Energy Camera (DECam) CCDs and a set of 100 mm×100 mm DES filters. The objective of the PreCam Survey is to create a network of calibrated DES grizY standard stars that will be used for DES nightly calibrations and to improve the DES global relative calibrations. Here, we describe the first year of PreCam observation, results, and photometric calibrations.

  3. First on-sky calibration of an high order adaptive optics system

    NASA Astrophysics Data System (ADS)

    Pinna, E.; Quirós-Pacheco, F.; Riccardi, A.; Briguglio, R.; Puglisi, A.; Busoni, L.; Arcidiacono, C.; Argomedo, J.; Xompero, M.; Marchetti, E.; Esposito, S.

    2012-07-01

    The AO system calibration is usually done with a dedicated setup during daytime. Here we present results of two alternative techniques as the synthetic and the on-sky interaction matrix calibration. In both cases we created matrices controlling 400 modes of the LBT-FLAO system. We present here the performances reached on-sky at LBT compared with those obtained with the standard calibration. The described techniques allow calibrating the AO system without any dedicated hardware. This is particularly attractive for systems that require complex calibration setup such as those with a convex adaptive secondary like the MMT and the planned VLT AOF.

  4. Evolution of the JPSS Ground Project Calibration and Validation System

    NASA Technical Reports Server (NTRS)

    Purcell, Patrick; Chander, Gyanesh; Jain, Peyush

    2016-01-01

    The Joint Polar Satellite System (JPSS) is the National Oceanic and Atmospheric Administration's (NOAA) next-generation operational Earth observation Program that acquires and distributes global environmental data from multiple polar-orbiting satellites. The JPSS Program plays a critical role to NOAA's mission to understand and predict changes in weather, climate, oceans, coasts, and space environments, which supports the Nation's economy and protection of lives and property. The National Aeronautics and Space Administration (NASA) is acquiring and implementing the JPSS, comprised of flight and ground systems, on behalf of NOAA. The JPSS satellites are planned to fly in the afternoon orbit and will provide operational continuity of satellite-based observations and products for NOAA Polar-orbiting Operational Environmental Satellites (POES) and the Suomi National Polar-orbiting Partnership (SNPP) satellite. To support the JPSS Calibration and Validation (CalVal) node Government Resource for Algorithm Verification, Independent Test, and Evaluation (GRAVITE) services facilitate: Algorithm Integration and Checkout, Algorithm and Product Operational Tuning, Instrument Calibration, Product Validation, Algorithm Investigation, and Data Quality Support and Monitoring. GRAVITE is a mature, deployed system that currently supports the SNPP Mission and has been in operations since SNPP launch. This paper discusses the major re-architecture for Block 2.0 that incorporates SNPP lessons learned, architecture of the system, and demonstrates how GRAVITE has evolved as a system with increased performance. It is now a robust, stable, reliable, maintainable, scalable, and secure system that supports development, test, and production strings, replaces proprietary and custom software, uses open source software, and is compliant with NASA and NOAA standards.

  5. Evolution of the JPSS Ground Project Calibration and Validation System

    NASA Technical Reports Server (NTRS)

    Chander, Gyanesh; Jain, Peyush

    2014-01-01

    The Joint Polar Satellite System (JPSS) is the National Oceanic and Atmospheric Administrations (NOAA) next-generation operational Earth observation Program that acquires and distributes global environmental data from multiple polar-orbiting satellites. The JPSS Program plays a critical role to NOAAs mission to understand and predict changes in weather, climate, oceans, coasts, and space environments, which supports the Nation’s economy and protection of lives and property. The National Aerospace and Atmospheric Administration (NASA) is acquiring and implementing the JPSS, comprised of flight and ground systems on behalf of NOAA. The JPSS satellites are planned to fly in the afternoon orbit and will provide operational continuity of satellite-based observations and products for NOAA Polar-orbiting Operational Environmental Satellites (POES) and the Suomi National Polar-orbiting Partnership (SNPP) satellite. To support the JPSS Calibration and Validation (CalVal) node Government Resource for Algorithm Verification, Independent Test, and Evaluation (GRAVITE) services facilitate: Algorithm Integration and Checkout, Algorithm and Product Operational Tuning, Instrument Calibration, Product Validation, Algorithm Investigation, and Data Quality Support and Monitoring. GRAVITE is a mature, deployed system that currently supports the SNPP Mission and has been in operations since SNPP launch. This paper discusses the major re-architecture for Block 2.0 that incorporates SNPP lessons learned, architecture of the system, and demonstrates how GRAVITE has evolved as a system with increased performance. It is now a robust, stable, reliable, maintainable, scalable, and secure system that supports development, test, and production strings, replaces proprietary and custom software, uses open source software, and is compliant with NASA and NOAA standards.

  6. Calibration of an intensity ratio system for 3D imaging

    NASA Astrophysics Data System (ADS)

    Tsui, H. T.; Tang, K. C.

    1989-03-01

    An intensity ratio method for 3D imaging is proposed with error analysis given for assessment and future improvements. The method is cheap and reasonably fast as it requires no mechanical scanning or laborious correspondence computation. One drawback of the intensity ratio methods which hamper their widespread use is the undesirable change of image intensity. This is usually caused by the difference in reflection from different parts of an object surface and the automatic iris or gain control of the camera. In our method, gray-level patterns used include an uniform pattern, a staircase pattern and a sawtooth pattern to make the system more robust against errors in intensity ratio. 3D information of the surface points of an object can be derived from the intensity ratios of the images by triangulation. A reference back plane is put behind the object to monitor the change in image intensity. Errors due to camera calibration, projector calibration, variations in intensity, imperfection of the slides etc. are analyzed. Early experiments of the system using a newvicon CCTV camera with back plane intensity correction gives a mean-square range error of about 0.5 percent. Extensive analysis of various errors is expected to yield methods for improving the accuracy.

  7. Strong earthquakes knowledge base for calibrating fast damage assessment systems

    NASA Astrophysics Data System (ADS)

    Frolova, N.; Kozlov, M.; Larionov, V.; Nikolaev, A.; Suchshev, S.; Ugarov, A.

    2003-04-01

    At present Systems for fast damage and loss assessment due to strong earthquakes may use as input data: (1) information about event parameters (magnitude, depth and coordinates) issued by Alert Seismological Surveys; (2) wave-form data obtained by strong-motion seismograph network; (3) high resolution space images of the affected area obtained before and after the event. When data about magnidute, depth and location of event are used to simulate possible consequences, the reliability of estimations depends on completeness and reliability of databases on elements at risk (population and built environment); reliability of vulnerability functions of elements at risk; and errors in strong earthquakes' parameters determination by Alert Seismological Surveys. Some of these factors may be taken into account at the expense of the System calibration with usage of well documented past strong earthquakes. The paper is describing the structure and content of the knowledge base about well documented strong events, which occurred in last century. It contains the description of more than 1000 events. The data are distributed almost homogeneously as the losses due to earthquakes are concerned; the most events are in the magnitude range 6.5 -7.9. Software is created to accumulate and analyze the information about these events source parameters and social consequences. Created knowledge base is used for calibration the Fast Damage Assessment Tool, which is at present on duty with the framework of EDRIM Program. It is also used as additional information by experts who analyses the results of computations.

  8. Auto-calibration system of EMG sensor suit

    NASA Astrophysics Data System (ADS)

    Suzuki, Yousuke; Tanaka, Takayuki; Feng, Maria Q.

    2005-12-01

    Biogenic measurement has been studied as a robot's interface. We have studied the wearable sensor suit as a robot's interface. Some kinds of sensor disks are embedded the sensor suit to the wet suit-like material. The sensor suit measures a wearing person's joint, and muscular activity. In this report, we aim to establish an auto-calibration system for measuring joint torques by using EMG sensors based on neural network and sensor disks of a lattice. The Torque presumption was performed using the share neural network, which learned the data that formed the whole subject's teacher data. Additional training of the share neural network was carried out using the individual teaching data. As a result, that was able to do the neural network training in short time, high probability and high accuracy to training of initial neural network. Moreover, high-presumed accuracy was able to be acquired by this method Next, Sensor disks of a lattice was developed. EMG is measurable, checking the state of an electrode by that can measure biogenic impedance. That was able to measure EMG by sensor disks which has low impedance We measured EMG and joint torque by trial production sensor suit and torque measuring instrument. The predominancy of the torque presumption using the share neural network was check. We proposed Measurement system, which consists sensor disk of lattice. Experimental results show the proposed method is effective for the auto-calibration.

  9. Calibration and Data Analysis for the KCIF Fast Magnetics System

    SciTech Connect

    Heeter, R. F.; Fasoli, A. F.; Ali-Arshad, A. S.; Moret, J, M.

    2000-03-01

    Alfven Eigenmodes (AEs) and other magnetohydrodynamic (MHD) phenomena have been studied at the Joint European Torus (JET) using a new 8-channel, 4 s, 1 MHz, 12-bit data acquisition system KC1F in conjunction with the JET fast Mirnov magnetic fluctuation pickup coils. The JET magnetic pickup coils were calibrated for the first time in the range 30-460 kHz using a new remote calibration technique which accounts for the presence of the first few LRC circuit resonances. A data-processing system has been developed within the MATLAB software environment to produce spectrograms of fluctuation amplitude and toroidal mode number versus frequency and time. The analysis software has been automated to allow routine overnight production of spectrogram web pages. Modes with amplitudes {delta}B/B {ge} 10{sup -8} and toroidal mode numbers |n| < 32 are now routinely detected. A pulse-characterization database has also been developed to select for the analysis of various useful subsets of the 4000+ JET discharges for which KC1F data is now available. Based on the work presented here and recent advances in data-acquisition technology, it should now be possible to obtain complete diagnostic data on the AEs.

  10. The LED calibration system of the SPHERE-2 detector

    NASA Astrophysics Data System (ADS)

    Antonov, R. A.; Bonvech, E. A.; Chernov, D. V.; Podgrudkov, D. A.; Roganova, T. M.

    2016-04-01

    An absolute calibration method for the PMT mosaic used in the SPHERE-2 experiment is presented. The method is based on the relative calibration of all PMTs in the mosaic to a single stable PMT, incorporated in it, during each measurement event and subsequent absolute calibration of that single PMT using a known stable light source. The results of the SPHERE-2 detector PMTs calibration are presented and are discussed.

  11. Method to calibrate the absolute energy scale of air showers with ultrahigh energy photons.

    PubMed

    Homola, Piotr; Risse, Markus

    2014-04-18

    Calibrating the absolute energy scale of air showers initiated by ultrahigh energy (UHE) cosmic rays is an important experimental issue. Currently, the corresponding systematic uncertainty amounts to 14%-21% using the fluorescence technique. Here, we describe a new, independent method which can be applied if ultrahigh energy photons are observed. While such photon-initiated showers have not yet been identified, the capabilities of present and future cosmic-ray detectors may allow their discovery. The method makes use of the geomagnetic conversion of UHE photons (preshower effect), which significantly affects the subsequent longitudinal shower development. The conversion probability depends on photon energy and can be calculated accurately by QED. The comparison of the observed fraction of converted photon events to the expected one allows the determination of the absolute energy scale of the observed photon air showers and, thus, an energy calibration of the air shower experiment. We provide details of the method and estimate the accuracy that can be reached as a function of the number of observed photon showers. Already a very small number of UHE photons may help to test and fix the absolute energy scale. PMID:24785024

  12. Spectroradiometric calibration of the Thematic Mapper and multispectral scanner system

    NASA Technical Reports Server (NTRS)

    Slater, P. N.; Palmer, J. M. (Principal Investigator)

    1985-01-01

    The eleventh quarterly report on Spectroradiometric Calibration of the Thematic Mapper (Contract NAS5-27832) discusses calibrations made at White Sands on 24 May 1985. An attempt is made to standardize test results. Critical values used in the final steps of the data reduction and the comparison of the results of the pre-flight and internal calibration (IC) data are summarized.

  13. Calibration Experiments for a Computer Vision Oyster Volume Estimation System

    ERIC Educational Resources Information Center

    Chang, G. Andy; Kerns, G. Jay; Lee, D. J.; Stanek, Gary L.

    2009-01-01

    Calibration is a technique that is commonly used in science and engineering research that requires calibrating measurement tools for obtaining more accurate measurements. It is an important technique in various industries. In many situations, calibration is an application of linear regression, and is a good topic to be included when explaining and…

  14. Absolute calibration of vacuum ultraviolet spectrograph system for plasma diagnostics

    SciTech Connect

    Yoshikawa, M.; Kubota, Y.; Kobayashi, T.; Saito, M.; Numada, N.; Nakashima, Y.; Cho, T.; Koguchi, H.; Yagi, Y.; Yamaguchi, N.

    2004-10-01

    A space- and time-resolving vacuum ultraviolet (VUV) spectrograph system has been applied to diagnose impurity ions behavior in plasmas produced in the tandem mirror GAMMA 10 and the reversed field pinch TPE-RX. We have carried out ray tracing calculations for obtaining the characteristics of the VUV spectrograph and calibration experiments to measure the absolute sensitivities of the VUV spectrograph system for the wavelength range from 100 to 1100 A. By changing the incident angle, 50.6 deg. -51.4 deg., to the spectrograph whose nominal incident angle is 51 deg., we can change the observing spectral range of the VUV spectrograph. In this article, we show the ray tracing calculation results and absolute sensitivities when the angle of incidence into the VUV spectrograph is changed, and the results of VUV spectroscopic measurement in both GAMMA 10 and TPE-RX plasmas.

  15. Towards high accuracy calibration of electron backscatter diffraction systems.

    PubMed

    Mingard, Ken; Day, Austin; Maurice, Claire; Quested, Peter

    2011-04-01

    For precise orientation and strain measurements, advanced Electron Backscatter Diffraction (EBSD) techniques require both accurate calibration and reproducible measurement of the system geometry. In many cases the pattern centre (PC) needs to be determined to sub-pixel accuracy. The mechanical insertion/retraction, through the Scanning Electron Microscope (SEM) chamber wall, of the electron sensitive part of modern EBSD detectors also causes alignment and positioning problems and requires frequent monitoring of the PC. Optical alignment and lens distortion issues within the scintillator, lens and charge-coupled device (CCD) camera combination of an EBSD detector need accurate measurement for each individual EBSD system. This paper highlights and quantifies these issues and demonstrates the determination of the pattern centre using a novel shadow-casting technique with a precision of ∼10μm or ∼1/3 CCD pixel. PMID:21396526

  16. Calibrating a novel multi-sensor physical activity measurement system

    PubMed Central

    John, D; Liu, S; Sasaki, J E; Howe, C A; Staudenmayer, J; Gao, R X; Freedson, P S

    2011-01-01

    Advancing the field of physical activity (PA) monitoring requires the development of innovative multi-sensor measurement systems that are feasible in the free-living environment. The use of novel analytical techniques to combine and process these multiple sensor signals is equally important. This paper, describes a novel multi-sensor ‘Integrated PA Measurement System’ (IMS), the lab-based methodology used to calibrate the IMS, techniques used to predict multiple variables from the sensor signals, and proposes design changes to improve the feasibility of deploying the IMS in the free-living environment. The IMS consists of hip and wrist acceleration sensors, two piezoelectric respiration sensors on the torso, and an ultraviolet radiation sensor to obtain contextual information (indoors vs. outdoors) of PA. During lab-based calibration of the IMS, data were collected on participants performing a PA routine consisting of seven different ambulatory and free-living activities while wearing a portable metabolic unit (criterion measure) and the IMS. Data analyses on the first 50 adult participants are presented. These analyses were used to determine if the IMS can be used to predict the variables of interest. Finally, physical modifications for the IMS that could enhance feasibility of free-living use are proposed and refinement of the prediction techniques is discussed. PMID:21813941

  17. A Self-Calibrating Remote Control Chemical Monitoring System

    SciTech Connect

    Jessica Croft

    2007-06-01

    The Susie Mine, part of the Upper Tenmile Mining Area, is located in Rimini, MT about 15 miles southwest of Helena, MT. The Upper Tenmile Creek Mining Area is an EPA Superfund site with 70 abandoned hard rock mines and several residential yards prioritized for clean up. Water from the Susie mine flows into Tenmile Creek from which the city of Helena draws part of its water supply. MSE Technology Applications in Butte, Montana was contracted by the EPA to build a treatment system for the Susie mine effluent and demonstrate a system capable of treating mine waste water in remote locations. The Idaho National Lab was contracted to design, build and demonstrate a low maintenance self-calibrating monitoring system that would monitor multiple sample points, allow remote two-way communications with the control software and allow access to the collected data through a web site. The Automated Chemical Analysis Monitoring (ACAM) system was installed in December 2006. This thesis documents the overall design of the hardware, control software and website, the data collected while MSE-TA’s system was operational, the data collected after MSE-TA’s system was shut down and suggested improvements to the existing system.

  18. A Traceable Ground to On-Orbit Radiometric Calibration System for the Solar Reflective Wavelength Region

    NASA Technical Reports Server (NTRS)

    Heath, Donald F.; Georgiev, Georgi

    2012-01-01

    This paper describes the combination of a Mie scattering spectral BSDF and BTDF albedo standard whose calibration is traceable to the NIST SIRCUS Facility or the NIST STARR II Facility. The Space-based Calibration Transfer Spectroradiometer (SCATS) sensor uses a simple, invariant optical configuration and dedicated narrow band spectral channel modules to provide very accurate, polarization-insensitive, stable measurements of earth albedo and lunar disk albedo. Optical degradation effects on calibration stability are eliminated through use of a common optical system for observations of the Sun, Earth, and Moon. The measurements from space would be traceable to SI units through preflight calibrations of radiance and irradiance at NIST's SIRCUS facility and the invariant optical system used in the sensor. Simultaneous measurements are made in multiple spectral channels covering the solar reflective wavelength range of 300 nm to 2.4 microns. The large dynamic range of signals is handled by use of single-element, highly-linear detectors, stable discrete electronic components, and a non imaging optical configuration. Up to 19 spectral modules can be mounted on a single-axis drive to give direct pointing at the Earth and at least once per orbit view of the Sun and Moon. By observing the Sun on every orbit, the most stringent stability requirements of the system are limited to short time periods. The invariant optical system for both radiance and irradiance measurements also give excellent transfer to-orbit SI traceability. Emerging instrumental requirements for remotely sensing tropospheric trace species have led to a rethinking by some of the paradigm for Systeme International d'Unites (SI) traceability of the spectral irradiance and radiance radiometric calibrations to spectral albedo (sr(exp -1)) which is not a SI unit. In the solar reflective wavelength region the spectral albedo calibrations are tied often to either the spectral albedo of a solar diffuser or the Moon

  19. Utilization of an automated multimeter calibration system by the Rocky Flats Standards Laboratory

    NASA Astrophysics Data System (ADS)

    Wickoff, B.; Stand, R. S.; Brown, G. R., Jr.; Riordan, G. A.; Delaney, I. C.

    1982-09-01

    The time required to calibrate multimeters was reduced by 75%. Using the calibration system and programmed tape, a Fluke 8050A is calibrated in less than 1/2 hour compared to approximately 2 hours using conventional methods and standards. Most possible sources of human error introduced by recording the setting of instruments and errors from repetitive computations were eliminated.

  20. Optical design and system calibration for three-band spectral imaging system with interchangeable filters

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The design and calibration of a three-band image acquisition system was reported. The prototype system developed in this research was a three-band spectral imaging system that acquired two visible (510 and 568 nm) images and a near-infrared (NIR) (800 nm) image simultaneously. The system was proto...

  1. Compton-edge-based energy calibration of double-sided silicon strip detectors in Compton camera

    NASA Astrophysics Data System (ADS)

    Seo, Hee; Park, Jin Hyung; Kim, Chan Hyeong; Lee, Ju Hahn; Lee, Chun Sik; Sung Lee, Jae

    2011-05-01

    Accurate energy calibration of double-sided silicon strip detectors (DSSDs) is very important, but challenging for high-energy photons. In the present study, the calibration was improved by considering the Compton edge additionally to the existing low-energy calibration points. The result, indeed, was very encouraging. The energy-calibration errors were dramatically reduced, from, on average, 15.5% and 16.9% to 0.47% and 0.31% for the 356 (133Ba) and 662 keV (137Cs) peaks, respectively. The imaging resolution of a double-scattering-type Compton camera using DSSDs as the scatterer detectors, for a 22Na point-like source, also was improved, by ˜9%.

  2. Rotating pressure measurement system using an on board calibration standard

    NASA Technical Reports Server (NTRS)

    Senyitko, Richard G.; Blumenthal, Philip Z.; Freedman, Robert J.

    1991-01-01

    A computer-controlled multichannel pressure measurement system was developed to acquire detailed flow field measurements on board the Large Low Speed Centrifugal Compressor Research Facility at the NASA Lewis Research Center. A pneumatic slip ring seal assembly is used to transfer calibration pressures to a reference standard transducer on board the compressor rotor in order to measure very low differential pressures with the high accuracy required. A unique data acquisition system was designed and built to convert the analog signal from the reference transducer to the variable frequency required by the multichannel pressure measurement system and also to provide an output for temperature control of the reference transducer. The system also monitors changes in test cell barometric pressure and rotating seal leakage and provides an on screen warning to the operator if limits are exceeded. The methods used for the selection and testing of the the reference transducer are discussed, and the data acquisition system hardware and software design are described. The calculated and experimental data for the system measurement accuracy are also presented.

  3. Simple and accurate empirical absolute volume calibration of a multi-sensor fringe projection system

    NASA Astrophysics Data System (ADS)

    Gdeisat, Munther; Qudeisat, Mohammad; AlSa`d, Mohammed; Burton, David; Lilley, Francis; Ammous, Marwan M. M.

    2016-05-01

    This paper suggests a novel absolute empirical calibration method for a multi-sensor fringe projection system. The optical setup of the projector-camera sensor can be arbitrary. The term absolute calibration here means that the centre of the three dimensional coordinates in the resultant calibrated volume coincides with a preset centre to the three-dimensional real-world coordinate system. The use of a zero-phase fringe marking spot is proposed to increase depth calibration accuracy, where the spot centre is determined with sub-pixel accuracy. Also, a new method is proposed for transversal calibration. Depth and transversal calibration methods have been tested using both single sensor and three-sensor fringe projection systems. The standard deviation of the error produced by this system is 0.25 mm. The calibrated volume produced by this method is 400 mm×400 mm×140 mm.

  4. (Sn)DICE: A Calibration System Designed for Wide Field Imagers

    NASA Astrophysics Data System (ADS)

    Regnault, N.; Barrelet, E.; Guyonnet, A.; Juramy, C.; Rocci, P.-F.; Le Guillou, L.; Schahmanèche, K.; Villa, F.

    2016-05-01

    Dark Energy studies with type Ia supernovae set very tight constraints on the photometric calibration of the imagers used to detect the supernovae and follow up their flux variations. Among the key challenges is the measurement of the shape and normalization of the instrumental throughput. The DICE system was developed by members of the Supernova Legacy Survey (SNLS) , building upon the lessons learnt working with the MegaCam imager. It consists in a very stable light source, placed in the telescope enclosure, and generating compact, conical beams, yielding an almost flat illumination of the imager focal plane. The calibration light is generated by narrow spectrum LEDs selected to cover the entire wavelength range of the imager. It is monitored in real time using control photodiodes. A first DICE demonstrator, SnDICE has been installed at CFHT. A second generation instrument (SkyDICE) has been installed in the enclosure of the SkyMapper telescope. We present the main goals of the project. We discuss the main difficulties encoutered when trying to calibrate a wide field imager, such as MegaCam (or SkyMapper) using such a calibrated light source.

  5. Towards improved local hybrid functionals by calibration of exchange-energy densities

    SciTech Connect

    Arbuznikov, Alexei V. E-mail: martin.kaupp@tu-berlin.de; Kaupp, Martin E-mail: martin.kaupp@tu-berlin.de

    2014-11-28

    A new approach for the calibration of (semi-)local and exact exchange-energy densities in the context of local hybrid functionals is reported. The calibration functions are derived from only the electron density and its spatial derivatives, avoiding spatial derivatives of the exact-exchange energy density or other computationally unfavorable contributions. The calibration functions fulfill the seven more important out of nine known exact constraints. It is shown that calibration improves substantially the definition of a non-dynamical correlation energy term for generalized gradient approximation (GGA)-based local hybrids. Moreover, gauge artifacts in the potential-energy curves of noble-gas dimers may be corrected by calibration. The developed calibration functions are then evaluated for a large range of energy-related properties (atomization energies, reaction barriers, ionization potentials, electron affinities, and total atomic energies) of three sets of local hybrids, using a simple one-parameter local-mixing. The functionals are based on (a) local spin-density approximation (LSDA) or (b) Perdew-Burke-Ernzerhof (PBE) exchange and correlation, and on (c) Becke-88 (B88) exchange and Lee-Yang-Parr (LYP) correlation. While the uncalibrated GGA-based functionals usually provide very poor thermochemical data, calibration allows a dramatic improvement, accompanied by only a small deterioration of reaction barriers. In particular, an optimized BLYP-based local-hybrid functional has been found that is a substantial improvement over the underlying global hybrids, as well as over previously reported LSDA-based local hybrids. It is expected that the present calibration approach will pave the way towards new generations of more accurate hyper-GGA functionals based on a local mixing of exchange-energy densities.

  6. Towards improved local hybrid functionals by calibration of exchange-energy densities

    NASA Astrophysics Data System (ADS)

    Arbuznikov, Alexei V.; Kaupp, Martin

    2014-11-01

    A new approach for the calibration of (semi-)local and exact exchange-energy densities in the context of local hybrid functionals is reported. The calibration functions are derived from only the electron density and its spatial derivatives, avoiding spatial derivatives of the exact-exchange energy density or other computationally unfavorable contributions. The calibration functions fulfill the seven more important out of nine known exact constraints. It is shown that calibration improves substantially the definition of a non-dynamical correlation energy term for generalized gradient approximation (GGA)-based local hybrids. Moreover, gauge artifacts in the potential-energy curves of noble-gas dimers may be corrected by calibration. The developed calibration functions are then evaluated for a large range of energy-related properties (atomization energies, reaction barriers, ionization potentials, electron affinities, and total atomic energies) of three sets of local hybrids, using a simple one-parameter local-mixing. The functionals are based on (a) local spin-density approximation (LSDA) or (b) Perdew-Burke-Ernzerhof (PBE) exchange and correlation, and on (c) Becke-88 (B88) exchange and Lee-Yang-Parr (LYP) correlation. While the uncalibrated GGA-based functionals usually provide very poor thermochemical data, calibration allows a dramatic improvement, accompanied by only a small deterioration of reaction barriers. In particular, an optimized BLYP-based local-hybrid functional has been found that is a substantial improvement over the underlying global hybrids, as well as over previously reported LSDA-based local hybrids. It is expected that the present calibration approach will pave the way towards new generations of more accurate hyper-GGA functionals based on a local mixing of exchange-energy densities.

  7. High-Energy Calibration of a BGO detector of the GLAST Burst Monitor

    SciTech Connect

    Kienlin, Andreas von; Steinle, Helmut; Fishman, Gerald J.; Briggs, Michael S.; Godfrey, Gary L.

    2007-07-12

    The understanding of the instrumental response of the GLAST Burst Monitor BGO detectors at energies above the energy range which is accessible by common laboratory radiation sources (< 4.43 MeV), is important, especially for the later cross-calibration with the LAT response in the overlap region between {approx} 20 MeV to 30 MeV. In November 2006 the high-energy calibration of the GBM-BGO spare detector was performed at the small Van-de-Graaff accelerator at SLAC. High-energy gamma-rays from excited 8Be* (14.6 MeV and 17.5 MeV) and 16O* (6.1 MeV) were generated through (p, {gamma})-reactions by irradiating a LiF-target. For the calibration at lower energies radioactive sources were used. The results, including spectra, the energy/channel-relation and the dependence of energy resolution are presented.

  8. High-Energy Calibration of a BGO Detector of the GLAST Burst Monitor

    SciTech Connect

    von Kienlin, Andreas; Fishman, Gerald J.; Briggs, Michael S.; Godfrey, Gary L.; Steinle, Helmut; /Garching, Max Planck Inst., MPE

    2011-11-30

    The understanding of the instrumental response of the GLAST Burst Monitor BGO detectors at energies above the energy range which is accessible by common laboratory radiation sources (< 4.43 MeV), is important, especially for the later cross-calibration with the LAT response in the overlap region between {approx}20 MeV to 30 MeV. In November 2006 the high-energy calibration of the GBM-BGO spare detector was performed at the small Van-de-Graaff accelerator at SLAC. High-energy gamma-rays from excited {sup 8}Be* (14.6 MeV and 17.5 MeV) and {sup 16}O* (6.1 MeV) were generated through (p, {gamma})-reactions by irradiating a LiF-target. For the calibration at lower energies radioactive sources were used. The results, including spectra, the energy/channel-relation and the dependence of energy resolution are presented.

  9. Wind energy systems

    NASA Technical Reports Server (NTRS)

    Stewart, H. J.

    1978-01-01

    A discussion on wind energy systems involved with the DOE wind energy program is presented. Some of the problems associated with wind energy systems are discussed. The cost, efficiency, and structural design of wind energy systems are analyzed.

  10. Further investigation into calibration techniques for a magnetic suspension and balance system

    NASA Technical Reports Server (NTRS)

    Eskins, J.

    1986-01-01

    Calibrations performed on three different magnetic cores for wind tunnel models suspended in the Southampton University Magnetic Suspension and Balance System (SUMSBS) are detailed. The first core investigated was the Southampton University pilot Superconducting Solenoid model, first flown in July 1983. Static calibrations of lift force, drag force and pitching moment, together with lift force and pitching moment calibrations determined by the dynamic method are detailed in this report. Other types of core investigated in a similar manner were conventional permanent magnets, Alnico and samarium-cobalt. All static calibrations gave a linear dependence of force on electromagnet current as expected. Dynamic calibrations are faster to perform but are proving to be not as easily analyzed as static calibrations. There are still some effects to be explained but dynamic lift calibration results were obtained agreeing to within 2 percent of the static calibration value.

  11. RAPID COMMUNICATION: Traceability of acoustic emission measurements using energy calibration methods

    NASA Astrophysics Data System (ADS)

    Yan, T.; Jones, B. E.

    2000-11-01

    Passive acoustic emission (AE) methods are becoming useful tools for integrity assessment of structures, monitoring of industrial processes and machines, and materials characterization. Unfortunately, there are no measurement standards for estimating the absolute strength of the AE sources. The lack of standardization makes it very difficult to compare the results obtained in different laboratories or on different structures, and to obtain meaningful repeatability of measurements. Therefore, current methods only give a qualitative rather than quantitative indication of the change of state of structure or process. This communication outlines a way of calibrating AE transducer systems in situ using a pulsed-laser-generated thermoelastic AE energy source or a bouncing-ball-generated elastic impact AE energy source. The methods presented here should enable traceable measurement standards to be established for AE.

  12. CALIBRATION OF EQUILIBRIUM TIDE THEORY FOR EXTRASOLAR PLANET SYSTEMS

    SciTech Connect

    Hansen, Brad M. S.

    2010-11-01

    We provide an 'effective theory' of tidal dissipation in extrasolar planet systems by empirically calibrating a model for the equilibrium tide. The model is valid to high order in eccentricity and parameterized by two constants of bulk dissipation-one for dissipation in the planet and one for dissipation in the host star. We are able to consistently describe the distribution of extrasolar planetary systems in terms of period, eccentricity, and mass (with a lower limit of a Saturn mass) with this simple model. Our model is consistent with the survival of short-period exoplanet systems, but not with the circularization period of equal mass stellar binaries, suggesting that the latter systems experience a higher level of dissipation than exoplanet host stars. Our model is also not consistent with the explanation of inflated planetary radii as resulting from tidal dissipation. The paucity of short-period planets around evolved A stars is explained as the result of enhanced tidal inspiral resulting from the increase in stellar radius with evolution.

  13. Flux density calibration in diffuse optical tomographic systems

    NASA Astrophysics Data System (ADS)

    Biswas, Samir Kumar; Rajan, Kanhirodan; Vasu, Ram M.

    2013-02-01

    The solution of the forward equation that models the transport of light through a highly scattering tissue material in diffuse optical tomography (DOT) using the finite element method gives flux density (Φ) at the nodal points of the mesh. The experimentally measured flux (U) on the boundary over a finite surface area in a DOT system has to be corrected to account for the system transfer functions (R) of various building blocks of the measurement system. We present two methods to compensate for the perturbations caused by R and estimate true flux density (Φ) from Umeasuredcal. In the first approach, the measurement data with a homogeneous phantom (Umeasuredhomo) is used to calibrate the measurement system. The second scheme estimates the homogeneous phantom measurement using only the measurement from a heterogeneous phantom, thereby eliminating the necessity of a homogeneous phantom. This is done by statistically averaging the data (Umeasuredhetero) and redistributing it to the corresponding detector positions. The experiments carried out on tissue mimicking phantom with single and multiple inhomogeneities, human hand, and a pork tissue phantom demonstrate the robustness of the approach.

  14. Combined non-contact coordinate measurement system and calibration method

    NASA Astrophysics Data System (ADS)

    Fan, Yiyan; Zhao, Bin

    2015-07-01

    A combined non-contact measurement system comprising attitude angle sensor, angle encoder, laser rangefinder, and total station is adopted to measure the spatial coordinate of the hidden zones in large-scale space. The laser from the total station is aimed at the optical system of the attitude angle sensor to obtain the spatial coordinate and the spatial attitude angles. Then, the angle encoder driven by a stepping motor is rotated to drive the laser rangefinder to direct at the measured point. This approach is used to obtain the distance from the rangefinder to the measured point and the angle of the angle encoder. Finally, the spatial coordinates of the measured point can be calculated by using these measured parameters. For the measurement system, we propose a weighted least squares (WLS) calibration method, in which weights are determined for the angular distribution density. Experimental results show that the measurement system could expand the scale and achieve reliable precision during combined measurement and the measurement error of the weighted least squares method is less than that of the ordinary least square (OLS) method.

  15. Calibration of a curvature sensor/bimorph mirror AO system: interaction matrix measurement on MACAO systems

    NASA Astrophysics Data System (ADS)

    Oberti, Sylvain; Bonnet, Henri; Fedrigo, Enrico; Ivanescu, Liviu; Kasper, Markus E.; Paufique, Jerome

    2004-10-01

    The accurate calibration of an AO system is fundamental in order to reach the top performance expected from design. To improve this aspect, we propose procedures for calibrating a curvature AO system in view of optimizing performances and robustness, based on the experience accumulated by the ESO AO team through the development of MACAO systems for VLTI and SINFONI. The approach maximizes the quality of the Interaction Matrix (IM) while maintaining the system in its linear regime and minimizing noise and bias on the measurement.

  16. Third generation infrared system calibration using dual band thermoelectric thermal reference sources and test systems to calibrate uncooled IRFPAs

    NASA Astrophysics Data System (ADS)

    Finfrock, David K.; Kolander, William L.

