Science.gov

Sample records for energy efficiency process

  1. ENERGY EFFICIENT LAUNDRY PROCESS

    SciTech Connect

    Tim Richter

    2005-04-01

    With the rising cost of energy and increased concerns for pollution and greenhouse gas emissions from power generation, increased focus is being put on energy efficiency. This study looks at several approaches to reducing energy consumption in clothes care appliances by considering the appliances and laundry chemistry as a system, rather than individually.

  2. Energy efficient perlite expansion process

    SciTech Connect

    Jenkins, K.L.

    1982-08-31

    A thermally efficient process for the expansion of perlite ore is described. The inlet port and burner of a perlite expansion chamber (Preferably a vertical expander) are enclosed such that no ambient air can enter the chamber. Air and fuel are metered to the burner with the amount of air being controlled such that the fuel/air premix contains at least enough air to start and maintain minimum combustion, but not enough to provide stoichiometric combustion. At a point immediately above the burner, additional air is metered into an insulated enclosure surrounding the expansion chamber where it is preheated by the heat passing through the chamber walls. This preheated additional air is then circulated back to the burner where it provides the remainder of the air needed for combustion, normally full combustion. Flow of the burner fuel/air premix and the preheated additional air is controlled so as to maintain a long luminous flame throughout a substantial portion of the expansion chamber and also to form a moving laminar layer of air on the inner surface of the expansion chamber. Preferably the burner is a delayed mixing gas burner which materially aids in the generation of the long luminous flame. The long luminous flame and the laminar layer of air at the chamber wall eliminate hot spots in the expansion chamber, result in relatively low and uniform temperature gradients across the chamber, significantly reduce the amount of fuel consumed per unit of perlite expanded, increase the yield of expanded perlite and prevent the formation of a layer of perlite sinter on the walls of the chamber.

  3. Monitoring agricultural processing electrical energy use and efficiency

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Energy costs have become proportionately larger as cotton post-harvest processing facilities have utilized other inputs more efficiently. A discrepancy in energy consumption per unit processed between facilities suggests that energy could be utilized more efficiently. Cotton gin facilities were in...

  4. Refractories for Industrial Processing. Opportunities for Improved Energy Efficiency

    SciTech Connect

    Hemrick, James G.; Hayden, H. Wayne; Angelini, Peter; Moore, Robert E.; Headrick, William L.

    2005-01-01

    Refractories are a class of materials of critical importance to manufacturing industries with high-temperature unit processes. This study describes industrial refractory applications and identifies refractory performance barriers to energy efficiency for processing. The report provides recommendations for R&D pathways leading to improved refractories for energy-efficient manufacturing and processing.

  5. Energy and Resource Efficiency of Laser Cutting Processes

    NASA Astrophysics Data System (ADS)

    Kellens, Karel; Rodrigues, Goncalo Costa; Dewulf, Wim; Duflou, Joost R.

    Due to increasing energy and resource costs at the one hand and upcoming regulations on energy and resource efficiency at the other, a growing interest of machine tool builders in the environmental performance of their machine tools can be observed today. The last decade, academic as well as industrial research groups started to assess the environmental aspects of discrete part manufacturing processes and indicated a significant potential for improvement [1]. This paper provides an overview of the environmental performance (energy and resource efficiency) of different types of laser cutting systems and derived performance improving strategies.

  6. Energy efficiency analysis carried out for Petrosix process

    SciTech Connect

    Not Available

    1986-09-01

    In the production of shale oil, the effective use of energy is critically important for the viability of the process. The design of the Petrosix process developed by Petroleo Brasileiro S.A. reflects such a preoccupation with energy efficiency. A semi-industrial plant for the production of shale oil is being operated successfully by Petrobras in Sao Mateus do Sul in south central Brazil. An industrial module with a scale-up factor of 4 is under construction. The plant, due on stream in 1988, will produce 2650 barrels per day of shale oil and 50 metric tons per day sulfur. Future plants will be a multiplication of such modules. A thermodynamic energy analysis of the retorting section of the industrial module was carried out by Petrobras in order to identify critical points where the thermodynamic efficiencies can be improved. A mass and energy balance of the plant was made using mainly the process design data. The energy availability functions of different streams were evaluated and a lost work analysis was done for different units of the retorting section. Results of this analysis are summarized.

  7. DESIGNING ENVIRONMENTAL, ECONOMIC AND ENERGY EFFICIENT CHEMICAL PROCESSES

    EPA Science Inventory

    The design and improvement of chemical processes can be very challenging. The earlier energy conservation, process economics and environmental aspects are incorporated into the process development, the easier and less expensive it is to alter the process design. Process emissio...

  8. Efficiency evaluation of oxygen enrichment in energy conversion processes

    SciTech Connect

    Bomelburg, H.J.

    1983-12-01

    The extent to which energy conversion efficiencies can be increased by using oxygen or oxygen-enriched air for combustion was studied. Combustion of most fuels with oxygen instead of air was found to have five advantages: increases combustion temperature and efficiency, improves heat transfer at high temperatures, reduces nitrous oxide emissions, permits a high ration of exhaust gas recirculation and allows combustion of certain materials not combustible in air. The same advantages, although to a lesser degree, are apparent with oxygen-enriched air. The cost-effectiveness of the process must necessarily be improved by about 10% when using oxygen instead of air before such use could become justifiable on purely economic terms. Although such a modest increase appears to be attainable in real situations, this study ascertained that it is not possible to generally assess the economic gains. Rather, each case requires its own evaluation. For certain processes industry has already proven that the use of oxygen leads to more efficient plant operation. Several ideas for essentially new applications are described. Specifically, when oxygen is used with exhaust gas recirculation in external or internal combustion engines. It appears also that the advantages of pulse combustion can be amplified further if oxygen is used. When burning wet fuels with oxygen, direct steam generation becomes possible. Oxygen combustion could also improve processes for in situ gasification of coals, oil shales, peats, and other wet fuels. Enhanced oil recovery by fire flooding methods might also become more effective if oxygen is used. The cold energy contained in liquid oxygen can be substantially recovered in the low end of certain thermodynamic cycles. Further efforts to develop certain schemes for using oxygen for combustion appear to be justified from both the technical and economic viewpoints.

  9. Linking Transformational Materials and Processing for an Energy-Efficient and Low-Carbon Economy, 2010

    SciTech Connect

    Hunt, Warren H.; Brindle, Ross; James, Mallory; Justiniano, Mauricio; Sabouni, Ridah; Seader, Melanie; Ruch, Jennifer; Andres, Howard; Zafar, Muhammad

    2010-06-01

    The Energy Materials Blue Ribbon Panel, representing experts from industry, academia, and government, identifies new materials and processing breakthroughs that could lead to transformational advances in energy efficiency, energy security, and carbon reduction.

  10. Process energy efficiency improvement in Wisconsin cheese plants

    SciTech Connect

    Zehr, S.; Mitchell, J.; Reinemann, D.; Klein, S.; Reindl, D.

    1997-07-01

    Costs for the energy involved in cheese making has a major impact on profit. Although industrial cheese plants differ in size, production equipment, and the manner in which whey is processed, there are common elements in most plants. This paper evaluates several process integration opportunities at two representative cheese plants in Wisconsin. Pinch analysis is used to help assess the heat recovery potential for the major thermal processes in the plants. The potential of using packaged cheese as a thermal storage medium to allow electrical demand shifting in the cold storage warehouse is evaluated and shown to be feasible. Three major conservation measures are identified with a total cost savings of $130,000 to $160,000 annually.

  11. Improving Biofuels Recovery Processes for Energy Efficiency and Sustainability

    EPA Science Inventory

    Biofuels are made from living or recently living organisms. For example, ethanol can be made from fermented plant materials. Biofuels have a number of important benefits when compared to fossil fuels. Biofuels are produced from renewable energy sources such as agricultural resou...

  12. Energy-efficient regenerative liquid desiccant drying process

    DOEpatents

    Ko, Suk M.; Grodzka, Philomena G.; McCormick, Paul O.

    1980-01-01

    This invention relates to the use of desiccants in conjunction with an open oop drying cycle and a closed loop drying cycle to reclaim the energy expended in vaporizing moisture in harvested crops. In the closed loop cycle, the drying air is brought into contact with a desiccant after it exits the crop drying bin. Water vapor in the moist air is absorbed by the desiccant, thus reducing the relative humidity of the air. The air is then heated by the used desiccant and returned to the crop bin. During the open loop drying cycle the used desiccant is heated (either fossil or solar energy heat sources may be used) and regenerated at high temperature, driving water vapor from the desiccant. This water vapor is condensed and used to preheat the dilute (wet) desiccant before heat is added from the external source (fossil or solar). The latent heat of vaporization of the moisture removed from the desiccant is reclaimed in this manner. The sensible heat of the regenerated desiccant is utilized in the open loop drying cycle. Also, closed cycle operation implies that no net energy is expended in heating drying air.

  13. Microwave and Beam Activation of Nanostructured Catalysts for Environmentally Friendly, Energy Efficient Heavy Crude Oil Processing

    SciTech Connect

    2009-03-01

    This factsheet describes a study whose goal is initial evaluation and development of energy efficient processes which take advantage of the benefits offered by nanostructured catalysts which can be activated by microwave, RF, or radiation beams.

  14. Energy Efficiency of Distributed Signal Processing in Wireless Networks: A Cross-Layer Analysis

    NASA Astrophysics Data System (ADS)

    Geraci, Giovanni; Wildemeersch, Matthias; Quek, Tony Q. S.

    2016-02-01

    In order to meet the growing mobile data demand, future wireless networks will be equipped with a multitude of access points (APs). Besides the important implications for the energy consumption, the trend towards densification requires the development of decentralized and sustainable radio resource management techniques. It is critically important to understand how the distribution of signal processing operations affects the energy efficiency of wireless networks. In this paper, we provide a cross-layer framework to evaluate and compare the energy efficiency of wireless networks under different levels of distribution of the signal processing load: (i) hybrid, where the signal processing operations are shared between nodes and APs, (ii) centralized, where signal processing is entirely implemented at the APs, and (iii) fully distributed, where all operations are performed by the nodes. We find that in practical wireless networks, hybrid signal processing exhibits a significant energy efficiency gain over both centralized and fully distributed approaches.

  15. Optimal Size for Maximal Energy Efficiency in Information Processing of Biological Systems Due to Bistability

    NASA Astrophysics Data System (ADS)

    Zhang, Chi; Liu, Li-Wei; Wang, Long-Fei; Yue, Yuan; Yu, Lian-Chun

    2015-11-01

    Energy efficiency is closely related to the evolution of biological systems and is important to their information processing. In this paper, we calculated the excitation probability of a simple model of a bistable biological unit in response to pulsatile inputs, and its spontaneous excitation rate due to noise perturbation. Then we analytically calculated the mutual information, energy cost, and energy efficiency of an array of these bistable units. We found that the optimal number of units could maximize this array's energy efficiency in encoding pulse inputs, which depends on the fixed energy cost. We conclude that demand for energy efficiency in biological systems may strongly influence the size of these systems under the pressure of natural selection.

  16. Efficient Use of Energy

    ERIC Educational Resources Information Center

    Physics Today, 1975

    1975-01-01

    Explains efficiency in terms of thermodynamics, and states specific ways in which energy efficiency can be increased in the following areas: automobiles, industrial processes, and indoor use in the home. (MLH)

  17. Enhancement of the efficiency of dye lasers using electron energy transfer processes

    NASA Astrophysics Data System (ADS)

    Levin, M. B.; Uzhinov, B. M.

    1990-04-01

    Various types of electron energy transfer processes are considered, which are associated with the introduction of energy donors (Dn) and triplet quenchers (TQ) into the acceptor dye solutions with the use of luminescent light filters (LLF) in the pumping system. Mixed solutions are proposed which make it possible to increase the efficiency of the coumarine 314 dye laser by a factor of 1.8. In lasers using unsubstituted and B rhodamines, the simultaneous action of Dn, TQ, and LLF leads, in the optimal cases, to a three-to-ten-fold increase in the efficiency, making the efficiency of these dyes close to that of rhodamine 6G.

  18. Anaerobic digestion of post-hydrothermal liquefaction wastewater for improved energy efficiency of hydrothermal bioenergy processes.

    PubMed

    Zhou, Yan; Schideman, Lance; Zheng, Mingxia; Martin-Ryals, Ana; Li, Peng; Tommaso, Giovana; Zhang, Yuanhui

    2015-01-01

    Hydrothermal liquefaction (HTL) is a promising process for converting wet biomass and organic wastes into bio-crude oil. It also produces an aqueous product referred to as post-hydrothermal liquefaction wastewater (PHWW) containing up to 40% of the original feedstock carbon, which reduces the overall energy efficiency of the HTL process. This study investigated the feasibility of using anaerobic digestion (AD) to treat PHWW, with the aid of activated carbon. Results showed that successful AD occurred at relatively low concentrations of PHWW (≤ 6.7%), producing a biogas yield of 0.5 ml/mg CODremoved, and ∼53% energy recovery efficiency. Higher concentrations of PHWW (≥13.3%) had an inhibitory effect on the AD process, as indicated by delayed, slower, or no biogas production. Activated carbon was shown to effectively mitigate this inhibitory effect by enhancing biogas production and allowing digestion to proceed at higher PHWW concentrations (up to 33.3%), likely due to sequestering toxic organic compounds. The addition of activated carbon also increased the net energy recovery efficiency of AD with a relatively high concentration of PHWW (33.3%), taking into account the energy for producing activated carbon. These results suggest that AD is a feasible approach to treat PHWW, and to improve the energy efficiency of the HTL processes. PMID:26676001

  19. On the enhancement of the efficiency of the energy complexes of crude hydrocarbon processing plants

    NASA Astrophysics Data System (ADS)

    Dolotovskij, I. V.; Larin, E. A.; Dolotovskaja, N. V.

    2015-07-01

    A method for circuit-parametric analysis of the efficiency of the heat-and-power system of the energy complexes at gas and natural-gas condensate processing plants is proposed. An energy complex of an alternative structure with an independent source of thermal and electric energy integrated into the production line has been developed. The energy carriers are produced accompanied by recovery of the secondary energy resources, waste, and effluents. Using the developed information-analytical software, multicriterion assessment of the efficiency of the alternative energy complexes and its systems based on independent energy sources of the combined-cycle cogeneration plant type has been performed for the gas processing plant in Astrakhan and the most effective equipment composition variant has been determined. The effect of the basic technical and economic factors on the economic efficiency has been established. The investments in construction of the power- and water-supply system within the plant's energy complex pay off in 8-9 years.

  20. Low Cost Chemical Feedstocks Using an Improved and Energy Efficient Natural Gas Liquid Removal Process

    SciTech Connect

    2004-07-01

    This factsheet describes a research project whose goal is to develop a new low-cost and energy efficient NGL recovery process - through a combination of theoretical, bench-scale, and pilot-scale testing - so that it can be offered to the natural gas industry for commercialization.

  1. Improved Energy and Processing Efficiencies of Strawberry Drying Using Sequential Infrared Freeze-Drying Method

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Strawberries are rich in nutrients but highly perishable. Freeze-drying is an excellent dehydration method for strawberry preservation. However, freeze-drying is an expensive dehydration process due to slow drying rates, high capital operating costs and low energy efficiency. Strawberry slice wei...

  2. Metal and Glass Manufactures Reduce Costs by Increasing Energy Efficiency in Process Heating Systems

    SciTech Connect

    2004-05-01

    Process heating plays a key role in producing steel, aluminum, and glass and in manufacturing products made from these materials. Faced with regulatory and competitive pressures to control emissions and reduce operating costs, metal and glass manufacturers are considering a variety of options for reducing overall energy consumption. As 38% of the energy used in U.S. industrial plants is consumed for process heating applications, metal and glass manufacturers are discovering that process heating technologies provide significant opportunities for improving industrial productivity, energy efficiency, and global competitiveness. This fact sheet is the first in a series to describe such opportunities that can be realized in industrial systems by conducting plant-wide assessments (PWA).

  3. A method to determine stratification efficiency of thermal energy storage processes independently from storage heat losses

    SciTech Connect

    Haller, Michel Y.; Streicher, Wolfgang; Bales, Chris

    2010-06-15

    A new method for the calculation of a stratification efficiency of thermal energy storages based on the second law of thermodynamics is presented. The biasing influence of heat losses is studied theoretically and experimentally. Theoretically, it does not make a difference if the stratification efficiency is calculated based on entropy balances or based on exergy balances. In practice, however, exergy balances are less affected by measurement uncertainties, whereas entropy balances can not be recommended if measurement uncertainties are not corrected in a way that the energy balance of the storage process is in agreement with the first law of thermodynamics. A comparison of the stratification efficiencies obtained from experimental results of charging, standby, and discharging processes gives meaningful insights into the different mixing behaviors of a storage tank that is charged and discharged directly, and a tank-in-tank system whose outer tank is charged and the inner tank is discharged thereafter. The new method has a great potential for the comparison of the stratification efficiencies of thermal energy storages and storage components such as stratifying devices. (author)

  4. Manufacture of Mould with a High Energy Efficiency Using Rapid Manufacturing Process

    NASA Astrophysics Data System (ADS)

    Ahn, Dong-Gyu; Kim, Hyun-Woo; Park, Seung-Hwa; Kim, Hyong-Soo

    2010-06-01

    The aim of this paper is to investigate into the manufacturing technology of injection mould with a high energy efficiency using rapid manufacturing (RM) process. Two types of injection moulds, including thermally conductive mould with volumetric heat sink and uniform cooling mould with conformal cooling channels, were manufactured from hybrid RM process combining direct metal rapid tooling process with machining process to reduce the cooling time and the used energy in moulding of the plastic parts as well as to improve the product quality. Through the injection moulding experiments using the manufactured moulds, it was shown that the designed moulds can highly reduce the cycle and cooling times in comparison to conventional moulds with only injection tool steel and linear cooling channels. In addition, it was noted that the designed moulds can improve the qualities of the moulded product induced by uniform heat transfer from the mould surface to cooling channels. From these results, it was considered that the two types of injection mould can remarkably improve the energy efficiency and the environmental impact of the injection moulding process.

  5. Full report: Assessment and opportunity identification of energy efficient pollution prevention technologies and processes

    SciTech Connect

    Not Available

    1994-11-01

    US industry produces about 12 billion tons of waste a year, or two-thirds of the waste generated in the US. The costs of handling and disposing of these wastes are significant, estimated to be between $25 and $43 billion in 1991, and represent an increase of 66% since 1986. US industry also uses about one-third of all energy consumed in the nation, which adds to the environmental burden. Industrial wastes affect the environmental well-being of the nation and, because of their growing costs, the competitive abilities of US industry. As part of a national effort to reduce industrial wastes, the US Congress passed the Energy Policy Act (EPAct, P.L. 102-486). Section 2108, subsections (b) and (c), of EPAct requires the Department of Energy (DOE) to identify opportunities to demonstrate energy efficient pollution prevention technologies and processes; to assess their availability and the energy, environmental, and cost effects of such technologies; and to report the results. Work for this report clearly pointed to two things, that there is insufficient data on wastes and that there is great breadth and diversity in the US industrial sector. This report identifies: information currently available on industrial sector waste streams, opportunities for demonstration of energy efficient pollution prevention technologies in two industries that produce significant amounts of waste--chemicals and petroleum, characteristics of waste reducing and energy saving technologies identifiable in the public literature, and potential barriers to adoption of waste reducing technologies by industry.

  6. A new strategy for efficient solar energy conversion: Parallel-processing with surface plasmons

    NASA Technical Reports Server (NTRS)

    Anderson, L. M.

    1982-01-01

    This paper introduces an advanced concept for direct conversion of sunlight to electricity, which aims at high efficiency by tailoring the conversion process to separate energy bands within the broad solar spectrum. The objective is to obtain a high level of spectrum-splitting without sequential losses or unique materials for each frequency band. In this concept, sunlight excites a spectrum of surface plasma waves which are processed in parallel on the same metal film. The surface plasmons transport energy to an array of metal-barrier-semiconductor diodes, where energy is extracted by inelastic tunneling. Diodes are tuned to different frequency bands by selecting the operating voltage and geometry, but all diodes share the same materials.

  7. Energy-efficient biomass processing with pulsed electric fields for bioeconomy and sustainable development.

    PubMed

    Golberg, Alexander; Sack, Martin; Teissie, Justin; Pataro, Gianpiero; Pliquett, Uwe; Saulis, Gintautas; Stefan, Töpfl; Miklavcic, Damijan; Vorobiev, Eugene; Frey, Wolfgang

    2016-01-01

    Fossil resources-free sustainable development can be achieved through a transition to bioeconomy, an economy based on sustainable biomass-derived food, feed, chemicals, materials, and fuels. However, the transition to bioeconomy requires development of new energy-efficient technologies and processes to manipulate biomass feed stocks and their conversion into useful products, a collective term for which is biorefinery. One of the technological platforms that will enable various pathways of biomass conversion is based on pulsed electric fields applications (PEF). Energy efficiency of PEF treatment is achieved by specific increase of cell membrane permeability, a phenomenon known as membrane electroporation. Here, we review the opportunities that PEF and electroporation provide for the development of sustainable biorefineries. We describe the use of PEF treatment in biomass engineering, drying, deconstruction, extraction of phytochemicals, improvement of fermentations, and biogas production. These applications show the potential of PEF and consequent membrane electroporation to enable the bioeconomy and sustainable development. PMID:27127539

  8. New Design Methods And Algorithms For High Energy-Efficient And Low-cost Distillation Processes

    SciTech Connect

    Agrawal, Rakesh

    2013-11-21

    This project sought and successfully answered two big challenges facing the creation of low-energy, cost-effective, zeotropic multi-component distillation processes: first, identification of an efficient search space that includes all the useful distillation configurations and no undesired configurations; second, development of an algorithm to search the space efficiently and generate an array of low-energy options for industrial multi-component mixtures. Such mixtures are found in large-scale chemical and petroleum plants. Commercialization of our results was addressed by building a user interface allowing practical application of our methods for industrial problems by anyone with basic knowledge of distillation for a given problem. We also provided our algorithm to a major U.S. Chemical Company for use by the practitioners. The successful execution of this program has provided methods and algorithms at the disposal of process engineers to readily generate low-energy solutions for a large class of multicomponent distillation problems in a typical chemical and petrochemical plant. In a petrochemical complex, the distillation trains within crude oil processing, hydrotreating units containing alkylation, isomerization, reformer, LPG (liquefied petroleum gas) and NGL (natural gas liquids) processing units can benefit from our results. Effluents from naphtha crackers and ethane-propane crackers typically contain mixtures of methane, ethylene, ethane, propylene, propane, butane and heavier hydrocarbons. We have shown that our systematic search method with a more complete search space, along with the optimization algorithm, has a potential to yield low-energy distillation configurations for all such applications with energy savings up to 50%.

  9. Energy Efficiency Improvement and Cost Saving Opportunities for the Fruit and Vegetable Processing Industry. An ENERGY STAR Guide for Energy and Plant Managers

    SciTech Connect

    Masanet, Eric; Masanet, Eric; Worrell, Ernst; Graus, Wina; Galitsky, Christina

    2008-01-01

    The U.S. fruit and vegetable processing industry--defined in this Energy Guide as facilities engaged in the canning, freezing, and drying or dehydrating of fruits and vegetables--consumes over $800 million worth of purchased fuels and electricity per year. Energy efficiency improvement isan important way to reduce these costs and to increase predictable earnings, especially in times of high energy price volatility. There are a variety of opportunities available at individual plants in the U.S. fruit and vegetable processing industry to reduce energy consumption in a cost-effective manner. This Energy Guide discusses energy efficiency practices and energy-efficient technologies that can be implemented at the component, process, facility, and organizational levels. A discussion of the trends, structure, and energy consumption characteristics of the U.S. fruit and vegetable processing industry is provided along with a description of the major process technologies used within the industry. Next, a wide variety of energy efficiency measures applicable to fruit and vegetable processing plants are described. Many measure descriptions include expected savings in energy and energy-related costs, based on case study data from real-world applications in fruit and vegetable processing facilities and related industries worldwide. Typical measure payback periods and references to further information in the technical literature are also provided, when available. Given the importance of water in fruit and vegetable processing, a summary of basic, proven measures for improving plant-level water efficiency are also provided. The information in this Energy Guide is intended to help energy and plant managers in the U.S. fruit and vegetable processing industry reduce energy and water consumption in a cost-effective manner while maintaining the quality of products manufactured. Further research on the economics of all measures--as well as on their applicability to different production

  10. Stimulating utilities to promote energy efficiency: Process evaluation of Madison Gas and Electric's Competition Pilot Program

    SciTech Connect

    Vine, E.; De Buen, O.; Goldfman, C.

    1990-12-01

    This report describes the process evaluation of the design and implementation of the Energy Conservation Competition Pilot (hereafter referred to as the Competition), ordered by the Public Service Commission of Wisconsin (PSCW) with a conceptual framework defined by PSCW staff for the Madison Gas and Electric (MGE) Company. This process evaluation documents the history of the Competition, describing the marketing strategies adopted by MGE and its competitors, customer service and satisfaction, administrative issues, the distribution of installed measures, free riders, and the impact of the Competition on MGE, its competitors, and other Wisconsin utilities. We also suggest recommendations for a future Competition, compare the Competition with other approaches that public utility commissions (PUCs) have used to motivate utilities to promote energy efficiency, and discuss its transferability to other utilities. 48 refs., 8 figs., 40 tabs.

  11. Method and apparatus for energy efficient self-aeration in chemical, biochemical, and wastewater treatment processes

    DOEpatents

    Gao, Johnway [Richland, WA; Skeen, Rodney S [Pendleton, OR

    2002-05-28

    The present invention is a pulse spilling self-aerator (PSSA) that has the potential to greatly lower the installation, operation, and maintenance cost associated with aerating and mixing aqueous solutions. Currently, large quantities of low-pressure air are required in aeration systems to support many biochemical production processes and wastewater treatment plants. Oxygen is traditionally supplied and mixed by a compressor or blower and a mechanical agitator. These systems have high-energy requirements and high installation and maintenance costs. The PSSA provides a mixing and aeration capability that can increase operational efficiency and reduce overall cost.

  12. Penrose photoproduction processes - A high efficiency energy mechanism for active galactic nuclei and quasars

    NASA Technical Reports Server (NTRS)

    Leiter, D.; Kafatos, M.

    1979-01-01

    Recent observations of NGC 4151 and 3C273 suggest that the nuclei of active galaxies have very high gamma ray efficiencies. In addition, optical studies of M87 have indicated the possibility of a massive black hole in its central region. The above facts have led to study of a new physical mechanism, Penrose Photoproduction Processes, in the ergospheres of massive Kerr black holes, as a way to account for the fluctuating, high efficiency, energy production associated with active galaxies and quasars. Observational signatures, associated with this mechanism, occur in the form of approximately 2 MeV and approximately 2 GeV gamma ray cutoffs which might be corroborated by the observed spectra of NGC 4151 and 3C273, respectively.

  13. Boost Process Heating Efficiency - PHAST

    SciTech Connect

    2005-05-01

    Use the Process Heating Assessment and Survey Tool (PHAST) to survey all process heating equipment within a facility, select the equipment that uses the most energy, and identify ways to increase efficiency.

  14. Integration options for high energy efficiency and improved economics in a wood-to-ethanol process

    PubMed Central

    Sassner, Per; Zacchi, Guido

    2008-01-01

    Background There is currently a steady increase in the use of wood-based fuels for heat and power production in Sweden. A major proportion of these fuels could serve as feedstock for ethanol production. In this study various options for the utilization of the solid residue formed during ethanol production from spruce, such as the production of pellets, electricity and heat for district heating, were compared in terms of overall energy efficiency and production cost. The effects of changes in the process performance, such as variations in the ethanol yield and/or the energy demand, were also studied. The process was based on SO2-catalysed steam pretreatment, which was followed by simultaneous saccharification and fermentation. A model including all the major process steps was implemented in the commercial flow-sheeting program Aspen Plus, the model input was based on data recently obtained on lab scale or in a process development unit. Results For the five base case scenarios presented in the paper the overall energy efficiency ranged from 53 to 92%, based on the lower heating values, and a minimum ethanol selling price from 3.87 to 4.73 Swedish kronor per litre (0.41–0.50 EUR/L); however, ethanol production was performed in essentially the same way in each base case scenario. (Highly realistic) improvements in the ethanol yield and reductions in the energy demand resulted in significantly lower production costs for all scenarios. Conclusion Although ethanol was shown to be the main product, i.e. yielding the major part of the income, the co-product revenue had a considerable effect on the process economics and the importance of good utilization of the entire feedstock was clearly shown. With the assumed prices of the co-products, utilization of the excess solid residue for heat and power production was highly economically favourable. The study also showed that improvements in the ethanol yield and reductions in the energy demand resulted in significant production

  15. Developing an energy efficient steam reforming process to produce hydrogen from sulfur-containing fuels

    NASA Astrophysics Data System (ADS)

    Simson, Amanda

    Hydrogen powered fuel cells have the potential to produce electricity with higher efficiency and lower emissions than conventional combustion technology. In order to realize the benefits of a hydrogen fuel cell an efficient method to produce hydrogen is needed. Currently, over 90% of hydrogen is produced from the steam reforming of natural gas. However, for many applications including fuel cell vehicles, the use of a liquid fuel rather than natural gas is desirable. This work investigates the feasibility of producing hydrogen efficiently by steam reforming E85 (85% ethanol/15% gasoline), a commercially available sulfur-containing transportation fuel. A Rh-Pt/SiO2-ZrO2 catalyst has demonstrated good activity for the E85 steam reforming reaction. An industrial steam reforming process is often run less efficiently, with more water and at higher temperatures, in order to prevent catalyst deactivation. Therefore, it is desirable to develop a process that can operate without catalyst deactivation at more energy efficient conditions. In this study, the steam reforming of a sulfur-containing fuel (E85) was studied at near stoichiometric steam/carbon ratios and at 650C, conditions at which catalyst deactivation is normally measured. At these conditions the catalyst was found to be stable steam reforming a sulfur-free E85. However, the addition of low concentrations of sulfur significantly deactivated the catalyst. The presence of sulfur in the fuel caused catalyst deactivation by promoting ethylene which generates surface carbon species (coke) that mask catalytic sites. The amount of coke increased during time on stream and became increasingly graphitic. However, the deactivation due to both sulfur adsorption and coke formation was reversible with air treatment at 650°C. However, regenerations were found to reduce the catalyst life. Air regenerations produce exotherms on the catalyst surface that cause structural changes to the catalyst. During regenerations the

  16. Membrane-assisted vapor stripping: energy efficient hybrid distillation-vapor permeation process for alcohol-water separation

    EPA Science Inventory

    BACKGROUND: Energy efficient alternatives to distillation for alcohol recovery from dilute solution are needed to improve biofuel sustainability. A process integrating steam stripping with a vapor compression step and a vapor permeation membrane separation step is proposed. The...

  17. Energy Efficiency Project Development

    SciTech Connect

    IUEP

    2004-03-01

    The International Utility Efficiency Partnerships, Inc. (IUEP) has been a leader among the industry groups that have supported voluntary initiatives to promote international energy efficiency projects and address global climate change. The IUEP maintains its leadership by both supporting international greenhouse gas (GHG) reduction projects under the auspices of the U.S. Department of Energy (DOE) and by partnering with U.S. and international organizations to develop and implement strategies and specific energy efficiency projects. The goals of the IUEP program are to (1) provide a way for U.S. industry to maintain a leadership role in international energy efficiency infrastructure projects; (2) identify international energy project development opportunities to continue its leadership in supporting voluntary market-based mechanisms to reduce GHG emissions; and (3) demonstrate private sector commitment to voluntary approaches to global climate issues. The IUEP is dedicated to identifying, promoting, managing, and assisting in the registration of international energy efficiency projects that result in demonstrated voluntary reductions of GHG emissions. This Final Technical Report summarizes the IUEP's work in identifying, promoting, managing, and assisting in development of these projects and IUEP's effort in creating international cooperative partnerships to support project development activities that develop and deploy technologies that (1) increase efficiency in the production, delivery and use of energy; (2) increase the use of cleaner, low-carbon fuels in processing products; and (3) capture/sequester carbon gases from energy systems. Through international cooperative efforts, the IUEP intends to strengthen partnerships for energy technology innovation and demonstration projects capable of providing cleaner energy in a cost-effective manner. As detailed in this report, the IUEP met program objectives and goals during the reporting period January 1, 2001 through

  18. Energy Efficient Hybrid Vapor Stripping-Vapor Permeation Process for Ethanol Recovery ad Dehydration

    EPA Science Inventory

    Distillation combined with molecular sieve dehydration is the current state of the art for fuel grade ethanol production from fermentation broths. To improve the sustainability of bioethanol production, energy efficient separation alternatives are needed, particularly for lower f...

  19. EVALUATING THE ENVIRONMENTAL FRIENDLINESS, ECONOMICS, AND ENERGY EFFICIENCY OF CHEMICAL PROCESSES: HEAT INTEGRATION

    EPA Science Inventory

    The design and improvement of chemical processes can be very challenging. The earlier energy conservation, process economics and environmental aspects are incorporated into the process development, the easier and less expensive it is to alter the process design. In this work diff...

  20. Energy Efficient Microwave Hybrid Processing of Lime for Cement, Steel, and Glass Industries

    SciTech Connect

    Fall, Morgana L; Yakovlev, Vadim; Sahi, Catherine; Baranova, Inessa; Bowers, Johnney G; Esquenazi , Gibran L

    2012-02-10

    In this study, the microwave materials interactions were studied through dielectric property measurements, process modeling, and lab scale microwave hybrid calcination tests. Characterization and analysis were performed to evaluate material reactions and energy usage. Processing parameters for laboratory scale and larger scale calcining experiments were developed for MAT limestone calcination. Early stage equipment design concepts were developed, with a focus on microwave post heating treatment. The retrofitting of existing rotary calcine equipment in the lime industry was assessed and found to be feasible. Ceralink sought to address some of the major barriers to the uptake of MAT identified as the need for (1) team approach with end users, technology partners, and equipment manufacturers, (2) modeling that incorporates kiln materials and variations to the design of industrial microwave equipment. This project has furthered the commercialization effort of MAT by working closely with an industrial lime manufacturer to educate them regarding MAT, identifying equipment manufacturer to supply microwave equipment, and developing a sophisticated MAT modeling with WPI, the university partner. MAT was shown to enhance calcining through lower energy consumption and faster reaction rates compared to conventional processing. Laboratory testing concluded that a 23% reduction in energy was possible for calcining small batches (5kg). Scale-up testing indicated that the energy savings increased as a function of load size and 36% energy savings was demonstrated (22 kg). A sophisticated model was developed which combines simultaneous microwave and conventional heating. Continued development of this modeling software could be used for larger scale calcining simulations, which would be a beneficial low-cost tool for exploring equipment design prior to actual building. Based on these findings, estimates for production scale MAT calcining benefits were calculated, assuming uptake of

  1. Showcase Energy Efficiency, Cost Savings, and Process Improvements in Your Plant

    SciTech Connect

    2000-11-01

    Hosting a Showcase Demonstration Event describes how industrial manufacturers can showcase energy efficiency technologies that they have implemented in their plants. Companies can gain access to a wide variety of technical assistance and resources when they agree to host a showcase demonstration and this fact sheet explains how to participate.

  2. Air transportation energy efficiency

    NASA Technical Reports Server (NTRS)

    Williams, L. J.

    1977-01-01

    The energy efficiency of air transportation, results of the recently completed RECAT studies on improvement alternatives, and the NASA Aircraft Energy Efficiency Research Program to develop the technology for significant improvements in future aircraft were reviewed.

  3. Experimental Validation of Hybrid Distillation-Vapor Permeation Process for Energy Efficient Ethanol-Water Separation

    EPA Science Inventory

    The energy demand of distillation-based systems for ethanol recovery and dehydration can be significant, particularly for dilute solutions. An alternative separation process integrating vapor stripping with a vapor compression step and a vapor permeation membrane separation step...

  4. Experimental Validation of Hybrid Distillation-Vapor Permeation Process for Energy Efficient Ethanol-Water Separation

    EPA Science Inventory

    The energy demand of distillation-based systems for ethanol recovery and dehydration can be significant, particularly for dilute solutions. An alternative separation process integrating vapor stripping with a vapor compression step and a vapor permeation membrane separation step,...

  5. Visual documentation process of historic building refurbishment "Improving energy efficiency by insulating wall cavity"

    NASA Astrophysics Data System (ADS)

    Bennadji, A.

    2013-07-01

    The North East of Scotland's construction method is similar to most popular building typologies in the UK. This typology can vary in term of external material (Granite, brick or stone) but with a secondary, usually timber sub frame with a lining on its interior. Insulation was seldom a consideration when such buildings were completed. Statistics shows that 80% of existing buildings in the UK will need to be upgraded. The lack of knowledge in dealing with old building fabric's manipulation has a negative impact on buildings' integrity. The documentation of such process seems to be an important step that buildings' actors should undertake to communicate a practical knowledge that is still at incubation stage. We wanted for this documentation to be visual, as descriptions might mislead none specialised and specialised in the field due to the innovative approach our method was conducted with. For the Scottish context this research/experiment will concentrate on existing granite wall buildings with plastered lath internal wall. It is unfortunate to see the commonly beautiful interiors of Scottish buildings disappearing, when the internal linings are removed. Skips are filled with old Plaster and Lath and new linings have to be supplied and fitted. Excessive waste is created in this change. This paper is based on a historic building energy improvement case study financed by the European commission and the Scottish Government. The pilot study consists of insulating an 18th century house using an innovative product and method. The project was a response to a call by the CIC start (Construction Innovation Club), aiming to establish a link between SMEs and the Universities. The project saw the day in collaboration with Icynene Canada, KDL Kishorn (see full list in the acknowledgment). This paper describes the process through which the team went through to improve the building envelope without damaging the buildings original features (Loveday et all). The energy efficiency

  6. Formosa Plastics Corporation: Plant-Wide Assessment of Texas Plant Identifies Opportunities for Improving Process Efficiency and Reducing Energy Costs

    SciTech Connect

    2005-01-01

    At Formosa Plastics Corporation's plant in Point Comfort, Texas, a plant-wide assessment team analyzed process energy requirements, reviewed new technologies for applicability, and found ways to improve the plant's energy efficiency. The assessment team identified the energy requirements of each process and compared actual energy consumption with theoretical process requirements. The team estimated that total annual energy savings would be about 115,000 MBtu for natural gas and nearly 14 million kWh for electricity if the plant makes several improvements, which include upgrading the gas compressor impeller, improving the vent blower system, and recovering steam condensate for reuse. Total annual cost savings could be $1.5 million. The U.S. Department of Energy's Industrial Technologies Program cosponsored this assessment.

  7. Energy Efficiency in Libraries.

    ERIC Educational Resources Information Center

    Lewis, Eleanor J.; And Others

    1993-01-01

    Shows how libraries can save money and energy with energy-efficient technologies, improving maintenance, and encouraging staff efforts to conserve energy. Specific techniques such as life-cycle cost analysis and energy audits focusing on lighting, heating, ventilation, air conditioning, and water efficiency are described. Funding options and…

  8. Landscaping for energy efficiency

    SciTech Connect

    1995-04-01

    This publication by the National Renewable Energy Laboratory addresses the use of landscaping for energy efficiency. The topics of the publication include minimizing energy expenses; landscaping for a cleaner environment; climate, site, and design considerations; planning landscape; and selecting and planting trees and shrubs. A source list for more information on landscaping for energy efficiency and a reading list are included.

  9. Energy Conservation vs. Energy Efficiency

    SciTech Connect

    Somasundaram, Sriram

    2010-09-30

    Energy conservation is considered by some as synonymous with energy efficiency, but to others, it has a meaning of getting fewer or lower quality energy services. The degree of confusion between these meanings varies widely by individual, culture, historic period and language spoken. In the context of this document, energy conservation means to keep from being lost or wasted; saved, and energy efficiency means the ability to produce a desired effect or product with a minimum of effort, expense or waste.

  10. Signal Processing and Its Effect on Scanning Efficiencies for a Field Instrument for Detecting Low-energy Radiation.

    PubMed

    Marianno, Craig M

    2015-07-01

    Signal processing within a radiation detector affects detection efficiency. Currently, organizations such as private industry, the U.S. Navy, Army, and Air Force are coupling some detector systems with data collection devices to survey large land areas for radioactive contamination. As detector technology has advanced and analog data collection has turned to digital, signal processing is becoming prevalent in some instruments. Using a NIST traceable (241)Am source, detection efficiency for a field instrument for detecting low-energy radiation (FIDLER) was examined for both a static and scanning mode. Experimental results were compared to Monte Carlo-generated efficiencies. Stationary data compared nicely to the theoretical results. Conversely, scanning detection efficiencies were considerably different from their theoretical counterparts. As speed increased, differences in detection efficiency approached two orders of magnitude. To account for these differences, a quasi time-dependent Monte Carlo simulation was created mimicking the signal processing undertaken by the FIDLER detection system. By including signal processing, experimental results fell within the bounds of the Monte Carlo-generated efficiencies, thus demonstrating the negative effects of such processing on detection efficiencies. PMID:26011500

  11. Assessment of citrus-processing energy-efficiency improvement. Volume 1. Final report

    SciTech Connect

    Not Available

    1982-12-01

    The cirtus industry was surveyed in order to assess the impact of two programs toward the goal of implementing energy conserving options and the development of new technologies. Six technologies were identified that have recently been implemented in the citrus industry, and a case history is summarized for each. Advanced technologies have been identified that could be applied in citrus processing plants and that would result in significant energy and operating cost savings. The industry sources indicated a need to prove these concepts in a research and development project such as a pilot plant before they will be implemented. (LEW)

  12. The Role of Emerging Technologies in Improving Energy Efficiency:Examples from the Food Processing Industry

    SciTech Connect

    Lung, Robert Bruce; Masanet, Eric; McKane, Aimee

    2006-05-01

    For over 25 years, the U.S. DOE's Industrial Technologies Program (ITP) has championed the application of emerging technologies in industrial plants and monitored these technologies impacts on industrial energy consumption. The cumulative energy savings of more than 160 completed and tracked projects is estimated at approximately 3.99 quadrillion Btu (quad), representing a production cost savings of $20.4 billion. Properly documenting the impacts of such technologies is essential for assessing their effectiveness and for delivering insights about the optimal direction of future technology research. This paper analyzes the impacts that several emerging technologies have had in the food processing industry. The analysis documents energy savings, carbon emissions reductions and production improvements and assesses the market penetration and sector-wide savings potential. Case study data is presented demonstrating the successful implementation of these technologies. The paper's conclusion discusses the effects of these technologies and offers some projections of sector-wide impacts.

  13. Evaluating Energy Conversion Efficiency

    NASA Technical Reports Server (NTRS)

    Byvik, C. E.; Smith, B. T.; Buoncristiani, A. M.

    1983-01-01

    Devices that convert solar radiation directly into storable chemical or electrical energy, have characteristic energy absorption spectrum; specifically, each of these devices has energy threshold. The conversion efficiency of generalized system that emcompasses all threshold devices is analyzed, resulting in family of curves for devices of various threshold energies operating at different temperatures.

  14. Developing energy efficient lignin biomass processing - towards understanding mediator behaviour in ionic liquids.

    PubMed

    Eshtaya, Majd; Ejigu, Andinet; Stephens, Gill; Walsh, Darren A; Chen, George Z; Croft, Anna K

    2016-08-15

    Environmental concerns have brought attention to the requirement for more efficient and renewable processes for chemicals production. Lignin is the second most abundant natural polymer, and might serve as a sustainable resource for manufacturing fuels and aromatic derivatives for the chemicals industry after being depolymerised. In this work, the mediator 2,2'-azino-bis(3-ethylbenthiazoline-6-sulfonic acid) diammonium salt (ABTS), commonly used with enzyme degradation systems, has been evaluated by means of cyclic voltammetry (CV) for enhancing the oxidation of the non-phenolic lignin model compound veratryl alcohol and three types of lignin (organosolv, Kraft and lignosulfonate) in the ionic liquid 1-ethyl-3-methylimidazolium ethyl sulfate, ([C2mim][C2SO4]). The presence of either veratryl alcohol or organosolv lignin increased the second oxidation peak of ABTS under select conditions, indicating the ABTS-mediated oxidation of these molecules at high potentials in [C2mim][C2SO4]. Furthermore, CV was applied as a quick and efficient way to explore the impact of water in the ABTS-mediated oxidation of both organosolv and lignosulfonate lignin. Higher catalytic efficiencies of ABTS were observed for lignosulfonate solutions either in sodium acetate buffer or when [C2mim][C2SO4] (15 v/v%) was present in the buffer solution, whilst there was no change found in the catalytic efficiency of ABTS in [C2mim][C2SO4]-lignosulfonate mixtures relative to ABTS alone. In contrast, organosolv showed an initial increase in oxidation, followed by a significant decrease on increasing the water content of a [C2mim][C2SO4] solution. PMID:27228384

  15. Development of a strategy for energy efficiency improvement in a Kraft process based on systems interactions analysis

    NASA Astrophysics Data System (ADS)

    Mateos-Espejel, Enrique

    The objective of this thesis is to develop, validate, and apply a unified methodology for the energy efficiency improvement of a Kraft process that addresses globally the interactions of the various process systems that affect its energy performance. An implementation strategy is the final result. An operating Kraft pulping mill situated in Eastern Canada with a production of 700 adt/d of high-grade bleached pulp was the case study. The Pulp and Paper industry is Canada's premier industry. It is characterized by large thermal energy and water consumption. Rising energy costs and more stringent environmental regulations have led the industry to refocus its efforts toward identifying ways to improve energy and water conservation. Energy and water aspects are usually analyzed independently, but in reality they are strongly interconnected. Therefore, there is a need for an integrated methodology, which considers energy and water aspects, as well as the optimal utilization and production of the utilities. The methodology consists of four successive stages. The first stage is the base case definition. The development of a focused, reliable and representative model of an operating process is a prerequisite to the optimization and fine tuning of its energy performance. A four-pronged procedure has been developed: data gathering, master diagram, utilities systems analysis, and simulation. The computer simulation has been focused on the energy and water systems. The second stage corresponds to the benchmarking analysis. The benchmarking of the base case has the objectives of identifying the process inefficiencies and to establish guidelines for the development of effective enhancement measures. The studied process is evaluated by a comparison of its efficiency to the current practice of the industry and by the application of new energy and exergy content indicators. The minimum energy and water requirements of the process are also determined in this step. The third stage is

  16. Data-based robust multiobjective optimization of interconnected processes: energy efficiency case study in papermaking.

