Science.gov

Sample records for energy converter coupled

  1. Parametric energy converter

    SciTech Connect

    Johnson, R.N.

    1981-10-20

    A method and apparatus for converting thermal energy into mechanical energy by parametric pumping of rotary inertia. In a preferred embodiment, a modified tesla turbine rotor is positioned within a rotary boiler along its axis of rotation. An external heat source, such as solar radiation, is directed onto the outer casing of the boiler to convert the liquid to steam. As the steam spirals inwardly toward the discs of the rotor, the moment of inertia of the mass of steam is reduced to thereby substantially increase its kinetic energy. The laminar flow of steam between the discs of the rotor transfers the increased kinetic energy to the rotor which can be coupled out through an output shaft to perform mechanical work. A portion of the mechanical output can be fed back to maintain rotation of the boiler.

  2. Thermionic photovoltaic energy converter

    NASA Technical Reports Server (NTRS)

    Chubb, D. L. (Inventor)

    1985-01-01

    A thermionic photovoltaic energy conversion device comprises a thermionic diode mounted within a hollow tubular photovoltaic converter. The thermionic diode maintains a cesium discharge for producing excited atoms that emit line radiation in the wavelength region of 850 nm to 890 nm. The photovoltaic converter is a silicon or gallium arsenide photovoltaic cell having bandgap energies in this same wavelength region for optimum cell efficiency.

  3. Thermionic energy converters

    DOEpatents

    Monroe, Jr., James E.

    1977-08-09

    A thermionic device for converting nuclear energy into electrical energy comprising a tubular anode spaced from and surrounding a cylindrical cathode, the cathode having an outer emitting surface of ruthenium, and nuclear fuel on the inner cylindrical surface. The nuclear fuel is a ceramic composition of fissionable material in a metal matrix. An axial void is provided to collect and contain fission product gases.

  4. Thermionic energy converters

    NASA Technical Reports Server (NTRS)

    Morris, J. F. (Inventor)

    1983-01-01

    The efficiency of thermionic energy converters is improved by internal distribution of tiny sorted cesium diodes driven by the thermal gradient between the primary emitter and the collector. The tiny, sorted diode distribution comprises protrusions of the emitter material from the main emitter face which contact the main collector face thermally but not electrically. The main collector ends of the protrusions are separated from the main collector by a thin layer of insulation, such as aluminum oxide. The shorted tiny diode distribution augments cesium ionization through internal thermal effects only within the main diode. No electrical inputs are required. This ionization enhancement by the distribution of the tiny shorted diodes not only reduces the plasma voltage drop but also increases the power output and efficiency of the overall thermionic energy converter.

  5. Cycloidal Wave Energy Converter

    SciTech Connect

    Stefan G. Siegel, Ph.D.

    2012-11-30

    This program allowed further advancing the development of a novel type of wave energy converter, a Cycloidal Wave Energy Converter or CycWEC. A CycWEC consists of one or more hydrofoils rotating around a central shaft, and operates fully submerged beneath the water surface. It operates under feedback control sensing the incoming waves, and converts wave power to shaft power directly without any intermediate power take off system. Previous research consisting of numerical simulations and two dimensional small 1:300 scale wave flume experiments had indicated wave cancellation efficiencies beyond 95%. The present work was centered on construction and testing of a 1:10 scale model and conducting two testing campaigns in a three dimensional wave basin. These experiments allowed for the first time for direct measurement of electrical power generated as well as the interaction of the CycWEC in a three dimensional environment. The Atargis team successfully conducted two testing campaigns at the Texas A&M Offshore Technology Research Center and was able to demonstrate electricity generation. In addition, three dimensional wave diffraction results show the ability to achieve wave focusing, thus increasing the amount of wave power that can be extracted beyond what was expected from earlier two dimensional investigations. Numerical results showed wave cancellation efficiencies for irregular waves to be on par with results for regular waves over a wide range of wave lengths. Using the results from previous simulations and experiments a full scale prototype was designed and its performance in a North Atlantic wave climate of average 30kW/m of wave crest was estimated. A full scale WEC with a blade span of 150m will deliver a design power of 5MW at an estimated levelized cost of energy (LCOE) in the range of 10-17 US cents per kWh. Based on the new results achieved in the 1:10 scale experiments these estimates appear conservative and the likely performance at full scale will

  6. Gallium phosphide energy converters

    NASA Technical Reports Server (NTRS)

    Sims, P. E.; Dinetta, L. C.; Goetz, M. A.

    1995-01-01

    Gallium phosphide (GaP) energy converters may be successfully deployed to provide new mission capabilities for spacecraft. Betavoltaic power supplies based on the conversion of tritium beta decay to electricity using GaP energy converters can supply long term low-level power with high reliability. High temperature solar cells, also based on GaP, can be used in inward-bound missions greatly reducing the need for thermal dissipation. Results are presented for GaP direct conversion devices powered by Ni-63 and compared to the conversion of light emitted by tritiarated phosphors. Leakage currents as low as 1.2 x 10(exp -17) A/sq cm have been measured and the temperature dependence of the reverse saturation current is found to have ideal behavior. Temperature dependent IV, QE, R(sub sh), and V(sub oc) results are also presented. These data are used to predict the high-temperature solar cell and betacell performance of GaP devices and suggest appropriate applications for the deployment of this technology.

  7. Electromagnetic wave energy converter

    NASA Technical Reports Server (NTRS)

    Bailey, R. L. (Inventor)

    1973-01-01

    Electromagnetic wave energy is converted into electric power with an array of mutually insulated electromagnetic wave absorber elements each responsive to an electric field component of the wave as it impinges thereon. Each element includes a portion tapered in the direction of wave propagation to provide a relatively wideband response spectrum. Each element includes an output for deriving a voltage replica of the electric field variations intercepted by it. Adjacent elements are positioned relative to each other so that an electric field subsists between adjacent elements in response to the impinging wave. The electric field results in a voltage difference between adjacent elements that is fed to a rectifier to derive dc output power.

  8. Wind/water energy converter

    NASA Technical Reports Server (NTRS)

    Paulkovich, J.

    1979-01-01

    Device will convert wind, water, tidal or wave energy into electrical or mechanical energy. Is comprised of windmill-like paddles or blades synchronously geared to orient themselves to wind direction for optimum energy extraction.

  9. Proposed electromagnetic wave energy converter

    NASA Technical Reports Server (NTRS)

    Bailey, R. L.

    1973-01-01

    Device converts wave energy into electric power through array of insulated absorber elements responsive to field of impinging electromagnetic radiation. Device could also serve as solar energy converter that is potentially less expensive and fragile than solar cells, yet substantially more efficient.

  10. Ocean tide energy converter

    SciTech Connect

    Rainey, D.E.

    1980-06-24

    A tide motor energy source includes a tidal piston with a valved chamber. The piston drives a hydraulic ram to generate electrical power through a pressure accumulator and hydraulic motor. The ram can be locked hydraulically to enable the tidal piston to be held fixed at a desired elevation and the valves in the chamber permit it to be filled with water or air. The piston with its chamber filled with air at its low tide position and then released for controlled ascent while submerged acts as a submerged float for driving the ram upwardly while the tide runs in during one phase of its operation. The piston with its chamber filled with water while locked at its highest position as the tide begins to run out, and then released to fall under control, acts as a weight suspended in air after the water level drops below the piston for driving the ram downwardly during the second phase of its operation. The rising and falling motion of the tidal piston is used as the energy source.

  11. Large wind energy converter: Growian 3 MW

    NASA Technical Reports Server (NTRS)

    Koerber, F.; Thiele, H. A.

    1979-01-01

    The main features of the Growian wind energy converter are presented. Energy yield, environmental impact, and construction of the energy converter are discussed. Reliability of the windpowered system is assessed.

  12. Electro-mechanical energy conversion system having a permanent magnet machine with stator, resonant transfer link and energy converter controls

    DOEpatents

    Skeist, S. Merrill; Baker, Richard H.

    2006-01-10

    An electro-mechanical energy conversion system coupled between an energy source and an energy load comprising an energy converter device including a permanent magnet induction machine coupled between the energy source and the energy load to convert the energy from the energy source and to transfer the converted energy to the energy load and an energy transfer multiplexer to control the flow of power or energy through the permanent magnetic induction machine.

  13. Ocean floor mounting of wave energy converters

    SciTech Connect

    Siegel, Stefan G

    2015-01-20

    A system for mounting a set of wave energy converters in the ocean includes a pole attached to a floor of an ocean and a slider mounted on the pole in a manner that permits the slider to move vertically along the pole and rotate about the pole. The wave energy converters can then be mounted on the slider to allow adjustment of the depth and orientation of the wave energy converters.

  14. Controller for a wave energy converter

    SciTech Connect

    Wilson, David G.; Bull, Diana L.; Robinett, III, Rush D.

    2015-09-22

    A wave energy converter (WEC) is described, the WEC including a power take off (PTO) that converts relative motion of bodies of the WEC into electrical energy. A controller controls operation of the PTO, causing the PTO to act as a motor to widen a wave frequency spectrum that is usable to generate electrical energy.

  15. Mechanical vibration to electrical energy converter

    DOEpatents

    Kellogg, Rick Allen; Brotz, Jay Kristoffer

    2009-03-03

    Electromechanical devices that generate an electrical signal in response to an external source of mechanical vibrations can operate as a sensor of vibrations and as an energy harvester for converting mechanical vibration to electrical energy. The devices incorporate a magnet that is movable through a gap in a ferromagnetic circuit, wherein a coil is wound around a portion of the ferromagnetic circuit. A flexible coupling is used to attach the magnet to a frame for providing alignment of the magnet as it moves or oscillates through the gap in the ferromagnetic circuit. The motion of the magnet can be constrained to occur within a substantially linear range of magnetostatic force that develops due to the motion of the magnet. The devices can have ferromagnetic circuits with multiple arms, an array of magnets having alternating polarity and, encompass micro-electromechanical (MEM) devices.

  16. Radiant energy to electric energy converter

    NASA Technical Reports Server (NTRS)

    Sher, Arden (Inventor)

    1980-01-01

    Radiant energy is converted into electric energy by irradiating a capacitor including an ionic dielectric. The dielectric is a sintered crystal superionic conductor, e.g., lanthanum trifluoride, lanthanum trichloride, or silver bromide, so that a multiplicity of crystallites exist between electrodes of the capacitor. The radiant energy cyclically irradiates the dielectric so that the dielectric exhibits a cyclic photocapacitive like effect. Adjacent crystallites have abutting surfaces that enable the crystallites to effectively form a multiplicity of series capacitor elements between the electrodes. Each of the capacitor elements has a dipole layer only on or near its surface. The capacitor is initially charged to a voltage just below the dielectric breakdown voltage by connecting it across a DC source causing a current to flow through a charging resistor to the dielectric. The device can be utilized as a radiant energy detector or as a solar energy cell.

  17. Boost matrix converters in clean energy systems

    NASA Astrophysics Data System (ADS)

    Karaman, Ekrem

    This dissertation describes an investigation of novel power electronic converters, based on the ultra-sparse matrix topology and characterized by the minimum number of semiconductor switches. The Z-source, Quasi Z-source, Series Z-source and Switched-inductor Z-source networks were originally proposed for boosting the output voltage of power electronic inverters. These ideas were extended here on three-phase to three-phase and three-phase to single-phase indirect matrix converters. For the three-phase to three-phase matrix converters, the Z-source networks are placed between the three-switch input rectifier stage and the output six-switch inverter stage. A brief shoot-through state produces the voltage boost. An optimal pulse width modulation technique was developed to achieve high boosting capability and minimum switching losses in the converter. For the three-phase to single-phase matrix converters, those networks are placed similarly. For control purposes, a new modulation technique has been developed. As an example application, the proposed converters constitute a viable alternative to the existing solutions in residential wind-energy systems, where a low-voltage variable-speed generator feeds power to the higher-voltage fixed-frequency grid. Comprehensive analytical derivations and simulation results were carried out to investigate the operation of the proposed converters. Performance of the proposed converters was then compared between each other as well as with conventional converters. The operation of the converters was experimentally validated using a laboratory prototype.

  18. Surface-plasmon-coupled emission microscopy with a polarization converter.

    PubMed

    Chen, Yikai; Zhang, Douguo; Han, Lu; Rui, Guanghao; Wang, Xiangxian; Wang, Pei; Ming, Hai

    2013-03-01

    Although surface-plasmon-coupled emission-based fluorescence microscopy proves high sensitivity for surface imaging, its donut shape point spread function (PSF) leads to low optical resolution and inefficient signal collection. In this Letter, we experimentally demonstrate the feasibility of solving this problem by the use of a liquid-crystal plate, which could convert the polarization state of surface-plasmon-coupled fluorescence from radial to linear. After being focused by the collection lens, an Airy disk-like PSF of small size can be realized. Experimental results reveal that both the lateral resolution and the signal-to-noise ratio can be enhanced simultaneously. PMID:23455282

  19. Hydrodynamic Performance of a Wave Energy Converter

    NASA Astrophysics Data System (ADS)

    Yang, Yingchen

    2010-11-01

    To harvest energy from ocean waves, a new wave energy converter (WEC) was proposed and tested in a wave tank. The WEC freely floats on the water surface and rides waves. It utilizes its wave-driven angular oscillation to convert the mechanical energy of waves into electricity. To gain the maximum possible angular oscillation of the WEC under specified wave conditions, both floatation of the WEC and wave interaction with the WEC play critical roles in a joint fashion. During the experiments, the submersion condition of the WEC and wave condition were varied. The results were analyzed in terms of the oscillation amplitude, stability, auto-orientation capability, and wave frequency dependency.

  20. Solar energy converter using surface plasma waves

    NASA Technical Reports Server (NTRS)

    Anderson, L. M. (Inventor)

    1984-01-01

    Sunlight is dispersed over a diffraction grating formed on the surface of a conducting film on a substrate. The angular dispersion controls the effective grating period so that a matching spectrum of surface plasmons is excited for parallel processing on the conducting film. The resulting surface plasmons carry energy to an array of inelastic tunnel diodes. This solar energy converter does not require different materials for each frequency band, and sunlight is directly converted to electricity in an efficient manner by extracting more energy from the more energetic photons.

  1. WEC-Sim (Wave Energy Converter - SIMulator)

    Energy Science and Technology Software Center (ESTSC)

    2014-11-26

    WEC-Sim (Wave Energy Converter SIMulator) is a code developed by Sandia National Laboratories and the National Renewable Energy Laboratory to model wave energy converters (WECs) when they are subject to operational waves. The code is a time-domain modeling tool developed in MATLAB/Simulink using the multi-body dynamics solver SimMechanics. In WEC-Sim, WECs are modeled by connecting rigid bodies to one another with joint or constraint blocks from the WEC-Sim library. WEC-Sim is a publicly available, open-sourcemore » code to model WECs.« less

  2. WEC-Sim (Wave Energy Converter - SIMulator)

    SciTech Connect

    2014-11-26

    WEC-Sim (Wave Energy Converter SIMulator) is a code developed by Sandia National Laboratories and the National Renewable Energy Laboratory to model wave energy converters (WECs) when they are subject to operational waves. The code is a time-domain modeling tool developed in MATLAB/Simulink using the multi-body dynamics solver SimMechanics. In WEC-Sim, WECs are modeled by connecting rigid bodies to one another with joint or constraint blocks from the WEC-Sim library. WEC-Sim is a publicly available, open-source code to model WECs.

  3. Ocean wave energy converting vessel

    SciTech Connect

    Boyce, P.F.

    1986-08-26

    An ocean wave energy conversion system is described comprised of a four beam quadrapod supported by bouyant members from which is suspended a pendulum. The pendulum contains a vertical generator shaft and a generator, the generator shaft being splined and fitted with two racheted pulleys, the pulleys being looped, one clockwise and one counterclockwise with separate cables. The cables are attached at their ends to the bow and stern of the quadrapod, whereby the generator shaft will pin when the quadrapod rocks over waves and the pendulum tends toward the center of earth.

  4. Solar energy recorder. [for converter site selection

    NASA Technical Reports Server (NTRS)

    Lollar, R. B.; Mandt, R. R.

    1974-01-01

    A serious obstacle to the large-scale terrestrial application of solar energy lies in the scarcity of reliable data on the amount of solar energy at candidate converter sites. This paper describes a system designed to monitor and record, automatically, the values of the direct and total (sun and sky) solar radiation which would be seen by either tracking or fixed-type solar converters. A further pressing need addressed by the system is the means for efficiency testing and evaluation of solar cells, solar collectors and solar concentrator systems, under outdoor exposure to natural sunlight and weather conditions for extended periods. The design was accomplished in support of the Marshall Space Flight Center, NASA, where design concepts and materials for large-scale terrestrial solar energy converters are currently being evaluated.

  5. Semiconductor electrolyte photovoltaic energy converter

    NASA Technical Reports Server (NTRS)

    Anderson, W. W.; Anderson, L. B.

    1975-01-01

    Feasibility and practicality of a solar cell consisting of a semiconductor surface in contact with an electrolyte are evaluated. Basic components and processes are detailed for photovoltaic energy conversion at the surface of an n-type semiconductor in contact with an electrolyte which is oxidizing to conduction band electrons. Characteristics of single crystal CdS, GaAs, CdSe, CdTe and thin film CdS in contact with aqueous and methanol based electrolytes are studied and open circuit voltages are measured from Mott-Schottky plots and open circuit photo voltages. Quantum efficiencies for short circuit photo currents of a CdS crystal and a 20 micrometer film are shown together with electrical and photovoltaic properties. Highest photon irradiances are observed with the GaAs cell.

  6. Performance of an angular flange aeroelastic wind energy converter

    SciTech Connect

    Ahmadi, G.

    1983-05-01

    ALL conventional wind turbines operate on the principles of turbomachinaries, with wind being made to flow over a set of rotating vanes. Recently, a new concept for wind energy conversion based on aeroelastic instability was introduced. It is well known that couplings between the vibration of an elastic structure and fluid stream may lead to aeroelastic instability. Energy then is transferred from the airstream into the elastic structure, which results in a destructive monotonic increase of the vibration amplitude of the structure. The failure of the Tacoma Narrows Bridge is one of the well-known examples of such a disaster. The use of an aeroelastic instability (or flutter) mechanism for constructing a wind energy converter was suggested. The theory for a torsional wind energy converter and the results of some model tests were also presented. Recently, some studies on similar types of wind energy converters using oscillating airfoils were reported. In the present study an angular flange H-section model of a torsional aeroelastic wind energy converter is constructed, and its performances under various conditions are investigated. The effects of the variations of the flange angle and the flange width on the performance of the model are studied. The weight of the pendulum is also varied, and its effects on the power coefficient of the model are investigated. It is observed that the efficiency of energy conversion decreases with an increase in wind speed. A method for possible improvement of the theoretical prediction is suggested and discussed.

  7. Wind energy converter utilizing vortex augmentation

    SciTech Connect

    Edwards, S. S.

    1985-05-14

    A wind energy conversion apparatus is disclosed herein for converting the linear momentum of wind energy into a pair of concentrated, counter-rotating and side-by-side regions of high angular momentum which includes a wing having variable angle of attack positionable forward of the entrance to an elongated duct having a bell mouth including an upper, inner reflex angular surface leading into a bifurcated duct section terminating in a diffuser augmenter at the aft facing area of the duct and which includes propellors operable to extract energy from the angular momentum in the established regions for driving electric generators or generator therefrom.

  8. Stochastic Control of Inertial Sea Wave Energy Converter

    PubMed Central

    Mattiazzo, Giuliana; Giorcelli, Ermanno

    2015-01-01

    The ISWEC (inertial sea wave energy converter) is presented, its control problems are stated, and an optimal control strategy is introduced. As the aim of the device is energy conversion, the mean absorbed power by ISWEC is calculated for a plane 2D irregular sea state. The response of the WEC (wave energy converter) is driven by the sea-surface elevation, which is modeled by a stationary and homogeneous zero mean Gaussian stochastic process. System equations are linearized thus simplifying the numerical model of the device. The resulting response is obtained as the output of the coupled mechanic-hydrodynamic model of the device. A stochastic suboptimal controller, derived from optimal control theory, is defined and applied to ISWEC. Results of this approach have been compared with the ones obtained with a linear spring-damper controller, highlighting the capability to obtain a higher value of mean extracted power despite higher power peaks. PMID:25874267

  9. Loop Heat Pipe Operation with Thermoelectric Converters and Coupling Blocks

    NASA Technical Reports Server (NTRS)

    Ku, Jentung; Nagano, Hosei

    2007-01-01

    This paper presents theoretical and experimental studies on using thermoelectric converters (TECs) and coupling blocks to control the operating temperature of a miniature loop heat pipes (MLHP). The MLHP has two parallel evaporators and two parallel condensers, and each evaporator has its own integral compensation chamber (CC). A TEC is attached to each CC, and connected to the evaporator via a copper thermal strap. The TEC can provide both heating and cooling to the CC, therefore extending the LHP operating temperature over a larger range of the evaporator heat load. A bi-polar power supply is used for the TEC operation. The bipolar power supply automatically changes the direction of the current to the TEC, depending on whether the CC requires heating or cooling, to maintain the CC temperature at the desired set point. The TEC can also enhance the startup success by maintaining a constant CC temperature during the start-up transient. Several aluminum coupling blocks are installed between the vapor line and liquid line. The coupling blocks serve as a heat exchanger which preheats the cold returning liquid so as to reduce the amount of liquid subcooling, and hence the power required to maintain the CC at the desired set point temperature. This paper focuses on the savings of the CC control heater power afforded by the TECs when compared to traditional electric heaters. Tests were conducted by varying the evaporator power, the condenser sink temperature, the CC set point temperature, the number of coupling blocks, and the thermal conductance of the thermal strap. Test results show that the TECs are able to control the CC temperature within k0.5K under all test conditions, and the required TEC heater power is only a fraction of the required electric heater power.

  10. Clustering of cycloidal wave energy converters

    DOEpatents

    Siegel, Stefan G.

    2016-03-29

    A wave energy conversion system uses a pair of wave energy converters (WECs) on respective active mountings on a floating platform, so that the separation of the WECs from each other or from a central WEC can be actively adjusted according to the wavelength of incident waves. The adjustable separation facilitates operation of the system to cancel reactive forces, which may be generated during wave energy conversion. Modules on which such pairs of WECs are mounted can be assembled with one or more central WECs to form large clusters in which reactive forces and torques can be made to cancel. WECs of different sizes can be employed to facilitate cancelation of reactive forces and torques.

  11. Parametric study of laser photovoltaic energy converters

    NASA Technical Reports Server (NTRS)

    Walker, G. H.; Heinbockel, J. H.

    1987-01-01

    Photovoltaic converters are of interest for converting laser power to electrical power in a space-based laser power system. This paper describes a model for photovoltaic laser converters and the application of this model to a neodymium laser silicon photovoltaic converter system. A parametric study which defines the sensitivity of the photovoltaic parameters is described. An optimized silicon photovoltaic converter has an efficiency greater than 50 percent for 1000 W/sq cm of neodymium laser radiation.

  12. Energy utilization in fluctuating biological energy converters

    PubMed Central

    Szőke, Abraham; Hajdu, Janos

    2016-01-01

    We have argued previously [Szoke et al., FEBS Lett. 553, 18–20 (2003); Curr. Chem. Biol. 1, 53–57 (2007)] that energy utilization and evolution are emergent properties based on a small number of established laws of physics and chemistry. The relevant laws constitute a framework for biology on a level intermediate between quantum chemistry and cell biology. There are legitimate questions whether these concepts are valid at the mesoscopic level. Such systems fluctuate appreciably, so it is not clear what their efficiency is. Advances in fluctuation theorems allow the description of such systems on a molecular level. We attempt to clarify this topic and bridge the biochemical and physical descriptions of mesoscopic systems. PMID:27191009

  13. Image processing to optimize wave energy converters

    NASA Astrophysics Data System (ADS)

    Bailey, Kyle Marc-Anthony

    The world is turning to renewable energies as a means of ensuring the planet's future and well-being. There have been a few attempts in the past to utilize wave power as a means of generating electricity through the use of Wave Energy Converters (WEC), but only recently are they becoming a focal point in the renewable energy field. Over the past few years there has been a global drive to advance the efficiency of WEC. Placing a mechanical device either onshore or offshore that captures the energy within ocean surface waves to drive a mechanical device is how wave power is produced. This paper seeks to provide a novel and innovative way to estimate ocean wave frequency through the use of image processing. This will be achieved by applying a complex modulated lapped orthogonal transform filter bank to satellite images of ocean waves. The complex modulated lapped orthogonal transform filterbank provides an equal subband decomposition of the Nyquist bounded discrete time Fourier Transform spectrum. The maximum energy of the 2D complex modulated lapped transform subband is used to determine the horizontal and vertical frequency, which subsequently can be used to determine the wave frequency in the direction of the WEC by a simple trigonometric scaling. The robustness of the proposed method is provided by the applications to simulated and real satellite images where the frequency is known.

  14. Propulsion system for a motor vehicle using a bidirectional energy converter

    SciTech Connect

    Tamor, M.A.; Gale, A.R.

    1999-12-07

    A motor vehicle propulsion system includes an electrical energy source and a traction motor coupled to receive electrical energy from the electrical energy source. The system also has a first bus provided electrical energy by the electrical energy source and a second bus of relatively lower voltage than the first bus. In addition, the system includes an electrically-driven source of reaction gas for the electrical energy source, the source of reaction gas coupled to receive electrical energy from the first bus. Also, the system has an electrical storage device coupled to the second bus for storing electrical energy at the lower voltage. The system also includes a bidirectional energy converter coupled to convert electrical energy from the first bus to the second bus and from the second bus to the first bus.

  15. Propulsion system for a motor vehicle using a bidirectional energy converter

    DOEpatents

    Tamor, Michael Alan; Gale, Allan Roy

    1999-01-01

    A motor vehicle propulsion system includes an electrical energy source and a traction motor coupled to receive electrical energy from the electrical energy source. The system also has a first bus provided electrical energy by the electrical energy source and a second bus of relatively lower voltage than the first bus. In addition, the system includes an electrically-driven source of reaction gas for the electrical energy source, the source of reaction gas coupled to receive electrical energy from the first bus. Also, the system has an electrical storage device coupled to the second bus for storing electrical energy at the lower voltage. The system also includes a bidirectional energy converter coupled to convert electrical energy from the first bus to the second bus and from the second bus to the first bus.

  16. Fluid energy converting method and apparatus

    SciTech Connect

    Arnold, L.

    1980-01-22

    A method and apparatus are disclosed for converting the kinetic energy of a moving fluid stream into useful work by means of a cascade of thin airfoils positioned therein. In one embodiment, the airfoils are provided with at least two degrees of freedom and adjacent airfoils are movable out of phase. The airfoils are subjected to the aerodynamically induced oscillations caused by the aeroelastic phenomenon known as flutter and the oscillatory movement is then harnessed to do useful work. In an alternate embodiment, a cascade of airfoils is mechanically oscillated within a moving fluid stream to increase the propulsion of the fluid. Where the fluid is a liquid, the cascade includes a plurality of hydrofoils.

  17. Fluid energy converting method and apparatus

    SciTech Connect

    Arnold, L.

    1982-08-31

    There is disclosed a method and apparatus for converting the kinetic energy of a moving fluid stream into useful work by means of a cascade of thin airfoils positioned therein. In one embodiment, the airfoils are provided with at least two degrees of freedom and adjacent airfoils are movable out of phase. The airfoils are subjected to the aerodynamically induced oscillations caused by the aeroelastic phenomenon known as flutter and the oscillatory movement is then harnessed to do useful work. In an alternate embodiment, a cascade of airfoils is mechanically oscillated within a moving fluid stream to increase the propulsion of the fluid. Where the fluid is a liquid, the cascade includes a plurality of hydrofoils.

  18. Converting sensitive waste into cleaner energy

    SciTech Connect

    Schriner, D.; Skinner, R.

    1997-10-01

    The destruction of sensitive unclassified information (SUI) has always been expensive due to the need for special controls to ensure its protection from disclosure to unauthorized persons. The sensitive documents were shredded, buried at the landfill, or sent to a recycling company. The Department of Energy (DOE) Idaho National Engineering and Environmental Laboratory (INEEL), operated by Lockheed Martin Idaho Technologies Company (LMITCO), has created an innovative method to dispose of its sensitive unclassified paper waste which has security, economic, and environmental benefits. A new cubing facility at the INEEL converts office and industrial waste into compact cubes which are then combined with coal and burned as a source of heat and process steam to run the Idaho Chemical Processing Plant (ICPP) facility. The process-engineered fuel, consisting of 25% cubes and 75% coal, bums cleaner than coal with lower emissions of sulfur dioxide and nitrogen oxides. The alternative fuel also reduces fuel costs, eliminates paying a recycling company, reduces the expense of landfill disposal, increases the life of the landfill, and provides energy to operate a large facility. The Operations Security (OPSEC) team capitalized on this waste to energy technology by recommending that the large quantities of sensitive information (documents) generated at the INEEL be disposed of in this manner. In addition to the economic and environmental benefits, this disposal method minimizes the vulnerabilities of SUI from disclosure to unauthorized personnel. The {open_quotes}cuber{close_quotes} technology has potential application in government and industry for protection of SUI.

  19. Energy converting material for solar cell application

    NASA Astrophysics Data System (ADS)

    Pokhrel, Madhab; Kumar, G. A.; Sardar, Dhiraj K.

    2012-02-01

    In this paper, we discuss the concept of an efficient infrared upconverting phosphor as an energy converting material that could potentially improve the efficiency of Si solar cells in bifacial configuration. Basic spectroscopic studies of Yb and Er-doped La2O2S phosphor was reported with particular attention to its upconversion properties under 1550 nm excitation. Different concentrations of phosphors were synthesized by solid state flux fusion method. The phosphor powders were well crystallized in a hexagonal shape with an average size 300-400 nm. The most efficient upconverting sample (1%Yb: 9% Er doped La2O2S) was also studied under the illumination with infrared (IR) broad band spectrum above 1000 nm. Our measurements show that even with an excitation power density of 0.159 W/cm2 using a tungsten halogen lamp the material shows efficient upconversion corroborating the fact that the present phosphors could be potential candidates for improving the efficiency of the present Si solar cells.

  20. 78 FR 40132 - Wave Energy Converter Prize Administration Webinar

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-03

    ... of Energy Efficiency and Renewable Energy Wave Energy Converter Prize Administration Webinar AGENCY: Office of Energy Efficiency and Renewable Energy (EERE), U.S. Department of Energy (DOE). ACTION: Notice... available for public review on the DOE Office of Energy Efficiency and Renewable Energy (EERE) Web site...

