Science.gov

Sample records for energy detection threshold

  1. Detection threshold energy of high energy cascade showers using thermoluminescence PTFE-sheet and hot-gas reader

    NASA Technical Reports Server (NTRS)

    Kino, S.; Nakanishi, A.; Miono, S.; Kitajima, T.; Yanagita, T.; Nakatsuka, T.; Ohmori, N.; Hazama, M.

    1985-01-01

    A new thermoluminescence (TL) sheet was developed as a detector for high energy components in air showers. For the investigation of detection threshold energy for a cascade showeer, TL sheets were exposed at Mt. Fuji with X ray films in emulsion chambers and were scanned by a hot-gas reader. It is concluded that if a gamma ray whose energy is more than 6 TeV enters vertically into lead chambers, the resulting cascade shower is readily detectable at maximum development.

  2. Taste Detection Thresholds of Resveratrol.

    PubMed

    Koga, Clarissa C; Becraft, Alexandra R; Lee, Youngsoo; Lee, Soo-Yeun

    2015-09-01

    Resveratrol is a polyphenol that is associated with numerous health benefits related to heart disease, cancer, diabetes, and neurological function. The addition of this compound to food products would help to deliver these health benefits to the consumer. However, bitterness associated with resveratrol may impart negative sensory qualities on the food products into which resveratrol is added; thus, decreasing consumer acceptability. This concern may be resolved by encapsulating resveratrol through spray drying, an innovative processing technique. The objectives of this research were to (1) compare taste detection thresholds of unencapsulated resveratrol and encapsulated resveratrol and (2) determine if the inclusion of anhydrous milk fat in the formulation of the encapsulation wall material affects the taste detection threshold of resveratrol within the microcapsules. Resveratrol microcapsules were produced by encapsulating resveratrol in a protein matrix through spray drying. R-index measure by the rating method was used to determine the average taste detection threshold and the pooled group taste detection threshold. The average and pooled group taste detection thresholds of unencapsulated resveratrol, sodium-caseinate-based resveratrol microcapsule without fat (SC), and sodium-caseinate-based resveratrol microcapsule with fat (SCAMF) were 90 and 47 mg resveratrol/L (unencapsulated), 313 and 103 mg resveratrol/L (SC), 334 and 108 mg resveratrol/L (SCAMF), respectively. The findings demonstrate that the encapsulation of resveratrol decreased the detection of the compound and provided a means to incorporate resveratrol into food products without imparting negative sensory properties. PMID:26235804

  3. Improvement of the Mutation-Discrimination Threshold for Rare Point Mutations by a Separation-Free Ligase Detection Reaction Assay Based on Fluorescence Resonance Energy Transfer.

    PubMed

    Hagihara, Kenta; Tsukagoshi, Kazuhiko; Nakajima, Chinami; Esaki, Shinsuke; Hashimoto, Masahiko

    2016-01-01

    We previously developed a separation-free ligase detection reaction assay based on fluorescence resonance energy transfer from a donor quantum dot to an acceptor fluorescent dye. This assay could successfully detect one cancer mutation among 10 wild-type templates. In the current study, the mutation-discrimination threshold was improved by one order of magnitude by replacing the original acceptor dye (Alexa Fluor 647) with another fluorescent dye (Cyanine 5) that was spectrally similar but more fluorescent. PMID:26960620

  4. DICOM GSPS affects on contrast detection threshold

    NASA Astrophysics Data System (ADS)

    Leong, David L.; Miner Haygood, Tamara; Whitman, Gary J.; Carkaci, Selin; Tchou, Philip M.; Brennan, Patrick C.

    2010-02-01

    While previous research has been done to determine the contrast detection threshold in medical images, we have found it difficult to translate the results into settings that can be used for the optimization of image quality. Since many of these papers were done before the widespread use of DICOM GSPS calibrated monitors, how the GSPS affects the detection threshold and whether the median background intensity shift has been minimized by GSPS remain unknown. We set out to determine if the median background affected the detection of a low-contrast object in a clustered lumpy background, which simulated a mammography image. Our results show that shifts in the median background intensity did not affect the detection performance. The contrast detection threshold appears close to +3 gray levels above the background.

  5. Chemical sensing thresholds for mine detection dogs

    NASA Astrophysics Data System (ADS)

    Phelan, James M.; Barnett, James L.

    2002-08-01

    Mine detection dogs have been found to be an effective method to locate buried landmines. The capabilities of the canine olfaction method are from a complex combination of training and inherent capacity of the dog for odor detection. The purpose of this effort was to explore the detection thresholds of a limited group of dogs that were trained specifically for landmine detection. Soils were contaminated with TNT and 2,4-DNT to develop chemical vapor standards to present to the dogs. Soils contained ultra trace levels of TNT and DNT, which produce extremely low vapor levels. Three groups of dogs were presented the headspace vapors from the contaminated soils in work environments for each dog group. One positive sample was placed among several that contained clean soils and, the location and vapor source (strength, type) was frequently changed. The detection thresholds for the dogs were determined from measured and extrapolated dilution of soil chemical residues and, estimated soil vapor values using phase partitioning relationships. The results showed significant variances in dog sensing thresholds, where some dogs could sense the lowest levels and others had trouble with even the highest source. The remarkable ultra-trace levels detectable by the dogs are consistent with the ultra-trace chemical residues derived from buried landmines; however, poor performance may go unnoticed without periodic challenge tests at levels consistent with performance requirements.

  6. Detection thresholds for small haptic effects

    NASA Astrophysics Data System (ADS)

    Dosher, Jesse A.; Hannaford, Blake

    2002-02-01

    We are interested in finding out whether or not haptic interfaces will be useful in portable and hand held devices. Such systems will have severe constraints on force output. Our first step is to investigate the lower limits at which haptic effects can be perceived. In this paper we report on experiments studying the effects of varying the amplitude, size, shape, and pulse-duration of a haptic feature. Using a specific haptic device we measure the smallest detectable haptics effects, with active exploration of saw-tooth shaped icons sized 3, 4 and 5 mm, a sine-shaped icon 5 mm wide, and static pulses 50, 100, and 150 ms in width. Smooth shaped icons resulted in a detection threshold of approximately 55 mN, almost twice that of saw-tooth shaped icons which had a threshold of 31 mN.

  7. Sputtering Threshold Energies of Heavy Ions

    NASA Technical Reports Server (NTRS)

    Mantenieks, Maris A.

    1999-01-01

    Sputter erosion in ion thrusters has been measured in lifetests at discharge voltages as low as 25 V. Thruster operation at this discharge voltage results in component erosion rates sufficiently low to satisfy most mission requirements. It has been recognized that most of the internal sputtering in ion thrusters is done by doubly charged ions. Knowledge of the sputtering threshold voltage of a xenon molybdenum system would be beneficial in understanding the sputtering process as well as making more accurate calculations of the sputtering rates of ion thruster components. Sputtering threshold energies calculated from various formulations found in the literature results in values ranging from 28 to 200 eV. It is evident that some of these formulations cannot be relied upon to provide sputtering thresholds with any degree of accuracy. This paper re-examines the threshold energies measurements made in the early sixties by Askerov and Sena, and Stuart and Wehner. The threshold voltages as derived by Askerov and au have been reevaluated by using a different extrapolation method of sputter yields at low ion energies. The resulting threshold energies are in general similar to those measured by Stuart and Wehner. An empirical relationship is derived,for mercury and xenon ions for the ratio of the sputtering threshold energy to the sublimation energy as a function of the ratio of target to ion atomic mass.

  8. Energy Switching Threshold for Climatic Benefits

    NASA Astrophysics Data System (ADS)

    Zhang, X.; Cao, L.; Caldeira, K.

    2013-12-01

    Climate change is one of the great challenges facing humanity currently and in the future. Its most severe impacts may still be avoided if efforts are made to transform current energy systems (1). A transition from the global system of high Greenhouse Gas (GHG) emission electricity generation to low GHG emission energy technologies is required to mitigate climate change (2). Natural gas is increasingly seen as a choice for transitions to renewable sources. However, recent researches in energy and climate puzzled about the climate implications of relying more energy on natural gas. On one hand, a shift to natural gas is promoted as climate mitigation because it has lower carbon per unit energy than coal (3). On the other hand, the effect of switching to natural gas on nuclear-power and other renewable energies development may offset benefits from fuel-switching (4). Cheap natural gas is causing both coal plants and nuclear plants to close in the US. The objective of this study is to measure and evaluate the threshold of energy switching for climatic benefits. We hypothesized that the threshold ratio of energy switching for climatic benefits is related to GHGs emission factors of energy technologies, but the relation is not linear. A model was developed to study the fuel switching threshold for greenhouse gas emission reduction, and transition from coal and nuclear electricity generation to natural gas electricity generation was analyzed as a case study. The results showed that: (i) the threshold ratio of multi-energy switching for climatic benefits changes with GHGs emission factors of energy technologies. (ii)The mathematical relation between the threshold ratio of energy switching and GHGs emission factors of energies is a curved surface function. (iii) The analysis of energy switching threshold for climatic benefits can be used for energy and climate policy decision support.

  9. Experimental and environmental factors affect spurious detection of ecological thresholds

    USGS Publications Warehouse

    Daily, Jonathan P.; Hitt, Nathaniel P.; Smith, David; Snyder, Craig D.

    2012-01-01

    Threshold detection methods are increasingly popular for assessing nonlinear responses to environmental change, but their statistical performance remains poorly understood. We simulated linear change in stream benthic macroinvertebrate communities and evaluated the performance of commonly used threshold detection methods based on model fitting (piecewise quantile regression [PQR]), data partitioning (nonparametric change point analysis [NCPA]), and a hybrid approach (significant zero crossings [SiZer]). We demonstrated that false detection of ecological thresholds (type I errors) and inferences on threshold locations are influenced by sample size, rate of linear change, and frequency of observations across the environmental gradient (i.e., sample-environment distribution, SED). However, the relative importance of these factors varied among statistical methods and between inference types. False detection rates were influenced primarily by user-selected parameters for PQR (τ) and SiZer (bandwidth) and secondarily by sample size (for PQR) and SED (for SiZer). In contrast, the location of reported thresholds was influenced primarily by SED. Bootstrapped confidence intervals for NCPA threshold locations revealed strong correspondence to SED. We conclude that the choice of statistical methods for threshold detection should be matched to experimental and environmental constraints to minimize false detection rates and avoid spurious inferences regarding threshold location.

  10. Energy Detector Using a Hybrid Threshold in Cognitive Radio Systems

    NASA Astrophysics Data System (ADS)

    Kim, Jong-Ho; Hwang, Seung-Hoon; Hwang, Deok-Kyu

    Cognitive radio systems offer the opportunity to improve the spectrum utilization by detecting unused frequency bands while avoiding interference to primary users. This paper proposes a new algorithm for spectrum sensing, which is an energy detector using a hybrid (adaptive and fixed) threshold, in order to compensate the weak points of the existing energy detector in the distorted communication channel environment. Simulation results are presented which show that the performance of the new proposed scheme is better than the existing scheme using a fixed threshold or an adaptive threshold. Additionally, the performance is investigated in terms of several parameters such as the mobile speed and the probability of false alarms. The simulation results also show that the proposed algorithm makes the detector highly robust against fading, shadowing, and interference.

  11. Effect of model uncertainty on failure detection - The threshold selector

    NASA Technical Reports Server (NTRS)

    Emami-Naeini, Abbas; Akhter, Muhammad M.; Rock, Stephen M.

    1988-01-01

    The performance of all failure detection, isolation, and accomodation (DIA) algorithms is influenced by the presence of model uncertainty. A unique framework is presented to incorporate a knowledge of modeling error in the analysis and design of failure detection systems. The tools being used are very similar to those in robust control theory. A concept is introduced called the threshold selector, which is a nonlinear inequality whose solution defines the set of detectable sensor failure signals. The threshold selector represents an innovative tool for analysis and synthesis of DIA algorithms. It identifies the optimal threshold to be used in innovations-based DIA algorithms. The optimal threshold is shown to be a function of the bound on modeling errors, the noise properties, the speed of DIA filters, and the classes of reference and failure signals. The size of the smallest detectable failure is also determined. The results are applied to a multivariable turbofan jet engine example, which demonstrates improvements compared to previous studies.

  12. Threshold detection in generalized non-additive signals and noise

    SciTech Connect

    Middleton, D., LLNL

    1997-12-22

    The classical theory of optimum (binary-on-off) threshold detection for additive signals and generalized (i.e. nongaussian) noise is extended to the canonical nonadditive threshold situation. In the important (and usual) applications where the noise is sampled independently, a canonical threshold optimum theory is outlined here, which is found formally to parallel the earlier additive theory, including the critical properties of locally optimum Bayes detection algorithms, which are asymptotically normal and optimum as well. The important Class A clutter model provides an explicit example of optimal threshold envelope detection, for the non-additive cases of signal and noise. Various extensions are noted in the concluding section, as are selected references.

  13. Road Target Detection Based on Otsu Multi-Threshold Segmentation

    NASA Astrophysics Data System (ADS)

    Li, Hui-Guang; Lu, Chang-Yong; Qi, Long

    In order to achieve the detection and recognition of road obstacles and aiming at backgrounds existing in the image target segmented by traditional Otsu algorithm, this paper presents an improved multi-threshold segmentation method based on multi-threshold Otsu algorithm. Due to multi-threshold segmentation into many clusters, one of them must be the target while others are combined into backgrounds. By right of the differences between target and background, the ratio method of maximum inter-cluster variance to within-cluster variance is adopted to determine the target and background. Through experience on actual images, this method is feasible.

  14. Color-detection thresholds in rhesus macaque monkeys and humans

    PubMed Central

    Gagin, Galina; Bohon, Kaitlin S.; Butensky, Adam; Gates, Monica A.; Hu, Jiun-Yiing; Lafer-Sousa, Rosa; Pulumo, Reitumetse L.; Qu, Jane; Stoughton, Cleo M.; Swanbeck, Sonja N.; Conway, Bevil R.

    2014-01-01

    Macaque monkeys are a model of human color vision. To facilitate linking physiology in monkeys with psychophysics in humans, we directly compared color-detection thresholds in humans and rhesus monkeys. Colors were defined by an equiluminant plane of cone-opponent color space. All subjects were tested on an identical apparatus with a four-alternative forced-choice task. Targets were 2° square, centered 2° from fixation, embedded in luminance noise. Across all subjects, the change in detection thresholds from initial testing to plateau performance (“learning”) was similar for +L − M (red) colors and +M − L (bluish-green) colors. But the extent of learning was higher for +S (lavender) than for −S (yellow-lime); moreover, at plateau performance, the cone contrast at the detection threshold was higher for +S than for −S. These asymmetries may reflect differences in retinal circuitry for S-ON and S-OFF. At plateau performance, the two species also had similar detection thresholds for all colors, although monkeys had shorter reaction times than humans and slightly lower thresholds for colors that modulated L/M cones. We discuss whether these observations, together with previous work showing that monkeys have lower spatial acuity than humans, could be accounted for by selective pressures driving higher chromatic sensitivity at the cost of spatial acuity amongst monkeys, specifically for the more recently evolved L − M mechanism. PMID:25027164

  15. Determining hysteresis thresholds for edge detection by combining the advantages and disadvantages of thresholding methods.

    PubMed

    Medina-Carnicer, R; Carmona-Poyato, A; Muoz-Salinas, R; Madrid-Cuevas, F J

    2010-01-01

    Hysteresis is an important technique for edge detection, but the unsupervised determination of its parameters is not an easy problem. In this paper, we propose a method for unsupervised determination of hysteresis thresholds using the advantages and disadvantages of two thresholding methods. The basic idea of our method is to look for the best hysteresis thresholds in a set of candidates. First, the method finds a subset and a overset of the unknown edge points set. Then, it determines the best edge map with the measure chi(2). Compared with a general method to determine the parameters of an edge detector, our method performs well and is less computationally complex. The basic idea of our method can be generalized to other pattern recognition problems. PMID:19783504

  16. A novel method for determining target detection thresholds

    NASA Astrophysics Data System (ADS)

    Grossman, S.

    2015-05-01

    Target detection is the act of isolating objects of interest from the surrounding clutter, generally using some form of test to include objects in the found class. However, the method of determining the threshold is overlooked relying on manual determination either through empirical observation or guesswork. The question remains: how does an analyst identify the detection threshold that will produce the optimum results? This work proposes the concept of a target detection sweet spot where the missed detection probability curve crosses the false detection curve; this represents the point at which missed detects are traded for false detects in order to effect positive or negative changes in the detection probability. ROC curves are used to characterize detection probabilities and false alarm rates based on empirically derived data. It identifies the relationship between the empirically derived results and the first moment statistic of the histogram of the pixel target value data and then proposes a new method of applying the histogram results in an automated fashion to predict the target detection sweet spot at which to begin automated target detection.

  17. Retronasal smell and detection thresholds of iron and copper salts.

    PubMed

    Epke, Effie M; Lawless, Harry T

    2007-10-22

    Iron and copper salts, when placed in the mouth, may give rise to odorous compounds which complicate their functioning as chemical stimuli. The contribution of retronasal smell to perception of these metal salts at threshold has not been determined. Detection thresholds of the sulfate and chloride salts of ferrous iron and copper, and sodium chloride (as a control) were determined using a modified forced-choice ascending method of limits, with and without nasal occlusion. Threshold values were calculated from geometric means of individual estimates, and from interpolation on logistic regression and percent correct plots. Nasal occlusion raised thresholds for iron salts and copper but not sodium. The geometric mean detection thresholds with the nose open were 30, 64, 7.8, and 8.2 microM for FeSO(4), FeCl(2), CuSO(4), CuCl(2), respectively but rose to 160, 227, 24.6 and 15.6 with the nose closed. Metal salts of both iron and copper create a retronasally perceived olfactory stimulus at low concentration levels, probably arising from lipid oxidation products generated in the mouth. PMID:17532013

  18. Variable threshold method for ECG R-peak detection.

    PubMed

    Kew, Hsein-Ping; Jeong, Do-Un

    2011-10-01

    In this paper, a wearable belt-type ECG electrode worn around the chest by measuring the real-time ECG is produced in order to minimize the inconvenient in wearing. ECG signal is detected using a potential instrument system. The measured ECG signal is transmits via an ultra low power consumption wireless data communications unit to personal computer using Zigbee-compatible wireless sensor node. ECG signals carry a lot of clinical information for a cardiologist especially the R-peak detection in ECG. R-peak detection generally uses the threshold value which is fixed. There will be errors in peak detection when the baseline changes due to motion artifacts and signal size changes. Preprocessing process which includes differentiation process and Hilbert transform is used as signal preprocessing algorithm. Thereafter, variable threshold method is used to detect the R-peak which is more accurate and efficient than fixed threshold value method. R-peak detection using MIT-BIH databases and Long Term Real-Time ECG is performed in this research in order to evaluate the performance analysis. PMID:21695499

  19. Detection thresholds for 60 Hz electric fields by nonhuman primates

    SciTech Connect

    Orr, J.L.; Rogers, W.R.; Smith, H.D.

    1995-12-31

    Because responses of animals to detection of the presence of an electric field (EF) are a possible mechanism for production of biological effects, it is important to know what EF intensities are detectable. Operant methods were used to train six baboons (Papio cynocephalus) to perform a psychophysical task involving detection of EF presence. During the response phase of a trial, a subject responded on one push button to report the presence of the EF and on a different push button to report the absence of the EF. Correct reports of EF presence or absence produced delivery of food rewards. The subjects became proficient at performing this psychophysical detection task; during 35 days of testing, false alarm rates averaged 9%. The average EF detection threshold was 12 kV/m; the range of means among subjects was 5--15 kV/m. Two special test procedures confirmed that the subjects were responding directly to EF presence or absence and not to artifacts that might be associated with EF generation. The EF detection threshold of nonhuman primates is similar to thresholds reported for rats and humans.

  20. Orion MPCV Touchdown Detection Threshold Development and Testing

    NASA Technical Reports Server (NTRS)

    Daum, Jared; Gay, Robert

    2013-01-01

    A robust method of detecting Orion Multi-Purpose Crew Vehicle (MPCV) splashdown is necessary to ensure crew and hardware safety during descent and after touchdown. The proposed method uses a triple redundant system to inhibit Reaction Control System (RCS) thruster firings, detach parachute risers from the vehicle, and transition to the post-landing segment of the Flight Software (FSW). An in-depth trade study was completed to determine optimal characteristics of the touchdown detection method resulting in an algorithm monitoring filtered, lever-arm corrected, 200 Hz Inertial Measurement Unit (IMU) vehicle acceleration magnitude data against a tunable threshold using persistence counter logic. Following the design of the algorithm, high fidelity environment and vehicle simulations, coupled with the actual vehicle FSW, were used to tune the acceleration threshold and persistence counter value to result in adequate performance in detecting touchdown and sufficient safety margin against early detection while descending under parachutes. An analytical approach including Kriging and adaptive sampling allowed for a sufficient number of finite element analysis (FEA) impact simulations to be completed using minimal computation time. The combination of a persistence counter of 10 and an acceleration threshold of approximately 57.3 ft/s2 resulted in an impact performance factor of safety (FOS) of 1.0 and a safety FOS of approximately 2.6 for touchdown declaration. An RCS termination acceleration threshold of approximately 53.1 ft/s(exp)2 with a persistence counter of 10 resulted in an increased impact performance FOS of 1.2 at the expense of a lowered under-parachutes safety factor of 2.2. The resulting tuned algorithm was then tested on data from eight Capsule Parachute Assembly System (CPAS) flight tests, showing an experimental minimum safety FOS of 6.1. The formulated touchdown detection algorithm will be flown on the Orion MPCV FSW during the Exploration Flight Test 1 (EFT-1) mission in the second half of 2014.

  1. Individual Differences Among Children in Sucrose Detection Thresholds

    PubMed Central

    Joseph, Paule Valery; Reed, Danielle R.; Mennella, Julie A.

    2016-01-01

    Background Little research has focused on whether there are individual differences among children in their sensitivity to sweet taste and, if so, the biological correlates of such differences. Objectives Our goal was to understand how variations in children’s sucrose detection thresholds relate to their age and gender, taste genotype, body composition, and dietary intake of added sugars. Methods Sucrose detection thresholds in 7- to 14-year-old children were tested individually using a validated, two-alternative, forced-choice, paired-comparison tracking method. Five genetic variants of taste genes were assayed: TAS1R3 and GNAT3 (sweet genes; one variant each) and the bitter receptor gene TAS2R38 (three variants). All children were measured for body weight and height. A subset of these children were measured for the percentage of body fat and waist circumference and provided added sugar intake by 24-hour dietary recall. Results Sucrose thresholds ranged from 0.23 to 153.8 mM with most of the children completing the threshold task (216/235; 92%). Some children were biologically related (i.e., siblings), and for the genetic analysis, one sibling from each family was studied. Variants in the bitter but not the sweet genes were related to sucrose threshold and sugar intake; children with two bitter-sensitive alleles could detect sucrose at lower concentrations (F(2,165) = 4.55, p = .01; rs1726866) and reported eating more added sugar (% kcal; F(2, 62) = 3.64, p = .03) than did children with less sensitive alleles. Age, gender, and indices of obesity also were related to child-to-child differences in sucrose threshold; girls were more sensitive than boys (t(214) = 2.0, p = .05), older children were more sensitive than younger children (r(214) = −.16, p = .02), and fatter (r(84) = −.22, p = .05) or more centrally obese children (r(84) = −.26, p = .02) were more sensitive relative to others. Discussion Inborn differences in bitter sensitivity may affect childhood dietary sugar intake with long-term health consequences. There may be a more complex interplay between the developing bitter and sweet taste systems than previously understood. PMID:26633761

  2. Detection threshold of single SPIO-labeled cells with FIESTA.

    PubMed

    Heyn, Chris; Bowen, Chris V; Rutt, Brian K; Foster, Paula J

    2005-02-01

    MRI of superparamagnetic iron oxide (SPIO)-labeled cells has become a valuable tool for studying the in vivo trafficking of transplanted cells. Cellular detection with MRI is generally considered to be orders of magnitude less sensitive than other techniques, such as positron emission tomography (PET), single photon emission-computed tomography (SPECT), or optical fluorescence microscopy. However, an analytic description of the detection threshold for single SPIO-labeled cells and the parameters that govern detection has not been adequately provided. In the present work, the detection threshold for single SPIO-labeled cells and the effect of resolution and SNR were studied for a balanced steady-state free precession (SSFP) sequence (3D-FIESTA). Based on the results from both theoretical and experimental analyses, an expression that predicts the minimum detectable mass of SPIO (m(c)) required to detect a single cell against a uniform signal background was derived: m(c) = 5v/(K(fsl) x SNR), where v is the voxel volume, SNR is the image signal-to-noise ratio, and K(fsl) is an empirical constant measured to be 6.2 +/- 0.5 x 10(-5) microl/pgFe. Using this expression, it was shown that the sensitivity of MRI is not very different from that of PET, requiring femtomole quantities of SPIO iron for detection under typical micro-imaging conditions (100 microm isotropic resolution, SNR = 60). The results of this work will aid in the design of cellular imaging experiments by defining the lower limit of SPIO labeling required for single cell detection at any given resolution and SNR. PMID:15678551

  3. Accuracy threshold for concatenated error detection in one dimension

    NASA Astrophysics Data System (ADS)

    Stephens, Ashley M.; Evans, Zachary W. E.

    2009-08-01

    Estimates of the quantum accuracy threshold often tacitly assume that it is possible to interact arbitrary pairs of qubits in a quantum computer with a failure rate that is independent of the distance between them. None of the many physical systems that are candidates for quantum computing possess this property. Here we study the performance of a concatenated error-detection code in a system that permits only nearest-neighbor interactions in one dimension. We make use of a message-passing scheme that maximizes the number of errors that can be reliably corrected by the code. Our numerical results indicate that arbitrarily accurate universal quantum computation is possible if the probability of failure of each elementary physical operation is below approximately 10-5 . This threshold is three orders of magnitude lower than the highest known.

  4. Spatially Varying Spectrally Thresholds for MODIS Cloud Detection

    NASA Technical Reports Server (NTRS)

    Haines, S. L.; Jedlovec, G. J.; Lafontaine, F.

    2004-01-01

    The EOS science team has developed an elaborate global MODIS cloud detection procedure, and the resulting MODIS product (MOD35) is used in the retrieval process of several geophysical parameters to mask out clouds. While the global application of the cloud detection approach appears quite robust, the product has some shortcomings on the regional scale, often over determining clouds in a variety of settings, particularly at night. This over-determination of clouds can cause a reduction in the spatial coverage of MODIS derived clear-sky products. To minimize this problem, a new regional cloud detection method for use with MODIS data has been developed at NASA's Global Hydrology and Climate Center (GHCC). The approach is similar to that used by the GHCC for GOES data over the continental United States. Several spatially varying thresholds are applied to MODIS spectral data to produce a set of tests for detecting clouds. The thresholds are valid for each MODIS orbital pass, and are derived from 20-day composites of GOES channels with similar wavelengths to MODIS. This paper and accompanying poster will introduce the GHCC MODIS cloud mask, provide some examples, and present some preliminary validation.

  5. Determination of Odor Detection Threshold in the Gttingen Minipig

    PubMed Central

    Holm, Ida E.; Herskin, Mette S.; Dagns-Hansen, Frederik; Johansen, Marianne G.; Jrgensen, Arne Lund; Ladewig, Jan

    2010-01-01

    The aim of the study was to examine the ability of Gttingen minipigs to acquire an olfaction-based operant conditioning task and to determine the detection threshold for ethyl acetate and ethanol. We used an automated olfactometer developed for rodents to train and test 14 pigs. Odor sampling and reliable responding were obtained after three to fifteen 160-trial sessions. Successful transfer of the task from ethyl acetate to ethanol was achieved in 14 sessions. Detection threshold for ethyl acetate varied between 10?2% and 10?6% v/v and for ethanol between 0.1% and 5 10?6% v/v. The results provide evidence that minipigs can successfully acquire 2-odorant discrimination using a food-rewarded instrumental conditioning paradigm for testing olfactory function. This olfactory discrimination paradigm provides reliable measures of olfactory sensitivity and thereby enables detection of changes in olfaction in a porcine model of Alzheimer's disease currently being developed. PMID:20693277

  6. Crossmodal Integration Improves Sensory Detection Thresholds in the Ferret

    PubMed Central

    Engler, Gerhard; König, Peter; Engel, Andreas K.

    2015-01-01

    During the last two decades ferrets (Mustela putorius) have been established as a highly efficient animal model in different fields in neuroscience. Here we asked whether ferrets integrate sensory information according to the same principles established for other species. Since only few methods and protocols are available for behaving ferrets we developed a head-free, body-restrained approach allowing a standardized stimulation position and the utilization of the ferret’s natural response behavior. We established a behavioral paradigm to test audiovisual integration in the ferret. Animals had to detect a brief auditory and/or visual stimulus presented either left or right from their midline. We first determined detection thresholds for auditory amplitude and visual contrast. In a second step, we combined both modalities and compared psychometric fits and the reaction times between all conditions. We employed Maximum Likelihood Estimation (MLE) to model bimodal psychometric curves and to investigate whether ferrets integrate modalities in an optimal manner. Furthermore, to test for a redundant signal effect we pooled the reaction times of all animals to calculate a race model. We observed that bimodal detection thresholds were reduced and reaction times were faster in the bimodal compared to unimodal conditions. The race model and MLE modeling showed that ferrets integrate modalities in a statistically optimal fashion. Taken together, the data indicate that principles of multisensory integration previously demonstrated in other species also apply to crossmodal processing in the ferret. PMID:25970327

  7. Orion MPCV Touchdown Detection Threshold Development and Testing

    NASA Technical Reports Server (NTRS)

    Daum, Jared; Gay, Robert

    2013-01-01

    A robust method of detecting Orion Multi ]Purpose Crew Vehicle (MPCV) splashdown is necessary to ensure crew and hardware safety during descent and after touchdown. The proposed method uses a triple redundant system to inhibit Reaction Control System (RCS) thruster firings, detach parachute risers from the vehicle, and transition to the post ]landing segment of the Flight Software (FSW). The vehicle crew is the prime input for touchdown detection, followed by an autonomous FSW algorithm, and finally a strictly time based backup timer. RCS thrusters must be inhibited before submersion in water to protect against possible damage due to firing these jets under water. In addition, neglecting to declare touchdown will not allow the vehicle to transition to post ]landing activities such as activating the Crew Module Up ]righting System (CMUS), resulting in possible loss of communication and difficult recovery. A previous AIAA paper gAssessment of an Automated Touchdown Detection Algorithm for the Orion Crew Module h concluded that a strictly Inertial Measurement Unit (IMU) based detection method using an acceleration spike algorithm had the highest safety margins and shortest detection times of other methods considered. That study utilized finite element simulations of vehicle splashdown, generated by LS ]DYNA, which were expanded to a larger set of results using a Kriging surface fit. The study also used the Decelerator Systems Simulation (DSS) to generate flight dynamics during vehicle descent under parachutes. Proto ]type IMU and FSW MATLAB models provided the basis for initial algorithm development and testing. This paper documents an in ]depth trade study, using the same dynamics data and MATLAB simulations as the earlier work, to further develop the acceleration detection method. By studying the combined effects of data rate, filtering on the rotational acceleration correction, data persistence limits and values of acceleration thresholds, an optimal configuration was determined. The lever arm calculation, which removes the centripetal acceleration caused by vehicle rotation, requires that the vehicle angular acceleration be derived from vehicle body rates, necessitating the addition of a 2nd order filter to smooth the data. It was determined that using 200 Hz data directly from the vehicle IMU outperforms the 40 Hz FSW data rate. Data persistence counter values and acceleration thresholds were balanced in order to meet desired safety and performance. The algorithm proved to exhibit ample safety margin against early detection while under parachutes, and adequate performance upon vehicle splashdown. Fall times from algorithm initiation were also studied, and a backup timer length was chosen to provide a large safety margin, yet still trigger detection before CMUS inflation. This timer serves as a backup to the primary acceleration detection method. Additionally, these parameters were tested for safety on actual flight test data, demonstrating expected safety margins.

  8. Ultrasonic flaw detection using threshold modified S-transform.

    PubMed

    Benammar, Abdessalem; Drai, Redouane; Guessoum, Abderrezak

    2014-02-01

    Interference noising originating from the ultrasonic testing defect signal seriously influences the accuracy of the signal extraction and defect location. Time-frequency analysis methods are mainly used to improve the defects detection resolution. In fact, the S-transform, a hybrid of the Short time Fourier transform (STFT) and wavelet transform (WT), has a time frequency resolution which is far from ideal. In this paper, a new modified S-transform based on thresholding technique, which offers a better time frequency resolution compared to the original S-transform is proposed. The improvement is achieved by the introduction of a new scaling rule for the Gaussian window used in S-transform. Simulation results are presented and show correct time frequency information of multiple Gaussian echoes under low signal-to-noise ratio (SNR) environment. In addition, experimental results demonstrate better and reliable detection of close echoes drowned in the noise. PMID:24120270

  9. Thresholding Based on Maximum Weighted Object Correlation for Rail Defect Detection

    NASA Astrophysics Data System (ADS)

    Li, Qingyong; Huang, Yaping; Liang, Zhengping; Luo, Siwei

    Automatic thresholding is an important technique for rail defect detection, but traditional methods are not competent enough to fit the characteristics of this application. This paper proposes the Maximum Weighted Object Correlation (MWOC) thresholding method, fitting the features that rail images are unimodal and defect proportion is small. MWOC selects a threshold by optimizing the product of object correlation and the weight term that expresses the proportion of thresholded defects. Our experimental results demonstrate that MWOC achieves misclassification error of 0.85%, and outperforms the other well-established thresholding methods, including Otsu, maximum correlation thresholding, maximum entropy thresholding and valley-emphasis method, for the application of rail defect detection.

  10. Detection Thresholds of Falling Snow from Satellite-Borne Active and Passive Sensors

    NASA Technical Reports Server (NTRS)

    Jackson, Gail

    2012-01-01

    Precipitation, including rain and snow, is a critical part of the Earth's energy and hydrology cycles. In order to collect information on the complete global precipitation cycle and to understand the energy budget in terms of precipitation, uniform global estimates of both liquid and frozen precipitation must be collected. Active observations of falling snow are somewhat easier to estimate since the radar will detect the precipitation particles and one only needs to know surface temperature to determine if it is liquid rain or snow. The challenges of estimating falling snow from passive spaceborne observations still exist though progress is being made. While these challenges are still being addressed, knowledge of their impact on expected retrieval results is an important key for understanding falling snow retrieval estimations. Important information to assess falling snow retrievals includes knowing thresholds of detection for active and passive sensors, various sensor channel configurations, snow event system characteristics, snowflake particle assumptions, and surface types. For example, can a lake effect snow system with low (2.5 km) cloud tops having an ice water content (Iwe) at the surface of 0.25 g m-3 and dendrite snowflakes be detected? If this information is known, we can focus retrieval efforts on detectable storms and concentrate advances on achievable results. Here, the focus is to determine thresholds of detection for falling snow for various snow conditions over land and lake surfaces. The analysis relies on simulated Weather Research Forecasting (WRF) simulations of falling snow cases since simulations provide all the information to determine the measurements from space and the ground truth. Results are presented for active radar at Ku, Ka, and W-band and for passive radiometer channels from 10 to 183 GHz (Skofronick-Jackson, et al. submitted to IEEE TGRS, April 2012). The notable results show: (1) the W-Band radar has detection thresholds more than an order of magnitude lower than the future GPM sensors, (2) the cloud structure macrophysics influences the thresholds of detection for passive channels, (3) the snowflake microphysics plays a large role in the detection threshold for active and passive instruments, (4) with reasonable assumptions, the passive 166 GHz channel has detection threshold values comparable to the GPM DPR Ku and Ka band radars with 0.05 g m-3 detected at the surface, or an 0.5-1 mm hr-l melted snow rate (equivalent to 0.5-2 cm hr-l solid fluffy snowflake rate).

  11. The Impact of Thresholds in Cloud Detection Uncertainty

    NASA Astrophysics Data System (ADS)

    Ackerman, S. A.; Maddux, B. C.; Holz, R.; Frey, R.

    2014-12-01

    The Moderate Resolution Imaging Spectroradiometer (MODIS) on the NASA Terra and Aqua satellites provides cloud properties with daily, global coverage from its broad spectral range (36 bands between 0.415-14.235 micron) at high spatial resolution (250 m for two bands, 500 m for 5 bands, 1000 m for 29 bands). These cloud properties are aggregated to produce climatologies and histograms that are used widely in observational studies, modeling applications, and further data production. Providing a measure of the cloud detection uncertainty is essential to its quality and proper use. The MODIS cloud mask algorithm includes several domains defined according to latitude, surface type, and solar illumination, including land, water, snow/ice, desert, and coast for both day and night. A series of spectral tests are applied to identify the presence of clouds. There are several groups of tests, with differing numbers of tests in each group depending on the domain. A clear-sky confidence level ranging from 1 (high) to 0 (low) is returned for each test. The minimum confidence from all tests within a group is taken to be representative of that group. The Nth root of the product of all the group confidences (Q) determines the final confidence, where N is the number of groups. Our objective is to quantify the sensitivity of the MODIS cloud detection to various factors included in the cloud mask algorithm- specifically surface type, seasonality and viewing geometry, as well as, traditional identified uncertainties like cloud cover heterogeneity. The challenge is that two or more of these factors frequently interact, producing combined uncertainties in the retrievals that cannot be quantified by calculating retrieval sensitivities to each factor separately. This presentation will present an assessment of uncertainty sources within the MODIS cloud mask products due to uncertainties in the cloud thresholding approach used in the algorithm. This is accomplished through statistical comparison of cloud detection results of many realizations of the same scenes with appropriate modifications to the various thresholds.

  12. Molecular dynamics simulation of threshold displacement energies in zircon

    SciTech Connect

    Moreira, Pedro A.; Devanathan, Ramaswami; Yu, Jianguo; Weber, William J.

    2009-10-15

    Molecular-dynamics simulations were used to examine the displacement threshold energy (Ed) surface for Zr, Si and O in zircon using two different interatomic potentials. For each sublattice, the simulation was repeated from different initial conditions to estimate the uncertainty in the calculated value of Ed. The displacement threshold energies vary considerably with crystallographic direction and sublattice. The average displacement energy calculated with a recently developed transferable potential is about 120 and 60 eV for cations and anions, respectively. The oxygen displacement energy shows good agreement with experimental estimates in ceramics.

  13. Signal Detection Theory Applied to Helicopter Transmission Diagnostic Thresholds

    NASA Technical Reports Server (NTRS)

    Dempsey, Paula J.; Keller, Jonathan A.; Wade, Daniel R.

    2008-01-01

    Helicopter Health Usage Monitoring Systems (HUMS) have potential for providing data to support increasing the service life of a dynamic mechanical component in the transmission of a helicopter. Data collected can demonstrate the HUMS condition indicator responds to a specific component fault with appropriate alert limits and minimal false alarms. Defining thresholds for specific faults requires a tradeoff between the sensitivity of the condition indicator (CI) limit to indicate damage and the number of false alarms. A method using Receiver Operating Characteristic (ROC) curves to assess CI performance was demonstrated using CI data collected from accelerometers installed on several UH60 Black Hawk and AH64 Apache helicopters and an AH64 helicopter component test stand. Results of the analysis indicate ROC curves can be used to reliably assess the performance of commercial HUMS condition indicators to detect damaged gears and bearings in a helicopter transmission.

  14. Signal Detection Theory Applied to Helicopter Transmission Diagnostic Thresholds

    NASA Technical Reports Server (NTRS)

    Dempsey, Paula J.; Keller, Jonathan A.; Wade, Daniel R.

    2009-01-01

    Helicopter Health Usage Monitoring Systems (HUMS) have potential for providing data to support increasing the service life of a dynamic mechanical component in the transmission of a helicopter. Data collected can demonstrate the HUMS condition indicator responds to a specific component fault with appropriate alert limits and minimal false alarms. Defining thresholds for specific faults requires a tradeoff between the sensitivity of the condition indicator (CI) limit to indicate damage and the number of false alarms. A method using Receiver Operating Characteristic (ROC) curves to assess CI performance was demonstrated using CI data collected from accelerometers installed on several UH60 Black Hawk and AH64 Apache helicopters and an AH64 helicopter component test stand. Results of the analysis indicate ROC curves can be used to reliably assess the performance of commercial HUMS condition indicators to detect damaged gears and bearings in a helicopter transmission.

  15. Image boundaries detection: from thresholding to implicit curve evolution

    NASA Astrophysics Data System (ADS)

    Balla-Arab, Souleymane; Brost, Vincent; Yang, Fan

    2015-02-01

    The development of high dimensional large-scale imaging devices increases the need of fast, robust and accurate image segmentation methods. Due to its intrinsic advantages such as the ability to extract complex boundaries, while handling topological changes automatically, the level set method (LSM) has been widely used in boundaries detection. Nevertheless, their computational complexity limits their use for real time systems. Furthermore, most of the LSMs share the limit of leading very often to a local minimum, while the effectiveness of many computer vision applications depends on the whole image boundaries. In this paper, using the image thresholding and the implicit curve evolution frameworks, we design a novel boundaries detection model which handles the above related drawbacks of the LSMs. In order to accelerate the method using the graphics processing units, we use the explicit and highly parallelizable lattice Boltzmann method to solve the level set equation. The introduced algorithm is fast and achieves global image segmentation in a spectacular manner. Experimental results on various kinds of images demonstrate the effectiveness and the efficiency of the proposed method.

  16. Pooling optimal combinations of energy thresholds in spectroscopic CT

    NASA Astrophysics Data System (ADS)

    Koenig, Thomas; Zuber, Marcus; Hamann, Elias; Runz, Armin; Fiederle, Michael; Baumbach, Tilo

    2014-03-01

    Photon counting detectors used in spectroscopic CT are often based on small pixels and therefore offer only limited space to include energy discriminators and their associated counters in each pixel cell. For this reason, it is important to make efficient use of the available energy discriminators in order to achieve an optimized material contrast at a radiation dose as low as possible. Unfortunately, the complexity of evaluating every possible combination of energy thresholds, given a fixed number of counters, rapidly increases with the resolution at which this search is performed, and makes brute-force approaches to this problem infeasible. In this work, we introduce methods from machine learning, in particular sparse regression, to perform a feature selection to determine optimal combinations of energy thresholds. We will demonstrate how methods enforcing row-sparsity on a linear regression's coefficient matrix can be applied to the multiple response problem in spectroscopic CT, i.e. the case in which a single set of energy thresholds is sought to simultaneously retrieve concentrations pertaining to a multitude of materials in an optimal way. These methods are applied to CT images experimentally obtained with a Medipix3RX detector operated in charge summing mode and with a CdTe sensor at a pixel pitch of 110μm. We show that the least absolute shrinkage and selection operator (lasso), generalized to the multiple response case, chooses four out of 20 possible threshold positions that allow discriminating PMMA, iodine and gadolinium in a contrast agent phantom at a higher accuracy than with equally spaced thresholds. Finally, we illustrate why it might be unwise to use a higher number of energy thresholds than absolutely necessary.

  17. Determination of the detection threshold for Polyethylene Terephthalate (PET) Nuclear Track Detector (NTD)

    NASA Astrophysics Data System (ADS)

    Bhattacharyya, R.; Dey, S.; Ghosh, Sanjay K.; Maulik, A.; Raha, Sibaji; Syam, D.

    2016-03-01

    In this work we investigated the detection threshold of the polymer material Polyethylene Terephthalate (PET) intended to be used as Nuclear Track Detector (NTD) in the search for rare events (e.g. strangelets) in cosmic rays. 11 MeV 12C and 2 MeV proton beams from the accelerator at the Institute of Physics (IOP), Bhubaneswar were utilized for this study. The results show that the PET detector has a much higher detection threshold (Z / β ∼ 140) compared to many other commercially available and widely used detector materials like CR-39 (Z / β ∼ 6-20) or Makrofol (Z / β ∼ 57). This makes PET a particularly suitable detector material for testing certain phenomenological models which predict the presence of strangelets as low energy, heavily ionizing particles in cosmic radiation at high mountain altitudes.

  18. Threshold detection in an on-off binary communications channel with atmospheric scintillation

    NASA Technical Reports Server (NTRS)

    Webb, W. E.

    1975-01-01

    The optimum detection threshold in an on-off binary optical communications system operating in the presence of atmospheric turbulence was investigated assuming a poisson detection process and log normal scintillation. The dependence of the probability of bit error on log amplitude variance and received signal strength was analyzed and semi-empirical relationships to predict the optimum detection threshold derived. On the basis of this analysis a piecewise linear model for an adaptive threshold detection system is presented. The bit error probabilities for nonoptimum threshold detection systems were also investigated.

  19. An Algorithm for 353 Odor Detection Thresholds in Humans

    PubMed Central

    Sánchez-Moreno, Ricardo; Cometto-Muñiz, J. Enrique; Cain, William S.

    2012-01-01

    One hundred and ninety three odor detection thresholds, ODTs, obtained by Nagata using the Japanese triangular bag method can be correlated as log (1/ODT) by a linear equation with R2 = 0.748 and a standard deviation, SD, of 0.830 log units; the latter may be compared with our estimate of 0.66 log units for the self-consistency of Nagata's data. Aldehydes, acids, unsaturated esters, and mercaptans were included in the equation through indicator variables that took into account the higher potency of these compounds. The ODTs obtained by Cometto-Muñiz and Cain, by Cometto-Muñiz and Abraham, and by Hellman and Small could be put on the same scale as those of Nagata to yield a linear equation for 353 ODTs with R2 = 0.759 and SD = 0.819 log units. The compound descriptors are available for several thousand compounds, and can be calculated from structure, so that further ODT values on the Nagata scale can be predicted for a host of volatile or semivolatile compounds. PMID:21976369

  20. Modeling Associative Recognition: A Comparison of Two-High-Threshold, Two-High-Threshold Signal Detection, and Mixture Distribution Models

    ERIC Educational Resources Information Center

    Macho, Siegfried

    2004-01-01

    A 2-high-threshold signal detection (HTSDT) model, a mixture distribution (SON) model, and 2-highthreshold (HT) models with responses distributed over 1 or several response categories were fit to results of 6 experiments from 2 studies on associative recognition: R. Kelley and J. T. Wixted (2001) and A. P. Yonelinas (1997). HTSDT assumes that

  1. Lowering the Gamma Ray Energy Threshold at Thaemis

    NASA Astrophysics Data System (ADS)

    Smith, David A.; Fleury, Patrick; Parae, Eric; Quebert, Jean

    1994-12-01

    The power-law spectra of the 0.1 < E_gamma < 30 GeV point sources detected by EGRET on the Compton GRO have softened at the energies of the atmospheric Cherenkov telescopes (E_gamma > 300 GeV), to the point that only one AGN and two pulsars are visible with current ground-based instruments. Measurement of the spectra in the roll-over range probes details of pulsar and AGN acceleration models, and probes extragalactic infrared photon densities through the absorption of gamma rays. Measurement requires lowering the ground-based energy thresholds to the Egret energy range, and several groups are studying the design of a very large area mirror or mirror array (few thousand M(2) ). Solar power plants built in the 1980's to focus sunlight on boilers in central receiver towers may provide the basic instrument at low cost. This talk describes efforts to use the solar farm at Th\\a'emis in the French Pyrenees for a proof-of-principle prototype for a large area Cherenkov telescope. (Similar feasibility studies are underway at the Solar One site in southern California.) Simulations show that cosmic ray backgrounds mostly vanish below 50 GeV. Electron backgrounds can be reduced by optimizing angular resolution. Excellent flux sensitivity should be obtainable. Secondary optics and electronic timing corrections have been studied and tests to measure Cherenkov pulses will be made this winter. The tests will complement data from the ASGAT and THEMISTOCLE experiments and from the CAT imaging telescope now under construction at Th\\a'emis.

  2. Colour detection thresholds in faces and colour patches.

    PubMed

    Tan, Kok Wei; Stephen, Ian D

    2013-01-01

    Human facial skin colour reflects individuals' underlying health (Stephen et al 2011 Evolution & Human Behavior 32 216-227); and enhanced facial skin CIELab b* (yellowness), a* (redness), and L* (lightness) are perceived as healthy (also Stephen et al 2009a International Journal of Primatology 30 845-857). Here, we examine Malaysian Chinese participants' detection thresholds for CIELab L* (lightness), a* (redness), and b* (yellowness) colour changes in Asian, African, and Caucasian faces and skin coloured patches. Twelve face photos and three skin coloured patches were transformed to produce four pairs of images of each individual face and colour patch with different amounts of red, yellow, or lightness, from very subtle (deltaE = 1.2) to quite large differences (deltaE = 9.6). Participants were asked to decide which of sequentially displayed, paired same-face images or colour patches were lighter, redder, or yellower. Changes in facial redness, followed by changes in yellowness, were more easily discriminated than changes in luminance. However, visual sensitivity was not greater for redness and yellowness in nonface stimuli, suggesting red facial skin colour special salience. Participants were also significantly better at recognizing colour differences in own-race (Asian) and Caucasian faces than in African faces, suggesting the existence of cross-race effect in discriminating facial colours. Humans' colour vision may have been selected for skin colour signalling (Changizi et al 2006 Biology Letters 2 217-221), enabling individuals to perceive subtle changes in skin colour, reflecting health and emotional status. PMID:24344549

  3. A new EC-PC threshold estimation method for in vivo neural spike detection

    NASA Astrophysics Data System (ADS)

    Yang, Zhi; Liu, Wentai; Keshtkaran, Mohammad Reza; Zhou, Yin; Xu, Jian; Pikov, Victor; Guan, Cuntai; Lian, Yong

    2012-08-01

    This paper models in vivo neural signals and noise for extracellular spike detection. Although the recorded data approximately follow Gaussian distribution, they clearly deviate from white Gaussian noise due to neuronal synchronization and sparse distribution of spike energy. Our study predicts the coexistence of two components embedded in neural data dynamics, one in the exponential form (noise) and the other in the power form (neural spikes). The prediction of the two components has been confirmed in experiments of in vivo sequences recorded from the hippocampus, cortex surface, and spinal cord; both acute and long-term recordings; and sleep and awake states. These two components are further used as references for threshold estimation. Different from the conventional wisdom of setting a threshold at 3RMS, the estimated threshold exhibits a significant variation. When our algorithm was tested on synthesized sequences with a different signal to noise ratio and on/off firing dynamics, inferred threshold statistics track the benchmarks well. We envision that this work may be applied to a wide range of experiments as a front-end data analysis tool.

  4. Optimizing the Automatic Selection of Spike Detection Thresholds Using a Multiple of the Noise Level

    PubMed Central

    Rizk, Michael; Wolf, Patrick D.

    2009-01-01

    Thresholding is an often-used method of spike detection for implantable neural signal processors due to its computational simplicity. A means for automatically selecting the threshold is desirable, especially for high channel count data acquisition systems. Estimating the noise level and setting the threshold to a multiple of this level is a computationally simple means of automatically selecting a threshold. We present an analysis of this method as it is commonly applied to neural waveforms. Four different operators were used to estimate the noise level in neural waveforms and set thresholds for spike detection. An optimal multiplier was identified for each noise measure using a metric appropriate for a brain-machine interface application. The commonly used root-mean-square operator was found to be least advantageous for setting the threshold. Investigators using this form of automatic threshold selection or developing new unsupervised methods can benefit from the optimization framework presented here. PMID:19205769

  5. A multiobjective optimization approach to obtain decision thresholds for distributed detection in wireless sensor networks.

    PubMed

    Masazade, Engin; Rajagopalan, Ramesh; Varshney, Pramod K; Mohan, Chilukuri K; Sendur, Gullu Kiziltas; Keskinoz, Mehmet

    2010-04-01

    For distributed detection in a wireless sensor network, sensors arrive at decisions about a specific event that are then sent to a central fusion center that makes global inference about the event. For such systems, the determination of the decision thresholds for local sensors is an essential task. In this paper, we study the distributed detection problem and evaluate the sensor thresholds by formulating and solving a multiobjective optimization problem, where the objectives are to minimize the probability of error and the total energy consumption of the network. The problem is investigated and solved for two types of fusion schemes: 1) parallel decision fusion and 2) serial decision fusion. The Pareto optimal solutions are obtained using two different multiobjective optimization techniques. The normal boundary intersection (NBI) method converts the multiobjective problem into a number of single objective-constrained subproblems, where each subproblem can be solved with appropriate optimization methods and nondominating sorting genetic algorithm-II (NSGA-II), which is a multiobjective evolutionary algorithm. In our simulations, NBI yielded better and evenly distributed Pareto optimal solutions in a shorter time as compared with NSGA-II. The simulation results show that, instead of only minimizing the probability of error, multiobjective optimization provides a number of design alternatives, which achieve significant energy savings at the cost of slightly increasing the best achievable decision error probability. The simulation results also show that the parallel fusion model achieves better error probability, but the serial fusion model is more efficient in terms of energy consumption. PMID:19674955

  6. Detection and Modeling of High-Dimensional Thresholds for Fault Detection and Diagnosis

    NASA Technical Reports Server (NTRS)

    He, Yuning

    2015-01-01

    Many Fault Detection and Diagnosis (FDD) systems use discrete models for detection and reasoning. To obtain categorical values like oil pressure too high, analog sensor values need to be discretized using a suitablethreshold. Time series of analog and discrete sensor readings are processed and discretized as they come in. This task isusually performed by the wrapper code'' of the FDD system, together with signal preprocessing and filtering. In practice,selecting the right threshold is very difficult, because it heavily influences the quality of diagnosis. If a threshold causesthe alarm trigger even in nominal situations, false alarms will be the consequence. On the other hand, if threshold settingdoes not trigger in case of an off-nominal condition, important alarms might be missed, potentially causing hazardoussituations. In this paper, we will in detail describe the underlying statistical modeling techniques and algorithm as well as the Bayesian method for selecting the most likely shape and its parameters. Our approach will be illustrated by several examples from the Aerospace domain.

  7. Optimizing the rapid measurement of detection thresholds in infants

    PubMed Central

    Jones, Pete R.; Kalwarowsky, Sarah; Braddick, Oliver J.; Atkinson, Janette; Nardini, Marko

    2015-01-01

    Accurate measures of perceptual threshold are difficult to obtain in infants. In a clinical context, the challenges are particularly acute because the methods must yield meaningful results quickly and within a single individual. The present work considers how best to maximize speed, accuracy, and reliability when testing infants behaviorally and suggests some simple principles for improving test efficiency. Monte Carlo simulations, together with empirical (visual acuity) data from 65 infants, are used to demonstrate how psychophysical methods developed with adults can produce misleading results when applied to infants. The statistical properties of an effective clinical infant test are characterized, and based on these, it is shown that (a) a reduced (false-positive) guessing rate can greatly increase test efficiency, (b) the ideal threshold to target is often below 50% correct, and (c) simply taking the max correct response can often provide the best measure of an infant's perceptual sensitivity. PMID:26237298

  8. Pressure Systems Stored-Energy Threshold Risk Analysis

    SciTech Connect

    Paulsen, Samuel S.

    2009-08-25

    Federal Regulation 10 CFR 851, which became effective February 2007, brought to light potential weaknesses regarding the Pressure Safety Program at the Pacific Northwest National Laboratory (PNNL). The definition of a pressure system in 10 CFR 851 does not contain a limit based upon pressure or any other criteria. Therefore, the need for a method to determine an appropriate risk-based hazard level for pressure safety was identified. The Laboratory has historically used a stored energy of 1000 lbf-ft to define a pressure hazard; however, an analytical basis for this value had not been documented. This document establishes the technical basis by evaluating the use of stored energy as an appropriate criterion to establish a pressure hazard, exploring a suitable risk threshold for pressure hazards, and reviewing the methods used to determine stored energy. The literature review and technical analysis concludes the use of stored energy as a method for determining a potential risk, the 1000 lbf-ft threshold, and the methods used by PNNL to calculate stored energy are all appropriate. Recommendations for further program improvements are also discussed

  9. Thresholds for detection of constant rotary acceleration during vibratory rotary acceleration.

    PubMed

    Clark, B; Stewart, J D; Phillips, N H

    1980-06-01

    The effects of vibratory angular acceleration (aR) on detection thresholds for constant aR in a dynamic flight simulator are reported in three experiments. Detection thresholds were determined for 10 pilots and four nonpilots using a random, double-staircase procedure while the subjects sat erect in a device which rotated about an earth-vertical axis. Constant aRs were presented for 0.5 and 1.0 s with concurrent, vibratory aR at 1 and 5 Hz, and thresholds with no vibratory aR were established. The thresholds were obtained while the subjects observed a visual reference in the enclosed cockpit in two experiments and in total darkness in a third. The results confirmed earlier experiments showing an inverse relationship between the duration of constant aR and detection threshold and showed that the detection thresholds in darkness were higher than with a visual reference present. Two analyses of variance revealed no significant differences in thresholds across the three vibration conditions. These results indicate that vibratory aRs of fairly high levels can be present in a dynamic flight stimulator without masking the pilot's ability to detect either maneuver or disturbance motions. PMID:6968205

  10. Detection Thresholds of Falling Snow from Satellite-Borne Active and Passive Sensors

    NASA Technical Reports Server (NTRS)

    Skofronick-Jackson, Gail; Johnson, Benjamin T.; Munchak, S. Joseph

    2012-01-01

    Precipitation, including rain and snow, is a critical part of the Earth's energy and hydrology cycles. Precipitation impacts latent heating profiles locally while global circulation patterns distribute precipitation and energy from the equator to the poles. For the hydrological cycle, falling snow is a primary contributor in northern latitudes during the winter seasons. Falling snow is the source of snow pack accumulations that provide fresh water resources for many communities in the world. Furthermore, falling snow impacts society by causing transportation disruptions during severe snow events. In order to collect information on the complete global precipitation cycle, both liquid and frozen precipitation must be collected. The challenges of estimating falling snow from space still exist though progress is being made. These challenges include weak falling snow signatures with respect to background (surface, water vapor) signatures for passive sensors over land surfaces, unknowns about the spherical and non-spherical shapes of the snowflakes, their particle size distributions (PSDs) and how the assumptions about the unknowns impact observed brightness temperatures or radar reflectivities, differences in near surface snowfall and total column snow amounts, and limited ground truth to validate against. While these challenges remain, knowledge of their impact on expected retrieval results is an important key for understanding falling snow retrieval estimations. Since falling snow from space is the next precipitation measurement challenge from space, information must be determined in order to guide retrieval algorithm development for these current and future missions. This information includes thresholds of detection for various sensor channel configurations, snow event system characteristics, snowflake particle assumptions, and surface types. For example, can a lake effect snow system with low (approx 2.5 km) cloud tops having an ice water content (IWC) at the surface of 0.25 g / cubic m and dendrite snowflakes be detected? If this information is known, we can focus retrieval efforts on detectable storms and concentrate advances on achievable results. Here, the focus is to determine thresholds of detection for falling snow for various snow conditions over land and lake surfaces. The results rely on simulated Weather Research Forecasting (WRF) simulations of falling snow cases since simulations provide all the information to determine the measurements from space and the ground truth. Sensitivity analyses were performed to better ascertain the relationships between multifrequency microwave and millimeter-wave sensor observations and the falling snow/underlying field of view. In addition, thresholds of detection for various sensor channel configurations, snow event system characteristics, snowflake particle assumptions, and surface types were studied. Results will be presented for active radar at Ku, Ka, and W-band and for passive radiometer channels from 10 to 183 GHz.

  11. Effects of visual erotic stimulation on vibrotactile detection thresholds in men.

    PubMed

    Jiao, Chuanshu; Knight, Peter K; Weerakoon, Patricia; Turman, A Bulent

    2007-12-01

    This study examined the effects of sexual arousal on vibration detection thresholds in the right index finger of 30 healthy, heterosexual males who reported no sexual dysfunction. Vibrotactile detection thresholds at frequencies of 30, 60, and 100 Hz were assessed before and after watching erotic and control videos using a forced-choice, staircase method. A mechanical stimulator was used to produce the vibratory stimulus. Results were analyzed using repeated measures analysis of variance. After watching the erotic video, the vibrotactile detection thresholds at 30, 60, and 100 Hz were significantly reduced (p < .01). No changes in thresholds were detected at any frequency following exposure to the non-erotic stimulus. The results show that sexual arousal resulted in an increase in vibrotactile sensitivity to low frequency stimuli in the index finger of sexually functional men. PMID:17713850

  12. Multiresolution spot detection by means of entropy thresholding.

    PubMed

    Boccignone, G; Chianese, A; Picariello, A

    2000-07-01

    Many imaging applications deal with the detection of small targets or spots embedded within an inhomogeneous background. We present a method that accomplishes a multiresolution detection on the wavelet-transformed image. The targets are separated from the background by the exploitation of Renyi's information, which is evaluated at the different decomposition levels of the wavelet transform. The scale-dependent candidate detections are successively combined by means of majority voting for final detection. Connections with results provided in different fields such as multifractal analysis, generalized information measures in scale-space, and cross-entropy analysis in fine-to-coarse transformations are discussed. Detection performance is investigated through an example from medical image analysis. PMID:10883967

  13. A Bispectral Composite Threshold Approach for Automatic Cloud Detection in VIIRS Imagery

    NASA Technical Reports Server (NTRS)

    LaFontaine Frank J.; Jedlovec, Gary J.

    2015-01-01

    The detection of clouds in satellite imagery has a number of important applications in weather and climate studies. The presence of clouds can alter the energy budget of the Earth-atmosphere system through scattering and absorption of shortwave radiation and the absorption and re-emission of infrared radiation at longer wavelengths. The scattering and absorption characteristics of clouds vary with the microphysical properties of clouds, hence the cloud type. Thus, detecting the presence of clouds over a region in satellite imagery is important in order to derive atmospheric or surface parameters that give insight into weather and climate processes. For many applications however, clouds are a contaminant whose presence interferes with retrieving atmosphere or surface information. In these cases, is important to isolate cloud-free pixels, used to retrieve atmospheric thermodynamic information or surface geophysical parameters, from cloudy ones. This abstract describes an application of a two-channel bispectral composite threshold (BCT) approach applied to VIIRS imagery. The simplified BCT approach uses only the 10.76 and 3.75 micrometer spectral channels from VIIRS in two spectral tests; a straight-forward infrared threshold test with the longwave channel and a shortwave - longwave channel difference test. The key to the success of this approach as demonstrated in past applications to GOES and MODIS data is the generation of temporally and spatially dependent thresholds used in the tests from a previous number of days at similar observations to the current data. The paper and subsequent presentation will present an overview of the approach and intercomparison results with other satellites, methods, and against verification data.

  14. Detection thresholds for phenyl ethyl alcohol using serial dilutions in different solvents.

    PubMed

    Tsukatani, Toshiaki; Miwa, Takaki; Furukawa, Mitsuru; Costanzo, Richard M

    2003-01-01

    Detection thresholds are typically obtained by presenting a subject with serial dilutions of an odorant. Many factors, including the solvent used to dilute the odorant, can influence the measurement of detection thresholds. Differences have been reported in detection thresholds for phenyl ethyl alcohol (PEA) when different solvents are used. In this study we used gas chromatography (GC) to investigate further the effect of solvent on odor detection thresholds. We used a single ascending method and serial dilutions of PEA in four different solvents--liquid paraffin (LP), mineral oil (MO), propylene glycol (PG) and dipropylene glycol (DPG)--to determine the PEA thresholds for 31 adult subjects. For each solvent, we prepared eight serial log base 10 step dilutions (1-8), with corresponding liquid PEA concentrations of 6.3 x 10(1)-6.3 x 10(-6) (% v/v). We found that the threshold concentrations for PEA in LP (step 6.5) and PEA in MO (step 5.5) were significantly lower (P < 0.05) than for PEA in PG (step 4.0) and DPG (step 4.0) We then used GC to measure both the liquid and gas PEA concentrations for the dilution steps prepared with LP and PG. Although there were large threshold differences in the liquid concentrations of PEA in LP and PG, the headspace gas concentrations of PEA were the same. These results demonstrate the importance of determining the gas concentration of odorant stimuli when performing odor threshold measurements, in particular when comparing odor detection thresholds obtained using different solvents. PMID:12502521

  15. Limitations in the spectral method for graph partitioning: Detectability threshold and localization of eigenvectors.

    PubMed

    Kawamoto, Tatsuro; Kabashima, Yoshiyuki

    2015-06-01

    Investigating the performance of different methods is a fundamental problem in graph partitioning. In this paper, we estimate the so-called detectability threshold for the spectral method with both un-normalized and normalized Laplacians in sparse graphs. The detectability threshold is the critical point at which the result of the spectral method is completely uncorrelated to the planted partition. We also analyze whether the localization of eigenvectors affects the partitioning performance in the detectable region. We use the replica method, which is often used in the field of spin-glass theory, and focus on the case of bisection. We show that the gap between the estimated threshold for the spectral method and the threshold obtained from Bayesian inference is considerable in sparse graphs, even without eigenvector localization. This gap closes in a dense limit. PMID:26172750

  16. Limitations in the spectral method for graph partitioning: Detectability threshold and localization of eigenvectors

    NASA Astrophysics Data System (ADS)

    Kawamoto, Tatsuro; Kabashima, Yoshiyuki

    2015-06-01

    Investigating the performance of different methods is a fundamental problem in graph partitioning. In this paper, we estimate the so-called detectability threshold for the spectral method with both un-normalized and normalized Laplacians in sparse graphs. The detectability threshold is the critical point at which the result of the spectral method is completely uncorrelated to the planted partition. We also analyze whether the localization of eigenvectors affects the partitioning performance in the detectable region. We use the replica method, which is often used in the field of spin-glass theory, and focus on the case of bisection. We show that the gap between the estimated threshold for the spectral method and the threshold obtained from Bayesian inference is considerable in sparse graphs, even without eigenvector localization. This gap closes in a dense limit.

  17. Low energy response of the NICER detectors and "threshold efficiency" effect

    NASA Astrophysics Data System (ADS)

    Prigozhin, Gregory; Doty, John; LaMarr, Beverly; Malonis, Andrew; Remillard, Ronald A.; Scholze, Frank; Laubis, Christian; Krumrey, Michael

    2016-04-01

    The Neutron Star Interior Composition ExploreR (NICER) is an instrument that is planned to be installed on the International Space Station in 2016 to study time-resolved spectra of the rapidly changing celestial ojects. The focal plane of the instrument consists of 56 Silicon Drift Detectors (SDDs). Signal from each SDD is fed to shaping amplifiers and triggering circuits that determine both amplitude and time of arrival for each "event".Zero crossing timing circuit is used in order to suppress energy dependent "time walk". That is done with a chain producing a derivative of the shaped signal, and the same chain detects threshold crossings marking the arrival of an X-ray photon. Higher noise of the differentiated signal leads to a somewhat extended band of signal amplitudes close to the threshold value, for which detection efficiency is less than 100%. Detection efficiency in this area affects the low energy portion of the detector response, and is very well described by an error function. We will present accurate measurements of this effect, show the consequences for the instrument quantum efficiency and the shape of the response function and will describe the calibration procedures that would allow selection of optimal threshold values for each observation.

  18. Threshold effects and Planck scale Lorentz violation: Combined constraints from high energy astrophysics

    NASA Astrophysics Data System (ADS)

    Jacobson, T.; Liberati, S.; Mattingly, D.

    2003-06-01

    Recent work has shown that dispersion relations with Planck scale Lorentz violation can produce observable effects at energies many orders of magnitude below the Planck energy M. This opens a window on physics that may reveal quantum gravity phenomena. It has already constrained the possibility of Planck scale Lorentz violation, which is suggested by some approaches to quantum gravity. In this work we carry out a systematic analysis of reaction thresholds, allowing unequal deformation parameters for different particle dispersion relations. The thresholds are found to have some unusual properties compared with standard ones, such as asymmetric momenta for pair creation and upper thresholds. The results are used together with high energy observational data to determine combined constraints. We focus on the case of photons and electrons, using vacuum Čerenkov, photon decay, and photon annihilation processes to determine order unity constraints on the parameters controlling O(E/M) Lorentz violation. Interesting constraints for protons (with photons or pions) are obtained even at O((E/M)2), using the absence of vacuum Čerenkov and the observed GZK cutoff for ultrahigh energy cosmic rays. A strong Čerenkov limit using atmospheric PeV neutrinos is possible for O(E/M) deformations provided the rate is high enough. If detected, ultrahigh energy cosmological neutrinos might yield limits at or even beyond O((E/M)2).

  19. Ambient noise levels and detection threshold in Norway

    NASA Astrophysics Data System (ADS)

    Demuth, Andrea; Ottemöller, Lars; Keers, Henk

    2016-03-01

    Ambient seismic noise is caused by a number of sources in specific frequency bands. The quantification of ambient noise makes it possible to evaluate station and network performance. We evaluate noise levels in Norway from the 2013 data set of the Norwegian National Seismic Network as well as two temporary deployments. Apart from the station performance, we studied the geographical and temporal variations, and developed a local noise model for Norway. The microseism peaks related to the ocean are significant in Norway. We, therefore, investigated the relationship between oceanic weather conditions and noise levels. We find a correlation of low-frequency noise (0.125-0.25 Hz) with wave heights up to 900 km offshore. High (2-10 Hz) and intermediate (0.5-5 Hz) frequency noise correlates only up to 450 km offshore with wave heights. From a geographic perspective, stations in southern Norway show lower noise levels for low frequencies due to a larger distance to the dominant noise sources in the North Atlantic. Finally, we studied the influence of high-frequency noise levels on earthquake detectability and found that a noise level increase of 10 dB decreases the detectability by 0.5 magnitude units. This method provides a practical way to consider noise variations in detection maps.

  20. Long-term deficits in motion detection thresholds and spike count variability after unilateral vestibular lesion

    PubMed Central

    Yu, Xiong-Jie; Thomassen, Jakob S.; Dickman, J. David; Newlands, Shawn D.

    2014-01-01

    The vestibular system operates in a push-pull fashion using signals from both labyrinths and an intricate bilateral organization. Unilateral vestibular lesions cause well-characterized motor deficits that are partially compensated over time and whose neural correlates have been traced in the mean response modulation of vestibular nuclei cells. Here we compare both response gains and neural detection thresholds of vestibular nuclei and semicircular canal afferent neurons in intact vs. unilateral-lesioned macaques using three-dimensional rotation and translation stimuli. We found increased stimulus-driven spike count variability and detection thresholds in semicircular canal afferents, although mean responses were unchanged, after contralateral labyrinth lesion. Analysis of trial-by-trial spike count correlations of a limited number of simultaneously recorded pairs of canal afferents suggests increased noise correlations after lesion. In addition, we also found persistent, chronic deficits in rotation detection thresholds of vestibular nuclei neurons, which were larger in the ipsilesional than the contralesional brain stem. These deficits, which persisted several months after lesion, were due to lower rotational response gains, whereas spike count variability was similar in intact and lesioned animals. In contrast to persistent deficits in rotation threshold, translation detection thresholds were not different from those in intact animals. These findings suggest that, after compensation, a single labyrinth is sufficient to recover motion sensitivity and normal thresholds for the otolith, but not the semicircular canal, system. PMID:24848470

  1. Orientation tuning in human colour vision at detection threshold.

    PubMed

    Gheiratmand, Mina; Mullen, Kathy T

    2014-01-01

    We measure the orientation tuning of red-green colour and luminance vision at low (0.375?c/deg) and mid (1.5?c/deg) spatial frequencies using the low-contrast psychophysical method of subthreshold summation. Orientation bandwidths of the underlying neural detectors are found using a model involving Minkowski summation of the rectified outputs of a bank of oriented filters. At 1.5?c/deg, we find orientation-tuned detectors with similar bandwidths for chromatic and achromatic contrast. At 0.375?c/deg, orientation tuning is preserved with no change in bandwidth for achromatic stimuli, however, for chromatic stimuli orientation tuning becomes extremely broad, compatible with detection by non-oriented colour detectors. A non-oriented colour detector, previously reported in single cells in primate V1 but not psychophysically in humans, can transmit crucial information about the color of larger areas or surfaces whereas orientation-tuned detectors are required to detect the colour or luminance edges that delineate an object's shape. PMID:24594749

  2. Low-energy structure of above-threshold-ionization electron spectra: Role of the Coulomb threshold effect

    SciTech Connect

    Telnov, Dmitry A.; Chu, Shih-I

    2011-06-15

    Recent experimental observations of above-threshold ionization of rare gas atoms and diatomic molecules by midinfrared laser fields [C. I. Blaga et al., Nat. Phys. 5, 335 (2009); W. Quan et al., Phys. Rev. Lett. 103, 093001 (2009)] revealed a prominent maximum in the electron energy spectrum very close to the ionization threshold which is not reproduced by widely used Keldysh-Faisal-Reiss theories. We have performed fully ab initio theoretical analysis and precision calculations to explore the quantum origin of the low-energy structure (LES) observed in the experiments. Our study shows that an important role in shaping of LES is played by the effect of Coulomb attraction in the final electron state and the Coulomb threshold effect.

  3. High-energy above-threshold detachment from negative ions

    SciTech Connect

    Gazibegovic-Busuladzic, A.; Milosevic, D.B.; Becker, W.

    2004-11-01

    Above-threshold detachment of electrons from negative ions by an elliptically polarized laser field is analyzed within the strong-field approximation. The low-energy part of the spectrum, that is, its structure and its apparent cutoff, strongly depends on the orbital quantum number l of the initial ground state. The high-energy part is characterized by the usual extended plateau caused by rescattering, which is essentially independent of the ground state. The potential that the returning electron experiences during rescattering is modeled by the sum of a polarization potential and a static potential. This rescattering potential does not have much effect on the shape of the plateau, but it does on its height. For H{sup -} (l=0), the yield of rescattered electrons is five orders of magnitude below the direct electrons, while for I{sup -} (l=1) the yields only differ by a factor of 40. We also analyze the dependence of the angle-resolved energy spectrum on the ellipticity of the laser field and confirm general symmetry properties. An angle-integrated elliptic dichroism parameter is introduced and analyzed.