    PubMed

    Afshar, Puya; Brown, Martin; Maciejowski, Jan; Wang, Hong

    2011-12-01

    Reducing energy consumption is a major challenge for "energy-intensive" industries such as papermaking. A commercially viable energy saving solution is to employ data-based optimization techniques to obtain a set of "optimized" operational settings that satisfy certain performance indices. The difficulties of this are: 1) the problems of this type are inherently multicriteria in the sense that improving one performance index might result in compromising the other important measures; 2) practical systems often exhibit unknown complex dynamics and several interconnections which make the modeling task difficult; and 3) as the models are acquired from the existing historical data, they are valid only locally and extrapolations incorporate risk of increasing process variability. To overcome these difficulties, this paper presents a new decision support system for robust multiobjective optimization of interconnected processes. The plant is first divided into serially connected units to model the process, product quality, energy consumption, and corresponding uncertainty measures. Then multiobjective gradient descent algorithm is used to solve the problem in line with user's preference information. Finally, the optimization results are visualized for analysis and decision making. In practice, if further iterations of the optimization algorithm are considered, validity of the local models must be checked prior to proceeding to further iterations. The method is implemented by a MATLAB-based interactive tool DataExplorer supporting a range of data analysis, modeling, and multiobjective optimization techniques. The proposed approach was tested in two U.K.-based commercial paper mills where the aim was reducing steam consumption and increasing productivity while maintaining the product quality by optimization of vacuum pressures in forming and press sections. The experimental results demonstrate the effectiveness of the method. PMID:22147299

  17. Energy Efficient Catalytic Activation of Hydrogen peroxide for Green Chemical Processes: Final Report

    SciTech Connect

    Collins, Terrence J.; Horwitz, Colin

    2004-11-12

    A new, highly energy efficient approach for using catalytic oxidation chemistry in multiple fields of technology has been pursued. The new catalysts, called TAML® activators, catalyze the reactions of hydrogen peroxide and other oxidants for the exceptionally rapid decontamination of noninfectious simulants (B. atrophaeus) of anthrax spores, for the energy efficient decontamination of thiophosphate pesticides, for the facile, low temperature removal of color and organochlorines from pulp and paper mill effluent, for the bleaching of dyes from textile mill effluents, and for the removal of recalcitrant dibenzothiophene compounds from diesel and gasoline fuels. Highlights include the following: 1) A 7-log kill of Bacillus atrophaeus spores has been achieved unambiguously in water under ambient conditions within 15 minutes. 2) The rapid total degradation under ambient conditions of four thiophosphate pesticides and phosphonate degradation intermediates has been achieved on treatment with TAML/peroxide, opening up potential applications of the decontamination system for phosphonate structured chemical warfare agents, for inexpensive, easy to perform degradation of stored and aged pesticide stocks (especially in Africa and Asia), for remediation of polluted sites and water bodies, and for the destruction of chemical warfare agent stockpiles. 3) A mill trial conducted in a Pennsylvanian bleached kraft pulp mill has established that TAML catalyst injected into an alkaline peroxide bleach tower can significantly lower color from the effluent stream promising a new, more cost effective, energy-saving approach for color remediation adding further evidence of the value and diverse engineering capacity of the approach to other field trials conducted on effluent streams as they exit the bleach plant. 4) Dibenzothiophenes (DBTs), including 4,6-dimethyldibenzothiophene, the most recalcitrant sulfur compounds in diesel and gasoline, can be completely removed from model gasoline

  18. An energy-efficient process for decomposing perfluorooctanoic and perfluorooctane sulfonic acids using dc plasmas generated within gas bubbles

    NASA Astrophysics Data System (ADS)

    Yasuoka, K.; Sasaki, K.; Hayashi, R.

    2011-06-01

    Perfluorooctanoic acid (PFOA) and perfluorooctane sulfonic acid (PFOS) are environmentally harmful and persistent substances. Their decomposition was investigated using dc plasmas generated within small gas bubbles in a solution. The plasma characteristics including discharge voltage, voltage drop in the liquid, plasma shape and the emission spectrum were examined with different gases. The decomposition rate and energy efficiency were evaluated by measuring the concentration of fluoride and sulfate ions released from PFOA/PFOS molecules. The concentration of fluoride ions and energy efficiency in the treatment of a PFOS solution were 17.7 mg l-1 (54.8% of the initial amount of fluorine atoms) and 26 mg kWh-1, respectively, after 240 min of operation. The addition of scavengers of hydroxyl radicals and hydrated electrons showed little effect on the decomposition. The decomposition processes were analyzed with an assumption that positive species reacted with PFOA/PFOS molecules at the boundary of the plasma-solution surface. This type of plasma showed a much higher decomposition energy efficiency compared with energy efficiencies reported in other studies.

  19. New process modeling [sic], design, and control strategies for energy efficiency, high product quality, and improved productivity in the process industries. Final project report

    SciTech Connect

    Ray, W. Harmon

    2002-06-05

    This project was concerned with the development of process design and control strategies for improving energy efficiency, product quality, and productivity in the process industries. In particular, (i) the resilient design and control of chemical reactors, and (ii) the operation of complex processing systems, was investigated. Specific topics studied included new process modeling procedures, nonlinear controller designs, and control strategies for multiunit integrated processes. Both fundamental and immediately applicable results were obtained. The new design and operation results from this project were incorporated into computer-aided design software and disseminated to industry. The principles and design procedures have found their way into industrial practice.

  20. Energy efficiency and pollution prevention assessment protocol in the polymer processing industries. Final report

    SciTech Connect

    Nardone, John; Sansone, Leonard; Kenney, William; Christodoulatos, Christos; Koutsospyros, Agamemnon

    1998-03-31

    This report was developed from experiences with three New Jersey firms and is intended to be a guide for conducting analyses on resource (energy and raw materials) utilization and pollution (solid waste, air and water emissions) prevention in plastics processing plants. The protocol is written on the assumption that the analysis is to be done by an outside agency such as a consulting firm, but it also can be used for internal audits by plant teams. Key concepts in this analysis were adapted from life cycle analysis. Because of the small sample of companies studied, the results have to be considered high preliminary, but some of the conclusions will probably be confirmed by further work.

  1. Energy Efficient Cryogenics

    NASA Technical Reports Server (NTRS)

    Meneghelli, Barry J.; Notardonato, William; Fesmire, James E.

    2016-01-01

    The Cryogenics Test Laboratory, NASA Kennedy Space Center, works to provide practical solutions to low-temperature problems while focusing on long-term technology targets for the energy-efficient use of cryogenics on Earth and in space.

  2. Energy Efficient Supercomputing

    SciTech Connect

    Anypas, Katie

    2014-10-17

    Katie Anypas, Head of NERSC's Services Department discusses the Lab's research into developing increasingly powerful and energy efficient supercomputers at our '8 Big Ideas' Science at the Theater event on October 8th, 2014, in Oakland, California.

  3. Energy Efficiency of LEDs

    SciTech Connect

    2013-03-01

    Solid-state lighting program technology fact sheet on energy efficiency of LEDs, characterizing the current state of the market and discussing package efficacy, luminaire efficacy, and application efficacy.

  4. Kinetics and energy efficiency for the degradation of 1,4-dioxane by electro-peroxone process.

    PubMed

    Wang, Huijiao; Bakheet, Belal; Yuan, Shi; Li, Xiang; Yu, Gang; Murayama, Seiichi; Wang, Yujue

    2015-08-30

    Degradation of 1,4-dioxane by ozonation, electrolysis, and their combined electro-peroxone (E-peroxone) process was investigated. The E-peroxone process used a carbon-polytetrafluorethylene cathode to electrocatalytically convert O2 in the sparged ozone generator effluent (O2 and O3 gas mixture) to H2O2. The electro-generated H2O2 then react with sparged O3 to yield aqueous OH, which can in turn oxidize pollutants rapidly in the bulk solution. Using p-chlorobenzoic acid as OH probe, the pseudo-steady concentration of OH was determined to be ∼0.744×10(-9)mM in the E-peroxone process, which is approximately 10 and 186 times of that in ozonation and electrolysis using a Pt anode. Thanks to its higher OH concentration, the E-peroxone process eliminated 96.6% total organic carbon (TOC) from a 1,4-dioxane solution after 2h treatment with a specific energy consumption (SEC) of 0.376kWhg(-1) TOCremoved. In comparison, ozonation and electrolysis using a boron-doped diamond anode removed only ∼6.1% and 26.9% TOC with SEC of 2.43 and 0.558kWhg(-1) TOCremoved, respectively. The results indicate that the E-peroxone process can significantly improve the kinetics and energy efficiency for 1,4-dioxane mineralization as compared to the two individual processes. The E-peroxone process may thus offer a highly effective and energy-efficient alternative to treat 1,4-dioxane wastewater. PMID:25863024

  5. Efficient separations & processing crosscutting program

    SciTech Connect

    1996-08-01

    The Efficient Separations and Processing Crosscutting Program (ESP) was created in 1991 to identify, develop, and perfect chemical and physical separations technologies and chemical processes which treat wastes and address environmental problems throughout the DOE complex. The ESP funds several multiyear tasks that address high-priority waste remediation problems involving high-level, low-level, transuranic, hazardous, and mixed (radioactive and hazardous) wastes. The ESP supports applied research and development (R & D) leading to the demonstration or use of these separations technologies by other organizations within the Department of Energy (DOE), Office of Environmental Management.

  6. Idaho Chemical Processing Plant Process Efficiency improvements

    SciTech Connect

    Griebenow, B.

    1996-03-01

    In response to decreasing funding levels available to support activities at the Idaho Chemical Processing Plant (ICPP) and a desire to be cost competitive, the Department of Energy Idaho Operations Office (DOE-ID) and Lockheed Idaho Technologies Company have increased their emphasis on cost-saving measures. The ICPP Effectiveness Improvement Initiative involves many activities to improve cost effectiveness and competitiveness. This report documents the methodology and results of one of those cost cutting measures, the Process Efficiency Improvement Activity. The Process Efficiency Improvement Activity performed a systematic review of major work processes at the ICPP to increase productivity and to identify nonvalue-added requirements. A two-phase approach was selected for the activity to allow for near-term implementation of relatively easy process modifications in the first phase while obtaining long-term continuous improvement in the second phase and beyond. Phase I of the initiative included a concentrated review of processes that had a high potential for cost savings with the intent of realizing savings in Fiscal Year 1996 (FY-96.) Phase II consists of implementing long-term strategies too complex for Phase I implementation and evaluation of processes not targeted for Phase I review. The Phase II effort is targeted for realizing cost savings in FY-97 and beyond.

  7. Energy Efficiency Upgrades

    SciTech Connect

    Roby Williams

    2012-03-29

    The energy efficiency upgrades project at Hardin County General Hospital did not include research nor was it a demonstration project. The project enabled the hospital to replace outdated systems with modern efficient models. Hardin County General Hospital is a 501c3, nonprofit hospital and the sole community provider for Hardin and Pope Counties of Illinois. This project provided much needed equipment and facility upgrades that would not have been possible through locally generated funding. Task 1 was a reroofing of the hospital. The hospital architect designed the replacement to increase the energy efficiency of the hospital roof/ceiling structure. Task 2 was replacement and installation of a new more efficient CT scanner for the hospital. Included in the project was replacement of HVAC equipment for the entire radiological suite. Task 5 was a replacement and installation of a new higher capacity diesel-fueled emergency generator for the hospital replacing a 50+ year old gas-fired generator. Task 7 was the replacement of 50+ year-old walk-in cooler/freezer with a newer, energy efficient model. Task 8 was the replacement of 10+ year-old washing machines in the hospital laundry with higher capacity, energy efficient models. Task 9 was replacement of 50-year old single pane curtain window system with double-pane insulated windows. Additionally, insulation was added around ventilation systems and the curtain wall system.

  8. Peculiarities of the structure of lanthanide chloride complexes with heterocyclic diimines and the efficiency of energy transfer processes

    NASA Astrophysics Data System (ADS)

    Puntus, Lada N.; Zhuravlev, Konstantin P.; Pekareva, Irina S.; Lyssenko, Konstantin A.; Zolin, Vladislav F.

    2008-01-01

    Two families of lanthanide chlorides LnCl 3L 2(H 2O) n and LnCl 3L(H 2O) m where L is 1,10-phenanthroline or 2,2'-bipyridine were synthesized. Their luminescence properties were investigated in the solid state and 1-dodecyl-3-methylimidazolium chloride solution. The structural peculiarities of lanthanide chlorides were elucidated by joint analysis of the X-ray, vibrational and luminescence data including the lifetime measurements. As a result the analysis of efficiency of energy transfer processes was performed and the correlation between the structure and the luminescence intensity was demonstrated in the systems studied.

  9. Energy efficient building design

    SciTech Connect

    Not Available

    1992-03-01

    The fundamental concepts of the building design process, energy codes and standards, and energy budgets are introduced. These tools were combined into Energy Design Guidelines and design contract requirements. The Guidelines were repackaged for a national audience and a videotape for selling the concept to government executives. An effort to test transfer of the Guidelines to outside agencies is described.

  10. Membrane processes for alcohol-water separation: Improving the energy efficiency of biofuel production

    EPA Science Inventory

    The economics and environmental impact of producing fuels and chemicals biologically can be a strong function of the efficiency with which the fermentation products are removed from the biological media. Due to growth inhibition by some fermentation products, including ethanol an...

  11. Low Cost Chemical Feedstocks Using an Improved and Energy Efficient Natural Gas Liquid (NGL) Removal Process, Final Technical Report

    SciTech Connect

    Meyer, Howard, S.; Lu, Yingzhong

    2012-08-10

    The overall objective of this project is to develop a new low-cost and energy efficient Natural Gas Liquid (NGL) recovery process - through a combination of theoretical, bench-scale and pilot-scale testing - so that it could be offered to the natural gas industry for commercialization. The new process, known as the IROA process, is based on U.S. patent No. 6,553,784, which if commercialized, has the potential of achieving substantial energy savings compared to currently used cryogenic technology. When successfully developed, this technology will benefit the petrochemical industry, which uses NGL as feedstocks, and will also benefit other chemical industries that utilize gas-liquid separation and distillation under similar operating conditions. Specific goals and objectives of the overall program include: (i) collecting relevant physical property and Vapor Liquid Equilibrium (VLE) data for the design and evaluation of the new technology, (ii) solving critical R&D issues including the identification of suitable dehydration and NGL absorbing solvents, inhibiting corrosion, and specifying proper packing structure and materials, (iii) designing, construction and operation of bench and pilot-scale units to verify design performance, (iv) computer simulation of the process using commercial software simulation platforms such as Aspen-Plus and HYSYS, and (v) preparation of a commercialization plan and identification of industrial partners that are interested in utilizing the new technology. NGL is a collective term for C2+ hydrocarbons present in the natural gas. Historically, the commercial value of the separated NGL components has been greater than the thermal value of these liquids in the gas. The revenue derived from extracting NGLs is crucial to ensuring the overall profitability of the domestic natural gas production industry and therefore of ensuring a secure and reliable supply in the 48 contiguous states. However, rising natural gas prices have dramatically reduced

  12. Energy-efficient windows

    SciTech Connect

    1994-10-01

    This fact sheet describes energy efficient windows for the reduction of home heating and cooling energy consumption. It discusses controlling air leaks by caulking and weatherstripping and by replacing window frames. Reducing heat loss and condensation is discussed by describing the types of glazing materials, the number of glass and air spaces, frame and spacer materials, and the use of movable insulation (shutters, drapes, etc.). A resource list is provided for further information.

  13. Implementing energy efficient embedded multimedia

    NASA Astrophysics Data System (ADS)

    Silven, Olli; Rintaluoma, Tero; Jyrkkä, Kari

    2006-02-01

    Multimedia processing in battery powered mobile communication devices is pushing their computing power requirements to the level of desktop computers. At the same time the energy dissipation limit stays at 3W that is the practical maximum to prevent the devices from becoming too hot to handle. In addition, several hours of active usage time should be provided on battery power. During the last ten years the active usage times of mobile communication devices have remained essentially the same regardless of big energy efficiency improvements at silicon level. The reasons can be traced to the design paradigms that are not explicitly targeted to creating energy efficient systems, but to facilitate implementing complex software solutions by large teams. Consequently, the hardware and software architectures, including the operating system principles, are the same for both mainframe computer system and current mobile phones. In this paper, we consider the observed developments against the needs of video processing in mobile communication devices and consider means of implementing energy efficient video codecs both in hardware and software. Although inflexible, monolithic video acceleration hardware is an attractive solution, while software based codecs are becoming increasingly difficult to implement in an energy efficient manner due to increasing system complexity. Approaches that combine both the flexibility of software and energy efficiency of hardware remain to be seen.

  14. Energy Efficiency I: Automobiles

    SciTech Connect

    Martin, Peter M.

    2003-11-15

    Most of us probably are not aware of all that's going on to improve the efficiency of energy usage in vehicles, residential climate control, manufacturing, and power management. The bulk of the energy consumption in the US during 2000 was apportioned as 34% for residential and commercial uses, 36.5% for industrial uses, and 26% for transportation. Automobiles in particular are the focus of intense energy conservation efforts. Only a surprising 25% of the fuel consumed by an automobile is converted to useful shalf work. The rest goes to the exhaust gases, coolant, friction and wear.

  15. Application of membrane processes to alcohol-water separation: Improving the energy efficiency of biofuel production

    EPA Science Inventory

    Pervaporation • Membrane-based separation process • Not filtration Separation based on solution-diffusion transport through non-porous or “molecularly-porous” membrane Permeate is a vapor • Permeate contains only volatile compounds • Able to separate mixtures of mis...

  16. Energy efficient data centers

    SciTech Connect

    Tschudi, William; Xu, Tengfang; Sartor, Dale; Koomey, Jon; Nordman, Bruce; Sezgen, Osman

    2004-03-30

    Data Center facilities, prevalent in many industries and institutions are essential to California's economy. Energy intensive data centers are crucial to California's industries, and many other institutions (such as universities) in the state, and they play an important role in the constantly evolving communications industry. To better understand the impact of the energy requirements and energy efficiency improvement potential in these facilities, the California Energy Commission's PIER Industrial Program initiated this project with two primary focus areas: First, to characterize current data center electricity use; and secondly, to develop a research ''roadmap'' defining and prioritizing possible future public interest research and deployment efforts that would improve energy efficiency. Although there are many opinions concerning the energy intensity of data centers and the aggregate effect on California's electrical power systems, there is very little publicly available information. Through this project, actual energy consumption at its end use was measured in a number of data centers. This benchmark data was documented in case study reports, along with site-specific energy efficiency recommendations. Additionally, other data center energy benchmarks were obtained through synergistic projects, prior PG&E studies, and industry contacts. In total, energy benchmarks for sixteen data centers were obtained. For this project, a broad definition of ''data center'' was adopted which included internet hosting, corporate, institutional, governmental, educational and other miscellaneous data centers. Typically these facilities require specialized infrastructure to provide high quality power and cooling for IT equipment. All of these data center types were considered in the development of an estimate of the total power consumption in California. Finally, a research ''roadmap'' was developed through extensive participation with data center professionals, examination of case

  17. Efficient energy use in manufacturing.

    PubMed Central

    Ross, M

    1992-01-01

    The potential for improved industrial efficiency is great and a substantial part of that potential is being realized in the course of events. With new technology and increasing affluence, the composition of production is changing such that energy and materials consumption is growing more slowly than the economy. Through new technologies and appropriate public policies, the energy intensities of all production processes should also continue to decline. Potential difficulties facing this relatively rosy scenario are also discussed. PMID:11607261

  18. Efficient Nd3+→Yb3+ energy transfer processes in high phonon energy phosphate glasses for 1.0 μm Yb3+ laser

    NASA Astrophysics Data System (ADS)

    Rivera-López, F.; Babu, P.; Basavapoornima, Ch.; Jayasankar, C. K.; Lavín, V.

    2011-06-01

    Efficient Nd3+→Yb3+ resonant and phonon-assisted energy transfer processes have been observed in phosphate glasses and have been studied using steady-state and time-resolved optical spectroscopies. Results indicate that the energy transfer occurs via nonradiative electric dipole-dipole processes and is enhanced with the concentration of Yb3+ acceptor ions, having an efficiency higher than 75% for the glass doped with 1 mol% of Nd2O3 and 4 mol% of Yb2O3. The luminescence decay curves show a nonexponential character and the energy transfer microscopic parameter calculated with the Inokuti-Hirayama model gives a value of 240 × 10-40 cm6 s-1, being one of the highest reported in the literature for Nd3+-Yb3+ co-doped matrices. From the steady-state experimental absorption and emission cross-sections, a general expression for estimating the microscopic energy transfer parameter is proposed based upon the theoretical methods developed by Miyakawa and Dexter and Tarelho et al. This expression takes into account all the resonant mechanisms involved in an energy transfer processes together with other phonon-assisted nonvanishing overlaps. The value of the Nd3+→Yb3+ energy transfer microscopic parameter has been calculated to be 200 × 10-40 cm6 s-1, which is in good agreement with that obtained from the Inokuti-Hirayama fitting. These results show the importance of the nonresonant phonon-assisted Nd3+→Yb3+ energy transfer processes and the great potential of these glasses as active matrices in the development of multiple-pump-channel Yb3+ lasers.

  19. (New process modeling, design and control strategies for energy efficiency, high product quality and improved productivity in the process industries)

    SciTech Connect

    Not Available

    1991-01-01

    Highlights are reported of work to date on: resilient design and control of chemical reactors (polymerization, packed bed), operation of complex processing systems (compensators for multivariable systems with delays and Right Half Plane zeroes, process identification and controller design for multivariable systems, nonlinear systems control, distributed parameter systems), and computer-aided design software (CONSYD, POLYRED, expert systems). 15 figs, 54 refs. (DLC)

  20. [New process modeling, design and control strategies for energy efficiency, high product quality and improved productivity in the process industries

    SciTech Connect

    Not Available

    1991-12-31

    Highlights are reported of work to date on: resilient design and control of chemical reactors (polymerization, packed bed), operation of complex processing systems (compensators for multivariable systems with delays and Right Half Plane zeroes, process identification and controller design for multivariable systems, nonlinear systems control, distributed parameter systems), and computer-aided design software (CONSYD, POLYRED, expert systems). 15 figs, 54 refs. (DLC)

  1. Energy efficiency buildings program

    NASA Astrophysics Data System (ADS)

    1981-05-01

    Progress is reported in developing techniques for auditing the energy performance of buildings. The ventilation of buildings and indoor air quality is discussed from the viewpoint of (1) combustion generated pollutants; (2) organic contaminants; (3) radon emanation, measurements, and control; (4) strategies for the field monitoring of indoor air quality; and (5) mechanical ventilation systems using air-to-air heat exchanges. The development of energy efficient windows to provide optimum daylight with minimal thermal losses in cold weather and minimum thermal gain in hot weather is considered as well as the production of high frequency solid state ballasts for fluorescent lights to provide more efficient lighting at a 25% savings over conventional core ballasts. Data compilation, analysis, and demonstration activities are summarized.

  2. Energy efficient aircraft engines

    NASA Technical Reports Server (NTRS)

    Chamberlin, R.; Miller, B.

    1979-01-01

    The three engine programs that constitute the propulsion portion of NASA's Aircraft Energy Efficiency Program are described, their status indicated, and anticipated improvements in SFC discussed. The three engine programs are (1) Engine Component Improvement--directed at current engines, (2) Energy Efficiency Engine directed at new turbofan engines, and (3) Advanced Turboprops--directed at technology for advanced turboprop--powered aircraft with cruise speeds to Mach 0.8. Unique propulsion system interactive ties to the airframe resulting from engine design features to reduce fuel consumption are discussed. Emphasis is placed on the advanced turboprop since it offers the largest potential fuel savings of the three propulsion programs and also has the strongest interactive ties to the airframe.

  3. Energy efficient aircraft engines

    NASA Technical Reports Server (NTRS)

    Chamberlin, R.; Miller, B.

    1979-01-01

    The three engine programs that constitute the propulsion portion of NASA's Aircraft Energy Efficiency Program are described, their status indicated, and anticipated improvements in SFC discussed. The three engine programs are: (1) engine component improvement, directed at current engines, (2) energy efficient engine, directed at new turbofan engines, and (3) advanced turboprops, directed at technology for advanced turboprop-powered aircraft with cruise speeds to Mach 0.8. Unique propulsion system interactive ties to the airframe resulting from engine design features to reduce fuel consumption are discussed. Emphasis is placed on the advanced turboprop since it offers the largest potential fuel savings of the three propulsion programs and also has the strongest interactive ties to the airframe.

  4. Energy Efficiency and Electric Utilities

    SciTech Connect

    2007-11-15

    The report is an overview of electric energy efficiency programs. It takes a concise look at what states are doing to encourage energy efficiency and how it impacts electric utilities. Energy efficiency programs began to be offered by utilities as a response to the energy crises of the 1970s. These regulatory-driven programs peaked in the early-1990s and then tapered off as deregulation took hold. Today, rising electricity prices, environmental concerns, and national security issues have renewed interest in increasing energy efficiency as an alternative to additional supply. In response, new methods for administering, managing, and delivering energy efficiency programs are being implemented. Topics covered in the report include: Analysis of the benefits of energy efficiency and key methods for achieving energy efficiency; evaluation of the business drivers spurring increased energy efficiency; Discussion of the major barriers to expanding energy efficiency programs; evaluation of the economic impacts of energy efficiency; discussion of the history of electric utility energy efficiency efforts; analysis of the impact of energy efficiency on utility profits and methods for protecting profitability; Discussion of non-utility management of energy efficiency programs; evaluation of major methods to spur energy efficiency - systems benefit charges, resource planning, and resource standards; and, analysis of the alternatives for encouraging customer participation in energy efficiency programs.

  5. National Action Plan for Energy Efficiency Report

    SciTech Connect

    National Action Plan for Energy Efficiency

    2006-07-01

    Summarizes recommendations, key barriers, and methods for energy efficiency in utility ratemaking as well as revenue requirements, resource planning processes, rate design, and program best practices.

  6. 75 FR 30014 - Office of Energy Efficiency and Renewable Energy; Energy Efficiency and Conservation Block Grant...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-28

    ... of Energy Efficiency and Renewable Energy; Energy Efficiency and Conservation Block Grant Program AGENCY: Office of Energy Efficiency and Renewable Energy, Department of Energy. ACTION: Notice. SUMMARY... Efficiency and Renewable Energy (EERE), has experienced historic growth and unprecedented workload...

  7. Magnetic Processing – A Pervasive Energy Efficient Technology for Next Generation Materials for Aerospace and Specialty Steel Markets

    SciTech Connect

    Mackiewicz-Ludtka, G.; Ludtka, G.M.; Ray, P.; Magee, J.

    2010-09-10

    Thermomagnetic Magnetic Processing is an exceptionally fertile, pervasive and cross-cutting technology that is just now being recognized by several major industry leaders for its significant potential to increase energy efficiency and materials performance for a myriad of energy intensive industries in a variety of areas and applications. ORNL has pioneered the use and development of large magnetic fields in thermomagnetically processing (T-MP) materials for altering materials phase equilibria and transformation kinetics. ORNL has discovered that using magnetic fields, we can produce unique materials responses. T-MP can produce unique phase stabilities & microstructures with improved materials performance for structural and functional applications not achieved with traditional processing techniques. These results suggest that there are unprecedented opportunities to produce significantly enhanced materials properties via atomistic level (nano-) microstructural control and manipulation. ORNL (in addition to others) have shown that grain boundary chemistry and precipitation kinetics are also affected by large magnetic fields. This CRADA has taken advantage of ORNL’s unique, custom-designed thermo-magnetic, 9 Tesla superconducting magnet facility that enables rapid heating and cooling of metallic components within the magnet bore; as well as ORNL’s expertise in high magnetic field (HMF) research. Carpenter Technologies, Corp., is a a US-based industrial company, that provides enhanced performance alloys for the Aerospace and Specialty Steel products. In this CRADA, Carpenter Technologies, Corp., is focusing on applying ORNL’s Thermomagnetic Magnetic Processing (TMP) technology to improve their current and future proprietary materials’ product performance and open up new markets for their Aerospace and Specialty Steel products. Unprecedented mechanical property performance improvements have been demonstrated for a high strength bainitic alloy industrial

  8. Energy efficient engine

    NASA Technical Reports Server (NTRS)

    Burrus, D.; Sabla, P. E.; Bahr, D. W.

    1980-01-01

    The feasibility of meeting or closely approaching the emissions goals established for the Energy Efficient Engine (E3) Project with an advanced design, single annular combustor was determined. A total of nine sector combustor configurations and one full-annular-combustor configuration were evaluated. Acceptable levels of carbon monoxide and hydrocarbon emissions were obtained with several of the sector combustor configurations tested, and several of the configurations tested demonstrated reduced levels of nitrogen oxides compared to conventional, single annular designs. None of the configurations tested demonstrated nitrogen oxide emission levels that meet the goal of the E3 Project.

  9. C2R2. Compact Compound Recirculator/Recuperator for Renewable Energy and Energy Efficient Thermochemical Processing.

    SciTech Connect

    Ermanoski, Ivan; Orozco, Adrian

    2015-08-01

    In this report we present the development of a packed particle bed recirculator and heat exchanger. The device is intended to create countercurrent flows of packed particle beds and exchange heat between the flows. The project focused on the design, fabrication, demonstration, and modifications of a simple prototype, in order to attain high levels of heat exchange between particle flows while maintaining an effective particle conveying rate in a scalable package. Despite heat losses in a package not optimized for heat retention, 50% heat recovery was achieved, at a particle conveying efficiency of 40%.

  10. High efficiency solar cell processing

    NASA Technical Reports Server (NTRS)

    Ho, F.; Iles, P. A.

    1985-01-01

    At the time of writing, cells made by several groups are approaching 19% efficiency. General aspects of the processing required for such cells are discussed. Most processing used for high efficiency cells is derived from space-cell or concentrator cell technology, and recent advances have been obtained from improved techniques rather than from better understanding of the limiting mechanisms. Theory and modeling are fairly well developed, and adequate to guide further asymptotic increases in performance of near conventional cells. There are several competitive cell designs with promise of higher performance ( 20%) but for these designs further improvements are required. The available cell processing technology to fabricate high efficiency cells is examined.

  11. Energy efficient passenger vehicle

    SciTech Connect

    Dessert, R.

    1983-02-22

    An energy efficient passenger carrying vehicle for road use. The vehicle basically comprises a long, narrow body carrying two passengers in a back-to-back relationship. The vehicle is basically a battery powered electric vehicle that can be charged by all free energy sources; namely, the sun, the wind, human muscles and momentum. The vehicle comprises four modules, namely body, solar, and two power modules. An electric power module is located within each end of the body module. This module includes electric motors driving the vehicle supporting wheels and rechargeable batteries to power the motors. Pedals, similar to those on a bicycle, located at each power module, drive generators to help recharge the batteries during operation of the vehicle, or directly help drive the vehicle wheels. A solar module comprising a large electricity generating solar cell panel covers most of the vehicle roof to aid in charging the batteries. Means are provided to tilt the solar cell panel toward the sun about a longitudinal axis. A unique flexible duct below the solar panel serves to cool the cells and, if desired, heat the passenger compartment. Further energy savings are obtained by canting the rear wheels while steering with the front wheels, so that the vehicle moves down the road at a crab angle which provides a sail effect when wind is from the vehicle beam or aft of the beam. Regenerative braking means can be used when slowing down, on a long down grade, when sailing speed is greater than required, or any other time when vehicle momentum is greater than necessary for vehicle operation, to use the excess forward momentum to drive generators to charge the batteries. Thus, a single battery charge will be conserved and vehicle operation will be assisted in a manner giving maximum vehicle range and speed.

  12. Energy efficient passenger vehicle

    SciTech Connect

    Dessert, R.

    1980-01-01

    An energy efficient passenger carrying vehicle for road use comprised of a long, narrow body carrying two passengers in a back-to-back relationship is described. The vehicle is basically a battery powered electric vehicle that can be charged by all free energy sources; namely, the sun, the wind, human muscles and momentum. The vehicle comprises four modules: body, solar, and two power modules. An electric power module is located within each end of the body module. This module includes electric motors driving the vehicle supporting wheels and rechargeable batteries to power the motors. Pedals, similar to those on a bicycle, located at each power module, drive generators to help recharge the batteries during operation of the vehicle, or directly help drive the vehicle wheels. A solar module comprising a large electricity generating solar cell panel covers most of the vehicle roof to aid in charging the batteries. Means are provided to tilt the solar cell panel toward the sun about a longitudinal axis. A unique flexible duct below the solar panel serves to cool the cells and, if desired, heat the passenger compartment. Further energy savings are obtained by canting the rear wheels while steering with the front wheels, so that the vehicle moves down the road at a crab angle which provides a sail effect when wind is from the vehicle beam or aft of the beam. Regenerative braking means can be used when slowing down, on a long down grade, when sailing speed is greater than required, or any other time when vehicle momentum is greater than necessary for vehicle operation, to use the excess forward momentum to drive generators to charge the batteries. Thus, a single battery charge will be conserved and vehicle operation will be assisted in a manner giving maximum vehicle range and speed.

  13. NITRO-HYDROLYSIS: AN ENERGY EFFICIENT SOURCE REDUCTION AND CHEMICAL PRODUCTION PROCESS FOR WASTEWATER TREATMENT PLANT BIOSOLIDS

    SciTech Connect

    Klasson, KT

    2003-03-10

    The nitro-hydrolysis process has been demonstrated in the laboratory in batch tests on one municipal waste stream. This project was designed to take the next step toward commercialization for both industrial and municipal wastewater treatment facility (WWTF) by demonstrating the feasibility of the process on a small scale. In addition, a 1-lb/hr continuous treatment system was constructed at University of Tennessee to treat the Kuwahee WWTF (Knoxville, TN) sludge in future work. The nitro-hydrolysis work was conducted at University of Tennessee in the Chemical Engineering Department and the gas and liquid analysis were performed at Oak Ridge National Laboratory. Nitro-hydrolysis of sludge proved a very efficient way of reducing sludge volume, producing a treated solution which contained unreacted solids (probably inorganics such as sand and silt) that settled quickly. Formic acid was one of the main organic acid products of reaction when larger quantities of nitric acid were used in the nitrolysis. When less nitric acid was used formic acid was initially produced but was later consumed in the reactions. The other major organic acid produced was acetic acid which doubled in concentration during the reaction when larger quantities of nitric acid were used. Propionic acid and butyric acid were not produced or consumed in these experiments. It is projected that the commercial use of nitro-hydrolysis at municipal wastewater treatment plants alone would result in a total estimated energy savings of greater than 20 trillion Btu/yr. A net reduction of 415,000 metric tons of biosolids per year would be realized and an estimated annual cost reduction of $122M/yr.

  14. Energy efficient sensor network implementations

    SciTech Connect

    Frigo, Janette R; Raby, Eric Y; Brennan, Sean M; Kulathumani, Vinod; Rosten, Ed; Wolinski, Christophe; Wagner, Charles; Charot, Francois

    2009-01-01

    In this paper, we discuss a low power embedded sensor node architecture we are developing for distributed sensor network systems deployed in a natural environment. In particular, we examine the sensor node for energy efficient processing-at-the-sensor. We analyze the following modes of operation; event detection, sleep(wake-up), data acquisition, data processing modes using low power, high performance embedded technology such as specialized embedded DSP processors and a low power FPGAs at the sensing node. We use compute intensive sensor node applications: an acoustic vehicle classifier (frequency domain analysis) and a video license plate identification application (learning algorithm) as a case study. We report performance and total energy usage for our system implementations and discuss the system architecture design trade offs.

  15. Case histories of recently implemented technologies for citrus-processing energy-efficiency improvement. Volume II. Final report

    SciTech Connect

    Not Available

    1982-12-01

    For each of six citrus industry sites where energy efficiency improvement technologies have been implemented, a case history is presented which describes the implemented technology, its investment cost, and the energy and cost savings. The technologies are: double pressing in feed mill operation; evaporator microprocessor controller; feed mill vent stack controller; addition of a waste heat evaporator to a feed mill; enhanced lime reaction for improved pressing and dewatering in a feed mill, and added effect to a temperature-accelerated short-time evaporator. (LEW)

  16. Influence of silver nanoparticles on relaxation processes and efficiency of dipole - dipole energy transfer between dye molecules in polymethylmethacrylate films

    NASA Astrophysics Data System (ADS)

    Bryukhanov, V. V.; Konstantinova, E. I.; Borkunov, R. Yu; Tsarkov, M. V.; Slezhkin, V. A.

    2015-10-01

    The fluorescence and phosphorescence of dyes in thin polymethylmethacrylate (PMMA) films in the presence of ablated silver nanoparticles has been investigated in a wide temperature range by methods of femtosecond and picosecond laser photoexcitation. The fluorescence and phosphorescence times, as well as spectral and kinetic characteristics of rhodamine 6G (R6G) molecules in PMMA films are measured in a temperature range of 80 - 330 K. The temperature quenching activation energy of the fluorescence of R6G molecules in the presence of ablated silver nanoparticles is found. The vibrational relaxation rate of R6G in PMMA films is estimated, the efficiency of the dipole - dipole electron energy transfer between R6G and brilliant green molecules (enhanced by plasmonic interaction with ablated silver nanoparticles) is analysed, and the constants of this energy transfer are determined.

  17. LEDs for Efficient Energy

    ERIC Educational Resources Information Center

    Guerin, David A.

    1978-01-01

    Light-emitting diodes (LEDs) are described and three classroom experiments are given, one to prove the, low power requirements and efficiency of LEDs, an LED on-off detector circuit, and the third an LED photoelectric smoke detector. (BB)

  18. Modular Energy-Efficient and Robust Paradigms for a Disaster-Recovery Process over Wireless Sensor Networks.

    PubMed

    Razaque, Abdul; Elleithy, Khaled

    2015-01-01

    Robust paradigms are a necessity, particularly for emerging wireless sensor network (WSN) applications. The lack of robust and efficient paradigms causes a reduction in the provision of quality of service (QoS) and additional energy consumption. In this paper, we introduce modular energy-efficient and robust paradigms that involve two archetypes: (1) the operational medium access control (O-MAC) hybrid protocol and (2) the pheromone termite (PT) model. The O-MAC protocol controls overhearing and congestion and increases the throughput, reduces the latency and extends the network lifetime. O-MAC uses an optimized data frame format that reduces the channel access time and provides faster data delivery over the medium. Furthermore, O-MAC uses a novel randomization function that avoids channel collisions. The PT model provides robust routing for single and multiple links and includes two new significant features: (1) determining the packet generation rate to avoid congestion and (2) pheromone sensitivity to determine the link capacity prior to sending the packets on each link. The state-of-the-art research in this work is based on improving both the QoS and energy efficiency. To determine the strength of O-MAC with the PT model; we have generated and simulated a disaster recovery scenario using a network simulator (ns-3.10) that monitors the activities of disaster recovery staff; hospital staff and disaster victims brought into the hospital. Moreover; the proposed paradigm can be used for general purpose applications. Finally; the QoS metrics of the O-MAC and PT paradigms are evaluated and compared with other known hybrid protocols involving the MAC and routing features. The simulation results indicate that O-MAC with PT produced better outcomes. PMID:26153768

  19. Modular Energy-Efficient and Robust Paradigms for a Disaster-Recovery Process over Wireless Sensor Networks

    PubMed Central

    Razaque, Abdul; Elleithy, Khaled

    2015-01-01

    Robust paradigms are a necessity, particularly for emerging wireless sensor network (WSN) applications. The lack of robust and efficient paradigms causes a reduction in the provision of quality of service (QoS) and additional energy consumption. In this paper, we introduce modular energy-efficient and robust paradigms that involve two archetypes: (1) the operational medium access control (O-MAC) hybrid protocol and (2) the pheromone termite (PT) model. The O-MAC protocol controls overhearing and congestion and increases the throughput, reduces the latency and extends the network lifetime. O-MAC uses an optimized data frame format that reduces the channel access time and provides faster data delivery over the medium. Furthermore, O-MAC uses a novel randomization function that avoids channel collisions. The PT model provides robust routing for single and multiple links and includes two new significant features: (1) determining the packet generation rate to avoid congestion and (2) pheromone sensitivity to determine the link capacity prior to sending the packets on each link. The state-of-the-art research in this work is based on improving both the QoS and energy efficiency. To determine the strength of O-MAC with the PT model; we have generated and simulated a disaster recovery scenario using a network simulator (ns-3.10) that monitors the activities of disaster recovery staff; hospital staff and disaster victims brought into the hospital. Moreover; the proposed paradigm can be used for general purpose applications. Finally; the QoS metrics of the O-MAC and PT paradigms are evaluated and compared with other known hybrid protocols involving the MAC and routing features. The simulation results indicate that O-MAC with PT produced better outcomes. PMID:26153768

  20. Importance of energy efficiency in the design of the Process and Environmental Technology Laboratory (PETL) at Sandia National Laboratories, New Mexico (NM)

    SciTech Connect

    Wrons, R.

    1998-06-01

    As part of the design of the Process and Environmental Technology Laboratory (PETL) in FY97, an energy conservation report (ECR) was completed. The original energy baseline for the building, established in Title 1 design, was 595,000 BTU/sq. ft./yr, site energy use. Following the input of several reviewers and the incorporation of the various recommendations into the Title 2 design, the projected energy consumption was reduced to 341,000 BTU/sq. ft./yr. Of this reduction, it is estimated that about 150,000 BTU/sq. ft./yr resulted from inclusion of more energy efficient options into the design. The remaining reductions resulted from better accounting of energy consumption between Title 1 ECR and the final ECR. The energy efficient features selected by the outcome of the ECR were: (1) Energy Recovery system, with evaporative cooling assist, for the Exhaust/Make-up Air System; (2) Chilled Water Thermal Storage system; (3) Premium efficiency motors for large, year-round applications; (4) Variable frequency drives for all air handling fan motors; (4) Premium efficiency multiple boiler system; and (5) Lighting control system. The annual energy cost savings due to these measures will be about $165,000. The estimated annual energy savings are two million kWhrs electric, and 168,000 therms natural gas, the total of which is equivalent to 23,000 million BTUs per year. Put into the perspective of a typical office/light lab at SNL/NM, the annual energy savings is equal the consumption of a 125,000 square foot building. The reduced air emissions are approximately 2,500 tons annually.

  1. Nonprofit Energy Efficiency Act

    THOMAS, 113th Congress

    Sen. Klobuchar, Amy [D-MN

    2013-04-11

    06/25/2013 Committee on Energy and Natural Resources Subcommittee on Energy. Hearings held. With printed Hearing: S.Hrg. 113-70. (All Actions) Tracker: This bill has the status IntroducedHere are the steps for Status of Legislation:

  2. Utilising biohydrogen to increase methane production, energy yields and process efficiency via two stage anaerobic digestion of grass.

    PubMed

    Massanet-Nicolau, Jaime; Dinsdale, Richard; Guwy, Alan; Shipley, Gary

    2015-01-01

    Real time measurement of gas production and composition were used to examine the benefits of two stage anaerobic digestion (AD) over a single stage AD, using pelletized grass as a feedstock. Controlled, parallel digestion experiments were performed in order to directly compare a two stage digestion system producing hydrogen and methane, with a single stage system producing just methane. The results indicated that as well as producing additional energy in the form of hydrogen, two stage digestion also resulted in significant increases to methane production, overall energy yields, and digester stability (as indicated by bicarbonate alkalinity and volatile fatty acid removal). Two stage AD resulted in an increase in energy yields from 10.36 MJ kg(-1) VS to 11.74 MJ kg(-1) VS, an increase of 13.4%. Using a two stage system also permitted a much shorter hydraulic retention time of 12 days whilst maintaining process stability. PMID:25913885

  3. A process for energy-efficient high-solids fed-batch enzymatic liquefaction of cellulosic biomass.

    PubMed

    Cardona, M J; Tozzi, E J; Karuna, N; Jeoh, T; Powell, R L; McCarthy, M J

    2015-12-01

    The enzymatic hydrolysis of cellulosic biomass is a key step in the biochemical production of fuels and chemicals. Economically feasible large-scale implementation of the process requires operation at high solids loadings, i.e., biomass concentrations >15% (w/w). At increasing solids loadings, however, biomass forms a high viscosity slurry that becomes increasingly challenging to mix and severely mass transfer limited, which limits further addition of solids. To overcome these limitations, we developed a fed-batch process controlled by the yield stress and its changes during liquefaction of the reaction mixture. The process control relies on an in-line, non-invasive magnetic resonance imaging (MRI) rheometer to monitor real-time evolution of yield stress during liquefaction. Additionally, we demonstrate that timing of enzyme addition relative to biomass addition influences process efficiency, and the upper limit of solids loading is ultimately limited by end-product inhibition as soluble glucose and cellobiose accumulate in the liquid phase. PMID:26432053

  4. Energy Efficient Economists.

    ERIC Educational Resources Information Center

    Silverman, Judy; Lamp, Nancy

    This interdisciplinary economics project helped first and second graders learn how to conserve energy and save money. The project started because of an announcement by the elementary school principal that, if school utility bills could be lowered, the Board of Education would give the school half the money saved. Students were first introduced to…

  5. Polish Foundation for Energy Efficiency

    SciTech Connect

    1995-12-31

    The Polish Foundation for Energy Efficiency (FEWE) was established in Poland at the end of 1990. FEWE, as an independent and non-profit organization, has the following objectives: to strive towards an energy efficient national economy, and to show the way and methods by use of which energy efficiency can be increased. The activity of the Foundation covers the entire territory of Poland through three regional centers: in Warsaw, Katowice and Cracow. FEWE employs well-known and experienced specialists within thermal and power engineering, civil engineering, economy and applied sciences. The organizer of the Foundation has been Battelle Memorial Institute - Pacific Northwest Laboratories from the USA.

  6. Advanced Energy Efficient Roof System

    SciTech Connect

    Jane Davidson

    2008-09-30

    options considered to date are not ideal. One approach is to insulate between the trusses at the roof plane. The construction process is time consuming and costs more than conventional attic construction. Moreover, the problems of air infiltration and thermal bridges across the insulation remain. Another approach is to use structurally insulated panels (SIPs), but conventional SIPs are unlikely to be the ultimate solution because an additional underlying support structure is required except for short spans. In addition, wood spline and metal locking joints can result in thermal bridges and gaps in the foam. This study undertook a more innovative approach to roof construction. The goal was to design and evaluate a modular energy efficient panelized roof system with the following attributes: (1) a conditioned and clear attic space for HVAC equipment and additional finished area in the attic; (2) manufactured panels that provide structure, insulation, and accommodate a variety of roofing materials; (3) panels that require support only at the ends; (4) optimal energy performance by minimizing thermal bridging and air infiltration; (5) minimal risk of moisture problems; (6) minimum 50-year life; (7) applicable to a range of house styles, climates and conditions; (8) easy erection in the field; (9) the option to incorporate factory-installed solar systems into the panel; and (10) lowest possible cost. A nationwide market study shows there is a defined market opportunity for such a panelized roof system with production and semi-custom builders in the United States. Senior personnel at top builders expressed interest in the performance attributes and indicate long-term opportunity exists if the system can deliver a clear value proposition. Specifically, builders are interested in (1) reducing construction cycle time (cost) and (2) offering increased energy efficiency to the homebuyer. Additional living space under the roof panels is another low-cost asset identified as part of

  7. Energy efficiency, renewable energy and sustainable development

    SciTech Connect

    Ervin, C.A.