  1. Charge-coupled-device parallel-to-serial converter

    NASA Technical Reports Server (NTRS)

    Tower, John R. (Inventor)

    1987-01-01

    A CCD parallel-to-serial converter comprising two successions of charge transfer stages, recurrently side-loaded with respective ones of parallelly supplied charge packets, then serially unloaded by time-interleaved respective shift register operations. The charge packets converted to time-division-multiplexed serial form are supplied to a shared electrometer, and the electrometer response is de-multiplexed. Preferably, shift register operations are carried forward concurrently at the same rate, but with the final charge transfer stages clocked in phases staggered in time.

  2. Optimisation Of a Magnetostrictive Wave Energy Converter

    NASA Astrophysics Data System (ADS)

    Mundon, T. R.; Nair, B.

    2014-12-01

    Oscilla Power, Inc. (OPI) is developing a patented magnetostrictive wave energy converter aimed at reducing the cost of grid-scale electricity from ocean waves. Designed to operate cost-effectively across a wide range of wave conditions, this will be the first use of reverse magnetostriction for large-scale energy production. The device architecture is a straightforward two-body, point absorbing system that has been studied at length by various researchers. A large surface float is anchored to a submerged heave (reaction) plate by multiple taut tethers that are largely made up of discrete, robust power takeoff modules that house the magnetostrictive generators. The unique generators developed by OPI utilize the phenomenon of reverse magnetostriction, which through the application of load to a specific low cost alloy, can generate significant magnetic flux changes, and thus create power through electromagnetic induction. Unlike traditional generators, the mode of operation is low-displacement, high-force, high damping which in combination with the specific multi-tether configuration creates some unique effects and interesting optimization challenges. Using an empirical approach with a combination of numerical tools, such as ORCAFLEX, and physical models, we investigated the properties and sensitivities of this system arrangement, including various heave plate geometries, with the overall goal of identifying the mass and hydrodynamic parameters required for optimum performance. Furthermore, through a detailed physical model test program at the University of New Hampshire, we were able to study in more detail how the heave plate geometry affects the drag and added mass coefficients. In presenting this work we will discuss how alternate geometries could be used to optimize the hydrodynamic parameters of the heave plate, allowing maximum inertial forces in operational conditions, while simultaneously minimizing the forces generated in extreme waves. This presentation

  3. Combination solar photovoltaic heat engine energy converter

    NASA Technical Reports Server (NTRS)

    Chubb, Donald L.

    1987-01-01

    A combination solar photovoltaic heat engine converter is proposed. Such a system is suitable for either terrestrial or space power applications. The combination system has a higher efficiency than either the photovoltaic array or the heat engine alone can attain. Advantages in concentrator and radiator area and receiver mass of the photovoltaic heat engine system over a heat-engine-only system are estimated. A mass and area comparison between the proposed space station organic Rankine power system and a combination PV-heat engine system is made. The critical problem for the proposed converter is the necessity for high temperature photovoltaic array operation. Estimates of the required photovoltaic temperature are presented.

  4. First-order irreversible thermodynamic approach to a nonsteady RLC circuit as an energy converter

    NASA Astrophysics Data System (ADS)

    Valencia, G.; Arias, L. A.

    2015-01-01

    In this work we show a RLC-circuit as energy converter within the context of first-order irreversible thermodynamics (FOIT). For our analysis, we propose an isothermic model with transient elements and passive elements. With the help of the dynamic equations, the Kirchhoff equations, we found the generalized fluxes and forces of the circuit, the equation system shows symmetry of the cross terms, this property is characteristic of the steady state linear systems, but in this case phenomenological coefficients are function of time. Then, we can use these relations, similar to the linear Onsager relations, to construct the characteristic functions of the RLC energy converter: the power output, efficiency, dissipation and ecological function, and study its energetic performance. The study of performance of the converter is based on two parameters, the coupling parameter and the "forces ratio" parameter, in this case as functions of time. We find that the behavior of the non-steady state converter is similar to the behavior of steady state energy converter. We will explain the linear and symmetric behavior of the converter in the frequencies space rather than in the time space. Finally, we establish optimal operation regimes of economic degree of coupling for this energy converter.

  5. Strained quantum well photovoltaic energy converter

    NASA Technical Reports Server (NTRS)

    Freundlich, Alexandre (Inventor); Renaud, Philippe (Inventor); Vilela, Mauro Francisco (Inventor); Bensaoula, Abdelhak (Inventor)

    1998-01-01

    An indium phosphide photovoltaic cell is provided where one or more quantum wells are introduced between the conventional p-conductivity and n-conductivity indium phosphide layer. The approach allows the cell to convert the light over a wider range of wavelengths than a conventional single junction cell and in particular convert efficiently transparency losses of the indium phosphide conventional cell. The approach hence may be used to increase the cell current output. A method of fabrication of photovoltaic devices is provided where ternary InAsP and InGaAs alloys are used as well material in the quantum well region and results in an increase of the cell current output.

  6. Converting Sunlight to Mechanical Energy: A Polymer Example of Entropy.

    ERIC Educational Resources Information Center

    Mathias, Lon J.

    1987-01-01

    This experiment/demonstration provides elementary through high school science students with hands-on experience with polymer entropy. Construction of a simple machine for converting light into mechanical energy is described. (RH)

  7. Laser-to-electricity energy converter for short wavelengths

    NASA Technical Reports Server (NTRS)

    Stirn, R. J.; Yeh, Y. C. M.

    1975-01-01

    Short-wavelength energy converter can be made using Schottky barrier structure. It has wider band gap than p-n junction silicon semiconductors, and thus it has improved response at wavelengths down to and including ultraviolet region.

  8. Converting acoustic energy into useful other energy forms

    DOEpatents

    Putterman, Seth J.; Barber, Bradley Paul; Hiller, Robert Anthony; Lofstedt, Ritva Maire Johanna

    1997-01-01

    Sonoluminescence is an off-equilibrium phenomenon in which the energy of a resonant sound wave in a liquid is highly concentrated so as to generate flashes of light. The conversion of sound to light represents an energy amplification of eleven orders of magnitude. The flashes which occur once per cycle of the audible or ultrasonic sound fields can be comprised of over one million photons and last for less 100 picoseconds. The emission displays a clocklike synchronicity; the jitter in time between consecutive flashes is less than fifty picoseconds. The emission is blue to the eye and has a broadband spectrum increasing from 700 nanometers to 200 nanometers. The peak power is about 100 milliWatts. The initial stage of the energy focusing is effected by the nonlinear oscillations of a gas bubble trapped in the liquid. For sufficiently high drive pressures an imploding shock wave is launched into the gas by the collapsing bubble. The reflection of the shock from its focal point results in high temperatures and pressures. The sonoluminescence light emission can be sustained by sensing a characteristic of the emission and feeding back changes into the driving mechanism. The liquid is in a sealed container and the seeding of the gas bubble is effected by locally heating the liquid after sealing the container. Different energy forms than light can be obtained from the converted acoustic energy. When the gas contains deuterium and tritium there is the feasibility of the other energy form being fusion, namely including the generation of neutrons.

  9. Moving core beam energy absorber and converter

    DOEpatents

    Degtiarenko, Pavel V.

    2012-12-18

    A method and apparatus for the prevention of overheating of laser or particle beam impact zones through the use of a moving-in-the-coolant-flow arrangement for the energy absorbing core of the device. Moving of the core spreads the energy deposition in it in 1, 2, or 3 dimensions, thus increasing the effective cooling area of the device.

  10. Combustor design tool for a gas fired thermophotovoltaic energy converter

    SciTech Connect

    Lindler, K.W.; Harper, M.J.

    1995-07-01

    Recently, there has been a renewed interest in thermophotovoltaic (TPV) energy conversion. A TPV device converts radiant energy from a high temperature incandescent emitter directly into electricity by photovoltaic cells. The current Department of Energy sponsored research involves the design, construction and demonstration of a prototype TPV converter that uses a hydrocarbon fuel (such as natural gas) as the energy source. As the photovoltaic cells are designed to efficiently convert radiant energy at a prescribed wavelength, it is important that the temperature of the emitter be nearly constant over its entire surface. The US Naval Academy has been tasked with the development of a small emitter (with a high emissivity) that can be maintained at 1,756 K (2,700 F). This paper describes the computer spreadsheet model that was developed as a tool to be used for the design of the high temperature emitter.

  11. Combustor design tool for a gas fired thermophotovoltaic energy converter

    SciTech Connect

    Lindler, K.W.; Harper, M.J.

    1995-12-31

    Recently, there has been a renewed interest in thermophotovoltaic (TPV) energy conversion. A TPV device converts radiant energy from a high temperature incandescent emitter directly into electricity by photovoltaic cells. The current Department of Energy sponsored research involves the design, construction and demonstration of a prototype TPV converter that uses a hydrocarbon fuel (such as natural gas) as the energy source. As the photovoltaic cells are designed to efficiently convert radiant energy at a prescribed wavelength, it is important that the temperature of the emitter be nearly constant over its entire surface. The U. S. Naval Academy has been tasked with the development of a small emitter (with a high emissivity) that can be maintained at 1756 K (2700 F). This paper describes the computer spreadsheet model that was developed as a tool to be used for the design of the high temperature emitter.

  12. Energy Savings Assessment for Digital-to-Analog Converter Boxes

    SciTech Connect

    Cheung, Hoi Ying Iris; Meier, Alan; Brown, Richard

    2011-01-18

    The Digital Television (DTV) Converter Box Coupon Program was administered by the U.S. government to subsidize purchases of digital-to-analog converter boxes, with up to two $40 coupons for each eligible household. In order to qualify as Coupon Eligible Converter Boxes (CECBs), these devices had to meet a number of minimum performance specifications, including energy efficiency standards. The Energy Star Program also established voluntary energy efficiency specifications that are more stringent than the CECB requirements. In this study, we measured the power and energy consumptions for a sample of 12 CECBs (including 6 Energy Star labeled models) in-use in homes and estimated aggregate energy savings produced by the energy efficiency policies. Based on the 35 million coupons redeemed through the end of the program, our analysis indicates that between 2500 and 3700 GWh per year are saved as a result of the energy efficiency policies implemented on digital-to-analog converter boxes. The energy savings generated are equivalent to the annual electricity use of 280,000 average US homes.

  13. Energy harvesting with coupled magnetostrictive resonators

    NASA Astrophysics Data System (ADS)

    Naik, Suketu; Phipps, Alex; In, Visarath; Cavaroc, Peyton; Matus-Vargas, Antonio; Palacios, Antonio; Gonzalez-Hernandez, H. G.

    2014-03-01

    We report the investigation of an energy harvesting system composed of coupled resonators with the magnetostrictive material Galfenol (FeGa). A coupled system of meso-scale (1-10 cm) cantilever beams for harvesting vibration energy is described for powering and aiding the performance of low-power wireless sensor nodes. Galfenol is chosen in this work for its durability, compared to the brittleness often encountered with piezoelectric materials, and high magnetomechanical coupling. A lumped model, which captures both the mechanical and electrical behavior of the individual transducers, is first developed. The values of the lumped element parameters are then derived empirically from fabricated beams in order to compare the model to experimental measurements. The governing equations of the coupled system lead to a system of differential equations with all-to-all coupling between transducers. An analysis of the system equations reveals different patterns of collective oscillations. Among the many different patterns, a synchronous state appears to yield the maximum energy that can be harvested by the system. Experiments on coupled system shows that the coupled system exhibits synchronization and an increment in the output power. Discussion of the required power converters is also included.

  14. Development of a wind converter and investigation of its operational function. Part 1: Technical description of the wind energy converter

    NASA Astrophysics Data System (ADS)

    Molly, J. P.; Steinheber, R.

    1982-11-01

    A 10 kW wind energy converter was developed by using as far possible standard serial production parts. The design criteria and the description of the essential machinery components of the MODA 10 wind energy converter are discussed. For some special load cases the safety calculation of the important components is shown. The blade control system which qualified for small wind energy converters, is explained. Weight and cost of the MODA 10 are considered.

  15. Mode-size converter with high coupling efficiency and broad bandwidth.

    PubMed

    Fang, Qing; Song, Junfeng; Luo, Xianshu; Yu, Mingbin; Lo, Guoqiang; Liu, Yuliang

    2011-10-24

    An ultralow coupling loss and broad bandwidth fiber-to-waveguide mode-size converter is demonstrated for nano-scale waveguides on SOI platform using CMOS technology in this paper. The mode-size converter consists of a cantilevered PECVD SiO(2) waveguide and a-Si nano-tapers by removing the adjacent SiO(2) layer and underlying substrate Si. The a-Si waveguide is located at the center of the cantilevered SiO(2) waveguide. We characterized the cantilevered mode-size converter using cleaved optical single mode fiber with 10.5 µm mode field diameter. With refractive index (1.375) matching oil, the measured coupling efficiencies between the cleaved optical fiber and this converter are higher than 80% per facet and 70% per facet for TE and TM modes at 1600 nm, respectively. The polarization dependent loss and the coupling loss variation of this converter are less than 1.0 dB at the wavelength range of 1520~1640 nm. The 1-dB bandwidths for both TE and TM modes are more than 120 nm. The alignment tolerances for TE and TM modes are ± 2.8 µm and ± 2.1 µm at 1-dB excess loss in horizontal direction and vertical direction, respectively. PMID:22109007

  16. Microbial fuel cell energy harvesting using synchronous flyback converter

    NASA Astrophysics Data System (ADS)

    Alaraj, Muhannad; Ren, Zhiyong Jason; Park, Jae-Do

    2014-02-01

    Microbial Fuel Cells (MFCs) use biodegradable substrates, such as wastewater and marine sediments to generate electrical energy. To harvest more energy from an MFC, power electronic converters have recently been used to replace resistors or charge pumps, because they have superior controllability on MFC's operating point and higher efficiency in energy storage for different applications. Conventional diode-based energy harvesters suffer from low efficiency because of the energy losses through the diode. Replacing the diode with a MOSFET can reduce the conduction loss, but it requires an isolated gate signal to control the floating secondary MOSFET, which makes the control circuitry complex. This study presents a new MFC energy harvesting regime using a synchronous flyback converter, which implements a transformer-based harvester with much simpler configuration and improves harvesting efficiency by 37.6% compared to a diode based boost converter, from 33.5% to 46.1%. The proposed harvester was able to store 2.27 J in the output capacitor out of 4.91 J generated energy from the MFC, while the boost converter can capture 1.67 J from 4.95 J.

  17. Converting energy to medical progress [nuclear medicine

    SciTech Connect

    2001-04-01

    For over 50 years the Office of Biological and Environmental Research (BER) of the United States Department of Energy (DOE) has been investing to advance environmental and biomedical knowledge connected to energy. The BER Medical Sciences program fosters research to develop beneficial applications of nuclear technologies for medical diagnosis and treatment of many diseases. Today, nuclear medicine helps millions of patients annually in the United States. Nearly every nuclear medicine scan or test used today was made possible by past BER-funded research on radiotracers, radiation detection devices, gamma cameras, PET and SPECT scanners, and computer science. The heart of biological research within BER has always been the pursuit of improved human health. The nuclear medicine of tomorrow will depend greatly on today's BER-supported research, particularly in the discovery of radiopharmaceuticals that seek specific molecular and genetic targets, the design of advanced scanners needed to create meaningful images with these future radiotracers, and the promise of new radiopharmaceutical treatments for cancers and genetic diseases.

  18. Converting Energy to Medical Progress [Nuclear Medicine

    DOE R&D Accomplishments Database

    2001-04-01

    For over 50 years the Office of Biological and Environmental Research (BER) of the United States Department of Energy (DOE) has been investing to advance environmental and biomedical knowledge connected to energy. The BER Medical Sciences program fosters research to develop beneficial applications of nuclear technologies for medical diagnosis and treatment of many diseases. Today, nuclear medicine helps millions of patients annually in the United States. Nearly every nuclear medicine scan or test used today was made possible by past BER-funded research on radiotracers, radiation detection devices, gamma cameras, PET and SPECT scanners, and computer science. The heart of biological research within BER has always been the pursuit of improved human health. The nuclear medicine of tomorrow will depend greatly on today's BER-supported research, particularly in the discovery of radiopharmaceuticals that seek specific molecular and genetic targets, the design of advanced scanners needed to create meaningful images with these future radiotracers, and the promise of new radiopharmaceutical treatments for cancers and genetic diseases.

  19. Integrated diffractive optical mode converter for fiber-to-waveguide coupling

    NASA Astrophysics Data System (ADS)

    Lu, Si; Yan, Ying-Bai; Yi, De-Er; Jin, Guo-Fan; Wu, Min-Xian

    2003-07-01

    An integrated diffractive optical mode converter, which can be integrated into planar lightwave circuits (PLCs), consisting of a diffractive optical element (DOE) and a slab waveguide is presented for fiber-to-waveguide coupling. The DOE is designed using iterative phase retrieval algorithm. In the iterative algorithm, we introduce a new modification of far-field amplitude constraint to provide very high mode conversion quality. Compared with previously published mode converters, the scheme is more universal because it is applicable for any waveguide structure. In simulation, coupling losses lower than 0.12 dB have been reached for all the discussed waveguides. The converter is shown to be polarization-insensitive and applicable in multi-wavelength PLCs. And the tolerance on axis misalignment has been investigated.

  20. Ground energy coupling

    NASA Astrophysics Data System (ADS)

    Metz, P. D.

    The feasibility of ground coupling for various heat pump systems was investigated. Analytical heat flow models were developed to approximate design ground coupling devices for use in solar heat pump space conditioning systems. A digital computer program called GROCS (GRound Coupled Systems) was written to model 3-dimensional underground heat flow in order to simulate the behavior of ground coupling experiments and to provide performance predictions which have been compared to experimental results. GROCS also has been integrated with TRNSYS. Soil thermal property and ground coupling device experiments are described. Buried tanks, serpentine earth coils in various configurations, lengths and depths, and sealed vertical wells are being investigated. An earth coil used to heat a house without use of resistance heating is described.

  1. Novel spot size converter for coupling standard single mode fibers to SOI waveguides

    NASA Astrophysics Data System (ADS)

    Sisto, Marco Michele; Fisette, Bruno; Paultre, Jacques-Edmond; Paquet, Alex; Desroches, Yan

    2016-03-01

    We have designed and numerically simulated a novel spot size converter for coupling standard single mode fibers with 10.4μm mode field diameter to 500nm × 220nm SOI waveguides. Simulations based on the eigenmode expansion method show a coupling loss of 0.4dB at 1550nm for the TE mode at perfect alignment. The alignment tolerance on the plane normal to the fiber axis is evaluated at +/-2.2μm for <=1dB excess loss, which is comparable to the alignment tolerance between two butt-coupled standard single mode fibers. The converter is based on a cross-like arrangement of SiOxNy waveguides immersed in a 12μm-thick SiO2 cladding region deposited on top of the SOI chip. The waveguides are designed to collectively support a single degenerate mode for TE and TM polarizations. This guided mode features a large overlap to the LP01 mode of standard telecom fibers. Along the spot size converter length (450μm), the mode is first gradually confined in a single SiOxNy waveguide by tapering its width. Then, the mode is adiabatically coupled to a SOI waveguide underneath the structure through a SOI inverted taper. The shapes of SiOxNy and SOI tapers are optimized to minimize coupling loss and structure length, and to ensure adiabatic mode evolution along the structure, thus improving the design robustness to fabrication process errors. A tolerance analysis based on conservative microfabrication capabilities suggests that coupling loss penalty from fabrication errors can be maintained below 0.3dB. The proposed spot size converter is fully compliant to industry standard microfabrication processes available at INO.

  2. Rectenna that converts infrared radiation to electrical energy

    DOEpatents

    Davids, Paul; Peters, David W.

    2016-09-06

    Technologies pertaining to converting infrared (IR) radiation to DC energy are described herein. In a general embodiment, a rectenna comprises a conductive layer. A thin insulator layer is formed on the conductive layer, and a nanoantenna is formed on the thin insulator layer. The thin insulator layer acts as a tunnel junction of a tunnel diode.

  3. Finite element analysis of combined magnetoelectric- electrodynamic vibration energy converter

    NASA Astrophysics Data System (ADS)

    Bradai, Sonia; Naifar, Slim; Kanoun, Olfa

    2015-12-01

    In this paper we report on the design and optimization of a novel combined vibration energy harvester based on the use of electrodynamic and magnetoelectric (ME) principles to increase the energy outcome of an electrodynamic harvester without significantly increasing its size. Thereby the most important aspect is the dependence of magnetic flux variation on design parameters, as is it is the decisive effect for energy conversion. Magnetic circuit form and magnetization are optimized for maximizing energy outcome. We conclude that better magnetic flux variation is reached for a magnetic circuit formed with two magnets stacked one within the other using the same magnetization. Results illustrate that the use of combined converter enables to enhance the performance of simple electrodynamic or ME converter.

  4. Real-time Ocean Wave Prediction for Optimal Performance of a Wave Energy Converter

    NASA Astrophysics Data System (ADS)

    Cavaglieri, Daniele; Bewley, Thomas

    2013-11-01

    In recent years, there has been a growing interest in renewable energy. Among all the available possibilities, wave energy conversion, due to the huge availability of energy that the ocean could provide, represents nowadays one of the most promising solutions. However, the efficiency of a wave energy converter for ocean wave energy harvesting is still far from making it competitive with more mature fields of renewable energy, such as solar and wind energy. One of the main problems is related to the inability to accurately predict the profile of oncoming waves approaching the wave energy converter. For this reason, we developed a new hybrid method for state estimation of nonlinear systems, which is based on a variational formulation of an ensemble smoother, combined with the formulation of the ensemble Kalman smoother. This method has been employed for the optimal forecasting of ocean waves via sensors placed on an array of wave energy converters. The coupled simulation of ocean waves and energy devices has been carried out leveraging a nonlinear High Order Spectral code.

  5. Tapered acoustical directional couplers for integrated acousto-optical mode converters with weighted coupling

    NASA Astrophysics Data System (ADS)

    Herrmann, Harald; Rust, Ulrich; Schafer, Klaus

    1995-03-01

    Weighted coupling for strong sidelobe suppression of integrated acoustooptical mode converters in LiNbO3 using acoustical directional couplers has been studied theoretically and experimentally. A parameter free model for the propagation of surface acoustic waves in guiding structures has been developed based on a step-like variation of the acoustic velocity. Comparisons of theoretical results with experimental ones for acoustic waveguides and directional coupler structures confirm the applicability of the model. A coupled mode description of the acousto-optical polarization conversion in converters with acoustical directional couplers has been developed and applied to several tapered acoustical directional couplers. The model reveals that the conversion characteristics are usually strongly asymmetric. If the directional coupler is appropriately designed, a sidelobe suppression of about 30 dB can be achieved. First experimental results with tapered directional couplers confirm within some limits the theoretical predictions.

  6. A programmable transformer coupled converter for high-power space applications

    NASA Technical Reports Server (NTRS)

    Kapustka, R. E.; Bush, J. R., Jr.; Graves, J. R.; Lanier, J. R., Jr.

    1986-01-01

    A programmable transformer coupled converter (PTCC) is being developed by NASA/Marshall Space Flight Center for application in future large space power systems. The PTCC uses an internal microprocessor to control the output characteristics of its three Cuk integrated magnetics type power stages which have a combined capability of 5.4 kW (30 V at 180 A). Details of design trade-offs and test results are presented.

  7. Aiding Design of Wave Energy Converters via Computational Simulations

    NASA Astrophysics Data System (ADS)

    Jebeli Aqdam, Hejar; Ahmadi, Babak; Raessi, Mehdi; Tootkaboni, Mazdak

    2015-11-01

    With the increasing interest in renewable energy sources, wave energy converters will continue to gain attention as a viable alternative to current electricity production methods. It is therefore crucial to develop computational tools for the design and analysis of wave energy converters. A successful design requires balance between the design performance and cost. Here an analytical solution is used for the approximate analysis of interactions between a flap-type wave energy converter (WEC) and waves. The method is verified using other flow solvers and experimental test cases. Then the model is used in conjunction with a powerful heuristic optimization engine, Charged System Search (CSS) to explore the WEC design space. CSS is inspired by charged particles behavior. It searches the design space by considering candidate answers as charged particles and moving them based on the Coulomb's laws of electrostatics and Newton's laws of motion to find the global optimum. Finally the impacts of changes in different design parameters on the power takeout of the superior WEC designs are investigated. National Science Foundation, CBET-1236462.

  8. Maximum wind energy extraction strategies using power electronic converters

    NASA Astrophysics Data System (ADS)

    Wang, Quincy Qing

    2003-10-01

    This thesis focuses on maximum wind energy extraction strategies for achieving the highest energy output of variable speed wind turbine power generation systems. Power electronic converters and controls provide the basic platform to accomplish the research of this thesis in both hardware and software aspects. In order to send wind energy to a utility grid, a variable speed wind turbine requires a power electronic converter to convert a variable voltage variable frequency source into a fixed voltage fixed frequency supply. Generic single-phase and three-phase converter topologies, converter control methods for wind power generation, as well as the developed direct drive generator, are introduced in the thesis for establishing variable-speed wind energy conversion systems. Variable speed wind power generation system modeling and simulation are essential methods both for understanding the system behavior and for developing advanced system control strategies. Wind generation system components, including wind turbine, 1-phase IGBT inverter, 3-phase IGBT inverter, synchronous generator, and rectifier, are modeled in this thesis using MATLAB/SIMULINK. The simulation results have been verified by a commercial simulation software package, PSIM, and confirmed by field test results. Since the dynamic time constants for these individual models are much different, a creative approach has also been developed in this thesis to combine these models for entire wind power generation system simulation. An advanced maximum wind energy extraction strategy relies not only on proper system hardware design, but also on sophisticated software control algorithms. Based on literature review and computer simulation on wind turbine control algorithms, an intelligent maximum wind energy extraction control algorithm is proposed in this thesis. This algorithm has a unique on-line adaptation and optimization capability, which is able to achieve maximum wind energy conversion efficiency through

  9. Trimode Power Converter optimizes PV, diesel and battery energy sources

    SciTech Connect

    O`Sullivan, G.; Bonn, R.; Bower, W.

    1994-07-01

    Conservatively, there are 100,000 localities in the world waiting for the benefits that electricity can provide, and many of these are in climates where sunshine is plentiful. With these locations in mind a prototype 30 kW hybrid system has been assembled at Sandia to prove the reliability and economics of photovoltaic, diesel and battery energy sources managed by an autonomous power converter. In the Trimode Power Converter the same power parts, four IGBT`s with an isolation transformer and filter components, serve as rectifier and charger to charge the battery from the diesel; as a stand-alone inverter to convert PV and battery energy to AC; and, as a parallel inverter with the diesel-generator to accommodate loads larger than the rating of the diesel. Whenever the diesel is supplying the load, an algorithm assures that the diesel is running at maximum efficiency by regulating the battery charger operating point. Given the profile of anticipated solar energy, the cost of transporting diesel fuel to a remote location and a five year projection of load demand, a method to size the PV array, battery and diesel for least cost is developed.

  10. Method for converting one form of energy into another form of energy

    SciTech Connect

    Anno, J.N.; Fawcett, S.L.

    1983-05-31

    Method for converting one form of energy into another form of energy by isobarically heating a gas, adiabatically expanding the gas while converting the heat energy of the gas into the kinetic energy of a moving body, converting the kinetic energy of the moving body into another form of energy, and approximately isothermally compressing the gas to a higher pressure. Improved efficiency is achieved by virtue of the fact that this system employs approximately isothermal compression, which is preferably achieved by injecting liquid into an adiabatically-expanded gas, thereby effecting a thermodynamic cycle which more closely approximates the efficiency of a carnot cycle.

  11. Single stage AC-DC converter for Galfenol-based micro-power energy harvesters

    NASA Astrophysics Data System (ADS)

    Cavaroc, Peyton; Curtis, Chandra; Naik, Suketu; Cooper, James

    2014-06-01

    Military based sensor systems are often hindered in operational deployment and/or other capabilities due to limitations in their energy storage elements. Typically operating from lithium based batteries, there is a finite amount of stored energy which the sensor can use to collect and transmit data. As a result, the sensors have reduced sensing and transmission rates. However, coupled with the latest advancements in energy harvesting, these sensors could potentially operate at standard sensing and transition rates as well as dramatically extend lifetimes. Working with the magnetostrictive material Galfenol, we demonstrate the production of enough energy to supplement and recharge a solid state battery thereby overcoming the deficiencies faced by unattended sensors. As with any vibration-based energy harvester, this solution produces an alternating current which needs to be rectified and boosted to a level conducive to recharge the storage element. This paper presents a power converter capable of efficiently converting an ultra-low AC voltage to a solid state charging voltage of 4.1VDC. While we are working with Galfenol transducers as our energy source, this converter may also be applied with any AC producing energy harvester, particularly at operating levels less than 2mW and 200mVAC.

  12. The TELEC - A plasma type of direct energy converter. [Thermo-Electronic Laser Energy Converter for electric power generation

    NASA Technical Reports Server (NTRS)

    Britt, E. J.

    1978-01-01

    The Thermo-Electronic Laser Energy Converter (TELEC) is a high-power density plasma device designed to convert a 10.6-micron CO2 laser beam into electric power. Electromagnetic radiation is absorbed in plasma electrons, creating a high-electron temperature. Energetic electrons diffuse from the plasma and strike two electrodes having different areas. The larger electrode collects more electrons and there is a net transport of current. An electromagnetic field is generated in the external circuit. A computer program has been designed to analyze TELEC performance allowing parametric variation for optimization. Values are presented for TELEC performance as a function of cesium pressure and for current density and efficiency as a function of output voltage. Efficiency is shown to increase with pressure, reaching a maximum over 45%.