    2008-04-01

    As dual band, 3rd generation FLIR systems progress from the research lab into the field, supporting technologies must also advance. This paper describes advances in Thermoelectric Thermal Reference Sources (TTRS) from single band (3 to 5 or 8 to 12 microns) to dual band in one assembly (3 to 5 and 8 to 12 microns). It will describe the optical, system, electrical, and mechanical parameters of dual band TTRS units. It provides IR system design engineers with the critical parameters of dual band TTRS units to aid in their design process. TTRS assemblies provide a temperature controllable radiometrically uniform surface. When viewed by theFLIR system detectors, the TTRS enables the system electronics to perform gain and offset calibration as well as DC restoration for each pixel's preamp Some of the parameters for 3rd Generation FLIR system TTRS units included in this paper will be: Emissivity of BB surfaces. Apparent thermal radiometric uniformity. How this is predicted and measured. Window material wavelength transmission (Hermetically sealed units only). TTRS emitter surface temperatures as a function of heat sink temperatures. Trade-off between uniformity, power consumption, and transient performance. Power consumption, Thermal interfaces and required heat sinking Types and accuracy of Temperature sensors mounted on emitter surface. Also included in this paper is a description of a Thermoelectric Black Body Test Apparatus that can be used to generate temperature coefficients needed to "burn" Proms for uncooled IRFPAs during their production and burn in processing.

  17. Evolution of the JPSS Ground Project Calibration and Validation System

    NASA Astrophysics Data System (ADS)

    Chander, G.; Jain, P.

    2014-12-01

    The Joint Polar Satellite System (JPSS) is the National Oceanic and Atmospheric Administration's (NOAA) next-generation operational Earth observation Program that acquires and distributes global environmental data from multiple polar-orbiting satellites. The JPSS Program plays a critical role to NOAA's mission to understand and predict changes in weather, climate, oceans, and coasts environments, which supports the nation's economy and protects lives and property. The National Aeronautics and Space Administration (NASA) is acquiring and implementing the JPSS, comprised of flight and ground systems on behalf of NOAA. The JPSS satellites are planned to fly in afternoon orbit and will provide operational continuity of satellite-based observations and products for NOAA Polar-orbiting Operational Environmental Satellites (POES) and the Suomi National Polar-orbiting Partnership (SNPP) satellite. Government Resource for Algorithm Verification, Independent Test, and Evaluation (GRAVITE) system is a NOAA system developed and deployed by JPSS Ground Project to support Calibration and Validation (Cal/Val), Algorithm Integration, Investigation, and Tuning, and Data Quality Monitoring. It is a mature, deployed system that supports SNPP mission and has been in operations since SNPP launch. This paper discusses the major re-architecture for Block 2.0 that incorporates SNPP lessons learned, architecture of the system, and demonstrates how GRAVITE has evolved as a system with increased performance. It is a robust, reliable, maintainable, scalable, and secure system that supports development, test, and production strings, replaces proprietary and custom software, uses open source software, and is compliant with NASA and NOAA standards. "[Pending NASA Goddard Applied Engineering & Technology Directorate (AETD) Approval]"

  18. Spatial resolution study and power calibration of the high-k scattering system on NSTX

    SciTech Connect

    Lee, W.; Park, H. K.; Cho, M. H.; Namkung, W.; Smith, D. R.; Domier, C. W.; Luhmann, N. C. Jr

    2008-10-15

    NSTX high-k scattering system has been extensively utilized in studying the microturbulence and coherent waves. An absolute calibration of the scattering system was performed employing a new millimeter-wave source and calibrated attenuators. One of the key parameters essential for the calibration of the multichannel scattering system is the interaction length. This interaction length is significantly different from the conventional one due to the curvature and magnetic shear effect.

  19. A real-time camera calibration system based on OpenCV

    NASA Astrophysics Data System (ADS)

    Zhang, Hui; Wang, Hua; Guo, Huinan; Ren, Long; Zhou, Zuofeng

    2015-07-01

    Camera calibration is one of the essential steps in the computer vision research. This paper describes a real-time OpenCV based camera calibration system, and developed and implemented in the VS2008 environment. Experimental results prove that the system to achieve a simple and fast camera calibration, compared with MATLAB, higher precision and does not need manual intervention, and can be widely used in various computer vision system.

  20. A theoretical approach to calibrate radiation portal monitor (RPM) systems.

    PubMed

    Nafee, Sherif S; Abbas, Mahmoud I

    2008-10-01

    Radiation portal monitor (RPM) systems are widely used at international border crossings, where they are applied to the task of detecting nuclear devices, special nuclear material, and radiation dispersal device materials that could appear at borders. The requirements and constraints on RPM systems deployed at high-volume border crossings are significantly different from those at weapons facilities or steel recycling plants, the former being required to rapidly detect localized sources of radiation with a very high detection probability and low false-alarm rate, while screening all of the traffic without impeding the flow of commerce [Chambers, W.H., Atwater, H.F., Fehlau, P.E., Hastings, R.D., Henry, C.N., Kunz, W.E., Sampson, T.E., Whittlesey, T.H., Worth, G.M., 1974. Portal Monitor for Diversion Safeguards. LA-5681, Los Alamos Scientific Laboratory, Los Alamos, NM]. In the present work, compact analytical formulae are derived and used to calibrate two RPM systems with isotropic radiating sources: (i) polyvinyltoluene (PVT) or plastic and (ii) thallium-doped crystalline sodium iodide, NaI(Tl), gamma-ray detector materials. The calculated efficiencies are compared to measured values reported in the literatures, showing very good agreement. PMID:18486482

  1. Self-calibrating 360-degree shape measurement systems

    NASA Astrophysics Data System (ADS)

    Notni, Gunther; Kuehmstedt, Peter; Heinze, Matthias; Notni, Georg H.; Brakhage, Peter

    2001-10-01

    For measuring the 3D shape of complex objects by optical methods the optical sensor or the object have to be moved into multiple, overlapping measuring positions so as to view the entire surface. The resulting point clouds taken from the different views then have to be merged into a common coordinate system to obtain the final complete 3D view. Here we propose concepts of 3D-measurement arrangements using structured-light illumination with a digital-light projection unit to obtain a full-body view within a self- calibrating measurement strategy, whereas the necessary merging of the single views takes place fully automatically and done without any marker on the object surface, objects features, other merging procedure or high accurate object/sensor handling system. On the basis of this strategy different mobile and stationary arrangements are proposed and realized. A first integration in an industrial process will be presented showing the power of this concept by measuring the complete 3D shape of automotive parts and design objects within volume of 1dm3 up to 1m3. The measurements with this system showed a coordinate measurement accuracy of up to 10-5 of the field size.

  2. A dual-respiration chamber system with automated calibration.

    PubMed

    Schoffelen, P F; Westerterp, K R; Saris, W H; Ten Hoor, F

    1997-12-01

    This study characterizes respiration chambers with fully automated calibration. The system consists of two 14-m3 pull-type chambers. Care was taken to provide a friendly environment for the subjects, with the possibility of social contact during the experiment. Gas analysis was automated to correct for analyzer drift and barometric pressure variations and to provide ease of use. Methods used for checking the system's performance are described. The gas-analysis repeatability was within 0.002%. Results of alcohol combustion (50-350 ml/min CO2) show an accuracy of 0.5 +/- 2.0 (SD) % for O2 consumption and -0.3 +/- 1.6% for CO2 production for 2- to 24-h experiments. It is concluded that response time is not the main factor with respect to the smallest practical measurement interval (duration); volume, mixing, gas-analysis accuracy, and levels of O2 consumption and CO2 production are at least equally important. The smallest practical interval was 15-25 min, as also found with most chamber systems described in the literature. We chose to standardize 0.5 h as the minimum measurement interval. PMID:9390982

  3. A tunable laser system for precision wavelength calibration of spectra

    NASA Astrophysics Data System (ADS)

    Cramer, Claire

    2010-02-01

    We present a novel laser-based wavelength calibration technique that improves the precision of astronomical spectroscopy, and solves a calibration problem inherent to multi-object spectroscopy. We have tested a prototype with the Hectochelle spectrograph at the MMT 6.5 m telescope. The Hectochelle is a high-dispersion, fiber-fed, multi-object spectrograph capable of recording up to 240 spectra simultaneously with a resolving power of 40000. The standard wavelength calibration method uses of spectra from ThAr hollow-cathode lamps shining directly onto the fibers. The difference in light path between calibration and science light as well as the uneven distribution of spectral lines are believed to introduce errors of up to several hundred m/s in the wavelength scale. Our tunable laser wavelength calibrator is bright enough for use with a dome screen, allowing the calibration light path to better match the science light path. Further, the laser is tuned in regular steps across a spectral order, creating a comb of evenly-spaced lines on the detector. Using the solar spectrum reflected from the atmosphere to record the same spectrum in every fiber, we show that laser wavelength calibration brings radial velocity uncertainties down below 100 m/s. We also present results from studies of globular clusters, and explain how the calibration technique can aid in stellar age determinations, studies of young stars, and searches for dark matter clumping in the galactic halo. )

  4. Technology for radiation efficiency measurement of high-power halogen tungsten lamp used in calibration of high-energy laser energy meter.

    PubMed

    Wei, Ji Feng; Hu, Xiao Yang; Sun, Li Qun; Zhang, Kai; Chang, Yan

    2015-03-20

    The calibration method using a high-power halogen tungsten lamp as a calibration source has many advantages such as strong equivalence and high power, so it is very fit for the calibration of high-energy laser energy meters. However, high-power halogen tungsten lamps after power-off still reserve much residual energy and continually radiate energy, which is difficult to be measured. Two measuring systems were found to solve the problems. One system is composed of an integrating sphere and two optical spectrometers, which can accurately characterize the radiative spectra and power-time variation of the halogen tungsten lamp. This measuring system was then calibrated using a normal halogen tungsten lamp made of the same material as the high-power halogen tungsten lamp. In this way, the radiation efficiency of the halogen tungsten lamp after power-off can be quantitatively measured. In the other measuring system, a wide-spectrum power meter was installed far away from the halogen tungsten lamp; thus, the lamp can be regarded as a point light source. The radiation efficiency of residual energy from the halogen tungsten lamp was computed on the basis of geometrical relations. The results show that the halogen tungsten lamp's radiation efficiency was improved with power-on time but did not change under constant power-on time/energy. All the tested halogen tungsten lamps reached 89.3% of radiation efficiency at 50 s after power-on. After power-off, the residual energy in the halogen tungsten lamp gradually dropped to less than 10% of the initial radiation power, and the radiation efficiency changed with time. The final total radiation energy was decided by the halogen tungsten lamp's radiation efficiency, the radiation efficiency of residual energy, and the total power consumption. The measuring uncertainty of total radiation energy was 2.4% (here, the confidence factor is two). PMID:25968513

  5. Note: An improved calibration system with phase correction for electronic transformers with digital output

    NASA Astrophysics Data System (ADS)

    Cheng, Han-miao; Li, Hong-bin

    2015-08-01

    The existing electronic transformer calibration systems employing data acquisition cards cannot satisfy some practical applications, because the calibration systems have phase measurement errors when they work in the mode of receiving external synchronization signals. This paper proposes an improved calibration system scheme with phase correction to improve the phase measurement accuracy. We employ NI PCI-4474 to design a calibration system, and the system has the potential to receive external synchronization signals and reach extremely high accuracy classes. Accuracy verification has been carried out in the China Electric Power Research Institute, and results demonstrate that the system surpasses the accuracy class 0.05. Furthermore, this system has been used to test the harmonics measurement accuracy of all-fiber optical current transformers. In the same process, we have used an existing calibration system, and a comparison of the test results is presented. The system after improvement is suitable for the intended applications.

  6. Note: An improved calibration system with phase correction for electronic transformers with digital output

    SciTech Connect

    Cheng, Han-miao Li, Hong-bin

    2015-08-15

    The existing electronic transformer calibration systems employing data acquisition cards cannot satisfy some practical applications, because the calibration systems have phase measurement errors when they work in the mode of receiving external synchronization signals. This paper proposes an improved calibration system scheme with phase correction to improve the phase measurement accuracy. We employ NI PCI-4474 to design a calibration system, and the system has the potential to receive external synchronization signals and reach extremely high accuracy classes. Accuracy verification has been carried out in the China Electric Power Research Institute, and results demonstrate that the system surpasses the accuracy class 0.05. Furthermore, this system has been used to test the harmonics measurement accuracy of all-fiber optical current transformers. In the same process, we have used an existing calibration system, and a comparison of the test results is presented. The system after improvement is suitable for the intended applications.

  7. Note: An improved calibration system with phase correction for electronic transformers with digital output.

    PubMed

    Cheng, Han-miao; Li, Hong-bin

    2015-08-01

    The existing electronic transformer calibration systems employing data acquisition cards cannot satisfy some practical applications, because the calibration systems have phase measurement errors when they work in the mode of receiving external synchronization signals. This paper proposes an improved calibration system scheme with phase correction to improve the phase measurement accuracy. We employ NI PCI-4474 to design a calibration system, and the system has the potential to receive external synchronization signals and reach extremely high accuracy classes. Accuracy verification has been carried out in the China Electric Power Research Institute, and results demonstrate that the system surpasses the accuracy class 0.05. Furthermore, this system has been used to test the harmonics measurement accuracy of all-fiber optical current transformers. In the same process, we have used an existing calibration system, and a comparison of the test results is presented. The system after improvement is suitable for the intended applications. PMID:26329248

  8. Calibration for stereo vision system based on phase matching and bundle adjustment algorithm

    NASA Astrophysics Data System (ADS)

    Zhao, Huijie; Wang, Zhen; Jiang, Hongzhi; Xu, Yang; Dong, Chao

    2015-05-01

    Calibration for stereo vision system plays an important role in the field of machine vision applications. The existing accurate calibration methods are usually carried out by capturing a high-accuracy calibration target with the same size as the measurement view. In in-situ 3D measurement and in large field of view measurement, the extrinsic parameters of the system usually need to be calibrated in real-time. Furthermore, the large high-accuracy calibration target in the field is a big challenge for manufacturing. Therefore, an accurate and rapid calibration method in the in-situ measurement is needed. In this paper, a novel calibration method for stereo vision system is proposed based on phase-based matching method and the bundle adjustment algorithm. As the camera is usually mechanically locked once adjusted appropriately after calibrated in lab, the intrinsic parameters are usually stable. We emphasize on the extrinsic parameters calibration in the measurement field. Firstly, the matching method based on heterodyne multi-frequency phase-shifting technique is applied to find thousands of pairs of corresponding points between images of two cameras. The large amount of pairs of corresponding points can help improve the accuracy of the calibration. Then the method of bundle adjustment in photogrammetry is used to optimize the extrinsic parameters and the 3D coordinates of the measured objects. Finally, the quantity traceability is carried out to transform the optimized extrinsic parameters from the 3D metric coordinate system into Euclid coordinate system to obtain the ultimate optimal extrinsic parameters. Experiment results show that the procedure of calibration takes less than 3 s. And, based on the stereo vision system calibrated by the proposed method, the measurement RMS (Root Mean Square) error can reach 0.025 mm when measuring the calibrated gauge with nominal length of 999.576 mm.

  9. Energy response calibration of photon-counting detectors using X-ray fluorescence: a feasibility study

    PubMed Central

    Cho, H-M; Ding, H; Ziemer, BP; Molloi, S

    2014-01-01

    Accurate energy calibration is critical for the application of energy-resolved photon-counting detectors in spectral imaging. The aim of this study is to investigate the feasibility of energy response calibration and characterization of a photon-counting detector using X-ray fluorescence. A comprehensive Monte Carlo simulation study was performed using Geant4 Application for Tomographic Emission (GATE) to investigate the optimal technique for X-ray fluorescence calibration. Simulations were conducted using a 100 kVp tungsten-anode spectra with 2.7 mm Al filter for a single pixel cadmium telluride (CdTe) detector with 3 × 3 mm2 in detection area. The angular dependence of X-ray fluorescence and scatter background was investigated by varying the detection angle from 20° to 170° with respect to the beam direction. The effects of the detector material, shape, and size on the recorded X-ray fluorescence were investigated. The fluorescent material size effect was considered with and without the container for the fluorescent material. In order to provide validation for the simulation result, the angular dependence of X-ray fluorescence from five fluorescent materials was experimentally measured using a spectrometer. Finally, eleven of the fluorescent materials were used for energy calibration of a CZT-based photon-counting detector. The optimal detection angle was determined to be approximately at 120° with respect to the beam direction, which showed the highest fluorescence to scatter ratio (FSR) with a weak dependence on the fluorescent material size. The feasibility of X-ray fluorescence for energy calibration of photon-counting detectors in the diagnostic X-ray energy range was verified by successfully calibrating the energy response of a CZT-based photon-counting detector. The results of this study can be used as a guideline to implement the X-ray fluorescence calibration method for photon-counting detectors in a typical imaging laboratory. PMID:25369288

  10. Calibration of phoswich-based lung counting system using realistic chest phantom.

    PubMed

    Manohari, M; Mathiyarasu, R; Rajagopal, V; Meenakshisundaram, V; Indira, R

    2011-03-01

    A phoswich detector, housed inside a low background steel room, coupled with a state-of-art pulse shape discrimination (PSD) electronics is recently established at Radiological Safety Division of IGCAR for in vivo monitoring of actinides. The various parameters of PSD electronics were optimised to achieve efficient background reduction in low-energy regions. The PSD with optimised parameters has reduced steel room background from 9.5 to 0.28 cps in the 17 keV region and 5.8 to 0.3 cps in the 60 keV region. The Figure of Merit for the timing spectrum of the system is 3.0. The true signal loss due to PSD was found to be less than 2 %. The phoswich system was calibrated with Lawrence Livermore National Laboratory realistic chest phantom loaded with (241)Am activity tagged lung set. Calibration factors for varying chest wall composition and chest wall thickness in terms of muscle equivalent chest wall thickness were established. (241)Am activity in the JAERI phantom which was received as a part of IAEA inter-comparison exercise was estimated. This paper presents the optimisation of PSD electronics and the salient results of the calibration. PMID:21044995

  11. Precise astronomical flux calibration and its impact on studying the nature of the dark energy

    NASA Astrophysics Data System (ADS)

    Stubbs, Christopher W.; Brown, Yorke J.

    2015-12-01

    Measurements of the luminosity of Type Ia supernovae versus redshift provided the original evidence for the accelerating expansion of the Universe and the existence of dark energy. Despite substantial improvements in survey methodology, systematic uncertainty in flux calibration dominates the error budget for this technique, exceeding both statistics and other systematic uncertainties. Consequently, any further collection of Type Ia supernova data will fail to refine the constraints on the nature of dark energy unless we also improve the state of the art in astronomical flux calibration to the order of 1%. We describe how these systematic errors arise from calibration of instrumental sensitivity, atmospheric transmission and Galactic extinction, and discuss ongoing efforts to meet the 1% precision challenge using white dwarf stars as celestial standards, exquisitely calibrated detectors as fundamental metrologic standards, and real-time atmospheric monitoring.

  12. Calibration of multi-camera systems with refractive interfaces

    NASA Astrophysics Data System (ADS)

    Belden, Jesse

    2013-02-01

    A method for performing bundle adjustment-based calibration of a multi-camera setup with refractive interfaces in the optical path is presented. The method contributes to volumetric multi-camera fluid experiments, where it is desirable to avoid tedious alignment of calibration grids in multiple locations and where a premium is placed on accurately locating world points. Cameras are calibrated from image point correspondences of unknown world points, and the location of the refractive interface need not be accurately known a priori. Physical models for two practically relevant imaging configurations are presented; the first is a planar wall separating cameras and a liquid, and the second is a liquid-containing cylindrical tank with finite wall thickness. Each model allows the cameras to be in general location and orientation relative to the interface. A thorough numerical study demonstrates the ability of the calibration method to accurately estimate camera parameters, interface orientation, and world point locations. The numerical study explores the convergence, accuracy, and sensitivity of the calibration method as a function of initialization, camera configuration, volume size, and interface type. The technique is applied to real calibration data where the algorithm is supplied with errant initial parameter estimates and shown to provide accurate results. The ease of implementation and accuracy of the refractive calibration method make the approach attractive for three-dimensional multi-camera fluid measurement methods.

  13. Coastal zone color scanner 'system calibration': A retrospective examination

    NASA Technical Reports Server (NTRS)

    Evans, Robert H.; Gordon, Howard R.

    1994-01-01

    During its lifetime the Coastal Zone Color Scanner (CZCS) produced approximately 66,000 images. These have been placed in an archive of 'raw' radiance (sensor counts) in a subsampled format that is easily accessible. They have also been processed to form global fields, at reduced resolution, of normalized water-leaving radiance, phytoplankton pigments, and diffuse attenuation coefficient. Using this archive, we have tried to characterize some aspects of the 'system calibration' for the 8-year lifetime of CZCS. Specifically, we have assumed that the sensitivity of the red band decayed in a simple manner similar to the well-known long-term degradation of the shorter-wavelength bands, and we examined the sensitivity of the green and yellow bands by computing the globally averaged water-leaving radiance, over 10-day periods, for all of the imagery. The results provided evidence that in addition to the long-term degradation, short-term (2 weeks to 1 month) variations in the radiometric sensitivity of these bands started in early fall 1981 and continued for the rest of the mission. In contrast, the data suggested the absence of such variations prior to August 1981. It is reasonable to believe that the sensitivity of the blue (and probably the red) band underwent such variations as well; however our methodology cannot be used to study the other bands. Thus, after these fluctuations began, the actual values of CZCS - estimated pigment concentrations at a given location should be viewed with skepticism; however, the global patterns of derived pigment concentrations should be valid. Had an extensive set of surface measurements of water-leaving radiance, e.r., from moored buoyes or drifters, had been available during the CZCS mission, these fluctuations could have been removed from the data set, and this would have greatly increased its value. The lessons learned from CZCS that is, the requirement of good radiometric calibration and stability and the necessity of 'sea truth

  14. Blind RSSD-Based Indoor Localization with Confidence Calibration and Energy Control

    PubMed Central

    Zou, Tengyue; Lin, Shouying; Li, Shuyuan

    2016-01-01

    Indoor localization based on wireless sensor networks (WSNs) is an important field of research with numerous applications, such as elderly care, miner security, and smart buildings. In this paper, we present a localization method based on the received signal strength difference (RSSD) to determine a target on a map with unknown transmission information. To increase the accuracy of localization, we propose a confidence value for each anchor node to indicate its credibility for participating in the estimation. An automatic calibration device is designed to help acquire the values. The acceleration sensor and unscented Kalman filter (UKF) are also introduced to reduce the influence of measuring noise in the application. Energy control is another key point in WSN systems and may prolong the lifetime of the system. Thus, a quadtree structure is constructed to describe the region correlation between neighboring areas, and the unnecessary anchor nodes can be detected and set to sleep to save energy. The localization system is implemented on real-time Texas Instruments CC2430 and CC2431 embedded platforms, and the experimental results indicate that these mechanisms achieve a high accuracy and low energy cost. PMID:27258272

  15. Blind RSSD-Based Indoor Localization with Confidence Calibration and Energy Control.

    PubMed

    Zou, Tengyue; Lin, Shouying; Li, Shuyuan

    2016-01-01

    Indoor localization based on wireless sensor networks (WSNs) is an important field of research with numerous applications, such as elderly care, miner security, and smart buildings. In this paper, we present a localization method based on the received signal strength difference (RSSD) to determine a target on a map with unknown transmission information. To increase the accuracy of localization, we propose a confidence value for each anchor node to indicate its credibility for participating in the estimation. An automatic calibration device is designed to help acquire the values. The acceleration sensor and unscented Kalman filter (UKF) are also introduced to reduce the influence of measuring noise in the application. Energy control is another key point in WSN systems and may prolong the lifetime of the system. Thus, a quadtree structure is constructed to describe the region correlation between neighboring areas, and the unnecessary anchor nodes can be detected and set to sleep to save energy. The localization system is implemented on real-time Texas Instruments CC2430 and CC2431 embedded platforms, and the experimental results indicate that these mechanisms achieve a high accuracy and low energy cost. PMID:27258272

  16. A new and simple calibration-independent method for measuring the beam energy of a cyclotron.

    PubMed

    Gagnon, Katherine; Jensen, Mikael; Thisgaard, Helge; Publicover, Julia; Lapi, Suzanne; McQuarrie, Steve A; Ruth, Thomas J

    2011-01-01

    This work recommends a new and simple-to-perform method for measuring the beam energy of an accelerator. The proposed method requires the irradiation of two monitor foils interspaced by an energy degrader. The primary advantage of the proposed method, which makes this method unique from previous energy evaluation strategies that employ the use of monitor foils, is that this method is independent of the detector efficiency calibration. This method was evaluated by performing proton activation of (nat)Cu foils using both a cyclotron and a tandem Van de Graaff accelerator. The monitor foil activities were read using a dose calibrator set to an arbitrary calibration setting. Excellent agreement was noted between the nominal and measured proton energies. PMID:20926304

  17. Energy calibration of energy-resolved photon-counting pixel detectors using laboratory polychromatic x-ray beams

    NASA Astrophysics Data System (ADS)

    Youn, Hanbean; Han, Jong Chul; Kam, Soohwa; Yun, Seungman; Kim, Ho Kyung

    2014-10-01

    Recently, photon-counting detectors capable of resolving incident x-ray photon energies have been considered for use in spectral x-ray imaging applications. For reliable use of energy-resolved photon-counting detectors (ERPCDs), energy calibration is an essential procedure prior to their use because variations in responses from each pixel of the ERPCD for incident photons, even at the same energy, are inevitable. Energy calibration can be performed using a variety of methods. In all of these methods, the photon spectra with well-defined peak energies are recorded. Every pixel should be calibrated on its own. In this study, we suggest the use of a conventional polychromatic x-ray source (that is typically used in laboratories) for energy calibration. The energy calibration procedure mainly includes the determination of the peak energies in the spectra, flood-field irradiation, determination of peak channels, and determination of calibration curves (i.e., the slopes and intercepts of linear polynomials). We applied a calibration algorithm to a CdTe ERPCD comprised of 128×128 pixels with a pitch of 0.35 mm using highly attenuated polychromatic x-ray beams to reduce the pulse pile-up effect, and to obtain a narrow-shaped spectrum due to beam hardening. The averaged relative error in calibration curves obtained from 16,384 pixels was about 0.56% for 59.6 keV photons from an Americium radioisotope. This pixel-by-pixel energy calibration enhanced the signal- and contrast-to-noise ratios in images, respectively, by a factor of ~5 and 3 due to improvement in image homogeneity, compared to those obtained without energy calibration. One secondary finding of this study was that the x-ray photon spectra obtained using a common algorithm for computing x-ray spectra reasonably described the peaks in the measured spectra, which implies easier peak detection without the direct measurement of spectra using a separate spectrometer. The proposed method will be a useful alternative to

  18. Automatic Calibration System for 20 kg Weights by Robot and Weight Magazine

    NASA Astrophysics Data System (ADS)

    Lee, Min-Soo; Kwak, Woon-Young

    This paper presents the method that can calibrate the weights (10 kg 20 kg) automatically by a 3-axis robot, three weight carrier magazines. So the operators do not need to take an effort to align weight on the pan of the balance manually during calibration procedure, and can calibrate the weights automatically during night. The weight calibration system consists of a 3-axis robot, a weight magazine, and operating software to avoid temperature and air flow effect from human. At first the calibration system moves weight on the magazine to the pan of balance. Second measures the mass of the weight, and then moves the weight to the original position on the magazine automatically. This automatic moving method not only avoids the introduction of excess uncertainty, but also improves productivity. Hereafter the similar system can be applied to the calibration of other range weights (1 mg 5 g).

  19. Test of Regional Calibrations for a NIRS Soil Mapping System

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Near infrared spectroscopy (NIRS) is an effective technique for simultaneously measuring several soil properties including soil organic carbon, total nitrogen, moisture, and cation exchange capacity. However, developing robust calibration models for predicting soil properties from spectral measureme...

  20. Calibration technique for the neutron surface moisture measurement system

    SciTech Connect

    Watson, W.T.; Shreve, D.C.

    1996-01-01

    A technique for calibrating the response of a surface neutron moisture measurement probe to material moisture concentration has been devised. Tests to ensure that the probe will function in the expected in-tank operating environment are also outlined.

  1. Spectroradiometric calibration of the thematic mapper and multispectral scanner system

    NASA Technical Reports Server (NTRS)

    Slater, Philip N.; Palmer, James M.

    1986-01-01

    A list of personnel who have contributed to the program is provided. Sixteen publications and presentations are also listed. A preprint summarizing five in-flight absolute radiometric calibrations of the solar reflective bands of the LANDSAT-5 Thematic Mapper is presented. The 23 band calibrations made on the five dates show a 2.5% RMS variation from the mean as a percentage of the mean. A preprint is also presented that discusses the reflectance-based results of the above preprint. It proceeds to analyze and present results of a second, independent calibration method based on radiance measurements from a helicopter. Radiative transfer through the atmosphere, model atmospheres, the calibration methodology used at White Sands and the results of a sensitivity analysis of the reflectance-based approach is also discussed.

  2. SU-E-I-38: Improved Metal Artifact Correction Using Adaptive Dual Energy Calibration

    SciTech Connect

    Dong, X; Elder, E; Roper, J; Dhabaan, A

    2015-06-15

    Purpose: The empirical dual energy calibration (EDEC) method corrects for beam-hardening artifacts, but shows limited performance on metal artifact correction. In this work, we propose an adaptive dual energy calibration (ADEC) method to correct for metal artifacts. Methods: The empirical dual energy calibration (EDEC) method corrects for beam-hardening artifacts, but shows limited performance on metal artifact correction. In this work, we propose an adaptive dual energy calibration (ADEC) method to correct for metal artifacts. Results: Highly attenuating copper rods cause severe streaking artifacts on standard CT images. EDEC improves the image quality, but cannot eliminate the streaking artifacts. Compared to EDEC, the proposed ADEC method further reduces the streaking resulting from metallic inserts and beam-hardening effects and obtains material decomposition images with significantly improved accuracy. Conclusion: We propose an adaptive dual energy calibration method to correct for metal artifacts. ADEC is evaluated with the Shepp-Logan phantom, and shows superior metal artifact correction performance. In the future, we will further evaluate the performance of the proposed method with phantom and patient data.

  3. CALIBRATION OF EQUILIBRIUM TIDE THEORY FOR EXTRASOLAR PLANET SYSTEMS. II

    SciTech Connect

    Hansen, Brad M. S.

    2012-09-20

    We present a new empirical calibration of equilibrium tidal theory for extrasolar planet systems, extending a prior study by incorporating detailed physical models for the internal structure of planets and host stars. The resulting strength of the stellar tide produces a coupling that is strong enough to reorient the spins of some host stars without causing catastrophic orbital evolution, thereby potentially explaining the observed trend in alignment between stellar spin and planetary orbital angular momentum. By isolating the sample whose spins should not have been altered in this model, we also show evidence for two different processes that contribute to the population of planets with short orbital periods. We apply our results to estimate the remaining lifetimes for short-period planets, examine the survival of planets around evolving stars, and determine the limits for circularization of planets with highly eccentric orbits. Our analysis suggests that the survival of circularized planets is strongly affected by the amount of heat dissipated, which is often large enough to lead to runaway orbital inflation and Roche lobe overflow.

  4. Spectroradiometric calibration of the thematic mapper and multispectral scanner system

    NASA Technical Reports Server (NTRS)

    Slater, P. N. (Principal Investigator); Palmer, J. M.

    1983-01-01

    The results obtained for the absolute calibration of TM bands 2, 3, and 4 are presented. The results are based on TM image data collected simultaneously with ground and atmospheric data at White Sands, New Mexico. Also discussed are the results of a moments analysis to determine the equivalent bandpasses, effective central wavelengths and normalized responses of the TM and MSS spectral bands; the calibration of the BaSO, plate used at White Sands; and future plans.

  5. Spectroradiometric calibration of the Thematic Mapper and Multispectral Scanner system

    NASA Technical Reports Server (NTRS)

    Slater, P. N.; Palmer, J. M. (Principal Investigator)

    1985-01-01

    The results of analyses of Thematic Mapper (TM) images acquired on July 8 and October 28, 1984, and of a check of the calibration of the 1.22-m integrating sphere at Santa Barbara Research Center (SBRC) are described. The results obtained from the in-flight calibration attempts disagree with the pre-flight calibrations for bands 2 and 4. Considerable effort was expended in an attempt to explain the disagreement. The difficult point to explain is that the difference between the radiances predicted by the radiative transfer code (the code radiances) and the radiances predicted by the preflight calibration (the pre-flight radiances) fluctuate with spectral band. Because the spectral quantities measured at White Sands show little change with spectral band, these fluctuations are not anticipated. Analyses of other targets at White Sands such as clouds, cloud shadows, and water surfaces tend to support the pre-flight and internal calibrator calibrations. The source of the disagreement has not been identified. It could be due to: (1) a computational error in the data reduction; (2) an incorrect assumption in the input to the radiative transfer code; or (3) incorrect operation of the field equipment.

  6. Uncertainty Analysis of the Single-Vector Force Balance Calibration System

    NASA Technical Reports Server (NTRS)

    Parker, Peter A.; Liu, Tianshu

    2002-01-01

    This paper presents an uncertainty analysis of the Single-Vector Force Balance Calibration System (SVS). This study is focused on the uncertainty involved in setting the independent variables during the calibration experiment. By knowing the uncertainty in the calibration system, the fundamental limits of the calibration accuracy of a particular balance can be determined. A brief description of the SVS mechanical system is provided. A mathematical model is developed to describe the mechanical system elements. A sensitivity analysis of these parameters is carried out through numerical simulations to assess the sensitivity of the total uncertainty to the elemental error sources. These sensitivity coefficients provide valuable information regarding the relative significance of the elemental sources of error. An example calculation of the total uncertainty for a specific balance is provided. Results from this uncertainty analysis are specific to the Single-Vector System, but the approach is broad in nature and therefore applicable to other measurement and calibration systems.

  7. The molecular branching ratio method for calibration of optical systems in the vacuum ultraviolet

    NASA Technical Reports Server (NTRS)

    Mumma, M. J.

    1972-01-01

    The intensity distribution of bands belonging to six molecular band systems is discussed with special emphasis on their usefulness for intensity calibration of optical systems in the vacuum ultraviolet (1000A Lambda 3000A). The theory of molecular band intensities is outlined and the technique of measuring the spectral response curve is described. Several methods for establishing an absolute intensity calibration are discussed.

  8. Organisation of a unified system of energetic calibration of X-ray experiments

    NASA Astrophysics Data System (ADS)

    Valnicek, B.; Farnik, F.; Sylwester, B.; Sylwester, J.