    1994-12-31

    The Office of Energy Efficiency and Renewable Energy (EE) is part of the U.S. Department of Energy that is specifically charged with encouraging the more efficient use of energy resources, and the use of renewable energy resources - such as solar power, wind power, biomass energy and geothermal energy. In the past several years, EE has increased its emphasis on technology deployment through partnerships with states, local governments and private companies. Partnerships move new discoveries more quickly into the marketplace, where they can create jobs, prevent pollution, save resources, and produce many other benefits. The author then emphasizes the importance of this effort in a number of different sections of the paper: energy consumption pervades everything we do; U.S. energy imports are rising to record levels; transportation energy demand is increasing; U.S. energy use is increasing; population growth increases world energy demand; total costs of energy consumption aren`t always counted; world energy markets offer incredible potential; cost of renewables is decreasing; clean energy is essential to sustainable development; sustainable energy policy; sustainable energy initiatives: utilities, buildings, and transportation.

  8. Efficiency of cellular information processing

    NASA Astrophysics Data System (ADS)

    Barato, Andre C.; Hartich, David; Seifert, Udo

    2014-10-01

    We show that a rate of conditional Shannon entropy reduction, characterizing the learning of an internal process about an external process, is bounded by the thermodynamic entropy production. This approach allows for the definition of an informational efficiency that can be used to study cellular information processing. We analyze three models of increasing complexity inspired by the Escherichia coli sensory network, where the external process is an external ligand concentration jumping between two values. We start with a simple model for which ATP must be consumed so that a protein inside the cell can learn about the external concentration. With a second model for a single receptor we show that the rate at which the receptor learns about the external environment can be nonzero even without any dissipation inside the cell since chemical work done by the external process compensates for this learning rate. The third model is more complete, also containing adaptation. For this model we show inter alia that a bacterium in an environment that changes at a very slow time-scale is quite inefficient, dissipating much more than it learns. Using the concept of a coarse-grained learning rate, we show for the model with adaptation that while the activity learns about the external signal the option of changing the methylation level increases the concentration range for which the learning rate is substantial.

  9. Cleanroom Energy Efficiency Workshop Proceedings

    SciTech Connect

    Tschudi, Bill

    1999-03-15

    On March 15, 1999, Lawrence Berkeley National Laboratory hosted a workshop focused on energy efficiency in Cleanroom facilities. The workshop was held as part of a multiyear effort sponsored by the California Institute for Energy Efficiency, and the California Energy Commission. It is part of a project that concentrates on improving energy efficiency in Laboratory type facilities including cleanrooms. The project targets the broad market of laboratory and cleanroom facilities, and thus cross-cuts many different industries and institutions. This workshop was intended to raise awareness by sharing case study success stories, providing a forum for industry networking on energy issues, contributing LBNL expertise in research to date, determining barriers to implementation and possible solutions, and soliciting input for further research.

  10. Energy 101: Energy Efficient Data Centers

    SciTech Connect

    2011-01-01

    Data centers provide mission-critical computing functions vital to the daily operation of top U.S. economic, scientific, and technological organizations. These data centers consume large amounts of energy to run and maintain their computer systems, servers, and associated high-performance components—up to 3% of all U.S. electricity powers data centers. And as more information comes online, data centers will consume even more energy. Data centers can become more energy efficient by incorporating features like power-saving "stand-by" modes, energy monitoring software, and efficient cooling systems instead of energy-intensive air conditioners. These and other efficiency improvements to data centers can produce significant energy savings, reduce the load on the electric grid, and help protect the nation by increasing the reliability of critical computer operations.

  11. Energy 101: Energy Efficient Data Centers

    ScienceCinema

    None

    2013-05-29

    Data centers provide mission-critical computing functions vital to the daily operation of top U.S. economic, scientific, and technological organizations. These data centers consume large amounts of energy to run and maintain their computer systems, servers, and associated high-performance components?up to 3% of all U.S. electricity powers data centers. And as more information comes online, data centers will consume even more energy. Data centers can become more energy efficient by incorporating features like power-saving "stand-by" modes, energy monitoring software, and efficient cooling systems instead of energy-intensive air conditioners. These and other efficiency improvements to data centers can produce significant energy savings, reduce the load on the electric grid, and help protect the nation by increasing the reliability of critical computer operations.

  12. Energy Efficiency for Electrical Technology.

    ERIC Educational Resources Information Center

    Scharmann, Larry, Ed.

    Intended primarily but not solely for use at the postsecondary level, this curriculum guide contains five units on energy efficiency that were designed to be incorporated into an existing program in electrical technology. The following topics are examined: where to look for energy waste; conservation methods for electrical consumers, for…

  13. New Orleans and Energy Efficiency

    ScienceCinema

    Rosenburg, Zachary

    2013-05-29

    The Saint Bernard Project works tirelessly with volunteers, veterans and homeowners to continue the rebuilding. With the help of the Department of Energy and the Department of Housing and Urban Development they will be able to apply a greater energy efficiency strategy to help New Orleans and the country reduce our dependence on foreign oil.

  14. New Orleans and Energy Efficiency

    SciTech Connect

    Rosenburg, Zachary

    2010-01-01

    The Saint Bernard Project works tirelessly with volunteers, veterans and homeowners to continue the rebuilding. With the help of the Department of Energy and the Department of Housing and Urban Development they will be able to apply a greater energy efficiency strategy to help New Orleans and the country reduce our dependence on foreign oil.

  15. Bright, Light and Energy Efficient.

    ERIC Educational Resources Information Center

    American School and University, 1981

    1981-01-01

    The new Sharon Elementary School in Newburgh (Indiana) has a three-fuel plan that will allow selection of the most economical energy source for each heating season with an energy-efficient lighting system that includes skylights. (Author/MLF)

  16. Energy planning and energy efficiency assistance

    SciTech Connect

    Markel, L.

    1995-12-31

    Electrotek is an engineering services company specializing in energy-related programs. Clients are most utilities, large energy users, and the U.S. Electric Power Research Institute. Electrotek has directed energy projects for the U.S. Agency for International Development and the U.S. Department of Energy in Poland and other countries of Central Europe. The objective is to assist the host country organizations to identify and implement appropriate energy efficiency and pollution reduction technologies, to transfer technical and organizational knowledge, so that further implementations are market-driven, without needed continuing foreign investment. Electrotek has worked with the Silesian Power Distribution Company to design an energy efficiency program for industrial customers that has proven to be profitable for the company and for its customers. The program has both saved energy and costs, and reduced pollution. The program is expanding to include additional customers, without needing more funding from the U.S. government.

  17. Energy efficient production of hydrogen and syngas from biomass: development of low-temperature catalytic process for cellulose gasification.

    PubMed

    Asadullah, Mohammad; Ito, Shin-ichi; Kunimori, Kimio; Yamada, Muneyoshi; Tomishige, Keiichi

    2002-10-15

    The Rh/CeO2/M (M = SiO2, Al2O3, and ZrO2) type catalysts with various compositions have been prepared and investigated in the gasification of cellulose, a model compound of biomass, in a fluidized bed reactor at 500-700 degrees C. The conventional nickel and dolomite catalysts have also been investigated. Among the catalysts, Rh/CeO2/SiO2 with 35% CeO2 has been found to be the best catalyst with respect to the carbon conversion to gas and product distribution. The steam addition contributed to the complete conversion of cellulose to gas even at 600 degrees C. Lower steam supply gave the syngas and higher steam supply gave the hydrogen as the major product. Hydrogen and syngas from cellulose or cellulosic biomass gasification are environmentally super clean gaseous fuels for power generation. Moreover, the syngas derived liquid fuels such as methanol, dimethyl ether, and synthetic diesels are also super clean transportation fuels. However, the use of cellulose or cellulosic biomass for energy source through the gasification is challenging because of the formation of tar and char during the gasification process. It is interesting that no tar or char was finally formed in the effluent gas at as low as 500-600 degrees C using Rh/CeO2/SiO2(35) catalyst in this process. PMID:12387426

  18. Energy Efficient Heat Treatment for Linerless Hypereutectic Al-Si Engine Blocks Made Using Vacuum HPDC Process

    NASA Astrophysics Data System (ADS)

    Kasprzak, W.; Sokolowski, J. H.; Yamagata, H.; Aniolek, M.; Kurita, H.

    2011-02-01

    Heat treatment standards developed by the aluminum industry over the last several decades are often not well optimized when applied to components cast by high cooling rate processes such as High Pressure Die Casting (HPDC), Low Pressure Permanent Mold (LPPM), Squeeze Casting, etc. The inherently finer as-cast structures should not require long solution times for the effective dissolution of intermetallic phases and the adequate thermal modification of structural constituents. Hence, long and expensive T6 and T7 treatments should not be required. Heat treatment studies involving as-cast laboratory samples with SDAS = 13.6 μm (equivalent to a thick-section HPDC casting) were conducted. Traditional and modified solution and aging treatments were compared. These studies suggest that a reduction of up to 92% in thermal processing time is possible while maintaining and/or improving the cast component's metallurgical characteristics including hardness (≥75 HRB), dissolution of secondary phases, and spheroidization of the eutectic Si as well as overall homogeneity. Vacuum HPDC of an actual hypereutectic Al-20%Si motorcycle engine block confirmed the potential for significantly reduced heat treatment times, energy consumption, and overall costs.

  19. Energy Efficiency Indicators Methodology Booklet

    SciTech Connect

    Sathaye, Jayant; Price, Lynn; McNeil, Michael; de la rue du Can, Stephane

    2010-05-01

    This Methodology Booklet provides a comprehensive review and methodology guiding principles for constructing energy efficiency indicators, with illustrative examples of application to individual countries. It reviews work done by international agencies and national government in constructing meaningful energy efficiency indicators that help policy makers to assess changes in energy efficiency over time. Building on past OECD experience and best practices, and the knowledge of these countries' institutions, relevant sources of information to construct an energy indicator database are identified. A framework based on levels of hierarchy of indicators -- spanning from aggregate, macro level to disaggregated end-use level metrics -- is presented to help shape the understanding of assessing energy efficiency. In each sector of activity: industry, commercial, residential, agriculture and transport, indicators are presented and recommendations to distinguish the different factors affecting energy use are highlighted. The methodology booklet addresses specifically issues that are relevant to developing indicators where activity is a major factor driving energy demand. A companion spreadsheet tool is available upon request.

  20. Versatile and efficient catalysts for energy and environmental processes: Mesoporous silica containing Au, Pd and Au-Pd

    NASA Astrophysics Data System (ADS)

    da Silva, Anderson G. M.; Fajardo, Humberto V.; Balzer, Rosana; Probst, Luiz F. D.; Lovón, Adriana S. P.; Lovón-Quintana, Juan J.; Valença, Gustavo P.; Schreine, Wido H.; Robles-Dutenhefner, Patrícia A.

    2015-07-01

    We described a versatile approach for the synthesis of Au/MCM-41, Pd/MCM-41 and Au-Pd/MCM-41 by the direct incorporation of the noble metals into the MCM-41 framework. The structural, textural and chemical properties were characterized by X-ray diffraction (XRD), temperature-programmed reduction (TPR), N2-adsorption (BET and BJH methods), H2-chemisorption, small angle X-ray scattering (SAXS), transmission electron microscope (TEM) and X-ray photoelectron spectroscopy (XPS). The nanomaterials, being comprised of Au, Pd and Au-Pd nanoparticles and possessing high surface areas were applied as versatile and efficient catalysts in benzene, toluene and o-xylene (BTX) oxidation and in the steam reforming of ethanol for hydrogen production. The results revealed that the catalytic behavior in both processes was influenced by the experimental conditions and the nature of the catalyst employed. The Au-Pd/MCM-41 catalyst was the most active in the BTX total oxidation. On the basis of characterization data, it was proposed that the close contact between Pd and Au and the higher dispersion of Pd may be responsible for the enhanced activity of the bimetallic catalyst. However, the strong interaction between the noble metals did not improve the performance of the bimetallic catalyst in ethanol steam reforming, the Pd/MCM-41 catalyst being the most active and selective for hydrogen production.

  1. Impact of hydrodynamics on pollutant degradation and energy efficiency of VUV/UV and H2O2/UV oxidation processes.

    PubMed

    Bagheri, Mehdi; Mohseni, Madjid

    2015-12-01

    The Vacuum-UV/UV process, an incipient catalyst/chemical-free advanced oxidation process (AOP), is potentially a cost-effective solution for the removal of harmful micropollutants from water. Utilizing a novel mechanistic numerical model, this work aimed to establish a thorough understanding of the degradation mechanisms in the VUV/UV process operating under continuous flow conditions, when compared with the widely applied H2O2/UV AOP. Of particular interest was the examination of the impact of flow characteristics (hydrodynamics) on the degradation efficacy of a target micropollutant during the VUV/UV and H2O2/UV AOPs. While hydroxyl radical (OH) oxidation was the dominant degradation pathway in both processes, the degradation efficacy of the VUV/UV process showed much stronger correlation with the extent of mixing in the photoreactor. Under a uniform flow regime, the degradation efficiency of the target pollutant achieved by the H2O2/UV process with 2- and 5 ppm H2O2 was greater than that provided by the VUV/UV process. Nonetheless, introduction of mixing and circulation zones to the VUV/UV reactor resulted in superior performance compared with the H2O2/UV AOP. Based on the electrical energy-per-order (EEO) analysis, incorporation of circulation zones resulted in a reduction of up to 50% in the overall energy cost of the VUV/UV AOP, while the corresponding reduction for the 5-ppm H2O2/UV system was less than 5%. Furthermore, the extent of OH scavenging of natural organic matter (NOM) on energy efficiency of the VUV/UV and H2O2/UV AOPs under continuous flow conditions was assessed using the EEO analysis. PMID:26363258

  2. Market barriers to energy efficiency

    SciTech Connect

    Howarth, R.B.; Andersson, B.

    1992-06-01

    Discussions of energy policy in an environmentally constrained world often focus on the use of tax instruments to internalize the external effects of energy utilization or achieve specified reductions in energy use in the most cost-effective manner. A substantial literature suggests, however, that significant opportunities exist to reduce energy utilization by implementing technologies that are cost-effective under prevailing economic conditions but that are not fully implemented by existing market institutions. This paper examines the theory of the market for energy-using equipment, showing that problems of imperfect information and transaction costs may bias rational consumers to purchase devices that use more energy than those that would be selected by a well-informed social planner guided by the criterion of economic efficiency. Consumers must base their purchase decisions on observed prices and expectations of postpurchase equipment performance. If it is difficult or costly for individuals to form accurate and precise expectations, the level of energy efficiency achieved by competitive markets will vary from the socially efficient outcome. Such ``market barriers`` suggest a role for regulatory intervention to improve market performance at prevailing energy prices.

  3. Market barriers to energy efficiency

    SciTech Connect

    Howarth, R.B. ); Andersson, B. )

    1992-06-01

    Discussions of energy policy in an environmentally constrained world often focus on the use of tax instruments to internalize the external effects of energy utilization or achieve specified reductions in energy use in the most cost-effective manner. A substantial literature suggests, however, that significant opportunities exist to reduce energy utilization by implementing technologies that are cost-effective under prevailing economic conditions but that are not fully implemented by existing market institutions. This paper examines the theory of the market for energy-using equipment, showing that problems of imperfect information and transaction costs may bias rational consumers to purchase devices that use more energy than those that would be selected by a well-informed social planner guided by the criterion of economic efficiency. Consumers must base their purchase decisions on observed prices and expectations of postpurchase equipment performance. If it is difficult or costly for individuals to form accurate and precise expectations, the level of energy efficiency achieved by competitive markets will vary from the socially efficient outcome. Such market barriers'' suggest a role for regulatory intervention to improve market performance at prevailing energy prices.

  4. Energy Efficient Drivepower: An Overview.

    SciTech Connect

    Ula, Sadrul; Birnbaum, Larry E.; Jordan, Don

    1993-05-01

    This report examines energy efficiency in drivepower systems. Only systems where the prime movers are electrical motors are discussed. A systems approach is used to examine all major aspects of drivepower, including motors, controls, electrical tune-ups, mechanical efficiency, maintenance, and management. Potential annual savings to the US society of $25 to $50 billion are indicated. The report was written for readers with a semi-technical background.

  5. Energy efficient drivepower: An overview

    NASA Astrophysics Data System (ADS)

    Ula, Sadrul; Birnbaum, Larry E.; Jordan, Don

    Energy efficiency is a major concern to industry for a variety of reasons. Operating expenses and public relations are just two of these. While a lot of effort has been expended in the area of electrical energy efficiency, the area of concern in the report, most papers use a limited approach when examining the opportunities for efficiency improvement. However, use of a systems approach--examining the entire power train system from when electrical power first enters a facility to the final output is presented. This type of approach to electrical energy efficiency can improve the overall efficiency by a significant amount. There are many methods of driving mechanical loads such as waste steam (steam turbine), centralized hydraulic systems, and compressed air. Only electric-drive systems were analyzed. Depending on the application and facilities, these other methods may be a viable alternative to electric drivepower systems. The document assumes that the reader has an understanding of the basic concepts, practices, and terminology used in electrical and mechanical engineering. The reader should be familiar with terms such as voltage, current, dc power, ac power, power factor, horse power, torque, angular velocity, kilowatt-hours, efficiency, harmonics, and gear ratio.

  6. Technology for aircraft energy efficiency

    NASA Technical Reports Server (NTRS)

    Klineberg, J. M.

    1977-01-01

    Six technology programs for reducing fuel use in U.S. commercial aviation are discussed. The six NASA programs are divided into three groups: Propulsion - engine component improvement, energy efficient engine, advanced turboprops; Aerodynamics - energy efficient transport, laminar flow control; and Structures - composite primary structures. Schedules, phases, and applications of these programs are considered, and it is suggested that program results will be applied to current transport derivatives in the early 1980s and to all-new aircraft of the late 1980s and early 1990s.

  7. Energy Efficiency for Automotive Instructors.

    ERIC Educational Resources Information Center

    Scharmann, Larry, Ed.; Lay, Gary, Ed.

    Intended primarily but not solely for use at the postsecondary level, this curriculum guide contains six units on energy efficiency that were designed to be incorporated into an existing program in automobile mechanics. The following topics are examined: drivers and public awareness (relationship between driving and fuel consumption); ignition…

  8. Get Started: Energy Efficiency Makes More Sense Than Ever.

    ERIC Educational Resources Information Center

    Alban, Josh; Drabick, J. R.

    2003-01-01

    Describes the benefits of making school building more energy efficient. Provides examples of physical retrofits and behavioral changes to save energy costs. Describes four-step process to create an energy efficiency plan. Includes resources and information such as U.S. Department of Energy's Energy STAR program (www.energystar.gov). (PKP)

  9. Design and control of energy efficient food drying processes with specific reference to quality; Model development and experimental studies: Moisture movement and dryer design

    SciTech Connect

    Kim, M.; Litchfield, B.; Singh, R.; Liang, H.; Narsimhan, G.; Waananen, K.

    1989-08-01

    The ultimate goal of the project is to develop procedures, techniques, data and other information that will aid in the design of cost effective and energy efficient drying processes that produce high quality foods. This objective has been sought by performing studies to determine the pertinent properties of food products, by developing models to describe the fundamental phenomena of food drying and by testing the models at laboratory scale. Finally, this information is used to develop recommendations and strategies for improved dryer design and control. This volume, Model Development and Experimental Studies, emphasizes the direct and indirect drying processes. An extensive literature review identifies key characteristics of drying models including controlling process resistances, internal mechanisms of moisture movement, structural and thermodynamic assumptions, and methods of model coefficients and material property measurement/determination, model solution, and model validation. Similarities and differences between previous work are noted, and strategies for future drying model development are suggested.

  10. Guide to Energy-Efficient Lighting

    SciTech Connect

    2010-10-01

    A fact sheet from the U.S. Department of Energy's Office of Energy Efficiency and Renewable Energy: Lighting accounts for about 15% of an average home’s electricity use, so it pays to make energy-efficient choices.

  11. 7 CFR 1710.255 - Energy efficiency work plans-energy efficiency borrowers.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 11 2014-01-01 2014-01-01 false Energy efficiency work plans-energy efficiency... efficiency work plans—energy efficiency borrowers. (a) All energy efficiency borrowers must maintain a..., replacements, and retirements of energy efficiency related equipment and activities; (b) An energy......

  12. Southern Energy Efficiency Center (SEEC)

    SciTech Connect

    Vieira, Robin; Sonne, Jeffrey; Withers, Charles; Cummings, James; Verdict, Malcolm; Roberts, Sydney

    2009-09-30

    The Southern Energy Efficiency Center (SEEC) builds collaborative partnerships with: state and local governments and their program support offices, the building delivery industry (designers, contractors, realtors and commissioning agents), product manufacturers and their supply chains, utilities and their program implementers, consumers and other stakeholders in order to forge a strong regional network of building energy efficiency allies. Through a project Steering Committee composed of the state energy offices and building industry stakeholders, the SEEC works to establish consensus-based goals, priorities and strategies at the regional, state and local levels that will materially advance the deployment of high-performance “beyond code” buildings. In its first Phase, SEEC will provide limited technical and policy support assistance, training, certification and education to a wide spectrum of the building construction, codes and standards, and the consumer marketplace.

  13. Energy Efficiency and Renewable Energy Program

    NASA Astrophysics Data System (ADS)

    Vaughan, K. H.

    1993-06-01

    The bibliography contains listings of publicly available reports, journal articles, and published conference papers sponsored by the DOE Office of Energy Efficiency and Renewable Energy and published between 1987 and mid-1993. The topics of the bibliography include: analysis and evaluation; building equipment research; building thermal envelope systems and materials; district heating; residential and commercial conservation program; weatherization assistance program; existing buildings research program; ceramic technology project; alternative fuels and propulsion technology; microemulsion fuels; industrial chemical heat pumps; materials for advanced industrial heat exchangers; advanced industrial materials; tribology; energy-related inventions program; electric energy systems; superconducting technology program for electric energy systems; thermal energy storage; biofuels feedstock development; biotechnology; continuous chromatography in multicomponent separations; sensors for electrolytic cells; hydropower environmental mitigation; environmental control technology; and continuous fiber ceramic composite technology.

  14. A novel energy-efficient plasma chemical process for the destruction of volatile toxic compounds. 1997 annual progress report

    SciTech Connect

    Pinnaduwage, L.A.; Ma, C.Y.L.

    1997-09-01

    'The objective of this research program is to develop new plasma chemical processes for the destruction of volatile toxic compounds (VTCs) in contaminated air streams where the contamination levels are below a few percent. The authors plan to exploit the large cross sections associated with dissociative electron attachment to highly excited molecular states. Such highly excited states are to be populated in glow discharges via excitation transfer from high- lying, metastable states of rare gases. Basic knowledge of the excitation transfer processes and the electron attachment processes are crucial to the development of the proposed techniques, and these processes will be studied in detail.'

  15. Guidelines for Energy-Efficient Sustainable Schools.

    ERIC Educational Resources Information Center

    Nicklas, Michael; Bailey, Gary; Rosemain, Pascale; Olin, Samuel

    These guidelines present optional strategies to be considered in designing schools to be more energy efficient and sustainable. The guidelines are organized by the following design and construction process: site selection; selection of A & E design team; programming and goal setting; schematic design; design development; construction documents;…

  16. Infinite efficiency of the collisional Penrose process: Can a overspinning Kerr geometry be the source of ultrahigh-energy cosmic rays and neutrinos?

    NASA Astrophysics Data System (ADS)

    Patil, Mandar; Harada, Tomohiro; Nakao, Ken-ichi; Joshi, Pankaj S.; Kimura, Masashi

    2016-05-01

    The origin of the ultrahigh-energy particles we receive on Earth from outer space such as EeV cosmic rays and PeV neutrinos remains an enigma. All mechanisms known to us currently make use of electromagnetic interaction to accelerate charged particles. In this paper, we propose a mechanism exclusively based on gravity rather than electromagnetic interaction. We show that it is possible to generate ultrahigh-energy particles starting from particles with moderate energies using the collisional Penrose process in an overspinning Kerr spacetime transcending the Kerr bound only by an infinitesimal amount, i.e., with the Kerr parameter a =M (1 +ɛ ) , where we take the limit ɛ →0+. We consider two massive particles starting from rest at infinity that collide at r =M with divergent center-of-mass energy and produce two massless particles. We show that massless particles produced in the collision can escape to infinity with the ultrahigh energies exploiting the collisional Penrose process with the divergent efficiency η ˜1 /√{ɛ }→∞ . Assuming the isotropic emission of massless particles in the center-of-mass frame of the colliding particles, we show that half of the particles created in the collisions escape to infinity with the divergent energies, while the proportion of particles that reach infinity with finite energy is minuscule. To a distant observer, ultrahigh-energy particles appear to originate from a bright spot which is at the angular location ξ ˜2 M /robs with respect to the singularity on the side which is rotating toward the observer. We compute the spectrum of the high-energy massless particles and show that anisotropy in the emission in the center-of-mass frame leaves a distinct signature on its shape. Since the anisotropy is dictated by the differential cross section of the underlying particle physics process, the observation of the spectrum can constrain the particle physics model and serve as a unique probe into fundamental physics at

  17. Solar ADEPT: Efficient Solar Energy Systems

    SciTech Connect

    2011-01-01

    Solar ADEPT Project: The 7 projects that make up ARPA-E's Solar ADEPT program, short for 'Solar Agile Delivery of Electrical Power Technology,' aim to improve the performance of photovoltaic (PV) solar energy systems, which convert the sun's rays into electricity. Solar ADEPT projects are integrating advanced electrical components into PV systems to make the process of converting solar energy to electricity more efficient.

  18. Role of Appraisals in Energy Efficiency Financing

    SciTech Connect

    Doyle, V.; Bhargava, A.

    2012-05-01

    This research identifies barriers and challenges and current industry status including several key appraisal industry developments for identifying and valuing energy efficiency, critical obstacles to documenting and assessing the potential added value from energy efficiency improvements, current opportunities to support and standardize reporting on energy efficiency and to ensure proper valuation, and next steps towards enabling energy efficiency financing market transformation.

  19. Development of an Advanced Deshaling Technology to Improve the Energy Efficiency of Coal Handling, Processing, and Utilization Operations

    SciTech Connect

    Rick Honaker; Gerald Luttrell

    2007-09-30

    The concept of using a dry, density-based separator to achieve efficient, near-face rock removal, commonly referred to as deshaling, was evaluated in several applications across the U.S.. Varying amounts of high-density rock exist in most run-of-mine feed. In the central Appalachian coalfields, a rock content exceeding 50% in the feed to a preparation plant is commonplace due to high amounts of out-of-seam dilution made necessary by extracting coal from thin seams. In the western U.S, an increase in out-of-seam dilution and environmental regulations associated with combustion emissions have resulted in a need to clean low rank coals and dry cleaning may be the only option. A 5 ton/hr mobile deshaling unit incorporating a density-based, air-table technology commercially known as the FGX Separator has been evaluated at mine sites located within the states of Utah, Wyoming, Texas, West Virginia, Virginia, Pennsylvania and Kentucky. The FGX technology utilizes table riffling principles with air as the medium. Air enters through the table and creates a fluidized bed of particles comprised of mostly fine, high density particles. The high density particle bed lifts the low-density coal particles to the top of the bed. The low-density coal moves toward the front of the table due to mass action and the downward slope of the table. The high-density particles settle through the fluidized particle bed and, upon making contact with the table, moves toward the back of the table with the assistance of table vibration. As a result, the low-density coal particles exit the front of the table closest to the feed whereas the high-density, high-ash content particles leave on the side and front of the table located at the farthest from the feed entry. At each test site, the run-of-mine feed was either directly fed to the FGX unit or pre-screened to remove the majority of the -6mm material. The surface moisture of the feed must be maintained below 9%. Pre-screening is required when the

  20. 75 FR 70214 - Renewable Energy and Energy Efficiency Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-17

    ... International Trade Administration Renewable Energy and Energy Efficiency Advisory Committee AGENCY... Renewable Energy and Energy Efficiency Advisory Committee (RE&EEAC) will hold its inaugural meeting to..., Office of Energy and Environmental Technologies Industries (OEEI), International Trade Administration,...

  1. 78 FR 48855 - Renewable Energy and Energy Efficiency Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-12

    ...; ] DEPARTMENT OF COMMERCE International Trade Administration Renewable Energy and Energy Efficiency Advisory... Meeting. SUMMARY: The Renewable Energy and Energy Efficiency Advisory Committee (RE&EEAC) will hold a...: Ryan Mulholland, Office of Energy and Environmental Industries (OEEI), International...

  2. No maintenance -- no energy efficiency

    SciTech Connect

    Szydlowski, R.F.; Schliesing, J.S.; Winiarski, D.W.

    1994-12-01

    Field investigations illustrate that it is not realistic to expect new high-tech equipment to function for a full life expectancy at high efficiency without significant operations and maintenance (O&M). A simple walk through inspection of most buildings reveals extensive equipment that is being operated on manual override, is incorrectly adjusted and operating inefficiently, or is simply inoperative. This point is illustrated with two examples at Robins Air Force Base, Georgia. The first describes development of a comprehensive, base-wide, steam trap maintenance program. The second describes a measured evaluation from a typical office building. The objective of both examples was to assess the importance of proper O&M. The proposed ``O&M First`` philosophy will result in more efficient building HVAC operation, provide improved services to the building occupants, and reduce energy consumption and unscheduled equipment repair/replacement. Implementation of a comprehensive O&M program will result in a 15--25% energy savings. The O&M foundation that is established will allow other energy conservation activities such is demand side management or energy management and control systems, to achieve and maintain their expected energy savings.

  3. A Novel Energy-Efficient Pyrolysis Process: Self-pyrolysis of Oil Shale Triggered by Topochemical Heat in a Horizontal Fixed Bed

    PubMed Central

    Sun, You-Hong; Bai, Feng-Tian; Lü, Xiao-Shu; Li, Qiang; Liu, Yu-Min; Guo, Ming-Yi; Guo, Wei; Liu, Bao-Chang

    2015-01-01

    This paper proposes a novel energy-efficient oil shale pyrolysis process triggered by a topochemical reaction that can be applied in horizontal oil shale formations. The process starts by feeding preheated air to oil shale to initiate a topochemical reaction and the onset of self-pyrolysis. As the temperature in the virgin oil shale increases (to 250–300°C), the hot air can be replaced by ambient-temperature air, allowing heat to be released by internal topochemical reactions to complete the pyrolysis. The propagation of fronts formed in this process, the temperature evolution, and the reaction mechanism of oil shale pyrolysis in porous media are discussed and compared with those in a traditional oxygen-free process. The results show that the self-pyrolysis of oil shale can be achieved with the proposed method without any need for external heat. The results also verify that fractured oil shale may be more suitable for underground retorting. Moreover, the gas and liquid products from this method were characterised, and a highly instrumented experimental device designed specifically for this process is described. This study can serve as a reference for new ideas on oil shale in situ pyrolysis processes. PMID:25656294

  4. A Novel Energy-Efficient Pyrolysis Process: Self-pyrolysis of Oil Shale Triggered by Topochemical Heat in a Horizontal Fixed Bed

    NASA Astrophysics Data System (ADS)

    Sun, You-Hong; Bai, Feng-Tian; Lü, Xiao-Shu; Li, Qiang; Liu, Yu-Min; Guo, Ming-Yi; Guo, Wei; Liu, Bao-Chang

    2015-02-01

    This paper proposes a novel energy-efficient oil shale pyrolysis process triggered by a topochemical reaction that can be applied in horizontal oil shale formations. The process starts by feeding preheated air to oil shale to initiate a topochemical reaction and the onset of self-pyrolysis. As the temperature in the virgin oil shale increases (to 250-300°C), the hot air can be replaced by ambient-temperature air, allowing heat to be released by internal topochemical reactions to complete the pyrolysis. The propagation of fronts formed in this process, the temperature evolution, and the reaction mechanism of oil shale pyrolysis in porous media are discussed and compared with those in a traditional oxygen-free process. The results show that the self-pyrolysis of oil shale can be achieved with the proposed method without any need for external heat. The results also verify that fractured oil shale may be more suitable for underground retorting. Moreover, the gas and liquid products from this method were characterised, and a highly instrumented experimental device designed specifically for this process is described. This study can serve as a reference for new ideas on oil shale in situ pyrolysis processes.

  5. A novel energy-efficient pyrolysis process: self-pyrolysis of oil shale triggered by topochemical heat in a horizontal fixed bed.

    PubMed

    Sun, You-Hong; Bai, Feng-Tian; Lü, Xiao-Shu; Li, Qiang; Liu, Yu-Min; Guo, Ming-Yi; Guo, Wei; Liu, Bao-Chang

    2015-01-01

    This paper proposes a novel energy-efficient oil shale pyrolysis process triggered by a topochemical reaction that can be applied in horizontal oil shale formations. The process starts by feeding preheated air to oil shale to initiate a topochemical reaction and the onset of self-pyrolysis. As the temperature in the virgin oil shale increases (to 250-300°C), the hot air can be replaced by ambient-temperature air, allowing heat to be released by internal topochemical reactions to complete the pyrolysis. The propagation of fronts formed in this process, the temperature evolution, and the reaction mechanism of oil shale pyrolysis in porous media are discussed and compared with those in a traditional oxygen-free process. The results show that the self-pyrolysis of oil shale can be achieved with the proposed method without any need for external heat. The results also verify that fractured oil shale may be more suitable for underground retorting. Moreover, the gas and liquid products from this method were characterised, and a highly instrumented experimental device designed specifically for this process is described. This study can serve as a reference for new ideas on oil shale in situ pyrolysis processes. PMID:25656294

  6. Energy efficiency opportunities in the brewery industry

    SciTech Connect

    Worrell, Ernst; Galitsky, Christina; Martin, Nathan

    2002-06-28

    Breweries in the United States spend annually over $200 Million on energy. Energy consumption is equal to 3-8% of the production costs of beer, making energy efficiency improvement an important way to reduce costs, especially in times of high energy price volatility. After a summary of the beer making process and energy use, we examine energy efficiency opportunities available for breweries. We provide specific primary energy savings for each energy efficiency measure based on case studies that have implemented the measures, as well as references to technical literature. If available, we have also listed typical payback periods. Our findings suggest that there may still be opportunities to reduce energy consumption cost-effectively for breweries. Major brewing companies have and will continue to spend capital on cost effective measures that do not impact the quality of the beer. Further research on the economics of the measures, as well as their applicability to different brewing practices, is needed to assess implementation of selected technologies at individual breweries.

  7. Lighting quality and energy efficiency

    SciTech Connect

    Benya, J.R.

    1996-01-01

    Ten design actions result in good lighting quality if applied intelligently. These actions are to: conceal the light source; provide enough light; relate to the architecture; relate to the human mood; utilize and manage the color of light; utilize and manage contrast; relate to the human being; solve technical problems created by other light sources; relate to the quality of the space; and realize the creative potential of the space. The starting characteristics for energy-efficient lighting include dimming capability, color capabilities, and optical capabilities. The most efficacious light source for the job should be used. This includes daylight, although it is not always reliable. Energy-efficient quality lighting is evident, but to make it persistent, to give it staying power, there must be some changes, such as: minor product improvements; two to a few major product breakthroughs; better education for the designers and specifiers; lower prices for key components and systems; higher value placed on environmental quality; ongoing applications research; doing it right; more industry awards and recoginition for energy-efficient designs; continuation of utility efforts in rebates, education programs, and technology centers; unification of the industry and avoidance of duplication; more positive governmental response and less arbitrary product-oriented legislation until this issue is better understood.

  8. Energy efficiency public service advertising campaign

    SciTech Connect

    Gibson-Grant, Amanda

    2015-06-12

    The Advertising Council (“the Ad Council”) and The United States Department of Energy (DOE) created and launched a national public service advertising campaign designed to promote energy efficiency. The objective of the Energy Efficiency campaign was to redefine how consumers approach energy efficiency by showing that saving energy can save homeowners money.

  9. Effects of steam pretreatment and co-production with ethanol on the energy efficiency and process economics of combined biogas, heat and electricity production from industrial hemp

    PubMed Central

    2013-01-01

    Background The study presented here has used the commercial flow sheeting program Aspen Plus™ to evaluate techno-economic aspects of large-scale hemp-based processes for producing transportation fuels. The co-production of biogas, district heat and power from chopped and steam-pretreated hemp, and the co-production of ethanol, biogas, heat and power from steam-pretreated hemp were analysed. The analyses include assessments of heat demand, energy efficiency and process economics in terms of annual cash flows and minimum biogas and ethanol selling prices (MBSP and MESP). Results Producing biogas, heat and power from chopped hemp has the highest overall energy efficiency, 84% of the theoretical maximum (based on lower heating values), providing that the maximum capacity of district heat is delivered. The combined production of ethanol, biogas, heat and power has the highest energy efficiency (49%) if district heat is not produced. Neither the inclusion of steam pretreatment nor co-production with ethanol has a large impact on the MBSP. Ethanol is more expensive to produce than biogas is, but this is compensated for by its higher market price. None of the scenarios examined are economically viable, since the MBSP (EUR 103–128 per MWh) is higher than the market price of biogas (EUR 67 per MWh). The largest contribution to the cost is the cost of feedstock. Decreasing the retention time in the biogas process for low solids streams by partly replacing continuous stirred tank reactors by high-rate bioreactors decreases the MBSP. Also, recycling part of the liquid from the effluent from anaerobic digestion decreases the MBSP. The production and prices of methane and ethanol influence the process economics more than the production and prices of electricity and district heat. Conclusions To reduce the production cost of ethanol and biogas from biomass, the use of feedstocks that are cheaper than hemp, give higher output of ethanol and biogas, or combined production with

  10. Application of membrane processes to alcohol-water separation: Improving the energy efficiency of biofuel production(Singapore)

    EPA Science Inventory

    The prospect of dwindling oil supplies, concern over the carbon balance of the planet, and the availability of waste and non-waste biomass materials has generated renewed interest in the use of fermentation processes to produce commodity chemicals and fuels. The economics of fer...

  11. Building America Case Study: Apartment Compartmentalization with an Aerosol-Based Sealing Process - Queens, NY; Technology Solutions for New and Existing Homes, Energy Efficiency & Renewable Energy (EERE)

    SciTech Connect

    2015-07-01

    Air sealing of building enclosures is a difficult and time-consuming process. Current methods in new construction require laborers to physically locate small and sometimes large holes in multiple assemblies and then manually seal each of them. The innovation demonstrated under this research study was the automated air sealing and compartmentalization of buildings through the use of an aerosolized sealant, developed by the Western Cooling Efficiency Center at University of California Davis.
    CARB sought to demonstrate this new technology application in a multifamily building in Queens, NY. The effectiveness of the sealing process was evaluated by three methods: air leakage testing of overall apartment before and after sealing, point-source testing of individual leaks, and pressure measurements in the walls of the target apartment during sealing. Aerosolized sealing was successful by several measures in this study. Many individual leaks that are labor-intensive to address separately were well sealed by the aerosol particles. In addition, many diffuse leaks that are difficult to identify and treat were also sealed. The aerosol-based sealing process resulted in an average reduction of 71% in air leakage across three apartments and an average apartment airtightness of 0.08 CFM50/SF of enclosure area.

  12. Cleanroom Energy Efficiency: Metrics and Benchmarks

    SciTech Connect

    International SEMATECH Manufacturing Initiative; Mathew, Paul A.; Tschudi, William; Sartor, Dale; Beasley, James

    2010-07-07

    Cleanrooms are among the most energy-intensive types of facilities. This is primarily due to the cleanliness requirements that result in high airflow rates and system static pressures, as well as process requirements that result in high cooling loads. Various studies have shown that there is a wide range of cleanroom energy efficiencies and that facility managers may not be aware of how energy efficient their cleanroom facility can be relative to other cleanroom facilities with the same cleanliness requirements. Metrics and benchmarks are an effective way to compare one facility to another and to track the performance of a given facility over time. This article presents the key metrics and benchmarks that facility managers can use to assess, track, and manage their cleanroom energy efficiency or to set energy efficiency targets for new construction. These include system-level metrics such as air change rates, air handling W/cfm, and filter pressure drops. Operational data are presented from over 20 different cleanrooms that were benchmarked with these metrics and that are part of the cleanroom benchmark dataset maintained by Lawrence Berkeley National Laboratory (LBNL). Overall production efficiency metrics for cleanrooms in 28 semiconductor manufacturing facilities in the United States and recorded in the Fabs21 database are also presented.

  13. Coeur d'Alene Tribe Energy Efficiency Feasibility Study

    SciTech Connect

    Allgood, Tiffany L.; Sorter, Andy

    2015-01-13

    The Coeur d'Alene Tribe's Energy Efficiency Feasibility Study (EEFS) is the culminating document that compiles the energy efficiency and building performance assessment and project prioritization process completed on 36 Tribally owned and operated facilities within Tribal lands. The EEFS contains sections on initial findings, utility billing analyses, energy conservation measures and prioritization and funding sources and strategies for energy project implementation.

  14. Emerging energy-efficient industrial technologies

    SciTech Connect

    Martin, N.; Worrell, E.; Ruth, M.; Price, L.; Elliott, R.N.; Shipley, A.M.; Thorne, J.

    2000-10-01

    U.S. industry consumes approximately 37 percent of the nation's energy to produce 24 percent of the nation's GDP. Increasingly, industry is confronted with the challenge of moving toward a cleaner, more sustainable path of production and consumption, while increasing global competitiveness. Technology will be essential for meeting these challenges. At some point, businesses are faced with investment in new capital stock. At this decision point, new and emerging technologies compete for capital investment alongside more established or mature technologies. Understanding the dynamics of the decision-making process is important to perceive what drives technology change and the overall effect on industrial energy use. The assessment of emerging energy-efficient industrial technologies can be useful for: (1) identifying R&D projects; (2) identifying potential technologies for market transformation activities; (3) providing common information on technologies to a broad audience of policy-makers; and (4) offering new insights into technology development and energy efficiency potentials. With the support of PG&E Co., NYSERDA, DOE, EPA, NEEA, and the Iowa Energy Center, staff from LBNL and ACEEE produced this assessment of emerging energy-efficient industrial technologies. The goal was to collect information on a broad array of potentially significant emerging energy-efficient industrial technologies and carefully characterize a sub-group of approximately 50 key technologies. Our use of the term ''emerging'' denotes technologies that are both pre-commercial but near commercialization, and technologies that have already entered the market but have less than 5 percent of current market share. We also have chosen technologies that are energy-efficient (i.e., use less energy than existing technologies and practices to produce the same product), and may have additional ''non-energy benefits.'' These benefits are as important (if not more important in many cases) in influencing

  15. Energy, energy efficiency, and the built environment.

    PubMed

    Wilkinson, Paul; Smith, Kirk R; Beevers, Sean; Tonne, Cathryn; Oreszczyn, Tadj

    2007-09-29

    Since the last decades of the 19th century, technological advances have brought substantial improvements in the efficiency with which energy can be exploited to service human needs. That trend has been accompanied by an equally notable increase in energy consumption, which strongly correlates with socioeconomic development. Nonetheless, feasible gains in the efficiency and technology of energy use in towns and cities and in homes have the potential to contribute to the mitigation of greenhouse-gas emissions, and to improve health, for example, through protection against temperature-related morbidity and mortality, and the alleviation of fuel poverty. A shift towards renewable energy production would also put increasing focus on cleaner energy carriers, especially electricity, but possibly also hydrogen, which would have benefits to urban air quality. In low-income countries, a vital priority remains the dissemination of affordable technology to alleviate the burdens of indoor air pollution and other health effects in individuals obliged to rely on biomass fuels for cooking and heating, as well as the improvement in access to electricity, which would have many benefits to health and wellbeing. PMID:17868820

  16. Optical Features of Efficient Europium(III) Complexes with β-Diketonato and Auxiliary Ligands and Mechanistic Investigation of Energy Transfer Process.

    PubMed

    Bala, Manju; Kumar, Satish; Taxak, V B; Boora, Priti; Khatkar, S P

    2016-09-01

    Two new europium (III) complexes have been synthesized with 1,3-[bis(4-methoxyphenyl)]propane-1,3-dionato (HBMPD) as main ligand and 2,2'-bipyridyl (bipy) or 1,10-phenanthroline (phen) as an auxiliary ligand. The main ligand HBMPD has been synthesized by ecofriendly microwave approach and complexes by solution precipitation method. The resulting materials are characterized by IR, (1)H-NMR, elemental analysis, X-ray diffraction, UV-visible and TG-DTG techniques. The photoluminescence (PL) spectroscopy depicts the detail analysis of photophysical properties of the complexes, their results show that the ligand interact with Eu (III) ion which act as antenna and transfers the absorbed energy to the central europium(III) ion via sensitization process efficiently. As a consequence of this interaction, these materials exhibit excellent luminescent intensity, long decay time (τ), high quantum efficiency (η) and Judd-Ofelt intensity parameter (Ω2). The CIE coordinates fall under the deep red region, matching well with the NTSC (National Television Standard Committee) standard. Hence, these highly efficient optical materials can be used as a red component in organic light emitting diodes (OLEDs) and full color flat panel displays. PMID:27444962

  17. Energy Efficiency Through Lighting Upgrades

    SciTech Connect

    Berst, Kara; Howeth, Maria

    2013-02-26

    Lighting upgrades including neon to LED, incandescent to CFL's and T-12 to T-8 and T-5's were completed through this grant. A total of 16 Chickasaw nation facilities decreased their carbon footprint because of these grant funds. Calculations used were based on comparing the energy usage from the previous year's average and the current energy usage. For facilities without a full year's set of energy bills, the month after installation was compared to the same month from the previous year. Overall, the effect the lighting change-outs had for the gaming centers and casinos far exceeded expectations. For the Madill Gaming Center; both an interior and exterior upgrade was performed which resulted in a 31% decrease in energy consumption. This same reduction was seen in every facility that participated in the grant. Just by simply changing out light bulbs to newer energy efficient equivalents, a decrease in energy usage can be achieved and this was validated by the return on investment seen at Chickasaw Nation facilities. Along with the technical project tasks were awareness sessions presented at Chickasaw Head Starts. The positive message of environmental stewardship was passed down to head start students and passed along to Chickasaw employees. Excitement was created in those that learned what they could do to help reduce their energy bills and many followed through and took the idea home. For a fairy low cost, the general public can also use this technique to lower their energy consumption both at home and at work. Although the idea behind the project was somewhat simple, true benefits have been gained through environmental awareness and reductions of energy costs.