  13. Reference Model 6 (RM6): Oscillating Wave Energy Converter.

    SciTech Connect

    Bull, Diana L; Smith, Chris; Jenne, Dale Scott; Jacob, Paul; Copping, Andrea; Willits, Steve; Fontaine, Arnold; Brefort, Dorian; Gordon, Margaret Ellen; Copeland, Robert; Jepsen, Richard Alan

    2014-10-01

    This report is an addendum to SAND2013-9040: Methodology for Design and Economic Analysis of Marine Energy Conversion (MEC) Technologies. This report describes an Oscillating Water Column Wave Energy Converter reference model design in a complementary manner to Reference Models 1-4 contained in the above report. In this report, a conceptual design for an Oscillating Water Column Wave Energy Converter (WEC) device appropriate for the modeled reference resource site was identified, and a detailed backward bent duct buoy (BBDB) device design was developed using a combination of numerical modeling tools and scaled physical models. Our team used the methodology in SAND2013-9040 for the economic analysis that included costs for designing, manufacturing, deploying, and operating commercial-scale MEC arrays, up to 100 devices. The methodology was applied to identify key cost drivers and to estimate levelized cost of energy (LCOE) for this RM6 Oscillating Water Column device in dollars per kilowatt-hour ($/kWh). Although many costs were difficult to estimate at this time due to the lack of operational experience, the main contribution of this work was to disseminate a detailed set of methodologies and models that allow for an initial cost analysis of this emerging technology. This project is sponsored by the U.S. Department of Energy's (DOE) Wind and Water Power Technologies Program Office (WWPTO), within the Office of Energy Efficiency & Renewable Energy (EERE). Sandia National Laboratories, the lead in this effort, collaborated with partners from National Laboratories, industry, and universities to design and test this reference model.

  14. Low Head, Vortex Induced Vibrations River Energy Converter

    SciTech Connect

    Bernitsas, Michael B.; Dritz, Tad

    2006-06-30

    Vortex Induced Vibrations Aquatic Clean Energy (VIVACE) is a novel, demonstrated approach to extracting energy from water currents. This invention is based on a phenomenon called Vortex Induced Vibrations (VIV), which was first observed by Leonardo da Vinci in 1504AD. He called it ‘Aeolian Tones.’ For decades, engineers have attempted to prevent this type of vibration from damaging structures, such as offshore platforms, nuclear fuel rods, cables, buildings, and bridges. The underlying concept of the VIVACE Converter is the following: Strengthen rather than spoil vortex shedding; enhance rather than suppress VIV; harness rather than mitigate VIV energy. By maximizing and utilizing this unique phenomenon, VIVACE takes this “problem” and successfully transforms it into a valuable resource for mankind.

  15. Heterobarrier for converting hot-phonon energy to electric potential

    NASA Astrophysics Data System (ADS)

    Shin, Seungha; Melnick, Corey; Kaviany, Massoud

    2013-02-01

    We show that hot phonons emitted in energy conversion or resistive processes can be converted to electric potential in heterobarrier structures. Using phonon and electron interaction kinetics and self-consistent ensemble Monte Carlo, we find the favorable conditions for unassisted absorption of hot phonons and design graded heterobarriers for their direct conversion into electric energy. Tandem barriers with nearly optical-phonon height allow for substantial potential gain without current loss. We find that 19% of hot phonons can be harvested with an optimized GaAs/AlxGa1-xAs barrier structure over a range of current and electron densities, thus enhancing the overall energy conversion efficiency and reducing waste heat.

  16. Reference Model 5 (RM5): Oscillating Surge Wave Energy Converter

    SciTech Connect

    Yu, Y. H.; Jenne, D. S.; Thresher, R.; Copping, A.; Geerlofs, S.; Hanna, L. A.

    2015-01-01

    This report is an addendum to SAND2013-9040: Methodology for Design and Economic Analysis of Marine Energy Conversion (MEC) Technologies. This report describes an Oscillating Water Column Wave Energy Converter (OSWEC) reference model design in a complementary manner to Reference Models 1-4 contained in the above report. A conceptual design for a taut moored oscillating surge wave energy converter was developed. The design had an annual electrical power of 108 kilowatts (kW), rated power of 360 kW, and intended deployment at water depths between 50 m and 100 m. The study includes structural analysis, power output estimation, a hydraulic power conversion chain system, and mooring designs. The results were used to estimate device capital cost and annual operation and maintenance costs. The device performance and costs were used for the economic analysis, following the methodology presented in SAND2013-9040 that included costs for designing, manufacturing, deploying, and operating commercial-scale MEC arrays up to 100 devices. The levelized cost of energy estimated for the Reference Model 5 OSWEC, presented in this report, was for a single device and arrays of 10, 50, and 100 units, and it enabled the economic analysis to account for cost reductions associated with economies of scale. The baseline commercial levelized cost of energy estimate for the Reference Model 5 device in an array comprised of 10 units is $1.44/kilowatt-hour (kWh), and the value drops to approximately $0.69/kWh for an array of 100 units.

  17. Point-Force Energy Coupling

    NASA Astrophysics Data System (ADS)

    Burton, Tristan; Squires, Kyle

    2005-11-01

    Fully resolved simulations of particle-laden turbulent flows are computationally expensive even with a single particle. Therefore, simulations of flows with realistic numbers of particles typically treat the disperse phase as point-particles and models are used to account for the interaction between the phases. The particle trajectories are determined using a Lagrangian particle equation of motion that accounts for the fluid forces. The effect of the particulate phase on the fluid is included using point-force momentum coupling, where the opposite of the force applied to each particle by the fluid is distributed back to fluid grid points in a local region. In this work, we perform direct numerical simulation (DNS) of a particle moving at a prescribed constant or time-dependent velocity through a stationary fluid, and use the resulting force history in a corresponding point-force simulation to study point-force energy coupling. The energy input from the moving particle and the fluid dissipation in the DNS are compared to corresponding quantities in the unresolved calculation. A range of particle Reynolds numbers and ratios of the particle diameter to the unresolved grid spacing are considered to determine the conditions under which point-force momentum coupling provides accurate energy coupling.

  18. Standing wave tube electro active polymer wave energy converter

    NASA Astrophysics Data System (ADS)

    Jean, Philippe; Wattez, Ambroise; Ardoise, Guillaume; Melis, C.; Van Kessel, R.; Fourmon, A.; Barrabino, E.; Heemskerk, J.; Queau, J. P.

    2012-04-01

    Over the past 4 years SBM has developed a revolutionary Wave Energy Converter (WEC): the S3. Floating under the ocean surface, the S3 amplifies pressure waves similarly to a Ruben's tube. Only made of elastomers, the system is entirely flexible, environmentally friendly and silent. Thanks to a multimodal resonant behavior, the S3 is capable of efficiently harvesting wave energy from a wide range of wave periods, naturally smoothing the irregularities of ocean wave amplitudes and periods. In the S3 system, Electro Active Polymer (EAP) generators are distributed along an elastomeric tube over several wave lengths, they convert wave induced deformations directly into electricity. The output is high voltage multiphase Direct Current with low ripple. Unlike other conventional WECs, the S3 requires no maintenance of moving parts. The conception and operating principle will eventually lead to a reduction of both CAPEX and OPEX. By integrating EAP generators into a small scale S3, SBM achieved a world first: direct conversion of wave energy in electricity with a moored flexible submerged EAP WEC in a wave tank test. Through an extensive testing program on large scale EAP generators, SBM identified challenges in scaling up to a utility grid device. French Government supports the consortium consisting of SBM, IFREMER and ECN in their efforts to deploy a full scale prototype at the SEMREV test center in France at the horizon 2014-2015. SBM will be seeking strategic as well as financial partners to unleash the true potentials of the S3 Standing Wave Tube Electro Active Polymer WEC.

  19. Neural rotational speed control for wave energy converters

    NASA Astrophysics Data System (ADS)

    Amundarain, M.; Alberdi, M.; Garrido, A. J.; Garrido, I.

    2011-02-01

    Among the benefits arising from an increasing use of renewable energy are: enhanced security of energy supply, stimulation of economic growth, job creation and protection of the environment. In this context, this study analyses the performance of an oscillating water column device for wave energy conversion in function of the stalling behaviour in Wells turbines, one of the most widely used turbines in wave energy plants. For this purpose, a model of neural rotational speed control system is presented, simulated and implemented. This scheme is employed to appropriately adapt the speed of the doubly-fed induction generator coupled to the turbine according to the pressure drop entry, so as to avoid the undesired stalling behaviour. It is demonstrated that the proposed neural rotational speed control design adequately matches the desired relationship between the slip of the doubly-fed induction generator and the pressure drop input, improving the power generated by the turbine generator module.

  20. Modular DC-DC converter system for energy harvesting with EAPs

    NASA Astrophysics Data System (ADS)

    Eitzen, L.; Graf, C.; Maas, J.

    2013-04-01

    Energy harvesting with EAPs requires an energy-efficient power electronics providing a bidirectional energy transfer and operating voltages of up to several kilovolts. A possibility to achieve a high energy-efficiency for high voltage conversion is the use of a modular converter system consisting of several bidirectional converter modules, which are connected in series on the converter output side and in parallel at the input side. Since each converter stage provides only a part of the overall converter output voltage, the converter module output voltages can effectively be reduced by choosing the number of cascaded converter modules appropriately. This allows the use of standard semiconductor switches with superior electrical characteristics compared to high voltage semiconductors, enabling a high energy-efficiency and smaller passive components. Since EAP devices exhibit a mainly capacitive behavior and a limitation of the operating current is required for electrode protection, the utilized converter structure/topology has to be operated as a controllable current source on the lowest control level, which is achieved by operating the converter modules of the modular converter system with a subordinate closed-looped current control scheme. In order to avoid voltage unbalances among the single converter modules, a method for voltage balancing is presented. For validation, experimental results of a realized bidirectional flyback converter prototype are presented and discussed.

  1. Voltage Fluctuation to Current Converter with Coulomb-Coupled Quantum Dots

    NASA Astrophysics Data System (ADS)

    Hartmann, F.; Pfeffer, P.; Höfling, S.; Kamp, M.; Worschech, L.

    2015-04-01

    We study the rectification of voltage fluctuations in a system consisting of two Coulomb-coupled quantum dots. The first quantum dot is connected to a reservoir where voltage fluctuations are supplied and the second one is attached to two separate leads via asymmetric and energy-dependent transport barriers. We observe a rectified output current through the second quantum dot depending quadratically on the noise amplitude supplied to the other Coulomb-coupled quantum dot. The current magnitude and direction can be switched by external gates, and maximum output currents are found in the nA region. The rectification delivers output powers in the pW region. Future devices derived from our sample may be applied for energy harvesting on the nanoscale beneficial for autonomous and energy-efficient electronic applications.

  2. A High Efficiency Boost Converter with MPPT Scheme for Low Voltage Thermoelectric Energy Harvesting

    NASA Astrophysics Data System (ADS)

    Guan, Mingjie; Wang, Kunpeng; Zhu, Qingyuan; Liao, Wei-Hsin

    2016-07-01

    Using thermoelectric elements to harvest energy from heat has been of great interest during the last decade. This paper presents a direct current-direct current (DC-DC) boost converter with a maximum power point tracking (MPPT) scheme for low input voltage thermoelectric energy harvesting applications. Zero current switch technique is applied in the proposed MPPT scheme. Theoretical analysis on the converter circuits is explored to derive the equations for parameters needed in the design of the boost converter. Simulations and experiments are carried out to verify the theoretical analysis and equations. A prototype of the designed converter is built using discrete components and a low-power microcontroller. The results show that the designed converter can achieve a high efficiency at low input voltage. The experimental efficiency of the designed converter is compared with a commercial converter solution. It is shown that the designed converter has a higher efficiency than the commercial solution in the considered voltage range.

  3. Optimal geometry of an axisymmetric wave energy converter

    NASA Astrophysics Data System (ADS)

    Edwards, Emma; Yue, Dick K. P.; Vortical Flow Research Laboratory Team

    2015-11-01

    There have been a number of theoretical, experimental and pilot-scale studies on wave energy converters with varying shapes and designs, but due to the complex nature of wave-body hydrodynamics, as yet there is not one single three-dimensional shape that is agreed-upon to be optimal for wave power extraction. Our objective is to determine the optimal geometry to maximize power uptake over a spectrum of incident waves. As an initial investigation, we consider an axisymmetric floating wave power extraction device operating in heave. We assume linear wave conditions. The body geometry is described by smooth polynomial basis functions and is allowed to be completely general, subject to simple constraints. We consider a linear power uptake with a fixed damping coefficient (which could be optimized). For each frequency in the spectrum, hydrodynamic coefficients are calculated using a linear frequency-domain panel method. Then, for a specific incident wave spectrum, maximal extractable power is integrated over the entire spectrum. We will discuss the optimal geometry and associated maximum power for different geometrical constraints and wave conditions.

  4. Middle atmosphere electrical energy coupling

    NASA Technical Reports Server (NTRS)

    Hale, L. C.

    1989-01-01

    The middle atmosphere (MA) has long been known as an absorber of radio waves, and as a region of nonlinear interactions among waves. The region of highest transverse conductivity near the top of the MA provides a common return for global thunderstorm, auroral Birkeland, and ionospheric dynamo currents, with possibilities for coupling among them. Their associated fields and other transverse fields map to lower altitudes depending on scale size. Evidence now exists for motion-driven aerosol generators, and for charge trapped at the base of magnetic field lines, both capable of producing large MA electric fields. Ionospheric Maxwell currents (curl H) parallel to the magnetic field appear to map to lower altitudes, with rapidly time-varying components appearing as displacement currents in the stratosphere. Lightning couples a (primarily ELF and ULF) current transient to the ionosphere and magnetosphere whose wave shape is largely dependent on the MA conductivity profile. Electrical energy is of direct significance mainly in the upper MA, but electrodynamic transport of minor constituents such as smoke particles or CN may be important at other altitudes.

  5. Energy coupling between the solar wind and the magnetosphere

    NASA Technical Reports Server (NTRS)

    Akasofu, S.-I.

    1981-01-01

    A description is given of the path leading to the first approximation expression for the solar wind-magnetosphere energy coupling function (epsilon), which correlates well with the total energy consumption rate (U sub T) of the magnetosphere. It is shown that epsilon is the primary factor controlling the time development of magnetospheric substorms and storms. The finding of this particular expression epsilon indicates how the solar wind couples its energy to the magnetosphere; the solar wind and the magnetosphere make up a dynamo. In fact, the power generated by the dynamo can be identified as epsilon through the use of a dimensional analysis. In addition, the finding of epsilon suggests that the magnetosphere is closer to a directly driven system than to an unloading system which stores the generated energy before converting it to substorm and storm energies. The finding of epsilon and its implications is considered to have significantly advanced and improved the understanding of magnetospheric processes.

  6. Energy Extraction from a Slider-Crank Wave Energy Converter under Irregular Wave Conditions

    SciTech Connect

    Sang, Yuanrui; Karayaka, H. Bora; Yan, Yanjun; Zhang, James Z.; Muljadi, Eduard; Yu, Yi-Hsiang

    2015-10-19

    A slider-crank wave energy converter (WEC) is a novel energy conversion device. It converts wave energy into electricity at a relatively high efficiency, and it features a simple structure. Past analysis on this particular WEC has been done under regular sinusoidal wave conditions, and suboptimal energy could be achieved. This paper presents the analysis of the system under irregular wave conditions; a time-domain hydrodynamics model is adopted and a rule-based control methodology is introduced to better serve the irregular wave conditions. Results from the simulations show that the performance of the system under irregular wave conditions is different from that under regular sinusoidal wave conditions, but a reasonable amount of energy can still be extracted.

  7. Experimental studies and computer simulation of the control of energy transfer using inductor-converter bridges

    SciTech Connect

    Hirano, M.; Kustom, R.L.

    1984-03-01

    An inductor-converter bridge (ICB) is a solid state DC-AC-DC power converter system for bidirectional, controllable, energy transfer between two coils. The ICB is suitable for supplying large pulsed power to such magnets as the superconducting equilibrium field coil of the proposed tokamak power reactors from another superconducting energy storage coil.

  8. Mathematical modeling of a photovoltaic-laser energy converter for iodine laser radiation

    NASA Technical Reports Server (NTRS)

    Walker, Gilbert H.; Heinbockel, John H.

    1987-01-01

    Space-based laser power systems will require converters to change laser radiation into electricity. Vertical junction photovoltaic converters are promising devices for this use. A promising laser for the laser power station is the t-C4F9I laser which emits radiation at a wavelength of 1.315 microns. This paper describes the results of mathematical modeling of a photovoltaic-laser energy converter for use with this laser. The material for this photovoltaic converter is Ga(53)In(47)As which has a bandgap energy of 0.94 eV, slightly below the energy of the laser photons (0.943 eV). Results of a study optimizing the converter parameters are presented. Calculated efficiency for a 1000 vertical junction converter is 42.5 percent at a power density of 1 x 10 to the 3d power w/sq cm.

  9. Coupled Fluid Energy Solute Transport

    Energy Science and Technology Software Center (ESTSC)

    1992-02-13

    CFEST is a Coupled Fluid, Energy, and Solute Transport code for the study of a multilayered, nonisothermal ground-water system. It can model discontinuous as well as continuous layers, time-dependent and constant source/sinks, and transient as well as steady-state flow. The finite element method is used for analyzing isothermal and nonisothermal events in a confined aquifer system. Only single-phase Darcian flow is considered. In the Cartesian coordinate system, flow in a horizontal plane, in a verticalmore » plane, or in a fully three-dimensional region can be simulated. An option also exists for the axisymmetric analysis of a vertical cross section. The code employs bilinear quadrilateral elements in all two dimensional analyses and trilinear quadrilateral solid elements in three dimensional simulations. The CFEST finite element formulation can approximate discontinuities, major breaks in slope or thickness, and fault zones in individual hydrogeologic units. The code accounts for heterogeneity in aquifer permeability and porosity and accommodates anisotropy (collinear with the Cartesian coordinates). The variation in the hydraulic properties is described on a layer-by-layer basis for the different hydrogeologic units. Initial conditions can be prescribed hydraulic head or pressure, temperature, or concentration. CFEST can be used to support site, repository, and waste package subsystem assessments. Some specific applications are regional hydrologic characterization; simulation of coupled transport of fluid, heat, and salinity in the repository region; consequence assessment due to natural disruption or human intrusion scenarios in the repository region; flow paths and travel-time estimates for transport of radionuclides; and interpretation of well and tracer tests.« less

  10. Comparison between phase-shift full-bridge converters with noncoupled and coupled current-doubler rectifier.

    PubMed

    Tsai, Cheng-Tao; Su, Jye-Chau; Tseng, Sheng-Yu

    2013-01-01

    This paper presents comparison between phase-shift full-bridge converters with noncoupled and coupled current-doubler rectifier. In high current capability and high step-down voltage conversion, a phase-shift full-bridge converter with a conventional current-doubler rectifier has the common limitations of extremely low duty ratio and high component stresses. To overcome these limitations, a phase-shift full-bridge converter with a noncoupled current-doubler rectifier (NCDR) or a coupled current-doubler rectifier (CCDR) is, respectively, proposed and implemented. In this study, performance analysis and efficiency obtained from a 500 W phase-shift full-bridge converter with two improved current-doubler rectifiers are presented and compared. From their prototypes, experimental results have verified that the phase-shift full-bridge converter with NCDR has optimal duty ratio, lower component stresses, and output current ripple. In component count and efficiency comparison, CCDR has fewer components and higher efficiency at full load condition. For small size and high efficiency requirements, CCDR is relatively suitable for high step-down voltage and high efficiency applications. PMID:24381521

  11. Thermal reliability and performance improvement of close-coupled catalytic converter

    SciTech Connect

    Hijikata, Toshihiko; Kurachi, Hiroshi; Katsube, Fumio; Honacker, H. van

    1996-09-01

    This paper proposes a high temperature catalytic converter design using a ceramic substrate and intumescent matting. It also describes the improvement of converter performance using an advanced thin wall ceramic substrate. Due to future tightening of emission regulations and improvement of fuel economy, higher exhaust gas temperatures are suggested. Therefore, reduction of thermal reliability of an intumescent mat will be a concern because the catalytic converter will be exposed to high temperatures. For this reason, a new design converter has been developed using a dual cone structure for both the inlet and outlet cones. This minimizes heat conduction through the cone and decreases the temperature affecting the mat area. This design converter, without the use of a heat-shield, reduces the converter surface temperature to 441 C despite a catalyst bed temperature of 1,050 C. The long term durability of the converter is demonstrated by the hot vibration test. Since the new design converter does not need a heat-shield, the catalyst diameter can be enlarged by the width of the air gap used in the current design converter. By using an advanced thin wall ceramic substrate, such as 0.11 mm/620 kcpsm (4 mil/400 cpsi), it is possible to improve emission performance and pressure drop compared with the conventional 0.16 mm/620 kcpsm (6 mil/400 cpsi) ceramic substrate.

  12. Solar energy converter employing a fluorescent wavelength shifter

    SciTech Connect

    Garlick, G.F.J.

    1986-04-22

    A solar converter is described which consists of: (a) a zinc selenide fluorescent wavelength shifter including a fluorescent zinc selenide substrate having anti-reflecting coatings on opposite sides thereof and operative to convert predetermined wavelengths of solar radiation to radiation of different wavelengths for transmission to an adjacent solar cell, the fluorescent wavelength shifter having a response spectra extending between about 0.3 and 0.47 micrometers wavelength; (b) a gallium arsenide or aluminum gallium arsenide solar cell having a pn junction therein and an anti-reflective coating on one surface and further having a response spectra extending from approximately 0.47 micrometers to approximately 0.9 micrometers and operative to convert sunlight radiation of these wavelengths to output power; and (c) means for adhesively bonding one of the anti-reflectingly coated sides of the fluorescent wavelength shifter to the anti-reflective coating of the solar cell and for simultaneously providing good optical matching and transparency between these anti-reflecting coatings, whereby the pn junction of the solar cell converts radiation wavelengths within the fluorescence spectrum of the wavelength shifter to useful output power and thereby enhances and optimizes the solar conversion efficiency of the solar converter.

  13. Relation between Enzymic Catalysis and Energy Coupling

    NASA Astrophysics Data System (ADS)

    Fry, Mitchell; Blondin, George A.; Green, David E.

    1980-10-01

    The principles that underlie enzyme catalysis also apply to energy coupling processes. A comparison is made between a kinase system that mediates the phosphorylation of glucose by ATP (hexokinase), as the prototype for enzymic catalysis, and the mitochondrial electron-transfer complexes, as the prototypes for energy coupling systems. Induced polarization of chemical bonds and charge separation and elimination are common component events of both enzyme catalysis and energy coupling. Thus, definite limits can be imposed on models of energy coupling; they must comply with the basic principles of enzymic catalysis.

  14. Energy-efficient C-dump converters for switched reluctance motors

    SciTech Connect

    Mir, S.; Husain, I.; Elbuluk, M.E.

    1997-09-01

    Two energy-efficient converter topologies, derived from the conventional C-dump converter, are proposed for switched reluctance motor (SRM) drives. The proposed topologies overcome the limitations of the conventional C-dump converter, and could reduce the overall cost of the SRM drive. The voltage ratings of the dump capacitor and some of the switching devices in the proposed converters are reduced to the supply voltage (V{sub dc}) level compared to twice the supply voltage (2V{sub dc}) in the conventional C-dump converter. Also, the size of the dump inductor is considerably reduced. The converters have simple control requirements, and allow the motor phase current to freewheel during chopping mode. Simulation and experimental results of the converters are presented and discussed.

  15. Thermophotovoltaic energy converters based on thin film selective emitters and InGaAs photovoltaic cells

    SciTech Connect

    Fatemi, N.S.; Hoffman, R.H.; Wilt, D.M.; Lowe, R.A.; Garverick, L.M.; Scheiman, D.

    1996-02-01

    This paper presents the results of an investigation to demonstrate thermophotovoltaic energy conversion using InGaAs photovoltaic cells, yttrium-aluminum-garnet- (YAG-) based selective emitters, and bandpass/reflector filters, with the heat source operating at 1100{degree}C. InGaAs cells were grown on InP by organometallic vapor phase epitaxy with bandgaps of 0.60 and 0.75 eV and coupled to Ho-, Er-, and Er-Tm-doped YAG selective emitters. Infrared reflector and/or shortpass filters were also used to increase the ratio of in-band to out-of-band radiation from the selective emitters. Efficiencies as high as 13.2{percent} were recorded for filtered converters. {copyright} {ital 1996 American Institute of Physics.}

  16. Frequency up-converted wide bandwidth piezoelectric energy harvester using mechanical impact

    NASA Astrophysics Data System (ADS)

    Halim, Miah A.; Khym, S.; Park, J. Y.

    2013-07-01

    This paper presents an impact based frequency up-converted wide bandwidth piezoelectric energy harvester in which two high frequency piezoelectric generating beams are struck at the same time by a low frequency driving beam having horizontally extended tip mass. Change of driving beam's effective stiffness during coupled vibration after impact allows the device to broaden the -3dB bandwidth to approximately 170% and to acquire more than 61% of the maximum power generation in the vicinity (from 7 to 10.5 Hz) of the -3 dB bandwidth region as well. The efficiency of electrical power transfer is increased to approximately 85%. Each generating beam produces 377 μW peak power at 14.5 Hz under 0.6 g acceleration with corresponding power density 58.8 μW cm-3.

  17. Energy coupling in catastrophic collisions

    NASA Technical Reports Server (NTRS)

    Holsapple, K. A.; Choe, K. Y.

    1991-01-01

    The prediction of events leading to the catastrophic collisions and disruption of solar system bodies is fraught with the same difficulties as are other theories of impact events; since one simply cannot perform experiments in the regime of interest. In the catastrophic collisions of asteroids that regime involves bodies of a few tons to hundred of kilometers in diameter, and velocities of several kilometers pre second. For hundred kilometer bodies, gravitational stresses dominate material fracture strengths, but those gravitational stresses are essentially absent for laboratory experiments. Only numerical simulations using hydrocodes can in principle analyze the true problems, but they have their own major uncertainties about the correctness of the physical models and properties. The question of the measure of the impactor and its energy coupling is investigated using numerical code calculations. The material model was that of a generic silicate rock, including high pressure melt and vapor phases, and includes material nonlinearity and dissipation via a Mie-Gruniesen model. A series of calculations with various size ratios and impact velocities are reported.

  18. Full wave dc-to-dc converter using energy storage transformers

    NASA Technical Reports Server (NTRS)

    Moore, E. T.; Wilson, T. G.

    1969-01-01

    Full wave dc-to-dc converter, for an ion thrustor, uses energy storage transformers to provide a method of dc-to-dc conversion and regulation. The converter has a high degree of physical simplicity, is lightweight and has high efficiency.

  19. Bimagnetic nanoparticles with enhanced exchange coupling and energy products

    NASA Astrophysics Data System (ADS)

    Nandwana, Vikas; Chaubey, Girija S.; Yano, Kazuaki; Rong, Chuan-bing; Liu, J. Ping

    2009-01-01

    Bimagnetic FePt/Fe3O4 nanoparticles with core/shell or heterodimer structure have been prepared using a sequential synthetic method. The dimension of both FePt and Fe3O4 was tuned by varying the synthesis parameters. The as-synthesized bimagnetic nanoparticles were superparamagnetic at room temperature. After being annealed in a reducing atmosphere, the FePt/Fe3O4 bimagnetic nanoparticles were converted to a hard magnetic nanocomposite with enhanced energy products due to the exchange coupling between the hard and soft magnetic phases. It was found that the exchange coupling in nanocomposites made from the core/shell nanoparticles is stronger than that from the heterodimer nanoparticles. By tuning the dimensions of the FePt and Fe3O4 phases, the energy product up to 17.8 MGOe was achieved in the annealed nanocomposites, which is 36% higher than the isotropic single-phase FePt counterpart.

  20. Essential anaplerotic role for the energy-converting hydrogenase Eha in hydrogenotrophic methanogenesis

    PubMed Central

    Lie, Thomas J.; Costa, Kyle C.; Lupa, Boguslaw; Korpole, Suresh; Whitman, William B.; Leigh, John A.

    2012-01-01

    Despite decades of study, electron flow and energy conservation in methanogenic Archaea are still not thoroughly understood. For methanogens without cytochromes, flavin-based electron bifurcation has been proposed as an essential energy-conserving mechanism that couples exergonic and endergonic reactions of methanogenesis. However, an alternative hypothesis posits that the energy-converting hydrogenase Eha provides a chemiosmosis-driven electron input to the endergonic reaction. In vivo evidence for both hypotheses is incomplete. By genetically eliminating all nonessential pathways of H2 metabolism in the model methanogen Methanococcus maripaludis and using formate as an additional electron donor, we isolate electron flow for methanogenesis from flux through Eha. We find that Eha does not function stoichiometrically for methanogenesis, implying that electron bifurcation must operate in vivo. We show that Eha is nevertheless essential, and a substoichiometric requirement for H2 suggests that its role is anaplerotic. Indeed, H2 via Eha stimulates methanogenesis from formate when intermediates are not otherwise replenished. These results fit the model for electron bifurcation, which renders the methanogenic pathway cyclic, and as such requires the replenishment of intermediates. Defining a role for Eha and verifying electron bifurcation provide a complete model of methanogenesis where all necessary electron inputs are accounted for. PMID:22872868

  1. Thermal to electrical energy converter based on black Si

    NASA Astrophysics Data System (ADS)

    Nishijima, Y.; Balčytis, A.; Komatsu, R.; Yamamura, T.; Seniutinas, G.; Wong, B. T.; Juodkazis, S.

    2015-03-01

    Photo-thermal - to - electrical converter is demonstrated by using a commercial Peltier Bi-Te element with a hot contact made out of nanotextured Si (black-Si). Black-Si with colloidal Au nanoparticles is shown to further increase the efficiency of thermal-to-electrical conversion. Peculiarities of heat harvesting using black-Si with plasmonic Au nanoparticles at different gold densities are analyzed. Solar radiation absorption and electric field enhancement in plain and Au nanoparticle decorated black-Si was simulated using finite difference time domain (FDTD) method. Thermal conduction in nanotextured black-Si was explained using phonon Monte-Carlo simulations at the nanoscale. Strategies for creating larger thermal gradient on Peltier element using nanotextured light absorbers is discussed.

  2. Polarization beam splitters, converters and analyzers based on a metasurface composed of regularly arranged silicon nanospheres with controllable coupling strength.