    By comparing the X-ray data obtained by the Prognoz 5, 6, 7, and 8 hard X-ray photometers with the measurements carried out by similar instruments aboard the Solrad 11, ISEE 3, SMM, and Hinotori satellites, it is possible to determine the differences in absolute calibration between the experiments. The modified amplitude method is used to point out the apparent disagreement in the calibration of the energy discrimination level between the instruments. The results of the comparison and the possible sources of disagreement are presented. It is concluded that without proper in-flight calibration the results, in spite of a high accuracy of pre-launch calibration, are subject to a large error due to the steepness of the continuous X-ray spectrum in the hard region; and that it is necessary to adopt permanent calibration control, or in-flight automatic calibration.

  9. TU-F-18A-05: An X-Ray Fluorescence Technique for Energy Calibration of Photon-Counting Detectors

    SciTech Connect

    Ding, H; Cho, H; Molloi, S; Barber, W; Iwanczyk, J

    2014-06-15

    Purpose: To investigate the feasibility of energy response calibration of a Si strip photon-counting detector by using the x-ray fluorescence technique. Methods: X-ray fluorescence was generated by using a pencil beam from a tungsten anode x-ray tube with 2 mm Al filtration. Spectra were acquired at 90° from the primary beam direction with an energy-resolved photon-counting detector based on Si strips. The distances from the source to target and the target to detector were approximately 19 and 11 cm, respectively. Four different materials, containing Ag, I, Ba, and Gd, were placed in small plastic aliquots with a diameter of approximately 0.7 cm for x-ray fluorescence measurements. Linear regression analysis was performed to derive the gain and offset values for the correlation between the measured fluorescence peak center and the known energies for materials. The energy resolution was derived from the full width at half maximum (FWHM) of the fluorescence peaks. In addition, the angular dependence of the recorded fluorescence spectra was studied at 30°, 60°, and 120°. Results: Strong fluorescence signals of all four target materials were recorded with the investigated geometry for the Si strip detector. The recorded pulse height was calibrated with respect to photon energy and the gain and offset values were calculated to be 7.0 mV/keV and −69.3 mV, respectively. Negligible variation in energy calibration was observed among the four energy thresholds. The variation among different pixels was estimated to be approximately 1 keV. The energy resolution of the detector was estimated to be 7.9% within the investigated energy range. Conclusion: The performance of a spectral imaging system using energy-resolved photon-counting detectors is very dependent on the energy calibration of the detector. The proposed x-ray fluorescence technique provides an accurate and efficient way to calibrate the energy response of a photon-counting detector.

  10. Reflective terahertz (THz) imaging: system calibration using hydration phantoms

    NASA Astrophysics Data System (ADS)

    Bajwa, Neha; Garritano, James; Lee, Yoon Kyung; Tewari, Priyamvada; Sung, Shijun; Maccabi, Ashkan; Nowroozi, Bryan; Babakhanian, Meghedi; Sanghvi, Sajan; Singh, Rahul; Grundfest, Warren; Taylor, Zachary

    2013-02-01

    Terahertz (THz) hydration sensing continues to gain traction in the medical imaging community due to its unparalleled sensitivity to tissue water content. Rapid and accurate detection of fluid shifts following induction of thermal skin burns as well as remote corneal hydration sensing have been previously demonstrated in vivo using reflective, pulsed THz imaging. The hydration contrast sensing capabilities of this technology were recently confirmed in a parallel 7 Tesla Magnetic Resonance (MR) imaging study, in which burn areas are associated with increases in local mobile water content. Successful clinical translation of THz sensing, however, still requires quantitative assessments of system performance measurements, specifically hydration concentration sensitivity, with tissue substitutes. This research aims to calibrate the sensitivity of a novel, reflective THz system to tissue water content through the use of hydration phantoms for quantitative comparisons of THz hydration imagery.Gelatin phantoms were identified as an appropriate tissue-mimicking model for reflective THz applications, and gel composition, comprising mixtures of water and protein, was varied between 83% to 95% hydration, a physiologically relevant range. A comparison of four series of gelatin phantom studies demonstrated a positive linear relationship between THz reflectivity and water concentration, with statistically significant hydration sensitivities (p < .01) ranging between 0.0209 - 0.038% (reflectivity: %hydration). The THz-phantom interaction is simulated with a three-layer model using the Transfer Matrix Method with agreement in hydration trends. Having demonstrated the ability to accurately and noninvasively measure water content in tissue equivalent targets with high sensitivity, reflective THz imaging is explored as a potential tool for early detection and intervention of corneal pathologies.

  11. Artifact correction and absolute radiometric calibration techniques employed in the Landsat 7 image assessment system

    USGS Publications Warehouse

    Boncyk, Wayne C.; Markham, Brian L.; Barker, John L.; Helder, Dennis

    1996-01-01

    The Landsat-7 Image Assessment System (IAS), part of the Landsat-7 Ground System, will calibrate and evaluate the radiometric and geometric performance of the Enhanced Thematic Mapper Plus (ETM +) instrument. The IAS incorporates new instrument radiometric artifact correction and absolute radiometric calibration techniques which overcome some limitations to calibration accuracy inherent in historical calibration methods. Knowledge of ETM + instrument characteristics gleaned from analysis of archival Thematic Mapper in-flight data and from ETM + prelaunch tests allow the determination and quantification of the sources of instrument artifacts. This a priori knowledge will be utilized in IAS algorithms designed to minimize the effects of the noise sources before calibration, in both ETM + image and calibration data.

  12. Enabling technologies for robot assisted ultrasound tomography: system setup and calibration

    NASA Astrophysics Data System (ADS)

    Aalamifar, Fereshteh; Khurana, Rishabh; Cheng, Alexis; Taylor, Russell H.; Iordachita, Iulian; Boctor, Emad M.

    2014-04-01

    In this study, we are proposing a robot-assisted ultrasound tomography system that can offer soft tissue tomographic imaging and deeper or faster scan of the anatomy. This system consists of a robot-held ultrasound probe that tracks the position of another freehand probe, trying to align with it. One of the major challenges is achieving proper alignment of the two ultrasound probes. To enable proper alignment, two ultrasound calibrations and one hand-eye calibration are required. However, the system functionality and design is such that the ultrasound calibrations have become a challenge. In this paper, after providing an overview of the proposed robotic ultrasound tomography system, we focus on the calibrations problem. The results of the calibrations show a point reconstruction precision of a few millimeters for the current prototype, and the two images have at least 50% overlap visually; confirming the feasibility of such a system relying on accurate probe alignments.

  13. Cross calibration of telescope optical throughput efficiencies using reconstructed shower energies for the Cherenkov Telescope Array

    NASA Astrophysics Data System (ADS)

    Mitchell, A. M. W.; Parsons, R. D.; Hofmann, W.; Bernlöhr, K.

    2016-02-01

    For reliable event reconstruction of Imaging Atmospheric Cherenkov Telescopes (IACTs), calibration of the optical throughput efficiency is required. Within current facilities, this is achieved through the use of ring shaped images generated by muons. Here, a complementary approach is explored, achieving cross calibration of elements of IACT arrays through pairwise comparisons between telescopes, focussing on its applicability to the upcoming Cherenkov Telescope Array (CTA). Intercalibration of telescopes of a particular type using eventwise comparisons of shower image amplitudes has previously been demonstrated to recover the relative telescope optical responses. A method utilising the reconstructed energy as an alternative to image amplitude is presented, enabling cross calibration between telescopes of varying types within an IACT array. Monte Carlo studies for two plausible CTA layouts have shown that this calibration procedure recovers the relative telescope response efficiencies at the few per cent level.

  14. Calibration and Laboratory Test of the Department of Energy Cloud Particle Imager

    SciTech Connect

    McFarquhar, GM; Um, J

    2012-02-17

    Calibration parameters from the Connolly et al. (2007) algorithm cannot be applied to the Department of Energy's (DOE) CPI because the DOE CPI is version 2.0. Thus, Dr. Junshik Um and Prof. Greg McFarquhar brought the DOE CPI to the University of Manchester, UK, where facilities for calibrating it were available. In addition, two other versions of CPIs (1.0 and 1.5) were available on-site at the University of Manchester so that an intercomparison of three different versions of the CPI was possible. The three CPIs (versions 1.0, 1.5, and 2.0) were calibrated by moving glass calibration beads and ice analogues of known size parallel to the object plane. The distance between the object plane and a particle, the particle's focus, its apparent maximum dimension, and a background image were measured in order to derive calibration parameters for each CPI version. The calibration parameters are used in two empirical equations that are applied to in situ CPI data to determine particle size and depth of field, and hence particle size distributions (PSDs). After the tests with the glass calibration beads to derive the calibration parameters, the three CPIs were installed at the base of the Manchester Ice Cloud Chamber and connected to air pumps that drew cloud through the sample volume. Warm liquid clouds at a temperature of 1-2 C and ice clouds at a temperature of -5 C were generated, and the resulting PSDs for each of the CPIs were determined by applying the results of each calibration.

  15. A Study for Efficient Methods of System Calibration between Optical and Range Sensors

    NASA Astrophysics Data System (ADS)

    Choi, W.; Kim, C.; Kim, Y.

    2015-06-01

    Recently, interests in 3D indoor modeling and positioning have been growing. Data fusion by using different sensors data is one of the 3D model producing methods. For a data fusion between two kinds of sensors, precise system calibration is essential. If relative geometric location of each sensor can be accurately measured with a system-calibration, it is possible to locate a pixel that corresponds to the same object in two different images, and thus, produce a more precise data-fusion. Purpose of this study is finding more efficient method of system calibration between optical and range sensor. For this purpose, experiment was designed by considering following variables, i) system calibration method, ii) testbed type, iii) and distance data(whether use it or not). So, In this study, test-bed for system calibration was designed by considering the characteristics of sensors. Also, precise simulation was done to find efficient method of system calibration, and its results were reflected in real experiment. Results of simulation show that the bundle adjustment method is more efficient than single photo resection in system calibration between range and optical sensors. And the most efficient case was when using i) the bundle adjustment with ii) the simulated data set which were obtained between 2m to 4m away from the test-bed. These results of simulation were reflected in real system calibration. Finally, real system calibration were performed and its results were compared to results of simulation. And accuracy of system calibration was evaluated by producing fusion data between range and optical sensors.

  16. The study of new calibration features in the Harshaw TLD system.

    PubMed

    Luo, L Z

    2007-01-01

    The Harshaw TLD system has three key calibration procedures: the Reader, the Dosemeter and the Algorithm. These functions must be properly calibrated for the system to achieve the optimum results. For the conventional reader and dosemeter calibration, Harshaw TLD recommends a pre-fade and a post-fade of 24-48 h when calibrating the system for LiF:Mg,Ti type dosemeter. It is also recommended that keeping the fade time consistent is important to maintain the quality of the system performance. In recent years, new calibration features have been introduced into the Harshaw TLD models 6600 and 8800 operating systems. These new features are Auto Calibration, Auto QC and Auto Blank, and they give the user the ability to set up the clear-expose-read process to be performed automatically in a sequence for each dosemeter. This saves processing time and keeps the fade time the same. However, since the fade time is near zero, will it affect the TLD system calibration factors? What should the user expect? This paper presents a study of the effect of Auto Calibration/Auto QC to the TLD operation. PMID:17223631

  17. A robust calibration technique for acoustic emission systems based on momentum transfer from a ball drop

    USGS Publications Warehouse

    McLaskey, Gregory C.; Lockner, David A.; Kilgore, Brian D.; Beeler, Nicholas M.

    2015-01-01

    We describe a technique to estimate the seismic moment of acoustic emissions and other extremely small seismic events. Unlike previous calibration techniques, it does not require modeling of the wave propagation, sensor response, or signal conditioning. Rather, this technique calibrates the recording system as a whole and uses a ball impact as a reference source or empirical Green’s function. To correctly apply this technique, we develop mathematical expressions that link the seismic moment $M_{0}$ of internal seismic sources (i.e., earthquakes and acoustic emissions) to the impulse, or change in momentum $\\Delta p $, of externally applied seismic sources (i.e., meteor impacts or, in this case, ball impact). We find that, at low frequencies, moment and impulse are linked by a constant, which we call the force‐moment‐rate scale factor $C_{F\\dot{M}} = M_{0}/\\Delta p$. This constant is equal to twice the speed of sound in the material from which the seismic sources were generated. Next, we demonstrate the calibration technique on two different experimental rock mechanics facilities. The first example is a saw‐cut cylindrical granite sample that is loaded in a triaxial apparatus at 40 MPa confining pressure. The second example is a 2 m long fault cut in a granite sample and deformed in a large biaxial apparatus at lower stress levels. Using the empirical calibration technique, we are able to determine absolute source parameters including the seismic moment, corner frequency, stress drop, and radiated energy of these magnitude −2.5 to −7 seismic events.

  18. [Stability analysis of on-board calibration system of spatially modulated imaging Fourier transform spectrometer].

    PubMed

    Gao, Jingz; Ji, Zhong-Ying; Wang, Zhong-Hou; Cui, Yan

    2010-04-01

    Spatially modulated imaging Fourier transform spectrometer (SMIFTS) was an instrument that depended on interference, and after calibration, the reconstruction spectrum can quantificationally reflect the diffuse reflection of target under sunshine. On-board calibration of SMIFTS confirmed the change of SMIFTS according to relative spectrum calibration, inspected long-time attenuation of SMIFTS optical system, and corrected export data of SMIFTS. According to the requirement of remote sensor application, it must stay in vacuum environment for a long time. As a radiant standard, the stability of lamp-house in long time is the most important characteristic of on-board calibration system. By calculation and experimentation, analyses of on-board calibration of SMIFTS, and testing spaceflight environment characteristic of on-board calibration, the difficulty in the key parts of on-board calibration of SMIFTS such as lamp-house, spectrum filter and integrating sphere was solved. According to the radiation-time stability testing for lamp-house and optics, particle-radiation testing, environmental-mechanics testing and hot vacuum examination, good result was obtained. By whole-aperture and part-field comparative wavelength calibration, the spectrum curve and before-launch interferogram were obtained. After comparison with reconstruction spectrum under different condition, the stability and credibility of SMIFTS on-board calibration system was proved. PMID:20545151

  19. Systematic calibration of an integrated x-ray and optical tomography system for preclinical radiation research

    PubMed Central

    Yang, Yidong; Wang, Ken Kang-Hsin; Eslami, Sohrab; Iordachita, Iulian I.; Patterson, Michael S.; Wong, John W.

    2015-01-01

    Purpose: The cone beam computed tomography (CBCT) guided small animal radiation research platform (SARRP) has been developed for focal tumor irradiation, allowing laboratory researchers to test basic biological hypotheses that can modify radiotherapy outcomes in ways that were not feasible previously. CBCT provides excellent bone to soft tissue contrast, but is incapable of differentiating tumors from surrounding soft tissue. Bioluminescence tomography (BLT), in contrast, allows direct visualization of even subpalpable tumors and quantitative evaluation of tumor response. Integration of BLT with CBCT offers complementary image information, with CBCT delineating anatomic structures and BLT differentiating luminescent tumors. This study is to develop a systematic method to calibrate an integrated CBCT and BLT imaging system which can be adopted onboard the SARRP to guide focal tumor irradiation. Methods: The integrated imaging system consists of CBCT, diffuse optical tomography (DOT), and BLT. The anatomy acquired from CBCT and optical properties acquired from DOT serve as a priori information for the subsequent BLT reconstruction. Phantoms were designed and procedures were developed to calibrate the CBCT, DOT/BLT, and the entire integrated system. Geometrical calibration was performed to calibrate the CBCT system. Flat field correction was performed to correct the nonuniform response of the optical imaging system. Absolute emittance calibration was performed to convert the camera readout to the emittance at the phantom or animal surface, which enabled the direct reconstruction of the bioluminescence source strength. Phantom and mouse imaging were performed to validate the calibration. Results: All calibration procedures were successfully performed. Both CBCT of a thin wire and a euthanized mouse revealed no spatial artifact, validating the accuracy of the CBCT calibration. The absolute emittance calibration was validated with a 650 nm laser source, resulting in a 3

  20. Systematic calibration of an integrated x-ray and optical tomography system for preclinical radiation research

    SciTech Connect

    Yang, Yidong; Wang, Ken Kang-Hsin; Wong, John W.; Eslami, Sohrab; Iordachita, Iulian I.; Patterson, Michael S.

    2015-04-15

    Purpose: The cone beam computed tomography (CBCT) guided small animal radiation research platform (SARRP) has been developed for focal tumor irradiation, allowing laboratory researchers to test basic biological hypotheses that can modify radiotherapy outcomes in ways that were not feasible previously. CBCT provides excellent bone to soft tissue contrast, but is incapable of differentiating tumors from surrounding soft tissue. Bioluminescence tomography (BLT), in contrast, allows direct visualization of even subpalpable tumors and quantitative evaluation of tumor response. Integration of BLT with CBCT offers complementary image information, with CBCT delineating anatomic structures and BLT differentiating luminescent tumors. This study is to develop a systematic method to calibrate an integrated CBCT and BLT imaging system which can be adopted onboard the SARRP to guide focal tumor irradiation. Methods: The integrated imaging system consists of CBCT, diffuse optical tomography (DOT), and BLT. The anatomy acquired from CBCT and optical properties acquired from DOT serve as a priori information for the subsequent BLT reconstruction. Phantoms were designed and procedures were developed to calibrate the CBCT, DOT/BLT, and the entire integrated system. Geometrical calibration was performed to calibrate the CBCT system. Flat field correction was performed to correct the nonuniform response of the optical imaging system. Absolute emittance calibration was performed to convert the camera readout to the emittance at the phantom or animal surface, which enabled the direct reconstruction of the bioluminescence source strength. Phantom and mouse imaging were performed to validate the calibration. Results: All calibration procedures were successfully performed. Both CBCT of a thin wire and a euthanized mouse revealed no spatial artifact, validating the accuracy of the CBCT calibration. The absolute emittance calibration was validated with a 650 nm laser source, resulting in a 3

  1. Energy Calibration of the BaBar EMC Using the Pi0 Invariant Mass Method

    SciTech Connect

    Tanner, David J.; /Manchester U.

    2007-04-06

    The BaBar electromagnetic calorimeter energy calibration method was compared with the local and global peak iteration procedures, of Crystal Barrel and CLEO-II. An investigation was made of the possibility of {Upsilon}(4S) background reduction which could lead to increased statistics over a shorter time interval, for efficient calibration runs. The BaBar software package was used with unreconstructed data to study the energy response of the calorimeter, by utilizing the {pi}{sup 0} mass constraint on pairs of photon clusters.

  2. A calibration system of O2 consumption and CO2 production for premature infants

    NASA Astrophysics Data System (ADS)

    Lin, Shih-Ching; Luo, Ching-Hsing; Yeh, Tsu-Fuh

    2001-03-01

    An apparatus to calibrate the system of measuring O2 consumption and CO2 production has been developed for premature infants. This system is based on the alcohol combustion principal. The alcohol combustion is used to test the indirect calorimetric system due to its simplicity and reliability. In the previous studies, the O2 consumption rate of alcoholic combustion is too large to simulate the breath of premature infants. A new design is proposed to burn alcohol continuously at a rate as low as 0.004 ml min-1, equivalent to an O2 consumption rate of only 3.9 ml min-1, a level in the breath range of preterms of about 660 g based on the measurement 5.9 ml kg-1 min-1. The alcohol combusts with various steady-state rates to imitate the breath of premature infants, and it is useful for a canopy open-circuit system. The calibration tool proposed here would be helpful in the clinical study of energy expenditure for preterms.

  3. Calibration improvements to electronically scanned pressure systems and preliminary statistical assessment

    NASA Technical Reports Server (NTRS)

    Everhart, Joel L.

    1996-01-01

    Orifice-to-orifice inconsistencies in data acquired with an electronically-scanned pressure system at the beginning of a wind tunnel experiment forced modifications to the standard, instrument calibration procedures. These modifications included a large increase in the number of calibration points which would allow a critical examination of the calibration curve-fit process, and a subsequent post-test reduction of the pressure data. Evaluation of these data has resulted in an improved functional representation of the pressure-voltage signature for electronically-scanned pressures sensors, which can reduce the errors due to calibration curve fit to under 0.10 percent of reading compared to the manufacturer specified 0.10 percent of full scale. Application of the improved calibration function allows a more rational selection of the calibration set-point pressures. These pressures should be adjusted to achieve a voltage output which matches the physical shape of the pressure-voltage signature of the sensor. This process is conducted in lieu of the more traditional approach where a calibration pressure is specified and the resulting sensor voltage is recorded. The fifteen calibrations acquired over the two-week duration of the wind tunnel test were further used to perform a preliminary, statistical assessment of the variation in the calibration process. The results allowed the estimation of the bias uncertainty for a single instrument calibration; and, they form the precursor for more extensive and more controlled studies in the laboratory.

  4. The preliminary checkout, evaluation and calibration of a 3-component force measurement system for calibrating propulsion simulators for wind tunnel models

    NASA Technical Reports Server (NTRS)

    Scott, W. A.

    1984-01-01

    The propulsion simulator calibration laboratory (PSCL) in which calibrations can be performed to determine the gross thrust and airflow of propulsion simulators installed in wind tunnel models is described. The preliminary checkout, evaluation and calibration of the PSCL's 3 component force measurement system is reported. Methods and equipment were developed for the alignment and calibration of the force measurement system. The initial alignment of the system demonstrated the need for more efficient means of aligning system's components. The use of precision alignment jigs increases both the speed and accuracy with which the system is aligned. The calibration of the force measurement system shows that the methods and equipment for this procedure can be successful.

  5. AN ADVANCED CALIBRATION PROCEDURE FOR COMPLEX IMPEDANCE SPECTRUM MEASUREMENTS OF ADVANCED ENERGY STORAGE DEVICES

    SciTech Connect

    William H. Morrison; Jon P. Christophersen; Patrick Bald; John L. Morrison

    2012-06-01

    With the increasing demand for electric and hybrid electric vehicles and the explosion in popularity of mobile and portable electronic devices such as laptops, cell phones, e-readers, tablet computers and the like, reliance on portable energy storage devices such as batteries has likewise increased. The concern for the availability of critical systems in turn drives the availability of battery systems and thus the need for accurate battery health monitoring has become paramount. Over the past decade the Idaho National Laboratory (INL), Montana Tech of the University of Montana (Tech), and Qualtech Systems, Inc. (QSI) have been developing the Smart Battery Status Monitor (SBSM), an integrated battery management system designed to monitor battery health, performance and degradation and use this knowledge for effective battery management and increased battery life. Key to the success of the SBSM is an in-situ impedance measurement system called the Impedance Measurement Box (IMB). One of the challenges encountered has been development of an accurate, simple, robust calibration process. This paper discusses the successful realization of this process.

  6. Calibration procedure for a neutron monitor at energies below 20 MeV

    NASA Astrophysics Data System (ADS)

    Öhrn, A.; Blomgren, J.; Park, H.; Khurana, S.; Nolte, R.; Schmidt, D.; Wilhelmsen, K.

    2008-07-01

    A liquid scintillation detector aimed for neutron energy and fluence measurements in the energy region below 20 MeV has been calibrated using monoenergetic and white spectrum neutron fields. Careful measurements of the proton light output function and the response matrix have been performed allowing for the application of unfolding techniques using existing codes. The response matrix is used to characterize monoenergetic neutron fields produced by the T(d,n) reaction at low deuteron energies.

  7. THE STANDARD CALIBRATION INSTRUMENT AUTOMATION SYSTEM FOR THE ATOMIC ABSORPTION SPECTROPHOTOMETER. PART III: PROGRAM DOCUMENTATION

    EPA Science Inventory

    This report contains complete documentation for the 15 programs and 11 data files of the EPA Atomic Absorption Instrument Automation System. The system incorporates the following major features: (1) multipoint calibration using first, second, or third degree regression or linear ...

  8. Techniques of absolute low energy x-ray calibration

    SciTech Connect

    Day, R.H.

    1986-01-01

    Recent advances in pulsed plasma research, materials science, and astrophysics have required many new diagnostic instruments for use in the low energy x-ray regime. The characterization of these instruments has provided a challenge to instrument designers and provided the momentum to improve x-ray sources and dosimetry techniques. In this paper, the present state-of-the-art in low energy x-ray characterization techniques is reviewed. A summary is given of low energy x-ray generator technology and dosimetry techniques including a discussion of thin window proportional counters and ionization chambers. A review is included of the widely used x-ray data bases and a sample of ultrasoft x-ray measuring procedures, chopped x-ray source generators, phase sensitive detection of ultralow currents, and angular divergence measurements.

  9. Calibration of the beam-position monitor system for the SLAC PEP-II B factory

    SciTech Connect

    Johnson, R.; Smith, S.; Kurita, N.

    1997-06-01

    The Beam-Position Monitors (BPM) for the PEP-II B Factory consist of four 1.5-cm diameter button style pickups mounted on the diagonals of the quadrupole vacuum chambers. Before installation of the vacuum chambers in the quadrupole assemblies, the electrical center of the BPMs is measured with respect to the mechanical center in a calibration test stand. In this paper the calibration test stand is described and the precision and accuracy of the calibrations are presented. After installation of the quadrupole assemblies in the PEP-II tunnel, the passive attenuation for each channel of the system is measured to preserve the accuracy of the calibration. Finally, the active electronics includes an onboard calibrator. Results for these portions of the calibration are presented.

  10. Improved camera calibration method based on perpendicularity compensation for binocular stereo vision measurement system.

    PubMed

    Jia, Zhenyuan; Yang, Jinghao; Liu, Wei; Wang, Fuji; Liu, Yang; Wang, Lingli; Fan, Chaonan; Zhao, Kai

    2015-06-15

    High-precision calibration of binocular vision systems plays an important role in accurate dimensional measurements. In this paper, an improved camera calibration method is proposed. First, an accurate intrinsic parameters calibration method based on active vision with perpendicularity compensation is developed. Compared to the previous work, this method eliminates the effect of non-perpendicularity of the camera motion on calibration accuracy. The principal point, scale factors, and distortion factors are calculated independently in this method, thereby allowing the strong coupling of these parameters to be eliminated. Second, an accurate global optimization method with only 5 images is presented. The results of calibration experiments show that the accuracy of the calibration method can reach 99.91%. PMID:26193503

  11. Distribution system model calibration with big data from AMI and PV inverters

    DOE PAGESBeta

    Peppanen, Jouni; Reno, Matthew J.; Broderick, Robert J.; Grijalva, Santiago

    2016-03-03

    Efficient management and coordination of distributed energy resources with advanced automation schemes requires accurate distribution system modeling and monitoring. Big data from smart meters and photovoltaic (PV) micro-inverters can be leveraged to calibrate existing utility models. This paper presents computationally efficient distribution system parameter estimation algorithms to improve the accuracy of existing utility feeder radial secondary circuit model parameters. The method is demonstrated using a real utility feeder model with advanced metering infrastructure (AMI) and PV micro-inverters, along with alternative parameter estimation approaches that can be used to improve secondary circuit models when limited measurement data is available. Lastly, themore » parameter estimation accuracy is demonstrated for both a three-phase test circuit with typical secondary circuit topologies and single-phase secondary circuits in a real mixed-phase test system.« less

  12. Development and Calibration of a System-Integrated Rotorcraft Finite Element Model for Impact Scenarios

    NASA Technical Reports Server (NTRS)

    Annett, Martin S.; Horta, Lucas G.; Jackson, Karen E.; Polanco, Michael A.; Littell, Justin D.

    2012-01-01

    Two full-scale crash tests of an MD-500 helicopter were conducted in 2009 and 2010 at NASA Langley's Landing and Impact Research Facility in support of NASA s Subsonic Rotary Wing Crashworthiness Project. The first crash test was conducted to evaluate the performance of an externally mounted composite deployable energy absorber (DEA) under combined impact conditions. In the second crash test, the energy absorber was removed to establish baseline loads that are regarded as severe but survivable. The presence of this energy absorbing device reduced the peak impact acceleration levels by a factor of three. Accelerations and kinematic data collected from the crash tests were compared to a system-integrated finite element model of the test article developed in parallel with the test program. In preparation for the full-scale crash test, a series of sub-scale and MD-500 mass simulator tests were conducted to evaluate the impact performances of various components and subsystems, including new crush tubes and the DEA blocks. Parameters defined for the system-integrated finite element model were determined from these tests. Results from 19 accelerometers placed throughout the airframe were compared to finite element model responses. The model developed for the purposes of predicting acceleration responses from the first crash test was inadequate when evaluating more severe conditions seen in the second crash test. A newly developed model calibration approach that includes uncertainty estimation, parameter sensitivity, impact shape orthogonality, and numerical optimization was used to calibrate model results for the full-scale crash test without the DEA. This combination of heuristic and quantitative methods identified modeling deficiencies, evaluated parameter importance, and proposed required model changes. The multidimensional calibration techniques presented here are particularly effective in identifying model adequacy. Acceleration results for the calibrated model were

  13. Energy Systems Design

    NASA Technical Reports Server (NTRS)

    1986-01-01

    PRESTO, a COSMIC program, handles energy system specifications and predicts design efficiency of cogeneration systems. These systems allow a company to use excess energy produced to generate electricity. PRESTO is utilized by the Energy Systems Division of Thermo Electron Corporation in the custom design of cogeneration systems.

  14. The Photomultiplier Tube Calibration System of the MicroBooNE Experiment

    SciTech Connect

    Conrad, J.; Jones, B. J.P.; Moss, Z.; Strauss, T.; Toups, M.

    2015-06-03

    We report on the design and construction of a LED-based fiber calibration system for large liquid argon time projection detectors. This system was developed to calibrate the optical systems of the MicroBooNE experiment. As well as detailing the materials and installation procedure, we provide technical drawings and specifications so that the system may be easily replicated in future LArTPC detectors.

  15. Evaluation of Automated Model Calibration Techniques for Residential Building Energy Simulation

    SciTech Connect

    and Ben Polly, Joseph Robertson; Polly, Ben; Collis, Jon

    2013-09-01

    This simulation study adapts and applies the general framework described in BESTEST-EX (Judkoff et al 2010) for self-testing residential building energy model calibration methods. BEopt/DOE-2.2 is used to evaluate four mathematical calibration methods in the context of monthly, daily, and hourly synthetic utility data for a 1960's-era existing home in a cooling-dominated climate. The home's model inputs are assigned probability distributions representing uncertainty ranges, random selections are made from the uncertainty ranges to define "explicit" input values, and synthetic utility billing data are generated using the explicit input values. The four calibration methods evaluated in this study are: an ASHRAE 1051-RP-based approach (Reddy and Maor 2006), a simplified simulated annealing optimization approach, a regression metamodeling optimization approach, and a simple output ratio calibration approach. The calibration methods are evaluated for monthly, daily, and hourly cases; various retrofit measures are applied to the calibrated models and the methods are evaluated based on the accuracy of predicted savings, computational cost, repeatability, automation, and ease of implementation.

  16. Evaluation of Automated Model Calibration Techniques for Residential Building Energy Simulation

    SciTech Connect

    Robertson, J.; Polly, B.; Collis, J.

    2013-09-01

    This simulation study adapts and applies the general framework described in BESTEST-EX (Judkoff et al 2010) for self-testing residential building energy model calibration methods. BEopt/DOE-2.2 is used to evaluate four mathematical calibration methods in the context of monthly, daily, and hourly synthetic utility data for a 1960's-era existing home in a cooling-dominated climate. The home's model inputs are assigned probability distributions representing uncertainty ranges, random selections are made from the uncertainty ranges to define 'explicit' input values, and synthetic utility billing data are generated using the explicit input values. The four calibration methods evaluated in this study are: an ASHRAE 1051-RP-based approach (Reddy and Maor 2006), a simplified simulated annealing optimization approach, a regression metamodeling optimization approach, and a simple output ratio calibration approach. The calibration methods are evaluated for monthly, daily, and hourly cases; various retrofit measures are applied to the calibrated models and the methods are evaluated based on the accuracy of predicted savings, computational cost, repeatability, automation, and ease of implementation.

  17. Energy calibration of the pixels of spectral X-ray detectors.

    PubMed

    Panta, Raj Kumar; Walsh, Michael F; Bell, Stephen T; Anderson, Nigel G; Butler, Anthony P; Butler, Philip H

    2015-03-01

    The energy information acquired using spectral X-ray detectors allows noninvasive identification and characterization of chemical components of a material. To achieve this, it is important that the energy response of the detector is calibrated. The established techniques for energy calibration are not practical for routine use in pre-clinical or clinical research environment. This is due to the requirements of using monochromatic radiation sources such as synchrotron, radio-isotopes, and prohibitively long time needed to set up the equipment and make measurements. To address these limitations, we have developed an automated technique for calibrating the energy response of the pixels in a spectral X-ray detector that runs with minimal user intervention. This technique uses the X-ray tube voltage (kVp) as a reference energy, which is stepped through an energy range of interest. This technique locates the energy threshold where a pixel transitions from not-counting (off) to counting (on). Similarly, we have developed a technique for calibrating the energy response of individual pixels using X-ray fluorescence generated by metallic targets directly irradiated with polychromatic X-rays, and additionally γ-rays from (241)Am. This technique was used to measure the energy response of individual pixels in CdTe-Medipix3RX by characterizing noise performance, threshold dispersion, gain variation and spectral resolution. The comparison of these two techniques shows the energy difference of 1 keV at 59.5 keV which is less than the spectral resolution of the detector (full-width at half-maximum of 8 keV at 59.5 keV). Both techniques can be used as quality control tools in a pre-clinical multi-energy CT scanner using spectral X-ray detectors. PMID:25051546

  18. A Laser Frequency Comb System for Absolute Calibration of the VTT Echelle Spectrograph

    NASA Astrophysics Data System (ADS)

    Doerr, H.-P.; Steinmetz, T.; Holzwarth, R.; Kentischer, T.; Schmidt, W.

    2012-10-01

    A wavelength calibration system based on a laser frequency comb (LFC) was developed in a co-operation between the Kiepenheuer-Institut für Sonnenphysik, Freiburg, Germany and the Max-Planck-Institut für Quantenoptik, Garching, Germany for permanent installation at the German Vacuum Tower Telescope (VTT) on Tenerife, Canary Islands. The system was installed successfully in October 2011. By simultaneously recording the spectra from the Sun and the LFC, for each exposure a calibration curve can be derived from the known frequencies of the comb modes that is suitable for absolute calibration at the meters per second level. We briefly summarize some topics in solar physics that benefit from absolute spectroscopy and point out the advantages of LFC compared to traditional calibration techniques. We also sketch the basic setup of the VTT calibration system and its integration with the existing echelle spectrograph.

  19. 40 CFR 92.116 - Engine output measurement system calibrations.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... engineering practice. (4) When calibrating the engine flywheel torque transducer, any lever arm used to... horizontal lever arm distance, corrected for the hanging torque of the lever arm. (i) The lever-arm dead... gravitational constant at the test site may be accounted for if desired. (B) Lever arm. A lever arm with...