  4. Neuronal detection thresholds during vestibular compensation: contributions of response variability and sensory substitution

    PubMed Central

    Jamali, Mohsen; Mitchell, Diana E; Dale, Alexis; Carriot, Jerome; Sadeghi, Soroush G; Cullen, Kathleen E

    2014-01-01

    The vestibular system is responsible for processing self-motion, allowing normal subjects to discriminate the direction of rotational movements as slow as 1–2 deg s−1. After unilateral vestibular injury patients’ direction–discrimination thresholds worsen to ∼20 deg s−1, and despite some improvement thresholds remain substantially elevated following compensation. To date, however, the underlying neural mechanisms of this recovery have not been addressed. Here, we recorded from first-order central neurons in the macaque monkey that provide vestibular information to higher brain areas for self-motion perception. Immediately following unilateral labyrinthectomy, neuronal detection thresholds increased by more than two-fold (from 14 to 30 deg s−1). While thresholds showed slight improvement by week 3 (25 deg s−1), they never recovered to control values – a trend mirroring the time course of perceptual thresholds in patients. We further discovered that changes in neuronal response variability paralleled changes in sensitivity for vestibular stimulation during compensation, thereby causing detection thresholds to remain elevated over time. However, we found that in a subset of neurons, the emergence of neck proprioceptive responses combined with residual vestibular modulation during head-on-body motion led to better neuronal detection thresholds. Taken together, our results emphasize that increases in response variability to vestibular inputs ultimately constrain neural thresholds and provide evidence that sensory substitution with extravestibular (i.e. proprioceptive) inputs at the first central stage of vestibular processing is a neural substrate for improvements in self-motion perception following vestibular loss. Thus, our results provide a neural correlate for the patient benefits provided by rehabilitative strategies that take advantage of the convergence of these multisensory cues. PMID:24366259

  5. Neurometric amplitude-modulation detection threshold in the guinea-pig ventral cochlear nucleus

    PubMed Central

    Sayles, Mark; Füllgrabe, Christian; Winter, Ian M

    2013-01-01

    Amplitude modulation (AM) is a pervasive feature of natural sounds. Neural detection and processing of modulation cues is behaviourally important across species. Although most ecologically relevant sounds are not fully modulated, physiological studies have usually concentrated on fully modulated (100% modulation depth) signals. Psychoacoustic experiments mainly operate at low modulation depths, around detection threshold (∼5% AM). We presented sinusoidal amplitude-modulated tones, systematically varying modulation depth between zero and 100%, at a range of modulation frequencies, to anaesthetised guinea-pigs while recording spikes from neurons in the ventral cochlear nucleus (VCN). The cochlear nucleus is the site of the first synapse in the central auditory system. At this locus significant signal processing occurs with respect to representation of AM signals. Spike trains were analysed in terms of the vector strength of spike synchrony to the amplitude envelope. Neurons showed either low-pass or band-pass temporal modulation transfer functions, with the proportion of band-pass responses increasing with increasing sound level. The proportion of units showing a band-pass response varies with unit type: sustained chopper (CS) > transient chopper (CT) > primary-like (PL). Spike synchrony increased with increasing modulation depth. At the lowest modulation depth (6%), significant spike synchrony was only observed near to the unit's best modulation frequency for all unit types tested. Modulation tuning therefore became sharper with decreasing modulation depth. AM detection threshold was calculated for each individual unit as a function of modulation frequency. Chopper units have significantly better AM detection thresholds than do primary-like units. AM detection threshold is significantly worse at 40 dB vs. 10 dB above pure-tone spike rate threshold. Mean modulation detection thresholds for sounds 10 dB above pure-tone spike rate threshold at best modulation frequency are (95% CI) 11.6% (10.0–13.1) for PL units, 9.8% (8.2–11.5) for CT units, and 10.8% (8.4–13.2) for CS units. The most sensitive guinea-pig VCN single unit AM detection thresholds are similar to human psychophysical performance (∼3% AM), while the mean neurometric thresholds approach whole animal behavioural performance (∼10% AM). PMID:23629508

  6. Threshold for detection of incisal forces is increased by jaw movement.

    PubMed

    Sowman, P F; Brinkworth, R S A; Türker, K S

    2010-04-01

    Current knowledge regarding the sensitivity of the teeth to forces is based on psychophysical experiments that measured touch detection thresholds under static jaw conditions. It is not known whether jaw movements alter the perception of forces applied to the teeth, but, based on limb movement studies, it is hypothesized that the perception of mechanoreceptor outputs will be downwardly modulated by jaw movements. We predicted that, compared with static jaw conditions, rhythmic jaw movements would be associated with significantly higher psychophysical thresholds for the detection of incisally applied forces. In eight participants, mechanical pulses were delivered to an incisor during static jaw holding or during cyclic jaw opening and closing. Analogous to findings in human limbs, the psychophysical salience of periodontal mechanoreceptor feedback was downwardly modulated by physiologically relevant movements; detection thresholds for mechanical pulses applied to a central incisor were significantly higher during jaw-closing movements than during static jaw positioning. PMID:20200410

  7. Stress lowers the detection threshold for foul-smelling 2-mercaptoethanol.

    PubMed

    Pacharra, Marlene; Schäper, Michael; Kleinbeck, Stefan; Blaszkewicz, Meinolf; Wolf, Oliver T; van Thriel, Christoph

    2016-01-01

    Previous studies have reported enhanced vigilance for threat-related information in response to acute stress. While it is known that acute stress modulates sensory systems in humans, its impact on olfaction and the olfactory detection of potential threats is less clear. Two psychophysical experiments examined, if acute stress lowers the detection threshold for foul-smelling 2-mercaptoethanol. Participants in Experiment 1 (N = 30) and Experiment 2 (N = 32) were randomly allocated to a control group or a stress group. Participants in the stress group underwent a purely psychosocial stressor (public mental arithmetic) in Experiment 1 and a stressor that combined a physically demanding task with social-evaluative threat in Experiment 2 (socially evaluated cold-pressor test). In both experiments, olfactory detection thresholds were repeatedly assessed by means of dynamic dilution olfactometry. Each threshold measurement consisted of three trials conducted using an ascending method of limits. Participants in the stress groups showed the expected changes in heart rate, salivary cortisol, and mood measures in response to stress. About 20 min after the stressor, participants in the stress groups could detect 2-mercaptoethanol at a lower concentration than participants in the corresponding control groups. Our results show that acute stress lowers the detection threshold for a malodor. PMID:26553419

  8. Visually lossless threshold determination for microcalcification detection in wavelet compressed mammograms.

    PubMed

    Kocsis, O; Costaridou, L; Varaki, L; Likaki, E; Kalogeropoulou, C; Skiadopoulos, S; Panayiotakis, G

    2003-10-01

    The aim of this study was to determine the visually lossless threshold of a wavelet-based compression algorithm in case of microcalcification cluster detection in mammography. The threshold was determined by means of observer performance using a set of digitized mammograms. In addition, the transfer characteristics of the compression algorithm were assessed by means of image-quality parameters using computer-generated test images. The observer performance study was based on rating performed by four independent radiologists, who reviewed 68 mammograms, from the Digital Database for Screening Mammography (DDSM), at six different compression ratios. Receiver operating characteristics (ROC) analysis was performed on observers' responses and the area under ROC curve (A(z)) was calculated at each compression ratio for each observer. The parameters used for assessment of transfer characteristics of the compression algorithm were input/output response, noise, high-contrast response, and low-contrast-detail response. The computer-generated test image, used for this assessment, mimicked mammographic image characteristics (pixel size, pixel depth, and noise) as well as microcalcification characteristics (size and contrast). The ROC analysis for microcalcification cluster detection indicated a threshold at compression ratio 40:1, as Student's t-test shows statistically significant differences in A(z) values (p<0.05) for compression ratios 70:1 and 100:1. Observers' grading of mammogram quality lowers this threshold at 25:1. Low-contrast-detail detectability in the transfer characteristics study indicate a threshold of 35:1, whereas non-perceptibility of image-quality-parameters degradation lowers this threshold to 30:1. The ROC and transfer characteristics analysis provided comparable thresholds, indicating the potential use of the latter in limiting the target range of compression ratios for subsequent observer studies. PMID:14534807

  9. A threshold-based approach for muscle contraction detection from surface EMG signals

    NASA Astrophysics Data System (ADS)

    Morantes, Gaudi; Fernández, Gerardo; Altuve, Miguel

    2013-11-01

    Surface electromyographic (SEMG) signals are commonly used as control signals in prosthetic and orthotic devices. Super cial electrodes are placed on the skin of the subject to acquire its muscular activity through this signal. The muscle contraction episode is then in charge of activating and deactivating these devices. Nevertheless, there is no gold standard" to detect muscle contraction, leading to delayed responses and false and missed detections. This fact motivated us to propose a new approach that compares a smoothed version of the SEMG signal with a xed threshold, in order to detect muscle contraction episodes. After preprocessing the SEMG signal, the smoothed version is obtained using a moving average lter, where three di erent window lengths has been evaluated. The detector was tuned by maximizing sensitivity and speci city and evaluated using SEMG signals obtained from the anterior tibial and gastrocnemius muscles, taken during the walking of ve subjects. Compared with traditional detection methods, we obtain a reduction of 3 ms in the detection delay, an increase of 8% in sensitivity but a decrease of 15% in speci city. Future work is directed to the inclusion of a temporal threshold (a double-threshold approach) to minimize false detections and reduce detection delays.

  10. Olfactory Detection Thresholds and Adaptation in Adults with Autism Spectrum Condition

    ERIC Educational Resources Information Center

    Tavassoli, T.; Baron-Cohen, S.

    2012-01-01

    Sensory issues have been widely reported in Autism Spectrum Conditions (ASC). Since olfaction is one of the least investigated senses in ASC, the current studies explore olfactory detection thresholds and adaptation to olfactory stimuli in adults with ASC. 80 participants took part, 38 (18 females, 20 males) with ASC and 42 control participants…

  11. Threshold-Based OSIC Detection Algorithm for Per-Antenna-Coded TIMO-OFDM Systems

    NASA Astrophysics Data System (ADS)

    Wang, Xinzheng; Chen, Ming; Zhu, Pengcheng

    Threshold-based ordered successive interference cancellation (OSIC) detection algorithm is proposed for per-antenna-coded (PAC) two-input multiple-output (TIMO) orthogonal frequency division multiplexing (OFDM) systems. Successive interference cancellation (SIC) is performed selectively according to channel conditions. Compared with the conventional OSIC algorithm, the proposed algorithm reduces the complexity significantly with only a slight performance degradation.

  12. Olfactory Detection Thresholds and Adaptation in Adults with Autism Spectrum Condition

    ERIC Educational Resources Information Center

    Tavassoli, T.; Baron-Cohen, S.

    2012-01-01

    Sensory issues have been widely reported in Autism Spectrum Conditions (ASC). Since olfaction is one of the least investigated senses in ASC, the current studies explore olfactory detection thresholds and adaptation to olfactory stimuli in adults with ASC. 80 participants took part, 38 (18 females, 20 males) with ASC and 42 control participants

  13. STATISTICAL MODEL-BASED THRESHOLDING OF MULTISPECTRAL IMAGES FOR CONTAMINANT DETECTION ON POULTRY CARCASSES

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Developing an algorithm to decide the presence or absence of fecal contamination on the surface of poultry carcasses is critical to food safety. The global threshold strategy for a band-ratio algorithm has been known to be limited to pixel-basis detection. In an attempt to develop a statistical deci...

  14. Thermal Nociceptive Threshold Testing Detects Altered Sensory Processing in Broiler Chickens with Spontaneous Lameness

    PubMed Central

    Hothersall, Becky; Caplen, Gina; Parker, Richard M. A.; Nicol, Christine J.; Waterman-Pearson, Avril E.; Weeks, Claire A.; Murrell, Joanna C.

    2014-01-01

    Lameness is common in commercially reared broiler chickens but relationships between lameness and pain (and thus bird welfare) have proved complex, partly because lameness is often partially confounded with factors such as bodyweight, sex and pathology. Thermal nociceptive threshold (TNT) testing explores the neural processing of noxious stimuli, and so can contribute to our understanding of pain. Using an acute model of experimentally induced articular pain, we recently demonstrated that TNT was reduced in lame broiler chickens, and was subsequently attenuated by administration of Non-Steroidal Anti-Inflammatory Drugs (NSAIDs). This study extended these findings to a large sample of commercial broilers. It examined factors affecting thermal threshold (Part 1) and the effect of an NSAID drug (meloxicam, 5 mg/kg) and of an opioid (butorphanol; 4 mg/kg) (Part 2). Spontaneously lame and matched non-lame birds (n = 167) from commercial farms were exposed to ramped thermal stimulations via a probe attached to the lateral aspect of the tarsometatarsus. Baseline skin temperature and temperature at which a behavioural avoidance response occurred (threshold) were recorded. In Part 1 bird characteristics influencing threshold were modelled; In Part 2 the effect of subcutaneous administration of meloxicam or butorphanol was investigated. Unexpectedly, after accounting for other influences, lameness increased threshold significantly (Part 1). In Part 2, meloxicam affected threshold differentially: it increased further in lame birds and decreased in non-lame birds. No effect of butorphanol was detected. Baseline skin temperature was also consistently a significant predictor of threshold. Overall, lameness significantly influenced threshold after other bird characteristics were taken into account. This, and a differential effect of meloxicam on lame birds, suggests that nociceptive processing may be altered in lame birds, though mechanisms for this require further investigation. PMID:24847799

  15. Cooperative Spectrum Sensing with Multiple Antennas Using Adaptive Double-Threshold Based Energy Detector in Cognitive Radio Networks

    NASA Astrophysics Data System (ADS)

    Bagwari, A.; Tomar, G. S.

    2014-04-01

    In Cognitive radio networks, spectrum sensing is used to sense the unused spectrum in an opportunistic manner. In this paper, multiple antennas based energy detector utilizing adaptive double-threshold for spectrum sensing is proposed, which enhances detection performance and overcomes sensing failure problem as well. The detection threshold is made adaptive to the fluctuation of the received signal power in each local detector of cognitive radio (CR) user. Numerical results show that by using multiple antennas at the CRs, it is possible to significantly improve detection performance at very low signal-to-noise ratio (SNR). Further, the scheme was analyzed in conjunction with cooperative spectrum sensing (CSS), where CRs utilize selection combining of the decision statistics obtained by an adaptive double-threshold energy detector for making a binary decision of the presence or absence of a primary user. The decision of each CR is forwarded over error free orthogonal channels to the fusion centre, which takes the final decision of a spectrum hole. It is further found that CSS with multiple antenna-based energy detector with adaptive double-threshold improves detection performance around 26.8 % as compared to hierarchical with quantization method at -12 dB SNR, under the condition that a small number of sensing nodes are used in spectrum sensing.

  16. Fusion of threshold rules for target detection in wireless sensor networks

    SciTech Connect

    Zhu, Mengxia; Ding, Shi-You; Brooks, Richard R; Wu, Qishi; Rao, Nageswara S

    2010-03-01

    We propose a binary decision fusion rule that reaches a global decision on the presence of a target by integrating local decisions made by multiple sensors. Without requiring a priori probability of target presence, the fusion threshold bounds derived using Chebyshev's inequality ensure a higher hit rate and lower false alarm rate compared to the weighted averages of individual sensors. The Monte Carlo-based simulation results show that the proposed approach significantly improves target detection performance, and can also be used to guide the actual threshold selection in practical sensor network implementation under certain error rate constraints.

  17. Molecular-dynamics simulation of threshold displacement energies in BaTiO3

    NASA Astrophysics Data System (ADS)

    Gonzalez, E.; Abreu, Y.; Cruz, C. M.; Piñera, I.; Leyva, A.

    2015-09-01

    Molecular-dynamics simulations were used to calculate threshold displacement energies for each atom type in BaTiO3 perovskite. A primary knock-on atom with an energy range between 10 and 300 eV in principal crystallographic directions at 300 K was introduced. A statistical approach has been applied calculating displacement probability curves along main crystallographic directions. For each sublattice, the simulation was repeated from different initial conditions to estimate the uncertainty in the threshold displacement energy calculated values. The threshold displacement energies vary considerably with crystallographic direction and sublattice. The weighted average threshold displacement energies are 40 eV for oxygen, 64 eV for barium and 97 eV for titanium atoms. These values are comparable to ab initio calculated and experimentally derived values in perovskites. These results are proposed as threshold displacement energies, ideal for simulation programs that use atomic displacement calculation algorithms.

  18. Olfactory detection thresholds and adaptation in adults with autism spectrum condition.

    PubMed

    Tavassoli, T; Baron-Cohen, S

    2012-06-01

    Sensory issues have been widely reported in Autism Spectrum Conditions (ASC). Since olfaction is one of the least investigated senses in ASC, the current studies explore olfactory detection thresholds and adaptation to olfactory stimuli in adults with ASC. 80 participants took part, 38 (18 females, 20 males) with ASC and 42 control participants (20 males, 22 females). A subgroup of participants (N = 19 in each group) also conducted an adaptation task. Standardized "Sniffin' Sticks" were used to measure olfactory detection levels and adaptation. Adults with and without ASC showed similar olfactory detection thresholds, and similar adaptation to an olfactory stimulus. Since diminished adaptation in ASC has been previously suggested, future research needs to examine adaptation in other modalities as well. PMID:21732210

  19. Threshold value-based detection of relevant force inputs onto vehicle skin panels with piezoelectric signals

    NASA Astrophysics Data System (ADS)

    Mueller, Maik; Wiedmann, Karsten; Beikirch, Helmut

    2012-07-01

    This article describes and compares autonomous threshold value-based processes for detecting force inputs onto vehicle skin panels. For this purpose, 13 piezoelectric foil sensors made from polyvinylidene fluoride are applied to the inside of the outer skin panels as sensors. Applied forces give rise to mechanical vibrations in the material, which, in the form of expansions in the sensor, result in a proportional output signal. On the basis of these signals, two static and two adaptive threshold value processes are presented and evaluated for differentiating between relevant events (including scratches, parking bumps) and irrelevant events (including wind, rain). At the same time, the central issue of optimum configuration of the threshold value is investigated, and solutions proposed.

  20. Simulated performance of an order statistic threshold strategy for detection of narrowband signals

    NASA Technical Reports Server (NTRS)

    Satorius, E.; Brady, R.; Deich, W.; Gulkis, S.; Olsen, E.

    1988-01-01

    The application of order statistics to signal detection is becoming an increasingly active area of research. This is due to the inherent robustness of rank estimators in the presence of large outliers that would significantly degrade more conventional mean-level-based detection systems. A detection strategy is presented in which the threshold estimate is obtained using order statistics. The performance of this algorithm in the presence of simulated interference and broadband noise is evaluated. In this way, the robustness of the proposed strategy in the presence of the interference can be fully assessed as a function of the interference, noise, and detector parameters.

  1. Disruption of GABAA in the insect antennal lobe generally increases odor detection and discrimination thresholds.

    PubMed

    Mwilaria, Esther K; Ghatak, Chitrita; Daly, Kevin C

    2008-03-01

    Studies of olfactory function show that disruption of GABA A receptors within the insect antennal lobe (AL) disrupts discrimination of closely related odors, suggesting that local processing within the AL specifically enhances fine odor discrimination. It remains unclear, however, how extensively AL function has been disrupted in these circumstances. Here we psychophysically characterize the effect of GABA A blockade in the AL of the moth Manduca sexta. We used 2 GABA A antagonists and 3 Pavlovian-based behavioral assays of olfactory function. In all cases, we used matched saline-injected controls in a blind study. Using a stimulus generalization assay, we found that GABA A disruption abolished the differential response to related odors, suggesting that local processing mediates fine odor discrimination. We then assessed the effect of GABA A antagonist on discrimination thresholds. Moths were differentially conditioned to respond to one odor (reinforced conditioned stimulus [CS+]) but not a second (unreinforced conditioning stimulus [CS-]) then tested for a significant differential conditioned response between them across a series of increasing concentrations. Here, GABA A blockade disrupted discrimination of both similar and dissimilar odor pairs as indicated by generally increased discrimination thresholds. Finally, using a detection threshold assay, we established that GABA A blockade also increases detection thresholds. Because detection is a prerequisite of discrimination, this later finding suggests that disrupted discrimination may be due to impairment of the ability to detect. We conclude that the loss of ability to detect and subsequently discriminate is attributable to a loss of ability of the AL to provide a clear neural signal from background. PMID:18199605

  2. 30 CFR 62.174 - Follow-up corrective measures when a standard threshold shift is detected.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... threshold shift is detected. 62.174 Section 62.174 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR UNIFORM MINE HEALTH REGULATIONS OCCUPATIONAL NOISE EXPOSURE § 62.174 Follow-up corrective measures when a standard threshold shift is detected. The mine operator must, within 30 calendar days...

  3. 30 CFR 62.174 - Follow-up corrective measures when a standard threshold shift is detected.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... threshold shift is detected. 62.174 Section 62.174 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR UNIFORM MINE HEALTH REGULATIONS OCCUPATIONAL NOISE EXPOSURE § 62.174 Follow-up corrective measures when a standard threshold shift is detected. The mine operator must, within 30 calendar days...

  4. 30 CFR 62.174 - Follow-up corrective measures when a standard threshold shift is detected.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... threshold shift is detected. 62.174 Section 62.174 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR UNIFORM MINE HEALTH REGULATIONS OCCUPATIONAL NOISE EXPOSURE § 62.174 Follow-up corrective measures when a standard threshold shift is detected. The mine operator must, within 30 calendar days...

  5. Reduced visual surround suppression in schizophrenia shown by measuring contrast detection thresholds

    PubMed Central

    Serrano-Pedraza, Ignacio; Romero-Ferreiro, Verónica; Read, Jenny C. A.; Diéguez-Risco, Teresa; Bagney, Alexandra; Caballero-González, Montserrat; Rodríguez-Torresano, Javier; Rodriguez-Jimenez, Roberto

    2014-01-01

    Visual perception in schizophrenia is attracting a broad interest given the deep knowledge that we have about the visual system in healthy populations. One example is the class of effects known collectively as visual surround suppression. For example, the visibility of a grating located in the visual periphery is impaired by the presence of a surrounding grating of the same spatial frequency and orientation. Previous studies have suggested abnormal visual surround suppression in patients with schizophrenia. Given that schizophrenia patients have cortical alterations including hypofunction of NMDA receptors and reduced concentration of GABA neurotransmitter, which affect lateral inhibitory connections, then they should be relatively better than controls at detecting visual stimuli that are usually suppressed. We tested this hypothesis by measuring contrast detection thresholds using a new stimulus configuration. We tested two groups: 21 schizophrenia patients and 24 healthy subjects. Thresholds were obtained using Bayesian staircases in a four-alternative forced-choice detection task where the target was a grating within a 3∘ Butterworth window that appeared in one of four possible positions at 5∘ eccentricity. We compared three conditions, (a) target with no-surround, (b) target embedded within a surrounding grating of 20∘ diameter and 25% contrast with same spatial frequency and orthogonal orientation, and (c) target embedded within a surrounding grating with parallel (same) orientation. Previous results with healthy populations have shown that contrast thresholds are lower for orthogonal and no-surround (NS) conditions than for parallel surround (PS). The log-ratios between parallel and NS thresholds are used as an index quantifying visual surround suppression. Patients performed poorly compared to controls in the NS and orthogonal-surround conditions. However, they performed as well as controls when the surround was parallel, resulting in significantly lower suppression indices in patients. To examine whether the difference in suppression was driven by the lower NS thresholds for controls, we examined a matched subgroup of controls and patients, selected to have similar thresholds in the NS condition. Patients performed significantly better in the PS condition than controls. This analysis therefore indicates that a PS raised contrast thresholds less in patients than in controls. Our results support the hypothesis that inhibitory connections in early visual cortex are impaired in schizophrenia patients. PMID:25540631

  6. Shape anomaly detection under strong measurement noise: An analytical approach to adaptive thresholding

    NASA Astrophysics Data System (ADS)

    Krasichkov, Alexander S.; Grigoriev, Eugene B.; Bogachev, Mikhail I.; Nifontov, Eugene M.

    2015-10-01

    We suggest an analytical approach to the adaptive thresholding in a shape anomaly detection problem. We find an analytical expression for the distribution of the cosine similarity score between a reference shape and an observational shape hindered by strong measurement noise that depends solely on the noise level and is independent of the particular shape analyzed. The analytical treatment is also confirmed by computer simulations and shows nearly perfect agreement. Using this analytical solution, we suggest an improved shape anomaly detection approach based on adaptive thresholding. We validate the noise robustness of our approach using typical shapes of normal and pathological electrocardiogram cycles hindered by additive white noise. We show explicitly that under high noise levels our approach considerably outperforms the conventional tactic that does not take into account variations in the noise level.

  7. Ischemia detection using Isoelectric Energy Function.

    PubMed

    Kumar, Amit; Singh, Mandeep

    2016-01-01

    A novel method has been proposed for the detection of ischemia using an isoelectric energy function (IEEF) resulting from ST segment deviations in ECG signals. The method consists of five stages: pre-processing, delineation, measurement of isoelectric energy, a beat characterization algorithm and detection of ischemia. The isoelectric energy threshold is used to differentiate ischemic beats from normal beats for ischemic episode detection. Then, ischemic episodes are classified as transmural or subendocardial. The method is validated for recordings of the annotated European ST-T database (EDB). The results show 98.12% average sensitivity (SE) and 98.16% average specificity (SP). These results are significantly better than those of existing methods cited in the literature. The advantage of the proposed method includes simplicity, ruggedness and automatic discarding of noisy beats. PMID:26623944

  8. Adaptive Thresholds

    Energy Science and Technology Software Center (ESTSC)

    2014-08-26

    ADAPT is a topological analysis code that allow to compute local threshold, in particular relevance based thresholds for features defined in scalar fields. The initial target application is vortex detection but the software is more generally applicable to all threshold based feature definitions.

  9. Innovative qPCR using interfacial effects to enable low threshold cycle detection and inhibition relief

    PubMed Central

    Harshman, Dustin K.; Rao, Brianna M.; McLain, Jean E.; Watts, George S.; Yoon, Jeong-Yeol

    2015-01-01

    Molecular diagnostics offers quick access to information but fails to operate at a speed required for clinical decision-making. Our novel methodology, droplet-on-thermocouple silhouette real-time polymerase chain reaction (DOTS qPCR), uses interfacial effects for droplet actuation, inhibition relief, and amplification sensing. DOTS qPCR has sample-to-answer times as short as 3 min 30 s. In infective endocarditis diagnosis, DOTS qPCR demonstrates reproducibility, differentiation of antibiotic susceptibility, subpicogram limit of detection, and thermocycling speeds of up to 28 s/cycle in the presence of tissue contaminants. Langmuir and Gibbs adsorption isotherms are used to describe the decreasing interfacial tension upon amplification. Moreover, a log-linear relationship with low threshold cycles is presented for real-time quantification by imaging the droplet-on-thermocouple silhouette with a smartphone. DOTS qPCR resolves several limitations of commercially available real-time PCR systems, which rely on fluorescence detection, have substantially higher threshold cycles, and require expensive optical components and extensive sample preparation. Due to the advantages of low threshold cycle detection, we anticipate extending this technology to biological research applications such as single cell, single nucleus, and single DNA molecule analyses. Our work is the first demonstrated use of interfacial effects for sensing reaction progress, and it will enable point-of-care molecular diagnosis of infections. PMID:26601245

  10. Innovative qPCR using interfacial effects to enable low threshold cycle detection and inhibition relief.

    PubMed

    Harshman, Dustin K; Rao, Brianna M; McLain, Jean E; Watts, George S; Yoon, Jeong-Yeol

    2015-09-01

    Molecular diagnostics offers quick access to information but fails to operate at a speed required for clinical decision-making. Our novel methodology, droplet-on-thermocouple silhouette real-time polymerase chain reaction (DOTS qPCR), uses interfacial effects for droplet actuation, inhibition relief, and amplification sensing. DOTS qPCR has sample-to-answer times as short as 3 min 30 s. In infective endocarditis diagnosis, DOTS qPCR demonstrates reproducibility, differentiation of antibiotic susceptibility, subpicogram limit of detection, and thermocycling speeds of up to 28 s/cycle in the presence of tissue contaminants. Langmuir and Gibbs adsorption isotherms are used to describe the decreasing interfacial tension upon amplification. Moreover, a log-linear relationship with low threshold cycles is presented for real-time quantification by imaging the droplet-on-thermocouple silhouette with a smartphone. DOTS qPCR resolves several limitations of commercially available real-time PCR systems, which rely on fluorescence detection, have substantially higher threshold cycles, and require expensive optical components and extensive sample preparation. Due to the advantages of low threshold cycle detection, we anticipate extending this technology to biological research applications such as single cell, single nucleus, and single DNA molecule analyses. Our work is the first demonstrated use of interfacial effects for sensing reaction progress, and it will enable point-of-care molecular diagnosis of infections. PMID:26601245

  11. Sensitivity threshold and response characteristics of infrared detection in the beetle Melanophila acuminata (Coleoptera: Buprestidae).

    PubMed

    Hammer, D X; Schmitz, H; Schmitz, A; Grady Rylander, H; Welch, A J

    2001-04-01

    The minimum detection threshold of the infrared sensitive beetle, Melanophila acuminata, was measured with a helium-neon laser that emitted light at a wavelength of 3.39 microm. Extracellular recordings were taken both at the pit organ responsible for detection and at the interganglionic connectives in the thorax of the beetle. At the pit organ, generator and action potentials from single neurons were measured with a sharpened tungsten electrode. At the connectives that linked the fused second meso-/metathoracic and prothoracic ganglia, compound action potentials were measured with a tungsten hook electrode that encircled the connective. The latter recordings confirmed conveyance of infrared information through specific pathways to rostrally-situated sites in the nervous system of the beetle. The 50% probability irradiance threshold at which action potentials were elicited from the receptor and connectives occurred at 17.3 and 14.6 mW/cm(2), respectively. In addition to sensitivity threshold, several other characteristics of the response were quantified including dependence of generator potential latency, generator potential duration, spike frequency, and spike latency on irradiance, dependence of response strength (spike count) on exposure time, and flicker fusion frequency. The ability to detect infrared radiation is rare in nature, and these results provide valuable information necessary to understand this unique sensitivity. PMID:11282323

  12. A contrast stretching bilateral closing top-hat Otsu threshold technique for crack detection in images.

    PubMed

    Sim, K S; Kho, Y Y; Tso, C P; Nia, M E; Ting, H Y

    2013-01-01

    Detection of cracks from stainless steel pipe images is done using contrast stretching technique. The technique is based on an image filter technique through mathematical morphology that can expose the cracks. The cracks are highlighted and noise removal is done efficiently while still retaining the edges. An automated crack detection system with a camera platform has been successfully implemented. We compare crack extraction in terms of quality measures with those of Otsu's threshold technique and the another technique (Iyer and Sinha, 2005). The algorithm shown is able to achieve good results and perform better than these other techniques. PMID:22777599

  13. Verification of threshold activation detection (TAD) technique in prompt fission neutron detection using scintillators containing 19F

    NASA Astrophysics Data System (ADS)

    Sibczynski, P.; Kownacki, J.; Moszyński, M.; Iwanowska-Hanke, J.; Syntfeld-Każuch, A.; Gójska, A.; Gierlik, M.; Kaźmierczak, Ł.; Jakubowska, E.; Kędzierski, G.; Kujawiński, Ł.; Wojnarowicz, J.; Carrel, F.; Ledieu, M.; Lainé, F.

    2015-09-01

    In the present study ⌀ 5''× 3'' and ⌀ 2''× 2'' EJ-313 liquid fluorocarbon as well as ⌀ 2'' × 3'' BaF2 scintillators were exposed to neutrons from a 252Cf neutron source and a Sodern Genie 16GT deuterium-tritium (D+T) neutron generator. The scintillators responses to β- particles with maximum endpoint energy of 10.4 MeV from the n+19F reactions were studied. Response of a ⌀ 5'' × 3'' BC-408 plastic scintillator was also studied as a reference. The β- particles are the products of interaction of fast neutrons with 19F which is a component of the EJ-313 and BaF2 scintillators. The method of fast neutron detection via fluorine activation is already known as Threshold Activation Detection (TAD) and was proposed for photofission prompt neutron detection from fissionable and Special Nuclear Materials (SNM) in the field of Homeland Security and Border Monitoring. Measurements of the number of counts between 6.0 and 10.5 MeV with a 252Cf source showed that the relative neutron detection efficiency ratio, defined as epsilonBaF2 / epsilonEJ-313-5'', is 32.0% ± 2.3% and 44.6% ± 3.4% for front-on and side-on orientation of the BaF2, respectively. Moreover, the ⌀ 5'' EJ-313 and side-on oriented BaF2 were also exposed to neutrons from the D+T neutron generator, and the relative efficiency epsilonBaF2 / epsilonEJ-313-5'' was estimated to be 39.3%. Measurements of prompt photofission neutrons with the BaF2 detector by means of data acquisition after irradiation (out-of-beam) of nuclear material and between the beam pulses (beam-off) techniques were also conducted on the 9 MeV LINAC of the SAPHIR facility.

  14. Input-output relation and energy efficiency in the neuron with different spike threshold dynamics

    PubMed Central

    Yi, Guo-Sheng; Wang, Jiang; Tsang, Kai-Ming; Wei, Xi-Le; Deng, Bin

    2015-01-01

    Neuron encodes and transmits information through generating sequences of output spikes, which is a high energy-consuming process. The spike is initiated when membrane depolarization reaches a threshold voltage. In many neurons, threshold is dynamic and depends on the rate of membrane depolarization (dV/dt) preceding a spike. Identifying the metabolic energy involved in neural coding and their relationship to threshold dynamic is critical to understanding neuronal function and evolution. Here, we use a modified Morris-Lecar model to investigate neuronal input-output property and energy efficiency associated with different spike threshold dynamics. We find that the neurons with dynamic threshold sensitive to dV/dt generate discontinuous frequency-current curve and type II phase response curve (PRC) through Hopf bifurcation, and weak noise could prohibit spiking when bifurcation just occurs. The threshold that is insensitive to dV/dt, instead, results in a continuous frequency-current curve, a type I PRC and a saddle-node on invariant circle bifurcation, and simultaneously weak noise cannot inhibit spiking. It is also shown that the bifurcation, frequency-current curve and PRC type associated with different threshold dynamics arise from the distinct subthreshold interactions of membrane currents. Further, we observe that the energy consumption of the neuron is related to its firing characteristics. The depolarization of spike threshold improves neuronal energy efficiency by reducing the overlap of Na+ and K+ currents during an action potential. The high energy efficiency is achieved at more depolarized spike threshold and high stimulus current. These results provide a fundamental biophysical connection that links spike threshold dynamics, input-output relation, energetics and spike initiation, which could contribute to uncover neural encoding mechanism. PMID:26074810

  15. Voice-Related Modulation of Mechanosensory Detection Thresholds in the Human Larynx

    PubMed Central

    Hammer, Michael J.; Krueger, Mallory A.

    2014-01-01

    Rapidly adapting mechanoreceptors within the laryngeal mucosa provide the central nervous system with perceptual and proprioceptive afference for a variety of essential yet diverse human functions including voice sound production and airway protection. It is unknown why mechanosensory information that yields a defensive response when an individual breathes may go largely unnoticed when the individual voices. Therefore, a central question is whether there is voice-related modulation of laryngeal mechanosensory detection. Such modulation would be consistent with current models of afferent laryngeal control, and may be important to maintain fluent voice in the presence of potentially distracting sensory input. Therefore, we employed endoscopic assessment of laryngeal mechanosensory detection thresholds in ten healthy adults during tidal breathing and a voice task. We tested the hypothesis that laryngeal mechanosensory detection thresholds would be higher during the voice task. We found that thresholds were significantly higher for all participants during the voice task, and that these changes were significantly more modest in women. Our findings suggest that the laryngeal sensorium may modulate mechanosensory afference to attenuate the potentially distracting influence of sensory input during voice. The finding that women maintain a greater sensitivity during the voice task than men (lower thresholds) may have important implications for the higher prevalence of sensorimotor voice disturbances in women. Our results are consistent with the presence of mechanosensory modulation in other motor systems and with observed sensory differences between women and men. Such modulation has important implications for understanding the underlying neural mechanisms of laryngeal control and how these mechanisms may operate in individuals with laryngeal disturbances. PMID:24217976

  16. Sonar gain control and echo detection thresholds in the echolocating bat, Eptesicus fuscus.

    PubMed

    Simmons, J A; Moffat, A J; Masters, W M

    1992-02-01

    The echolocating bat, Eptesicus fuscus, detects sonar echoes with a sensitivity that changes according to the time elapsed between broadcasting of each sonar signal and reception of echoes. When tested in an electronic target simulator on a two-choice echo-detection task, the bat's threshold improved by 11.5 dB as echo delay changed from 2.3 to 4.6 ms (target ranges of 40 and 80 cm). Earlier experiments measured the change in detection threshold for delays from 1 to 6.4 ms (target ranges from about 17 to 110 cm) and obtained about 11 dB of improvement per doubling of delay. The new experiments used electronic delay lines to simulate echo delay, thus avoiding movement of loudspeakers to different distances and the possible creation of delay-dependent backward masking between stimulus echoes and cluttering echoes from the loudspeaker surfaces. The slope of the threshold shift defines an echo gain control that keeps echoes from point targets at a fixed sensation level--reducing sensitivity by 11 to 12 dB as echo amplitude increases by 12 dB per halving of range during the bat's approach to the target. A recent experiment using loudness discrimination of echoes at 70 to 80 dB SPL (roughly 50 dB above threshold) found a slope of about 6 dB per halving of range, so the gain-control effect may be level dependent. The observed effect is operationally equivalent to forward masking of echoes by the transmission, but any events correlated with vocalization which impair hearing sensitivity for a short interval following transmissions could cause a decline in sensitivity to echoes. Contractions of the bat's middle-ear muscles synchronized to transmissions may account for the observed threshold shift, at least for a span of echo delays associated with the most critical portion of the approach stage of pursuit. Forward masking by the sonar transmissions may contribute to the threshold shift, too, but middle-ear muscle contractions do occur and must be a significant part of the cause. PMID:1556314

  17. Detecting Departure From Additivity Along a Fixed-Ratio Mixture Ray With a Piecewise Model for Dose and Interaction Thresholds

    PubMed Central

    Gennings, Chris; Wagner, Elizabeth D.; Simmons, Jane Ellen; Plewa, Michael J.

    2010-01-01

    For mixtures of many chemicals, a ray design based on a relevant, fixed mixing ratio is useful for detecting departure from additivity. Methods for detecting departure involve modeling the response as a function of total dose along the ray. For mixtures with many components, the interaction may be dose dependent. Therefore, we have developed the use of a three-segment model containing both a dose threshold and an interaction threshold. Prior to the dose threshold, the response is that of background; between the dose threshold and the interaction threshold, an additive relationship exists; the model allows for departure from additivity beyond the interaction threshold. With such a model, we can conduct a hypothesis test of additivity, as well as a test for a region of additivity. The methods are illustrated with cytotoxicity data that arise when Chinese hamster ovary cells are exposed to a mixture of nine haloacetic acids. PMID:21359103

  18. Strain Effect on the Absorption Threshold Energy of Silicon Circular Nanowires

    NASA Astrophysics Data System (ADS)

    Khordad, R.; Bahramiyan, H.

    2016-01-01

    In this work, the influence of strain on threshold energy of absorption in Silicon circular nanowires is investigated. For this purpose, we first have used the density functional theory (DFT) to calculate the electron and hole effective masses. Then, we have obtained absorption threshold energy with two different procedures, DFT and effective mass approximation (EMA). We have also obtained the band structures of Si nanowires both DFT and EMA. The results show that: i) the expansive strain increases the hole effective mass while compressive strain increases the electron effective mass, ii) the electron and hole effective masses reduce with decreasing the wire size, iii) the absorption threshold energy decreases by increasing strain for compressive and tensile strain and its behavior as a function of strain is approximately parabolic, iv) the absorption threshold energy (for all sizes) obtained using EMA is greater than the DFT results.

  19. Detection of fiducial points in ECG waves using iteration based adaptive thresholds.

    PubMed

    Wonjune Kang; Kyunguen Byun; Hong-Goo Kang

    2015-08-01

    This paper presents an algorithm for the detection of fiducial points in electrocardiogram (ECG) waves using iteration based adaptive thresholds. By setting the search range of the processing frame to the interval between two consecutive R peaks, the peaks of T and P waves are used as reference salient points (RSPs) to detect the fiducial points. The RSPs are selected from candidates whose slope variation factors are larger than iteratively defined adaptive thresholds. Considering the fact that the number of RSPs varies depending on whether the ECG wave is normal or not, the proposed algorithm proceeds with a different methodology for determining fiducial points based on the number of detected RSPs. Testing was performed using twelve records from the MIT-BIH Arrhythmia Database that were manually marked for comparison with the estimated locations of the fiducial points. The means of absolute distances between the true locations and the points estimated by the algorithm are 12.2 ms and 7.9 ms for the starting points of P and Q waves, and 9.3 ms and 13.9 ms for the ending points of S and T waves. Since the computational complexity of the proposed algorithm is very low, it is feasible for use in mobile devices. PMID:26736854

  20. Milagro: A low energy threshold extensive air shower array

    SciTech Connect

    Sinnis, C.

    1994-12-31

    Observations of high-energy gamma rays from astronomical sources have revolutionized our view of the cosmos. Gamma rays with energies up to {approximately}10 GeV can be observed directly with space-based instruments. Above 100 GeV the low flux of gamma rays requires one to utilize ground-based instruments. Milagro is a new type of gamma-ray detector based on water Cerenkov technology. This new design will enable to continuously observe the entire overhead sky, and be sensitive to cosmic rays with energies above {approximately}250 GeV. These attributes make Milagro an ideal detector for the study of high-energy transient phenomenon.

  1. Effects of aging on vibration detection thresholds at various body regions

    PubMed Central

    Stuart, Meg; Turman, A Bulent; Shaw, Jacqueline; Walsh, Natalie; Nguyen, Vincent

    2003-01-01

    Background The ability to detect sinusoidal vibrations on the skin surface is dependent on the activation of two classes of receptors. The density of such receptors varies across the skin surface and is a factor in determining the sensory acuity of each skin area. However, the acuity of many sensory systems is known to deteriorate with advancing age. The aim of this study was to determine if vibrotactile sensibility of several skin surfaces deteriorated equally with advancing age. Methods Vibration detection thresholds for two frequencies of vibration (30 Hz and 200 Hz) were determined using a method of limits protocol, in two groups of healthy adults, one group aged 17 to 27 years and the other aged 55 to 90 years. Sinusoidal vibrations were generated by a computer and delivered to the skin surface via the probe (diameter = 2 mm) of a mechanical vibrator. Four skin sites (palmar surface of the tip of the middle finger, volar surface of the forearm, lateral aspect of the shoulder, cheek just caudal to the zygoma) were tested. Results The fingertip was the most sensitive site for vibrotactile detection at both frequencies in a substantial majority of subjects. The older group of subjects showed significantly higher detection thresholds for both frequencies at all sites, except the fingertip, when compared to young subjects. Conclusion The study confirms the deterioration of vibrotactile acuity at several skin sites previously reported in the literature. However, there appears to be no significant reduction in vibrotactile detection at the fingertips in older subjects. This may reflect the high receptor density of this area, or the functional importance of vibrotactile sensibility of the fingertips or some combination of both of these factors. PMID:12600276

  2. Measurement of Cooling Detection Thresholds for Identification of Diabetic Sensorimotor Polyneuropathy in Type 1 Diabetes

    PubMed Central

    Lysy, Zoe; Lovblom, Leif E.; Halpern, Elise M.; Ngo, Mylan; Ng, Eduardo; Orszag, Andrej; Breiner, Ari; Bril, Vera; Perkins, Bruce A.

    2014-01-01

    Objective Compared to recently-studied novel morphological measures, conventional small nerve fiber functional tests have not been systematically studied for identification of diabetic sensorimotor polyneuropathy (DSP). We aimed to determine and compare the diagnostic performance of cooling detection thresholds (CDT) in a cross-sectional type 1 diabetes cohort. Research Design and Methods 136 subjects with type 1 diabetes and 52 healthy volunteers underwent clinical and electrophysiological examination for DSP classification concomitantly with the Toronto Clinical Neuropathy Score (TCNS) and three small fiber function tests: CDT, heart rate variability (HRV), and laser doppler imaging of axon-mediated neurogenic flare responses to cutaneous heating (LDIFLARE). Area under the curve (AUC) and optimal thresholds were determined by receiver operating characteristic (ROC) curves in the type 1 diabetes cohort. Results Type 1 diabetes subjects were 4217 years of age with mean HbA1c 7.91.7%. Fifty-nine (45%) met the case definition for DSP. CDT values were lowest in cases with DSP (18.38.4C) compared to controls without DSP (28.43.5C) and to healthy volunteers (29.61.8C; p-value for both comparisons<0.0001). AUCCDT was 0.863 which was similar to AUCTCNS (0.858, p?=?0.24) and AUCHRV (0.788, p?=?0.05), but exceeded AUCLDIFLARE (0.750, p?=?0.001). The threshold of <25.1C was equivalent to the lower bound of the healthy volunteer 95% distribution [25.1, 30.8C] and performed with 83% sensitivity and 82% specificity. Conclusions Akin to novel small fiber morphological measures, CDT is a functional test that identifies DSP with very good diagnostic performance. These findings support further research that revisits the role of CDT in early DSP detection. PMID:25216179

  3. A preliminary analysis of threshold signal detection in ambient and signal-dependent noise environments

    NASA Astrophysics Data System (ADS)

    Middleton, David

    1990-01-01

    Weak signal detection of signals scattered by ocean wave surfaces and reflecting bodies is examined. Optimum threshold algorithms, are determined, which contain in addition to the usual ambient background noise, signal-dependent noise generated in the scattering process. Threshold performance probabilities are formulated in terms of the now-generalized performance parameters associated with coherent and incoherent detection. As before, a canonical theory is presented, which is invariant of specific noise statistics and signal waveforms. Both spatial and temporal processing are included, the former implicitly in many cases by means of projected beam patterns. The physico-geometrical factors of platform motion, beam patterns, distributed scattering elements and source and receiver geometries for both the monostatic and bistatic regimes are summarized. Various distributed target models are presented, including quasi-phenomenological ones capable of analytic evaluation, involving both continuous and discrete scatterers. Under the present condition of narrow-band signals and far-field geometries, the input signal waveforms are explicitly separable from these physico-geometric factors. A weak target is assumed, in weak reverberation, vis-a-vis strong ambient noise. Sufficiently detailed analytic structure is provided to achieve explicit, quantitative results, and to guide the treatment of special problems. A short list of possible next steps is included.

  4. MOA-2010-BLG-311: A PLANETARY CANDIDATE BELOW THE THRESHOLD OF RELIABLE DETECTION

    SciTech Connect

    Yee, J. C.; Hung, L.-W.; Gould, A.; Gaudi, B. S.; Bond, I. A.; Allen, W.; Monard, L. A. G.; Albrow, M. D.; Fouque, P.; Dominik, M.; Tsapras, Y.; Udalski, A.; Zellem, R.; Christie, G. W.; DePoy, D. L.; Dong, Subo; Drummond, J.; Gorbikov, E.; Han, C. E-mail: rzellem@lpl.arizona.edu; Collaboration: muFUN Collaboration; MOA Collaboration; OGLE Collaboration; PLANET Collaboration; RoboNet Collaboration; MiNDSTEp Consortium; and others

    2013-05-20

    We analyze MOA-2010-BLG-311, a high magnification (A{sub max} > 600) microlensing event with complete data coverage over the peak, making it very sensitive to planetary signals. We fit this event with both a point lens and a two-body lens model and find that the two-body lens model is a better fit but with only {Delta}{chi}{sup 2} {approx} 80. The preferred mass ratio between the lens star and its companion is q = 10{sup -3.7{+-}0.1}, placing the candidate companion in the planetary regime. Despite the formal significance of the planet, we show that because of systematics in the data the evidence for a planetary companion to the lens is too tenuous to claim a secure detection. When combined with analyses of other high-magnification events, this event helps empirically define the threshold for reliable planet detection in high-magnification events, which remains an open question.

  5. Adaptive Thresholding Technique for Retinal Vessel Segmentation Based on GLCM-Energy Information

    PubMed Central

    Mapayi, Temitope; Viriri, Serestina; Tapamo, Jules-Raymond

    2015-01-01

    Although retinal vessel segmentation has been extensively researched, a robust and time efficient segmentation method is highly needed. This paper presents a local adaptive thresholding technique based on gray level cooccurrence matrix- (GLCM-) energy information for retinal vessel segmentation. Different thresholds were computed using GLCM-energy information. An experimental evaluation on DRIVE database using the grayscale intensity and Green Channel of the retinal image demonstrates the high performance of the proposed local adaptive thresholding technique. The maximum average accuracy rates of 0.9511 and 0.9510 with maximum average sensitivity rates of 0.7650 and 0.7641 were achieved on DRIVE and STARE databases, respectively. When compared to the widely previously used techniques on the databases, the proposed adaptive thresholding technique is time efficient with a higher average sensitivity and average accuracy rates in the same range of very good specificity. PMID:25802550

  6. Development of CDMS-II Surface Event Rejection Techniques and Their Extensions to Lower Energy Thresholds

    NASA Astrophysics Data System (ADS)

    Hofer, Thomas James

    2014-10-01

    The CDMS-II phase of the Cryogenic Dark Matter Search, a dark matter direct-detection experiment, was operated at the Soudan Underground Laboratory from 2003 to 2008. The full payload consisted of 30 ZIP detectors, totaling approximately 1.1 kg of Si and 4.8 kg of Ge, operated at temperatures of 50 mK. The ZIP detectors read out both ionization and phonon pulses from scatters within the crystals; channel segmentation and analysis of pulse timing parameters allowed effective fiducialization of the crystal volumes and background rejection sufficient to set world-leading limits at the times of their publications. A full re-analysis of the CDMS-II data was motivated by an improvement in the event reconstruction algorithms which improved the resolution of ionization energy and timing information. The Ge data were re-analyzed using three distinct background-rejection techniques; the Si data from runs 125--128 were analyzed for the first time using the most successful of the techniques from the Ge re-analysis. The results of these analyses prompted a novel "mid-threshold" analysis, wherein energy thresholds were lowered but background rejection using phonon timing information was still maintained. This technique proved to have significant discrimination power, maintaining adequate signal acceptance and minimizing background leakage. The primary background for CDMS-II analyses comes from surface events, whose poor ionization collection make them difficult to distinguish from true nuclear recoil events. The novel detector technology of SuperCDMS, the successor to CDMS-II, uses interleaved electrodes to achieve full ionization collection for events occurring at the top and bottom detector surfaces. This, along with dual-sided ionization and phonon instrumentation, allows for excellent fiducialization and relegates the surface-event rejection techniques of CDMS-II to a secondary level of background discrimination. Current and future SuperCDMS results hold great promise for mid- to low-mass WIMP-search results.

  7. The relationship between intelligence and creativity: New support for the threshold hypothesis by means of empirical breakpoint detection

    PubMed Central

    Jauk, Emanuel; Benedek, Mathias; Dunst, Beate; Neubauer, Aljoscha C.

    2013-01-01

    The relationship between intelligence and creativity has been subject to empirical research for decades. Nevertheless, there is yet no consensus on how these constructs are related. One of the most prominent notions concerning the interplay between intelligence and creativity is the threshold hypothesis, which assumes that above-average intelligence represents a necessary condition for high-level creativity. While earlier research mostly supported the threshold hypothesis, it has come under fire in recent investigations. The threshold hypothesis is commonly investigated by splitting a sample at a given threshold (e.g., at 120 IQ points) and estimating separate correlations for lower and upper IQ ranges. However, there is no compelling reason why the threshold should be fixed at an IQ of 120, and to date, no attempts have been made to detect the threshold empirically. Therefore, this study examined the relationship between intelligence and different indicators of creative potential and of creative achievement by means of segmented regression analysis in a sample of 297 participants. Segmented regression allows for the detection of a threshold in continuous data by means of iterative computational algorithms. We found thresholds only for measures of creative potential but not for creative achievement. For the former the thresholds varied as a function of criteria: When investigating a liberal criterion of ideational originality (i.e., two original ideas), a threshold was detected at around 100 IQ points. In contrast, a threshold of 120 IQ points emerged when the criterion was more demanding (i.e., many original ideas). Moreover, an IQ of around 85 IQ points was found to form the threshold for a purely quantitative measure of creative potential (i.e., ideational fluency). These results confirm the threshold hypothesis for qualitative indicators of creative potential and may explain some of the observed discrepancies in previous research. In addition, we obtained evidence that once the intelligence threshold is met, personality factors become more predictive for creativity. On the contrary, no threshold was found for creative achievement, i.e. creative achievement benefits from higher intelligence even at fairly high levels of intellectual ability. PMID:23825884

  8. The relationship between intelligence and creativity: New support for the threshold hypothesis by means of empirical breakpoint detection.

    PubMed

    Jauk, Emanuel; Benedek, Mathias; Dunst, Beate; Neubauer, Aljoscha C

    2013-07-01

    The relationship between intelligence and creativity has been subject to empirical research for decades. Nevertheless, there is yet no consensus on how these constructs are related. One of the most prominent notions concerning the interplay between intelligence and creativity is the threshold hypothesis, which assumes that above-average intelligence represents a necessary condition for high-level creativity. While earlier research mostly supported the threshold hypothesis, it has come under fire in recent investigations. The threshold hypothesis is commonly investigated by splitting a sample at a given threshold (e.g., at 120 IQ points) and estimating separate correlations for lower and upper IQ ranges. However, there is no compelling reason why the threshold should be fixed at an IQ of 120, and to date, no attempts have been made to detect the threshold empirically. Therefore, this study examined the relationship between intelligence and different indicators of creative potential and of creative achievement by means of segmented regression analysis in a sample of 297 participants. Segmented regression allows for the detection of a threshold in continuous data by means of iterative computational algorithms. We found thresholds only for measures of creative potential but not for creative achievement. For the former the thresholds varied as a function of criteria: When investigating a liberal criterion of ideational originality (i.e., two original ideas), a threshold was detected at around 100 IQ points. In contrast, a threshold of 120 IQ points emerged when the criterion was more demanding (i.e., many original ideas). Moreover, an IQ of around 85 IQ points was found to form the threshold for a purely quantitative measure of creative potential (i.e., ideational fluency). These results confirm the threshold hypothesis for qualitative indicators of creative potential and may explain some of the observed discrepancies in previous research. In addition, we obtained evidence that once the intelligence threshold is met, personality factors become more predictive for creativity. On the contrary, no threshold was found for creative achievement, i.e. creative achievement benefits from higher intelligence even at fairly high levels of intellectual ability. PMID:23825884

  9. Threshold switching mechanism by high-field energy gain in the hopping transport of chalcogenide glasses

    NASA Astrophysics Data System (ADS)

    Ielmini, Daniele

    2008-07-01

    Chalcogenide glasses are widely used in phase-change nonvolatile memories and in optical recording media for their ability to rapidly change their structure to crystalline, thus obtaining different electrical resistance and optical reflectivity. Chalcogenide glasses universally display threshold switching, that is a sudden, reversible transition from a high-resistivity state to a low-resistivity state observed in the current-voltage (I-V) characteristic. Since threshold switching controls the operating voltage and speed of phase-change memories, the predictability of the switching voltage, current, and speed is of critical importance for selecting the proper chalcogenide material for memory applications. Although threshold switching has long been recognized to be an electronic process with an intimate relation to localized states, its detailed physical mechanism is still not clear. In this work, threshold switching is explained by the field-induced energy increase in electrons in their hopping transport, moderated by the energy relaxation due to phonon-electron interaction. The energy increase leads to an enhancement of conductivity and a collapse of the electric field within the amorphous chalcogenide layer, accounting for the observed negative differential resistance at switching. Threshold switching is found to obey to a constant electrical-power condition. The proposed model generally applies to low-mobility semiconductors featuring a deep Fermi level and hopping-type conduction, and can predict the thickness, temperature, and material dependence of threshold voltage and current.

  10. Research on detectable threshold of double MCP ultraviolet image intensifier tube

    NASA Astrophysics Data System (ADS)

    Cheng, Hong-chang; Duanmu, Qing-duo; Shi, Feng; Shi, Hong-li; Liu, Hui; Feng, Liu; He, Ying-ping; Hou, Zhi-peng; Yan, Lei; Ren, Ling

    2013-08-01

    In order to research the influence of the quantity of the Micro-Channel Plates (MCP) on the detectable threshold of the ultraviolet image intensifier tube, the wide spectrum image intensifier gain tester produced by Nanjing University of Science and Technology is employed to test the relation curves between self-made one single MCP ultraviolet image intensifier tube, two double MCP ultraviolet image intensifier tubes, and photocathode incidence radiation illumination respectively. With reference to the 3rd-generation low-light image intensifier failure theory, if the radiation gain of the ultraviolet image intensifier tube is defined as 1,000cd/m2, the tube will lose the effect of image intensification, when the corresponding photocathode incidence radiation illumination will be the minimum detectable threshold. Viewed from the test results, the minimum detectable threshold of the single MCP ultraviolet image intensifier tube is 3.0×10-6 W/m2, with the radiance gain linear interval between 3.0×10-6 W/m2 ~4.6×10-5 W/m2; and that of the double MCP ultraviolet image intensifier tubes is 4×10-7 W/m2, with the radiance gain linear interval between 4.0×10-7 W/m2 ~2.0×10-5 W/m2. The test results were analyzed on the basis of the MCP self-saturation effect, concluding that the saturation current density of the single-unit MCP is a fixed , but there may be certain difference among the saturation current density of different MCPs due to different materials and manufacturing processes. The test results show that the maximum of the radiation gain linear interval of the three ultraviolet image intensifier tubes are at the magnitude of 10-5 W/m2, and the non-significant differences also verified the theory. In the double MCP ultraviolet image intensifier tubes, the photocathode-produced photocurrent is multiplied in passing the first MCP and then reaches the second MCP, so the second MCP will reach the state of current saturation earlier than the first MCP, making the minimum detectable threshold of the double MCP ultraviolet image intensifier tubes is lower than that of the single ultraviolet image intensifier tube by one order of magnitude, with the linear gain interval increasing by one magnitude, and the absolute of the corresponding radiation gain of the same radiation illumination within the linear gain interval increasing by 10 times, verifying that the double MCPs can detect much lower and weaker ultraviolet radiation and realize the high gain theory. The research results has certain guiding effect towards the promotion and application of the double ultraviolet image intensifier tubes, and has great significance on enhancing the high ultraviolet radiation detection and imaging technology.

  11. Spatial and Temporal Varying Thresholds for Cloud Detection in Satellite Imagery

    NASA Technical Reports Server (NTRS)

    Jedlovec, Gary; Haines, Stephanie

    2007-01-01

    A new cloud detection technique has been developed and applied to both geostationary and polar orbiting satellite imagery having channels in the thermal infrared and short wave infrared spectral regions. The bispectral composite threshold (BCT) technique uses only the 11 micron and 3.9 micron channels, and composite imagery generated from these channels, in a four-step cloud detection procedure to produce a binary cloud mask at single pixel resolution. A unique aspect of this algorithm is the use of 20-day composites of the 11 micron and the 11 - 3.9 micron channel difference imagery to represent spatially and temporally varying clear-sky thresholds for the bispectral cloud tests. The BCT cloud detection algorithm has been applied to GOES and MODIS data over the continental United States over the last three years with good success. The resulting products have been validated against "truth" datasets (generated by the manual determination of the sky conditions from available satellite imagery) for various seasons from the 2003-2005 periods. The day and night algorithm has been shown to determine the correct sky conditions 80-90% of the time (on average) over land and ocean areas. Only a small variation in algorithm performance occurs between day-night, land-ocean, and between seasons. The algorithm performs least well. during he winter season with only 80% of the sky conditions determined correctly. The algorithm was found to under-determine clouds at night and during times of low sun angle (in geostationary satellite data) and tends to over-determine the presence of clouds during the day, particularly in the summertime. Since the spectral tests use only the short- and long-wave channels common to most multispectral scanners; the application of the BCT technique to a variety of satellite sensors including SEVERI should be straightforward and produce similar performance results.

  12. Bio-inspired target detection in natural scenes: optimal thresholds and ego-motion

    NASA Astrophysics Data System (ADS)

    Wiederman, Steven D.; Brinkworth, Russell S. A.; O'Carroll, David C.

    2008-08-01

    We have developed a numerical model of Small Target Motion Detector neurons, bio-inspired from electrophysiological experiments in the fly brain. These neurons respond selectively to small moving features within complex moving surrounds. Interestingly, these cells still respond robustly when the targets are embedded in the background, without relative motion cues. This model contains representations of neural elements along a proposed pathway to the target-detecting neuron and the resultant processing enhances target discrimination in moving scenes. The model encodes high dynamic range luminance values from natural images (via adaptive photoreceptor encoding) and then shapes the transient signals required for target discrimination (via adaptive spatiotemporal high-pass filtering). Following this, a model for Rectifying Transient Cells implements a nonlinear facilitation between rapidly adapting, and independent polarity contrast channels (an 'on' and an 'off' pathway) each with center-surround antagonism. The recombination of the channels results in increased discrimination of small targets, of approximately the size of a single pixel, without the need for relative motion cues. This method of feature discrimination contrasts with traditional target and background motion-field computations. We improve the target-detecting output with inhibition from correlation-type motion detectors, using a form of antagonism between our feature correlator and the more typical motion correlator. We also observe that a changing optimal threshold is highly correlated to the value of observer ego-motion. We present an elaborated target detection model that allows for implementation of a static optimal threshold, by scaling the target discrimination mechanism with a model-derived velocity estimation of ego-motion.

  13. Flood Extent Mapping for Namibia Using Change Detection and Thresholding with SAR

    NASA Technical Reports Server (NTRS)

    Long, Stephanie; Fatoyinbo, Temilola E.; Policelli, Frederick

    2014-01-01

    A new method for flood detection change detection and thresholding (CDAT) was used with synthetic aperture radar (SAR) imagery to delineate the extent of flooding for the Chobe floodplain in the Caprivi region of Namibia. This region experiences annual seasonal flooding and has seen a recent renewal of severe flooding after a long dry period in the 1990s. Flooding in this area has caused loss of life and livelihoods for the surrounding communities and has caught the attention of disaster relief agencies. There is a need for flood extent mapping techniques that can be used to process images quickly, providing near real-time flooding information to relief agencies. ENVISAT/ASAR and Radarsat-2 images were acquired for several flooding seasons from February 2008 to March 2013. The CDAT method was used to determine flooding from these images and includes the use of image subtraction, decision based classification with threshold values, and segmentation of SAR images. The total extent of flooding determined for 2009, 2011 and 2012 was about 542 km2, 720 km2, and 673 km2 respectively. Pixels determined to be flooded in vegetation were typically <0.5 % of the entire scene, with the exception of 2009 where the detection of flooding in vegetation was much greater (almost one third of the total flooded area). The time to maximum flooding for the 2013 flood season was determined to be about 27 days. Landsat water classification was used to compare the results from the new CDAT with SAR method; the results show good spatial agreement with Landsat scenes.

  14. Above-threshold ionization for very low electron energy

    NASA Astrophysics Data System (ADS)

    Becker, W.; Milošević, D. B.

    2015-08-01

    The rescattering term of the ionization amplitude in the strong-field approximation is analyzed for very low electron energy and emission in arbitrary direction, first in terms of the classical simple-man model and then in the quantum-mechanical quantum-orbit expansion of the strong-field-approximation amplitude. Particular orbits can be associated with particular patterns in the velocity map. The different roles of forward and backscattering are investigated. In addition to known features such as the LES and the fork, a characteristic and pronounced V structure in the velocity map is identified, which has been observed in recent experiments (2014 Phys. Rev. A 90 063424).

  15. An adaptive threshold based image processing technique for improved glaucoma detection and classification.

    PubMed

    Issac, Ashish; Partha Sarathi, M; Dutta, Malay Kishore

    2015-11-01

    Glaucoma is an optic neuropathy which is one of the main causes of permanent blindness worldwide. This paper presents an automatic image processing based method for detection of glaucoma from the digital fundus images. In this proposed work, the discriminatory parameters of glaucoma infection, such as cup to disc ratio (CDR), neuro retinal rim (NRR) area and blood vessels in different regions of the optic disc has been used as features and fed as inputs to learning algorithms for glaucoma diagnosis. These features which have discriminatory changes with the occurrence of glaucoma are strategically used for training the classifiers to improve the accuracy of identification. The segmentation of optic disc and cup based on adaptive threshold of the pixel intensities lying in the optic nerve head region. Unlike existing methods the proposed algorithm is based on an adaptive threshold that uses local features from the fundus image for segmentation of optic cup and optic disc making it invariant to the quality of the image and noise content which may find wider acceptability. The experimental results indicate that such features are more significant in comparison to the statistical or textural features as considered in existing works. The proposed work achieves an accuracy of 94.11% with a sensitivity of 100%. A comparison of the proposed work with the existing methods indicates that the proposed approach has improved accuracy of classification glaucoma from a digital fundus which may be considered clinically significant. PMID:26321351

  16. Threshold displacement energies and defect formation energies in Y2Ti2O7

    SciTech Connect

    Xiao, Haiyan; Gao, Fei; Weber, William J

    2010-01-01

    Ab initio molecular dynamics simulations have been carried out to determine the threshold displacement energies Ed and the corresponding defect configurations, and ab initio methods have been used to accurately determine their formation energies in Y2Ti2O7. The minimum Ed is found to be 27 eV for a Y recoil along the <100> direction, 31.5 eV for Ti atoms along the <100> direction, 14.5 eV for O48f atoms along the <110> direction and 13 eV for O8b atoms along the <111> direction. The average Ed value determined is 32.7, 34.2, 14.2 and 16.1 eV for yttrium, titanium, O48f and O8b atoms, respectively. Cation interstitials at vacant 8a sites, which are generally occupied by oxygen anions, and at the bridge sites between two neighboring cations along the <010> direction are observed after low energy recoil events. A systematic study of defect formation energies suggests that cation interstitials, which are located at 8a sites and bridge sites along the <010> direction, and in split configurations along the <010>, <110> or <111> direction, are all stable with low defect formation energies. It is suggested that the relative stability of cation interstitials may provide a pathway of driving ion-irradiation induced amorphization in Y2Ti2O7.

  17. Discrimination and detection thresholds: the effect of observer criterion on the spatial properties of chromatic and achromatic mechanisms.

    PubMed

    Moorhead, I R; Saunders, J E

    1982-01-01

    Spectral sensitivity functions were determined for structured test targets presented on a white background field. Data obtained for threshold detection of the targets are consistent with results obtained from previous studies which used unstructured test fields showing functions, with three maxima, dependent on opponent colour mechanisms. Data obtained from threshold discrimination measurements show a marked reduction in the blue sensitivity when 1 degree test targets are used. This effect decreases significantly when larger targets are used. A change of the observer's criterion can significantly alter the relative contributions of the achromatic and chromatic channels at threshold. PMID:7135843

  18. CAMS verification of single-linked high-threshold D-criterion detected meteor showers

    NASA Astrophysics Data System (ADS)

    Jenniskens, Peter; Nénon, Quentin

    2016-03-01

    From preliminary 2010-2011 results of the Cameras for Allsky Meteor Surveillance (CAMS) meteoroid orbit survey, which were combined with published 2007-2009 SonotaCo video meteor network data, 55 new meteor showers (##448-502) were identified and added to the IAU Working List on Meteor Showers in 2012. These showers were identified based on an automated single-linked DSH-criterion analysis of a combined 105,000 orbits with high-threshold (a low DSH < 0.05), but low acceptable sample size (⩾6 members). Three more years of CAMS and four more years of SonotaCo observations have now increased the meteoroid orbit database four fold. The earlier detections are verified by searching for number density enhancements in drift-corrected radiant and orbital element maps. Twenty showers are detected in both surveys and are now certain to exist. Median orbital elements are presented. Not detected in this manner were 19% of the fast Vg > 40 km/s showers, 54% of the Vg = 18-40 km/s showers, and 90% of the slow Vg < 18 km/s showers.

  19. Mass Detection in Mammographic Images Using Wavelet Processing and Adaptive Threshold Technique.

    PubMed

    Vikhe, P S; Thool, V R

    2016-04-01

    Detection of mass in mammogram for early diagnosis of breast cancer is a significant assignment in the reduction of the mortality rate. However, in some cases, screening of mass is difficult task for radiologist, due to variation in contrast, fuzzy edges and noisy mammograms. Masses and micro-calcifications are the distinctive signs for diagnosis of breast cancer. This paper presents, a method for mass enhancement using piecewise linear operator in combination with wavelet processing from mammographic images. The method includes, artifact suppression and pectoral muscle removal based on morphological operations. Finally, mass segmentation for detection using adaptive threshold technique is carried out to separate the mass from background. The proposed method has been tested on 130 (45 + 85) images with 90.9 and 91 % True Positive Fraction (TPF) at 2.35 and 2.1 average False Positive Per Image(FP/I) from two different databases, namely Mammographic Image Analysis Society (MIAS) and Digital Database for Screening Mammography (DDSM). The obtained results show that, the proposed technique gives improved diagnosis in the early breast cancer detection. PMID:26811073

  20. Evaluation of a Change Detection Methodology by Means of Binary Thresholding Algorithms and Informational Fusion Processes

    PubMed Central

    Molina, Iñigo; Martinez, Estibaliz; Arquero, Agueda; Pajares, Gonzalo; Sanchez, Javier

    2012-01-01

    Landcover is subject to continuous changes on a wide variety of temporal and spatial scales. Those changes produce significant effects in human and natural activities. Maintaining an updated spatial database with the occurred changes allows a better monitoring of the Earth’s resources and management of the environment. Change detection (CD) techniques using images from different sensors, such as satellite imagery, aerial photographs, etc., have proven to be suitable and secure data sources from which updated information can be extracted efficiently, so that changes can also be inventoried and monitored. In this paper, a multisource CD methodology for multiresolution datasets is applied. First, different change indices are processed, then different thresholding algorithms for change/no_change are applied to these indices in order to better estimate the statistical parameters of these categories, finally the indices are integrated into a change detection multisource fusion process, which allows generating a single CD result from several combination of indices. This methodology has been applied to datasets with different spectral and spatial resolution properties. Then, the obtained results are evaluated by means of a quality control analysis, as well as with complementary graphical representations. The suggested methodology has also been proved efficiently for identifying the change detection index with the higher contribution. PMID:22737023

  1. [Automatic detection of exudates in retinal images based on threshold moving average models].

    PubMed

    Wisaeng, K; Hiransakolwong, N; Pothiruk, E

    2015-01-01

    Since exudate diagnostic procedures require the attention of an expert ophthalmologist as well as regular monitoring of the disease, the workload of expert ophthalmologists will eventually exceed the current screening capabilities. Retinal imaging technology is a current practice screening capability providing a great potential solution. In this paper, a fast and robust automatic detection of exudates based on moving average histogram models of the fuzzy image was applied, and then the better histogram was derived. After segmentation of the exudate candidates, the true exudates were pruned based on Sobel edge detector and automatic Otsu's thresholding algorithm that resulted in the accurate location of the exudates in digital retinal images. To compare the performance of exudate detection methods we have constructed a large database of digital retinal images. The method was trained on a set of 200 retinal images, and tested on a completely independent set of 1220 retinal images. Results show that the exudate detection method performs overall best sensitivity, specificity, and accuracy of 90.42%, 94.60%, and 93.69%, respectively. PMID:26016034

  2. Brain tumour classification and abnormality detection using neuro-fuzzy technique and Otsu thresholding.

    PubMed

    Renjith, Arokia; Manjula, P; Mohan Kumar, P

    2015-01-01

    Brain tumour is one of the main causes for an increase in transience among children and adults. This paper proposes an improved method based on Magnetic Resonance Imaging (MRI) brain image classification and image segmentation approach. Automated classification is encouraged by the need of high accuracy when dealing with a human life. The detection of the brain tumour is a challenging problem, due to high diversity in tumour appearance and ambiguous tumour boundaries. MRI images are chosen for detection of brain tumours, as they are used in soft tissue determinations. First of all, image pre-processing is used to enhance the image quality. Second, dual-tree complex wavelet transform multi-scale decomposition is used to analyse texture of an image. Feature extraction extracts features from an image using gray-level co-occurrence matrix (GLCM). Then, the Neuro-Fuzzy technique is used to classify the stages of brain tumour as benign, malignant or normal based on texture features. Finally, tumour location is detected using Otsu thresholding. The classifier performance is evaluated based on classification accuracies. The simulated results show that the proposed classifier provides better accuracy than previous method. PMID:26493726

  3. Threshold displacement energies and defect formation energies in Y2Ti2O7

    SciTech Connect

    Xiao, Haiyan Y.; Gao, Fei; Weber, William J.

    2010-10-20

    Ab initio molecular dynamics simulations have been carried out to determine both the threshold displacement energies Ed and corresponding defect configurations, and ab initio methods have been used to accurately determine the formation energies in Y2Ti2O7. The minimum Ed is found to be 27 eV for a Y recoil along the <100> direction, 31.5 eV for Ti atoms along the <100> direction, 14.5 eV for O48f atoms along the <110> direction and 13 eV for O8b atoms along the <111> direction. The average Ed value along three directions determined is 35.1, 35.4, 17.0 and 16.2 eV for yttrium, titanium, O48f and O8b atoms, respectively. Cation interstitials at vacant 8a sites, which are generally occupied by oxygen anions, and at the bridge sites between two neighboring cations along the <010> direction are observed after low energy recoil events. A systematic study of the defect formation energies suggests that cation interstitials, which are located at 8a sites and bridge sites along the <010> direction, and in split configurations along the <010>, <110> or <111> direction, are all stable in these configurations. It is suggested that the relative stability of cation interstitials may provide a pathway of driving ion-irradiation induced amorphization in Y2Ti2O7.

  4. Location Performance and Detection Threshold of the Spanish National Seismic Network

    NASA Astrophysics Data System (ADS)

    D'Alessandro, Antonino; Badal, José; D'Anna, Giuseppe; Papanastassiou, Dimitris; Baskoutas, Ioannis; Özel, Nurcan M.