    PubMed

    Xiang, Jin; Li, Jinxiang; Li, Hui; Zhang, Chengyun; Dai, Qiaofeng; Tie, Shaolong; Lan, Sheng

    2016-05-30

    A metasurface composed of regularly arranged silicon (Si) nanospheres (NSs) with coupling was investigated both theoretically and numerically based on the Mie theory, the simple Lorentz line shape model and the finite-difference time-domain technique. By deliberately controlling the coupling strength between Si NSs through the design of the lattice constants of a rectangular lattice, polarization beam splitters, converters and analyzers with good performance can be successfully constructed. A square lattice as well as a large incidence angle was employed to build the polarization beam splitters and converters. At an incidence angle of 80°, the polarization beam splitters can completely reflect the s-polarized light and transmit the p-polarized light in a wavelength region of 510-620 nm. For a circularly polarized light incident on the polarization converters, one can get s-polarized light in the reflection direction and p-polarized light in the transmission direction. For the polarization beam analyzers, a rectangular lattice with deliberately chosen lattice constants was employed and the transmissivity of a linearly polarized light can be continuously adjusted from 0 to ~0.90 by simply rotating the metasurface. We revealed that the broadening of either the electric dipole resonance or the magnetic dipole resonance or both of them, which is induced by the asymmetric coupling of Si NSs, is responsible for the modification in the transmissivity spectrum of the metasurface. Our findings provide a guideline for designing photonic devices based on the metasurfaces composed of Si NSs with controllable coupling strength. PMID:27410070

  3. Quintom dark energy with nonminimal coupling

    NASA Astrophysics Data System (ADS)

    Marciu, Mihai

    2016-06-01

    The quintom formalism is studied by considering the nonminimal coupling of the quintessence and the phantom field, respectively, with the scalar curvature of space-time. The dynamical aspects of the evolution of the system are evaluated by considering numerical solutions of the system of equations from the matter-dominated era. It is observed that the cosmic expansion is accelerated, the Universe is evolving toward the big rip, while the coupling coefficient ξ is affecting mainly the dark energy equation of state. For significant values of the coupling coefficient, the dark energy equation of state presents an oscillatory behavior around the phantom divide line and the frequency of the oscillations is increasing with the strength of the coupling. At late times the Universe is dark-energy dominated, and dark energy evolves asymptotically to the cosmological constant.

  4. Entropy and variance squeezing of two coupled modes interacting with a two-level atom: Frequency converter type

    SciTech Connect

    Khalil, E.M.; Abdalla, M. Sebawe . E-mail: m.sebawe@physics.org; Obada, A.S.-F.

    2006-02-15

    A modified Jaynes-Cummings model which consists of a two-level atom interacting with two modes of the electromagnetic field is introduced. More precisely we have considered a Hamiltonian model that includes two types of interaction: One is the field-field (frequency converter type) and the other is the atom-field interaction. By invoking a canonical transformation an exact solution of the wave function in the Schroedinger picture is obtained. The result presented in this context is used to discuss the atomic inversion as well as the entropy squeezing and variance squeezing phenomena. We have shown that the existence of the second field coupling parameter reduces the amount of squeezing in all quadratures, while the effect of the detuning parameter would lead to the superstructure phenomenon which becomes more pronounced upon increasing the mean photon numbers, in the states which are taken to be converter states.

  5. Instrumentation for Monitoring around Marine Renewable Energy Converters: Workshop Final Report

    SciTech Connect

    Polagye, B. L.; Copping, A. E.; Brown-Saracino, J.; Suryan, R.; Kramer, S.; Smith, C.

    2014-01-14

    To better understand the state of instrumentation and capabilities for monitoring around marine energy converters, the U.S. Department of Energy directed Pacific Northwest National Laboratory and the Northwest National Marine Renewable Energy Center at the University of Washington to convene an invitation-only workshop of experts from around the world to address instrumentation needs.

  6. Coupled dynamics analysis of wind energy systems

    NASA Technical Reports Server (NTRS)

    Hoffman, J. A.

    1977-01-01

    A qualitative description of all key elements of a complete wind energy system computer analysis code is presented. The analysis system addresses the coupled dynamics characteristics of wind energy systems, including the interactions of the rotor, tower, nacelle, power train, control system, and electrical network. The coupled dynamics are analyzed in both the frequency and time domain to provide the basic motions and loads data required for design, performance verification and operations analysis activities. Elements of the coupled analysis code were used to design and analyze candidate rotor articulation concepts. Fundamental results and conclusions derived from these studies are presented.

  7. Static Converter for High Energy Utilization, Modular, Small Nuclear Power Plants

    SciTech Connect

    El-Genk, Mohamed S.; Tournier, Jean-Michel P.

    2002-07-01

    This paper presents and analyzes the performance of high efficiency, high total energy utilization, static converters, which could be used in conjunction with small nuclear reactor plants in remote locations and in undersea applications, requiring little or no maintenance. The converters consist of a top cycle of Alkali Metal Thermal-to-Electric Conversion (AMTEC) units and PbTe thermoelectric (TE) bottom cycle. In addition to converting the reactor thermal power to electricity at 1150 K or less, at a thermodynamic efficiency in the low to mid thirties, the heat rejection from the TE bottom cycle could be used for space heating, industrial processing, or sea water desalination. The results indicated that for space heating applications, where the rejected thermal power from the TE bottom cycle is removed by natural convection of ambient air, a total utilization of the reactor thermal power of > 80% is possible. When operated at 1030 K, potassium AMTEC/TE converters are not only more efficient than the sodium AMTEC/TE converters but produce more electrical power. The present analysis showed that a single converter could be sized to produce up to 100 kWe and 70 kWe, for the Na-AMTEC/TE units when operating at 1150 K and the K-AMTEC/TE units when operating at 1030 K, respectively. Such modularity is an added advantage to the high-energy utilization of the present AMTEC/TE converters. (authors)

  8. The Remote Maxwell Demon as Energy Down-Converter

    NASA Astrophysics Data System (ADS)

    Hossenfelder, S.

    2016-04-01

    It is demonstrated that Maxwell's demon can be used to allow a machine to extract energy from a heat bath by use of information that is processed by the demon at a remote location. The model proposed here effectively replaces transmission of energy by transmission of information. For that we use a feedback protocol that enables a net gain by stimulating emission in selected fluctuations around thermal equilibrium. We estimate the down conversion rate and the efficiency of energy extraction from the heat bath.

  9. Muon detection studied by pulse-height energy analysis: Novel converter arrangements

    SciTech Connect

    Holmlid, Leif; Olafsson, Sveinn

    2015-08-15

    Muons are conventionally measured by a plastic scintillator–photomultiplier detector. Muons from processes in ultra-dense hydrogen H(0) are detected here by a novel type of converter in front of a photomultiplier. The muon detection yield can be increased relative to that observed with a plastic scintillator by at least a factor of 100, using a converter of metal, semiconductor (Ge), or glass for interaction with the muons penetrating through the metal housing of the detector. This detection process is due to transient formation of excited nuclei by the well-known process of muon capture, giving beta decay. The main experimental results shown here are in the form of beta electron energy spectra detected directly by the photomultiplier. Events which give a high-energy tail in the energy spectra are probably due to gamma photons from the muons. Sharp and intense x-ray peaks from a muonic aluminium converter or housing material are observed. The detection conversion in glass and Ge converters has a time constant of the order of many minutes to reach the final conversion level, while the process in metal converters is stabilized faster. The time constants are not due to lifetimes of the excited nuclei or neutrons but are due to internal charging in the insulating converter material. Interaction of this charging with the high voltage in the photomultiplier is observed.

  10. Muon detection studied by pulse-height energy analysis: Novel converter arrangements.

    PubMed

    Holmlid, Leif; Olafsson, Sveinn

    2015-08-01

    Muons are conventionally measured by a plastic scintillator-photomultiplier detector. Muons from processes in ultra-dense hydrogen H(0) are detected here by a novel type of converter in front of a photomultiplier. The muon detection yield can be increased relative to that observed with a plastic scintillator by at least a factor of 100, using a converter of metal, semiconductor (Ge), or glass for interaction with the muons penetrating through the metal housing of the detector. This detection process is due to transient formation of excited nuclei by the well-known process of muon capture, giving beta decay. The main experimental results shown here are in the form of beta electron energy spectra detected directly by the photomultiplier. Events which give a high-energy tail in the energy spectra are probably due to gamma photons from the muons. Sharp and intense x-ray peaks from a muonic aluminium converter or housing material are observed. The detection conversion in glass and Ge converters has a time constant of the order of many minutes to reach the final conversion level, while the process in metal converters is stabilized faster. The time constants are not due to lifetimes of the excited nuclei or neutrons but are due to internal charging in the insulating converter material. Interaction of this charging with the high voltage in the photomultiplier is observed. PMID:26329180

  11. Muon detection studied by pulse-height energy analysis: Novel converter arrangements

    NASA Astrophysics Data System (ADS)

    Holmlid, Leif; Olafsson, Sveinn

    2015-08-01

    Muons are conventionally measured by a plastic scintillator-photomultiplier detector. Muons from processes in ultra-dense hydrogen H(0) are detected here by a novel type of converter in front of a photomultiplier. The muon detection yield can be increased relative to that observed with a plastic scintillator by at least a factor of 100, using a converter of metal, semiconductor (Ge), or glass for interaction with the muons penetrating through the metal housing of the detector. This detection process is due to transient formation of excited nuclei by the well-known process of muon capture, giving beta decay. The main experimental results shown here are in the form of beta electron energy spectra detected directly by the photomultiplier. Events which give a high-energy tail in the energy spectra are probably due to gamma photons from the muons. Sharp and intense x-ray peaks from a muonic aluminium converter or housing material are observed. The detection conversion in glass and Ge converters has a time constant of the order of many minutes to reach the final conversion level, while the process in metal converters is stabilized faster. The time constants are not due to lifetimes of the excited nuclei or neutrons but are due to internal charging in the insulating converter material. Interaction of this charging with the high voltage in the photomultiplier is observed.

  12. Thrust to torque converter, particularly for coupling a reciprocating shaft to a rotary electrical generator or the like

    SciTech Connect

    Otters, J.L.

    1990-04-03

    This patent describes a mechanical linear-to-rotary motion converter. It comprises: a housing; a ball bearing input screw reciprocally mounted to the housing; a rotor; a first ball bearing nut coupling the input screw through a first overrunning clutch for turning the rotor in a given sense of rotation for a first direction of movement of the screw; a second ball bearing nut coupling the input screw through a reversing gear arrangement and a second overrunning clutch for turning the rotor in a given sense of rotation for an opposite direction of movement of the shaft; the first and second ball bearing nuts alternately driving the rotor for continuous rotation in the given sense responsive to linear reciprocating motion of the input shaft.

  13. CONVERTING ENERGY FROM RECLAIMED HEAT: THERMAL ELECTRIC GENERATOR

    EPA Science Inventory

    The use of solar energy acquiring devices has been slow to gain acceptance due to their overall low power generation versus high cost of a solar system. The goal of this project is to construct a model which increases the overall power generation of a solar building system by...

  14. The research of multilevel transistor inverter for converting energy of solar panels

    NASA Astrophysics Data System (ADS)

    Taissariyeva, K. N.; Issembergenov, N. T.

    2015-09-01

    This article considers multilevel transistor inverter for converting energy of solar panels into electroenergy. The output of multilevel transistor inverter produces the voltage of almost sinusoidal form. The primary objective of this inverter is to transform solar energy into electroenergy of industrial frequency. The analysis of received output curves of voltage for sinusoidality has been conducted.

  15. Model predictive control of bidirectional isolated DC-DC converter for energy conversion system

    NASA Astrophysics Data System (ADS)

    Akter, Parvez; Uddin, Muslem; Mekhilef, Saad; Tan, Nadia Mei Lin; Akagi, Hirofumi

    2015-08-01

    Model predictive control (MPC) is a powerful and emerging control algorithm in the field of power converters and energy conversion systems. This paper proposes a model predictive algorithm to control the power flow between the high-voltage and low-voltage DC buses of a bidirectional isolated full-bridge DC-DC converter. The predictive control algorithm utilises the discrete nature of the power converters and predicts the future nature of the system, which are compared with the references to calculate the cost function. The switching state that minimises the cost function is selected for firing the converter in the next sampling time period. The proposed MPC bidirectional DC-DC converter is simulated with MATLAB/Simulink and further verified with a 2.5 kW experimental configuration. Both the simulation and experimental results confirm that the proposed MPC algorithm of the DC-DC converter reduces reactive power by avoiding the phase shift between primary and secondary sides of the high-frequency transformer and allow power transfer with unity power factor. Finally, an efficiency comparison is performed between the MPC and dual-phase-shift-based pulse-width modulation controlled DC-DC converter which ensures the effectiveness of the MPC controller.

  16. The Wave Carpet: An Omnidirectional and Broadband Wave Energy Converter

    NASA Astrophysics Data System (ADS)

    Alam, M.-Reza

    2015-11-01

    Inspired by the strong attenuation of ocean surface waves by muddy seafloors, we have designed, theoretically investigated the performance, and experimentally tested the ``Wave Carpet:'' a mud-resembling synthetic seabed-mounted mat composed of vertically-acting linear springs and generators that can be used as an efficient wave energy absorption device. The Wave Carpet is completely under the water surface hence imposes minimal danger to boats and the sea life (i.e. no mammal entanglement). It is survivable against the high momentum of storm surges and in fact can perform even better under very energetic (e.g. stormy) sea conditions when most existing wave energy devices are needed to shelter themselves by going into an idle mode. In this talk I will present an overview of analytical results for the linear problem, direct simulation of highly nonlinear wave fields, and results of the experimental wave tank investigation.

  17. Investigations of DC power supplies with optoelectronic transducers and RF energy converters

    NASA Astrophysics Data System (ADS)

    Guzowski, B.; Gozdur, R.; Bernacki, L.; Lakomski, M.

    2016-04-01

    Fiber Distribution Cabinets (FDC) monitoring systems are increasingly popular. However it is difficult to realize such system in passive FDC, due to lack of source of power supply. In this paper investigation of four different DC power supplies with optoelectronic transducers is described. Two converters: photovoltaic power converter and PIN photodiode can convert the light transmitted through the optical fiber to electric energy. Solar cell and antenna RF-PCB are also tested. Results presented in this paper clearly demonstrate that it is possible to build monitoring system in passive FDC. During the tests maximum obtained output power was 11 mW. However all converters provided enough power to excite 32-bit microcontroller with ARM-cores and digital thermometer.

  18. Coupling dark energy to dark matter inhomogeneities

    NASA Astrophysics Data System (ADS)

    Marra, Valerio

    2016-09-01

    We propose that dark energy in the form of a scalar field could effectively couple to dark matter inhomogeneities. Through this coupling energy could be transferred to/from the scalar field, which could possibly enter an accelerated regime. Though phenomenological, this scenario is interesting as it provides a natural trigger for the onset of the acceleration of the universe, since dark energy starts driving the expansion of the universe when matter inhomogeneities become sufficiently strong. Here we study a possible realization of this idea by coupling dark energy to dark matter via the linear growth function of matter perturbations. The numerical results show that it is indeed possible to obtain a viable cosmology with the expected series of radiation, matter and dark-energy dominated eras. In particular, the current density of dark energy is given by the value of the coupling parameters rather than by very special initial conditions for the scalar field. In other words, this model-unlike standard models of cosmic late acceleration-does not suffer from the so-called "coincidence problem" and its related fine tuning of initial conditions.

  19. Underwater Noise from a Wave Energy Converter Is Unlikely to Affect Marine Mammals.

    PubMed

    Tougaard, Jakob

    2015-01-01

    Underwater noise was recorded from the Wavestar wave energy converter; a full-scale hydraulic point absorber, placed on a jack-up rig on the Danish North Sea coast. Noise was recorded 25 m from the converter with an autonomous recording unit (10 Hz to 20 kHz bandwidth). Median sound pressure levels (Leq) in third-octave bands during operation of the converter were 106-109 dB re. 1 μPa in the range 125-250 Hz, 1-2 dB above ambient noise levels (statistically significant). Outside the range 125-250 Hz the noise from the converter was undetectable above the ambient noise. During start and stop of the converter a more powerful tone at 150 Hz (sound pressure level (Leq) 121-125 dB re 1 μPa) was easily detectable. This tone likely originated from the hydraulic pump which was used to lower the absorbers into the water and lift them out of the water at shutdown. Noise levels from the operating wave converter were so low that they would barely be audible to marine mammals and the likelihood of negative impact from the noise appears minimal. A likely explanation for the low noise emissions is the construction of the converter where all moving parts, except for the absorbers themselves, are placed above water on a jack-up rig. The results may thus not be directly transferable to other wave converter designs but do demonstrate that it is possible to harness wave energy without noise pollution to the marine environment. PMID:26148299

  20. Underwater Noise from a Wave Energy Converter Is Unlikely to Affect Marine Mammals

    PubMed Central

    Tougaard, Jakob

    2015-01-01

    Underwater noise was recorded from the Wavestar wave energy converter; a full-scale hydraulic point absorber, placed on a jack-up rig on the Danish North Sea coast. Noise was recorded 25 m from the converter with an autonomous recording unit (10 Hz to 20 kHz bandwidth). Median sound pressure levels (Leq) in third-octave bands during operation of the converter were 106–109 dB re. 1 μPa in the range 125–250 Hz, 1–2 dB above ambient noise levels (statistically significant). Outside the range 125–250 Hz the noise from the converter was undetectable above the ambient noise. During start and stop of the converter a more powerful tone at 150 Hz (sound pressure level (Leq) 121–125 dB re 1 μPa) was easily detectable. This tone likely originated from the hydraulic pump which was used to lower the absorbers into the water and lift them out of the water at shutdown. Noise levels from the operating wave converter were so low that they would barely be audible to marine mammals and the likelihood of negative impact from the noise appears minimal. A likely explanation for the low noise emissions is the construction of the converter where all moving parts, except for the absorbers themselves, are placed above water on a jack-up rig. The results may thus not be directly transferable to other wave converter designs but do demonstrate that it is possible to harness wave energy without noise pollution to the marine environment. PMID:26148299

  1. Three-terminal energy harvester with coupled quantum dots

    NASA Astrophysics Data System (ADS)

    Thierschmann, Holger; Sánchez, Rafael; Sothmann, Björn; Arnold, Fabian; Heyn, Christian; Hansen, Wolfgang; Buhmann, Hartmut; Molenkamp, Laurens W.

    2015-10-01

    Rectification of thermal fluctuations in mesoscopic conductors is the key idea behind recent attempts to build nanoscale thermoelectric energy harvesters to convert heat into useful electric power. So far, most concepts have made use of the Seebeck effect in a two-terminal geometry, where heat and charge are both carried by the same particles. Here, we experimentally demonstrate the working principle of a new kind of energy harvester, proposed recently, using two capacitively coupled quantum dots. We show that, due to the novel three-terminal design of our device, which spatially separates the heat reservoir from the conductor circuit, the directions of charge and heat flow become decoupled. This enables us to manipulate the direction of the generated charge current by means of external gate voltages while leaving the direction of heat flow unaffected. Our results pave the way for a new generation of multi-terminal nanoscale heat engines.

  2. Three-terminal energy harvester with coupled quantum dots.

    PubMed

    Thierschmann, Holger; Sánchez, Rafael; Sothmann, Björn; Arnold, Fabian; Heyn, Christian; Hansen, Wolfgang; Buhmann, Hartmut; Molenkamp, Laurens W

    2015-10-01

    Rectification of thermal fluctuations in mesoscopic conductors is the key idea behind recent attempts to build nanoscale thermoelectric energy harvesters to convert heat into useful electric power. So far, most concepts have made use of the Seebeck effect in a two-terminal geometry, where heat and charge are both carried by the same particles. Here, we experimentally demonstrate the working principle of a new kind of energy harvester, proposed recently, using two capacitively coupled quantum dots. We show that, due to the novel three-terminal design of our device, which spatially separates the heat reservoir from the conductor circuit, the directions of charge and heat flow become decoupled. This enables us to manipulate the direction of the generated charge current by means of external gate voltages while leaving the direction of heat flow unaffected. Our results pave the way for a new generation of multi-terminal nanoscale heat engines. PMID:26280407

  3. 100kW Energy Transfer Multiplexer Power Converter Prototype Development Project

    SciTech Connect

    S. Merrill Skeist; Richard H. Baker; Anthony G.P. Marini; DOE Project Officer - Keith Bennett

    2006-03-21

    Project Final Report for "100kW Energy Transfer Multiplexer Power Converter Prototype Development Project" prepared under DOE grant number DE-FG36-03GO13138. This project relates to the further development and prototype construction/evaluation for the Energy Transfer Multiplexer (ETM) power converter topology concept. The ETM uses a series resonant link to transfer energy from any phase of a multiphase input to any phase of a multiphase output, converting any input voltage and frequency to any output voltage and frequency. The basic form of the ETM converter consists of an eight (8)-switch matrix (six phase power switches and two ground power switches) and a series L-C resonant circuit. Electronic control of the switches allows energy to be transferred in the proper amount from any phase to any other phase. Depending upon the final circuit application, the switches may be either SCRs or IGBTs. The inherent characteristics of the ETM converter include the following: Power processing in either direction (bidirectional); Large voltage gain without the need of low frequency magnetics; High efficiency independent of output load and frequency; Wide bandwidth with fast transient response and; Operation as a current source. The ETM is able to synthesize true sinusoidal waveforms with low harmonic distortions. For a low power PM wind generation system, the ETM has the following characteristics and advantages: It provides voltage gain without the need of low frequency magnetics (DC inductors) and; It has constant high efficiency independent of the load. The ETM converter can be implemented into a PM wind power system with smaller size, reduced weight and lower cost. As a result of our analyses, the ETM offers wind power generation technology for the reduction of the cost and size as well as the increase in performance of low power, low wind speed power generation. This project is the further theoretical/analytical exploration of the ETM converter concept in relationship to

  4. Analog to digital converter for two-dimensional radiant energy array computers

    NASA Technical Reports Server (NTRS)

    Shaefer, D. H.; Strong, J. P., III (Inventor)

    1977-01-01

    The analog to digital converter stage derives a bit array of digital radiant energy signals representative of the amplitudes of an input radiant energy analog signal array and derives an output radiant energy analog signal array to serve as an input to succeeding stages. The converter stage includes a digital radiant energy array device which contains radiant energy array positions so that the analog array is less than a predetermined threshold level. A scaling device amplifies the radiant signal levels of the input array and the digital array so that the radiant energy signal level carried by the digital array corresponds to the threshold level. An adder device adds the signals of the scaled input and digital arrays at corresponding array positions to form the output analog array.

  5. A mechanical energy harvested magnetorheological damper with linear-rotary motion converter

    NASA Astrophysics Data System (ADS)

    Chu, Ki Sum; Zou, Li; Liao, Wei-Hsin

    2016-04-01

    Magnetorheological (MR) dampers are promising to substitute traditional oil dampers because of adaptive properties of MR fluids. During vibration, significant energy is wasted due to the energy dissipation in the damper. Meanwhile, for conventional MR damping systems, extra power supply is needed. In this paper, a new energy harvester is designed in an MR damper that integrates controllable damping and energy harvesting functions into one device. The energy harvesting part of this MR damper has a unique mechanism converting linear motion to rotary motion that would be more stable and cost effective when compared to other mechanical transmissions. A Maxon motor is used as a power generator to convert the mechanical energy into electrical energy to supply power for the MR damping system. Compared to conventional approaches, there are several advantages in such an integrated device, including weight reduction, ease in installation with less maintenance. A mechanical energy harvested MR damper with linear-rotary motion converter and motion rectifier is designed, fabricated, and tested. Experimental studies on controllable damping force and harvested energy are performed with different transmissions. This energy harvesting MR damper would be suitable to vehicle suspensions, civil structures, and smart prostheses.

  6. Design of Energy Storage Reactors for Dc-To-Dc Converters. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Chen, D. Y.

    1975-01-01

    Two methodical approaches to the design of energy-storage reactors for a group of widely used dc-to-dc converters are presented. One of these approaches is based on a steady-state time-domain analysis of piecewise-linearized circuit models of the converters, while the other approach is based on an analysis of the same circuit models, but from an energy point of view. The design procedure developed from the first approach includes a search through a stored data file of magnetic core characteristics and results in a list of usable reactor designs which meet a particular converter's requirements. Because of the complexity of this procedure, a digital computer usually is used to implement the design algorithm. The second approach, based on a study of the storage and transfer of energy in the magnetic reactors, leads to a straightforward design procedure which can be implemented with hand calculations. An equation to determine the lower-bound volume of workable cores for given converter design specifications is derived. Using this computer lower-bound volume, a comparative evaluation of various converter configurations is presented.

  7. Converting chemical energy into electricity through a functionally cooperating device with diving-surfacing cycles.

    PubMed

    Song, Mengmeng; Cheng, Mengjiao; Ju, Guannan; Zhang, Yajun; Shi, Feng

    2014-11-01

    A smart device that can dive or surface in aqueous medium has been developed by combining a pH-responsive surface with acid-responsive magnesium. The diving-surfacing cycles can be used to convert chemical energy into electricity. During the diving-surfacing motion, the smart device cuts magnetic flux lines and produces a current, demonstrating that motional energy can be realized by consuming chemical energy of magnesium, thus producing electricity. PMID:25146589

  8. Design considerations for a thermophotovoltaic energy converter using heat pipe radiators

    SciTech Connect

    Ashcroft, J.; DePoy, D.

    1997-06-01

    The purpose of this paper is to discuss concepts for using high temperature heat pipes to transport energy from a heat source to a thermophotovoltaic (TPV) converter. Within the converter, the condenser portion of each heat pipe acts as a photon radiator, providing a radiant flux to adjacent TPV cells, which in turn create electricity. Using heat pipes in this way could help to increase the power output and the power density of TPV systems. TPV systems with radiator temperatures in the range of 1,500 K are expected to produce as much as 3.6 W/cm{sup 3} of heat exchanger volume at an efficiency of 20% or greater. Four different arrangements of heat pipe-TPV energy converters are considered. Performance and sizing calculations for each of the concepts are presented. Finally, concerns with this concept and issues which remain to be considered are discussed.

  9. K-shell photoabsorption edge of strongly coupled matter driven by laser-converted radiation.

    PubMed

    Zhao, Yang; Yang, Jiamin; Zhang, Jiyan; Yang, Guohong; Wei, Minxi; Xiong, Gang; Song, Tianming; Zhang, Zhiyu; Bao, Lihua; Deng, Bo; Li, Yukun; He, Xiaoan; Li, Chaoguang; Mei, Yu; Yu, Ruizhen; Jiang, Shaoen; Liu, Shenye; Ding, Yongkun; Zhang, Baohan

    2013-10-11

    The first observation of the K-shell photoabsorption edge of strongly coupled matter with an ion-ion coupling parameter of about 65 generated by intense x-ray radiation-driven shocks is reported. The soft x-ray radiation generated by laser interaction with a "dog bone" high-Z hohlraum is used to ablate two thick CH layers, which cover a KCl sample, to create symmetrical inward shocks. While the two shocks impact at the central KCl sample, a highly compressed KCl is obtained with a density of 3-5 times solid density and a temperature of about 2-4 eV. The photoabsorption spectra of chlorine near the K-shell edge are measured with a crystal spectrometer using a short x-ray backlighter. The redshift of the K edge up to 11.7 eV and broadening of 15.2 eV are obtained for the maximum compression. A comparison of the measured redshifts and broadenings with dense plasma calculations are made, and it indicates potential improvements in the theoretical description. PMID:24160607

  10. High-efficiency, monolithic, multi-bandgap, tandem, photovoltaic energy converters

    DOEpatents

    Wanlass, Mark W

    2014-05-27

    A monolithic, multi-bandgap, tandem solar photovoltaic converter has at least one, and preferably at least two, subcells grown lattice-matched on a substrate with a bandgap in medium to high energy portions of the solar spectrum and at least one subcell grown lattice-mismatched to the substrate with a bandgap in the low energy portion of the solar spectrum, for example, about 1 eV.

  11. Progress Towards the Development of a Traveling Wave Direct Energy Converter for Aneutronic Fusion Propulsion Applications

    NASA Technical Reports Server (NTRS)

    Tarditi, A. G.; Chap, A.; Wolinsky, J.; Scott, J. H.

    2015-01-01

    A coordinated experimental and theory/simulation effort has been carried out to investigate the physics of the Traveling Wave Direct Energy Converter (TWDEC), a scheme that has been proposed in the past for the direct conversion into electricity of the kinetic energy of an ion beam generated from fusion reactions. This effort has been focused in particular on the TWDEC process in the high density beam regime, thus accounting for the ion beam expansion due to its space charge.

  12. High-efficiency, monolithic, multi-bandgap, tandem photovoltaic energy converters

    DOEpatents

    Wanlass, Mark W.

    2011-11-29

    A monolithic, multi-bandgap, tandem solar photovoltaic converter has at least one, and preferably at least two, subcells grown lattice-matched on a substrate with a bandgap in medium to high energy portions of the solar spectrum and at least one subcell grown lattice-mismatched to the substrate with a bandgap in the low energy portion of the solar spectrum, for example, about 1 eV.

  13. Three-dimensional models of conventional and vertical junction laser-photovoltaic energy converters

    NASA Technical Reports Server (NTRS)

    Heinbockel, John H.; Walker, Gilbert H.

    1988-01-01

    Three-dimensional models of both conventional planar junction and vertical junction photovoltaic energy converters have been constructed. The models are a set of linear partial differential equations and take into account many photoconverter design parameters. The model is applied to Si photoconverters; however, the model may be used with other semiconductors. When used with a Nd laser, the conversion efficiency of the Si vertical junction photoconverter is 47 percent, whereas the efficiency for the conventional planar Si photoconverter is only 17 percent. A parametric study of the Si vertical junction photoconverter is then done in order to describe the optimum converter for use with the 1.06-micron Nd laser. The efficiency of this optimized vertical junction converter is 44 percent at 1 kW/sq cm.

  14. New topology for DC/DC bidirectional converter for hybrid systems in renewable energy

    NASA Astrophysics Data System (ADS)

    Lopez, Juan Carlos; Ortega, Manuel; Jurado, Francisco

    2015-03-01

    This article presents a new isolated DC/DC bidirectional converter with soft switching, using a transformer with two voltage taps and two full bridges with insulated-gate bipolar transistors (IGBTs), one on each side of the transformer to be integrated in hybrid systems of renewable energy. A large voltage conversion ratio can be achieved using this converter, in buck and booster modes. Also medium and high DC power can be converted with a good efficiency. Analysis and switching techniques have been reported. To verify the principle of operation, a laboratory prototype of 10 kW has been performed. Experimental results are presented, operating in boost mode. The switching algorithm used has been modelled in MATLAB-Simulink to generate C code. This code has been implemented in a DSP F2812, which has been used to build the prototype.

  15. Wireless Energy Transfer Through Magnetic Reluctance Coupling

    NASA Astrophysics Data System (ADS)

    Pillatsch, P.