  18. Standard Energy Efficiency Data Platform

    Energy Science and Technology Software Center (ESTSC)

    2014-07-15

    The SEED platform is expected to be a building energy performance data management tool that provides federal, state and local governments, building owners and operators with an easy, flexible and cost-effective method to collect information about groups of buildings, oversee compliance with energy disclosure laws and demonstrate the economic and environmental benefits of energy efficiency. It will allow users to leverage a local application to manage data disclosure and large data sets without the ITmore » investment of developing custom applications. The first users of SEED will be agencies that need to collect, store, and report/share large data sets generated by benchmarking, energy auditing, retro-commissioning or retrofitting of many buildings. Similarly, building owners and operators will use SEED to manage their own energy data in a common format and centralized location. SEED users will also control the disclosure of their information for compliance requirements, recognition programs such as ENERGY STAR, or data sharing with the Buildings Performance Database and/or other third parties at their discretion.« less

  19. Friction Stir Processing for Efficient Manufacturing

    SciTech Connect

    Mr. Christopher B. Smith; Dr. Oyelayo Ajayi

    2012-01-31

    Friction at contacting surfaces in relative motion is a major source of parasitic energy loss in machine systems and manufacturing processes. Consequently, friction reduction usually translates to efficiency gain and reduction in energy consumption. Furthermore, friction at surfaces eventually leads to wear and failure of the components thereby compromising reliability and durability. In order to reduce friction and wear in tribological components, material surfaces are often hardened by a variety of methods, including conventional heat treatment, laser surface hardening, and thin-film coatings. While these surface treatments are effective when used in conjunction with lubrication to prevent failure, they are all energy intensive and could potentially add significant cost. A new concept for surface hardening of metallic materials and components is Friction Stir Processing (FSP). Compared to the current surface hardening technologies, FSP is more energy efficient has no emission or waste by products and may result in better tribological performance. FSP involves plunging a rotating tool to a predetermined depth (case layer thickness) and translating the FSP tool along the area to be processed. This action of the tool produces heating and severe plastic deformation of the processed area. For steel the temperature is high enough to cause phase transformation, ultimately forming hard martensitic phase. Indeed, FSP has been used for surface modification of several metals and alloys so as to homogenize the microstructure and refine the grain size, both of which led to improved fatigue and corrosion resistance. Based on the effect of FSP on near-surface layer material, it was expected to have beneficial effects on friction and wear performance of metallic materials. However, little or no knowledge existed on the impact of FSP concerning friction and wear performance the subject of the this project and final report. Specifically for steel, which is the most dominant

  20. Membrane-controlled processes for the energy-efficient conversion of sludges to fuels and marketable chemicals

    SciTech Connect

    1982-03-01

    Studies were carried out on the concentration of primary and secondary sludges by ultrafiltration, and the operation of a membrane-assisted anaerobic digester to treat these sludges. Auxiliary devices including water-spilling and membrane solvent extraction were tested for their feasibility in the ehhancement of digester operations and the recovery of valuable byproducts. It was shown that membrane-facilitated digestion can increase the rate of these processes by a factor of ten, together with a substantial decrease in the amount going to waste, and with the ultrafiltration permeate containing appreciable concentrations of valuable byproducts which could be concentrated and recovered using a combination of other membrane technologies. The utility of electrodialytic water-splitting and membrane solvent extraction was demonstrated. All of this was accomplished with a small three-liter bench-scale digester, the operation of which presented many problems because of its very small size and the difficulty in handling real sewage sludges.

  1. Industrial energy efficiency opportunities in Ukraine

    SciTech Connect

    Somasundaram, S.; Parker, S.; Evans, M.; Brown, D.

    1999-07-01

    As part of the energy assistance program to help Ukraine shut down the Chornobyl nuclear reactors, The US Department of Energy (DOE) asked the Pacific Northwest National Laboratory (PNNL) to identify and appraise industrial energy efficiency projects in Ukraine. The industrial sector currently accounts for over 60% of Ukraine's energy consumption. Most industrial enterprises in Ukraine use energy very inefficiently because the former Communist system provided few incentives to conserve energy or even account for its cost. Since 1994, however, the country's energy prices have risen close to world levels, and Ukraine finds itself saddled with very high energy costs. The Ukrainian Government is also under pressure to lower natural gas imports and reduce the country's trade imbalance with Russia. As a result, incentives to save energy in Ukraine are now great, and the market for energy efficiency products is growing. The Ukrainian Government estimates that this market will generate from $700 million to $1 billion worth of new product sales by the year 2000. However, few industrial enterprises have the money necessary for large-scale energy efficiency improvements. Therefore, one of the main goals of this project is to help the most promising enterprises obtain financing for energy efficiency projects form a variety of financial institutions, or through new, creative financing mechanisms. The project has involved several site visits to different industrial plants in Ukraine to gather preliminary data on the facilities. Most of these plants are in the process of being privatized or have been recently privatized and are financially sound. Among the plants visited have been a glass manufacturing plant, a coke-chemical plant, a paper mill, an alumina plant, a tire factory, a food processing plant, an iron mine, a metallurgical firm, and a steel cable factory. Following a preliminary analysis of the site-specific data obtained during the first visit, a limited number of

  2. The energy efficient engine project

    NASA Technical Reports Server (NTRS)

    Macioce, L. E.; Schaefer, J. W.; Saunders, N. T.

    1980-01-01

    The Energy Efficient Engine Project is directed at providing, by 1984, the advanced technologies which could be used for a generation of fuel conservative turbofan engines. The project is conducted through contracts with the General Electric Company and Pratt and Whitney Aircraft. The scope of the entire project and the current status of these efforts are summarized. A description of the preliminary designs of the fully developed engines is included and the potential benefits of these advanced engines, as well as highlights of some of the component technology efforts conducted to date, are discussed.

  3. Design for energy efficiency: Energy efficient industrialized housing research program. Progress report

    SciTech Connect

    Kellett, R.; Berg, R.; Paz, A.; Brown, G.Z.

    1991-03-01

    Since 1989, the U.S. Department of Energy has sponsored the Energy Efficient Industrialized Housing research program (EEIH) to improve the energy efficiency of industrialized housing. Two research centers share responsibility for this program: The Center for Housing Innovation at the University of Oregon and the Florida Solar Energy Center, a research institute of the University of Central Florida. Additional funding is provided through the participation of private industry, state governments and utilities. The program is guided by a steering committee comprised of industry and government representatives. This report summarizes Fiscal Year (FY) 1990 activities and progress, and proposed activities for FY 1991 in Task 2.1 Design for Energy Efficiency. This task establishes a vision of energy conservation opportunities in critical regions, market segments, climate zones and manufacturing strategies significant to industrialized housing in the 21st Century. In early FY 1990, four problem statements were developed to define future housing demand scenarios inclusive of issues of energy efficiency, housing design and manufacturing. Literature surveys were completed to assess seven areas of influence for industrialized housing and energy conservation in the future. Fifty-five future trends were identified in computing and design process; manufacturing process; construction materials, components and systems; energy and environment; demographic context; economic context; and planning policy and regulatory context.

  4. Setting the Standard for Industrial Energy Efficiency

    SciTech Connect

    McKane, Aimee; Williams, Robert; Perry, Wayne; Li, Tienan

    2007-06-01

    Industrial motor-driven systems use more than 2194 billionkWh annually on a global basis and offer one of the largest opportunitiesfor energy savings.1 The International Energy Agency estimates thatoptimization of motor driven systems could reduce global electricitydemand by 7 percent through the application of commercially availabletechnologies and using well-tested engineering practices. Yet manyindustrial firms remain either unaware of or unable to achieve theseenergy savings. The same factors that make it so challenging to achieveand sustain energy efficiency in motor-driven systems (complexity,frequent changes) apply to the production processes that they support.Yet production processes typically operate within a narrow band ofacceptable performance. These processes are frequently incorporated intoISO 9000/14000 quality and environmental management systems, whichrequire regular, independent audits to maintain ISO certification, anattractive value for international trade. It is our contention that acritical step in achieving and sustaining energy efficiency ofmotor-driven systems specifically, and industrial energy efficiencygenerally, is the adoption of a corporate energy management standard thatis consistent with current industrial quality and environmentalmanagement systems such as ISO. Several energy management standardscurrently exist (US, Denmark, Ireland, Sweden) and specifications(Germany, Netherlands) others are planned (China, Spain, Brazil, Korea).This paper presents the current status of energy management standardsdevelopment internationally, including an analysis of their sharedfeatures and differences, in terms of content, promulgation, andimplementation. The purpose of the analysis is to describe the currentstate of "best practices" for this emerging area of energy efficiencypolicymaking and tosuggest next steps toward the creation of a trulyinternational energy management standard that is consistent with the ISOprinciples of measurement

  5. 78 FR 78340 - Renewable Energy and Energy Efficiency Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-26

    ... International Trade Administration Renewable Energy and Energy Efficiency Advisory Committee AGENCY... Renewable Energy and Energy Efficiency Advisory Committee (RE&EEAC) will meet via conference call on January... renewable energy and energy efficiency (RE&EE) products and services. DATES: January 23, 2014, from 2:00...

  6. 76 FR 44576 - Renewable Energy and Energy Efficiency Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-26

    ... International Trade Administration Renewable Energy and Energy Efficiency Advisory Committee AGENCY: U.S... Renewable Energy and Energy Efficiency Advisory Committee (RE&EEAC) will meet via conference call to... expand the competitiveness of the U.S. renewable energy and energy efficiency industries,...

  7. The energy efficient industrialized housing research program

    SciTech Connect

    Brown, G.Z.

    1990-01-01

    The United states housing industry is undergoing a metamorphosis from hand built to factory built products. Virtually all new housing incorporates manufactured components; indeed, an increasing percentage is totally assembled in a factory. The factory-built process offers the promise of houses that are more energy efficient, of higher quality, and less costly. To ensure that this promise can be met, the US industry must begin to develop and use new technologies, new design strategies, and new industrial processes. However, the current fragmentation of the industry makes research by individual companies prohibitively expensive, and retards innovation. This research program addresses the need to increase the energy efficiency of industrialized housing. Two research centers have responsibility for the program: the Center for Housing Innovation at the University of Oregon and the Florida Solar Energy Center, a research institute of the University of Central Florida. The two organizations provide complementary architectural, systems engineering, and industrial engineering capabilities. In 1989 we worked on these tasks: the formation of a steering committee; the development of a multiyear research plan; analysis of the US industrialized housing industry; assessment of foreign technology; assessment of industrial applications; analysis of computerized design and evaluation tools; and assessment of energy performance of baseline and advanced industrialized housing concepts. Our goal is to develop techniques to produce marketable industrialized housing that is 25% more energy efficient that the most stringent US residential codes now require, and that costs less. Energy efficiency is the focus of the research, but it is viewed in the context of production and design. 63 refs.

  8. Process energy management

    SciTech Connect

    1994-12-31

    In many facilities, energy management is simply a matter of managing the energy required for lighting and space conditioning. In many others, however, energy management is much more complex and involves large motors and controls, industrial insulation, complex combustion monitoring, unique steam distribution problems, significant amounts of waste heat, etc. Typical facilities offering large energy management opportunities include industrial facilities, large office and commercial operations, government institutions such as schools, hospitals and prisons. Such facilities generally have specialized industrial, commercial or institutional processes that incorporate many of the concepts covered in other chapters. These processes require thorough analytical evaluations to determine the appropriate energy-saving measures. This chapter provides some examples. In this chapter the authors present a suggested procedure for process energy improvement. Then, motors and controls are discussed since they form an integral part of most processes. Next, some sample case studies of process energy management opportunities are provided. Finally, the authors outline some common process activities where better energy management can be practiced. Air compressors are also discussed.

  9. California Industrial Energy Efficiency Potential

    SciTech Connect

    Coito, Fred; Worrell, Ernst; Price, Lynn; Masanet, Eric; RafaelFriedmann; Rufo, Mike

    2005-06-01

    This paper presents an overview of the modeling approach andhighlights key findings of a California industrial energy efficiencypotential study. In addition to providing estimates of technical andeconomic potential, the study examines achievable program potential undervarious program-funding scenarios. The focus is on electricity andnatural gas savings for manufacturing in the service territories ofCalifornia's investor-owned utilities (IOUs). The assessment is conductedby industry type and by end use. Both crosscutting technologies andindustry-specific process measures are examined. Measure penetration intothe marketplace is modeled as a function of customer awareness, measurecost effectiveness, and perceived market barriers. Data for the studycomes from a variety of sources, including: utility billing records, theEnergy Information Association (EIA) Manufacturing Energy ConsumptionSurvey (MECS), state-sponsored avoided cost studies, energy efficiencyprogram filings, and technology savings and cost data developed throughLawrence Berkeley National Laboratory (LBNL). The study identifies 1,706GWh and 47 Mth (million therms) per year of achievable potential over thenext twelve years under recent levels of program expenditures, accountingfor 5.2 percent of industrial electricity consumption and 1.3 percent ofindustrial natural gas consumption. These estimates grow to 2,748 GWh and192 Mth per year if all cost-effective and achievable opportunities arepursued. Key industrial electricity end uses, in terms of energy savingspotential, include compressed air and pumping systems that combine toaccount for about half of the total achievable potential estimates. Fornatural gas, savings are concentrated in the boiler and process heatingend uses, accounting for over 99 percent to total achievablepotential.

  10. Teaching the Fundamentals of Energy Efficiency

    NASA Astrophysics Data System (ADS)

    Meier, Alan

    2010-02-01

    A course on energy efficiency is a surprisingly valuable complement to a student's education in physics and many other disciplines. The Univ. of California, Davis, offers a 1-quarter course on ``understanding the other side of the meter.'' Lectures begin by giving students a demand-side perspective on how, where, and why energy is used. Students measure energy use of appliances in their homes and then report results. This gives students a practical sense of the difference between energy and power and learn how appliances transform energy into useful services. Lectures introduce the types of direct conservation measures--reducing demand, reducing fixed consumptions, and increasing efficiency. Practical examples draw upon simple concepts in heat transfer, thermodynamics, and mechanics. Graphical techniques, strengthened through problem sets, explain the interdependence of conservation measures. Lectures then examine indirect energy savings from measures and consider questions like ``where can one achieve the greatest fuel savings in a car by removing one gram of mass?'' Finally, students learn about conservation measures that circumvent physical limits by adopting new processes. By the end of the course, students have a gained a new perspective on energy consumption and the opportunities to reduce it. )

  11. Ecosystem processes at the watershed scale: Geomorphic patterns and stability of forest catchment water, energy and nitrogen use efficiency in the southern Appalachians

    NASA Astrophysics Data System (ADS)

    Band, L. E.; Hwang, T.; Hales, T. C.; Ford, C. R.

    2012-12-01

    Since the classic work by Hack in Goodlett in 1960, it has been recognized that there is a close coupling of geomorphic, forest ecosystem and soil development in humid mountainous catchments, with the magnitude and frequency of mass wasting events. In the southern Appalachians of the southeast United States, dense forest cover limits erosion and sediment transport during moderate events in undisturbed catchments, with most sediment delivery to streams by mass wasting processes, including the interaction of diffusive processes (soil creep) and debris avalanches. We hypothesize that debris avalanches are frequently triggered in a zone with moderate concavity at the head or just above hollows where a critical combination of sufficient gradient, colluvial soil accumulation, storm throughflow convergence and canopy root strength are achieved. The forest ecosystem adjusts patterns of foliar and root biomass in response to accessible light, water and nutrient resources, which are in turn conditioned by hydroclimate and geomorphically mediated flowpath and transport dynamics. Long term adjustment of drainage network form and density by colluvial and fluvial transport mass budgets provide slowly varying boundary conditions to hillslope hydrologic and geomorphic dynamics. We use a combination of detailed empirical observations and simulation modeling of coupled ecosystem, hydroclimate and geomorphic systems to derive the co-evolution of patterns of forest catchment water, energy and nutrient use efficiency, and the stability and response catchment form to long and short term climate perturbations.

  12. Improving Energy Efficiency in CNC Machining

    NASA Astrophysics Data System (ADS)

    Pavanaskar, Sushrut S.

    We present our work on analyzing and improving the energy efficiency of multi-axis CNC milling process. Due to the differences in energy consumption behavior, we treat 3- and 5-axis CNC machines separately in our work. For 3-axis CNC machines, we first propose an energy model that estimates the energy requirement for machining a component on a specified 3-axis CNC milling machine. Our model makes machine-specific predictions of energy requirements while also considering the geometric aspects of the machining toolpath. Our model - and the associated software tool - facilitate direct comparison of various alternative toolpath strategies based on their energy-consumption performance. Further, we identify key factors in toolpath planning that affect energy consumption in CNC machining. We then use this knowledge to propose and demonstrate a novel toolpath planning strategy that may be used to generate new toolpaths that are inherently energy-efficient, inspired by research on digital micrography -- a form of computational art. For 5-axis CNC machines, the process planning problem consists of several sub-problems that researchers have traditionally solved separately to obtain an approximate solution. After illustrating the need to solve all sub-problems simultaneously for a truly optimal solution, we propose a unified formulation based on configuration space theory. We apply our formulation to solve a problem variant that retains key characteristics of the full problem but has lower dimensionality, allowing visualization in 2D. Given the complexity of the full 5-axis toolpath planning problem, our unified formulation represents an important step towards obtaining a truly optimal solution. With this work on the two types of CNC machines, we demonstrate that without changing the current infrastructure or business practices, machine-specific, geometry-based, customized toolpath planning can save energy in CNC machining.

  13. High Energy Efficiency Air Conditioning

    SciTech Connect

    Edward McCullough; Patrick Dhooge; Jonathan Nimitz

    2003-12-31

    This project determined the performance of a new high efficiency refrigerant, Ikon B, in a residential air conditioner designed to use R-22. The refrigerant R-22, used in residential and small commercial air conditioners, is being phased out of production in developed countries beginning this year because of concerns regarding its ozone depletion potential. Although a replacement refrigerant, R-410A, is available, it operates at much higher pressure than R-22 and requires new equipment. R-22 air conditioners will continue to be in use for many years to come. Air conditioning is a large part of expensive summer peak power use in many parts of the U.S. Previous testing and computer simulations of Ikon B indicated that it would have 20 - 25% higher coefficient of performance (COP, the amount of cooling obtained per energy used) than R-22 in an air-cooled air conditioner. In this project, a typical new R-22 residential air conditioner was obtained, installed in a large environmental chamber, instrumented, and run both with its original charge of R-22 and then with Ikon B. In the environmental chamber, controlled temperature and humidity could be maintained to obtain repeatable and comparable energy use results. Tests with Ikon B included runs with and without a power controller, and an extended run for several months with subsequent analyses to check compatibility of Ikon B with the air conditioner materials and lubricant. Baseline energy use of the air conditioner with its original R-22 charge was measured at 90 deg F and 100 deg F. After changeover to Ikon B and a larger expansion orifice, energy use was measured at 90 deg F and 100 deg F. Ikon B proved to have about 19% higher COP at 90 deg F and about 26% higher COP at 100 deg F versus R-22. Ikon B had about 20% lower cooling capacity at 90 deg F and about 17% lower cooling capacity at 100 deg F versus R-22 in this system. All results over multiple runs were within 1% relative standard deviation (RSD). All of these

  14. Energy Efficient Industrialized Housing Research Program

    SciTech Connect

    Not Available

    1992-03-01

    Six area reported progress in the Energy Efficient Industrialized Housing Research Program during FY 1991. As part of Industry Guidance, meetings were held with steering and technical committees in computers, housing design and manufacturing. This task area enables the program to benefit from the expertise of industry representatives and communicate research results directly to them. As part of the Design Process performance specifications were being developed for the future housing system designed last year. These house designs coordinate and optimize predicted and desirable advances in computerized design processes, materials, components, and manufacturing automation to achieve energy efficiency at reduced first cost. Energy design software were being developed for CAD systems, stressed skin insulating core panel manufacturers; and a prototype energy sales tool. A prototype design was to be developed to integrate one or more subsystems with the building skin. As part of the Manufacturing Process we are developing a manufacturing process simulation and data base to help current and new entrants to the industrialized housing industry in assessing the impact of implementing new manufacturing techniques. For Evaluation we are developing testing plans for six units of housing on the UO campus and the stressed skin insulating core house to be constructed in Oregon. The DOW Chemical test structure will be retrofitted with a tile roof and retested to compare to the dome and conventional construction structures. Calibration of the wind tunnel will be completed so that laboratory tests can be conducted to simulate the ventilation cooling efficiency of houses in design. Research utilization and program management were either aspects of this program.

  15. Industrial energy efficiency policy in China

    SciTech Connect

    Price, Lynn; Worrell, Ernst; Sinton, Jonathan; Yun, Jiang

    2001-05-01

    Chinese industrial sector energy-efficiency policy has gone through a number of distinct phases since the founding of the People s Republic in 1949. An initial period of energy supply growth in the 1950s, 1960s, and 1970s was followed by implementation of significant energy efficiency programs in the 1980s. Many of these programs were dismantled in the 1990s during the continuing move towards a market-based economy. In an effort to once again strengthen energy efficiency, the Chinese government passes the Energy Conservation Law in 1997 which provides broad guidance for the establishment of energy efficiency policies. Article 20 of the Energy Conservation Law requires substantial improvement in industrial energy efficiency in the key energy-consuming industrial facilities in China. This portion of the Law declares that ''the State will enhance energy conservation management in key energy consuming entities.'' In 1999, the industrial sector consumed nearly 30 EJ, or 76 percent of China's primary energy. Even though primary energy consumption has dropped dramatically in recent years, due mostly to a decline in coal consumption, the Chinese government is still actively developing an overall policy for energy efficiency in the industrial sector modeled after policies in a number of industrialized countries. This paper will describe recent Chinese government activities to develop industrial sector energy-efficiency targets as a ''market-based'' mechanism for improving the energy efficiency of key industrial facilities.

  16. Power Measurement Methods for Energy Efficient Applications

    PubMed Central

    Calandrini, Guilherme; Gardel, Alfredo; Bravo, Ignacio; Revenga, Pedro; Lázaro, José L.; Toledo-Moreo, F. Javier

    2013-01-01

    Energy consumption constraints on computing systems are more important than ever. Maintenance costs for high performance systems are limiting the applicability of processing devices with large dissipation power. New solutions are needed to increase both the computation capability and the power efficiency. Moreover, energy efficient applications should balance performance vs. consumption. Therefore power data of components are important. This work presents the most remarkable alternatives to measure the power consumption of different types of computing systems, describing the advantages and limitations of available power measurement systems. Finally, a methodology is proposed to select the right power consumption measurement system taking into account precision of the measure, scalability and controllability of the acquisition system. PMID:23778191

  17. Assessment of Selected Energy Efficiency Policies

    EIA Publications

    2005-01-01

    This report responds to a request from Senator Byron L. Dorgan, asking the Energy Information Administration (EIA) to undertake a quantitative analysis of a variety of energy efficiency policies using assumptions provided by the Alliance to Save Energy (ASE).

  18. State-Level Benefits of Energy Efficiency

    SciTech Connect

    Tonn, Bruce Edward

    2007-02-01

    This report describes benefits attributable to state-level energy efficiency programs. Nationwide, state-level energy efficiency programs have targeted all sectors of the economy and have employed a wide range of methods to promote energy efficiency. Standard residential and industrial programs typically identify between 20 to 30% energy savings in homes and plants, respectively. Over a 20 year period of time, an average state that aggressively pursues even a limited array of energy efficiency programs can potentially reduce total state energy use by as much as 20%. Benefit-cost ratios of effective energy efficiency programs typically exceed 3 to 1 and are much higher when non-energy and macroeconomic benefits are included. Indeed, energy efficiency and associated programs and investments can create significant numbers of new jobs and enhance state tax revenues. Several states have incorporated energy efficiency into their economic development programs. It should also be noted that increasing amounts of venture capital are being invested in the energy sector in general and in specific technologies like solar power in particular. Well-designed energy efficiency programs can be expected to help overcome numerous barriers to the market penetration of energy efficient technologies and accelerate the market penetration of the technologies.

  19. 77 FR 64112 - Office of Energy Efficiency and Renewable Energy

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-18

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Office of Energy Efficiency and Renewable Energy Nationwide Categorical Waivers of the American Recovery and Reinvestment Act AGENCY: Office of Energy Efficiency and Renewable Energy, U.S. Department of Energy...

  20. Energy Efficiency in India: Challenges and Initiatives

    ScienceCinema

    Ajay Mathur

    2010-09-01

    May 13, 2010 EETD Distinguished Lecture: Ajay Mathur is Director General of the Bureau of Energy Efficiency, and a member of the Prime Minister's Council on Climate Change. As Director General of BEE, Dr. Mathur coordinates the national energy efficiency programme, including the standards and labeling programme for equipment and appliances; the energy conservation building code; the industrial energy efficiency programme, and the DSM programmes in the buildings, lighting, and municipal sectors.

  1. Energy Efficiency in India: Challenges and Initiatives

    SciTech Connect

    Ajay Mathur

    2010-05-20

    May 13, 2010 EETD Distinguished Lecture: Ajay Mathur is Director General of the Bureau of Energy Efficiency, and a member of the Prime Minister's Council on Climate Change. As Director General of BEE, Dr. Mathur coordinates the national energy efficiency programme, including the standards and labeling programme for equipment and appliances; the energy conservation building code; the industrial energy efficiency programme, and the DSM programmes in the buildings, lighting, and municipal sectors.

  2. Optimization of the Energy Level Alignment between the Photoactive Layer and the Cathode Contact Utilizing Solution-Processed Hafnium Acetylacetonate as Buffer Layer for Efficient Polymer Solar Cells.

    PubMed

    Yu, Lu; Li, Qiuxiang; Shi, Zhenzhen; Liu, Hao; Wang, Yaping; Wang, Fuzhi; Zhang, Bing; Dai, Songyuan; Lin, Jun; Tan, Zhan'ao

    2016-01-13

    The insertion of an appropriate interfacial buffer layer between the photoactive layer and the contact electrodes makes a great impact on the performance of polymer solar cells (PSCs). Ideal interfacial buffer layers could minimize the interfacial traps and the interfacial barriers caused by the incompatibility between the photoactive layer and the electrodes. In this work, we utilized solution-processed hafnium(IV) acetylacetonate (Hf(acac)4) as an effective cathode buffer layer (CBL) in PSCs to optimize the energy level alignment between the photoactive layer and the cathode contact, with the short-circuit current density (Jsc), open-circuit voltage (Voc), and fill factor (FF) all simultaneously improved with Hf(acac)4 CBL, leading to enhanced power conversion efficiencies (PCEs). Ultraviolet photoemission spectroscopy (UPS) and scanning Kelvin probe microscopy (SKPM) were performed to confirm that the interfacial dipoles were formed with the same orientation direction as the built-in potential between the photoactive layer and Hf(acac)4 CBL, benefiting the exciton separation and electron transport/extraction. In addition, the optical characteristics and surface morphology of the Hf(acac)4 CBL were also investigated. PMID:26684416

  3. Energy Efficient Electronics Cooling Project

    SciTech Connect

    Steve O'Shaughnessey; Tim Louvar; Mike Trumbower; Jessica Hunnicutt; Neil Myers

    2012-02-17

    Parker Precision Cooling Business Unit was awarded a Department of Energy grant (DE-EE0000412) to support the DOE-ITP goal of reducing industrial energy intensity and GHG emissions. The project proposed by Precision Cooling was to accelerate the development of a cooling technology for high heat generating electronics components. These components are specifically related to power electronics found in power drives focused on the inverter, converter and transformer modules. The proposed cooling system was expected to simultaneously remove heat from all three of the major modules listed above, while remaining dielectric under all operating conditions. Development of the cooling system to meet specific customer's requirements and constraints not only required a robust system design, but also new components to support long system functionality. Components requiring further development and testing during this project included pumps, fluid couplings, cold plates and condensers. All four of these major categories of components are required in every Precision Cooling system. Not only was design a key area of focus, but the process for manufacturing these components had to be determined and proven through the system development.

  4. Indian Renewable Energy and Energy Efficiency Policy Database (Fact Sheet)

    SciTech Connect

    Bushe, S.

    2013-09-01

    This fact sheet provides an overview of the Indian Renewable Energy and Energy Efficiency Policy Database (IREEED) developed in collaboration by the United States Department of Energy and India's Ministry of New and Renewable Energy. IREEED provides succinct summaries of India's central and state government policies and incentives related to renewable energy and energy efficiency. The online, public database was developed under the U.S.- India Energy Dialogue and the Clean Energy Solution Center.

  5. 77 FR 32531 - Renewable Energy and Energy Efficiency Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-01

    ... International Trade Administration Renewable Energy and Energy Efficiency Advisory Committee AGENCY... Renewable Energy and Energy Efficiency Advisory Committee (RE&EEAC) will hold a meeting to deliver a letter... administration of programs and policies to enhance the competitiveness of the U.S. renewable energy and...

  6. 77 FR 23224 - Renewable Energy and Energy Efficiency Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-18

    ... International Trade Administration Renewable Energy and Energy Efficiency Advisory Committee AGENCY... Renewable Energy and Energy Efficiency Advisory Committee (RE&EEAC) will meet via conference call on May 2... Trade Subcommittees that address issues affecting U.S. competitiveness in exporting renewable energy...

  7. 76 FR 26695 - Renewable Energy and Energy Efficiency Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-09

    ... International Trade Administration Renewable Energy and Energy Efficiency Advisory Committee AGENCY... Renewable Energy and Energy Efficiency Advisory Committee (RE&EEAC) will meet to hear briefings on the state of renewable energy finance and to discuss the development of recommendations on increasing...

  8. 78 FR 2952 - Renewable Energy and Energy Efficiency Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-15

    ... International Trade Administration Renewable Energy and Energy Efficiency Advisory Committee AGENCY... Renewable Energy and Energy Efficiency Advisory Committee (RE&EEAC) will hold its inaugural meeting under... expected to develop recommendations on improving the competitiveness of U.S. renewable energy and...

  9. 76 FR 7815 - Renewable Energy and Energy Efficiency Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-11

    ... International Trade Administration Renewable Energy and Energy Efficiency Advisory Committee AGENCY... Renewable Energy and Energy Efficiency Advisory Committee (RE&EEAC) will hold a meeting to hear presentations from the Departments of Energy and Commerce on how their programs support the competitiveness of...

  10. 78 FR 69370 - Renewable Energy and Energy Efficiency Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-19

    ... International Trade Administration Renewable Energy and Energy Efficiency Advisory Committee AGENCY... Renewable Energy and Energy Efficiency Advisory Committee (RE&EEAC) will hold a meeting on December 3, 2013... NW., Washington, DC 20230. FOR FURTHER INFORMATION CONTACT: Ryan Mulholland, Office of Energy...

  11. 78 FR 20896 - Renewable Energy and Energy Efficiency Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-08

    ... International Trade Administration Renewable Energy and Energy Efficiency Advisory Committee AGENCY... Renewable Energy and Energy Efficiency Advisory Committee (RE&EEAC) will hold a meeting on May 1, 2013. The... NW., Washington, DC 20230. FOR FURTHER INFORMATION CONTACT: Ryan Mulholland, Office of Energy...

  12. 76 FR 54431 - Renewable Energy and Energy Efficiency Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-01

    ... International Trade Administration Renewable Energy and Energy Efficiency Advisory Committee AGENCY... Renewable Energy and Energy Efficiency Advisory Committee (RE&EEAC) will hold a meeting to deliver 11... administration of programs and policies to enhance the competitiveness of the U.S. renewable energy and...

  13. Industrial Energy Efficiency and Climate Change Mitigation

    SciTech Connect

    Worrell, Ernst; Bernstein, Lenny; Roy, Joyashree; Price, Lynn; de la Rue du Can, Stephane; Harnisch, Jochen

    2009-02-02

    Industry contributes directly and indirectly (through consumed electricity) about 37% of the global greenhouse gas emissions, of which over 80% is from energy use. Total energy-related emissions, which were 9.9 GtCO2 in 2004, have grown by 65% since 1971. Even so, industry has almost continuously improved its energy efficiency over the past decades. In the near future, energy efficiency is potentially the most important and cost-effective means for mitigating greenhouse gas emissions from industry. This paper discusses the potential contribution of industrial energy efficiency technologies and policies to reduce energy use and greenhouse gas emissions to 2030.

  14. The NASA Aircraft Energy Efficiency program

    NASA Technical Reports Server (NTRS)

    Klineberg, J. M.

    1979-01-01

    A review is provided of the goals, objectives, and recent progress in each of six aircraft energy efficiency programs aimed at improved propulsive, aerodynamic and structural efficiency for future transport aircraft. Attention is given to engine component improvement, an energy efficient turbofan engine, advanced turboprops, revolutionary gains in aerodynamic efficiency for aircraft of the late 1990s, laminar flow control, and composite primary aircraft structures.

  15. Increasing Efficiency: A Process-Oriented Approach.

    ERIC Educational Resources Information Center

    Harbour, Jerry L.

    1993-01-01

    Discussion of the need to increase efficiency focuses on a process-oriented approach for systematically identifying and minimizing non-value-adding process steps to analyze and improve tasks, services, and production. Highlights include a historical perspective, a discussion of wasted efforts, and a case study. (Contains 16 references.) (LRW)

  16. Promotion of Efficient Use of Energy

    SciTech Connect

    Harry Misuriello; DOE Project Officer - Keith Bennett

    2006-01-25

    The Department of Energy funded the Alliance to Save Energy to promote the efficient use of energy under a multiyear cooperative agreement. This funding allowed the Alliance to be innovative and flexible in its program development, and to initiate and enhance projects it would otherwise not have been able to pursue. The program period was 1999 through 2004. The mission of the Alliance to Save Energy is to promote energy efficiency domestically and worldwide. The Alliance followed this mission by working closely with consumers, government, policy makers, and energy efficient product and service providers. The projects that were initiated by the Alliance included communication and consumer education, policy analysis and research, the promotion of interaction among the energy efficiency industry, and international energy efficiency programs. The funding from the Department of Energy allowed the Alliance to study new issues in energy efficiency, draw public attention to those issues, and create targeted programs, such as the Efficient Windows Collaborative or the Green Schools program, which now function on their own to promote energy efficiency in important areas.

  17. Energy efficiency, market failures, and government policy

    SciTech Connect

    Levine, M.D.; Koomey, J.G.; McMahon, J.E.; Sanstad, A.H.; Hirst, E.

    1994-03-01

    This paper presents a framework for evaluating engineering-economic evidence on the diffusion of energy efficiency improvements. Four examples are evaluated within this framework. The analysis provides evidence of market failures related to energy efficiency. Specific market failures that may impede the adoption of cost-effective energy efficiency are discussed. Two programs that have had a major impact in overcoming these market failures, utility DSM programs and appliance standards, are described.

  18. The NASA Aircraft Energy Efficiency Program

    NASA Technical Reports Server (NTRS)

    Klineberg, J. M.

    1978-01-01

    The objective of the NASA Aircraft Energy Efficiency Program is to accelerate the development of advanced technology for more energy-efficient subsonic transport aircraft. This program will have application to current transport derivatives in the early 1980s and to all-new aircraft of the late 1980s and early 1990s. Six major technology projects were defined that could result in fuel savings in commercial aircraft: (1) Engine Component Improvement, (2) Energy Efficient Engine, (3) Advanced Turboprops, (4) Energy Efficiency Transport (aerodynamically speaking), (5) Laminar Flow Control, and (6) Composite Primary Structures.

  19. Brandon RHA recognized for energy efficiency.

    PubMed

    Waddington, Kent; Neal, Gordon

    2002-01-01

    In a recent national competition recognizing leadership in energy efficiency and greenhouse gas education, Brandon Regional Health Authority was recognized for conscientious use of resources. PMID:12357581

  20. Modeling new approaches for electric energy efficiency

    SciTech Connect

    Munns, Diane

    2008-03-15

    To align utilities and consumers' interests, three incentive methods have emerged to foster efficiency: shared savings, bonus return on equity, and energy service company. A fourth incentive method, virtual power plant, is being proposed by Duke Energy. (author)

  1. Energy efficiency: major issues and policy recommendations

    SciTech Connect

    Not Available

    1981-01-01

    The Advisory Committee on Energy Efficiency has investigated strategies for improving energy efficiency in all sectors of the economy - industrial, agricultural, residential, and commercial, and transportation - and has considered the contributions of local government and utility companies, as well as the state, in encouraging its efficient use. The state may exercise several policy options to encourage energy efficiency: information transfer, financial aids and incentives, and building conservation standards. The Committee believes that the major objectives for state legislative and administrative actions should be to facilitate the efforts of consumers to improve energy efficiency and to set an example of efficiency in its own buildings and operations. The state can realize these objectives with programs that: provide accurate and unbiased information on energy efficiency technologies and practices; provide consumers with information to evaluate products and vendor claims of efficiency and thereby to protect against consumer fraud; identify and remove institutional and legislative barriers to energy efficient practices; provide economic incentives to help meet the capital requirements to invest in energy efficiency technologies; and advance research, development, and demonstration of new technologies.

  2. Efficient audio signal processing for embedded systems

    NASA Astrophysics Data System (ADS)

    Chiu, Leung Kin

    As mobile platforms continue to pack on more computational power, electronics manufacturers start to differentiate their products by enhancing the audio features. However, consumers also demand smaller devices that could operate for longer time, hence imposing design constraints. In this research, we investigate two design strategies that would allow us to efficiently process audio signals on embedded systems such as mobile phones and portable electronics. In the first strategy, we exploit properties of the human auditory system to process audio signals. We designed a sound enhancement algorithm to make piezoelectric loudspeakers sound ”richer" and "fuller." Piezoelectric speakers have a small form factor but exhibit poor response in the low-frequency region. In the algorithm, we combine psychoacoustic bass extension and dynamic range compression to improve the perceived bass coming out from the tiny speakers. We also developed an audio energy reduction algorithm for loudspeaker power management. The perceptually transparent algorithm extends the battery life of mobile devices and prevents thermal damage in speakers. This method is similar to audio compression algorithms, which encode audio signals in such a ways that the compression artifacts are not easily perceivable. Instead of reducing the storage space, however, we suppress the audio contents that are below the hearing threshold, therefore reducing the signal energy. In the second strategy, we use low-power analog circuits to process the signal before digitizing it. We designed an analog front-end for sound detection and implemented it on a field programmable analog array (FPAA). The system is an example of an analog-to-information converter. The sound classifier front-end can be used in a wide range of applications because programmable floating-gate transistors are employed to store classifier weights. Moreover, we incorporated a feature selection algorithm to simplify the analog front-end. A machine

  3. Selecting windows for energy efficiency

    SciTech Connect

    1997-05-01

    New window technologies have increased energy benefits and comfort, and have provided more practical options for consumers. This selection guide will help homeowners, architects, and builders take advantage of the expanding window market. The guide contains three sections: an explanation of energy-related window characteristics, a discussion of window energy performance ratings, and a convenient checklist for window selection.

  4. Energy 101: Energy Efficient Commercial Buildings

    ScienceCinema

    None

    2014-06-26

    Learn how commercial buildings can incorporate whole-building design to save energy and money while enhancing performance and comfort. This video highlights several energy-saving features of the Research Support Facility at the Energy Department's National Renewable Energy Laboratory-a model for high-performance office building design.

  5. Energy 101: Energy Efficient Commercial Buildings

    SciTech Connect

    2014-03-14

    Learn how commercial buildings can incorporate whole-building design to save energy and money while enhancing performance and comfort. This video highlights several energy-saving features of the Research Support Facility at the Energy Department's National Renewable Energy Laboratory-a model for high-performance office building design.

  6. Buildings energy efficiency in the Southeast

    SciTech Connect

    Not Available

    1993-01-01

    In June 1992, energy service providers from around the Southeastern United States gathered at the Shenandoah Environment and Education Center of Georgia Power Company, to discuss issues related to energy efficiency buildings in the region. The meeting was organized by an ad hoc planning committee under the auspices of the Atlanta Support Office of the DOE. The objectives of the Workshop were to provide a forum for regional energy service providers to discuss matters of mutual concern and to identify issues of particular relevance to the Southeast. What characterizes energy use in the Southeast Most lists would include rapid population growth, high temperatures and humidity, a large air conditioning load on utilities, a relatively clean environment, and regulatory processes that seek to keep energy prices low. There was less unanimity on what are the priority issues. No definitive list of priorities emerged from the workshop. Participants did identify several areas where work should be initiated: networking, training/certification/education, performance of technical measures, and studies of market forces/incentives/barriers. The most frequently mentioned context for these work areas was that of utility programs. Presentations given during the first morning provided attendees an overview of energy use in the region and of building energy conservation programs being implemented both by state agencies and by utilities. These were the base for breakout and plenary sessions in which attendees expressed their views on specific topics. The regional need mentioned most often at the workshop was for networking among energy service providers in the region. In this context, this report itself is a follow up action. Participants also requested a regional directory of energy program resources. DOE agreed to assemble a preliminary directory based upon input from workshop attendees. Because the response was quick and positive, a directory is part of this document.

  7. 77 FR 6783 - Renewable Energy and Energy Efficiency Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-09

    ... International Trade Administration Renewable Energy and Energy Efficiency Advisory Committee AGENCY... Renewable Energy and Energy Efficiency Advisory Committee (RE&EEAC) will hold a meeting to hear... of Commerce on efforts to address issues that affect the competitiveness of U.S. renewable ]...

  8. Energy efficiency buildings program, FY 1980

    SciTech Connect

    Not Available

    1981-05-01

    A separate abstract was prepared on research progress in each group at LBL in the energy efficient buildings program. Two separate abstracts were prepared for the Windows and Lighting Program. Abstracts prepared on other programs are: Energy Performance of Buildings; Building Ventilation and Indoor Air Quality Program; DOE-21 Building Energy Analysis; and Building Energy Data Compilation, Analysis, and Demonstration. (MCW)

  9. RP-5 Renewable Energy Efficiency Project

    SciTech Connect

    Neil Clifton; Dave Wall; Jamal Zughbi

    2007-06-30

    This is the final technical report for the RP-5 Renewable Energy Efficiency Project (REEP). The report summarizes, in a comprehensive manner, all the work performed during the award period extending between July 12, 2002 and June 30, 2007. This report has been prepared in accordance with the Department of Energy (DOE) Guidelines and summarizes all of the activities that occurred during the award period. The RP-5 Renewable Energy Efficiency Project, under development by the Inland Empire Utilities Agency (IEUA), is comprised of a series of full-scale demonstration projects that will showcase innovative combinations of primary and secondary generation systems using methane gas derived from local processing of biosolids, dairy manure and other organic material. The goal of the project is to create renewable energy-based generation systems with energy efficiencies 65% or more. The project was constructed at the 15 MGD Regional Wastewater Treatment Plant No. 5 located in the City of Chino in California where the Agency has constructed its new energy-efficient (platinum-LEED rating) headquarters building. Technologies that were featured in the project include internal combustion engines (ICE), absorption chillers, treatment plant secondary effluent cooling systems, heat recovery systems, thermal energy storage (TES), Organic Rankine Cycle (ORC) secondary power generation system, the integration of a future fuel cell system, gas cleaning requirements, and other state-of-the-art design combinations. The RP-5 REEP biogas source is coming from three manure digesters which are located within the RP-5 Complex and are joined with the RP-5 REEP through gas conveyance pipelines. Food waste is being injected into the manure digesters for digester gas production enhancement. The RP-5 REEP clearly demonstrates the biogas production and power generation viability, specifically when dealing with renewable and variable heating value (Btu) fuel. The RP-5 REEP was challenged with meeting

  10. Energy efficiency in membrane bioreactors.

    PubMed

    Barillon, B; Martin Ruel, S; Langlais, C; Lazarova, V

    2013-01-01

    Energy consumption remains the key factor for the optimisation of the performance of membrane bioreactors (MBRs). This paper presents the results of the detailed energy audits of six full-scale MBRs operated by Suez Environnement in France, Spain and the USA based on on-site energy measurement and analysis of plant operation parameters and treatment performance. Specific energy consumption is compared for two different MBR configurations (flat sheet and hollow fibre membranes) and for plants with different design, loads and operation parameters. The aim of this project was to understand how the energy is consumed in MBR facilities and under which operating conditions, in order to finally provide guidelines and recommended practices for optimisation of MBR operation and design to reduce energy consumption and environmental impacts. PMID:23787304

  11. Risk Assessment of Energy-Efficient Walls

    SciTech Connect

    Pallin, Simon B.; Hun, Diana E.; Jackson, Roderick K.; Kehrer, Manfred

    2014-12-01

    This multi-year project aims to provide the residential construction industry with energy-efficient wall designs that are moisture durable. The present work focused on the initial step of this project, which is to develop a moisture durability protocol that identifies energy efficient wall designs that have a low probability of experiencing moisture problems.

  12. Coordination of Energy Efficiency and Demand Response

    SciTech Connect

    Goldman, Charles; Reid, Michael; Levy, Roger; Silverstein, Alison

    2010-01-29

    This paper reviews the relationship between energy efficiency and demand response and discusses approaches and barriers to coordinating energy efficiency and demand response. The paper is intended to support the 10 implementation goals of the National Action Plan for Energy Efficiency's Vision to achieve all cost-effective energy efficiency by 2025. Improving energy efficiency in our homes, businesses, schools, governments, and industries - which consume more than 70 percent of the nation's natural gas and electricity - is one of the most constructive, cost-effective ways to address the challenges of high energy prices, energy security and independence, air pollution, and global climate change. While energy efficiency is an increasingly prominent component of efforts to supply affordable, reliable, secure, and clean electric power, demand response is becoming a valuable tool in utility and regional resource plans. The Federal Energy Regulatory Commission (FERC) estimated the contribution from existing U.S. demand response resources at about 41,000 megawatts (MW), about 5.8 percent of 2008 summer peak demand (FERC, 2008). Moreover, FERC recently estimated nationwide achievable demand response potential at 138,000 MW (14 percent of peak demand) by 2019 (FERC, 2009).2 A recent Electric Power Research Institute study estimates that 'the combination of demand response and energy efficiency programs has the potential to reduce non-coincident summer peak demand by 157 GW' by 2030, or 14-20 percent below projected levels (EPRI, 2009a). This paper supports the Action Plan's effort to coordinate energy efficiency and demand response programs to maximize value to customers. For information on the full suite of policy and programmatic options for removing barriers to energy efficiency, see the Vision for 2025 and the various other Action Plan papers and guides available at www.epa.gov/eeactionplan.