  20. An Incremental Target-Adapted Strategy for Active Geometric Calibration of Projector-Camera Systems

    PubMed Central

    Chen, Chia-Yen; Chien, Hsiang-Jen

    2013-01-01

    The calibration of a projector-camera system is an essential step toward accurate 3-D measurement and environment-aware data projection applications, such as augmented reality. In this paper we present a two-stage easy-to-deploy strategy for robust calibration of both intrinsic and extrinsic parameters of a projector. Two key components of the system are the automatic generation of projected light patterns and the incremental calibration process. Based on the incremental strategy, the calibration process first establishes a set of initial parameters, and then it upgrades these parameters incrementally using the projection and captured images of dynamically-generated calibration patterns. The scene-driven light patterns allow the system to adapt itself to the pose of the calibration target, such that the difficulty in feature detection is greatly lowered. The strategy forms a closed-loop system that performs self-correction as more and more observations become available. Compared to the conventional method, which requires a time-consuming process for the acquisition of dense pixel correspondences, the proposed method deploys a homography-based coordinate computation, allowing the calibration time to be dramatically reduced. The experimental results indicate that an improvement of 70% in reprojection errors is achievable and 95% of the calibration time can be saved. PMID:23435056

  1. Leveraging microwave polarization information for calibration of a land data assimilation system

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This letter contributes a new approach to calibrating a tau-omega radiative transfer model coupled to a land surface model with low frequency (< 10 GHz) microwave brightness temperature (TB) observations. The problem of calibrating this system is generally poorlyposed because various parameter combi...

  2. An incremental target-adapted strategy for active geometric calibration of projector-camera systems.

    PubMed

    Chen, Chia-Yen; Chien, Hsiang-Jen

    2013-01-01

    The calibration of a projector-camera system is an essential step toward accurate 3-D measurement and environment-aware data projection applications, such as augmented reality. In this paper we present a two-stage easy-to-deploy strategy for robust calibration of both intrinsic and extrinsic parameters of a projector. Two key components of the system are the automatic generation of projected light patterns and the incremental calibration process. Based on the incremental strategy, the calibration process first establishes a set of initial parameters, and then it upgrades these parameters incrementally using the projection and captured images of dynamically-generated calibration patterns. The scene-driven light patterns allow the system to adapt itself to the pose of the calibration target, such that the difficulty in feature detection is greatly lowered. The strategy forms a closed-loop system that performs self-correction as more and more observations become available. Compared to the conventional method, which requires a time-consuming process for the acquisition of dense pixel correspondences, the proposed method deploys a homography-based coordinate computation, allowing the calibration time to be dramatically reduced. The experimental results indicate that an improvement of 70% in reprojection errors is achievable and 95% of the calibration time can be saved. PMID:23435056

  3. Analysis of calibration materials to improve dual-energy CT scanning for petrophysical applications

    SciTech Connect

    Ayyalasomavaiula, K.; McIntyre, D.; Jain, J.; Singh, J.; Yueh, F.

    2011-01-01

    Dual energy CT-scanning is a rapidly emerging imaging technique employed in non-destructive evaluation of various materials. Although CT (Computerized Tomography) has been used for characterizing rocks and visualizing and quantifying multiphase flow through rocks for over 25 years, most of the scanning is done at a voltage setting above 100 kV for taking advantage of the Compton scattering (CS) effect, which responds to density changes. Below 100 kV the photoelectric effect (PE) is dominant which responds to the effective atomic numbers (Zeff), which is directly related to the photo electric factor. Using the combination of the two effects helps in better characterization of reservoir rocks. The most common technique for dual energy CT-scanning relies on homogeneous calibration standards to produce the most accurate decoupled data. However, the use of calibration standards with impurities increases the probability of error in the reconstructed data and results in poor rock characterization. This work combines ICP-OES (inductively coupled plasma optical emission spectroscopy) and LIBS (laser induced breakdown spectroscopy) analytical techniques to quantify the type and level of impurities in a set of commercially purchased calibration standards used in dual-energy scanning. The Zeff data on the calibration standards with and without impurity data were calculated using the weighted linear combination of the various elements present and used in calculating Zeff using the dual energy technique. Results show 2 to 5% difference in predicted Zeff values which may affect the corresponding log calibrations. The effect that these techniques have on improving material identification data is discussed and analyzed. The workflow developed in this paper will translate to a more accurate material identification estimates for unknown samples and improve calibration of well logging tools.

  4. Pin diode calibration - beam overlap monitoring for low energy cooling

    SciTech Connect

    Drees, A.; Montag, C.; Thieberger, P.

    2015-09-30

    We were trying to address the question whether or not the Pin Diodes, currently installed approximately 1 meter downstream of the RHIC primary collimators, are suitable to monitor a recombination signal from the future RHIC low energy cooling section. A maximized recombination signal, with the Au+78 ions being lost on the collimator, will indicate optimal Au-electron beam overlap as well as velocity matching of the electron beam in the cooling section.

  5. Electron calibration of a high energy cosmic ray detector

    NASA Technical Reports Server (NTRS)

    Simnett, G. M.; Silverberg, R. F.; Crannell, C. J.; Gearhart, R. A.; Hagen, F. A.; Jones, W. V.; Kurz, R. J.; Ormes, J. F.; Price, R. D.

    1972-01-01

    The spectrum of cosmic ray electrons above 10 GeV was studied extensively. The spectrum is predicted to steepen at an energy which is related to the lifetime of electrons in the interstellar medium against losses due to inverse Compton collisions with photons and to synchrotron radiation in galactic magnetic fields. The experimental results diverge widely; the lack of agreement between the various measurements is due to a variety of experimental problems.

  6. Estimating Energy Expenditure from Heart Rate in Older Adults: A Case for Calibration

    PubMed Central

    Schrack, Jennifer A.; Zipunnikov, Vadim; Goldsmith, Jeff; Bandeen-Roche, Karen; Crainiceanu, Ciprian M.; Ferrucci, Luigi

    2014-01-01

    Background Accurate measurement of free-living energy expenditure is vital to understanding changes in energy metabolism with aging. The efficacy of heart rate as a surrogate for energy expenditure is rooted in the assumption of a linear function between heart rate and energy expenditure, but its validity and reliability in older adults remains unclear. Objective To assess the validity and reliability of the linear function between heart rate and energy expenditure in older adults using different levels of calibration. Design Heart rate and energy expenditure were assessed across five levels of exertion in 290 adults participating in the Baltimore Longitudinal Study of Aging. Correlation and random effects regression analyses assessed the linearity of the relationship between heart rate and energy expenditure and cross-validation models assessed predictive performance. Results Heart rate and energy expenditure were highly correlated (r = 0.98) and linear regardless of age or sex. Intra-person variability was low but inter-person variability was high, with substantial heterogeneity of the random intercept (s.d. = 0.372) despite similar slopes. Cross-validation models indicated individual calibration data substantially improves accuracy predictions of energy expenditure from heart rate, reducing the potential for considerable measurement bias. Although using five calibration measures provided the greatest reduction in the standard deviation of prediction errors (1.08 kcals/min), substantial improvement was also noted with two (0.75 kcals/min). Conclusion These findings indicate standard regression equations may be used to make population-level inferences when estimating energy expenditure from heart rate in older adults but caution should be exercised when making inferences at the individual level without proper calibration. PMID:24787146

  7. ''Hybrid'' calibrations of a Dual Energy X-ray Scanner for material testing

    NASA Astrophysics Data System (ADS)

    Kröger, C.; Bartle, C. M.; West, J. G.

    2006-05-01

    Conventional x-ray tubes produce a fan-shaped x-ray beam covering a large spectrum of energies, which is why the fundamental law of x-ray attenuation is not readily applicable. As the mathematical formulation of the problem would be too cumbersome, calibrations using well-defined objects are carried out, which in turn allow the use of multienergy x-rays for measurements. Occasionally, such calibrations may not lead to the desired results. This could be for instance due to an insensitivity of x-rays towards low atomic number elements. Here we present such a case on hand the example of raw natural fibre. The DEXA parameters correlated with the fibre parameter wool base, but show distinct correlation for geographical regions of the origin of the wool. A calibration that is valid independently of geographical origin can be achieved by including independently measured parameters of the calibration body. We demonstrate a successful calibration that uses dual energy x-ray scanning technology as well as a size parameter of the fibre in the regression equation.

  8. Energy Control Systems: Energy Savings.

    ERIC Educational Resources Information Center

    School Business Affairs, 1980

    1980-01-01

    The installation of proper control systems is estimated as saving up to 25 percent of the energy used in schools. Other potential energy-saving areas are transmission (heat loss or gain through walls, especially ceilings); internal load (heat from students, lights, and machinery); ventilation; and equipment maintenance. (Author/MLF)

  9. Self-Calibrating and Remote Programmable Signal Conditioning Amplifier System and Method

    NASA Technical Reports Server (NTRS)

    Medelius, Pedro J. (Inventor); Hallberg, Carl G. (Inventor); Simpson, Howard J., III (Inventor); Thayer, Stephen W. (Inventor)

    1998-01-01

    A self-calibrating, remote programmable signal conditioning amplifier system employs information read from a memory attached to a measurement transducer for automatic calibration. The signal conditioning amplifier is self-calibrated on a continuous basis through use of a dual input path arrangement, with each path containing a multiplexer and a programmable amplifier. A digital signal processor controls operation of the system such that a transducer signal is applied to one of the input paths, while one or more calibration signals are applied to the second input path. Once the second path is calibrated, the digital signal processor switches the transducer signal to the second path. and then calibrates the first path. This process is continually repeated so that each path is calibrated on an essentially continuous basis. Dual output paths are also employed which are calibrated in the same manner. The digital signal processor also allows the implementation of a variety of digital filters which are either programmed into the system or downloaded by an operator, and performs up to eighth order linearization.

  10. A Neural Network for Off-Line Z Classification and Energy Calibration

    SciTech Connect

    Tudisco, S.; Iacono Manno, C.M.

    2000-12-31

    In this work a neural network has been used to reconstruct the residual energy after the first stage and classify the atomic number of the particles detected in a Silicon-CsI {triangle}E-E telescope. The adopted net is described and the whole procedure has been compared with the standard calibration methods for the E stage.

  11. Absolute intensity calibration of the Wendelstein 7-X high efficiency extreme ultraviolet overview spectrometer system

    NASA Astrophysics Data System (ADS)

    Greiche, Albert; Biel, Wolfgang; Marchuk, Oleksandr; Burhenn, Rainer

    2008-09-01

    The new high effiency extreme ultraviolet overview spectrometer (HEXOS) system for the stellarator Wendelstein 7-X is now mounted for testing and adjustment at the tokamak experiment for technology oriented research (TEXTOR). One part of the testing phase was the intensity calibration of the two double spectrometers which in total cover a spectral range from 2.5 to 160.0 nm with overlap. This work presents the current intensity calibration curves for HEXOS and describes the method of calibration. The calibration was implemented with calibrated lines of a hollow cathode light source and the branching ratio technique. The hollow cathode light source provides calibrated lines from 16 up to 147 nm. We could extend the calibrated region in the spectrometers down to 2.8 nm by using the branching line pairs emitted by an uncalibrated pinch extreme ultraviolet light source as well as emission lines from boron and carbon in TEXTOR plasmas. In total HEXOS is calibrated from 2.8 up to 147 nm, which covers most of the observable wavelength region. The approximate density of carbon in the range of the minor radius from 18 to 35 cm in a TEXTOR plasma determined by simulating calibrated vacuum ultraviolet emission lines with a transport code was 5.5×1017 m-3 which corresponds to a local carbon concentration of 2%.

  12. Active mode calibration of the combined thermal epithermal neutron (CTEN) system

    SciTech Connect

    Veilleux, J. M.

    2001-01-01

    The Combined Thermal Epithermal Neutron (CTEN) system was developed by the Los Alamos National Laboratory to perform active and passive neutron interrogation of waste. The higher energy epithermal neutrons are able to penetrate further into the matrix and active material, thus reducing matrix attenuation and self-shielding effects compared to a thermal neutron pulse alone. The developmental unit was installed in 2001 at the Los Alamos Non-Destructive Assay (NDA) facility to characterize waste for the TRU Waste Characterization Project (TWCP). This paper summarizes the active mode certification results. National Institute of Standards and Technology (NIST) traceable standards were used to determine the system response as a function of mass. Finally, NIST-traceable verification standards were used to verify the calibration in the range 30 milligrams to 25 g of weapons grade plutonium although self-shielding limits the upper active interrogation to 10 g.

  13. An investigation of automatic exposure control calibration for chest imaging with a computed radiography system

    NASA Astrophysics Data System (ADS)

    Moore, C. S.; Wood, T. J.; Avery, G.; Balcam, S.; Needler, L.; Beavis, A. W.; Saunderson, J. R.

    2014-05-01

    The purpose of this study was to examine the use of three physical image quality metrics in the calibration of an automatic exposure control (AEC) device for chest radiography with a computed radiography (CR) imaging system. The metrics assessed were signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR) and mean effective noise equivalent quanta (eNEQm), all measured using a uniform chest phantom. Subsequent calibration curves were derived to ensure each metric was held constant across the tube voltage range. Each curve was assessed for its clinical appropriateness by generating computer simulated chest images with correct detector air kermas for each tube voltage, and grading these against reference images which were reconstructed at detector air kermas correct for the constant detector dose indicator (DDI) curve currently programmed into the AEC device. All simulated chest images contained clinically realistic projected anatomy and anatomical noise and were scored by experienced image evaluators. Constant DDI and CNR curves do not appear to provide optimized performance across the diagnostic energy range. Conversely, constant eNEQm and SNR do appear to provide optimized performance, with the latter being the preferred calibration metric given as it is easier to measure in practice. Medical physicists may use the SNR image quality metric described here when setting up and optimizing AEC devices for chest radiography CR systems with a degree of confidence that resulting clinical image quality will be adequate for the required clinical task. However, this must be done with close cooperation of expert image evaluators, to ensure appropriate levels of detector air kerma.

  14. Spectroradiometric calibration of the Thematic Mapper and Multispectral Scanner system

    NASA Technical Reports Server (NTRS)

    Slater, P. N.; Palmer, J. M. (Principal Investigator)

    1984-01-01

    The reduction of the data measured on July 8, 1984 at White Sands, New Mexico is summarized. The radiance incident at the entrance pupil of the LANDSAT 5 sensors have been computed for bands 1 to 4. When these are compared to the digital counts of the TM image, the ground based calibration for this sensor will be given. The image was received from Goddard SFC and is presently being analyzed.

  15. [Study on in-orbit Vis/SWIR relative calibration monitoring system with high stability].

    PubMed

    Liu, Yi; Yin, Da-Yi

    2014-04-01

    The present paper studied the in-orbit relative calibration monitoring system with high stability for onboard remote sensing calibration. The realizing principle and the critical technologies are described in detail. The calibration detector assembly with high stability was developed based on both visual (Vis) and shortwave infrared (SWIR) trap structure. Vis and SWIR photodetectors with high sensitivity were chosen to realize the photoelectric conversion. On the one hand, the detectors worked in the zero-bias photovoltaic mode with better linearity and lower dark current. On the other hand, the critical parameters of the analog operational amplifier circuit and data acquisition circuit were designed so that the trap-structure detector assembly could work properly. Thus the relative calibration monitoring system with high stability for measurement of spaceborne calibration radiance source was realized. The experiments were carried out using the laboratory integrating spheres and the standard lamps provided by the national measurement institution. The results showed that the relative standard deviation of the digital numbers that the system acquired reached to 0.030%-0.046% (Vis) and 0.040%-0.059% (SWIR). It was proved that the accuracy and the stability of the monitoring system could meet the in-orbit calibration system requirement and it could serve as a good solution for in-orbit relative calibration of remote sensor in the future. PMID:25007602

  16. The calibration and flight test performance of the space shuttle orbiter air data system

    NASA Technical Reports Server (NTRS)

    Dean, A. S.; Mena, A. L.

    1983-01-01

    The Space Shuttle air data system (ADS) is used by the guidance, navigation and control system (GN&C) to guide the vehicle to a safe landing. In addition, postflight aerodynamic analysis requires a precise knowledge of flight conditions. Since the orbiter is essentially an unpowered vehicle, the conventional methods of obtaining the ADS calibration were not available; therefore, the calibration was derived using a unique and extensive wind tunnel test program. This test program included subsonic tests with a 0.36-scale orbiter model, transonic and supersonic tests with a smaller 0.2-scale model, and numerous ADS probe-alone tests. The wind tunnel calibration was further refined with subsonic results from the approach and landing test (ALT) program, thus producing the ADS calibration for the orbital flight test (OFT) program. The calibration of the Space Shuttle ADS and its performance during flight are discussed in this paper. A brief description of the system is followed by a discussion of the calibration methodology, and then by a review of the wind tunnel and flight test programs. Finally, the flight results are presented, including an evaluation of the system performance for on-board systems use and a description of the calibration refinements developed to provide the best possible air data for postflight analysis work.

  17. Analysis of the Laser Calibration System for the CMS HCAL at CERN's Large Hadron Collider

    NASA Astrophysics Data System (ADS)

    Lebolo, Luis

    2005-11-01

    The European Organization for Nuclear Physics' (CERN) Large Hadron Collider uses the Compact Muon Solenoid (CMS) detector to measure collision products from proton-proton interactions. CMS uses a hadron calorimeter (HCAL) to measure the energy and position of quarks and gluons by reconstructing their hadronic decay products. An essential component of the detector is the calibration system, which was evaluated in terms of its misalignment, linearity, and resolution. In order to analyze the data, the authors created scripts in ROOT 5.02/00 and C++. The authors also used Mathematica 5.1 to perform complex mathematics and AutoCAD 2006 to produce optical ray traces. The misalignment of the optical components was found to be satisfactory; the Hybrid Photodiodes (HPDs) were confirmed to be linear; the constant, noise and stochastic contributions to its resolution were analyzed; and the quantum efficiency of most HPDs was determined to be approximately 40%. With a better understanding of the laser calibration system, one can further understand and improve the HCAL.

  18. Next Generation Beta Decay Studies: Refinements in Detector System Calibration and Response Function Measurements

    NASA Astrophysics Data System (ADS)

    Jutz, Kenneth

    2013-10-01

    High precision β-decay studies provide constraints on extensions to the standard model of particle physics. In order to continue to provide competitive limits with LHC measurements for new tensor and scalar interactions, the uncertainties in neutron and nuclear β-decay studies must be pushed to the 0.1% level and below. In order to control the systematic errors in particle detection at these levels, new detector systems (highly-segmented, large area, thick Si detectors) are being implemented. In order to realize gains in detector response, new capabilities must be developed to calibrate the detectors and characterize their response function. As an alternative to conventional sources mounted on thin foils, an electron beam provides a regular grid of calibration and detector response measurements which are essentially unperturbed by scattering effects. We have developed a 1 MeV electron accelerator that will deliver electrons in a tunable range covering the energy spectrum of neutron β-decay. We present our efforts to implement this accelerator as well as our development of thin backing foils and detector systems in this poster.

  19. Method of Calibration for a Large Cathetometer System

    NASA Technical Reports Server (NTRS)

    Toland, Ronald

    2004-01-01

    A method of calibration has been devised for a pair of mutually orthogonal two-axis cathetometers that, when used together, yield measurements of three-dimensional positions of objects mounted on an optical bench. Each cathetometer has a horizontal travel of 1.8 m and a vertical travel of 1.2 m. The cathetometers are required to measure X, Y, and Z coordinates (see figure) to within plus or minus 0.005 in. (plus or minus 0.127 mm). Each cathetometer consists of an alignment telescope on a platform mounted on a two-dimensional translation stage. The knowledge required for calibration of each cathetometer is (1) the two-dimensional position of the cathetometer platform as a function of the electronic readouts of position encoders on the translation stage and (2) the amount of any angular misalignment (roll, pitch, and/or yaw) of the cathetometer platform as a function of the two-dimensional coordinates or the position-encoder readouts. By use of three equations derived from the applicable trigonometric relationships, the calibrated X, Y, and Z coordinates can be computed from the raw encoder readouts.

  20. Calibrating Multi-machine Power System Parameters with the Extended Kalman Filter

    SciTech Connect

    Kalsi, Karanjit; Sun, Yannan; Huang, Zhenyu; Du, Pengwei; Diao, Ruisheng; Anderson, Kevin K.; Li, Yulan; Lee, Barry

    2012-07-24

    Large-scale renewable resources and novel smart-grid technologies continue to increase the complexity of power systems. As power systems continue to become more complex, accurate modeling for planning and operation becomes a necessity. Inaccurate system models would result in an unreliable assessment of system security conditions and could cause large-scale blackouts. This motivates the need for model parameter calibration, since some or all of the model parameters could be unknown or inaccurate. In this paper, the extended Kalman filter is used to calibrate the parameters of a multi-machine power system. The calibration performance is tested under varying fault locations, parameter errors and measurement noise giving an insight into how many generators and which generators could be difficult to calibrate.

  1. Energy calibration of superconducting transition edge sensors for x-ray detection using pulse analysis

    SciTech Connect

    Hollerith, C.; Simmnacher, B.; Weiland, R.; Feilitzsch, F. v.; Isaila, C.; Jochum, J.; Potzel, W.; Hoehne, J.; Phelan, K.; Wernicke, D.; May, T.

    2006-05-15

    Transition edge sensors (TESs) have been developed to be used as high-resolution x-ray detectors. They show excellent energy resolution and can be used in many applications. TESs are a special kind of calorimeters that can determine small temperature changes after x-ray absorption. Such a temperature change causes a strong resistance change (superconducting to normal-conducting phase transition) that can be measured. The energy calibration of a TES based spectrometer is problematic due to the nonlinear behavior of the detector response. In this article, a method is introduced to calibrate the energy scale of TES spectra. This is accomplished by calculating the energy dependence of the response of the detector operated in electrothermal feedback mode. Using this method a calibration accuracy of a few eV for an x-ray energy of 6 keV can be achieved. Examples of energy dispersive x-ray spectroscopy (EDS) measurements demonstrate the high quality of this method for everyday use of TES EDS detectors in material analysis. However, because the method relies only on a few very general assumptions, it should also be useful for other kinds of TES detectors.

  2. Alignment of the measurement scale mark during immersion hydrometer calibration using an image processing system.

    PubMed

    Peña-Perez, Luis Manuel; Pedraza-Ortega, Jesus Carlos; Ramos-Arreguin, Juan Manuel; Arriaga, Saul Tovar; Fernandez, Marco Antonio Aceves; Becerra, Luis Omar; Hurtado, Efren Gorrostieta; Vargas-Soto, Jose Emilio

    2013-01-01

    The present work presents an improved method to align the measurement scale mark in an immersion hydrometer calibration system of CENAM, the National Metrology Institute (NMI) of Mexico, The proposed method uses a vision system to align the scale mark of the hydrometer to the surface of the liquid where it is immersed by implementing image processing algorithms. This approach reduces the variability in the apparent mass determination during the hydrostatic weighing in the calibration process, therefore decreasing the relative uncertainty of calibration. PMID:24284770

  3. Alignment of the Measurement Scale Mark during Immersion Hydrometer Calibration Using an Image Processing System

    PubMed Central

    Peña-Perez, Luis Manuel; Pedraza-Ortega, Jesus Carlos; Ramos-Arreguin, Juan Manuel; Arriaga, Saul Tovar; Fernandez, Marco Antonio Aceves; Becerra, Luis Omar; Hurtado, Efren Gorrostieta; Vargas-Soto, Jose Emilio

    2013-01-01

    The present work presents an improved method to align the measurement scale mark in an immersion hydrometer calibration system of CENAM, the National Metrology Institute (NMI) of Mexico, The proposed method uses a vision system to align the scale mark of the hydrometer to the surface of the liquid where it is immersed by implementing image processing algorithms. This approach reduces the variability in the apparent mass determination during the hydrostatic weighing in the calibration process, therefore decreasing the relative uncertainty of calibration. PMID:24284770

  4. Magnetic Resonance Image Phantom Code System to Calibrate in vivo Measurement Systems.

    Energy Science and Technology Software Center (ESTSC)

    1997-07-17

    Version 00 MRIPP provides relative calibration factors for the in vivo measurement of internally deposited photon emitting radionuclides within the human body. The code includes a database of human anthropometric structures (phantoms) that were constructed from whole body Magnetic Resonance Images. The database contains a large variety of human images with varying anatomical structure. Correction factors are obtained using Monte Carlo transport of photons through the voxel geometry of the phantom. Correction factors provided bymore » MRIPP allow users of in vivo measurement systems (e.g., whole body counters) to calibrate these systems with simple sources and obtain subject specific calibrations. Note that the capability to format MRI data for use with this system is not included; therefore, one must use the phantom data included in this package. MRIPP provides a simple interface to perform Monte Carlo simulation of photon transport through the human body. MRIPP also provides anthropometric information (e.g., height, weight, etc.) for individuals used to generate the phantom database. A modified Voxel version of the Los Alamos National Laboratory MCNP4A code is used for the Monte Carlo simulation. The Voxel version Fortran patch to MCNP4 and MCNP4A (Monte Carlo N-Particle transport simulation) and the MCNP executable are included in this distribution, but the MCNP Fortran source is not included. It was distributed by RSICC as CCC-200 but is now obsoleted by the current release MCNP4B.« less

  5. Magnetic Resonance Image Phantom Code System to Calibrate in vivo Measurement Systems.

    SciTech Connect

    HICKMAN, DAVE

    1997-07-17

    Version 00 MRIPP provides relative calibration factors for the in vivo measurement of internally deposited photon emitting radionuclides within the human body. The code includes a database of human anthropometric structures (phantoms) that were constructed from whole body Magnetic Resonance Images. The database contains a large variety of human images with varying anatomical structure. Correction factors are obtained using Monte Carlo transport of photons through the voxel geometry of the phantom. Correction factors provided by MRIPP allow users of in vivo measurement systems (e.g., whole body counters) to calibrate these systems with simple sources and obtain subject specific calibrations. Note that the capability to format MRI data for use with this system is not included; therefore, one must use the phantom data included in this package. MRIPP provides a simple interface to perform Monte Carlo simulation of photon transport through the human body. MRIPP also provides anthropometric information (e.g., height, weight, etc.) for individuals used to generate the phantom database. A modified Voxel version of the Los Alamos National Laboratory MCNP4A code is used for the Monte Carlo simulation. The Voxel version Fortran patch to MCNP4 and MCNP4A (Monte Carlo N-Particle transport simulation) and the MCNP executable are included in this distribution, but the MCNP Fortran source is not included. It was distributed by RSICC as CCC-200 but is now obsoleted by the current release MCNP4B.

  6. Empirical dual energy calibration (EDEC) for cone-beam computed tomography

    SciTech Connect

    Stenner, Philip; Berkus, Timo; Kachelriess, Marc

    2007-09-15

    Material-selective imaging using dual energy CT (DECT) relies heavily on well-calibrated material decomposition functions. These require the precise knowledge of the detected x-ray spectra, and even if they are exactly known the reliability of DECT will suffer from scattered radiation. We propose an empirical method to determine the proper decomposition function. In contrast to other decomposition algorithms our empirical dual energy calibration (EDEC) technique requires neither knowledge of the spectra nor of the attenuation coefficients. The desired material-selective raw data p{sub 1} and p{sub 2} are obtained as functions of the measured attenuation data q{sub 1} and q{sub 2} (one DECT scan=two raw data sets) by passing them through a polynomial function. The polynomial's coefficients are determined using a general least squares fit based on thresholded images of a calibration phantom. The calibration phantom's dimension should be of the same order of magnitude as the test object, but other than that no assumptions on its exact size or positioning are made. Once the decomposition coefficients are determined DECT raw data can be decomposed by simply passing them through the polynomial. To demonstrate EDEC simulations of an oval CTDI phantom, a lung phantom, a thorax phantom and a mouse phantom were carried out. The method was further verified by measuring a physical mouse phantom, a half-and-half-cylinder phantom and a Yin-Yang phantom with a dedicated in vivo dual source micro-CT scanner. The raw data were decomposed into their components, reconstructed, and the pixel values obtained were compared to the theoretical values. The determination of the calibration coefficients with EDEC is very robust and depends only slightly on the type of calibration phantom used. The images of the test phantoms (simulations and measurements) show a nearly perfect agreement with the theoretical {mu} values and density values. Since EDEC is an empirical technique it inherently

  7. Dual-laser calibration of Thomson scattering systems in ITER and RFX-mod

    NASA Astrophysics Data System (ADS)

    Giudicotti, L.; Pasqualotto, R.

    2014-04-01

    We first review the principles of the dual-laser calibration technique for measuring the relative sensitivities of the spectral channels in a Thomson scattering (TS) diagnostic system by detecting with the same spectrometer the spectra scattered by the same plasma volume from two laser pulses of different wavelengths. A new data analysis method is then introduced, based on the minimization of a single χ2 function, that provides a simpler and more convenient way to determine the measurement errors on the calibration coefficients. The new analysis method is used here to investigate the expected performances of this calibration technique in the core LIDAR TS system of ITER currently under design and in the conventional multipoint TS system of RFX-mod. By calculating the expected calibration errors for typical plasma scenarios we discuss the different possible choices of the calibration laser, the characteristics of the calibrating plasma and other system parameters with an impact on the application of the technique. For ITER core LIDAR TS, designed with Nd : YAG at 1064 nm as main laser, a ruby laser shows slightly better performances as a calibration laser compared with a second harmonic Nd : YAG and a calibration accuracy ˜1% can be achieved in a relatively small number of pairs of laser pulses. In RFX-mod the combination of a Nd : YAG and a Nd : YLF laser systems is the only viable choice, and we find that, in spite of the small difference between the two wavelengths (λ = 1064 nm and λ = 1053 nm, respectively), dual-laser calibration is still possible to the required accuracy with an affordable number of pairs of laser shots.

  8. Point Cloud Refinement with a Target-Free Intrinsic Calibration of a Mobile Multi-Beam LIDAR System

    NASA Astrophysics Data System (ADS)

    Nouiraa, H.; Deschaud, J. E.; Goulettea, F.

    2016-06-01

    LIDAR sensors are widely used in mobile mapping systems. The mobile mapping platforms allow to have fast acquisition in cities for example, which would take much longer with static mapping systems. The LIDAR sensors provide reliable and precise 3D information, which can be used in various applications: mapping of the environment; localization of objects; detection of changes. Also, with the recent developments, multi-beam LIDAR sensors have appeared, and are able to provide a high amount of data with a high level of detail. A mono-beam LIDAR sensor mounted on a mobile platform will have an extrinsic calibration to be done, so the data acquired and registered in the sensor reference frame can be represented in the body reference frame, modeling the mobile system. For a multibeam LIDAR sensor, we can separate its calibration into two distinct parts: on one hand, we have an extrinsic calibration, in common with mono-beam LIDAR sensors, which gives the transformation between the sensor cartesian reference frame and the body reference frame. On the other hand, there is an intrinsic calibration, which gives the relations between the beams of the multi-beam sensor. This calibration depends on a model given by the constructor, but the model can be non optimal, which would bring errors and noise into the acquired point clouds. In the litterature, some optimizations of the calibration parameters are proposed, but need a specific routine or environment, which can be constraining and time-consuming. In this article, we present an automatic method for improving the intrinsic calibration of a multi-beam LIDAR sensor, the Velodyne HDL-32E. The proposed approach does not need any calibration target, and only uses information from the acquired point clouds, which makes it simple and fast to use. Also, a corrected model for the Velodyne sensor is proposed. An energy function which penalizes points far from local planar surfaces is used to optimize the different proposed parameters

  9. Energy Systems Laboratory Groundbreaking

    SciTech Connect

    Hill, David; Otter, C.L.; Simpson, Mike; Rogers, J.W.

    2011-01-01

    INL recently broke ground for a research facility that will house research programs for bioenergy, advanced battery systems, and new hybrid energy systems that integrate renewable, fossil and nuclear energy sources. Here's video from the groundbreaking ceremony for INL's new Energy Systems Laboratory. You can learn more about CAES research at http://www.facebook.com/idahonationallaboratory.

  10. Energy Systems Laboratory Groundbreaking

    ScienceCinema

    Hill, David; Otter, C.L.; Simpson, Mike; Rogers, J.W.;

    2013-05-28

    INL recently broke ground for a research facility that will house research programs for bioenergy, advanced battery systems, and new hybrid energy systems that integrate renewable, fossil and nuclear energy sources. Here's video from the groundbreaking ceremony for INL's new Energy Systems Laboratory. You can learn more about CAES research at http://www.facebook.com/idahonationallaboratory.

  11. Lineal energy calibration of mini tissue-equivalent gas-proportional counters (TEPC)

    SciTech Connect

    Conte, V.; Moro, D.; Colautti, P.; Grosswendt, B.

    2013-07-18

    Mini TEPCs are cylindrical gas proportional counters of 1 mm or less of sensitive volume diameter. The lineal energy calibration of these tiny counters can be performed with an external gamma-ray source. However, to do that, first a method to get a simple and precise spectral mark has to be found and then the keV/{mu}m value of this mark. A precise method (less than 1% of uncertainty) to identify this markis described here, and the lineal energy value of this mark has been measured for different simulated site sizes by using a {sup 137}Cs gamma source and a cylindrical TEPC equipped with a precision internal {sup 244}Cm alpha-particle source, and filled with propane-based tissue-equivalent gas mixture. Mini TEPCs can be calibrated in terms of lineal energy, by exposing them to {sup 137}Cesium sources, with an overall uncertainty of about 5%.

  12. Integrated development facility for the calibration of low-energy charged particle flight instrumentation

    NASA Technical Reports Server (NTRS)

    Biddle, A. P.; Reynolds, J. M.

    1986-01-01

    The design of a low-energy ion facility for development and calibration of thermal ion instrumentation is examined. A directly heated cathode provides the electrons used to produce ions by impact ionization and an applied magnetic field increases the path length followed by the electrons. The electrostatic and variable geometry magnetic mirror configuration in the ion source is studied. The procedures for the charge neutralization of the beam and the configuration and function of the 1.4-m drift tube are analyzed. A microcomputer is utilized to control and monitor the beam energy and composition, and the mass- and angle-dependent response of the instrument under testing. The facility produces a high-quality ion beam with an adjustable range of energies up to 150 eV; the angular divergence and uniformity of the beam is obtained from two independent retarding potential analyzers. The procedures for calibrating the instrument being developed are described.

  13. Spectroradiometric calibration of the Thematic Mapper and Multispectral Scanner system

    NASA Technical Reports Server (NTRS)

    Palmer, J. M.; Slater, P. N. (Principal Investigator)

    1985-01-01

    The effects of the atmosphere on propagating radiation must be known in order to calibrate an in orbit sensor using ground based measurements. A set of model atmosphere parameters, applicable to the White Sands (New Mexico) area is defined with particular attention given to those parameters which are required as input to the Herman Code. The radial size distribution, refractive index, vertical distribution, and visibility of aerosols are discussed as well as the molecular absorbers in the visible and near IR wavelength which produce strong absorption lines. Solar irradiance is also considered.

  14. a New Automatic System Calibration of Multi-Cameras and LIDAR Sensors

    NASA Astrophysics Data System (ADS)

    Hassanein, M.; Moussa, A.; El-Sheimy, N.