    2014-11-01

    Energy harvesting from human motion for body worn or implanted devices faces the problem of the wearer being still, e.g. while asleep. Especially for medical devices this can become an issue if a patient is bed-bound for prolonged periods of time and the internal battery of a harvesting system is not recharged. This article introduces a mechanism for wireless energy transfer based on a previously presented energy harvesting device. The internal rotor of the energy harvester is made of mild steel and can be actuated through a magnetic reluctance coupling to an external motor. The internal piezoelectric transducer is consequently actuated and generates electricity. This paper successfully demonstrates energy transfer over a distance of 16 mm in air and an achieved power output of 85 μW at 25 Hz. The device functional volume is 1.85 cm3. Furthermore, it was demonstrated that increasing the driving frequency beyond 25 Hz did not yield a further increase in power output. Future research will focus on improving the reluctance coupling, e.g. by investigating the use of multiple or stronger magnets, in order to increase transmission distance.

  16. Development of a wind energy converter and investigation of its operational function. Part 4: Test setup and results of measurement

    NASA Astrophysics Data System (ADS)

    Armbrust, S.; Molly, J. P.

    1982-12-01

    Measurements made during test operations at the MODA.10 plant as well as at a 25 years old 6 kW wind energy converter are presented. The test arrangements, measurement results of both wind energy converters, and the experience gained are described.

  17. Modeling and controller design of a wind energy conversion system including a matrix converter

    NASA Astrophysics Data System (ADS)

    Barakati, S. Masoud

    In this thesis, a grid-connected wind-energy converter system including a matrix converter is proposed. The matrix converter, as a power electronic converter, is used to interface the induction generator with the grid and control the wind turbine shaft speed. At a given wind velocity, the mechanical power available from a wind turbine is a function of its shaft speed. Through the matrix converter, the terminal voltage and frequency of the induction generator is controlled, based on a constant V/f strategy, to adjust the turbine shaft speed and accordingly, control the active power injected into the grid to track maximum power for all wind velocities. The power factor at the interface with the grid is also controlled by the matrix converter to either ensure purely active power injection into the grid for optimal utilization of the installed wind turbine capacity or assist in regulation of voltage at the point of connection. Furthermore, the reactive power requirements of the induction generator are satisfied by the matrix converter to avoid use of self-excitation capacitors. The thesis addresses two dynamic models: a comprehensive dynamic model for a matrix converter and an overall dynamical model for the proposed wind turbine system. The developed matrix converter dynamic model is valid for both steady-state and transient analyses, and includes all required functions, i.e., control of the output voltage, output frequency, and input displacement power factor. The model is in the qdo reference frame for the matrix converter input and output voltage and current fundamental components. The validity of this model is confirmed by comparing the results obtained from the developed model and a simplified fundamental-frequency equivalent circuit-based model. In developing the overall dynamic model of the proposed wind turbine system, individual models of the mechanical aerodynamic conversion, drive train, matrix converter, and squirrel-cage induction generator are developed

  18. Preliminary Analysis of an Oscillating Surge Wave Energy Converter with Controlled Geometry: Preprint

    SciTech Connect

    Tom, Nathan; Lawson, Michael; Yu, Yi-Hsiang; Wright, Alan

    2015-09-09

    The aim of this paper is to present a novel wave energy converter device concept that is being developed at the National Renewable Energy Laboratory. The proposed concept combines an oscillating surge wave energy converter with active control surfaces. These active control surfaces allow for the device geometry to be altered, which leads to changes in the hydrodynamic properties. The device geometry will be controlled on a sea state time scale and combined with wave-to-wave power-take-off control to maximize power capture, increase capacity factor, and reduce design loads. The paper begins with a traditional linear frequency domain analysis of the device performance. Performance sensitivity to foil pitch angle, the number of activated foils, and foil cross section geometry is presented to illustrate the current design decisions; however, it is understood from previous studies that modeling of current oscillating wave energy converter designs requires the consideration of nonlinear hydrodynamics and viscous drag forces. In response, a nonlinear model is presented that highlights the shortcomings of the linear frequency domain analysis and increases the precision in predicted performance.

  19. Experimental Wave Tank Test for Reference Model 3 Floating-Point Absorber Wave Energy Converter Project

    SciTech Connect

    Yu, Y. H.; Lawson, M.; Li, Y.; Previsic, M.; Epler, J.; Lou, J.

    2015-01-01

    The U.S. Department of Energy established a reference model project to benchmark a set of marine and hydrokinetic technologies including current (tidal, open-ocean, and river) turbines and wave energy converters. The objectives of the project were to first evaluate the status of these technologies and their readiness for commercial applications. Second, to evaluate the potential cost of energy and identify cost-reduction pathways and areas where additional research could be best applied to accelerate technology development to market readiness.

  20. Bidirectional frequency tuning of a piezoelectric energy converter based on a cantilever beam

    NASA Astrophysics Data System (ADS)

    Eichhorn, C.; Goldschmidtboeing, F.; Woias, P.

    2009-09-01

    A piezoelectric energy converter is presented, whose resonance frequency can be tuned by applying mechanical stress to its structure. The converter consists of a piezo-polymer cantilever beam with two additional thin arms, which are used to apply an axial preload to the tip of the beam. The compressive or tensile prestress applied through the arms leads to a shift of the beam's resonance frequency. Experiments with this structure indicate a high potential: the resonance frequency of a harvester to which a compressive preload was applied could be altered from 380 Hz to 292 Hz. In another experiment, a harvester with stiffened arms was tuned from 440 Hz to 460 Hz by applying a tensile preload. In combination with automatic control of the applied force, this type of structure could be used to enhance the performance of energy harvesters in vibrating environments with occasional shifts of the vibrational frequency.

  1. Dynamics of a mechanical frequency up-converted device for wave energy harvesting

    NASA Astrophysics Data System (ADS)

    Lin, Zheng; Zhang, Yongliang

    2016-04-01

    This paper proposes a novel mechanical impact-driven frequency up-converted device for wave energy harvesting, which could bridge a gap between waves of frequency 0.03-1 Hz and electrical generators of operation frequency hundreds hertz. The device mainly consists of a cylindrical buoy, beams and teeth. A mathematical model for the dynamics of such a device is presented, which incorporates the fluid-structure interaction between the wave and the buoy, and the structural interactions between the beams and the teeth. The momentum balance method and the coefficient of restitution are employed, which give rise to piecewise nonlinear equations governing the motions of the buoy and the beams. Experimental tests carried out in a wave flume validate the model and prove the effectiveness of frequency up-converted method in wave energy harvesting. The characteristics of frequency up-converted transformation from buoy motion to beams oscillation for wave energy harvesting are probed, and the effects of beam Young's modulus, beam number, wave period and wave height on strain power of the beams are explored.

  2. Digital computer simulation of inductor-energy-storage dc-to-dc converters with closed-loop regulators

    NASA Technical Reports Server (NTRS)

    Ohri, A. K.; Owen, H. A.; Wilson, T. G.; Rodriguez, G. E.

    1974-01-01

    The simulation of converter-controller combinations by means of a flexible digital computer program which produces output to a graphic display is discussed. The procedure is an alternative to mathematical analysis of converter systems. The types of computer programming involved in the simulation are described. Schematic diagrams, state equations, and output equations are displayed for four basic forms of inductor-energy-storage dc to dc converters. Mathematical models are developed to show the relationship of the parameters.

  3. An ocean kinetic energy converter for low-power applications using piezoelectric disk elements

    NASA Astrophysics Data System (ADS)

    Viñolo, C.; Toma, D.; Mànuel, A.; del Rio, J.

    2013-09-01

    The main problem facing long-term electronic system deployments in the sea, is to find a feasible way to supply them with the power they require. Harvesting mechanical energy from the ocean wave oscillations and converting it into electrical energy, provides an alternative method for creating self-contained power sources. However, the very low and varying frequency of ocean waves, which generally varies from 0.1 Hz to 2 Hz, presents a hurdle which has to be overcome if this mechanical energy is to be harvested. In this paper, a new sea wave kinetic energy converter is described using low-cost disk piezoelectric elements, which has no dependence on their excitement frequency, to feed low-consumption maritime-deployed electronic devices. The operating principles of the piezoelectric device technique are presented, including analytical formulations describing the transfer of energy. Finally, a prototypical design, which generates electrical energy from the motion of a buoy, is introduced. The paper concludes with the the behavior study of the piezoelectric prototype device as a power generator.

  4. Coupling analysis of linear vibration energy harvesting systems

    NASA Astrophysics Data System (ADS)

    Wang, Xu; Liang, Xingyu; Shu, Gequn; Watkins, Simon

    2016-03-01

    This paper has disclosed the relationship of vibration energy harvester performance with dimensionless force factor. Numerical ranges of the dimensionless force factor have been defined for cases of weak, moderate and strong coupling. The relationships of coupling loss factor, dimensionless force factor, critical coupling strength, coupling quotient, electro-mechanical coupling factor, damping loss factor and modal densities have been established in linear vibration energy harvester systems. The new contribution of this paper is to determine a frequency range where the vibration energy harvesting systems are in a weak coupling and the statistical energy analysis is applicable.

  5. Control of modular multilevel converters for grid integration of full-scale wind energy conversion systems

    NASA Astrophysics Data System (ADS)

    Debnath, Suman

    The growing demand for wind power generation has pushed the capacity of wind turbines towards MW power levels. Higher capacity of the wind turbines necessitates operation of the generators and power electronic conversion systems at higher voltage/power levels. The power electronic conversion system of a wind energy conversion system (WECS) needs to meet the stringent requirements in terms of reliability, efficiency, scalability and ease of maintenance, power quality, and dv/dt stress on the generator/transformer. Although the multilevel converters including the neutral point clamped (NPC) converter and the active NPC converter meet most of the requirements, they fall short in reliability and scalability. Motivated by modularity/scalability feature of the modular multilevel converter (MMC), this research is to enable the MMC to meet all of the stringent requirements of the WECS by addressing their unique control challenges. This research presents systematic modeling and control of the MMC to enable it to be a potential converter topology for grid integration of full-scale WECSs. Based on the developed models, appropriate control systems for control of circulating current and capacitor voltages under fixed- and variable-frequency operations are proposed. Using the developed MMC models, a gradient-based cosimulation algorithm to optimize the gains of the developed control systems, is proposed. Performance/effectiveness of the developed models and the proposed control systems for the back-to-back MMC-based WECS are evaluated/verified based on simulations studies in the PSCAD/EMTDC software environment and experimental case studies on a laboratory-scale hardware prototype.

  6. Novel Control for Voltage Boosted Matrix Converter based Wind Energy Conversion System with Practicality

    NASA Astrophysics Data System (ADS)

    Kumar, Vinod; Joshi, Raghuveer Raj; Yadav, Dinesh Kumar; Garg, Rahul Kumar

    2016-06-01

    This paper presents the implementation and investigation of novel voltage boosted matrix converter (MC) based permanent magnet wind energy conversion system (WECS). In this paper, on-line tuned adaptive fuzzy control algorithm cooperated with reversed MC is proposed to yield maximum energy. The control system is implemented on a dSPACE DS1104 real time board. Feasibility of the proposed system has been experimentally verified using a laboratory 1.2 kW prototype of WECS under steady-state and dynamic conditions.

  7. A Rigorous Analysis of Series-Connected, Multi-Bandgap, Tandem Thermophotovoltaic (TPV) Energy Converters

    NASA Astrophysics Data System (ADS)

    Wanlass, M. W.; Albin, D. S.

    2004-11-01

    Multi-bandgap, photonic energy conversion is under investigation for nearly every class of photovoltaic materials, with monolithic, series-connected device structures being the preferred mode of implementation. For TPV energy conversion systems, such an approach represents the next wave in TPV converter advancement. In this paper, we focus on a rigorous analysis of series-connected, multi-bandgap, tandem (SCMBT) converter structures according to Kirchhoff's circuit laws. A general formulation is presented, followed by an application of the general formulation to a typical, semi-realistic model for well-behaved, p-n junction, photovoltaic devices. Using results generated from a computer code written in Visual Basic, we then present example calculations for SCMBT TPV converters with two subcells, for a TPV system utilizing a blackbody radiator operating at 954°C (1750°F). A comparison of the results obtained using the rigorous analysis, with those obtained by using the commonly adopted subcell-photocurrent-matching design rule, is discussed in detail. An output power density increase of ˜ 5% is realized in the solution determined by the rigorous analysis, as compared to that obtained with the subcell-photocurrent-matching rule. Additional interesting, non-intuitive results are also highlighted.

  8. The effect of converter efficiency on DEAP-based energy conversion: an overview and optimization method

    NASA Astrophysics Data System (ADS)

    van Kessel, Rick; Wattez, Ambroise; Bauer, Pavol

    2014-03-01

    This work presents an integral approach to the power electronic challenges that are faced in DEAP-based energy conversion, such as wide converter operating ranges and high peak-to-average ratios. It is shown that for small strain cycles, the losses in the Power Electronic Converter (PEC) due to the cyclic charging and discharging are dominant. The efficiency profile of a realistic, high-voltage modular PEC was measured and fed into an optimization algorithm. The current amplitude, phase and shape are optimized, and different cycle types are compared. With optimization results for a wide strain range, it is demonstrated that with properly adapted harvesting cycles, the overall conversion efficiency is significantly improved, especially for small strain cycles.

  9. Design and Analysis for a Floating Oscillating Surge Wave Energy Converter: Preprint

    SciTech Connect

    Yu, Y. H.; Li, Y.; Hallett, K.; Hotimsky, C.

    2014-03-01

    This paper presents a recent study on the design and analysis of an oscillating surge wave energy converter. A successful wave energy conversion design requires the balance between the design performance and cost. The cost of energy is often used as the metric to judge the design of the wave energy conversion system. It is often determined based on the device power performance, the cost for manufacturing, deployment, operation and maintenance, as well as the effort to ensure the environmental compliance. The objective of this study is to demonstrate the importance of a cost driven design strategy and how it can affect a WEC design. Three oscillating surge wave energy converter (OSWEC) designs were used as the example. The power generation performance of the design was modeled using a time-domain numerical simulation tool, and the mass properties of the design were determined based on a simple structure analysis. The results of those power performance simulations, the structure analysis and a simple economic assessment were then used to determine the cost-efficiency of selected OSWEC designs. Finally, a discussion on the environmental barrier, integrated design strategy and the key areas that need further investigation is also presented.

  10. Theoretical studies on performance evaluation of solar thermoelectronic energy converter with graphene emitter

    NASA Astrophysics Data System (ADS)

    Olawole, Olukunle; de, Dilip

    In this paper we consider detailed energy dynamics of solar thermoelectronic energy converter using graphene as the emitter. The emitter is heated by solar energy concentrated by a parabolic mirror concentrator. We study the performance evaluation of the energy conversion using temperature dependent work function of graphene and model the space charge problem by introducing a factor in the emitter and collector current densities. We present computations on power output and efficiency as function of solar insolation, height of emitter from the base of the mirror, reflection coefficient of the mirror, temperature and work function of collector. Effect of molecular doping on the performance of the graphene solar tech is also discussed. Please schedule our papers so that they are well separated in time for presentations.

  11. Consequences of Converting Graded to Action Potentials upon Neural Information Coding and Energy Efficiency

    PubMed Central

    Sengupta, Biswa; Laughlin, Simon Barry; Niven, Jeremy Edward

    2014-01-01

    Information is encoded in neural circuits using both graded and action potentials, converting between them within single neurons and successive processing layers. This conversion is accompanied by information loss and a drop in energy efficiency. We investigate the biophysical causes of this loss of information and efficiency by comparing spiking neuron models, containing stochastic voltage-gated Na+ and K+ channels, with generator potential and graded potential models lacking voltage-gated Na+ channels. We identify three causes of information loss in the generator potential that are the by-product of action potential generation: (1) the voltage-gated Na+ channels necessary for action potential generation increase intrinsic noise and (2) introduce non-linearities, and (3) the finite duration of the action potential creates a ‘footprint’ in the generator potential that obscures incoming signals. These three processes reduce information rates by ∼50% in generator potentials, to ∼3 times that of spike trains. Both generator potentials and graded potentials consume almost an order of magnitude less energy per second than spike trains. Because of the lower information rates of generator potentials they are substantially less energy efficient than graded potentials. However, both are an order of magnitude more efficient than spike trains due to the higher energy costs and low information content of spikes, emphasizing that there is a two-fold cost of converting analogue to digital; information loss and cost inflation. PMID:24465197

  12. Consequences of converting graded to action potentials upon neural information coding and energy efficiency.

    PubMed

    Sengupta, Biswa; Laughlin, Simon Barry; Niven, Jeremy Edward

    2014-01-01

    Information is encoded in neural circuits using both graded and action potentials, converting between them within single neurons and successive processing layers. This conversion is accompanied by information loss and a drop in energy efficiency. We investigate the biophysical causes of this loss of information and efficiency by comparing spiking neuron models, containing stochastic voltage-gated Na(+) and K(+) channels, with generator potential and graded potential models lacking voltage-gated Na(+) channels. We identify three causes of information loss in the generator potential that are the by-product of action potential generation: (1) the voltage-gated Na(+) channels necessary for action potential generation increase intrinsic noise and (2) introduce non-linearities, and (3) the finite duration of the action potential creates a 'footprint' in the generator potential that obscures incoming signals. These three processes reduce information rates by ∼50% in generator potentials, to ∼3 times that of spike trains. Both generator potentials and graded potentials consume almost an order of magnitude less energy per second than spike trains. Because of the lower information rates of generator potentials they are substantially less energy efficient than graded potentials. However, both are an order of magnitude more efficient than spike trains due to the higher energy costs and low information content of spikes, emphasizing that there is a two-fold cost of converting analogue to digital; information loss and cost inflation. PMID:24465197

  13. Why Flavins Are not Competitors of Chlorophyll in the Evolution of Biological Converters of Solar Energy

    PubMed Central

    Kritsky, Mikhail S.; Telegina, Taisiya A.; Vechtomova, Yulia L.; Buglak, Andrey A.

    2013-01-01

    Excited flavin molecules can photocatalyze reactions, leading to the accumulation of free energy in the products, and the data accumulated through biochemical experiments and by modeling prebiological processes suggest that flavins were available in the earliest stages of evolution. Furthermore, model experiments have shown that abiogenic flavin conjugated with a polyamino acid matrix, a pigment that photocatalyzes the phosphorylation of ADP to form ATP, could have been present in the prebiotic environment. Indeed, excited flavin molecules play key roles in many photoenzymes and regulatory photoreceptors, and the substantial structural differences between photoreceptor families indicate that evolution has repeatedly used flavins as chromophores for photoreceptor proteins. Some of these photoreceptors are equipped with a light-harvesting antenna, which transfers excitation energy to chemically reactive flavins in the reaction center. The sum of the available data suggests that evolution could have led to the formation of a flavin-based biological converter to convert light energy into energy in the form of ATP. PMID:23271372

  14. Why flavins are not competitors of chlorophyll in the evolution of biological converters of solar energy.

    PubMed

    Kritsky, Mikhail S; Telegina, Taisiya A; Vechtomova, Yulia L; Buglak, Andrey A

    2012-01-01

    Excited flavin molecules can photocatalyze reactions, leading to the accumulation of free energy in the products, and the data accumulated through biochemical experiments and by modeling prebiological processes suggest that flavins were available in the earliest stages of evolution. Furthermore, model experiments have shown that abiogenic flavin conjugated with a polyamino acid matrix, a pigment that photocatalyzes the phosphorylation of ADP to form ATP, could have been present in the prebiotic environment. Indeed, excited flavin molecules play key roles in many photoenzymes and regulatory photoreceptors, and the substantial structural differences between photoreceptor families indicate that evolution has repeatedly used flavins as chromophores for photoreceptor proteins. Some of these photoreceptors are equipped with a light-harvesting antenna, which transfers excitation energy to chemically reactive flavins in the reaction center. The sum of the available data suggests that evolution could have led to the formation of a flavin-based biological converter to convert light energy into energy in the form of ATP. PMID:23271372

  15. Inductively coupled plasma etching of GaAs low loss waveguides for a traveling waveguide polarization converter, using chlorine chemistry

    NASA Astrophysics Data System (ADS)

    Lu, J.; Meng, X.; Springthorpe, A. J.; Shepherd, F. R.; Poirier, M.

    2004-05-01

    A traveling waveguide polarization converter [M. Poirier et al.] has been developed, which involves long, low loss, weakly confined waveguides etched in GaAs (epitaxially grown by molecular beam epitaxy), with electroplated ``T electrodes'' distributed along the etched floor adjacent to the ridge walls, and airbridge interconnect metallization. This article describes the development of the waveguide fabrication, based on inductively coupled plasma (ICP) etching of GaAs using Cl2 chemistry; the special processes required to fabricate the electrodes and metallization [X. Meng et al.], and the device characteristics [M. Poirier et al.], are described elsewhere. The required waveguide has dimensions nominally 4 μm wide and 2.1 μm deep, with dimensional tolerances ~0.1 μm across the wafer and wafer to wafer. A vertical etch profile with very smooth sidewalls and floors is required to enable the plated metal electrodes to be fabricated within 0.1 μm of the ridge. The ridges were fabricated using Cl2 ICP etching and a photoresist mask patterned with an I-line stepper; He backside cooling, combined with an electrostatic chuck, was employed to ensure good heat transfer to prevent resist reticulation. The experimental results showed that the ridge profile is very sensitive to ICP power and platen rf power. High ICP power and low platen power tend to result in more isotropic etching, whereas increasing platen power increases the photoresist etch rate, which causes rougher ridge sidewalls. No strong dependence of GaAs etch rate and ridge profile were observed with small changes in process temperature (chuck temperature). However, when the chuck temperature was decreased from 25 to 0 °C, etch uniformity across a 3 in. wafer improved from 6% to 3%. Photoresist and polymer residues present after the ICP etch were removed using a combination of wet and dry processes. .

  16. A review of the thermoelectronic laser energy converter (TELEC) program at Lewis Research Center

    NASA Technical Reports Server (NTRS)

    Alger, D. L.; Manista, E. J.; Thompson, R. W.

    1978-01-01

    The investigation of the Thermoelectronic Laser Energy Converter (TELEC) concept began with a feasibility study of a 1 megawatt sized TELEC system. The TELEC was to use either cesium vapor or hydrogen as the plasma medium. The cesium vapor TELEC appears to be the more practical device studied with an overall calculated conversion efficiency of greater than 48%. Following this study, a small TELEC cell was fabricated which demonstrated the conversion of a small amount of laser power to electrical power. The cell developed a short circuit current of 0.7 amperes and an open circuit voltage, as extrapolated from volt-ampere curves, of about 1.5 volts.

  17. An experimental study of SO3 dissociation as a mechanism for converting and transporting solar energy

    NASA Technical Reports Server (NTRS)

    Mccrary, J. H.; Mccrary, G. E.; Chubb, T. A.; Won, Y. S.

    1981-01-01

    The high temperature catalytic dissocation of SO3 is an important chemical process being considered in the development and application of solar-thermal energy conversion, transport, and storage systems. A facility for evaluating chemical converter-heat exchangers at temperatures to 1000 C with high flow rates of gaseous SO3 feedstock has been assembled and operated on the NMSU campus. Several quartz and metal reactors containing different catalyst configurations have been tested. Descriptions of the test facility and of the reactors are given along with a presentation and discussion of experimental results.

  18. Effects of rotor solidity on the performance of impulse turbine for OWC wave energy converter

    NASA Astrophysics Data System (ADS)

    Liu, Zhen; Zhao, Huan-yu; Cui, Ying

    2015-10-01

    Impulse turbine, working as a typical self-rectifying turbine, is recently utilized for the oscillating water column (OWC) wave energy converters, which can rotate in the same direction under the bi-directional air flows. A numerical model established in Fluent is validated by the corresponding experimental results. The flow fields, pressure distribution and dimensionless evaluating coefficients can be calculated and analyzed. Effects of the rotor solidity varying with the change of blade number are investigated and the suitable solidity value is recommended for different flow coefficients.

  19. Absorption of solar radiation by alkali vapors. [for efficient high temperature energy converters

    NASA Technical Reports Server (NTRS)

    Mattick, A. T.

    1978-01-01

    A theoretical study of the direct absorption of solar radiation by the working fluid of high temperature, high efficiency energy converters has been carried out. Alkali vapors and potassium vapor in particular were found to be very effective solar absorbers and suitable thermodynamically for practical high temperature cycles. Energy loss via reradiation from a solar boiler was shown to reduce the overall efficiency of radiation-heated energy converters, although a simple model of radiation transfer in a potassium vapor solar boiler revealed that self-trapping of the reradiation may reduce this loss considerably. A study was also made of the requirements for a radiation boiler window. It was found that for sapphire, one of the best solar transmitting materials, the severe environment in conjunction with high radiation densities will require some form of window protection. An aerodynamic shield is particularly advantageous in this capacity, separating the window from the absorbing vapor to prevent condensation and window corrosion and to reduce the radiation density at the window.

  20. Push-pull converter with energy saving circuit for protecting switching transistors from peak power stress

    NASA Technical Reports Server (NTRS)

    Mclyman, W. T. (Inventor)

    1981-01-01

    In a push-pull converter, switching transistors are protected from peak power stresses by a separate snubber circuit in parallel with each comprising a capacitor and an inductor in series, and a diode in parallel with the inductor. The diode is connected to conduct current of the same polarity as the base-emitter juction of the transistor so that energy stored in the capacitor while the transistor is switched off, to protect it against peak power stress, discharges through the inductor when the transistor is turned on, and after the capacitor is discharges through the diode. To return this energy to the power supply, or to utilize this energy in some external circuit, the inductor may be replaced by a transformer having its secondary winding connected to the power supply or to the external circuit.

  1. Magnetorheological converters

    SciTech Connect

    Zal'tsgendler, E.A.; Kolomentsev, A.V.; Kordonskii, V.I.; Madorskii, L.S.

    1986-04-01

    The authors study the problems of constructing an electrohydraulic converter functioning based on the magnetoheological effect: the magnetorheological throttle (MR throttle). Requirements are listed that must be taken into account in developing the MR throttle. The paper attempts to calculate the flow-rate characteristics of the MR throttle. The rheological equation which describes sufficiently the mechanical properties of the magnetoheological suspensions is presented. The paper examines the calculation of the magnetic inductor for the example of a toroidal core with a gap, which simultaneously functions as the slot throttling channel. The use of the designs described enabled the development of bridge converters, which have a flat amplitude-frequency characteristic in the range 200-250 Hz and which have good energy indicators. Typical experimental logarithmic amplitude-frequency and phase-frequency characteristics of a bridge converter are shown.

  2. Wave Energy Converter (WEC) Array Effects on Wave Current and Sediment Circulation: Monterey Bay CA.

    SciTech Connect

    Roberts, Jesse D.; Jones, Craig; Magalen, Jason

    2014-09-01

    The goal s of this study were to develop tools to quantitatively characterize environments where wave energy converter ( WEC ) devices may be installed and to assess e ffects on hydrodynamics and lo cal sediment transport. A large hypothetical WEC array was investigated using wave, hydrodynamic, and sediment transport models and site - specific average and storm conditions as input. The results indicated that there were significant changes in sediment s izes adjacent to and in the lee of the WEC array due to reduced wave energy. The circulation in the lee of the array was also altered; more intense onshore currents were generated in the lee of the WECs . In general, the storm case and the average case show ed the same qualitative patterns suggesting that these trends would be maintained throughout the year. The framework developed here can be used to design more efficient arrays while minimizing impacts on nearshore environmen ts.

  3. Numerical Modeling of Compliant-Moored System Dynamics with Applications to Marine Energy Converters

    NASA Astrophysics Data System (ADS)

    Nichol, Tyler

    The development of a numerical model simulating the dynamic response of compliant-moored submerged systems to non-uniform fluid flow is presented. The model is meant to serve as a computational tool with applications to compliant-moored marine energy converters by time-domain representation of the mooring dynamics. The scope of the initial code is restricted to full-submerged moored tidal turbines, though the model can be readily expanded to analyze wave energy converters as well. The system is modeled in a Lagrangian frame treating tidal turbines and structural elements as rigid bodies. Mooring lines are modeled as a series of discrete elastic segments, with parameters and force contributions lumped to point-mass nodes joining each segment. Full-range of motion is achieved using the alpha-beta-gamma Euler Angle method. The governing equations of motion of the system are derived computationally through implementation of Lagrange's Equation of Motion. The techniques employed to develop the symbolic expressions for the total kinetic, potential, and damping energies of the system and the forces acting on each element of the system are discussed. The system of differential equations obtained from evaluation of Lagrange's Equation with the developed symbolic expressions is solved numerically using a built-in MATLAB ordinary differential equation solver called ODE15i.m with the user defined initial condition of the system. Several validation tests are presented and their results discussed. Finally, an explanation of future plans for development of the model and application to existing tidal energy systems are presented.

  4. Cow power: the energy and emissions benefits of converting manure to biogas

    NASA Astrophysics Data System (ADS)

    Cuéllar, Amanda D.; Webber, Michael E.

    2008-07-01

    This report consists of a top-level aggregate analysis of the total potential for converting livestock manure into a domestic renewable fuel source (biogas) that could be used to help states meet renewable portfolio standard requirements and reduce greenhouse gas (GHG) emissions. In the US, livestock agriculture produces over one billion tons of manure annually on a renewable basis. Most of this manure is disposed of in lagoons or stored outdoors to decompose. Such disposal methods emit methane and nitrous oxide, two important GHGs with 21 and 310 times the global warming potential of carbon dioxide, respectively. In total, GHG emissions from the agricultural sector in the US amounted to 536 million metric tons (MMT) of carbon dioxide equivalent, or 7% of the total US emissions in 2005. Of this agricultural contribution, 51 to 118 MMT of carbon dioxide equivalent resulted from livestock manure emissions alone, with trends showing this contribution increasing from 1990 to 2005. Thus, limiting GHG emissions from manure represents a valuable starting point for mitigating agricultural contributions to global climate change. Anaerobic digestion, a process that converts manure to methane-rich biogas, can lower GHG emissions from manure significantly. Using biogas as a substitute for other fossil fuels, such as coal for electricity generation, replaces two GHG sources—manure and coal combustion—with a less carbon-intensive source, namely biogas combustion. The biogas energy potential was calculated using values for the amount of biogas energy that can be produced per animal unit (defined as 1000 pounds of animal) per day and the number of animal units in the US. The 95 million animal units in the country could produce nearly 1 quad of renewable energy per year, amounting to approximately 1% of the US total energy consumption. Converting the biogas into electricity using standard microturbines could produce 88 ± 20 billion kWh, or 2.4 ± 0.6% of annual electricity

  5. A novel design of DC-AC electrical machine rotary converter for hybrid solar and wind energy applications

    NASA Astrophysics Data System (ADS)

    Mohammed, K. G.; Ramli, A. Q.; Amirulddin, U. A. U.