    2013-11-01

    Spain is a low-to-moderate seismicity area with relatively low seismic hazard. However, several strong shallow earthquakes have shaken the country causing casualties and extensive damage. Regional seismicity is monitored and surveyed by means of the Spanish National Seismic Network, maintenance and control of which are entrusted to the Instituto Geográfico Nacional. This array currently comprises 120 seismic stations distributed throughout Spanish territory (mainland and islands). Basically, we are interested in checking the noise conditions, reliability, and seismic detection capability of the Spanish network by analyzing the background noise level affecting the array stations, errors in hypocentral location, and detection threshold, which provides knowledge about network performance. It also enables testing of the suitability of the velocity model used in the routine process of earthquake location. To perform this study we use a method that relies on P and S wave travel times, which are computed by simulation of seismic rays from virtual seismic sources placed at the nodes of a regular grid covering the study area. Given the characteristics of the seismicity of Spain, we drew maps for M L magnitudes 2.0, 2.5, and 3.0, at a focal depth of 10 km and a confidence level 95 %. The results relate to the number of stations involved in the hypocentral location process, how these stations are distributed spatially, and the uncertainties of focal data (errors in origin time, longitude, latitude, and depth). To assess the extent to which principal seismogenic areas are well monitored by the network, we estimated the average error in the location of a seismic source from the semiaxes of the ellipsoid of confidence by calculating the radius of the equivalent sphere. Finally, the detection threshold was determined as the magnitude of the smallest seismic event detected at least by four stations. The northwest of the peninsula, the Pyrenees, especially the westernmost segment, the Betic Cordillera, and Tenerife Island are the best-monitored zones. Origin time and focal depth are data that are far from being constrained by regional events. The two Iberian areas with moderate seismicity and the highest seismic hazard, the Pyrenees and Betic Cordillera, and the northwestern quadrant of the peninsula, are the areas wherein the focus of an earthquake is determined with an approximate error of 3 km. For M L 2.5 and M L 3.0 this error is common for almost the whole peninsula and the Canary Islands. In general, errors in epicenter latitude and longitude are small for near-surface earthquakes, increasing gradually as the depth increases, but remaining close to 5 km even at a depth of 60 km. The hypocentral depth seems to be well constrained to a depth of 40 km beneath the zones with the highest density of stations, with an error of less than 5 km. The M L magnitude detection threshold of the network is approximately 2.0 for most of Spain and still less, almost 1.0, for the western sector of the Pyrenean region and the Canary Islands.

  5. Image overlay solution based on threshold detection for a compact near infrared fluorescence goggle system

    PubMed Central

    Gao, Shengkui; Mondal, Suman B.; Zhu, Nan; Liang, RongGuang; Achilefu, Samuel; Gruev, Viktor

    2015-01-01

    Abstract. Near infrared (NIR) fluorescence imaging has shown great potential for various clinical procedures, including intraoperative image guidance. However, existing NIR fluorescence imaging systems either have a large footprint or are handheld, which limits their usage in intraoperative applications. We present a compact NIR fluorescence imaging system (NFIS) with an image overlay solution based on threshold detection, which can be easily integrated with a goggle display system for intraoperative guidance. The proposed NFIS achieves compactness, light weight, hands-free operation, high-precision superimposition, and a real-time frame rate. In addition, the miniature and ultra-lightweight light-emitting diode tracking pod is easy to incorporate with NIR fluorescence imaging. Based on experimental evaluation, the proposed NFIS solution has a lower detection limit of 25 nM of indocyanine green at 27 fps and realizes a highly precise image overlay of NIR and visible images of mice in vivo. The overlay error is limited within a 2-mm scale at a 65-cm working distance, which is highly reliable for clinical study and surgical use. PMID:25607724

  6. Image overlay solution based on threshold detection for a compact near infrared fluorescence goggle system

    NASA Astrophysics Data System (ADS)

    Gao, Shengkui; Mondal, Suman B.; Zhu, Nan; Liang, RongGuang; Achilefu, Samuel; Gruev, Viktor

    2015-01-01

    Near infrared (NIR) fluorescence imaging has shown great potential for various clinical procedures, including intraoperative image guidance. However, existing NIR fluorescence imaging systems either have a large footprint or are handheld, which limits their usage in intraoperative applications. We present a compact NIR fluorescence imaging system (NFIS) with an image overlay solution based on threshold detection, which can be easily integrated with a goggle display system for intraoperative guidance. The proposed NFIS achieves compactness, light weight, hands-free operation, high-precision superimposition, and a real-time frame rate. In addition, the miniature and ultra-lightweight light-emitting diode tracking pod is easy to incorporate with NIR fluorescence imaging. Based on experimental evaluation, the proposed NFIS solution has a lower detection limit of 25 nM of indocyanine green at 27 fps and realizes a highly precise image overlay of NIR and visible images of mice in vivo. The overlay error is limited within a 2-mm scale at a 65-cm working distance, which is highly reliable for clinical study and surgical use.

  7. Audiograms, gap detection thresholds, and frequency difference limens in cannabinoid receptor 1 knockout mice.

    PubMed

    Toal, Katrina L; Radziwon, Kelly E; Holfoth, David P; Xu-Friedman, Matthew A; Dent, Micheal L

    2016-02-01

    The cannabinoid receptor 1 (CB1R) is found at several stages in the auditory pathway, but its role in hearing is unknown. Hearing abilities were measured in CB1R knockout mice and compared to those of wild-type mice. Operant conditioning and the psychophysical Method of Constant Stimuli were used to measure audiograms, gap detection thresholds, and frequency difference limens in trained mice using the same methods and stimuli as in previous experiments. CB1R knockout mice showed deficits at frequencies above 8 kHz in their audiograms relative to wild-type mice. CB1R knockouts showed enhancements for detecting gaps in low-pass noisebursts relative to wild-type mice, but were similar for other noise conditions. Finally, the two groups of mice did not differ in their frequency discrimination abilities as measured by the frequency difference limens task. These experiments suggest that the CB1R is involved in auditory processing and lay the groundwork for future physiological experiments. PMID:26427583

  8. Quantitative prediction of perceptual decisions during near-threshold fear detection

    NASA Astrophysics Data System (ADS)

    Pessoa, Luiz; Padmala, Srikanth

    2005-04-01

    A fundamental goal of cognitive neuroscience is to explain how mental decisions originate from basic neural mechanisms. The goal of the present study was to investigate the neural correlates of perceptual decisions in the context of emotional perception. To probe this question, we investigated how fluctuations in functional MRI (fMRI) signals were correlated with behavioral choice during a near-threshold fear detection task. fMRI signals predicted behavioral choice independently of stimulus properties and task accuracy in a network of brain regions linked to emotional processing: posterior cingulate cortex, medial prefrontal cortex, right inferior frontal gyrus, and left insula. We quantified the link between fMRI signals and behavioral choice in a whole-brain analysis by determining choice probabilities by means of signal-detection theory methods. Our results demonstrate that voxel-wise fMRI signals can reliably predict behavioral choice in a quantitative fashion (choice probabilities ranged from 0.63 to 0.78) at levels comparable to neuronal data. We suggest that the conscious decision that a fearful face has been seen is represented across a network of interconnected brain regions that prepare the organism to appropriately handle emotionally challenging stimuli and that regulate the associated emotional response. decision making | emotion | functional MRI

  9. Different thresholds for detection and discrimination of odors in the honey bee (Apis mellifera).

    PubMed

    Wright, Geraldine A; Smith, Brian H

    2004-02-01

    Naturally occurring odors used by animals for mate recognition, food identification and other purposes must be detected at concentrations that vary across several orders of magnitude. Olfactory systems must therefore have the capacity to represent odors over a large range of concentrations regardless of dramatic changes in the salience, or perceived intensity, of a stimulus. The stability of the representation of an odor relative to other odors across concentration has not been extensively evaluated. We tested the ability of honey bees to discriminate pure odorants across a range of concentrations at and above their detection threshold. Our study showed that pure odorant compounds became progressively easier for honey bees to discriminate with increasing concentration. Discrimination is, therefore, a function of odorant concentration. We hypothesize that the recruitment of sensory cell populations across a range of concentrations may be important for odor coding, perhaps by changing its perceptual qualities or by increasing its salience against background stimuli, and that this mechanism is a general property of olfactory systems. PMID:14977809

  10. Noisy decision thresholds can account for suboptimal detection of low coherence motion

    PubMed Central

    Price, Nicholas S. C.; VanCuylenberg, John B.

    2016-01-01

    Noise in sensory signals can vary over both space and time. Moving random dot stimuli are commonly used to quantify how the visual system accounts for spatial noise. In these stimuli, a fixed proportion of “signal” dots move in the same direction and the remaining “noise” dots are randomly replotted. The spatial coherence, or proportion of signal versus noise dots, is fixed across time; however, this means that little is known about how temporally-noisy signals are integrated. Here we use a stimulus with low temporal coherence; the signal direction is only presented on a fraction of frames. Human observers are able to reliably detect and discriminate the direction of a 200 ms motion pulse, even when just 25% of frames within the pulse move in the signal direction. Using psychophysical reverse-correlation analyses, we show that observers are strongly influenced by the number of near-target directions spread throughout the pulse, and that consecutive signal frames have only a small additional influence on perception. Finally, we develop a model inspired by the leaky integration of the responses of direction-selective neurons, which reliably represents motion direction, and which can account for observers’ sub-optimal detection of motion pulses by incorporating a noisy decision threshold. PMID:26726736

  11. A vertical-energy-thresholding procedure for data reduction with multiple complex curves.

    PubMed

    Jung, Uk; Jeong, Myong K; Lu, Jye-Chyi

    2006-10-01

    Due to the development of sensing and computer technology, measurements of many process variables are available in current manufacturing processes. It is very challenging, however, to process a large amount of information in a limited time in order to make decisions about the health of the processes and products. This paper develops a "preprocessing" procedure for multiple sets of complicated functional data in order to reduce the data size for supporting timely decision analyses. The data type studied has been used for fault detection, root-cause analysis, and quality improvement in such engineering applications as automobile and semiconductor manufacturing and nanomachining processes. The proposed vertical-energy-thresholding (VET) procedure balances the reconstruction error against data-reduction efficiency so that it is effective in capturing key patterns in the multiple data signals. The selected wavelet coefficients are treated as the "reduced-size" data in subsequent analyses for decision making. This enhances the ability of the existing statistical and machine-learning procedures to handle high-dimensional functional data. A few real-life examples demonstrate the effectiveness of our proposed procedure compared to several ad hoc techniques extended from single-curve-based data modeling and denoising procedures. PMID:17036818

  12. Whole body motion-detection tasks can yield much lower thresholds than direction-recognition tasks: implications for the role of vibration

    PubMed Central

    Chaudhuri, Shomesh E.; Karmali, Faisal

    2013-01-01

    Earlier spatial orientation studies used both motion-detection (e.g., did I move?) and direction-recognition (e.g., did I move left/right?) paradigms. The purpose of our study was to compare thresholds measured with motion-detection and direction-recognition tasks on a standard Moog motion platform to see whether a substantial fraction of the reported threshold variation might be explained by the use of different discrimination tasks in the presence of vibrations that vary with motion. Thresholds for the perception of yaw rotation about an earth-vertical axis and for interaural translation in an earth-horizontal plane were determined for four healthy subjects with standard detection and recognition paradigms. For yaw rotation two-interval detection thresholds were, on average, 56 times smaller than two-interval recognition thresholds, and for interaural translation two-interval detection thresholds were, on average, 31 times smaller than two-interval recognition thresholds. This substantive difference between recognition thresholds and detection thresholds is one of our primary findings. For motions near our measured detection threshold, we measured vibrations that matched previously established vibration thresholds. This suggests that vibrations contribute to whole body motion detection. We also recorded yaw rotation thresholds on a second motion device with lower vibration and found direction-recognition and motion-detection thresholds that were not significantly different from one another or from the direction-recognition thresholds recorded on our Moog platform. Taken together, these various findings show that yaw rotation recognition thresholds are relatively unaffected by vibration when moderate (up to ∼0.08 m/s2) vibration cues are present. PMID:24068754

  13. Threshold displacement energies in rutile TiO2: A molecular dynamics simulation study

    SciTech Connect

    Thomas, Bronwyn S.; Marks, Nigel A.; Corrales, Louis R.; Devanathan, Ram

    2005-09-01

    Threshold displacement energies are determined for Ti and O in rutile TiO2 using molecular dynamics simulations with an empirical model. The simulations involve the introduction of a primary knock-on atom (PKA) with a range of energies (30- 150 eV) in various crystallographic directions at 160 K. We observe the formation of stable Frenkel defects, as well as defect recovery via low-energy interstitial migration mechanisms. The latter causes significant statistical variation between simulation outcomes, which leads to the definition of a defect formation probability. This probability is characterized as a function of PKA energy in order to define the threshold displacement energy and compare with experimental results. Using a probability of 10%, the average threshold displacement energy is around 40 eV for oxygen (comparable to experiment) and 105 eV for titanium. Using a probability of 50%, the values are 65 eV and 130 eV respectively, which may be more appropriate for use in TRIM calculations. In addition, we run a parallel set of calculations using a second empirical model, finding that the detailed results are highly model-dependent, particularly the oxygen defect structures and energies, which are compared to new ab initio data.

  14. Electrodynamic model of the field effect transistor application for THz/subTHz radiation detection: Subthreshold and above threshold operation

    SciTech Connect

    Dobrovolsky, V.

    2014-10-21

    Developed in this work is an electrodynamic model of field effect transistor (FET) application for THz/subTHz radiation detection. It is based on solution of the Maxwell equations in the gate dielectric, expression for current in the channel, which takes into account both the drift and diffusion current components, and the equation of current continuity. For the regimes under and above threshold at the strong inversion the response voltage, responsivity, wave impedance, power of ohmic loss in the gate and channel have been found, and the electrical noise equivalent power (ENEP) has been estimated. The responsivity is orders of magnitude higher and ENEP under threshold is orders of magnitude less than these values above threshold. Under the threshold, the electromagnetic field in the gate oxide is identical to field of the plane waves in free-space. At the same time, for strong inversion the charging of the gate capacitance through the resistance of channel determines the electric field in oxide.

  15. Detection threshold for percutaneous electrical stimuli: asymmetry with respect to handedness.

    PubMed Central

    Friedli, W G; Fuhr, P; Wiget, W

    1987-01-01

    Sensory strength-duration curves were obtained using percutaneous true square-wave pulses ranging from 0.1 to 20.0 ms produced by an isolated constant current stimulator. In 119 healthy volunteers sensory thresholds were measured bilaterally by stimulating the distal phalange of the little finger. In order to examine the relationship of sensory threshold and handedness the latter was assessed by means of the Edinburgh Inventory. An asymmetry of sensory threshold was found for all the subjects and this was more pronounced with shorter stimuli. Of right-handers tested 73.5% had a lower threshold on the left side while 70.8% of left-handers had a lower threshold on the right side. Although threshold asymmetry is associated with handedness this is not necessarily due to cerebral lateralization. PMID:3625210

  16. Energy conservation using face detection

    NASA Astrophysics Data System (ADS)

    Deotale, Nilesh T.; Kalbande, Dhananjay R.; Mishra, Akassh A.

    2011-10-01

    Computerized Face Detection, is concerned with the difficult task of converting a video signal of a person to written text. It has several applications like face recognition, simultaneous multiple face processing, biometrics, security, video surveillance, human computer interface, image database management, digital cameras use face detection for autofocus, selecting regions of interest in photo slideshows that use a pan-and-scale and The Present Paper deals with energy conservation using face detection. Automating the process to a computer requires the use of various image processing techniques. There are various methods that can be used for Face Detection such as Contour tracking methods, Template matching, Controlled background, Model based, Motion based and color based. Basically, the video of the subject are converted into images are further selected manually for processing. However, several factors like poor illumination, movement of face, viewpoint-dependent Physical appearance, Acquisition geometry, Imaging conditions, Compression artifacts makes Face detection difficult. This paper reports an algorithm for conservation of energy using face detection for various devices. The present paper suggests Energy Conservation can be done by Detecting the Face and reducing the brightness of complete image and then adjusting the brightness of the particular area of an image where the face is located using histogram equalization.

  17. Sputtering of cobalt and chromium by argon and xenon ions near the threshold energy region

    NASA Technical Reports Server (NTRS)

    Handoo, A. K.; Ray, P. K.

    1993-01-01

    Sputtering yields of cobalt and chromium by argon and xenon ions with energies below 50 eV are reported. The targets were electroplated on copper substrates. Measurable sputtering yields were obtained from cobalt with ion energies as low as 10 eV. The ion beams were produced by an ion gun. A radioactive tracer technique was used for the quantitative measurement of the sputtering yield. Co-57 and Cr-51 were used as tracers. The yield-energy curves are observed to be concave, which brings into question the practice of finding threshold energies by linear extrapolation.

  18. The energy distribution cross section in threshold electron-atom impact ionization

    NASA Technical Reports Server (NTRS)

    Temkin, A.

    1974-01-01

    The flatness of the energy differential cross section in impact ionization is derived analytically in the Wannier theory. However it is shown that the Wannier zone is confined to a region of the order E/5 is less than or equal to epsilon is less than or equal to 4E/5, where E is the available energy and epsilon is the energy of the electrons. By contrasting the known results of photoionization and photodetachment, one can cogently argue that in the complementary region where electrons share their energy very unequally the cross section rises to a value independent of E, and that this region determines the form of the threshold law.

  19. Design of a New Somatosensory Stimulus Delivery Device for Measuring Laryngeal Mechanosensory Detection Thresholds in Humans

    PubMed Central

    2009-01-01

    Laryngeal control is essential for airway protection, breathing, deglutition, speech, and voice. Unfortunately, integration of laryngeal sensory assessment in research and clinical practice is limited by technical and practical limitations of commercially available technology. A commercial device is available, but reported limitations include procedural complexity requiring two or three individuals to operate, limited stimulus dynamic range, device generated noise, and questionable stimulus reproducibility. The objective of this study was to design a new laryngeal somatosensory stimulus delivery device that provides direct, reliable control over the timing, duration, and dynamic range of stimulus presentation, and test the device in individuals who may manifest a laryngeal sensory deficit. The new device operates silently and has more than four times greater stimulus dynamic range than the commercial device. Testing with the new device revealed laryngeal mechanosensory detection thresholds in an individual with Parkinson’s disease that were seven times higher than those of healthy controls. These data would have otherwise gone undetected due to limited stimulus dynamic range in the commercial device. The new design resulted in a new assessment instrument that is simple to use for routine clinical assessment, yet sufficiently versatile for integration within rigorous clinical research protocols. PMID:19272888

  20. A Novel Thresholding Based Algorithm for Detection of Vertical Root Fracture in Nonendodontically Treated Premolar Teeth

    PubMed Central

    Johari, Masume; Esmaeili, Farzad; Andalib, Alireza; Garjani, Shabnam; Saberkari, Hamidreza

    2016-01-01

    In this paper, an efficient algorithm is proposed for detection of vertical root fractures (VRFs) in periapical (PA), and cone-beam computed tomography (CBCT) radiographs of nonendodontically treated premolar teeth. PA and CBCT images are divided into some sub-categories based on the fracture space between the two fragments as small, medium, and large for PAs and large for CBCTs. These graphics are first denoised using the combination of block matching 3-D filtering, and principle component analysis model. Then, we proposed an adaptive thresholding algorithm based on the modified Wellner model to segment the fracture and canal. Finally, VRFs are identified with a high accuracy through applying continuous wavelet transform on the segmented radiographs and choosing the most optimal value for sub-images based on the lowest interclass variance. Performance of the proposed algorithm is evaluated utilizing the different tested criteria. Results illustrate that the range of specificity deviations for PA and CBCT radiographs are 99.69 ± 0.22 and 99.02 ± 0.77, respectively. Furthermore, the sensitivity changes from 61.90 to 77.39 in the case of PA and from 79.54 to 100 in the case of CBCT. Based on our statistical evaluation, the CBCT imaging has the better performance in comparison with PA ones, so this technique could be a useful tool for clinical applications in determining the VRFs. PMID:27186535

  1. Effects of sucrose detection threshold and weight status on intake of fruit and vegetables in children.

    PubMed

    Fogel, Anna; Blissett, Jackie

    2014-12-01

    Past research on the relationship between taste sensitivity and fruit and vegetable (FV) intake in children has focused on sensitivity to bitter taste. The effects of sensitivity to sweet taste on intake of FV have never been investigated. Furthermore, the effects of children's weight on intake of FV are inconclusive. This study measured the effects of Sucrose Detection Threshold (SDT) and weight status on intake of FV in children. The participants of this study were 99 children between 5-9 years old. Parents reported their own and their children's 24 hour intake of FV and completed a measure of children's sensory sensitivity. Children completed the triangle test with suprathreshold concentrations of sucrose ranging between 0.2% and 1.6%, in 0.2% increments. Two MANCOVAs showed that, controlling for parental intake and children's sensory sensitivity, there was a main effect of SDT on intake of fruit (p < 0.05), which was exclusive to non-astringent fruit (p < 0.05), and cruciferous vegetables (p < 0.01). Weight status had no effect on intake of FV. Mechanisms behind the effects of SDT are discussed in the context of past research on bitter taste sensitivity. PMID:25218719

  2. The influence of olfactory concept on the probability of detecting sub- and peri-threshold components in a mixture of odorants.

    PubMed

    Bult, J H; Schifferstein, H N; Roozen, J P; Voragen, A G; Kroeze, J H

    2001-06-01

    The headspace of apple juice was analysed to obtain an ecologically relevant stimulus model mixture of apple volatiles. Two sets of volatiles were made up: a set of eight supra-threshold volatiles (MIX) and a set of three sub-threshold volatiles. These sets were used to test the hypothesis that sub-threshold components can change the quality of a familiar smelling mixture of odorants when added to this mixture. In order to test this hypothesis, three successive dilutions of the sub-threshold volatiles were prepared in such a way that the strongest was at the threshold concentration and the two lower concentrations were below the threshold. The detection probabilities of the sub-threshold components in a blank stimulus were compared with the detectabilities in MIX. The sub- and peri-threshold volatiles were detected no better in MIX than in a blank. On the contrary, sub- and peri-threshold volatiles were better detected alone than when added to MIX. However, when the group of subjects was split into two sub-groups, employing either a rough or a detailed concept definition of the target stimulus, respectively, the subjects with highly refined concepts were better able to detect the presence of sub-threshold volatiles in MIX than those with poorly refined stimulus concepts. The effect of stimulus concept definition occurred independently of the proportions of correct detections of sub-threshold volatiles in a blank. PMID:11418491

  3. Effect of strain and temperature on the threshold displacement energy in body-centered cubic iron

    NASA Astrophysics Data System (ADS)

    Beeler, Benjamin; Asta, Mark; Hosemann, Peter; Grønbech-Jensen, Niels

    2016-06-01

    The threshold displacement energy (TDE) is the minimum amount of kinetic energy required to displace an atom from its lattice site. The magnitude of the TDE displays significant variance as a function of the crystallographic direction, system temperature and applied strain, among a variety of other factors. It is critically important to determine an accurate value of the TDE in order to calculate the total number of displacements due to a given irradiation condition, and thus to understand the materials response to irradiation. In this study, molecular dynamics simulations have been performed to calculate the threshold displacement energy in body-centered cubic iron as a function of strain and temperature. With applied strain, a decrease of the TDE of up to approximately 14 eV was observed. A temperature increase from 300 K to 500 K can result in an increase of the TDE of up to approximately 9 eV.

  4. An objective method for measuring face detection thresholds using the sweep steady-state visual evoked response

    PubMed Central

    Ales, Justin M.; Farzin, Faraz; Rossion, Bruno; Norcia, Anthony M.

    2012-01-01

    We introduce a sensitive method for measuring face detection thresholds rapidly, objectively, and independently of low-level visual cues. The method is based on the swept parameter steady-state visual evoked potential (ssVEP), in which a stimulus is presented at a specific temporal frequency while parametrically varying (sweeping) the detectability of the stimulus. Here, the visibility of a face image was increased by progressive derandomization of the phase spectra of the image in a series of equally spaced steps. Alternations between face and fully randomized images at a constant rate (3/s) elicit a robust first harmonic response at 3 Hz specific to the structure of the face. High-density EEG was recorded from 10 human adult participants, who were asked to respond with a button-press as soon as they detected a face. The majority of participants produced an evoked response at the first harmonic (3 Hz) that emerged abruptly between 30% and 35% phase-coherence of the face, which was most prominent on right occipito-temporal sites. Thresholds for face detection were estimated reliably in single participants from 15 trials, or on each of the 15 individual face trials. The ssVEP-derived thresholds correlated with the concurrently measured perceptual face detection thresholds. This first application of the sweep VEP approach to high-level vision provides a sensitive and objective method that could be used to measure and compare visual perception thresholds for various object shapes and levels of categorization in different human populations, including infants and individuals with developmental delay. PMID:23024355

  5. An objective method for measuring face detection thresholds using the sweep steady-state visual evoked response.

    PubMed

    Ales, Justin M; Farzin, Faraz; Rossion, Bruno; Norcia, Anthony M

    2012-01-01

    We introduce a sensitive method for measuring face detection thresholds rapidly, objectively, and independently of low-level visual cues. The method is based on the swept parameter steady-state visual evoked potential (ssVEP), in which a stimulus is presented at a specific temporal frequency while parametrically varying ("sweeping") the detectability of the stimulus. Here, the visibility of a face image was increased by progressive derandomization of the phase spectra of the image in a series of equally spaced steps. Alternations between face and fully randomized images at a constant rate (3/s) elicit a robust first harmonic response at 3 Hz specific to the structure of the face. High-density EEG was recorded from 10 human adult participants, who were asked to respond with a button-press as soon as they detected a face. The majority of participants produced an evoked response at the first harmonic (3 Hz) that emerged abruptly between 30% and 35% phase-coherence of the face, which was most prominent on right occipito-temporal sites. Thresholds for face detection were estimated reliably in single participants from 15 trials, or on each of the 15 individual face trials. The ssVEP-derived thresholds correlated with the concurrently measured perceptual face detection thresholds. This first application of the sweep VEP approach to high-level vision provides a sensitive and objective method that could be used to measure and compare visual perception thresholds for various object shapes and levels of categorization in different human populations, including infants and individuals with developmental delay. PMID:23024355

  6. Congenital hypothyroidism with neurological and respiratory alterations: a case detected using a variable diagnostic threshold for TSH.

    PubMed

    Barreiro, Jesús; Alonso-Fernández, Jóse Ramón; Castro-Feijoo, Lidia; Colón, Cristóbal; Cabanas, Paloma; Heredia, Claudia; Castaño, Luis Antonio; Gómez-Lado, Carmen; Couce, M Luz; Pombo, Manuel

    2011-01-01

    We report a case of congenital hypothyroidism (CH) with neurological and respiratory alterations due to a heterozygotic c.374-1G > A mutation of TITF1/NKX2-1. The hypothyroidism was detected using a neonatal screening protocol in which the thyroid stimulating hormone (TSH) threshold is re-set each day on the basis of within-day variability and between-day variation. In this case, the threshold on the day of the initial analysis was 8.2 mIU/L, and the measured TSH level in heel-prick blood was 8.3 mIU/L. PMID:22155464

  7. Congenital Hypothyroidism with Neurological and Respiratory Alterations: A Case Detected Using a Variable Diagnostic Threshold for TSH

    PubMed Central

    Barreiro, Jesús; Castro-Feijoo, Lidia; Colón, Cristóbal; Cabanas, Paloma; Heredia, Claudia; Castaño, Luis Antonio; Gómez-Lado, Carmen; Couce, M.Luz; Pombo, Manuel

    2011-01-01

    We report a case of congenital hypothyroidism (CH) with neurological and respiratory alterations due to a heterozygotic c.374-1G > A mutation of TITF1/NKX2-1. The hypothyroidism was detected using a neonatal screening protocol in which the thyroid stimulating hormone (TSH) threshold is re-set each day on the basis of within-day variability and between-day variation. In this case, the threshold on the day of the initial analysis was 8.2 mIU/L, and the measured TSH level in heel-prick blood was 8.3 mIU/L. Conflict of interest:None declared. PMID:22155464

  8. The photodetachment cross-section and threshold energy of negative ions in carbon dioxide

    NASA Technical Reports Server (NTRS)

    Helmy, E. M.; Woo, S. B.

    1974-01-01

    Threshold energy and sunlight photodetachment measurements on negative carbon dioxide ions, using a 2.5 kw light pressure xenon lamp, show that: (1) Electron affinity of CO3(+) is larger than 2.7 e.V. and that an isomeric form of CO3(+) is likely an error; (2) The photodetachment cross section of CO3(-) will roughly be like a step function across the range of 4250 to 2500A, having its threshold energy at 4250A; (3) Sunlight photodetachment rate for CO3(-) is probably much smaller than elsewhere reported; and (4) The probability of having photodetached electrons re-attach to form negative ions is less than 1%. Mass identifying drift tube tests confirm that the slower ion is CO3(-), formed through the O(-) + 2CO2 yields CO3(-) + CO2 reaction.

  9. The transfer function of a target limits the jitter detection threshold with signals of echolocating FM-bats.

    PubMed

    Beedholm, Kristian

    2006-05-01

    The delay jitter discrimination threshold in bats is a disputed subject. Some investigators have obtained results indicating that bats are able to discriminate alternations in delay down to 10 ns, which appears incredible for purely physical reasons. Using actual bat echolocation sequences recorded during an easy detection task to measure simulated delay jitter, it is shown here that jitter detection thresholds in the order of some tens of nanoseconds are actually physically realizable. However, if the transfer function of the target simulating apparatus is not perfect, the lowest thresholds are in the order of hundreds of nanoseconds and variable between individual bats. This phenomenon is shown to arise as a consequence of the variation in signal parameters from call to call. When the transfer function from a real jitter experiment was artificially applied to the echoes, the jitter detection thresholds again were several hundred nanoseconds. This is the first study to point out a limiting role of the transfer function of a system faced with variations in echolocation signal parameters, something that should be considered in evaluating all sonar systems with variable signal structure. PMID:16395614

  10. Ground truth and detection threshold from WWII naval clean-up in Denmark

    NASA Astrophysics Data System (ADS)

    Larsen, Tine B.; Dahl-Jensen, Trine; Voss, Peter

    2013-04-01

    The sea bed below the Danish territorial waters is still littered with unexploded mines and other ammunition from World War II. The mines were air dropped by the RAF and the positions of the mines are unknown. As the mines still pose a potential threat to fishery and other marine activities, the Admiral Danish Fleet under the Danish Navy searches for the mines and destroy them by detonation, where they are found. The largest mines destroyed in this manner in 2012 are equivalent to 800 kg TNT each. The Seismological Service at the National Geological Survey of Denmark and Greenland is notified by the navy when ammunition in excess of 100 kg TNT is detonated. The notifications include information about position, detonation time and the estimated amount of explosives. The larger explosions are clearly registered not only on the Danish seismographs, but also on seismographs in the neighbouring countries. This includes the large seismograph arrays in Norway, Sweden, and Finland. Until recently the information from the Danish navy was only utilized to rid the Danish earthquake catalogue of explosions. But the high quality information provided by the navy enables us to use these ground truth events to assess the quality of our earthquake catalogue. The mines are scattered though out the Danish territorial waters, thus we can use the explosions to test the accuracy of the determined epicentres in all parts of the country. E.g. a detonation of 135 kg in Begstrup Vig in the central part of Denmark was located using Danish, Norwegian and Swedish stations with an accuracy of less than 2 km from ground truth. A systematic study of the explosions will sharpen our understanding of the seismicity in Denmark, and result in a more detailed understanding of the detection threshold. Furthermore the study will shed light on the sensitivity of the network to various seismograph outages.

  11. Threshold conditions, energy spectrum and bands generated by locally periodic Dirac comb potentials

    NASA Astrophysics Data System (ADS)

    Dharani, M.; Shastry, C. S.

    2016-01-01

    We derive expressions for polynomials governing the threshold conditions for different types of locally periodic Dirac comb potentials comprising of attractive and combination of attractive and repulsive delta potential terms confined symmetrically inside a one dimensional box of fixed length. The roots of these polynomials specify the conditions on the potential parameters in order to generate threshold energy bound states. The mathematical and numerical methods used by us were first formulated in our earlier works and it is also very briefly summarized in this paper. We report a number of mathematical results pertaining to the threshold conditions and these are useful in controlling the number of negative energy states as desired. We further demonstrate the correlation between the distribution of roots of these polynomials and negative energy eigenvalues. Using these results as basis, we investigate the energy bands in the positive energy spectrum for the above specified Dirac comb potentials and also for the corresponding repulsive case. In the case of attractive Dirac comb the base energy of the each band excluding the first band coincides with specific eigenvalue of the confining box whereas in the repulsive case it coincides with the band top. We deduce systematic correlation between band gaps, band spreads and box eigenvalues and explain the physical reason for the vanishing of band pattern at higher energies. In the case of Dirac comb comprising of orderly arranged attractive and repulsive delta potentials, specific box eigenvalues occur in the middle of each band excluding the first band. From our study we find that by controlling the number and strength parameters of delta terms in the Dirac comb and the size of confining box it is possible to generate desired types of band formations. We believe the results from our systematic analysis are useful and relevant in the study of various one dimensional systems of physical interest in areas like nanoscience.

  12. Modeling of damage generation mechanisms in silicon at energies below the displacement threshold

    SciTech Connect

    Santos, Ivan; Marques, Luis A.; Pelaz, Lourdes

    2006-11-01

    We have used molecular dynamics simulation techniques to study the generation of damage in Si within the low-energy deposition regime. We have demonstrated that energy transfers below the displacement threshold can produce a significant amount of damage, usually neglected in traditional radiation damage calculations. The formation of amorphous pockets agrees with the thermal spike concept of local melting. However, we have found that the order-disorder transition is not instantaneous, but it requires some time to reach the appropriate kinetic-potential energy redistribution for melting. The competition between the rate of this energy redistribution and the energy diffusion to the surrounding atoms determines the amount of damage generated by a given deposited energy. Our findings explain the diverse damage morphology produced by ions of different masses.

  13. Progress on a spherical TPC for low energy neutrino detection

    NASA Astrophysics Data System (ADS)

    Aune, S.; Colas, P.; Deschamps, H.; Dolbeau, J.; Fanourakis, G.; Ferrer Ribas, E.; Enqvist, T.; Geralis, T.; Giomataris, Y.; Gorodetzky, P.; Gounaris, G. J.; Gros, M.; Irastorza, I. G.; Kousouris, K.; Lepeltier, V.; Morales, J.; Patzak, T.; Paschos, E. A.; Salin, P.; Savvidis, I.; Vergados, J. D.

    2006-05-01

    The new concept of the spherical TPC aims at relatively large target masses with low threshold and background, keeping an extremely simple and robust operation. Such a device would open the way to detect the neutrino-nucleus interaction, which, although a standard process, remains undetected due to the low energy of the neutrino-induced nuclear recoils. The progress in the development of the first 1 m3 prototype at Saclay is presented. Other physics goals of such a device could include supernova detection, low energy neutrino oscillations and study of non-standard properties of the neutrino, among others.

  14. Probability-based particle detection that enables threshold-free and robust in vivo single-molecule tracking.

    PubMed

    Smith, Carlas S; Stallinga, Sjoerd; Lidke, Keith A; Rieger, Bernd; Grunwald, David

    2015-11-01

    Single-molecule detection in fluorescence nanoscopy has become a powerful tool in cell biology but can present vexing issues in image analysis, such as limited signal, unspecific background, empirically set thresholds, image filtering, and false-positive detection limiting overall detection efficiency. Here we present a framework in which expert knowledge and parameter tweaking are replaced with a probability-based hypothesis test. Our method delivers robust and threshold-free signal detection with a defined error estimate and improved detection of weaker signals. The probability value has consequences for downstream data analysis, such as weighing a series of detections and corresponding probabilities, Bayesian propagation of probability, or defining metrics in tracking applications. We show that the method outperforms all current approaches, yielding a detection efficiency of >70% and a false-positive detection rate of <5% under conditions down to 17 photons/pixel background and 180 photons/molecule signal, which is beneficial for any kind of photon-limited application. Examples include limited brightness and photostability, phototoxicity in live-cell single-molecule imaging, and use of new labels for nanoscopy. We present simulations, experimental data, and tracking of low-signal mRNAs in yeast cells. PMID:26424801

  15. Probability-based particle detection that enables threshold-free and robust in vivo single-molecule tracking

    PubMed Central

    Smith, Carlas S.; Stallinga, Sjoerd; Lidke, Keith A.; Rieger, Bernd; Grunwald, David

    2015-01-01

    Single-molecule detection in fluorescence nanoscopy has become a powerful tool in cell biology but can present vexing issues in image analysis, such as limited signal, unspecific background, empirically set thresholds, image filtering, and false-positive detection limiting overall detection efficiency. Here we present a framework in which expert knowledge and parameter tweaking are replaced with a probability-based hypothesis test. Our method delivers robust and threshold-free signal detection with a defined error estimate and improved detection of weaker signals. The probability value has consequences for downstream data analysis, such as weighing a series of detections and corresponding probabilities, Bayesian propagation of probability, or defining metrics in tracking applications. We show that the method outperforms all current approaches, yielding a detection efficiency of >70% and a false-positive detection rate of <5% under conditions down to 17 photons/pixel background and 180 photons/molecule signal, which is beneficial for any kind of photon-limited application. Examples include limited brightness and photostability, phototoxicity in live-cell single-molecule imaging, and use of new labels for nanoscopy. We present simulations, experimental data, and tracking of low-signal mRNAs in yeast cells. PMID:26424801

  16. Analysis of Threshold Neutron Excitation Function Measurements Using Wide Energy Neutron Beams

    NASA Astrophysics Data System (ADS)

    Daraban, L.; Jovančević, N.; Oberstedt, S.; Hambsch, F.-J.

    In this study we have improved the technique for measuring the neutron activation cross-section using wide energy neutron beams (NAXSUN). We propose a method for the determination of the default function for the unfolding procedure, which is an important and critical part for extracting reaction cross-sections from this type of measurements. The new method was tested on the measurement of the excitation function from the threshold energy up to 5.6 MeV for the 113In(n,n')113mIn and 115In(n,n')115mIn reactions.

  17. Separable effects of inversion and contrast-reversal on face detection thresholds and response functions: a sweep VEP study.

    PubMed

    Liu-Shuang, Joan; Ales, Justin; Rossion, Bruno; Norcia, Anthony M

    2015-01-01

    The human brain rapidly detects faces in the visual environment. We recently presented a sweep visual evoked potential approach to objectively define face detection thresholds as well as suprathreshold response functions (Ales, Farzin, Rossion, & Norcia, 2012). Here we determined these parameters are affected by orientation (upright vs. inverted) and contrast polarity (positive vs. negative), two manipulations that disproportionately disrupt the perception of faces relative to other object categories. Face stimuli parametrically increased in visibility through phase-descrambling while alternating with scrambled images at a fixed presentation rate of 3 Hz (6 images/s). The power spectrum and mean luminance of all stimuli were equalized. As a face gradually emerged during a stimulation sequence, EEG responses at 3 Hz appeared at ≈35% phase coherence over right occipito-temporal channels, replicating previous observations. With inversion and contrast-reversal, the 3-Hz amplitude decreased by ≈20%-50% and the face detection threshold increased by ≈30%-60% coherence. Furthermore, while the 3-Hz response emerged abruptly and saturated quickly for normal faces, suggesting a categorical neural response, the response profile for inverted and negative polarity faces was shallower and more linear, indicating gradual and continuously increasing activation of the underlying neural population. These findings demonstrate that inversion and contrast-reversal increase the threshold and modulate the suprathreshold response function of face detection. PMID:25761329

  18. Hydration Energies of Zinc(II): Threshold Collision-Induced Dissociation Experiments and Theoretical Studies

    NASA Astrophysics Data System (ADS)

    Cooper, Theresa E.; Carl, D. R.; Armentrout, P. B.

    2009-11-01

    The first experimentally determined sequential bond dissociation energies of Zn2+(H2O)n complexes, where n = 6-10, are measured using threshold collision-induced dissociation in a guided ion beam tandem mass spectrometer coupled with an electrospray ionization source. Kinetic energy dependent cross sections are obtained and analyzed to yield 0 K threshold measurements for the loss of one and two water ligands after accounting for multiple collisions, kinetic shifts, and energy distributions. The threshold measurements are then converted from 0 to 298 K values to give the hydration energies for sequentially losing one water from each parent complex. Theoretical geometry optimizations and single-point energy calculations are performed using several levels of theory for comparison to experiment. Although different levels of theory disagree on the ground-state conformation of most complexes examined here leading to potential ambiguities in the final thermochemical values, calculations at the MP2(full) level provide the best agreement with experiment. On this basis, the present experiments are most consistent with the inner solvent shell of Zn2+ being five waters, except for Zn2+(H2O)6 where all waters bind directly to the metal ion. The charge separation process, Zn2+(H2O)n → ZnOH+(H2O)m + H+(H2O)n-m-1, which is in competition with the loss of water from the parent complex, is also observed for n = 6-8. These processes are analyzed in detail in the following paper.

  19. Detection of lactate threshold by including haemodynamic and oxygen extraction data.

    PubMed

    Crisafulli, Antonio; Tocco, Filippo; Pittau, Gianluigi; Caria, Marcello; Lorrai, Luigi; Melis, Franco; Concu, Alberto

    2006-01-01

    To date, few attempts have been made to correlate cardiovascular variables to lactate threshold (L(T)). This study was designed to determine the relationship between the accumulation of blood lactate and several haemodynamic variables during exercise. Eight male volunteer cyclists performed an incremental test on an electromagnetically braked cycle-ergometer consisting of a 50 W linear increase in workload every 3 min up to exhaustion. Blood lactate was measured with a portable analyser during each exercise step. Oxygen consumption (VO(2)) and pulmonary ventilation were measured by means of a mass spectrometer while heart rate, stroke volume and cardiac output (CO) were assessed by impedance cardiography. The arterio-venous oxygen difference (A-V O(2) Diff) was obtained by dividing VO(2) by CO. By applying the D(max) mathematical method, L(T) and thresholds of ventilatory and haemodynamic parameters were calculated. The Bland and Altman statistics used to assess agreement between two methods of measurement were applied in order to evaluate the agreement between L(T) and thresholds derived from ventilatory and haemodynamic data. The main result was that most of the haemodynamic variables did not provide thresholds which could be used interchangeably with L(T). Only the threshold of A-V O(2) Diff showed mean values that were no different compared to L(T) together with limits of agreement that were not very wide between thresholds (below +/-25%). Hence of the haemodynamic parameters, A-V O(2) Diff appears to be the one most closely coupled with lactate accumulation and consequently it is also the most suitable for non-invasive calculation of the L(T). PMID:16365513

  20. Thresholds to chromatic spots of cells in the macaque geniculate nucleus as compared to detection sensitivity in man.

    PubMed Central

    Crook, J M; Lee, B B; Tigwell, D A; Valberg, A

    1987-01-01

    1. The relation between wavelength and psychophysical threshold for chromatic spots on a white background provides evidence for the existence of chromatic channels in the primate visual system. To find the physiological substrate of this task, we compared increment thresholds of different cell types in the macaque lateral geniculate nucleus with human psychophysical thresholds to the same stimuli, using two spot sizes, 4 and 0.4 deg. 2. At different wavelengths, different opponent cell classes in the parvocellular layers of the nucleus were most sensitive, so that at long wavelengths (greater than 600 nm) red on-centre cells were most sensitive, while at short wavelengths (less than 500 nm) S-cone, blue on-centre cells were most sensitive, from 500 to about 550 nm green on-centre cells being most sensitive. A rare cell type with inhibition from S-cones was most sensitive at about 570 nm, although its maximum contrast increment sensitivity was poor compared with that of other cell types. Variation in strength of cone opponency caused a considerable range in threshold in each of the opponent cell classes of the parvocellular layers. 3. On- and off-centre cells from the magnocellular layers were more sensitive than opponent cells to white and yellow spots (as is the case with achromatic gratings). 4. With different wavelengths and spot sizes, the most sensitive cells found approached (to within 0.1-0.3 log units) human psychophysical sensitivity, suggesting that the most sensitive cells available may underlie detection. 5. Measurements of psychophysical chromatic discrimination thresholds, both with nearly monochromatic spots and with spots of differing saturation (purity), support this hypothesis. When magnocellular cell sensitivity corresponded to psychophysical threshold, a suprathreshold stimulus, capable of activating opponent cells, was required for chromatic discrimination. PMID:3446779

  1. DETECTION AND IDENTIFICATION THRESHOLD VALUES FOR KEY FLAVOR COMPONENTS IN AN ORANGE JUICE MATRIX

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Due to the complex nature of orange juice, threshold values for key flavor components could differ significantly from those values reported in simpler systems, like water. In order to provide the citrus industry with reference values closer to the real situation in orange juice, different orange ju...

  2. A STATISTICAL MODELING METHODOLOGY FOR THE DETECTION, QUANTIFICATION, AND PREDICTION OF ECOLOGICAL THRESHOLDS

    EPA Science Inventory

    This study will provide a general methodology for integrating threshold information from multiple species ecological metrics, allow for prediction of changes of alternative stable states, and provide a risk assessment tool that can be applied to adaptive management. The integr...

  3. Decision making in detecting abnormal Semmes-Weinstein monofilament thresholds in carpal tunnel syndrome.

    PubMed

    MacDermid, J C; Kramer, J F; Roth, J H

    1994-01-01

    Both hands of 39 patients who had symptoms of pain and/or numbness in one or both hands were tested by two hand therapists using the full kit of Semmes-Weinstein monofilaments (SWMFs). The SWMF thresholds were obtained for the thumb, the index finger, and the long and small fingers. These thresholds were classified as normal or abnormal based on four decision rules and two criterion measures. Decision rules were based on whether SWMF 2.83 or 3.22 would be the best limit of normality, and whether the small finger should be used for within-subject comparisons. The criterion measures were the highest threshold of all three radial digits and the highest threshold of the long finger alone. Intertherapist agreement on normality was fair to moderate (kappa = 0.22-0.51), varying according to decision rules and criterion measures. Reliability was higher when the additional comparison with the small finger was omitted. High accuracy in identifying cases of carpal tunnel syndrome (CTS) was possible, but accuracy varied moderately between testers and greatly according to decision rules and criterion measurements. The best overall accuracy (81%-82% sensitivity and 57%-86% specificity) was achieved when SWMF 2.83 was used as the upper limit of normality and the small finger was used for within-subject comparison, and when data from the long finger alone were used for decision making. PMID:7951707

  4. Photo-Double Ionization: Threshold Law and Low-Energy Behavior

    NASA Technical Reports Server (NTRS)

    Bhatia, Anand

    2008-01-01

    The threshold law for photoejection of two electrons from atoms (PDI) is derived from a modification of the Coulomb-dipole (C-D) theory. The C-D theory applies to two-electron ejection from negative ions (photo-double detachment:PDD). The modification consists of correctly accounting for the fact that in PDI that the two escaping electrons see a Coulomb field, asymptotically no matter what their relative distances from the residual ion are. We find in the contralinear spherically symmetric model that the analytic threshold law Q(E),i. e. the yield of residual ions, to be Qf(E)approaches E + CwE(sup gamma(w)) + CE(sup 5/4)sin[1/2 ln(E + theta)]/ln(E). The first and third terms are beyond the Wannier law. Our threshold law can only be rigorously justified for residual energies less than or equal to 10(exp -3) eV. Nevertheless in the present experimental range (0.1 - 4 eV), the form, even without the second term, can be fitted to experimental results of PDI for He, Li, and Be, in contrast to the Wannier law which has a larger deviation from the data for Li and Be, for both of which the data show signs of modulation.

  5. Photo-Double Ionization: Threshold Law and Low-Energy Behavior

    NASA Technical Reports Server (NTRS)

    Bhatia, A. K.; Temkin, A.

    2007-01-01

    The threshold law for photoejection of two electrons from atoms (PDI) is derived from a modification of the Coulomb-dipole (C-D) theory. The C-D theory applies to two-electron ejection from negative ions (photo-double detachment:PDD). The modification consists of correctly accounting for the fact that in PDI that the two escaping electrons see a Coulomb field, asymptotically no matter what their relative distances from the residual ion are. We find in the contralinear spherically symmetric model that the analytic threshold law Q(E), i.e. the yield of residual ions, to be Q Integral of (E) varies as E + (C(sub w) E(sup gamma W)) +CE(sup 5/4) sin [1/2 ln E + phi]/ln(E). The first and third terms are beyond the Wannier law. Our threshold law can only be rigorously justified for residual energies <= 10(exp -3) eV. Nevertheless in the present experimental range (0.1 - 4 eV), the form, even without the second term, can be fitted to experimental results of PDI for He, Li, and Be, in contrast to the Wannier law which has a larger deviation from the data for Li and Be.

  6. Determination of navigation FDI thresholds using a Markov model. [Failure Detection and Identification in triplex inertial platform systems for Shuttle entry

    NASA Technical Reports Server (NTRS)

    Walker, B. K.; Gai, E.

    1978-01-01

    A method for determining time-varying Failure Detection and Identification (FDI) thresholds for single sample decision functions is described in the context of a triplex system of inertial platforms. A cost function consisting of the probability of vehicle loss due to FDI decision errors is minimized. A discrete Markov model is constructed from which this cost can be determined as a function of the decision thresholds employed to detect and identify the first and second failures. Optimal thresholds are determined through the use of parameter optimization techniques. The application of this approach to threshold determination is illustrated for the Space Shuttle's inertial measurement instruments.

  7. Direct Measurement of the Bubble Nucleation Energy Threshold in a CF3I Bubble Chamber

    SciTech Connect

    Behnke, E.; Benjamin, T.; Brice, S. J.; Broemmelsiek, D.; Collar, J. I.; Cooper, P. S.; Crisler, M.; Dahl, C. E.; Fustin, D.; Hall, Jeter C.; Harnish, C.; Levine, I.; Lippincott, W. H.; Moan, T.; Nania, T.; Neilson, R.; Ramberg, E.; Robinson, A. E.; Ruschman, M.; Sonnenschein, Andrew; Vazquez-Jauregui, E.; RIvera, R. A.; Uplegger, L.

    2013-07-30

    Here, we measured the energy threshold and efficiency for bubble nucleation from iodine recoils in a CF3I bubble chamber in the energy range of interest for a dark matter search. These interactions cannot be probed by standard neutron calibration methods, so we develop a new technique by observing the elastic scattering of 12 GeV/c negative pions. The pions are tracked with a silicon pixel telescope and the reconstructed scattering angle provides a measure of the nuclear recoil kinetic energy. The bubble chamber was operated with a nominal threshold of (13.6±0.6) keV. Interpretation of the results depends on the response to fluorine and carbon recoils, but in general we find agreement with the predictions of the classical bubble-nucleation theory. Moreover, this measurement confirms the applicability of CF3I as a target for spin-independent dark matter interactions and represents a novel technique for calibration of superheated fluid detectors.

  8. Theoretical detection threshold of the proton-acoustic range verification technique

    SciTech Connect

    Ahmad, Moiz; Yousefi, Siavash; Xing, Lei; Xiang, Liangzhong

    2015-10-15

    Purpose: Range verification in proton therapy using the proton-acoustic signal induced in the Bragg peak was investigated for typical clinical scenarios. The signal generation and detection processes were simulated in order to determine the signal-to-noise limits. Methods: An analytical model was used to calculate the dose distribution and local pressure rise (per proton) for beams of different energy (100 and 160 MeV) and spot widths (1, 5, and 10 mm) in a water phantom. In this method, the acoustic waves propagating from the Bragg peak were generated by the general 3D pressure wave equation implemented using a finite element method. Various beam pulse widths (0.1–10 μs) were simulated by convolving the acoustic waves with Gaussian kernels. A realistic PZT ultrasound transducer (5 cm diameter) was simulated with a Butterworth bandpass filter with consideration of random noise based on a model of thermal noise in the transducer. The signal-to-noise ratio on a per-proton basis was calculated, determining the minimum number of protons required to generate a detectable pulse. The maximum spatial resolution of the proton-acoustic imaging modality was also estimated from the signal spectrum. Results: The calculated noise in the transducer was 12–28 mPa, depending on the transducer central frequency (70–380 kHz). The minimum number of protons detectable by the technique was on the order of 3–30 × 10{sup 6} per pulse, with 30–800 mGy dose per pulse at the Bragg peak. Wider pulses produced signal with lower acoustic frequencies, with 10 μs pulses producing signals with frequency less than 100 kHz. Conclusions: The proton-acoustic process was simulated using a realistic model and the minimal detection limit was established for proton-acoustic range validation. These limits correspond to a best case scenario with a single large detector with no losses and detector thermal noise as the sensitivity limiting factor. Our study indicated practical proton-acoustic range verification may be feasible with approximately 5 × 10{sup 6} protons/pulse and beam current.

  9. Threshold displacement energy in GaN; Ab initio molecular dynamics study

    SciTech Connect

    Xiao, H. Y.; Gao, Fei; Zu, Xiaotao T.; Weber, William J.

    2009-06-25

    Large-scale ab initio molecular dynamics method has been used to determine the threshold displacement energies, Ed, along five specific directions and to determine the defect configurations created during low energy events. The Ed shows a significant dependence on direction. The minimum Ed is determined to be 39 eV along the <-1010> direction for a gallium atom and 17.0 eV along the <-1010> direction for a nitrogen atom, which are in reasonable agreement with the experimental measurements. The average Ed values determined are 73.2 and 32.4 eV for gallium and nitrogen atoms, respectively. The N defects created at low energy events along different crystallographic directions have a similar configuration (a N-N dumbbell configuration), but various configurations for Ga defects are formed in GaN.

  10. Nonconstant ponderomotive energy in above-threshold ionization by intense short laser pulses

    NASA Astrophysics Data System (ADS)

    Della Picca, R.; Gramajo, A. A.; Garibotti, C. R.; López, S. D.; Arbó, D. G.

    2016-02-01

    We analyze the contribution of the quiver kinetic energy acquired by an electron in an oscillating electric field of a short laser pulse to the energy balance in atomic ionization processes. Due to the time dependence of this additional kinetic energy, a temporal average is assumed to preserve a stationary energy conservation rule, which is used to predict the position of the energy peaks observed in the photoelectron (PE) spectra. For a plane wave and a flattop pulse, the mean value of the quiver energy over the whole pulse leads to the concept of ponderomotive energy Up. However, for a short pulse with a fast changing intensity, the stationary approximation loses its validity. We check these concepts by studying first the PE spectrum within the semiclassical model (SCM) for multiple-step pulses. The SCM offers the possibility to establish a connection between emission times and the PE spectrum in the energy domain. We show that PE substructures stem from ionization at different times mapping the pulse envelope. We also analyze the PE spectrum for a realistic sine-squared envelope within the Coulomb-Volkov and ab initio calculations solving the time-dependent Schrödinger equation. We found that the electron emission amplitudes produced at different times interfere with each other producing, in this way, a new additional pattern that modulates the above-threshold ionization (ATI) peaks.

  11. Olfaction and Environment: Tsimane’ of Bolivian Rainforest Have Lower Threshold of Odor Detection Than Industrialized German People

    PubMed Central

    Sorokowska, Agnieszka; Sorokowski, Piotr; Hummel, Thomas; Huanca, Tomas

    2013-01-01

    Olfactory sensitivity varies between individuals. However, data regarding cross-cultural and inter-group differences are scarce. We compared the thresholds of odor detection of the traditional society of Tsimane’ (native Amazonians of the Bolivian rainforest; n = 151) and people living in Dresden (Germany; n = 286) using “Sniffin’ Sticks” threshold subtest. Tsimane’ detected n-butanol at significantly lower concentrations than the German subjects. The distribution of thresholds of the Tsimane’ was very specific, with 25% of Tsimane’ obtaining better results in the olfactory test than any member of the German group. These data suggest that differences in olfactory sensitivity seem to be especially salient between industrialized and non-industrialized populations inhabiting different environmental conditions. We hypothesize that the possible sources of such differences are: (i) the impact of pollution which impairs the olfactory abilities of people from industrialized countries; (ii) better training of olfaction because of the higher importance of smell in traditional populations; (iii) environmental pressures shaping olfactory abilities in these populations. PMID:23922693

  12. Evaluation of somatic cell count thresholds to detect subclinical mastitis in Gyr cows.

    PubMed

    dos Reis, C B Malek; Barreiro, J R; Moreno, J F G; Porcionato, M A F; Santos, M V

    2011-09-01

    The objectives of this study were (1) to determine the sensitivity (Se) and specificity (Sp) of somatic cell count (SCC) thresholds to identify subclinical mastitis in Gyr cows caused by major and minor pathogens; (2) to study the effects of month of sampling, rear or front mammary quarters, herd, intramammary infection (IMI), and bacterial species on SCC at quarter level; and (3) to describe the prevalence of IMI in Gyr cows in commercial dairy herds. In total, 221 lactating Gyr cows from 3 commercial dairy farms were selected. Milk samples were collected from individual quarters once a month for 1 yr from all lactating cows for SCC and bacteriological analysis. Mammary quarters were considered the experimental units and the SCC results were log(10)-transformed. Four SCC thresholds (100, 200, 300 and 400 × 10(3) cells/mL) were used to determine Se and Sp to identify infected mammary quarters. The overall prevalence of IMI in quarter milk samples of Gyr cows was 49.8%, and the prevalence of minor pathogens was higher (31.9%) than that of major pathogens (17.8%). Quarter samples with microbial isolation presented higher SCC compared with negative samples. Sensitivity and Sp of selected SCC thresholds varied according to the group of pathogen (major and minor) involved in the IMI definition. Sensitivity increased and Sp decreased when mammary quarters with only major pathogens isolation were considered positive. The use of a single SCC analysis to classify quarters as uninfected or infected in Gyr cows may not be a useful test for this breed because Se and Sp of SCC at the studied thresholds were low. The occurrence of IMI and the bacterial species are the main factors responsible for SCC variation in mammary quarters of Gyr cows. Milk samples with major pathogens isolation elicited higher SCC than those with minor pathogens. PMID:21854914

  13. ML-PMHT track detection threshold determination for K-distributed clutter

    NASA Astrophysics Data System (ADS)

    Schoenecker, Steven; Willett, Peter; Bar-Shalom, Yaakov

    2014-06-01

    Recentwork developed a novelmethod for determining tracking thresholds for theMaximumLikelihood ProbabilisticMulti- Hypothesis Tracker (ML-PMHT). Under certain "ideal" conditions, probability density functions (PDFs) for the peak points in the ML-PMHT log-likelihood ratio (LLR) due to just clutter measurements could be calculated. Analysis of these clutter-induced peak PDFs allowed for the calculation of tracking thresholds, which previously had to be donewith time-consumingMonte Carlo simulations. However, this work was done for a very specific case: the amplitudes of both target and cluttermeasurements followed Rayleigh distributions. The Rayleigh distribution is a very light-tailed distribution, and it can be overly optimistic in predicting that high-SNR measurements are target-originated. This work examines the case where the clutter amplitudes do not follow a Rayleigh distribution at all, but instead follow a K-distribution, which more accurately describes active acoustic clutter. This will provide a framework for determining accurate tracking thresholds for the ML-PMHT algorithm.

  14. Odor detection thresholds and enantiomeric distributions of several 4-alkyl substituted gamma-lactones in Australian red wine.

    PubMed

    Cooke Née Brown, Rachel C; van Leeuwen, Katryna A; Capone, Dimitra L; Gawel, Richard; Elsey, Gordon M; Sefton, Mark A

    2009-03-25

    The individual enantiomers of gamma-octalactone (1), gamma-nonalactone (2), gamma-decalactone (3) and gamma-dodecalactone (4) have been synthesized. The (R) series of enantiomers was prepared from L-glutamic acid by a strategy involving deamination and reduction to (S)-5-oxo-2-tetrahydrofurancarboxaldehyde (S)-7. The different length side chains were introduced by a series of Wittig reactions, varying in the choice of phosphorane used. Hydrogenation then gave the final gamma-lactones 1-4. The (S) series of enantiomers was prepared in an analogous fashion beginning with d-glutamic acid. Aroma detection thresholds for all eight enantiomers were determined in a "bag in a box" dry red wine by the application of ASTM method E 679, employing a panel of 25 members. The lowest threshold determined was 8 microg/L for (R)-dodecalactone (4) while the highest threshold was 285 microg/L for (R)-nonalactone (2). With the exception of gamma-decalactone (3) there were statistically significant differences (at the 5% level) in aroma detection thresholds between the two enantiomers of the same lactone. A stable isotope method developed for quantification of the lactones 1-4 has been extended for use with chiral phase GC (Rt-betaDEXcst capillary column) allowing quantification of the individual enantiomers. The enantiomeric distribution of gamma-octalactone (1) and gamma-nonalactone (2) in seven botrytized wines and of 2 in a total of 34 red wines were thus determined; with few exceptions, the (R) enantiomer of gamma-nonalactone (2) was found to be more prevalent than its (S) counterpart in the dry red and botrytized white wines analyzed. The same was true for gamma-octalactone (1) in the botrytized white wines. PMID:19228057

  15. Perturbative results for two- and three-particle threshold energies in finite volume

    NASA Astrophysics Data System (ADS)

    Hansen, Maxwell T.; Sharpe, Stephen R.

    2016-01-01

    We calculate the energy of the state closest to threshold for two and three identical, spinless particles confined to a cubic spatial volume with periodic boundary conditions and with zero total momentum in the finite-volume frame. The calculation is performed in relativistic quantum field theory with particles coupled via a λ ϕ4 interaction, and we work through order λ3. The energy shifts begin at O (1 /L3), and we keep subleading terms proportional to 1 /L4, 1 /L5 and 1 /L6. These terms allow a nontrivial check of the results obtained from quantization conditions that hold for arbitrary interactions, namely that of Lüscher for two particles and our recently developed formalism for three particles. We also compare to previously obtained results based on nonrelativistic quantum mechanics.

  16. {phi}-Meson Photoproduction with Linearly Polarized Photons at Threshold Energies

    SciTech Connect

    Salamanca, Julian; Cole, Philip L.

    2007-10-26

    The observables provided by linearly-polarized photons are of interest in delineating the contributions of the various hadronic processes giving rise to vector meson photoproduction. In particular, we describe how {phi}-meson production affords an incisive tool for exploring the nature of the parity exchange at threshold energies, the strangeness content of proton, as well as extracting signatures for the violation of Okubo-Zweig-Iizuka observation (OZI rule). Our goal is to study the {gamma}-vectorp{yields}{phi}p reaction, with {phi}{yields}K{sup +}K{sup -}, in the photon energy range of 1.7 to 2.1 GeV by using the Coherent Linear Bremsstrahlung Facility in Hall B of Jefferson Laboratory, Newport News, VA. The data were collected during the g8b run in the summer of 2005.

  17. Φ-Meson Photoproduction with Linearly Polarized Photons at Threshold Energies

    SciTech Connect

    Salamanca, Julian; Cole, Philip L

    2007-10-01

    The observables provided by linearly-polarized photons are of interest in delineating the contributions of the various hadronic processes giving rise to vector meson photoproduction. In particular, we describe how Φ-meson production affords an incisive tool for exploring the nature of the parity exchange at threshold energies, the strangeness content of proton, as well as extracting signatures for the violation of Okubo-Zweig-Iizuka observation (OZI rule). Our goal is to study the γp → Φp reaction, with Φ → K+K-, in the photon energy range of 1.7 to 2.1 GeV by using the Coherent Linear Bremsstrahlung Facility in Hall B of Jefferson Laboratory, Newport News, VA. The data were collected during the g8b run in the summer of 2005.

  18. Detecting Fragmentation Extinction Thresholds for Forest Understory Plant Species in Peninsular Spain

    PubMed Central

    Rueda, Marta; Moreno Saiz, Juan Carlos; Morales-Castilla, Ignacio; Albuquerque, Fabio S.; Ferrero, Mila; Rodríguez, Miguel Á.

    2015-01-01

    Ecological theory predicts that fragmentation aggravates the effects of habitat loss, yet empirical results show mixed evidences, which fail to support the theory instead reinforcing the primary importance of habitat loss. Fragmentation hypotheses have received much attention due to their potential implications for biodiversity conservation, however, animal studies have traditionally been their main focus. Here we assess variation in species sensitivity to forest amount and fragmentation and evaluate if fragmentation is related to extinction thresholds in forest understory herbs and ferns. Our expectation was that forest herbs would be more sensitive to fragmentation than ferns due to their lower dispersal capabilities. Using forest cover percentage and the proportion of this percentage occurring in the largest patch within UTM cells of 10-km resolution covering Peninsular Spain, we partitioned the effects of forest amount versus fragmentation and applied logistic regression to model occurrences of 16 species. For nine models showing robustness according to a set of quality criteria we subsequently defined two empirical fragmentation scenarios, minimum and maximum, and quantified species’ sensitivity to forest contraction with no fragmentation, and to fragmentation under constant forest cover. We finally assessed how the extinction threshold of each species (the habitat amount below which it cannot persist) varies under no and maximum fragmentation. Consistent with their preference for forest habitats probability occurrences of all species decreased as forest cover contracted. On average, herbs did not show significant sensitivity to fragmentation whereas ferns were favored. In line with theory, fragmentation yielded higher extinction thresholds for two species. For the remaining species, fragmentation had either positive or non-significant effects. We interpret these differences as reflecting species-specific traits and conclude that although forest amount is of primary importance for the persistence of understory plants, to neglect the impact of fragmentation for some species can lead them to local extinction. PMID:25978329

  19. Toward perpetual wireless networks: Opportunistic large arrays with transmission thresholds and energy harvesting

    NASA Astrophysics Data System (ADS)

    Kailas, Aravind

    Solving the key issue of sustainability of battery-powered sensors continues to attract significant research attention. The prevailing theme of this research is to address this concern using energy-efficient protocols based on a form of simple cooperative transmission (CT) called the opportunistic large arrays (OLAs), and intelligent exploitation of energy harvesting and hybrid energy storage systems (HESSs). The two key contributions of this research, namely, OLA with transmission threshold (OLA-T) and alternating OLA-T (A-OLA-T), offer an signal-to-noise ratio (SNR) advantage (i.e., benefits of diversity and array (power) gains) in a multi-path fading environment, thereby reducing transmit powers or extending range. Because these protocols do not address nodes individually, the network overhead remains constant for high density networks or nodes with mobility. During broadcasting across energy-constrained networks, while OLA-T saves energy by limiting node participation within a single broadcast, A-OLA-T optimizes over multiple broadcasts and drains the nodes in an equitable fashion. A major bottleneck for network sustainability is the ability of a rechargeable battery (RB) to store energy, which is limited by the number of charge-discharge cycles. Energy harvesting using a HESS that comprises a RB and a supercapacitor (SC) will minimize the RB usage, thereby preserving the charge-discharge cycles. Studying the HESS is important, rather than the SC-alone because while an SC with harvested energy may be sufficient for routine monitoring, if there is an alert, the RB could be used as necessary to support the heavier reporting requirements. Therefore, another key contribution of this research is the design and analysis of a novel routing metric called communications using HESS (CHESS), which extends the RB-life by relaying exclusively with SC energy.

  20. Effect of adaptive threshold filtering on ultrasonic nakagami parameter to detect variation in scatterer concentration.

    PubMed

    Tsui, Po-Hsiang; Wan, Yung-Liang; Huang, Chih-Chung; Wang, Ming-Chen

    2010-10-01

    The Nakagami parameter is associated with the Nakagami distribution estimated from ultrasonic backscattered signals and closely reflects the scatterer concentrations in tissues. There is an interest in exploring the possibility of enhancing the ability of the Nakagami parameter to characterize tissues. In this paper, we explore the effect of adaptive thresholdfiltering based on the noise-assisted empirical mode decomposition of the ultrasonic backscattered signals on the Nakagami parameter as a function of scatterer concentration for improving the Nakagami parameter performance. We carried out phantom experiments using 5 MHz focused and nonfocused transducers. Before filtering, the dynamic ranges of the Nakagami parameter, estimated using focused and nonfocused transducers between the scatterer concentrations of 2 and 32 scatterers/mm3, were 0.44 and 0.1, respectively. After filtering, the dynamic ranges of the Nakagami parameter, using the focused and nonfocused transducers, were 0.71 and 0.79, respectively. The experimental results showed that the adaptive threshold filter makes the Nakagami parameter measured by a focused transducer more sensitive to the variation in the scatterer concentration. The proposed method also endows the Nakagami parameter measured by a nonfocused transducer with the ability to differentiate various scatterer concentrations. However, the Nakagami parameters estimated by focused and nonfocused transducers after adaptive threshold filtering have different physical meanings: the former represents the statistics of signals backscattered from unresolvable scatterers while the latter is associated with stronger resolvable scatterers or local inhomogeneity due to scatterer aggregation. PMID:21213568

  1. Adaptive thresholding and dynamic windowing method for automatic centroid detection of digital Shack-Hartmann wavefront sensor

    SciTech Connect

    Yin Xiaoming; Li Xiang; Zhao Liping; Fang Zhongping

    2009-11-10

    A Shack-Hartmann wavefront sensor (SWHS) splits the incident wavefront into many subsections and transfers the distorted wavefront detection into the centroid measurement. The accuracy of the centroid measurement determines the accuracy of the SWHS. Many methods have been presented to improve the accuracy of the wavefront centroid measurement. However, most of these methods are discussed from the point of view of optics, based on the assumption that the spot intensity of the SHWS has a Gaussian distribution, which is not applicable to the digital SHWS. In this paper, we present a centroid measurement algorithm based on the adaptive thresholding and dynamic windowing method by utilizing image processing techniques for practical application of the digital SHWS in surface profile measurement. The method can detect the centroid of each focal spot precisely and robustly by eliminating the influence of various noises, such as diffraction of the digital SHWS, unevenness and instability of the light source, as well as deviation between the centroid of the focal spot and the center of the detection area. The experimental results demonstrate that the algorithm has better precision, repeatability, and stability compared with other commonly used centroid methods, such as the statistical averaging, thresholding, and windowing algorithms.

  2. Comparison of Threshold Detection Methods for the Generalized Pareto Distribution (GPD): Application to the NOAA-NCDC Daily Rainfall Dataset

    NASA Astrophysics Data System (ADS)

    Deidda, Roberto; Mamalakis, Antonis; Langousis, Andreas

    2015-04-01

    One of the most crucial issues in statistical hydrology is the estimation of extreme rainfall from data. To that extent, based on asymptotic arguments from Extreme Excess (EE) theory, several studies have focused on developing new, or improving existing methods to fit a Generalized Pareto Distribution (GPD) model to rainfall excesses above a properly selected threshold u. The latter is generally determined using various approaches that can be grouped into three basic classes: a) non-parametric methods that locate the changing point between extreme and non-extreme regions of the data, b) graphical methods where one studies the dependence of the GPD parameters (or related metrics) to the threshold level u, and c) Goodness of Fit (GoF) metrics that, for a certain level of significance, locate the lowest threshold u that a GPD model is applicable. In this work, we review representative methods for GPD threshold detection, discuss fundamental differences in their theoretical bases, and apply them to daily rainfall records from the NOAA-NCDC open-access database (http://www.ncdc.noaa.gov/oa/climate/ghcn-daily/). We find that non-parametric methods that locate the changing point between extreme and non-extreme regions of the data are generally not reliable, while graphical methods and GoF metrics that rely on limiting arguments for the upper distribution tail lead to unrealistically high thresholds u. The latter is expected, since one checks the validity of the limiting arguments rather than the applicability of a GPD distribution model. Better performance is demonstrated by graphical methods and GoF metrics that rely on GPD properties. Finally, we discuss the effects of data quantization (common in hydrologic applications) on the estimated thresholds. Acknowledgments: The research project is implemented within the framework of the Action «Supporting Postdoctoral Researchers» of the Operational Program "Education and Lifelong Learning" (Action's Beneficiary: General Secretariat for Research and Technology), and is co-financed by the European Social Fund (ESF) and the Greek State.

  3. The problem of taint in pork: 1. Detection thresholds and odour profiles of androstenone and skatole in a model system.

    PubMed

    Annor-Frempong, I E; Nute, G R; Whittington, F W; Wood, J D

    1997-05-01

    Detection thresholds of androstenone and skatole were established using a trained 10-member sensory panel. Odour profiles for these compounds were also developed using a model system comprising a lipid base spiked with synthetic androstenone and skatole. A total of 2160 presentations were used for the determination of sensory thresholds which were obtained using the Ascending Method of Limits with a 3-AFC (Alternate Forced Choice) mode of presentation. Preliminary odour profiles were obtained by three consensus-profiling sessions. Character notes developed were then validated by profiling four classes of model samples containing androstenone, skatole, a mixture of skatole plus androstenone and a mixture of skatole plus androstenone plus indole. Individual sensory thresholds for the ten panel members varied between 0.2 to 1.0 μg g(-1) for androstenone and 0.008 to 0.06 μg g(-1) for skatole, leading to group thresholds of 0.426 μg g(-1) and 0.026 μg g(-1) for androstenone and skatole, respectively. The important descriptors for the odour of androstenone included; sweaty, ammonia, dirty, parsnip, silage, nosefeel and acrid. Among these, only the sweaty note was found to be a significant (p < 0.05) basis for separating pure samples of androstenone from pure samples of skatole by the panel. The important descriptors for the odour of skatole were; mothball, musty and body reaction. Both the mothball and musty notes were a significant (p < 0.001 to p < 0.05) basis for distinguishing between either pure samples of skatole or mixtures containing skatole from pure samples of androstenone. The results show that androstenone and skatole are synergistic, but only in relation to the descriptors defining intensity of the odours, and not in those defining the character of their individual odours. PMID:22061844

  4. Does the Friel Anaerobic Threshold Test Accurately Detect Heart Rate Deflection in Trained Cyclists?

    PubMed Central

    YUEN, WILLIE K; SCHREINER, SHAD R.; HOOVER, DONALD L.; LOUDON, JANICE K.; BILLINGER, SANDRA A.