  13. Production of Energy Efficient Preform Structures (PEEPS)

    SciTech Connect

    Dr. John A. Baumann

    2012-06-08

    Due to its low density, good structural characteristics, excellent fabrication properties, and attractive appearance, aluminum metal and its alloys continue to be widely utilized. The transportation industry continues to be the largest consumer of aluminum products, with aerospace as the principal driver for this use. Boeing has long been the largest single company consumer of heat-treated aluminum in the U.S. The extensive use of aluminum to build aircraft and launch vehicles has been sustained, despite the growing reliance on more structurally efficient carbon fiber reinforced composite materials. The trend in the aerospace industry over the past several decades has been to rely extensively on large, complex, thin-walled, monolithic machined structural components, which are fabricated from heavy billets and thick plate using high speed machining. The use of these high buy-to-fly ratio starting product forms, while currently cost effective, is energy inefficient, with a high environmental impact. The widespread implementation of Solid State Joining (SSJ) technologies, to produce lower buy-to-fly ratio starting forms, tailored to each specific application, offers the potential for a more sustainable manufacturing strategy, which would consume less energy, require less material, and reduce material and manufacturing costs. One objective of this project was to project the energy benefits of using SSJ techniques to produce high-performance aluminum structures if implemented in the production of the world fleet of commercial aircraft. A further objective was to produce an energy consumption prediction model, capable of calculating the total energy consumption, solid waste burden, acidification potential, and CO2 burden in producing a starting product form - whether by conventional or SSJ processes - and machining that to a final part configuration. The model needed to be capable of computing and comparing, on an individual part/geometry basis, multiple possible

  14. Energy Efficient Legged Robotics at Sandia Labs

    SciTech Connect

    Buerger, Steve

    2014-12-16

    Sandia is developing energy efficient actuation and drive train technologies to dramatically improve the charge life of legged robots. The work is supported by DARPA, and Sandia will demonstrate an energy efficient bipedal robot at the technology exposition section of the DARPA Robotics Challenge Finals in June, 2015. This video, the first in a series, describes early development and initial integration of the Sandia Transmission Efficient Prototype Promoting Research (STEPPR) robot.

  15. Algorithmic Processes for Increasing Design Efficiency.

    ERIC Educational Resources Information Center

    Terrell, William R.

    1983-01-01

    Discusses the role of algorithmic processes as a supplementary method for producing cost-effective and efficient instructional materials. Examines three approaches to problem solving in the context of developing training materials for the Naval Training Command: application of algorithms, quasi-algorithms, and heuristics. (EAO)

  16. Energy efficiency in California laboratory-type facilities

    SciTech Connect

    Mills, E.; Bell, G.; Sartor, D.

    1996-07-31

    The central aim of this project is to provide knowledge and tools for increasing the energy efficiency and performance of new and existing laboratory-type facilities in California. We approach the task along three avenues: (1) identification of current energy use and savings potential, (2) development of a {ital Design guide for energy- Efficient Research Laboratories}, and (3) development of a research agenda for focused technology development and improving out understanding of the market. Laboratory-type facilities use a considerable amount of energy resources. They are also important to the local and state economy, and energy costs are a factor in the overall competitiveness of industries utilizing laboratory-type facilities. Although the potential for energy savings is considerable, improving energy efficiency in laboratory-type facilities is no easy task, and there are many formidable barriers to improving energy efficiency in these specialized facilities. Insufficient motivation for individual stake holders to invest in improving energy efficiency using existing technologies as well as conducting related R&D is indicative of the ``public goods`` nature of the opportunity to achieve energy savings in this sector. Due to demanding environmental control requirements and specialized processes, laboratory-type facilities epitomize the important intersection between energy demands in the buildings sector and the industrial sector. Moreover, given the high importance and value of the activities conducted in laboratory-type facilities, they represent one of the most powerful contexts in which energy efficiency improvements stand to yield abundant non-energy benefits if properly applied.

  17. Energy efficiency in new buildings: Implementing the Energy Policy Act of 1992

    SciTech Connect

    Stockmeyer, M.K.

    1994-03-01

    The Building Energy Standards Program (Program) is conducted for the Department of Energy`s (DOE) Office of Codes and Standards, within the Office of Building Technologies. The Program seeks to facilitate the construction of energy efficient, cost-effective, and environmentally sound new buildings through the application of energy efficiency codes and standards. The Energy Policy Act of 1992 (EPAct) requires that the Department of Energy support the voluntary energy standards development process, advocate the use of model energy codes, and provide technical support to states and the federal government in adopting energy efficiency standards for new buildings. In meeting these requirements, Program staff work with a wide variety of stakeholders - particularly designers, builders and code officials - to base codes and standards on the application of sound scientific principles. Further, Program staff work with individuals in the federal government, states, code development organizations, and the buildings community to deploy energy efficient technologies and encourage complementary practices throughout the design and construction processes.

  18. The Study on Energy Efficiency in Africa

    NASA Astrophysics Data System (ADS)

    Wu, Jinduo

    This paper is dedicated to explore the dynamic performance of energy efficiency in Africa, with panel data in country level, taking energy yield, power consumption, electricity transmission and distribution losses into account, the paper employ stochastic frontier mode,highlighting a dummy variable in energy output in terms of net imports of energy and power, which minify the deviation of estimated variables. The results show that returns of scale did not appear in energy and power industry in Africa, electricity transmission and distribution losses contribute most to GDP per unit of energy. In country level, Republic of Congo and Botswana suggest an obvious energy efficiency advantage. Energy efficiency in Mozambique and Democratic Republic of Congo are not very satisfying during the studying year

  19. Measuring energy efficiency in the United States` economy: A beginning

    SciTech Connect

    1995-10-01

    Energy efficiency is a vital component of the Nation`s energy strategy. One of the Department of Energy`s missions are to promote energy efficiency to help the Nation manage its energy resources. The ability to define and measure energy efficiency is essential to this objective. In the absence of consistent defensible measures, energy efficiency is a vague, subjective concept that engenders directionless speculation and confusion rather than insightful analysis. The task of defining and measuring energy efficiency and creating statistical measures as descriptors is a daunting one. This publication is not a final product, but is EIA`s first attempt to define and measure energy efficiency in a systematic and robust manner for each of the sectors and the United States economy as a whole. In this process, EIA has relied on discussions, customer reviews, in-house reviews, and seminars that have focused on energy efficiency in each of the sectors. EIA solicits the continued participation of its customers in further refining this work.

  20. 1986 Governor's energy efficiency plan

    SciTech Connect

    Not Available

    1986-10-01

    Wisconsin is an energy-poor state which must import petroleum, natural gas and coal for its home, business, farm, and transportation needs. Because 95% of its energy is imported, the state is vulnerable to price hikes and supply disruptions. The Governor has formulated five overall goals plus specific goals for each economic sector to reduce Wisconsin's vulnerability to supply disruptions and to reduce the economic drain on the state caused by the price of imported fuel. The goals also seek to increase the use of in-state resources and to improve the quality of the environment. The recommendations in the plan are designed to help meet the Governor's goals by removing the barriers to increased energy conservation caused by lack of capital and information. Timely and effective implementation of the recommendations will determine how close Wisconsin can come to reducing its energy consumption 20% by the year 2000.

  1. Jcpenney Buying into Energy Efficiency

    SciTech Connect

    none,

    2013-03-01

    Jcpenney partnered with the Department of Energy (DOE) to develop and implement solutions to build new, low-energy buildings that are at least 50% below Standard 90.1-2004 of the American Society of Heating, Refrigerating, and Air- Conditioning Engineers (ASHRAE), the American National Standards Institute (ANSI), and the Illuminating Engineering Society of North America (IESNA) as part of DOE’s Commercial Building Partnerships (CBP) Program.

  2. Toward an energy efficient community

    NASA Astrophysics Data System (ADS)

    Horn, M.

    1980-10-01

    The current oil policy of the OPEC countries means that a substantial oil shortage may be expected in the future. Conservative estimates indicate an oil shortage of 65 billion tons in the year 2000. The results of numerous new studies show that (from the technological point of view) the savings potential is high enough to achieve an absolute decrease in total energy consumption by the year 2000, provided better use is made of secondary energy sources in the form of electric power, gas, and solar heat.

  3. Energy Efficiency for Architectural Drafting Instructors.

    ERIC Educational Resources Information Center

    Scharmann, Larry, Ed.

    Intended primarily but not solely for use at the postsecondary level, this curriculum guide contains five units on energy efficiency that were designed to be incorporated into an existing program in architectural drafting. The following topics are examined: energy conservation awareness (residential energy use and audit procedures); residential…

  4. Financial Planning for Energy Efficiency Investments.

    ERIC Educational Resources Information Center

    Business Officer, 1984

    1984-01-01

    Financing options for energy efficiency investments by colleges are outlined by the Energy Task Force of three higher education associations. It is suggested that alternative financing techniques generate a positive cash flow and allow campuses to implement conservation despite fiscal constraints. Since energy conservation saves money, the savings…

  5. State Energy Efficiency Program Evaluation Inventory

    EIA Publications

    2013-01-01

    The focus of this inventory, some of which has been placed into a searchable spreadsheet, is to support the National Energy Modeling System (NEMS) and to research cost information in state-mandated energy efficiency program evaluations – e.g., for use in updating analytic and modeling assumptions used by the U.S. Energy Information Administration (EIA).

  6. Energy-Efficient Renovation of Educational Buildings

    ERIC Educational Resources Information Center

    Erhorn-Kluttig, Heike; Morck, Ove

    2005-01-01

    Case studies demonstrating energy-efficient renovation of educational buildings collected by the International Energy Agency (IEA) provide information on retrofit technologies, energy-saving approaches and ventilation strategies. Some general findings are presented here along with one case study, Egebjerg School in Denmark, which shows how natural…

  7. Moving around efficiently: Energy and transportation

    NASA Astrophysics Data System (ADS)

    Hermans, L. J. F.

    2013-06-01

    Worldwide, transportation takes almost 20% of the total energy use, and more than half of the oil consumption. By far the largest part is used by cars powered by internal combustion engines. The reason is simple: oil and gasoline are ideal energy carriers for transportation, since their energy density is extremely high. However, in terms of energy efficiency the internal combustion engine has a poor performance: about 25% only. How does this compare with electric cars? What are the alternative transportation systems and their efficiencies anyway? In this lecture we will analyse the efficiency of various transport systems, using elementary physics principles. We will look at cars, buses, trains and TGVs, ships, aircraft and zeppelins. Also the efficiency of human powered vehicles will be considered. Special attention is given to future mobile energy carriers like hydrogen, batteries and super capacitors.

  8. Creating Energy-Efficient Buildings.

    ERIC Educational Resources Information Center

    Burr, Donald F.

    This paper was presented during the time the author was president of the Council of Educational Facility Planners, International, (CEFP/I). The presentation begins with a summary of the state of the world's natural gas and petroleum supplies and states that since one-third of all energy consumed in the United States is to heat and cool buildings,…

  9. Something Special from SEED: Energy Efficiency for Educators and Students. SEED: Schoolhouse Energy Efficiency Demonstration.

    ERIC Educational Resources Information Center

    Tenneco, Inc., Houston, TX.

    The goal of the Schoolhouse Energy Efficiency Demonstration (SEED) was to assist schools in reducing the impact of the rising cost of energy by defining good energy management programs and by implementing quick-fix, low-cost energy efficiency improvements. Twenty schools in 15 states participated in the demonstration program. This report covers…

  10. Productivity benefits of industrial energy efficiency measures

    SciTech Connect

    Worrell, Ernst; Laitner, John A.; Michael, Ruth; Finman, Hodayah

    2004-08-30

    We review the relationship between energy efficiency improvement measures and productivity in industry. We review over 70 industrial case studies from widely available published databases, followed by an analysis of the representation of productivity benefits in energy modeling. We propose a method to include productivity benefits in the economic assessment of the potential for energy efficiency improvement. The case-study review suggests that energy efficiency investments can provide a significant boost to overall productivity within industry. If this relationship holds, the description of energy-efficient technologies as opportunities for larger productivity improvements has significant implications for conventional economic assessments. The paper explores the implications this change in perspective on the evaluation of energy-efficient technologies for a study of the iron and steel industry in the US. This examination shows that including productivity benefits explicitly in the modeling parameters would double the cost-effective potential for energy efficiency improvement, compared to an analysis excluding those benefits. We provide suggestions for future research in this important area.

  11. Productivity benefits of industrial energy efficiency measures.

    SciTech Connect

    Worrell, Ernst; Laitner, John A.; Michael, Ruth; Finman, Hodayah

    2004-08-30

    We review the relationship between energy efficiency improvement measures and productivity in industry. We review over 70 industrial case studies from widely available published databases, followed by an analysis of the representation of productivity benefits in energy modeling. We propose a method to include productivity benefits in the economic assessment of the potential for energy efficiency improvement. The case-study review suggests that energy efficiency investments can provide a significant boost to overall productivity within industry. If this relationship holds, the description of energy-efficient technologies as opportunities for larger productivity improvements has significant implications for conventional economic assessments. The paper explores the implications this change in perspective on the evaluation of energy-efficient technologies for a study of the iron and steel industry in the US. This examination shows that including productivity benefits explicitly in the mode ling parameters would double the cost-effective potential for energy efficiency improvement, compared to an analysis excluding those benefits. We provide suggestions for future research in this important area.

  12. Energy-efficient incandescent lamp. Final report

    SciTech Connect

    Not Available

    1982-04-01

    The status of the Energy Efficient Light Bulb (EELB) development at the beginning of the subcontract was characterized by a newly introduced lamp construction based on an optimum optical quality envelope consisting of two hemispheres or hemi-ellipsoids bonded together. Considerable progress was made concerning the output of the continuous process heat mirror coating machine, the reproducibility of the film characteristics, and the durability of the coating over long periods of lamp operation. The bonding assembly processes were improved to the point where they are suitable for full mechanization and high speed production. A new concept for dimensioning the required compact and mechanically stable filaments was introduced by using diodes in series that reduce the effective operating voltage to 83 volts. This has led to filament designs of greater stability and greater compactness than any obtained before. The efficacy and energy saving data of the prototype lamps delivered at the end of the subcontract were close to the target values established at the beginning.

  13. Junior High Gets Energy Efficient VAV System

    ERIC Educational Resources Information Center

    Modern Schools, 1977

    1977-01-01

    Minnesota's Isanti Junior High, designed with an energy efficient variable air volume system, is an innovative school selected for display at the 1977 Exhibition of School Architecture in Las Vegas. (Author/MLF)

  14. Engine Would Recover Exhaust Energy More Efficiently

    NASA Technical Reports Server (NTRS)

    Dimpelfeld, Philip M.

    1993-01-01

    Exhaust energy used for supercharging and extra shaft power. Flow of exhaust apportioned by waste gate to meet demand of turbocharger, and portion not fed to turbocharger sent to power-recovery turbine. Expected to increase fuel efficiency.

  15. Energy 101: Heavy Duty Vehicle Efficiency

    SciTech Connect

    2015-05-14

    Although Class 8 Trucks only make up 4% of the vehicles on the road, they use about 20% of the nation's transportation fuel. In this video, learn how new fuel-efficient technologies are making our country's big rigs quieter, less polluting, more energy-efficient, and less expensive to operate over time.

  16. Determinants of energy efficiency across countries

    NASA Astrophysics Data System (ADS)

    Yao, Guolin

    With economic development, environmental concerns become more important. Economies cannot be developed without energy consumption, which is the major source of greenhouse gas emissions. Higher energy efficiency is one means of reducing emissions, but what determines energy efficiency? In this research we attempt to find answers to this question by using cross-sectional country data; that is, we examine a wide range of possible determinants of energy efficiency at the country level in an attempt to find the most important causal factors. All countries are divided into three income groups: high-income countries, middle-income countries, and low-income countries. Energy intensity is used as a measurement of energy efficiency. All independent variables belong to two categories: quantitative and qualitative. Quantitative variables are measures of the economic conditions, development indicators and energy usage situations. Qualitative variables mainly measure political, societal and economic strengths of a country. The three income groups have different economic and energy attributes. Each group has different sets of variables to explain energy efficiency. Energy prices and winter temperature are both important in high-income and middle-income countries. No qualitative variables appear in the model of high-income countries. Basic economic factors, such as institutions, political stability, urbanization level, population density, are important in low-income countries. Besides similar variables, such as macroeconomic stability and index of rule of law, the hydroelectricity share in total electric generation is also a driver of energy efficiency in middle-income countries. These variables have different policy implications for each group of countries.

  17. Energy Efficiency Strategies for Municipal Wastewater Treatment Facilities

    SciTech Connect

    Daw, J.; Hallett, K.; DeWolfe, J.; Venner, I.

    2012-01-01

    Water and wastewater systems are significant energy consumers with an estimated 3%-4% of total U.S. electricity consumption used for the movement and treatment of water and wastewater. Water-energy issues are of growing importance in the context of water shortages, higher energy and material costs, and a changing climate. In this economic environment, it is in the best interest for utilities to find efficiencies, both in water and energy use. Performing energy audits at water and wastewater treatment facilities is one way community energy managers can identify opportunities to save money, energy, and water. In this paper the importance of energy use in wastewater facilities is illustrated by a case study of a process energy audit performed for Crested Butte, Colorado's wastewater treatment plant. The energy audit identified opportunities for significant energy savings by looking at power intensive unit processes such as influent pumping, aeration, ultraviolet disinfection, and solids handling. This case study presents best practices that can be readily adopted by facility managers in their pursuit of energy and financial savings in water and wastewater treatment. This paper is intended to improve community energy managers understanding of the role that the water and wastewater sector plays in a community's total energy consumption. The energy efficiency strategies described provide information on energy savings opportunities, which can be used as a basis for discussing energy management goals with water and wastewater treatment facility managers.

  18. Energy-Efficient Design for Florida Educational Facilities.

    ERIC Educational Resources Information Center

    Florida Solar Energy Center, Cape Canaveral.

    This manual provides a detailed simulation analysis of a variety of energy conservation measures (ECMs) with the intent of giving educational facility design teams in Florida a basis for decision making. The manual's three sections cover energy efficiency design considerations that appear throughout the following design processes: schematic…

  19. Curriculum for Commissioning Energy Efficient Buildings

    SciTech Connect

    Webster, Lia

    2012-09-30

    In July 2010, the U.S. Department of Energy (DOE) awarded funding to PECI to develop training curriculum in commercial energy auditing and building commissioning. This program was created in response to the high demand for auditing and commissioning services in the U.S. commercial buildings market and to bridge gaps and barriers in existing training programs. Obstacles addressed included: lack of focus on entry level candidates; prohibitive cost and time required for training; lack of hands-on training; trainings that focus on certifications & process overviews; and lack of comprehensive training. PECI organized several other industry players to create a co-funded project sponsored by DOE, PECI, New York State Energy and Research Development Authority (NYSERDA), California Energy Commission (CEC), Northwest Energy Efficiency Alliance (NEEA) and California Commissioning Collaborative (CCC). After awarded, PECI teamed with another DOE awardee, New Jersey Institute of Technology (NJIT), to work collaboratively to create one comprehensive program featuring two training tracks. NJIT’s Center for Building Knowledge is a research and training institute affiliated with the College of Architecture and Design, and provided e-learning and video enhancements. This project designed and developed two training programs with a comprehensive, energy-focused curriculum to prepare new entrants to become energy auditors or commissioning authorities (CxAs). The following are the key elements of the developed trainings, which is depicted graphically in Figure 1: • Online classes are self-paced, and can be completed anywhere, any time • Commissioning Authority track includes 3 online modules made up of 24 courses delivered in 104 individual lessons, followed by a 40 hour hands-on lab. Total time required is between 75 and 100 hours, depending on the pace of the independent learner. • Energy Auditor track includes 3 online modules made up of 18 courses delivered in 72 individual

  20. DNA encoding for an efficient 'Omics processing.

    PubMed

    Murovec, Bostjan; Tiedje, James M; Stres, Blaz

    2010-11-01

    The exponential growth of available DNA sequences and the increased interoperability of biological information is triggering intergovernmental efforts aimed at increasing the access, dissemination, and analysis of sequence data. Achieving the efficient storage and processing of DNA material is an important goal that parallels well with the foreseen coding standardization on the horizon. This paper proposes novel coding approaches, for both the dissemination and processing of sequences, where the speed of the DNA processing is shown to be boosted by exploring more than the normally utilized eight bits for encoding a single nucleotide. Further gains are achieved by encoding the nucleotides together with their trailing alignment information as a single 64-bit data structure. The paper also proposes a slight modification to the established FASTA scheme in order to improve on its representation of alignment information. The significance of the propositions is confirmed by the encouraging results from empirical tests. PMID:20444519

  1. Aircraft Energy Efficiency (ACEE) status report

    NASA Technical Reports Server (NTRS)

    Nored, D. L.; Dugan, J. F., Jr.; Saunders, N. T.; Ziemianski, J. A.

    1979-01-01

    Fuel efficiency in aeronautics, for fuel conservation in general as well as for its effect on commercial aircraft operating economics is considered. Projects of the Aircraft Energy Efficiency Program related to propulsion are emphasized. These include: (1) engine component improvement, directed at performance improvement and engine diagnostics for prolonged service life; (2) energy efficient engine, directed at proving the technology base for the next generation of turbofan engines; and (3) advanced turboprop, directed at advancing the technology of turboprop powered aircraft to a point suitable for commercial airline service. Progress in these technology areas is reported.

  2. Energy efficient laboratory fume hood

    DOEpatents

    Feustel, Helmut E.

    2000-01-01

    The present invention provides a low energy consumption fume hood that provides an adequate level of safety while reducing the amount of air exhausted from the hood. A low-flow fume hood in accordance with the present invention works on the principal of providing an air supply, preferably with low turbulence intensity, in the face of the hood. The air flow supplied displaces the volume currently present in the hood's face without significant mixing between the two volumes and with minimum injection of air from either side of the flow. This air flow provides a protective layer of clean air between the contaminated low-flow fume hood work chamber and the laboratory room. Because this protective layer of air will be free of contaminants, even temporary mixing between the air in the face of the fume hood and room air, which may result from short term pressure fluctuations or turbulence in the laboratory, will keep contaminants contained within the hood. Protection of the face of the hood by an air flow with low turbulence intensity in accordance with a preferred embodiment of the present invention largely reduces the need to exhaust large amounts of air from the hood. It has been shown that exhaust air flow reductions of up to 75% are possible without a decrease in the hood's containment performance.

  3. ENERGY EFFICIENCY AND ENVIRONMENTALLY FRIENDLY DISTRIBUTED ENERGY STORAGE BATTERY

    SciTech Connect

    LANDI, J.T.; PLIVELICH, R.F.

    2006-04-30

    Electro Energy, Inc. conducted a research project to develop an energy efficient and environmentally friendly bipolar Ni-MH battery for distributed energy storage applications. Rechargeable batteries with long life and low cost potentially play a significant role by reducing electricity cost and pollution. A rechargeable battery functions as a reservoir for storage for electrical energy, carries energy for portable applications, or can provide peaking energy when a demand for electrical power exceeds primary generating capabilities.

  4. Clean Energy Manufacturing Initiative Industrial Efficiency and Energy Productivity

    ScienceCinema

    Selldorff, John; Atwell, Monte

    2014-12-03

    Industrial efficiency and low-cost energy resources are key components to increasing U.S. energy productivity and makes the U.S. manufacturing sector more competitive. Companies find a competitive advantage in implementing efficiency technologies and practices, and technologies developed and manufactured in the U.S. enable greater competitiveness economy-wide.

  5. Clean Energy Manufacturing Initiative Industrial Efficiency and Energy Productivity

    SciTech Connect

    Selldorff, John; Atwell, Monte

    2014-09-23

    Industrial efficiency and low-cost energy resources are key components to increasing U.S. energy productivity and makes the U.S. manufacturing sector more competitive. Companies find a competitive advantage in implementing efficiency technologies and practices, and technologies developed and manufactured in the U.S. enable greater competitiveness economy-wide.

  6. Alcoa Lafayette Operations Energy Efficiency Assessment

    SciTech Connect

    2001-01-01

    The energy efficiency assessment performed at Alcoa's Lafayette Operations aluminum extrusion plant identified potential annual savings of $1,974,300 in eight high-energy-use areas with an estimated initial capital requirement of $2,308,500.

  7. Energy Efficiency for Building Construction Technology.

    ERIC Educational Resources Information Center

    Scharmann, Larry, Ed.

    Intended primarily but not solely for use at the postsecondary level, this curriculum guide contains five units of materials on energy efficiency that were designed to be incorporated into an existing program in building construction. The following topics are examined: conservation measures (residential energy use and methods for reducing…

  8. Design approaches to more energy efficient engines

    NASA Technical Reports Server (NTRS)

    Saunders, N. T.; Colladay, R. S.; Macioce, L. E.

    1978-01-01

    In 1976 NASA initiated the Aircraft Energy Efficiency (ACEE) Program to assist in the development of technology for more fuel-efficient aircraft for commercial airline use. The Energy Efficient Engine (EEE) Project of the ACEE program is intended to lay the advanced-technology foundation for a new generation of turbofan engines. This project, planned as a seven-year cooperative government-industry effort, is aimed at developing and demonstrating advanced component and systems technologies for engines that could be introduced into airline service by the late 1980s or early 1990s. In addition to fuel savings, new engines must offer potential for being economically attractive to the airline users and environmentally acceptable. A description is presented of conceptual energy-efficient engine designs which offer potential for achieving all of the goals established for the EEE Project.

  9. Implementation of the Energy Efficiency Directive: Opportunities and Challenges

    NASA Astrophysics Data System (ADS)

    Zīgurs, A.; Sarma, U.

    2015-12-01

    Discussions in Latvia are ongoing regarding the optimum solution to implementing Directive 2012/27/EU of the European Parliament and of the Council of 25 October 2012 on energy efficiency, amending Directives 2009/125/EC and 2010/30/EU and repealing Directives 2004/8/EC and 2006/32/EC (Directive 2012/27/EU). Without a doubt, increased energy efficiency contributes significantly to energy supply security, competitive performance, increased quality of life, reduced energy dependence and greenhouse gas (GHG) emissions. However, Directive 2012/27/EU should be implemented with careful planning, evaluating every aspect of the process. This study analyses a scenario, where a significant fraction of target energy efficiency is achieved by obliging energy utilities to implement user-end energy efficiency measures. With implementation of this scheme towards energy end-use savings, user payments for energy should be reduced; on the other hand, these measures will require considerable investment. The energy efficiency obligation scheme stipulates that these investments must be paid by energy utilities; however, they will actually be covered by users, because the source of energy utilities' income is user payments for energy. Thus, expenses on such measures will be included in energy prices and service tariffs. The authors analyse the ways to achieve a balance between user gains from energy end-use savings and increased energy prices and tariffs as a result of obligations imposed upon energy utilities. Similarly, the suitability of the current regulatory regime for effective implementation of Directive 2012/27/EU is analysed in the energy supply sectors, where supply tariffs are regulated.

  10. China Energy Group - Sustainable Growth Through EnergyEfficiency

    SciTech Connect

    Levine, Mark; Fridley, David; Lin, Jiang; Sinton, Jonathan; Zhou,Nan; Aden, Nathaniel; Huang, Joe; Price, Lynn; McKane, Aimee T.

    2006-03-20

    China is fueling its phenomenal economic growth with huge quantities of coal. The environmental consequences reach far beyond its borders--China is second only to the United States in greenhouse gas emissions. Expanding its supply of other energy sources, like nuclear power and imported oil, raises trade and security issues. Soaring electricity demand necessitates the construction of 40-70 GW of new capacity per year, creating sustained financing challenges. While daunting, the challenge of meeting China's energy needs presents a wealth of opportunities, particularly in meeting demand through improved energy efficiency and other clean energy technologies. The China Energy Group at the Lawrence Berkeley National Laboratory (LBNL) is committed to understanding these opportunities, and to exploring their implications for policy and business. We work collaboratively with energy researchers, suppliers, regulators, and consumers in China and elsewhere to: better understand the dynamics of energy use in China. Our Research Focus Encompasses Three Major Areas: Buildings, Industry, and Cross-Cutting Activities. Buildings--working to promote energy-efficient buildings and energy-efficient equipment used in buildings. Current work includes promoting the design and use of minimum energy efficiency standards and energy labeling for appliances, and assisting in the development and implementation of building codes for energy-efficient residential and commercial/public buildings. Past work has included a China Residential Energy Consumption Survey and a study of the health impacts of rural household energy use. Industry--understanding China's industrial sector, responsible for the majority of energy consumption in China. Current work includes benchmarking China's major energy-consuming industries to world best practice, examining energy efficiency trends in China's steel and cement industries, implementing voluntary energy efficiency agreements in various industries, and

  11. Energy efficient affordable housing. Final report

    SciTech Connect

    1995-07-01

    In 1994, the Southface Energy Institute, working with support from US DOE, initiated a program to provide technical assistance to nonprofit organizations developing affordable housing in the Olympic target communities of Atlanta. The specific project goals were: Identify the barriers that nonprofit affordable housing providers face in increasing the energy and resource efficiency of affordable housing; Assist them in developing the resources to overcome these barriers; Develop specific technical materials and program models that will enable these affordable housing groups to continue to improve the energy efficiency of their programs; and, To transfer the program materials to other affordable housing providers. This report summarizes the progress made in each of these areas.

  12. Energy Efficient America Act of 1984

    SciTech Connect

    Not Available

    1984-01-01

    A draft of the Energy Efficient America Act of 1984 was prepared by the Energy Conservation Coalition as a way to promote energy conservation and eliminate waste. The Act is divided into four titles dealing with low-income weatherization, a solar and conservation bank, applicance efficiency, and automobile fuel economy. The sponsors of this initiative describe specific provisions, the background, and the program they would include under the Act. The report includes a form for comment and an opportunity to contribute financial support to the effort.

  13. Functional materials for energy-efficient buildings

    NASA Astrophysics Data System (ADS)

    Ebert, H.-P.

    2015-08-01

    The substantial improving of the energy efficiency is essential to meet the ambitious energy goals of the EU. About 40% of the European energy consumption belongs to the building sector. Therefore the reduction of the energy demand of the existing building stock is one of the key measures to deliver a substantial contribution to reduce CO2-emissions of our society. Buildings of the future have to be efficient in respect to energy consumption for construction and operation. Current research activities are focused on the development of functional materials with outstanding thermal and optical properties to provide, for example, slim thermally superinsulated facades, highly integrated heat storage systems or adaptive building components. In this context it is important to consider buildings as entities which fulfill energy and comfort claims as well as aesthetic aspects of a sustainable architecture.

  14. Linking Energy Efficiency and ISO: Creating a Framework forSustainable Industrial Energy Efficiency

    SciTech Connect

    McKane, Aimee; Perry, Wayne; Aixian, Li; Tienan, Li; Williams,Robert

    2005-04-01

    Industrial motor-driven systems consume more than 2194billion kWh annually on a global basis and offer one of the largestopportunities for energy savings. In the United States (US), they accountfor more than 50 percent of all manufacturing electricity use. Incountries with less well-developed consumer economies, the proportion ofelectricity consumed by motors is higher-more than 50 percent ofelectricity used in all sectors in China is attributable to motors.Todate, the energy savings potential from motor-driven systems haveremained largely unrealized worldwide. Both markets and policy makerstend to focus on individual system components, which have a typicalimprovement potential of 2-5 percent versus 20-50 percent for completesystems. Several factors contribute to this situation, most notably thecomplexity of the systems themselves. Determining how to optimize asystem requires a high level of technical skill. In addition, once anenergy efficiency project is completed, the energy savings are often notsustained due to changes in personnel and production processes. Althoughtraining and educational programs in the US, UK, and China to promotesystem optimization have proven effective, these resource-intensiveefforts have only reached a small portion of the market.The same factorsthat make it so challenging to achieve and sustain energy efficiency inmotor-driven systems (complexity, frequent changes) apply to theproduction processes that they support. Yet production processestypically operate within a narrow band of acceptable performance. Theseprocesses are frequently incorporated into ISO 9000/14000 quality andenvironmental management systems, which require regular, independentaudits to maintain ISO certification, an attractive value forinternational trade.This paper presents a new approach to achievingindustrial system efficiency (motors and steam) that will encourageplants to incorporate system energy efficiency into their existing ISOmanagement systems. We will

  15. Air transportation energy efficiency - Alternatives and implications

    NASA Technical Reports Server (NTRS)

    Williams, L. J.

    1976-01-01

    Results from recent studies of air transportation energy efficiency alternatives are discussed, along with some of the implications of these alternatives. The fuel-saving alternatives considered include aircraft operation, aircraft modification, derivative aircraft, and new aircraft. In the near-term, energy efficiency improvements should be possible through small improvements in fuel-saving flight procedures, higher density seating, and higher load factors. Additional small near-term improvements could be obtained through aircraft modifications, such as the relatively inexpensive drag reduction modifications. Derivatives of existing aircraft could meet the requirements for new aircraft and provide energy improvements until advanced technology is available to justify the cost of a completely new design. In order to obtain significant improvements in energy efficiency, new aircraft must truly exploit advanced technology in such areas as aerodynamics, composite structures, active controls, and advanced propulsion.

  16. Financing energy efficiency via the Mortgage Corporation

    SciTech Connect

    Schaefer, M.L.

    1980-07-01

    Residential housing in the United States consumes more than 20% of all the energy used nationally each year. Home-mortgage lenders are in a position to assist homeowners in reducing this high level of energy consumption by taking advantage of a variety of financing methods now available to them. The Federal Home Loan Mortgage Corporation has taken several innovative steps to help support lenders' efforts to aid the homeowners of America in their quest to make their properties more energy-efficient.

  17. How energy efficient is your car?

    NASA Astrophysics Data System (ADS)

    Roura, Pere; Oliu, Daniel

    2012-07-01

    A detailed energy balance indicating how fuel energy is transferred from the engine to the wheels of a commercial car is obtained using non-specialized experiments that can be readily understood using elementary mechanics. These experiments allow us to determine the engine's thermal efficiency, its mechanical losses, and the rolling (friction) and aerodynamic (drag) coefficients. We find that approximately 28% of the fuel energy is transferred to the wheels.

  18. Experiments to Determine the Efficiency of Various Energy Conversions.

    ERIC Educational Resources Information Center

    Curtis, D.; Goodwin, R. D.

    1980-01-01

    Described are experiments used in the "Physical Science and Man" course at Hartley CAE which enable determinations of efficiencies of two energy conversion processes, namely, electricity into heat and burning gas to produce heat. Activities for comparing the processes are suggested. (DS)

  19. 13 CFR 101.500 - Small Business Energy Efficiency Program.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 13 Business Credit and Assistance 1 2010-01-01 2010-01-01 false Small Business Energy Efficiency... ADMINISTRATION Small Business Energy Efficiency § 101.500 Small Business Energy Efficiency Program. (a) The... becoming more energy efficient, understanding the cost savings from improved energy efficiency,...

  20. 13 CFR 101.500 - Small Business Energy Efficiency Program.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 13 Business Credit and Assistance 1 2014-01-01 2014-01-01 false Small Business Energy Efficiency... ADMINISTRATION Small Business Energy Efficiency § 101.500 Small Business Energy Efficiency Program. (a) The... becoming more energy efficient, understanding the cost savings from improved energy efficiency,...

  1. 13 CFR 101.500 - Small Business Energy Efficiency Program.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 13 Business Credit and Assistance 1 2013-01-01 2013-01-01 false Small Business Energy Efficiency... ADMINISTRATION Small Business Energy Efficiency § 101.500 Small Business Energy Efficiency Program. (a) The... becoming more energy efficient, understanding the cost savings from improved energy efficiency,...

  2. 13 CFR 101.500 - Small Business Energy Efficiency Program.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 13 Business Credit and Assistance 1 2011-01-01 2011-01-01 false Small Business Energy Efficiency... ADMINISTRATION Small Business Energy Efficiency § 101.500 Small Business Energy Efficiency Program. (a) The... becoming more energy efficient, understanding the cost savings from improved energy efficiency,...

  3. Interactions between Energy Efficiency Programs funded under the Recovery Act and Utility Customer-Funded Energy Efficiency Programs

    SciTech Connect

    Goldman, Charles A.; Stuart, Elizabeth; Hoffman, Ian; Fuller, Merrian C.; Billingsley, Megan A.

    2011-02-25

    efficiency programs administered by state energy offices: the State Energy Program (SEP) formula grants, the portion of Energy Efficiency and Conservation Block Grant (EECBG) formula funds administered directly by states, and the State Energy Efficient Appliance Rebate Program (SEEARP). Since these ARRA programs devote significant monies to energy efficiency and serve similar markets as utility customer-funded programs, there are frequent interactions between programs. We exclude the DOE low-income weatherization program and EECBG funding awarded directly to the over 2,200 cities, counties and tribes from our study to keep its scope manageable. We summarize the energy efficiency program design and funding choices made by the 50 state energy offices, 5 territories and the District of Columbia. We then focus on the specific choices made in 12 case study states. These states were selected based on the level of utility customer program funding, diversity of program administrator models, and geographic diversity. Based on interviews with more than 80 energy efficiency actors in those 12 states, we draw observations about states strategies for use of Recovery Act funds. We examine interactions between ARRA programs and utility customer-funded energy efficiency programs in terms of program planning, program design and implementation, policy issues, and potential long-term impacts. We consider how the existing regulatory policy framework and energy efficiency programs in these 12 states may have impacted development of these selected ARRA programs. Finally, we summarize key trends and highlight issues that evaluators of these ARRA programs may want to examine in more depth in their process and impact evaluations.

  4. Research and Energy Efficiency: Selected Success Stories

    DOE R&D Accomplishments Database

    Garland, P. W.; Garland, R. W.

    1997-06-26

    Energy use and energy technology play critical roles in the U.S. economy and modern society. The Department of Energy (DOE) conducts civilian energy research and development (R&D) programs for the purpose of identifying promising technologies that promote energy security, energy efficiency, and renewable energy use. DOE-sponsored research ranges from basic investigation of phenomena all the way through development of applied technology in partnership with industry. DOE`s research programs are conducted in support of national strategic energy objectives, however austere financial times have dictated that R&D programs be measured in terms of cost vs. benefit. In some cases it is difficult to measure the return on investment for the basic "curiosity-driven" research, however many applied technology development programs have resulted in measurable commercial successes. The DOE has published summaries of their most successful applied technology energy R&D programs. In this paper, we will discuss five examples from the Building Technologies area of the DOE Energy Efficiency program. Each story will describe the technology, discuss the level of federal funding, and discuss the returns in terms of energy savings, cost savings, or national economic impacts.

  5. 48 CFR 23.203 - Energy-efficient products.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... SOCIOECONOMIC PROGRAMS ENVIRONMENT, ENERGY AND WATER EFFICIENCY, RENEWABLE ENERGY TECHNOLOGIES, OCCUPATIONAL SAFETY, AND DRUG-FREE WORKPLACE Energy and Water Efficiency and Renewable Energy 23.203 Energy-efficient... 48 Federal Acquisition Regulations System 1 2011-10-01 2011-10-01 false Energy-efficient...

  6. 48 CFR 23.203 - Energy-efficient products.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... SOCIOECONOMIC PROGRAMS ENVIRONMENT, ENERGY AND WATER EFFICIENCY, RENEWABLE ENERGY TECHNOLOGIES, OCCUPATIONAL SAFETY, AND DRUG-FREE WORKPLACE Energy and Water Efficiency and Renewable Energy 23.203 Energy-efficient... 48 Federal Acquisition Regulations System 1 2014-10-01 2014-10-01 false Energy-efficient...

  7. 48 CFR 23.203 - Energy-efficient products.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... SOCIOECONOMIC PROGRAMS ENVIRONMENT, ENERGY AND WATER EFFICIENCY, RENEWABLE ENERGY TECHNOLOGIES, OCCUPATIONAL SAFETY, AND DRUG-FREE WORKPLACE Energy and Water Efficiency and Renewable Energy 23.203 Energy-efficient... 48 Federal Acquisition Regulations System 1 2010-10-01 2010-10-01 false Energy-efficient...

  8. 48 CFR 23.203 - Energy-efficient products.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... SOCIOECONOMIC PROGRAMS ENVIRONMENT, ENERGY AND WATER EFFICIENCY, RENEWABLE ENERGY TECHNOLOGIES, OCCUPATIONAL SAFETY, AND DRUG-FREE WORKPLACE Energy and Water Efficiency and Renewable Energy 23.203 Energy-efficient... 48 Federal Acquisition Regulations System 1 2013-10-01 2013-10-01 false Energy-efficient...

  9. 48 CFR 23.203 - Energy-efficient products.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... SOCIOECONOMIC PROGRAMS ENVIRONMENT, ENERGY AND WATER EFFICIENCY, RENEWABLE ENERGY TECHNOLOGIES, OCCUPATIONAL SAFETY, AND DRUG-FREE WORKPLACE Energy and Water Efficiency and Renewable Energy 23.203 Energy-efficient... 48 Federal Acquisition Regulations System 1 2012-10-01 2012-10-01 false Energy-efficient...

  10. Tribal Energy Program, Assisting Tribes to Realize Their Energy Visions (Brochure), Energy Efficiency & Renewable Energy (EERE)

    SciTech Connect

    Not Available

    2013-06-01

    This 12-page brochure provides an overview of the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy's Tribal Energy Program and describes the financial, technical, and educational assistance it provides to help tribes develop their renewable energy resources and reduce their energy consumption.

  11. Energy efficiency in buildings, industry and transportation

    NASA Astrophysics Data System (ADS)

    Milovanovic, Dobrica; Babic, Milun; Jovicic, Nebojsa; Gordic, Dusan

    2012-11-01

    This paper reviews the literature concerning the energy saving and outlines the importance of energy efficiency, particularly in three the most important areas: buildings, industry and transportation. Improving energy efficiency plays a crucial role in minimizing the societal and environmental impacts of economic growth and offers a powerful tool for achieving sustainable development by reducing the need for investment in new infrastructure, by cutting fuel costs, and by increasing competitiveness for businesses and welfare for consumers. It creates environmental benefits through reduced emissions of greenhouse gases and local air pollutants. It can offer social benefits in the form of increased energy security (through reduced dependence on fossil fuels, particularly when imported) and better energy services.

  12. Energy efficiency in buildings, industry and transportation

    NASA Astrophysics Data System (ADS)

    Milovanovic, Dobrica; Babic, Milun; Jovicic, Nebojsa; Gordic, Dusan

    2013-01-01

    This paper reviews the literature concerning the energy saving and outlines the importance of energy efficiency, particularly in three the most important areas: buildings, industry and transportation. Improving energy efficiency plays a crucial role in minimizing the societal and environmental impacts of economic growth and offers a powerful tool for achieving sustainable development by reducing the need for investment in new infrastructure, by cutting fuel costs, and by increasing competitiveness for businesses and welfare for consumers. It creates environmental benefits through reduced emissions of greenhouse gases and local air pollutants. It can offer social benefits in the form of increased energy security (through reduced dependence on fossil fuels, particularly when imported) and better energy services.

  13. Evaluating Energy Efficiency Policies with Energy-Economy Models

    SciTech Connect

    Mundaca, Luis; Neij, Lena; Worrell, Ernst; McNeil, Michael A.

    2010-08-01

    The growing complexities of energy systems, environmental problems and technology markets are driving and testing most energy-economy models to their limits. To further advance bottom-up models from a multidisciplinary energy efficiency policy evaluation perspective, we review and critically analyse bottom-up energy-economy models and corresponding evaluation studies on energy efficiency policies to induce technological change. We use the household sector as a case study. Our analysis focuses on decision frameworks for technology choice, type of evaluation being carried out, treatment of market and behavioural failures, evaluated policy instruments, and key determinants used to mimic policy instruments. Although the review confirms criticism related to energy-economy models (e.g. unrealistic representation of decision-making by consumers when choosing technologies), they provide valuable guidance for policy evaluation related to energy efficiency. Different areas to further advance models remain open, particularly related to modelling issues, techno-economic and environmental aspects, behavioural determinants, and policy considerations.

  14. Energy-efficiency testing activities of the Mobile Energy Laboratory

    SciTech Connect

    Parker, G.B.

    1991-01-01

    This report summarizes energy-efficiency testing activities during the first and second quarters of fiscal year 1990 applying the Mobile Energy Laboratory (MEL) testing capabilities. Four MELs, developed by the US Department of Energy (DOE) Federal Energy Management Program (FEMP), are administered by Pacific Northwest Laboratory (PNL) for energy testing and program support functions at federal facilities. The using agencies principally fund MEL applications, while DOE/FEMP funds program administration and capability enhancement activities. This report fulfills the requirements established in the MEL Use Plan (PNL-6861) for semiannual reporting on energy-efficiency testing activities using the MEL capabilities. The MEL Use Committee, formally established in 1989, developed the MEL Use Plan and meets semiannually to establish priorities for energy-efficient testing applications using the MEL capabilities.

  15. Efficient pumping of inertial fusion energy lasers

    NASA Astrophysics Data System (ADS)

    Wessling, C.; Rübenach, O.; Hambücker, S.; Sinhoff, V.; Banerjeea, S.; Ertel, K.; Mason, P.

    2013-02-01

    Solid-state lasers have been demonstrated as attractive drivers for laser-plasma interaction and have presently been developed for various applications like inertial confinement fusion (ICF) [1], particle acceleration and intense X-ray generation [3]. Viable real world applications like power production at industrial scale will require high laser system efficiency, repetition rate and lifetime which are only possible with semiconductor diode pumping. The paper describes the work conducted with two 20 kW diode laser sources pumping an ytterbium:YAG laser amplifier. The set-up acts as a small scale prototype for the DiPOLE project [2]. This project aims to develop scalable gas cooled cryogenic multi-slab diode pumped solid state lasers capable of producing KJ pulse energy. A scale-down prototype is currently under development at the Central Laser Facility (CLF) designed to generate 10 J at 10 Hz. To secure an efficient pumping process the sources have to fulfill aside power requirement in the spectral and time domain, the claim for high homogenization and low divergence of the spatial and angular beam distribution as well as a minimization of losses within the optical path. The existing diode laser sources designed and built by INGENERIC deliver 20 kW pulsed power, concentrated on a plateau of FWHM dimension of 20 x 20 mm² with a homogeneity of more than 90 %. The center wavelength of 939.5 nm is controlled in a range of ± 0.1 nm. The time and area integrated spectrum of at least 76 % of the total energy is contained within a 6 nm wide wavelength band around the center wavelength. Repetition rates can be adjusted between 0.1 Hz up to 10 Hz with rise and fall times less than 50 μs and pulse durations from 0.2 ms to 1.2 ms. The paper describes the impact of different designs on the performance of pump sources and puts special emphasis on the influence of the optical components on efficiency and performance. In addition the influence of the measuring principle is

  16. Creating a Comprehensive, Efficient, and Sustainable Nuclear Regulatory Structure: A Process Report from the U.S. Department of Energy's Material Protection, Control and Accounting Program

    SciTech Connect

    Wright, Troy L.; O'Brien, Patricia E.; Hazel, Michael J.; Tuttle, John D.; Cunningham, Mitchel E.; Schlegel, Steven C.