    2013-06-01

    This paper proposes the design of a new bi-directional DC-AC rotary converter machine to convert a d.c. voltage to three-phase voltage and vice-versa using a two-stage energy conversion machine. The rotary converter consists of two main stages which are combined into single frame. These two stages are constructed from three main electromagnetic components. The first inner electromagnetic component represents the input stage that enables the DC power generated by solar energy from photo-voltaic cells to be transformed by the second and third components electro-magnetically to produce multi-phase voltages at the output stage. At the same time, extra kinetic energy from wind, which is sufficiently available, can be added to existing torque on the second electromagnetic component. Both of these input energies will add up to the final energy generated at the output terminals. Therefore, the machine will be able to convert solar and wind energies to the output terminals simultaneously. If the solar energy is low, the available wind energy will be able to provide energy to the output terminals and at the same time charges the batteries which are connected as backup system. At this moment, the machine behaves as wind turbine. The energy output from the machine benefits from two energy sources which are solar and wind. At night when the solar energy is not available and also the load is low, the wind energy is able to charge the batteries and at the same time provides output electrical power to the remaining the load. Therefore, the proposed system will have high usage of available renewable energy as compared to separated wind or solar systems. MATLAB codes are used to calculate the required dimensions, the magnetic and electrical circuits parameters to design of the new bi-directional rotary converter machine.

  6. Dielectric elastomer energy harvesting: maximal converted energy, viscoelastic dissipation and a wave power generator

    NASA Astrophysics Data System (ADS)

    Lv, Xiongfei; Liu, Liwu; Liu, Yanju; Leng, Jinsong

    2015-11-01

    Dielectric elastomer (DE) is a smart soft material. It is able to produce large deformation under mechanical force and electric field, so that it can achieve mutual conversion between mechanical energy and electrical energy. Based on this property, dielectric elastomer can be used in energy harvesting field. In this paper, firstly, we analyzed the constitutive relation under different hyperelastic models (Gent and neo-Hookean model) based on both theoretical and experimental study. Secondly, we depicted the allowable areas in force-displacement and voltage-charge plane according to different failure modes, and then calculated the maximal energy density in one energy harvesting period. Thirdly, we studied the viscoelastic energy dissipation which can lose the input mechanical energy in the energy harvesting process. Finally, we designed and fabricated a wave power generator, and tested its performance. This paper is of deep significance to the future applications of DE generators.

  7. The solar wind-magnetosphere energy coupling and magnetospheric disturbances

    NASA Technical Reports Server (NTRS)

    Akasofu, S.-I.

    1980-01-01

    Energy coupling between the solar wind and the magnetosphere is examined and the influence of this coupling on magnetospheric disturbances is discussed. Following a review of the components of the total energy production rate of the magnetosphere and progress in the study of solar wind-magnetosphere correlations, the derivation of the solar wind-magnetosphere energy coupling function, which has been found to correlate well with the total magnetospheric energy production rate, is presented. Examination of the relations between the energy coupling function and the type of magnetic disturbance with which it is associated indicates that magnetic storms with a large sudden storm commencement and a weak main phase are associated with small energy coupling, while values of the coupling function greater than 5 x 10 to the 18th to 10 to the 19th erg/sec are required for the development of a major geomagnetic storm. The magnetospheric substorm is shown to be a direct result of increased solar wind-magnetosphere energy coupling rather than the sudden conversion of stored magnetic energy. Finally, it is indicated that at energy couplings greater than 10 to the 19th erg/sec, the positive feedback process responsible for substorms breaks down, resulting in the abnormal growth of the ring current.

  8. Dynamics of dark energy with a coupling to dark matter

    SciTech Connect

    Boehmer, Christian G.; Caldera-Cabral, Gabriela; Maartens, Roy; Lazkoz, Ruth

    2008-07-15

    Dark energy and dark matter are the dominant sources in the evolution of the late universe. They are currently only indirectly detected via their gravitational effects, and there could be a coupling between them without violating observational constraints. We investigate the background dynamics when dark energy is modeled as exponential quintessence and is coupled to dark matter via simple models of energy exchange. We introduce a new form of dark sector coupling, which leads to a more complicated dynamical phase space and has a better physical motivation than previous mathematically similar couplings.

  9. Power converter

    NASA Technical Reports Server (NTRS)

    Black, J. M. (Inventor)

    1981-01-01

    A dc-to-dc converter employs four transistor switches in a bridge to chop dc power from a source, and a voltage multiplying diode rectifying ladder network to rectify and filter the chopped dc power for delivery to a load. The bridge switches are cross coupled in order for diagonally opposite pairs to turn on and off together using RC networks for the cross coupling to achieve the mode of operation of a free running multivibrator, and the diode rectifying ladder is configured to operate in a push-pull mode driven from opposite sides of the multivibrator outputs of the ridge switches. The four transistor switches provide a square-wave output voltage which as a peak-to-peak amplitude that is twice the input dc voltage, and is thus useful as a dc-to-ac inverter.

  10. The alkali metal thermoelectric converter /AMTEC/ - A new direct energy conversion technology for aerospace power

    NASA Technical Reports Server (NTRS)

    Bankston, C. P.; Cole, T.; Jones, R.; Ewell, R.

    1982-01-01

    A thermally regenerative electrochemical device for the direct conversion of heat to electrical energy, the alkali metal thermoelectric converter (AMTEC), is characterized by potential efficiencies on the order of 15-40% and possesses no moving parts, making it a candidate for space power system applications. Device conversion efficiency is projected on the basis of experimental voltage vs current curves exhibiting power densities of 0.7 W/sq cm and measured electrode efficiencies of up to 40%. Preliminary radiative heat transfer measurements presented may be used in an investigation of methods for the reduction of AMTEC parasitic radiation losses. AMTEC assumes heat input and rejection temperatures of 900-1300 K and 400-800 K, respectively. The working fluid is liquid sodium, and the porous electrode employed is of molybdenum.

  11. On the concept of sloped motion for free-floating wave energy converters

    PubMed Central

    Payne, Grégory S.; Pascal, Rémy; Vaillant, Guillaume

    2015-01-01

    A free-floating wave energy converter (WEC) concept whose power take-off (PTO) system reacts against water inertia is investigated herein. The main focus is the impact of inclining the PTO direction on the system performance. The study is based on a numerical model whose formulation is first derived in detail. Hydrodynamics coefficients are obtained using the linear boundary element method package WAMIT. Verification of the model is provided prior to its use for a PTO parametric study and a multi-objective optimization based on a multi-linear regression method. It is found that inclining the direction of the PTO at around 50° to the vertical is highly beneficial for the WEC performance in that it provides a high capture width ratio over a broad region of the wave period range. PMID:26543397

  12. A tapped-inductor buck-boost converter for a multi-DEAP generator energy harvesting system

    NASA Astrophysics Data System (ADS)

    Dimopoulos, Emmanouil; Munk-Nielsen, Stig

    2014-03-01

    Interest on Dielectric ElectroActive Polymer (DEAP) generators has aroused among scientists in recent years, due to the former ones' documented advantages against competing electromagnetic and field-activated technologies. Yet, the need for bidirectional energy flow under high step-up and high step-down voltage conversion ratios, accompanied by low-average but relatively high-peak currents, imposes great challenges on the design of the employed power electronic converter. On top of that, the shortage of commercially-available, high-efficient, high-voltage, low-power semiconductor devices limits the effective operational range of the power electronic converter. In this paper, a bidirectional tapped-inductor buck-boost converter is proposed, addressing high- efficient high step-up and high step-down voltage conversion ratios, for energy harvesting applications based on DEAP generators. The effective operational range of the converter is extended, by replacing its high-side switch with a string of three serialized MOSFETs, to accommodate the need for high-efficient high-voltage operation. Experiments conducted on a single DEAP generator - part of a quadruple DEAP generator energy harvesting system with all elements installed sequentially in the same circular disk with a 90° phase shift - validate the applicability of the proposed converter, demonstrating energy harvesting of 0.26 J, at 0.5 Hz and 60% delta- strain; characterized by an energy density of 1.25 J per kg of active material.

  13. Converting Limbo Lands to Energy-Generating Stations: Renewable Energy Technologies on Underused, Formerly Contaminated Sites

    SciTech Connect

    Mosey, G.; Heimiller, D.; Dahle, D.; Vimmerstedt, L.; Brady-Sabeff, L.

    2007-10-01

    This report addresses the potential for using 'Limbo Lands' (underused, formerly contaminated sites, landfills, brownfields, abandoned mine lands, etc. ) as sites for renewable energy generating stations.

  14. Oscillating-water-column wave-energy-converter based on dielectric elastomer generator

    NASA Astrophysics Data System (ADS)

    Vertechy, R.; Fontana, M.; Rosati Papini, G. P.; Bergamasco, M.

    2013-04-01

    Dielectric Elastomers (DE) have been largely studied as actuators and sensors. Fewer researches have addressed their application in the field of energy harvesting. Their light weightiness, low cost, high corrosion resistance, and their intrinsic high-voltage and cyclical-way of operation make DE suited for harvesting mechanical energy from sea waves. To date, the development of cost-effective Wave Energy Converters (WECs) is hindered by inherent limitations of available material technologies. State of the art WECs are indeed based on traditional mechanical components, hydraulic transmissions and electromagnetic generators, which are all made by stiff, bulky, heavy and costly metallic materials. As a consequence, existing WECs result in being expensive, difficult to assemble, sensitive to corrosion and hard to maintain in the marine environment. DE generators could be an enabling technology for overcoming the intrinsic limitations of current WEC technologies. In this context, this paper focuses on Polymer-based Oscillating-Water-Column (Poly-OWC) type WECs, and analyzes the viability of using DE generators as power-take-off systems. Regarding paper structure, the first sections introduce the working principle of OWC devices and discuss possible layouts for their DE-based power-take-off system. Then, a simplified hydraulic-electro-hyperelastic model of a two-dimensional Poly-OWC is described. Finally, preliminary simulation results are shown which provide insights on the potential capabilities of Poly-OWC.

  15. Buck-boost converter for simultaneous semi-active vibration control and energy harvesting for electromagnetic regenerative shock absorber

    NASA Astrophysics Data System (ADS)

    Li, Peng; Zhang, Chongxiao; Kim, Junyoung; Yu, Liangyao; Zuo, Lei

    2014-04-01

    Regenerative semi-active suspensions can capture the previously dissipated vibration energy and convert it to usable electrical energy for powering on-board electronic devices, while achieve both the better ride comfort and improved road handling performance at the same time when certain control is applied. To achieve this objective, the power electronics interface circuit connecting the energy harvester and the electrical loads, which can perform simultaneous vibration control and energy harvesting function is in need. This paper utilized a buck-boost converter for simultaneous semi-active vibration control and energy harvesting with electromagnetic regenerative shock absorber, which utilizes a rotational generator to converter the vibration energy to electricity. It has been found that when the circuit works in discontinuous current mode (DCM), the ratio between the input voltage and current is only related to the duty cycle of the switch pulse width modulation signal. Using this property, the buck-boost converter can be used to perform semi-active vibration control by controlling the load connected between the terminals of the generator in the electromagnetic shock absorber. While performing the vibration control, the circuit always draw current from the shock absorber and the suspension remain dissipative, and the shock absorber takes no additional energy to perform the vibration control. The working principle and dynamics of the circuit has been analyzed and simulations were performed to validate the concept.

  16. Converting Limbo Lands to Energy-Generating Stations: Renewable Energy Technologies on Underused, Formerly Contaminated Sites

    EPA Science Inventory

    This report addresses the potential for using "Limbo Lands" as sites for renewable energy generating stations. Limbo Lands are considered as underused, formerly contaminated sites, and include former Superfund sites, landfills, brownfields, abandoned mine lands, former industrial...

  17. Electromechanical behavior of a pendulum-based piezoelectric frequency up-converting energy harvester

    NASA Astrophysics Data System (ADS)

    Ramezanpour, Reza; Nahvi, Hassan; Ziaei-Rad, Saeed

    2016-05-01

    In the present study, the possibility to extract more vibrational energy by utilizing a high number of magnets on the proof mass of a piezoelectric frequency up-converting energy harvester is investigated. Due to magnetic interaction, the beam is actuated whenever the proof mass passes over its tip. It is observed that several peaks occur in the voltage signal of PZT beam when the angular velocity of the proof mass increases linearly. It is shown that the peaks locations which found to be dependent on the natural frequency of the PZT beam as well as the number of rotating magnets can be estimated by a mathematical formulation. Considering the effects of magnetic interactions on the pendulum dynamics, the generated power of the harvester is obtained for harmonic excitations. Although the determination of exact optimum number of magnets that can lead to the best generated power in all excitation characteristics is impossible, it is found that by applying an appropriate number of rotating magnets (e.g. six, seven or eight magnets), the extracted power from high amplitude excitations can be enhanced. It is noteworthy that, at some particular cases, it is possible that the generated power be increased to even more than ten times. At the end, by conducting some experiments, the validity of the mathematical modeling as well as the applied numerical method is examined.

  18. Exchange-coupled fct-FePd/α-Fe nanocomposite magnets converted from Pd/Fe3O4 core/shell nanoparticles.

    PubMed

    Liu, Fei; Dong, Yunhe; Yang, Wenlong; Yu, Jing; Xu, Zhichuan; Hou, Yanglong

    2014-11-10

    We report the controlled synthesis of exchange-coupled face-centered tetragonal (fct) FePd/α-Fe nanocomposite magnets with variable Fe concentration. The composite was converted from Pd/Fe3O4 core/shell nanoparticles through a high-temperature annealing process in a reducing atmosphere. The shell thickness of core/shell Pd/Fe3O4 nanoparticles could be readily tuned, and subsequently the concentration of Fe in nanocomposite magnets was controlled. Upon annealing reduction, the hard magnetic fct-FePd phase was formed by the interdiffusion between reduced α-Fe and face-centered cubic (fcc) Pd, whereas the excessive α-Fe remained around the fct-FePd grains, realizing exchange coupling between the soft magnetic α-Fe and hard magnetic fct-FePd phases. Magnetic measurements showed variation in the magnetic properties of the nanocomposite magnets with different compositions, indicating distinct exchange coupling at the interfaces. The coercivity of the exchange-coupled nanocomposites could be tuned from 0.7 to 2.8 kOe and the saturation magnetization could be controlled from 93 to 160 emu g(-1). This work provides a bottom-up approach using exchange-coupled nanocomposites for engineering advanced permanent magnets with controllable magnetic properties. PMID:25255788

  19. Modularized multilevel and z-source power converter as renewable energy interface for vehicle and grid-connected applications

    NASA Astrophysics Data System (ADS)

    Cao, Dong

    Due the energy crisis and increased oil price, renewable energy sources such as photovoltaic panel, wind turbine, or thermoelectric generation module, are used more and more widely for vehicle and grid-connected applications. However, the output of these renewable energy sources varies according to different solar radiation, wind speed, or temperature difference, a power converter interface is required for the vehicle or grid-connected applications. Thermoelectric generation (TEG) module as a renewable energy source for automotive industry is becoming very popular recently. Because of the inherent characteristics of TEG modules, a low input voltage, high input current and high voltage gain dc-dc converters are needed for the automotive load. Traditional high voltage gain dc-dc converters are not suitable for automotive application in terms of size and high temperature operation. Switched-capacitor dc-dc converters have to be used for this application. However, high voltage spike and EMI problems exist in traditional switched-capacitor dc-dc converters. Huge capacitor banks have to be utilized to reduce the voltage ripple and achieve high efficiency. A series of zero current switching (ZCS) or zero voltage switching switched-capacitor dc-dc converters have been proposed to overcome the aforementioned problems of the traditional switched-capacitor dc-dc converters. By using the proposed soft-switching strategy, high voltage spike is reduced, high EMI noise is restricted, and the huge capacitor bank is eliminated. High efficiency, high power density and high temperature switched-capacitor dc-dc converters could be made for the TEG interface in vehicle applications. Several prototypes have been made to validate the proposed circuit and confirm the circuit operation. In order to apply PV panel for grid-connected application, a low cost dc-ac inverter interface is required. From the use of transformer and safety concern, two different solutions can be implemented, non

  20. Spot-size converter with a SiO(2) spacer layer between tapered Si and SiON waveguides for fiber-to-chip coupling.

    PubMed

    Maegami, Yuriko; Takei, Ryohei; Omoda, Emiko; Amano, Takeru; Okano, Makoto; Mori, Masahiko; Kamei, Toshihiro; Sakakibara, Youichi

    2015-08-10

    We experimentally demonstrate low-loss and polarization-insensitive fiber-to-chip coupling spot-size converters (SSCs) comprised of a three dimensionally tapered Si wire waveguide, a SiON secondary waveguide, and a SiO(2) spacer inserted between them. Fabricated SSCs with the SiO(2) spacer exhibit fiber-to-chip coupling loss of 1.5 dB/facet for both the quasi-TE and TM modes and a small wavelength dependence in the C- and L-band regions. The SiON secondary waveguide is present only around the SSC region, which significantly suppresses the influence of the well-known N-H absorption of plasma-deposited SiON at around 1510 nm. PMID:26367977

  1. Dual-Tapered 10-µm-Spot-Size Converter with Double Core for Coupling Polarization-Independent Silicon Rib Waveguides to Single-Mode Optical Fibers

    NASA Astrophysics Data System (ADS)

    Tokushima, Masatoshi; Kamei, Akio; Horikawa, Tsuyoshi

    2012-02-01

    A new spot-size converter (SSC) for coupling Si rib waveguides to 10-µm-mode-diameter single mode optical fibers was theoretically and experimentally evaluated. The core of the SSC consisted of a lateral and vertical Si inverse-taper having a rib-to-wire shape and a lateral silica normal-taper with a rib shape. The calculated coupling losses for an optimized structure were 0.65 and 0.66 dB for transverse-electric (TE) and transverse-magnetic (TM) polarizations, respectively. The losses of the fabricated SSCs were 2.7 dB (TE) and 3.0 dB (TM). The measured misalignment tolerance was +/-1.2 µm for an extra-loss increase of 0.25 dB.

  2. Oceanic Platform of the Canary Islands: an ocean testbed for ocean energy converters

    NASA Astrophysics Data System (ADS)

    González, Javier; Hernández-Brito, Joaquín.; Llinás, Octavio

    2010-05-01

    not particularly powerful with values around 40-50 cm/s. However a detailed assessment, based on field measurements, will be conducted in the near future with the aim to identify specific areas close to the coast with stronger currents which make suitable the deployment of marine current turbines. Although the base Platform is not still available, PLOCAN has already started the activity as an ocean testbed providing services to a wave energy converter patented by the Spanish company PIPO Systems. A scaled 1:5 prototype will be deployed during January 2010 and monitored for several months. Current facilities available include some ODAS buoys (temperature, salinity, pH, oxygen, turbidity, wind, etc.), wave rider buoy, current meter profilers (ADCP and electromagnetic), system for data management, remote operated vehicles (ROV), autonomous underwater vehicles (AUV), and an oceanographic vessel. Future facilities include high frequency radar for wave and current measurements and submarine electro-optical cables to connect the Platform with the energy converters and with the shore station.

  3. User's manual: Computer-aided design programs for inductor-energy-storage dc-to-dc electronic power converters

    NASA Technical Reports Server (NTRS)

    Huffman, S.

    1977-01-01

    Detailed instructions on the use of two computer-aided-design programs for designing the energy storage inductor for single winding and two winding dc to dc converters are provided. Step by step procedures are given to illustrate the formatting of user input data. The procedures are illustrated by eight sample design problems which include the user input and the computer program output.

  4. A continuous fluorescence resonance energy transfer angiotensin I-converting enzyme assay.

    PubMed

    Carmona, Adriana K; Schwager, Sylva L; Juliano, Maria A; Juliano, Luiz; Sturrock, Edward D

    2006-01-01

    Angiotensin I-converting enzyme (ACE) is involved in various physiological and physiopathological conditions; therefore, the measurement of its catalytic activity may provide essential clinical information. This protocol describes a sensitive and rapid procedure for determination of ACE activity using fluorescence resonance energy transfer (FRET) substrates containing o-aminobenzoic acid (Abz) as the fluorescent group and 2,4-dinitrophenyl (Dnp) as the quencher acceptor. Hydrolysis of a peptide bond between the donor/acceptor pair generates fluorescence that can be detected continuously, allowing quantitative measurement of the enzyme activity. The FRET substrates provide a useful tool for kinetic studies and for ACE determination in biological fluids and crude tissue extracts. An important benefit of this method is the use of substrates selective for the two active sites of the enzyme, namely Abz-SDK(Dnp)P-OH for N-domain, Abz-LFK(Dnp)-OH for C-domain and Abz-FRK(Dnp)P-OH for somatic ACE. This methodology can be adapted for determinations using a 96-well fluorescence plate reader. PMID:17487185

  5. Numerical modeling of the effects of wave energy converter characteristics on nearshore wave conditions

    DOE PAGESBeta

    Chang, G.; Ruehl, K.; Jones, C. A.; Roberts, J.; Chartrand, C.

    2015-12-24

    Modeled nearshore wave propagation was investigated downstream of simulated wave energy converters (WECs) to evaluate overall near- and far-field effects of WEC arrays. Model sensitivity to WEC characteristics and WEC array deployment scenarios was evaluated using a modified version of an industry standard wave model, Simulating WAves Nearshore (SWAN), which allows the incorporation of device-specific WEC characteristics to specify obstacle transmission. The sensitivity study illustrated that WEC device type and subsequently its size directly resulted in wave height variations in the lee of the WEC array. Wave heights decreased up to 30% between modeled scenarios with and without WECs formore » large arrays (100 devices) of relatively sizable devices (26 m in diameter) with peak power generation near to the modeled incident wave height. Other WEC types resulted in less than 15% differences in modeled wave height with and without WECs, with lesser influence for WECs less than 10 m in diameter. Wave directions and periods were largely insensitive to changes in parameters. Furthermore, additional model parameterization and analysis are required to fully explore the model sensitivity of peak wave period and mean wave direction to the varying of the parameters.« less

  6. Numerical modeling of the effects of wave energy converter characteristics on nearshore wave conditions

    SciTech Connect

    Chang, G.; Ruehl, K.; Jones, C. A.; Roberts, J.; Chartrand, C.

    2015-12-24

    Modeled nearshore wave propagation was investigated downstream of simulated wave energy converters (WECs) to evaluate overall near- and far-field effects of WEC arrays. Model sensitivity to WEC characteristics and WEC array deployment scenarios was evaluated using a modified version of an industry standard wave model, Simulating WAves Nearshore (SWAN), which allows the incorporation of device-specific WEC characteristics to specify obstacle transmission. The sensitivity study illustrated that WEC device type and subsequently its size directly resulted in wave height variations in the lee of the WEC array. Wave heights decreased up to 30% between modeled scenarios with and without WECs for large arrays (100 devices) of relatively sizable devices (26 m in diameter) with peak power generation near to the modeled incident wave height. Other WEC types resulted in less than 15% differences in modeled wave height with and without WECs, with lesser influence for WECs less than 10 m in diameter. Wave directions and periods were largely insensitive to changes in parameters. Furthermore, additional model parameterization and analysis are required to fully explore the model sensitivity of peak wave period and mean wave direction to the varying of the parameters.

  7. Converting hazardous organics into clean energy using a solar responsive dual photoelectrode photocatalytic fuel cell.

    PubMed

    Li, Jianyong; Li, Jinhua; Chen, Quanpeng; Bai, Jing; Zhou, Baoxue

    2013-11-15

    Direct discharging great quantities of organics into water-body not only causes serious environmental pollution but also wastes energy sources. In this paper, a solar responsive dual photoelectrode photocatalytic fuel cell (PFC(2)) based on TiO2/Ti photoanode and Cu2O/Cu photocathode was designed for hazardous organics treatment with simultaneous electricity generation. Under solar irradiation, the interior bias voltage produced for the Fermi level difference between photoelectrodes drives photoelectrons of TiO2/Ti photoanode to combine with photoholes of Cu2O/Cu photocathode through external circuit thus generating electricity. In the meantime, organics are decomposed by photoholes remained at TiO2/Ti photoanode. By using various hazardous organics including azo dyes as model pollutants, the PFC showed high converting performance of organics into electricity. For example, in 0.05 M phenol solution, a short-circuit current density 0.23 mA cm(-2), open-circuit voltage 0.49 V, maximum power output 0.3610(-4)W cm(-2) was achieved. On the other hand, removal rate of chroma reached 67%, 87% and 63% in 8h for methyl orange, methylene blue, Congo red, respectively. PMID:24051045

  8. A 3D MPI-Parallel GPU-accelerated framework for simulating ocean wave energy converters

    NASA Astrophysics Data System (ADS)

    Pathak, Ashish; Raessi, Mehdi

    2015-11-01

    We present an MPI-parallel GPU-accelerated computational framework for studying the interaction between ocean waves and wave energy converters (WECs). The computational framework captures the viscous effects, nonlinear fluid-structure interaction (FSI), and breaking of waves around the structure, which cannot be captured in many potential flow solvers commonly used for WEC simulations. The full Navier-Stokes equations are solved using the two-step projection method, which is accelerated by porting the pressure Poisson equation to GPUs. The FSI is captured using the numerically stable fictitious domain method. A novel three-phase interface reconstruction algorithm is used to resolve three phases in a VOF-PLIC context. A consistent mass and momentum transport approach enables simulations at high density ratios. The accuracy of the overall framework is demonstrated via an array of test cases. Numerical simulations of the interaction between ocean waves and WECs are presented. Funding from the National Science Foundation CBET-1236462 grant is gratefully acknowledged.

  9. The Coupled Pendulum--A Demonstration of Energy Conservation.

    ERIC Educational Resources Information Center

    Record, Daniel J.

    1978-01-01

    Presents a classroom demonstration that illustrates the Law of Conservation of Energy. The demonstration utilizes a coupled pendulum device that can easily be constructed from ordinary monofilament fishing line and two metal pendulum bobs. (HM)

  10. The electronic couplings in electron transfer and excitation energy transfer.

    PubMed

    Hsu, Chao-Ping

    2009-04-21

    The transport of charge via electrons and the transport of excitation energy via excitons are two processes of fundamental importance in diverse areas of research. Characterization of electron transfer (ET) and excitation energy transfer (EET) rates are essential for a full understanding of, for instance, biological systems (such as respiration and photosynthesis) and opto-electronic devices (which interconvert electric and light energy). In this Account, we examine one of the parameters, the electronic coupling factor, for which reliable values are critical in determining transfer rates. Although ET and EET are different processes, many strategies for calculating the couplings share common themes. We emphasize the similarities in basic assumptions between the computational methods for the ET and EET couplings, examine the differences, and summarize the properties, advantages, and limits of the different computational methods. The electronic coupling factor is an off-diagonal Hamiltonian matrix element between the initial and final diabatic states in the transport processes. ET coupling is essentially the interaction of the two molecular orbitals (MOs) where the electron occupancy is changed. Singlet excitation energy transfer (SEET), however, contains a Frster dipole-dipole coupling as its most important constituent. Triplet excitation energy transfer (TEET) involves an exchange of two electrons of different spin and energy; thus, it is like an overlap interaction of two pairs of MOs. Strategies for calculating ET and EET couplings can be classified as (1) energy-gap-based approaches, (2) direct calculation of the off-diagonal matrix elements, or (3) use of an additional operator to describe the extent of charge or excitation localization and to calculate the coupling value. Some of the difficulties in calculating the couplings were recently resolved. Methods were developed to remove the nondynamical correlation problem from the highly precise coupled cluster

  11. High frequency converters for thermophotovoltaic applications

    SciTech Connect

    Fatemi, N.S.; Hoffman, R.W. Jr.; Lowe, R.A.; Jenkins, P.P.; Garverick, L.M.; Wilt, D.M.; Scheiman, D.

    1996-12-31

    Thermophotovoltaic (TPV) converters were developed and tested at the heat source operating temperature of 1,700 K. Rare-earth-doped yttrium aluminum garnet (YAG) and lutetium yttrium aluminum garnet (Lu, YAG) selective emitters, as well as a blackbody emitter, were coupled to InGaAs/InP photovoltaic (PV) cells and bandpass/infrared (IR) reflector filters. YAG-based selective emitters were adopted with Ho, Tm, and Er. PV cells had bandgaps of 0.51, 0.57, and 0.69 eV. Converter energy conversion efficiencies approaching 30%, as well as electrical output power densities near 2 W/cm{sup 2} were demonstrated. The overall performance of the filtered blackbody-based converter was found to be superior to the selective emitter YAG-based converters. The details of the measurements performed on the above converters and their individual components are presented.

  12. Nuclear Hybrid Energy System Modeling: RELAP5 Dynamic Coupling Capabilities

    SciTech Connect

    Piyush Sabharwall; Nolan Anderson; Haihua Zhao; Shannon Bragg-Sitton; George Mesina

    2012-09-01

    The nuclear hybrid energy systems (NHES) research team is currently developing a dynamic simulation of an integrated hybrid energy system. A detailed simulation of proposed NHES architectures will allow initial computational demonstration of a tightly coupled NHES to identify key reactor subsystem requirements, identify candidate reactor technologies for a hybrid system, and identify key challenges to operation of the coupled system. This work will provide a baseline for later coupling of design-specific reactor models through industry collaboration. The modeling capability addressed in this report focuses on the reactor subsystem simulation.

  13. The ocean's gravitational potential energy budget in a coupled climate model

    NASA Astrophysics Data System (ADS)

    Butler, E. D.; Oliver, K. I.; Gregory, J. M.; Tailleux, R.

    2013-10-01

    This study examines, in a unified fashion, the budgets of ocean gravitational potential energy (GPE) and available gravitational potential energy (AGPE) in the control simulation of the coupled atmosphere-ocean general circulation model HadCM3. Only AGPE can be converted into kinetic energy by adiabatic processes. Diapycnal mixing supplies GPE but not AGPE, whereas the reverse is true of the combined effect of surface buoyancy forcing and convection. Mixing and buoyancy forcing thus play complementary roles in sustaining the large-scale circulation. However, the largest globally integrated source of GPE is resolved advection (+0.57 TW) and the largest sink is through parameterized eddy transports (-0.82 TW). The effect of these adiabatic processes on AGPE is identical to their effect on GPE, except for perturbations to both budgets due to numerical leakage exacerbated by nonlinearities in the equation of state.