    2011-01-01

    The Friel Anaerobic Threshold Test (FATT) has been used to determine anaerobic threshold (AT). The FATT suggests AT occurs near the heart rate deflection point (HRDP) at a rating of perceived exertion (RPE) of 17. Purpose: The primary purpose of this study was to determine 1) whether the HRDP could be determined using the FATT, 2) examine differences between HRVT and HR that coincided Borg’s rating of perceived exertion (RPE) of 17, and 3) if riding position (hoods or aero) would influence performance. Methods: Fourteen male cyclists (30.4 ± 7.41years of age; 151.8 ± 60.4 cycled miles/week) participated in the study. Each subject performed the FATT on two occasions within one week. Results: The findings of this study suggest that the FATT can determine HRDP in trained cyclists while riding in the hoods position but not the aero position. No significant difference was found between the hoods and aero position for HRVT as measured by the metabolic cart. Our data suggest that HR at an RPE of 15 more accurately reflects the HRVT than the RPE of 17. A low, non-significant correlation was found for both the hoods and aero (0.41 and 0.44, respectively; p > 0.20) for the HR at RPE of 17. Conclusion: The findings of this study suggest that the FATT can determine HRDP in trained cyclists. However, HRDP was identified in the cyclists preferred riding position. When performing the FATT, HRVT at an RPE of 15 should be used to estimate VT over the suggested RPE of 17.

  5. Ab initio prediction of threshold displacement energies in ZrC

    NASA Astrophysics Data System (ADS)

    Zheng, Ming-Jie; Szlufarska, Izabela; Morgan, Dane

    2016-04-01

    The threshold displacement energies (Ed) of C and Zr atoms in ZrC have been determined using ab initio molecular dynamics simulation. The values of Ed have been predicted along the three main high-symmetry crystallographic directions [001], [011], and [111], and the averaged Ed values are 16 eV and 37 eV for the C and Si sublattices, respectively. We further explore the dependence of Ed on small deviations from these high-symmetry directions and on the presence of C vacancies, which are often encountered in ZrCx alloys. The trends in values are explained in terms of the structural and chemical properties of ZrC. The predicted Ed values provide relevant parameters for future modeling of radiation damage in ZrC.

  6. In vivo transcranial cavitation threshold detection during ultrasound-induced blood-brain barrier opening in mice.

    PubMed

    Tung, Yao-Sheng; Vlachos, Fotios; Choi, James J; Deffieux, Thomas; Selert, Kirsten; Konofagou, Elisa E

    2010-10-21

    The in vivo cavitation response associated with blood-brain barrier (BBB) opening as induced by transcranial focused ultrasound (FUS) in conjunction with microbubbles was studied in order to better identify the underlying mechanism in its noninvasive application. A cylindrically focused hydrophone, confocal with the FUS transducer, was used as a passive cavitation detector (PCD) to identify the threshold of inertial cavitation (IC) in the presence of Definity® microbubbles (mean diameter range: 1.1-3.3 µm, Lantheus Medical Imaging, MA, USA). A vessel phantom was first used to determine the reliability of the PCD prior to in vivo use. A cerebral blood vessel was simulated by generating a cylindrical channel of 610 µm in diameter inside a polyacrylamide gel and by saturating its volume with microbubbles. The microbubbles were sonicated through an excised mouse skull. Second, the same PCD setup was employed for in vivo noninvasive (i.e. transdermal and transcranial) cavitation detection during BBB opening. After the intravenous administration of Definity® microbubbles, pulsed FUS was applied (frequency: 1.525 or 1.5 MHz, peak-rarefactional pressure: 0.15-0.60 MPa, duty cycle: 20%, PRF: 10 Hz, duration: 1 min with a 30 s interval) to the right hippocampus of twenty-six (n = 26) mice in vivo through intact scalp and skull. T1 and T2-weighted MR images were used to verify the BBB opening. A spectrogram was generated at each pressure in order to detect the IC onset and duration. The threshold of BBB opening was found to be at a 0.30 MPa peak-rarefactional pressure in vivo. Both the phantom and in vivo studies indicated that the IC pressure threshold had a peak-rarefactional amplitude of 0.45 MPa. This indicated that BBB opening may not require IC at or near the threshold. Histological analysis showed that BBB opening could be induced without any cellular damage at 0.30 and 0.45 MPa. In conclusion, the cavitation response could be detected without craniotomy in mice and IC may not be required for BBB opening at relatively low pressures. PMID:20876972

  7. In vivo transcranial cavitation threshold detection during ultrasound-induced blood-brain barrier opening in mice

    NASA Astrophysics Data System (ADS)

    Tung, Yao-Sheng; Vlachos, Fotios; Choi, James J.; Deffieux, Thomas; Selert, Kirsten; Konofagou, Elisa E.

    2010-10-01

    The in vivo cavitation response associated with blood-brain barrier (BBB) opening as induced by transcranial focused ultrasound (FUS) in conjunction with microbubbles was studied in order to better identify the underlying mechanism in its noninvasive application. A cylindrically focused hydrophone, confocal with the FUS transducer, was used as a passive cavitation detector (PCD) to identify the threshold of inertial cavitation (IC) in the presence of Definity® microbubbles (mean diameter range: 1.1-3.3 µm, Lantheus Medical Imaging, MA, USA). A vessel phantom was first used to determine the reliability of the PCD prior to in vivo use. A cerebral blood vessel was simulated by generating a cylindrical channel of 610 µm in diameter inside a polyacrylamide gel and by saturating its volume with microbubbles. The microbubbles were sonicated through an excised mouse skull. Second, the same PCD setup was employed for in vivo noninvasive (i.e. transdermal and transcranial) cavitation detection during BBB opening. After the intravenous administration of Definity® microbubbles, pulsed FUS was applied (frequency: 1.525 or 1.5 MHz, peak-rarefactional pressure: 0.15-0.60 MPa, duty cycle: 20%, PRF: 10 Hz, duration: 1 min with a 30 s interval) to the right hippocampus of twenty-six (n = 26) mice in vivo through intact scalp and skull. T1 and T2-weighted MR images were used to verify the BBB opening. A spectrogram was generated at each pressure in order to detect the IC onset and duration. The threshold of BBB opening was found to be at a 0.30 MPa peak-rarefactional pressure in vivo. Both the phantom and in vivo studies indicated that the IC pressure threshold had a peak-rarefactional amplitude of 0.45 MPa. This indicated that BBB opening may not require IC at or near the threshold. Histological analysis showed that BBB opening could be induced without any cellular damage at 0.30 and 0.45 MPa. In conclusion, the cavitation response could be detected without craniotomy in mice and IC may not be required for BBB opening at relatively low pressures.

  8. Temporal variation in spectral detection thresholds of substrate and vegetation in AVIRIS images

    NASA Technical Reports Server (NTRS)

    Sabol, Donald E., Jr.; Roberts, Dar A.; Smith, Milton O.; Adams, John B.

    1992-01-01

    The ability to map changes over large surface areas over time is one of the advantages in using remote sensing as a monitoring tool. Temporal changes in the surface may be gradual, making them difficult to detect in the short-term, and because they commonly occur at the subpixel scale, they may be difficult to detect in the long-term as well. Also, subtle changes may be real or merely an artifact of image noise. It is, therefore, necessary to understand the factors that limit the detection of surface materials in evaluating temporal data. The spectral detectability of vegetation and soil in the 1990 July and October Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) data of Jasper Ridge, CA was evaluated and compared.

  9. Displacement Threshold Energy and Recovery in an Al-Ti Nanolayered System with Intrinsic Point Defect Partitioning

    SciTech Connect

    Gerboth, Matthew D.; Setyawan, Wahyu; Henager, Charles H.

    2014-01-07

    A method is established and validated using molecular dynamics (MD) to determine the displacement threshold energies as Ed in nanolayered, multilayered systems of dissimilar metals. The method is applied to specifically oriented nanolayered films of Al-Ti where the crystal structure and interface orientations are varied in atomic models and Ed is calculated. Methods for defect detection are developed and discussed based on prior research in the literature and based on specific crystallographic directions available in the nanolayered systems. These are compared and contrasted to similar calculations in corresponding bulk materials, including fcc Al, fcc Ti, hcp Al, and hcp Ti. In all cases, the calculated Ed in the multilayers are intermediate to the corresponding bulk values but exhibit some important directionality. In the nanolayer, defect detection demonstrated systematic differences in the behavior of Ed in each layer. Importantly, collision cascade damage exhibits significant defect partitioning within the Al and Ti layers that is hypothesized to be an intrinsic property of dissimilar nanolayered systems. This type of partitioning could be partly responsible for observed asymmetric radiation damage responses in many multilayered systems. In addition, a pseudo-random direction was introduced to approximate the average Ed without performing numerous simulations with random directions.

  10. Particle identification with Polyethylene Terephthalate (PET) detector with high detection threshold

    NASA Astrophysics Data System (ADS)

    Dey, S.; Maulik, A.; Raha, Sibaji; Saha, Swapan K.; Syam, D.

    2014-10-01

    In the present work we describe the results of studies, using accelerator data, to determine the accuracy with which particles can be identified and their energies determined with a commercially available polymer (PET) used as a Nuclear Track Detector (NTD). The achieved charge resolution was ± 1 . The initial energy of stopping particle in PET was determined with an accuracy of 10 % for ion energies above the Bragg peak.

  11. Proton and Electron Threshold Energy Measurements for Extravehicular Activity Space Suits. Chapter 2

    NASA Technical Reports Server (NTRS)

    Moyers, M. F.; Nelson, G. D.; Saganti, P. B.

    2003-01-01

    Construction of ISS will require more than 1000 hours of EVA. Outside of ISS during EVA, astronauts and cosmonauts are likely to be exposed to a large fluence of electrons and protons. Development of radiation protection guidelines requires the determination of the minimum energy of electrons and protons that penetrate the suits at various locations. Measurements of the water-equivalent thickness of both US. and Russian EVA suits were obtained by performing CT scans. Specific regions of interest of the suits were further evaluated using a differential range shift technique. This technique involved measuring thickness ionization curves for 6-MeV electron and 155-MeV proton beams with ionization chambers using a constant source-to-detector distance. The thicknesses were obtained by stacking polystyrene slabs immediately upstream of the detector. The thicknesses of the 50% ionizations relative to the maximum ionizations were determined. The detectors were then placed within the suit and the stack thickness adjusted until the 50% ionization was reestablished. The difference in thickness between the 50% thicknesses was then used with standard range-energy tables to determine the threshold energy for penetration. This report provides a detailed description of the experimental arrangement and results.

  12. Dynamo threshold detection in the von Kármán sodium experiment.

    PubMed

    Miralles, Sophie; Bonnefoy, Nicolas; Bourgoin, Mickael; Odier, Philippe; Pinton, Jean-François; Plihon, Nicolas; Verhille, Gautier; Boisson, Jean; Daviaud, François; Dubrulle, Bérengère

    2013-07-01

    Predicting dynamo self-generation in liquid metal experiments has been an ongoing question for many years. In contrast to simple dynamical systems for which reliable techniques have been developed, the ability to predict the dynamo capacity of a flow and the estimate of the corresponding critical value of the magnetic Reynolds number (the control parameter of the instability) has been elusive, partly due to the high level of turbulent fluctuations of flows in such experiments (with kinetic Reynolds numbers in excess of 10(6)). We address these issues here, using the von Kármán sodium experiment and studying its response to an externally applied magnetic field. We first show that a dynamo threshold can be estimated from analysis related to critical slowing down and susceptibility divergence, in configurations for which dynamo action is indeed observed. These approaches are then applied to flow configurations that have failed to self-generate magnetic fields within operational limits, and we quantify the dynamo capacity of these configurations. PMID:23944544

  13. Dynamo threshold detection in the von Kármán sodium experiment

    NASA Astrophysics Data System (ADS)

    Miralles, Sophie; Bonnefoy, Nicolas; Bourgoin, Mickael; Odier, Philippe; Pinton, Jean-François; Plihon, Nicolas; Verhille, Gautier; Boisson, Jean; Daviaud, François; Dubrulle, Bérengère

    2013-07-01

    Predicting dynamo self-generation in liquid metal experiments has been an ongoing question for many years. In contrast to simple dynamical systems for which reliable techniques have been developed, the ability to predict the dynamo capacity of a flow and the estimate of the corresponding critical value of the magnetic Reynolds number (the control parameter of the instability) has been elusive, partly due to the high level of turbulent fluctuations of flows in such experiments (with kinetic Reynolds numbers in excess of 106). We address these issues here, using the von Kármán sodium experiment and studying its response to an externally applied magnetic field. We first show that a dynamo threshold can be estimated from analysis related to critical slowing down and susceptibility divergence, in configurations for which dynamo action is indeed observed. These approaches are then applied to flow configurations that have failed to self-generate magnetic fields within operational limits, and we quantify the dynamo capacity of these configurations.

  14. Automatic threshold-setting method for iris detection for brown eyes in an eye-gaze interface system with a visible light camera

    NASA Astrophysics Data System (ADS)

    Ogata, Kohichi; Niino, Shingo

    2015-03-01

    This study describes the improvement of an eye-gaze interface system with a visible light camera. The current system detects the center of the iris from a captured eye image using image processing. During the initial stages of system use, a display window is provided to set the threshold values of the image's saturation and intensity, which is used to manually adjust the appearance of the iris region. In this study, we propose an automatic threshold setting method. The optimum threshold value for the saturation is obtained by discriminant analysis and that for the intensity is determined by finding the value that yields the same number of accumulated pixels in the detected region as threshold processing of the saturation. In our experiments with subjects with brown eyes, the automatic method obtained good threshold values in most cases. Furthermore, an adjustment function to overcome under- or over-estimated saturation threshold values is also proposed. This function provides a more robust automatic threshold setting. In experiments, we compared our automatic setting method with conventional manual techniques, which showed that the automatic method is useful for reducing the time required for threshold setting and its pointing accuracy is comparable to that of the manual approach.

  15. Threshold quantum cryptography

    SciTech Connect

    Tokunaga, Yuuki; Okamoto, Tatsuaki; Imoto, Nobuyuki

    2005-01-01

    We present the concept of threshold collaborative unitary transformation or threshold quantum cryptography, which is a kind of quantum version of threshold cryptography. Threshold quantum cryptography states that classical shared secrets are distributed to several parties and a subset of them, whose number is greater than a threshold, collaborates to compute a quantum cryptographic function, while keeping each share secretly inside each party. The shared secrets are reusable if no cheating is detected. As a concrete example of this concept, we show a distributed protocol (with threshold) of conjugate coding.

  16. Low Magnitude Detection Thresholds for Ocean-Bottom Recording Including Results on Quieting Oceanic Borehole Seismic Data.

    NASA Astrophysics Data System (ADS)

    Sutherland, F. H.; Vernon, F. L.; Orcutt, J. A.

    2002-12-01

    The Ocean Seismic Network Pilot Experiment, conducted February- June 1998, comprises earthquake data collected on 3-component seismometers from three ocean-bottom sensors, located 1) on the seafloor, 2) buried in sediment and 3) in a borehole, and from five Hawaiian Island stations. Threshold detection magnitudes for P-, S- and Rayleigh wave arrivals were calculated to compare the results. Our results show that the borehole seismometer exhibited noise levels similar to Hawaiian Island stations and produced high quality high and low frequency body and surface wave data. Shallow burial of the seismometer in the sediments had no effect on higher frequencies, but significantly reduced low frequency noise levels so that data for S and Rayleigh waves were of high quality. In fact, the buried seismometer was characterized by the lowest noise levels at very low frequencies (< 20 mHz; Collins et al., 2001). Low-frequency noise (< 40 mHz) was present on the horizontal components of the borehole instrument, and subsequent tests have found that the noise can be eliminated by placing glass beads around the sonde in the borehole. There are two possible candidates for this noise- either flow/convection in the borehole or poor clamping of the instrument to the borehole, but further testing is needed to verify. The ocean-floor seismometer was consistently noisy and the data produced were always of lower quality than any other station. Both observed magnitudes and calculated threshold magnitudes were much lower by more than an order of magnitude than those observed in previous studies using seafloor seismometers. Results for short-period body waves in particular were much better than have been previously found for any ocean-bottom recording. The borehole instrument had a P-wave detection threshold of around magnitude 4.3, and both borehole and buried instruments had S- and Rayleigh wave threshold magnitudes of around 4.0 for teleseismic earthquakes up to 60 degrees away. Reference: Collins, J.A., F.L. Vernon, J.A., Orcutt, R.A. Stephen, K.R. Peal, F.B. Wooding, F.N. Speiss, and J.A. Hildebrand., Broadband Seismology in the Oceans: Lessons from the Ocean Sesimic Network Pilot Experiment. Geophys. Res. Lett., 28, 49-52, 2001.

  17. Unconstrained Respiration Measurement and Respiratory Arrest Detection Method by Dynamic Threshold in Transferring Patients by Stretchers

    NASA Astrophysics Data System (ADS)

    Kurihara, Yosuke; Watanabe, Kajiro; Kobayashi, Kazuyuki; Tanaka, Hiroshi

    General anesthesia used for surgical operations may cause unstable conditions of the patients after the operations, which could lead to respiratory arrests. Under such circumstances, nurses could fail in finding the change of the conditions, and other malpractices could also occur. It is highly possible that such malpractices may occur while transferring a patient from ICU to the room using a stretcher. Monitoring the change in the blood oxygen saturation concentration and other vital signs to detect a respiratory arrest is not easy when transferring a patient on a stretcher. Here we present several noise reduction system and algorithm to detect respiratory arrests in transferring a patient, based on the unconstrained air pressure method that the authors presented previously. As the result, when the acceleration level of the stretcher noise was 0.5G, the respiratory arrest detection ratio using this novel method was 65%, while that with the conventional method was 0%.

  18. Why longer song elements are easier to detect: threshold level-duration functions in the Great Tit and comparison with human data.

    PubMed

    Pohl, Nina U; Slabbekoorn, Hans; Neubauer, Heinrich; Heil, Peter; Klump, Georg M; Langemann, Ulrike

    2013-03-01

    Our study estimates detection thresholds for tones of different durations and frequencies in Great Tits (Parus major) with operant procedures. We employ signals covering the duration and frequency range of communication signals of this species (40-1,010 ms; 2, 4, 6.3 kHz), and we measure threshold level-duration (TLD) function (relating threshold level to signal duration) in silence as well as under behaviorally relevant environmental noise conditions (urban noise, woodland noise). Detection thresholds decreased with increasing signal duration. Thresholds at any given duration were a function of signal frequency and were elevated in background noise, but the shape of Great Tit TLD functions was independent of signal frequency and background condition. To enable comparisons of our Great Tit data to those from other species, TLD functions were first fitted with a traditional leaky-integrator model. We then applied a probabilistic model to interpret the trade-off between signal amplitude and duration at threshold. Great Tit TLD functions exhibit features that are similar across species. The current results, however, cannot explain why Great Tits in noisy urban environments produce shorter song elements or faster songs than those in quieter woodland environments, as detection thresholds are lower for longer elements also under noisy conditions. PMID:23338560

  19. Acetic acid detection threshold in synthetic wine samples of a portable electronic nose.

    PubMed

    Macas, Miguel Macas; Manso, Antonio Garca; Orellana, Carlos Javier Garca; Velasco, Horacio Manuel Gonzlez; Caballero, Ramn Gallardo; Chamizo, Juan Carlos Peguero

    2013-01-01

    Wine quality is related to its intrinsic visual, taste, or aroma characteristics and is reflected in the price paid for that wine. One of the most important wine faults is the excessive concentration of acetic acid which can cause a wine to take on vinegar aromas and reduce its varietal character. Thereby it is very important for the wine industry to have methods, like electronic noses, for real-time monitoring the excessive concentration of acetic acid in wines. However, aroma characterization of alcoholic beverages with sensor array electronic noses is a difficult challenge due to the masking effect of ethanol. In this work, in order to detect the presence of acetic acid in synthetic wine samples (aqueous ethanol solution at 10% v/v) we use a detection unit which consists of a commercial electronic nose and a HSS32 auto sampler, in combination with a neural network classifier (MLP). To find the characteristic vector representative of the sample that we want to classify, first we select the sensors, and the section of the sensors response curves, where the probability of detecting the presence of acetic acid will be higher, and then we apply Principal Component Analysis (PCA) such that each sensor response curve is represented by the coefficients of its first principal components. Results show that the PEN3 electronic nose is able to detect and discriminate wine samples doped with acetic acid in concentrations equal or greater than 2 g/L. PMID:23262483

  20. Acetic Acid Detection Threshold in Synthetic Wine Samples of a Portable Electronic Nose

    PubMed Central

    Macías, Miguel Macías; Manso, Antonio García; Orellana, Carlos Javier García; Velasco, Horacio Manuel González; Caballero, Ramón Gallardo; Chamizo, Juan Carlos Peguero

    2013-01-01

    Wine quality is related to its intrinsic visual, taste, or aroma characteristics and is reflected in the price paid for that wine. One of the most important wine faults is the excessive concentration of acetic acid which can cause a wine to take on vinegar aromas and reduce its varietal character. Thereby it is very important for the wine industry to have methods, like electronic noses, for real-time monitoring the excessive concentration of acetic acid in wines. However, aroma characterization of alcoholic beverages with sensor array electronic noses is a difficult challenge due to the masking effect of ethanol. In this work, in order to detect the presence of acetic acid in synthetic wine samples (aqueous ethanol solution at 10% v/v) we use a detection unit which consists of a commercial electronic nose and a HSS32 auto sampler, in combination with a neural network classifier (MLP). To find the characteristic vector representative of the sample that we want to classify, first we select the sensors, and the section of the sensors response curves, where the probability of detecting the presence of acetic acid will be higher, and then we apply Principal Component Analysis (PCA) such that each sensor response curve is represented by the coefficients of its first principal components. Results show that the PEN3 electronic nose is able to detect and discriminate wine samples doped with acetic acid in concentrations equal or greater than 2 g/L. PMID:23262483

  1. Threshold energies for filamentation and spectral characteristics of supercontinuum generation in THEOS-based nanocomposite organosilicon media

    SciTech Connect

    Kul'chin, Yu N; Mayor, A Yu; Proschenko, D Yu; Chekhlenok, A A; Golik, S S; Postnova, I V; Shchipunov, Yu A; Bukin, O A

    2014-08-31

    We have experimentally determined the threshold energy for filamentation in THEOS-based hybrid silicate nanocomposite materials containing polysaccharides and hyperbranched polyglycidols and the conversion efficiency from the 800-nm femtosecond Ti : sapphire laser output to a supercontinuum in the range 420 – 700 nm. The addition of sodium hyaluronate (polysaccharide) and low concentrations of Au nanoparticles or CdS quantum dots with an average diameter of 3 – 5 nm has been shown to considerably reduce the threshold energy for filamentation and improve the laser output to supercontinuum conversion efficiency. (extreme light fields and their applications)

  2. Energy dependence of gamma detection efficiency for SED R-12

    NASA Astrophysics Data System (ADS)

    Sarkar, R.; Chatterjee, B. K.; Roy, S. C.

    2010-07-01

    Superheated emulsion detector consists of droplets of two metastable states, one with a much shorter life-time (second metastable state) than the other (normal metastable state). The SED made from R-12 (CCl 2F 2) is sensitive to gamma rays near 40 °C. Gamma detection sensitivity of superheated R-12 increases monotonically beyond this threshold temperature. The radiation induced nucleation frequency of normal superheated drops of R-12 is studied in the temperature range 45-58 °C for gamma rays of energy 59.54 and 662 keV obtained from 241Am and 137Cs sources, respectively. It is observed that the radiation induced nucleation frequency and hence the gamma detection efficiency increase with temperature and with the energy of the gamma rays.

  3. Detection of multiple corrosion thresholds in reinforced concrete structures using passive sensors

    NASA Astrophysics Data System (ADS)

    Abu-Yosef, Ali E.; Pasupathy, Praveen; Wood, Sharon L.; Neikirk, Dean P.

    2012-04-01

    This paper describes the ongoing research efforts to develop a novel class of low-cost, unpowered, wireless sensors for detecting corrosion of reinforcement in concrete structures. The sensors are powered through magnetic coupling between an external reader coil and an embedded sensor. Measured AC impedance is used to interpret the state of the embedded sensor. The sensors are envisioned to be placed during construction and interrogated as part of routine inspections. The sensor prototype incorporates a sacrificial corroding element that is placed entirely outside the sensor components and interacts with the resonant circuit by inductive coupling and shielding of the magnetic fields. As the resistance of the sacrificial element increases due to corrosion, the measured frequency response changes gradually indicating corrosion initiation within concrete. In this paper the potential for detecting multiple levels of corrosion damage is demonstrated.

  4. Modifications of the pion-production threshold in the nuclear medium in heavy ion collisions and the nuclear symmetry energy

    NASA Astrophysics Data System (ADS)

    Song, Taesoo; Ko, Che Ming

    2015-01-01

    Using the relativistic Vlasov-Uehling-Uhlenbeck (RVUU) equation based on mean fields from the nonlinear relativistic NLρ and NLρ δ models, which have same nuclear equation of state and symmetry energy but different symmetry energy slope parameters, we study the effect of medium modification of the pion-production threshold on the total pion yield and the π-/π+ ratio in Au+Au collisions. We find that the in-medium threshold effect enhances both the total pion yield and the π-/π+ ratio, compared to those without this effect. Furthermore, including the medium modification of the pion-production threshold leads to a larger π-/π+ ratio for the NLρ δ model with a larger symmetry energy parameter than the NLρ model with a smaller symmetry energy parameter, opposite to that found without the in-medium threshold effect. To reproduce the total pion yield measured by the FOPI Collaboration, we introduce a density-dependent cross section for Δ baryon production from nucleon-nucleon collisions, which suppresses the total pion yield but hardly changes the π-/π+ ratio. Because of the small difference in the stiffness of their symmetry energies, the π-/π+ ratios obtained from both the NLρ and NLρ δ models are consistent with the FOPI data within the experimental errors.

  5. Abort Trigger False Positive and False Negative Analysis Methodology for Threshold-Based Abort Detection

    NASA Technical Reports Server (NTRS)

    Melcher, Kevin J.; Cruz, Jose A.; Johnson Stephen B.; Lo, Yunnhon

    2015-01-01

    This paper describes a quantitative methodology for bounding the false positive (FP) and false negative (FN) probabilities associated with a human-rated launch vehicle abort trigger (AT) that includes sensor data qualification (SDQ). In this context, an AT is a hardware and software mechanism designed to detect the existence of a specific abort condition. Also, SDQ is an algorithmic approach used to identify sensor data suspected of being corrupt so that suspect data does not adversely affect an AT's detection capability. The FP and FN methodologies presented here were developed to support estimation of the probabilities of loss of crew and loss of mission for the Space Launch System (SLS) which is being developed by the National Aeronautics and Space Administration (NASA). The paper provides a brief overview of system health management as being an extension of control theory; and describes how ATs and the calculation of FP and FN probabilities relate to this theory. The discussion leads to a detailed presentation of the FP and FN methodology and an example showing how the FP and FN calculations are performed. This detailed presentation includes a methodology for calculating the change in FP and FN probabilities that result from including SDQ in the AT architecture. To avoid proprietary and sensitive data issues, the example incorporates a mixture of open literature and fictitious reliability data. Results presented in the paper demonstrate the effectiveness of the approach in providing quantitative estimates that bound the probability of a FP or FN abort determination.

  6. Continuation-based numerical detection of after-depolarization and spike-adding thresholds.

    PubMed

    Nowacki, Jakub; Osinga, Hinke M; Tsaneva-Atanasova, Krasimira T

    2013-04-01

    The changes in neuronal firing pattern are signatures of brain function, and it is of interest to understand how such changes evolve as a function of neuronal biophysical properties. We address this important problem by the analysis and numerical investigation of a class of mechanistic mathematical models. We focus on a hippocampal pyramidal neuron model and study the occurrence of bursting related to the after-depolarization (ADP) that follows a brief current injection. This type of burst is a transient phenomenon that is not amenable to the classical bifurcation analysis done, for example, for periodic bursting oscillators. In this letter, we show how to formulate such transient behavior as a two-point boundary value problem (2PBVP), which can be solved using well-known continuation methods. The 2PBVP is formulated such that the transient response is represented by a finite orbit segment for which onsets of ADP and additional spikes in a burst can be detected as bifurcations during a one-parameter continuation. This in turn provides us with a direct method to approximate the boundaries of regions in a two-parameter plane where certain model behavior of interest occurs. More precisely, we use two-parameter continuation of the detected onset points to identify the boundaries between regions with and without ADP and bursts with different numbers of spikes. Our 2PBVP formulation is a novel approach to parameter sensitivity analysis that can be applied to a wide range of problems. PMID:23339609

  7. Parametrization of gamma-ray production cross sections for p p interactions in a broad proton energy range from the kinematic threshold to PeV energies

    NASA Astrophysics Data System (ADS)

    Kafexhiu, Ervin; Aharonian, Felix; Taylor, Andrew M.; Vila, Gabriela S.

    2014-12-01

    Using publicly available Monte Carlo codes as well as compilation of published data on p p interactions for proton kinetic energy below 2 GeV, we parametrize the energy spectra and production rates of γ -rays by simple but quite accurate (≤20 %) analytical expressions in a broad range from the kinematic threshold to PeV energies.

  8. Robust model-based detection of the lung field boundaries in portable chest radiographs supported by selective thresholding

    NASA Astrophysics Data System (ADS)

    Iakovidis, D. K.; Savelonas, M. A.; Papamichalis, G.

    2009-10-01

    Portable chest radiography is a valuable tool for screening patients hospitalized in intensive care, providing visual cues for diagnosis and physiological measurements. However, its practicality comes at the cost of quality, which is mainly affected by misaligned body positioning, thus increasing x-ray misinterpretation rates. This paper presents a novel methodology for the detection of the lung field boundaries in portable chest radiographs of patients with bacterial pulmonary infections. Such infections are radiographically manifested as foci of consolidations which can lead to vague or invisible lung field boundaries, difficult to distinguish even by experienced physicians. Conventional and state-of-the-art approaches address mainly stationary radiographs, whereas only a few of them cope with pulmonary infections. The proposed methodology is based on an active shape model incorporating shape prior information about the lung fields. The model is initialized by a novel technique utilizing a set of salient points detected on the peripheral anatomic structures of the lungs. A selective thresholding algorithm based on a spinal cord sampling process supports both the initialization and the evolution of the model for the detection of the lung field boundaries. The experiments show that the proposed methodology outperforms state-of-the-art approaches.

  9. Threshold displacement energies in graphene and single-walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Merrill, Andrew; Cress, Cory D.; Rossi, Jamie E.; Cox, Nathanael D.; Landi, Brian J.

    2015-08-01

    The threshold displacement energy Ed has been determined for graphene and 216 different (n , m ) single-walled carbon nanotube chiralities, with 5 ≤n ≤20 and 0 ≤m ≤n , under several model conditions using classical molecular dynamics. The model conditions vary by particle (electron or carbon ion), empirical potential (two parametrizations of Tersoff [J. Tersoff, Phys. Rev. B 39, 5566 (1989), 10.1103/PhysRevB.39.5566; L. Lindsay and D. A. Broido, Phys. Rev. B 81, 205441 (2010), 10.1103/PhysRevB.81.205441] and one of Brenner et al. [D. W. Brenner, O. A. Shenderova, J. A. Harrison, S. J. Stuart, B. Ni, and S. B. Sinnott, J. Phys.: Condens. Matter 14, 783 (2002), 10.1088/0953-8984/14/4/312]), and momentum transfer direction (towards or away from the nanotube axis). For electron irradiation simulations, Ed exhibits a smoothly varying chirality dependence and a characteristic curvature influenced by the momentum transfer direction. Changing the empirical potential shifts the magnitude of Ed, but the trend is preserved for electron simulations. However, the perturbation in the knock-on dynamics introduced by the carbon ion leads to Ed trends that diverge from the equivalent electron simulation. Thus, the ion interaction has a non-negligible effect on the dynamics of the collision and leads to Ed values that can distinctly vary depending on the selected carbon nanostructure.

  10. Energy Detection Based on Undecimated Discrete Wavelet Transform and Its Application in Magnetic Anomaly Detection

    PubMed Central

    Nie, Xinhua; Pan, Zhongming; Zhang, Dasha; Zhou, Han; Chen, Min; Zhang, Wenna

    2014-01-01

    Magnetic anomaly detection (MAD) is a passive approach for detection of a ferromagnetic target, and its performance is often limited by external noises. In consideration of one major noise source is the fractal noise (or called 1/f noise) with a power spectral density of 1/fa (0energy detection method based on undecimated discrete wavelet transform (UDWT) is proposed in this paper. Firstly, the foundations of magnetic anomaly detection and UDWT are introduced in brief, while a possible detection system based on giant magneto-impedance (GMI) magnetic sensor is also given out. Then our proposed energy detection based on UDWT is described in detail, and the probabilities of false alarm and detection for given the detection threshold in theory are presented. It is noticeable that no a priori assumptions regarding the ferromagnetic target or the magnetic noise probability are necessary for our method, and different from the discrete wavelet transform (DWT), the UDWT is shift invariant. Finally, some simulations are performed and the results show that the detection performance of our proposed detector is better than that of the conventional energy detector even utilized in the Gaussian white noise, especially when the spectral parameter α is less than 1.0. In addition, a real-world experiment was done to demonstrate the advantages of the proposed method. PMID:25343484

  11. Non-human primate skull effects on the cavitation detection threshold of FUS-induced blood-brain barrier opening

    NASA Astrophysics Data System (ADS)

    Wu, Shih-Ying; Tung, Yao-Sheng; Marquet, Fabrice; Chen, Cherry C.; Konofagou, Elisa E.

    2012-11-01

    Microbubble (MB)-assisted focused ultrasound is a promising technique for delivering drugs to the brain by noninvasively and transiently opening the blood-brain barrier (BBB), and monitoring BBB opening using passive cavitation detection (PCD) is critical in detecting its occurrence, extent as well as assessing its mechanism. One of the main obstacles in achieving those objectives in large animals is the transcranial attenuation. To study the effects, the cavitation response through the in-vitro non-human primate (NHP) skull was investigated. In-house manufactured lipid-shelled MB (medium diameter: 4-5 um) were injected into a 4-mm channel of a phantom below a degassed monkey skull. A hydrophone confocally aligned with the FUS transducer served as PCD during sonication (frequency: 0.50 MHz, peak rarefactional pressures: 0.05-0.60 MPa, pulse length: 100 cycles, PRF: 10 Hz, duration: 2 s) for four cases: water without skull, water with skull, MB without skull and MB with skull. A 5.1-MHz linear-array transducer was also used to monitor the MB disruption. The frequency spectra, spectrograms, stable cavitation dose (SCD) and inertial cavitation dose (ICD) were quantified. Results showed that the onset of stable cavitation and inertial cavitation in the experiments occurred at 50 kPa, and was detectable throught the NHP skull since the both the detection thresholds for stable cavitation and inertial cavitation remained unchanged compared to the non-skull case, and the SCD and ICD acquired transcranially may not adequately represent the true extent of stable and inertial cavitation due to the skull attenuation.

  12. Visible Contrast Energy Metrics for Detection and Discrimination

    NASA Technical Reports Server (NTRS)

    Ahumada, Albert; Watson, Andrew

    2013-01-01

    Contrast energy was proposed by Watson, Robson, & Barlow as a useful metric for representing luminance contrast target stimuli because it represents the detectability of the stimulus in photon noise for an ideal observer. Like the eye, the ear is a complex transducer system, but relatively simple sound level meters are used to characterize sounds. These meters provide a range of frequency sensitivity functions and integration times depending on the intended use. We propose here the use of a range of contrast energy measures with different spatial frequency contrast sensitivity weightings, eccentricity sensitivity weightings, and temporal integration times. When detection threshold are plotting using such measures, the results show what the eye sees best when these variables are taken into account in a standard way. The suggested weighting functions revise the Standard Spatial Observer for luminance contrast detection and extend it into the near periphery. Under the assumption that the detection is limited only by internal noise, discrimination performance can be predicted by metrics based on the visible energy of the difference images

  13. Tunnel effect wave energy detection

    NASA Technical Reports Server (NTRS)

    Kaiser, William J. (Inventor); Waltman, Steven B. (Inventor); Kenny, Thomas W. (Inventor)

    1995-01-01

    Methods and apparatus for measuring gravitational and inertial forces, magnetic fields, or wave or radiant energy acting on an object or fluid in space provide an electric tunneling current through a gap between an electrode and that object or fluid in space and vary that gap with any selected one of such forces, magnetic fields, or wave or radiant energy acting on that object or fluid. These methods and apparatus sense a corresponding variation in an electric property of that gap and determine the latter force, magnetic fields, or wave or radiant energy in response to that corresponding variation, and thereby sense or measure such parameters as acceleration, position, particle mass, velocity, magnetic field strength, presence or direction, or wave or radiant energy intensity, presence or direction.

  14. Threshold Improvements in Scintillation Experiments by Photon Individuation

    NASA Astrophysics Data System (ADS)

    Pobes, C.; Amaré, J.; Borjabad, S.; Calleja, A.; García, E.; Martínez, M.; Morales, J.; de Solórzano, A. Ortiz; Puimedón, J.; Sarsa, M. L.; Villar, J. A.

    2007-08-01

    Dark matter experiments face two main challenges: low rate and low energy detection. Background reduction techniques are widely in development in order to improve sensitivity. Energy threshold is more technique-dependent and so it requires specific efforts for each detection approach. In this work we present some improvements in this line that open the possibility of further reduction in the energy threshold of scintillation experiments. Some preliminary results within the projected NaI(Tl) experiment ANAIS are reported.

  15. Energy Detection Based Estimation of Channel Occupancy Rate with Adaptive Noise Estimation

    NASA Astrophysics Data System (ADS)

    Lehtomäki, Janne J.; Vuohtoniemi, Risto; Umebayashi, Kenta; Mäkelä, Juha-Pekka

    Recently, there has been growing interest in opportunistically utilizing the 2.4GHz ISM-band. Numerous spectrum occupancy measurements covering the ISM-band have been performed to analyze the spectrum usage. However, in these campaigns the verification of the correctness of the obtained occupancy values for the highly dynamic ISM-band has not been presented. In this paper, we propose and verify channel occupancy rate (COR) estimation utilizing energy detection mechanism with a novel adaptive energy detection threshold setting method. The results are compared with the true reference COR values. Several different types of verification measurements showed that our setup can estimate the COR values of 802.11 traffic well, with negligible overestimation. The results from real-time real-life measurements also confirm that the proposed adaptive threshold setting method enables accurate thresholds even in the situations where multiple interferers are present in the received signal.

  16. Metal-cyclopentadienyl bond energies in metallocene cations measured using threshold collision-induced dissociation mass spectrometry.

    PubMed

    Rowland, Tyson G; Sztáray, Bálint; Armentrout, Peter B

    2013-02-14

    Metal-cyclopentadienyl bond dissociation energies (BDEs) were measured for seven metallocene ions (Cp(2)M(+), Cp = η(5)-cyclopentadienyl = c-C(5)H(5), M = Ti, V, Cr, Mn, Fe, Co, Ni) using threshold collision-induced dissociation (TCID) performed in a guided ion beam tandem mass spectrometer. For all seven room temperature metallocene ions, the dominant dissociation pathway is simple Cp loss from the metal. Traces of other fragment ions were also detected, such as C(10)H(10)(+), C(10)H(8)(+), C(8)H(8)(+), C(3)H(3)(+), H(2)M(+), C(3)H(3)M(+), C(6)H(6)M(+), and C(7)H(6)M(+), depending on the metal center. Statistical modeling of the Cp-loss TCID experimental data, including consideration of energy distributions, multiple collisions, and kinetic shifts, allow the extraction of 0 K [CpM(+)- Cp] BDEs. These are found to be 4.85 ± 0.15, 4.02 ± 0.14, 4.22 ± 0.13, 3.51 ± 0.12, 4.26 ± 0.15, 4.57 ± 0.15, and 3.37 ± 0.12 eV for Cp(2)Ti(+), Cp(2)V(+), Cp(2)Cr(+), Cp(2)Mn(+), Cp(2)Fe(+), Cp(2)Co(+), and Cp(2)Ni(+), respectively. The measured BDE trend is largely in line with arguments based on a simple molecular orbital picture, with the exception of the anomalous case of titanocene, most likely attributable to its bent structure. The new results presented here are compared to previous literature values and are found to provide a more complete and accurate set of thermochemistry. PMID:23215634

  17. Energy-dependent photoelectron angular distributions of two-color two-photon above threshold ionization of atomic helium

    SciTech Connect

    Haber, Louis H.; Doughty, Benjamin; Leone, Stephen R.

    2011-07-15

    Energy-dependent photoelectron angular distributions from two-color two-photon above threshold ionizations are investigated to determine the partial-wave characteristics of free-free electronic transitions in helium. Sideband photoelectron energies ranging from 0.18 to 13.0 eV are measured with different wavelengths of the perturbative infrared dressing field as well as different individually selected high-order harmonics. Using the experimentally measured cross-section ratios and anisotropy parameters together with analytical expressions derived from second-order perturbation theory, the partial-wave branching fractions going to the S and D waves in the positive and negative sidebands are determined as a function of photoelectron kinetic energy. The results provide a sensitive test for theoretical models of two-color two-photon above threshold ionization in atoms and molecules.

  18. An ultra low energy biomedical signal processing system operating at near-threshold.

    PubMed

    Hulzink, J; Konijnenburg, M; Ashouei, M; Breeschoten, A; Berset, T; Huisken, J; Stuyt, J; de Groot, H; Barat, F; David, J; Van Ginderdeuren, J

    2011-12-01

    This paper presents a voltage-scalable digital signal processing system designed for the use in a wireless sensor node (WSN) for ambulatory monitoring of biomedical signals. To fulfill the requirements of ambulatory monitoring, power consumption, which directly translates to the WSN battery lifetime and size, must be kept as low as possible. The proposed processing platform is an event-driven system with resources to run applications with different degrees of complexity in an energy-aware way. The architecture uses effective system partitioning to enable duty cycling, single instruction multiple data (SIMD) instructions, power gating, voltage scaling, multiple clock domains, multiple voltage domains, and extensive clock gating. It provides an alternative processing platform where the power and performance can be scaled to adapt to the application need. A case study on a continuous wavelet transform (CWT)-based heart-beat detection shows that the platform not only preserves the sensitivity and positive predictivity of the algorithm but also achieves the lowest energy/sample for ElectroCardioGram (ECG) heart-beat detection publicly reported today. PMID:23852552

  19. Amplitude-modulation detection by recreational-noise-exposed humans with near-normal hearing thresholds and its medium-term progression

    PubMed Central

    Stone, Michael A.; Moore, Brian C.J.

    2014-01-01

    Noise exposure can affect the functioning of cochlear inner and outer hair cells (IHC/OHC), leading to multiple perceptual changes. This work explored possible changes in detection of amplitude modulation (AM) at three Sensation Levels (SL) for carrier frequencies of 3, 4 and 6 kHz. There were two groups of participants, aged 19 to 24 (Young) and 26 to 35 (Older) years. All had near-normal audiometric thresholds. Participants self-assessed exposure to high-level noise in recreational settings. Each group was sub-grouped into low-noise (LN) or high-noise (HN) exposure. AM detection thresholds were worse for the HN than for the LN sub-group at the lowest SL, for the males only of the Young group and for both genders for the Older group, despite no significant difference in absolute threshold at 3 and 4 kHz between sub-groups. AM detection at the lowest SL, at both 3 and 4 kHz, generally improved with increasing age and increasing absolute threshold, consistent with a recruitment-like process. However, poorer AM detection was correlated with increasing exposure at 3 kHz in the Older group. It is suggested that high-level noise exposure produces both IHC- and OHC-related damage, the balance between the two varying across frequency. However, the use of AM detection offers poor sensitivity as a measure of the effects. PMID:25260433

  20. Amplitude-modulation detection by recreational-noise-exposed humans with near-normal hearing thresholds and its medium-term progression.

    PubMed

    Stone, Michael A; Moore, Brian C J

    2014-11-01

    Noise exposure can affect the functioning of cochlear inner and outer hair cells (IHC/OHC), leading to multiple perceptual changes. This work explored possible changes in detection of amplitude modulation (AM) at three Sensation Levels (SL) for carrier frequencies of 3, 4 and 6 kHz. There were two groups of participants, aged 19 to 24 (Young) and 26 to 35 (Older) years. All had near-normal audiometric thresholds. Participants self-assessed exposure to high-level noise in recreational settings. Each group was sub-grouped into low-noise (LN) or high-noise (HN) exposure. AM detection thresholds were worse for the HN than for the LN sub-group at the lowest SL, for the males only of the Young group and for both genders for the Older group, despite no significant difference in absolute threshold at 3 and 4 kHz between sub-groups. AM detection at the lowest SL, at both 3 and 4 kHz, generally improved with increasing age and increasing absolute threshold, consistent with a recruitment-like process. However, poorer AM detection was correlated with increasing exposure at 3 kHz in the Older group. It is suggested that high-level noise exposure produces both IHC- and OHC-related damage, the balance between the two varying across frequency. However, the use of AM detection offers poor sensitivity as a measure of the effects. PMID:25260433

  1. Threshold collision-induced dissociation and theoretical studies of hydrated Fe(II): binding energies and Coulombic barrier heights.

    PubMed

    Hofstetter, Theresa E; Armentrout, P B

    2013-02-14

    The first experimentally determined bond dissociation energies for losing water from Fe(2+)(H(2)O)(n) complexes, n = 4-11, are measured using threshold collision-induced dissociation (TCID) in a guided ion beam tandem mass spectrometer coupled to an electrospray ionization source that forms thermalized complexes. In this technique, absolute cross-sections for dissociation induced by collisions with Xe at systematically varied kinetic energies are obtained. After accounting for multiple collisions, kinetic shifts, and energy distributions, these cross-sections are analyzed to yield the energy thresholds for losing one, two, or three water ligands at 0 K. The 0 K threshold measurements are converted to 298 K values to give the hydration enthalpies and free energies for sequentially losing water ligands from each complex. Comparisons to previous results for hydration of Zn(2+) indicate that the bond energies are dominated by electrostatic interactions, with no obvious variations associated with the open shell of Fe(2+). Theoretical geometry optimizations and single-point energy calculations are performed using several levels of theory for comparison to experiment, with generally good agreement. In addition to water loss channels, the charge separation process generating hydrated FeOH(+) and protons is observed for multiple reactant complexes. Energies of the rate-limiting transition states are calculated at several levels of theory with density functional approaches (B3LYP and B3P86) disagreeing with MP2(full) results. Comparisons to our kinetic energy dependent cross-sections suggest that the energetics of the MP2(full) level are most accurate. PMID:22812673

  2. Multiple-Threshold Event Detection and Other Enhancements to the Virtual Seismologist (VS) Earthquake Early Warning Algorithm

    NASA Astrophysics Data System (ADS)

    Fischer, M.; Caprio, M.; Cua, G. B.; Heaton, T. H.; Clinton, J. F.; Wiemer, S.

    2009-12-01

    The Virtual Seismologist (VS) algorithm is a Bayesian approach to earthquake early warning (EEW) being implemented by the Swiss Seismological Service at ETH Zurich. The application of Bayes’ theorem in earthquake early warning states that the most probable source estimate at any given time is a combination of contributions from a likelihood function that evolves in response to incoming data from the on-going earthquake, and selected prior information, which can include factors such as network topology, the Gutenberg-Richter relationship or previously observed seismicity. The VS algorithm was one of three EEW algorithms involved in the California Integrated Seismic Network (CISN) real-time EEW testing and performance evaluation effort. Its compelling real-time performance in California over the last three years has led to its inclusion in the new USGS-funded effort to develop key components of CISN ShakeAlert, a prototype EEW system that could potentially be implemented in California. A significant portion of VS code development was supported by the SAFER EEW project in Europe. We discuss recent enhancements to the VS EEW algorithm. We developed and continue to test a multiple-threshold event detection scheme, which uses different association / location approaches depending on the peak amplitudes associated with an incoming P pick. With this scheme, an event with sufficiently high initial amplitudes can be declared on the basis of a single station, maximizing warning times for damaging events for which EEW is most relevant. Smaller, non-damaging events, which will have lower initial amplitudes, will require more picks to be declared an event to reduce false alarms. This transforms the VS codes from a regional EEW approach reliant on traditional location estimation (and it requirement of at least 4 picks as implemented by the Binder Earthworm phase associator) to a hybrid on-site/regional approach capable of providing a continuously evolving stream of EEW information starting from the first P-detection. Offline analysis on Swiss and California waveform datasets indicate that the multiple-threshold approach is faster and more reliable for larger events than the earlier version of the VS codes. This multiple-threshold approach is well-suited for implementation on a wide range of devices, from embedded processor systems installed at a seismic stations, to small autonomous networks for local warnings, to large-scale regional networks such as the CISN. In addition, we quantify the influence of systematic use of prior information and Vs30-based corrections for site amplification on VS magnitude estimation performance, and describe how components of the VS algorithm will be integrated into non-EEW standard network processing procedures at CHNet, the national broadband / strong motion network in Switzerland. These enhancements to the VS codes will be transitioned from off-line to real-time testing at CHNet in Europe in the coming months, and will be incorporated into the development of key components of CISN ShakeAlert prototype system in California.

  3. A Threshold-Minimization Scheme for Exploring the Energy Landscape of Biomolecules: Application to a Cyclic Peptide and a Disaccharide.

    PubMed

    Neelamraju, Sridhar; Johnston, Roy L; Schön, J Christian

    2016-05-10

    We present a scheme, called the threshold-minimization method, for globally exploring the energy landscapes of small systems of biomolecular interest where typical exploration moves always require a certain degree of subsequent structural relaxation in order to be efficient, e.g., systems containing small or large circular carbon chains such as cyclic peptides or carbohydrates. We show that using this threshold-minimization method we can not only reproduce the global minimum and relevant local minima but also overcome energetic barriers associated with different types of isomerism for the example of a cyclic peptide, cyclo-(Gly)4. We then apply the new method to the disaccharide α-d-glucopyranose-1-2-β-d-fructofuranose, report energetically preferred configurations and barriers to boat-chair isomerization in the glucopyranosyl ring, and discuss the energy landscape. PMID:27049524

  4. Low-frequency approximation for above-threshold ionization by a laser pulse: Low-energy forward rescattering

    NASA Astrophysics Data System (ADS)

    Milošević, D. B.

    2014-12-01

    In the context of the development of new sources of strong laser pulses in the mid-infrared region new nonperturbative methods for analysis of strong-laser-field induced or assisted atomic and molecular processes are welcome. We formulate such a theory of above-threshold ionization by a strong low-frequency laser pulse. We call this theory the low-frequency approximation (LFA). A detailed derivation of the LFA, both for short and long laser pulses, is given. As an example the LFA is applied to the analysis of recently discovered low-energy structures in the above-threshold ionization spectra of atoms ionized by long-wavelength laser pulses. It was found that these low-energy structures are caused by the forward soft recollision of the ionized electrons with the parent ion which is enhanced by the Coulomb effect.

  5. Influence of high pressure on the threshold displacement energies in silicon carbide: A Car-Parrinello molecular dynamics approach

    NASA Astrophysics Data System (ADS)

    Zhao, Shijun; Xue, Jianming; Lan, Chune; Sun, Lixin; Wang, Yugang; Yan, Sha

    2012-09-01

    The threshold displacement energies in silicon carbide under different pressures are determined with ab initio molecular dynamics. The results show that the threshold displacement energies change anisotropically in different crystallographic directions when high pressure is applied. However, the weighted average values for both the C and Si sublattice, which determine the defect production in a material under irradiation, are found to increase significantly with increasing external pressures. Besides, we have observed some new defect structures under high pressures which are not observed at ambient conditions. Our results show that irradiation under high pressures could decrease the production rate of point defects in SiC, thus greatly enhancing its resistivity against radiation damage. The combination of irradiation and high pressure technique hence provides a pathway to obtain new structure materials.

  6. A comparative analysis of a fixed thresholding vs. a classification tree approach for operational burn scar detection and mapping

    NASA Astrophysics Data System (ADS)

    Kontoes, C. C.; Poilvé, H.; Florsch, G.; Keramitsoglou, I.; Paralikidis, S.

    2009-10-01

    The scope of this paper is to demonstrate, evaluate and compare two burn scar mapping (BSM) approaches developed and applied operationally in the framework of the RISK-EOS service element project within the Global Monitoring for Environment and Security (GMES) program funded by ESA ( http://www.risk-eos.com). The first method is the BSM_NOA, a fixed thresholding method using a set of specifically designed and combined image enhancements, whilst the second one is the BSM_ITF, a decision tree classification approach based on a wide range of biophysical parameters. The two methods were deployed and compared in the framework of operational mapping conditions set by RISK-EOS standards, based either on sets of uni- or multi-temporal satellite images acquired by Landsat 5 TM and SPOT 4 HRV. The evaluation of the performance of the two methods showed that either in uni- or multi-temporal acquisition mode, the two methods reach high detection capability rates ranging from 80% to 91%. At the same time, the minimum burnt area detected was of 0.9-1.0 ha, despite the coarser spatial resolution of Landsat 5 TM sensor. Among the advantages of the satellite-based approaches compared to conventional burn scar mapping, are cost-efficiency, repeatability, flexibility, and high spatial and thematic accuracy from local to country level. Following the catastrophic fire season of 2007, burn scar maps were generated using BSM_NOA for the entirety of Greece and BSM_ITF for south France in the framework of the RISK-EOS/GMES Services Element project.

  7. Cross-matching: a modified cross-correlation underlying threshold energy model and match-based depth perception

    PubMed Central

    Doi, Takahiro; Fujita, Ichiro

    2014-01-01

    Three-dimensional visual perception requires correct matching of images projected to the left and right eyes. The matching process is faced with an ambiguity: part of one eye's image can be matched to multiple parts of the other eye's image. This stereo correspondence problem is complicated for random-dot stereograms (RDSs), because dots with an identical appearance produce numerous potential matches. Despite such complexity, human subjects can perceive a coherent depth structure. A coherent solution to the correspondence problem does not exist for anticorrelated RDSs (aRDSs), in which luminance contrast is reversed in one eye. Neurons in the visual cortex reduce disparity selectivity for aRDSs progressively along the visual processing hierarchy. A disparity-energy model followed by threshold nonlinearity (threshold energy model) can account for this reduction, providing a possible mechanism for the neural matching process. However, the essential computation underlying the threshold energy model is not clear. Here, we propose that a nonlinear modification of cross-correlation, which we term “cross-matching,” represents the essence of the threshold energy model. We placed half-wave rectification within the cross-correlation of the left-eye and right-eye images. The disparity tuning derived from cross-matching was attenuated for aRDSs. We simulated a psychometric curve as a function of graded anticorrelation (graded mixture of aRDS and normal RDS); this simulated curve reproduced the match-based psychometric function observed in human near/far discrimination. The dot density was 25% for both simulation and observation. We predicted that as the dot density increased, the performance for aRDSs should decrease below chance (i.e., reversed depth), and the level of anticorrelation that nullifies depth perception should also decrease. We suggest that cross-matching serves as a simple computation underlying the match-based disparity signals in stereoscopic depth perception. PMID:25360107

  8. Detection of negative energy: 4-dimensional examples

    NASA Astrophysics Data System (ADS)

    Davies, P. C.; Ottewill, Adrian C.

    2002-05-01

    We study the response of switched particle detectors to static negative energy densities and negative energy fluxes. It is demonstrated how the switching leads to excitation even in the vacuum and how negative energy can lead to a suppression of this excitation. We obtain quantum inequalities on the detection similar to those obtained for the energy density by Ford and co-workers and in an ``operational'' context by Helfer. We reexamine the question ``Is there a quantum equivalence principle?'' in terms of our model. Finally, we briefly address the issue of negative energy and the second law of thermodynamics.

  9. Energy sorghum biomass harvest thresholds and tillage effects on soil organic carbon and bulk density

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bioenergy feedstock production systems face many challenges, among which is the lack of guidelines on sustainable biomass harvest thresholds, and tillage cropping systems that minimize the potential cumulative effects of fresh biomass harvesting equipment-induced soil compaction. We used the ALMANAC...

  10. Resonances and threshold effects in low-energy electron collisions with methyl halides

    NASA Astrophysics Data System (ADS)

    Gallup, Gordon A.; Fabrikant, Ilya I.

    2007-03-01

    Cross sections for elastic and inelastic electron collisions with CH3X (X=Cl,Br,I) molecules are calculated. For the lowest partial wave, the resonance R -matrix theory, and for the higher partial waves, the theory of scattering by dipolar plus polarization potential, are used. It is shown that the rotationally elastic scattering amplitude for a polar molecule in the fixed-nuclei approximation is logarithmically divergent for the forward direction, and a closure formula is derived to speed up the convergence at small angles. In treating the nuclear motion, only C-X stretch vibrations are taken into account. The dipole moment as a function of the C-X distance is modeled by a function incorporating the experimental value of the molecular dipole moments at the equilibrium distance and the derivatives of the dipole moments extracted from the experimental data on infrared intensities. This is supplemented by ab initio calculations of the dipole moment function for CH3Br using the multiconfigurational valence bond method. The results for scattering cross sections show pronounced features caused by vibrational Feshbach resonances and threshold cusps. The features are most noticeable at the v=6 , 7, and 8 thresholds in CH3Cl , at the v=3 and 4 thresholds in CH3Br , and at the v=1 threshold in CH3I .

  11. High Energy Polarization of Blazars: Detection Prospects

    NASA Astrophysics Data System (ADS)

    Chakraborty, N.; Pavlidou, V.; Fields, B. D.

    2015-01-01

    Emission from blazar jets in the ultraviolet, optical, and infrared is polarized. If these low-energy photons were inverse-Compton scattered, the upscattered high-energy photons retain a fraction of the polarization. Current and future X-ray and gamma-ray polarimeters such as INTEGRAL-SPI, PoGOLITE, X-Calibur, Gamma-Ray Burst Polarimeter, GEMS-like missions, ASTRO-H, and POLARIX have the potential to discover polarized X-rays and gamma-rays from blazar jets for the first time. Detection of such polarization will open a qualitatively new window into high-energy blazar emission; actual measurements of polarization degree and angle will quantitatively test theories of jet emission mechanisms. We examine the detection prospects of blazars by these polarimetry missions using examples of 3C 279, PKS 1510-089, and 3C 454.3, bright sources with relatively high degrees of low-energy polarization. We conclude that while balloon polarimeters will be challenged to detect blazars within reasonable observational times (with X-Calibur offering the most promising prospects), space-based missions should detect the brightest blazars for polarization fractions down to a few percent. Typical flaring activity of blazars could boost the overall number of polarimetric detections by nearly a factor of five to six purely accounting for flux increase of the brightest of the comprehensive, all-sky, Fermi-LAT blazar distribution. The instantaneous increase in the number of detections is approximately a factor of two, assuming a duty cycle of 20% for every source. The detectability of particular blazars may be reduced if variations in the flux and polarization fraction are anticorrelated. Simultaneous use of variability and polarization trends could guide the selection of blazars for high-energy polarimetric observations.

  12. HIGH ENERGY POLARIZATION OF BLAZARS: DETECTION PROSPECTS

    SciTech Connect

    Chakraborty, N.; Pavlidou, V.; Fields, B. D.

    2015-01-01

    Emission from blazar jets in the ultraviolet, optical, and infrared is polarized. If these low-energy photons were inverse-Compton scattered, the upscattered high-energy photons retain a fraction of the polarization. Current and future X-ray and gamma-ray polarimeters such as INTEGRAL-SPI, PoGOLITE, X-Calibur, Gamma-Ray Burst Polarimeter, GEMS-like missions, ASTRO-H, and POLARIX have the potential to discover polarized X-rays and gamma-rays from blazar jets for the first time. Detection of such polarization will open a qualitatively new window into high-energy blazar emission; actual measurements of polarization degree and angle will quantitatively test theories of jet emission mechanisms. We examine the detection prospects of blazars by these polarimetry missions using examples of 3C 279, PKS 1510-089, and 3C 454.3, bright sources with relatively high degrees of low-energy polarization. We conclude that while balloon polarimeters will be challenged to detect blazars within reasonable observational times (with X-Calibur offering the most promising prospects), space-based missions should detect the brightest blazars for polarization fractions down to a few percent. Typical flaring activity of blazars could boost the overall number of polarimetric detections by nearly a factor of five to six purely accounting for flux increase of the brightest of the comprehensive, all-sky, Fermi-LAT blazar distribution. The instantaneous increase in the number of detections is approximately a factor of two, assuming a duty cycle of 20% for every source. The detectability of particular blazars may be reduced if variations in the flux and polarization fraction are anticorrelated. Simultaneous use of variability and polarization trends could guide the selection of blazars for high-energy polarimetric observations.

  13. Critical study of photodetachment of H- at energies up to the n=4 threshold

    NASA Astrophysics Data System (ADS)

    Tang, Jian-Zhi; Wakabayashi, Yoshihiro; Matsuzawa, Michio; Watanabe, Shinichi; Shimamura, Isao

    1994-02-01

    We apply the close-coupling method in terms of the hyperspherical coordinates to the two-electron system H-. A two-dimensional matching procedure is used to connect the close-coupling wave function to an independent-electron wave function in the asymptotic region. The latter is described as the wave function of a detached electron moving in a dipole potential field of the neutral hydrogen atom. The total phbotodetachment cross sections and the partial cross sections for the production of the H atoms in different states n are calculated up to the n=4 hydrogenic threshold. The results obtained in the length and acceleration forms agree within about three significant figures. The magnitude and shape of the 1Po shape resonance just above the n=2 threshold are found to depend sensitively on the initial-state wave function. This appears to be one of the reasons for a disparity among the cross sections in the literature. The present result improves greatly on the existing computational results. The relative magnitudes of the partial cross sections for the production of H (n=1,2,3) atoms below the n=4 threshold are substantially different from the only previous results of the eigenchannel R-matrix calculations [H. R. Sadeghpour, C. H. Greene, and M. Cavagnero, Phys. Rev. A 45, 1587 (1992)]. The present results on both partial and total cross sections are in excellent agreement with experiments.

  14. Extended performance gas Cherenkov detector for gamma-ray detection in high-energy density experiments

    SciTech Connect

    Herrmann, H. W. Kim, Y. H.; Young, C. S.; Fatherley, V. E.; Lopez, F. E.; Oertel, J. A.; Batha, S. H.; Malone, R. M.; Rubery, M. S.; Horsfield, C. J.; Stoeffl, W.; Zylstra, A. B.; Shmayda, W. T.

    2014-11-15

    A new Gas Cherenkov Detector (GCD) with low-energy threshold and high sensitivity, currently known as Super GCD (or GCD-3 at OMEGA), is being developed for use at the OMEGA Laser Facility and the National Ignition Facility (NIF). Super GCD is designed to be pressurized to ≤400 psi (absolute) and uses all metal seals to allow the use of fluorinated gases inside the target chamber. This will allow the gamma energy threshold to be run as low at 1.8 MeV with 400 psi (absolute) of C{sub 2}F{sub 6}, opening up a new portion of the gamma ray spectrum. Super GCD operating at 20 cm from TCC will be ∼400 × more efficient at detecting DT fusion gammas at 16.7 MeV than the Gamma Reaction History diagnostic at NIF (GRH-6m) when operated at their minimum thresholds.

  15. Extended performance gas Cherenkov detector for gamma-ray detection in high-energy density experimentsa)

    NASA Astrophysics Data System (ADS)

    Herrmann, H. W.; Kim, Y. H.; Young, C. S.; Fatherley, V. E.; Lopez, F. E.; Oertel, J. A.; Malone, R. M.; Rubery, M. S.; Horsfield, C. J.; Stoeffl, W.; Zylstra, A. B.; Shmayda, W. T.; Batha, S. H.

    2014-11-01

    A new Gas Cherenkov Detector (GCD) with low-energy threshold and high sensitivity, currently known as Super GCD (or GCD-3 at OMEGA), is being developed for use at the OMEGA Laser Facility and the National Ignition Facility (NIF). Super GCD is designed to be pressurized to ≤400 psi (absolute) and uses all metal seals to allow the use of fluorinated gases inside the target chamber. This will allow the gamma energy threshold to be run as low at 1.8 MeV with 400 psi (absolute) of C2F6, opening up a new portion of the gamma ray spectrum. Super GCD operating at 20 cm from TCC will be ˜400 × more efficient at detecting DT fusion gammas at 16.7 MeV than the Gamma Reaction History diagnostic at NIF (GRH-6m) when operated at their minimum thresholds.

  16. Extended performance gas Cherenkov detector for gamma-ray detection in high-energy density experiments.

    PubMed

    Herrmann, H W; Kim, Y H; Young, C S; Fatherley, V E; Lopez, F E; Oertel, J A; Malone, R M; Rubery, M S; Horsfield, C J; Stoeffl, W; Zylstra, A B; Shmayda, W T; Batha, S H

    2014-11-01

    A new Gas Cherenkov Detector (GCD) with low-energy threshold and high sensitivity, currently known as Super GCD (or GCD-3 at OMEGA), is being developed for use at the OMEGA Laser Facility and the National Ignition Facility (NIF). Super GCD is designed to be pressurized to ≤400 psi (absolute) and uses all metal seals to allow the use of fluorinated gases inside the target chamber. This will allow the gamma energy threshold to be run as low at 1.8 MeV with 400 psi (absolute) of C2F6, opening up a new portion of the gamma ray spectrum. Super GCD operating at 20 cm from TCC will be ∼400 × more efficient at detecting DT fusion gammas at 16.7 MeV than the Gamma Reaction History diagnostic at NIF (GRH-6m) when operated at their minimum thresholds. PMID:25430303

  17. 30 CFR 62.174 - Follow-up corrective measures when a standard threshold shift is detected.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., DEPARTMENT OF LABOR UNIFORM MINE HEALTH REGULATIONS OCCUPATIONAL NOISE EXPOSURE § 62.174 Follow-up corrective... determines the standard threshold shift is neither work-related nor aggravated by occupational noise...

  18. 30 CFR 62.174 - Follow-up corrective measures when a standard threshold shift is detected.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., DEPARTMENT OF LABOR UNIFORM MINE HEALTH REGULATIONS OCCUPATIONAL NOISE EXPOSURE § 62.174 Follow-up corrective... determines the standard threshold shift is neither work-related nor aggravated by occupational noise...

  19. Essays on price dynamics, discovery, and dynamic threshold effects among energy spot markets in North America

    NASA Astrophysics Data System (ADS)

    Park, Haesun

    2005-12-01

    Given the role electricity and natural gas sectors play in the North American economy, an understanding of how markets for these commodities interact is important. This dissertation independently characterizes the price dynamics of major electricity and natural gas spot markets in North America by combining directed acyclic graphs with time series analyses. Furthermore, the dissertation explores a generalization of price difference bands associated with the law of one price. Interdependencies among 11 major electricity spot markets are examined in Chapter II using a vector autoregression model. Results suggest that the relationships between the markets vary by time. Western markets are separated from the eastern markets and the Electricity Reliability Council of Texas. At longer time horizons these separations disappear. Palo Verde is the important spot market in the west for price discovery. Southwest Power Pool is the dominant market in Eastern Interconnected System for price discovery. Interdependencies among eight major natural gas spot markets are investigated using a vector error correction model and the Greedy Equivalence Search Algorithm in Chapter III. Findings suggest that the eight price series are tied together through six long-run cointegration relationships, supporting the argument that the natural gas market has developed into a single integrated market in North America since deregulation. Results indicate that price discovery tends to occur in the excess consuming regions and move to the excess producing regions. Across North America, the U.S. Midwest region, represented by the Chicago spot market, is the most important for price discovery. The Ellisburg-Leidy Hub in Pennsylvania and Malin Hub in Oregon are important for eastern and western markets. In Chapter IV, a threshold vector error correction model is applied to the natural gas markets to examine nonlinearities in adjustments to the law of one price. Results show that there are nonlinear adjustments to the law of one price in seven pair-wise markets. Four alternative cases for the law of one price are presented as a theoretical background. A methodology is developed for finding a threshold cointegration model that accounts for seasonality in the threshold levels. Results indicate that dynamic threshold effects vary depending on geographical location and whether the markets are excess producing or excess consuming markets.

  20. Within-herd prevalence thresholds for the detection of Mycobacterium avium subspecies paratuberculosis-positive dairy herds using boot swabs and liquid manure samples.

    PubMed

    Donat, K; Hahn, N; Eisenberg, T; Schlez, K; Köhler, H; Wolter, W; Rohde, M; Pützschel, R; Rösler, U; Failing, K; Zschöck, P M

    2016-01-01

    The control of Johne's disease requires the identification of Mycobacterium avium ssp. paratuberculosis (MAP)-positive herds. Boot swabs and liquid manure samples have been suggested as an easy-to-use alternative to sampling individual animals in order to diagnose subclinical Johne's disease at the herd level, but there is a need to evaluate performance of this approach in the field. Using a logistic regression model, this study aimed to calculate the threshold level of the apparent within-herd prevalence as determined by individual faecal culture, thus allowing the detection of whether a herd is MAP positive. A total of 77 boot swabs and 75 liquid manure samples were taken from 19 certified negative and 58 positive dairy herds. Faecal culture, three different polymerase chain reaction (PCR) methods and the combination of faecal culture with PCR were applied in order to detect MAP. For 50% probability of detection, a within-herd prevalence threshold of 1·5% was calculated for testing both matrices simultaneously by faecal culture and PCR, with the threshold increased to 4·0% for 90% probability of detection. The results encourage the use of boot swabs or liquid manure samples, or a combination both, for identifying MAP-positive herds and, to a certain extent, for monitoring certified Johne's disease-negative cattle herds. PMID:26112878

  1. Fast neutron detection efficiency of ATLAS-MPX detectors for the evaluation of average neutron energy in mixed radiation fields

    NASA Astrophysics Data System (ADS)

    Bouchami, J.; Gutiérrez, A.; Holý, T.; Král, V.; Lebel, C.; Leroy, C.; Macana, J.; Pospíšil, S.; Scallon, O.; Suk, M.; Tartare, M.; Teyssier, C.; Vykydal, Z.; Žemlička, J.

    2011-05-01

    Within the framework of the ATLAS-MPX project, the ATLAS-MPX detectors (based on Medipix2 silicon devices) are covered with converting layers of 6LiF and polyethylene (PE) to make them sensitive to thermal and fast neutrons, respectively. Two ATLAS-MPX reference detectors were exposed to two calibrated neutron sources, 252Cf (2.2 MeV mean neutron energy) and 241AmBe (4.08 MeV mean neutron energy), in order to determine their fast neutron detection efficiency. Measurements were performed at low energy threshold (˜8 keV) and high energy threshold (˜230 keV). Fast neutron detection efficiency is primarily achieved via the use of a 1.3 mm thick polyethylene (PE) converter. Recoil protons from the elastic collision between neutron and hydrogen are detected from their tracks in the 300 μm thick silicon pixel detector. Calibrated neutron sources were placed at different distances from the detectors, both separately and simultaneously in order to obtain single and superposed neutron energy spectra. As expected, the neutron detection efficiency in the PE layer increases when the neutron mean energy increases due to the decrease of proton self-absorption in the PE converter itself. The variation of the cluster size as a function of the proton and alpha energy (at low energy threshold) was also studied for better understanding of the neutron response using the PE converter. The determination of the ratio of the fast neutron responses in each detector region at high energy threshold made it possible to establish a relation between the ratios and the mean neutron energy. At low energy threshold, a relation between the neutron energy spectrum and the cluster size distribution of heavy charged particles has been established.

  2. Mass analyzed threshold ionization of phenolṡCO: Intermolecular binding energies of a hydrogen-bonded complex

    NASA Astrophysics Data System (ADS)

    Haines, Stephen R.; Dessent, Caroline E. H.; Müller-Dethlefs, Klaus

    1999-08-01

    [PhenolṡCO]+ was studied using a combination of two-color resonant zero kinetic energy (ZEKE) spectroscopy and mass analyzed threshold ionization (MATI) spectroscopy to investigate the interaction of the CO ligand with a hydrogen-bonding cation. Vibrational progressions were observed in three intermolecular modes, the in-plane bend (42 cm-1), stretch (130 cm-1), and in-plane wag (160 cm-1), and are consistent with a planar hydrogen-bonded structure where the CO bonds through the carbon atom to the phenol OH group. Dissociation energies for the S0, S1, and D0 states were determined as 659±20, 849±20, and 2425±10 cm-1, respectively. The cationic and neutral dissociation energies of the phenolṡCO complex are considerably stronger than those of phenolṡN2, demonstrating the extent to which the larger quadrupole of CO affects the strength of binding.

  3. Application of supervised range-constrained thresholding to extract lung pleura for automated detection of pleural thickenings from thoracic CT images

    NASA Astrophysics Data System (ADS)

    Chaisaowong, K.; Knepper, A.; Kraus, T.; Aach, T.

    2007-03-01

    We develop an image analysis system to automatically detect pleural thickenings and assess their characteristic values from patients' thoracic spiral CT images. Algorithms are described to carry out the segmentation of pleural contours and to find the pleural thickenings. The method of thresholding was selected as the technique to separate lung's tissue from other. Instead thresholding based only on empirical considerations, the so-called "supervised range-constrained thresholding" is applied. The automatic detection of pleural thickenings is carried out based on the examination of its concavity and on the characteristic Hounsfield unit of tumorous tissue. After detection of pleural thickenings, in order to assess their growth rate, a spline-based interpolation technique is used to create a model of healthy pleura. Based on this healthy model, the size of the pleural thickenings is calculated. In conjunction with the spatio-temporal matching of CT images acquired at different times, the oncopathological assessment of morbidity can be documented. A graphical user interface is provided which is also equipped with 3D visualization of the pleura. Our overall aim is to develop an image analysis system for an efficient and reliable diagnosis of early stage pleural mesothelioma in order to ease the consequences of the expected peak of malignant pleural mesothelioma caused by asbestos exposure.

  4. Estimation of signal coherence threshold and concealed spectral lines applied to detection of turbofan engine combustion noise.