    2016-06-01

    In the last few years, multi-cameras and LIDAR systems draw the attention of the mapping community. They have been deployed on different mobile mapping platforms. The different uses of these platforms, especially the UAVs, offered new applications and developments which require fast and accurate results. The successful calibration of such systems is a key factor to achieve accurate results and for the successful processing of the system measurements especially with the different types of measurements provided by the LIDAR and the cameras. The system calibration aims to estimate the geometric relationships between the different system components. A number of applications require the systems be ready for operation in a short time especially for disasters monitoring applications. Also, many of the present system calibration techniques are constrained with the need of special arrangements in labs for the calibration procedures. In this paper, a new technique for calibration of integrated LIDAR and multi-cameras systems is presented. The new proposed technique offers a calibration solution that overcomes the need for special labs for standard calibration procedures. In the proposed technique, 3D reconstruction of automatically detected and matched image points is used to generate a sparse images-driven point cloud then, a registration between the LIDAR generated 3D point cloud and the images-driven 3D point takes place to estimate the geometric relationships between the cameras and the LIDAR.. In the presented technique a simple 3D artificial target is used to simplify the lab requirements for the calibration procedure. The used target is composed of three intersected plates. The choice of such target geometry was to ensure enough conditions for the convergence of registration between the constructed 3D point clouds from the two systems. The achieved results of the proposed approach prove its ability to provide an adequate and fully automated calibration without

  15. An improved method of energy calibration for position-sensitive silicon detectors

    NASA Astrophysics Data System (ADS)

    Sun, Ming-Dao; Huang, Tian-Heng; Liu, Zhong; Ding, Bing; Yang, Hua-Bin; Zhang, Zhi-Yuan; Wang, Jian-Guo; Ma, Long; Yu, Lin; Wang, Yong-Sheng; Gan, Zai-Guo; Xiao-Hong, Zhou

    2016-04-01

    Energy calibration of resistive charge division-based position-sensitive silicon detectors is achieved by parabolic fitting in the traditional method, where the systematic variations of vertex and curvature of the parabola with energy must be considered. In this paper we extend the traditional method in order to correct the fitting function, simplify the procedure of calibration and improve the experimental data quality. Instead of a parabolic function as used in the traditional method, a new function describing the relation of position and energy is introduced. The energy resolution of the 8.088 MeV α decay of 213Rn is determined to be about 87 keV (FWHM), which is better than the result of the traditional method, 104 keV (FWHM). The improved method can be applied to the energy calibration of resistive charge division-based position-sensitive silicon detectors with various performances. Supported by ‘100 Person Project’ of the Chinese Academy of Sciences and the National Natural Science Foundation of China (11405224 and 11435014)

  16. Radiometric calibration method for large aperture infrared system with broad dynamic range.

    PubMed

    Sun, Zhiyuan; Chang, Songtao; Zhu, Wei

    2015-05-20

    Infrared radiometric measurements can acquire important data for missile defense systems. When observation is carried out by ground-based infrared systems, a missile is characterized by long distance, small size, and large variation of radiance. Therefore, the infrared systems should be manufactured with a larger aperture to enhance detection ability and calibrated at a broader dynamic range to extend measurable radiance. Nevertheless, the frequently used calibration methods demand an extended-area blackbody with broad dynamic range or a huge collimator for filling the system's field stop, which would greatly increase manufacturing costs and difficulties. To overcome this restriction, a calibration method based on amendment of inner and outer calibration is proposed. First, the principles and procedures of this method are introduced. Then, a shifting strategy of infrared systems for measuring targets with large fluctuations of infrared radiance is put forward. Finally, several experiments are performed on a shortwave infrared system with Φ400  mm aperture. The results indicate that the proposed method cannot only ensure accuracy of calibration but have the advantage of low cost, low power, and high motility. Hence, it is an effective radiometric calibration method in the outfield. PMID:26192499

  17. In situ calibration and evaluation of the accuracy of a waste water monitoring system.

    PubMed

    Ogata, Yoshimune; Nishizawa, Kunihide

    2002-03-01

    A new method to estimate the reliability of a waste water monitoring system was developed and substantiated. To estimate the reliability means (1) to verify the representativeness of the sample fed into the monitoring system, and (2) to calibrate the detectors of the monitoring system. To verify the representativeness, test water spiked with 32P was prepared in a storage tank, and the monitoring system was operated. For all of the experiments, the radioactivity concentrations of the water fed into the monitoring system agreed well with those of the water in the storage tank at 725 +/- 45 s after the start of the sampling pump. Therefore, the representativeness was verified. Calibration was carried out with active water in the storage tank and in a specially designed calibration tank. The efficiency of a plastic scintillation detector (PSD), one of the detectors used in the monitoring system, for 32P was determined to be 4.91 +/- 0.10%. Using the calibration tank significantly reduced the cost and labor for calibration. In addition, calibration with natural potassium (40K) proved to be effective for periodic checks of the detector. PMID:11845835

  18. Calibrated breast density methods for full field digital mammography: A system for serial quality control and inter-system generalization

    PubMed Central

    Lu, B.; Smallwood, A. M.; Sellers, T. A.; Drukteinis, J. S.; Heine, J. J.

    2015-01-01

    Purpose: The authors are developing a system for calibrated breast density measurements using full field digital mammography (FFDM). Breast tissue equivalent (BTE) phantom images are used to establish baseline (BL) calibration curves at time zero. For a given FFDM unit, the full BL dataset is comprised of approximately 160 phantom images, acquired prior to calibrating prospective patient mammograms. BL curves are monitored serially to ensure they produce accurate calibration and require updating when calibration accuracy degrades beyond an acceptable tolerance, rather than acquiring full BL datasets repeatedly. BL updating is a special case of generalizing calibration datasets across FFDM units, referred to as cross-calibration. Serial monitoring, BL updating, and cross-calibration techniques were developed and evaluated. Methods: BL curves were established for three Hologic Selenia FFDM units at time zero. In addition, one set of serial phantom images, comprised of equal proportions of adipose and fibroglandular BTE materials (50/50 compositions) of a fixed height, was acquired biweekly and monitored with the cumulative sum (Cusum) technique. These 50/50 composition images were used to update the BL curves when the calibration accuracy degraded beyond a preset tolerance of ±4 standardized units. A second set of serial images, comprised of a wide-range of BTE compositions, was acquired biweekly to evaluate serial monitoring, BL updating, and cross-calibration techniques. Results: Calibration accuracy can degrade serially and is a function of acquisition technique and phantom height. The authors demonstrated that all heights could be monitored simultaneously while acquiring images of a 50/50 phantom with a fixed height for each acquisition technique biweekly, translating into approximately 16 image acquisitions biweekly per FFDM unit. The same serial images are sufficient for serial monitoring, BL updating, and cross-calibration. Serial calibration accuracy was

  19. Characterization of neutron reference fields at US Department of Energy calibration fields.

    PubMed

    Olsher, R H; McLean, T D; Mallett, M W; Seagraves, D T; Gadd, M S; Markham, Robin L; Murphy, R O; Devine, R T

    2007-01-01

    The Health Physics Measurements Group at the Los Alamos National Laboratory (LANL) has initiated a study of neutron reference fields at selected US Department of Energy (DOE) calibration facilities. To date, field characterisation has been completed at five facilities. These fields are traceable to the National Institute for Standards and Technology (NIST) through either a primary calibration of the source emission rate or through the use of a secondary standard. However, neutron spectral variation is caused by factors such as room return, scatter from positioning tables and fixtures, source anisotropy and spectral degradation due to source rabbits and guide tubes. Perturbations from the ideal isotropic point source field may impact the accuracy of instrument calibrations. In particular, the thermal neutron component of the spectrum, while contributing only a small fraction of the conventionally true dose, can contribute a significant fraction of a dosemeter's response with the result that the calibration becomes facility-specific. A protocol has been developed to characterise neutron fields that relies primarily on spectral measurements with the Bubble Technology Industries (BTI) rotating neutron spectrometer (ROSPEC) and the LANL Bonner sphere spectrometer. The ROSPEC measurements were supplemented at several sites by the BTI Simple Scintillation Spectrometer probe, which is designed to extend the ROSPEC upper energy range from 5 to 15 MeV. In addition, measurements were performed with several rem meters and neutron dosemeters. Detailed simulations were performed using the LANL MCNPX Monte Carlo code to calculate the magnitude of source anisotropy and scatter factors. PMID:17496290

  20. Leveraging microwave polarization information for the calibration of a land data assimilation system

    NASA Astrophysics Data System (ADS)

    Holmes, Thomas R. H.; Crow, Wade T.; De Jeu, Richard A. M.

    2014-12-01

    This letter contributes a new approach to calibrating a tau-omega radiative transfer model coupled to land surface model output with low-frequency (<10 GHz) microwave brightness temperature (TB) observations. The problem of calibrating this system is generally poorly posed because various parameter combinations may yield indistinguishable (least squares error) results. This is theoretically important for a land data assimilation system since alternative parameter combinations have different impacts on the sensitivity of TB to soil moisture and misattribution of systematic error may therefore disrupt data assimilation system performance. Via synthetic experiments we demonstrate that using TB polarization difference to parameterize vegetation opacity can improve the stability of calibrated soil moisture/TB sensitivities relative to the more typical approach of utilizing ancillary information to estimate vegetation opacity. The proposed approach fully follows from the radiative transfer model, implemented according to commonly adopted assumptions, and reduces by one the number of calibration parameters.

  1. Surface applicator calibration and commissioning of an electronic brachytherapy system for nonmelanoma skin cancer treatment

    SciTech Connect

    Rong, Yi; Welsh, James S.

    2010-10-15

    Purpose: The Xoft Axxent x-ray source has been used for treating nonmelanoma skin cancer since the surface applicators became clinically available in 2009. The authors report comprehensive calibration procedures for the electronic brachytherapy (eBx) system with the surface applicators. Methods: The Xoft miniature tube (model S700) generates 50 kVp low-energy x rays. The new surface applicators are available in four sizes of 10, 20, 35, and 50 mm in diameter. The authors' tests include measurements of dose rate, air-gap factor, output stability, depth dose verification, beam flatness and symmetry, and treatment planning with patient specific cutout factors. The TG-61 in-air method was used as a guideline for acquiring nominal dose-rate output at the skin surface. A soft x-ray parallel-plate chamber (PTW T34013) and electrometer was used for the output commissioning. GafChromic EBT films were used for testing the properties of the treatment fields with the skin applicators. Solid water slabs were used to verify the depth dose and cutout factors. Patients with basal cell or squamous cell carcinoma were treated with eBx using a calibrated Xoft system with the low-energy x-ray source and the skin applicators. Results: The average nominal dose-rate output at the skin surface for the 35 mm applicator is 1.35 Gy/min with {+-}5% variation for 16 sources. The dose-rate output and stability (within {+-}5% variation) were also measured for the remaining three applicators. For the same source, the output variation is within 2%. The effective source-surface distance was calculated based on the air-gap measurements for four applicator sizes. The field flatness and symmetry are well within 5%. Percentage depth dose in water was provided by factory measurements and can be verified using solid water slabs. Treatment duration was calculated based on the nominal dose rate, the prescription fraction size, the depth dose percentage, and the cutout factor. The output factor needs to be

  2. Solar energy collection system

    NASA Technical Reports Server (NTRS)

    Selcuk, M. K. (Inventor)

    1977-01-01

    An improved solar energy collection system, having enhanced energy collection and conversion capabilities, is delineated. The system is characterized by a plurality of receivers suspended above a heliostat field comprising a multiplicity of reflector surfaces, each being adapted to direct a concentrated beam of solar energy to illuminate a target surface for a given receiver. A magnitude of efficiency, suitable for effectively competing with systems employed in collecting and converting energy extracted from fossil fuels, is indicated.

  3. Design and utilization of a portable seismic/acoustic calibration system

    SciTech Connect

    Stump, B.W.; Pearson, D.C.

    1996-10-01

    Empirical results from the current GSETT-3 illustrate the need for source specific information for the purpose of calibrating the monitoring system. With the specified location design goal of 1,000 km{sup 2}, preliminary analysis indicates the importance of regional calibration of travel times. This calibration information can be obtained in a passive manner utilizing locations derived from local seismic array arrival times and assumes the resulting locations are accurate. Alternatively, an active approach to the problem can be undertaken, attempting to make near-source observations of seismic sources of opportunity to provide specific information on the time, location and characteristics of the source. Moderate to large mining explosions are one source type that may be amenable to such calibration. This paper describes an active ground truthing procedure for regional calibration. A prototype data acquisition system that includes the primary ground motion component for source time and location determination, and secondary, optional acoustic and video components for improved source phenomenology is discussed. The system costs approximately $25,000 and can be deployed and operated by one to two people thus providing a cost effective system for calibration and documentation of sources of interest. Practical implementation of the system is illustrated, emphasizing the minimal impact on an active mining operation.

  4. Flush Airdata Sensing (FADS) System Calibration Procedures and Results for Blunt Forebodies

    NASA Technical Reports Server (NTRS)

    Cobleigh, Brent R.; Whitmore, Stephen A.; Haering, Edward A., Jr.; Borrer, Jerry; Roback, V. Eric

    1999-01-01

    Blunt-forebody pressure data are used to study the behavior of the NASA Dryden Flight Research Center flush airdata sensing (FADS) pressure model and solution algorithm. The model relates surface pressure measurements to the airdata state. Spliced from the potential flow solution for uniform flow over a sphere and the modified Newtonian impact theory, the model was shown to apply to a wide range of blunt-forebody shapes and Mach numbers. Calibrations of a sphere, spherical cones, a Rankine half body, and the F-14, F/A-18, X-33, X-34, and X-38 configurations are shown. The three calibration parameters are well-behaved from Mach 0.25 to Mach 5.0, an angle-of-attack range extending to greater than 30 deg, and an angle-of-sideslip range extending to greater than 15 deg. Contrary to the sharp calibration changes found on traditional pitot-static systems at transonic speeds, the FADS calibrations are smooth, monotonic functions of Mach number and effective angles of attack and sideslip. Because the FADS calibration is sensitive to pressure port location, detailed measurements of the actual pressure port locations on the flight vehicle are required and the wind-tunnel calibration model should have pressure ports in similar locations. The procedure for calibrating a FADS system is outlined.

  5. Utilization of an automated multimeter calibration system by the Rocky Flats Standards Laboratory

    SciTech Connect

    Wickoff, B.; Stant, R.S.; Brown, G.R. Jr.

    1982-09-10

    The Physical Metrology Laboratory (PML) of the Rocky Flats (RF) Standards Laboratory, like many other standards laboratories, was inundated during the past decade with the vast variety of new digital multimeters. These multimeters were produced by several companies, and required accurate calibrations and certification to support the requirements at the Rocky Flats Plant. The need to automate the calibration and certification process accurately was vividly indicated by a time study of performing the process manually, for both the digital and the analog multimeters, in the PML Reference Standards Laboratory. By using an automated calibration system, approximately 90% of these calibrations could be completed in the Physical Metrology Support Laboratories with a reduction of 50% or more in hours required for the calibrations. With these specific requirements and other specifications deemed necessary, the automated calibration systems for digital and analog multimeters were purchased. Two Fluke 5101B Calibrators with Fluke 5220A Transconductance Amplifiers and two printers were procured for use by the Physical Metrology Support Laboratories. There operation and performance are described.

  6. ALTEA calibration

    NASA Astrophysics Data System (ADS)

    Zaconte, V.; Altea Team

    The ALTEA project is aimed at studying the possible functional damages to the Central Nervous System (CNS) due to particle radiation in space environment. The project is an international and multi-disciplinary collaboration. The ALTEA facility is an helmet-shaped device that will study concurrently the passage of cosmic radiation through the brain, the functional status of the visual system and the electrophysiological dynamics of the cortical activity. The basic instrumentation is composed by six active particle telescopes, one ElectroEncephaloGraph (EEG), a visual stimulator and a pushbutton. The telescopes are able to detect the passage of each particle measuring its energy, trajectory and released energy into the brain and identifying nuclear species. The EEG and the Visual Stimulator are able to measure the functional status of the visual system, the cortical electrophysiological activity, and to look for a correlation between incident particles, brain activity and Light Flash perceptions. These basic instruments can be used separately or in any combination, permitting several different experiments. ALTEA is scheduled to fly in the International Space Station (ISS) in November, 15th 2004. In this paper the calibration of the Flight Model of the silicon telescopes (Silicon Detector Units - SDUs) will be shown. These measures have been taken at the GSI heavy ion accelerator in Darmstadt. First calibration has been taken out in November 2003 on the SDU-FM1 using C nuclei at different energies: 100, 150, 400 and 600 Mev/n. We performed a complete beam scan of the SDU-FM1 to check functionality and homogeneity of all strips of silicon detector planes, for each beam energy we collected data to achieve good statistics and finally we put two different thickness of Aluminium and Plexiglas in front of the detector in order to study fragmentations. This test has been carried out with a Test Equipment to simulate the Digital Acquisition Unit (DAU). We are scheduled to

  7. Calibration Performance and Capabilities of the New Compact Ocean Wind Vector Radiometer System

    NASA Astrophysics Data System (ADS)

    Brown, S. T.; Focardi, P.; Kitiyakara, A.; Maiwald, F.; Montes, O.; Padmanabhan, S.; Redick, R.; Russell, D.; Wincentsen, J.

    2014-12-01

    The paper describes performance and capabilities of a new satellite conically imaging microwave radiometer system, the Compact Ocean Wind Vector Radiometer (COWVR), being built by the Jet Propulsion Laboratory (JPL) for an Air Force demonstration mission. COWVR is an 18-34 GHz fully polarimetric radiometer designed to provide measurements of ocean vector winds with an accuracy that meets or exceeds that provided by WindSat, but using a simpler design which has both calibration and cost advantages. Heritage conical radiometer systems, such as WindSat, AMSR, GMI or SSMI(S), all have a similar overall architecture and have exhibited significant intra-channel and inter-sensor calibration biases, due in part to the relative independence of the radiometers between the different polarizations and frequencies in the system. The COWVR system uses a broadband compact hybrid combining architecture and Electronic Polarization Basis Rotation to minimize the number of free calibration parameters between polarization and frequencies, as well as providing a definitive calibration reference from the modulation of the mean polarized signal from the Earth. This second calibration advantage arises because the sensor modulates the incoming polarized signal at the input antenna aperture in a known way based only on the instrument geometry which forces relative calibration consistency between the polarimetric channels of the sensor and provides a gain and offset calibration independent of a model or other ancillary data source, which has typically been a weakness in the calibration and inter-calibration of heritage microwave sensors. This paper will give a description of the COWVR instrument and an overview of the technology demonstration mission. We will discuss the overall calibration approach for this system, its advantages over existing systems and how many of the calibration issues that impact existing satellite radiometers can be eliminated in future operational systems based on

  8. Design and Instrumentation of a Measurement and Calibration System for an Acoustic Telemetry System

    SciTech Connect

    Deng, Zhiqun; Weiland, Mark A.; Carlson, Thomas J.; Eppard, M. B.

    2010-03-31

    The Juvenile Salmon Acoustic Telemetry System (JSATS) is an active sensing technology developed by Portland District, the U.S. Army Corps of Engineers for detecting and tracking small fish. It is used at hydroelectric projects and in the laboratory for evaluating behavior and survival of juvenile salmonids migrating through the Federal Columbia River Power System to the Pacific Ocean. It provides critical data for salmon protection and development of more “fish-friendly” hydroelectric facilities. The objective of this study was to design and build a measurement and calibration system for evaluating the JSATS component, because the JSATS requires comprehensive acceptance and performance testing in a controlled environment before it is deployed in the field. The system consists of a reference transducer, a water test tank lined with anechoic material, a motion control unit, a reference receiver, a signal conditioner and amplifier unit, a data acquisition board, MATLAB control and analysis interface, and a computer. The fully integrated system has been evaluated successfully at various simulated distances and using different encoded signals at frequencies within the bandwidth of the JSATS transmitter. It provides accurate acoustic mapping capability in a controlled environment and automates the process that allows real-time measurements and evaluation of the piezoelectric transducers, sensors, or the acoustic fields. The measurement and calibration system has been in use since 2009 for acceptance and performance testing of, and further improvements to, the JSATS.

  9. The Atmospheric Infrared Sounder on the Earth Observing System - In-orbit spectral calibration

    NASA Technical Reports Server (NTRS)

    Aumann, H. H.

    1991-01-01

    The Atmospheric Infrared Sounder (AIRS) is a facility instrument on the Earth Observing System (EOS). The ability of AIRS to provide accurate temperature and moisture soundings with high vertical resolution depends critically on a very accurate spectral calibration. The routine in-orbit spectral calibration is accomplished with a Fabry-Perot plate with a fixed spacing of 360 microns. This paper discusses design, Signal-to-Noise, and temperature and alignment stability constraints which have to be met to achieve the required spectral calibration accuracy.

  10. Calibration of an Energy Water Balance Model Using Satellite Data of Land Surface Temperature for the Upper Yangtze River Basin

    NASA Astrophysics Data System (ADS)

    Corbari, Chiara, Mancini, Marco; Li, Jiren; Su, Bob

    2013-01-01

    This study has been carried out among the project “Application of remote sensing and other space technology to hydrology and water resources (ID 5281)”. This poster presents a new methodology for the calibration of distributed hydrological models at basin scale by constraining an internal model variable, the pixel-scale equilibrium temperature. Soil hydraulic and vegetation parameters are then calibrated in each pixel of the domain according to the comparison between observed and simulated land surface temperature minimizing the differences. The model algorithm solves the system of energy and mass balances in terms of a representative equilibrium temperature (RET) that is the land surface temperature that closes the energy balance equation and so governs the fluxes of energy and mass over the basin domain. This equilibrium surface temperature, which is a critical model state variable, is comparable to LST as retrieved from operational remote sensing data (MODIS and AATSR). A traditional “trial and error” calibration procedure is also applied by comparing only discharge measurements in the available cross section. The distributed hydrological energy water balance model (FEST-EWB - Flash-flood Event-based Spatially-distributed rainfall-runoff Transformation- Energy Water Balance) has been implemented for the Upper Yangtze River basin with an extent of about 1,000,000 Km2 at spatial resolution of 5km and temporal resolution of 1 hour. Results are provided in terms of hourly evapotranspiration, soil moisture and land surface temperature maps for the period between 2000 to 2004 where ground and satellite data are available for engineering and environmental applications as parsimonious irrigation, real time flood forecast, and quantitative water resources availability. The model accuracy was controlled from the comparison with traditional discharge daily data series and also from the comparison between model and satellite land surface temperature used as a proxy

  11. Hybrid community energy systems.

    SciTech Connect

    Jody, B. J.; Daniels, E. J.; Karvelas, D. E.; Energy Systems

    2000-01-01

    The availability of efficient, economical, and reliable energy supplies can help attract industry and commercial businesses to a municipality or a region. Efficient use of energy can also improve the air quality and reduce pollution. Therefore, municipalities should explore and encourage the development and implementation of efficient energy systems. Integrated hybrid energy systems can be designed to meet the total energy requirements of large and small communities. These systems can yield significant energy and cost savings when compared with independent systems serving individual units or when compared with the conventional practice of buying power from a utility and producing thermal energy on-site. To maximize energy and cost savings, the design engineer should look beyond the conventional when designing such systems.

  12. Multi-Sensor Calibration of Low-Cost Magnetic, Angular Rate and Gravity Systems

    PubMed Central

    Lüken, Markus; Misgeld, Berno J.E.; Rüschen, Daniel; Leonhardt, Steffen

    2015-01-01

    We present a new calibration procedure for low-cost nine degrees-of-freedom (9DOF) magnetic, angular rate and gravity (MARG) sensor systems, which relies on a calibration cube, a reference table and a body sensor network (BSN). The 9DOF MARG sensor is part of our recently-developed “Integrated Posture and Activity Network by Medit Aachen” (IPANEMA) BSN. The advantage of this new approach is the use of the calibration cube, which allows for easy integration of two sensor nodes of the IPANEMA BSN. One 9DOF MARG sensor node is thereby used for calibration; the second 9DOF MARG sensor node is used for reference measurements. A novel algorithm uses these measurements to further improve the performance of the calibration procedure by processing arbitrarily-executed motions. In addition, the calibration routine can be used in an alignment procedure to minimize errors in the orientation between the 9DOF MARG sensor system and a motion capture inertial reference system. A two-stage experimental study is conducted to underline the performance of our calibration procedure. In both stages of the proposed calibration procedure, the BSN data, as well as reference tracking data are recorded. In the first stage, the mean values of all sensor outputs are determined as the absolute measurement offset to minimize integration errors in the derived movement model of the corresponding body segment. The second stage deals with the dynamic characteristics of the measurement system where the dynamic deviation of the sensor output compared to a reference system is corrected. In practical validation experiments, this procedure showed promising results with a maximum RMS error of 3.89°. PMID:26473873

  13. Multi-sensor calibration of low-cost magnetic, angular rate and gravity systems.

    PubMed

    Lüken, Markus; Misgeld, Berno J E; Rüschen, Daniel; Leonhardt, Steffen

    2015-01-01

    We present a new calibration procedure for low-cost nine degrees-of-freedom (9DOF) magnetic, angular rate and gravity (MARG) sensor systems, which relies on a calibration cube, a reference table and a body sensor network (BSN). The 9DOF MARG sensor is part of our recently-developed "Integrated Posture and Activity Network by Medit Aachen" (IPANEMA) BSN. The advantage of this new approach is the use of the calibration cube, which allows for easy integration of two sensor nodes of the IPANEMA BSN. One 9DOF MARG sensor node is thereby used for calibration; the second 9DOF MARG sensor node is used for reference measurements. A novel algorithm uses these measurements to further improve the performance of the calibration procedure by processing arbitrarily-executed motions. In addition, the calibration routine can be used in an alignment procedure to minimize errors in the orientation between the 9DOF MARG sensor system and a motion capture inertial reference system. A two-stage experimental study is conducted to underline the performance of our calibration procedure. In both stages of the proposed calibration procedure, the BSN data, as well as reference tracking data are recorded. In the first stage, the mean values of all sensor outputs are determined as the absolute measurement offset to minimize integration errors in the derived movement model of the corresponding body segment. The second stage deals with the dynamic characteristics of the measurement system where the dynamic deviation of the sensor output compared to a reference system is Sensors 2015, 15 25920 corrected. In practical validation experiments, this procedure showed promising results with a maximum RMS error of 3.89°. PMID:26473873

  14. Analysis on Chopper's output mode of the extended blackbody radiation calibration system

    NASA Astrophysics Data System (ADS)

    Yu, Xun; Wei, Yu-han; Hu, Tie-li; Shang, Xiao-yan; Wu, Ji-an

    2009-05-01

    In the extended blackbody radiant system, Chopper plays a very important role.Herein the chopper's working principle is analyzed in the system of black body radical calibration, and the chopper's closed-loop control motor is simulated. With SimPowerSystems toolbox of MATLAB, the model of DC motor driving systems is built and its startup, steady state and speed regulation performance are simulated. Experiment result shows that the output is steady, accurate, reliable and could drive the chopper evenly which can satisfy technological requirement of the extended black body radiation calibration system.

  15. Earth Observing System (EOS)/Advanced Microwave Sounding Unit-A (AMSU-A): Calibration management plan

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This is the Calibration Management Plan for the Earth Observing System/Advanced Microwave Sounding Unit-A (AMSU-A). The plan defines calibration requirements, calibration equipment, and calibration methods for the AMSU-A, a 15 channel passive microwave radiometer that will be used for measuring global atmospheric temperature profiles from the EOS polar orbiting observatory. The AMSU-A system will also provide data to verify and augment that of the Atmospheric Infrared Sounder.

  16. A novel separation and calibration method for DVL and compass error in dead reckoning navigation systems

    NASA Astrophysics Data System (ADS)

    Zhang, Yanshun; Guo, Yajing; Yang, Tao; Li, Chunyu; Wang, Zhanqing

    2016-06-01

    The scale factor error δ C of the Doppler velocity log (DVL) and the heading angle error δ \\psi of a compass are so integrated in dead reckoning (DR) navigation systems that it is difficult to separate them. This paper aims to solve this problem by putting forward an online separation and calibration method for δ C and δ \\psi based on an ‘arc and linear’ trajectory. This method introduces the high-accuracy location information of a long base line (LBL) acoustic positioning system. At first, the relationship between the displacements on the ‘arc’ trajectory in directions of east and north, output by the LBL and DR systems, serves to judge the carrier direction and calibrate δ C . And then by compensating δ C , the displacement on the ‘linear’ trajectory is used to calibrate δ \\psi . Finally, a semi-physical simulation experiment is conducted to test and verify this calibration method to see how effective and accurate it is. Experimental results show that after calibration the residual error ratios of δ C and δ \\psi are 8.24% and 3.70% respectively. Therefore, online calibration of δ C and δ \\psi is realized effectively. What’s more, when the DR system is working alone in 400 s, this method reduces position error by up to 93.39%, from 18.91 m to 1.25 m.

  17. Bore-Sight Calibration of Multiple Laser Range Finders for Kinematic 3D Laser Scanning Systems.

    PubMed

    Jung, Jaehoon; Kim, Jeonghyun; Yoon, Sanghyun; Kim, Sangmin; Cho, Hyoungsig; Kim, Changjae; Heo, Joon

    2015-01-01

    The Simultaneous Localization and Mapping (SLAM) technique has been used for autonomous navigation of mobile systems; now, its applications have been extended to 3D data acquisition of indoor environments. In order to reconstruct 3D scenes of indoor space, the kinematic 3D laser scanning system, developed herein, carries three laser range finders (LRFs): one is mounted horizontally for system-position correction and the other two are mounted vertically to collect 3D point-cloud data of the surrounding environment along the system's trajectory. However, the kinematic laser scanning results can be impaired by errors resulting from sensor misalignment. In the present study, the bore-sight calibration of multiple LRF sensors was performed using a specially designed double-deck calibration facility, which is composed of two half-circle-shaped aluminum frames. Moreover, in order to automatically achieve point-to-point correspondences between a scan point and the target center, a V-shaped target was designed as well. The bore-sight calibration parameters were estimated by a constrained least squares method, which iteratively minimizes the weighted sum of squares of residuals while constraining some highly-correlated parameters. The calibration performance was analyzed by means of a correlation matrix. After calibration, the visual inspection of mapped data and residual calculation confirmed the effectiveness of the proposed calibration approach. PMID:25946627

  18. Radiometric calibration of frame transfer CCD camera with uniform source system

    NASA Astrophysics Data System (ADS)

    Zhou, Jiankang; Shi, Rongbao; Chen, Yuheng; Zhou, Yuying; Shen, Weimin

    2010-08-01

    This paper presents a radiometric calibration method based on visibility function and uniform source system. The uniform system is mainly comprised of an integrating sphere and a monitoring silicon detector. The current of the silicon detector with a visibility function filter corresponds to the luminance at the exit port of integrating sphere through standard luminance meter transfer. The radiance at the camera entrance pupil is calculated for different solar zenith angles and Earth surface albedos by the MODTRAN atmospheric code. To simplify the calibration process, the radiance at its entrance pupil is integrated by visibility function. The shift smear of the frame transfer CCD is removed by the radiometric calibration and the amending ratio factor is introduced in the retrieving methods. The imaging experiment verifies the reliability of the calibration method and retrieves good quality image.

  19. Performance of a laser frequency comb calibration system with a high-resolution solar echelle spectrograph

    NASA Astrophysics Data System (ADS)

    Doerr, H.-P.; Kentischer, T. J.; Steinmetz, T.; Probst, R. A.; Franz, M.; Holzwarth, R.; Udem, Th.; Hänsch, T. W.; Schmidt, W.

    2012-09-01

    Laser frequency combs (LFC) provide a direct link between the radio frequency (RF) and the optical frequency regime. The comb-like spectrum of an LFC is formed by exact equidistant laser modes, whose absolute optical frequencies are controlled by RF-references such as atomic clocks or GPS receivers. While nowadays LFCs are routinely used in metrological and spectroscopic fields, their application in astronomy was delayed until recently when systems became available with a mode spacing and wavelength coverage suitable for calibration of astronomical spectrographs. We developed a LFC based calibration system for the high-resolution echelle spectrograph at the German Vacuum Tower Telescope (VTT), located at the Teide observatory, Tenerife, Canary Islands. To characterize the calibration performance of the instrument, we use an all-fiber setup where sunlight and calibration light are fed to the spectrograph by the same single-mode fiber, eliminating systematic effects related to variable grating illumination.

  20. Flexible global calibration technique for an arbitrarily arranged fringe projection profilometry system

    NASA Astrophysics Data System (ADS)

    Yue, Huimin; Zhao, Biyu; Wu, Yuxiang; Li, Mingyang

    2016-06-01

    Calibration is a crucial step in fringe projection profilometry, which establishes the relationship between unwrapped phase and (FPP) three-dimensional (3-D) shape data (X,Y,h). For an arbitrarily arranged FPP system, a simple geometrical model and mathematical descriptions of the relationships among phase, height distribution, and transverse coordinate are presented. Based on this, a flexible global calibration method is presented to reconstruct 3-D shape by just using a checkerboard with known separation and alternating white and blue. The calibration board is placed at several random positions to determine the relationship between phase and height, and the relationship between pixel position and X, Y coordinates. To get high accuracy, distortion for each pixel is considered. The validity, flexibility, and practicality of this system and calibration technique are verified by experiments.

  1. Upgrade of the Laser calibration system for the ATLAS hadronic calorimeter TileCal

    NASA Astrophysics Data System (ADS)

    van Woerden, Marius Cornelis

    2016-07-01

    We present in this contribution the new system for Laser calibration of the ATLAS hadronic calorimeter TileCal. The Laser system is a part of the three stage calibration apparatus designed to compute the calibration factors of the individual cells of TileCal. The Laser system is mainly used to correct for short term drifts of the readout of the individual cells. A sub-percent accuracy in the control of the calibration factors is required. To achieve this goal in the LHC Run2 conditions, a new Laser system was designed. The architecture of the system is described with details on the new optical line used to distribute Laser pulses in each individual detector module and on the new electronics used to drive the Laser, to read out optical monitors and to interface the system with the ATLAS readout, trigger and slow control. The LaserII system has been fully integrated into the framework used for measuring calibration factors and for monitoring data quality. First results on the Laser system performances studied are presented.