    2010-08-11

    With the congressionally mandated January 1, 2013 deadline for the U.S. Department of Energy’s (DOE) Nuclear Material Protection, Control and Accounting (MPC&A) program to complete its transition of MPC&A responsibility to the Russian Federation, National Nuclear Security Administration (NNSA) management directed its MPC&A program managers and team leaders to demonstrate that work in ongoing programs would lead to successful and timely achievement of these milestones. In the spirit of planning for successful project completion, the NNSA review of the Russian regulatory development process confirmed the critical importance of an effective regulatory system to a sustainable nuclear protection regime and called for an analysis of the existing Russian regulatory structure and the identification of a plan to ensure a complete MPC&A regulatory foundation. This paper describes the systematic process used by DOE’s MPC&A Regulatory Development Project (RDP) to develop an effective and sustainable MPC&A regulatory structure in the Russian Federation. This nuclear regulatory system will address all non-military Category I and II nuclear materials at State Corporation for Atomic Energy “Rosatom,” the Federal Service for Ecological, Technological, and Nuclear Oversight (Rostechnadzor), the Federal Agency for Marine and River Transport (FAMRT, within the Ministry of Transportation), and the Ministry of Industry and Trade (Minpromtorg). The approach to ensuring a complete and comprehensive nuclear regulatory structure includes five sequential steps. The approach was adopted from DOE’s project management guidelines and was adapted to the regulatory development task by the RDP. The five steps in the Regulatory Development Process are: 1) Define MPC&A Structural Elements; 2) Analyze the existing regulatory documents using the identified Structural Elements; 3) Validate the analysis with Russian colleagues and define the list of documents to be developed; 4) Prioritize and

  17. Energy saving opportunities of energy efficient air nozzles

    NASA Astrophysics Data System (ADS)

    Slootmaekers, Tim; Slaets, Peter; Bartsoen, Tom; Malfait, Lieven; Vanierschot, Maarten

    2015-12-01

    Compressed air is a common energy medium. The production of compressed air itself is not a very efficient process. Avoiding any unnecessary losses of air can lead to large reductions in electricity consumption. Since blowing applications are one of the main domains were compressed-air is used, any reduction in the mass flow needed for operation can lead to significant energy savings. In this paper the normal volumetric flow rate and generated impact force are compared between a stepped nozzle and a so called energy saving nozzle which allows extra air from the surroundings to be entrained. These two different nozzle geometries are used in industrial blowing applications. Until now there was no study available which compares the impact forces and volumetric flow rates for these types of nozzles. The flow field of the two nozzles was calculated by CFD simulations. The impact forces and volumetric flow rates are calculated out of this flow field. Each nozzle was simulated with three different input pressures. The nozzles were simulated with an input pressure of 3, 4 and 5 barg. The energy saving nozzle consumes only 1 % less volumetric flow rate then the stepped nozzle at the same inlet pressure. The replacement of a stepped nozzle with an energy saving nozzle will not immediately result in a decrease in input volumetric flow rate. The pressure at the inlet of the energy saving nozzle has to be reduced as well. After reducing the input pressure the energy saving nozzle generates the same impact force than the stepped nozzle. Hereby a decrease of 4.5 % in input volumetric flow rate was possible. The energy cost will decrease with 4.5 % as well because the normal volumetric flow rate is directly proportional to the energy cost. The replacement of a stepped nozzle with an energy saving nozzle while maintaining the same inlet pressure is only useful when the impact force from the stepped nozzle is not sufficient. The energy saving nozzle can generate 5.6 % more impact

  18. Energy-Efficiency Improvement Opportunities for the Textile Industry

    SciTech Connect

    China Energy Group; Hasanbeigi, Ali

    2010-09-29

    The textile industry is one of the most complicated manufacturing industries because it is a fragmented and heterogeneous sector dominated by small and medium enterprises (SMEs). Energy is one of the main cost factors in the textile industry. Especially in times of high energy price volatility, improving energy efficiency should be a primary concern for textile plants. There are various energy-efficiency opportunities that exist in every textile plant, many of which are cost-effective. However, even cost-effective options often are not implemented in textile plants mostly because of limited information on how to implement energy-efficiency measures, especially given the fact that a majority of textile plants are categorized as SMEs and hence they have limited resources to acquire this information. Know-how on energy-efficiency technologies and practices should, therefore, be prepared and disseminated to textile plants. This guidebook provides information on energy-efficiency technologies and measures applicable to the textile industry. The guidebook includes case studies from textile plants around the world and includes energy savings and cost information when available. First, the guidebook gives a brief overview of the textile industry around the world, with an explanation of major textile processes. An analysis of the type and the share of energy used in different textile processes is also included in the guidebook. Subsequently, energy-efficiency improvement opportunities available within some of the major textile sub-sectors are given with a brief explanation of each measure. The conclusion includes a short section dedicated to highlighting a few emerging technologies in the textile industry as well as the potential for the use of renewable energy in the textile industry.

  19. Efficient algorithms for processing remotely sensed imagery

    NASA Astrophysics Data System (ADS)

    Zhang, Zengyan

    At regional and global scales, satellite-based sensors are the primary source of information to study the Earth's environment, as they provide the needed dynamic temporal view of the Earth's surface. We focus this dissertation on the development of efficient methodologies and algorithms to generate custom tailored data products using Global Area Coverage (GAC) data from the NOAA Advanced Very High Resolution Radiometer (AVHRR) sensor. Furthermore, we show the retrieval of the global Bidirectional Reflectance Distribution Function (BRDF) and albedo of the Earth land surface using Pathfinder AVHRR Land (PAL) data sets which can be generated using our system. These are the first algorithms to retrieve such land surface properties on a global scale. We start by describing a software system Kronos, which allows the generation of a rich set of data products that can be easily specified through a Java interface by scientists wishing to carry out Earth system modeling or analysis. Kronos is based on a flexible methodology and consists of four major components: ingest and preprocessing, indexing and storage, search and processing engine, and a Java interface. Then efficient algorithms for custom-tailored AVHRR data products generation are developed, implemented, and tested on the UMIACS high performance computer systems. A major challenge lies in the efficient processing, storage, and archival of the available large amounts of data in such a way that pertinent information can be extracted with ease. Finally high performance algorithms are developed to retrieve global BRDF and albedo in the red and near-infrared wavelengths using three widely different models with multiangular, multi-temporal, and multi-band PAL data. Given the volume of data involved (about 27 GBytes), I/O time as well as the overall computational complexity are minimized. The algorithms access the global data once, followed by a redistribution of land pixel data to balance the computational loads among the

  20. IMPROVING TACONITE PROCESSING PLANT EFFICIENCY BY COMPUTER SIMULATION, Final Report

    SciTech Connect

    William M. Bond; Salih Ersayin

    2007-03-30

    This project involved industrial scale testing of a mineral processing simulator to improve the efficiency of a taconite processing plant, namely the Minorca mine. The Concentrator Modeling Center at the Coleraine Minerals Research Laboratory, University of Minnesota Duluth, enhanced the capabilities of available software, Usim Pac, by developing mathematical models needed for accurate simulation of taconite plants. This project provided funding for this technology to prove itself in the industrial environment. As the first step, data representing existing plant conditions were collected by sampling and sample analysis. Data were then balanced and provided a basis for assessing the efficiency of individual devices and the plant, and also for performing simulations aimed at improving plant efficiency. Performance evaluation served as a guide in developing alternative process strategies for more efficient production. A large number of computer simulations were then performed to quantify the benefits and effects of implementing these alternative schemes. Modification of makeup ball size was selected as the most feasible option for the target performance improvement. This was combined with replacement of existing hydrocyclones with more efficient ones. After plant implementation of these modifications, plant sampling surveys were carried out to validate findings of the simulation-based study. Plant data showed very good agreement with the simulated data, confirming results of simulation. After the implementation of modifications in the plant, several upstream bottlenecks became visible. Despite these bottlenecks limiting full capacity, concentrator energy improvement of 7% was obtained. Further improvements in energy efficiency are expected in the near future. The success of this project demonstrated the feasibility of a simulation-based approach. Currently, the Center provides simulation-based service to all the iron ore mining companies operating in northern

  1. Energy efficiency: Perspectives on individual behavior

    SciTech Connect

    Kempton, W.; Neiman, M.

    1986-01-01

    A collection of research papers on the personal behavior and attitudes that affect residential energy use. Articles in the first section address the factors that affect decision-making by consumers; convenience and personal opinions often override rational economic choices. The research in the second section uses aggregate survey data to gain insight into energy behavior. Papers in the third section use detailed monitoring of individual households to analyze personal behavior and home energy management, and the fourth section includes papers on the interaction of building systems with occupants. These papers demonstrate that, to be successful, energy conservation programs must consider the ''human factor'' in addition to the conventional energy parameters (e.g. weather, insulation, and appliance efficiencies). Main emphasis was given to: energy conservation; consumers; personal behavior; economic decision-making; buildings; energy policy; hot water use; thermostats; attitudes; applied anthropology.

  2. 75 FR 35766 - Establishment of the Renewable Energy and Energy Efficiency Advisory Committee and Solicitation...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-23

    ... International Trade Administration Establishment of the Renewable Energy and Energy Efficiency Advisory.... ACTION: Notice of establishment of the Renewable Energy and Energy Efficiency Advisory Committee and... establishment of the Renewable Energy and Energy Efficiency Advisory Committee (the Committee) by the...

  3. 75 FR 35450 - Establishment of the Energy Efficiency and Renewable Energy Advisory Committee and Request for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-22

    ... of Energy Efficiency and Renewable Energy Establishment of the Energy Efficiency and Renewable Energy Advisory Committee and Request for Member Nominations AGENCY: Office of Energy Efficiency and Renewable... Renewable Energy Advisory Committee and request member nominations. SUMMARY: Pursuant to Section...

  4. Design approaches to more energy efficient engines

    NASA Technical Reports Server (NTRS)

    Saunders, N. T.; Colladay, R. S.; Macioce, L. E.

    1978-01-01

    The status of NASA's Energy Efficient Engine Project, a comparative government-industry effort aimed at advancing the technology base for the next generation of large turbofan engines for civil aircraft transports is summarized. Results of recently completed studies are reviewed. These studies involved selection of engine cycles and configurations that offer potential for at least 12% lower fuel consumption than current engines and also are economically attractive and environmentally acceptable. Emphasis is on the advancements required in component technologies and systems design concepts to permit future development of these more energy efficient engines.

  5. TV Energy Consumption Trends and Energy-Efficiency Improvement Options

    SciTech Connect

    Park, Won Young; Phadke, Amol; Shah, Nihar; Letschert, Virginie

    2011-07-01

    The SEAD initiative aims to transform the global market by increasing the penetration of highly efficient equipment and appliances. SEAD is a government initiative whose activities and projects engage the private sector to realize the large global energy savings potential from improved appliance and equipment efficiency. SEAD seeks to enable high-level global action by informing the Clean Energy Ministerial dialogue as one of the initiatives in the Global Energy Efficiency Challenge. In keeping with its goal of achieving global energy savings through efficiency, SEAD was approved as a task within the International Partnership for Energy Efficiency Cooperation (IPEEC) in January 2010. SEAD partners work together in voluntary activities to: (1) ?raise the efficiency ceiling? by pulling super-efficient appliances and equipment into the market through cooperation on measures like incentives, procurement, awards, and research and development (R&D) investments; (2) ?raise the efficiency floor? by working together to bolster national or regional policies like minimum efficiency standards; and (3) ?strengthen the efficiency foundations? of programs by coordinating technical work to support these activities. Although not all SEAD partners may decide to participate in every SEAD activity, SEAD partners have agreed to engage actively in their particular areas of interest through commitment of financing, staff, consultant experts, and other resources. In addition, all SEAD partners are committed to share information, e.g., on implementation schedules for and the technical detail of minimum efficiency standards and other efficiency programs. Information collected and created through SEAD activities will be shared among all SEAD partners and, to the extent appropriate, with the global public.As of April 2011, the governments participating in SEAD are: Australia, Brazil, Canada, the European Commission, France, Germany, India, Japan, Korea, Mexico, Russia, South Africa, Sweden

  6. Industrial Compressed Air System Energy Efficiency Guidebook.

    SciTech Connect

    United States. Bonneville Power Administration.

    1993-12-01

    Energy efficient design, operation and maintenance of compressed air systems in industrial plants can provide substantial reductions in electric power and other operational costs. This guidebook will help identify cost effective, energy efficiency opportunities in compressed air system design, re-design, operation and maintenance. The guidebook provides: (1) a broad overview of industrial compressed air systems, (2) methods for estimating compressed air consumption and projected air savings, (3) a description of applicable, generic energy conservation measures, and, (4) a review of some compressed air system demonstration projects that have taken place over the last two years. The primary audience for this guidebook includes plant maintenance supervisors, plant engineers, plant managers and others interested in energy management of industrial compressed air systems.

  7. Compressed bitmap indices for efficient query processing

    SciTech Connect

    Wu, Kesheng; Otoo, Ekow; Shoshani, Arie

    2001-09-30

    Many database applications make extensive use of bitmap indexing schemes. In this paper, we study how to improve the efficiencies of these indexing schemes by proposing new compression schemes for the bitmaps. Most compression schemes are designed primarily to achieve good compression. During query processing they can be orders of magnitude slower than their uncompressed counterparts. The new schemes are designed to bridge this performance gap by reducing compression effectiveness and improving operation speed. In a number of tests on both synthetic data and real application data, we found that the new schemes significantly outperform the well-known compression schemes while using only modestly more space. For example, compared to the Byte-aligned Bitmap Code, the new schemes are 12 times faster and it uses only 50 percent more space. The new schemes use much less space(<30 percent) than the uncompressed scheme and are faster in a majority of the test cases.

  8. 10 CFR 433.4 - Energy efficiency performance standard.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 3 2014-01-01 2014-01-01 false Energy efficiency performance standard. 433.4 Section 433.4 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY EFFICIENCY STANDARDS FOR NEW FEDERAL COMMERCIAL AND MULTI-FAMILY HIGH-RISE RESIDENTIAL BUILDINGS § 433.4 Energy efficiency performance...

  9. 10 CFR 435.4 - Energy efficiency performance standard.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 3 2012-01-01 2012-01-01 false Energy efficiency performance standard. 435.4 Section 435.4 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY EFFICIENCY STANDARDS FOR NEW FEDERAL LOW-RISE RESIDENTIAL BUILDINGS Mandatory Energy Efficiency Standards for Federal Low-Rise...

  10. 10 CFR 435.4 - Energy efficiency performance standard.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 3 2010-01-01 2010-01-01 false Energy efficiency performance standard. 435.4 Section 435.4 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY EFFICIENCY STANDARDS FOR NEW FEDERAL LOW-RISE RESIDENTIAL BUILDINGS Mandatory Energy Efficiency Standards for Federal Low-Rise...

  11. 10 CFR 433.4 - Energy efficiency performance standard.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 3 2012-01-01 2012-01-01 false Energy efficiency performance standard. 433.4 Section 433.4 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY EFFICIENCY STANDARDS FOR NEW FEDERAL COMMERCIAL AND MULTI-FAMILY HIGH-RISE RESIDENTIAL BUILDINGS § 433.4 Energy efficiency performance...

  12. 10 CFR 433.4 - Energy efficiency performance standard.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 3 2010-01-01 2010-01-01 false Energy efficiency performance standard. 433.4 Section 433.4 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY EFFICIENCY STANDARDS FOR THE DESIGN AND... consumption level at or better than the maximum level of energy efficiency that is life-cycle...

  13. 78 FR 37995 - Energy Efficiency Standards for Manufactured Housing

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-25

    ... Part 460 RIN 1904-AC11 Energy Efficiency Standards for Manufactured Housing AGENCY: Office of Energy Efficiency and Renewable Energy, Department of Energy. ACTION: Request for Information (RFI). SUMMARY: The U.... Mohammed Khan, U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy,...

  14. 10 CFR 435.4 - Energy efficiency performance standard.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 3 2014-01-01 2014-01-01 false Energy efficiency performance standard. 435.4 Section 435.4 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY EFFICIENCY STANDARDS FOR NEW FEDERAL LOW-RISE RESIDENTIAL BUILDINGS Mandatory Energy Efficiency Standards for Federal Low-Rise...

  15. 10 CFR 433.4 - Energy efficiency performance standard.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 3 2013-01-01 2013-01-01 false Energy efficiency performance standard. 433.4 Section 433.4 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY EFFICIENCY STANDARDS FOR NEW FEDERAL COMMERCIAL AND MULTI-FAMILY HIGH-RISE RESIDENTIAL BUILDINGS § 433.4 Energy efficiency performance...

  16. 10 CFR 435.4 - Energy efficiency performance standard.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 3 2013-01-01 2013-01-01 false Energy efficiency performance standard. 435.4 Section 435.4 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY EFFICIENCY STANDARDS FOR NEW FEDERAL LOW-RISE RESIDENTIAL BUILDINGS Mandatory Energy Efficiency Standards for Federal Low-Rise...

  17. 10 CFR 435.4 - Energy efficiency performance standard.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 3 2011-01-01 2011-01-01 false Energy efficiency performance standard. 435.4 Section 435.4 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY EFFICIENCY STANDARDS FOR NEW FEDERAL LOW-RISE RESIDENTIAL BUILDINGS Mandatory Energy Efficiency Standards for Federal Low-Rise...

  18. 10 CFR 433.4 - Energy efficiency performance standard.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 3 2011-01-01 2011-01-01 false Energy efficiency performance standard. 433.4 Section 433.4 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY EFFICIENCY STANDARDS FOR THE DESIGN AND... consumption level at or better than the maximum level of energy efficiency that is life-cycle...

  19. Energy Implications of Materials Processing

    ERIC Educational Resources Information Center

    Hayes, Earl T.

    1976-01-01

    Processing of materials could become energy-limited rather than resource-limited. Methods to extract metals, industrial minerals, and energy materials and convert them to useful states requires more than one-fifth of the United States energy budget. Energy accounting by industries must include a total systems analysis of costs to insure net energy…

  20. Building Energy Efficiency in Rural China

    SciTech Connect

    Evans, Meredydd; Yu, Sha; Song, Bo; Deng, Qinqin; Liu, Jing; Delgado, Alison

    2014-04-01

    Rural buildings in China now account for more than half of China’s total building energy use. Forty percent of the floorspace in China is in rural villages and towns. Most of these buildings are very energy inefficient, and may struggle to meet basic needs. They are cold in the winter, and often experience indoor air pollution from fuel use. The Chinese government plans to adopt a voluntary building energy code, or design standard, for rural homes. The goal is to build on China’s success with codes in urban areas to improve efficiency and comfort in rural homes. The Chinese government recognizes rural buildings represent a major opportunity for improving national building energy efficiency. The challenges of rural China are also greater than those of urban areas in many ways because of the limited local capacity and low income levels. The Chinese government wants to expand on new programs to subsidize energy efficiency improvements in rural homes to build capacity for larger-scale improvement. This article summarizes the trends and status of rural building energy use in China. It then provides an overview of the new rural building design standard, and describes options and issues to move forward with implementation.

  1. Energy Efficient Operation of Ammonia Refrigeration Systems

    SciTech Connect

    Mohammed, Abdul Qayyum; Wenning, Thomas J; Sever, Franc; Kissock, Professor Kelly

    2013-01-01

    Ammonia refrigeration systems typically offer many energy efficiency opportunities because of their size and complexity. This paper develops a model for simulating single-stage ammonia refrigeration systems, describes common energy saving opportunities, and uses the model to quantify those opportunities. The simulation model uses data that are typically available during site visits to ammonia refrigeration plants and can be calibrated to actual consumption and performance data if available. Annual electricity consumption for a base-case ammonia refrigeration system is simulated. The model is then used to quantify energy savings for six specific energy efficiency opportunities; reduce refrigeration load, increase suction pressure, employ dual suction, decrease minimum head pressure set-point, increase evaporative condenser capacity, and reclaim heat. Methods and considerations for achieving each saving opportunity are discussed. The model captures synergistic effects that result when more than one component or parameter is changed. This methodology represents an effective method to model and quantify common energy saving opportunities in ammonia refrigeration systems. The results indicate the range of savings that might be expected from common energy efficiency opportunities.

  2. Residential energy use in Lithuania: The prospects for energy efficiency

    SciTech Connect

    Vine, E.; Kazakevicius, E.

    1998-06-01

    While the potential for saving energy in Lithuania`s residential sector (especially, space heating in apartment buildings) is large, significant barriers (financial, administration, etc.) to energy efficiency remain. Removing or ameliorating these barriers will be difficult since these are systematic barriers that require societal change. Furthermore, solutions to these problems will require the cooperation and, in some cases, active participation of households and homeowner associations. Therefore, prior to proposing and implementing energy-efficiency solutions, one must understand the energy situation from a household perspective.

  3. Who Should Administer Energy-Efficiency Programs?

    SciTech Connect

    Blumstein, Carl; Goldman, Charles; Barbose, Galen L.

    2003-05-01

    The restructuring of the electric utility industry in the US created a crisis in the administration of ratepayer-funded energy-efficiency programs. Before restructuring, nearly all energy-efficiency programs in the US were administered by utilities and funded from utility rates. Restructuring called these arrangements into question in two ways. First, the separation of generation from transmission and distribution undermined a key rationale for utility administration. This was the Integrated Resource Planning approach in which the vertically integrated utility was given incentives to provide energy services at least cost. Second, questions were raised as to whether funding through utility rates could be sustained in a competitive environment and most states that restructured their electricity industry adopted a system benefits charge. The crisis in administration of energy-efficiency programs produced a variety of responses in the eight years since restructuring in the US began in earn est. These responses have included new rationales for energy-efficiency programs, new mechanisms for funding programs, and new mechanisms for program administration and governance. This paper focuses on issues related to program administration. It describes the administrative functions and some of the options for accomplishing them. Then it discusses criteria for choosing among the options. Examples are given that highlight some of the states that have made successful transitions to new governance and/or administration structures. Attention is also given to California where large-scale energy-efficiency programs have continued to operate, despite the fact that many of the key governance/administration issues remain unresolved. The conclusion attempts to summarize lessons learned.

  4. Enzyme catalysis: Cleaner, safer, energy efficient

    SciTech Connect

    Lalonde, J.

    1997-09-01

    Protein catalysts, more commonly referred to as enzymes, are the driving force behind the myriad of chemical reactions occurring in living organisms. By using their ability to distinguish between similar biochemical compounds and optical isomers (enantiomers), with virtually complete discrimination, enzymes are efficient catalysts, making them an attractive alternative for synthetic ones. Tapping into the natural abilities of enzymes, the chemical process industries (CPI) are beginning to realize that enzymes are not only effective for catalyzing reactions of natural compounds within living systems, but that they can also be used to catalyze reactions of unnatural compounds. Enzymes are novel among catalysts in that they are capable of directing asymmetric transformations with complete activity under ambient conditions. As a result, bioconversions, such as the hydroxylation of unactivated hydrocarbon centers, to give alcohols in high optical purity, have few counterparts in traditional chemical catalysis. And unlike most chemical manufacturing catalysts, enzymes work in water, at ambient temperature and near neutral pH. Also, they are easy to dispose of, since they are composed of biodegradable protein. Thus, biocatalysts are the ideal green catalyst, producing less waste and consuming less energy.

  5. Biohydrogen Production: Strategies to Improve Process Efficiency through Microbial Routes

    PubMed Central

    Chandrasekhar, Kuppam; Lee, Yong-Jik; Lee, Dong-Woo

    2015-01-01

    The current fossil fuel-based generation of energy has led to large-scale industrial development. However, the reliance on fossil fuels leads to the significant depletion of natural resources of buried combustible geologic deposits and to negative effects on the global climate with emissions of greenhouse gases. Accordingly, enormous efforts are directed to transition from fossil fuels to nonpolluting and renewable energy sources. One potential alternative is biohydrogen (H2), a clean energy carrier with high-energy yields; upon the combustion of H2, H2O is the only major by-product. In recent decades, the attractive and renewable characteristics of H2 led us to develop a variety of biological routes for the production of H2. Based on the mode of H2 generation, the biological routes for H2 production are categorized into four groups: photobiological fermentation, anaerobic fermentation, enzymatic and microbial electrolysis, and a combination of these processes. Thus, this review primarily focuses on the evaluation of the biological routes for the production of H2. In particular, we assess the efficiency and feasibility of these bioprocesses with respect to the factors that affect operations, and we delineate the limitations. Additionally, alternative options such as bioaugmentation, multiple process integration, and microbial electrolysis to improve process efficiency are discussed to address industrial-level applications. PMID:25874756

  6. Biohydrogen production: strategies to improve process efficiency through microbial routes.

    PubMed

    Chandrasekhar, Kuppam; Lee, Yong-Jik; Lee, Dong-Woo

    2015-01-01

    The current fossil fuel-based generation of energy has led to large-scale industrial development. However, the reliance on fossil fuels leads to the significant depletion of natural resources of buried combustible geologic deposits and to negative effects on the global climate with emissions of greenhouse gases. Accordingly, enormous efforts are directed to transition from fossil fuels to nonpolluting and renewable energy sources. One potential alternative is biohydrogen (H2), a clean energy carrier with high-energy yields; upon the combustion of H2, H2O is the only major by-product. In recent decades, the attractive and renewable characteristics of H2 led us to develop a variety of biological routes for the production of H2. Based on the mode of H2 generation, the biological routes for H2 production are categorized into four groups: photobiological fermentation, anaerobic fermentation, enzymatic and microbial electrolysis, and a combination of these processes. Thus, this review primarily focuses on the evaluation of the biological routes for the production of H2. In particular, we assess the efficiency and feasibility of these bioprocesses with respect to the factors that affect operations, and we delineate the limitations. Additionally, alternative options such as bioaugmentation, multiple process integration, and microbial electrolysis to improve process efficiency are discussed to address industrial-level applications. PMID:25874756

  7. Energy efficiency improvement and cost saving opportunities forpetroleum refineries

    SciTech Connect

    Worrell, Ernst; Galitsky, Christina

    2005-02-15

    The petroleum refining industry in the United States is the largest in the world, providing inputs to virtually any economic sector,including the transport sector and the chemical industry. The industry operates 146 refineries (as of January 2004) around the country,employing over 65,000 employees. The refining industry produces a mix of products with a total value exceeding $151 billion. Refineries spend typically 50 percent of cash operating costs (i.e., excluding capital costs and depreciation) on energy, making energy a major cost factor and also an important opportunity for cost reduction. Energy use is also a major source of emissions in the refinery industry making energy efficiency improvement an attractive opportunity to reduce emissions and operating costs. Voluntary government programs aim to assist industry to improve competitiveness through increased energy efficiency and reduced environmental impact. ENERGY STAR (R), a voluntary program managed by the U.S. Environmental Protection Agency, stresses the need for strong and strategic corporate energy management programs. ENERGY STAR provides energy management tools and strategies for successful corporate energy management programs. This Energy Guide describes research conducted to support ENERGY STAR and its work with the petroleum refining industry.This research provides information on potential energy efficiency opportunities for petroleum refineries. This Energy Guide introduces energy efficiency opportunities available for petroleum refineries. It begins with descriptions of the trends, structure, and production of the refining industry and the energy used in the refining and conversion processes. Specific energy savings for each energy efficiency measure based on case studies of plants and references to technical literature are provided. If available, typical payback periods are also listed. The Energy Guide draws upon the experiences with energy efficiency measures of petroleum refineries worldwide

  8. PRODUCTIVITY BENEFITS OF INDUSTRIAL ENERGY EFFICIENCY MEASURES

    EPA Science Inventory

    A journal article by: Ernst Worrell1, John A. Laitner, Michael Ruth, and Hodayah Finman Abstract: We review the relationship between energy efficiency improvement measures and productivity in industry. We review over 70 industrial case studies from widely available published dat...

  9. Energy Efficiency for the Nunamiut People

    SciTech Connect

    Goodman, Dan

    2014-04-09

    The goal of this project is to upgrade existing building facilities owned by Nunamiut Corporation in Anaktuvuk Pass, AK. The upgrades mentioned will include lighting, heating system, insulation and smart control units designed to increase the energy efficiency of Village Corporation owned buildings.

  10. Energy efficiency standards for residential and commercial equipment: Additional opportunities

    SciTech Connect

    Rosenquist, Greg; McNeil, Michael; Iyer, Maithili; Meyers, Steve; McMahon, Jim

    2004-08-02

    , it is either impossible or more costly to improve the energy efficiency. Therefore, by not expanding or upgrading energy efficiency standards, opportunities for saving energy would be lost. In the past two decades, standards have significantly raised the level of energy efficiency for new products. How much more might be gained by making standards more stringent on products already subject to them, or by extending standards to products not yet covered? The main goal of this study is to estimate key national impacts of new and upgraded energy efficiency standards for residential and commercial equipment. These impacts approximate the opportunity for national benefits that may be lost if standards are not upgraded and expanded from current levels. This study also identifies the end uses where the largest opportunities exist. This analysis was prepared for the National Commission on Energy Policy (NCEP). It uses an analytical approach that is similar in concept to that used by the U.S. Department of Energy (DOE) to set standard levels. It relies on much less data and uses more simplified assumptions than the detailed and complex formulations used in DOE's standard-setting process. The results of this analysis should thus be viewed as a first approximation of the impacts that would actually be achieved by new standards. All monetary values in this report are in 2002 dollars.

  11. Energy from biological processes

    SciTech Connect

    Not Available

    1980-07-01

    This assessment responds to a request by the Senate Committee on Commerce, Science, and Transportation for an evaluation of the energy potential of various sources of plant and animal matter (biomass). This report complements an earlier OTA report on the Application of Solar Technology to Today's Energy Needs in evaluating the major solar energy resources available to the United States. The findings also will serve as part of the material to be used in an upcoming OTA assessment of synthetic fuels for transportation. This volume presents analyses of prominent biomass issues, summaries of four biomass fuel cycles, a description of biomass' place in two plausible energy futures, and discussions of policy options for promoting energy from biomass. The four fuel cycles - wood, alcohol fuels, grasses and crop residues, and animal wastes - were chosen because of their near- to mid-term energy potential and because of the public interest in them. A second volume presents technical analyses of the resource base, conversion technologies, and end uses that provide a basis for the discussion in this volume. Also included in Volume II are various unconventional approaches to bioenergy production as well as the use of biomass to produce chemicals.

  12. Directed-energy process technology efforts

    NASA Technical Reports Server (NTRS)

    Alexander, P.

    1985-01-01

    A summary of directed-energy process technology for solar cells was presented. This technology is defined as directing energy or mass to specific areas on solar cells to produce a desired effect in contrast to exposing a cell to a thermal or mass flow environment. Some of these second generation processing techniques are: ion implantation; microwave-enhanced chemical vapor deposition; rapid thermal processing; and the use of lasers for cutting, assisting in metallization, assisting in deposition, and drive-in of liquid dopants. Advantages of directed energy techniques are: surface heating resulting in the bulk of the cell material being cooler and unchanged; better process control yields; better junction profiles, junction depths, and metal sintering; lower energy consumption during processing and smaller factory space requirements. These advantages should result in higher-efficiency cells at lower costs. The results of the numerous contracted efforts were presented as well as the application potentials of these new technologies.

  13. Who should administer energy efficiency programs?

    SciTech Connect

    Blumstein, Carl; Goldman, Charles; Barbose, Galen

    2003-08-01

    The restructuring of the U.S. electricity industry created a crisis for ratepayer-funded energy-efficiency programs. This paper briefly describes the reasons for the crisis and some of its consequences. Then the paper focuses on issues related to program administration and discusses the relative merits of entities-utilities, state agencies, and non-profit corporations-that might be administrators. Four criteria are developed for choosing among program administration options: Compatibility with public policy goals, effectiveness of the incentive structure, ability to realize economies of scale and scope, and contribution to the development of an energy-efficiency infrastructure. We examine one region, the Pacific Northwest, and three states, New York, Vermont, and Connecticut, which have made successful transitions to new governance and/or administration structures. Attention is also given to California where large-scale energy-efficiency programs have continued to operate, despite the fact that many of the key governance/administration issues remain unresolved.We observe that no single administrative structure for energy-efficiency programs has yet emerged in the US that is clearly superior to all of the other alternatives. We conclude that this is not likely to happen soon for three reasons. First, policy environments differ significantly among the states. Second, the structure and regulation of the electric utility industry differs among the regions of the US. Third, market transformation and resource acquisition, two program strategies that were once seen as alternatives, are increasingly coming to be seen as complements. Energy-efficiency programs going forward are likely to include elements of both strategies. But, the administrative arrangements that are best suited to support market transformation may be different from the arrangements that are best for resource acquisition.

  14. Kyiv institutional buildings energy efficiency program: Draft procedures

    SciTech Connect

    1998-09-01

    The Kyiv Institutional Buildings Energy Efficiency (KIBA) Project is being conducted to support the development of a program to improve the energy efficiency for heat and hot water provided by district heat in institutional (education, healthcare, and cultural) buildings owned and operated by State and Municipal Organizations in the City of Kyiv, Ukraine. KIBA is funded by the US Department of Energy and is being conducted in cooperation with the World Bank and the Ukrainian State Committee for Energy Conservation. This document provides a set of draft procedures for the installation of the efficiency measures to ensure that the quality of the installations is maximized and that cost is minimized. The procedures were developed as an integrated package to reflect the linkages that exist throughout the installation process.

  15. Affordable Energy-Efficient New Housing Solutions

    SciTech Connect

    Chandra, Subrato; Widder, Sarah H.; Bartlett, Rosemarie; McIlvaine, Janet; Chasar, David; Beal, David; Sutherland, Karen; Abbott, , K.; Fonorow, Ken; Eklund, Ken; Lubliner, Michael; Salzberg, Emily; Peeks, B.; Hewes, T.; Kosar, D.

    2012-05-31

    Since 2010, the U.S. Department of Energy’s Building America has sponsored research at PNNL to investigate cost-effective, energy-saving home-building technologies and to demonstrate how high-performance homes can deliver lower utility bills, increased comfort, and improved indoor air quality, while maintaining accessibility for low-income homeowners. PNNL and its contractors have been investigating 1) cost-effective whole-house solutions for Habitat for Humanity International (HFHI) and specific HFH affiliates in hot-humid and marine climates; 2) cost-effective energy-efficiency improvements for heating, ventilation, and air-conditioning (HVAC) systems in new, stick-built and manufactured homes; and 3) energy-efficient domestic hot-water systems.

  16. NEXT GENERATION ENERGY EFFICIENT FLUORESCENT LIGHTING PRODUCT

    SciTech Connect

    Alok Srivastava; Anant Setlur

    2003-04-01

    This is the Final Report of the Next-Generation Energy Efficient Fluorescent Lighting Products program, Department of Energy (DOE). The overall goal of this three-year program was to develop novel phosphors to improve the color rendition and efficiency of compact and linear fluorescent lamps. The prime technical approach was the development of quantum-splitting phosphor (QSP) to further increase the efficiency of conventional linear fluorescent lamps and the development of new high color rendering phosphor blends for compact fluorescent lamps (CFLs) as potential replacements for the energy-hungry and short-lived incandescent lamps in market segments that demand high color rendering light sources. We determined early in the project that the previously developed oxide QSP, SrAl{sub 12}O{sub 19}:Pr{sup 3+}, did not exhibit an quantum efficiency higher than unity under excitation by 185 nm radiation, and we therefore worked to determine the physical reasons for this observation. From our investigations we concluded that the achievement of quantum efficiency exceeding unity in SrAl{sub 12}O{sub 19}:Pr{sup 3+} was not possible due to interaction of the Pr{sup 3+} 5d level with the conduction band of the solid. The interaction which gives rise to an additional nonradiative decay path for the excitation energy is responsible for the low quantum efficiency of the phosphor. Our work has led to the development of a novel spectroscopic method for determining photoionzation threshold of luminescent centers in solids. This has resulted in further quantification of the requirements for host phosphor lattice materials to optimize quantum efficiency. Because of the low quantum efficiency of the QSP, we were unable to demonstrate a linear fluorescent lamp with overall performance exceeding that of existing mercury-based fluorescent lamps. Our work on the high color rendering CFLs has been very successful. We have demonstrated CFLs that satisfies the EnergyStar requirement with color

  17. Improving energy efficiency in the transportation sector

    SciTech Connect

    Plotkin, S.E.

    1994-12-31

    A primary characteristic of transportation in the United States is its high per capita energy consumption. The average US citizen consumes nearly five times as much energy for transportation as the average Japanese and nearly three times as much as the average citizen of France, Britain, or West Germany. The energy efficiency of US transportation has improved substantially over the past two decades (both absolutely and in comparison to Europe), and US travel volume has grown more slowly than in most of the developed world. However, the United States still consumes more than one-third of the world`s transport energy. Also, 96 percent of US transport energy is in the form of oil products. This is more oil than the United States produces, despite its position as one of the world`s largest oil producers. With current problems and expectation of continued growth in travel and energy use, Congress has increasingly turned to transportation energy conservation - in the form of improvements in the technical efficiency of travel, increases in load factors, reductions in travel demand, shifting to alternative fuels, and shifts to more efficient travel modes - as an important policy goal. For example, the Clean Air Amendments of 1990 incorporate transportation demand management as a critical tool in reducing urban air pollution. Legislation proposed in the 102d Congress sought rigorous new automobile and light truck fuel economy standards. With continued increases in U.S. oil imports, urban traffic congestion, and greenhouse gas emissions, and the failure of many urban areas to meet air quality standards, strong congressional interest in new energy conservation initiates is likely to continue.

  18. Building America - Resources for Energy Efficient Homes

    SciTech Connect

    2012-04-19

    Building America publications help builders achieve whole-house energy savings in five major climate zones. Using the recommendation and process improvements outlined in the Best Practices Series handbooks, builders can re-engineer their designs to improve energy performance and quality. Case studies for new and existing homes provide results from actual projects.

  19. Saving Energy, Water, and Money with Efficient Water Treatment Technologies

    SciTech Connect

    Not Available

    2004-06-01

    Reverse Osmosis (RO) is a method of purifying water for industrial processes and human consumption; RO can remove mineral salts as well as contaminants such as bacteria and pesticides. Advances in water treatment technologies have enhanced and complemented the conventional RO process, reducing energy and water consumption, lowering capital and operating costs, and producing purer water. This publication of the Department of Energy's Federal Energy Management Program introduces RO, describes the benefits of high-efficiency reverse osmosis (HERO), and compares HERO with RO/electrodeionization (EDI) technology.

  20. Mobile Energy Laboratory energy-efficiency testing programs

    NASA Astrophysics Data System (ADS)

    Parker, G. B.; Currie, J. W.

    1991-09-01

    This report summarizes energy-efficiency testing activities applying the Mobile Energy Laboratory (MEL) testing capabilities during the first and second quarters of fiscal year (FY) 1991. The MELs, developed by the U.S. Department of Energy (DOE) Federal Energy Management Program (FEMP), are administered by Pacific Northwest Laboratory (PNL) and the Naval Energy and Environmental Support Activity (NEESA) for energy testing and energy conservation program support functions at Federal facilities. The using agencies principally fund MEL applications, while DOE/FEMP funds program administration and capability enhancement activities. This report fulfills the requirements established in Section 8 of the MEL Use Plan (PNL-6861) for semiannual reporting on energy-efficiency testing activities using the MEL capabilities. The MEL Use Committee, formally established in 1989, developed the MEL Use Plan and meets semiannually to establish priorities for energy-efficient testing applications using the MEL capabilities. The MEL Use Committee is composed of one representative each of the U.S. Department of Energy, U.S. Army, U.S. Air Force, U.S. Navy, and other Federal agencies.

  1. Mobile Energy Laboratory energy-efficiency testing programs

    SciTech Connect

    Parker, G.B.; Currie, J.W.

    1991-09-01

    This report summarizes energy-efficiency testing activities applying the Mobile Energy Laboratory (MEL) testing capabilities during the first and second quarters of fiscal year (FY) 1991. The MELs, developed by the US Department of Energy (DOE) Federal Energy Management Program (FEMP), are administered by Pacific Northwest Laboratory (PNL) and the Naval Energy and Environmental Support Activity (NEESA) for energy testing and energy conservation program support functions at federal facilities. The using agencies principally fund MEL applications, while DOE/FEMP funds program administration and capability enhancement activities. This report fulfills the requirements established in Section 8 of the MEL Use Plan (PNL-6861) for semiannual reporting on energy-efficiency testing activities using the MEL capabilities. The MEL Use Committee, formally established in 1989, developed the MEL Use Plan and meets semiannually to establish priorities for energy-efficient testing applications using the MEL capabilities. The MEL Use Committee is composed of one representative each of the US Department of Energy, US Army, US Air Force, US Navy, and other federal agencies.

  2. Mobile Energy Laboratory energy-efficiency testing programs

    SciTech Connect

    Parker, G B; Currie, J W

    1992-03-01

    This report summarizes energy-efficiency testing activities applying the Mobile Energy Laboratory (MEL) testing capabilities during the third and fourth quarters of fiscal year (FY) 1991. The MELs, developed by the US Department of Energy (DOE) Federal Energy Management Program (FEMP), are administered by Pacific Northwest Laboratory (PNL) and the Naval Energy and Environmental Support Activity (NEESA) for energy testing and energy conservation program support functions at federal facilities. The using agencies principally fund MEL applications, while DOE/FEMP funds program administration and capability enhancement activities. This report fulfills the requirements established in Section 8 of the MEL Use Plan (PNL-6861) for semi-annual reporting on energy-efficiency testing activities using the MEL capabilities. The MEL Use Committee, formally established in 1989, developed the MEL Use Plan and meets semi-annually to establish priorities for energy-efficient testing applications using the MEL capabilities. The MEL Use Committee is composed of one representative each of the US Department of Energy, US Army, US Air Force, US Navy, and other federal agencies.

  3. 76 FR 6605 - Energy Efficiency and Renewable Energy Advisory Committee (ERAC)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-07

    ... of Energy Efficiency and Renewable Energy Energy Efficiency and Renewable Energy Advisory Committee (ERAC) AGENCY: Department of Energy, Office of Energy Efficiency and Renewable Energy. ACTION: Notice of... of energy efficiency and renewable energy. The Federal Advisory Committee Act, Public Law......

  4. Metrics and Benchmarks for Energy Efficiency in Laboratories

    SciTech Connect

    Mathew, Paul

    2007-10-26

    A wide spectrum of laboratory owners, ranging from universities to federal agencies, have explicit goals for energy efficiency in their facilities. For example, the Energy Policy Act of 2005 (EPACT 2005) requires all new federal buildings to exceed ASHRAE 90.1-2004 1 by at least 30 percent. The University of California Regents Policy requires all new construction to exceed California Title 24 2 by at least 20 percent. A new laboratory is much more likely to meet energy efficiency goals if quantitative metrics and targets are explicitly specified in programming documents and tracked during the course of the delivery process. If efficiency targets are not explicitly and properly defined, any additional capital costs or design time associated with attaining higher efficiencies can be difficult to justify. The purpose of this guide is to provide guidance on how to specify and compute energy efficiency metrics and benchmarks for laboratories, at the whole building as well as the system level. The information in this guide can be used to incorporate quantitative metrics and targets into the programming of new laboratory facilities. Many of these metrics can also be applied to evaluate existing facilities. For information on strategies and technologies to achieve energy efficiency, the reader is referred to Labs21 resources, including technology best practice guides, case studies, and the design guide (available at www.labs21century.gov/toolkit).

  5. Efficiencies of thermodynamics when temperature-dependent energy levels exist.

    PubMed

    Yamano, Takuya

    2016-03-14

    Based on a generalized form of the second law of thermodynamics, in which the temperature-dependent energy levels of a system are appropriately included in entropy generation, we show that the effect reasonably appears in efficiencies of thermodynamic processes. PMID:26890276

  6. Emissions and energy efficiency assessment of baseload wind energy systems.

    PubMed

    Denholm, Paul; Kulcinski, Gerald L; Holloway, Tracey

    2005-03-15

    The combination of wind energy generation and energy storage can produce a source of electricity that is functionally equivalent to a baseload coal or nuclear power plant. A model was developed to assess the technical and environmental performance of baseload wind energy systems using compressed air energy storage. The analysis examined several systems that could be operated in the midwestern United States under a variety of operating conditions. The systems can produce substantially more energy than is required from fossil or other primary sources to construct and operate them. By operation at a capacity factor of 80%, each evaluated system achieves an effective primary energy efficiency of at least five times greater than the most efficient fossil combustion technology, with greenhouse gas emission rates less than 20% of the least emitting fossil technology currently available. Life-cycle emission rates of NOx and SO2 are also significantly lower than fossil-based systems. PMID:15819254

  7. RP-5 Renewable Energy Efficiency Project

    SciTech Connect

    Neil Clifton; Eliza Jane Whitman; Jamal A. Zughbi

    2003-07-28

    This is the fourth quarterly technical report for the RP-5 Renewable Energy Efficiency Project. The report summarizes the work progress, effort and activities that took place during the period of April 1, 2003 to June 30, 2003. However, IEUA is preparing a Supplemental report that will be mailed to the Department of Energy (DOE) by August 1, 2003, that provides additional information regarding IEUA's plan to expedite certain project activities. The report has been prepared in accordance with the Department of Energy (DOE) Guidelines. This technical report covers all meetings, discussions, and engineering and design activities that took place to finalize the project scope of work and complete the Request for Proposal (RFP) for the RP-5 Renewable Energy Efficiency Project. IEUA has decided to invite three more consulting engineering firms besides CH2M Hill, the Public Interest Energy Research (PIER) Consultant, to submit proposals for the design of the energy efficiency project. The proposals are currently in the evaluation phase and a decision is expected by the end of July. IEUA moved to its new headquarters building on June 13, 2003. The central plant is the system that supplies cooling and heating water to the headquarters building, and it primarily consists of equipment listed in the cooperative agreement under ''Chiller and Heater''. The central plant equipment was successfully installed and started. Other activities include gas analysis of three sources of low quality digester gas and foul air which could be used as fuel for an innovative flex microturbine. IEUA is also working with Stirling Energy Systems to determine if the Agency should be a host site for their equipment for testing the engine's operation on digester and natural gas. A matching funds update is also included in the Results and Discussion section, which presents the work effort performed by the PIER Consultant and the associated costs that serve as matching funds for the RP-5 Project during

  8. Energy Efficiency Adult Tracking Report - Final

    SciTech Connect

    Gibson-Grant, Amy

    2014-09-30

    Postwave tracking study for the Energy Efficiency Adult Campaign This study serves as measure of key metrics among the campaign’s target audience, homeowners age 25+. Key measures include: Awareness of messages relating to the broad issue; Recognition of the PSAs; Relevant attitudes, including interest, ease of taking energy efficient steps, and likelihood to act; Relevant knowledge, including knowledge of light bulb alternatives and energy efficient options; and Relevant behaviors, including specific energy-saving behaviors mentioned within the PSAs. Wave 1: May 27 – June 7, 2011 Wave 2: May 29 – June 8, 2012 Wave 3: May 29 – June 19, 2014 General market sample of adults 25+ who own their homes W1 sample: n = 704; W2: n=701; W3: n=806 Online Survey Panel Methodology Study was fielded by Lightspeed Research among their survey panel. Sample is US Census representative of US homeowners by race/ethnicity, income, age, region, and family status. At least 30% of respondents were required to have not updated major appliances in their home in the past 5 years (dishwasher, stove, refrigerator, washer, or dryer).