    PubMed

    Miles, Jeffrey Hilton

    2011-05-01

    Combustion noise from turbofan engines has become important, as the noise from sources like the fan and jet are reduced. An aligned and un-aligned coherence technique has been developed to determine a threshold level for the coherence and thereby help to separate the coherent combustion noise source from other noise sources measured with far-field microphones. This method is compared with a statistics based coherence threshold estimation method. In addition, the un-aligned coherence procedure at the same time also reveals periodicities, spectral lines, and undamped sinusoids hidden by broadband turbofan engine noise. In calculating the coherence threshold using a statistical method, one may use either the number of independent records or a larger number corresponding to the number of overlapped records used to create the average. Using data from a turbofan engine and a simulation this paper shows that applying the Fisher z-transform to the un-aligned coherence can aid in making the proper selection of samples and produce a reasonable statistics based coherence threshold. Examples are presented showing that the underlying tonal and coherent broad band structure which is buried under random broadband noise and jet noise can be determined. The method also shows the possible presence of indirect combustion noise. PMID:21568410

  5. Estimation of Signal Coherence Threshold and Concealed Spectral Lines Applied to Detection of Turbofan Engine Combustion Noise

    NASA Technical Reports Server (NTRS)

    Miles, Jeffrey Hilton

    2010-01-01

    Combustion noise from turbofan engines has become important, as the noise from sources like the fan and jet are reduced. An aligned and un-aligned coherence technique has been developed to determine a threshold level for the coherence and thereby help to separate the coherent combustion noise source from other noise sources measured with far-field microphones. This method is compared with a statistics based coherence threshold estimation method. In addition, the un-aligned coherence procedure at the same time also reveals periodicities, spectral lines, and undamped sinusoids hidden by broadband turbofan engine noise. In calculating the coherence threshold using a statistical method, one may use either the number of independent records or a larger number corresponding to the number of overlapped records used to create the average. Using data from a turbofan engine and a simulation this paper shows that applying the Fisher z-transform to the un-aligned coherence can aid in making the proper selection of samples and produce a reasonable statistics based coherence threshold. Examples are presented showing that the underlying tonal and coherent broad band structure which is buried under random broadband noise and jet noise can be determined. The method also shows the possible presence of indirect combustion noise. Copyright 2011 Acoustical Society of America. This article may be downloaded for personal use only. Any other use requires prior permission of the author and the Acoustical Society of America.

  6. Detection and classification of alarm threshold violations in condition monitoring systems working in highly varying operational conditions

    NASA Astrophysics Data System (ADS)

    Strączkiewicz, M.; Barszcz, T.; Jabłoński, A.

    2015-07-01

    All commonly used condition monitoring systems (CMS) enable defining alarm thresholds that enhance efficient surveillance and maintenance of dynamic state of machinery. The thresholds are imposed on the measured values such as vibration-based indicators, temperature, pressure, etc. For complex machinery such as wind turbine (WT) the total number of thresholds might be counted in hundreds multiplied by the number of operational states. All the parameters vary not only due to possible machinery malfunctions, but also due to changes in operating conditions and these changes are typically much stronger than the former ones. Very often, such a behavior may lead to hundreds of false alarms. Therefore, authors propose a novel approach based on parameterized description of the threshold violation. For this purpose the novelty and severity factors are introduced. The first parameter refers to the time of violation occurrence while the second one describes the impact of the indicator-increase to the entire machine. Such approach increases reliability of the CMS by providing the operator with the most useful information of the system events. The idea of the procedure is presented on a simulated data similar to those from a wind turbine.

  7. Scaling of the low-energy structure in above-threshold ionization in the tunneling regime: theory and experiment.

    PubMed

    Guo, L; Han, S S; Liu, X; Cheng, Y; Xu, Z Z; Fan, J; Chen, J; Chen, S G; Becker, W; Blaga, C I; DiChiara, A D; Sistrunk, E; Agostini, P; DiMauro, L F

    2013-01-01

    A calculation of the second-order (rescattering) term in the S-matrix expansion of above-threshold ionization is presented for the case when the binding potential is the unscreened Coulomb potential. Technical problems related to the divergence of the Coulomb scattering amplitude are avoided in the theory by considering the depletion of the atomic ground state due to the applied laser field, which is well defined and does not require the introduction of a screening constant. We focus on the low-energy structure, which was observed in recent experiments with a midinfrared wavelength laser field. Both the spectra and, in particular, the observed scaling versus the Keldysh parameter and the ponderomotive energy are reproduced. The theory provides evidence that the origin of the structure lies in the long-range Coulomb interaction. PMID:23383786

  8. Maintenance energy requirements of odor detection, explosive detection and human detection working dogs.

    PubMed

    Mullis, Rebecca A; Witzel, Angela L; Price, Joshua

    2015-01-01

    Despite their important role in security, little is known about the energy requirements of working dogs such as odor, explosive and human detection dogs. Previous researchers have evaluated the energy requirements of individual canine breeds as well as dogs in exercise roles such as sprint racing. This study is the first to evaluate the energy requirements of working dogs trained in odor, explosive and human detection. This retrospective study evaluated twenty adult dogs who maintained consistent body weights over a six month period. During this time, the average energy consumption was [Formula: see text] or two times the calculated resting energy requirement ([Formula: see text]). No statistical differences were found between breeds, age or sex, but a statistically significant association (p = 0.0033, R-square = 0.0854) was seen between the number of searches a dog performs and their energy requirement. Based on this study's population, it appears that working dogs have maintenance energy requirements similar to the 1974 National Research Council's (NRC) maintenance energy requirement of [Formula: see text] (National Research Council (NRC), 1974) and the [Formula: see text] reported for young laboratory beagles (Rainbird & Kienzle, 1990). Additional research is needed to determine if these data can be applied to all odor, explosive and human detection dogs and to determine if other types of working dogs (tracking, search and rescue etc.) have similar energy requirements. PMID:25755919

  9. Detecting Energy Modulation in a Dielectric Laser Accelerator

    SciTech Connect

    Lukaczyk, Louis

    2015-08-21

    The Dielectric Laser Acceleration group at SLAC uses micro-fabricated dielectric grating structures and conventional infrared lasers to accelerator electrons. These structures have been estimated to produce an accelerating gradient up to 2 orders of magnitude greater than that produced by conventional RF accelerators. The success of the experiment depends on both the laser damage threshold of the structure and the timing overlap of femtosecond duration laser pulses with the electron bunch. In recent dielectric laser acceleration experiments, the laser pulse was shorter both temporally and spatially than the electron bunch. As a result, the laser is theorized to have interacted with only a small portion of the electron bunch. The detection of this phenomenon, referred to as partial population modulation, required a new approach to the data analysis of the electron energy spectra. A fitting function was designed to separate the accelerated electron population from the un-accelerated electron population. The approach was unsuccessful in detecting acceleration in the partial population modulation data. However, the fitting functions provide an excellent figure of merit for previous data known to contain signatures of acceleration.

  10. Lowered threshold energy for femtosecond laser induced optical breakdown in a water based eye model by aberration correction with adaptive optics

    PubMed Central

    Hansen, Anja; Géneaux, Romain; Günther, Axel; Krüger, Alexander; Ripken, Tammo

    2013-01-01

    In femtosecond laser ophthalmic surgery tissue dissection is achieved by photodisruption based on laser induced optical breakdown. In order to minimize collateral damage to the eye laser surgery systems should be optimized towards the lowest possible energy threshold for photodisruption. However, optical aberrations of the eye and the laser system distort the irradiance distribution from an ideal profile which causes a rise in breakdown threshold energy even if great care is taken to minimize the aberrations of the system during design and alignment. In this study we used a water chamber with an achromatic focusing lens and a scattering sample as eye model and determined breakdown threshold in single pulse plasma transmission loss measurements. Due to aberrations, the precise lower limit for breakdown threshold irradiance in water is still unknown. Here we show that the threshold energy can be substantially reduced when using adaptive optics to improve the irradiance distribution by spatial beam shaping. We found that for initial aberrations with a root-mean-square wave front error of only one third of the wavelength the threshold energy can still be reduced by a factor of three if the aberrations are corrected to the diffraction limit by adaptive optics. The transmitted pulse energy is reduced by 17% at twice the threshold. Furthermore, the gas bubble motions after breakdown for pulse trains at 5 kilohertz repetition rate show a more transverse direction in the corrected case compared to the more spherical distribution without correction. Our results demonstrate how both applied and transmitted pulse energy could be reduced during ophthalmic surgery when correcting for aberrations. As a consequence, the risk of retinal damage by transmitted energy and the extent of collateral damage to the focal volume could be minimized accordingly when using adaptive optics in fs-laser surgery. PMID:23761849

  11. Lowered threshold energy for femtosecond laser induced optical breakdown in a water based eye model by aberration correction with adaptive optics.

    PubMed

    Hansen, Anja; Géneaux, Romain; Günther, Axel; Krüger, Alexander; Ripken, Tammo

    2013-06-01

    In femtosecond laser ophthalmic surgery tissue dissection is achieved by photodisruption based on laser induced optical breakdown. In order to minimize collateral damage to the eye laser surgery systems should be optimized towards the lowest possible energy threshold for photodisruption. However, optical aberrations of the eye and the laser system distort the irradiance distribution from an ideal profile which causes a rise in breakdown threshold energy even if great care is taken to minimize the aberrations of the system during design and alignment. In this study we used a water chamber with an achromatic focusing lens and a scattering sample as eye model and determined breakdown threshold in single pulse plasma transmission loss measurements. Due to aberrations, the precise lower limit for breakdown threshold irradiance in water is still unknown. Here we show that the threshold energy can be substantially reduced when using adaptive optics to improve the irradiance distribution by spatial beam shaping. We found that for initial aberrations with a root-mean-square wave front error of only one third of the wavelength the threshold energy can still be reduced by a factor of three if the aberrations are corrected to the diffraction limit by adaptive optics. The transmitted pulse energy is reduced by 17% at twice the threshold. Furthermore, the gas bubble motions after breakdown for pulse trains at 5 kilohertz repetition rate show a more transverse direction in the corrected case compared to the more spherical distribution without correction. Our results demonstrate how both applied and transmitted pulse energy could be reduced during ophthalmic surgery when correcting for aberrations. As a consequence, the risk of retinal damage by transmitted energy and the extent of collateral damage to the focal volume could be minimized accordingly when using adaptive optics in fs-laser surgery. PMID:23761849

  12. Threshold dissociation energies of protonated amine/polyether complexes in a quadrupole ion trap.

    PubMed

    David, Wendi M; Brodbelt, Jennifer S

    2003-04-01

    Electrospray ionization mass spectrometry (ESI-MS) is increasingly used to probe the nature of noncovalent complexes; however, assessing the relevance of gas-phase results to structures of complexes in solution requires knowledge of the types of interactions that are maintained in a solventless environment and how these might compare to key interactions in solution. This study addresses the factors impacting the strength of hydrogen bonding noncovalent interactions in the gas phase. Hydrogen bonded complexes consisting of ammonium ions bound to polydentate ethers are transported to the gas phase with ESI, and energy-variable collisional activated dissociation (CAD) is used to map the relative dissociation energies. The measured relative dissociation energies are correlated with the gas-phase basicities and steric factors of the amine and polyether constituents. To develop correlations between hydrogen bonding strength and structural features of the donor and acceptor molecules, a variety of amines with different gas-phase basicities and structures were selected, including primary, secondary, and tertiary amines, as well as those that are bidentate to promote intramolecular hydrogen bonding. The acceptor molecules are polydentate ethers, such as 18-crown-6. Four primary factors influence the observed dissociation energies of the polyether/ammonium ion complexes: the gas-phase basicities of the polyether and amine, steric effects of the amines, conformational flexibility of the polyethers, and the inhibition of intramolecular hydrogen bonds of the guest ammonium ions in the resulting ammonium/polyether noncovalent complexes. PMID:12686485

  13. s-wave threshold in electron attachment - Observations and cross sections in CCl4 and SF6 at ultralow electron energies

    NASA Technical Reports Server (NTRS)

    Chutjian, A.; Alajajian, S. H.

    1985-01-01

    The threshold photoionization method was used to study low-energy electron attachment phenomena in and cross sections of CCl4 and SF6 compounds, which have applications in the design of gaseous dielectrics and diffuse discharge opening switches. Measurements were made at electron energies from below threshold to 140 meV at resolutions of 6 and 8 meV. A narrow resolution-limited structure was observed in electron attachment to CCl4 and SF6 at electron energies below 10 meV, which is attributed to the divergence of the attachment cross section in the limit epsilon, l approaches zero. The results are compared with experimental collisional-ionization results, electron-swarm unfolded cross sections, and earlier threshold photoionization data.

  14. Detection of the Lactate Threshold in Runners: What is the Ideal Speed to Start an Incremental Test?

    PubMed Central

    Dantas, José Luiz; Doria, Christian

    2015-01-01

    Incremental tests on a treadmill are used to evaluate endurance athletes; however, no criterion exists to determine the intensity at which to start the test, potentially causing the loss of the first lactate threshold. This study aimed to determine the ideal speed for runners to start incremental treadmill tests. The study consisted of 94 runners who self-reported the average speed from their last competitive race (10–42.195 km) and performed an incremental test on a treadmill. The speeds used during the first three test stages were normalised in percentages of average competition speed and blood lactate concentration was analysed at the end of each stage. The relationship between speed in each stage and blood lactate concentration was analysed. In the first stage, at an intensity corresponding to 70% of the reported average race speed, only one volunteer had blood lactate concentration equal to 2 mmol·L−1, and in the third stage (90% of the average race speed) the majority of the volunteers had blood lactate concentration ≥2 mmol·L−1. Our results demonstrated that 70% of the average speed from the subject’s last competitive race – from 10 to 42.195 km – was the best option for obtaining blood lactate concentration <2 mmol·L−1 in the first stage, however, 80% of the average speed in marathons may be a possibility. Evaluators can use 70% of the average speed in competitive races as a strategy to ensure that the aerobic threshold intensity is not achieved during the first stage of incremental treadmill tests. PMID:25964824

  15. Using atom interferometry to detect dark energy

    NASA Astrophysics Data System (ADS)

    Burrage, Clare; Copeland, Edmund J.

    2016-04-01

    We review the tantalising prospect that the first evidence for the dark energy driving the observed acceleration of the Universe on giga-parsec scales may be found through metre scale laboratory based atom interferometry experiments. To do that, we first introduce the idea that scalar fields could be responsible for dark energy and show that in order to be compatible with fifth force constraints these fields must have a screening mechanism which hides their effects from us within the solar system. Particular emphasis is placed on one such screening mechanism known as the chameleon effect where the field's mass becomes dependent on the environment. The way the field behaves in the presence of a spherical source is determined and we then go on to show how in the presence of the kind of high vacuum associated with atom interferometry experiments, and when the test particle is an atom, it is possible to use the associated interference pattern to place constraints on the acceleration due to the fifth force of the chameleon field - this has already been used to rule out large regions of the chameleon parameter space and maybe one day will be able to detect the force due to the dark energy field in the laboratory.

  16. A Comparison of Two Star Forming Regions: Probing the Energy Threshold of Triggered Star Formation

    NASA Astrophysics Data System (ADS)

    Alexander, Michael J.; Kobulnicky, H. A.; Kerton, C. R.

    2013-01-01

    Massive stars are believed to have a profound effect on star formation. Stellar winds and ionizing radiation, collectively known as feedback, sculpt the interstellar medium and theories and observations suggest that stellar feedback may trigger waves of star formation as it carves into molecular clouds. There is also conflicting evidence to suggest that stellar feedback has no effect or can even suppress star formation. In order to test the effects of stellar feedback, I chose two star forming regions in the Galactic plane of different feedback energy, G38.9-0.4 and G23.6+0.1. G38.9-0.4 hosts a series of IR-bright bubbles each blown by single late-O or early-B star, while G23.6+0.1 consists of two conjoined bubbles with a handful of O stars between them. If triggering enhances star formation, then one may expect to find more young stellar objects (YSOs) for a given amount of gas when compared to a region of spontaneous star formation. In order to test this, I examined the relation between the YSO mass surface density and the gas mass surface density. While there is a power-law correlation between YSO mass surface density and gas mass surface density, there is little difference between spontaneous and potentially-triggered regions. Initial results suggest that YSO distribution patterns may be more sensitive to the initial structure of molecular clouds than to structures created by stellar feedback. Furthermore, triggered star formation may become insignificant at the feedback energy produced by an O9.5V star (N_Lyc<10^47.88, L_wind < 10^32.34 erg s^-1) and below. During this investigation, I found an apparent cluster of stars deeply embedded in molecular gas. Further study revealed a total of 18 ultracompact embedded clusters (UCECs) spread throughout the northern Galactic plane. These clusters are characterized by bright, point-like mid-IR emission from the Spitzer Space Telescope, but are actually composed of small clusters as revealed by the higher resolution UKIDSS near-IR survey. UCECs, embedded in up to 300 solar masses of molecular gas, may evolve into small clusters resembling those around Herbig Ae/Be stars and are interesting laboratories for studying the earliest phases of cluster evolution.

  17. Low energy threshold analysis of the phase I and phase II data sets of the Sudbury neutrino observatory

    SciTech Connect

    Seibert, S R; Hime, A; Elliott, S R; Rielage, K

    2009-01-01

    Results are reported from a joint analysis of Phase I and Phase II data from the Sudbury Neutrino Observatory. The effective electron kinetic energy threshold used is T{sub eff} = 3.5 MeV, the lowest analysis threshold yet achieved with water Cherenkov detector data. In units of 10{sup 6} cm{sup -2} s{sup =1}, the total flux of active-flavor neutrinos from {sup 8}B decay in the Sun measured using the neutral current (NC) reaction of neutrinos on deuterons, with no constraint on the {sup 8}B neutrino energy spectrum, is found to be {Phi}{sub NC} = 5.140{sub -0.158}{sup +0.160}(stat){sub -0.117}{sup +0.132}(syst). These uncertainties are more than a factor of two smaller than previously published results. Also presented are the spectra of recoil electrons from the charged current reaction of neutrinos on deuterons and the elastic scattering of electrons. A fit to the SNO data in which the free parameters directly describe the total {sup 8}B neutrino flux and the energy-dependent Ve survival probability provides a measure of the total {sup 8}B neutrino flux {Phi}{sub 8{sub B}} = 5.046{sub -0.152}{sup +0.159}(stat){sub -0.123}{sup +0.107}(syst). Combining these new results with results of all other solar experiments and the KamLAND reactor experiment yields best-fit values of the mixing parameters of {theta}{sub 12} = 34.06{sub -0.84}{sup +1.16} degrees and {Delta}m{sub 21}{sup 2} = 7.59{sub -0.21}{sup +0.20} x 10{sup -5} eV{sup 2}. The global value of {Phi}{sub 8{sub B}} is extracted to a precision of {sub -2.95}{sup +2.38}%. In a three-flavor analysis the best fit value of sin{sup 2} {theta}{sub 13} is 2.00{sub -1.63}{sup +2.09} x 10{sup -2}. Interpreting this as a limit implies an upper bound of sin{sup 2} {theta}{sub 13} < 0.057 (95% C. L.).

  18. Assimilation of Chinese Fengyun-3B Microwave Temperature Sounder radiances into the Global GRAPES system with an improved cloud detection threshold

    NASA Astrophysics Data System (ADS)

    Li, Juan; Liu, Guiqing

    2016-03-01

    Fengyun-3B (FY-3B) is the second polar-orbiting satellite in the new Fengyun-three series. This paper describes the assimilation of the FY-3B Microwave Temperature Sounder (MWTS) radiances in the Chinese Numerical Weather prediction system — the Global and Regional Assimilation and PrEdiction System (GRAPES). A quality control procedure for the assimilation of the FY-3B MWTS radiance was proposed. Extensive monitoring before assimilation shows that the observations of channel 4 are notably contaminated. Channels 2 and 3 are used in this research. A cloud detection algorithm with an improved cloud-detection threshold is determined and incorporated into the impact experiments. The clear field-of-view (FOV) percentage increased from 42% to 57% with the new threshold. In addition, the newly added FOVs are located in the clear region, as demonstrated by the cloud liquid water path data from NOAA-18. The impact of the MWTS radiances on the prediction of GRAPES was researched. The observation biases of FY-3B MWTS O-B (differences between satellite observations and model simulations) significantly decreased after an empirical bias correction procedure. After assimilation, the residual biases are small. The assimilation of the FY-3B MWTS radiances shows a positive impact in the Northern Hemisphere and a neutral impact in the Southern Hemisphere.

  19. The energy ratio mapping algorithm: a tool to improve the energy-based detection of odontocete echolocation clicks.

    PubMed

    Klinck, Holger; Mellinger, David K

    2011-04-01

    The energy ratio mapping algorithm (ERMA) was developed to improve the performance of energy-based detection of odontocete echolocation clicks, especially for application in environments with limited computational power and energy such as acoustic gliders. ERMA systematically evaluates many frequency bands for energy ratio-based detection of echolocation clicks produced by a target species in the presence of the species mix in a given geographic area. To evaluate the performance of ERMA, a Teager-Kaiser energy operator was applied to the series of energy ratios as derived by ERMA. A noise-adaptive threshold was then applied to the Teager-Kaiser function to identify clicks in data sets. The method was tested for detecting clicks of Blainville's beaked whales while rejecting echolocation clicks of Risso's dolphins and pilot whales. Results showed that the ERMA-based detector correctly identified 81.6% of the beaked whale clicks in an extended evaluation data set. Average false-positive detection rate was 6.3% (3.4% for Risso's dolphins and 2.9% for pilot whales). PMID:21476637

  20. In-medium and isospin effects on particle production near threshold energies in heavy-ion collisions

    NASA Astrophysics Data System (ADS)

    Feng, Zhao-Qing; Xie, Wen-Jie; Chen, Peng-Hui; Chen, Jie; Jin, Gen-Ming

    2015-10-01

    Dynamics of pseudoscalar mesons (π ,η ,K , and K ¯) and hyperons (Λ and Σ ) produced in heavy-ion collisions near threshold energies has been investigated within the Lanzhou quantum molecular dynamics transport model. The in-medium modifications on particle production in dense nuclear matter are implemented in the model through corrections on the elementary cross sections and by inclusion of the meson-nucleon (or hyperon-nucleon) potentials, in which the isospin effects are considered. It is found that the transportation of particles are influenced with the in-medium corrections. The total number of pions is reduced with an isospin-, density-, and momentum-dependent pion-nucleon potential. However, the ratios of charged pions is enhanced with inclusion of the potential. The production of eta in the domain of midrapidities and high momenta is sensitive to the η -nucleon potential but weakly depends on symmetry energy. The attractive antikaon-nucleon potential enhances the subthreshold K ¯ production and also influences the structure of phase-space distributions. The dynamics of etas, kaons, antikaons, and hyperons is also influenced by the pion potential because of collisions between pions and nucleons (resonances). The impacts of mean-field potentials on particle dynamics are investigated, such as the phase-space distributions from rapidity and transverse momentum spectra, inclusive invariant spectra, collective flows, etc.

  1. Spatial Discrimination Threshold Abnormalities are not Detected in a Pilot Study of DYT6 Dystonia Mutation Carriers

    PubMed Central

    Deik, Andres F.; O'Riordan, Sean; Luciano, Marta San; Shanker, Vicki L.; Raymond, Deborah; Bressman, Susan B.; Saunders-Pullman, Rachel

    2012-01-01

    Background Spatial discrimination thresholds (SDTs) assess somatosensory integration, and provide a window into better understanding the pathophysiology of dystonia. They are abnormal in some focal dystonias, but normal in DYT1 dystonia. It is unknown whether SDTs are altered in DYT6 gene mutation carriers (C). Methods SDTs were assessed in 17 DYT6 C (including eight manifesting carriers), 15 DYT1 C (including seven manifesting carriers) and 34 controls, using a standardized grating orientation task. Subjects were asked to recognize the orientation of Johnson–Van Boven–Philips (JVP) dome gratings on either index fingertip until 40% or more answers were incorrect. SDTs between indexes were calculated and averaged, with a final SDT assigned to each subject, and tertiles for control SDTs were constructed. Results SDTs of DYT6 C or DYT1 C were comparable to those of controls, and not more likely to be in the worst tertile (p = 0.8 for DYT6 C vs. controls and p = 1.0 for DYT1 C vs. controls). This was independent of gene expression. Discussion DYT6 carriers do not have impaired SDTs with the JVP dome paradigm. The normal SDT pattern thus suggests shared sensory physiologic patterns with DYT1 dystonia. PMID:23439738

  2. Comment on 'Rate coefficients for photoinitiated NO 2 unimolecular decomposition: energy dependence in the threshold regime' [Chem. Phys. Lett. 358 (2002) 71

    NASA Astrophysics Data System (ADS)

    Abel, B.; Grebenshchikov, S. Y.; Schinke, R.; Schwarzer, D.

    2003-01-01

    Recently, Wittig and co-workers have published rate coefficients k( E) for the unimolecular decomposition of photoinitiated NO 2 close to the dissociation threshold [Chem. Phys. Lett. 358 (2002) 71]. They found out that k( E) for low angular momentum J exhibits a strong increase within 25 cm -1 of the reaction threshold. The authors emphasize that their experimental results are surprising and cannot be understood quantitatively on the basis of current theory on NO 2. In this Comment we demonstrate that recent quantum mechanical calculations of NO 2 resonances on a global 3D-potential energy surface can indeed explain their data close to the dissociation threshold as well as for larger excess energies.

  3. Acoustic detection of high energy particles

    SciTech Connect

    Hunter, S.D.

    1981-01-01

    The acoustic signals generated by charged particles traversing a medium offer a new technique for particle detection. Rapid thermal expansion of the medium produces an impulsive signal with a shape similar to one cycle of a sine wave. In the case of charged particles, the energy deposition results from thermalization of the particles ionization energy loss in the medium. A thermodynamic model which derives an acoustic potential for the signal produced by a given energy deposition is presented. The relationship between the acoustic potential and the signal period and amplitute is illustrated. Three non-thermal mechanisms (1) microbubble production; (2) molecular dissociation and (3) electrostriction are discussed. The acoustic potential and pulse shapes for these mechanisms are also shown. The results of two experiments are presented. In the first, acoustic signals generated by absorption of pulsed laser beams in water are observed to be similar to the signals generated by charged particle beams. Evidence of a non-thermal acoustic mechanism, possibly microbubbles or molecular dissociation, was found in this experiment. The second experiment used the BNL proton beam to check a previously observed discrepancy with the thermodynamic theory. The earlier experiment reported that the amplitude of the acoustic signals generated by particle beams traversing water vanished at 6/sup 0/C rather than at 4/sup 0/C where the thermal expansion of water is zero. The new experiment attributes this feature to the superposition of the thermal signal and a non-thermal pulse, due to electrostriction of the water. Calculations are presented which indicate that the source of this electrostriction is the electric field of the large number of charges freed by the ionization of the water molecules.

  4. Competitive threshold collision-induced dissociation: Gas-phase acidities and bond dissociation energies for a series of alcohols

    SciTech Connect

    DeTuri, V.F.; Ervin, K.M.

    1999-09-02

    Energy-resolved competitive collision-induced dissociation methods are used to measure the gas-phase acidities of a series of alcohols (methanol, ethanol, 2-propanol, and 2-methyl-2-propanol). The competitive dissociation reactions of fluoride-alcohol, [F{sup {minus}}{center{underscore}dot}HOR], alkoxide-water, [RO{sup {minus}}{center{underscore}dot}HOH], and alkoxide-methanol [RO{+-}{center{underscore}dot}HOCH{sub 3}] proton-bound complexes are studied using a guided ion beam tandem mass spectrometer. The reaction cross sections and product branching fractions to the two proton transfer channels are measured as a function of collision energy. The enthalpy difference between the two product channels is found by modeling the reaction cross sections near threshold using RRKM theory to account for the energy-dependent product branching ratio and kinetic shift. From the enthalpy difference, the alcohol gas-phase acidities are determined relative to the well-known values of HF and H{sub 2}O. The measured gas-phase acidities are {Delta}{sub acid}H{sub 298}(CH{sub 3}OH) = 1599 {+-} 3 kJ/mol, {Delta}{sub acid}H{sub 298}(CH{sub 3}CH{sub 2}OH) = 1586 {+-} 5 kJ/mol, {Delta}{sub acid}H{sub 298}((CH{sub 3}){sub 2}CHOH) = 1576 {+-} 4 kJ/mol, and {Delta}{sub acid}H{sub 298}((CH{sub 3}){sub 3}COH) = 1573 {+-} 3 kJ/mol.

  5. One-photon mass-analyzed threshold ionization (MATI) spectroscopy of pyridine: Determination of accurate ionization energy and cationic structure

    SciTech Connect

    Lee, Yu Ran; Kang, Do Won; Kim, Hong Lae E-mail: hlkim@kangwon.ac.kr; Kwon, Chan Ho E-mail: hlkim@kangwon.ac.kr

    2014-11-07

    Ionization energies and cationic structures of pyridine were intensively investigated utilizing one-photon mass-analyzed threshold ionization (MATI) spectroscopy with vacuum ultraviolet radiation generated by four-wave difference frequency mixing in Kr. The present one-photon high-resolution MATI spectrum of pyridine demonstrated a much finer and richer vibrational structure than that of the previously reported two-photon MATI spectrum. From the MATI spectrum and photoionization efficiency curve, the accurate ionization energy of the ionic ground state of pyridine was confidently determined to be 73 570 ± 6 cm{sup −1} (9.1215 ± 0.0007 eV). The observed spectrum was almost completely assigned by utilizing Franck-Condon factors and vibrational frequencies calculated through adjustments of the geometrical parameters of cationic pyridine at the B3LYP/cc-pVTZ level. A unique feature unveiled through rigorous analysis was the prominent progression of the 10 vibrational mode, which corresponds to in-plane ring bending, and the combination of other totally symmetric fundamentals with the ring bending overtones, which contribute to the geometrical change upon ionization. Notably, the remaining peaks originate from the upper electronic state ({sup 2}A{sub 2}), as predicted by high-resolution photoelectron spectroscopy studies and symmetry-adapted cluster configuration interaction calculations. Based on the quantitatively good agreement between the experimental and calculated results, it was concluded that upon ionization the pyridine cation in the ground electronic state should have a planar structure of C{sub 2v} symmetry through the C-N axis.

  6. The Nature of Psychological Thresholds

    ERIC Educational Resources Information Center

    Rouder, Jeffrey N.; Morey, Richard D.

    2009-01-01

    Following G. T. Fechner (1966), thresholds have been conceptualized as the amount of intensity needed to transition between mental states, such as between a states of unconsciousness and consciousness. With the advent of the theory of signal detection, however, discrete-state theory and the corresponding notion of threshold have been discounted.…

  7. Calibration of a solid state nuclear track detector (SSNTD) with high detection threshold to search for rare events in cosmic rays

    NASA Astrophysics Data System (ADS)

    Dey, S.; Gupta, D.; Maulik, A.; Raha, Sibaji; Saha, Swapan K.; Syam, D.; Pakarinen, J.; Voulot, D.; Wenander, F.

    2011-06-01

    We have investigated a commercially available polymer for its suitability as a solid state nuclear track detector (SSNTD). We identified that polymer to be polyethylene terephthalate (PET) and found that it has a higher detection threshold compared to many other widely used SSNTDs which makes this detector particularly suitable for rare event search in cosmic rays as it eliminates the dominant low Z background. Systematic studies were carried out to determine its charge response which is essential before any new material can be used as an SSNTD. In this paper we describe the charge response of PET to 129Xe, 78Kr and 49Ti ions from the REX-ISOLDE facility at CERN, present the calibration curve for PET and characterize it as a nuclear track detector.

  8. Cognitive load and detection thresholds in car following situations: safety implications for using mobile (cellular) telephones while driving.

    PubMed

    Lamble, D; Kauranen, T; Laakso, M; Summala, H

    1999-11-01

    This study was aimed at investigating drivers' ability to detect a car ahead decelerating, while doing mobile phone related tasks. Nineteen participants aged between 20 and 29 years, (2000-125000 km driving experience) drove at 80 km/h, 50 m behind a lead car, on a 30 km section of motorway in normal traffic. During each trial the lead car started to decelerate at an average of 0.47 m/s2 while the participant either looked at the car in front (control), continuously dialed series of three random integers on a numeric keypad (divided visual attention), or performed a memory and addition task (non-visual attention). The results indicated that drivers' detection ability was impaired by about 0.5 s in terms of brake reaction time and almost 1 s in terms of time-to-collision, when they were doing the non-visual task whilst driving. This impairment was similar to when the drivers were dividing their visual attention between the road ahead and dialing numbers on the keypad. It was concluded that neither a hands-free option nor a voice controlled interface removes the safety problems associated with the use of mobile phones in a car. PMID:10487336

  9. On the feasibility of RADAR detection of high-energy neutrino-induced showers in ice

    NASA Astrophysics Data System (ADS)

    de Vries, Krijn D.; Hanson, Kael; Meures, Thomas

    2015-01-01

    In this article we try to answer the question whether the radar detection technique can be used for the detection of high-energy-neutrino induced particle cascades in ice. A high-energy neutrino interacting in ice will induce a particle cascade, also referred to as a particle shower, moving at approximately the speed of light. Passing through, the cascade will ionize the medium, leaving behind a plasma tube. The different properties of the plasma-tube, such as its lifetime, size and the charge-density will be used to obtain an estimate if it is possible to detect this tube by means of the radar detection technique. Next to the ionization electrons a second plasma due to mobile protons induced by the particle cascade is discussed. An energy threshold for the cascade inducing particle of 4 PeV for the electron plasma, and 20 PeV for the proton plasma is obtained. This allows the radar detection technique, if successful, to cover the energy-gap between several PeV and a few EeV in the currently operating neutrino detectors, where on the low side IceCube runs out of events, and on the high side the Askaryan radio detectors begin to have large effective volumes.

  10. Dissociation of internal energy-selected methyl bromide ion revealed from threshold photoelectron-photoion coincidence velocity imaging

    SciTech Connect

    Tang, Xiaofeng; National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029 ; Zhou, Xiaoguo E-mail: yanbing@jlu.edu.cn; Liu, Shilin; Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026 ; Sun, Zhongfa; Liu, Fuyi; Sheng, Liusi; Yan, Bing E-mail: yanbing@jlu.edu.cn

    2014-01-28

    Dissociative photoionization of methyl bromide (CH{sub 3}Br) in an excitation energy range of 10.45–16.90 eV has been investigated by using threshold photoelectron-photoion coincidence (TPEPICO) velocity imaging. The coincident time-of-flight mass spectra indicate that the ground state X{sup 2}E of CH{sub 3}Br{sup +} is stable, and both A{sup 2}A{sub 1} and B{sup 2}E ionic excited states are fully dissociative to produce the unique fragment ion of CH{sub 3}{sup +}. From TPEPICO 3D time-sliced velocity images of CH{sub 3}{sup +} dissociated from specific state-selected CH{sub 3}Br{sup +} ion, kinetic energy release distribution (KERD) and angular distribution of CH{sub 3}{sup +} fragment ion are directly obtained. Both spin-orbit states of Br({sup 2}P) atom can be clearly observed in fast dissociation of CH{sub 3}Br{sup +}(A{sup 2}A{sub 1}) ion along C–Br rupture, while a KERD of Maxwell-Boltzmann profile is obtained in dissociation of CH{sub 3}Br{sup +}(B{sup 2}E) ion. With the aid of the re-calculated potential energy curves of CH{sub 3}Br{sup +} including spin-orbit coupling, dissociation mechanisms of CH{sub 3}Br{sup +} ion in A{sup 2}A{sub 1} and B{sup 2}E states along C–Br rupture are revealed. For CH{sub 3}Br{sup +}(A{sup 2}A{sub 1}) ion, the CH{sub 3}{sup +} + Br({sup 2}P{sub 1/2}) channel is occurred via an adiabatic dissociation by vibration, while the Br({sup 2}P{sub 3/2}) formation is through vibronic coupling to the high vibrational level of X{sup 2}E state followed by rapid dissociation. C–Br bond breaking of CH{sub 3}Br{sup +}(B{sup 2}E) ion can occur via slow internal conversion to the excited vibrational level of the lower electronic states and then dissociation.

  11. Mitochondrial threshold effects.

    PubMed Central

    Rossignol, Rodrigue; Faustin, Benjamin; Rocher, Christophe; Malgat, Monique; Mazat, Jean-Pierre; Letellier, Thierry

    2003-01-01

    The study of mitochondrial diseases has revealed dramatic variability in the phenotypic presentation of mitochondrial genetic defects. To attempt to understand this variability, different authors have studied energy metabolism in transmitochondrial cell lines carrying different proportions of various pathogenic mutations in their mitochondrial DNA. The same kinds of experiments have been performed on isolated mitochondria and on tissue biopsies taken from patients with mitochondrial diseases. The results have shown that, in most cases, phenotypic manifestation of the genetic defect occurs only when a threshold level is exceeded, and this phenomenon has been named the 'phenotypic threshold effect'. Subsequently, several authors showed that it was possible to inhibit considerably the activity of a respiratory chain complex, up to a critical value, without affecting the rate of mitochondrial respiration or ATP synthesis. This phenomenon was called the 'biochemical threshold effect'. More recently, quantitative analysis of the effects of various mutations in mitochondrial DNA on the rate of mitochondrial protein synthesis has revealed the existence of a 'translational threshold effect'. In this review these different mitochondrial threshold effects are discussed, along with their molecular bases and the roles that they play in the presentation of mitochondrial diseases. PMID:12467494

  12. TPD-based evaluation of near threshold mono-energetic proton energies for the 7Li(p,n)7Be production of neutrons for BNCT

    NASA Astrophysics Data System (ADS)

    Bengua, Gerard; Kobayashi, Tooru; Tanaka, Kenichi; Nakagawa, Yoshinobu; Unesaki, Hironobu

    2006-08-01

    An evaluation of mono-energetic proton energies ranging from 1.885 MeV to 1.920 MeV was carried out to determine the viability of these near threshold energies in producing neutrons for BNCT via the 7Li(p,n)7Be reaction. Neutron fields generated at these proton energies were assessed using the treatable protocol depth (TPD) and the maximum TPD (TPDmax) as evaluation indices. The heavy charged particle (HCP) dose rate to tumour was likewise applied as a figure of merit in order to account for irradiation time and required proton current. Incident proton energies closer to the reaction threshold generated deeper TPDs compared to higher energy protons when no boron dose enhancers (BDE) were placed in the irradiation field. Introducing a BDE resulted in improved TPDs for high proton energies but their achievable TPDmax were comparatively lower than that obtained for lower proton energies. In terms of the HCP dose rate to tumour, higher proton energies generated neutron fields that yielded higher dose rates both at TPDmax and at fixed depths of comparison. This infers that higher currents are required to deliver the prescribed treatment dose to tumours for proton beams with energies closer to the 7Li(p,n)7Be reaction threshold and more achievable proton currents of around 10 mA or less for proton energies from 1.900 MeV and above. The dependence on incident proton energy of the TPD, TPDmax and the HCP dose rate to tumour with respect to the 10B concentration in tumour and healthy tissues were also clarified in this study. Increasing the 10B concentration in tumour while maintaining a constant T/N ratio resulted in deeper TPDmax where a greater change in TPDmax was obtained for proton energies closer to the 7Li(p,n)7Be reaction threshold. The HCP dose rates to tumour for all proton energies also went up, with the higher proton energies benefiting more from the increased 10B concentration.

  13. Adaptive thresholding with inverted triangular area for real-time detection of the heart rate from photoplethysmogram traces on a smartphone.

    PubMed

    Jiang, Wen Jun; Wittek, Peter; Zhao, Li; Gao, Shi Chao

    2014-01-01

    Photoplethysmogram (PPG) signals acquired by smartphone cameras are weaker than those acquired by dedicated pulse oximeters. Furthermore, the signals have lower sampling rates, have notches in the waveform and are more severely affected by baseline drift, leading to specific morphological characteristics. This paper introduces a new feature, the inverted triangular area, to address these specific characteristics. The new feature enables real-time adaptive waveform detection using an algorithm of linear time complexity. It can also recognize notches in the waveform and it is inherently robust to baseline drift. An implementation of the algorithm on Android is available for free download. We collected data from 24 volunteers and compared our algorithm in peak detection with two competing algorithms designed for PPG signals, Incremental-Merge Segmentation (IMS) and Adaptive Thresholding (ADT). A sensitivity of 98.0% and a positive predictive value of 98.8% were obtained, which were 7.7% higher than the IMS algorithm in sensitivity, and 8.3% higher than the ADT algorithm in positive predictive value. The experimental results confirmed the applicability of the proposed method. PMID:25570674

  14. Detecting dark energy with wavelets on the sphere

    NASA Astrophysics Data System (ADS)

    McEwen, Jason D.

    2007-09-01

    Dark energy dominates the energy density of our Universe, yet we know very little about its nature and origin. Although strong evidence in support of dark energy is provided by the cosmic microwave background, the relic radiation of the Big Bang, in conjunction with either observations of supernovae or of the large scale structure of the Universe, the verification of dark energy by independent physical phenomena is of considerable interest. We review works that, through a wavelet analysis on the sphere, independently verify the existence of dark energy by detecting the integrated Sachs-Wolfe effect. The effectiveness of a wavelet analysis on the sphere is demonstrated by the highly statistically significant detections of dark energy that are made. Moreover, the detection is used to constrain properties of dark energy. A coherent picture of dark energy is obtained, adding further support to the now well established cosmological concordance model that describes our Universe.

  15. A thermalization energy analysis of the threshold voltage shift in amorphous indium gallium zinc oxide thin film transistors under positive gate bias stress

    NASA Astrophysics Data System (ADS)

    Niang, K. M.; Barquinha, P. M. C.; Martins, R. F. P.; Cobb, B.; Powell, M. J.; Flewitt, A. J.

    2016-02-01

    Thin film transistors (TFTs) employing an amorphous indium gallium zinc oxide (a-IGZO) channel layer exhibit a positive shift in the threshold voltage under the application of positive gate bias stress (PBS). The time and temperature dependence of the threshold voltage shift was measured and analysed using the thermalization energy concept. The peak energy barrier to defect conversion is extracted to be 0.75 eV and the attempt-to-escape frequency is extracted to be 107 s-1. These values are in remarkable agreement with measurements in a-IGZO TFTs under negative gate bias illumination stress (NBIS) reported recently (Flewitt and Powell, J. Appl. Phys. 115, 134501 (2014)). This suggests that the same physical process is responsible for both PBS and NBIS, and supports the oxygen vacancy defect migration model that the authors have previously proposed.

  16. Use of threshold-specific energy model for the prediction of effects of smoking and radon exposure on the risk of lung cancer.

    PubMed

    Böhm, R; Sedlák, A; Bulko, M; Holý, K

    2014-07-01

    Lung cancer is the leading cause of cancer death in both men and women. Smoking causes 80-90% of cases of lung cancer. In this study, an attempt was made to assess the impact of cigarette smoking on the risk of lung cancer by the so-called threshold-specific energy model. This model allows to analyse the biological effects of radon daughter products on the lung tissue, and is based on the assumption that the biological effect (i.e. cell inactivation) will manifest itself after the threshold-specific energy z0 deposited in the sensitive volume of the cell is exceeded. Cigarette smoking causes, among others, an increase in the synthesis of the survivin protein that protects cells from apoptosis and thereby reduces their radiosensitivity. Based on these facts, an attempt was made to estimate the shape of the curves describing the increase in the oncological effect of radiation as a function of daily cigarette consumption. PMID:24711526

  17. CERES Detects Earth's Heat and Energy

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Clouds and the Earth's Radiant Energy System, CERES, monitors solar energy reflected from the Earth and heat energy emitted from the Earth. In this image, heat energy radiated from the earth is shown in varying shades of yellow, red, blue and white. The brightest yellow areas, such as the Sahara Desert and Arabian Peninsula, are emitting the most energy out to space, while the dark blue polar regions and bright white clouds are the coldest areas on Earth, and are emitting the least energy. The animation (1.5MB) (high-res (4MB)) shows roughly a week of CERES data. For more information: CERES images through Visible Earth. CERES web site Image courtesy of the CERES instrument team

  18. Radio detection of ultra-high energy cosmic neutrinos

    NASA Astrophysics Data System (ADS)

    Vieregg, Abigail G.

    2015-07-01

    Ultra-high energy (UHE) neutrino astronomy constitutes a new window of observation onto the UHE universe. The detection and characterization of astrophysical neutrinos at the highest energies (E> 1018 eV) would reveal the sources of high-energy cosmic rays, the highest energy particles ever seen, and would constrain the evolution of such sources over time. UHE neutrino astrophysics also allows us to probe weak interaction couplings at energies much greater than those available at particle colliders. One promising way of detecting the highest energy neutrinos is through the radio emission created when they interact in a large volume of dielectric, such as ice. Here I discuss current results and future efforts to instrument large volumes of detector material with radio antennas to detect, point back, and characterize the energy of UHE astrophysical neutrinos.

  19. High Energy Electron Detection with ATIC

    NASA Technical Reports Server (NTRS)

    Chang, J.; Schmidt, W. K. H.; Adams, James H., Jr.; Ahn, H.; Ampe, J.; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    The ATIC (Advanced Thin Ionization Calorimeter) balloon-borne ionization calorimeter is well suited to record and identify high energy cosmic ray electrons. The instrument was exposed to high-energy beams at CERN H2 bean-dine in September of 1999. We have simulated the performance of the instrument, and compare the simulations with actual high energy electron exposures at the CERN accelerator. Simulations and measurements do not compare exactly, in detail, but overall the simulations have predicted actual measured behavior quite well.

  20. Evaluating energy sorghum harvest thresholds and tillage cropping systems to offset negative environmental impacts and harvesting equipment-induced soil compaction

    NASA Astrophysics Data System (ADS)

    Meki, M. N.; Snider, J. L.; Kiniry, J. R.; Raper, R. L.; Rocateli, A. C.

    2011-12-01

    Energy sorghum (Sorghum bicolor L. Moench) could be the ideal feedstock for the cellulosic ethanol industry because of its robust establishment, broader adaptability and drought tolerance, water and nutrient use efficiency, and the relatively high annual biomass yields. Of concern, however, is the limited research data on harvest thresholds, subsequent environmental impacts and the potential cumulative effects of harvesting equipment-induced soil compaction. Indiscriminate harvests of the high volume wet energy sorghum biomass, coupled with repeated field passes, could cause irreparable damage to the soil due to compaction. Furthermore, biomass harvests result in lower soil organic matter returns to the soil, making the soil even more susceptible to soil compaction. Compacted soils result in poor root zone aeration and drainage, more losses of nitrogen from denitrification, and restricted root growth, which reduces yields. Given the many positive attributes of conservation tillage and crop residue retention, our research and extension expectations are that sustainable energy sorghum cropping systems ought to include some form of conservation tillage. The challenge is to select cropping and harvesting systems that optimize feedstock production while ensuring adequate residue biomass to sustainably maintain soil structure and productivity. Producers may have to periodically subsoil-till or plow-back their lands to alleviate problems of soil compaction and drainage, weeds, insects and disease infestations. Little, however, is known about the potential impact of these tillage changes on soil productivity, environmental integrity, and sustainability of bioenergy agro-ecosystems. Furthermore, 'safe' energy sorghum feedstock removal thresholds have yet to be established. We will apply the ALMANAC biophysical model to evaluate permissible energy sorghum feedstock harvest thresholds and the effects of subsoil tillage and periodically plowing no-tilled (NT) energy sorghum fields. The presentation will provide long-term insights into the sustainability of the proposed interventions with regards to 'safe' harvest thresholds, feedstock yields, SOC storage and rate of change, and sediment and nutrient (N&P) losses. Model calibration and validation datasets have already been compiled from rainfed and irrigated energy sorghum field studies conducted in Arkansas and Alabama during the years: 2008 to 2010. We compiled energy sorghum crop parameters based on data extracted from the literature, expert judgment and field experiments. Simulations will be made for combinations of biomass harvest rates, tillage systems, weather, soil type, and dryland production over a 51-year time series (1960-2010).

  1. Metal specificity of cyanobacterial nickel-responsive repressor InrS: cells maintain zinc and copper below the detection threshold for InrS

    PubMed Central

    Foster, Andrew W; Pernil, Rafael; Patterson, Carl J; Robinson, Nigel J

    2014-01-01

    InrS is a Ni(II)-responsive, CsoR/RcnR-like, DNA-binding transcriptional repressor of the nrsD gene, but the Ni(II) co-ordination sphere of InrS is unlike Ni(II)-RcnR. We show that copper and Zn(II) also bind tightly to InrS and in vitro these ions also impair InrS binding to the nrsD operator-promoter. InrS does not respond to Zn(II) (or copper) in vivo after 48 h, when Zn(II) sensor ZiaR responds, but InrS transiently responds (1 h) to both metals. InrS conserves only one (of two) second co-ordination shell residues of CsoR (Glu98 in InrS). The allosteric mechanism of InrS is distinct from Cu(I)-CsoR and conservation of deduced second shell residues better predicts metal specificity than do the metal ligands. The allosteric mechanism of InrS permits greater promiscuity in vitro than CsoR. The factors dictating metal-selectivity in vivo are that KNi(II) and ΔGCNi(II)-InrS·DNA are sufficiently high, relative to other metal sensors, for InrS to detect Ni(II), while the equivalent parameters for copper may be insufficient for copper-sensing in S ynechocystis (at 48 h). InrS KZn(II) (5.6 × 10−13 M) is comparable to the sensory sites of ZiaR (and Zur), but ΔGCZn(II)-InrS·DNA is less than ΔGCZn(II)-ZiaR·DNA implying that relative to other sensors, ΔGCZn(II)-Sensor·DNA rather than KZn(II) determines the final detection threshold for Zn(II). PMID:24666373

  2. Can the Existence of Dark Energy be Directly Detected?

    SciTech Connect

    Perl, Martin L.; /SLAC /KIPAC, Menlo Park

    2011-11-23

    The majority of astronomers and physicists accept the reality of dark energy and also believe that it can only be studied indirectly through observation of the motions of stars and galaxies. In this paper I open the experimental question of whether it is possible to directly detect dark energy through the presence of dark energy density. Two thirds of this paper outlines the major aspects of dark energy density as now comprehended by the astronomical and physics community. The final third summarizes various proposals for direct detection of dark energy density or its possible effects. At this time I do not have a fruitful answer to the question: Can the Existence of Dark Energy Be Directly Detected?

  3. Master equation analysis of thermal activation reactions: Energy-transfer constraints on falloff behavior in the decomposition of reactive intermediates with low thresholds

    SciTech Connect

    Tsang, W.; Bedanov, V.; Zachariah, M.R.

    1996-03-07

    This paper deals with the high-temperature decomposition of reactive intermediates with low reaction thresholds. If these intermediates are created in situ, for example, through radical chain processes, their initial molecular distribution functions may be characteristic of the bath temperature and, under certain circumstances, peak at energies above the reaction threshold. Such an ordering of reaction thresholds and distribution functions has some similarities to that found during chemical activation. This leads to consequences that are essentially the inverse (larger rate constants than those deduced from steady-state distributions) of the situation for stable compounds under shock-heated conditions and hence reduces falloff effects. To study this behavior, rate constants for the unimolecular decomposition of ally, ethyl, n-propyl, and n-hexyl radicals have been determined on the basis of the solution of the time-dependent master equation with specific rate constants from RRKM calculations. The time required for the molecules to attain steady-state distribution functions has been determined as a function of the energy-transfer parameter (the step size down) molecular size (heat capacity), high-pressure rate parameters, temperature, and pressure. At 101 kPa (1atm) pressure, unimolecular rate constants near 10{sup 7} s{sup -1} represent a lower boundary, above which steady-state assumptions become increasingly questionable. 21 refs., 7 figs., 1 tab.

  4. Time over threshold in the presence of noise

    NASA Astrophysics Data System (ADS)

    Gonnella, F.; Kozhuharov, V.; Raggi, M.

    2015-08-01

    The Time-over-Threshold (ToT) technique is a widely used quantity to measure the energy deposited in various detectors in particle physics. In this paper we present the studies of its behavior in the presence of noise. The ToT distributions from cosmic-ray data showed several equally spaced peaks that were successfully modeled due to a sinusoidal noise pick-up. The effects of that noise on the detection efficiency and energy resolution are also discussed.

  5. Positron lifetimes in crystalline solids exposed to γ rays with energies above the electron-positron pair formation threshold and a weak magnetic field

    NASA Astrophysics Data System (ADS)

    Smith, Gerald. A.

    2016-02-01

    Theory predicts that positrons in crossed motional electric and magnetic fields form long-lived positronium in vacuum. It follows that binding of the electron to anions of dielectric solids may prevent fast annihilation by forming electric positron-electron dipole oscillators with lifetimes of hundreds of minutes. To test this hypothesis, lifetime distributions of time-coincident, 180° γ-rays from crystalline alkali halides and a polycyclic hydrocarbon were measured in 12 and 95 G magnetic fields. Gamma-ray sources with energies above the electron-positron pair formation threshold were used to make positrons.

  6. State-selected chemical reaction dynamics at the S matrix level - Final-state specificities of near-threshold processes at low and high energies

    NASA Technical Reports Server (NTRS)

    Chatfield, David C.; Truhlar, Donald G.; Schwenke, David W.

    1992-01-01

    State-to-state reaction probabilities are found to be highly final-state specific at state-selected threshold energies for the reactions O + H2 yield OH + H and H + H2 yield H2 + H. The study includes initial rotational states with quantum numbers 0-15, and the specificity is especially dramatic for the more highly rotationally excited reactants. The analysis is based on accurate quantum mechanical reactive scattering calculations. Final-state specificity is shown in general to increase with the rotational quantum number of the reactant diatom, and the trends are confirmed for both zero and nonzero values of the total angular momentum.

  7. A thermalization energy analysis of the threshold voltage shift in amorphous indium gallium zinc oxide thin film transistors under simultaneous negative gate bias and illumination

    SciTech Connect

    Flewitt, A. J.; Powell, M. J.

    2014-04-07

    It has been previously observed that thin film transistors (TFTs) utilizing an amorphous indium gallium zinc oxide (a-IGZO) semiconducting channel suffer from a threshold voltage shift when subjected to a negative gate bias and light illumination simultaneously. In this work, a thermalization energy analysis has been applied to previously published data on negative bias under illumination stress (NBIS) in a-IGZO TFTs. A barrier to defect conversion of 0.65–0.75 eV is extracted, which is consistent with reported energies of oxygen vacancy migration. The attempt-to-escape frequency is extracted to be 10{sup 6}−10{sup 7} s{sup −1}, which suggests a weak localization of carriers in band tail states over a 20–40 nm distance. Models for the NBIS mechanism based on charge trapping are reviewed and a defect pool model is proposed in which two distinct distributions of defect states exist in the a-IGZO band gap: these are associated with states that are formed as neutrally charged and 2+ charged oxygen vacancies at the time of film formation. In this model, threshold voltage shift is not due to a defect creation process, but to a change in the energy distribution of states in the band gap upon defect migration as this allows a state formed as a neutrally charged vacancy to be converted into one formed as a 2+ charged vacancy and vice versa. Carrier localization close to the defect migration site is necessary for the conversion process to take place, and such defect migration sites are associated with conduction and valence band tail states. Under negative gate bias stressing, the conduction band tail is depleted of carriers, but the bias is insufficient to accumulate holes in the valence band tail states, and so no threshold voltage shift results. It is only under illumination that the quasi Fermi level for holes is sufficiently lowered to allow occupation of valence band tail states. The resulting charge localization then allows a negative threshold voltage shift, but only under conditions of simultaneous negative gate bias and illumination, as observed experimentally as the NBIS effect.

  8. Portable radiation detection system for pulsed high energy photon sources

    SciTech Connect

    Harker, Y.D.; Lawrence, R.S.; Yoon, W.Y.

    1994-12-31

    Portable, battery-operated, radiation detection systems for measuring the intensity and energy characteristics of intense, pulsed photon sources (either high energy X-ray or gamma) have been developed at the Idaho National Engineering Laboratory. These field-deployable, suitcase-sized detection units are designed to measure and record the characteristics of a single radiation burst or multiple bursts from a pulsed ionizing radiation source. The recorded information can then be analyzed on a simple laptop computer at a location remote from the detection system and completely independent of the ongoing data acquisition process. Two detection unit designs are described. The first, called the MARK-1, has eight bismuth germanate (BGO) radiation detectors. Four of which are unshielded and have different thicknesses (diameters). The remaining four are the same size as the largest unshielded detector but have different thicknesses of lead shielding surrounding each detector. The second unit design, called the MARK-1 A, utilizes the same detection methodology as the MARK-1 but has ten BGO detectors instead of eight and utilizes a different method of amplifying detector signals enabling reduced overall size and weight of the detection unit. Both the detection system designs have sensitivity ranges from 3 x 10{sup {minus}9} cGy to 9 x 10{sup {minus}5} cGy per radiation burst. Experimental detection results will be presented and discussed along the systems` potential for commercial applications.

  9. Crossing the Petawatt threshold

    SciTech Connect

    Perry, M.

    1996-12-01

    A revolutionary new laser called the Petawatt, developed by Lawrence Livermore researchers after an intensive three-year development effort, has produced more than 1,000 trillion ({open_quotes}peta{close_quotes}) watts of power, a world record. By crossing the petawatt threshold, the extraordinarily powerful laser heralds a new age in laser research. Lasers that provide a petawatt of power or more in a picosecond may make it possible to achieve fusion using significantly less energy than currently envisioned, through a novel Livermore concept called {open_quotes}fast ignition.{close_quotes} The petawatt laser will also enable researchers to study the fundamental properties of matter, thereby aiding the Department of Energy`s Stockpile Stewardship efforts and opening entirely new physical regimes to study. The technology developed for the Petawatt has also provided several spinoff technologies, including a new approach to laser material processing.

  10. CARA Risk Assessment Thresholds

    NASA Technical Reports Server (NTRS)

    Hejduk, M. D.

    2016-01-01

    Warning remediation threshold (Red threshold): Pc level at which warnings are issued, and active remediation considered and usually executed. Analysis threshold (Green to Yellow threshold): Pc level at which analysis of event is indicated, including seeking additional information if warranted. Post-remediation threshold: Pc level to which remediation maneuvers are sized in order to achieve event remediation and obviate any need for immediate follow-up maneuvers. Maneuver screening threshold: Pc compliance level for routine maneuver screenings (more demanding than regular Red threshold due to additional maneuver uncertainty).

  11. Robust fault detection of wind energy conversion systems based on dynamic neural networks.

    PubMed

    Talebi, Nasser; Sadrnia, Mohammad Ali; Darabi, Ahmad

    2014-01-01

    Occurrence of faults in wind energy conversion systems (WECSs) is inevitable. In order to detect the occurred faults at the appropriate time, avoid heavy economic losses, ensure safe system operation, prevent damage to adjacent relevant systems, and facilitate timely repair of failed components; a fault detection system (FDS) is required. Recurrent neural networks (RNNs) have gained a noticeable position in FDSs and they have been widely used for modeling of complex dynamical systems. One method for designing an FDS is to prepare a dynamic neural model emulating the normal system behavior. By comparing the outputs of the real system and neural model, incidence of the faults can be identified. In this paper, by utilizing a comprehensive dynamic model which contains both mechanical and electrical components of the WECS, an FDS is suggested using dynamic RNNs. The presented FDS detects faults of the generator's angular velocity sensor, pitch angle sensors, and pitch actuators. Robustness of the FDS is achieved by employing an adaptive threshold. Simulation results show that the proposed scheme is capable to detect the faults shortly and it has very low false and missed alarms rate. PMID:24744774

  12. Robust Fault Detection of Wind Energy Conversion Systems Based on Dynamic Neural Networks

    PubMed Central

    Talebi, Nasser; Sadrnia, Mohammad Ali; Darabi, Ahmad

    2014-01-01

    Occurrence of faults in wind energy conversion systems (WECSs) is inevitable. In order to detect the occurred faults at the appropriate time, avoid heavy economic losses, ensure safe system operation, prevent damage to adjacent relevant systems, and facilitate timely repair of failed components; a fault detection system (FDS) is required. Recurrent neural networks (RNNs) have gained a noticeable position in FDSs and they have been widely used for modeling of complex dynamical systems. One method for designing an FDS is to prepare a dynamic neural model emulating the normal system behavior. By comparing the outputs of the real system and neural model, incidence of the faults can be identified. In this paper, by utilizing a comprehensive dynamic model which contains both mechanical and electrical components of the WECS, an FDS is suggested using dynamic RNNs. The presented FDS detects faults of the generator's angular velocity sensor, pitch angle sensors, and pitch actuators. Robustness of the FDS is achieved by employing an adaptive threshold. Simulation results show that the proposed scheme is capable to detect the faults shortly and it has very low false and missed alarms rate. PMID:24744774

  13. Psychophysical evaluation of the image quality of a dynamic flat-panel digital x-ray image detector using the threshold contrast detail detectability (TCDD) technique

    NASA Astrophysics Data System (ADS)

    Davies, Andrew G.; Cowen, Arnold R.; Bruijns, Tom J. C.

    1999-05-01

    We are currently in an era of active development of the digital X-ray imaging detectors that will serve the radiological communities in the new millennium. The rigorous comparative physical evaluations of such devices are therefore becoming increasingly important from both the technical and clinical perspectives. The authors have been actively involved in the evaluation of a clinical demonstration version of a flat-panel dynamic digital X-ray image detector (or FDXD). Results of objective physical evaluation of this device have been presented elsewhere at this conference. The imaging performance of FDXD under radiographic exposure conditions have been previously reported, and in this paper a psychophysical evaluation of the FDXD detector operating under continuous fluoroscopic conditions is presented. The evaluation technique employed was the threshold contrast detail detectability (TCDD) technique, which enables image quality to be measured on devices operating in the clinical environment. This approach addresses image quality in the context of both the image acquisition and display processes, and uses human observers to measure performance. The Leeds test objects TO[10] and TO[10+] were used to obtain comparative measurements of performance on the FDXD and two digital spot fluorography (DSF) systems, one utilizing a Plumbicon camera and the other a state of the art CCD camera. Measurements were taken at a range of detector entrance exposure rates, namely 6, 12, 25 and 50 (mu) R/s. In order to facilitate comparisons between the systems, all fluoroscopic image processing such as noise reduction algorithms, were disabled during the experiments. At the highest dose rate FDXD significantly outperformed the DSF comparison systems in the TCDD comparisons. At 25 and 12 (mu) R/s all three-systems performed in an equivalent manner and at the lowest exposure rate FDXD was inferior to the two DSF systems. At standard fluoroscopic exposures, FDXD performed in an equivalent manner to the DSF systems for the TCDD comparisons. This would suggest that FDXD would therefore perform adequately in a clinical fluoroscopic environment and our initial clinical experiences support this. Noise reduction processing of the fluoroscopic data acquired on FDXD was also found to further improve TCDD performance for FDXD. FDXD therefore combines acceptable fluoroscopic performance with excellent radiographic (snap shot) imaging fidelity, allowing the possibility of a universal x-ray detector to be developed, based on FDXD's technology. It is also envisaged that fluoroscopic performance will be improved by the development of digital image enhancement techniques specifically tailored to the characteristics of the FDXD detector.

  14. A study of threshold effects in the energy loss of slow protons in semiconductors and insulators using dielectric and non-linear approaches

    NASA Astrophysics Data System (ADS)

    Darío Archubi, Claudio; Arista, Nestor R.

    2016-03-01

    The energy loss of slow protons in nonconducting materials, including semiconductors and insulators, is studied using different theoretical methods. First we apply two dielectric models proposed by Brandt and Reinheimer on one side, and by Levine and Louie on the other, and describe in detail the properties of individual and collective contributions according to each model. In addition, we perform an alternative calculation using a non-linear approach based on transport-cross-section methods. These different approaches are compared with experimental results for two semiconductors (Si and Ge) and two insulators (LiF and AlF3), obtaining an approximate description of threshold effects at very low energies. Some interesting similarities and discrepancies are found, which show the current limitations of the theoretical descriptions provided by these methods.

  15. LAT Perspectives in Detection of High Energy Cosmic Ray Electrons

    SciTech Connect

    Moiseev, Alexander; Ormes, J.F.; Funk, Stefan; /SLAC

    2007-11-13

    The LAT science objectives and capabilities in the detection of high energy electrons in the energy range from 20 GeV to {approx}1.5 TeV are presented. LAT simulations are used to establish the event selections. It is found that maintaining the efficiency of electron detection at the level of 30%, the residual hadron contamination does not exceed 2-3% of the electron flux. It is expected to collect {approx} ten million of electrons with the energy above 20 GeV for one year of observation. Precise spectrum reconstruction with collected electron statistics opens the unique opportunity to investigate several important problems such as models of IC radiation, revealing the signatures of nearby sources such as high energy cutoff in the electron spectrum, testing the propagation model, and search for KKDM particles decay through their contribution to the electron spectrum.

  16. LAT Perspectives in Detection of High Energy Cosmic Ray Electrons

    SciTech Connect

    Moiseev, Alexander; Funk, Stefan

    2007-07-12

    The GLAST Large Area Telescope (LAT) science objectives and capabilities in the detection of high energy electrons in the energy range from 20 GeV to {approx}1 TeV are presented. LAT simulations are used to establish the event selections. It is found that maintaining the efficiency of electron detection at the level of 30% the residual hadron contamination does not exceed 2-3% of the electron flux. LAT should collect {approx} ten million of electrons with the energy above 20 GeV for each year of observation. Precise spectral reconstruction with high statistics presents us with a unique opportunity to investigate several important problems such as studying galactic models of IC radiation, revealing the signatures of nearby sources such as high energy cutoff in the electron spectrum, testing the propagation model, and searching for KKDM particles decay through their contribution to the electron spectrum.

  17. LAT Perspectives in Detection of High Energy Cosmic Ray Electrons

    NASA Technical Reports Server (NTRS)

    Moiseev, Alexander; Ormes, J. F.; Funk, Stefan

    2007-01-01

    The GLAST Large Area Telescope (LAT) science objectives and capabilities in the detection of high energy electrons in the energy range from 20 GeV to approx. 1 TeV are presented. LAT simulations are used to establish the event selections. It is found that maintaining the efficiency of electron detection at the level of 30% the residual hadron contamination does not exceed 2-3% of the electron flux. LAT should collect approx. ten million of electrons with the energy above 20 GeV for each year of observation. Precise spectral reconstruction with high statistics presents us with a unique opportunity to investigate several important problems such as studying galactic models of IC radiation, revealing the signatures of nearby sources such as high energy cutoff in the electron spectrum, testing the propagation model, and searching for KKDM particles decay through their contribution to the electron spectrum.

  18. Randomness fault detection system

    NASA Technical Reports Server (NTRS)

    Russell, B. Don (Inventor); Aucoin, B. Michael (Inventor); Benner, Carl L. (Inventor)

    1996-01-01

    A method and apparatus are provided for detecting a fault on a power line carrying a line parameter such as a load current. The apparatus monitors and analyzes the load current to obtain an energy value. The energy value is compared to a threshold value stored in a buffer. If the energy value is greater than the threshold value a counter is incremented. If the energy value is greater than a high value threshold or less than a low value threshold then a second counter is incremented. If the difference between two subsequent energy values is greater than a constant then a third counter is incremented. A fault signal is issued if the counter is greater than a counter limit value and either the second counter is greater than a second limit value or the third counter is greater than a third limit value.

  19. Observation of threshold energy and hysteresis in high current ion beam guiding and transmission through a micro-glass-capillary

    SciTech Connect

    Paul, Samit; Jayakiran, A.; Bhattacharjee, Sudeep

    2012-11-26

    The energy dependent guiding of high current density (0.1-3 A/m{sup 2}) argon ion beams through a micro-glass-capillary is studied. It is observed that ion transmission through the capillary takes place only if its energy is greater than the retarding potential barrier, which depends upon the amount of charge deposited on the capillary inner wall. Foremost evidence of the observation that the transmitted current exhibits hysteresis with ion energy is presented. Particle in cell simulations carried out by solving Poisson's and Newton's force equation self-consistently, agree reasonably well with the experimental results.

  20. Scintillation efficiency measurement of Na recoils in NaI(Tl) below the DAMA/LIBRA energy threshold

    NASA Astrophysics Data System (ADS)

    Xu, Jingke; Shields, Emily; Calaprice, Frank; Westerdale, Shawn; Froborg, Francis; Suerfu, Burkhant; Alexander, Thomas; Aprahamian, Ani; Back, Henning O.; Casarella, Clark; Fang, Xiao; Gupta, Yogesh K.; Ianni, Aldo; Lamere, Edward; Lippincott, W. Hugh; Liu, Qian; Lyons, Stephanie; Siegl, Kevin; Smith, Mallory; Tan, Wanpeng; Kolk, Bryant Vande

    2015-07-01

    The dark matter interpretation of the DAMA modulation signal depends on the NaI(Tl) scintillation efficiency of nuclear recoils. Previous measurements for Na recoils have large discrepancies, especially in the DAMA/LIBRA modulation energy region. We report a quenching effect measurement of Na recoils in NaI(Tl) from 3 to 52 keVnr, covering the whole DAMA/LIBRA energy region for dark matter-Na scattering interpretations. By using a low-energy, pulsed neutron beam, a double time-of-flight technique, and pulse-shape discrimination methods, we obtained the most accurate measurement of this kind for NaI(Tl) to date. The results differ significantly from the DAMA reported values at low energies but fall between the other previous measurements. We present the implications of the new quenching results for the dark matter interpretation of the DAMA modulation signal.

  1. Variations in lithium target thickness and proton energy stability for the near-threshold 7Li(p,n)7Be accelerator-based BNCT.

    PubMed

    Kobayashi, Tooru; Bengua, Gerard; Tanaka, Kenichi; Nakagawa, Yoshinobu

    2007-02-01

    The usable range of thickness for the solid lithium target in the accelerator-based neutron production for BNCT via the near-threshold (7)Li(p,n)(7)Be reaction was investigated. While the feasibility of using a (7)Li-target with thickness equal to that which is required to slow down a mono-energetic 1.900 MeV incident proton to the 1.881 MeV threshold of the (7)Li(p,n)(7)Be reaction (i.e., t(min) = 2.33 microm) has already been demonstrated, dosimetric properties of neutron fields from targets greater than t(min) were assessed as thicker targets would last longer and offer more stable neutron production. Additionally, the characteristics of neutron fields generated by (7)Li(p,n)(7)Be for Gaussian incident protons with mean energy of 1.900 MeV were evaluated at a (7)Li-target thickness t(min). The main evaluation index applied in this study was the treatable protocol depth (TPD) which corresponds to the depth in an irradiated medium that satisfies the requirements of the adapted dose protocol. A maximum TPD (TPD(max)) was obtained for each irradiation condition from the relationship between the TPD and the thickness of boron dose enhancer (BDE) used. For a mono-energetic 1.900 MeV proton beam, the deepest TPD(max) of 3.88 cm was attained at the (7)Li-target thickness of t(min) and a polyethylene BDE of 1.10 cm. When the intended TPD for a BNCT clinical treatment is shallower than the deepest TPD(max), the usable (7)Li-target thickness would be between t(min) and an upper limit t(upper) whose value depends on the BDE thickness used. In terms of the effect of stability of the incident proton energy, Gaussian incident proton energies stable to within +/-10 keV of 1.900 MeV were found to be feasible for the neutron production via the near-threshold (7)Li(p,n)(7)Be reaction for BNCT provided that a suitable BDE is used. PMID:17228111

  2. Variations in lithium target thickness and proton energy stability for the near-threshold 7Li(p,n)7Be accelerator-based BNCT

    NASA Astrophysics Data System (ADS)

    Kobayashi, Tooru; Bengua, Gerard; Tanaka, Kenichi; Nakagawa, Yoshinobu

    2007-02-01

    The usable range of thickness for the solid lithium target in the accelerator-based neutron production for BNCT via the near-threshold 7Li(p,n)7Be reaction was investigated. While the feasibility of using a 7Li-target with thickness equal to that which is required to slow down a mono-energetic 1.900 MeV incident proton to the 1.881 MeV threshold of the 7Li(p,n)7Be reaction (i.e., tmin = 2.33 µm) has already been demonstrated, dosimetric properties of neutron fields from targets greater than tmin were assessed as thicker targets would last longer and offer more stable neutron production. Additionally, the characteristics of neutron fields generated by 7Li(p,n)7Be for Gaussian incident protons with mean energy of 1.900 MeV were evaluated at a 7Li-target thickness tmin. The main evaluation index applied in this study was the treatable protocol depth (TPD) which corresponds to the depth in an irradiated medium that satisfies the requirements of the adapted dose protocol. A maximum TPD (TPDmax) was obtained for each irradiation condition from the relationship between the TPD and the thickness of boron dose enhancer (BDE) used. For a mono-energetic 1.900 MeV proton beam, the deepest TPDmax of 3.88 cm was attained at the 7Li-target thickness of tmin and a polyethylene BDE of 1.10 cm. When the intended TPD for a BNCT clinical treatment is shallower than the deepest TPDmax, the usable 7Li-target thickness would be between tmin and an upper limit tupper whose value depends on the BDE thickness used. In terms of the effect of stability of the incident proton energy, Gaussian incident proton energies stable to within ±10 keV of 1.900 MeV were found to be feasible for the neutron production via the near-threshold 7Li(p,n)7Be reaction for BNCT provided that a suitable BDE is used.

  3. Spatial Variable Thresholding for SCALES

    NASA Astrophysics Data System (ADS)

    Nejadmalayeri, Alireza; Vasilyev, Oleg V.; Vezolainen, Alexei; de Stefano, Giuliano

    2009-11-01

    The Stochastic Coherent Adaptive Large Eddy Simulation (SCALES) is a novel wavelet-based approach that resolves energy containing turbulent motions using wavelet multiresolution decomposition and self-adaptivity. The extraction of the most energetic structures is achieved using wavelet thresholding filter with a priori prescribed threshold level. This strategy, although successful, has a major drawback: the thresholding criterion is global and does not fully utilize the spatial/temporal intermittency of the turbulent flow. In the current numerical effort, for the first time (to the best of our knowledge), the concept of physics-based spatially variable thresholding in the context of wavelet-based numerical techniques for solving PDEs is introduced. The procedure consists of tracking the wavelet thresholding-factor within a Lagrangian frame by exploiting a Lagrangian Path-Line Diffusive Averaging approach that uses linear averaging along characteristics. The results for incompressible flow around NACA 0015 airfoil show a very robust and fast methodology for adjusting the thresholding-factor based on dynamically important flow characteristics, for instance, the magnitude of vorticity or strain rate.