  14. Energy efficiency of information transmission by electrically coupled neurons.

    PubMed

    Torrealdea, Francisco J; Sarasola, Cecilia; d'Anjou, Alicia; Moujahid, Abdelmalik; de Mendizábal, N Vélez

    2009-07-01

    The generation of spikes by neurons is energetically a costly process. This paper studies the consumption of energy and the information entropy in the signalling activity of a model neuron both when it is supposed isolated and when it is coupled to another neuron by an electrical synapse. The neuron has been modelled by a four-dimensional Hindmarsh-Rose type kinetic model for which an energy function has been deduced. For the isolated neuron values of energy consumption and information entropy at different signalling regimes have been computed. For two neurons coupled by a gap junction we have analyzed the roles of the membrane and synapse in the contribution of the energy that is required for their organized signalling. Computational results are provided for cases of identical and nonidentical neurons coupled by unidirectional and bidirectional gap junctions. One relevant result is that there are values of the coupling strength at which the organized signalling of two neurons induced by the gap junction takes place at relatively low values of energy consumption and the ratio of mutual information to energy consumption is relatively high. Therefore, communicating at these coupling values could be energetically the most efficient option. PMID:19397950

  15. Proposal for efficient mode converter based on cavity quantum electrodynamics dark mode in a semiconductor quantum dot coupled to a bimodal microcavity

    NASA Astrophysics Data System (ADS)

    Li, Jiahua; Yu, Rong; Ma, Jinyong; Wu, Ying

    2014-10-01

    The ability to engineer and convert photons between different modes in a solid-state approach has extensive technological implications not only for classical communication systems but also for future quantum networks. In this paper, we put forward a scheme for coherent mode conversion of optical photons by utilizing the intermediate coupling between a single quantum dot and a bimodal photonic crystal microcavity via a waveguide. Here, one mode of the photonic crystal microcavity is coherently driven by an external single-frequency continuous-wave laser field and the two cavity modes are not coupled to each other due to their orthogonal polarizations. The undriven cavity mode is thus not directly coupled to the input driving laser and the only way it can get light is via the quantum dot. The influences of the system parameters on the photon-conversion efficiency are analyzed in detail in the limit of weak probe field and it is found that high photon-conversion efficiency can be achieved under appropriate conditions. It is shown that the cavity dark mode, which is a superposition of the two optical modes and is decoupled from the quantum dot, can appear in such a hybrid optical system. We discuss the properties of the dark mode and indicate that the formation of the dark mode enables the efficient transfer of optical fields between the two cavity modes.

  16. Proposal for efficient mode converter based on cavity quantum electrodynamics dark mode in a semiconductor quantum dot coupled to a bimodal microcavity

    SciTech Connect

    Li, Jiahua; Yu, Rong; Ma, Jinyong; Wu, Ying

    2014-10-28

    The ability to engineer and convert photons between different modes in a solid-state approach has extensive technological implications not only for classical communication systems but also for future quantum networks. In this paper, we put forward a scheme for coherent mode conversion of optical photons by utilizing the intermediate coupling between a single quantum dot and a bimodal photonic crystal microcavity via a waveguide. Here, one mode of the photonic crystal microcavity is coherently driven by an external single-frequency continuous-wave laser field and the two cavity modes are not coupled to each other due to their orthogonal polarizations. The undriven cavity mode is thus not directly coupled to the input driving laser and the only way it can get light is via the quantum dot. The influences of the system parameters on the photon-conversion efficiency are analyzed in detail in the limit of weak probe field and it is found that high photon-conversion efficiency can be achieved under appropriate conditions. It is shown that the cavity dark mode, which is a superposition of the two optical modes and is decoupled from the quantum dot, can appear in such a hybrid optical system. We discuss the properties of the dark mode and indicate that the formation of the dark mode enables the efficient transfer of optical fields between the two cavity modes.

  17. Energy demand analytics using coupled technological and economic models

    EPA Science Inventory

    Impacts of a range of policy scenarios on end-use energy demand are examined using a coupling of MARKAL, an energy system model with extensive supply and end-use technological detail, with Inforum LIFT, a large-scale model of the us. economy with inter-industry, government, and c...

  18. Logarithmic entropy corrected holographic dark energy with nonminimal kinetic coupling

    NASA Astrophysics Data System (ADS)

    Amani, Ali R.; Sadeghi, J.; Farajollahi, H.; Pourali, M.

    2012-01-01

    In this paper, we have considered a cosmological model with the non--minimal kinetic coupling terms and investigated its cosmological implications with respect to the logarithmic entropy-- corrected holographic dark energy (LECHDE). The correspondence between LECHDE in flat FRW cosmology and the phantom dark energy model with the aim to interpret the current universe acceleration is also examined.

  19. Resonant energy transfer assisted by off-diagonal coupling.

    PubMed

    Wu, Ning; Sun, Ke-Wei; Chang, Zhe; Zhao, Yang

    2012-03-28

    Dynamics of resonant energy transfer of a single excitation in a molecular dimer system are studied in the simultaneous presence of diagonal and off-diagonal exciton-phonon coupling. It is found that, at given temperatures, the off-diagonal coupling can enhance both the coherence of the resonant energy transfer and the net quantity of energy transferred from an initially excited monomer to the other. Also studied is the dynamics of entanglement between the dimer system and the phonon bath as measured by the von Neumann entanglement entropy, and the inter-monomer entanglement dynamics for the excitonic system. PMID:22462880

  20. Multicriteria analysis to evaluate wave energy converters based on their environmental impact: an Italian case study

    NASA Astrophysics Data System (ADS)

    Azzellino, Arianna; Contestabile, Pasquale; Lanfredi, Caterina; Vicinanza, Diego

    2010-05-01

    The exploitation of renewable energy resources is fast becoming a key objective in many countries. Countries with coastlines have particularly valuable renewable energy resources in the form of tides, currents, waves and offshore wind. Due to the visual impact of siting large numbers of energy generating devices (eg. wind turbines) in terrestrial landscapes, considerable attention is now being directed towards coastal waters. Due to their environmental sensitivity, the selection of the most adequate location for these systems is a critical factor. Multi-criteria analysis allows to consider a wide variety of key characteristics (e.g. water depth, distance to shore, distance to the electric grid in land, geology, environmental impact) that may be converted into a numerical index of suitability for different WEC devices to different locations. So identifying the best alternative between an offshore or a onshore device may be specifically treated as a multicriteria problem. Special enphasisi should be given in the multicriteria analysis to the environmental impact issues. The wave energy prospective in the Italian seas is relatively low if compared to the other European countries faced to the ocean. Based on the wave climate, the Alghero site, (NW Sardinia, Italy) is one of the most interesting sites for the wave energy perspective (about 10 kW/m). Alghero site is characterized by a high level of marine biodiversity. In 2002 the area northern to Alghero harbour (Capo Caccia-Isola Piana) was established a Marine Protected Area (MPA). It could be discussed for this site how to choose between the onshore/offshore WEC alternative. An offshore device like Wave Dragon (http://www.wavedragon.net/) installed at -65m depth (width=300m and length=170 m) may approximately produce about 3.6 GWh/y with a total cost of about 9,000,000 €. On the other hand, an onshore device like SSG (http://waveenergy.no/), employed as crown wall for a vertical breakwater to enlarge the present

  1. Ovalis TAH: development and in vitro testing of a new electromechanical energy converter for a total artificial heart.

    PubMed

    Sauer, I M; Frank, J; Spiegelberg, A; Bücherl, E S

    2000-01-01

    A new electromechanical energy converting system has been developed to yield an efficient and durable orthotopic total artificial heart (TAH). The energy converter we developed transforms the unidirectional rotational motion of the motor into a longitudinal forward-reverse movement of an internal geared oval, linked directly to pusher plates on both sides. To ensure a permanent positive connection between the drive gear and the internally geared wheel, a ball bearing runs inside an oval shaped guide track. Motor, gear unit, and conical pusher plates are seated between alternately ejecting and filling ventricles. The unidirectional motion of the brushless DC motor affords easier motor control, reduces energy demand, and ensures longer life of the motor when compared with a bidirectional motion system. In vitro testing has been performed on a mock circulation loop. The overall system efficiency of the TAH Ovalis was 27-39% (mean, 36%) for the pump output range of 2-7 L/min. The maximum output of 7 L/min can be obtained with a pump rate of 130 min(-1) and an afterload pressure of 140 mm Hg. For an average sized human with a mean cardiac output of 6 L/min at a mean aortic pressure of 120 mm Hg, 5 watts of input power would be required. The size of the prototype is 560 cm3, the weight is 950 g. Our first in vitro studies demonstrated the excellent efficiency and pump performance of this new electromechanical energy converter. The results prove the feasibility of this new concept's use as an energy converter for a total artificial heart. PMID:11110274

  2. A spot-size converter-integrated 1.3 µm TM mode LD for coupling with surface-plasmon polariton waveguides

    NASA Astrophysics Data System (ADS)

    Choe, Joong-Seon; Kim, Kisoo; Park, Suntak; Kim, Jin Tae; Lee, Jong-Moo; Kim, Min-su; Park, Seung Koo; Ju, Jung Jin

    2010-03-01

    A 1.3 µm transverse magnetic (TM) mode laser diode (LD) with a spot-size converter was fabricated and its various characteristics were investigated. At 100 mA, the power ratio of 33 dB was obtained between TM and TE mode using 0.68% tensile strained quantum wells. The device shows far field angles of 10.4° and 11.7° in horizontal and vertical directions, respectively, resulting in 3.1 dB coupling loss with a surface-plasmon polariton (SPP) waveguide (WG). The 3 dB alignment tolerance with the SPP-WG is 7.2 µm and 6.8 µm, respectively. 3 dB bandwidth is 6.3 GHz and clear eye-opening is confirmed under 7 Gbps NRZ transmission.

  3. Liquid metal thermal electric converter

    DOEpatents

    Abbin, Joseph P.; Andraka, Charles E.; Lukens, Laurance L.; Moreno, James B.

    1989-01-01

    A liquid metal thermal electric converter which converts heat energy to electrical energy. The design of the liquid metal thermal electric converter incorporates a unique configuration which directs the metal fluid pressure to the outside of the tube which results in the structural loads in the tube to be compressive. A liquid metal thermal electric converter refluxing boiler with series connection of tubes and a multiple cell liquid metal thermal electric converter are also provided.

  4. Performance characteristics of a combination solar photovoltaic heat engine energy converter

    NASA Technical Reports Server (NTRS)

    Chubb, Donald L.

    1987-01-01

    A combination solar photovoltaic heat engine converter is proposed. Such a system is suitable for either terrestrial or space power applications. The combination system has a higher efficiency than either the photovoltaic array or the heat engine alone can attain. Advantages in concentrator and radiator area and receiver mass of the photovoltaic heat engine system over a heat-engine-only system are estimated. A mass and area comparison between the proposed space station organic Rankine power system and a combination PV-heat engine system is made. The critical problem for the proposed converter is the necessity for high temperature photovoltaic array operation. Estimates of the required photovoltaic temperature are presented.

  5. Electromechanical modeling of a honeycomb core integrated vibration energy converter with increased specific power for energy harvesting applications

    NASA Astrophysics Data System (ADS)

    Chandrasekharan, Nataraj

    especially if the application imposes a space/size constraint. Moreover, the bimorph with increased thickness will now require a larger mechanical force to deform the structure which can fall outside the input ambient excitation amplitude range. In contrast, the honeycomb core bimorph offers an advantage in terms of preserving the global geometric dimensions. The natural frequency of the honeycomb core bimorph can be altered by manipulating honeycomb cell design parameters, such as cell angle, cell wall thickness, vertical cell height and inclined cell length. This results in a change in the mass and stiffness properties of the substrate and hence the bimorph, thereby altering the natural frequency of the harvester. Design flexibility of honeycomb core bimorphs is demonstrated by varying honeycomb cell parameters to alter mass and stiffness properties for power harvesting. The influence of honeycomb cell parameters on power generation is examined to evaluate optimum design to attain highest specific power. In addition, the more compliant nature of a honeycomb core bimorph decreases susceptibility towards fatigue and can increase the operating lifetime of the harvester. The second component of this dissertation analyses an uncoupled equivalent circuit model for piezoelectric energy harvesting. Open circuit voltage developed on the piezoelectric materials can be easily computed either through analytical or finite element models. The efficacy of a method to determine power developed across a resistive load, by representing the coupled piezoelectric electromechanical problem with an external load as an open circuit voltage driven equivalent circuit, is evaluated. The lack of backward feedback at finite resistive loads resulting from such an equivalent representation is examined by comparing the equivalent circuit model to the governing equations of a fully coupled circuit model for the electromechanical problem. It is found that the backward feedback is insignificant for weakly

  6. Energy structure of MHD flow coupling with outer resistance circuit

    NASA Astrophysics Data System (ADS)

    Huang, Z. Y.; Liu, Y. J.; Chen, Y. Q.; Peng, Z. L.

    2015-08-01

    Energy structure of MHD flow coupling with outer resistance circuit is studied to illuminate qualitatively and quantitatively the energy relation of this basic MHD flow system with energy input and output. Energy structure are analytically derived based on the Navier-Stocks equations for two-dimensional fully-developed flow and generalized Ohm's Law. The influences of applied magnetic field, Hall parameter and conductivity on energy structure are discussed based on the analytical results. Associated energies in MHD flow are deduced and validated by energy conservation. These results reveal that energy structure consists of two sub structures: electrical energy structure and internal energy structure. Energy structure and its sub structures provide an integrated theoretical energy path of the MHD system. Applied magnetic field and conductivity decrease the input energy, dissipation by fluid viscosity and internal energy but increase the ratio of electrical energy to input energy, while Hall parameter has the opposite effects. These are caused by their different effects on Bulk velocity, velocity profiles, voltage and current in outer circuit. Understanding energy structure helps MHD application designers to actively adjust the allocation of different parts of energy so that it is more reasonable and desirable.

  7. Coupling loss factor of linear vibration energy harvesting systems in a framework of statistical energy analysis

    NASA Astrophysics Data System (ADS)

    Wang, Xu

    2016-02-01

    This paper establishes coupling loss factor of linear vibration energy harvesting systems in a framework of statistical energy analysis under parameter variations and random excitations. The new contributions of this paper are to define the numerical ranges of the dimensionless force factor for the weak, moderate and strong coupling and to study the connections of dimensionless force factor, coupling loss factor, coupling quotient, critical coupling strength, electro-mechanical coupling factor, damping loss factor and modal densities in linear vibration energy harvesting systems. The motivation of this paper is to enable statistical energy analysis of linear vibration energy harvesting systems for reliable performance predictions and design optimisation under parameter variations of materials and manufacturing processes and random ambient environmental excitations.

  8. Energy coupling to the plasma in repetitive nanosecond pulse discharges

    SciTech Connect

    Adamovich, Igor V.; Nishihara, Munetake; Choi, Inchul; Uddi, Mruthunjaya; Lempert, Walter R.

    2009-11-15

    A new analytic quasi-one-dimensional model of energy coupling to nanosecond pulse discharge plasmas in plane-to-plane geometry has been developed. The use of a one-dimensional approach is based on images of repetitively pulsed nanosecond discharge plasmas in dry air demonstrating that the plasma remains diffuse and uniform on a nanosecond time scale over a wide range of pressures. The model provides analytic expressions for the time-dependent electric field and electron density in the plasma, electric field in the sheath, sheath boundary location, and coupled pulse energy. The analytic model predictions are in very good agreement with numerical calculations. The model demonstrates that (i) the energy coupled to the plasma during an individual nanosecond discharge pulse is controlled primarily by the capacitance of the dielectric layers and by the breakdown voltage and (ii) the pulse energy coupled to the plasma during a burst of nanosecond pulses decreases as a function of the pulse number in the burst. This occurs primarily because of plasma temperature rise and resultant reduction in breakdown voltage, such that the coupled pulse energy varies approximately proportionally to the number density. Analytic expression for coupled pulse energy scaling has been incorporated into the air plasma chemistry model, validated previously by comparing with atomic oxygen number density measurements in nanosecond pulse discharges. The results of kinetic modeling using the modified air plasma chemistry model are compared with time-resolved temperature measurements in a repetitively pulsed nanosecond discharge in air, by emission spectroscopy, and purely rotational coherent anti-Stokes Raman spectroscopy showing good agreement.

  9. Energy coupling to the plasma in repetitive nanosecond pulse discharges

    NASA Astrophysics Data System (ADS)

    Adamovich, Igor V.; Nishihara, Munetake; Choi, Inchul; Uddi, Mruthunjaya; Lempert, Walter R.

    2009-11-01

    A new analytic quasi-one-dimensional model of energy coupling to nanosecond pulse discharge plasmas in plane-to-plane geometry has been developed. The use of a one-dimensional approach is based on images of repetitively pulsed nanosecond discharge plasmas in dry air demonstrating that the plasma remains diffuse and uniform on a nanosecond time scale over a wide range of pressures. The model provides analytic expressions for the time-dependent electric field and electron density in the plasma, electric field in the sheath, sheath boundary location, and coupled pulse energy. The analytic model predictions are in very good agreement with numerical calculations. The model demonstrates that (i) the energy coupled to the plasma during an individual nanosecond discharge pulse is controlled primarily by the capacitance of the dielectric layers and by the breakdown voltage and (ii) the pulse energy coupled to the plasma during a burst of nanosecond pulses decreases as a function of the pulse number in the burst. This occurs primarily because of plasma temperature rise and resultant reduction in breakdown voltage, such that the coupled pulse energy varies approximately proportionally to the number density. Analytic expression for coupled pulse energy scaling has been incorporated into the air plasma chemistry model, validated previously by comparing with atomic oxygen number density measurements in nanosecond pulse discharges. The results of kinetic modeling using the modified air plasma chemistry model are compared with time-resolved temperature measurements in a repetitively pulsed nanosecond discharge in air, by emission spectroscopy, and purely rotational coherent anti-Stokes Raman spectroscopy showing good agreement.

  10. Thermionic converter

    DOEpatents

    Rasor, Ned S.; Britt, Edward J.

    1976-01-01

    A gas-filled thermionic converter is provided with a collector and an emitter having a main emitter region and an auxiliary emitter region in electrical contact with the main emitter region. The main emitter region is so positioned with respect to the collector that a main gap is formed therebetween and the auxiliary emitter region is so positioned with respect to the collector that an auxiliary gap is formed therebetween partially separated from the main gap with access allowed between the gaps to allow ionizable gas in each gap to migrate therebetween. With heat applied to the emitter the work function of the auxiliary emitter region is sufficiently greater than the work function of the collector so that an ignited discharge occurs in the auxiliary gap and the work function of the main emitter region is so related to the work function of the collector that an unignited discharge occurs in the main gap sustained by the ions generated in the auxiliary gap. A current flows through a load coupled across the emitter and collector due to the unignited discharge in the main gap.

  11. Coupled analysis of multi-impact energy harvesting from low-frequency wind induced vibrations

    NASA Astrophysics Data System (ADS)

    Zhu, Jin; Zhang, Wei

    2015-04-01

    Energy need from off-grid locations has been critical for effective real-time monitoring and control to ensure structural safety and reliability. To harvest energy from ambient environments, the piezoelectric-based energy-harvesting system has been proven very efficient to convert high frequency vibrations into usable electrical energy. However, due to the low frequency nature of the vibrations of civil infrastructures, such as those induced from vehicle impacts, wind, and waves, the application of a traditional piezoelectric-based energy-harvesting system is greatly restrained since the output power drops dramatically with the reduction of vibration frequencies. This paper focuses on the coupled analysis of a proposed piezoelectric multi-impact wind-energy-harvesting device that can effectively up-convert low frequency wind-induced vibrations into high frequency ones. The device consists of an H-shape beam and four bimorph piezoelectric cantilever beams. The H-shape beam, which can be easily triggered to vibrate at a low wind speed, is originated from the first Tacoma Narrows Bridge, which failed at wind speeds of 18.8 m s-1 in 1940. The multi-impact mechanism between the H-shape beam and the bimorph piezoelectric cantilever beams is incorporated to improve the harvesting performance at lower frequencies. During the multi-impact process, a series of sequential impacts between the H-shape beam and the cantilever beams can trigger high frequency vibrations of the cantilever beams and result in high output power with a considerably high efficiency. In the coupled analysis, the coupled structural, aerodynamic, and electrical equations are solved to obtain the dynamic response and the power output of the proposed harvesting device. A parametric study for several parameters in the coupled analysis framework is carried out including the external resistance, wind speed, and the configuration of the H-shape beam. The average harvested power for the piezoelectric cantilever

  12. Pulsed thermionic converter study

    NASA Technical Reports Server (NTRS)

    1976-01-01

    A nuclear electric propulsion concept using a thermionic reactor inductively coupled to a magnetoplasmadynamic accelerator (MPD arc jet) is described, and the results of preliminary analyses are presented. In this system, the MPD thruster operates intermittently at higher voltages and power levels than the thermionic generating unit. A typical thrust pulse from the MPD arc jet is characterized by power levels of 1 to 4 MWe, a duration of 1 msec, and a duty cycle of approximately 20%. The thermionic generating unit operates continuously but with a lower power level of approximately 0.4 MWe. Energy storage between thrust pulses is provided by building up a large current in an inductor using the output of the thermionic converter array. Periodically, the charging current is interrupted, and the energy stored in the magnetic field of the inductor is utilized for a short duration thrust pulse. The results of the preliminary analysis show that a coupling effectiveness of approximately 85 to 90% is feasible for a nominal 400 KWe system with an inductive unit suitable for a flight vehicle.

  13. On the observability of coupled dark energy with cosmic voids

    NASA Astrophysics Data System (ADS)

    Sutter, P. M.; Carlesi, Edoardo; Wandelt, Benjamin D.; Knebe, Alexander

    2015-01-01

    Taking N-body simulations with volumes and particle densities tuned to match the sloan digital sky survey DR7 spectroscopic main sample, we assess the ability of current void catalogues to distinguish a model of coupled dark matter-dark energy from Λ cold dark matter cosmology using properties of cosmic voids. Identifying voids with the VIDE toolkit, we find no statistically significant differences in the ellipticities, but find that coupling produces a population of significantly larger voids, possibly explaining the recent result of Tavasoli et al. In addition, we use the universal density profile of Hamaus et al. to quantify the relationship between coupling and density profile shape, finding that the coupling produces broader, shallower, undercompensated profiles for large voids by thinning the walls between adjacent medium-scale voids. We find that these differences are potentially measurable with existing void catalogues once effects from survey geometries and peculiar velocities are taken into account.

  14. Energy Exchange in Driven Open Quantum Systems at Strong Coupling

    NASA Astrophysics Data System (ADS)

    Carrega, Matteo; Solinas, Paolo; Sassetti, Maura; Weiss, Ulrich

    2016-06-01

    The time-dependent energy transfer in a driven quantum system strongly coupled to a heat bath is studied within an influence functional approach. Exact formal expressions for the statistics of energy dissipation into the different channels are derived. The general method is applied to the driven dissipative two-state system. It is shown that the energy flows obey a balance relation, and that, for strong coupling, the interaction may constitute the major dissipative channel. Results in analytic form are presented for the particular value K =1/2 of strong Ohmic dissipation. The energy flows show interesting behaviors including driving-induced coherences and quantum stochastic resonances. It is found that the general characteristics persists for K near 1/2 .

  15. Energy Exchange in Driven Open Quantum Systems at Strong Coupling.

    PubMed

    Carrega, Matteo; Solinas, Paolo; Sassetti, Maura; Weiss, Ulrich

    2016-06-17

    The time-dependent energy transfer in a driven quantum system strongly coupled to a heat bath is studied within an influence functional approach. Exact formal expressions for the statistics of energy dissipation into the different channels are derived. The general method is applied to the driven dissipative two-state system. It is shown that the energy flows obey a balance relation, and that, for strong coupling, the interaction may constitute the major dissipative channel. Results in analytic form are presented for the particular value K=1/2 of strong Ohmic dissipation. The energy flows show interesting behaviors including driving-induced coherences and quantum stochastic resonances. It is found that the general characteristics persists for K near 1/2. PMID:27367367

  16. Dark energy from Gauss-Bonnet and nonminimal couplings

    NASA Astrophysics Data System (ADS)

    Granda, L. N.; Jimenez, D. F.

    2014-12-01

    We consider a scalar-tensor model of dark energy with Gauss-Bonnet and nonminimal couplings. Exact cosmological solutions were found in the absence of potential that give equations of state of dark energy consistent with current observational constraints, but with different asymptotic behaviors depending on the couplings of the model. A detailed reconstruction procedure is given for the scalar potential and the Gauss-Bonnet coupling for any given cosmological scenario. In particular we consider conditions for the existence of a variety of cosmological solutions with accelerated expansion, including quintessence, phantom, de Sitter, and Little Rip. For the case of quintessence and phantom we have found a scalar potential of the Albrecht-Skordis type, where the potential is an exponential with a polynomial factor.

  17. Monolithic, multi-bandgap, tandem, ultra-thin, strain-counterbalanced, photovoltaic energy converters with optimal subcell bandgaps

    SciTech Connect

    Wanlass, Mark W.; Mascarenhas, Angelo

    2012-05-08

    Modeling a monolithic, multi-bandgap, tandem, solar photovoltaic converter or thermophotovoltaic converter by constraining the bandgap value for the bottom subcell to no less than a particular value produces an optimum combination of subcell bandgaps that provide theoretical energy conversion efficiencies nearly as good as unconstrained maximum theoretical conversion efficiency models, but which are more conducive to actual fabrication to achieve such conversion efficiencies than unconstrained model optimum bandgap combinations. Achieving such constrained or unconstrained optimum bandgap combinations includes growth of a graded layer transition from larger lattice constant on the parent substrate to a smaller lattice constant to accommodate higher bandgap upper subcells and at least one graded layer that transitions back to a larger lattice constant to accommodate lower bandgap lower subcells and to counter-strain the epistructure to mitigate epistructure bowing.

  18. The Ocean's Gravitational Potential Energy Budget in a Coupled Climate Model

    NASA Astrophysics Data System (ADS)

    Butler, Edward; Oliver, Kevin; Gregory, Jonathan; Tailleux, Remi

    2014-05-01

    It has been suggested that the ocean's budget of mechanical energy can provide insights into the nature of global ocean circulation and its driving processes. However, the energetics of the physical ocean and realistic ocean and coupled climate models are not well understood, even at steady-state. This study examines, in a unified fashion, the budgets of ocean gravitational potential energy (GPE) and available gravitational potential energy (AGPE) in the control simulation of the coupled atmosphere-ocean general circulation model HadCM3. Only AGPE can be converted into kinetic energy by adiabatic processes. However, not all oceanic processes affect GPE and AGPE in the same way. Diapycnal mixing supplies GPE, but not AGPE, whereas the reverse is true of the combined effect of surface buoyancy forcing and convection. Mixing and buoyancy forcing, thus, play complementary roles in sustaining the large scale circulation. Indeed, surface buoyancy fluxes are the largest globally integrated source of AGPE (+0.72 TW). However, the largest globally integrated source of GPE is resolved advection (+0.57 TW) and the largest sink is through parameterized eddy transports (-0.82 TW). The effect of these adiabatic processes on AGPE is identical to their effect on GPE, except for small perturbations due to numerical leakage exacerbated by nonlinearities in the equation of state.

  19. Ray-tracing simulations of coupled dark energy models

    NASA Astrophysics Data System (ADS)

    Pace, Francesco; Baldi, Marco; Moscardini, Lauro; Bacon, David; Crittenden, Robert

    2015-02-01

    Dark matter and dark energy are usually assumed to couple only gravitationally. An extension to this picture is to model dark energy as a scalar field coupled directly to cold dark matter. This coupling leads to new physical effects, such as a fifth force and a time-dependent dark matter particle mass. In this work we examine the impact that coupling has on weak lensing statistics by constructing realistic simulated weak lensing maps using ray-tracing techniques through N-body cosmological simulations. We construct maps for different lensing quantities, covering a range of scales from a few arcminutes to several degrees. The concordance Λ cold dark matter (ΛCDM) model is compared to different coupled dark energy models, described either by an exponential scalar field potential (standard coupled dark energy scenario) or by a SUGRA potential (bouncing model). We analyse several statistical quantities and our results, with sources at low redshifts are largely consistent with previous work on cosmic microwave background lensing by Carbone et al. The most significant differences from the ΛCDM model are due to the enhanced growth of the perturbations and to the effective friction term in non-linear dynamics. For the most extreme models, we see differences in the power spectra up to 40 per cent compared to the ΛCDM model. The different time evolution of the linear matter overdensity can account for most of the differences, but when controlling for this using a ΛCDM model having the same normalization, the overall signal is smaller due to the effect of the friction term appearing in the equation of motion for dark matter particles.

  20. New limits on coupled dark energy from Planck

    SciTech Connect

    Xia, Jun-Qing

    2013-11-01

    Recently, the Planck collaboration has released the first cosmological papers providing the high resolution, full sky, maps of the cosmic microwave background (CMB) temperature anisotropies. It is crucial to understand that whether the accelerating expansion of our universe at present is driven by an unknown energy component (Dark Energy) or a modification to general relativity (Modified Gravity). In this paper we study the coupled dark energy models, in which the quintessence scalar field nontrivially couples to the cold dark matter, with the strength parameter of interaction β. Using the Planck data alone, we obtain that the strength of interaction between dark sectors is constrained as β < 0.102 at 95% confidence level, which is tighter than that from the WMAP9 data alone. Combining the Planck data with other probes, like the Baryon Acoustic Oscillation (BAO), Type-Ia supernovae ''Union2.1 compilation'' and the CMB lensing data from Planck measurement, we find the tight constraint on the strength of interaction β < 0.052 (95% C.L.). Interestingly, we also find a non-zero coupling β = 0.078±0.022 (68% C.L.) when we use the Planck, the ''SNLS'' supernovae samples, and the prior on the Hubble constant from the Hubble Space Telescope (HST) together. This evidence for the coupled dark energy models mainly comes from a tension between constraints on the Hubble constant from the Planck measurement and the local direct H{sub 0} probes from HST.

  1. An interacting dark energy model with nonminimal derivative coupling

    NASA Astrophysics Data System (ADS)

    Nozari, Kourosh; Behrouz, Noushin

    2016-09-01

    We study cosmological dynamics of an extended gravitational theory that gravity is coupled non-minimally with derivatives of a dark energy component and there is also a phenomenological interaction between the dark energy and dark matter. Depending on the direction of energy flow between the dark sectors, the phenomenological interaction gets two different signs. We show that this feature affects the existence of attractor solution, the rate of growth of perturbations and stability of the solutions. By considering an exponential potential as a self-interaction potential of the scalar field, we obtain accelerated scaling solutions that are attractors and have the potential to alleviate the coincidence problem. While in the absence of the nonminimal derivative coupling there is no attractor solution for phantom field when energy transfers from dark matter to dark energy, we show an attractor solution exists if one considers an explicit nonminimal derivative coupling for phantom field in this case of energy transfer. We treat the cosmological perturbations in this setup with details to show that with phenomenological interaction, perturbations can grow faster than the minimal case.