  2. Accurate technique for complete geometric calibration of cone-beam computed tomography systems.

    PubMed

    Cho, Youngbin; Moseley, Douglas J; Siewerdsen, Jeffrey H; Jaffray, David A

    2005-04-01

    Cone-beam computed tomography systems have been developed to provide in situ imaging for the purpose of guiding radiation therapy. Clinical systems have been constructed using this approach, a clinical linear accelerator (Elekta Synergy RP) and an iso-centric C-arm. Geometric calibration involves the estimation of a set of parameters that describes the geometry of such systems, and is essential for accurate image reconstruction. We have developed a general analytic algorithm and corresponding calibration phantom for estimating these geometric parameters in cone-beam computed tomography (CT) systems. The performance of the calibration algorithm is evaluated and its application is discussed. The algorithm makes use of a calibration phantom to estimate the geometric parameters of the system. The phantom consists of 24 steel ball bearings (BBs) in a known geometry. Twelve BBs are spaced evenly at 30 deg in two plane-parallel circles separated by a given distance along the tube axis. The detector (e.g., a flat panel detector) is assumed to have no spatial distortion. The method estimates geometric parameters including the position of the x-ray source, position, and rotation of the detector, and gantry angle, and can describe complex source-detector trajectories. The accuracy and sensitivity of the calibration algorithm was analyzed. The calibration algorithm estimates geometric parameters in a high level of accuracy such that the quality of CT reconstruction is not degraded by the error of estimation. Sensitivity analysis shows uncertainty of 0.01 degrees (around beam direction) to 0.3 degrees (normal to the beam direction) in rotation, and 0.2 mm (orthogonal to the beam direction) to 4.9 mm (beam direction) in position for the medical linear accelerator geometry. Experimental measurements using a laboratory bench Cone-beam CT system of known geometry demonstrate the sensitivity of the method in detecting small changes in the imaging geometry with an uncertainty of 0

  3. Quantification of breast density using dual-energy mammography with liquid phantom calibration

    NASA Astrophysics Data System (ADS)

    Lam, Alfonso R.; Ding, Huanjun; Molloi, Sabee

    2014-07-01

    Breast density is a widely recognized potential risk factor for breast cancer. However, accurate quantification of breast density is a challenging task in mammography. The current use of plastic breast-equivalent phantoms for calibration provides limited accuracy in dual-energy mammography due to the chemical composition of the phantom. We implemented a breast-equivalent liquid phantom for dual-energy calibration in order to improve the accuracy of breast density measurement. To design these phantoms, three liquid compounds were chosen: water, isopropyl alcohol, and glycerol. Chemical compositions of glandular and adipose tissues, obtained from NIST database, were used as reference materials. Dual-energy signal of the liquid phantom at different breast densities (0% to 100%) and thicknesses (1 to 8 cm) were simulated. Glandular and adipose tissue thicknesses were estimated from a higher order polynomial of the signals. Our results indicated that the linear attenuation coefficients of the breast-equivalent liquid phantoms match those of the target material. Comparison between measured and known breast density data shows a linear correlation with a slope close to 1 and a non-zero intercept of 7%, while plastic phantoms showed a slope of 0.6 and a non-zero intercept of 8%. Breast density results derived from the liquid calibration phantoms showed higher accuracy than those derived from the plastic phantoms for different breast thicknesses and various tube voltages. We performed experimental phantom studies using liquid phantoms and then compared the computed breast density with those obtained using a bovine tissue model. The experimental data and the known values were in good correlation with a slope close to 1 (˜1.1). In conclusion, our results indicate that liquid phantoms are a reliable alternative for calibration in dual-energy mammography and better reproduce the chemical properties of the target material.

  4. SU-D-204-01: Dual-Energy Calibration for Breast Density Measurement Using Spectral Mammography

    SciTech Connect

    Ding, H; Cho, H; Kumar, N; Sennung, D; Molloi, S

    2015-06-15

    Purpose: To investigate the feasibility of minimizing the systematic errors in dual-energy breast density quantification induced by the use of tissue-equivalent plastic phantoms as the calibration basis materials. Methods: Dual-energy calibration using tissue-equivalent plastic phantoms was performed on a spectral mammography system based on scanning multi-slit Si strip photon-counting detectors. The plastic phantom calibration used plastic water and adipose-equivalent phantoms as the basis materials, which have different x-ray attenuation properties compared to water and lipid in actual breast tissue. Two methods were used to convert the dual-energy decomposition measurements in plastic phantom thicknesses into true water and lipid basis. The first method was based entirely on the theoretical x-ray attenuation coefficients of the investigated materials in the mammographic energy range. The conversion matrix was determined from least-squares fitting of the target material using the reported attenuation coefficients of water and lipid. The second method was developed based on experimental calibrations, which measured the low-and high-energy signals of pure water and lipid of known thicknesses. A non-linear rational function was used to correlate the decomposed thicknesses to the known values, so that the conversion coefficients can be determined. Both methods were validated using independent measurements of water and lipid mixture phantoms. The correlation of the dual-energy decomposition measurements and the known values were studied with linear regression analysis. Results: There was an excellent linear correlation between the converted water thicknesses and the known values. The slopes of the linear fits were determined to be 0.63 and 1.03 for the simulation and experimental results, respectively. The non-linear fitting in the experimental approach reduced the root-mean-square (RMS) errors from approximately 3.4 mm to 1.5 mm. Conclusion: The results suggested

  5. Photogrammetric calibration of the NASA-Wallops Island image intensifier system

    NASA Technical Reports Server (NTRS)

    Harp, B. F.

    1972-01-01

    An image intensifier was designed for use as one of the primary tracking systems for the barium cloud experiment at Wallops Island. Two computer programs, a definitive stellar camara calibration program and a geodetic stellar camara orientation program, were originally developed at Wallops on a GE 625 computer. A mathematical procedure for determining the image intensifier distortions is outlined, and the implementation of the model in the Wallops computer programs is described. The analytical calibration of metric cameras is also discussed.

  6. Self-calibration method for rotating laser positioning system using interscanning technology and ultrasonic ranging.

    PubMed

    Wu, Jun; Yu, Zhijing; Zhuge, Jingchang

    2016-04-01

    A rotating laser positioning system (RLPS) is an efficient measurement method for large-scale metrology. Due to multiple transmitter stations, which consist of a measurement network, the position relationship of these stations must be first calibrated. However, with such auxiliary devices such as a laser tracker, scale bar, and complex calibration process, the traditional calibration methods greatly reduce the measurement efficiency. This paper proposes a self-calibration method for RLPS, which can automatically obtain the position relationship. The method is implemented through interscanning technology by using a calibration bar mounted on the transmitter station. Each bar is composed of three RLPS receivers and one ultrasonic sensor whose coordinates are known in advance. The calibration algorithm is mainly based on multiplane and distance constraints and is introduced in detail through a two-station mathematical model. The repeated experiments demonstrate that the coordinate measurement uncertainty of spatial points by using this method is about 0.1 mm, and the accuracy experiments show that the average coordinate measurement deviation is about 0.3 mm compared with a laser tracker. The accuracy can meet the requirements of most applications, while the calibration efficiency is significantly improved. PMID:27140762

  7. A robust method for online stereo camera self-calibration in unmanned vehicle system

    NASA Astrophysics Data System (ADS)

    Zhao, Yu; Chihara, Nobuhiro; Guo, Tao; Kimura, Nobutaka

    2014-06-01

    Self-calibration is a fundamental technology used to estimate the relative posture of the cameras for environment recognition in unmanned system. We focused on the issue of recognition accuracy decrease caused by the vibration of platform and conducted this research to achieve on-line self-calibration using feature point's registration and robust estimation of fundamental matrix. Three key factors in this respect are needed to be improved. Firstly, the feature mismatching exists resulting in the decrease of estimation accuracy of relative posture. The second, the conventional estimation method cannot satisfy both the estimation speed and calibration accuracy at the same tame. The third, some system intrinsic noises also lead greatly to the deviation of estimation results. In order to improve the calibration accuracy, estimation speed and system robustness for the practical implementation, we discuss and analyze the algorithms to make improvements on the stereo camera system to achieve on-line self-calibration. Based on the epipolar geometry and 3D images parallax, two geometry constraints are proposed to make the corresponding feature points search performed in a small search-range resulting in the improvement of matching accuracy and searching speed. Then, two conventional estimation algorithms are analyzed and evaluated for estimation accuracy and robustness. The third, Rigorous posture calculation method is proposed with consideration of the relative posture deviation of each separated parts in the stereo camera system. Validation experiments were performed with the stereo camera mounted on the Pen-Tilt Unit for accurate rotation control and the evaluation shows that our proposed method is fast and of high accuracy with high robustness for on-line self-calibration algorithm. Thus, as the main contribution, we proposed methods to solve the on-line self-calibration fast and accurately, envision the possibility for practical implementation on unmanned system as

  8. Calibration of the NuSTAR High-energy Focusing X-ray Telescope.

    NASA Astrophysics Data System (ADS)

    Madsen, Kristin K.; Harrison, Fiona A.; Markwardt, Craig B.; An, Hongjun; Grefenstette, Brian W.; Bachetti, Matteo; Miyasaka, Hiromasa; Kitaguchi, Takao; Bhalerao, Varun; Boggs, Steve; Christensen, Finn E.; Craig, William W.; Forster, Karl; Fuerst, Felix; Hailey, Charles J.; Perri, Matteo; Puccetti, Simonetta; Rana, Vikram; Stern, Daniel; Walton, Dominic J.; Jørgen Westergaard, Niels; Zhang, William W.

    2015-09-01

    We present the calibration of the Nuclear Spectroscopic Telescope Array (NuSTAR) X-ray satellite. We used the Crab as the primary effective area calibrator and constructed a piece-wise linear spline function to modify the vignetting response. The achieved residuals for all off-axis angles and energies, compared to the assumed spectrum, are typically better than ±2% up to 40 keV and 5%-10% above due to limited counting statistics. An empirical adjustment to the theoretical two-dimensional point-spread function (PSF) was found using several strong point sources, and no increase of the PSF half-power diameter has been observed since the beginning of the mission. We report on the detector gain calibration, good to 60 eV for all grades, and discuss the timing capabilities of the observatory, which has an absolute timing of ±3 ms. Finally, we present cross-calibration results from two campaigns between all the major concurrent X-ray observatories (Chandra, Swift, Suzaku, and XMM-Newton), conducted in 2012 and 2013 on the sources 3C 273 and PKS 2155-304, and show that the differences in measured flux is within ˜10% for all instruments with respect to NuSTAR.

  9. A calibration technology for multi-camera system with various focal lengths

    NASA Astrophysics Data System (ADS)

    Yang, Ruihua; Zhang, Jin; Deng, Huaxia; Yu, Liandong

    2016-01-01

    Calibration is the basis of three-dimensional (3D) reconstruction for machine vision technology. Nowadays, the most widely used calibration method among computer vision is the technique for binocular stereo measurement. However, binocular stereo vision has limited view field which is difficult to measure large-scale mechanical components synchronously. Thus, enlarging the view field is urgent in need for the large scale measurement. With the application of multi-camera system, the calibration for cameras with different focal lengths is required. In this paper, a method aiming at calibration problems for multi-camera system of different focal lengths is proposed. An imaging model for multi-camera system with various focal lengths is analyzed. The Harris corner detector is applied to determine the relationship between signal camera and checkerboard. Finally, the external parameters of different cameras can be obtained by the link with the checkerboard. The calibration results indicate that the calculation method used in this work can calibrate multi-camera with various focal lengths.

  10. Bore-Sight Calibration of Multiple Laser Range Finders for Kinematic 3D Laser Scanning Systems

    PubMed Central

    Jung, Jaehoon; Kim, Jeonghyun; Yoon, Sanghyun; Kim, Sangmin; Cho, Hyoungsig; Kim, Changjae; Heo, Joon

    2015-01-01

    The Simultaneous Localization and Mapping (SLAM) technique has been used for autonomous navigation of mobile systems; now, its applications have been extended to 3D data acquisition of indoor environments. In order to reconstruct 3D scenes of indoor space, the kinematic 3D laser scanning system, developed herein, carries three laser range finders (LRFs): one is mounted horizontally for system-position correction and the other two are mounted vertically to collect 3D point-cloud data of the surrounding environment along the system’s trajectory. However, the kinematic laser scanning results can be impaired by errors resulting from sensor misalignment. In the present study, the bore-sight calibration of multiple LRF sensors was performed using a specially designed double-deck calibration facility, which is composed of two half-circle-shaped aluminum frames. Moreover, in order to automatically achieve point-to-point correspondences between a scan point and the target center, a V-shaped target was designed as well. The bore-sight calibration parameters were estimated by a constrained least squares method, which iteratively minimizes the weighted sum of squares of residuals while constraining some highly-correlated parameters. The calibration performance was analyzed by means of a correlation matrix. After calibration, the visual inspection of mapped data and residual calculation confirmed the effectiveness of the proposed calibration approach. PMID:25946627

  11. Study of the performance of stereoscopic panomorph systems calibrated with traditional pinhole model

    NASA Astrophysics Data System (ADS)

    Poulin-Girard, Anne-Sophie; Thibault, Simon; Laurendeau, Denis

    2016-06-01

    With their large field of view, anamorphosis, and areas of enhanced magnification, panomorph lenses are an interesting choice for navigation systems for mobile robotics in which knowledge of the surroundings is mandatory. However, panomorph lenses special characteristics can be challenging during the calibration process. This study focuses on the calibration of two panomorph stereoscopic systems with a model and technique developed for narrow-angle lenses, the "Camera Calibration Toolbox for MATLAB." In order to assess the performance of the systems, the mean reprojection error (MRE) related to the calibration and the reconstruction error of control points of an object of interest at various locations in the field of view are used. The calibrations were successful and exhibit MREs of less than one pixel in all cases. However, some poorly reconstructed control points illustrate that an acceptable MRE guarantees neither the quality of 3-D reconstruction nor its uniformity in the field of view. In addition, the nonuniformity in the 3-D reconstruction quality indicates that panomorph lenses require a more accurate estimation of the principal point (center of distortion) coordinates to improve the calibration and therefore the 3-D reconstruction.

  12. Calibration of Thomson scattering systems using electron cyclotron emission cutoff data

    NASA Astrophysics Data System (ADS)

    Zhurovich, K.; Mossessian, D. A.; Hughes, J. W.; Hubbard, A. E.; Irby, J. H.; Marmar, E. S.

    2005-05-01

    An alternative method of absolute calibration of Thomson scattering (TS) systems is described. The method is based on the measurements of electron cyclotron emission (ECE) from the plasma. If the plasma density reaches some critical value the emission at some frequencies is cut off and an abrupt loss of signal is registered by the ECE diagnostic. These critical values are calculated from the frequencies of the ECE channels in which cutoffs are observed, using the dispersion relation for the wave propagation. The radial positions of the ECE channels are bound to the measured magnetic field in the tokamak and, therefore, are known. The derived critical density values at certain positions in plasma are used to calculate absolute calibration coefficients for the core TS system. For that data points from the TS diagnostic are interpolated in time and space to these critical density values. This calibration technique is implemented in situ on the Alcator C-Mod tokamak during plasma operation. We use a nine-channel ECE diagnostic to calibrate the eight-channel core TS system. The uncertainty of the TS density calibration is ⩽10%, which is less than that from the gas scattering calibrations. Good agreement exists between TS density profiles and measurements from the visible continuum diagnostic and interferometry. Given the wide availability of ECE diagnostics on most tokamaks and other fusion devices, this technique should be suitable on many other experiments.

  13. An efficient calibration method for SQUID measurement system using three orthogonal Helmholtz coils

    NASA Astrophysics Data System (ADS)

    Hua, Li; Shu-Lin, Zhang; Chao-Xiang, Zhang; Xiang-Yan, Kong; Xiao-Ming, Xie

    2016-06-01

    For a practical superconducting quantum interference device (SQUID) based measurement system, the Tesla/volt coefficient must be accurately calibrated. In this paper, we propose a highly efficient method of calibrating a SQUID magnetometer system using three orthogonal Helmholtz coils. The Tesla/volt coefficient is regarded as the magnitude of a vector pointing to the normal direction of the pickup coil. By applying magnetic fields through a three-dimensional Helmholtz coil, the Tesla/volt coefficient can be directly calculated from magnetometer responses to the three orthogonally applied magnetic fields. Calibration with alternating current (AC) field is normally used for better signal-to-noise ratio in noisy urban environments and the results are compared with the direct current (DC) calibration to avoid possible effects due to eddy current. In our experiment, a calibration relative error of about 6.89 × 10‑4 is obtained, and the error is mainly caused by the non-orthogonality of three axes of the Helmholtz coils. The method does not need precise alignment of the magnetometer inside the Helmholtz coil. It can be used for the multichannel magnetometer system calibration effectively and accurately. Project supported by the “Strategic Priority Research Program (B)” of the Chinese Academy of Sciences (Grant No. XDB04020200) and the Shanghai Municipal Science and Technology Commission Project, China (Grant No. 15DZ1940902).

  14. A Review of X-ray Diagnostic Calibrations in the 2 to 100 keV Region Using the High Energy X-ray Calibration Facility (HEX)

    SciTech Connect

    Ali, Zaheer; Pond, T; Buckles, R A; Maddox, B R; Chen, C D; DeWald, E L; Izumi, N; Stewart, R

    2010-05-19

    The precise and accurate measurement of X-rays in the 2 keV to 100 keV region is crucial to the understanding of HED plasmas and warm dense matter in general. With the emergence of inertially confined plasma facilities as the premier platforms for ICF, laboratory astrophysics, and national security related plasma experiments, the need to calibrate diagnostics in the high energy X-ray regime has grown. At National Security Technologies High Energy X-ray Calibration Facility (HEX) in Livermore, California, X-ray imagers, filter-fluorescer spectrometers, crystal spectrometers, image plates, and nuclear diagnostics are calibrated. The HEX can provide measurements of atomic line radiation, X-ray flux (accuracy within 10%), and X-ray energy (accuracy within 1%). The HEX source is comprised of a commercial 160 kV X-ray tube, a fluorescer wheel, a filter wheel, and a lead encasement. The X-ray tube produces a Tungsten bremsstrahlung spectrum which causes a foil to fluoresce line radiation. To minimize bremsstrahlung in the radiation for calibration we also provide various foils as filters. For experimental purposes, a vacuum box capable of 10{sup -7} Torr, as well as HPGe and CdTe radiation detectors, are provided on an optical table. Most geometries and arrangements can be changed to meet experimental needs.

  15. The global energy system.

    PubMed

    Häfele, W; Sassin, W

    1979-05-01

    A global energy system is conceptualized and analyzed, the energy distributor sub-system of the worldwide supranational system. Its many interconnections are examined and traced back to their source to determine the major elements of this global energy system. Long-term trends are emphasized. The analysis begins with a discussion of the local systems that resulted from the deployment of technology in the mid-nineteenth century, continues with a description of the global system based on oil that has existed for the past two decades, and ends with a scenario implying that an energy transition will occur in the future in which use of coal, nuclear, and solar energy will predominate. A major problem for the future will be the management of this energy transition. The optimal use of global resources and the efficient management of this transition will require a stable and persistent global order. PMID:464990

  16. DIRECT CALIBRATION OF GC/MS SYSTEMS USING SRM (STANDARD REFERENCE MATERIAL) GAS CYLINDERS

    EPA Science Inventory

    A cryogenic trapping system has been developed for use in calibrating GC/MS systems for the analysis of volatile organic compounds. This system provides for direct Standard Reference Material (SRM) traceability on data generated on gaseous samples. The cryogenic trap is a coil of...

  17. Energy Recovery System

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Cogeneration system is one in which the energy ordinarily wasted in an industrial process is recovered and reused to create a second form of energy. Such an energy recovery system is in use at Crane Company's plant in Ferguson, KY, which manufactures ceramic bathroom fixtures. Crane's system captures hot stack gases from the company's four ceramic kilns and uses them to produce electrical power for plant operations.

  18. Calibrated energy simulations of potential energy savings in actual retail buildings

    NASA Astrophysics Data System (ADS)

    Alhafi, Zuhaira

    densities were approximately 20% to 30% of that called by ASHRAE 62.1. Formaldehyde was the most important contaminant of concern in retail stores investigated. Both stores exceeded the most conservative health guideline for formaldehyde (OEHHA TWA REL = 7.3 ppb). This study found that source removal and reducing the emission rate, as demonstrated in retail stores sampled in this study, is a viable strategy to meet the health guideline. Total volatile compound were present in retail stores at low concentrations well below health guidelines suggested by Molhave (1700microg /m 2) and Bridges (1000 microg /m2). Based on these results and through mass--balance modeling, different ventilation rate reduction scenarios were proposed, and for these scenarios the differences in energy consumption were estimated. Findings of all phases of this desertion have contributed to understanding (a) the trade-off between energy savings and ventilation rates that do not compromise indoor air quality, and (b) the trade-off between energy savings and resets of indoor air temperature that do not compromise thermal comfort. Two models for retail stores were built and calibrated and validated against actual utility bills. Energy simulation results indicated that by lowering the ventilation rates from measured and minimum references would reduce natural gas energy use by estimated values of 6% to 19%. Also, this study found that the electrical cooling energy consumption was not significantly sensitive to different ventilation rates. However, increasing indoor air temperature by 3°C in summer had a significant effect on the energy savings. In winter, both energy savings strategies, ventilation reduction and decrease in set points, had a significant effect on natural gas consumption. Specially, when the indoor air temperature 21°C was decreased to 19.4°C with the same amount of ventilation rate of Molhaves guideline for both cases. Interestingly, the temperature of 23.8°C (75°F), which is the

  19. New approaches for the calibration of exchange-energy densities in local hybrid functionals.

    PubMed

    Maier, Toni M; Haasler, Matthias; Arbuznikov, Alexei V; Kaupp, Martin

    2016-08-21

    The ambiguity of exchange-energy densities is a fundamental challenge for the development of local hybrid functionals, or of other functionals based on a local mixing of exchange-energy densities. In this work, a systematic construction of semi-local calibration functions (CFs) for adjusting the exchange-energy densities in local hybrid functionals is provided, which directly links a given CF to an underlying semi-local exchange functional, as well as to the second-order gradient expansion of the exchange hole. Using successive steps of integration by parts allows the derivation of correction terms of increasing order, resulting in more and more complicated but also more flexible CFs. We derive explicit first- and second-order CFs (pig1 and pig2) based on B88 generalized-gradient approximation (GGA) exchange, and a first-order CF (tpig1) based on τ-dependent B98 meta-GGA exchange. We combine these CFs with different long-range damping functions and evaluate them for calibration of LDA, B88 GGA, and TPSS meta-GGA exchange-energy densities. Based on a minimization of unphysical nondynamical correlation contributions in three noble-gas dimer potential-energy curves, free parameters in the CFs are optimized, and performance of various approaches in the calibration of different exchange-energy densities is compared. Most notably, the second-order pig2 CF provides the largest flexibility with respect to the diffuseness of the damping function. This suggests that higher-order CFs based on the present integration-by-parts scheme may be particularly suitable for the flexible construction of local hybrid functionals. PMID:27080804

  20. Transponder-aided joint calibration and synchronization compensation for distributed radar systems.

    PubMed

    Wang, Wen-Qin

    2015-01-01

    High-precision radiometric calibration and synchronization compensation must be provided for distributed radar system due to separate transmitters and receivers. This paper proposes a transponder-aided joint radiometric calibration, motion compensation and synchronization for distributed radar remote sensing. As the transponder signal can be separated from the normal radar returns, it is used to calibrate the distributed radar for radiometry. Meanwhile, the distributed radar motion compensation and synchronization compensation algorithms are presented by utilizing the transponder signals. This method requires no hardware modifications to both the normal radar transmitter and receiver and no change to the operating pulse repetition frequency (PRF). The distributed radar radiometric calibration and synchronization compensation require only one transponder, but the motion compensation requires six transponders because there are six independent variables in the distributed radar geometry. Furthermore, a maximum likelihood method is used to estimate the transponder signal parameters. The proposed methods are verified by simulation results. PMID:25794158

  1. Transponder-Aided Joint Calibration and Synchronization Compensation for Distributed Radar Systems

    PubMed Central

    Wang, Wen-Qin

    2015-01-01

    High-precision radiometric calibration and synchronization compensation must be provided for distributed radar system due to separate transmitters and receivers. This paper proposes a transponder-aided joint radiometric calibration, motion compensation and synchronization for distributed radar remote sensing. As the transponder signal can be separated from the normal radar returns, it is used to calibrate the distributed radar for radiometry. Meanwhile, the distributed radar motion compensation and synchronization compensation algorithms are presented by utilizing the transponder signals. This method requires no hardware modifications to both the normal radar transmitter and receiver and no change to the operating pulse repetition frequency (PRF). The distributed radar radiometric calibration and synchronization compensation require only one transponder, but the motion compensation requires six transponders because there are six independent variables in the distributed radar geometry. Furthermore, a maximum likelihood method is used to estimate the transponder signal parameters. The proposed methods are verified by simulation results. PMID:25794158

  2. Calibration of an Ultrasound Tomography System for Medical Imaging with 2D Contrast-Source Inversion

    NASA Astrophysics Data System (ADS)

    Faucher, Gabriel Paul

    This dissertation describes two possible methods for the calibration of an ultrasound tomography system developed at University of Manitoba's Electromagnetic Imaging Laboratory for imaging with the contrast-source inversion algorithm. The calibration techniques are adapted from existing procedures employed for microwave tomography. A theoretical model of these calibration principles is developed in order to provide a rationale for the effectiveness of the proposed procedures. The applicability of such an imaging algorithm and calibration methods in the context of ultrasound are discussed. Also presented are 2D and 3D finite-difference time-domain update equations for the simulation of acoustic wave propagation in inhomogeneous media. Details regarding the application of an absorbing boundary-condition, point-source modelling and the treatment of penetrable objects are included in this document.

  3. Research on the gray distortion and calibration of machine vision system

    NASA Astrophysics Data System (ADS)

    Ye, Yucheng; Wang, Jianping; Ying, Yibin; Rao, Xiuqin

    2004-11-01

    The laws of gray distortion of machine vision system were discussed, and a method for gray calibration was presented. Five standard templates with unanimous gray value were used as the research objects. The average gray values of X direction and Y direction of the standard template images were obtained according to row and column. The gray distortion models were developed with moving average model of two image pixels. The models of five standard templates were developed separately, and the correlation coefficients of each model were above 0.96. The parameters of the gray distortion model were independent to the templates themselves. The gray calibration models of row and column were developed based on the gray distortion models separately, and the image gray values of other templates were proportion to the true value after gray calibration with the gray calibration models. The test verified the method.

  4. A Tool-Free Calibration Method for Turntable-Based 3D Scanning Systems.

    PubMed

    Pang, Xufang; Lau, Rynson W H; Song, Zhan; Li, Yangyan; He, Shengfeng

    2016-01-01

    Turntable-based 3D scanners are popular but require calibration of the turntable axis. Existing methods for turntable calibration typically make use of specially designed tools, such as a chessboard or criterion sphere, which users must manually install and dismount. In this article, the authors propose an automatic method to calibrate the turntable axis without any calibration tools. Given a scan sequence of the input object, they first recover the initial rotation axis from an automatic registration step. Then they apply an iterative procedure to obtain the optimized turntable axis. This iterative procedure alternates between two steps: refining the initial pose of the input scans and approximating the rotation matrix. The performance of the proposed method was evaluated on a structured light-based scanning system. PMID:25137724

  5. Automatic calibration system for analog instruments based on DSP and CCD sensor

    NASA Astrophysics Data System (ADS)

    Lan, Jinhui; Wei, Xiangqin; Bai, Zhenlong

    2008-12-01

    Currently, the calibration work of analog measurement instruments is mainly completed by manual and there are many problems waiting for being solved. In this paper, an automatic calibration system (ACS) based on Digital Signal Processor (DSP) and Charge Coupled Device (CCD) sensor is developed and a real-time calibration algorithm is presented. In the ACS, TI DM643 DSP processes the data received by CCD sensor and the outcome is displayed on Liquid Crystal Display (LCD) screen. For the algorithm, pointer region is firstly extracted for improving calibration speed. And then a math model of the pointer is built to thin the pointer and determine the instrument's reading. Through numbers of experiments, the time of once reading is no more than 20 milliseconds while it needs several seconds if it is done manually. At the same time, the error of the instrument's reading satisfies the request of the instruments. It is proven that the automatic calibration system can effectively accomplish the calibration work of the analog measurement instruments.

  6. Optical System Error Analysis and Calibration Method of High-Accuracy Star Trackers

    PubMed Central

    Sun, Ting; Xing, Fei; You, Zheng

    2013-01-01

    The star tracker is a high-accuracy attitude measurement device widely used in spacecraft. Its performance depends largely on the precision of the optical system parameters. Therefore, the analysis of the optical system parameter errors and a precise calibration model are crucial to the accuracy of the star tracker. Research in this field is relatively lacking a systematic and universal analysis up to now. This paper proposes in detail an approach for the synthetic error analysis of the star tracker, without the complicated theoretical derivation. This approach can determine the error propagation relationship of the star tracker, and can build intuitively and systematically an error model. The analysis results can be used as a foundation and a guide for the optical design, calibration, and compensation of the star tracker. A calibration experiment is designed and conducted. Excellent calibration results are achieved based on the calibration model. To summarize, the error analysis approach and the calibration method are proved to be adequate and precise, and could provide an important guarantee for the design, manufacture, and measurement of high-accuracy star trackers. PMID:23567527

  7. A Visual Servoing-Based Method for ProCam Systems Calibration

    PubMed Central

    Berry, Francois; Aider, Omar Ait; Mosnier, Jeremie

    2013-01-01

    Projector-camera systems are currently used in a wide field of applications, such as 3D reconstruction and augmented reality, and can provide accurate measurements, depending on the configuration and calibration. Frequently, the calibration task is divided into two steps: camera calibration followed by projector calibration. The latter still poses certain problems that are not easy to solve, such as the difficulty in obtaining a set of 2D–3D points to compute the projection matrix between the projector and the world. Existing methods are either not sufficiently accurate or not flexible. We propose an easy and automatic method to calibrate such systems that consists in projecting a calibration pattern and superimposing it automatically on a known printed pattern. The projected pattern is provided by a virtual camera observing a virtual pattern in an OpenGL model. The projector displays what the virtual camera visualizes. Thus, the projected pattern can be controlled and superimposed on the printed one with the aid of visual servoing. Our experimental results compare favorably with those of other methods considering both usability and accuracy. PMID:24084121

  8. A flexile and high precision calibration method for binocular structured light scanning system.

    PubMed

    Yuan, Jianying; Wang, Qiong; Li, Bailin

    2014-01-01

    3D (three-dimensional) structured light scanning system is widely used in the field of reverse engineering, quality inspection, and so forth. Camera calibration is the key for scanning precision. Currently, 2D (two-dimensional) or 3D fine processed calibration reference object is usually applied for high calibration precision, which is difficult to operate and the cost is high. In this paper, a novel calibration method is proposed with a scale bar and some artificial coded targets placed randomly in the measuring volume. The principle of the proposed method is based on hierarchical self-calibration and bundle adjustment. We get initial intrinsic parameters from images. Initial extrinsic parameters in projective space are estimated with the method of factorization and then upgraded to Euclidean space with orthogonality of rotation matrix and rank 3 of the absolute quadric as constraint. Last, all camera parameters are refined through bundle adjustment. Real experiments show that the proposed method is robust, and has the same precision level as the result using delicate artificial reference object, but the hardware cost is very low compared with the current calibration method used in 3D structured light scanning system. PMID:25202736

  9. MERTIS: geometrical calibration of thermal infrared optical system by applying diffractive optical elements

    NASA Astrophysics Data System (ADS)

    Bauer, M.; Baumbach, D.; Buder, M.; Börner, A.; Grießbach, D.; Peter, G.; Santier, E.; Säuberlich, T.; Schischmanow, A.; Schrader, S.; Walter, I.

    2015-09-01

    Geometrical sensor calibration is essential for space applications based on high accuracy optical measurements, in this case for the thermal infrared push-broom imaging spectrometer MERTIS. The goal is the determination of the interior sensor orientation. A conventional method is to measure the line of sight for a subset of pixels by single pixel illumination with collimated light. To adjust angles, which define the line of sight of a pixel, a manipulator construction is used. A new method for geometrical sensor calibration is using Diffractive Optical Elements (DOE) in connection with laser beam equipment. Diffractive optical elements (DOE) are optical microstructures, which are used to split an incoming laser beam with a dedicated wavelength into a number of beams with well-known propagation directions. As the virtual sources of the diffracted beams are points at infinity, the resulting image is invariant against translation. This particular characteristic allows a complete geometrical sensor calibration with only one taken image avoiding complex adjustment procedures, resulting in a significant reduction of calibration effort. We present a new method for geometrical calibration of a thermal infrared optical system, including an thermal infrared test optics and the MERTIS spectrometer bolometer detector. The fundamentals of this new approach for geometrical infrared optical systems calibration by applying diffractive optical elements and the test equipment are shown.

  10. Optical system error analysis and calibration method of high-accuracy star trackers.

    PubMed

    Sun, Ting; Xing, Fei; You, Zheng

    2013-01-01

    The star tracker is a high-accuracy attitude measurement device widely used in spacecraft. Its performance depends largely on the precision of the optical system parameters. Therefore, the analysis of the optical system parameter errors and a precise calibration model are crucial to the accuracy of the star tracker. Research in this field is relatively lacking a systematic and universal analysis up to now. This paper proposes in detail an approach for the synthetic error analysis of the star tracker, without the complicated theoretical derivation. This approach can determine the error propagation relationship of the star tracker, and can build intuitively and systematically an error model. The analysis results can be used as a foundation and a guide for the optical design, calibration, and compensation of the star tracker. A calibration experiment is designed and conducted. Excellent calibration results are achieved based on the calibration model. To summarize, the error analysis approach and the calibration method are proved to be adequate and precise, and could provide an important guarantee for the design, manufacture, and measurement of high-accuracy star trackers. PMID:23567527

  11. Development of a Machine-Vision System for Recording of Force Calibration Data

    NASA Astrophysics Data System (ADS)

    Heamawatanachai, Sumet; Chaemthet, Kittipong; Changpan, Tawat

    This paper presents the development of a new system for recording of force calibration data using machine vision technology. Real time camera and computer system were used to capture images of the reading from the instruments during calibration. Then, the measurement images were transformed and translated to numerical data using optical character recognition (OCR) technique. These numerical data along with raw images were automatically saved to memories as the calibration database files. With this new system, the human error of recording would be eliminated. The verification experiments were done by using this system for recording the measurement results from an amplifier (DMP 40) with load cell (HBM-Z30-10kN). The NIMT's 100-kN deadweight force standard machine (DWM-100kN) was used to generate test forces. The experiments setup were done in 3 categories; 1) dynamics condition (record during load changing), 2) statics condition (record during fix load), and 3) full calibration experiments in accordance with ISO 376:2011. The captured images from dynamics condition experiment gave >94% without overlapping of number. The results from statics condition experiment were >98% images without overlapping. All measurement images without overlapping were translated to number by the developed program with 100% accuracy. The full calibration experiments also gave 100% accurate results. Moreover, in case of incorrect translation of any result, it is also possible to trace back to the raw calibration image to check and correct it. Therefore, this machine-vision-based system and program should be appropriate for recording of force calibration data.