  4. A two-stage spectrum sensing scheme based on energy detection and a novel multitaper method

    NASA Astrophysics Data System (ADS)

    Qi, Pei-Han; Li, Zan; Si, Jiang-Bo; Xiong, Tian-Yi

    2015-04-01

    Wideband spectrum sensing has drawn much attention in recent years since it provides more opportunities to the secondary users. However, wideband spectrum sensing requires a long time and a complex mechanism at the sensing terminal. A two-stage wideband spectrum sensing scheme is considered to proceed spectrum sensing with low time consumption and high performance to tackle this predicament. In this scheme, a novel multitaper spectrum sensing (MSS) method is proposed to mitigate the poor performance of energy detection (ED) in the low signal-to-noise ratio (SNR) region. The closed-form expression of the decision threshold is derived based on the Neyman-Pearson criterion and the probability of detection in the Rayleigh fading channel is analyzed. An optimization problem is formulated to maximize the probability of detection of the proposed two-stage scheme and the average sensing time of the two-stage scheme is analyzed. Numerical results validate the efficiency of MSS and show that the two-stage spectrum sensing scheme enjoys higher performance in the low SNR region and lower time cost in the high SNR region than the single-stage scheme. Project supported by the National Natural Science Foundation of China (Grant No. 61301179), the China Postdoctoral Science Foundation (Grant No. 2014M550479), and the Doctorial Programs Foundation of the Ministry of Education, China (Grant No. 20110203110011).

  5. Laser Threshold Photodetchment Spectroscopy of the P- Ion

    NASA Astrophysics Data System (ADS)

    Pegg, D.; Andersson, P.; Alfredsson, C.; Diehl, C.; Collins, G.; Hanstorp, D.; Schef, P.; Thomas, R.

    2006-05-01

    The electron affinity of the P atom and the fine structure splittings of the P^-(^3PJ) state have been measured in high resolution by use of the Laser Threshold Photodetachment method. In the collinear beams experiment, tunable infrared radiation from an OPO/OPA system was used to detach an electron from the P- ion. The relative cross section for the process was monitored by detecting the residual ground state P atom. Three thresholds were observed, corresponding to the opening of the channels: γ + P^-(3s^23p^4 ^3PJ) -> P(3s^23p^3 ^4S3/2) + e^- with J=2,1,0. The Wigner law was fitted to the threshold data and used to determine the threshold energies. The Doppler shift associated with the moving ions was eliminated by determining their velocity using the measured the red- and blue-shifted threshold energies associated with co-and counter-propagating laser and ion beams [1]. A calibrated wave-meter was used to establish the wavelength scale of the OPO/OPA system. The newly measured values of the electron affinity of the P atom and the fine structure intervals of the P- ion represent a significant improvement in precision over the current recommended values [2]. [1]. P.Juncar, et al., Phys. Rev. Lett., 54, 11(1985). [2] T.Andersen, H.K.Haugen and H.Hotop, J. Phys. and Chem. Ref. Data, 28, 1511 (1999).

  6. Resonant energy transfer based biosensor for detection of multivalent proteins.

    SciTech Connect

    Song, X.; Swanson, Basil I.

    2001-01-01

    We have developed a new fluorescence-based biosensor for sensitive detection of species involved in a multivslent interaction. The biosensor system utilizes specific interactions between proteins and cell surface receptors, which trigger a receptor aggregation process. Distance-dependent fluorescence self-quenching and resonant energy transfer mechanisms were coupled with a multivalent interaction to probe the receptor aggregation process, providing a sensitive and specific signal transduction method for such a binding event. The fluorescence change induced by the aggregation process can be monitored by different instrument platforms, e.g. fluorimetry and flow cytometry. In this article, a sensitive detection of pentavalent cholera toxin which recognizes ganglioside GM1 has been demonstrated through the resonant energy transfer scheme, which can achieve a double color change simultaneously. A detection sensitivity as high as 10 pM has been achieved within a few minutes (c.a. 5 minutes). The simultaneous double color change (an increase of acceptor fluorescence and a decrease of donor fluorescence intensity) of two similar fluorescent probes provides particularly high detection reliability owing to the fact that they act as each other's internal reference. Any external perturbation such as environmental temperature change causes no significant change in signal generation. Besides the application for biological sensing, the method also provides a useful tool for investigation of kinetics and thermodynamics of a multivalent interaction. Keywords: Biosensor, Fluorescence resonant energy transfer, Multivalent interaction, Cholera Toxin, Ganglioside GM1, Signal Transduction

  7. PVAL breast phantom for dual energy calcification detection

    NASA Astrophysics Data System (ADS)

    Koukou, V.; Martini, N.; Velissarakos, K.; Gkremos, D.; Fountzoula, C.; Bakas, A.; Michail, C.; Kandarakis, I.; Fountos, G.

    2015-09-01

    Microcalcifications are the main indicator for breast cancer. Dual energy imaging can enhance the detectability of calcifications by suppressing the tissue background. Two digital images are obtained using two different spectra, for the low- and high-energy respectively, and a weighted subtracted image is produced. In this study, a dual energy method for the detection of the minimum breast microcalcification thickness was developed. The used integrated prototype system consisted of a modified tungsten anode X-ray tube combined with a high resolution CMOS sensor. The breast equivalent phantom used was an elastically compressible gel of polyvinyl alcohol (PVAL). Hydroxyapatite was used to simulate microcalcifications with thicknesses ranging from 50 to 500 μm. The custom made phantom was irradiated with 40kVp and 70kVp. Tungsten (W) anode spectra filtered with 100μm Cadmium and 1000pm Copper, for the low- and high-energy, respectively. Microcalcifications with thicknesses 300μm or higher can be detected with mean glandular dose (MGD) of 1.62mGy.

  8. Limit on the detectability of the energy scale of inflation.

    PubMed

    Knox, Lloyd; Song, Yong-Seon

    2002-07-01

    We show that the polarization of the cosmic microwave background can be used to detect gravity waves from inflation if the energy scale of inflation is above 2x10(15) GeV. These gravity waves generate polarization patterns with a curl, whereas (to first order in perturbation theory) density perturbations do not. The limiting "noise" arises from the second-order generation of curl from density perturbations, or rather residuals from its subtraction. We calculate optimal sky coverage and detectability limits as a function of detector sensitivity and observing time. PMID:12097027

  9. Threshold Concepts in Biochemistry

    ERIC Educational Resources Information Center

    Loertscher, Jennifer

    2011-01-01

    Threshold concepts can be identified for any discipline and provide a framework for linking student learning to curricular design. Threshold concepts represent a transformed understanding of a discipline, without which the learner cannot progress and are therefore pivotal in learning in a discipline. Although threshold concepts have been…

  10. Threshold Concepts in Biochemistry

    ERIC Educational Resources Information Center

    Loertscher, Jennifer

    2011-01-01

    Threshold concepts can be identified for any discipline and provide a framework for linking student learning to curricular design. Threshold concepts represent a transformed understanding of a discipline, without which the learner cannot progress and are therefore pivotal in learning in a discipline. Although threshold concepts have been

  11. Computed tomography with energy-resolved detection: a feasibility study

    NASA Astrophysics Data System (ADS)

    Shikhaliev, Polad M.

    2008-03-01

    The feasibility of computed tomography (CT) with energy-resolved x-ray detection has been investigated. A breast CT design with multi slit multi slice (MSMS) data acquisition was used for this study. The MSMS CT includes linear arrays of photon counting detectors separated by gaps. This CT configuration allows for efficient scatter rejection and 3D data acquisition. The energy-resolved CT images were simulated using a digital breast phantom and the design parameters of the proposed MSMS CT. The phantom had 14 cm diameter and 50/50 adipose/glandular composition, and included carcinoma, adipose, blood, iodine and CaCO3 as contrast elements. The x-ray technique was 90 kVp tube voltage with 660 mR skin exposure. Photon counting, charge (energy) integrating and photon energy weighting CT images were generated. The contrast-to-noise (CNR) improvement with photon energy weighting was quantified. The dual energy subtracted images of CaCO3 and iodine were generated using a single CT scan at a fixed x-ray tube voltage. The x-ray spectrum was electronically split into low- and high-energy parts by a photon counting detector. The CNR of the energy weighting CT images of carcinoma, blood, adipose, iodine, and CaCO3 was higher by a factor of 1.16, 1.20, 1.21, 1.36 and 1.35, respectively, as compared to CT with a conventional charge (energy) integrating detector. Photon energy weighting was applied to CT projections prior to dual energy subtraction and reconstruction. Photon energy weighting improved the CNR in dual energy subtracted CT images of CaCO3 and iodine by a factor of 1.35 and 1.33, respectively. The combination of CNR improvements due to scatter rejection and energy weighting was in the range of 1.71-2 depending on the type of the contrast element. The tilted angle CZT detector was considered as the detector of choice. Experiments were performed to test the effect of the tilting angle on the energy spectrum. Using the CZT detector with 20° tilting angle decreased the tailing of the measured x-ray spectrum as compared to a conventional CZT detector. It was concluded that the energy-resolved MSMS CT with tilted angle CZT detector is potentially feasible and could provide a unique combination of photon counting, energy weighting, scatter rejection and single kVp dual energy subtraction CT imaging.

  12. Computed tomography with energy-resolved detection: a feasibility study.

    PubMed

    Shikhaliev, Polad M

    2008-03-01

    The feasibility of computed tomography (CT) with energy-resolved x-ray detection has been investigated. A breast CT design with multi slit multi slice (MSMS) data acquisition was used for this study. The MSMS CT includes linear arrays of photon counting detectors separated by gaps. This CT configuration allows for efficient scatter rejection and 3D data acquisition. The energy-resolved CT images were simulated using a digital breast phantom and the design parameters of the proposed MSMS CT. The phantom had 14 cm diameter and 50/50 adipose/glandular composition, and included carcinoma, adipose, blood, iodine and CaCO3 as contrast elements. The x-ray technique was 90 kVp tube voltage with 660 mR skin exposure. Photon counting, charge (energy) integrating and photon energy weighting CT images were generated. The contrast-to-noise (CNR) improvement with photon energy weighting was quantified. The dual energy subtracted images of CaCO3 and iodine were generated using a single CT scan at a fixed x-ray tube voltage. The x-ray spectrum was electronically split into low- and high-energy parts by a photon counting detector. The CNR of the energy weighting CT images of carcinoma, blood, adipose, iodine, and CaCO3 was higher by a factor of 1.16, 1.20, 1.21, 1.36 and 1.35, respectively, as compared to CT with a conventional charge (energy) integrating detector. Photon energy weighting was applied to CT projections prior to dual energy subtraction and reconstruction. Photon energy weighting improved the CNR in dual energy subtracted CT images of CaCO3 and iodine by a factor of 1.35 and 1.33, respectively. The combination of CNR improvements due to scatter rejection and energy weighting was in the range of 1.71-2 depending on the type of the contrast element. The tilted angle CZT detector was considered as the detector of choice. Experiments were performed to test the effect of the tilting angle on the energy spectrum. Using the CZT detector with 20 degrees tilting angle decreased the tailing of the measured x-ray spectrum as compared to a conventional CZT detector. It was concluded that the energy-resolved MSMS CT with tilted angle CZT detector is potentially feasible and could provide a unique combination of photon counting, energy weighting, scatter rejection and single kVp dual energy subtraction CT imaging. PMID:18296774

  13. New states above charm threshold

    SciTech Connect

    Eichten, Estia J.; Lane, Kenneth; Quigg, Chris; /Fermilab

    2005-11-01

    We revise and extend expectations for the properties of charmonium states that lie above charm threshold, in light of new experimental information. We refine the Cornell coupled-channel model for the coupling of c{bar c} levels to two-meson states, defining resonance masses and widths by pole positions in the complex energy plane, and suggest new targets for experiment.

  14. Identification of training status differences using perceived exertion threshold.

    PubMed

    Ferreira, Guilherme A; Bertuzzi, Romulo; Lima-Silva, Adriano E; Malfatti, Carlos; De-Oliveira, Fernando R; Osiecki, Raul

    2016-04-01

    We investigated if the rate of perceived exertion (RPE) threshold is as sensitive as the lactate threshold to detect training differences. Lactate and RPE thresholds were identified in well-trained cyclists and physically active males. Power output was higher in well-trained cyclists than in physically active individuals for both thresholds (p < 0.05). Our results suggest that RPE threshold is successful in discriminating differences between well-trained cyclists and physically active individuals. PMID:26960443

  15. Detection and Analysis of Threats to the Energy Sector: DATES

    SciTech Connect

    Alfonso Valdes

    2010-03-31

    This report summarizes Detection and Analysis of Threats to the Energy Sector (DATES), a project sponsored by the United States Department of Energy and performed by a team led by SRI International, with collaboration from Sandia National Laboratories, ArcSight, Inc., and Invensys Process Systems. DATES sought to advance the state of the practice in intrusion detection and situational awareness with respect to cyber attacks in energy systems. This was achieved through adaptation of detection algorithms for process systems as well as development of novel anomaly detection techniques suited for such systems into a detection suite. These detection components, together with third-party commercial security systems, were interfaced with the commercial Security Information Event Management (SIEM) solution from ArcSight. The efficacy of the integrated solution was demonstrated on two testbeds, one based on a Distributed Control System (DCS) from Invensys, and the other based on the Virtual Control System Environment (VCSE) from Sandia. These achievements advance the DOE Cybersecurity Roadmap [DOE2006] goals in the area of security monitoring. The project ran from October 2007 until March 2010, with the final six months focused on experimentation. In the validation phase, team members from SRI and Sandia coupled the two test environments and carried out a number of distributed and cross-site attacks against various points in one or both testbeds. Alert messages from the distributed, heterogeneous detection components were correlated using the ArcSight SIEM platform, providing within-site and cross-site views of the attacks. In particular, the team demonstrated detection and visualization of network zone traversal and denial-of-service attacks. These capabilities were presented to the DistribuTech Conference and Exhibition in March 2010. The project was hampered by interruption of funding due to continuing resolution issues and agreement on cost share for four months in 2008. This resulted in delays in finalizing agreements with commercial partners, and in particular the Invensys testbed was not installed until December 2008 (as opposed to the March 2008 plan). The project resulted in a number of conference presentations and publications, and was well received when presented at industry forums. In spite of some interest on the part of the utility sector, we were unfortunately not able to engage a utility for a full-scale pilot deployment.

  16. A hydrophone prototype for ultra high energy neutrino acoustic detection

    NASA Astrophysics Data System (ADS)

    Cotrufo, A.; Plotnikov, A.; Yershova, O.; Anghinolfi, M.; Piombo, D.

    2009-06-01

    The design of an air-backed fiber-optic hydrophone is presented. With respect to the previous models this prototype is optimized to provide a bandwidth sufficiently large to detect acoustic signals produced by high energy hadronic showers in water. In addiction to the geometrical configuration and to the choice of the materials, the preliminary results of the measured performances in air are presented.

  17. Threshold collision-induced dissociation of hydrated cadmium (II): Experimental and theoretical investigation of the binding energies for Cd 2+(H 2O) n complexes ( n = 4-11)

    NASA Astrophysics Data System (ADS)

    Cooper, Theresa E.; Armentrout, P. B.

    2010-02-01

    The first experimentally determined hydration energies of Cd 2+(H 2O) n complexes, n = 4-11, are measured using threshold collision-induced dissociation in a guided-ion-beam tandem mass spectrometer coupled with an electrospray-ionization source. Kinetic-energy-dependent cross-sections are obtained and analyzed to yield 0 K thresholds for losing one water ligand. The threshold measurements are converted to 298 K values to give the hydration enthalpies and free energies for sequentially losing one water. Trends in these values and calculations at the MP2(full)/SD/6-311+G(2d,2p)//B3LYP/SD/6-311+G(d,p) level are consistent with the inner-solvent shell of Cd 2+ being six waters.

  18. Dual energy detection of weapons of mass destruction

    NASA Astrophysics Data System (ADS)

    Budner, Gregory J.

    2006-03-01

    There is continuing plans and actions from terrorists to use "violence to inculcate fear with intent to coerce or try to intimidate governments or societies in the pursuit of goals that are generally political, religious or ideological." (Joint Pub 3-07.2) One can characterize the types of attacks and plan to interdict terrorist actions before they become crises. This paper focuses on Radiological (RDD) and Nuclear (WMD) threats. The X-ray inspection process and the use of dual-energy imaging will interdict materials for WMDs. Listed herewith is "several major characteristics that one can exploit for the detection. First, both WMDs and RDDs are radioactive. Therefore, one can hope to detect radiation coming from the containers to identify the threat. However since uranium and plutonium are largely self-shielding and since lead can be used to shield and hide these substances, passive detection of emitted radiation can be easily defeated. An important second characteristic is that WMDs and shielded dirty bombs contain materials with very high atomic numbers. Since normal commerce rarely contains materials with atomic numbers higher than that of iron, dual-energy imaging technology can detect such materials automatically, for the successful interdiction of WMDs and dirty bombs". (Bjorkolm 2005)

  19. Measurement of Low Energy Detection Efficiency of a Plastic Scintillator: Implications on the Lower Energy Limit and Sensitivity of a Hard X-Ray Focal Plane Compton Polarimeter

    NASA Astrophysics Data System (ADS)

    Chattopadhyay, T.; Vadawale, S. V.; Shanmugam, M.; Goyal, S. K.

    2014-05-01

    The polarization measurements in X-rays offer a unique opportunity for the study of physical processes under the extreme conditions prevalent at compact X-ray sources, including gravitation, magnetic field, and temperature. Unfortunately, there has been no real progress in observational X-ray polarimetry thus far. Although photoelectron tracking-based X-ray polarimeters provide realistic prospects of polarimetric observations, they are effective in the soft X-rays only. With the advent of hard X-ray optics, it has become possible to design sensitive X-ray polarimeters in hard X-rays based on Compton scattering. An important point that should be carefully considered for the Compton polarimeters is the lower energy threshold of the active scatterer, which typically consists of a plastic scintillator due to its lowest effective atomic number. Therefore, an accurate understanding of the plastic scintillators energy threshold is essential to make a realistic estimate of the energy range and sensitivity of any Compton polarimeter. In this context, we set up an experiment to investigate the plastic scintillators behavior for very low energy deposition events. The experiment involves the detection of Compton scattered photons from a long, thin, plastic scintillator (a similar configuration as the eventual Compton polarimeter) by a high resolution CdTe detector at different scattering angles. We find that it is possible to detect energy deposition well below 1 keV, though with decreasing efficiency. We present detailed semianalytical modeling of our experimental setup and discuss the results in the context of the energy range and sensitivity of the Compton polarimeter involving plastic scintillators.

  20. Research on energy transmission calculation problem on laser detecting submarine

    NASA Astrophysics Data System (ADS)

    Fu, Qiang; Li, Yingchao; Zhang, Lizhong; Wang, Chao; An, Yan

    2014-12-01

    The laser detection and identification is based on the method of using laser as the source of signal to scan the surface of ocean. If the laser detection equipment finds out the target, it will immediately reflect the returning signal, and then through receiving and disposing the returning signal by the receiving system, to realize the function of detection and identification. Two mediums channels should be though in the process of laser detection transmission, which are the atmosphere and the seawater. The energy loss in the process of water transport, mainly considering the surface reflection and scattering attenuation and internal attenuation factors such as seawater. The energy consumption though atmospheric transmission, mainly considering the absorption of atmospheric and the attenuation causing by scattering, the energy consumption though seawater transmission, mainly considering the element such as surface reflection, the attenuation of scattering and internal attenuation of seawater. On the basis of the analysis and research, through the mode of establishment of atmospheric scattering, the model of sea surface reflection and the model of internal attenuation of seawater, determine the power dissipation of emitting lasers system, calculates the signal strength that reaches the receiver. Under certain conditions, the total attenuation of -98.92 dB by calculation, and put forward the related experiment scheme by the use of Atmospheric analog channel, seawater analog channel. In the experiment of the theory, we use the simulation pool of the atmosphere and the sea to replace the real environment where the laser detection system works in this kind of situation. To start with, we need to put the target in the simulating seawater pool of 10 meters large and then control the depth of the target in the sea level. We, putting the laser detection system in position where it is 2 kilometers far from one side, secondly use the equipment to aim at the target in some distance. Lastly, by launching and detecting the signal of returning wave, identify the effect of the image produced by the system.

  1. Rearrangements of a Water Molecule in Both Directions between Two Hydrogen-Bonding Sites of 5-Hydroxyindole Cation: Experimental Determination of the Energy Threshold for the Rearrangement.

    PubMed

    Ikeda, Takamasa; Sakota, Kenji; Sekiya, Hiroshi

    2016-03-24

    Rearrangements of a water molecule in both directions between two hydrogen-bonding (H-bonding) sites of the 5-hydroxyindole (5HI) cation was investigated in the gas phase. IR-dip spectra of jet-cooled 5HI-(H2O)1 revealed that two structural isomers, 5HI(OH)-(H2O)1 and 5HI(NH)-(H2O)1, in which a water molecule is bound to either the OH group or the NH group of 5HI, were formed in the S0 state. The IR photodissociation spectrum of [5HI-(H2O)1](+) generated by two-color resonant two-photon ionization (2C-R2PI) via the S1-S0 origin of 5HI(NH)-(H2O)1 clearly showed that [5HI(OH)-(H2O)1](+) and [5HI(NH)-(H2O)1](+) coexist in the D0 state. The appearance of [5HI(OH)-(H2O)1](+) after R2PI via the S1-S0 origin of 5HI(NH)-(H2O)1 is explained by isomerization of [5HI(NH)-(H2O)1](+) to [5HI(OH)-(H2O)1](+), which corresponds to the rearrangement of the water. In addition, isomerization in the opposite direction was also observed when [5HI-(H2O)1](+) was generated via the S1-S0 origin of 5HI(OH)-(H2O)1. The upper limit of the energy threshold for the rearrangement of the water in [5HI(NH)-(H2O)1](+) was experimentally determined to be 2127 ± 30 cm(-1) from the adiabatic ionization energy of 5HI(NH)-(H2O)1. Above the energy threshold, the water molecule in [5HI-(H2O)1](+) may fluctuate between the two preferential H-bonding sites of 5HI(+). PMID:26950041

  2. Detecting Partial Energy Modulation in a Dielectric Laser Accelerator - Oral Presentation

    SciTech Connect

    Lukaczyk, Louis

    2015-08-24

    The Dielectric Laser Acceleration group at SLAC uses micro-fabricated dielectric grating structures and conventional infrared lasers to accelerator electrons. These structures have been estimated to produce an accelerating gradient up to 2 orders of magnitude greater than that produced by conventional RF accelerators. The success of the experiment depends on both the laser damage threshold of the structure and the timing overlap of femtosecond duration laser pulses with the electron bunch. In recent dielectric laser acceleration experiments, the laser pulse was shorter both temporally and spatially than the electron bunch. As a result, the laser is theorized to have interacted with only a small portion of the electron bunch. The detection of this phenomenon, referred to as partial population modulation, required a new approach to the data analysis of the electron energy spectra. A fitting function was designed to separate the accelerated electron population from the unaccelerated electron population. The approach was unsuccessful in detecting acceleration in the partial population modulation data. However, the fitting functions provide an excellent figure of merit for previous data known to contain signatures of acceleration.

  3. Exploring the relationship between SDNR and detectability in dual-energy breast x-ray imaging

    NASA Astrophysics Data System (ADS)

    Karunamuni, Roshan; Kanamaluru, Swathiu; Lau, Kristen; Gavenonis, Sara; Bakic, Predrag R.; Maidment, Andrew D. A.

    2013-03-01

    Contrast-enhanced (CE) digital breast tomosynthesis (DBT) provides a technique to increase the contrast of radiographic imaging agents by suppressing soft-tissue signal variation. By reducing the effect of the soft-tissue anatomical noise, it is then possible to quantify the signal from an iodinated contrast agent. The combination of dual-energy and tomographic acquisitions allows for both the accurate quantification and localization of an iodinated lesion. Here, we present our findings demonstrating the relationship that exists between the signal difference to noise ratio (SDNR) and reader detectability of iodinated lesions in a physical anthropomorphic phantom. The observer study was conducted using the ViewDEX software platform with a total of nine readers. The readers were asked to score each of the iodinated lesions on a scale from 1 (entire boundary and area are visible) to 5 (not visible). Both SDNR and lesion detectability were found to improve as the concentration of the iodine increases, and the thickness of the phantom decreases. Lesion detectability was better in the tomographic slice that best matches the focal plane of the imaged object. However, SDNR does not significantly change with focal plane. Our results demonstrated that observer lesion detectability correlated well with SDNR. Lesions whose SDNR fell below 1 were difficult to distinguish from the background and were in general not visible. Lesions that were rated entirely visible corresponded to those with SDNR values above 3. Lesions with intermediate SDNR values were visualized but not confidently from the surrounding background. These threshold SDNR values can be used to optimize the imaging parameters in CE-DBT.

  4. Resonant photonuclear isotope detection using medium-energy photon beam

    NASA Astrophysics Data System (ADS)

    Ejiri, Hiroyasu; Shima, Tatsushi

    2012-02-01

    Resonant photonuclear isotope detection (RPID) is a nondestructive detection/assay of nuclear isotopes by measuring γ rays following photonuclear reaction products. Medium-energy wideband photons of Eγ=12-16MeV are used for the photonuclear (γ,n) reactions and γ rays characteristic of the reaction products are measured by means of high-sensitivity Ge detectors. Impurities of stable and radioactive isotopes of the orders of μgr—ngr and ppm—ppb are investigated. RPID is used to study nuclear isotopes of astronuclear and particle physics interests and those of geological and historical interests. It is used to identify radioactive isotopes of fission products as well.

  5. Catastrophic defeat in war, weapon system life cycles, energy threshold advancement and political change: A case study of Brandenburg-Prussia, 928-1815

    SciTech Connect

    Bunker, R.J.

    1993-01-01

    This dissertation examines the effects of catastrophic defeat in war in stimulating political change. A catastrophic defeat is a crisis causing event for a political community. It results in the prevailing concept of the soldier, which serves as an inhibitor to military change, being destroyed. Change comes to the military system of the polity by means of weapons system developments, witnessed by weapon system life cycles, generate changes in the entire structure of the military system. Change is in turn transmitted to the administrative and economic systems of the political community. The political community ultimately rebuilds itself, both materially and ideologically, around a more advanced energy threshold than the one which existed before the catastrophic defeat. This results in more energy output generated which translates into a greater level of work potential harnessed by the polity. This rebuilding process stimulates change through power redistribution within the political community because some social classes gain power and others lose it during each period of rebuilding. To support this research query, a case study based on Brandenburg-Prussia from 928 to 1815 has been utilized. Five episodes of catastrophic defeat followed by political change have been isolated. To measure the political changes in these episodes, representative structures have been created which allow changes in weapon systems, the army, the administration and the economy of the political community to be portrayed. Qualitative indicators are utilized which portray structural changes by tracking variables which define their components. While some quantitative indicators such as increases in energy output are utilized, in essence this is a study in [open quotes]qualitative causality[close quotes] through an examination of history.

  6. Energy Transfer Based Nanocomposite Scintillator for Radiation Detection

    NASA Astrophysics Data System (ADS)

    Aslam, Soha; Sahi, Sunil; Chen, Wei; Ma, Lun; Kenarangui, Rasool

    2014-09-01

    Scintillators are the materials that emit light upon irradiation with high energy radiation like X-ray or gamma-ray. Inorganic single crystal and organic (plastic and liquid) are the two most used scintillator types. Both of these scintillator kinds have advantages and disadvantages. Inorganic single crystals are expensive and difficult to grow in desire shape and size. Also, single crystal scintillator such as NaI and CsI are very hygroscopic. On the other hand, organic scintillators have low density which limits their applications in gamma spectroscopy. Due to high quantum yield and size dependent emission, nanoparticles have attracted interested in various field of research. Here, we have studies the nanoparticles for radiation detection. We have synthesized nanoparticles of Cerium fluoride (CeF3), Zinc Oxide (ZnO), Cadmium Telluride (CdTe), Copper complex and Zinc sulfide (ZnS). We have used Fluorescence Resonance Energy Transfer (FRET) principle to enhance the luminescence properties of nanocomposite scintillator. Nanocomposites scintillators are structurally characterized with X-ray diffraction (XRD) and Transmission Electron Microscopy (TEM). Optical properties are studied using Photoluminescence, UV-Visible and X-ray. Enhancements in the luminescence are observed under UV and X-ray excitation. Preliminary studies shows nanocomposite scintillators are promising for radiation detection. Scintillators are the materials that emit light upon irradiation with high energy radiation like X-ray or gamma-ray. Inorganic single crystal and organic (plastic and liquid) are the two most used scintillator types. Both of these scintillator kinds have advantages and disadvantages. Inorganic single crystals are expensive and difficult to grow in desire shape and size. Also, single crystal scintillator such as NaI and CsI are very hygroscopic. On the other hand, organic scintillators have low density which limits their applications in gamma spectroscopy. Due to high quantum yield and size dependent emission, nanoparticles have attracted interested in various field of research. Here, we have studies the nanoparticles for radiation detection. We have synthesized nanoparticles of Cerium fluoride (CeF3), Zinc Oxide (ZnO), Cadmium Telluride (CdTe), Copper complex and Zinc sulfide (ZnS). We have used Fluorescence Resonance Energy Transfer (FRET) principle to enhance the luminescence properties of nanocomposite scintillator. Nanocomposites scintillators are structurally characterized with X-ray diffraction (XRD) and Transmission Electron Microscopy (TEM). Optical properties are studied using Photoluminescence, UV-Visible and X-ray. Enhancements in the luminescence are observed under UV and X-ray excitation. Preliminary studies shows nanocomposite scintillators are promising for radiation detection. US Department of Homeland Security.

  7. Selective chemical detection by energy modulation of sensors

    DOEpatents

    Stetter, J.R.; Otagawa, T.

    1985-05-20

    A portable instrument for use in the field in detecting, identifying, and quantifying a component of a sampled fluid includes a sensor which chemically reacts with the component of interest or a derivative thereof, an electrical heating filament for heating the sample before it is applied to the sensor, and modulating means for continuously varying the temperature of the filament (and hence the reaction rate) between two values sufficient to produce the chemical reaction. In response to this thermal modulation, the sensor produces a modulated output signal, the modulation of which is a function of the activation energy of the chemical reaction, which activation energy is specific to the particular component of interest and its concentration. Microprocessor means compares the modulated output signal with standard responses for a plurality of components to identify and quantify the particular component of interest. 4 figs.

  8. Bayesian Threshold Estimation

    ERIC Educational Resources Information Center

    Gustafson, S. C.; Costello, C. S.; Like, E. C.; Pierce, S. J.; Shenoy, K. N.

    2009-01-01

    Bayesian estimation of a threshold time (hereafter simply threshold) for the receipt of impulse signals is accomplished given the following: 1) data, consisting of the number of impulses received in a time interval from zero to one and the time of the largest time impulse; 2) a model, consisting of a uniform probability density of impulse time

  9. Pausing at the Threshold

    ERIC Educational Resources Information Center

    Morgan, Patrick K.

    2015-01-01

    Since about 2003, the notion of threshold concepts--the central ideas in any field that change how learners think about other ideas--have become difficult to escape at library conferences and in general information literacy discourse. Their visibility will likely only increase because threshold concepts figure prominently in the Framework for…

  10. Bayesian Threshold Estimation

    ERIC Educational Resources Information Center

    Gustafson, S. C.; Costello, C. S.; Like, E. C.; Pierce, S. J.; Shenoy, K. N.

    2009-01-01

    Bayesian estimation of a threshold time (hereafter simply threshold) for the receipt of impulse signals is accomplished given the following: 1) data, consisting of the number of impulses received in a time interval from zero to one and the time of the largest time impulse; 2) a model, consisting of a uniform probability density of impulse time…

  11. Detecting meaningful body composition changes in athletes using dual-energy x-ray absorptiometry.

    PubMed

    Colyer, Steffi L; Roberts, Simon P; Robinson, Jonathan B; Thompson, Dylan; Stokes, Keith A; Bilzon, James L J; Salo, Aki I T

    2016-04-01

    Dual-energy x-ray absorptiometry (DXA) imaging is considered to provide a valid and reliable estimation of body composition when stringent scanning protocols are adopted. However, applied practitioners are not always able to achieve this level of control and the subsequent impact on measurement precision is not always taken into account when evaluating longitudinal body composition changes. The primary aim of this study was to establish the reliability of DXA in an applied elite sport setting to investigate whether real body composition changes can be detected. Additionally, the performance implications of these changes during the training year were investigated. Forty-eight well-trained athletes (from four diverse sports) underwent two DXA scans using a 'real-world' approach (with limited pre-scan controls), typically within 48 h, to quantify typical error of measurement (TEM). Twenty-five athletes underwent further scans, before and after specific training and competition blocks. 'True' body composition changes were evaluated using 2  ×  TEM thresholds. Twelve bob skeleton athletes also performed countermovement jump and leg press tests at each time point. Many 'true' body composition changes were detected and coincided with the primary training emphases (e.g. lean mass gains during hypertrophy-based training). Clear relationships (r  ±  90% CI) were observed between performance changes (countermovement jump and leg press) and changes in lean mass (0.53  ±  0.26 and 0.35  ±  0.28, respectively) and fat mass (-0.44  ±  0.27 and  -0.37  ±  0.28, respectively). DXA was able to detect real body composition changes without the use of stringent scanning controls. Associations between changes in body composition and performance demonstrated the potential influence of these changes on strength and power indices. PMID:27027548

  12. Automated detection and delineation of lung tumors in PET-CT volumes using a lung atlas and iterative mean-SUV threshold

    NASA Astrophysics Data System (ADS)

    Ballangan, Cherry; Wang, Xiuying; Eberl, Stefan; Fulham, Michael; Feng, Dagan

    2009-02-01

    Automated segmentation for the delineation of lung tumors with PET-CT is a challenging task. In PET images, primary lung tumors can have varying degrees of tracer uptake, which sometimes does not differ markedly from normal adjacent structures such as the mediastinum, heart and liver. In addition, separation of tumor from adjacent soft tissues and bone in the chest wall is problematic due to limited resolution. For CT, the tumor soft tissue density can be similar to that in the blood vessels and the chest wall; and although CT provides better boundary definition, exact tumor delineation is also difficult when the tumor density is similar to adjacent structures. We propose an innovative automated adaptive method to delineate lung tumors in PET-CT images in conjunction with a lung atlas in which an iterative mean-SUV (Standardized Uptake Value) threshold is used to gradually define the tumor region in PET. Tumor delineation in the CT data is performed using region growing and seeds obtained autonomously from the PET tumor regions. We evaluated our approach in 13 patients with non-small cell lung cancer (NSCLC) and found it could delineate tumors of different size, shape and location, even when when the NSCLC involved the chest wall.

  13. High-field quench behavior and dependence of hot spot temperature on quench detection voltage threshold in a Bi2Sr2CaCu2Ox coil

    NASA Astrophysics Data System (ADS)

    Shen, Tengming; Ye, Liyang; Turrioni, Daniele; Li, Pei

    2015-07-01

    Small insert solenoids have been built using a multifilamentary Ag/Bi2Sr2CaCu2Ox round wire insulated with a mullite sleeve (100 ?m in thickness) and characterized in background fields to explore the quench behaviors and limits of Bi2Sr2CaCu2Ox superconducting magnets, with an emphasis on assessing the impact of slow normal zone propagation on quench detection. Using heaters of various lengths to initiate a small normal zone, a coil was quenched safely more than 70 times without degradation, with the maximum coil temperature reaching 280 K. Coils withstood a resistive voltage of tens of mV for seconds without quenching, showing the high stability of these coils and suggesting that the quench detection voltage should be greater than 50 mV in order not to falsely trigger protection. The hot spot temperature for the resistive voltage of the normal zone to reach 100 mV increased from 40-80 K while increasing the operating wire current density Jo from 89 A mm-2 to 354 A mm-2, whereas for the voltage to reach 1 V, it increased from 60-140 K. This shows the increasing negative impact of slow normal zone propagation on quench detection with increasing Jo and the need to limit the quench detection voltage to <1 V. These measurements, coupled with an analytical quench model, were used to assess the impact of the maximum allowable detection voltage and temperature upon quench detection on the quench protection, assuming a limit of the hot spot temperature to <300 K.

  14. Selective chemical detection by energy modulation of sensors

    DOEpatents

    Stetter, J.R.; Otagawa, T.

    1991-09-10

    A portable instrument for use in the field in detecting, identifying, and quantifying a component of a sampled fluid includes a sensor which chemically reacts with the component of interest or a derivative thereof, an electrical heating filament for heating the sample before it is applied to the sensor, and modulator for continuously varying the temperature of the filament (and hence the reaction rate) between two values sufficient to produce the chemical reaction. In response to this thermal modulation, the sensor produces a modulated output signal, the modulation of which is a function of the activation energy of the chemical reaction, which activation energy is specific to the particular component of interest and its concentration. Microprocessor which compares the modulated output signal with standard responses for a plurality of components to identify and quantify the particular component of interest. In particular, the concentration of the component of interest is proportional to the amplitude of the modulated output signal, while the identifying activation output energy of the chemical interaction indicative of that component is proportional to a normalized parameter equal to the peak-to-peak amplitude divided by the height of the upper peaks above a base line signal level. 5 figures.

  15. Selective chemical detection by energy modulation of sensors

    DOEpatents

    Stetter, Joseph R.; Otagawa, Takaaki

    1991-01-01

    A portable instrument for use in the field in detecting, identifying, and quantifying a component of a sampled fluid includes a sensor which chemically reacts with the component of interest or a derivative thereof, an electrical heating filament for heating the sample before it is applied to the sensor, and modulator for continuously varying the temperature of the filament (and hence the reaction rate) between two values sufficient to produce the chemical reaction. In response to this thermal modulation, the sensor produces a modulated output signal, the modulation of which is a function of the activation energy of the chemical reaction, which activation energy is specific to the particular component of interest and its concentration. Microprocessor which compares the modulated output signal with standard responses for a plurality of components to identify and quantify the particular component of interest. In particular, the concentration of the component of interest is proportional to the amplitude of the modulated output signal, while the identifying activation output energy of the chemical interaction indicative of that component is proportional to a normalized parameter equal to the peak-to-peak amplitude divided by the height of the upper peaks above a base line signal level.

  16. STIMULUS AND TRANSDUCER EFFECTS ON THRESHOLD

    PubMed Central

    Flamme, Gregory A.; Geda, Kyle; McGregor, Kara; Wyllys, Krista; Deiters, Kristy K.; Murphy, William J.; Stephenson, Mark R.

    2015-01-01

    Objective This study examined differences in thresholds obtained under Sennheiser HDA200 circumaural earphones using pure tone, equivalent rectangular noise bands, and 1/3 octave noise bands relative to thresholds obtained using Telephonics TDH-39P supra-aural earphones. Design Thresholds were obtained via each transducer and stimulus condition six times within a 10-day period. Study Sample Forty-nine adults were selected from a prior study to represent low, moderate, and high threshold reliability. Results The results suggested that (1) only small adjustments were needed to reach equivalent TDH-39P thresholds, (2) pure-tone thresholds obtained with HDA200 circumaural earphones had reliability equal to or better than those obtained using TDH-39P earphones, (3) the reliability of noise-band thresholds improved with broader stimulus bandwidth and was either equal to or better than pure-tone thresholds, and (4) frequency-specificity declined with stimulus bandwidths greater than one Equivalent Rectangular Band, which could complicate early detection of hearing changes that occur within a narrow frequency range. Conclusions These data suggest that circumaural earphones such as the HDA200 headphones provide better reliability for audiometric testing as compared to the TDH-39P earphones. These data support the use of noise bands, preferably ERB noises, as stimuli for audiometric monitoring. PMID:25549164

  17. Prediction-based threshold for medication alert.

    PubMed

    Kawazoe, Yoshimasa; Miyo, Kengo; Kurahashi, Issei; Sakurai, Ryota; Ohe, Kazuhiko

    2013-01-01

    This study presents a prediction-based approach to determine thresholds for a medication alert in a computerized physician order entry. Traditional static thresholds can sometimes lead to physician's alert fatigue or overlook potentially excessive medication even if the doses are belowthe configured threshold. To address this problem, we applied a random forest algorithm to develop a prediction model for medication doses, and applied a boxplot to determine the thresholds based on the prediction results. An evaluation of the eight drugs most frequently causing alerts in our hospital showed that the performances of the prediction were high, except for two drugs. It was also found that using the thresholds based on the predictions would reduce the alerts to a half of those when using the static thresholds. Notably, some cases were detected only by the prediction thresholds. The significance of the thresholds should be discussed in terms of the trade-offs between gains and losses; however, our approach, which relies on physicians' collective experiences, has practical advantages. PMID:23920550

  18. Detecting special nuclear materials in containers using high-energy gamma rays emitted by fission products

    DOEpatents

    Norman, Eric B.; Prussin, Stanley G.

    2007-10-02

    A method and a system for detecting the presence of special nuclear materials in a container. The system and its method include irradiating the container with an energetic beam, so as to induce a fission in the special nuclear materials, detecting the gamma rays that are emitted from the fission products formed by the fission, to produce a detector signal, comparing the detector signal with a threshold value to form a comparison, and detecting the presence of the special nuclear materials using the comparison.

  19. Snapshot molecular imaging using coded energy-sensitive detection.

    PubMed

    Greenberg, Joel A; Krishnamurthy, Kalyani; Brady, David

    2013-10-21

    We demonstrate a technique for measuring the range-resolved coherent scatter form factors of different objects from a single snapshot. By illuminating the object with an x-ray pencil beam and placing a coded aperture in front of a linear array of energy-sensitive detector elements, we record the coherently scattered x-rays. This approach yields lateral, range, and momentum transfer resolutions of 1 mm, 5 mm, and 0.2 nm?, respectively, which is sufficient for the distinguishing a variety of solids and liquids. These results indicate a path toward real-time volumetric molecular imaging for non-destructive examination in a variety of applications, including medical diagnostics, quality inspection, and security detection. PMID:24150387

  20. Evaluating sucking maturation using two pressure thresholds

    PubMed Central

    White-Traut, Rosemary; Rankin, Kristin; Lucas, Ruth; Shapiro, Nicole; Liu, Li; Medoff-Cooper, Barbara

    2014-01-01

    Background The Medoff-Cooper Nutritive Sucking Apparatus (M-CNSA) has been used to objectively measure sucking maturation in preterm infants. The M-CNSA is able to accurately detect sucking pressures less than 20 mm Hg, however lower pressure thresholds have not previously been used in research. Aims To determine if differences are observed in the number of sucks and maturation in the number of sucks over time when the minimum pressure threshold used to detect a suck is 7 mm Hg compared to 20 mm Hg using the M-CNSA. Study design Descriptive. Subjects A convenience sample of 171 healthy premature infants born between 29 and 34 weeks gestational period who were part of a larger randomized controlled study. Outcome measures The number of sucks detected during weekly five-minute oral feeding observations using 7 mm Hg and 20 mm Hg. Results Significantly more sucks were detected using the 7 mm Hg vs 20 mm Hg threshold at all time points. At both pressure thresholds, the mean number of sucks detected during the five minute feeding observation increased over time. The difference in the number of sucks detected at 7 and 20 mm Hg did not change over time (p = 0.50). Conclusions Using the lower threshold of 7 mm Hg compared to 20 mm Hg resulted in more sucks detected while consistently measuring improvement in sucking over time. Detection of more sucks and sucks at a lower pressure threshold allows clinicians and researchers to more accurately assess oral feeding skills among premature infants. PMID:23972294

  1. Efficient circular thresholding.

    PubMed

    Lai, Yu-Kun; Rosin, Paul L

    2014-03-01

    Otsu's algorithm for thresholding images is widely used, and the computational complexity of determining the threshold from the histogram is O(N) where N is the number of histogram bins. When the algorithm is adapted to circular rather than linear histograms then two thresholds are required for binary thresholding. We show that, surprisingly, it is still possible to determine the optimal threshold in O(N) time. The efficient optimal algorithm is over 300 times faster than traditional approaches for typical histograms and is thus particularly suitable for real-time applications. We further demonstrate the usefulness of circular thresholding using the adapted Otsu criterion for various applications, including analysis of optical flow data, indoor/outdoor image classification, and non-photorealistic rendering. In particular, by combining circular Otsu feature with other colour/texture features, a 96.9% correct rate is obtained for indoor/outdoor classification on the well known IITM-SCID2 data set, outperforming the state-of-the-art result by 4.3%. PMID:24464614

  2. A threshold for dissipative fission

    SciTech Connect

    Thoennessen, M.; Bertsch, G.F.

    1993-09-21

    The empirical domain of validity of statistical theory is examined as applied to fission data on pre-fission data on pre-fission neutron, charged particle, and {gamma}-ray multiplicities. Systematics are found of the threshold excitation energy for the appearance of nonstatistical fission. From the data on systems with not too high fissility, the relevant phenomenological parameter is the ratio of the threshold temperature T{sub thresh} to the (temperature-dependent) fission barrier height E{sub Bar}(T). The statistical model reproduces the data for T{sub thresh}/E{sub Bar}(T) < 0.26 {plus_minus} 0.05, but underpredicts the multiplicities at higher T{sub thresh}/E{sub Bar}(T) independent of mass and fissility of the systems.

  3. Towards a Low Threshold SuperCDMS Experiment

    NASA Astrophysics Data System (ADS)

    Welliver, Bradford

    2013-04-01

    Astrophysical evidence points to the existence of particle dark matter that comprises the majority of the mass of the universe. A natural candidate for these particles are Weakly Interacting Massive Particles, or WIMPs. Lately there has been much interest in dark matter search experiments for low mass WIMPs. Detection of WIMP dark matter with mass below 20 GeV/c^2 requires a low-energy trigger threshold. However, lowering the trigger threshold also makes us sensitive to triggering on random noise which can hamper livetime. In order to minimize triggering on this random noise the original trigger filters for SuperCDMS were replaced with improved filters that reduce the amplitude of random noise substantially compared to an event-generated signal, thus allowing us to lower the trigger thresholds without the livetime penalty we would otherwise accrue. An overview of how this was accomplished as well as post-triggering methods of noise discrimination will be discussed. Predictions for the improved low thresholds will be compared to data, and the impact on a low mass WIMP search will be described.

  4. Computational gestalts and perception thresholds.

    PubMed

    Desolneux, Agnès; Moisan, Lionel; Morel, Jean-Michel

    2003-01-01

    In 1923, Max Wertheimer proposed a research programme and method in visual perception. He conjectured the existence of a small set of geometric grouping laws governing the perceptual synthesis of phenomenal objects, or "gestalt" from the atomic retina input. In this paper, we review this set of geometric grouping laws, using the works of Metzger, Kanizsa and their schools. In continuation, we explain why the Gestalt theory research programme can be translated into a Computer Vision programme. This translation is not straightforward, since Gestalt theory never addressed two fundamental matters: image sampling and image information measurements. Using these advances, we shall show that gestalt grouping laws can be translated into quantitative laws allowing the automatic computation of gestalts in digital images. From the psychophysical viewpoint, a main issue is raised: the computer vision gestalt detection methods deliver predictable perception thresholds. Thus, we are set in a position where we can build artificial images and check whether some kind of agreement can be found between the computationally predicted thresholds and the psychophysical ones. We describe and discuss two preliminary sets of experiments, where we compared the gestalt detection performance of several subjects with the predictable detection curve. In our opinion, the results of this experimental comparison support the idea of a much more systematic interaction between computational predictions in Computer Vision and psychophysical experiments. PMID:14766147

  5. Optimal volume backscattering thresholds for echo integration

    NASA Astrophysics Data System (ADS)

    Thomas, Rebecca E.; Fleischer, Guy W.; Ressler, Patrick H.

    2004-10-01

    Echo integration is a commonly used technique for assessment of fish stocks. In echo integration, a frequently used method to increase the signal-to-noise ratio is to ignore data below a set volume backscattering threshold. Although this form of thresholding is common, objective and replicable techniques for choosing this threshold are rarely used. Two opposing goals come into play when choosing an optimal threshold for estimating fish biomass using echo integration: maximizing the energy from backscatterers of interest, while simultaneously minimizing the energy from backscatterers not of interest. Both empirical and modeling techniques for choosing optimal thresholds were demonstrated using data from the 2003 integrated acoustic and trawl survey of Pacific hake. Empirical techniques were based on the receiver operating characteristic (ROC) curve. An ROC curve is a graphical plot of the number of true positives versus false positives for a binary classification system as the discrimination threshold is varied. Modeling techniques were based on volume backscattering data generated from modeled TS and density of hake and nonhake scatterers. For the case study using the 2003 Pacific hake survey, the historical threshold used for the southern portion of the survey was shown to be nonoptimal for that year.

  6. Intra-individual variation of GH-dependent markers in athletes: comparison of population based and individual thresholds for detection of GH abuse in sports.

    PubMed

    Kniess, Astrid; Ziegler, Eckart; Thieme, Detlef; Mller, R Klaus

    2013-10-01

    The GH-2000 discriminant functions, using insulin-like growth factor I (IGF-I) and the N-terminal propeptide of type III procollagen (PIIINP), enabled the detection of growth hormone (GH) doping despite the broad inter-individual normal range of both peptides. The sensitivity of the discriminant function-based methodology may perhaps be further increased in future by applying individual athlete profiles. The purpose of the present study was to evaluate the intra-individual variability of IGF-I, PIIINP and the GH-2000 scores in athletes. For this purpose a total of eight blood samples were taken from each of fifty male and female elite athletes over a period of up to 18 months. The IGF-I and PIIINP levels, we found, lay predominantly within the reference range for elite athletes. The intra-individual variability for IGF-I ranged between 6 and 26%, while that for PIIINP ranged between 6 and 33%. The intra-individual variations of both parameters were higher in female than in male subjects and were found to be mostly moderate. We found that the intra-individual variations of the GH-2000 test scores, expressed as CV, ranged from 4 to 36% and were in most of the subjects markedly smaller than the inter-individual variation. Individual cut-offs for the GH-2000 scores would be lower than population based ones in most of the cases. PMID:23850935

  7. A Temporal Model of Level-Invariant, Tone-in-Noise Detection

    ERIC Educational Resources Information Center

    Berg, Bruce G.

    2004-01-01

    Level-invariant detection refers to findings that thresholds in tone-in-noise detection are unaffected by roving-level procedures that degrade energy cues. Such data are inconsistent with ideas that detection is based on the energy passed by an auditory filter. A hypothesis that detection is based on a level-invariant temporal cue is advanced.…

  8. A Temporal Model of Level-Invariant, Tone-in-Noise Detection

    ERIC Educational Resources Information Center

    Berg, Bruce G.

    2004-01-01

    Level-invariant detection refers to findings that thresholds in tone-in-noise detection are unaffected by roving-level procedures that degrade energy cues. Such data are inconsistent with ideas that detection is based on the energy passed by an auditory filter. A hypothesis that detection is based on a level-invariant temporal cue is advanced.

  9. Threshold concepts: implications for the management of natural resources

    USGS Publications Warehouse

    Guntenspergen, Glenn R.; Gross, John

    2014-01-01

    Threshold concepts can have broad relevance in natural resource management. However, the concept of ecological thresholds has not been widely incorporated or adopted in management goals. This largely stems from the uncertainty revolving around threshold levels and the post hoc analyses that have generally been used to identify them. Natural resource managers have a need for new tools and approaches that will help them assess the existence and detection of conditions that demand management actions. Recognition of additional threshold concepts include: utility thresholds (which are based on human values about ecological systems) and decision thresholds (which reflect management objectives and values and include ecological knowledge about a system) as well as ecological thresholds. All of these concepts provide a framework for considering the use of threshold concepts in natural resource decision making.

  10. Lorentz violating kinematics: threshold theorems

    NASA Astrophysics Data System (ADS)

    Baccetti, Valentina; Tate, Kyle; Visser, Matt

    2012-03-01

    Recent tentative experimental indications, and the subsequent theoretical speculations, regarding possible violations of Lorentz invariance have attracted a vast amount of attention. An important technical issue that considerably complicates detailed calculations in any such scenario, is that once one violates Lorentz invariance the analysis of thresholds in both scattering and decay processes becomes extremely subtle, with many new and naively unexpected effects. In the current article we develop several extremely general threshold theorems that depend only on the existence of some energy momentum relation E(p), eschewing even assumptions of isotropy or monotonicity. We shall argue that there are physically interesting situations where such a level of generality is called for, and that existing (partial) results in the literature make unnecessary technical assumptions. Even in this most general of settings, we show that at threshold all final state particles move with the same 3-velocity, while initial state particles must have 3-velocities parallel/anti-parallel to the final state particles. In contrast the various 3-momenta can behave in a complicatedand counter-intuitive manner.

  11. Methods for threshold determination in multiplexed assays

    DOEpatents

    Tammero, Lance F. Bentley; Dzenitis, John M; Hindson, Benjamin J

    2014-06-24

    Methods for determination of threshold values of signatures comprised in an assay are described. Each signature enables detection of a target. The methods determine a probability density function of negative samples and a corresponding false positive rate curve. A false positive criterion is established and a threshold for that signature is determined as a point at which the false positive rate curve intersects the false positive criterion. A method for quantitative analysis and interpretation of assay results together with a method for determination of a desired limit of detection of a signature in an assay are also described.

  12. Seeking to Improve Low Energy Neutral Atom Detection in Space

    NASA Technical Reports Server (NTRS)

    Shappirio, M.; Coplan, M.; Chornay, D.; Collier, M.; Herrero, F.; Ogilvie, K.; Williams, E.

    2007-01-01

    The detection of energetic neutral atoms allows for the remote examination of the interactions between plasmas and neutral populations in space. Before these neutral atoms can be measured, they must first be converted to ions. For the low energy end of this spectrum, interaction with a conversion surface is often the most efficient method to convert neutrals into ions. It is generally thought that the most efficient surfaces are low work functions materials. However, by their very nature, these surfaces are highly reactive and unstable, and therefore are not suitable for space missions where conditions cannot be controlled as they are in a laboratory. We therefore are looking to optimize a stable surface for conversion efficiency. Conversion efficiency can be increased either by changing the incident angle of the neutral particles to be grazing incidence and using stable surfaces with high conversion efficiencies. We have examined how to increase the angle of incidence from -80 degrees to -89 degrees, while maintaining or improving the total active conversion surface area without increasing the overall volume of the instrument. We are developing a method to micro-machine silicon, which will reduce the volume to surface area ratio by a factor of 60. We have also examined the material properties that affect the conversion efficiency of the surface for stable surfaces. Some of the parameters we have examined are work function, smoothness, and bond structure. We find that for stable surfaces, the most important property is the smoothness of the surface.

  13. Threshold resonances in ultracold chemical reactions

    NASA Astrophysics Data System (ADS)

    Côté, Robin; Simbotin, Ionel; Ghosal, Subhas

    2012-06-01

    We analyze the effects of near threshold resonances on the low energy behavior of cross sections for reactive scattering systems with reaction a barrier (e.g. Cl + H2, D + H2). We find an anomalous behavior when a resonance pole is very close to the threshold of the entrance channel. For inelastic processes, including reactive ones, the anomalous energy dependence of the cross sections is given by σ˜E-3/2. However, at vanishingly low energies, the standard Wigner's threshold behavior (σ˜E-1/2) is eventually recovered, but limiting to much narrower range of energies. When the cross sections are averaged to obtain rate coefficients, the anomalous behavior persists; indeed, we find an intermediate regime of ultralow temperatures, where the inelastic rate coefficients behave as K˜1/T.

  14. A Brierf Exploration of Low-Threshold, Gas-Filled Detectors

    NASA Astrophysics Data System (ADS)

    Masood, Kirollos

    2015-10-01

    Low-threshold detectors possess a wide variety of uses, such as detecting inverse β decay. Additionally, with a sufficiently low threshold and low background, they could be sensitive enough for Coherent, Elastic Neutrino-Nucleus Scattering (CEvNS) and spin-dependent WIMP searches. Our aim was to explore prototypes and operating conditions of such gas-filled detectors. We have successfully operated at pressures from 1-30 psi (above atmosphere), and biases from 2-4 kV. These settings can be adjusted according to the desired energy range. Using an 55Fe source for calibration, we have achieved a threshold of 150 eV, under preliminary optimal conditions. As a result of moderate shielding, background radiation has been easily reduced to no more than 1000 counts kg-1keV-1day-1. Acknowledgements go to TUNL and the U.S. Department of Energy.

  15. ''Magic'' Energies for Detecting Light Elements with Resonant Alpha Particle Backscattering

    SciTech Connect

    Wetteland, C.J.; Maggiore, C.J.; Tesmer, J.R.; He, X-M.; Lee, D-H.

    1998-11-04

    Resonant backscattering is widely used to improve the detection limit of the light elements such as B, C, N and O. One disadvantage, however, is that several incident energies are normally needed if the sample contains a number of the light elements. There are ''magic'' energies at which several light elements can be detected simultaneously with suitable sensitivities. When these energies are used along with the elastic recoil detection of hydrogen, multiple elements can be detected without changing the beam energy, and the analysis time is greatly reduced. These reactions along with examples will be discussed.

  16. Setting Graduation Rate Thresholds.

    ERIC Educational Resources Information Center

    Underwood, David G.; Rieck, James R.

    1999-01-01

    Reviews the college completion/graduation rate thresholds developed by several states and discusses advantages and disadvantages of several statistical approaches, including use of the one standard deviation lower bound method, the logit prediction bound method, the linear regression method, and the logistic regression method. (DB)

  17. Elaborating on Threshold Concepts

    ERIC Educational Resources Information Center

    Rountree, Janet; Robins, Anthony; Rountree, Nathan

    2013-01-01

    We propose an expanded definition of Threshold Concepts (TCs) that requires the successful acquisition and internalisation not only of knowledge, but also its practical elaboration in the domains of applied strategies and mental models. This richer definition allows us to clarify the relationship between TCs and Fundamental Ideas, and to account…

  18. Aspects of image recognition in Vivid Technologies' dual-energy x-ray system for explosives detection

    NASA Astrophysics Data System (ADS)

    Eilbert, Richard F.; Krug, Kristoph D.

    1993-04-01

    The Vivid Rapid Explosives Detection Systems is a true dual energy x-ray machine employing precision x-ray data acquisition in combination with unique algorithms and massive computation capability. Data from the system's 960 detectors is digitally stored and processed by powerful supermicro-computers organized as an expandable array of parallel processors. The algorithms operate on the dual energy attenuation image data to recognize and define objects in the milieu of the baggage contents. Each object is then systematically examined for a match to a specific effective atomic number, density, and mass threshold. Material properties are determined by comparing the relative attenuations of the 75 kVp and 150 kVp beams and electronically separating the object from its local background. Other heuristic algorithms search for specific configurations and provide additional information. The machine automatically detects explosive materials and identifies bomb components in luggage with high specificity and throughput, X-ray dose is comparable to that of current airport x-ray machines. The machine is also configured to find heroin, cocaine, and US currency by selecting appropriate settings on-site. Since January 1992, production units have been operationally deployed at U.S. and European airports for improved screening of checked baggage.

  19. Quantitative mammography contrast threshold test tool.

    PubMed

    Wagner, A J; Frey, G D

    1995-02-01

    Mammographic contrast is commonly evaluated by visualizing small objects of varying size or mass divided by projected area. These qualitative contrast determinations are commonly performed by imaging a phantom like the American College of Radiology accreditation phantom at clinical mammographic settings. However, this contrast assessment does not take into account the kVp of the machine. This work describes a quantitative mammography contrast threshold test tool which examines light object contrast on a uniform background for a contrast range of 0.32% to 1.38% at 25 kVp. For this mammography contrast threshold test tool, contrast is defined by delta I/I = loge (psi O/ psi b), where psi O is the target energy flux, and psi b is the background energy flux. Contrast threshold is defined as the lowest contrast value for which the objects are visible. Unlike traditional assessments of mammographic contrast, this measurement of contrast threshold is kVp corrected. The mammography contrast threshold test tool is constructed out of common plastics and provides a quantitative means of assessing contrast threshold for individual mammographic units and total mammographic systems. PMID:7565343

  20. Melanin microcavitation threshold in the near infrared

    NASA Astrophysics Data System (ADS)

    Schmidt, Morgan S.; Kennedy, Paul K.; Vincelette, Rebecca L.; Schuster, Kurt J.; Noojin, Gary D.; Wharmby, Andrew W.; Thomas, Robert J.; Rockwell, Benjamin A.

    2014-02-01

    Thresholds for microcavitation of isolated bovine and porcine melanosomes were determined using single nanosecond (ns) laser pulses in the NIR (1000 - 1319 nm) wavelength regime. Average fluence thresholds for microcavitation increased non-linearly with increasing wavelength. Average fluence thresholds were also measured for 10-ns pulses at 532 nm, and found to be comparable to visible ns pulse values published in previous reports. Fluence thresholds were used to calculate melanosome absorption coefficients, which decreased with increasing wavelength. This trend was found to be comparable to the decrease in retinal pigmented epithelial (RPE) layer absorption coefficients reported over the same wavelength region. Estimated corneal total intraocular energy (TIE) values were determined and compared to the current and proposed maximum permissible exposure (MPE) safe exposure levels. Results from this study support the proposed changes to the MPE levels.

  1. Detection, Diagnosis and Prognosis: Contribution to the energy challenge: Proceedings of the Meeting of the Mechanical Failures Prevention Group

    NASA Astrophysics Data System (ADS)

    Shives, T. R.; Willard, W. A.

    1981-10-01

    The contribution of failure detection, diagnosis and prognosis to the energy challenge is discussed. Areas of special emphasis included energy management, techniques for failure detection in energy related systems, improved prognostic techniques for energy related systems and opportunities for detection, diagnosis and prognosis in the energy field.

  2. Detection, Diagnosis and Prognosis: Contribution to the energy challenge: Proceedings of the Meeting of the Mechanical Failures Prevention Group

    NASA Technical Reports Server (NTRS)

    Shives, T. R. (Editor); Willard, W. A. (Editor)

    1981-01-01

    The contribution of failure detection, diagnosis and prognosis to the energy challenge is discussed. Areas of special emphasis included energy management, techniques for failure detection in energy related systems, improved prognostic techniques for energy related systems and opportunities for detection, diagnosis and prognosis in the energy field.

  3. Network problem threshold

    NASA Technical Reports Server (NTRS)

    Gejji, Raghvendra, R.

    1992-01-01

    Network transmission errors such as collisions, CRC errors, misalignment, etc. are statistical in nature. Although errors can vary randomly, a high level of errors does indicate specific network problems, e.g. equipment failure. In this project, we have studied the random nature of collisions theoretically as well as by gathering statistics, and established a numerical threshold above which a network problem is indicated with high probability.

  4. Value: Changes in the Detection and Recognition Thresholds of Three Basic Tastes in Lung Cancer Patients Receiving Cisplatin and Paclitaxel and Its Association with Nutritional and Quality of Life Parameters.

    PubMed

    Turcott, Jenny G; Juárez-Hernández, Eva; De la Torre-Vallejo, Martha; Sánchez-Lara, Karla; Luvian-Morales, Julissa; Arrieta, Oscar

    2016-01-01

    We evaluated the effects of cisplatin and paclitaxel on taste acuity and their associations with nutritional and health-related quality of life (HRQL) in patients with advanced non-small-cell lung cancer (NSCLC). Forty chemotherapy (CT)-naïve patients were assessed at baseline and after two cycles of paclitaxel and cisplatin. The taste evaluation was performed using a rinsing technique to identify detection and recognition thresholds (DT and RT) of bitter, sweet, and umami tastes. At baseline, 37.5% of the patients reported dysgeusia. After CT, the patients showed lower medians DT (p = 0.017) and RT (p = 0.028) for umami taste. These decreases were associated with clinical neuropathy, worse HRQL, and a tendency toward increased appetite loss. Additionally, CT did not significantly reduce the median DT for sweet (p = 0.09), which is associated with lower intake of protein (p = 0.015), animal protein (p = 0.010), fat (p = 0.004), and iron (p = 0.047). CT decreased the median DT for bitter (p = 0.035); however, this decrease was not associated with nutritional parameters or with HRQL. Sensitivity to taste increased with paclitaxel and cisplatin CT, making foods more unpleasant, and it was associated with neuropathy, worse HRQL, and reduced nutrient intake in advanced NSCLC patients. The protocol was registered at clinicaltrials.gov (NCT01540045). PMID:26943275

  5. Measuring the speed of dark: Detecting dark energy perturbations

    SciTech Connect

    Putter, Roland de; Huterer, Dragan; Linder, Eric V.

    2010-05-15

    The nature of dark energy can be probed not only through its equation of state but also through its microphysics, characterized by the sound speed of perturbations to the dark energy density and pressure. As the sound speed drops below the speed of light, dark energy inhomogeneities increase, affecting both cosmic microwave background and matter power spectra. We show that current data can put no significant constraints on the value of the sound speed when dark energy is purely a recent phenomenon, but can begin to show more interesting results for early dark energy models. For example, the best fit model for current data has a slight preference for dynamics [w(a){ne}-1], degrees of freedom distinct from quintessence (c{sub s{ne}}1), and early presence of dark energy [{Omega}{sub de}(a<<1){ne}0]. Future data may open a new window on dark energy by measuring its spatial as well as time variation.

  6. Two-Source Double-Slit Interference in Angle-Resolved High-Energy Above-Threshold Ionization Spectra of Diatoms

    SciTech Connect

    Okunishi, M.; Itaya, R.; Shimada, K.; Pruemper, G.; Ueda, K.; Busuladzic, M.; Gazibegovic-Busuladzic, A.; Milosevic, D. B.; Becker, W.

    2009-07-24

    When an electron from a diatomic molecule undergoes tunneling-rescattering ionization, a novel form of destructive interference can be realized that involves all four geometric orbits that are available to the electron when it is freed, because both ionization and rescattering may take place at the same or at different centers. We find experimentally and confirm theoretically that in orientation-averaged angle-resolved high-order above-threshold ionization spectra the corresponding destructive interference is visible for O{sub 2} but not for N{sub 2}. This effect is different from the suppression of ionization that is well known to occur for O{sub 2}.

  7. A low threshold EAS (extensive-air-shower) array for gamma-ray astronomy at Los Alamos

    SciTech Connect

    Burman, R.L.; Hoffman, C.M.; Nagle, D.E.; Potter, M.E.; Sandberg, V.; Berley, D.; Dingus, B.L.; Goodman, J.A.; Haines, T.J.; Stark, M.; Ellsworth, R.W.; Alexandreas, D.E.; Biller, S.; Dion, G.; Lu, X.Q.; Vishwanath, P.R.; Yodh, G.B.; Tumer, T.; White, S.; Zych, A.; Freedman, S.; Krakauer, D.; Lamb, R.; Maryland Univ., College Park, MD; George Mason Univ., Fairfax, VA; Ca

    1990-01-01

    A new type of extensive-air-shower (EAS) array is described that achieves a low energy threshold, large area, high duty factor and large muon coverage. By placing a regularly-spaced grid of phototubes just below the surface of a shallow pond, the Cherenkov light of particles in an air shower striking the water can be detected, resulting in a primary energy threshold of less than 1 TeV. This highly sensitive array can thus be used to span the gap of information between the existing air Cherenkov techniques at 1 TeV and the existing EAS arrays at 100 TeV. 5 refs., 3 figs.

  8. A unifying basis of auditory thresholds based on temporal summation

    PubMed Central

    Heil, Peter; Neubauer, Heinrich

    2003-01-01

    Thresholds of auditory-nerve (AN) fibers and auditory neurons are commonly specified in terms of sound pressure only, implying that they are independent of time. At the perceptual level, however, the sound pressure required for detection decreases with increasing stimulus duration, suggesting that the auditory system integrates sound over time. The quantity commonly believed to be integrated is sound intensity, implying that the auditory system would have an energy threshold. However, leaky integrators of intensity with time constants of hundreds of milliseconds are required to fit the data. Such time constants are unknown in physiology and are also incompatible with the high temporal resolution of the auditory system, creating the resolution–integration paradox. Here we demonstrate that cortical and perceptual responses are based on integration of the pressure envelope of the sound, as we have previously shown for AN fibers, rather than on intensity. The functions relating the pressure envelope integration thresholds and time for AN fibers, cortical neurons, and perception in the same species (cat), as well as for perception in many different vertebrate species, are remarkably similar. They are well described by a power law that resolves the resolution–integration paradox. The data argue for the integrator to be located in the first synapse in the auditory pathway and we discuss its mode of operation. PMID:12724527

  9. An adaptive detection model of moving dim targets based on energy difference between frames

    NASA Astrophysics Data System (ADS)

    Liu, Yuanyuan; Yan, Guoping

    2009-12-01

    The paper is based on biology vision stared mechanism, applies the detective arithmetic operators of static image into the system of moving dim targets detection ,brings forward an adaptive detective model of moving dim targets based on energy difference between frames, and optimizes and selects the parameters in the mathematic model. Experiments completed by the paper proving, the adaptive detective model can detect moving dim targets real-timely and exactly. Detection and tracking of moving dim targets are the most important part of the system of watching and alarming. So it's essential to find and detect the targets in time. Because of claim of detecting targets at long bowls, the targets usually are regarded as the dot targets or pixels in the system of watching and alarming. So detection of infrared dim targets is one of key technology in the weapon system, and one important project in moving targets detection. We aim at slowing down signal-to-noise ratio in the detection of moving dim targets by the way of classical frame difference and rapid matching, bring out a new anisotropic moving detection model between frames in the study of theories of biology vision fixated mechanism, and analyze and research on selection of more parameters in the detection model. Experimental results show that the algorithm based on energy difference comparing between frames which is brought out by this paper is effective and practical to detect moving dim small targets.

  10. DETECTION OF LARGE ACOUSTIC ENERGY FLUX IN THE SOLAR ATMOSPHERE

    SciTech Connect

    Bello Gonzalez, N.; Franz, M.; Schmidt, W.; Berkefeld, T.; MartInez Pillet, V.; Bonet, J. A.; Del Toro Iniesta, J. C.; Domingo, V.; Knoelker, M.

    2010-11-10

    We study the energy flux carried by acoustic waves excited by convective motions at sub-photospheric levels. The analysis of high-resolution spectropolarimetric data taken with IMaX/SUNRISE provides a total energy flux of {approx}6400-7700 W m{sup -2} at a height of {approx}250 km in the 5.2-10 mHz range, i.e., at least twice the largest energy flux found in previous works. Our estimate lies within a factor of two of the energy flux needed to balance radiative losses from the chromosphere according to the estimates of Anderson and Athay and revives interest in acoustic waves for transporting energy to the chromosphere. The acoustic flux is mainly found in the intergranular lanes but also in small rapidly evolving granules and at the bright borders, forming dark dots and lanes of splitting granules.

  11. Gas threshold Cerenkov counters

    NASA Technical Reports Server (NTRS)

    Logachev, V. I.; Sinitsyna, V. G.; Chukin, V. S.

    1975-01-01

    The report describes two designs are reported of gas threshold Cerenkov counters for recording electrons of primary cosmic rays without recording protons. Also presented are design and technological measures which ensure maximum light collection of the Cerenkov radiation originating on the photocathode of the photomultiplier inside the radiator. The dependence of the reflection factor on the length of the light wave for different coatings is shown as well as for the throughput of the different optical materials employed. A range of methods for determining the efficiency of the counters during the recording of cosmic ray nucons and ways of increasing it further are given.

  12. Energy efficient data representation and aggregation with event region detection in wireless sensor networks

    NASA Astrophysics Data System (ADS)

    Banerjee, Torsha

    Unlike conventional networks, wireless sensor networks (WSNs) are limited in power, have much smaller memory buffers, and possess relatively slower processing speeds. These characteristics necessitate minimum transfer and storage of information in order to prolong the network lifetime. In this dissertation, we exploit the spatio-temporal nature of sensor data to approximate the current values of the sensors based on readings obtained from neighboring sensors and itself. We propose a Tree based polynomial REGression algorithm, (TREG) that addresses the problem of data compression in wireless sensor networks. Instead of aggregated data, a polynomial function (P) is computed by the regression function, TREG. The coefficients of P are then passed to achieve the following goals: (i) The sink can get attribute values in the regions devoid of sensor nodes, and (ii) Readings over any portion of the region can be obtained at one time by querying the root of the tree. As the size of the data packet from each tree node to its parent remains constant, the proposed scheme scales very well with growing network density or increased coverage area. Since physical attributes exhibit a gradual change over time, we propose an iterative scheme, UPDATE_COEFF, which obviates the need to perform the regression function repeatedly and uses approximations based on previous readings. Extensive simulations are performed on real world data to demonstrate the effectiveness of our proposed aggregation algorithm, TREG. Results reveal that for a network density of 0.0025 nodes/m2, a complete binary tree of depth 4 could provide the absolute error to be less than 6%. A data compression ratio of about 0.02 is achieved using our proposed algorithm, which is almost independent of the tree depth. In addition, our proposed updating scheme makes the aggregation process faster while maintaining the desired error bounds. We also propose a Polynomial-based scheme that addresses the problem of Event Region Detection (PERD) for WSNs. When a single event occurs, a child of the tree sends a Flagged Polynomial (FP) to its parent, if the readings approximated by it falls outside the data range defining the existing phenomenon. After the aggregation process is over, the root having the two polynomials, P and FP can be queried for FP (approximating the new event region) instead of flooding the whole network. For multiple such events, instead of computing a polynomial corresponding to each new event, areas with same data range are combined by the corresponding tree nodes and the aggregated coefficients are passed on. Results reveal that a new event can be detected by PERD while error in detection remains constant and is less than a threshold of 10%. As the node density increases, accuracy and delay for event detection are found to remain almost constant, making PERD highly scalable. Whenever an event occurs in a WSN, data is generated by closeby sensors and relaying the data to the base station (BS) make sensors closer to the BS run out of energy at a much faster rate than sensors in other parts of the network. This gives rise to an unequal distribution of residual energy in the network and makes those sensors with lower remaining energy level die at much faster rate than others. We propose a scheme for enhancing network Lifetime using mobile cluster heads (CH) in a WSN. To maintain remaining energy more evenly, some energy-rich nodes are designated as CHs which move in a controlled manner towards sensors rich in energy and data. This eliminates multihop transmission required by the static sensors and thus increases the overall lifetime of the WSN. We combine the idea of clustering and mobile CH to first form clusters of static sensor nodes. A collaborative strategy among the CHs further increases the lifetime of the network. Time taken for transmitting data to the BS is reduced further by making the CHs follow a connectivity strategy that always maintain a connected path to the BS. Spatial correlation of sensor data can be further exploited for dynamic channel selection in Cellular Communication. In such a scenario within a licensed band, wireless sensors can be deployed (each sensor tuned to a frequency of the channel at a particular time) to sense the interference power of the frequency band. In an ideal channel, interference temperature (IT) which is directly proportional to the interference power, can be assumed to vary spatially with the frequency of the sub channel. We propose a scheme for fitting the sub channel frequencies and corresponding ITs to a regression model for calculating the IT of a random sub channel for further analysis of the channel interference at the base station. Our scheme, based on the readings reported by Sensors helps in Dynamic Channel Selection (S-DCS) in extended C-band for assignment to unlicensed secondary users. S-DCS proves to be economic from energy consumption point of view and it also achieves accuracy with error bound within 6.8%. Again, users are assigned empty sub channels without actually probing them, incurring minimum delay in the process. The overall channel throughput is maximized along with fairness to individual users.