  9. Barriers to improvements in energy efficiency

    SciTech Connect

    Reddy, A.K.N.

    1991-10-01

    To promote energy-efficiency improvements, actions may be required at one or more levels -- from the lowest level of the consumer (residential, commercial, industrial, etc.) through the highest level of the global agencies. But barriers to the implementation of energy-efficiency improvements exist or can arise at all these levels. Taking up each one of these barriers in turn, the paper discusses specific measures that can contribute to overcoming the barriers. However, a one-barrier-one-measure approach must be avoided. Single barriers may in fact involve several sub-barriers. Also, combinations of measures are much more effective in overcoming barriers. In particular, combinations of measures that simultaneously overcome several barriers are most successful. The paper discusses the typology of barriers, explores their origin and suggests measures that by themselves or in combination with other measures, will overcome these barriers. Since most of the barriers dealt with can be found in the ``barriers`` literature, any originality in the paper lies in its systematic organization, synoptic view and holistic treatment of this issue. This paper is intended to initiate a comprehensive treatment of barriers, their origins and the measures that contribute to overcoming them. Hopefully, such a treatment will facilitate the implementation of energy-efficiency improvements involving a wide diversity of ever-changing energy end uses and consumer preferences.

  10. Barriers to improvements in energy efficiency

    SciTech Connect

    Reddy, A.K.N.

    1991-10-01

    To promote energy-efficiency improvements, actions may be required at one or more levels -- from the lowest level of the consumer (residential, commercial, industrial, etc.) through the highest level of the global agencies. But barriers to the implementation of energy-efficiency improvements exist or can arise at all these levels. Taking up each one of these barriers in turn, the paper discusses specific measures that can contribute to overcoming the barriers. However, a one-barrier-one-measure approach must be avoided. Single barriers may in fact involve several sub-barriers. Also, combinations of measures are much more effective in overcoming barriers. In particular, combinations of measures that simultaneously overcome several barriers are most successful. The paper discusses the typology of barriers, explores their origin and suggests measures that by themselves or in combination with other measures, will overcome these barriers. Since most of the barriers dealt with can be found in the barriers'' literature, any originality in the paper lies in its systematic organization, synoptic view and holistic treatment of this issue. This paper is intended to initiate a comprehensive treatment of barriers, their origins and the measures that contribute to overcoming them. Hopefully, such a treatment will facilitate the implementation of energy-efficiency improvements involving a wide diversity of ever-changing energy end uses and consumer preferences.

  11. Microbial battery for efficient energy recovery.

    PubMed

    Xie, Xing; Ye, Meng; Hsu, Po-Chun; Liu, Nian; Criddle, Craig S; Cui, Yi

    2013-10-01

    By harnessing the oxidative power of microorganisms, energy can be recovered from reservoirs of less-concentrated organic matter, such as marine sediment, wastewater, and waste biomass. Left unmanaged, these reservoirs can become eutrophic dead zones and sites of greenhouse gas generation. Here, we introduce a unique means of energy recovery from these reservoirs-a microbial battery (MB) consisting of an anode colonized by microorganisms and a reoxidizable solid-state cathode. The MB has a single-chamber configuration and does not contain ion-exchange membranes. Bench-scale MB prototypes were constructed from commercially available materials using glucose or domestic wastewater as electron donor and silver oxide as a coupled solid-state oxidant electrode. The MB achieved an efficiency of electrical energy conversion of 49% based on the combustion enthalpy of the organic matter consumed or 44% based on the organic matter added. Electrochemical reoxidation of the solid-state electrode decreased net efficiency to about 30%. This net efficiency of energy recovery (unoptimized) is comparable to methane fermentation with combined heat and power. PMID:24043800

  12. Saturation and energy-conversion efficiency of auroral kilometric radiation

    NASA Technical Reports Server (NTRS)

    Wu, C. S.; Tsai, S. T.; Xu, M. J.; Shen, J. W.

    1981-01-01

    A quasi-linear theory is used to study the saturation level of the auroral kilometric radiation. The investigation is based on the assumption that the emission is due to a cyclotron maser instability as suggested by Wu and Lee and Lee et al. The thermodynamic bound on the radiation energy is also estimated separately. The energy-conversion efficiency of the radiation process is discussed. The results are consistent with observations.

  13. The Role of Appraisals in Energy Efficiency Financing

    SciTech Connect

    Doyle, Victoria

    2012-05-01

    This research identifies barriers and challenges and current industry status including several key appraisal industry developments for identifying and valuing energy efficiency. The report covers critical obstacles to documenting and assessing the potential added value from energy efficiency improvements, current opportunities to support and standardize reporting on energy efficiency and to ensure proper valuation, and next steps towards enabling energy efficiency financing market transformation.

  14. Review of survey data on the importance of energy efficiency to new home buyers

    SciTech Connect

    Hendrickson, P.L.

    1984-10-01

    The surveys reviewed for this report support the notion that the Council's model conservation standards will be received reasonably well and can be successfully marketed. A number of subtopics are addressed including the home purchase process and the role of energy efficiency considerations in the process, the importance of energy efficiency considerations in the decision to purchase a new home, the relative importance of energy efficiency in comparison to other home selection attributes, homeowner preferences for particular energy efficiency features, and measures of the willingness to pay for energy efficiency improvements.

  15. Barriers to electric energy efficiency in Ghana

    NASA Astrophysics Data System (ADS)

    Berko, Joseph Kofi, Jr.

    Development advocates argue that sustainable development strategies are the best means to permanently improve living standards in developing countries. Advocates' arguments are based on the technical, financial, and environmental advantages of sustainable development. However, they have not addressed the organizational and administrative decision-making issues which are key to successful implementation of sustainable development in developing countries. Using the Ghanaian electricity industry as a case study, this dissertation identifies and analyzes organizational structures, administrative mechanisms, and decision-maker viewpoints that critically affect the success of adoption and implementation of energy efficiency within a sustainable development framework. Utilizing semi-structured interviews in field research, decision-makers' perceptions of the pattern of the industry's development, causes of the electricity supply shortfall, and barriers to electricity-use efficiency were identified. Based on the initial findings, the study formulated a set of policy initiatives to establish support for energy use efficiency. In a second set of interviews, these policy suggestions were presented to some of the top decision-makers to elicit their reactions. According to the decision-makers, the electricity supply shortfall is due to rapid urbanization and increased industrial consumption as a result of the structural adjustment program, rural electrification, and the sudden release of suppressed loads. The study found a lack of initiative and collaboration among industry decision-makers, and a related divergence in decision-makers' concerns and viewpoints. Also, lacking are institutional support systems and knowledge of proven energy efficiency strategies and technologies. As a result, planning, and even the range of perceived solutions to choose from are supply-side oriented. The final chapter of the study presents implications of its findings and proposes that any

  16. Energy Efficient Engine acoustic supporting technology report

    NASA Technical Reports Server (NTRS)

    Lavin, S. P.; Ho, P. Y.

    1985-01-01

    The acoustic development of the Energy Efficient Engine combined testing and analysis using scale model rigs and an integrated Core/Low Spool demonstration engine. The scale model tests show that a cut-on blade/vane ratio fan with a large spacing (S/C = 2.3) is as quiet as a cut-off blade/vane ratio with a tighter spacing (S/C = 1.27). Scale model mixer tests show that separate flow nozzles are the noisiest, conic nozzles the quietest, with forced mixers in between. Based on projections of ICLS data the Energy Efficient Engine (E3) has FAR 36 margins of 3.7 EPNdB at approach, 4.5 EPNdB at full power takeoff, and 7.2 EPNdB at sideline conditions.

  17. Energy Efficient Engine Exhaust Mixer Model Technology

    NASA Technical Reports Server (NTRS)

    Kozlowski, H.; Larkin, M.

    1981-01-01

    An exhaust mixer test program was conducted to define the technology required for the Energy Efficient Engine Program. The model configurations of 1/10 scale were tested in two phases. A parametric study of mixer design options, the impact of residual low pressure turbine swirl, and integration of the mixer with the structural pylon of the nacelle were investigated. The improvement of the mixer itself was also studied. Nozzle performance characteristics were obtained along with exit profiles and oil smear photographs. The sensitivity of nozzle performance to tailpipe length, lobe number, mixer penetration, and mixer modifications like scalloping and cutbacks were established. Residual turbine swirl was found detrimental to exhaust system performance and the low pressure turbine system for Energy Efficient Engine was designed so that no swirl would enter the mixer. The impact of mixer/plug gap was also established, along with importance of scalloping, cutbacks, hoods, and plug angles on high penetration mixers.

  18. New Methods of Energy Efficient Radon Mitigation

    SciTech Connect

    Fisk, W.J.; Prill, R.J.; Wooley, J.; Bonnefous, Y.C.; Gadgil, A.J.; Riley, W.J.

    1994-05-01

    Two new radon mitigation techniques are introduced and their evaluation in a field study complemented by numerical model predictions is described. Based on numerical predictions, installation of a sub gravel membrane at the study site resulted in a factor of two reduction in indoor radon concentrations. Experimental data indicated that installation of 'short-circuit' pipes extending between the subslab gravel and outdoors, caused an additional factor of two decrease in the radon concentration. Consequently, the combination of these two passive radon mitigation features, called the membrane and short-circuit (MASC) technique, was associated with a factor of four reduction in indoor radon concentration. The energy-efficient active radon mitigation method, called efficient active subslab pressurization (EASP), required only 20% of the fan energy of conventional active subslab depressurization and reduced the indoor radon concentration by approximately a factor of 15, including the numerically-predicted impact of the sub-gravel membrane.

  19. Energy-efficient electric motors study

    NASA Astrophysics Data System (ADS)

    1981-03-01

    A survey conducted of purchasers of integral horsepower polyphase motors measured current knowledge of and awareness of energy efficient motors, decision making criteria, information sources, purchase and usage patterns, and related factors. The data obtained were used for the electric motor market penetration analysis. Additionally, a telephone survey was made. The study also provides analyses of distribution channels, commercialization constraints, and the impacts of government programs and rising energy prices. Study findings, conclusions, and recommendations are presented. Sample questionnaires and copies of letters to respondents are presented in appendices as well as descriptions of the methods used.

  20. Energy efficient operation of aluminum furnaces

    SciTech Connect

    King, Paul E.; Golchert, B.M.; Li, T.; Hassan, M.; Han, Q.

    2005-01-01

    Secondary Aluminium melting offers significant energy savings over the production of Aluminium from raw resources since it takes approximately 5% of the energy to re-melt the Aluminium for product than it does to generate the same amount of Aluminium from raw material. However, the industry faces technical challenges for further improving the efficiency of the secondary Aluminium melting furnaces and lacks tools that can aid in helping to understand the intricate interactions of combustion and heat transfer. The U. S. Dept. of Energy, Albany Research Center (ARC), in cooperation with the Argonne and Oak Ridge National Labs, the University of Kentucky, and with industrial support through Secat, Inc. of Lexington, KY (representing 8 Aluminium re-melt companies) built and operates a test-bed reverberatory furnace to study efficiency issues in Aluminium melting. The experimental reverberatory furnace (ERF) is a one ton nominal capacity research furnace capable of melting 1000 lbs per hour with its twin 0.8 MMBtu/hr burners. Studies in the ERF include melt efficiency as a function of combustion space volume, power input and charge alloy. This paper details the experimental equipment, conditions, procedures, and measurements and includes results and discussions of melt efficiency studies. Specific results reported include an analysis of the efficiency of the furnace as a function of power input and the effect that changing combustion space volume has on melting efficiency. In conjunction with this, a computational fluid dynamics (CFD) model has been developed to simulate fuel combustion, heat transfer, gaseous product flow and the production/transport of pollutants and greenhouse gases in an Aluminium furnace. Data from the ERF is utilized for computational model validation in order to have a high degree of confidence in the model results. Once validated, the CFD code can then be used to perform parametric studies and to investigate methods to optimize operation in

  1. Energy efficient industrialized housing research program

    SciTech Connect

    Berg, R.; Brown, G.Z.; Finrow, J.; Kellett, R.; Mc Donald, M.; McGinn, B.; Ryan, P.; Sekiguchi, T. . Center for Housing Innovation); Chandra, S.; Elshennawy, A.K.; Fairey, P.; Harrison, J.; Maxwell, L.; Roland, J.; Swart, W. )

    1989-01-01

    This is the second volume of a two volume report on energy efficient industrialized housing. Volume II contains support documentation for Volume I. The following items are included: individual trip reports; software bibliography; industry contacts in the US, Denmark, and Japan; Cost comparison of industrialized housing in the US and Denmark; draft of the final report on the systems analysis for Fleetwood Mobile Home Manufacturers. (SM)

  2. Software Cuts Homebuilding Costs, Increases Energy Efficiency

    NASA Technical Reports Server (NTRS)

    2015-01-01

    To sort out the best combinations of technologies for a crewed mission to Mars, NASA Headquarters awarded grants to MIT's Department of Aeronautics and Astronautics to develop an algorithm-based software tool that highlights the most reliable and cost-effective options. Utilizing the software, Professor Edward Crawley founded Cambridge, Massachussetts-based Ekotrope, which helps homebuilders choose cost- and energy-efficient floor plans and materials.

  3. Advanced Energy Efficiency and Distributed Renewables

    NASA Astrophysics Data System (ADS)

    Lovins, Amory

    2007-04-01

    The US now wrings twice the GDP from each unit of energy that it did in 1975. Reduced energy intensity since then now provides more than twice as much service as burning oil does. Yet still more efficient end-use of energy -- explained more fully in a companion workshop offered at 1245 -- is the largest, fastest, cheapest, most benign, least understood, and least harnessed energy resource available. For example, existing technologies could save half of 2000 US oil and gas and three-fourths of US electricity, at lower cost than producing and delivering that energy from existing facilities. Saving half the oil through efficiency and replacing the other half with saved natural gas and advanced biofuels would cost an average of only 15/barrel and could eliminate US oil use by the 2040s, led by business for profit. Efficiency techniques and ways to combine and apply them continue to improve faster than they're applied, so the ``efficiency resource'' is becoming ever larger and cheaper. As for electricity, ``micropower'' (distributed renewables plus low-carbon cogeneration) is growing so quickly that by 2005 it provided a sixth of the world's electricity and a third of its new electricity, and was adding annually 4x the capacity and 11x the capacity added by nuclear power, which it surpassed in capacity in 2002 and in output in 2006. Together, micropower and ``negawatts'' (saved electricity) now provide upwards half the world's new electrical services, due to their far lower cost and lower financial risk than the central thermal power stations that still dominate policy discussions. For oil and electricity, each of which adds about two-fifths of the world's energy-related carbon dioxide emissions, efficiency plus competitive alternative supplies can stabilize the earth's climate at a profit, as well as solving the oil and (largely) the nuclear proliferation problems. Conversely, costlier and slower options, notably nuclear power, would displace less carbon emission per

  4. Realizing Efficient Energy Harvesting from Organic Photovoltaic Cells

    NASA Astrophysics Data System (ADS)

    Zou, Yunlong

    Organic photovoltaic cells (OPVs) are emerging field of research in renewable energy. The development of OPVs in recent years has made this technology viable for many niche applications. In order to realize widespread application however, the power conversion efficiency requires further improvement. The efficiency of an OPV depends on the short-circuit current density (JSC), open-circuit voltage (VOC) and fill factor (FF). For state-of-the-art devices, JSC is mostly optimized with the application of novel low-bandgap materials and a bulk heterojunction device architecture (internal quantum efficiency approaching 100%). The remaining limiting factors are the low VOC and FF. This work focuses on overcoming these bottlenecks for improved efficiency. Temperature dependent measurements of device performance are used to examine both charge transfer and exciton ionization process in OPVs. The results permit an improved understanding of the intrinsic limit for VOC in various device architectures and provide insight on device operation. Efforts have also been directed at engineering device architecture for optimized FF, realizing a very high efficiency of 8% for vapor deposited small molecule OPVs. With collaborators, new molecules with tailored desired energy levels are being designed for further improvements in efficiency. A new type of hybrid organic-inorganic perovskite material is also included in this study. By addressing processing issues and anomalous hysteresis effects, a very high efficiency of 19.1% is achieved. Moving forward, topics including engineering film crystallinity, exploring tandem architectures and understanding degradation mechanisms will further push OPVs toward broad commercialization.

  5. Quantum Coherence in Photosynthesis for Efficient Solar Energy Conversion

    PubMed Central

    Romero, Elisabet; Augulis, Ramunas; Novoderezhkin, Vladimir I.; Ferretti, Marco; Thieme, Jos; Zigmantas, Donatas; van Grondelle, Rienk

    2014-01-01

    The crucial step in the conversion of solar to chemical energy in Photosynthesis takes place in the reaction center where the absorbed excitation energy is converted into a stable charge separated state by ultrafast electron transfer events. However, the fundamental mechanism responsible for the near unity quantum efficiency of this process is unknown. Here we elucidate the role of coherence in determining the efficiency of charge separation in the plant photosystem II reaction centre (PSII RC) by comprehensively combining experiment (two-dimensional electronic spectroscopy) and theory (Redfield theory). We reveal the presence of electronic coherence between excitons as well as between exciton and charge transfer states which we argue to be maintained by vibrational modes. Furthermore, we present evidence for the strong correlation between the degree of electronic coherence and efficient and ultrafast charge separation. We propose that this coherent mechanism will inspire the development of new energy technologies. PMID:26870153

  6. 75 FR 54131 - Updating State Residential Building Energy Efficiency Codes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-03

    ... 1904-AC17 Updating State Residential Building Energy Efficiency Codes AGENCY: Office of Energy Efficiency and Renewable Energy, Department of Energy. ACTION: Notice of proposed determination. SUMMARY: The... the 2006 version of the IECC would achieve greater energy efficiency than the 2003 IECC. Finally,...

  7. 75 FR 25121 - Revisions to Energy Efficiency Enforcement Regulations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-07

    ... Parts 430 and 431 RIN 1904-AC23 Revisions to Energy Efficiency Enforcement Regulations AGENCY: Office of Energy Efficiency and Renewable Energy and Office of the General Counsel, Department of Energy. ACTION... ``Department'') intends to expand and revise its existing energy efficiency enforcement regulations for...

  8. Energy Efficiency Improvement and Cost Saving Opportunities for the Pharmaceutical Industry. An ENERGY STAR Guide for Energy and Plant Managers

    SciTech Connect

    Galitsky, Christina; Galitsky, Christina; Chang, Sheng-chieh; Worrell, Ernst; Masanet, Eric

    2008-03-01

    The U.S. pharmaceutical industry consumes almost $1 billion in energy annually. Energy efficiency improvement is an important way to reduce these costs and to increase predictable earnings, especially in times of high energy price volatility. There are a variety of opportunities available at individual plants in the U.S. pharmaceutical industry to reduce energy consumption in a cost-effective manner. This Energy Guide discusses energy efficiency practices and energy efficient technologies that can be implemented at the component, process, system, and organizational levels. A discussion of the trends, structure, and energy consumption characteristics of the U.S. pharmaceutical industry is provided along with a description of the major process steps in the pharmaceutical manufacturing process. Expected savings in energy and energy-related costs are given for many energy efficiency measures, based on case study data from real-world applications in pharmaceutical and related facilities worldwide. Typical measure payback periods and references to further information in the technical literature are also provided, when available. The information in this Energy Guide is intended to help energy and plant managers reduce energy consumption in a cost-effective manner while meeting regulatory requirements and maintaining the quality of products manufactured. At individual plants, further research on the economics of the measures?as well as their applicability to different production practices?is needed to assess potential implementation of selected technologies.

  9. Energy efficiency through integrated environmental management.

    PubMed

    Benromdhane, Souad Ahmed

    2015-05-01

    Integrated environmental management became an economic necessity after industrial development proved to be unsustainable without consideration of environmental direct and indirect impacts. Energy dependency and air pollution along with climate change grew into major challenges facing developed and developing countries alike. Thus, a new global market structure emerged and changed the way we do trade. The search intensified for alternatives to petroleum. However, scientists, policy makers, and environmental activists agreed to focus on strategic conservation and optimization of energy use. Environmental concerns will remain partially unaddressed with the current pace of consumption because greenhouse gas emissions will continue to rise with economic growth. This paper discusses energy efficiency, steady integration of alternative sources, and increased use of best available technologies. Energy criteria developed for environmental labeling certification are presented. Our intention is to encourage manufacturers and service providers to supply consumers with less polluting and energy-consuming goods and services, inform consumers of the environmental and energy impacts, and thereby instill sustainable and responsible consumption. As several programs were initiated in developed countries, environmental labeling requirements created barriers to many exports manufactured in developing countries, affecting current world trade and putting more pressure on countries to meet those requirements. Defining an institutional and legal framework of environmental labeling is a key challenge in implementing such programs for critical economic sectors like tourism, textiles, and food production where energy needs are the most important aspect to control. A case study of Tunisia and its experience with eco-labeling is presented. PMID:25850743

  10. Sault Tribe Building Efficiency Energy Audits

    SciTech Connect

    Holt, Jeffrey W.

    2013-09-26

    The Sault Ste. Marie Tribe of Chippewa Indians is working to reduce energy consumption and expense in Tribally-owned governmental buildings. The Sault Ste. Marie Tribe of Chippewa Indians will conduct energy audits of nine Tribally-owned governmental buildings in three counties in the Upper Peninsula of Michigan to provide a basis for evaluating and selecting the technical and economic viability of energy efficiency improvement options. The Sault Ste. Marie Tribe of Chippewa Indians will follow established Tribal procurement policies and procedures to secure the services of a qualified provider to conduct energy audits of nine designated buildings. The contracted provider will be required to provide a progress schedule to the Tribe prior to commencing the project and submit an updated schedule with their monthly billings. Findings and analysis reports will be required for buildings as completed, and a complete Energy Audit Summary Report will be required to be submitted with the provider?s final billing. Conducting energy audits of the nine governmental buildings will disclose building inefficiencies to prioritize and address, resulting in reduced energy consumption and expense. These savings will allow Tribal resources to be reallocated to direct services, which will benefit Tribal members and families.

  11. Energy efficiency indicators for high electric-load buildings

    SciTech Connect

    Aebischer, Bernard; Balmer, Markus A.; Kinney, Satkartar; Le Strat, Pascale; Shibata, Yoshiaki; Varone, Frederic

    2003-06-01

    Energy per unit of floor area is not an adequate indicator for energy efficiency in high electric-load buildings. For two activities, restaurants and computer centres, alternative indicators for energy efficiency are discussed.

  12. Leanergy(TM): how lean manufacturing can improve energy efficiency.

    PubMed

    Riche, Jean-Pierre

    2013-01-01

    Energy efficiency has become a competitive issue for industrial companies. The evolution of energy prices and regulation will make this issue even more important in the future. For several years, the energy-intensive chemical industry has been implementing corrective actions. Helped by the absorption of base load energy consumption by larger production volumes, specific energy consumption (KWh per production unit) has been significantly reduced in recent years. However, most plants have reached the end of their first action plan based on improving the utilities performance. The Leanergy(TM) method developed by the consultancy company Okavango-energy, is a structured approach based on lean manufacturing which widens the scope of saving sources to process and operations. Starting from the analysis of actual production requirements, Okavango is able to adjust consumption to minimum requirements and so remove any energy consumption that does not contribute to the added value creation. PMID:24388133

  13. Industrial energy-efficiency-improvement program

    SciTech Connect

    Not Available

    1980-12-01

    Progress made by industry toward attaining the voluntary 1980 energy efficiency improvement targets is reported. The mandatory reporting population has been expanded from ten original industries to include ten additional non-targeted industries and all corporations using over one trillion Btu's annually in any manufacturing industry. The ten most energy intensive industries have been involved in the reporting program since the signing of the Energy Policy and Conservation Act and as industrial energy efficiency improvement overview, based primarily on information from these industries (chemicals and allied products; primary metal industry; petroleum and coal products; stone, clay, and glass products; paper and allied products; food and kindred products; fabricated metal products; transportation equipment; machinery, except electrical; and textile mill products), is presented. Reports from industries, now required to report, are included for rubber and miscellaneous plastics; electrical and electronic equipment; lumber and wood; and tobacco products. Additional data from voluntary submissions are included for American Gas Association; American Hotel and Motel Association; General Telephone and Electronics Corporation; and American Telephone and Telegraph Company. (MCW)

  14. Metrics and Benchmarks for Energy Efficiency in Laboratories

    SciTech Connect

    Rumsey Engineers; Mathew, Paul; Mathew, Paul; Greenberg, Steve; Sartor, Dale; Rumsey, Peter; Weale, John

    2008-04-10

    A wide spectrum of laboratory owners, ranging from universities to federal agencies, have explicit goals for energy efficiency in their facilities. For example, the Energy Policy Act of 2005 (EPACT 2005) requires all new federal buildings to exceed ASHRAE 90.1-2004 [1] by at least 30%. A new laboratory is much more likely to meet energy efficiency goals if quantitative metrics and targets are specified in programming documents and tracked during the course of the delivery process. If not, any additional capital costs or design time associated with attaining higher efficiencies can be difficult to justify. This article describes key energy efficiency metrics and benchmarks for laboratories, which have been developed and applied to several laboratory buildings--both for design and operation. In addition to traditional whole building energy use metrics (e.g. BTU/ft{sup 2}.yr, kWh/m{sup 2}.yr), the article describes HVAC system metrics (e.g. ventilation W/cfm, W/L.s{sup -1}), which can be used to identify the presence or absence of energy features and opportunities during design and operation.

  15. Economics and utility energy-efficiency programs: Energy-efficient manufactured housing

    SciTech Connect

    Lee, A.D.; Onisko, S.A.

    1992-10-01

    As utilities investigate ways to implement conservation programs, the differences between customer and utility economic perspectives become more important. Because utilities bear the cost of new energy sources, energy efficiency investments that are cost-effective to them may not be cost-effective to their customers who pay average energy prices and have different economic parameters. The Bonneville Power Administration (BPA) and other parties in the Pacific Northwest have initiated an innovative manufactured (mobile) home energy conservation program. Because manufactured homes are regulated by the Department of Housing and Urban Development (HUD), are exempt from local regulations, and comprise up to 50% of new housing starts in some parts of the United States, utilities and energy planners need to find creative ways to make the economics of manufactured housing energy-efficiency investments more attractive. Differences between the economic criteria and perspectives of consumers and utilities can be used to design energy-efficiency programs. This paper discusses life-cycle cost (LCC) analysis as a framework for highlighting these differences and examines other economic criteria. It then presents information from the Pacific Northwest manufactured housing program to illustrate the application of this framework to a real-world program. Findings from this program should,be of interest to utility and government planners who are designing innovative energy-efficiency programs.

  16. High energy efficient solid state laser sources

    NASA Technical Reports Server (NTRS)

    Byer, Robert L.

    1987-01-01

    Diode-laser-pumped solid-state laser oscillators and nonlinear processes were investigated. A new generation on nonplanar oscillator was fabricated, and it is anticipated that passive linewidths will be pushed to the kilohertz regime. A number of diode-pumped laser transitions were demonstrated in the rod configuration. Second-harmonic conversion efficiencies as high as 15% are routinely obtained in a servo-locked external resonant doubling crystal at 15 mW cw input power levels at 1064 nm.

  17. Near-field thermodynamics: Useful work, efficiency, and energy harvesting

    SciTech Connect

    Latella, Ivan Pérez-Madrid, Agustín; Lapas, Luciano C.; Miguel Rubi, J.

    2014-03-28

    We show that the maximum work that can be obtained from the thermal radiation emitted between two planar sources in the near-field regime is much larger than that corresponding to the blackbody limit. This quantity, as well as an upper bound, for the efficiency of the process is computed from the formulation of thermodynamics in the near-field regime. The case when the difference of temperatures of the hot source and the environment is small, relevant for energy harvesting, is studied in detail. We also show that thermal radiation energy conversion can be more efficient in the near-field regime. These results open new possibilities for the design of energy converters that can be used to harvest energy from sources of moderate temperature at the nanoscale.

  18. Energy Efficiency and Renewable Energy Program. Bibliography, 1993 edition

    SciTech Connect

    Vaughan, K.H.

    1993-06-01

    The Bibliography contains listings of publicly available reports, journal articles, and published conference papers sponsored by the DOE Office of Energy Efficiency and Renewable Energy and published between 1987 and mid-1993. The topics of Bibliography include: analysis and evaluation; building equipment research; building thermal envelope systems and materials; district heating; residential and commercial conservation program; weatherization assistance program; existing buildings research program; ceramic technology project; alternative fuels and propulsion technology; microemulsion fuels; industrial chemical heat pumps; materials for advanced industrial heat exchangers; advanced industrial materials; tribology; energy-related inventions program; electric energy systems; superconducting technology program for electric energy systems; thermal energy storage; biofuels feedstock development; biotechnology; continuous chromatography in multicomponent separations; sensors for electrolytic cells; hydropower environmental mitigation; environmental control technology; continuous fiber ceramic composite technology.

  19. Theoretical efficiency limits for thermoradiative energy conversion

    SciTech Connect

    Strandberg, Rune

    2015-02-07

    A new method to produce electricity from heat called thermoradiative energy conversion is analyzed. The method is based on sustaining a difference in the chemical potential for electron populations above and below an energy gap and let this difference drive a current through an electric circuit. The difference in chemical potential originates from an imbalance in the excitation and de-excitation of electrons across the energy gap. The method has similarities to thermophotovoltaics and conventional photovoltaics. While photovoltaic cells absorb thermal radiation from a body with higher temperature than the cell itself, thermoradiative cells are hot during operation and emit a net outflow of photons to colder surroundings. A thermoradiative cell with an energy gap of 0.25 eV at a temperature of 500 K in surroundings at 300 K is found to have a theoretical efficiency limit of 33.2%. For a high-temperature thermoradiative cell with an energy gap of 0.4 eV, a theoretical efficiency close to 50% is found while the cell produces 1000 W/m{sup 2} has a temperature of 1000 K and is placed in surroundings with a temperature of 300 K. Some aspects related to the practical implementation of the concept are discussed and some challenges are addressed. It is, for example, obvious that there is an upper boundary for the temperature under which solid state devices can work properly over time. No conclusions are drawn with regard to such practical boundaries, because the work is aimed at establishing upper limits for ideal thermoradiative devices.

  20. Energy Efficient Transport - Technology in hand

    NASA Technical Reports Server (NTRS)

    Middleton, D. B.; Bartlett, D. W.; Hood, R. V.

    1984-01-01

    Technologies developed through NASA's Energy Efficient Transport Program are described. The program was charged with research in advanced aerodynamics and active controls, with the goal of increasing the fuel efficiency of transport aircraft by 15 to 20 percent. Research in aerodynamics was directed toward the development of high-aspect-ratio supercritical wings, winglets, computational design methodology, high-lift devices, propulsion airframe integration, and surface coatings. The active control portion of the program investigated Wing Load Alleviation (WLA) through the use of active controls, drag reduction, and the effect of active pitch controls on fuel consumption. It was found that applying active control functions at the beginning of the aircraft design cycle brings the best benefit, and that if active control and advanced aerodynamic airframe configurations are applied to transport aircraft design concurrently with new lightweight materials, fuel consumption can be reduced by as much as 40 percent.

  1. A design guide for energy-efficient research laboratories

    SciTech Connect

    Wishner, N.; Chen, A.; Cook, L.; Bell, G.C.; Mills, E.; Sartor, D.; Avery, D.; Siminovitch, M.; Piette, M.A.

    1996-09-24

    This document--A Design Guide for Energy-Efficient Research Laboratories--provides a detailed and holistic framework to assist designers and energy managers in identifying and applying advanced energy-efficiency features in laboratory-type environments. The Guide fills an important void in the general literature and compliments existing in-depth technical manuals. Considerable information is available pertaining to overall laboratory design issues, but no single document focuses comprehensively on energy issues in these highly specialized environments. Furthermore, practitioners may utilize many antiquated rules of thumb, which often inadvertently cause energy inefficiency. The Guide helps its user to: introduce energy decision-making into the earliest phases of the design process, access the literature of pertinent issues, and become aware of debates and issues on related topics. The Guide does focus on individual technologies, as well as control systems, and important operational factors such as building commissioning. However, most importantly, the Guide is intended to foster a systems perspective (e.g. right sizing) and to present current leading-edge, energy-efficient design practices and principles.

  2. 77 FR 5770 - Energy Efficiency Trade Mission to Russia

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-06

    ... International Trade Administration Energy Efficiency Trade Mission to Russia AGENCY: International Trade... Energy (DOE) are organizing an Energy Efficiency Trade Mission to Moscow and St. Petersburg on June 4-7... market for the sale of U.S. energy efficiency products and services. Russia presents...

  3. Integrated distillation-membrane process for bio-ethanol and bio-butanol recovery from actual fermentation broths: Separation energy efficiency and fate of secondary fermentation products

    EPA Science Inventory

    A hybrid process integrating vapor stripping with vapor compression and vapor permeation membrane separation, termed Membrane Assisted Vapor Stripping (MAVS), was evaluated for recovery and dehydration of ethanol and/or 1-butanol from aqueous solution as an alternative to convent...

  4. Energy efficiency improvements in Chinese compressed airsystems

    SciTech Connect

    McKane, Aimee; Li, Li; Li, Yuqi; Taranto, T.

    2007-06-01

    Industrial compressed air systems use more than 9 percent ofall electricity used in China. Experience in China and elsewhere hasshown that these systems can be much more energy efficient when viewed asa whole system and rather than as isolated components.This paper presentsa summary and analysis of several compressed air system assessments.Through these assessments, typical compressed air management practices inChina are analyzed. Recommendations are made concerning immediate actionsthat China s enterprises can make to improve compressed air systemefficiency using best available technology and managementstrategies.

  5. Energy Efficient Engine: Combustor component performance program

    NASA Technical Reports Server (NTRS)

    Dubiel, D. J.

    1986-01-01

    The results of the Combustor Component Performance analysis as developed under the Energy Efficient Engine (EEE) program are presented. This study was conducted to demonstrate the aerothermal and environmental goals established for the EEE program and to identify areas where refinements might be made to meet future combustor requirements. In this study, a full annular combustor test rig was used to establish emission levels and combustor performance for comparison with those indicated by the supporting technology program. In addition, a combustor sector test rig was employed to examine differences in emissions and liner temperatures obtained during the full annular performance and supporting technology tests.

  6. Aerodynamics/ACEE: Aircraft energy efficiency

    NASA Technical Reports Server (NTRS)

    1981-01-01

    An overview is presented of a 10 year program managed by NASA which seeks to make possible the most efficient use of energy for aircraft propulsion and lift as well as provide a technology that can be used by U.S. manufacturers of air transports and engines. Supercritical wings, winglets, vortex drag reduction, high lift, active control, laminar flow control, and aerodynamics by computer are among the topics discussed. Wind tunnel models in flight verification of advanced technology, and the design, construction and testing of various aircraft structures are also described.

  7. Nonmonotonic energy harvesting efficiency in biased exciton chains.

    PubMed

    Vlaming, S M; Malyshev, V A; Knoester, J

    2007-10-21

    We theoretically study the efficiency of energy harvesting in linear exciton chains with an energy bias, where the initial excitation is taking place at the high-energy end of the chain and the energy is harvested (trapped) at the other end. The efficiency is characterized by means of the average time for the exciton to be trapped after the initial excitation. The exciton transport is treated as the intraband energy relaxation over the states obtained by numerically diagonalizing the Frenkel Hamiltonian that corresponds to the biased chain. The relevant intraband scattering rates are obtained from a linear exciton-phonon interaction. Numerical solution of the Pauli master equation that describes the relaxation and trapping processes reveals a complicated interplay of factors that determine the overall harvesting efficiency. Specifically, if the trapping step is slower than or comparable to the intraband relaxation, this efficiency shows a nonmonotonic dependence on the bias: it first increases when introducing a bias, reaches a maximum at an optimal bias value, and then decreases again because of dynamic (Bloch) localization of the exciton states. Effects of on-site (diagonal) disorder, leading to Anderson localization, are addressed as well. PMID:17949203

  8. Measuring energy efficiency in economics: Shadow value approach

    NASA Astrophysics Data System (ADS)

    Khademvatani, Asgar

    For decades, academic scholars and policy makers have commonly applied a simple average measure, energy intensity, for studying energy efficiency. In contrast, we introduce a distinctive marginal measure called energy shadow value (SV) for modeling energy efficiency drawn on economic theory. This thesis demonstrates energy SV advantages, conceptually and empirically, over the average measure recognizing marginal technical energy efficiency and unveiling allocative energy efficiency (energy SV to energy price). Using a dual profit function, the study illustrates how treating energy as quasi-fixed factor called quasi-fixed approach offers modeling advantages and is appropriate in developing an explicit model for energy efficiency. We address fallacies and misleading results using average measure and demonstrate energy SV advantage in inter- and intra-country energy efficiency comparison. Energy efficiency dynamics and determination of efficient allocation of energy use are shown through factors impacting energy SV: capital, technology, and environmental obligations. To validate the energy SV, we applied a dual restricted cost model using KLEM dataset for the 35 US sectors stretching from 1958 to 2000 and selected a sample of the four sectors. Following the empirical results, predicted wedges between energy price and the SV growth indicate a misallocation of energy use in stone, clay and glass (SCG) and communications (Com) sectors with more evidence in the SCG compared to the Com sector, showing overshoot in energy use relative to optimal paths and cost increases from sub-optimal energy use. The results show that energy productivity is a measure of technical efficiency and is void of information on the economic efficiency of energy use. Decomposing energy SV reveals that energy, capital and technology played key roles in energy SV increases helping to consider and analyze policy implications of energy efficiency improvement. Applying the marginal measure, we also

  9. ImBuild: Impact of building energy efficiency programs

    SciTech Connect

    Scott, M.J.; Hostick, D.J.; Belzer, D.B.

    1998-04-01

    As part of measuring the impact of government programs on improving the energy efficiency of the Nation`s building stock, the Department of Energy Office of Building Technology, State and Community Programs (BTS) is interested in assessing the economic impacts of its portfolio of programs, specifically the potential impact on national employment and income. The special-purpose version of the IMPLAN model used in this study is called ImBuild. In comparison with simple economic multiplier approaches, such as Department of Commerce RIMS 2 system, ImBuild allows for more complete and automated analysis of the economic impacts of energy efficiency investments in buildings. ImBuild is also easier to use than existing macroeconomic simulation models. The authors conducted an analysis of three sample BTS energy programs: the residential generator-absorber heat exchange gas heat pump (GAX heat pump), the low power sulfur lamp (LPSL) in residential and commercial applications, and the Building America program. The GAX heat pump would address the market for the high-efficiency residential combined heating and cooling systems. The LPSL would replace some highly efficient fluorescent commercial lighting. Building America seeks to improve the energy efficiency of new factory-built, modular, manufactured, and small-volume, site-built homes through use of systems engineering concepts and early incorporation of new products and processes, and by increasing the demand for more energy-efficient homes. The authors analyze a scenario for market penetration of each of these technologies devised for BTS programs reported in the BTS GPRA Metrics Estimates, FY99 Budget Request, December 19, 1997. 46 figs., 4 tabs.

  10. Efficient CO2 Fixation Pathways: Energy Plant: High Efficiency Photosynthetic Organisms

    SciTech Connect

    2012-01-01

    PETRO Project: UCLA is redesigning the carbon fixation pathways of plants to make them more efficient at capturing the energy in sunlight. Carbon fixation is the key process that plants use to convert carbon dioxide (CO2) from the atmosphere into higher energy molecules (such as sugars) using energy from the sun. UCLA is addressing the inefficiency of the process through an alternative biochemical pathway that uses 50% less energy than the pathway used by all land plants. In addition, instead of producing sugars, UCLA’s designer pathway will produce pyruvate, the precursor of choice for a wide variety of liquid fuels. Theoretically, the new biochemical pathway will allow a plant to capture 200% as much CO2 using the same amount of light. The pathways will first be tested on model photosynthetic organisms and later incorporated into other plants, thus dramatically improving the productivity of both food and fuel crops.

  11. Relative efficiency of Gaussian stochastic process sampling procedures

    NASA Astrophysics Data System (ADS)

    Cameron, Chris

    2003-12-01

    Various methods for sampling stationary, Gaussian stochastic processes are investigated and compared with an emphasis on applications to processes with power law energy spectra. Several approaches are considered, including a Riemann summation using left endpoints, the use of random wave numbers to sample a the spectrum in proportion to the energy it contains, and a combination of the two. The Fourier-wavelet method of Elliott et al. is investigated and compared with other methods, all of which are evaluated in terms of their ability to sample the stochastic process over a large number of decades for a given computational cost. The Fourier-wavelet method has accuracy which increases linearly with the computational complexity, while the accuracy of the other methods grows logarithmically. For the Kolmogorov spectrum, a hybrid quadrature method is as efficient as the Fourier-wavelet method, if no more than eight decades of accuracy are required. The effectiveness of this hybrid method wanes when one samples fields whose energy spectrum decays more rapidly near the origin. The Fourier-wavelet method has roughly the same behavior independently of the exponent of the power law. The Fourier-wavelet method returns samples which are Gaussian over the range of values where the structure function is well approximated. By contrast, (multi-point) Gaussianity may be lost at the smaller length scales when one uses methods with random wave numbers.

  12. Energy efficient industrialized housing research program

    SciTech Connect

    Berg, R.; Brown, G.Z.; Finrow, J.; Kellett, R.; McDonald, M.; McGinn, B.; Ryan, P.; Sekiguchi, Tomoko . Center for Housing Innovation); Chandra, S.; Elshennawy, A.K.; Fairey, P.; Harrison, J.; Maxwell, L.; Roland, J.; Swart, W. )

    1990-02-01

    This report summarizes three documents: Multiyear Research Plan, Volume I FY 1989 Task Reports, and Volume II Appendices. These documents describe tasks that were undertaken from November 1988 to December 1989, the first year of the project. Those tasks were: (1) the formation of a steering committee, (2) the development of a multiyear research plan, (3) analysis of the US industrialized housing industry, (4) assessment of foreign technology, (5) assessment of industrial applications, (6) analysis of computerized design and evaluation tools, and (7) assessment of energy performance of baseline and advanced industrialized housing concepts. While this document summarizes information developed in each task area, it doesn't review task by task, as Volume I FY 1989 Task Reports does, but rather treats the subject of energy efficient industrialized housing as a whole to give the reader a more coherent view. 7 figs., 9 refs.

  13. Ammothermal Growth of Gan Substrates For Leds: High-Pressure Ammonothermal Process for Bulk Gallium Nitride Crystal Growth for Energy Efficient Commercially Competitive Lighting

    SciTech Connect

    2011-01-01

    Broad Funding Opportunity Announcement Project: The new GaN crystal growth method is adapted from that used to grow quartz crystals, which are very inexpensive and represent the second-largest market for single crystals for electronic applications (after silicon). More extreme conditions are required to grow GaN crystals and therefore a new type of chemical growth chamber was invented that is suitable for large-scale manufacturing. A new process was developed that grows GaN crystals at a rate that is more than double that of current processes. The new technology will enable GaN substrates with best-in-world quality at lowest-in-world prices, which in turn will enable new generations of white LEDs, lasers for full-color displays, and high-performance power electronics.

  14. 75 FR 12743 - Office of Energy Efficiency and Renewable Energy; Request for Information; Weatherization...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-17

    ... of Energy Efficiency and Renewable Energy; Request for Information; Weatherization Assistance Program; Sustainable Energy Resources for Consumers Grants AGENCY: Office of Energy Efficiency and Renewable Energy... Program for residential buildings to include materials, benefits, and renewable and domestic...

  15. Market barriers to energy efficiency: A critical reappraisal of the rationale for public policies to promote energy efficiency

    SciTech Connect

    Golove, W.H.; Eto, J.H.

    1996-03-01

    This report reviews current perspectives on market barriers to energy efficiency. Ratepayer-funded utility energy-efficiency programs are likely to change in scope, size, and nature as the deregulation process proceeds; the authors research focuses on understanding to what extent some form of future intervention may be warranted and how they might judge the success of particular interventions, especially those funded by ratepayers. They find that challenges to the existence of market barriers have, for the most part, failed to provide a testable alternative explanation for evidence suggesting that there is a substantial ``efficiency gap`` between a consumer`s actual investments in energy efficiency and those that appear to be in the consumer`s own interest. They then suggest that differences of opinion about the appropriateness of public policies stem not from disputes about whether market barriers exist, but from different perceptions of the magnitude of the barriers, and the efficacy and (possibly unintended) consequences of policies designed to overcome them. They conclude that there are compelling justifications for future energy-efficiency policies. Nevertheless, in order to succeed, they must be based on a sound understanding of the market problems they seek to correct and a realistic assessment of their likely efficacy. This understanding can only emerge from detailed investigations of the current operation of individual markets.

  16. Electrorheology for Efficient Energy Production and Conservation

    NASA Astrophysics Data System (ADS)

    Tao, R.; Du, Enpeng; Tao, Hong; Xu, Xiaojun; Liu, Yun

    2011-03-01

    At present, most of our energy comes from liquid fuels. The viscosity plays a very important role in liquid fuel production and conservation. For example, reducing the viscosity of crude oil is the key for oil extraction and its transportation from off-shore via deep water pipelines. Currently, the dominant method to reduce viscosity is to raise oil's temperature, which does not only require much energy, but also impacts the environment. Recently, based on the basic physics of viscosity, we proposed a new theory and developed a new technology, utilizing electrorheology to reduce the viscosity of liquid fuels. The method is energy-efficient, and the results are significant. When this technology is applied to crude oil, the suspended nanoscale paraffin particle, asphalt particles, and other particles are aggregated into micrometer-size streamline aggregates, leading to significant viscosity reduction. When the temperature is below 0circ; C and the water content inside the oil becomes ice, the viscosity reduction can be as high as 75%. Our recent neutron scattering experiment has verified the physical mechanism of viscosity reduction. In comparison with heating, to reach the same level of viscosity reduction, this technology requires less than 1% of the energy needed for heating. Moreover, this technology only takes several seconds to complete the viscosity reduction, while heating takes at least several minutes to complete.