  12. Energy calibration of a high-resolution inelastic x-ray scattering spectrometer.

    PubMed

    Verbeni, Roberto; D'Astuto, Matteo; Krisch, Michael; Lorenzen, Maren; Mermet, Alain; Monaco, Giulio; Requardt, Herwig; Sette, Francesco

    2008-08-01

    The energy scale of a triple-axis x-ray spectrometer with meV energy resolution based on perfect silicon crystal optics is calibrated, utilizing the most recent determination of the silicon lattice parameter and its thermal expansion coefficient and recording the dispersion of longitudinal acoustic and optical phonons in a diamond single crystal and the molecular vibration mode in liquid nitrogen. Comparison of the x-ray results with previous inelastic neutron and Raman scattering results as well as with ab initio phonon dispersion calculations yields an overall agreement better than 2%. PMID:19044359

  13. Energy calibration of a high-resolution inelastic x-ray scattering spectrometer

    SciTech Connect

    Verbeni, Roberto; D'Astuto, Matteo; Krisch, Michael; Lorenzen, Maren; Mermet, Alain; Monaco, Giulio; Requardt, Herwig; Sette, Francesco

    2008-08-15

    The energy scale of a triple-axis x-ray spectrometer with meV energy resolution based on perfect silicon crystal optics is calibrated, utilizing the most recent determination of the silicon lattice parameter and its thermal expansion coefficient and recording the dispersion of longitudinal acoustic and optical phonons in a diamond single crystal and the molecular vibration mode in liquid nitrogen. Comparison of the x-ray results with previous inelastic neutron and Raman scattering results as well as with ab initio phonon dispersion calculations yields an overall agreement better than 2%.

  14. Top-quark mass measurement in the dilepton channel using in situ jet energy scale calibration

    NASA Astrophysics Data System (ADS)

    Lee, Hyun Su

    2012-09-01

    We employ a top-quark mass measurement technique in the dilepton channel with in situ jet energy scale calibration. Three variables having different jet energy scale dependences are used simultaneously to extract not only the top-quark mass but also the energy scale of the jet from a single likelihood fit. Monte Carlo studies with events corresponding to an integrated luminosity of 5fb-1 proton-proton collisions at the Large Hadron Collider s=7TeV are performed. Our analysis suggests that the overall jet energy scale uncertainty can be significantly reduced and the top-quark mass can be determined with a precision of less than 1GeV/c2, including jet energy scale uncertainty, at the Large Hadron Collider.

  15. Accurate calibration of a stereo-vision system in image-guided radiotherapy.

    PubMed

    Liu, Dezhi; Li, Shidong

    2006-11-01

    Image-guided radiotherapy using a three-dimensional (3D) camera as the on-board surface imaging system requires precise and accurate registration of the 3D surface images in the treatment machine coordinate system. Two simple calibration methods, an analytical solution as three-point matching and a least-squares estimation method as multipoint registration, were introduced to correlate the stereo-vision surface imaging frame with the machine coordinate system. Both types of calibrations utilized 3D surface images of a calibration template placed on the top of the treatment couch. Image transformational parameters were derived from corresponding 3D marked points on the surface images to their given coordinates in the treatment room coordinate system. Our experimental results demonstrated that both methods had provided the desired calibration accuracy of 0.5 mm. The multipoint registration method is more robust particularly for noisy 3D surface images. Both calibration methods have been used as our weekly QA tools for a 3D image-guided radiotherapy system. PMID:17153416

  16. Accurate calibration of a stereo-vision system in image-guided radiotherapy

    SciTech Connect

    Liu Dezhi; Li Shidong

    2006-11-15

    Image-guided radiotherapy using a three-dimensional (3D) camera as the on-board surface imaging system requires precise and accurate registration of the 3D surface images in the treatment machine coordinate system. Two simple calibration methods, an analytical solution as three-point matching and a least-squares estimation method as multipoint registration, were introduced to correlate the stereo-vision surface imaging frame with the machine coordinate system. Both types of calibrations utilized 3D surface images of a calibration template placed on the top of the treatment couch. Image transformational parameters were derived from corresponding 3D marked points on the surface images to their given coordinates in the treatment room coordinate system. Our experimental results demonstrated that both methods had provided the desired calibration accuracy of 0.5 mm. The multipoint registration method is more robust particularly for noisy 3D surface images. Both calibration methods have been used as our weekly QA tools for a 3D image-guided radiotherapy system.

  17. Estimation of Gaze Detection Accuracy Using the Calibration Information-Based Fuzzy System.

    PubMed

    Gwon, Su Yeong; Jung, Dongwook; Pan, Weiyuan; Park, Kang Ryoung

    2016-01-01

    Gaze tracking is a camera-vision based technology for identifying the location where a user is looking. In general, a calibration process is applied at the initial stage of most gaze tracking systems. This process is necessary to calibrate for the differences in the eyeballs and cornea size of the user, as well as the angle kappa, and to find the relationship between the user's eye and screen coordinates. It is applied on the basis of the information of the user's pupil and corneal specular reflection obtained while the user is looking at several predetermined positions on a screen. In previous studies, user calibration was performed using various types of markers and marker display methods. However, studies on estimating the accuracy of gaze detection through the results obtained during the calibration process have yet to be carried out. Therefore, we propose the method for estimating the accuracy of a final gaze tracking system with a near-infrared (NIR) camera by using a fuzzy system based on the user calibration information. Here, the accuracy of the final gaze tracking system ensures the gaze detection accuracy during the testing stage of the gaze tracking system. Experiments were performed using a total of four types of markers and three types of marker display methods. From them, it was found that the proposed method correctly estimated the accuracy of the gaze tracking regardless of the various marker and marker display types applied. PMID:26742045

  18. Estimation of Gaze Detection Accuracy Using the Calibration Information-Based Fuzzy System

    PubMed Central

    Gwon, Su Yeong; Jung, Dongwook; Pan, Weiyuan; Park, Kang Ryoung

    2016-01-01

    Gaze tracking is a camera-vision based technology for identifying the location where a user is looking. In general, a calibration process is applied at the initial stage of most gaze tracking systems. This process is necessary to calibrate for the differences in the eyeballs and cornea size of the user, as well as the angle kappa, and to find the relationship between the user’s eye and screen coordinates. It is applied on the basis of the information of the user’s pupil and corneal specular reflection obtained while the user is looking at several predetermined positions on a screen. In previous studies, user calibration was performed using various types of markers and marker display methods. However, studies on estimating the accuracy of gaze detection through the results obtained during the calibration process have yet to be carried out. Therefore, we propose the method for estimating the accuracy of a final gaze tracking system with a near-infrared (NIR) camera by using a fuzzy system based on the user calibration information. Here, the accuracy of the final gaze tracking system ensures the gaze detection accuracy during the testing stage of the gaze tracking system. Experiments were performed using a total of four types of markers and three types of marker display methods. From them, it was found that the proposed method correctly estimated the accuracy of the gaze tracking regardless of the various marker and marker display types applied. PMID:26742045

  19. A calibration system for the Green Bank Telescope 4mm receiver: On-telescope, RFI-free calibration for 68-92 GHz observations

    NASA Astrophysics Data System (ADS)

    Watts, Galen

    2012-11-01

    Calibration for spectral line observations covering 68-92 GHz on the Green Bank Telescope uses a different calibration scheme than lower frequency receivers. In addition and extremely important is that any calibration scheme must not generate radio frequency interference (RFI) to other experiments ongoing at the Green Bank Observatory. An asynchronous logic network interfaces between the telescope control system, a brushless AC motor and three bit position encoding to place or remove reflectors, absorber or a quarter wave plate in the beam of the feeds to enable observers to calibrate their data during observations or configure the receiver for Very Long Baseline Interferometer network observations. This system is free of RFI that schemes utilizing more commonly available technology create.

  20. Development of an XYZ Digital Camera with Embedded Color Calibration System for Accurate Color Acquisition

    NASA Astrophysics Data System (ADS)

    Kretkowski, Maciej; Jablonski, Ryszard; Shimodaira, Yoshifumi

    Acquisition of accurate colors is important in the modern era of widespread exchange of electronic multimedia. The variety of device-dependent color spaces causes troubles with accurate color reproduction. In this paper we present the outlines of accomplished digital camera system with device-independent output formed from tristimulus XYZ values. The outstanding accuracy and fidelity of acquired color is achieved in our system by employing an embedded color calibration system based on emissive device generating reference calibration colors with user-defined spectral distribution and chromaticity coordinates. The system was tested by calibrating the camera using 24 reference colors spectrally reproduced from 24 color patches of the Macbeth Chart. The average color difference (CIEDE2000) has been found to be ΔE =0.83, which is an outstanding result compared to commercially available digital cameras.

  1. Aspects of the optical system relevant for the KM3NeT timing calibration

    NASA Astrophysics Data System (ADS)

    Kieft, Gerard

    2016-04-01

    KM3NeT is a future research infrastructure in the Mediterranean Sea housing the large Cherenkov telescope arrays of optical modules for neutrino detection. The detector control and data transmission system is based on fibre optical technology. For timing calibration of the detector signals the optical system is used to send and fan-out an onshore clock signal, derived from a GPS receiver, to all optical modules in the deep sea. The optical modules use this clock signal to time stamp the light pulses detected by the photomultipliers inside the modules. The delay time between the GPS clock on shore and the clock in each optical module is measured with sub-nanosecond precision using a White Rabbit based timing calibration system. The aspects of the optical system relevant for the timing calibration and the quantification of their effect will be presented.

  2. Improved system calibration for specular surface measurement by using reflections from a plane mirror.

    PubMed

    Zhou, Tian; Chen, Kun; Wei, Haoyun; Li, Yan

    2016-09-01

    In this paper, we introduce a flexible and simple system calibration method for specular surface metrology based on the combination of reflection rays determined by the varied points on a screen and reflection images of a plane mirror without fiducials placed at three different locations. This calibration procedure involves three steps. The camera is first calibrated based on plane patterns. Then the reflection ray directions are measured via correspondence matching. The last calibration step is the pose estimation by the orthogonal iteration algorithm and reflections in a plane mirror. Basically, the concept of replacing the coordinates of the camera center with the reflection ray can alleviate the trouble of imaging aberration. Then global optimization can be operated with the orthogonal projection defined by the reflection ray, providing precise initial values for the process of bundle adjustment, compared to the classical calibration approach directly using the local optimization algorithm. Simulations and experiments both demonstrate the validity, efficiency, and robustness of the proposed improved method. In the simulations, the proposed method achieves the absolute errors of the camera parameters within 3 pixels and the relative errors of the screen pose are below 0.5% when the noise level is 0.6 pixel. Furthermore, the calibration method shows strong anti-noise ability, relying on the application of the reflection rays and the global optimization before the final bundle adjustment. In addition, the reconstruction accuracy in our experiment improves by 60.11% by the proposed method compared with the calibration procedure, which only utilizes the bundle adjustment optimization. In general, this novel calibration method can make the measurement achieve high accuracy and robustness at a low cost and with a simple setup, providing an efficient, economical, and flexible approach for a phase measuring deflectometry system in practical situations. PMID:27607278

  3. Calibrated Methodology for Assessing Adaptation Costs for Urban Drainage Systems

    EPA Science Inventory

    Changes in precipitation patterns associated with climate change may pose significant challenges for storm water management systems across much of the U.S. In particular, adapting these systems to more intense rainfall events will require significant investment. The assessment ...

  4. Characterization and calibration of 8-channel E-band heterodyne radiometer system for SST-1 tokamak

    SciTech Connect

    Siju, Varsha; Kumar, Dharmendra; Shukla, Praveena; Pathak, S. K.

    2014-05-15

    An 8-channel E-band heterodyne radiometer system (74–86 GHz) is designed, characterized, and calibrated to measure the radial electron temperature profile by measuring Electron Cyclotron Emission spectrum at SST-1 Tokamak. The developed radiometer has a noise equivalent temperature of 1 eV and sensitivity of 5 × 10{sup 9} V/W. In order to precisely measure the absolute value of electron temperature, a calibration measurement of the radiometer system is performed using hot-cold Dicke switch method, which confirms the system linearity.

  5. Calibration method for a vision guiding-based laser-tracking measurement system

    NASA Astrophysics Data System (ADS)

    Shao, Mingwei; Wei, Zhenzhong; Hu, Mengjie; Zhang, Guangjun

    2015-08-01

    Laser-tracking measurement systems (laser trackers) based on a vision-guiding device are widely used in industrial fields, and their calibration is important. As conventional methods typically have many disadvantages, such as difficult machining of the target and overdependence on the retroreflector, a novel calibration method is presented in this paper. The retroreflector, which is necessary in the normal calibration method, is unnecessary in our approach. As the laser beam is linear, points on the beam can be obtained with the help of a normal planar target. In this way, we can determine the function of a laser beam under the camera coordinate system, while its corresponding function under the laser-tracker coordinate system can be obtained from the encoder of the laser tracker. Clearly, when several groups of functions are confirmed, the rotation matrix can be solved from the direction vectors of the laser beams in different coordinate systems. As the intersection of the laser beams is the origin of the laser-tracker coordinate system, the translation matrix can also be determined. Our proposed method not only achieves the calibration of a single laser-tracking measurement system but also provides a reference for the calibration of a multistation system. Simulations to evaluate the effects of some critical factors were conducted. These simulations show the robustness and accuracy of our method. In real experiments, the root mean square error of the calibration result reached 1.46 mm within a range of 10 m, even though the vision-guiding device focuses on a point approximately 5 m away from the origin of its coordinate system, with a field of view of approximately 200 mm  ×  200 mm.

  6. Absolute energy calibration for relativistic electron beams with pointing instability from a laser-plasma accelerator

    SciTech Connect

    Cha, H. J.; Choi, I. W.; Kim, H. T.; Kim, I J.; Nam, K. H.; Jeong, T. M.; Lee, J.

    2012-06-15

    The pointing instability of energetic electron beams generated from a laser-driven accelerator can cause a serious error in measuring the electron spectrum with a magnetic spectrometer. In order to determine a correct electron spectrum, the pointing angle of an electron beam incident on the spectrometer should be exactly defined. Here, we present a method for absolutely calibrating the electron spectrum by monitoring the pointing angle using a scintillating screen installed in front of a permanent dipole magnet. The ambiguous electron energy due to the pointing instability is corrected by the numerical and analytical calculations based on the relativistic equation of electron motion. It is also possible to estimate the energy spread of the electron beam and determine the energy resolution of the spectrometer using the beam divergence angle that is simultaneously measured on the screen. The calibration method with direct measurement of the spatial profile of an incident electron beam has a simple experimental layout and presents the full range of spatial and spectral information of the electron beams with energies of multi-hundred MeV level, despite the limited energy resolution of the simple electron spectrometer.

  7. Monte Carlo calibration of the SMM gamma ray spectrometer for high energy gamma rays and neutrons

    NASA Technical Reports Server (NTRS)

    Cooper, J. F.; Reppin, C.; Forrest, D. J.; Chupp, E. L.; Share, G. H.; Kinzer, R. L.

    1985-01-01

    The Gamma Ray Spectrometer (GRS) on the Solar Maximum Mission spacecraft was primarily designed and calibrated for nuclear gamma ray line measurements, but also has a high energy mode which allows the detection of gamma rays at energies above 10 MeV and solar neutrons above 20 MeV. The GRS response has been extrapolated until now for high energy gamma rays from an early design study employing Monte Carlo calculations. The response to 50 to 600 MeV solar neutrons was estimated from a simple model which did not consider secondary charged particles escaping into the veto shields. In view of numerous detections by the GRS of solar flares emitting high energy gamma rays, including at least two emitting directly detectable neutrons, the calibration of the high energy mode in the flight model has been recalculated by the use of more sophisticated Monte Carlo computer codes. New results presented show that the GRS response to gamma rays above 20 MeV and to neutrons above 100 MeV is significantly lower than the earlier estimates.

  8. A laser diode based system for calibration of fast time-of-flight detectors

    NASA Astrophysics Data System (ADS)

    Bertoni, R.; Bonesini, M.; de Bari, A.; Rossella, M.

    2016-05-01

    A system based on commercially available items, such as a laser diode, emitting in the visible range ~ 400 nm, and multimode fiber patches, fused fiber splitters and optical switches may be assembled, for time calibration of multi-channels time-of-flight (TOF) detectors with photomultipliers' (PMTs') readout. As available laser diode sources have unfortunately limited peak power, the main experimental problem is the tight light power budget of such a system. In addition, while the technology for fused fiber splitters is common in the Telecom wavelength range (λ ~ 850, 1300–1500 nm), it is not easily available in the visible one. Therefore, extensive laboratory tests had to be done on purpose, to qualify the used optical components, and a full scale timing calibration prototype was built. Obtained results show that with such a system, a calibration resolution (σ) in the range 20–30 ps may be within reach. Therefore, fast multi-channels TOF detectors, with timing resolutions in the range 50–100 ps, may be easily calibrated in time. Results on tested optical components may be of interest also for time calibration of different light detection systems based on PMTs, as the ones used for detection of the vacuum ultraviolet scintillation light emitted by ionizing particles in large LAr TPCs.

  9. Quantitative CT of lung nodules: Dependence of calibration on patient body size, anatomic region, and calibration nodule size for single- and dual-energy techniques

    SciTech Connect

    Goodsitt, Mitchell M.; Chan, Heang-Ping; Way, Ted W.; Schipper, Mathew J.; Larson, Sandra C.; Christodoulou, Emmanuel G.

    2009-07-15

    Calcium concentration may be a useful feature for distinguishing benign from malignant lung nodules in computer-aided diagnosis. The calcium concentration can be estimated from the measured CT number of the nodule and a CT number vs calcium concentration calibration line that is derived from CT scans of two or more calcium reference standards. To account for CT number nonuniformity in the reconstruction field, such calibration lines may be obtained at multiple locations within lung regions in an anthropomorphic phantom. The authors performed a study to investigate the effects of patient body size, anatomic region, and calibration nodule size on the derived calibration lines at ten lung region positions using both single energy (SE) and dual energy (DE) CT techniques. Simulated spherical lung nodules of two concentrations (50 and 100 mg/cc CaCO{sub 3}) were employed. Nodules of three different diameters (4.8, 9.5, and 16 mm) were scanned in a simulated thorax section representing the middle of the chest with large lung regions. The 4.8 and 9.5 mm nodules were also scanned in a section representing the upper chest with smaller lung regions. Fat rings were added to the peripheries of the phantoms to simulate larger patients. Scans were acquired on a GE-VCT scanner at 80, 120, and 140 kVp and were repeated three times for each condition. The average absolute CT number separations between the calibration lines were computed. In addition, under- or overestimates were determined when the calibration lines for one condition (e.g., small patient) were used to estimate the CaCO{sub 3} concentrations of nodules for a different condition (e.g., large patient). The authors demonstrated that, in general, DE is a more accurate method for estimating the calcium contents of lung nodules. The DE calibration lines within the lung field were less affected by patient body size, calibration nodule size, and nodule position than the SE calibration lines. Under- or overestimates in Ca

  10. Development of a New Low-Cost Indoor Mapping System - System Design, System Calibration and First Results

    NASA Astrophysics Data System (ADS)

    Kersten, T. P.; Stallmann, D.; Tschirschwitz, F.

    2016-06-01

    For mapping of building interiors various 2D and 3D indoor surveying systems are available today. These systems essentially differ from each other by price and accuracy as well as by the effort required for fieldwork and post-processing. The Laboratory for Photogrammetry & Laser Scanning of HafenCity University (HCU) Hamburg has developed, as part of an industrial project, a lowcost indoor mapping system, which enables systematic inventory mapping of interior facilities with low staffing requirements and reduced, measurable expenditure of time and effort. The modelling and evaluation of the recorded data take place later in the office. The indoor mapping system of HCU Hamburg consists of the following components: laser range finder, panorama head (pan-tilt-unit), single-board computer (Raspberry Pi) with digital camera and battery power supply. The camera is pre-calibrated in a photogrammetric test field under laboratory conditions. However, remaining systematic image errors are corrected simultaneously within the generation of the panorama image. Due to cost reasons the camera and laser range finder are not coaxially arranged on the panorama head. Therefore, eccentricity and alignment of the laser range finder against the camera must be determined in a system calibration. For the verification of the system accuracy and the system calibration, the laser points were determined from measurements with total stations. The differences to the reference were 4-5mm for individual coordinates.

  11. Calibration of Reduced Dynamic Models of Power Systems using Phasor Measurement Unit (PMU) Data

    SciTech Connect

    Zhou, Ning; Lu, Shuai; Singh, Ruchi; Elizondo, Marcelo A.

    2011-09-23

    Accuracy of a power system dynamic model is essential to the secure and efficient operation of the system. Lower confidence on model accuracy usually leads to conservative operation and lowers asset usage. To improve model accuracy, identification algorithms have been developed to calibrate parameters of individual components using measurement data from staged tests. To facilitate online dynamic studies for large power system interconnections, this paper proposes a model reduction and calibration approach using phasor measurement unit (PMU) data. First, a model reduction method is used to reduce the number of dynamic components. Then, a calibration algorithm is developed to estimate parameters of the reduced model. This approach will help to maintain an accurate dynamic model suitable for online dynamic studies. The performance of the proposed method is verified through simulation studies.

  12. The LED and fiber based calibration system for the photomultiplier array of SNO+

    NASA Astrophysics Data System (ADS)

    Seabra, L.; Alves, R.; Andringa, S.; Bradbury, S.; Carvalho, J.; Clark, K.; Coulter, I.; Descamps, F.; Falk, L.; Gurriana, L.; Kraus, C.; Lefeuvre, G.; Maio, A.; Maneira, J.; Mottram, M.; Peeters, S.; Rose, J.; Sinclair, J.; Skensved, P.; Waterfield, J.; White, R.; Wilson, J.; SNO+ Collaboration

    2015-02-01

    A new external LED/fiber light injection calibration system was designed for the calibration and monitoring of the photomultiplier array of the SNO+ experiment at SNOLAB. The goal of the calibration system is to allow an accurate and regular measurement of the photomultiplier array's performance, while minimizing the risk of radioactivity ingress. The choice in SNO+ was to use a set of optical fiber cables to convey into the detector the light pulses produced by external LEDs. The quality control was carried out using a modified test bench that was used in QC of optical fibers for TileCal/ATLAS. The optical fibers were characterized for transmission, timing and angular dispersions. This article describes the setups used for the characterization and quality control of the system based on LEDs and optical fibers and their results.

  13. Development of a system based on open source technology for DC resistor calibration

    NASA Astrophysics Data System (ADS)

    Geronymo, G. M.; Silva, M. C.

    2016-07-01

    This work present the development of a new system, based on open source technology, for the automation of DC resistor calibration. The new system is web-based, stores the measurement registers on a structured database and has new features that can increase the productivity of the laboratory. Some proposes of future development are presented, also.

  14. Strain-gage balance calibration of a magnetic suspension and balance system

    NASA Astrophysics Data System (ADS)

    Roberts, Paul W.; Tcheng, Ping

    A load calibration of the NASA 13-in magnetic suspension and balance system (MSBS) is described. The calibration procedure was originally intended to establish the empirical relationship between the coil currents and the external loads (forces and moments) applied to a magnetically suspended calibrator. However, it was discovered that the performance of a strain-gage balance is not affected when subjected to the magnetic environment of the MSBS. The use of strain-gage balances greatly reduces the effort required to perform a current-vs.-load calibration as external loads can be directly inferred from the balance outputs while a calibrator is suspended in MSBS. It is conceivable that in the future such a calibration could become unnecessary, since an even more important application for the use of a strain-gage balance in MSBS environment is the acquisition of precision aerodynamic force and moment data by telemetering the balance outputs from a suspended model/core/balance during wind tunnel tests.

  15. Strain-gage balance calibration of a magnetic suspension and balance system

    NASA Technical Reports Server (NTRS)

    Roberts, Paul W.; Tcheng, Ping

    1987-01-01

    A load calibration of the NASA 13-in magnetic suspension and balance system (MSBS) is described. The calibration procedure was originally intended to establish the empirical relationship between the coil currents and the external loads (forces and moments) applied to a magnetically suspended calibrator. However, it was discovered that the performance of a strain-gage balance is not affected when subjected to the magnetic environment of the MSBS. The use of strain-gage balances greatly reduces the effort required to perform a current-vs.-load calibration as external loads can be directly inferred from the balance outputs while a calibrator is suspended in MSBS. It is conceivable that in the future such a calibration could become unnecessary, since an even more important application for the use of a strain-gage balance in MSBS environment is the acquisition of precision aerodynamic force and moment data by telemetering the balance outputs from a suspended model/core/balance during wind tunnel tests.

  16. Determining probability distributions of parameter performances for time-series model calibration: A river system trial

    NASA Astrophysics Data System (ADS)

    Kim, Shaun Sang Ho; Hughes, Justin Douglas; Chen, Jie; Dutta, Dushmanta; Vaze, Jai

    2015-11-01

    A calibration method is presented that uses a sub-period resampling method to estimate probability distributions of performance for different parameter sets. Where conventional calibration methods implicitly identify the best performing parameterisations on average, the new method looks at the consistency of performance during sub-periods. The method is implemented with the conceptual river reach algorithms within the Australian Water Resources Assessments River (AWRA-R) model in the Murray-Darling Basin, Australia. The new method is tested for 192 reaches in a cross-validation scheme and results are compared to a traditional split-sample calibration-validation implementation. This is done to evaluate the new technique's ability to predict daily streamflow outside the calibration period. The new calibration method produced parameterisations that performed better in validation periods than optimum calibration parameter sets for 103 reaches and produced the same parameterisations for 35 reaches. The method showed a statistically significant improvement to predictive performance and potentially provides more rational flux terms over traditional split-sample calibration methods. Particular strengths of the proposed calibration method is that it avoids extra weighting towards rare periods of good agreement and also prevents compensating biases through time. The method can be used as a diagnostic tool to evaluate stochasticity of modelled systems and used to determine suitable model structures of different time-series models. Although the method is demonstrated using a hydrological model, the method is not limited to the field of hydrology and could be adopted for many different time-series modelling applications.

  17. Self-calibration of a cone-beam micro-CT system

    SciTech Connect

    Patel, V.; Chityala, R. N.; Hoffmann, K. R.; Ionita, C. N.; Bednarek, D. R.; Rudin, S.

    2009-01-15

    Use of cone-beam computed tomography (CBCT) is becoming more frequent. For proper reconstruction, the geometry of the CBCT systems must be known. While the system can be designed to reduce errors in the geometry, calibration measurements must still be performed and corrections applied. Investigators have proposed techniques using calibration objects for system calibration. In this study, the authors present methods to calibrate a rotary-stage CB micro-CT (CB{mu}CT) system using only the images acquired of the object to be reconstructed, i.e., without the use of calibration objects. Projection images are acquired using a CB{mu}CT system constructed in the authors' laboratories. Dark- and flat-field corrections are performed. Exposure variations are detected and quantified using analysis of image regions with an unobstructed view of the x-ray source. Translations that occur during the acquisition in the horizontal direction are detected, quantified, and corrected based on sinogram analysis. The axis of rotation is determined using registration of antiposed projection images. These techniques were evaluated using data obtained with calibration objects and phantoms. The physical geometric axis of rotation is determined and aligned with the rotational axis (assumed to be the center of the detector plane) used in the reconstruction process. The parameters describing this axis agree to within 0.1 mm and 0.3 deg with those determined using other techniques. Blurring due to residual calibration errors has a point-spread function in the reconstructed planes with a full-width-at-half-maximum of less than 125 {mu}m in a tangential direction and essentially zero in the radial direction for the rotating object. The authors have used this approach on over 100 acquisitions over the past 2 years and have regularly obtained high-quality reconstructions, i.e., without artifacts and no detectable blurring of the reconstructed objects. This self-calibrating approach not only obviates

  18. Data acquisition system and ground calibration of polarized gamma-ray observer (PoGOLite)

    NASA Astrophysics Data System (ADS)

    Takahashi, Hiromitsu; Chauvin, Maxime; Fukazawa, Yasushi; Jackson, Miranda; Kamae, Tuneyoshi; Kawano, Takafumi; Kiss, Mozsi; Kole, Merlin; Mikhalev, Victor; Mizuno, Tsunefumi; Moretti, Elena; Pearce, Mark; Rydström, Stefan

    2014-07-01

    The Polarized Gamma-ray Observer, PoGOLite, is a balloon experiment with the capability of detecting 10% polarization from a 200 mCrab celestial object between the energy-range 25-80 keV in one 6 hour flight. Polarization measurements in soft gamma-rays are expected to provide a powerful probe into high-energy emission mechanisms in/around neutron stars, black holes, supernova remnants, active-galactic nuclei etc. The "pathfinder" flight was performed in July 2013 for 14 days from Sweden to Russia. The polarization is measured using Compton scattering and photoelectric absorption in an array of 61 well-type phoswich detector cells (PDCs) for the pathfinder instrument. The PDCs are surrounded by 30 BGO crystals which form a side anti-coincidence shield (SAS) and passive polyethylene neutron shield. There is a neutron detector consisting of LiCaAlF6 (LiCAF) scintillator covered with BGOs to measure the background contribution of atmospheric neutrons. The data acquisition system treats 92 PMT signals from 61 PDCs + 30 SASs + 1 neutron detector, and it is developed based on SpaceWire spacecraft communication network. Most of the signal processing is done by digital circuits in Field Programmable Gate Arrays (FPGAs). This enables the reduction of the mass, the space and the power consumption. The performance was calibrated before the launch.

  19. Synthesis and Calibration of Phosphorescent Nanoprobes for Oxygen Imaging in Biological Systems

    PubMed Central

    Sinks, Louise E.; Roussakis, Emmanuel; Esipova, Tatiana V.; Vinogradov, Sergei A.

    2010-01-01

    Oxygen measurement by phosphorescence quenching [1, 2] consists of the following steps: 1) the probe is delivered into the medium of interest (e.g. blood or interstitial fluid); 2) the object is illuminated with light of appropriate wavelength in order to excite the probe into its triplet state; 3) the emitted phosphorescence is collected, and its time course is analyzed to yield the phosphorescence lifetime, which is converted into the oxygen concentration (or partial pressure, pO2). The probe must not interact with the biological environment and in some cases to be 4) excreted from the medium upon the measurement completion. Each of these steps imposes requirements on the molecular design of the phosphorescent probes, which constitute the only invasive component of the measurement protocol. Here we review the design of dendritic phosphorescent nanosensors for oxygen measurements in biological systems. The probes consist of Pt or Pd porphyrin-based polyarylglycine (AG) dendrimers, modified peripherally with polyethylene glycol (PEG's) residues. For effective two-photon excitation, termini of the dendrimers may be modified with two-photon antenna chromophores, which capture the excitation energy and channel it to the triplet cores of the probes via intramolecular FRET (Förster Resonance Energy Transfer). We describe the key photophysical properties of the probes and present detailed calibration protocols. PMID:20200497

  20. Synthesis and calibration of phosphorescent nanoprobes for oxygen imaging in biological systems.

    PubMed

    Sinks, Louise E; Roussakis, Emmanuel; Esipova, Tatiana V; Vinogradov, Sergei A

    2010-01-01

    Oxygen measurement by phosphorescence quenching [1, 2] consists of the following steps: 1) the probe is delivered into the medium of interest (e.g. blood or interstitial fluid); 2) the object is illuminated with light of appropriate wavelength in order to excite the probe into its triplet state; 3) the emitted phosphorescence is collected, and its time course is analyzed to yield the phosphorescence lifetime, which is converted into the oxygen concentration (or partial pressure, pO(2;)). The probe must not interact with the biological environment and in some cases to be 4) excreted from the medium upon the measurement completion. Each of these steps imposes requirements on the molecular design of the phosphorescent probes, which constitute the only invasive component of the measurement protocol. Here we review the design of dendritic phosphorescent nanosensors for oxygen measurements in biological systems. The probes consist of Pt or Pd porphyrin-based polyarylglycine (AG) dendrimers, modified peripherally with polyethylene glycol (PEG's) residues. For effective two-photon excitation, termini of the dendrimers may be modified with two-photon antenna chromophores, which capture the excitation energy and channel it to the triplet cores of the probes via intramolecular FRET (Förster Resonance Energy Transfer). We describe the key photophysical properties of the probes and present detailed calibration protocols. PMID:20200497

  1. Primary calibration system for vibration transducers from 0.4 Hz to 160 Hz

    NASA Astrophysics Data System (ADS)

    Ferreira, C. D.; Ripper, G. P.; Dias, R. S.; Teixeira, D. B.

    2015-01-01

    This paper presents a system developed at the Vibration Laboratory of Inmetro, which is used for primary calibration of vibration transducers by the fringe counting method. This system includes a vibration exciter, a Michelson interferometer, a data acquisition board, a band-pass filter, a universal counter and a software for measurement automation. It allows the laboratory to perform calibrations in accordance with the international standard ISO 16063-11 in the frequency range from 0.4 Hz to 160 Hz. Some experimental results are presented herein.

  2. Sensitivity calibration of an imaging extreme ultraviolet spectrometer-detector system for determining the efficiency of broadband extreme ultraviolet sources

    SciTech Connect

    Fuchs, S.; Roedel, C.; Bierbach, J.; Paz, A. E.; Foerster, E.; Paulus, G. G.; Krebs, M.; Haedrich, S.; Limpert, J.; Kuschel, S.; Wuensche, M.; Hilbert, V.; Zastrau, U.

    2013-02-15

    We report on the absolute sensitivity calibration of an extreme ultraviolet (XUV) spectrometer system that is frequently employed to study emission from short-pulse laser experiments. The XUV spectrometer, consisting of a toroidal mirror and a transmission grating, was characterized at a synchrotron source in respect of the ratio of the detected to the incident photon flux at photon energies ranging from 15.5 eV to 99 eV. The absolute calibration allows the determination of the XUV photon number emitted by laser-based XUV sources, e.g., high-harmonic generation from plasma surfaces or in gaseous media. We have demonstrated high-harmonic generation in gases and plasma surfaces providing 2.3 {mu}W and {mu}J per harmonic using the respective generation mechanisms.

  3. CALIBRATION AND VALIDATION OF CONFOCAL SPECTRAL IMAGING SYSTEMS

    EPA Science Inventory

    Confocal spectral imaging (CSI) microscope systems now on the market can perform spectral characterization of biological specimens containing fluorescent proteins, labels or dyes. Some CSI have been found to present inconsistent spectral characterizations within a particular syst...

  4. Multi-feature based boresight self-calibration of a terrestrial mobile mapping system

    NASA Astrophysics Data System (ADS)

    Chan, Ting On; Lichti, Derek D.; Glennie, Craig L.