  13. Empirical threshold values for quantitative trait mapping

    SciTech Connect

    Churchill, G.A.; Doerge, R.W.

    1994-11-01

    The detection of genes that control quantitative characters is a problem of great interest to the genetic mapping community. Methods for locating these quantitative trait loci (QTL) relative to maps of genetic markers are now widely used. This paper addresses an issue common to all QTL mapping methods, that of determining an appropriate threshold value for declaring significant QTL effects. An empirical method is described, based on the concept of a permutation test, for estimating threshold values that are tailored to the experimental data at hand. The method is demonstrated using two real data sets derived from F{sub 2} and recombinant inbred plant populations. An example using simulated data from a backcross design illustrates the effect of marker density on threshold values. 29 refs., 3 figs., 3 tabs.

  14. High Energy Electron and Gamma - Ray Detection with ATIC

    NASA Technical Reports Server (NTRS)

    Chang, J.; Schmidt, W. K. H.; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    The Advanced Thin Ionization Calorimeter (ATIC) balloon borne ionization calorimeter is well suited to record and identify high energy cosmic ray electrons, and at very high energies gamma-ray photons as well. We have simulated the performance of the instrument, and compare the simulations with actual high energy electron exposures at the CERN accelerator. Simulations and measurements do not compare exactly, in detail, but overall the simulations have predicted actual measured behavior quite well. ATIC has had its first 16 day balloon flight at the turn of the year over Antarctica, and first results obtained using the analysis methods derived from simulations and calibrations will be reported.

  15. An Efficient Energy based Detection of Malicious Node in Mobile Wireless Sensor Networks

    NASA Astrophysics Data System (ADS)

    Sharmila, S.; Umamaheswari, G.

    2012-03-01

    Mobile wireless sensor networks (MWSN) are composed of a large number of wireless sensors and they require a careful consumption of available energy to prolong the life of the network. From the security point of view, existing detection schemes consumes node energy and thus reduces the life time of the network. This paper focuses on energy based scheme for detecting the malicious node in the forward routing path. This detection scheme suits any standard routing protocol. The forward route selection path is identified by using dynamic source routing protocol. The proposed scheme is simulated in glomosim and evaluated using packet throughput, percentage of byte overheads, energy consumption, and the accuracy of detection. The network with moderate mobility is used and the proposed scheme consumes 20 % of node energy.

  16. Threshold Monitoring Maps for Under-Water Explosions

    NASA Astrophysics Data System (ADS)

    Arora, N. S.

    2014-12-01

    Hydro-acoustic energy in the 1-100 Hz range from under-water explosions can easily spread for thousands of miles due to the unique properties of the deep sound channel. This channel, aka SOFAR channel, exists almost everywhere in the earth's oceans where the water has at least 1500m depth. Once the energy is trapped in this channel it spreads out cylindrically, and hence experiences very little loss, as long as there is an unblocked path from source to receiver. Other losses such as absorption due to chemicals in the ocean (mainly boric acid and magnesium sulphate) are also quite minimal at these low frequencies. It is not surprising then that the International Monitoring System (IMS) maintains a global network of hydrophone stations listening on this particular frequency range. The overall objective of our work is to build a probabilistic model to detect and locate under-water explosions using the IMS network. A number of critical pieces for this model, such as travel time predictions, are already well known. We are extending the existing knowledge-base by building the remaining pieces, most crucially the models for transmission losses and detection probabilities. With a complete model for detecting under-water explosions we are able to combine it with our existing model for seismic events, NET-VISA. In the conference we will present threshold monitoring maps for explosions in the earth's oceans. Our premise is that explosive sources release an unknown fraction of their total energy into the SOFAR channel, and this trapped energy determines their detection probability at each of the IMS hydrophone stations. Our threshold monitoring maps compute the minimum amount of energy at each location that must be released into the deep sound channel such that there is a ninety percent probability that at least two of the IMS stations detect the event. We will also present results of our effort to detect and locate hydro-acoustic events. In particular, we will show results from a recent under-water volcanic eruption at the Ahyl Seamount (April-May 2014), and compare our work with the current processing, both automated and human, at the IDC.

  17. Laser threshold magnetometry

    NASA Astrophysics Data System (ADS)

    Jeske, Jan; Cole, Jared H.; Greentree, Andrew D.

    2016-01-01

    We propose a new type of sensor, which uses diamond containing the optically active nitrogen-vacancy (NV-) centres as a laser medium. The magnetometer can be operated at room-temperature and generates light that can be readily fibre coupled, thereby permitting use in industrial applications and remote sensing. By combining laser pumping with a radio-frequency Rabi-drive field, an external magnetic field changes the fluorescence of the NV- centres. We use this change in fluorescence level to push the laser above threshold, turning it on with an intensity controlled by the external magnetic field, which provides a coherent amplification of the readout signal with very high contrast. This mechanism is qualitatively different from conventional NV--based magnetometers which use fluorescence measurements, based on incoherent photon emission. We term our approach laser threshold magnetometer (LTM). We predict that an NV--based LTM with a volume of 1 mm3 can achieve shot-noise limited dc sensitivity of 1.86 fT /\\sqrt{{{Hz}}} and ac sensitivity of 3.97 fT /\\sqrt{{{Hz}}}.

  18. Coloring geographical threshold graphs

    SciTech Connect

    Bradonjic, Milan; Percus, Allon; Muller, Tobias

    2008-01-01

    We propose a coloring algorithm for sparse random graphs generated by the geographical threshold graph (GTG) model, a generalization of random geometric graphs (RGG). In a GTG, nodes are distributed in a Euclidean space, and edges are assigned according to a threshold function involving the distance between nodes as well as randomly chosen node weights. The motivation for analyzing this model is that many real networks (e.g., wireless networks, the Internet, etc.) need to be studied by using a 'richer' stochastic model (which in this case includes both a distance between nodes and weights on the nodes). Here, we analyze the GTG coloring algorithm together with the graph's clique number, showing formally that in spite of the differences in structure between GTG and RGG, the asymptotic behavior of the chromatic number is identical: {chi}1n 1n n / 1n n (1 + {omicron}(1)). Finally, we consider the leading corrections to this expression, again using the coloring algorithm and clique number to provide bounds on the chromatic number. We show that the gap between the lower and upper bound is within C 1n n / (1n 1n n){sup 2}, and specify the constant C.

  19. Dipole Symmetry Near Threshold

    NASA Astrophysics Data System (ADS)

    Gai, Moshe

    2004-04-01

    In celebrating Iachello's 60th birthday we underline many seminal contributions for the study of the degrees of freddom relevant for the structure of nuclei and other hadrons. A dipole degree of freedom, well described by the spectrum generating algebra U(4) and the Vibron Model, is a most natural concept in molecular physics. It has been suggested by Iachello with much debate, to be most important for understanding the low lying structure of nuclei and other hadrons. After its first observation in 18O it was also shown to be relevant for the structure of heavy nuclei (e.g. 218Ra). Much like the Ar-benzene molecule, it is shown that molecular configurations are important near threshold as exhibited by states with a large halo and strong electric dipole transitions. The cluster-molecular Sum Rule derived by Alhassid, Gai and Bertsch (AGB) is shown to be a very useful model independent tool for examining such dipole molecular structure near thereshold. Accordingly, the dipole strength observed in the halo nuclei such as 6He, 11Li, 11Be,17O, as well as the N=82 isotones is concentrated around threshold and it exhausts a large fraction (close to 100%) of the AGB sum rule, but a small fraction (a few percent) of the TRK sum rule. This is suggested as an evidence for a new soft dipole Vibron like oscillations in nuclei.

  20. The design of an experiment to detect low energy antiprotons

    NASA Technical Reports Server (NTRS)

    Lloyd-Evans, J.; Acharya, B. S.; Balasubrahmanyan, V. K.; Ormes, J. F.; Streitmatter, R. E.; Stephens, S. A.

    1985-01-01

    The techniques to be used in a balloon borne experiment APEX to detect 220 MeV antiprotons are described, paying particular attention to potential sources of background. Event time history is shown to be very effective in eliminating this background. Results of laboratory tests on the timing resolution which may be achieved are presented.

  1. Radar detection of ultra high energy cosmic rays

    NASA Astrophysics Data System (ADS)

    Myers, Isaac J.

    TARA (Telescope Array Radar) is a cosmic ray radar detection experiment co-located with Telescope Array, the conventional surface scintillation detector (SD) and fluorescence telescope detector (FD) near Delta, UT. The TARA detector combines a 40 kW transmitter and high gain transmitting antenna which broadcasts the radar carrier over the SD array and in the FD field of view to a 250 MS/s DAQ receiver. Data collection began in August, 2013. TARA stands apart from other cosmic ray radar experiments in that radar data is directly compared with conventional cosmic ray detector events. The transmitter is also directly controlled by TARA researchers. Waveforms from the FD-triggered data stream are time-matched with TA events and searched for signal using a novel signal search technique in which the expected (simulated) radar echo of a particular air shower is used as a matched filter template and compared to radio waveforms. This technique is used to calculate the radar cross-section (RCS) upper-limit on all triggers that correspond to well-reconstructed TA FD monocular events. Our lowest cosmic ray RCS upper-limit is 42 cm2 for an 11 EeV event. An introduction to cosmic rays is presented with the evolution of detection and the necessity of new detection techniques, of which radar detection is a candidate. The software simulation of radar scattering from cosmic rays follows. The TARA detector, including transmitter and receiver systems, are discussed in detail. Our search algorithm and methodology for calculating RCS is presented for the purpose of being repeatable. Search results are explained in context of the usefulness and future of cosmic ray radar detection.

  2. Detection of explosives, nerve agents, and illicit substances by zero-energy electron attachment

    NASA Technical Reports Server (NTRS)

    Chutjian, A.; Darrach, M. R.

    2000-01-01

    The Reversal Electron Attachment Detection (READ) method, developed at JPL/Caltech, has been used to detect a variety of substances which have electron-attachment resonances at low and intermediate electron energies. In the case of zero-energy resonances, the cross section (hence attachment probability and instrument sensitivity) is mediated by the so-called s-wave phenomenon, in which the cross sections vary as the inverse of the electron velocity. Hence this is, in the limit of zero electron energy or velocity, one of the rare cases in atomic and molecular physics where one carries out detection via infinite cross sections.

  3. A method to detect ultra high energy electrons using earth's magnetic field as a radiator

    NASA Technical Reports Server (NTRS)

    Stephens, S. A.; Balasubrahmanyan, V. K.

    1983-01-01

    It is pointed out that the detection of electrons with energies exceeding a few TeV, which lose energy rapidly through synchrotron and inverse Compton processes, would provide valuable information on the distribution of sources and on the propagation of cosmic rays in the solar neighborhood. However, it would not be possible to measure the energy spectrum beyond a few TeV with any of the existing experimental techniques. The present investigation is, therefore concerned with the possibility of detecting electrons with energies exceeding a few TeV on the basis of the photons emitted through synchrotron radiation in the earth's magnetic field. Attention is given to the synchrotron radiation of electrons in the earth's magnetic field, detector response and energy estimation, and the characteristics of an ideal detector, capable of detecting photons with energies equal to or greater than 20 keV.

  4. Autoionization of OCS by threshold photoelectron spectroscopy

    NASA Astrophysics Data System (ADS)

    Delwiche, Jacques; Hubin-Franskin, Marie-Jeanne; Guyon, Paul-Marie; Nenner, Irène

    1981-04-01

    Autoionization of carbonyl sulfide between 12 and 16 eV has been investigated by photoionization using the pulsed synchrotron radiation from ACO Orsay's storage ring. The threshold photoelectron spectrum and the total photoionization spectrum of carbonyl sulfide have been recorded at high resolution in the wavelength range between 112.0 and 65.0 nm (11-19 eV). Threshold energy electrons are observed in specific wavelength regions: (i) at excitation energies where the X˜, Ã, B˜, and C˜ ionic states are formed by a direct process; (ii) in the à state region where resonant autoionization to à can be understood classically within the Franck-Condon approximation; (iii) in the ÖX˜ Franck-Condon gap between 90 and 110 nm, where resonant autoionization leads to very sharp electron energy distribution strongly peaked at zero energy. Here the mechanism must be more complex.

  5. Development of a Cerenkov radiation sensor to detect low-energy beta-particles.

    PubMed

    Yoo, Wook Jae; Han, Ki-Tek; Shin, Sang Hun; Seo, Jeong Ki; Jeon, Dayeong; Lee, Bongsoo

    2013-11-01

    We fabricated a novel fiber-optic Cerenkov radiation sensor using a Cerenkov radiator for measuring beta-particles. Instead of employing a scintillator, transparent liquids having various refractive indices were used as a Cerenkov radiator to serve as a sensing material. The experimental results showed that the amount of Cerenkov radiation due to the interaction with beta-particles increased as the refractive index of the Cerenkov radiator was increased as a results of a decrease of the Cerenkov threshold energy for electrons. PMID:23582496

  6. Techniques and methods for the low-energy neutrino detection

    NASA Astrophysics Data System (ADS)

    Ranucci, Gioacchino

    2016-04-01

    Low-energy neutrino physics and astrophysics has been one of the most active field of particle physics research over the past two decades, achieving important and sometimes unexpected results, which have paved the way for a bright future of further exciting studies. The methods, the techniques and the technologies employed for the construction of the many experiments which acted as important players in this area of investigation have been crucial elements to reach the many accumulated physics successes. The topic covered in this review is, thus, the description of the main features of the set of methodologies at the basis of the design, construction and operation of low-energy neutrino detectors.

  7. Nonlinearities of near-threshold contrast transduction.

    PubMed

    Kontsevich, L L; Tyler, C W

    1999-05-01

    The existence of analytic threshold nonlinearities was probed with 2AFC incremental threshold functions for both local and extended test patterns on stationary matched pedestals of the same and opposite sign. In contrast to the facilitation effect with same-sign pedestals, sensitivity with opposite-sign pedestals first deteriorated up to the mask detection level, abruptly improved and then deteriorated again. Analytic solutions for the transducer function with additive noise were derived to account for the incremental data in all conditions. The results for positive difference-of-Gaussian (DoG) stimuli (whose increment made the central spot lighter) and for 10 c deg-1 Gabor stimuli were consistent with accurate hard-threshold behavior with best-fitting d' powers from 17 to 358. The 10 c deg-1 data further implied that contrast gain control was operating throughout the subthreshold range. The results for negative DoGs (whose increment corresponds to the darkening of the central spot) and 2 c deg-1 Gabor profiles were consistent with mild nonlinearities having d' powers of 1.6-3. Significant differences between the nonlinearities for positive and negative DoGs indicate that only a small portion, if any, of the near-threshold nonlinearity could be attributed to uncertainty. Our analysis suggests that, with low spatial frequency gratings, detection was based on those bars that become darker; with high-frequency gratings, on the bars that become brighter. PMID:10343878

  8. Oscillatory Threshold Logic

    PubMed Central

    Borresen, Jon; Lynch, Stephen

    2012-01-01

    In the 1940s, the first generation of modern computers used vacuum tube oscillators as their principle components, however, with the development of the transistor, such oscillator based computers quickly became obsolete. As the demand for faster and lower power computers continues, transistors are themselves approaching their theoretical limit and emerging technologies must eventually supersede them. With the development of optical oscillators and Josephson junction technology, we are again presented with the possibility of using oscillators as the basic components of computers, and it is possible that the next generation of computers will be composed almost entirely of oscillatory devices. Here, we demonstrate how coupled threshold oscillators may be used to perform binary logic in a manner entirely consistent with modern computer architectures. We describe a variety of computational circuitry and demonstrate working oscillator models of both computation and memory. PMID:23173034

  9. Thresholded Power law Size Distributions of Instabilities in Astrophysics

    NASA Astrophysics Data System (ADS)

    Aschwanden, Markus J.

    2015-11-01

    Power-law-like size distributions are ubiquitous in astrophysical instabilities. There are at least four natural effects that cause deviations from ideal power law size distributions, which we model here in a generalized way: (1) a physical threshold of an instability; (2) incomplete sampling of the smallest events below a threshold x0; (3) contamination by an event-unrelated background xb; and (4) truncation effects at the largest events due to a finite system size. These effects can be modeled in the simplest terms with a “thresholded power law” distribution function (also called generalized Pareto [type II] or Lomax distribution), N(x){dx}\\propto {(x+{x}0)}-a{dx}, where x0 > 0 is positive for a threshold effect, while x0 < 0 is negative for background contamination. We analytically derive the functional shape of this thresholded power law distribution function from an exponential growth evolution model, which produces avalanches only when a disturbance exceeds a critical threshold x0. We apply the thresholded power law distribution function to terrestrial, solar (HXRBS, BATSE, RHESSI), and stellar flare (Kepler) data sets. We find that the thresholded power law model provides an adequate fit to most of the observed data. Major advantages of this model are the automated choice of the power law fitting range, diagnostics of background contamination, physical instability thresholds, instrumental detection thresholds, and finite system size limits. When testing self-organized criticality models that predict ideal power laws, we suggest including these natural truncation effects.

  10. Ignition threshold for impact-generated fires

    NASA Astrophysics Data System (ADS)

    Durda, Daniel D.; Kring, David A.

    2004-08-01

    Widespread fires can be generated after large impact events by atmospheric heating caused by the reaccretion of high-energy, vapor-rich plume material. We examine the threshold irradiance levels necessary for spontaneous and pilot ignition of various types of vegetation and define three specific cases for investigation: (1) 51 kW/m2 for a period of at least 2 min to spontaneously ignite wood; (2) 20 kW/m2 for a period of at least 20 min to ignite wood in the presence of an ignition source; and (3) 28 kW/m2 for a period of at least 1 min to ignite foliage, rotten wood, and forest litter. The threshold ejected plume mass for continent-wide spontaneous ignition of wood is ~2 to 6 × 1015 kg, independent of impact location but dependent on the details of the ejecta speed distribution. The threshold ejected plume mass for global spontaneous ignition of wood is in the range ~1 to 2 × 1016 kg. The threshold plume masses for continent-wide and global fires are very nearly the same for piloted ignition of wood, while the threshold plume masses for continent-wide and global ignition of leaves and forest litter are significantly lower, by a factor of ~2 to 3. Impact craters of at least 85 km diameter are needed to produce continental-scale fires, and craters of ~135 km diameter are needed for global-scale fires.

  11. Analysis of experimental data on doublet neutron-deuteron scattering at energies below the deuteron-breakup threshold on the basis of the pole approximation of the effective-range function

    SciTech Connect

    Babenko, V. A.; Petrov, N. M.

    2008-01-15

    On the basis of the Bargmann representation of the S matrix, the pole approximation is obtained for the effective-range function k cot {delta}. This approximation is optimal for describing the neutron-deuteron system in the doublet spin state. The values of r{sub 0} = 412.469 fm and v{sub 2} = -35 495.62 fm{sup 3} for the doublet low-energy parameters of neutron-deuteron scattering and the value of D = 172.678 fm{sup 2} for the respective pole parameter are deduced by using experimental results for the triton binding energy E{sub T}, the doublet neutron-deuteron scattering length a{sub 2}, and van Oers-Seagrave phase shifts at energies below the deuteron-breakup threshold. With these parameters, the pole approximation of the effective-range function provides a highly precise description (the relative error does not exceed 1%) of the doublet phase shift for neutron-deuteron scattering at energies below the deuteron-breakup threshold. Physical properties of the triton in the ground (T) and virtual (v) states are calculated. The results are B{sub v} = 0.608 MeV for the virtuallevel position and C{sub T}{sup 2} = 2.866 and C{sub v}{sup 2} = 0.0586 for the dimensionless asymptotic normalization constants. It is shown that, in the Whiting-Fuda approximation, the values of physical quantities characterizing the triton virtual state are determined to a high precision by one parameter, the doublet neutron-deuteron scattering length a{sub 2}. The effective triton radii in the ground ({rho}{sub T} = 1.711 fm) and virtual ({rho}{sub v} = 74.184 fm) states are calculated for the first time.

  12. Detecting energy dependent neutron capture distributions in a liquid scintillator

    NASA Astrophysics Data System (ADS)

    Balmer, Matthew J. I.; Gamage, Kelum A. A.; Taylor, Graeme C.

    2015-03-01

    A novel technique is being developed to estimate the effective dose of a neutron field based on the distribution of neutron captures in a scintillator. Using Monte Carlo techniques, a number of monoenergetic neutron source energies and locations were modelled and their neutron capture response was recorded. Using back propagation Artificial Neural Networks (ANN) the energy and incident direction of the neutron field was predicted from the distribution of neutron captures within a 6Li-loaded liquid scintillator. Using this proposed technique, the effective dose of 252Cf, 241AmBe and 241AmLi neutron fields was estimated to within 30% for four perpendicular angles in the horizontal plane. Initial theoretical investigations show that this technique holds some promise for real-time estimation of the effective dose of a neutron field.

  13. Particle and Photon Detection: Counting and Energy Measurement

    PubMed Central

    Janesick, James; Tower, John

    2016-01-01

    Fundamental limits for photon counting and photon energy measurement are reviewed for CCD and CMOS imagers. The challenges to extend photon counting into the visible/nIR wavelengths and achieve energy measurement in the UV with specific read noise requirements are discussed. Pixel flicker and random telegraph noise sources are highlighted along with various methods used in reducing their contribution on the sensor’s read noise floor. Practical requirements for quantum efficiency, charge collection efficiency, and charge transfer efficiency that interfere with photon counting performance are discussed. Lastly we will review current efforts in reducing flicker noise head-on, in hopes to drive read noise substantially below 1 carrier rms. PMID:27187398

  14. Energy dispersive x-ray detection of thorium dioxide.

    PubMed

    Bowen, J H; Woodward, B H; Mossler, J A; Ingram, P; Shelburne, J D

    1980-09-01

    Since the recognition of the development of certain malignant neoplasms in association with thorium dioxide (Thorotrast), its presence has been documented by light microscopic appearance and time-consuming autoradiography. Energy dispersive x-ray microanalysis can be used in the rapid documentation of thorium in paraffin-embedded tissues and it is confirmed that thorium is the principal component of the granular deposits described by light microscopy. PMID:6932191

  15. NOSTOS: a spherical TPC to detect low energy neutrinos

    NASA Astrophysics Data System (ADS)

    Aune, S.; Colas, P.; Dolbeau, J.; Fanourakis, G.; Ribas, E. Ferrer; Geralis, T.; Giomataris, Y.; Gorodetzky, P.; Gounaris, G. J.; Irastorza, I. G.; Kousouris, K.; Lepeltier, V.; Patzak, T.; Paschos, E. A.; Salin, P.; Savvidis, I.; Vergados, J. D.

    2005-09-01

    A novel low-energy (~few keV) neutrino-oscillation experiment NOSTOS, combining a strong tritium source and a high pressure spherical Time Projection Chamber (TPC) detector 10 m in radius has been recently proposed. The oscillation of neutrinos of such energies occurs within the size of the detector itself, potentially allowing for a very precise (and rather systematics-free) measure of the oscillation parameters, in particular, of the smaller mixing angle θ13, which value could be determined for the first time. This detector could also be sensitive to the neutrino magnetic moment and be capable of accurately measure the Weinberg angle at low energy. The same apparatus, filled with high pressure Xenon, exhibits a high sensitivity as a Super Nova neutrino detector with extra galactic sensitivity. The outstanding benefits of the new concept of the spherical TPC will be presented, as well as the issues to be demonstrated in the near future by an ongoing R&D. The very first results of small prototype in operation in Saclay are shown.

  16. Detecting Plasmon Resonance Energy Transfer with Differential Interference Contrast Microscopy

    SciTech Connect

    Augspurger, Ashley E.; Stender, Anthony S.; Han, Rui; Fang, Ning

    2013-12-30

    Gold nanoparticles are ideal probes for studying intracellular environments and energy transfer mechanisms due to their plasmonic properties. Plasmon resonance energy transfer (PRET) relies on a plasmonic nanoparticle to donate energy to a nearby resonant acceptor molecule, a process which can be observed due to the plasmonic quenching of the donor nanoparticle. In this study, a gold nanosphere was used as the plasmonic donor, while the metalloprotein cytochrome c was used as the acceptor molecule. Differential interference contrast (DIC) microscopy allows for simultaneous monitoring of complex environments and noble metal nanoparticles in real time. Using DIC and specially designed microfluidic channels, we were able to monitor PRET at the single gold particle level and observe the reversibility of PRET upon the introduction of phosphate-buffered saline to the channel. In an additional experiment, single gold particles were internalized by HeLa cells and were subsequently observed undergoing PRET as the cell hosts underwent morphological changes brought about by ethanol-induced apoptosis.

  17. A threshold effect for spacecraft charging

    NASA Technical Reports Server (NTRS)

    Olsen, R. C.

    1983-01-01

    The borderline case between no charging and large (kV) negative potentials for eclipse charging events on geosynchronous satellites is investigated, and the dependence of this transition on a threshold energy in the ambient plasma is examined. Data from the Applied Technology Satellite 6 and P78-2 (SCATHA) show that plasma sheet fluxes must extend above 10 keV for these satellites to charge in eclipse. The threshold effect is a result of the shape of the normal secondary yield curve, in particular the high energy crossover, where the secondary yield drops below 1. It is found that a large portion of the ambient electron flux must exceed this energy for a negative current to exist.

  18. Adaptive Thresholding and Parameter Estimation for PPM

    NASA Technical Reports Server (NTRS)

    Arabshahi, Payman; Mulai, Ryan; Yan, Tsun-Yee

    2005-01-01

    A method of adaptive setting of a threshold level for the detection of pulses in a pulse-position modulation (PPM) free-space optical communication system has been developed. In simplified terms, it is desirable to set a threshold value high enough to greatly reduce the probability (PFA as defined below) of erroneously detecting noise as signal pulses but not so high as to greatly reduce the probability (PD as defined below) of detecting any signal pulses that may be present along with noise. In the present method, the threshold level is varied with time, in response to changing conditions in the optical-communication channel, in an effort to maintain a balance between the aforesaid competing requirements. An integral part of this adaptation scheme is a scheme for estimating key parameters of the optical-communication channel in particular, parameters that describe the fading and total attenuation in the channel, and parameters that characterize spreading of pulses by atmospheric and other effects. The method can be implemented by software processing of digitized optoelectronic-detector output, and has been tested by computational simulation. In the first stage of processing by this method, the digitized values of the detector output during noise-only time slots of received PPM symbols are averaged to obtain a background level. This background level is subtracted from the detector output in the hope of reducing or eliminating the noise component in the remaining signal. (This background level should not be confused with the detection threshold, which is computed in the last stage of processing.) Next, the remaining signal - in effect, a vector of pulse samples - is normalized by dividing it by its L1 norm (in general, the L1 norm of a vector is defined as the sum of absolute magnitudes of its orthogonal components).

  19. Threshold collision-induced dissociation of Sr2+(H2O)x complexes (x=1-6): An experimental and theoretical investigation of the complete inner shell hydration energies of Sr2+

    NASA Astrophysics Data System (ADS)

    Carl, D. R.; Chatterjee, B. K.; Armentrout, P. B.

    2010-01-01

    The sequential bond energies of Sr2+(H2O)x complexes, where x =1-6, are determined by threshold collision-induced dissociation using a guided ion beam tandem mass spectrometer equipped with an electrospray ionization source. The electrospray source produces an initial distribution of Sr2+(H2O)x complexes, where x =6-9. Smaller Sr2+(H2O)x complexes, where x =1-5, are accessed using a recently developed in-source fragmentation technique that takes place in the high pressure region of a rf-only hexapole ion guide. This work constitutes the first experimental study for the complete inner shell of any multiply charged ion. The kinetic energy dependent cross sections are determined over a wide energy range to monitor all possible dissociation products and are modeled to obtain 0 and 298 K binding energies for loss of a single water molecule. These binding energies decrease monotonically for the Sr2+(H2O) complex to Sr2+(H2O)6. Our experimental results agree well with previous literature results obtained by equilibrium and kinetic studies for x =5 and 6. Because there has been limited theory for the hydration of Sr2+, we also present an in-depth theoretical study on the energetics of the Sr2+(H2O)x systems by employing several levels of theory with multiple effective core potentials for Sr and different basis sets for the water molecules.

  20. s-wave threshold in electron attachment - Results in 2-C4F6 and CFCl3 at ultra-low electron energies

    NASA Technical Reports Server (NTRS)

    Chutjian, A.; Alajajian, S. H.; Ajello, J. M.; Orient, O. J.

    1984-01-01

    Electron attachment lineshapes and cross sections are reported for the processes 2-C4F6(-)/2-C4F6 and Cl(-)/CFCl3 at electron energies of 0-120 and 0-140 meV, and at resolutions of 6 and 7 meV (FWHM), respectively. As in previous measurements in CCl4 and SF6, the results show resolution-limited narrow structure in the cross section at electron energies below 15 meV. This structure arises from the divergence of the s-wave cross section in the limit of zero electron energy. Comparisons are given with swarm-measured results, and with collisional ionization (high-Rydberg attachment) data in this energy range.

  1. Probabilistic Threshold Criterion

    SciTech Connect

    Gresshoff, M; Hrousis, C A

    2010-03-09

    The Probabilistic Shock Threshold Criterion (PSTC) Project at LLNL develops phenomenological criteria for estimating safety or performance margin on high explosive (HE) initiation in the shock initiation regime, creating tools for safety assessment and design of initiation systems and HE trains in general. Until recently, there has been little foundation for probabilistic assessment of HE initiation scenarios. This work attempts to use probabilistic information that is available from both historic and ongoing tests to develop a basis for such assessment. Current PSTC approaches start with the functional form of the James Initiation Criterion as a backbone, and generalize to include varying areas of initiation and provide a probabilistic response based on test data for 1.8 g/cc (Ultrafine) 1,3,5-triamino-2,4,6-trinitrobenzene (TATB) and LX-17 (92.5% TATB, 7.5% Kel-F 800 binder). Application of the PSTC methodology is presented investigating the safety and performance of a flying plate detonator and the margin of an Ultrafine TATB booster initiating LX-17.

  2. Hairpin Vortex Regeneration Threshold

    NASA Astrophysics Data System (ADS)

    Sabatino, Daniel; Maharjan, Rijan

    2015-11-01

    A free surface water channel is used to study hairpin vortex formation created by fluid injection through a narrow slot into a laminar boundary layer. Particle image velocimetry is used to calculate the circulation of the primary hairpin vortex head which is found to monotonically decrease in strength with downstream distance. When a secondary hairpin vortex is formed upstream of the primary vortex, the circulation strength of the head is comparable to the strength of the primary head at the time of regeneration. However, the legs of the primary vortex strengthen up to the moment the secondary hairpin is generated. Although the peak circulation in the legs is not directly correlated to the strength of the original elongated ring vortex, when the circulation is scaled with the injection momentum ratio it is linearly related to scaled injection time. It is proposed that the injection momentum ratio and nondimensionalized injection time based on the wall normal penetration time can be used to identify threshold conditions which produce a secondary vortex. Supported by the National Science Foundation under Grant CBET- 1040236.

  3. Learning foraging thresholds for lizards

    SciTech Connect

    Goldberg, L.A.; Hart, W.E.; Wilson, D.B.

    1996-01-12

    This work gives a proof of convergence for a randomized learning algorithm that describes how anoles (lizards found in the Carribean) learn a foraging threshold distance. This model assumes that an anole will pursue a prey if and only if it is within this threshold of the anole`s perch. This learning algorithm was proposed by the biologist Roughgarden and his colleagues. They experimentally confirmed that this algorithm quickly converges to the foraging threshold that is predicted by optimal foraging theory our analysis provides an analytic confirmation that the learning algorithm converses to this optimal foraging threshold with high probability.

  4. Detecting W/Z pairs and Higgs at high energy pp colliders: Main experimental issues

    SciTech Connect

    Alverson, G.; Bengtsson, H.U.; Hauptman, J.; Hedin, D.; Herrero, M.J.; Wang, E.; Linn, S.; Young, C.; Milliken, B.; Paige, F.

    1987-03-01

    The main detection issues implied by the search for W and Z/sup 0/ pairs and Higgs in a high energy pp collider context are discussed here. It includes: precise electron identification, missing energy measurement, multilepton recognition, sophisticated jet pattern recognition, and pile-up. The study uses, as much as possible, a ''realistic simulation of life.''

  5. In-situ fault detection apparatus and method for an encased energy storing device

    DOEpatents

    Hagen, Ronald A.; Comte, Christophe; Knudson, Orlin B.; Rosenthal, Brian; Rouillard, Jean

    2000-01-01

    An apparatus and method for detecting a breach in an electrically insulating surface of an electrically conductive power system enclosure within which a number of series connected energy storing devices are disposed. The energy storing devices disposed in the enclosure are connected to a series power connection. A detector is coupled to the series connection and detects a change of state in a test signal derived from the series connected energy storing devices. The detector detects a breach in the insulating layer of the enclosure by detecting a state change in the test signal from a nominal state to a non-nominal state. A voltage detector detects a state change of the test signals from a nominal state, represented by a voltage of a selected end energy storing device, to a non-nominal state, represented by a voltage that substantially exceeds the voltage of the selected opposing end energy storing device. Alternatively, the detector may comprise a signal generator that produces the test signal as a time-varying or modulated test signal and injects the test signal into the series connection. The detector detects the state change of the time-varying or modulated test signal from a nominal state, represented by a signal substantially equivalent to the test signal, to a non-nominal state, representative by an absence of the test signal.

  6. Searches for anisotropies in the arrival directions of the highest energy cosmic rays detected by the Pierre Auger Observatory

    DOE PAGESBeta

    Aab, Alexander

    2015-05-01

    We analyze the distribution of arrival directions of ultra-high-energy cosmic rays recorded at the Pierre Auger Observatory in 10 years of operation. The data set, about three times larger than that used in earlier studies, includes arrival directions with zenith angles up to 80°, thus covering from -90° to +45° in declination. After updating the fraction of events correlating with the active galactic nuclei (AGNs) in the Véron-Cetty and Véron catalog, we subject the arrival directions of the data with energies in excess of 40 EeV to different tests for anisotropy. We search for localized excess fluxes, self-clustering of event directions at angular scales up to 30°, and different threshold energies between 40 and 80 EeV. We then look for correlations of cosmic rays with celestial structures both in the Galaxy (the Galactic Center and Galactic Plane) and in the local universe (the Super-Galactic Plane). We also examine their correlation with different populations of nearby extragalactic objects: galaxies in the 2MRS catalog, AGNs detected by Swift-BAT, radio galaxies with jets, and the Centaurus A (Cen A) galaxy. None of the tests show statistically significant evidence of anisotropy. As a result, the strongest departures from isotropy (post-trial probabilitymore » $$\\sim 1.4$$%) are obtained for cosmic rays with $$E\\gt 58$$ EeV in rather large windows around Swift AGNs closer than 130 Mpc and brighter than 1044 erg s-1 (18° radius), and around the direction of Cen A (15° radius).« less

  7. Searches for anisotropies in the arrival directions of the highest energy cosmic rays detected by the Pierre Auger Observatory

    SciTech Connect

    Aab, Alexander

    2015-05-01

    We analyze the distribution of arrival directions of ultra-high-energy cosmic rays recorded at the Pierre Auger Observatory in 10 years of operation. The data set, about three times larger than that used in earlier studies, includes arrival directions with zenith angles up to 80°, thus covering from -90° to +45° in declination. After updating the fraction of events correlating with the active galactic nuclei (AGNs) in the Véron-Cetty and Véron catalog, we subject the arrival directions of the data with energies in excess of 40 EeV to different tests for anisotropy. We search for localized excess fluxes, self-clustering of event directions at angular scales up to 30°, and different threshold energies between 40 and 80 EeV. We then look for correlations of cosmic rays with celestial structures both in the Galaxy (the Galactic Center and Galactic Plane) and in the local universe (the Super-Galactic Plane). We also examine their correlation with different populations of nearby extragalactic objects: galaxies in the 2MRS catalog, AGNs detected by Swift-BAT, radio galaxies with jets, and the Centaurus A (Cen A) galaxy. None of the tests show statistically significant evidence of anisotropy. As a result, the strongest departures from isotropy (post-trial probability $\\sim 1.4$%) are obtained for cosmic rays with $E\\gt 58$ EeV in rather large windows around Swift AGNs closer than 130 Mpc and brighter than 1044 erg s-1 (18° radius), and around the direction of Cen A (15° radius).

  8. Searches for Anisotropies in the Arrival Directions of the Highest Energy Cosmic Rays Detected by the Pierre Auger Observatory

    NASA Astrophysics Data System (ADS)

    Aab, A.; Abreu, P.; Aglietta, M.; Ahn, E. J.; Samarai, I. Al; Albuquerque, I. F. M.; Allekotte, I.; Allen, J.; Allison, P.; Almela, A.; Alvarez Castillo, J.; Alvarez-Muñiz, J.; Alves Batista, R.; Ambrosio, M.; Aminaei, A.; Anchordoqui, L.; Andringa, S.; Aramo, C.; Aranda, V. M.; Arqueros, F.; Asorey, H.; Assis, P.; Aublin, J.; Ave, M.; Avenier, M.; Avila, G.; Awal, N.; Badescu, A. M.; Barber, K. B.; Bäuml, J.; Baus, C.; Beatty, J. J.; Becker, K. H.; Bellido, J. A.; Berat, C.; Bertaina, M. E.; Bertou, X.; Biermann, P. L.; Billoir, P.; Blaess, S. G.; Blanco, M.; Bleve, C.; Blümer, H.; Boháčová, M.; Boncioli, D.; Bonifazi, C.; Bonino, R.; Borodai, N.; Brack, J.; Brancus, I.; Bridgeman, A.; Brogueira, P.; Brown, W. C.; Buchholz, P.; Bueno, A.; Buitink, S.; Buscemi, M.; Caballero-Mora, K. S.; Caccianiga, B.; Caccianiga, L.; Candusso, M.; Caramete, L.; Caruso, R.; Castellina, A.; Cataldi, G.; Cazon, L.; Cester, R.; Chavez, A. G.; Chiavassa, A.; Chinellato, J. A.; Chudoba, J.; Cilmo, M.; Clay, R. W.; Cocciolo, G.; Colalillo, R.; Coleman, A.; Collica, L.; Coluccia, M. R.; Conceição, R.; Contreras, F.; Cooper, M. J.; Cordier, A.; Coutu, S.; Covault, C. E.; Cronin, J.; Curutiu, A.; Dallier, R.; Daniel, B.; Dasso, S.; Daumiller, K.; Dawson, B. R.; de Almeida, R. M.; De Domenico, M.; de Jong, S. J.; de Mello Neto, J. R. T.; De Mitri, I.; de Oliveira, J.; de Souza, V.; del Peral, L.; Deligny, O.; Dembinski, H.; Dhital, N.; Di Giulio, C.; Di Matteo, A.; Diaz, J. C.; Díaz Castro, M. L.; Diogo, F.; Dobrigkeit, C.; Docters, W.; D'Olivo, J. C.; Dorofeev, A.; Dorosti Hasankiadeh, Q.; Dova, M. T.; Ebr, J.; Engel, R.; Erdmann, M.; Erfani, M.; Escobar, C. O.; Espadanal, J.; Etchegoyen, A.; Facal San Luis, P.; Falcke, H.; Fang, K.; Farrar, G.; Fauth, A. C.; Fazzini, N.; Ferguson, A. P.; Fernandes, M.; Fick, B.; Figueira, J. M.; Filevich, A.; Filipčič, A.; Fox, B. D.; Fratu, O.; Freire, M. M.; Fröhlich, U.; Fuchs, B.; Fujii, T.; Gaior, R.; García, B.; Garcia-Gamez, D.; Garcia-Pinto, D.; Garilli, G.; Gascon Bravo, A.; Gate, F.; Gemmeke, H.; Ghia, P. L.; Giaccari, U.; Giammarchi, M.; Giller, M.; Glaser, C.; Glass, H.; Gómez Berisso, M.; Gómez Vitale, P. F.; Gonçalves, P.; Gonzalez, J. G.; González, N.; Gookin, B.; Gordon, J.; Gorgi, A.; Gorham, P.; Gouffon, P.; Grebe, S.; Griffith, N.; Grillo, A. F.; Grubb, T. D.; Guarino, F.; Guedes, G. P.; Hampel, M. R.; Hansen, P.; Harari, D.; Harrison, T. A.; Hartmann, S.; Harton, J. L.; Haungs, A.; Hebbeker, T.; Heck, D.; Heimann, P.; Herve, A. E.; Hill, G. C.; Hojvat, C.; Hollon, N.; Holt, E.; Homola, P.; Hörandel, J. R.; Horvath, P.; Hrabovský, M.; Huber, D.; Huege, T.; Insolia, A.; Isar, P. G.; Jandt, I.; Jansen, S.; Jarne, C.; Josebachuili, M.; Kääpä, A.; Kambeitz, O.; Kampert, K. H.; Kasper, P.; Katkov, I.; Kégl, B.; Keilhauer, B.; Keivani, A.; Kemp, E.; Kieckhafer, R. M.; Klages, H. O.; Kleifges, M.; Kleinfeller, J.; Krause, R.; Krohm, N.; Krömer, O.; Kruppke-Hansen, D.; Kuempel, D.; Kunka, N.; LaHurd, D.; Latronico, L.; Lauer, R.; Lauscher, M.; Lautridou, P.; Le Coz, S.; Leão, M. S. A. B.; Lebrun, D.; Lebrun, P.; Leigui de Oliveira, M. A.; Letessier-Selvon, A.; Lhenry-Yvon, I.; Link, K.; López, R.; Louedec, K.; Lozano Bahilo, J.; Lu, L.; Lucero, A.; Ludwig, M.; Malacari, M.; Maldera, S.; Mallamaci, M.; Maller, J.; Mandat, D.; Mantsch, P.; Mariazzi, A. G.; Marin, V.; Mariş, I. C.; Marsella, G.; Martello, D.; Martin, L.; Martinez, H.; Martínez Bravo, O.; Martraire, D.; Masías Meza, J. J.; Mathes, H. J.; Mathys, S.; Matthews, J.; Matthews, J. A. J.; Matthiae, G.; Maurel, D.; Maurizio, D.; Mayotte, E.; Mazur, P. O.; Medina, C.; Medina-Tanco, G.; Meissner, R.; Melissas, M.; Melo, D.; Menshikov, A.; Messina, S.; Meyhandan, R.; Mićanović, S.; Micheletti, M. I.; Middendorf, L.; Minaya, I. A.; Miramonti, L.; Mitrica, B.; Molina-Bueno, L.; Mollerach, S.; Monasor, M.; Monnier Ragaigne, D.; Montanet, F.; Morello, C.; Mostafá, M.; Moura, C. A.; Muller, M. A.; Müller, G.; Müller, S.; Münchmeyer, M.; Mussa, R.; Navarra, G.; Navas, S.; Necesal, P.; Nellen, L.; Nelles, A.; Neuser, J.; Nguyen, P. H.; Niechciol, M.; Niemietz, L.; Niggemann, T.; Nitz, D.; Nosek, D.; Novotny, V.; Nožka, L.; Ochilo, L.; Oikonomou, F.; Olinto, A.; Oliveira, M.; Pacheco, N.; Pakk Selmi-Dei, D.; Palatka, M.; Pallotta, J.; Palmieri, N.; Papenbreer, P.; Parente, G.; Parra, A.; Paul, T.; Pech, M.; Pȩkala, J.; Pelayo, R.; Pepe, I. M.; Perrone, L.; Petermann, E.; Peters, C.; Petrera, S.; Petrov, Y.; Phuntsok, J.; Piegaia, R.; Pierog, T.; Pieroni, P.; Pimenta, M.; Pirronello, V.; Platino, M.; Plum, M.; Porcelli, A.; Porowski, C.; Prado, R. R.; Privitera, P.; Prouza, M.; Purrello, V.; Quel, E. J.; Querchfeld, S.; Quinn, S.; Rautenberg, J.; Ravel, O.; Ravignani, D.; Revenu, B.; Ridky, J.; Riggi, S.; Risse, M.; Ristori, P.; Rizi, V.; Rodrigues de Carvalho, W.; Rodriguez Fernandez, G.; Rodriguez Rojo, J.; Rodríguez-Frías, M. D.; Rogozin, D.; Ros, G.; Rosado, J.; Rossler, T.; Roth, M.; Roulet, E.; Rovero, A. C.; Saffi, S. J.; Saftoiu, A.; Salamida, F.; Salazar, H.; Saleh, A.; Salesa Greus, F.; Salina, G.; Sánchez, F.; Sanchez-Lucas, P.; Santo, C. E.; Santos, E.; Santos, E. M.; Sarazin, F.; Sarkar, B.; Sarmento, R.; Sato, R.; Scharf, N.; Scherini, V.; Schieler, H.; Schiffer, P.; Schmidt, D.; Scholten, O.; Schoorlemmer, H.; Schovánek, P.; Schröder, F. G.; Schulz, A.; Schulz, J.; Schumacher, J.; Sciutto, S. J.; Segreto, A.; Settimo, M.; Shadkam, A.; Shellard, R. C.; Sidelnik, I.; Sigl, G.; Sima, O.; Śmiałkowski, A.; Šmída, R.; Snow, G. R.; Sommers, P.; Sorokin, J.; Squartini, R.; Srivastava, Y. N.; Stanič, S.; Stapleton, J.; Stasielak, J.; Stephan, M.; Stutz, A.; Suarez, F.; Suomijärvi, T.; Supanitsky, A. D.; Sutherland, M. S.; Swain, J.; Szadkowski, Z.; Szuba, M.; Taborda, O. A.; Tapia, A.; Tepe, A.; Theodoro, V. M.; Timmermans, C.; Todero Peixoto, C. J.; Toma, G.; Tomankova, L.; Tomé, B.; Tonachini, A.; Torralba Elipe, G.; Torres Machado, D.; Travnicek, P.; Trovato, E.; Ulrich, R.; Unger, M.; Urban, M.; Valdés Galicia, J. F.; Valiño, I.; Valore, L.; van Aar, G.; van Bodegom, P.; van den Berg, A. M.; van Velzen, S.; van Vliet, A.; Varela, E.; Vargas Cárdenas, B.; Varner, G.; Vázquez, J. R.; Vázquez, R. A.; Veberič, D.; Verzi, V.; Vicha, J.; Videla, M.; Villase ñor, L.; Vlcek, B.; Vorobiov, S.; Wahlberg, H.; Wainberg, O.; Walz, D.; Watson, A. A.; Weber, M.; Weidenhaupt, K.; Weindl, A.; Werner, F.; Widom, A.; Wiencke, L.; Wilczyńska, B.; Wilczyński, H.; Williams, C.; Winchen, T.; Wittkowski, D.; Wundheiler, B.; Wykes, S.; Yamamoto, T.; Yapici, T.; Yuan, G.; Yushkov, A.; Zamorano, B.; Zas, E.; Zavrtanik, D.; Zavrtanik, M.; Zepeda, A.; Zhou, J.; Zhu, Y.; Zimbres Silva, M.; Ziolkowski, M.; Zuccarello, F.; Pierre Auger Collaboration

    2015-05-01

    We analyze the distribution of arrival directions of ultra-high-energy cosmic rays recorded at the Pierre Auger Observatory in 10 years of operation. The data set, about three times larger than that used in earlier studies, includes arrival directions with zenith angles up to 80°, thus covering from -90{}^\\circ to +45{}^\\circ in declination. After updating the fraction of events correlating with the active galactic nuclei (AGNs) in the Véron-Cetty and Véron catalog, we subject the arrival directions of the data with energies in excess of 40 EeV to different tests for anisotropy. We search for localized excess fluxes, self-clustering of event directions at angular scales up to 30°, and different threshold energies between 40 and 80 EeV. We then look for correlations of cosmic rays with celestial structures both in the Galaxy (the Galactic Center and Galactic Plane) and in the local universe (the Super-Galactic Plane). We also examine their correlation with different populations of nearby extragalactic objects: galaxies in the 2MRS catalog, AGNs detected by Swift-BAT, radio galaxies with jets, and the Centaurus A (Cen A) galaxy. None of the tests show statistically significant evidence of anisotropy. The strongest departures from isotropy (post-trial probability ˜ 1.4%) are obtained for cosmic rays with E\\gt 58 EeV in rather large windows around Swift AGNs closer than 130 Mpc and brighter than 1044 erg s-1 (18° radius), and around the direction of Cen A (15° radius).

  9. Searches for anisotropies in the arrival directions of the highest energy cosmic rays detected by the Pierre Auger Observatory

    SciTech Connect

    Aab, Alexander

    2015-05-01

    We analyze the distribution of arrival directions of ultra-high-energy cosmic rays recorded at the Pierre Auger Observatory in 10 years of operation. The data set, about three times larger than that used in earlier studies, includes arrival directions with zenith angles up to 80, thus covering from -90 to +45 in declination. After updating the fraction of events correlating with the active galactic nuclei (AGNs) in the Vron-Cetty and Vron catalog, we subject the arrival directions of the data with energies in excess of 40 EeV to different tests for anisotropy. We search for localized excess fluxes, self-clustering of event directions at angular scales up to 30, and different threshold energies between 40 and 80 EeV. We then look for correlations of cosmic rays with celestial structures both in the Galaxy (the Galactic Center and Galactic Plane) and in the local universe (the Super-Galactic Plane). We also examine their correlation with different populations of nearby extragalactic objects: galaxies in the 2MRS catalog, AGNs detected by Swift-BAT, radio galaxies with jets, and the Centaurus A (Cen A) galaxy. None of the tests show statistically significant evidence of anisotropy. As a result, the strongest departures from isotropy (post-trial probability $\\sim 1.4$%) are obtained for cosmic rays with $E\\gt 58$ EeV in rather large windows around Swift AGNs closer than 130 Mpc and brighter than 1044 erg s-1 (18 radius), and around the direction of Cen A (15 radius).

  10. Detecting dark energy in orbit: The cosmological chameleon

    SciTech Connect

    Brax, Philippe; Davis, Anne-Christine; Khoury, Justin; Weltman, Amanda

    2004-12-15

    We show that the chameleon scalar field can drive the current phase of cosmic acceleration for a large class of scalar potentials that are also consistent with local tests of gravity. These provide explicit realizations of a quintessence model where the quintessence scalar field couples directly to baryons and dark matter with gravitational strength. We analyze the cosmological evolution of the chameleon field and show the existence of an attractor solution with the chameleon following the minimum of its effective potential. For a wide range of initial conditions, spanning many orders of magnitude in initial chameleon energy density, the attractor is reached before nucleosynthesis. Surprisingly, the range of allowed initial conditions leading to a successful cosmology is wider than in normal quintessence. We discuss applications to the cyclic model of the universe and show how the chameleon mechanism weakens some of the constraints on cyclic potentials.

  11. A study on the minimum detectable energy density precise measurement method of STIL

    NASA Astrophysics Data System (ADS)

    Wei, J.; Wang, Q.; Sun, J.; Gao, J.

    2013-04-01

    This paper presents a precise measurement method of streak tube imaging LIDAR’s (STIL’s) minimum detectable energy density and the measurement result of a K008 streak tube. A Gaussian expression was used to approximate the one-dimensional intensity distribution of the laser spot. The laser pulse energy was measured with a sensitive photon counter while the diameter of the laser spot was measured by the single knife-edge method. After determining the parameters using the Gaussian expression and calculations, the authors concluded that the minimum detectable energy density of STIL in this experiment was 5.27 ± 0.11 × 108 J mm-2.

  12. Electron-emission processes in highly charged Ar and Xe ions impinging on highly ordered pyrolytic graphite at energies just above the kinetic threshold

    NASA Astrophysics Data System (ADS)

    Bodewits, E.; Hoekstra, R.; Dobes, K.; Aumayr, F.

    2014-11-01

    At keV energies, many electronic processes contribute to the emission of secondary electrons in the interaction of highly charged ions on surfaces. To unravel contributions resulting from isolated hollow atoms in front of the surface or embedded in the electron gas of the target, heavy highly charged Ar and Xe ions are collided on highly ordered pyrolytic graphite (HOPG). A light target material as HOPG assures straight-line trajectories in the subsurface range. By a systematic change of incidence angle and energy of low-charged Ar and Xe ions, the kinetic electron emission component is determined. Separating out the kinetic energy contribution for the highly charged ions yields pure potential-energy-driven secondary-electron yields. From these yields it is concluded that in contrast to metallic targets, only a small fraction of the secondary electrons stem from above the surface. The lack of above-surface emission is likely due to the semimetallic electronic structure of HOPG. The subsurface emission is found to scale with the increase in binding energy of the inner-shell hole when incrementing the charge state of the projectile Ar or Xe ions.

  13. Image analysis using threshold reduction

    NASA Astrophysics Data System (ADS)

    Bloomberg, Dan S.

    1991-07-01

    A class of shift-variant reduction operations is introduced, that is useful for performing efficient and controllable shape and texture transformations between resolution levels. In their most general form, the operations proceed in three steps: (a) convolve a binary image with a kernel of arbitrary size; (b) threshold the result; (c) subsample to produce the reduced image. Taking a binary structuring element for the kernel, the threshold convolution on a binary image is equivalent to a rank order filter, and the full reduction operation is a threshold reduction. Threshold reductions that use convolution filters and subsample tiles of equal size are optimized by combining the three operations, using only logical raster operations and producing threshold convolution values only at the sampling points. For 2x reduction, the four possible threshold values (1, 2, 3, and 4) refer to the minimum number of ON pixels within each 2x2 tile for which a pixel in the reduced image will be ON. Algorithms for boolean raster operations are given for 2x, 3x, and 4x threshold reduction, and lookup tables that efficiently implement column raster operations are provided. Threshold reduction rates of 2.5x107 pixel/second can be achieved with a Sun SparcStation2TM . A maskforming image analysis cycle of threshold reduction, augmented by morphology and followed by replicative expansion to full resolution, is described, and some general properties of the cycle are derived. A simple application of threshold reduction to document image analysis, the extraction of halftone regions from scanned images that also contain text and line graphics, is illustrated. A sequence of 2x reductions with first low and then high thresholds is used to create a reduced image consisting of a mask over the halftone regions. In this way, the extraction occurs as a natural consequence of the reductions.

  14. Efficient threshold for volumetric segmentation

    NASA Astrophysics Data System (ADS)

    Burdescu, Dumitru D.; Brezovan, Marius; Stanescu, Liana; Stoica Spahiu, Cosmin; Ebanca, Daniel

    2015-07-01

    Image segmentation plays a crucial role in effective understanding of digital images. However, the research on the existence of general purpose segmentation algorithm that suits for variety of applications is still very much active. Among the many approaches in performing image segmentation, graph based approach is gaining popularity primarily due to its ability in reflecting global image properties. Volumetric image segmentation can simply result an image partition composed by relevant regions, but the most fundamental challenge in segmentation algorithm is to precisely define the volumetric extent of some object, which may be represented by the union of multiple regions. The aim in this paper is to present a new method to detect visual objects from color volumetric images and efficient threshold. We present a unified framework for volumetric image segmentation and contour extraction that uses a virtual tree-hexagonal structure defined on the set of the image voxels. The advantage of using a virtual tree-hexagonal network superposed over the initial image voxels is that it reduces the execution time and the memory space used, without losing the initial resolution of the image.

  15. Tracking of nociceptive thresholds using adaptive psychophysical methods.

    PubMed

    Doll, Robert J; Buitenweg, Jan R; Meijer, Hil G E; Veltink, Peter H

    2014-03-01

    Psychophysical thresholds reflect the state of the underlying nociceptive mechanisms. For example, noxious events can activate endogenous analgesic mechanisms that increase the nociceptive threshold. Therefore, tracking thresholds over time facilitates the investigation of the dynamics of these underlying mechanisms. Threshold tracking techniques should use efficient methods for stimulus selection and threshold estimation. This study compares, in simulation and in human psychophysical experiments, the performance of different combinations of adaptive stimulus selection procedures and threshold estimation methods. Monte Carlo simulations were first performed to compare the bias and precision of threshold estimates produced by three different stimulus selection procedures (simple staircase, random staircase, and minimum entropy procedure) and two estimation methods (logistic regression and Bayesian estimation). Logistic regression and Bayesian estimations resulted in similar precision only when the prior probability distributions (PDs) were chosen appropriately. The minimum entropy and simple staircase procedures achieved the highest precision, while the random staircase procedure was the least sensitive to different procedure-specific settings. Next, the simple staircase and random staircase procedures, in combination with logistic regression, were compared in a human subject study (n = 30). Electrocutaneous stimulation was used to track the nociceptive perception threshold before, during, and after a cold pressor task, which served as the conditioning stimulus. With both procedures, habituation was detected, as well as changes induced by the conditioning stimulus. However, the random staircase procedure achieved a higher precision. We recommend using the random staircase over the simple staircase procedure, in combination with logistic regression, for nonstationary threshold tracking experiments. PMID:23835651

  16. Stochastic undersampling steepens auditory threshold/duration functions: implications for understanding auditory deafferentation and aging.

    PubMed

    Marmel, Frédéric; Rodríguez-Mendoza, Medardo A; Lopez-Poveda, Enrique A

    2015-01-01

    It has long been known that some listeners experience hearing difficulties out of proportion with their audiometric losses. Notably, some older adults as well as auditory neuropathy patients have temporal-processing and speech-in-noise intelligibility deficits not accountable for by elevated audiometric thresholds. The study of these hearing deficits has been revitalized by recent studies that show that auditory deafferentation comes with aging and can occur even in the absence of an audiometric loss. The present study builds on the stochastic undersampling principle proposed by Lopez-Poveda and Barrios (2013) to account for the perceptual effects of auditory deafferentation. Auditory threshold/duration functions were measured for broadband noises that were stochastically undersampled to various different degrees. Stimuli with and without undersampling were equated for overall energy in order to focus on the changes that undersampling elicited on the stimulus waveforms, and not on its effects on the overall stimulus energy. Stochastic undersampling impaired the detection of short sounds (<20 ms). The detection of long sounds (>50 ms) did not change or improved, depending on the degree of undersampling. The results for short sounds show that stochastic undersampling, and hence presumably deafferentation, can account for the steeper threshold/duration functions observed in auditory neuropathy patients and older adults with (near) normal audiometry. This suggests that deafferentation might be diagnosed using pure-tone audiometry with short tones. It further suggests that the auditory system of audiometrically normal older listeners might not be "slower than normal", as is commonly thought, but simply less well afferented. Finally, the results for both short and long sounds support the probabilistic theories of detectability that challenge the idea that auditory threshold occurs by integration of sound energy over time. PMID:26029098

  17. Stochastic undersampling steepens auditory threshold/duration functions: implications for understanding auditory deafferentation and aging

    PubMed Central

    Marmel, Frédéric; Rodríguez-Mendoza, Medardo A.; Lopez-Poveda, Enrique A.

    2015-01-01

    It has long been known that some listeners experience hearing difficulties out of proportion with their audiometric losses. Notably, some older adults as well as auditory neuropathy patients have temporal-processing and speech-in-noise intelligibility deficits not accountable for by elevated audiometric thresholds. The study of these hearing deficits has been revitalized by recent studies that show that auditory deafferentation comes with aging and can occur even in the absence of an audiometric loss. The present study builds on the stochastic undersampling principle proposed by Lopez-Poveda and Barrios (2013) to account for the perceptual effects of auditory deafferentation. Auditory threshold/duration functions were measured for broadband noises that were stochastically undersampled to various different degrees. Stimuli with and without undersampling were equated for overall energy in order to focus on the changes that undersampling elicited on the stimulus waveforms, and not on its effects on the overall stimulus energy. Stochastic undersampling impaired the detection of short sounds (<20 ms). The detection of long sounds (>50 ms) did not change or improved, depending on the degree of undersampling. The results for short sounds show that stochastic undersampling, and hence presumably deafferentation, can account for the steeper threshold/duration functions observed in auditory neuropathy patients and older adults with (near) normal audiometry. This suggests that deafferentation might be diagnosed using pure-tone audiometry with short tones. It further suggests that the auditory system of audiometrically normal older listeners might not be “slower than normal”, as is commonly thought, but simply less well afferented. Finally, the results for both short and long sounds support the probabilistic theories of detectability that challenge the idea that auditory threshold occurs by integration of sound energy over time. PMID:26029098

  18. Detecting special nuclear materials in suspect containers using high-energy gamma rays emitted by fission products

    DOEpatents

    Norman, Eric B.; Prussin, Stanley G.

    2009-01-27

    A method and a system for detecting the presence of special nuclear materials in a suspect container. The system and its method include irradiating the suspect container with a beam of neutrons, so as to induce a thermal fission in a portion of the special nuclear materials, detecting the gamma rays that are emitted from the fission products formed by the thermal fission, to produce a detector signal, comparing the detector signal with a threshold value to form a comparison, and detecting the presence of the special nuclear materials using the comparison.

  19. Detecting special nuclear materials in suspect containers using high-energy gamma rays emitted by fission products

    DOEpatents

    Norman, Eric B.; Prussin, Stanley G.

    2009-01-06

    A method and a system for detecting the presence of special nuclear materials in a suspect container. The system and its method include irradiating the suspect container with a beam of neutrons, so as to induce a thermal fission in a portion of the special nuclear materials, detecting the gamma rays that are emitted from the fission products formed by the thermal fission, to produce a detector signal, comparing the detector signal with a threshold value to form a comparison, and detecting the presence of the special nuclear materials using the comparison.

  20. Detecting special nuclear materials in suspect containers using high-energy gamma rays emitted by fission products

    DOEpatents

    Norman, Eric B [Oakland, CA; Prussin, Stanley G [Kensington, CA

    2009-05-05

    A method and a system for detecting the presence of special nuclear materials in a suspect container. The system and its method include irradiating the suspect container with a beam of neutrons, so as to induce a thermal fission in a portion of the special nuclear materials, detecting the gamma rays that are emitted from the fission products formed by the thermal fission, to produce a detector signal, comparing the detector signal with a threshold value to form a comparison, and detecting the presence of the special nuclear materials using the comparison.

  1. INFLUENCE OF MASS ON DISPLACEMENT THRESHOLD

    SciTech Connect

    Setyawan, Wahyu; Selby, A.; Nandipati, Giridhar; Roche, Kenneth J.; Kurtz, Richard J.; Wirth, Brian D.

    2014-12-30

    Molecular dynamics simulations are performed to investigate the effect of mass on displacement threshold energy in Cr, Mo, Fe and W. For each interatomic potential, the mass of the atoms is varied among those metals for a total of 16 combinations. The average threshold energy over all crystal directions is calculated within the irreducible crystal directions using appropriate weighting factors. The weighting factors account for the different number of equivalent directions among the grid points and the different solid angle coverage of each grid point. The grid points are constructed with a Miller index increment of 1/24 for a total of 325 points. For each direction, 10 simulations each with a different primary-knock-on atom are performed. The results show that for each interatomic potential, the average threshold energy is insensitive to the mass; i.e., the values are the same within the standard error. In the future, the effect of mass on high-energy cascades for a given interatomic potential will be investigated.

  2. Ecohydrology on the Threshold?

    NASA Astrophysics Data System (ADS)

    Wainwright, John

    2013-04-01

    This presentation suggests that there are three major limitations to the development of ecohydrology as a coherent disciplinary area. One of the principal controls and feedbacks on patterns of plants and water in the environment is the form of the landscape and landscape-forming processes. Yet (eco)geomorphology is typically overlooked as a topic for ecohydrological investigation. Thus, the process domains used to explain patterns is typically overly restricted. As surface change controls the connectivity of other process, this restriction is significant. However, even when surface change is incorporated, there is often an emphasis on subdisciplinary areas, so that the investigation of patterns across process domains is not carried out in a holistic way. For example, studies of the feedbacks of vegetation on flow resistance are carried out significantly differently when considering wind and water flows (and indeed differently for water flows on hillslopes compared to in channels). Human action is the most important global control on ecohydrology, either from a top-down perspective through climate change, or from a bottom-up perspective through land use and land-use change. The actions of people on ecohydrological and ecogeomorphic processes, though, are typically considered in a static way. Techniques of agent-based modelling are being developed to overcome this limitation, but there need to be parallel developments in field techniques to address the data requirements and empirical underpinnings of such approaches. I argue that to cross the threshold into becoming a more mature discipline ecohydrology/ecogeomorphology needs to take on board the limitations of representations of process, pattern and people. Using examples from studies of land degradation in drylands, as well as from more temperate settings, I will suggest how progress may start to be made.

  3. Antisense activity detection by inhibition of fluorescence resonance energy transfer.

    PubMed

    Benítez-Hess, M L; DiPaolo, J A; Alvarez-Salas, L M

    2004-01-01

    Use of antisense nucleic acids to modulate expression of particular genes is a promising approach to the therapy of human papillomavirus type 16 (HPV-16)-associated cervical cancer. Understandably, evaluation of the in vivo performance of synthetic antisense oligodeoxynucleotides (AS-ODNs) or ribozymes is of ultimate importance to development of effective antisense tools. Here we report the use of a bacterial reporter system based on the inhibition of fluorescence resonance energy transfer (FRET) to measure the interaction of AS-ODNs with HPV-16 target nt 410-445, using variants of the green fluorescent protein (GFP). An optimal FRET-producing pair was selected with GFP as the donor and yellow fluorescent protein (YFP) as the acceptor molecule. Hybridization of AS-ODNs with a chimaeric mRNA containing the antisense target site flanked by GFP variants resulted in the inhibition of the FRET effect. Use of different linkers suggested that the amino acid content of the linker has no significant effect on FRET effect. Antisense accessibility, tested by RNaseH assays with phosphorothioated target-specific and mutant AS-ODNs, suggested a specific effect on the chimaeric mRNA. FRET inhibition measurements correlated with the presence of truncated proteins confirming true antisense activity over the target. Therefore, FRET inhibition may be used for the direct measurement of AS-ODNs activity in vivo. PMID:15098208

  4. Volumetric Detection of Colorectal Lesions for Noncathartic Dual-Energy Computed Tomographic Colonography*

    PubMed Central

    Näppi, Janne J.; Kim, Se Hyung; Yoshida, Hiroyuki

    2013-01-01

    Noncathartic computed tomographic colonography (CTC) could significantly increase patient adherence to colorectal screening guidelines. However, radiologists find the interpretation of noncathartic CTC images challenging. We developed a fully automated computer-aided detection (CAD) scheme for assisting radiologists with noncathartic CTC. A volumetric method is used to detect lesions within a thick target region encompassing the colonic wall. Dual-energy CTC (DE-CTC) is used to provide more detailed information about the colon than what is possible with conventional CTC. False-positive detections are reduced by use of a random-forest classifier. The effect of the thickness of the target region on detection performance was assessed by use of 22 clinical noncathartic DE-CTC studies including 27 lesions ≥6 mm. The results indicate that the thickness parameter can have significant effect on detection accuracy. Leave-one-patient-out evaluation indicated that the proposed CAD scheme detects colorectal lesions at high accuracy in noncathartic CTC. PMID:23366741

  5. Threshold Concepts and Information Literacy

    ERIC Educational Resources Information Center

    Townsend, Lori; Brunetti, Korey; Hofer, Amy R.

    2011-01-01

    What do we teach when we teach information literacy in higher education? This paper describes a pedagogical approach to information literacy that helps instructors focus content around transformative learning thresholds. The threshold concept framework holds promise for librarians because it grounds the instructor in the big ideas and underlying…

  6. Threshold Hypothesis: Fact or Artifact?

    ERIC Educational Resources Information Center

    Karwowski, Maciej; Gralewski, Jacek

    2013-01-01

    The threshold hypothesis (TH) assumes the existence of complex relations between creative abilities and intelligence: linear associations below 120 points of IQ and weaker or lack of associations above the threshold. However, diverse results have been obtained over the last six decades--some confirmed the hypothesis and some rejected it. In this

  7. Threshold Hypothesis: Fact or Artifact?

    ERIC Educational Resources Information Center

    Karwowski, Maciej; Gralewski, Jacek

    2013-01-01

    The threshold hypothesis (TH) assumes the existence of complex relations between creative abilities and intelligence: linear associations below 120 points of IQ and weaker or lack of associations above the threshold. However, diverse results have been obtained over the last six decades--some confirmed the hypothesis and some rejected it. In this…

  8. Real-time low-energy fall detection algorithm with a programmable truncated MAC.

    PubMed

    de la Guia Solaz, Manuel; Bourke, Alan; Conway, Richard; Nelson, John; Olaighin, Gearoid

    2010-01-01

    The ability to discriminate between falls and activities of daily living (ADL) has been investigated by using tri-axial accelerometer sensors, mounted on the trunk and using simulated falls performed by young healthy subjects under supervised conditions and ADL performed by elderly subjects. In this paper we propose a power-aware real-time fall detection integrated circuit (IC) that can distinguish Falls from ADL by processing the accelerations measured during 240 falls and 240 ADL. In the proposed fixed point custom DSP architecture, a threshold algorithm was implemented to analyze the effectiveness of Programmable Truncated Multiplication regarding power reduction while maintaining a high output accuracy. The presented system runs a real time implementation of the algorithm on a low power architecture that allows up to 23% power savings through its digital blocks when compared to a standard implementation, without any accuracy loss. PMID:21095956

  9. Foveal cone thresholds.

    PubMed

    Vimal, R L; Pokorny, J; Smith, V C; Shevell, S K

    1989-01-01

    The method of constant stimuli was used to estimate the psychometric functions for detection of one or two flashes when two light pulses were presented. The test stimulus consisted of two simultaneous 0.5 msec, 1' pulses separated by 17'. Observers reported seeing 0, 1 or 2 flashes. A computer-controlled direct-view apparatus allowed sampling of slightly different foveal locations on each trial. The data were analyzed assuming a binomial probability for sampling of L and M cones and Poisson distributed quantal fluctuation. Under these assumptions, the measurements imply that detection requires a minimum of 5-7 quanta absorbed per cone, and that the effective number of cones illuminated by the 1', 0.5 msec pulse is two. The estimated L/M cone ratio was 1.6 for one observer and 4.0 for the other; each observer's ratio was in general agreement with the value estimated independently by heterochromatic flicker photometry. PMID:2773337

  10. Low-Threshold Bidirectional Air Lasing

    NASA Astrophysics Data System (ADS)

    Laurain, Alexandre; Scheller, Maik; Polynkin, Pavel

    2014-12-01

    Air lasing refers to the remote optical pumping of the constituents of ambient air that results in a directional laserlike emission from the pumped region. Intense current investigations of this concept are motivated by the potential applications in remote atmospheric sensing. Different approaches to air lasing are being investigated, but, so far, only the approach based on dissociation and resonant two-photon pumping of air molecules by deep-UV laser pulses has produced measurable lasing energies in real air and in the backward direction, which is of the most relevance for applications. However, the emission had a high pumping threshold, in hundreds of GW /cm2. We demonstrate that the threshold can be virtually eliminated through predissociation of air molecules with an additional nanosecond laser. We use a single tunable pump laser system to generate backward-propagating lasing in both oxygen and nitrogen in air, with energies of up to 1 ? J per pulse.

  11. Photodetachment Spectroscopy of La-: Resonances and Thresholds

    NASA Astrophysics Data System (ADS)

    Walter, C. W.; Gibson, N. D.; Crocker, C.; Dungan, K. A.; Matola, B. R.

    2015-05-01

    The negative ion of lanthanum, La-, has the richest bound state spectrum ever observed for an atomic negative ion, and it has been proposed as perhaps the best candidate for laser cooling of a negative ion. In the present experiments, photodetachment thresholds and transitions between bound states of La- are investigated using tunable infrared spectroscopy. The relative signal for neutral atom production was measured with a crossed ion-beam-laser-beam apparatus over the photon energy range 290-900 meV. The spectrum reveals at least 14 sharp resonance peaks due to transitions to either bound states of the negative ion or quasibound states in the continuum. Multiple photodetachment thresholds are also observed, providing information on the binding energies for some states of La-. This material is based on work supported by the National Science Foundation under Grant No. 1068308 and 1404109.

  12. Energy Reconstruction for Events Detected in TES X-ray Detectors

    NASA Astrophysics Data System (ADS)

    Ceballos, M. T.; Cardiel, N.; Cobo, B.

    2015-09-01

    The processing of the X-ray events detected by a TES (Transition Edge Sensor) device (such as the one that will be proposed in the ESA AO call for instruments for the Athena mission (Nandra et al. 2013) as a high spectral resolution instrument, X-IFU (Barret et al. 2013)), is a several step procedure that starts with the detection of the current pulses in a noisy signal and ends up with their energy reconstruction. For this last stage, an energy calibration process is required to convert the pseudo energies measured in the detector to the real energies of the incoming photons, accounting for possible nonlinearity effects in the detector. We present the details of the energy calibration algorithm we implemented as the last part of the Event Processing software that we are developing for the X-IFU instrument, that permits the calculation of the calibration constants in an analytical way.

  13. Brain MRI Tumor Detection using Active Contour Model and Local Image Fitting Energy

    NASA Astrophysics Data System (ADS)

    Nabizadeh, Nooshin; John, Nigel

    2014-03-01

    Automatic abnormality detection in Magnetic Resonance Imaging (MRI) is an important issue in many diagnostic and therapeutic applications. Here an automatic brain tumor detection method is introduced that uses T1-weighted images and K. Zhang et. al.'s active contour model driven by local image fitting (LIF) energy. Local image fitting energy obtains the local image information, which enables the algorithm to segment images with intensity inhomogeneities. Advantage of this method is that the LIF energy functional has less computational complexity than the local binary fitting (LBF) energy functional; moreover, it maintains the sub-pixel accuracy and boundary regularization properties. In Zhang's algorithm, a new level set method based on Gaussian filtering is used to implement the variational formulation, which is not only vigorous to prevent the energy functional from being trapped into local minimum, but also effective in keeping the level set function regular. Experiments show that the proposed method achieves high accuracy brain tumor segmentation results.