  2. Sodium as Coupling Cation in Respiratory Energy Conversion.

    PubMed

    Fritz, Günter; Steuber, Julia

    2016-01-01

    Among the alkali cations, Na(+) has an extraordinary role in living cells since it is used to charge the battery of life. To this end, sophisticated protein complexes in biological membranes convert chemical energy obtained from oxidation of NADH, or hydrolysis of ATP, into an electrochemical gradient of sodium ions. Cells use this so-called sodium-motive force stored in energy-converting membranes for important processes like uptake of nutrients, motility, or expulsion of toxic compounds. The Na(+) pumps act in concert with other enzymes embedded in the lipid membrane, and together they form the respiratory chain which achieves the oxidation of NADH derived from nutrients under formation of an electrochemical sodium (or proton) gradient. We explain why Na(+) pumps are important model systems for the homologous, proton-translocating complexes, and hope to convince the reader that studying the Na(+)-translocating ATP synthase from the unimpressive bacterium Ilyobacter tartaricus had a big impact on our understanding of energy conversion by human ATP synthase. The Na(+)-translocating systems described here are either driven by the oxidation of NADH, the carrier of redox equivalents of cells, or by the hydrolysis of adenosine 5'-triphosphate, the universal high-energy compound of cells. The electrochemical energy provided by these respiratory Na(+) pumps, the NADH dehydrogenase or the ATPase, drives other Na(+) transport systems like the bacterial flagellum discussed in the last part of this chapter. The flagellar motor does not represent a Na(+) pump, but like ATPase, it operates by a rotational mechanism. By comparing these two Na(+) -translocating, rotary machines, we obtain new insight into the possible mechanisms of Na(+) transport through the stator proteins of the flagellar motor. Na(+) pumps are widespread in pathogenic bacteria where they play an important role in metabolism, making them novel targets for antibiotics. PMID:26860307

  3. Preliminary Verification and Validation of WEC-Sim, an Open-Source Wave Energy Converter Design Tool: Preprint

    SciTech Connect

    Ruehl, K.; Michelen, C.; Kanner, S.; Lawson, M.; Yu, Y. H.

    2014-03-01

    To promote and support the wave energy industry, a wave energy converter (WEC) design tool, WEC-Sim, is being developed by Sandia National Laboratories and the National Renewable Energy Laboratory. In this paper, the WEC-Sim code is used to model a point absorber WEC designed by the U.S. Department of Energy's reference model project. Preliminary verification was performed by comparing results of the WEC-Sim simulation through a code-to-code comparison, utilizing the commercial codes ANSYS-AQWA, WaveDyn, and OrcaFlex. A preliminary validation of the code was also performed by comparing WEC-Sim simulation results to experimental wave tank tests.

  4. Solar Atmospheric Magnetic Energy Coupling: Radiative Redistribution Efficiency

    NASA Astrophysics Data System (ADS)

    Orange, N. Brice; Gendre, Bruce; Morris, David C.; Chesny, David

    2016-07-01

    Essential to many outstanding solar and stellar physics problems is elucidating the dynamic magnetic to radiative energy coupling of their atmospheres. Using three years of Solar Dynamics Observatory's Atmospheric Imaging Assembly and Heliosemic Magnetic Imager data of gross atmospheric feature classes, an investigation of magnetic and radiative energy redistribution is detailed. Self-consistent radiative to temperature distributions, that include magnetic weighting, of each feature class is revealed via utilizing the upper limit of thermodynamic atmospheric conditions provided by Active Region Cores (ARCs). Distinctly interesting is that our radiative energy distributions, though indicative to a linearly coupling with temperature, highlight the manifestation of diffuse ``unorganized" emission at upper transition region -- lower coronal regimes. Results we emphasize as correlating remarkably with emerging evidence for similar dependencies of magnetic energy redistribution efficiency with temperature, i.e., linearly with an embedded diffuse emitting region. We present evidence that our magnetic and radiative energy coupling descriptions are consistent with established universal scaling laws for large solar atmospheric temperature gradients and descriptions to the unresolved emission, as well as their insight to a potential origin of large variability in their previous reports. Finally, our work casts new light on the utility of narrowband observations as ad hoc tools for detailing solar atmospheric thermodynamic profiles, thus, presenting significant provisions to the field of solar and stellar physics, i.e., nature of coronae heating.

  5. Energy patterns in coupled α-helix protein chains with diagonal and off-diagonal couplings

    NASA Astrophysics Data System (ADS)

    Tabi, C. B.; Ondoua, R. Y.; Ekobena Fouda, H. P.; Kofané, T. C.

    2016-07-01

    We introduce off-diagonal effects in the three-stranded model of α-helix chains, which bring about additional nonlinear terms to enhance the way energy spreads among the coupled spines. This is analyzed through the modulational instability theory. The linear stability analysis of plane wave solutions is performed and the competitive effects of diagonal and off-diagonal interactions are studied, followed by direct numerical simulations. Some features of the obtained solitonic structures are discussed.

  6. Feroxyhyte nanoflakes coupled to up-converting carbon nanodots: a highly active, magnetically recoverable, Fenton-like photocatalyst in the visible-NIR range.

    PubMed

    Ortega-Liebana, M C; Hueso, J L; Larrea, A; Sebastian, V; Santamaria, J

    2015-12-01

    We demonstrate the enhanced photocatalytic response of a novel Fenton-like heterogeneous catalyst obtained through the assembly of superparamagnetic feroxyhyte nanoflakes synthesized by continuous gas-slug microfluidics and carbon nanodots obtained by pyrolysis from a natural organic source. The novel nanohybrids enable the utilization of the visible and near-infrared ranges due to the active role of the carbon nanodots as up-converting photo-sensitizers. This novel photocatalyst is magnetically recoverable and maintains an excellent response after multiple reutilization cycles. In addition, its synthesis is based on inexpensive and abundant raw materials and its photocatalytic response is evaluated in the presence of energy efficient, affordable light-emitting diodes (LEDs), thereby providing a promising and feasible alternative to the homogeneous Fenton process. PMID:26421733

  7. A Bacillus Flagellar Motor That Can Use Both Na+ and K+ as a Coupling Ion Is Converted by a Single Mutation to Use Only Na+

    PubMed Central

    Ito, Masahiro

    2012-01-01

    In bacteria, the sodium ion (Na+) cycle plays a critical role in negotiating the challenges of an extremely alkaline and sodium-rich environment. Alkaliphilic bacteria that grow optimally at high pH values use Na+ for solute uptake and flagellar rotation because the proton (H+) motive force is insufficient for use at extremely alkaline pH. Only three types of electrically driven rotary motors exist in nature: the F-type ATPase, the V-type ATPase, and the bacterial flagellar motor. Until now, only H+ and Na+ have been reported as coupling ions for these motors. Here, we report that the alkaliphilic bacterium Bacillus alcalophilus Vedder 1934 can grow not only under a Na+-rich and potassium ion (K+)-poor condition but also under the opposite condition in an extremely alkaline environment. In this organism, swimming performance depends on concentrations of Na+, K+ or Rb+. In the absence of Na+, swimming behavior is clearly K+- dependent. This pattern was confirmed in swimming assays of stator-less Bacillus subtilis and Escherichia coli mutants expressing MotPS from B. alcalophilus (BA-MotPS). Furthermore, a single mutation in BA-MotS was identified that converted the naturally bi-functional BA-MotPS to stators that cannot use K+ or Rb+. This is the first report that describes a flagellar motor that can use K+ and Rb+ as coupling ions. The finding will affect the understanding of the operating principles of flagellar motors and the molecular mechanisms of ion selectivity, the field of the evolution of environmental changes and stresses, and areas of nanotechnology. PMID:23049994

  8. Nonlinear mode coupling and vibrational energy transfer in Yukawa clusters

    NASA Astrophysics Data System (ADS)

    Qiao, Ke; Kong, Jie; Matthews, Lorin; Hyde, Truell

    2015-11-01

    Nonlinear mode coupling and the subsequent vibrational energy transfer that results is an important topic in chemical physics research, ranging from small molecules consisting of several atoms to macromolecules such as those found in proteins and DNA. Nonlinear mode coupling is recognized as the mechanism leading to ergodicity, which is a foundational tenet of statistical mechanics. Over the past two decades, Yukawa systems of particles such as those found in complex plasma, have been shown to be an effective model across a large number of physical systems. In this research, nonlinear mode coupling in Yukawa clusters consisting of 3-10 particles is examined via numerical simulation of the vibrational energy transfer between modes starting from an initial excited state. The relationship between the energy transfer process and the internal resonance between modes having a specified frequency ratio and the temporal evolution of the system to a state of equal energy across all modes, i.e., the state of ergodicity, will be discussed. Support from the NSF and the DOE (award numbers PHY-1262031 and PHY-1414523) is gratefully acknowledged.

  9. N- vs. C-Domain Selectivity of Catalytic Inactivation of Human Angiotensin Converting Enzyme by Lisinopril-Coupled Transition Metal Chelates

    PubMed Central

    Hocharoen, Lalintip; Joyner, Jeff C.; Cowan, J. A.

    2014-01-01

    The N- and C-terminal domains of human somatic Angiotensin I Converting Enzyme (sACE-1) demonstrate distinct physiological functions, with resulting interest in the development of domain-selective inhibitors for specific therapeutic applications. Herein, the activity of lisinopril-coupled transition metal chelates were tested for both reversible binding and irreversible catalytic inactivation of sACE-1. C/N domain binding selectivity ratios ranged from 1 to 350, while rates of irreversible catalytic inactivation of the N- and C-domains were found to be significantly greater for the N-domain, suggesting a more optimal orientation of the M-chelate-lisinopril complexes within the active site of the N-domain of sACE-1. Finally, the combined effect of binding selectivity and inactivation selectivity was assessed for each catalyst (double-filter selectivity factors), and several catalysts were found to cause domain-selective catalytic inactivation. The results of this study demonstrate the ability to optimize the target selectivity of catalytic metallopeptides through both binding and orientation factors (double-filter effect). PMID:24228790

  10. Characterization of U.S. Wave Energy Converter (WEC) Test Sites: A Catalogue of Met-Ocean Data.

    SciTech Connect

    Dallman, Ann Renee; Neary, Vincent Sinclair

    2014-10-01

    This report presents met - ocean data and wave energy characteristics at three U.S. wave energy converter (WEC) test and potential deployment sites . Its purpose is to enable the compari son of wave resource characteristics among sites as well as the select io n of test sites that are most suitable for a developer's device and that best meet their testing needs and objectives . It also provides essential inputs for the design of WEC test devices and planning WEC tests, including the planning of deployment and op eration s and maintenance. For each site, this report catalogues wave statistics recommended in the (draft) International Electrotechnical Commission Technical Specification (IEC 62600 - 101 TS) on Wave Energy Characterization, as well as the frequency of oc currence of weather windows and extreme sea states, and statistics on wind and ocean currents. It also provides useful information on test site infrastructure and services .

  11. Microminiature thermionic converters

    SciTech Connect

    King, Donald B.; Sadwick, Laurence P.; Wernsman, Bernard R.

    2001-09-25

    Microminiature thermionic converts (MTCs) having high energy-conversion efficiencies and variable operating temperatures. Methods of manufacturing those converters using semiconductor integrated circuit fabrication and micromachine manufacturing techniques are also disclosed. The MTCs of the invention incorporate cathode to anode spacing of about 1 micron or less and use cathode and anode materials having work functions ranging from about 1 eV to about 3 eV. Existing prior art thermionic converter technology has energy conversion efficiencies ranging from 5-15%. The MTCs of the present invention have maximum efficiencies of just under 30%, and thousands of the devices can be fabricated at modest costs.

  12. Semi-analytic galaxy formation in coupled dark energy cosmologies

    NASA Astrophysics Data System (ADS)

    Fontanot, Fabio; Baldi, Marco; Springel, Volker; Bianchi, Davide

    2015-09-01

    Among the possible alternatives to the standard cosmological model (ΛCDM), coupled dark energy models postulate that dark energy (DE), seen as a dynamical scalar field, may interact with dark matter (DM), giving rise to a `fifth-force', felt by DM particles only. In this paper, we study the impact of these cosmologies on the statistical properties of galaxy populations by combining high-resolution numerical simulations with semi-analytic models (SAMs) of galaxy formation and evolution. New features have been implemented in the reference SAM in order to have it run self-consistently and calibrated on these cosmological simulations. They include an appropriate modification of the mass-temperature relation and of the baryon fraction in DM haloes, due to the different virial scalings and to the gravitational bias, respectively. Our results show that the predictions of our coupled-DE SAM do not differ significantly from theoretical predictions obtained with standard SAMs applied to a reference Λ cold dark matter (ΛCDM) simulation, implying that the statistical properties of galaxies provide only a weak probe for these alternative cosmological models. On the other hand, we show that both galaxy bias and the galaxy pairwise velocity distribution are sensitive to coupled DE models: this implies that these probes might be successfully applied to disentangle among quintessence, f(R)-gravity and coupled DE models.

  13. Dark matter from dark energy-baryonic matter couplings

    NASA Astrophysics Data System (ADS)

    Avilés, Alejandro; Cervantes-Cota, Jorge L.

    2011-01-01

    We present a scenario in which a scalar field dark energy is coupled to the trace of the energy momentum tensor of the baryonic matter fields. In the slow-roll regime, this interaction could give rise to the cosmological features of dark matter. We work out the cosmological background solutions and fit the parameters of the model using the Union 2 supernovae data set. Then, we develop cosmological perturbations up to linear order, and we find that the perturbed variables have an acceptable behavior, in particular, the density contrast of baryonic matter grows similar to that in the ΛCDM model for a suitable choice of the strength parameter of the coupling.

  14. High Step-Up DC—DC Converter for AC Photovoltaic Module with MPPT Control

    NASA Astrophysics Data System (ADS)

    Sundar, Govindasamy; Karthick, Narashiman; Rama Reddy, Sasi

    2014-08-01

    This paper presents the high gain step-up BOOST converter which is essential to step up the low output voltage from PV panel to the high voltage according to the requirement of the application. In this paper a high gain BOOST converter with coupled inductor technique is proposed with the MPPT control. Without extreme duty ratios and the numerous turns-ratios of a coupled inductor this converter achieves a high step-up voltage-conversion ratio and the leakage energy of the coupled inductor is efficiently recycled to the load. MPPT control used to extract the maximum power from PV panel by controlling the Duty ratio of the converter. The PV panel, BOOST converter and the MPPT are modeled using Sim Power System blocks in MATLAB/SIMULINK environment. The prototype model of the proposed converter has been implemented with the maximum measured efficiency is up to 95.4% and full-load efficiency is 93.1%.

  15. A new biosensor for glucose determination in serum based on up-converting fluorescence resonance energy transfer.

    PubMed

    Peng, Jianhong; Wang, Yuhui; Wang, Jialan; Zhou, Xin; Liu, Zhihong

    2011-10-15

    In this work, a new glucose sensor based on up-converting fluorescence resonance energy transfer (UC-FRET) was developed. Up-converting phosphors (UCPs, NaYF(4): Yb, Er), which were covalently labeled with Concanavalin A (ConA), were used as the energy donor with thiolated β-cyclodextrins (SH-β-CDs) functionalized gold nanoparticles as the energy acceptor. Due to the combination between ConA and SH-β-CDs, the energy donor and the acceptor were brought to close proximity, resulting in the quenching of the fluorescence of UCPs by gold nanoparticles. In the presence of glucose which competed with SH-β-CDs towards the binding sites of ConA, the biosensor (UCPs-ConA-SH-β-CDs-Au) was decomposed and the energy donor was separated from the acceptor. Therefore, the fluorescence of UCPs was restored dependent on the concentration of glucose. The increase of UCPs fluorescence intensity was proportional to glucose concentration within the range from 0.4 μM to 10μM in aqueous buffer, with a limit of detection (LOD) of 0.043 μM. A same linear range of glucose concentration was obtained in a human serum matrix (which was pretreated and thus contained no glucose) with a slightly higher LOD (0.065 μM). The glucose sensor was applied to real human serum samples with the results consistent with that of a classic hexokinase (HK) method, indicating that the UC-FRET biosensor was competent for directly sensing glucose in serum samples without optical interference, which benefited from the near infrared (NIR) excitation nature of UCPs. The results of this work suggested that the UC-FRET technique could be a promising alternative for detecting biomolecules in complex biological sample matrixes for diagnostic purposes. PMID:21852101

  16. Individual Battery-Power Control for a Battery Energy Storage System Using a Modular Multilevel Cascade Converter

    NASA Astrophysics Data System (ADS)

    Yamagishi, Tsukasa; Maharjan, Laxman; Akagi, Hirofumi

    This paper focuses on a battery energy storage system that can be installed in a 6.6-kV power distribution system. This system comprises a combination of a modular multilevel cascade converter based on single-star bridge-cells (MMCC-SSBC) and multiple battery modules. Each battery module is connected to the dc side of each bridge-cell, where the battery modules are galvanically isolated from each other. Three-phase multilevel line-to-line voltages with extremely low voltage steps on the ac side of the converter help in solving problems related to line harmonic currents and electromagnetic interference (EMI) issues. This paper proposes a control method that allows each bridge-cell to independently adjust the battery power flowing into or out of each battery module. A three-phase energy storage system using nine nickel-metal-hydride (NiMH) battery modules, each rated at 72V and 5.5Ah, is designed, constructed, and tested to verify the viability and effectiveness of the proposed control method.

  17. XTL Converter

    Energy Science and Technology Software Center (ESTSC)

    2015-10-07

    "XTL Converter" is a short Python script for electron microscopy simulation. The program takes an input crystal file in the VESTA *.XTL format and converts it to a text format readable by the multislice simulation program ìSTEM. The process of converting a crystal *.XTL file to the format used by the ìSTEM simulation program is quite tedious; it generally requires the user to select dozens or hundreds of atoms, rearranging and reformatting their position. Headermore » information must also be reformatted to a specific style to be read by ìSTEM. "XTL Converter" simplifies this process, saving the user time and allowing for easy batch processing of crystals.« less

  18. XTL Converter

    SciTech Connect

    Spurgeon, Steven R

    2015-10-07

    "XTL Converter" is a short Python script for electron microscopy simulation. The program takes an input crystal file in the VESTA *.XTL format and converts it to a text format readable by the multislice simulation program ìSTEM. The process of converting a crystal *.XTL file to the format used by the ìSTEM simulation program is quite tedious; it generally requires the user to select dozens or hundreds of atoms, rearranging and reformatting their position. Header information must also be reformatted to a specific style to be read by ìSTEM. "XTL Converter" simplifies this process, saving the user time and allowing for easy batch processing of crystals.

  19. Photocapacitive image converter

    NASA Technical Reports Server (NTRS)

    Miller, W. E.; Sher, A.; Tsuo, Y. H. (Inventor)

    1982-01-01

    An apparatus for converting a radiant energy image into corresponding electrical signals including an image converter is described. The image converter includes a substrate of semiconductor material, an insulating layer on the front surface of the substrate, and an electrical contact on the back surface of the substrate. A first series of parallel transparent conductive stripes is on the insulating layer with a processing circuit connected to each of the conductive stripes for detecting the modulated voltages generated thereon. In a first embodiment of the invention, a modulated light stripe perpendicular to the conductive stripes scans the image converter. In a second embodiment a second insulating layer is deposited over the conductive stripes and a second series of parallel transparent conductive stripes perpendicular to the first series is on the second insulating layer. A different frequency current signal is applied to each of the second series of conductive stripes and a modulated image is applied to the image converter.

  20. Highly Selective Oxidation of Carbohydrates in an Efficient Electrochemical Energy Converter: Cogenerating Organic Electrosynthesis.

    PubMed

    Holade, Yaovi; Servat, Karine; Napporn, Teko W; Morais, Cláudia; Berjeaud, Jean-Marc; Kokoh, Kouakou B

    2016-02-01

    The selective electrochemical conversion of highly functionalized organic molecules into electricity, heat, and added-value chemicals for fine chemistry requires the development of highly selective, durable, and low-cost catalysts. Here, we propose an approach to make catalysts that can convert carbohydrates into chemicals selectively and produce electrical power and recoverable heat. A 100% Faradaic yield was achieved for the selective oxidation of the anomeric carbon of glucose and its related carbohydrates (C1-position) without any function protection. Furthermore, the direct glucose fuel cell (DGFC) enables an open-circuit voltage of 1.1 V in 0.5 m NaOH to be reached, a record. The optimized DGFC delivers an outstanding output power Pmax =2 mW cm(-2) with the selective conversion of 0.3 m glucose, which is of great interest for cogeneration. The purified reaction product will serve as a raw material in various industries, which thereby reduces the cost of the whole sustainable process. PMID:26777210

  1. New generation polyphase resonant converter-modulators for the Korean atomic energy research institute

    SciTech Connect

    Reass, William A; Baca, David M; Gribble, Robert F

    2009-01-01

    This paper will present operational data and performance parameters of the newest generation polyphase resonant high voltage converter modulator (HVCM) as developed and delivered to the KAERI 100 MeV ''PEFP'' accelerator [1]. The KAERI design realizes improvements from the SNS and SLAC designs [2]. To improve the IGBT switching performance at 20 kHz for the KAERI system, the HVCM utilizes the typical zero-voltage-switching (ZVS) at turn on and as well as artificial zero-current-switching (ZCS) at turn-off. The new technique of artificial ZCS technique should result in a 6 fold reduction of IGBT switching losses (3). This improves the HCVM conversion efficiency to better than 95% at full average power, which is 500 kW for the KAERI two klystron 105 kV, 50 A application. The artificial ZCS is accomplished by placing a resonant RLC circuit across the input busswork to the resonant boost transformer. This secondary resonant circuit provides a damped ''kick-back'' to assist in IGBT commutation. As the transformer input busswork is extremely low inductance (< 10 nH), the single RLC network acts like it is across each of the four IGBT collector-emitter terminals of the H-bridge switching network. We will review these topological improvements and the overall system as delivered to the KAERI accelerator and provide details of the operational results.

  2. Broadband energy harvesting via magnetic coupling between two movable magnets

    NASA Astrophysics Data System (ADS)

    Fan, Kang-Qi; Xu, Chun-Hui; Wang, Wei-Dong; Fang, Yang

    2014-08-01

    Harvesting energy from ambient mechanical vibrations by the piezoelectric effect has been proposed for powering microelectromechanical systems and replacing batteries that have a finite life span. A conventional piezoelectric energy harvester (PEH) is usually designed as a linear resonator, and suffers from a narrow operating bandwidth. To achieve broadband energy harvesting, in this paper we introduce a concept and describe the realization of a novel nonlinear PEH. The proposed PEH consists of a primary piezoelectric cantilever beam coupled to an auxiliary piezoelectric cantilever beam through two movable magnets. For predicting the nonlinear response from the proposed PEH, lumped parameter models are established for the two beams. Both simulation and experiment reveal that for the primary beam, the introduction of magnetic coupling can expand the operating bandwidth as well as improve the output voltage. For the auxiliary beam, the magnitude of the output voltage is slightly reduced, but additional output is observed at off-resonance frequencies. Therefore, broadband energy harvesting can be obtained from both the primary beam and the auxiliary beam.

  3. A Particle-in-Cell Simulation for the Traveling Wave Direct Energy Converter (TWDEC) for Fusion Propulsion

    NASA Technical Reports Server (NTRS)

    Chap, Andrew; Tarditi, Alfonso G.; Scott, John H.

    2013-01-01

    A Particle-in-cell simulation model has been developed to study the physics of the Traveling Wave Direct Energy Converter (TWDEC) applied to the conversion of charged fusion products into electricity. In this model the availability of a beam of collimated fusion products is assumed; the simulation is focused on the conversion of the beam kinetic energy into alternating current (AC) electric power. The model is electrostatic, as the electro-dynamics of the relatively slow ions can be treated in the quasistatic approximation. A two-dimensional, axisymmetric (radial-axial coordinates) geometry is considered. Ion beam particles are injected on one end and travel along the axis through ring-shaped electrodes with externally applied time-varying voltages, thus modulating the beam by forming a sinusoidal pattern in the beam density. Further downstream, the modulated beam passes through another set of ring electrodes, now electrically oating. The modulated beam induces a time alternating potential di erence between adjacent electrodes. Power can be drawn from the electrodes by connecting a resistive load. As energy is dissipated in the load, a corresponding drop in beam energy is measured. The simulation encapsulates the TWDEC process by reproducing the time-dependent transfer of energy and the particle deceleration due to the electric eld phase time variations.

  4. A method for EIA scoping of wave energy converters-based on classification of the used technology

    SciTech Connect

    Margheritini, Lucia; Hansen, Anne Merrild; Frigaard, Peter

    2012-01-15

    During the first decade of the 21st Century the World faces spread concern for global warming caused by rise of green house gasses produced mainly by combustion of fossil fuels. Under this latest spin all renewable energies run parallel in order to achieve sustainable development. Among them wave energy has an unequivocal potential and technology is ready to enter the market and contribute to the renewable energy sector. Yet, frameworks and regulations for wave energy development are not fully ready, experiencing a setback caused by lack of understanding of the interaction of the technologies and marine environment, lack of coordination from the competent Authorities regulating device deployment and conflicts of maritime areas utilization. The EIA within the consent process is central in the realization of full scale devices and often is the meeting point for technology, politics and public. This paper presents the development of a classification of wave energy converters that is based on the different impact the technologies are expected to have on the environment. This innovative classification can be used in order to simplify the scoping process for developers and authorities.

  5. Nonlinear targeted energy transfer of two coupled cantilever beams coupled to a bistable light attachment

    NASA Astrophysics Data System (ADS)

    Mattei, P.-O.; Ponçot, R.; Pachebat, M.; Côte, R.

    2016-07-01

    In order to control the sound radiation by a structure, one aims to control vibration of radiating modes of vibration using "Energy Pumping" also named "Targeted Energy Transfer". This principle is here applied to a simplified model of a double leaf panel. This model is made of two beams coupled by a spring. One of the beams is connected to a nonlinear absorber. This nonlinear absorber is made of a 3D-printed support on which is clamped a buckled thin small beam with a small mass fixed at its centre having two equilibrium positions. The experiments showed that, once attached onto a vibrating system to be controlled, under forced excitation of the primary system, the light bistable oscillator allows a reduction of structural vibration up to 10 dB for significant amplitude and frequency range around the first two vibration modes of the system.

  6. Organic thermoelectric materials: emerging green energy materials converting heat to electricity directly and efficiently.

    PubMed

    Zhang, Qian; Sun, Yimeng; Xu, Wei; Zhu, Daoben

    2014-10-29

    The abundance of solar thermal energy and the widespread demands for waste heat recovery make thermoelectric generators (TEGs) very attractive in harvesting low-cost energy resources. Meanwhile, thermoelectric refrigeration is promising for local cooling and niche applications. In this context there is currently a growing interest in developing organic thermoelectric materials which are flexible, cost-effective, eco-friendly and potentially energy-efficient. In particular, the past several years have witnessed remarkable progress in organic thermoelectric materials and devices. In this review, thermoelectric properties of conducting polymers and small molecules are summarized, with recent progresses in materials, measurements and devices highlighted. Prospects and suggestions for future research efforts are also presented. The organic thermoelectric materials are emerging candidates for green energy conversion. PMID:24687930

  7. Synthesis of Numerical Methods for Modeling Wave Energy Converter-Point Absorbers: Preprint

    SciTech Connect

    Li, Y.; Yu, Y. H.

    2012-05-01

    During the past few decades, wave energy has received significant attention among all ocean energy formats. Industry has proposed hundreds of prototypes such as an oscillating water column, a point absorber, an overtopping system, and a bottom-hinged system. In particular, many researchers have focused on modeling the floating-point absorber as the technology to extract wave energy. Several modeling methods have been used such as the analytical method, the boundary-integral equation method, the Navier-Stokes equations method, and the empirical method. However, no standardized method has been decided. To assist the development of wave energy conversion technologies, this report reviews the methods for modeling the floating-point absorber.

  8. Energy Transfers in Coupled Ordered Granular Chains with No Precompression

    NASA Astrophysics Data System (ADS)

    Vakakis, Alexander; Hasan, Arif M.; Starosvetsky, Yuli; Manevitch, Leonid I.

    2013-03-01

    We study the dynamics of coupled one-dimensional granular chains mounted on elastic foundations. No dissipative effects, such as plasticity or dry friction effects are taken into account in our analysis. Assuming no pre-compression between beads, the dynamics of the system under consideration is strongly nonlinear and, in an acoustic analogy they can be viewed as `sonic vacua'. Sources of strong nonlinearity in these systems are nonlinearizable Hertzian interactions between adjacent beads in compression, and also possible separations between beads in the absence of compressive forces leading to bead collisions. We find that demonstrate that in weakly coupled granular chains there can occur strong energy exchanges in the form of nonlinear beat phenomena of spatially periodic traveling waves, stationary breathers or propagating breathers. We employ analytical techniques to study these dynamical phenomena. This work was supported by MURI grant US ARO W911NF-09-1-0436. Dr. David Stepp is the grant monitor.

  9. Double opposite-end tubesheet design for a thermovoltaic energy converter

    DOEpatents

    Ashcroft, John M.; Campbell, Brian C.; Depoy, David M.

    2000-01-01

    A method and apparatus for the direct conversion of energy by thermovoltaic energy conversion having first and second tubesheets, at least one photon emitter plate secured to and extending from the first tubesheet, at least one cold plate secured to and extending from the second tubesheet, a plurality of thermovoltaic cells disposed along oppositely disposed exterior surfaces of the cold plate, and means cooperating with the tubesheet for maintaining a vacuum between the photon emitter plate and the cold plate.

  10. Double opposite-end tubesheet design for a thermovoltaic energy converter

    SciTech Connect

    Ashcroft, John M.; Campbell, Brain C.; DePoy, David M.

    1997-12-01

    A method and apparatus are disclosed for the direct conversion of energy by thermovoltaic energy conversion having first and second tubesheets, at least one photon emitter plate secured to and extending from the first tubesheet, at least one cold plate secured to and extending from the second tubesheet, a plurality of thermovoltaic cells disposed along oppositely disposed exterior surfaces of the cold plate, and means cooperating with the tubesheet for maintaining a vacuum between the photon emitter plate and the cold plate.