    2013-08-01

    This paper presents a multi-feature based system calibration method for estimating the boresight angles of a land-based mobile mapping system (MMS) comprised of multiple two dimensional (2D) scanners. The method invokes a least-squares adjustment (LSA) to simultaneously estimate several sets of boresight angles for multiple laser scanners incorporated in an MMS as well as the parameters associated with one or more types of geometric features. This is achieved by constraining the groups of feature point clouds captured by multiple runs to fit their corresponding geometric models in such a way that the weighted sum of squares of adjustment residuals is minimized. The method is particularly suitable for in situ calibration because the geometric features involved are commonly occurring structures (e.g. building façades, bridge surfaces, highway signs and hanging power cables) that are usually captured during the actual survey. In addition to using a planar feature model for calibration, a novel and rigorous three-dimensional (3D) catenary curve model is proposed for geometric modelling of hanging cables to augment the calibration. The proposed calibrations were examined with several different combinations of groups of planar and catenary features and the resulting analysis suggests that the in situ calibrations are effective when compared to the manufacturer’s dedicated calibration, with the overall point cloud accuracies for plane fitting being 5.5 cm and 5.4 cm for the vertical and horizontal directions, respectively. It has been successfully demonstrated that the proposed method can be used in a scene having no building façades but only some long hanging cables and horizontal ground surfaces. This is particularly useful for rural areas or inter-city/provincial highways where building façades cannot commonly be captured. Parameter correlations in the calibrations were also addressed. It has also been shown that using catenary features in addition to planar

  5. Smart energy management system

    NASA Astrophysics Data System (ADS)

    Desai, Aniruddha; Singh, Jugdutt

    2010-04-01

    Peak and average energy usage in domestic and industrial environments is growing rapidly and absence of detailed energy consumption metrics is making systematic reduction of energy usage very difficult. Smart energy management system aims at providing a cost-effective solution for managing soaring energy consumption and its impact on green house gas emissions and climate change. The solution is based on seamless integration of existing wired and wireless communication technologies combined with smart context-aware software which offers a complete solution for automation of energy measurement and device control. The persuasive software presents users with easy-to-assimilate visual cues identifying problem areas and time periods and encourages a behavioural change to conserve energy. The system allows analysis of real-time/statistical consumption data with the ability to drill down into detailed analysis of power consumption, CO2 emissions and cost. The system generates intelligent projections and suggests potential methods (e.g. reducing standby, tuning heating/cooling temperature, etc.) of reducing energy consumption. The user interface is accessible using web enabled devices such as PDAs, PCs, etc. or using SMS, email, and instant messaging. Successful real-world trial of the system has demonstrated the potential to save 20 to 30% energy consumption on an average. Low cost of deployment and the ability to easily manage consumption from various web enabled devices offers gives this system a high penetration and impact capability offering a sustainable solution to act on climate change today.

  6. Calibration Issues and Operating System Requirements for Electron-Probe Microanalysis

    NASA Technical Reports Server (NTRS)

    Carpenter, P.

    2006-01-01

    Instrument purchase requirements and dialogue with manufacturers have established hardware parameters for alignment, stability, and reproducibility, which have helped improve the precision and accuracy of electron microprobe analysis (EPMA). The development of correction algorithms and the accurate solution to quantitative analysis problems requires the minimization of systematic errors and relies on internally consistent data sets. Improved hardware and computer systems have resulted in better automation of vacuum systems, stage and wavelength-dispersive spectrometer (WDS) mechanisms, and x-ray detector systems which have improved instrument stability and precision. Improved software now allows extended automated runs involving diverse setups and better integrates digital imaging and quantitative analysis. However, instrumental performance is not regularly maintained, as WDS are aligned and calibrated during installation but few laboratories appear to check and maintain this calibration. In particular, detector deadtime (DT) data is typically assumed rather than measured, due primarily to the difficulty and inconvenience of the measurement process. This is a source of fundamental systematic error in many microprobe laboratories and is unknown to the analyst, as the magnitude of DT correction is not listed in output by microprobe operating systems. The analyst must remain vigilant to deviations in instrumental alignment and calibration, and microprobe system software must conveniently verify the necessary parameters. Microanalysis of mission critical materials requires an ongoing demonstration of instrumental calibration. Possible approaches to improvements in instrument calibration, quality control, and accuracy will be discussed. Development of a set of core requirements based on discussions with users, researchers, and manufacturers can yield documents that improve and unify the methods by which instruments can be calibrated. These results can be used to

  7. Precision alignment and calibration of optical systems using computer generated holograms

    NASA Astrophysics Data System (ADS)

    Coyle, Laura Elizabeth

    As techniques for manufacturing and metrology advance, optical systems are being designed with more complexity than ever before. Given these prescriptions, alignment and calibration can be a limiting factor in their final performance. Computer generated holograms (CGHs) have several unique properties that make them powerful tools for meeting these demanding tolerances. This work will present three novel methods for alignment and calibration of optical systems using computer generated holograms. Alignment methods using CGHs require that the optical wavefront created by the CGH be related to a mechanical datum to locate it space. An overview of existing methods is provided as background, then two new alignment methods are discussed in detail. In the first method, the CGH contact Ball Alignment Tool (CBAT) is used to align a ball or sphere mounted retroreflector (SMR) to a Fresnel zone plate pattern with micron level accuracy. The ball is bonded directly onto the CGH substrate and provides permanent, accurate registration between the optical wavefront and a mechanical reference to locate the CGH in space. A prototype CBAT was built and used to align and bond an SMR to a CGH. In the second method, CGH references are used to align axi-symmetric optics in four degrees of freedom with low uncertainty and real time feedback. The CGHs create simultaneous 3D optical references where the zero order reflection sets tilt and the first diffracted order sets centration. The flexibility of the CGH design can be used to accommodate a wide variety of optical systems and maximize sensitivity to misalignments. A 2-CGH prototype system was aligned multiplied times and the alignment uncertainty was quantified and compared to an error model. Finally, an enhanced calibration method is presented. It uses multiple perturbed measurements of a master sphere to improve the calibration of CGH-based Fizeau interferometers ultimately measuring aspheric test surfaces. The improvement in the

  8. High Energy Astronomy Observatory (HEAO)-2 in the X-Ray Calibration Facility

    NASA Technical Reports Server (NTRS)

    1977-01-01

    This photograph is of the High Energy Astronomy Observatory (HEAO)-2 telescope being evaluated by engineers in the clean room of the X-Ray Calibration Facility at the Marshall Space Flight Center (MSFC). The MSFC was heavily engaged in the technical and scientific aspects, testing and calibration, of the HEAO-2 telescope The HEAO-2 was the first imaging and largest x-ray telescope built to date. The X-Ray Calibration Facility was built in 1976 for testing MSFC's HEAO-2. The facility is the world's largest, most advanced laboratory for simulating x-ray emissions from distant celestial objects. It produced a space-like environment in which components related to x-ray telescope imaging are tested and the quality of their performance in space is predicted. The original facility contained a 1,000-foot long by 3-foot diameter vacuum tube (for the x-ray path) cornecting an x-ray generator and an instrument test chamber. Recently, the facility was upgraded to evaluate the optical elements of NASA's Hubble Space Telescope, Chandra X-Ray Observatory and Compton Gamma-Ray Observatory.

  9. Two-stage flow-dividing system for the calibration of vacuum gauges

    SciTech Connect

    Yoshida, Hajime; Arai, Kenta; Akimichi, Hitoshi; Hirata, Masahiro

    2008-01-15

    A two-stage flow-dividing system was developed for calibrating an ionization gauge (IG) and residual gas analyzer (RGA). This system generates a stable high and ultrahigh vacuum from 8x10{sup -3} to 2x10{sup -7} Pa by adjusting the pressure in the first chamber using N{sub 2}, Ar, He, and H{sub 2}. The calibration pressure in the third chamber is calculated from the pressure in the second chamber using their linear relation in molecular flow. The uncertainty of the generated pressure was comparable to or several times larger than that of the continuous-expansion system. However, this system has a simple configuration and is easy to operate compared with the continuous-expansion system because it has no moving parts. Results of the calibration of IG and RGA showed that the two-stage flow-dividing system is useful for a routine calibration of practical vacuum gauges in high and ultrahigh vacuum.

  10. A calibration system for Compton polarimetry at e+e- linear colliders

    NASA Astrophysics Data System (ADS)

    Vormwald, B.; List, J.; Vauth, A.

    2016-01-01

    Polarimetry with permille-level precision is essential for future electron-positron linear colliders. Compton polarimeters can reach negligible statistical uncertainties within seconds of measurement time. The dominating systematic uncertainties originate from the response and alignment of the detector which records the Compton scattered electrons. The robust baseline technology for the Compton polarimeters foreseen at future linear colliders is based on an array of gas Cherenkov detectors read out by photomultipliers. In this paper, we will present a calibration method which promises to monitor nonlinearities in the response of such a detector at the level of a few permille. This method has been implemented in an LED-based calibration system which matches the existing prototype detector. The performance of this calibration system is sufficient to control the corresponding contribution to the total uncertainty on the extracted polarisation to better than 0.1%.

  11. [Conservative calibration of a clearance monitor system for waste material from nuclear medicine].

    PubMed

    Wanke, Carsten; Geworski, Lilli

    2014-09-01

    Clearance monitor systems are used for gross gamma measurements of waste potentially contaminated with radioactivity. These measurements are to make sure that legal requirements, e.g. clearance criteria according to the german radiation protection ordinance, are met. This means that measurement results may overestimate, but must not underestimate the true values. This paper describes a pragmatic way using a calibrated Cs-137 point source to generate a conservative calibration for the clearance monitor system used in the Medizinische Hochschule Hannover (MHH). The most important nuclides used in nuclear medicine are considered. The measurement result reliably overestimates the true value of the activity present in the waste. The calibration is compliant with the demands for conservativity and traceability to national standards. PMID:24560040

  12. New detections of Galactic molecular absorption systems toward ALMA calibrator sources

    NASA Astrophysics Data System (ADS)

    Ando, Ryo; Kohno, Kotaro; Tamura, Yoichi; Izumi, Takuma; Umehata, Hideki; Nagai, Hiroshi

    2016-02-01

    We report on Atacama Large Millimeter/submillimeter Array (ALMA) detections of molecular absorption lines in Bands 3, 6, and 7 toward four radio-loud quasars, which were observed as the bandpass and complex gain calibrators. The absorption systems, three of which are newly detected, are found to be Galactic origin. Moreover, HCO absorption lines toward two objects are detected, which almost doubles the number of HCO absorption samples in the Galactic diffuse medium. In addition, high HCO-to-H13CO+ column density ratios are found, suggesting that the interstellar media (ISM) observed toward the two calibrators are in photodissociation regions, which observationally illustrates the chemistry of diffuse ISM driven by ultraviolet (UV) radiation. These results demonstrate that calibrators in the ALMA Archive are potential sources for the quest for new absorption systems and for detailed investigation of the nature of the ISM.

  13. A pulsed-laser calibration system for the laser backscatter diagnostics at the Omega laser

    SciTech Connect

    Neumayer, P; Sorce, C; Froula, D H; Rekow, V; Loughman, K; Knight, R; Glenzer, S H; Bahr, R; Seka, W

    2009-10-09

    A calibration system has been developed that allows a direct determination of the sensitivity of the laser backscatter diagnostics at the Omega laser. A motorized mirror at the target location redirects individual pulses of a mJ-class laser onto the diagnostic to allow the in-situ measurement of the local point response of the backscatter diagnostics. Featuring dual wavelength capability at the 2nd and 3rd harmonic of the Nd:YAG laser, both spectral channels of the backscatter diagnostics can be directly calibrated. In addition, channel cross-talk and polarization sensitivity can be determined. The calibration system has been employed repeatedly over the last two years and has enabled precise backscatter measurements of both stimulated Brillouin scattering and stimulated Raman scattering in gas-filled hohlraum targets that emulate conditions relevant to those in inertial confinement fusion targets.

  14. Calibrating system errors of large scale three-dimensional profile measurement instruments by subaperture stitching method.

    PubMed

    Dong, Zhichao; Cheng, Haobo; Feng, Yunpeng; Su, Jingshi; Wu, Hengyu; Tam, Hon-Yuen

    2015-07-01

    This study presents a subaperture stitching method to calibrate system errors of several ∼2  m large scale 3D profile measurement instruments (PMIs). The calibration process was carried out by measuring a Φ460  mm standard flat sample multiple times at different sites of the PMI with a length gauge; then the subaperture data were stitched together using a sequential or simultaneous stitching algorithm that minimizes the inconsistency (i.e., difference) of the discrete data in the overlapped areas. The system error can be used to compensate the measurement results of not only large flats, but also spheres and aspheres. The feasibility of the calibration was validated by measuring a Φ1070  mm aspheric mirror, which can raise the measurement accuracy of PMIs and provide more reliable 3D surface profiles for guiding grinding, lapping, and even initial polishing processes. PMID:26193139

  15. Geometrical calibration television measuring systems with solid state photodetectors

    NASA Astrophysics Data System (ADS)

    Matiouchenko, V. G.; Strakhov, V. V.; Zhirkov, A. O.

    2000-11-01

    The various optical measuring methods for deriving information about the size and form of objects are now used in difference branches- mechanical engineering, medicine, art, criminalistics. Measuring by means of the digital television systems is one of these methods. The development of this direction is promoted by occurrence on the market of various types and costs small-sized television cameras and frame grabbers. There are many television measuring systems using the expensive cameras, but accuracy performances of low cost cameras are also interested for the system developers. For this reason inexpensive mountingless camera SK1004CP (format 1/3', cost up to 40$) and frame grabber Aver2000 were used in experiments.

  16. Calibration and display of distributed aperture sensor systems

    NASA Astrophysics Data System (ADS)

    Dale, Jason; Dwyer, David

    2007-04-01

    Distributed aperture sensor (DAS) systems can enhance the situational awareness of operators in both manned and unmanned platforms. In such a system, images from multiple sensors must be registered and fused into a seamless panoramic mosaic in real time, whilst being displayed with very low latency to an operator. This paper describes an algorithm for solving the multiple-image alignment problem and an architecture that leverages the power of consumer graphics processing units (GPU) to provide a live panoramic mosaic display. We also describe other developments aimed at integrating high resolution imagery from an independently steerable fused TV/IR sensor into the mosaic, panorama stabilisation and automatic target detection.

  17. Active and passive mode calibration of the Combined Thermal Epithermal Neutron (CTEN) system

    SciTech Connect

    Veilleux, J. M.

    2002-06-01

    The Combined Thermal/Epithermal Neutron (CTEN) non-destructive assay (NDA) system was designed to assay transuranic waste by employing an induced active neutron interrogation and/or a spontaneous passive neutron measurement. This is the second of two papers, and focuses on the passive mode, relating the net double neutron coincidence measurement to the plutonium mass via the calibration constant. National Institute of Standards and Technology (NIST) calibration standards were used and the results verified with NIST-traceable verification standards. Performance demonstration program (PDP) 'empty' 208-L matrix drum was used for the calibration. The experimentally derived calibration constant was found to be 0.0735 {+-} 0.0059 g {sup 240}Pu effective per unit response. Using this calibration constant, the Waste Isolation Pilot Plant (WIPP) criteria was satisfied with five minute waste assays in the range from 3 to 177g Pu. CTEN also participated in the PDP Cycle 8A blind assay with organic sludge and metal matrices and passed the criteria for accuracy and precision in both assay modes. The WIPP and EPA audit was completed March 1, 2002 and full certification is awaiting the closeout of one finding during the audit. With the successful closeout of the audit, the CTEN system will have shown that it can provide very fast assays (five minutes or less) of waste in the range from the minimum detection limit (about 2 mg Pu) to 177 g Pu.

  18. Guidelines for model calibration and application to flow simulation in the Death Valley regional groundwater system

    USGS Publications Warehouse

    Hill, M.C.; D'Agnese, F. A.; Faunt, C.C.

    2000-01-01

    Fourteen guidelines are described which are intended to produce calibrated groundwater models likely to represent the associated real systems more accurately than typically used methods. The 14 guidelines are discussed in the context of the calibration of a regional groundwater flow model of the Death Valley region in the southwestern United States. This groundwater flow system contains two sites of national significance from which the subsurface transport of contaminants could be or is of concern: Yucca Mountain, which is the potential site of the United States high-level nuclear-waste disposal; and the Nevada Test Site, which contains a number of underground nuclear-testing locations. This application of the guidelines demonstrates how they may be used for model calibration and evaluation, and also to direct further model development and data collection.Fourteen guidelines are described which are intended to produce calibrated groundwater models likely to represent the associated real systems more accurately than typically used methods. The 14 guidelines are discussed in the context of the calibration of a regional groundwater flow model of the Death Valley region in the southwestern United States. This groundwater flow system contains two sites of national significance from which the subsurface transport of contaminants could be or is of concern: Yucca Mountain, which is the potential site of the United States high-level nuclear-waste disposal; and the Nevada Test Site, which contains a number of underground nuclear-testing locations. This application of the guidelines demonstrates how they may be used for model calibration and evaluation, and also to direct further model development and data collection.

  19. HYPERSPECTRAL SYSTEM CALIBRATION FOR IMPROVED CONTAMINANT DETECTION ON POULTRY CARCASSES

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A hyperspectral imaging system was used to detect surface contaminants on 64 poultry carcasses fed a corn/soybean diet and subjected to a 53.3 degree C scald for 120 s. Hyperspectral data were analyzed with four pre-processing methods consisting of: uncalibrated data without spectral smoothing (u...

  20. Calibration of the Multi-Factor HJM Model for Energy Market

    NASA Astrophysics Data System (ADS)

    Broszkiewicz-Suwaj, E.; Weron, A.

    2006-05-01

    The purpose of this paper is to show that using the toolkit of interest rate theory, already well known in financial engineering as the HJM model [D. Heath, R. Jarrow, A. Morton, {ITALIC Econometrica} 60, 77 (1992)], it is possible to derive explicite option pricing formula and calibrate the theoretical model to the empirical electricity market. The analysis is illustrated by numerical cases from the European Energy Exchange (EEX) in Leipzig. The multi-factor {ITALIC versus} one-factor HJM models are compared.

  1. Proton calibration of low energy neutron detectors containing (6)LiF

    NASA Technical Reports Server (NTRS)

    Benton, E. V.; Frank, A. L.

    1995-01-01

    The purpose of the present calibrations is to measure the proton response of the detectors with accelerated beams having energies within the region of maximum intensities in the trapped proton spectrum encountered in near-Earth orbit. This response is compared with the responses of the spaceflight detectors when related to proton exposures. All of the spaceflight neutron measurements have been accompanied by TLD absorbed doses measurements in close proximity within the spacecraft. For purposes of comparison, the spaceflight TLD doses are assumed to be proton doses.

  2. Automotive energy management system

    SciTech Connect

    Shiber, S.

    1980-09-23

    A hydromechanical/hydrostatic automotive energy management system is described that is comprised of two hydraulic units, the system adapted to provide: an efficient, continuously variable optimal transmission ratio, an intermittent optimal engine operation in city traffic and regenerative braking, thereby, the system is able to reduce a car's fuel consumption by as much as one half while improving drivability.

  3. Anemometer calibrator

    NASA Technical Reports Server (NTRS)

    Bate, T.; Calkins, D. E.; Price, P.; Veikins, O.

    1971-01-01

    Calibrator generates accurate flow velocities over wide range of gas pressure, temperature, and composition. Both pressure and flow velocity can be maintained within 0.25 percent. Instrument is essentially closed loop hydraulic system containing positive displacement drive.

  4. Calibrated fisheye imaging systems for determination of cloud-top radiances from a UAV

    NASA Astrophysics Data System (ADS)

    Shields, Janet E.; Johnson, Richard W.; Karr, Monette E.; Burden, Art R.; Baker, Justin G.

    2003-11-01

    In order to measure cloud top radiances from Unmanned Aerial Vehicles (UAVs) or other light aircraft, two small calibrated fisheye imaging systems have recently been developed. One of these systems uses a visible-wavelength CCD and is optically filtered to measure cloud top and ground radiances near 645 nm. The other uses an InGaAs detector and is optically filtered to measure radiances near 1610 nm. These sensors are specifically designed for use with DOE's Atmospheric Radiation Measurement (ARM) Program UAV Project, and it is anticipated that they will be used for comparison with a variety of satellite-borne radiance measurements. Radiometric calibration of solid-state imagers is never trivial, as the effects of exposure time, system non-linearities, temperature, gain and other system characteristics must be adequately measured and characterized. Much experience has been gained with the ground-based Day/Night Whole Sky Imagers and the Daylight Visible/NIR Whole Sky Imagers developed and used by the group for many years. New techniques for the radiometric calibration of the two new airborne systems are being developed based on this experience and the characteristics of the sensors involved. In addition, new techniques for a more accurate angular calibration have been developed.

  5. Influence of calibration method and material on the accuracy of stress distribution measurement systems.

    PubMed

    Engel, Karsten; Hartmann, Ulrich; Potthast, Wolfgang; Brüggemann, Gert-Peter

    2016-06-01

    Biomechanical analyses of the stress distribution and the force transfer in the human knee are essential to better understand the aetiology of joint diseases. Accuracy studies of commonly used capacitive or resistive-based stress distribution measurement systems have led to severe problems caused by an inaccurate experimental setup. For instance, in one study, overestimations of the measured forces in the sensor's centre were reported. Therefore, the primary aim of this study was to investigate the ability of capacitive and resistive-based sensors to measure forces in a homogenous pressure environment and the secondary goal was to analyse the influence of different calibration materials on the measurement accuracy. A Novel pressure vessel and metal indenters covered with different rubber materials were used in combination with a material testing machine to load the sensors. Four different linearly increasing nominal forces (925-3670 N) were applied and the deviations between the nominal and the measured forces were calculated. The capacitive measurement system showed errors between 1% and 7% in the homogenous pressure environment, whereas the errors of the resistive system were found to vary between 4% and 17%. The influence of the calibration material was observed to be greater for the resistive sensors (1-179%) than for the capacitive sensors (0.5-25%). In conclusion, it can be stated that - for the pressure measurement systems compared in this article - the capacitive one is less sensitive to the calibration method and the calibration material than the resistive system. PMID:26146092

  6. Design and Calibration of the X-33 Flush Airdata Sensing (FADS) System

    NASA Technical Reports Server (NTRS)

    Whitmore, Stephen A.; Cobleigh, Brent R.; Haering, Edward A.

    1998-01-01

    This paper presents the design of the X-33 Flush Airdata Sensing (FADS) system. The X-33 FADS uses a matrix of pressure orifices on the vehicle nose to estimate airdata parameters. The system is designed with dual-redundant measurement hardware, which produces two independent measurement paths. Airdata parameters that correspond to the measurement path with the minimum fit error are selected as the output values. This method enables a single sensor failure to occur with minimal degrading of the system performance. The paper shows the X-33 FADS architecture, derives the estimating algorithms, and demonstrates a mathematical analysis of the FADS system stability. Preliminary aerodynamic calibrations are also presented here. The calibration parameters, the position error coefficient (epsilon), and flow correction terms for the angle of attack (delta alpha), and angle of sideslip (delta beta) are derived from wind tunnel data. Statistical accuracy of' the calibration is evaluated by comparing the wind tunnel reference conditions to the airdata parameters estimated. This comparison is accomplished by applying the calibrated FADS algorithm to the sensed wind tunnel pressures. When the resulting accuracy estimates are compared to accuracy requirements for the X-33 airdata, the FADS system meets these requirements.

  7. Self-Calibrating, Variable-Flow Pumping System

    NASA Technical Reports Server (NTRS)

    Walls, Joe T.

    1994-01-01

    Pumping system provides accurate, controlled flows of two chemical liquids mixed in spray head and react to form rigid or flexible polyurethane or polyisocyanurate foam. Compatible with currently used polyurethane-based coating materials and gas-bubble-forming agents (called "blowing agents" in industry) and expected to be compatible with materials that used in near future. Handles environmentally acceptable substitutes for chlorofluorocarbon foaming agents.

  8. Calibration and pre-compensation of direct laser writing system

    NASA Astrophysics Data System (ADS)

    Zhu, Feng; Zhou, Changhe; Ma, Jianyong

    2012-11-01

    The Direct Laser Writing (DLW) technique has become a well-established, flexible and multi-functional method of micro- and nano-technology. A DLW system, mainly containing blue light writing module and red light autofocus module, is established and efficiently applied for the fabrication of diffractive optical elements (DOEs). In the DLW system, the stability of the writing beam is always a concern. Although the autofocus module is employed to eliminate the influence of the drifting focus point resulting from ambient vibration, the inherent defocusing error still has a serious impact on the lithography accuracy of the DLW system. As the refractive index of the lithography objective lens with a high numerical aperture (NA, 0.9) for blue light (405nm) differs from that for the auto-focus red light (650nm), the focal planes of the two beams will not coincide. Furthermore, the two beams can't be mounted seriously parallel to the axis of the objective lens in practice. The misalignment will impact the location of the focus point axially and laterally. The above defocusing error is determined experimentally, and then is pre-compensated, which improves the fabrication accuracy dramatically. The relationship between defocusing amounts and line widths of the stripes is obtained, which can be used for writing gratings with different line widths. A 100×100 mm sized fused-silica grating with a period of 2 μm is obtained with the DLW system, and some microscope images are presented to show the effectiveness of the error-eliminating methods.

  9. A measurement technique to determine the calibration accuracy of an electromagnetic tracking system to radiation isocenter

    SciTech Connect

    Litzenberg, Dale W.; Gallagher, Ian; Masi, Kathryn J.; Lee, Choonik; Prisciandaro, Joann I.; Hamstra, Daniel A.; Ritter, Timothy; Lam, Kwok L.

    2013-08-15

    Purpose: To present and characterize a measurement technique to quantify the calibration accuracy of an electromagnetic tracking system to radiation isocenter.Methods: This technique was developed as a quality assurance method for electromagnetic tracking systems used in a multi-institutional clinical hypofractionated prostate study. In this technique, the electromagnetic tracking system is calibrated to isocenter with the manufacturers recommended technique, using laser-based alignment. A test patient is created with a transponder at isocenter whose position is measured electromagnetically. Four portal images of the transponder are taken with collimator rotations of 45° 135°, 225°, and 315°, at each of four gantry angles (0°, 90°, 180°, 270°) using a 3 × 6 cm{sup 2} radiation field. In each image, the center of the copper-wrapped iron core of the transponder is determined. All measurements are made relative to this transponder position to remove gantry and imager sag effects. For each of the 16 images, the 50% collimation edges are identified and used to find a ray representing the rotational axis of each collimation edge. The 16 collimator rotation rays from four gantry angles pass through and bound the radiation isocenter volume. The center of the bounded region, relative to the transponder, is calculated and then transformed to tracking system coordinates using the transponder position, allowing the tracking system's calibration offset from radiation isocenter to be found. All image analysis and calculations are automated with inhouse software for user-independent accuracy. Three different tracking systems at two different sites were evaluated for this study.Results: The magnitude of the calibration offset was always less than the manufacturer's stated accuracy of 0.2 cm using their standard clinical calibration procedure, and ranged from 0.014 to 0.175 cm. On three systems in clinical use, the magnitude of the offset was found to be 0.053 ± 0.036, 0

  10. Research on the real-time calibration of the varifocal photoelectric imaging system

    NASA Astrophysics Data System (ADS)

    Zhou, Bing; Huang, Fu-yu; Chen, Yu-dan

    2012-11-01

    A real-time system for optical axis of the varifocal photoelectric reconnaissance and tracking system is designed in this paper. Two images are acquired by the DSP processing system before and after zooming the focal length, and the varifocal and shifting coefficients are calculated real-timely through extracting the feature points and affine transform, etc, while the rotation coefficient equals to zero basically. The shifting parameter can be used to calibrate the optical axis, and its calibration precision is less than one pixel. The system can reduce the requirement of mechanical processing technology and mechanical tolerance greatly in the production procedure of the photoelectric reconnaissance and tracking system with a long focal length, and can make the system easer to implement.

  11. Absolute calibration method for nanosecond-resolved, time-streaked, fiber optic light collection, spectroscopy systems

    SciTech Connect

    Johnston, Mark D.; Oliver, Bryan V.; Droemer, Darryl W.; Frogget, Brent; Crain, Marlon D.; Maron, Yitzhak

    2012-08-15

    This paper describes a convenient and accurate method to calibrate fast (<1 ns resolution) streaked, fiber optic light collection, spectroscopy systems. Such systems are inherently difficult to calibrate due to the lack of sufficiently intense, calibrated light sources. Such a system is used to collect spectral data on plasmas generated in electron beam diodes fielded on the RITS-6 accelerator (8-12MV, 140-200kA) at Sandia National Laboratories. On RITS, plasma light is collected through a small diameter (200 {mu}m) optical fiber and recorded on a fast streak camera at the output of a 1 meter Czerny-Turner monochromator. For this paper, a 300 W xenon short arc lamp (Oriel Model 6258) was used as the calibration source. Since the radiance of the xenon arc varies from cathode to anode, just the area around the tip of the cathode ('hotspot') was imaged onto the fiber, to produce the highest intensity output. To compensate for chromatic aberrations, the signal was optimized at each wavelength measured. Output power was measured using 10 nm bandpass interference filters and a calibrated photodetector. These measurements give power at discrete wavelengths across the spectrum, and when linearly interpolated, provide a calibration curve for the lamp. The shape of the spectrum is determined by the collective response of the optics, monochromator, and streak tube across the spectral region of interest. The ratio of the spectral curve to the measured bandpass filter curve at each wavelength produces a correction factor (Q) curve. This curve is then applied to the experimental data and the resultant spectra are given in absolute intensity units (photons/sec/cm{sup 2}/steradian/nm). Error analysis shows this method to be accurate to within +/- 20%, which represents a high level of accuracy for this type of measurement.

  12. Absolute calibration method for nanosecond-resolved, time-streaked, fiber optic light collection, spectroscopy systems

    NASA Astrophysics Data System (ADS)

    Johnston, Mark D.; Oliver, Bryan V.; Droemer, Darryl W.; Frogget, Brent; Crain, Marlon D.; Maron, Yitzhak

    2012-08-01

    This paper describes a convenient and accurate method to calibrate fast (<1 ns resolution) streaked, fiber optic light collection, spectroscopy systems. Such systems are inherently difficult to calibrate due to the lack of sufficiently intense, calibrated light sources. Such a system is used to collect spectral data on plasmas generated in electron beam diodes fielded on the RITS-6 accelerator (8-12MV, 140-200kA) at Sandia National Laboratories. On RITS, plasma light is collected through a small diameter (200 μm) optical fiber and recorded on a fast streak camera at the output of a 1 meter Czerny-Turner monochromator. For this paper, a 300 W xenon short arc lamp (Oriel Model 6258) was used as the calibration source. Since the radiance of the xenon arc varies from cathode to anode, just the area around the tip of the cathode ("hotspot") was imaged onto the fiber, to produce the highest intensity output. To compensate for chromatic aberrations, the signal was optimized at each wavelength measured. Output power was measured using 10 nm bandpass interference filters and a calibrated photodetector. These measurements give power at discrete wavelengths across the spectrum, and when linearly interpolated, provide a calibration curve for the lamp. The shape of the spectrum is determined by the collective response of the optics, monochromator, and streak tube across the spectral region of interest. The ratio of the spectral curve to the measured bandpass filter curve at each wavelength produces a correction factor (Q) curve. This curve is then applied to the experimental data and the resultant spectra are given in absolute intensity units (photons/sec/cm2/steradian/nm). Error analysis shows this method to be accurate to within +/- 20%, which represents a high level of accuracy for this type of measurement.

  13. An investigation into force-moment calibration techniques applicable to a magnetic suspension and balance system. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Eskins, Jonathan

    1988-01-01

    The problem of determining the forces and moments acting on a wind tunnel model suspended in a Magnetic Suspension and Balance System is addressed. Two calibration methods were investigated for three types of model cores, i.e., Alnico, Samarium-Cobalt, and a superconducting solenoid. Both methods involve calibrating the currents in the electromagnetic array against known forces and moments. The first is a static calibration method using calibration weights and a system of pulleys. The other method, dynamic calibration, involves oscillating the model and using its inertia to provide calibration forces and moments. Static calibration data, found to produce the most reliable results, is presented for three degrees of freedom at 0, 15, and -10 deg angle of attack. Theoretical calculations are hampered by the inability to represent iron-cored electromagnets. Dynamic calibrations, despite being quicker and easier to perform, are not as accurate as static calibrations. Data for dynamic calibrations at 0 and 15 deg is compared with the relevant static data acquired. Distortion of oscillation traces is cited as a major source of error in dynamic calibrations.

  14. Edge and core Thomson scattering systems and their calibration on the ASDEX Upgrade tokamak

    SciTech Connect

    Kurzan, B.; Murmann, H. D.

    2011-10-15

    A new 10 channel Thomson scattering (TS) system was installed on the ASDEX Upgrade tokamak to measure radial profiles of electron density and temperature at the plasma edge with high radial resolution. Together with the already existing TS system, which is now used for the core plasma, electron density and temperature profiles extending from the edge to the core are now obtained in a single discharge. The TS systems are relatively calibrated by an optical parametric oscillator.

  15. Kinect based real-time position calibration for nasal endoscopic surgical navigation system

    NASA Astrophysics Data System (ADS)

    Fan, Jingfan; Yang, Jian; Chu, Yakui; Ma, Shaodong; Wang, Yongtian

    2016-03-01

    Unanticipated, reactive motion of the patient during skull based tumor resective surgery is the source of the consequence that the nasal endoscopic tracking system is compelled to be recalibrated. To accommodate the calibration process with patient's movement, this paper developed a Kinect based Real-time positional calibration method for nasal endoscopic surgical navigation system. In this method, a Kinect scanner was employed as the acquisition part of the point cloud volumetric reconstruction of the patient's head during surgery. Then, a convex hull based registration algorithm aligned the real-time image of the patient head with a model built upon the CT scans performed in the preoperative preparation to dynamically calibrate the tracking system if a movement was detected. Experimental results confirmed the robustness of the proposed method, presenting a total tracking error within 1 mm under the circumstance of relatively violent motions. These results point out the tracking accuracy can be retained stably and the potential to expedite the calibration of the tracking system against strong interfering conditions, demonstrating high suitability for a wide range of surgical applications.

  16. 21 CFR 874.3310 - Hearing aid calibrator and analysis system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Hearing aid calibrator and analysis system. 874.3310 Section 874.3310 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES EAR, NOSE, AND THROAT DEVICES Prosthetic Devices § 874.3310...

  17. 21 CFR 874.3310 - Hearing aid calibrator and analysis system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Hearing aid calibrator and analysis system. 874.3310 Section 874.3310 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES EAR, NOSE, AND THROAT DEVICES Prosthetic Devices § 874.3310...

  18. 21 CFR 874.3310 - Hearing aid calibrator and analysis system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Hearing aid calibrator and analysis system. 874.3310 Section 874.3310 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES EAR, NOSE, AND THROAT DEVICES Prosthetic Devices § 874.3310...

  19. 21 CFR 874.3310 - Hearing aid calibrator and analysis system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Hearing aid calibrator and analysis system. 874.3310 Section 874.3310 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES EAR, NOSE, AND THROAT DEVICES Prosthetic Devices § 874.3310...

  20. 21 CFR 874.3310 - Hearing aid calibrator and analysis system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Hearing aid calibrator and analysis system. 874.3310 Section 874.3310 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES EAR, NOSE, AND THROAT DEVICES Prosthetic Devices § 874.3310...