  14. Benefits of texture analysis of dual energy CT for Computer-Aided pulmonary embolism detection.

    PubMed

    Foncubierta-Rodríguez, Antonio; Jiménez del Toro, Óscar Alfonso; Platon, Alexandra; Poletti, Pierre-Alexandre; Müller, Henning; Depeursinge, Adrien

    2013-01-01

    Pulmonary embolism is an avoidable cause of death if treated immediately but delays in diagnosis and treatment lead to an increased risk. Computer-assisted image analysis of both unenhanced and contrast-enhanced computed tomography (CT) have proven useful for diagnosis of pulmonary embolism. Dual energy CT provides additional information over the standard single energy scan by generating four-dimensional (4D) data, in our case with 11 energy levels in 3D. In this paper a 4D texture analysis method capable of detecting pulmonary embolism in dual energy CT is presented. The method uses wavelet-based visual words together with an automatic geodesic-based region of interest detection algorithm to characterize the texture properties of each lung lobe. Results show an increase in performance with respect to the single energy CT analysis, as well as an accuracy gain compared to preliminary work on a small dataset. PMID:24110602

  15. Activation cross sections of neutron threshold reactions on some zirconium isotopes in the 5. 4- to 10. 6-MeV energy range

    SciTech Connect

    Ibn Majah, M. ); Qaim, S.M. . Inst. fuer Nuklearchemie)

    1990-03-01

    Cross sections have been measured in the 5.4- to 10.6-MeV energy range for the {sup 90}Zr(n,p){sup 90m}Y, {sup 91}Zr(n,p){sup 91m}Y, {sup 92}Zr(n,p){sup 92}Y, {sup 90}Zr(n,{alpha}){sup 87m}Sr, {sup 94}Zr(n,{alpha}){sup 91}Sr, and {sup 96}Zr(n,2n){sup 95}Zr reactions. The quasi-monoenergetic neutrons were produced via the {sup 2}H(d,n){sup 3}He reaction using a deuterium gas target at a variable energy compact cyclotron. Use was made of the activation technique in combination with high-resolution gamma-ray spectroscopy. Some trends in the excitation functions are discussed.

  16. The influence of a high-fat meal on fat taste thresholds.

    PubMed

    Newman, Lisa P; Torres, Susan J; Bolhuis, Dieuwerke P; Keast, Russell S J

    2016-06-01

    A high-fat diet for four weeks has been shown to attenuate fat taste sensitivity in healthy weight individuals. However, there is minimal evidence as to whether a single high-fat meal immediately prior to fat taste threshold testing has an effect on thresholds. Therefore, the aim of the study was to determine the effect of a high-fat meal immediately prior to detection threshold testing for oleic acid (C18:1). Thirty-two participants (15 males, 17 females, aged 39.1 ± 3.1 years, Body Mass Index 23.1 ± 0.7 kg/m(2)) attended three laboratory sessions. In each session, participants were randomly assigned to one of three different types of breakfast: a high-fat (60% energy from fat), or low-fat (20% energy from fat) or macronutrient balanced (33% energy from fat) frittata. Fat taste thresholds were evaluated using ascending forced choice triangle tests on two occasions each day; once one-hour post breakfast and then one-hour post the completion of the first threshold test. There was no effect of breakfast type on fat taste detection thresholds for the first testing session of each day (P = 0.288), or the second testing session of each day (P = 0.754). There was also no effect of breakfast within each day (day 1: P = 0.198, day 2: P = 0.199, day 3: P = 0.125). There was no effect of macronutrient composition on the ability of participants to rank the level of fat in food (P = 0.345), or preference for the level of fat in food (P = 0.187-0.868). This study provides preliminary evidence that the composition of the meal consumed by a participant immediately prior to testing does not affect fat taste thresholds. PMID:26964689

  17. Volumetric detection of flat lesions for minimal-preparation dual-energy CT colonography

    NASA Astrophysics Data System (ADS)

    Näppi, Janne J.; Kim, Se Hyung; Yoshida, Hiroyuki

    2013-02-01

    Computer-aided detection (CAD) systems for computed tomographic colonography (CTC) tend to miss many flat lesions. We developed a volumetric method for automated detection of lesions with dual-energy CTC (DECTC). The target region for the detection is defined in terms of a distance transform of the colonic lumen. To detect lesions, volumetric shape features are calculated at the image scale defined by the thickness of the target region. False-positive (FP) detections are reduced by use of a random-forest classifier based on shape, texture, and dual-energy features of the detected lesion candidates. For pilot evaluation, 37 patients were examined by use of DE-CTC with a reduced one-day bowel preparation. The CAD scheme was trained with the DE-CTC data of 12 patients, and it was tested with the DE-CTC data of 25 patients. The detection sensitivity was assessed at multiple thicknesses of the target region. There were 39 lesions >=6 mm in 15 patients, including 8 flat lesions >=10 mm. The thickness of the target region had a statistically significant effect on the detection sensitivity. At the optimal thickness of the target region, the per-lesion and per-patient sensitivities for flat lesions were 100% at a median of 4 FPs per patient.

  18. Near threshold studies of photoelectron satellites

    SciTech Connect

    Heimann, P.A.

    1986-11-01

    Photoelectron spectroscopy and synchrotron radiation have been used to study correlation effects in the rare gases: He, Ne, Ar, Kr, and Xe. Two kinds of time-of-flight electron analyzers were employed to examine photoionization very close to threshold and at higher kinetic energies. Partial cross sections and angular distributions have been measured for a number of photoelectron satellites. The shake-off probability has been determined at some inner-shell resonances. 121 refs., 28 figs., 13 tabs.

  19. Threshold collision-induced dissociation of hydrated magnesium: experimental and theoretical investigation of the binding energies for Mg(2+)(H2O)x complexes (x=2-10).

    PubMed

    Carl, Damon R; Armentrout, Peter B

    2013-03-18

    The sequential bond energies of Mg(2+)(H2O)x complexes, in which x=2-10, are measured by threshold collision-induced dissociation in a guided ion beam tandem mass spectrometer. From an electrospray ionization source that produces an initial distribution of Mg(2+)(H2O)x complexes in which x=7-10, complexes down to x=3 are formed by using an in-source fragmentation technique. Complexes smaller than Mg(2+)(H2O)3 cannot be formed in this source because charge separation into MgOH(+)(H2O) and H3O(+) is a lower-energy pathway than simple water loss from Mg(2+)(H2O)3. The kinetic energy dependent cross sections for dissociation of Mg(2+)(H2O)x complexes, in which x=3-10, are examined over a wide energy range to monitor all dissociation products and are modeled to obtain 0 and 298 K binding energies. Analysis of both primary and secondary water molecule losses from each sized complex provides thermochemistry for the sequential hydration energies of Mg(2+) for x=2-10 and the first experimental values for x=2-4. Additionally, the thermodynamic onsets leading to the charge-separation products from Mg(2+)(H2O)3 and Mg(2+)(H2O)4 are determined for the first time. Our experimental results for x=3-7 agree well with quantum chemical calculations performed here and previously calculated binding enthalpies, as well as previous measurements for x=6. The present values for x=7-10 are slightly lower than previous experimental results and theory, but within experimental uncertainties. PMID:23239534

  20. Experimental investigation of the complete inner shell hydration energies of Ca2+: threshold collision-induced dissociation of Ca(2+)(H2O)x Complexes (x = 2-8).

    PubMed

    Carl, Damon R; Armentrout, P B

    2012-04-19

    The sequential bond energies of Ca(2+)(H(2)O)(x) complexes, where x = 1-8, are measured by threshold collision-induced dissociation (TCID) in a guided ion beam tandem mass spectrometer. From an electrospray ionization source that produces an initial distribution of Ca(2+)(H(2)O)(x) complexes where x = 6-8, complexes down to x = 2 are formed using an in-source fragmentation technique. Ca(2+)(H(2)O) cannot be formed in this source because charge separation into CaOH(+) and H(3)O(+) is a lower energy pathway than simple water loss from Ca(2+)(H(2)O)(2). The kinetic energy dependent cross sections for dissociation of Ca(2+)(H(2)O)(x) complexes, where x = 2-9, are examined over a wide energy range to monitor all dissociation products and are modeled to obtain 0 and 298 K binding energies. Analysis of both primary and secondary water molecule losses from each sized complex provides thermochemistry for the sequential hydration energies of Ca(2+) for x = 1-8 and the first experimental values for x = 1-4. Additionally, the thermodynamic onsets leading to the charge separation products from Ca(2+)(H(2)O)(2) and Ca(2+)(H(2)O)(3) are determined for the first time. Our experimental results for x = 1-6 agree well with previously calculated binding enthalpies as well as quantum chemical calculations performed here. Agreement for x = 1 is improved when the basis set on calcium includes core correlation. PMID:22452741

  1. Identifying Thresholds for Ecosystem-Based Management

    PubMed Central

    Samhouri, Jameal F.; Levin, Phillip S.; Ainsworth, Cameron H.

    2010-01-01

    Background One of the greatest obstacles to moving ecosystem-based management (EBM) from concept to practice is the lack of a systematic approach to defining ecosystem-level decision criteria, or reference points that trigger management action. Methodology/Principal Findings To assist resource managers and policymakers in developing EBM decision criteria, we introduce a quantitative, transferable method for identifying utility thresholds. A utility threshold is the level of human-induced pressure (e.g., pollution) at which small changes produce substantial improvements toward the EBM goal of protecting an ecosystem's structural (e.g., diversity) and functional (e.g., resilience) attributes. The analytical approach is based on the detection of nonlinearities in relationships between ecosystem attributes and pressures. We illustrate the method with a hypothetical case study of (1) fishing and (2) nearshore habitat pressure using an empirically-validated marine ecosystem model for British Columbia, Canada, and derive numerical threshold values in terms of the density of two empirically-tractable indicator groups, sablefish and jellyfish. We also describe how to incorporate uncertainty into the estimation of utility thresholds and highlight their value in the context of understanding EBM trade-offs. Conclusions/Significance For any policy scenario, an understanding of utility thresholds provides insight into the amount and type of management intervention required to make significant progress toward improved ecosystem structure and function. The approach outlined in this paper can be applied in the context of single or multiple human-induced pressures, to any marine, freshwater, or terrestrial ecosystem, and should facilitate more effective management. PMID:20126647

  2. Adaptive Harmonic Detection Control of Grid Interfaced Solar Photovoltaic Energy System with Power Quality Improvement

    NASA Astrophysics Data System (ADS)

    Singh, B.; Goel, S.

    2015-03-01

    This paper presents a grid interfaced solar photovoltaic (SPV) energy system with a novel adaptive harmonic detection control for power quality improvement at ac mains under balanced as well as unbalanced and distorted supply conditions. The SPV energy system is capable of compensation of linear and nonlinear loads with the objectives of load balancing, harmonics elimination, power factor correction and terminal voltage regulation. The proposed control increases the utilization of PV infrastructure and brings down its effective cost due to its other benefits. The adaptive harmonic detection control algorithm is used to detect the fundamental active power component of load currents which are subsequently used for reference source currents estimation. An instantaneous symmetrical component theory is used to obtain instantaneous positive sequence point of common coupling (PCC) voltages which are used to derive inphase and quadrature phase voltage templates. The proposed grid interfaced PV energy system is modelled and simulated in MATLAB Simulink and its performance is verified under various operating conditions.

  3. Validity of factorization of the high-energy photoelectron yield in above-threshold ionization of an atom by a short laser pulse.

    PubMed

    Frolov, M V; Knyazeva, D V; Manakov, N L; Popov, A M; Tikhonova, O V; Volkova, E A; Xu, Ming-Hui; Peng, Liang-You; Pi, Liang-Wen; Starace, Anthony F

    2012-05-25

    An analytic description for the yield, P(p), of high-energy electrons ionized from an atom by a short (few-cycle) laser pulse is obtained quantum mechanically. Factorization of P(p) in terms of an electron wave packet and the cross section for elastic electron scattering (EES) is shown to occur only for an ultrashort pulse, while in general P(p) involves interference of EES amplitudes with laser-field-dependent momenta. The analytic predictions agree well with accurate numerical results. PMID:23003248

  4. Determination of SU(2) chiral perturbation theory low energy constants from a precise description of pion-pion scattering threshold parameters

    NASA Astrophysics Data System (ADS)

    Nebreda, J.; Peláez, J. R.; Ríos, G.

    2013-09-01

    We determine the values of the one- and two-loop low energy constants appearing in the SU(2) Chiral Perturbation Theory calculation of pion-pion scattering. For this we use a recent and precise sum rule determination of some scattering lengths and slopes that appear in the effective range expansion. In addition we provide sum rules for these coefficients up to third order in the expansion. Our results when using only the scattering lengths and slopes of the S, P, D, and F waves are consistent with previous determinations but seem to require higher order contributions if they are to accommodate the third order coefficients of the effective range expansion.

  5. Automatic detection of bone fragments in poultry using multi-energy x-rays

    SciTech Connect

    Gleason, Shaun S.; Paulus, Michael J.; Mullens, James A.

    2002-04-09

    At least two linear arrays of x-ray detectors are placed below a conveyor belt in a poultry processing plant. Multiple-energy x-ray sources illuminate the poultry and are detected by the detectors. Laser profilometry is used to measure the poultry thickness as the x-ray data is acquired. The detector readout is processed in real time to detect the presence of small highly attenuating fragments in the poultry, i.e., bone, metal, and cartilage.

  6. Differential equation models for sharp threshold dynamics.

    PubMed

    Schramm, Harrison C; Dimitrov, Nedialko B

    2014-01-01

    We develop an extension to differential equation models of dynamical systems to allow us to analyze probabilistic threshold dynamics that fundamentally and globally change system behavior. We apply our novel modeling approach to two cases of interest: a model of infectious disease modified for malware where a detection event drastically changes dynamics by introducing a new class in competition with the original infection; and the Lanchester model of armed conflict, where the loss of a key capability drastically changes the effectiveness of one of the sides. We derive and demonstrate a step-by-step, repeatable method for applying our novel modeling approach to an arbitrary system, and we compare the resulting differential equations to simulations of the system's random progression. Our work leads to a simple and easily implemented method for analyzing probabilistic threshold dynamics using differential equations. PMID:24184349

  7. Ku-band radar threshold analysis

    NASA Technical Reports Server (NTRS)

    Weber, C. L.; Polydoros, A.

    1979-01-01

    The statistics of the CFAR threshold for the Ku-band radar was determined. Exact analytical results were developed for both the mean and standard deviations in the designated search mode. The mean value is compared to the results of a previously reported simulation. The analytical results are more optimistic than the simulation results, for which no explanation is offered. The normalized standard deviation is shown to be very sensitive to signal-to-noise ratio and very insensitive to the noise correlation present in the range gates of the designated search mode. The substantial variation in the CFAR threshold is dominant at large values of SNR where the normalized standard deviation is greater than 0.3. Whether or not this significantly affects the resulting probability of detection is a matter which deserves additional attention.

  8. Attentional perceptual thresholds for manipulated digitized mammograms

    NASA Astrophysics Data System (ADS)

    Maeder, Anthony; Fookes, Clinton

    2004-05-01

    This paper describes a series of experiments to investigate influence of perceptual response in skilled observers, due to subtle pixel intensity transforms in radiological images. Contrast and edge enhancement operations were applied to digitized mammograms, in order to determine thresholds at which variations in attentional behavior not consciously identified by the observer were detected, during normal visual scanning procedures in a typical screening viewing situation. Continuous tracking of eye movements was undertaken to obtain patterns of fixation sequences and durations for three different observers, and both qualitative and quantitative analyses were applied to this data. Consistent thresholds at which attentional perturbation occurred were established based on levels of aggregated pixel errors determined by SNR values, across the different methods of image manipulation considered.

  9. Bayesian estimation of dose thresholds

    NASA Technical Reports Server (NTRS)

    Groer, P. G.; Carnes, B. A.

    2003-01-01

    An example is described of Bayesian estimation of radiation absorbed dose thresholds (subsequently simply referred to as dose thresholds) using a specific parametric model applied to a data set on mice exposed to 60Co gamma rays and fission neutrons. A Weibull based relative risk model with a dose threshold parameter was used to analyse, as an example, lung cancer mortality and determine the posterior density for the threshold dose after single exposures to 60Co gamma rays or fission neutrons from the JANUS reactor at Argonne National Laboratory. The data consisted of survival, censoring times and cause of death information for male B6CF1 unexposed and exposed mice. The 60Co gamma whole-body doses for the two exposed groups were 0.86 and 1.37 Gy. The neutron whole-body doses were 0.19 and 0.38 Gy. Marginal posterior densities for the dose thresholds for neutron and gamma radiation were calculated with numerical integration and found to have quite different shapes. The density of the threshold for 60Co is unimodal with a mode at about 0.50 Gy. The threshold density for fission neutrons declines monotonically from a maximum value at zero with increasing doses. The posterior densities for all other parameters were similar for the two radiation types.

  10. Bayesian estimation of dose thresholds.

    PubMed

    Groer, P G; Carnes, B A

    2003-01-01

    An example is described of Bayesian estimation of radiation absorbed dose thresholds (subsequently simply referred to as dose thresholds) using a specific parametric model applied to a data set on mice exposed to 60Co gamma rays and fission neutrons. A Weibull based relative risk model with a dose threshold parameter was used to analyse, as an example, lung cancer mortality and determine the posterior density for the threshold dose after single exposures to 60Co gamma rays or fission neutrons from the JANUS reactor at Argonne National Laboratory. The data consisted of survival, censoring times and cause of death information for male B6CF1 unexposed and exposed mice. The 60Co gamma whole-body doses for the two exposed groups were 0.86 and 1.37 Gy. The neutron whole-body doses were 0.19 and 0.38 Gy. Marginal posterior densities for the dose thresholds for neutron and gamma radiation were calculated with numerical integration and found to have quite different shapes. The density of the threshold for 60Co is unimodal with a mode at about 0.50 Gy. The threshold density for fission neutrons declines monotonically from a maximum value at zero with increasing doses. The posterior densities for all other parameters were similar for the two radiation types. PMID:12593429

  11. Automated detection of colorectal lesions with dual-energy CT colonography

    NASA Astrophysics Data System (ADS)

    Näppi, Janne J.; Kim, Se Hyung; Yoshida, Hiroyuki

    2012-03-01

    Conventional single-energy computed tomography colonography (CTC) tends to miss polyps 6 - 9 mm in size and flat lesions. Dual-energy CTC (DE-CTC) provides more complete information about the chemical composition of tissue than does conventional CTC. We developed an automated computer-aided detection (CAD) scheme for detecting colorectal lesions in which dual-energy features were used to identify different bowel materials and their partial-volume artifacts. Based on these features, the dual-energy CAD (DE-CAD) scheme extracted the region of colon by use of a lumen-tracking method, detected lesions by use of volumetric shape features, and reduced false positives by use of a statistical classifier. For validation, 20 patients were prepared for DE-CTC by use of reduced bowel cleansing and orally administered fecal tagging with iodine and/or barium. The DE-CTC was performed in dual positions by use of a dual-energy CT scanner (SOMATOM Definition, Siemens) at 140 kVp and 80 kVp energy levels. The lesions identified by subsequent same-day colonoscopy were correlated with the DE-CTC data. The detection accuracies of the DE-CAD and conventional CAD schemes were compared by use of leave-one-patient-out evaluation and a bootstrap analysis. There were 25 colonoscopy-confirmed lesions: 22 were 6 - 9 mm and 3 were flat lesions >=10 mm in size. The DE-CAD scheme detected the large flat lesions and 95% of the 6 - 9 mm lesions with 9.9 false positives per patient. The improvement in detection accuracy by the DE-CAD was statistically significant.

  12. Absence of a {open_quote}{open_quote}Threshold Effect{close_quote}{close_quote} in the Energy Loss of Slow Protons Traversing Large-Band-Gap Insulators

    SciTech Connect

    Eder, K.; Semrad, D.; Bauer, P.; Golser, R.; Maier-Komor, P.; Aumayr, F.; Penalba, M.; Arnau, A.; Ugalde, J.M.; Echenique, P.M.

    1997-11-01

    The electronic stopping cross section {var_epsilon} of slow hydrogen projectiles in large-band-gap insulators has been measured at energies of a few keV. Even at velocities as low as v{sub 0}/3 (v{sub 0}=c/137) , we find no influence of the band gap on the velocity dependence of {var_epsilon} , contrary to the case of gaseous targets with similar minimum excitation energy. The magnitude of {var_epsilon} and its essentially linear velocity dependence allow us to arrive at the following conclusion: Electron promotion processes contribute substantially to stopping due to formation of molecular orbitals. This points towards the existence of a bound electron state at a proton that moves slowly in an insulator. A simple model based on the calculation of molecular orbital correlation diagrams for the H/LiF collision system supports the idea of local reduction of the band gap of an insulating target. {copyright} {ital 1997} {ital The American Physical Society}

  13. Pulse variations of a conducted energy weapon (similar to the TASER X26 device): effects on muscle contraction and threshold for ventricular fibrillation*.

    PubMed

    Beason, Charles W; Jauchem, James R; Clark, C D; Parker, James E; Fines, David A

    2009-09-01

    Conducted energy weapons (such as the Advanced TASER X26 model produced by TASER International), incapacitate individuals by causing muscle contractions. To provide information relevant to development of future potential devices, a "Modifiable Electronic Stimulator" was used to evaluate the effects of changing various parameters of the stimulating pulse. Muscle contraction was affected by pulse power, net/gross charge, pulse duration, and pulse repetition frequency. The contraction force increased linearly as each of these factors was increased. Elimination of a precursor pulse from X26-like pulses did not have a significant effect on the normalized force measured. Muscle-contraction force increased as the spacing increased from 5 to 20 cm, with no further change in force above 20 cm of spacing. Therefore, it is suggested that any future developments of new conducted energy weapons should include placement of electrodes a minimum of 20 cm apart so that efficiency of the system is not degraded. In the current study, the 50% probability of fibrillation level of X26-like pulses ranged from 4 to 5 times higher than the X26 itself. Relatively large variations about the X26 operating level were found not to result in fibrillation or asystole. Therefore, it should be possible to design and build an X26-type device that operates efficiently at levels higher than the X26. PMID:19737245

  14. Calculations of atomic sputtering and displacement cross-sections in solid elements by electrons with energies from threshold to 1. 5 MV

    SciTech Connect

    Bradley, C.R.

    1988-12-01

    The kinetics of knock-on collisions of relativistic electrons with nuclei and details of the numerical evaluation of differential, recoil, and total Mott cross-sections are reviewed and discussed. The effects of electron beam induced displacement and sputtering, in the transmission electron microscope (TEM) environment, on microanalysis are analyzed with particular emphasis placed on the removal of material by knock-on sputtering. The mass loss predicted due to transmission knock-on sputtering is significant for many elements under conditions frequently encountered in microanalysis. Total Mott cross-sections are tabulated for all naturally occurring solid elements up to Z = 92 at displacement energies of one, two, four, and five times the sublimation energy and for accelerating voltages accessible in the transmission electron microscope. Fortran source code listings for the calculation of the differential Mott cross-section as a function of electron scattering angle (dMottCS), as a function of nuclear recoil angle (RECOIL), and the total Mott cross-section (TOTCS) are included. 48 refs., 21 figs., 12 tabs.

  15. Particle Detection in Superfluid Helium: R&D for Low Energy Solar Neutrinos

    SciTech Connect

    Lanou, Robert E., Jr.

    2006-03-31

    This report presents a summary of the results from R&D conducted as a feasibility study in the Department of Physics of Brown University for detection of low energy solar neutrinos utilizing a superfluid helium target. The report outlines the results in several areas: 1) development of experimental facilities, 2) energy deposition by electrons and alphas in superfluid helium, 3) development of wafer and metallic magnetic calorimeters, 4) background studies, 5) coded apertures and conceptual design, 6) Detection of single electrons and 7) a simulation of expected performance of a full scale device. Recommendations for possible future work are also presented. A bibliography of published papers and unpublished doctoral theses is included.

  16. Early results utilizing high-energy fission product (gamma) rays to detect fissionable material in cargo

    SciTech Connect

    Slaughter, D R; Accatino, M R; Bernstein, A; Church, J A; Descalle, M A; Gosnell, T B; Hall, J M; Loshak, A; Manatt, D R; Mauger, G J; McDowell, M; Moore, T M; Norman, E B; Pohl, B A; Pruet, J A; Petersen, D C; Walling, R S; Weirup, D L; Prussin, S G

    2004-09-30

    A concept for detecting the presence of special nuclear material ({sup 235}U or {sup 239}Pu) concealed in intermodal cargo containers is described. It is based on interrogation with a pulsed beam of 7 MeV neutrons that produce fission events and their {beta}-delayed neutron emission or {beta}-delayed high-energy {gamma}-radiation between beam pulses provide the detection signature. Fission product {beta}-delayed {gamma}-rays above 3 MeV are nearly ten times more abundant than {beta}-delayed neutrons and are distinct from natural radioactivity and from nearly all of the induced activity in a normal cargo. Detector backgrounds and potential interferences with the fission signature radiation have been identified and quantified. An important goal in the US is the detection of nuclear weapons or special nuclear material (SNM) concealed in intermodal cargo containers. This must be done with high detection probability, low false alarm rates, and without impeding commerce, i.e. about one minute for an inspection. The concept for inspection has been described before and its components are now being evaluated. While normal radiations emitted from plutonium may allow its detection, the majority of {sup 235}U {gamma} ray emission is at 186 keV, is readily attenuated by cargo, and thus not a reliable detection signature for passive detection. Delayed neutron detection following a neutron or photon beam pulse has been used successfully to detect lightly or unshielded SNM targets. While delayed neutrons can be easily distinguished from beam neutrons they have relatively low yield in fission, approximately 0.008 per fission in {sup 239}Pu and 0.017 per fission in {sup 235}U, and are rapidly attenuated in hydrogenous materials making that technique unreliable when challenged by thick hydrogenous cargo overburden. They propose detection of {beta}-delayed high-energy {gamma} radiation as a more robust signature characteristic of SNM.

  17. Extracellular voltage threshold settings can be tuned for optimal encoding of movement and stimulus parameters

    NASA Astrophysics Data System (ADS)

    Oby, Emily R.; Perel, Sagi; Sadtler, Patrick T.; Ruff, Douglas A.; Mischel, Jessica L.; Montez, David F.; Cohen, Marlene R.; Batista, Aaron P.; Chase, Steven M.

    2016-06-01

    Objective. A traditional goal of neural recording with extracellular electrodes is to isolate action potential waveforms of an individual neuron. Recently, in brain–computer interfaces (BCIs), it has been recognized that threshold crossing events of the voltage waveform also convey rich information. To date, the threshold for detecting threshold crossings has been selected to preserve single-neuron isolation. However, the optimal threshold for single-neuron identification is not necessarily the optimal threshold for information extraction. Here we introduce a procedure to determine the best threshold for extracting information from extracellular recordings. We apply this procedure in two distinct contexts: the encoding of kinematic parameters from neural activity in primary motor cortex (M1), and visual stimulus parameters from neural activity in primary visual cortex (V1). Approach. We record extracellularly from multi-electrode arrays implanted in M1 or V1 in monkeys. Then, we systematically sweep the voltage detection threshold and quantify the information conveyed by the corresponding threshold crossings. Main Results. The optimal threshold depends on the desired information. In M1, velocity is optimally encoded at higher thresholds than speed; in both cases the optimal thresholds are lower than are typically used in BCI applications. In V1, information about the orientation of a visual stimulus is optimally encoded at higher thresholds than is visual contrast. A conceptual model explains these results as a consequence of cortical topography. Significance. How neural signals are processed impacts the information that can be extracted from them. Both the type and quality of information contained in threshold crossings depend on the threshold setting. There is more information available in these signals than is typically extracted. Adjusting the detection threshold to the parameter of interest in a BCI context should improve our ability to decode motor intent, and thus enhance BCI control. Further, by sweeping the detection threshold, one can gain insights into the topographic organization of the nearby neural tissue.

  18. Detection of high energy X-rays from the galactic center region

    NASA Technical Reports Server (NTRS)

    Dennis, B. R.; Beall, J. H.; Cutler, E. P.; Crannell, C. J.; Dolan, J. G.; Frost, K. J.; Orwig, L. E.

    1979-01-01

    Observations of the galactic center region made with the high energy X-ray detector on OSO-8 are discussed. A strong hard X-ray which was detected during these observations from the vicinity of the galactic center are examined. The counting rate spectrum and the photon number spectrum of the flux are determined. Comparisons with the high energy X-ray fluxes observed from sources in the region by others are discussed.

  19. Methods of sequencing and detection using energy transfer labels with cyanine dyes as donor chromophores

    DOEpatents

    Glazer, Alexander N.; Mathies, Richard A.; Hung, Su-Chun; Ju, Jingyue

    2000-01-01

    Cyanine dyes are used as the donor fluorophore in energy transfer labels in which light energy is absorbed by a donor fluorophore and transferred to an acceptor fluorophore which responds to the transfer by emitting fluorescent light for detection. The cyanine dyes impart an unusually high sensitivity to the labels thereby improving their usefulness in a wide variety of biochemical procedures, particularly nucleic acid sequencing, nucleic acid fragment sizing, and related procedures.

  20. Prospects for Lunar Satellite Detection of Radio Pulses from Ultrahigh Energy Neutrinos Interacting with the Moon

    SciTech Connect

    Staal, O.; Bergman, J. E. S.; Thide, B.; Daldorff, L. K. S.; Ingelman, G.

    2007-02-16

    The Moon provides a huge effective detector volume for ultrahigh energy cosmic neutrinos, which generate coherent radio pulses in the lunar surface layer due to the Askaryan effect. In light of presently considered lunar missions, we propose radio measurements from a Moon-orbiting satellite. First systematic Monte Carlo simulations demonstrate the detectability of Askaryan pulses from neutrinos with energies above 10{sup 20} eV at the very low fluxes predicted in different scenarios.

  1. Energy Detectives! Introduce Students to a Promising Career in Energy Auditing

    ERIC Educational Resources Information Center

    Helmholdt, Nick

    2012-01-01

    The growing field of energy assessment for buildings presents opportunities for teachers to engage students in topics related to current issues, science, technology, and communication skills. Students who find satisfaction in energy auditing can expand their interests into careers as the demand to stop wasteful practices in homes and businesses…

  2. An edge-on charge-transfer design for energy-resolved x-ray detection.

    PubMed

    Shi, Zaifeng; Yang, Haoyu; Cong, Wenxiang; Wang, Ge

    2016-06-01

    As an x-ray beam goes through the human body, it will collect important information via interaction with tissues. Since this interaction is energy-sensitive, the state-of-the-art spectral CT technologies provide higher quality images of biological tissues with x-ray energy information (or spectral information). With existing energy-integrating technologies, a large fraction of energy information is ignored in the x-ray detection process. Although the recently proposed photon-counting technology promises to achieve higher image quality at a lower radiation dose, it suffers from limitations in counting rate, performance uniformity, and fabrication cost. In this paper, we focus on an alternative approach to resolve the energy distribution of transmitted x-ray photons. First, we analyze the x-ray attenuation in a silicon substrate and describe a linear approximation model for x-ray detection. Then, we design an edge-on architecture based on the proposed energy-resolving model. In our design, the x-ray-photon-induced charges are transferred sequentially resembling the working process of a CCD camera. Finally, we numerically evaluate the linear approximation of x-ray attenuation and derive the energy distribution of x-ray photons. Our simulation results show that the proposed energy-sensing approach is feasible and has the potential to complement the photon-counting technology. PMID:27192190

  3. Threshold models in radiation carcinogenesis

    SciTech Connect

    Hoel, D.G.; Li, P.

    1998-09-01

    Cancer incidence and mortality data from the atomic bomb survivors cohort has been analyzed to allow for the possibility of a threshold dose response. The same dose-response models as used in the original papers were fit to the data. The estimated cancer incidence from the fitted models over-predicted the observed cancer incidence in the lowest exposure group. This is consistent with a threshold or nonlinear dose-response at low-doses. Thresholds were added to the dose-response models and the range of possible thresholds is shown for both solid tumor cancers as well as the different leukemia types. This analysis suggests that the A-bomb cancer incidence data agree more with a threshold or nonlinear dose-response model than a purely linear model although the linear model is statistically equivalent. This observation is not found with the mortality data. For both the incidence data and the mortality data the addition of a threshold term significantly improves the fit to the linear or linear-quadratic dose response for both total leukemias and also for the leukemia subtypes of ALL, AML, and CML.

  4. Molecular excitation energies to high-lying bound states from time-dependent density-functional response theory: Characterization and correction of the time-dependent local density approximation ionization threshold

    NASA Astrophysics Data System (ADS)

    Casida, Mark E.; Jamorski, Christine; Casida, Kim C.; Salahub, Dennis R.

    1998-03-01

    This paper presents an evaluation of the performance of time-dependent density-functional response theory (TD-DFRT) for the calculation of high-lying bound electronic excitation energies of molecules. TD-DFRT excitation energies are reported for a large number of states for each of four molecules: N2, CO, CH2O, and C2H4. In contrast to the good results obtained for low-lying states within the time-dependent local density approximation (TDLDA), there is a marked deterioration of the results for high-lying bound states. This is manifested as a collapse of the states above the TDLDA ionization threshold, which is at -ɛHOMOLDA (the negative of the highest occupied molecular orbital energy in the LDA). The -ɛHOMOLDA is much lower than the true ionization potential because the LDA exchange-correlation potential has the wrong asymptotic behavior. For this reason, the excitation energies were also calculated using the asymptotically correct potential of van Leeuwen and Baerends (LB94) in the self-consistent field step. This was found to correct the collapse of the high-lying states that was observed with the LDA. Nevertheless, further improvement of the functional is desirable. For low-lying states the asymptotic behavior of the exchange-correlation potential is not critical and the LDA potential does remarkably well. We propose criteria delineating for which states the TDLDA can be expected to be used without serious impact from the incorrect asymptotic behavior of the LDA potential.

  5. Muon detection studied by pulse-height energy analysis: Novel converter arrangements.

    PubMed

    Holmlid, Leif; Olafsson, Sveinn

    2015-08-01

    Muons are conventionally measured by a plastic scintillator-photomultiplier detector. Muons from processes in ultra-dense hydrogen H(0) are detected here by a novel type of converter in front of a photomultiplier. The muon detection yield can be increased relative to that observed with a plastic scintillator by at least a factor of 100, using a converter of metal, semiconductor (Ge), or glass for interaction with the muons penetrating through the metal housing of the detector. This detection process is due to transient formation of excited nuclei by the well-known process of muon capture, giving beta decay. The main experimental results shown here are in the form of beta electron energy spectra detected directly by the photomultiplier. Events which give a high-energy tail in the energy spectra are probably due to gamma photons from the muons. Sharp and intense x-ray peaks from a muonic aluminium converter or housing material are observed. The detection conversion in glass and Ge converters has a time constant of the order of many minutes to reach the final conversion level, while the process in metal converters is stabilized faster. The time constants are not due to lifetimes of the excited nuclei or neutrons but are due to internal charging in the insulating converter material. Interaction of this charging with the high voltage in the photomultiplier is observed. PMID:26329180

  6. Muon detection studied by pulse-height energy analysis: Novel converter arrangements

    SciTech Connect

    Holmlid, Leif; Olafsson, Sveinn

    2015-08-15

    Muons are conventionally measured by a plastic scintillator–photomultiplier detector. Muons from processes in ultra-dense hydrogen H(0) are detected here by a novel type of converter in front of a photomultiplier. The muon detection yield can be increased relative to that observed with a plastic scintillator by at least a factor of 100, using a converter of metal, semiconductor (Ge), or glass for interaction with the muons penetrating through the metal housing of the detector. This detection process is due to transient formation of excited nuclei by the well-known process of muon capture, giving beta decay. The main experimental results shown here are in the form of beta electron energy spectra detected directly by the photomultiplier. Events which give a high-energy tail in the energy spectra are probably due to gamma photons from the muons. Sharp and intense x-ray peaks from a muonic aluminium converter or housing material are observed. The detection conversion in glass and Ge converters has a time constant of the order of many minutes to reach the final conversion level, while the process in metal converters is stabilized faster. The time constants are not due to lifetimes of the excited nuclei or neutrons but are due to internal charging in the insulating converter material. Interaction of this charging with the high voltage in the photomultiplier is observed.

  7. Ratio-metric sensor to detect riboflavin via fluorescence resonance energy transfer with ultrahigh sensitivity

    NASA Astrophysics Data System (ADS)

    Wang, Jilong; Su, Siheng; Wei, Junhua; Bahgi, Roya; Hope-Weeks, Louisa; Qiu, Jingjing; Wang, Shiren

    2015-08-01

    In this paper, a novel fluorescence resonance energy transfer (FRET) ration-metric fluorescent probe based on heteroatom N, S doped carbon dots (N, S-CDs) was developed to determine riboflavin in aqueous solutions. The ratio of two emission intensities at different wavelengths is applied to determine the concentration of riboflavin (RF). This method is more effective in reducing the background interference and fluctuation of diverse conditions. Therefore, this probe obtains high sensitivity with a low limit of detection (LOD) of 1.9 nM (0.7 ng/ml) which is in the highest level of all riboflavin detection approaches and higher than single wavelength intensity detection (1.9 μM). In addition, this sensor has a high selectivity of detecting riboflavin in deionized water (pH=7) with other biochemical like amino acids. Moreover, riboflavin in aqueous solution is very sensitive to sunlight and can be degraded to lumiflavin, which is toxic. Because the N, S doped carbon dots cannot serve as an energy donor for N, S doped carbon dots and lumiflavin system, this system makes it easy to determine whether the riboflavin is degraded or not, which is first to be reported. This platform may provide possibilities to build a new and facile fluorescence resonance energy transfer based sensor to detect analytes and metamorphous analytes in aqueous solution.

  8. DEVELOPMENT OF A REAL-TIME FLUORESCENCE RESONANCE ENERGY TRANSFER PCR TO DETECT ARCOBACTER SPECIES

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A real-time PCR targeting the gyrase A subunit gene outside the quinolone resistance-determining region has been developed to detect Arcobacter species. The species identification was made by probe hybridization and melting curve analysis, using Fluorescence Resonance Energy Transfer technology. D...

  9. DEVELOPMENT OF A REAL-TIME FLUORESCENCE RESONANCE ENERGY TRANSFER (FRET) PCR TO DETECT ARCOBACTER SPECIES

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A real-time PCR targeting the gyrase A subunit gene outside the quinolone resistance-determining region has been developed to detect Arcobacter species. The species identification was made by probe hybridization and melting curve analysis, using the Fluorescence Resonance Energy Transfer technology...

  10. Nuclear recoil energy scale in liquid xenon with application to the direct detection of dark matter

    SciTech Connect

    Sorensen, P; Dahl, C E

    2011-02-14

    We show for the first time that the quenching of electronic excitation from nuclear recoils in liquid xenon is well-described by Lindhard theory, if the nuclear recoil energy is reconstructed using the combined (scintillation and ionization) energy scale proposed by Shutt et al.. We argue for the adoption of this perspective in favor of the existing preference for reconstructing nuclear recoil energy solely from primary scintillation. We show that signal partitioning into scintillation and ionization is well-described by the Thomas-Imel box model. We discuss the implications for liquid xenon detectors aimed at the direct detection of dark matter.

  11. Magnetic calorimeter with a SQUID for detecting weak radiations and recording the ultralow energy release

    SciTech Connect

    Golovashkin, Aleksander I; Zherikhina, L N; Kuleshova, G V; Tskhovrebov, A M; Izmailov, G N

    2006-12-31

    The scheme of a magnetic calorimeter for recording extremely low energy releases is developed. The calorimeter is activated by the method of adiabatic demagnetisation and its response to the energy release is measured with a superconducting quantum interference device (SQUID). The estimate of the ultimate sensitivity of the calorimeter with the SQUID demonstrates the possibilities of its application for detecting ultralow radiation intensity, recording single X-ray quanta in the proportional regime and other events with ultralow energy releases. The scheme of the calorimeter with the SQUID on matter waves in superfluid {sup 4}He is proposed. (radiation detectors)

  12. Acoustic emission sensor radiation damage threshold experiment

    SciTech Connect

    Beeson, K.M.; Pepper, C.E.

    1994-09-01

    Determination of the threshold for damage to acoustic emission sensors exposed to radiation is important in their application to leak detection in radioactive waste transport and storage. Proper response to system leaks is necessary to ensure the safe operation of these systems. A radiation impaired sensor could provide ``false negative or false positive`` indication of acoustic signals from leaks within the system. Research was carried out in the Radiochemical Technology Division at Oak Ridge National Laboratory to determine the beta/gamma radiation damage threshold for acoustic emission sensor systems. The individual system consisted of an acoustic sensor mounted with a two part epoxy onto a stainless steel waveguide. The systems were placed in an irradiation fixture and exposed to a Cobalt-60 source. After each irradiation, the sensors were recalibrated by Physical Acoustics Corporation. The results were compared to the initial calibrations performed prior to irradiation and a control group, not exposed to radiation, was used to validate the results. This experiment determines the radiation damage threshold of each acoustic sensor system and verifies its life expectancy, usefulness and reliability for many applications in radioactive environments.

  13. Automatic Classification of Kepler Threshold Crossing Events

    NASA Astrophysics Data System (ADS)

    McCauliff, Sean; Catanzarite, Joseph; Jenkins, Jon Michael

    2014-06-01

    Over the course of its 4-year primary mission the Kepler mission has discovered numerous planets. Part of the process of planet discovery has involved generating threshold crossing events (TCEs); a light curve with a repeating exoplanet transit-like feature. The large number of diagnostics 100) makes it difficult to examine all the information available for each TCE. The effort required for vetting all threshold-crossing events (TCEs) takes several months by many individuals associated with the Kepler Threshold Crossing Event Review Team (TCERT). The total number of objects with transit-like features identified in the light curves has increased to as many as 18,000, just examining the first three years of data. In order to accelerate the process by which new planet candidates are classified, we propose a machine learning approach to establish a preliminary list of planetary candidates ranked from most credible to least credible. The classifier must distinguish between three classes of detections: non-transiting phenomena, astrophysical false positives, and planet candidates. We use random forests, a supervised classification algorithm to this end. We report on the performance of the classifier and identify diagnostics that are important for discriminating between these classes of TCEs.Funding for this mission is provided by NASA’s Science Mission Directorate.

  14. Quantifying thresholds in state space to advance our understanding of emergent behavior

    NASA Astrophysics Data System (ADS)

    Lintz, H. E.; Graham, C. B.

    2011-12-01

    Thresholds are common across diverse systems and scales and often represent emergent, complex behavior. While thresholds are a widely accepted concept, most empirical methods focus on their detection in time. Although threshold detection is useful, it does not quantify the direct drivers of the threshold response. Causal understanding of thresholds detected empirically requires their investigation in a multi-factor domain containing the direct drivers (often referred to as state space). Here, we present a new approach that quantifies threshold strength from response surfaces modeled in state space. We illustrate how this method can be used to study and better understand mechanisms that drive thresholds resulting from interactions among multiple factors. In particular, we examine stream threshold response to storm precipitation and antecedent wetness and ask how climate and catchment factors modulate local interactions that determine threshold strength. We pair data from the basin outlet of USGS gauging stations within 1 kilometer of meteorological stations with data from the nearest met-station. Non-parametric multiplicative regression (NPMR) is used to build response surfaces of flow with respect to antecedent wetness indices and storm precipitation. We quantify threshold strength using a threshold strength index applied to response surfaces that are built for each gauging station. We show how the approach can be used to study and better understand mechanisms that drive multi-factor thresholds resulting from interactions across scales. We find that catchment characteristics modulate the domain of interaction (between storm precipitation and antecedent wetness) that exhibits the strongest thresholds in runoff. We argue that our method and results can advance mechanistic understanding of hydrologic thresholds in stream response across catchments. Finally, we also argue that the relative strength of multi-factor thresholds exhibited by a system or across systems should be quantified and compared in state space. In so doing, we can enhance our understanding of threshold behavior across systems and disciplines.

  15. Using a CCD for the direct detection of electrons in a low energy space plasma spectrometer

    NASA Astrophysics Data System (ADS)

    Bedington, R.; Kataria, D.; Walton, D.

    2012-01-01

    An E2V CCD64 back-illuminated, ion-implanted CCD (charge-coupled device) has been used as a direct electron imaging detector with CATS (Conceptual And Tiny Spectrometer), a highly miniaturised prototype plasma analyser head. This is in place of an MCP (microchannel plate) with a position sensing anode which would more conventionally be used as a detector in traditional low energy space plasma analyser instruments. The small size of CATS however makes it well matched to the size of the CCD, and the ion implants reduce the depth of the CCD backside electron potential well making it more sensitive to lower energy electrons than standard untreated silicon. Despite ionisation damage from prolonged exposure to excessively energetic electrons, the CCD has been able to detect electrons with energies above 500eV, at temperatures around room temperature. Using both a long integration 'current measuring' mode and a short integration `electron counting' mode it has been used to image the low energy electrons exiting the analyser, enhancing our understanding of the CATS electrostatic optics. The CCD has been selected as the detector for use with CATS for an instrument on a low-altitude student sounding rocket flight. Although it cannot detect the lowest energy electrons that an MCP can detect, and it is more sensitive to stray light, the low voltages required, the lack of vacuum requirements and its novelty and availability made it the most attractive candidate detector.

  16. Neutron detection with a NaI spectrometer using high-energy photons

    NASA Astrophysics Data System (ADS)

    Holm, Philip; Peräjärvi, Kari; Sihvonen, Ari-Pekka; Siiskonen, Teemu; Toivonen, Harri

    2013-01-01

    Neutrons can be indirectly detected by high-energy photons. The performance of a 4″×4″×16″ NaI portal monitor was compared to a 3He-based portal monitor with a comparable cross-section of the active volume. Measurements were performed with bare and shielded 252Cf and AmBe sources. With an optimum converter and moderator structure for the NaI detector, the detection efficiencies and minimum detectable activities of the portal monitors were similar. The NaI portal monitor preserved its detection efficiency much better with shielded sources, making the method very interesting for security applications. For heavily shielded sources, the NaI detector was 2-3 times more sensitive than the 3He-based detector.

  17. Detection of occult, undisplaced hip fractures with a dual-energy CT algorithm targeted to detection of bone marrow edema.

    PubMed

    Reddy, T; McLaughlin, P D; Mallinson, P I; Reagan, A C; Munk, P L; Nicolaou, S; Ouellette, H A

    2015-02-01

    The purpose of this study is to describe our initial clinical experience with dual-energy computed tomography (DECT) virtual non-calcium (VNC) images for the detection of bone marrow (BM) edema in patients with suspected hip fracture following trauma. Twenty-five patients presented to the emergency department at a level 1 trauma center between January 1, 2011 and January 1, 2013 with clinical suspicion of hip fracture and normal radiographs were included. All CT scans were performed on a dual-source, dual-energy CT system. VNC images were generated using prototype software and were compared to regular bone reconstructions by two musculoskeletal radiologists in consensus. Radiological and/or clinical diagnosis of fracture at 30-day follow-up was used as the reference standard. Twenty-one patients were found to have DECT-VNC signs of bone marrow edema. Eighteen of these 21 patients were true positive and three were false positive. A concordant fracture was clearly seen on bone reconstruction images in 15 of the 18 true positive cases. In three cases, DECT-VNC was positive for bone marrow edema where bone reconstruction CT images were negative. Four patients demonstrated no DECT-VNC signs of bone marrow edema: two cases were true negative, two cases were false negative. When compared with the gold standard of hip fracture determined at retrospective follow-up, the sensitivity of DECT-VNC images of the hip was 90 %, specificity was 40 %, positive predictive value was 86 %, and negative predictive value was 50 %. Our initial experience would suggest that DECT-VNC is highly sensitive but poorly specific in the diagnosis of hip fractures in patients with normal radiographs. The value of DECT-VNC primarily lies in its ability to help detect fractures which may be subtle or undetectable on bone reconstruction CT images. PMID:24985783

  18. An estimation method for echo signal energy of pipe inner surface longitudinal crack detection by 2-D energy coefficients integration

    SciTech Connect

    Zhou, Shiyuan Sun, Haoyu Xu, Chunguang Cao, Xiandong Cui, Liming Xiao, Dingguo

    2015-03-31

    The echo signal energy is directly affected by the incident sound beam eccentricity or angle for thick-walled pipes inner longitudinal cracks detection. A method for analyzing the relationship between echo signal energy between the values of incident eccentricity is brought forward, which can be used to estimate echo signal energy when testing inside wall longitudinal crack of pipe, using mode-transformed compression wave adaptation of shear wave with water-immersion method, by making a two-dimension integration of “energy coefficient” in both circumferential and axial directions. The calculation model is founded for cylinder sound beam case, in which the refraction and reflection energy coefficients of different rays in the whole sound beam are considered different. The echo signal energy is calculated for a particular cylinder sound beam testing different pipes: a beam with a diameter of 0.5 inch (12.7mm) testing a φ279.4mm pipe and a φ79.4mm one. As a comparison, both the results of two-dimension integration and one-dimension (circumferential direction) integration are listed, and only the former agrees well with experimental results. The estimation method proves to be valid and shows that the usual method of simplifying the sound beam as a single ray for estimating echo signal energy and choosing optimal incident eccentricity is not so appropriate.

  19. A detection system for very low-energy protons from {beta}-delayed proton decay

    SciTech Connect

    Spiridon, A.; Pollacco, E.; Trache, L.; Simmons, E.; McCleskey, M.; Roeder, B. T.; Tribble, R. E.; Pascovici, G.; Riallot, M.; Mols, J. P.; Kebbiri, M.

    2012-11-20

    We have recently developed a gas based detection system called AstroBox, motivated by nuclear astrophysics studies. The goal was to detect very low-energy protons from {beta}-delayed p-decay with reduced beta background and improved energy resolution. The detector was tested using the {beta}-delayed proton-emitter 23Al previously studied with a set-up based on thin double-sided Si strip detectors. The proton spectrum obtained with AstroBox showed no beta background down to {approx}80 keV. The low energy (206 keV, 267 keV) proton peaks were positively identified, well separated, and the resolution was improved.

  20. Fundamental limits to detection of low-energy ions using silicon solid-state detectors

    NASA Astrophysics Data System (ADS)

    Funsten, H. O.; Ritzau, S. M.; Harper, R. W.; Korde, R.

    2004-05-01

    Recent advances in solid-state detector (SSD) technology have demonstrated the detection of ions and electrons down to 1 keV. However, ions at keV energies lose a substantial amount of energy ΔN in a SSD through Coulombic interactions with target nuclei rather than through interactions that contribute to the SSD output pulse, whose magnitude is a measure of the ion's incident energy. Because ΔN depends on the ion species, detector material, and interaction physics, it represents a fundamental limitation of the output pulse magnitude of the detector. Using 100% quantum collection efficiency silicon photodiodes with a thin (40-60 Å) SiO2 passivation layer, we accurately quantify ΔN for incident 1-120 keV ions and, therefore, evaluate the detection limits of keV ions using silicon detectors.

  1. Relationship between canine transthoracic impedance and defibrillation threshold. Evidence for current-based defibrillation.

    PubMed Central

    Lerman, B B; Halperin, H R; Tsitlik, J E; Brin, K; Clark, C W; Deale, O C

    1987-01-01

    The electrical parameter used to define defibrillation strength is energy. Peak current, however, may more accurately reflect the field quantities (i.e., electric field strength and current density) that mediate defibrillation and therefore should be a better clinical descriptor of threshold than energy. Though transthoracic impedance is a major determinant of energy-based threshold and is sensitive to operator-dependent changes in impedance (electrode-subject interface), an ideal threshold descriptor should be invariant with respect to these changes in impedance. We therefore compared the relative invariance of energy- and current-based thresholds when transthoracic impedance was altered by one of two methods: (a) change in electrode size (protocol A) or (b) change in electrode force (protocol B). In protocol A, impedance was altered in each dog by a mean of 95%. Energy thresholds determined at both low and high impedance were 44 +/- 21 J (mean +/- SD) and 105 +/- 35 J, respectively, P less than 0.0001. In contrast, peak current (A) thresholds were independent of transthoracic impedance, 22 +/- 5 A (low impedance) vs. 24 +/- 6 A (high impedance), P = NS. Energy and current thresholds showed a similar relationship for animals tested in protocol B. Therefore, current-based thresholds, in contrast to energy thresholds are independent of operator-dependent variables of transthoracic impedance and are invariant for a given animal. These results suggest that redefining defibrillation threshold in terms of peak current rather than energy provides a superior method of defibrillation. Images PMID:3624489

  2. The cryogenic dark matter search low ionization-threshold experiment

    NASA Astrophysics Data System (ADS)

    Basu Thakur, Ritoban

    Over 80 years ago we discovered the presence of Dark Matter in our universe. Endeavors in astronomy and cosmology are in consensus with ever improving precision that Dark Matter constitutes an essential 27% of our universe. The Standard Model of Particle Physics does not provide any answers to the Dark Matter problem. It is imperative that we understand Dark Matter and discover its fundamental nature. This is because, alongside other important factors, Dark Matter is responsible for formation of structure in our universe. The very construct in which we sit is defined by its abundance. The Milky Way galaxy, hence life, wouldn't have formed if small over densities of Dark Matter had not caused sufficient accretion of stellar material. Marvelous experiments have been designed based on basic notions to directly and indirectly study Dark Matter, and the Cryogenic Dark Matter Search (CDMS) experiment has been a pioneer and forerunner in the direct detection field. Generations of the CDMS experiment were designed with advanced scientific upgrades to detect Dark Matter particles of mass O(100) GeV/c2. This mass-scale was set primarily by predictions from Super Symmetry. Around 2013 the canonical SUSY predictions were losing some ground and several observations (rather hints of signals) from various experiments indicated to the possibility of lighter Dark Matter of mass O(10) GeV/c2. While the SuperCDMS experiment was probing the regular parameter space, the CDMSlite experiment was conceived to dedicatedly search for light Dark Matter using a novel technology. "CDMSlite" stands for CDMS - low ionization threshold experiment. Here we utilize a unique electron phonon coupling mechanism to measure ionization generated by scattering of light particles. Typically signals from such low energy recoils would be washed under instrumental noise.In CDMSlite via generation of Luke-Neganov phonons we can detect the small ionization energies, amplified in phonon modes during charge transport. This technology allows us to reach very low thresholds and reliably measure and investigate low energy recoils from light Dark Matter particles. This thesis describes the physics behind CDMSlite, the experimenta design and the first science results from CDMSlite operated at the Soudan Underground Laboratory.

  3. {sup 16}O resonances near 4α threshold through {sup 12}C({sup 6}Li,d) reaction

    SciTech Connect

    Rodrigues, M. R. D.; Borello-Lewin, T.; Miyake, H.; Horodynski-Matsushigue, L. B.; Duarte, J. L. M.; Rodrigues, C. L.; Faria, P. Neto de; Cunsolo, A.; Cappuzzello, F.; Foti, A.; Agodi, C.; Cavallaro, M.; Napoli, M. di; Ukita, G. M.

    2014-11-11

    Several narrow alpha resonant {sup 16}O states were detected through the {sup 12}C({sup 6}Li,d) reaction, in the range of 13.5 to 17.5 MeV of excitation energy. The reaction was measured at a bombarding energy of 25.5 MeV employing the São Paulo Pelletron-Enge-Spectrograph facility and the nuclear emulsion technique. Experimental angular distributions associated with natural parity quasi-bound states around the 4α threshold are presented and compared to DWBA predictions. The upper limit for the resonance widths obtained is near the energy resolution (15 keV)

  4. Paper-based fluorescence resonance energy transfer assay for directly detecting nucleic acids and proteins.

    PubMed

    Li, Hua; Fang, Xueen; Cao, Hongmei; Kong, Jilie

    2016-06-15

    Paper-based fluorescence resonance energy transfer assay (FRET) is gaining great interest in detecting macro-biological molecule. It is difficult to achieve conveniently and fast detection for macro-biological molecule. Herein, a graphene oxide (GO)-based paper chip (glass fiber) integrated with fluorescence labeled single-stranded DNA (ssDNA) for fast, inexpensive and direct detection of biological macromolecules (proteins and nucleic acids) has been developed. In this paper, we employed the Cy3/FAM-labeled ssDNA as the reporter and the GO as quencher and the original glass fiber paper as data acquisition substrates. The chip which was designed and fabricated by a cutting machine is a miniature biosensor that monitors fluorescence recovery from resonance energy transfer. The hybridization assays and fluorescence detection were all simplified, and the surface of the chip did not require immobilization or washing. A Nikon Eclipse was employed as excited resource and a commercial digital camera was employed for capturing digital images. This paper-based microfluidics chip has been applied in the detection of proteins and nucleic acids. The biosensing capability meets many potential requirements for disease diagnosis and biological analysis. PMID:26807518

  5. ELENA MCP detector: absolute detection efficiency for low-energy neutral atoms

    NASA Astrophysics Data System (ADS)

    Rispoli, R.; De Angelis, E.; Colasanti, L.; Vertolli, N.; Orsini, S.; Scheer, J. A.; Mura, A.; Milillo, A.; Wurz, P.; Selci, S.; Di Lellis, A. M.; Leoni, R.; D'Alessandro, M.; Mattioli, F.; Cibella, S.

    2012-09-01

    Microchannel Plates (MCP) detectors are frequently used in space instrumentation for detecting a wide range of radiation and particles. In particular, the capability to detect non-thermal low energy neutral species is crucial for the sensor ELENA (Emitted Low-Energy Neutral Atoms), part of the package SERENA (Search for Exospheric Refilling and Emitted Natural Abundances) on board the BepiColombo mission of ESA to Mercury to be launched in 2015. ELENA is a Time of Flight (TOF) sensor, based on a novel concept using an ultra-sonic oscillating shutter (Start section), which is operated at frequencies up to 50 kHz; a MCP detector is used as a Stop detector. The scientific objective of ELENA is to detect energetic neutral atoms in the range 10 eV - 5 keV, within 76 FOV, perpendicular to the S/C orbital plane. ELENA will monitor the emission of neutral atoms from the whole surface of Mercury thanks to the spacecraft motion. The major scientific objectives are the interaction between the plasma environment and the planets surface, the global particle loss-rate and the remote sensing of the surface properties. In particular, surface release processes are investigated by identifying particles released from the surface, via solar wind-induced ion sputtering (< 1eV - < 100 eV) as well as Hydrogen back-scattered at hundreds eV. MCP absolute detection efficiency for very low energy neutral atoms (E < 30 eV) is a crucial point for this investigation. At the MEFISTO facility of the Physical Institute of the University of Bern (CH), measurements on three different types of MCP (with and without coating) have been performed providing the detection efficiencies in the energy range 10eV - 1keV. Outcomes from such measurements are discussed here.

  6. Clinical observation of atrial threshold monitoring algorithm: a single center experience

    PubMed Central

    She, Jianqing; Zhou, Jing; Hu, Zhan; Xia, Yulong

    2015-01-01

    Objective: To observe the atrial capture management in an atrial threshold monitoring algorithm. By calculating the enabling rate of the atrial threshold monitoring algorithm and comparing atrial thresholds measured automatically and manually, we evaluate its safety, reliability and applicability in clinical practice. Methods and results: Data were collected at implant, start of atrial threshold monitoring, visits scheduled 1 month, 2 months and 4 months thereafter, and upon notification of adverse events. Atrial threshold monitoring algorithm was enabled in 94 patients, while in 38 not, indicating an enabling rate of 71.2%. Causes of the unsuccessful attempts to enable automatic atrial threshold include tachycardia (2, 5.3%), and atrial safety margin not met (36, 94.7%). A total of 88 pairs of atrial thresholds measured automatically and manually were gained. The auto threshold was 0.528 ± 0.270 V, and the manual threshold was 0.580 ± 0.223 V. There is a strict correlation between the automatic measurements and those conducted manually by the physician with a P < 0.05. No significant differences were observed during the 1-month, 2-month and 4-month follow-up. Conclusion: Atrial threshold monitoring algorithm is safe, reliable and applicable over time. Atrial threshold monitoring tested atrial threshold was demonstrated to be clinically equivalent to the manual atrial threshold test. The addition of atrial threshold monitoring will benefit the patients by reducing energy cost and enhancing pacemaker safety. PMID:26131207

  7. Threshold photodetachment spectroscopy of negative ions

    SciTech Connect

    Kitsopoulos, T.N.

    1991-12-01

    This thesis is concerned with the development and application of high resolution threshold photodetachment spectroscopy of negative ions. Chapter I deals with the principles of our photodetachment technique, and in chapter II a detailed description of the apparatus is presented. The threshold photodetachment spectra of I{sup {minus}}, and SH{sup {minus}}, presented in the last sections of chapter II, indicated that a resolution of 3 cm{sup {minus}1} can be achieved using our technique. In chapter III the threshold photodetachment spectroscopy study of the transition state region of I + HI and I + Di reactions is discussed. Our technique probes the transition state region directly, and the results of our study are the first unambiguous observations of reactive resonances in a chemical reaction. Chapters IV, V and VI are concerned with the spectroscopy of small silicon and carbon clusters. From our spectra we were able to assign electronic state energies and vibrational frequencies for the low lying electronics states of Si{sub n} (n=2,3,4), C{sub 5} and their corresponding anions.

  8. Near Threshold Positron Impact Ionization of Hydrogen

    NASA Astrophysics Data System (ADS)

    Jansen, Krista; Ward, S. J.; Shertzer, J.; Macek, J. H.

    2007-06-01

    The hyperspherical hidden crossing method is used to calculate the ionization cross section for e^+-H near threshold. The Wannier ridge for positron impact ionization corresponds to a co-linear arrangement with the electron between the positron and proton and r-/r+=.4643. The adiabatic Hamiltonian for total angular momentum zero is expanded about the saddle point and the analytic adiabatic energies are used to obtain the threshold law for breakup: σ(E)E^2.64[-0.49√E ].^ Our results are consistent with the previous values of the Wannier exponent^1 and the second order correction terms to the threshold law^2,3. Using our numerical results for the transition probability in the interaction region, we calculated the absolute S-wave ionization cross section. ^1H. Klar, J. Phys. B 14, 4165 (1981). ^2W. Ihra et al., Phys. Rev. Lett. 78, 4027 (1997). ^3J. Sternberg et al., Bull. Am. Phys. Soc. 49, 52 (2004).

  9. Highly sensitive fluorescence resonance energy transfer (FRET)-based nanosensor for rapid detection of clenbuterol

    NASA Astrophysics Data System (ADS)

    Nghia Nguyen, Duc; Ngo, Trinh Tung; Liem Nguyen, Quang

    2012-09-01

    In this study we investigate the fabrication of a fluorescence resonance energy transfer (FRET)-based nanosensor for the detection of clenbuterol. The nanosensor consists of CdTe quantum dots coated by clenbuterol recognizable agent naphthol and diazotized clenbuterol. Changes in maximal photoluminescent intensities of the nanosensor were utilized to measure clenbuterol concentrations. The maximal photoluminescent intensities of the nanosensor were found to decrease with increasing clenbuterol concentrations, following a linear correlation. We have successfully fabricated a nanosensor for detection of clenbuterol with sensitivity up to 10 pg ml-1.

  10. Position sensitive gas proportional counter with good time resolution for low energy X-ray detection

    NASA Astrophysics Data System (ADS)

    Dangendorf, V.; Bethge, K.; Kelbch, C.; Kelbch, S.; Ullrich, J.; Schmidt-Bcking, H.

    1986-03-01

    A multiwire gas proportional counter for low energy X-ray detection (1-10 keV) with a one-dimensional position readout (backgammon type) has been developed especially to achieve good timing properties for application in multiparameter coincidence measurements. For a detection area of 1.5 2.5 cm 2 a position resolution of better than 0.2 mm and a time resolution of better than 8 ns has been obtained for 2.6 keV X-rays.

  11. The carbon-based structures synthesized through nuclear reactions in helium at 1.1 kbar pressure under irradiation with braking γ-rays of 10 MeV threshold energy

    NASA Astrophysics Data System (ADS)

    Didyk, A. Yu.; Wisniewski, R.; Wilczynska-Kitowska, T.

    2015-01-01

    A helium high-pressure chamber (HeHPC), made from beryllium bronze, filled with gaseous helium at an initial pressure of about 1.1 kbar was irradiated by braking γ-rays of 10 MeV threshold energy during 1.0×105 \\text{s} at an electron beam current 22\\text-24 μ \\text{A} . Before opening of the chamber, the residual pressure inside was equal to 430 bar. Synthesized foils of black colour and other multiple objects were found inside the HeHPC at the inner surfaces of the reaction chamber made of high-purity copper, at the entrance window for γ-rays of beryllium bronze, and at the copper collector of nuclear and chemical reaction products. The element analysis using scanning electron microscopy (SEM) and microprobe roentgen analysis (MPRA) allowed us to establish that the foils were predominantly made of carbon and smaller quantities of other elements from carbon to iron. The developed approach agrees well with a series of studies carried out by the authors where dense hydrogen and deuterium gases are acted on by γ-rays in the presence or absence of metals in the reaction chamber.

  12. Thresholds in chemical respiratory sensitisation.

    PubMed

    Cochrane, Stella A; Arts, Josje H E; Ehnes, Colin; Hindle, Stuart; Hollnagel, Heli M; Poole, Alan; Suto, Hidenori; Kimber, Ian

    2015-07-01

    There is a continuing interest in determining whether it is possible to identify thresholds for chemical allergy. Here allergic sensitisation of the respiratory tract by chemicals is considered in this context. This is an important occupational health problem, being associated with rhinitis and asthma, and in addition provides toxicologists and risk assessors with a number of challenges. In common with all forms of allergic disease chemical respiratory allergy develops in two phases. In the first (induction) phase exposure to a chemical allergen (by an appropriate route of exposure) causes immunological priming and sensitisation of the respiratory tract. The second (elicitation) phase is triggered if a sensitised subject is exposed subsequently to the same chemical allergen via inhalation. A secondary immune response will be provoked in the respiratory tract resulting in inflammation and the signs and symptoms of a respiratory hypersensitivity reaction. In this article attention has focused on the identification of threshold values during the acquisition of sensitisation. Current mechanistic understanding of allergy is such that it can be assumed that the development of sensitisation (and also the elicitation of an allergic reaction) is a threshold phenomenon; there will be levels of exposure below which sensitisation will not be acquired. That is, all immune responses, including allergic sensitisation, have threshold requirement for the availability of antigen/allergen, below which a response will fail to develop. The issue addressed here is whether there are methods available or clinical/epidemiological data that permit the identification of such thresholds. This document reviews briefly relevant human studies of occupational asthma, and experimental models that have been developed (or are being developed) for the identification and characterisation of chemical respiratory allergens. The main conclusion drawn is that although there is evidence that the acquisition of sensitisation to chemical respiratory allergens is a dose-related phenomenon, and that thresholds exist, it is frequently difficult to define accurate numerical values for threshold exposure levels. Nevertheless, based on occupational exposure data it may sometimes be possible to derive levels of exposure in the workplace, which are safe. An additional observation is the lack currently of suitable experimental methods for both routine hazard characterisation and the measurement of thresholds, and that such methods are still some way off. Given the current trajectory of toxicology, and the move towards the use of non-animal in vitro and/or in silico) methods, there is a need to consider the development of alternative approaches for the identification and characterisation of respiratory sensitisation hazards, and for risk assessment. PMID:25963507

  13. TU-F-18A-08: Effect of Quantum Detection Efficiency and Energy Bin Selection On Contrast-To-Noise-Ratio for Energy-Resolved Photon-Counting Detectors

    SciTech Connect

    Lam Ng, A; Ding, H; Cho, H; Molloi, S

    2014-06-15

    Purpose: Energy-resolved photon-counting detectors have the capability to discriminate photons according to their energies. By using optimal energy weighting factors, the contrast-to-noise-ratio (CNR) of the reconstructed image can be improved. In this work, we investigate how quantum detection efficiency (QDE) affects the determination of the optimal energy threshold bins, and therefore the CNR improvement of photon-counting detectors. Methods: In this simulation study a photon-counting detector, based on Silicon (Si), was investigated. A task-oriented algorithm was used to determine the optimal energy bin setting in order to maximize CNR. Projection-based and Image-based energy weighting techniques were implemented. A 13 mm PMMA phantom with two contrast materials, hydroxyapatite (HA) and iodine (I), at different concentrations (100, 200, and 300 mg/mL for HA and 2, 4, and 8 mg/mL for I) was used. TASMIP algorithm was used to generate the spectrum with 2.7 mm Al filter. Different tube voltages, number of energy bins, and bin widths were investigated. Different thicknesses of Si were also investigated to determine the QDE effect on CNR. Results: CNR increased as the detector material thickness increased until it reached 30 mm for Si thickness such that the CNR value was near to the value predicted by an ideal detector. Also, the results indicated that the improvement of CNR due to the QDE is task-dependent when comparing weighted images to photon-counting images. For hydroxyapatite the improvement is approximately 20%, whereas for iodine it is less than 10%. Conclusion: The results showed that the improvement of CNR for an energy-resolved photon-counting detector is highly task-dependent when QDE is taken into account.

  14. Lower and upper estimates on the excitation threshold for breathers in discrete nonlinear Schroedinger lattices

    SciTech Connect

    Cuevas, J.; Palmero, F.

    2009-11-15

    We propose analytical lower and upper estimates on the excitation threshold for breathers (in the form of spatially localized and time periodic solutions) in discrete nonlinear Schroedinger (DNLS) lattices with power nonlinearity. The estimation, depending explicitly on the lattice parameters, is derived by a combination of a comparison argument on appropriate lower bounds depending on the frequency of each solution with a simple and justified heuristic argument. The numerical studies verify that the analytical estimates can be of particular usefulness, as a simple analytical detection of the activation energy for breathers in DNLS lattices.

  15. Method, apparatus and system for low-energy beta particle detection

    DOEpatents

    Akers, Douglas W.; Drigert, Mark W.

    2012-09-25

    An apparatus, method, and system relating to radiation detection of low-energy beta particles are disclosed. An embodiment includes a radiation detector with a first scintillator and a second scintillator operably coupled to each other. The first scintillator and the second scintillator are each structured to generate a light pulse responsive to interaction with beta particles. The first scintillator is structured to experience full energy deposition of low-energy beta particles, and permit a higher-energy beta particle to pass therethrough and interact with the second scintillator. The radiation detector further includes a light-to-electrical converter operably coupled to the second scintillator and configured to convert light pulses generated by the first scintillator and the second scintillator into electrical signals. The first scintillator and the second scintillator have at least one mutually different characteristic to enable an electronic system to determine whether a given light pulse is generated in the first scintillator or the second scintillator.

  16. Learning saliency by MRF and differential threshold.

    PubMed

    Zhu, Guokang; Wang, Qi; Yuan, Yuan; Yan, Pingkun

    2013-12-01

    Saliency detection has been an attractive topic in recent years. The reliable detection of saliency can help a lot of useful processing without prior knowledge about the scene, such as content-aware image compression, segmentation, etc. Although many efforts have been spent in this subject, the feature expression and model construction are far from perfect. The obtained saliency maps are therefore not satisfying enough. In order to overcome these challenges, this paper presents a new psychologic visual feature based on differential threshold and applies it in a supervised Markov-random-field framework. Experiments on two public data sets and an image retargeting application demonstrate the effectiveness, robustness, and practicability of the proposed method. PMID:23757590

  17. High-Damage-Threshold Pinhole for Glass Fusion Laser Applications

    SciTech Connect

    Kumit, N.A.; Letzring, S.A.; Johnson, R.P.

    1998-06-07

    We are investigating methods to fabricate high-damage-threshold spatial-filter pinholes that might not be susceptible to plasma closure for relatively high energies and long pulses. These are based on the observation that grazing-incidence reflection from glass can withstand in excess of 5 kJ/cm{sup 2} (normal to the beam) without plasma formation. The high damage threshold results from both the cos q spreading of the energy across the surface and the reflection of a large fraction of the energy from the surface, thereby greatly reducing the field strength within the medium.

  18. Quark mass thresholds in QCD thermodynamics

    SciTech Connect

    Laine, Mikko; Schroeder, York

    2006-04-15

    We discuss radiative corrections to how quark mass thresholds are crossed, as a function of the temperature, in basic thermodynamic observables such as the pressure, the energy and entropy densities, and the heat capacity of high temperature QCD. The indication from leading order that the charm quark plays a visible role at surprisingly low temperatures, is confirmed. We also sketch a way to obtain phenomenological estimates relevant for generic expansion rate computations at temperatures between the QCD and electroweak scales, pointing out where improvements over the current knowledge are particularly welcome.

  19. Technology Thresholds for Microgravity: Status and Prospects

    NASA Technical Reports Server (NTRS)

    Noever, D. A.

    1996-01-01

    The technological and economic thresholds for microgravity space research are estimated in materials science and biotechnology. In the 1990s, the improvement of materials processing has been identified as a national scientific priority, particularly for stimulating entrepreneurship. The substantial US investment at stake in these critical technologies includes six broad categories: aerospace, transportation, health care, information, energy, and the environment. Microgravity space research addresses key technologies in each area. The viability of selected space-related industries is critically evaluated and a market share philosophy is developed, namely that incremental improvements in a large markets efficiency is a tangible reward from space-based research.

  20. Energy requirements for methods improving gas detection by modulating physical properties of resistive gas sensors

    NASA Astrophysics Data System (ADS)

    Trawka, M.; Kotarski, M.

    2016-01-01

    One of the most important disadvantage of resistive gas sensors is their limited gas selectivity. Therefore, various methods modulating their physical properties are used to improve gas detection. These methods are usually limited to temperature modulation or UV light irradiation for the layers exhibiting photocatalytic effect. These methods cause increased energy consumption. In our study we consider how much energy has to be supplied to utilize such methods and what kind of additional information can be gathered. We present experimental results of selected resistive gas sensors, including commercial and prototype constructions, and practical solutions of modulating their physical properties.