  17. Achieving energy efficiency during collective communications

    SciTech Connect

    Sundriyal, Vaibhav; Sosonkina, Masha; Zhang, Zhao

    2012-09-13

    Energy consumption has become a major design constraint in modern computing systems. With the advent of petaflops architectures, power-efficient software stacks have become imperative for scalability. Techniques such as dynamic voltage and frequency scaling (called DVFS) and CPU clock modulation (called throttling) are often used to reduce the power consumption of the compute nodes. To avoid significant performance losses, these techniques should be used judiciously during parallel application execution. For example, its communication phases may be good candidates to apply the DVFS and CPU throttling without incurring a considerable performance loss. They are often considered as indivisible operations although little attention is being devoted to the energy saving potential of their algorithmic steps. In this work, two important collective communication operations, all-to-all and allgather, are investigated as to their augmentation with energy saving strategies on the per-call basis. The experiments prove the viability of such a fine-grain approach. They also validate a theoretical power consumption estimate for multicore nodes proposed here. While keeping the performance loss low, the obtained energy savings were always significantly higher than those achieved when DVFS or throttling were switched on across the entire application run

  18. 78 FR 29749 - Office of Energy Efficiency and Renewable Energy; Agency Information Collection Extension

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-21

    ... of Energy Efficiency and Renewable Energy; Agency Information Collection Extension AGENCY: Office of Energy Efficiency and Renewable Energy, U.S. Department of Energy (DOE). ACTION: Submission for Office of... Energy Efficiency and Renewable Energy (EE- 2G), U.S. Department of Energy, 1000 Independence Avenue...

  19. 75 FR 69655 - Energy Efficiency and Renewable Energy Advisory Committee (ERAC)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-15

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Office of Energy Efficiency and Renewable Energy Energy Efficiency and Renewable Energy Advisory Committee (ERAC) AGENCY: Department of Energy, Office of Energy Efficiency and Renewable Energy. ACTION: Notice...

  20. Environmental efficiency of energy, materials, and emissions.

    PubMed

    Yagi, Michiyuki; Fujii, Hidemichi; Hoang, Vincent; Managi, Shunsuke

    2015-09-15

    This study estimates the environmental efficiency of international listed firms in 10 worldwide sectors from 2007 to 2013 by applying an order-m method, a non-parametric approach based on free disposal hull with subsampling bootstrapping. Using a conventional output of gross profit and two conventional inputs of labor and capital, this study examines the order-m environmental efficiency accounting for the presence of each of 10 undesirable inputs/outputs and measures the shadow prices of each undesirable input and output. The results show that there is greater potential for the reduction of undesirable inputs rather than bad outputs. On average, total energy, electricity, or water usage has the potential to be reduced by 50%. The median shadow prices of undesirable inputs, however, are much higher than the surveyed representative market prices. Approximately 10% of the firms in the sample appear to be potential sellers or production reducers in terms of undesirable inputs/outputs, which implies that the price of each item at the current level has little impact on most of the firms. Moreover, this study shows that the environmental, social, and governance activities of a firm do not considerably affect environmental efficiency. PMID:26182994

  1. Energy efficient circuit design using nanoelectromechanical relays

    NASA Astrophysics Data System (ADS)

    Venkatasubramanian, Ramakrishnan

    Nano-electromechanical (NEM) relays are a promising class of emerging devices that offer zero off-state leakage and behave like an ideal switch. Recent advances in planar fabrication technology have demonstrated that microelectromechanical (MEMS) scale miniature relays could be manufactured reliably and could be used to build fully functional, complex integrated circuits. The zero leakage operation of relays has renewed the interest in relay based low power logic design. This dissertation explores circuit architectures using NEM relays and NEMS-CMOS heterogeneous integration. Novel circuit topologies for sequential logic, memory, and power management circuits have been proposed taking into consideration the NEM relay device properties and optimizing for energy efficiency and area. In nanoscale electromechanical devices, dispersion forces like Van der Waals' force (vdW) affect the pull-in stability of the relay devices significantly. Verilog-A electromechanical model of the suspended gate relay operating at 1V with a nominal air gap of 5 - 10nm has been developed taking into account all the electrical, mechanical and dispersion effects. This dissertation explores different relay based latch and flip-flop topologies. It has been shown that as few as 4 relay cells could be used to build flip-flops. An integrated voltage doubler based flip flop that improves the performance by 2X by overdriving Vgb has been proposed. Three NEM relay based parallel readout memory bitcell architectures have been proposed that have faster access time, and remove the reliability issues associated with previously reported serial readout architectures. A paradigm shift in design of power switches using NEM relays is proposed. An interesting property of the relay device is that the ON state resistance (Ron) of the NEM relay switch is constant and is insensitive to the gate slew rate. This coupled with infinite OFF state resistance (Roff ) offers significant area and power advantages over CMOS

  2. Healthcare Energy Efficiency Research and Development

    SciTech Connect

    Black, Douglas R.; Lai, Judy; Lanzisera, Steven M; Parrish, Kristen D.; Singer, Brett C.

    2011-01-31

    Hospitals are known to be among the most energy intensive commercial buildings in California. Estimates of energy end-uses (e.g. for heating, cooling, lighting, etc.) in hospitals are uncertain for lack of information about hospital-specific mechanical system operations and process loads. Lawrence Berkeley National Laboratory developed and demonstrated a benchmarking system designed specifically for hospitals. Version 1.0 featured metrics to assess energy performance for the broad variety of ventilation and thermal systems that are present in California hospitals. It required moderate to extensive sub-metering or supplemental monitoring. In this new project, we developed a companion handbook with detailed equations that can be used toconvert data from energy and other sensors that may be added to or already part of hospital heating, ventilation and cooling systems into metrics described in the benchmarking document.This report additionally includes a case study and guidance on including metering into designs for new hospitals, renovations and retrofits. Despite widespread concern that this end-use is large and growing, there is limited reliable information about energy use by distributed medical equipment and other miscellaneouselectrical loads in hospitals. This report proposes a framework for quantifying aggregate energy use of medical equipment and miscellaneous loads. Novel approaches are suggested and tried in an attempt to obtain data to support this framework.

  3. Operational efficiency in STS cargo processing

    NASA Technical Reports Server (NTRS)

    Wilson, R. E.

    1985-01-01

    A multifaceted program is presented that addresses both the operational aspects of Shuttle-cargo integration and the needs of the STS Cargo Community. The program consists of the following key elements: (1) processing team awareness of cargo needs and requirements; (2) standardization of Orbiter preparation and cargo integration procedures and methods; (3) maximum application of state-of-the-art ADP techniques in all relevant areas; (4) continual review of cargo integration facility and ground system capabilities versus requirements and enhancement; (5) continual assessment of proposed cargo processing changes for safety and other needs; and (6) review of cargo processing philosophies, policies, and concepts for potential improvements.

  4. A more energy efficient product for carbon dioxide separation

    SciTech Connect

    Niswander, R.H.; Edwards, D.J.; DuPart, M.S.; Tse, J.P.

    1993-01-01

    Aqueous solutions of alkanolamines such as monoethanolamine (MEA) have been used for years to separate carbon dioxide and hydrogen sulfide from other gases in continuous absorption/desorption processes to meet very low treated gas specifications. However, MEA can undergo side reactions with CO{sub 2} which produce various types of degradation compounds. These by-products reduce performance of the solvent leading to increased energy consumption and corrosion. This can be a serious problem in applications such as the removal of CO{sub 2} in synthesis gas and natural gas treating with down stream cryogenic equipment. Formulated alkanolamine products based on methyldiethanolamine (MDEA) have made significant advances in energy efficiency, but are still susceptible to degradation and decreased performance. A next generation product, GAS/SPEC CS-PLUS, has now been developed and shown to be even more energy efficient. In addition, it improves separation and overall capacity while maintaining long term performance.

  5. Fall detection algorithm in energy efficient multistate sensor system.

    PubMed

    Korats, Gundars; Hofmanis, Janis; Skorodumovs, Aleksejs; Avots, Egils

    2015-01-01

    Health issues for elderly people may lead to different injuries obtained during simple activities of daily living (ADL). Potentially the most dangerous are unintentional falls that may be critical or even lethal to some patients due to the heavy injury risk. Many fall detection systems are proposed but only recently such health care systems became available. Nevertheless sensor design, accuracy as well as energy consumption efficiency can be improved. In this paper we present a single 3-axial accelerometer energy-efficient sensor system. Power saving is achieved by selective event processing triggered by fall detection procedure. The results in our simulations show 100% accuracy when the threshold parameters are chosen correctly. Estimated energy consumption seems to extend battery life significantly. PMID:26737408

  6. Processing on high efficiency solar collector coatings

    NASA Technical Reports Server (NTRS)

    Roberts, M.

    1977-01-01

    Wavelength selective coatings for solar collectors are considered. Substrates with good infrared reflectivity were examined along with their susceptibility to physical and environmental damage. Improvements of reflective surfaces were accomplished through buffing, chemical polishing and other surface processing methods.

  7. Energy efficiency assessment methods and tools evaluation

    SciTech Connect

    McMordie, K.L.; Richman, E.E.; Keller, J.M.; Dixon, D.R.

    1994-08-01

    Many different methods of assessing the energy savings potential at federal installations, and identifying attractive projects for capital investment have been used by the different federal agencies. These methods range from high-level estimating tools to detailed design tools, both manual and software assisted. These methods have different purposes and provide results that are used for different parts of the project identification, and implementation process. Seven different assessment methods are evaluated in this study. These methods were selected by the program managers at the DoD Energy Policy Office, and DOE Federal Energy Management Program (FEMP). Each of the methods was applied to similar buildings at Bolling Air Force Base (AFB), unless it was inappropriate or the method was designed to make an installation-wide analysis, rather than focusing on particular buildings. Staff at Bolling AFB controlled the collection of data.

  8. Efficient multiprocessor architecture for digital signal processing

    SciTech Connect

    Auguin, M.; Boeri, F.

    1982-01-01

    There is a continuing pressure of better processing performances in numerical signal processing. Effective utilization of LSI semiconductor technology allows the consideration of multiprocessor architectures. The problem of interconnecting the components of the architecture arises. The authors describe a control algorithm of the Benes interconnection network in a asynchronous multiprocessor system. A simulation study of the time-shared bus, of the omega network, of the benes network and of the crossbar network gives a comparison of performances. 8 references.

  9. Report to Parliament on the administration and enforcement of the Energy Efficiency Act, 1995--1996

    SciTech Connect

    1997-12-31

    The Energy Efficiency Act provides for the making and enforcement of regulations concerning energy efficiency and alternative energy. Chapter 1 puts the department`s efforts in context by describing the importance of energy to Canadians, the federal approach to energy efficiency and alternative energy (EAE), and NRCan`s strategy to encourage Canadians to invest in greater EAE. Chapter 2 outlines the regulation-making powers under the act, the first energy-efficiency and labelling regulations, the consultation process, compliance provisions, and work under way to expand the coverage of the regulations. Chapters 3-9 describe energy efficiency and alternative energy programs under the following headings: General programs, buildings, equipment, industry, transportation, and alternative energy, alternative transportation fuels and renewable energy.

  10. Maximizing Thermal Efficiency and Optimizing Energy Management (Fact Sheet)

    SciTech Connect

    Not Available

    2012-03-01

    Researchers at the Thermal Test Facility (TTF) on the campus of the U.S. Department of Energy's National Renewable Energy Laboratory (NREL) in Golden, Colorado, are addressing maximizing thermal efficiency and optimizing energy management through analysis of efficient heating, ventilating, and air conditioning (HVAC) strategies, automated home energy management (AHEM), and energy storage systems.

  11. Efficiency in energy production and consumption

    NASA Astrophysics Data System (ADS)

    Kellogg, Ryan Mayer

    This dissertation deals with economic efficiency in the energy industry and consists of three parts. The first examines how joint experience between pairs of firms working together in oil and gas drilling improves productivity. Part two asks whether oil producers time their drilling optimally by taking real options effects into consideration. Finally, I investigate the efficiency with which energy is consumed, asking whether extending Daylight Saving Time (DST) reduces electricity use. The chapter "Learning by Drilling: Inter-Firm Learning and Relationship Persistence in the Texas Oilpatch" examines how oil production companies and the drilling rigs they hire improve drilling productivity by learning through joint experience. I find that the joint productivity of a lead firm and its drilling contractor is enhanced significantly as they accumulate experience working together. Moreover, this result is robust to other relationship specificities and standard firm-specific learning-by-doing effects. The second chapter, "Drill Now or Drill Later: The Effect of Expected Volatility on Investment," investigates the extent to which firms' drilling behavior accords with a key prescription of real options theory: irreversible investments such as drilling should be deferred when the expected volatility of the investments' payoffs increases. I combine detailed data on oil drilling with expectations of future oil price volatility that I derive from the NYMEX futures options market. Conditioning on expected price levels, I find that oil production companies significantly reduce the number of wells they drill when expected price volatility is high. I conclude with "Daylight Time and Energy: Evidence from an Australian Experiment," co-authored with Hendrik Wolff. This chapter assesses DST's impact on electricity demand using a quasi-experiment in which parts of Australia extended DST in 2000 to facilitate the Sydney Olympics. We show that the extension did not reduce overall

  12. Energy efficiency of a dynamic glazing system

    SciTech Connect

    Lollini, R.; Danza, L.; Meroni, I.

    2010-04-15

    The reduction of air-conditioning energy consumptions is one of the main indicators to act on when improving the energy efficiency in buildings. In the case of advanced technological buildings, a meaningful contribution to the thermal loads and the energy consumptions reduction could depend on the correct configuration and management of the envelope systems. In recent years, the architectural trend toward highly transparent all-glass buildings presents a unique challenge and opportunity to advance the market for emerging, smart, dynamic window and dimmable daylighting control technologies (). A prototype dynamic glazing system was developed and tested at ITC-CNR; it is aimed at actively responding to the external environmental loads. Both an experimental campaign and analyses by theoretical models were carried out, aimed at evaluating the possible configurations depending on different weather conditions in several possible places. Therefore, the analytical models of the building-plant system were defined by using a dynamic energy simulation software (EnergyPlus). The variables that determine the system performance, also influenced by the boundary conditions, were analysed, such as U- and g-value; they concern both the morphology of the envelope system, such as dimensions, shading and glazing type, gap airflow thickness, in-gap airflow rate, and management, in terms of control algorithm parameters tuning fan and shading systems, as a function of the weather conditions. The configuration able to provide the best performances was finally identified by also assessing such performances, integrating the dynamic system in several building types and under different weather conditions. The dynamic envelope system prototype has become a commercial product with some applications in facade systems, curtain walls and windows. The paper describes the methodological approach to prototype development and the main results obtained, including simulations of possible applications on

  13. Three essays on energy efficiency policy

    NASA Astrophysics Data System (ADS)

    Kabiri, Maryam

    This thesis is comprised of three essays which explore selected aspects of demand side energy efficiency policy of International Energy Conservation Codes (IECC). The first essay models the adoption of IECC in the U.S. between 1998 and 2010. An ordered probit model with IECC adoption as the dependent variable is used to test if a set of socio-economics, political, spatial, and environmental factors predict the residential building energy code adoption. The results show that higher energy price, relative political extraction, climate extremes, pollution level, and population growth predict IECC adoption in the sample. The diffusion variable (share of neighbor states with IECC) is shown to have large impacts on the probability of IECC adoption. The next two essays examine the effect of IECC on residential electricity consumption. The second essay investigates the impact of International Energy Conservation Codes (IECC) on per-capita residential electricity consumption for 44 U.S. states from 1981-2008. Applying the pooled mean group (PMG) model developed by Pesaran et al. (1999), and controlling for energy specific demand factors such as: prices, income, heating degree days, and cooling degree days, I find that there is an overall 2% decrease in new residential buildings per-capita electricity consumption in the states which adopted any version of IECC. The new residential buildings per-capita electricity consumption has decreased by about 2.5% and 5% in the states with IECC 2000 and IECC 2003 respectively. The third essay examines the impact of building energy code on the household electricity consumption in three states in U.S. To do so; I construct a pseudo panel using household level data from the American Community Survey (ACS) over the period 2005-2010. By constructing pseudo panel, we are able to track cohorts of relatively homogeneous individuals over time, and control for cohort unobserved heterogeneity that may bias the results of cross sectional estimates

  14. RP-5 Renewable Energy Efficiency Project

    SciTech Connect

    Neil Clifton; Eliza Jane Whitman; Jamal A. Zughbi

    2004-01-29

    This is the sixth quarterly technical report for the RP-5 Renewable Energy Efficiency Project. The report summarizes the work progress, effort and activities that took place during the period from October 1, 2003 through December 31, 2003. The report has been prepared in accordance with the Department of Energy (DOE) Guidelines. In coordination with the DOE, IEUA has revised the original Cooperative Agreement to reflect the actual and current project scope of work. The original Agreement statement of work (SOW) included conceptual and preliminary equipment and systems, which were further evaluated for feasibility and suitability for the project. As a result, some of the equipment was taken out of the project scope. In response to questions from the DOE, IEUA has submitted a summary report on the Organic Rankine Cycle (ORC) secondary power generation units for availability and suitability for this project and associated safety concerns pointed out by the DOE. IEUA has awarded the consulting engineering contract to Parsons Water and Infrastructure, Inc. to provide the project's design and construction services. The project's pre-design kickoff meeting was held at IEUA's headquarters on December 11, 2003. IEUA has submitted a proposal for a grant offered by California Energy Commission (CEC) which if awarded to IEUA, will add value to this project. IEUA has finalized and signed the agreement with Stirling Energy Systems (SES) to host a 25 kW Stirling Engine at the RP-5 plant site for reliability and performance testing using digester and natural gas. As a result of further evaluation of the flexible microturbine system, IEUA has decided to take it out of the project's scope of work; however, it may be considered in future projects at other locations. IEUA has installed a 60 kW Photovoltaic (PV) power generation system on the roof of the new headquarters building. A matching funds update is also included in the Results and Discussion section. The update presents the

  15. Barriers to Industrial Energy Efficiency - Study (Appendix A), June 2015

    SciTech Connect

    2015-06-01

    This study examines barriers that impede the adoption of energy efficient technologies and practices in the industrial sector, and identifies successful examples and opportunities to overcome these barriers. Three groups of energy efficiency technologies and measures were examined: industrial end-use energy efficiency, industrial demand response, and industrial combined heat and power. This study also includes the estimated economic benefits from hypothetical Federal energy efficiency matching grants, as directed by the Act.

  16. Barriers to Industrial Energy Efficiency - Report to Congress, June 2015

    SciTech Connect

    2015-06-01

    This report examines barriers that impede the adoption of energy efficient technologies and practices in the industrial sector, and identifies successful examples and opportunities to overcome these barriers. Three groups of energy efficiency technologies and measures were examined: industrial end-use energy efficiency, industrial demand response, and industrial combined heat and power. This report also includes the estimated economic benefits from hypothetical Federal energy efficiency matching grants, as directed by the Act.

  17. Highly Efficient Contactless Electrical Energy Transmission System

    NASA Astrophysics Data System (ADS)

    Ayano, Hideki; Nagase, Hiroshi; Inaba, Hiromi

    This paper proposes a new concept for a contactless electrical energy transmission system for an elevator and an automated guided vehicle. The system has rechargeable batteries on the car and electrical energy is supplied at a specific place. When electric power is supplied to the car, it runs automatically and approaches the battery charger. Therefore, a comparatively large gap is needed between the primary transformer at the battery charger and the secondary transformer on the car in order to prevent damage which would be caused by a collision. In this case, a drop of the transformer coupling rate due to the large gap must be prevented. In conventional contactless electrical energy transmission technology, since electric power is received by a pick-up coil from a power line, a large-sized transformer is required. And when the distance over which the car runs is long, the copper loss of the line also increases. The developed system adopts a high frequency inverter using a soft switching method to miniaturize the transformer. The system has a coupling rate of 0.88 for a transformer gap length of 10mm and can operate at 91% efficiency.

  18. Weatherization and Intergovernmental Program - State Energy Program Helps States Plan and Implement Energy Efficiency

    SciTech Connect

    2010-06-01

    State energy offices use SEP funds to develop state plans that identify opportunities for adopting renewable energy and energy efficiency technologies, and implementing programs to improve energy sustainability.

  19. Efficiency versus cost — A fundamental design conflict in energy science

    NASA Astrophysics Data System (ADS)

    Ohler, C.

    2013-06-01

    An essential design conflict in energy technology is the trade-off between efficiency and cost. The lecture introduces concepts that deal with this trade-off and discusses real world examples. Among the many definitions of efficiency, exergetic efficiency is the most rigorous and often the most adequate for analyzing the efficiency of a process. Exergy is the maximum work obtainable from a system as it comes into equilibrium with its environment. Exergetic efficiency is illustrated here with the heating of buildings. The right concept to analyze the trade-off between efficiency and the initial capital cost of equipment is the net present value analysis. We discuss two examples, overhead power lines and energy storage. Electrothermal energy storage is a new energy storage technology that builds on both concepts, optimization of exergetic efficiency and balancing of initial cost with that efficiency. Finally, non-technical barriers for energy efficiency are mentioned.

  20. Efficient Quantum Information Processing via Quantum Compressions

    NASA Astrophysics Data System (ADS)

    Deng, Y.; Luo, M. X.; Ma, S. Y.

    2016-01-01

    Our purpose is to improve the quantum transmission efficiency and reduce the resource cost by quantum compressions. The lossless quantum compression is accomplished using invertible quantum transformations and applied to the quantum teleportation and the simultaneous transmission over quantum butterfly networks. New schemes can greatly reduce the entanglement cost, and partially solve transmission conflictions over common links. Moreover, the local compression scheme is useful for approximate entanglement creations from pre-shared entanglements. This special task has not been addressed because of the quantum no-cloning theorem. Our scheme depends on the local quantum compression and the bipartite entanglement transfer. Simulations show the success probability is greatly dependent of the minimal entanglement coefficient. These results may be useful in general quantum network communication.

  1. 77 FR 43723 - Energy Efficiency and Conservation Loan Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-26

    ... Energy Efficiency and Conservation Loan Program AGENCY: Rural Utilities Service, USDA. ACTION: Notice of... procedures for loan and guarantee financial assistance in support of energy efficiency programs (EE Programs... implementing demand side management, energy efficiency and conservation programs, and on-grid and...

  2. 13 CFR 101.500 - Small Business Energy Efficiency Program.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 13 Business Credit and Assistance 1 2012-01-01 2012-01-01 false Small Business Energy Efficiency Program. 101.500 Section 101.500 Business Credit and Assistance SMALL BUSINESS ADMINISTRATION ADMINISTRATION Small Business Energy Efficiency § 101.500 Small Business Energy Efficiency Program. (a) The Administration has developed and coordinated...

  3. Technologies for the Energy Efficient Data Center

    SciTech Connect

    Cader, Tahir; Westra, Levi; Marquez, Andres

    2007-07-17

    Although semiconductor manufacturers have provided temporary relief with lower-power multi-core microprocessors, OEMs and data center operators continue to push the limits for individual rack power densities. It is not uncommon today for data center operators to deploy multiple 20 kW racks in a facility. Such rack densities are exacerbating the major issues of power and cooling in data centers. Data center operators are now forced to take a hard look at the efficiencies of their data centers. Malone and Belady (2006) have proposed three metrics, i.e., Power Usage Effectiveness (PUE), Data Center Efficiency (DCE), and the Energy-to-Acquisition Cost ratio (EAC), to help data center operators quickly quantify the efficiency of their data centers. In their paper, Malone and Belady present nominal values of PUE across a broad crosssection of data centers. PUE values are presented for data centers at four levels of optimization. One of these optimizations involves the use of Computational Fluid Dynamics (CFD). In the current paper, CFD is used to conduct an in-depth investigation of a liquid-cooled data center that would potentially be housed at the Pacific Northwest National Labs (PNNL). The boundary conditions used in the CFD model are based upon actual measurements on a rack of liquid-cooled servers housed at PNNL. The analysis shows that the liquid-cooled facility could achieve a PUE of 1.57 as compared to a PUE of 3.0 for a typical data center (the lower the PUE, the better, with values below 1.6 approaching ideal). The increase in data center efficiency is also translated into an increase in the amount of IT equipment that can be deployed. At a PUE of 1.57, the analysis shows that 91% more IT equipment can be deployed as compared to the typical data center. The paper will discuss the analysis of the PUE, and will also explore the impact of the raising data center efficiency via the use of multiple cooling technologies and CFD analysis. Complete results of the

  4. Robust Forecasting for Energy Efficiency of Wireless Multimedia Sensor Networks

    PubMed Central

    Wang, Xue; Ma, Jun-Jie; Ding, Liang; Bi, Dao-Wei

    2007-01-01

    An important criterion of wireless sensor network is the energy efficiency in specified applications. In this wireless multimedia sensor network, the observations are derived from acoustic sensors. Focused on the energy problem of target tracking, this paper proposes a robust forecasting method to enhance the energy efficiency of wireless multimedia sensor networks. Target motion information is acquired by acoustic sensor nodes while a distributed network with honeycomb configuration is constructed. Thereby, target localization is performed by multiple sensor nodes collaboratively through acoustic signal processing. A novel method, combining autoregressive moving average (ARMA) model and radial basis function networks (RBFNs), is exploited to perform robust target position forecasting during target tracking. Then sensor nodes around the target are awakened according to the forecasted target position. With committee decision of sensor nodes, target localization is performed in a distributed manner and the uncertainty of detection is reduced. Moreover, a sensor-to-observer routing approach of the honeycomb mesh network is investigated to solve the data reporting considering the residual energy of sensor nodes. Target localization and forecasting are implemented in experiments. Meanwhile, sensor node awakening and dynamic routing are evaluated. Experimental results verify that energy efficiency of wireless multimedia sensor network is enhanced by the proposed target tracking method.

  5. Membranes for Environmentally Friendly Energy Processes

    PubMed Central

    He, Xuezhong; Hägg, May-Britt

    2012-01-01

    Membrane separation systems require no or very little chemicals compared to standard unit operations. They are also easy to scale up, energy efficient, and already widely used in various gas and liquid separation processes. Different types of membranes such as common polymers, microporous organic polymers, fixed-site-carrier membranes, mixed matrix membranes, carbon membranes as well as inorganic membranes have been investigated for CO2 capture/removal and other energy processes in the last two decades. The aim of this work is to review the membrane systems applied in different energy processes, such as post-combustion, pre-combustion, oxyfuel combustion, natural gas sweetening, biogas upgrading, hydrogen production, volatile organic compounds (VOC) recovery and pressure retarded osmosis for power generation. Although different membranes could probably be used in a specific separation process, choosing a suitable membrane material will mainly depend on the membrane permeance and selectivity, process conditions (e.g., operating pressure, temperature) and the impurities in a gas stream (such as SO2, NOx, H2S, etc.). Moreover, process design and the challenges relevant to a membrane system are also being discussed to illustrate the membrane process feasibility for a specific application based on process simulation and economic cost estimation. PMID:24958426

  6. Membranes for environmentally friendly energy processes.

    PubMed

    He, Xuezhong; Hägg, May-Britt

    2012-01-01

    Membrane separation systems require no or very little chemicals compared to standard unit operations. They are also easy to scale up, energy efficient, and already widely used in various gas and liquid separation processes. Different types of membranes such as common polymers, microporous organic polymers, fixed-site-carrier membranes, mixed matrix membranes, carbon membranes as well as inorganic membranes have been investigated for CO2 capture/removal and other energy processes in the last two decades. The aim of this work is to review the membrane systems applied in different energy processes, such as post-combustion, pre-combustion, oxyfuel combustion, natural gas sweetening, biogas upgrading, hydrogen production, volatile organic compounds (VOC) recovery and pressure retarded osmosis for power generation. Although different membranes could probably be used in a specific separation process, choosing a suitable membrane material will mainly depend on the membrane permeance and selectivity, process conditions (e.g., operating pressure, temperature) and the impurities in a gas stream (such as SO2, NOx, H2S, etc.). Moreover, process design and the challenges relevant to a membrane system are also being discussed to illustrate the membrane process feasibility for a specific application based on process simulation and economic cost estimation. PMID:24958426

  7. The drive for Aircraft Energy Efficiency

    NASA Technical Reports Server (NTRS)

    James, R. L., Jr.; Maddalon, D. V.

    1984-01-01

    NASA's Aircraft Energy Efficiency (ACEE) program, which began in 1976, has mounted a development effort in four major transport aircraft technology fields: laminar flow systems, advanced aerodynamics, flight controls, and composite structures. ACEE has explored two basic methods for achieving drag-reducing boundary layer laminarization: the use of suction through the wing structure (via slots or perforations) to remove boundary layer turbulence, and the encouragement of natural laminar flow maintenance through refined design practices. Wind tunnel tests have been conducted for wide bodied aircraft equipped with high aspect ratio supercritical wings and winglets. Maneuver load control and pitch-active stability augmentation control systems reduce fuel consumption by reducing the drag associated with high aircraft stability margins. Composite structures yield lighter airframes that in turn call for smaller wing and empennage areas, reducing induced drag for a given payload. In combination, all four areas of development are expected to yield a fuel consumption reduction of 40 percent.

  8. Energy Efficient Buildings, Salt Lake County, Utah

    SciTech Connect

    Barnett, Kimberly

    2012-04-30

    Executive Summary Salt Lake County's Solar Photovoltaic Project - an unprecedented public/private partnership Salt Lake County is pleased to announce the completion of its unprecedented solar photovoltaic (PV) installation on the Calvin R. Rampton Salt Palace Convention Center. This 1.65 MW installation will be one the largest solar roof top installations in the country and will more than double the current installed solar capacity in the state of Utah. Construction is complete and the system will be operational in May 2012. The County has accomplished this project using a Power Purchase Agreement (PPA) financing model. In a PPA model a third-party solar developer will finance, develop, own, operate, and maintain the solar array. Salt Lake County will lease its roof, and purchase the power from this third-party under a long-term Power Purchase Agreement contract. In fact, this will be one of the first projects in the state of Utah to take advantage of the recent (March 2010) legislation which makes PPA models possible for projects of this type. In addition to utilizing a PPA, this solar project will employ public and private capital, Energy Efficiency and Conservation Block Grants (EECBG), and public/private subsidized bonds that are able to work together efficiently because of the recent stimulus bill. The project also makes use of recent changes to federal tax rules, and the recent re-awakening of private capital markets that make a significant public-private partnership possible. This is an extremely innovative project, and will mark the first time that all of these incentives (EECBG grants, Qualified Energy Conservation Bonds, New Markets tax credits, investment tax credits, public and private funds) have been packaged into one project. All of Salt Lake County's research documents and studies, agreements, and technical information is available to the public. In addition, the County has already shared a variety of information with the public through webinars

  9. Limits to Photovoltaic Energy Conversion Efficiency

    NASA Astrophysics Data System (ADS)

    Green, Martin A.

    2015-10-01

    The following sections are included: * Introduction * Photovoltaic converters: essential requirements * Thermodynamic properties of sunlight * `Top-down' thermodynamic efficiency limits * Single-cell efficiency limits * Multiple-junction devices * Other high-efficiency options * Summary * Acknowledgement * References

  10. Efficient Bayesian inference for ARFIMA processes

    NASA Astrophysics Data System (ADS)

    Graves, T.; Gramacy, R. B.; Franzke, C. L. E.; Watkins, N. W.

    2015-03-01

    Many geophysical quantities, like atmospheric temperature, water levels in rivers, and wind speeds, have shown evidence of long-range dependence (LRD). LRD means that these quantities experience non-trivial temporal memory, which potentially enhances their predictability, but also hampers the detection of externally forced trends. Thus, it is important to reliably identify whether or not a system exhibits LRD. In this paper we present a modern and systematic approach to the inference of LRD. Rather than Mandelbrot's fractional Gaussian noise, we use the more flexible Autoregressive Fractional Integrated Moving Average (ARFIMA) model which is widely used in time series analysis, and of increasing interest in climate science. Unlike most previous work on the inference of LRD, which is frequentist in nature, we provide a systematic treatment of Bayesian inference. In particular, we provide a new approximate likelihood for efficient parameter inference, and show how nuisance parameters (e.g. short memory effects) can be integrated over in order to focus on long memory parameters, and hypothesis testing more directly. We illustrate our new methodology on the Nile water level data, with favorable comparison to the standard estimators.

  11. Thermoradiation processes of energy-carrier production

    NASA Astrophysics Data System (ADS)

    Dzantiev, B. G.; Ermakov, A. N.; Zhitomirskii, V. M.; Popov, V. N.

    Thermoradiation processes in the production of hydrogen and carbon monoxide from water vapor and CO2 are discussed. An radiolysis experiment was conducted using a one-pass flow system and an electron accelerator (with energy of 3 Me V), according to parameters of dose rate, regent-radiation contact time, and temperature (700 deg). Steady-state concentrations of H2 and CO were found to correspond to 20 and 40 percent radiation energy-product and energy conversion, respectively. The results of the experiment permit an accurate determination of the optimal parameters of the conversion process and an estimate of the relative efficiencies of chemonuclear and electrochemical methods (plasmolysis and electrolysis) of H2 and CO production using nuclear piles.

  12. The Development of Mental Processing: Efficiency, Working Memory, and Thinking.

    ERIC Educational Resources Information Center

    Demetriou, Andreas; Christou, Constantinos; Spanoudis, George; Platsidou, Maria

    2002-01-01

    Examined, over 1 year, relations between information processing efficiency, working memory, and problem solving in sample of 8-, 10-, 12-, and 14-year-olds. Identified three-stratus hierarchy with individual dimensions organized in three constructs: processing efficiency, working memory, and problem solving. Found that individual dimensions were…

  13. Energy-Efficient Cooking of Spaghetti

    NASA Astrophysics Data System (ADS)

    Levy, Akash

    2011-03-01

    Spaghetti is a dual-career family dinner favorite. But how much energy is consumed in the process, and how can it be optimized? I performed an experiment to test two methods for preparing a spaghetti meal. In both cases, the water was rapidly heated to the boiling point. The flame was kept at maximum for the first experiment until the spaghetti was cooked. In the second experiment, the flame was reduced and the top covered, such that the water was kept at 100C. The two methods are compared in terms of the total time required to prepare the meal and amount of energy required. A discussion of potential savings for the latter method--and possible uses for that savings--is discussed.

  14. Efficient conversion of solar energy to biomass and electricity

    PubMed Central

    2014-01-01

    The Earth receives around 1000 W.m−2 of power from the Sun and only a fraction of this light energy is able to be converted to biomass (chemical energy) via the process of photosynthesis. Out of all photosynthetic organisms, microalgae, due to their fast growth rates and their ability to grow on non-arable land using saline water, have been identified as potential source of raw material for chemical energy production. Electrical energy can also be produced from this same solar resource via the use of photovoltaic modules. In this work we propose a novel method of combining both of these energy production processes to make full utilisation of the solar spectrum and increase the productivity of light-limited microalgae systems. These two methods of energy production would appear to compete for use of the same energy resource (sunlight) to produce either chemical or electrical energy. However, some groups of microalgae (i.e. Chlorophyta) only require the blue and red portions of the spectrum whereas photovoltaic devices can absorb strongly over the full range of visible light. This suggests that a combination of the two energy production systems would allow for a full utilization of the solar spectrum allowing both the production of chemical and electrical energy from the one facility making efficient use of available land and solar energy. In this work we propose to introduce a filter above the algae culture to modify the spectrum of light received by the algae and redirect parts of the spectrum to generate electricity. The electrical energy generated by this approach can then be directed to running ancillary systems or producing extra illumination for the growth of microalgae. We have modelled an approach whereby the productivity of light-limited microalgae systems can be improved by at least 4% through using an LED array to increase the total amount of illumination on the microalgae culture. PMID:24976951

  15. Energy Efficient Industrialized Housing Research Program. Annual report, FY 1991

    SciTech Connect

    Not Available

    1992-03-01

    Six area reported progress in the Energy Efficient Industrialized Housing Research Program during FY 1991. As part of Industry Guidance, meetings were held with steering and technical committees in computers, housing design and manufacturing. This task area enables the program to benefit from the expertise of industry representatives and communicate research results directly to them. As part of the Design Process performance specifications were being developed for the future housing system designed last year. These house designs coordinate and optimize predicted and desirable advances in computerized design processes, materials, components, and manufacturing automation to achieve energy efficiency at reduced first cost. Energy design software were being developed for CAD systems, stressed skin insulating core panel manufacturers; and a prototype energy sales tool. A prototype design was to be developed to integrate one or more subsystems with the building skin. As part of the Manufacturing Process we are developing a manufacturing process simulation and data base to help current and new entrants to the industrialized housing industry in assessing the impact of implementing new manufacturing techniques. For Evaluation we are developing testing plans for six units of housing on the UO campus and the stressed skin insulating core house to be constructed in Oregon. The DOW Chemical test structure will be retrofitted with a tile roof and retested to compare to the dome and conventional construction structures. Calibration of the wind tunnel will be completed so that laboratory tests can be conducted to simulate the ventilation cooling efficiency of houses in design. Research utilization and program management were either aspects of this program.

  16. Competency Based Education Curriculum for Energy Efficient Building Construction.

    ERIC Educational Resources Information Center

    Cole, John; And Others

    This competency-based curriculum for energy-efficient building construction is intended to educate students in the importance of conserving energy and to provide for developing skills needed in the application of energy-saving techniques that result in energy-efficient buildings. Each of the eight units is based on one to five competencies. For…

  17. Efficient separations and processing crosscutting program overview

    SciTech Connect

    Gerdes, K.D.; Harness, J.L.; Kuhn, W.L.

    1997-10-01

    The US Department of Energy (DOE) established the Office of Science and Technology (formerly the Office of Technology Development), as part of the Office of Environmental Management (EM) in November 1989. EM manages remediation of all DOE sites and wastes from current operations. The goal of the EM program is to minimize risks to human health, safety, and the environment and to bring all DOE sites into compliance with federal, state, and local regulations by the year 2019. The Office of Science and Technology (EM-50) is charged with developing and implementing new technologies that are safer, faster, more effective, and less expensive than current methods. To focus resources and address opportunities, EM-50 has targeted four major remediation and waste management problem areas within the DOE complex for action based on risk, prevalence, or need for technology development to meet environmental requirements and regulations. Other areas may be added or current areas further partitioned to ensure that research technology development programs remain focused on EM`s most pressing remediation and waste management needs. These major problem areas, called Focus Areas are: high-level waste tank remediation; mixed waste characterization, treatment, and disposal; subsurface contaminants; and facility transitioning, decommissioning, and final disposition.

  18. RP-5 RENEWABLE ENERGY EFFICIENCY PROJECT

    SciTech Connect

    Neil Clifton; Eliza Jane Whitman; Jamal A. Zughbi

    2003-04-30

    This is the third quarterly technical report for the RP-5 Renewable Energy Efficiency Project. The report summarizes the work progress, effort and activities that took place during the period of January 1, 2003 to March 31, 2003. The report has been prepared in accordance with the Department of Energy (DOE) Guidelines. This technical report covers all meetings, discussions, and engineering and design activities that took place to complete the conceptual design phase and finalize the scope of work for the project. As indicated in the previous reports, CH2M Hill, the Public Interest Energy Research (PIER) Consultant, is in charge of the analysis and evaluation of the innovative equipment and systems for the project. The PIER Consultant has submitted to Inland empire Utilities Agency (IEUA) the draft Conceptual Design Report for review and comments. IEUA has prepared a detailed scope of work for the whole project, which will be used by the consultant as a basis and a reference for submitting their proposal for the engineering and design services. This report also includes engineering work and procurement of vital equipment which is part of the new IEUA Headquarters Building's chilled water system. IEUA has performed a detailed technical and economical analysis to evaluate several potential options and scenarios for the configuration of the power generation equipment and systems for the project. Other activities in this report include meeting with Ormat, the manufacturer and potential supplier of the innovative organic bottoming cycle, which operates on heat recovered from engines exhaust system, to go over their scope of work and evaluate the system for the anticipated plant conditions and configurations. A matching funds update is also included in the Results and Discussion section, which presents the work effort performed by the PIER Consultant and the associated costs that serve as matching funds for the RP-5 Project.

  19. A Case for Application Oblivious Energy-Efficient MPI Runtime

    SciTech Connect

    Venkatesh, Akshay; Vishnu, Abhinav; Hamidouche, Khaled; Tallent, Nathan R.; Panda, Dhabaleswar; Kerbyson, Darren J.; Hoisie, Adolfy

    2015-10-19

    Power has become the major impediment in designing large scale high-end systems. Message Passing Interface (MPI) is the {\\em de facto} communication interface used as the back-end for designing applications, programming models and runtime for these systems. Slack --- the time spent by an MPI process in a single MPI call --- provides a potential for energy and power savings, if an appropriate power reduction technique such as core-idling/Dynamic Voltage and Frequency Scaling (DVFS) can be applied without perturbing application's execution time. Existing techniques that exploit slack for power savings assume that application behavior repeats across iterations/executions. However, an increasing use of adaptive, data-dependent workloads combined with system factors (OS noise, congestion) makes this assumption invalid. This paper proposes and implements Energy Aware MPI (EAM) --- an application-oblivious energy-efficient MPI runtime. EAM uses a combination of communication models of common MPI primitives (point-to-point, collective, progress, blocking/non-blocking) and an online observation of slack for maximizing energy efficiency. Each power lever incurs time overhead, which must be amortized over slack to minimize degradation. When predicted communication time exceeds a lever overhead, the lever is used {\\em as soon as possible} --- to maximize energy efficiency. When mis-prediction occurs, the lever(s) are used automatically at specific intervals for amortization. We implement EAM using MVAPICH2 and evaluate it on ten applications using up to 4096 processes. Our performance evaluation on an InfiniBand cluster indicates that EAM can reduce energy consumption by 5--41\\% in comparison to the default approach, with negligible (less than 4\\% in all cases) performance loss.

  20. Super Efficient Refrigerator Program (SERP) evaluation. Volume 1: Process evaluation

    SciTech Connect

    Sandahl, L.J.; Ledbetter, M.R.; Chin, R.I.; Lewis, K.S.; Norling, J.M.

    1996-01-01

    The Pacific Northwest National Laboratory (PNNL) conducted this study for the US Department of Energy (DOE) as part of the Super Efficient Refrigerator Program (SERP) Evaluation. This report documents the SERP formation and implementation process, and identifies preliminary program administration and implementation issues. The findings are based primarily on interviews with those familiar with the program, such as utilities, appliance manufacturers, and SERP administrators. These interviews occurred primarily between March and April 1995, when SERP was in the early stages of program implementation. A forthcoming report will estimate the preliminary impacts of SERP within the industry and marketplace. Both studies were funded by DOE at the request of SERP Inc., which sought a third-party evaluation of its program.

  1. Platinum nanoparticle decorated silicon nanowires for efficient solar energy conversion.

    PubMed

    Peng, Kui-Qing; Wang, Xin; Wu, Xiao-Ling; Lee, Shuit-Tong

    2009-11-01

    High-density aligned n-type silicon nanowire (SiNW) arrays decorated with discrete 5-10 nm platinum nanoparticles (PtNPs) have been fabricated by aqueous electroless Si etching followed by an electroless platinum deposition process. Coating of PtNPs on SiNW sidewalls yielded a substantial enhancement in photoconversion efficiency and an apparent energy conversion efficiency of up to 8.14% for the PtNP-decorated SiNW-based photoelectrochemical solar cell using a liquid electrolyte containing Br(-)/Br(2) redox couple. The results demonstrate PtNP-decorated SiNWs to be a promising hybrid system for solar energy conversion. PMID:19807069

  2. Opportunities and prospects for energy efficiency in Asian countries

    SciTech Connect

    Kuliasha, M.A.

    1992-01-01

    Energy efficiency and economic growth are examined in Asia. Progress in improving energy efficiency has slowed recently. This trend has resulted from population growth, expansion of leisure time, improvements in the standard of living, and increased mobility in the domestic and transportation sectors. Barriers to efficiency improvement are analyzed, along with new technology developments. The paper concludes with an argument that energy efficiency is good business.

  3. Opportunities and prospects for energy efficiency in Asian countries

    SciTech Connect

    Kuliasha, M.A.

    1992-12-31

    Energy efficiency and economic growth are examined in Asia. Progress in improving energy efficiency has slowed recently. This trend has resulted from population growth, expansion of leisure time, improvements in the standard of living, and increased mobility in the domestic and transportation sectors. Barriers to efficiency improvement are analyzed, along with new technology developments. The paper concludes with an argument that energy efficiency is good business.

  4. 76 FR 54224 - Energy Efficiency and Renewable Energy Advisory Committee (ERAC)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-31

    ... Efficiency and Renewable Energy Advisory Committee (ERAC) AGENCY: Department of Energy, Office of Energy Efficiency and Renewable Energy. ACTION: Notice of open meeting. SUMMARY: The purpose of the ERAC is to..., and deployment priorities within the field of energy efficiency and renewable energy. The...

  5. 76 FR 80355 - Energy Efficiency and Renewable Energy Advisory Committee (ERAC)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-23

    ... Efficiency and Renewable Energy Advisory Committee (ERAC) AGENCY: Department of Energy, Office of Energy Efficiency and Renewable Energy. ACTION: Notice of open teleconference/Webinar. SUMMARY: The purpose of ERAC..., demonstration and deployment priorities within the field of energy efficiency and renewable energy. The...

  6. 78 FR 16443 - Energy Efficiency Program for Consumer Products: Energy Conservation Standards for Ceiling Fans...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-15

    ...; ] DEPARTMENT OF ENERGY 10 CFR Part 430 RIN 1904-AC87 Energy Efficiency Program for Consumer Products: Energy Conservation Standards for Ceiling Fans and Ceiling Fan Light Kits AGENCY: Office of Energy Efficiency and... INFORMATION CONTACT: Ms. Lucy deButts, U.S. Department of Energy, Office of Energy Efficiency and...

  7. 77 FR 14509 - State Energy Program and Energy Efficiency and Conservation Block Grant (EECBG) Program; Request...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-12

    ... Energy Program and Energy Efficiency and Conservation Block Grant (EECBG) Program; Request for Information AGENCY: Office of Energy Efficiency and Renewable Energy and Office of the General Counsel... mechanisms by grantees of the State Energy Program (SEP) and Energy Efficiency and Conservation Block...

  8. Intervention strategies for energy efficient municipal buildings: Influencing energy decisions throughout buildings` lifetimes

    SciTech Connect

    1993-12-31

    The current energy-related decisionmaking processes that take place during the lifetimes of municipal buildings in San Francisco do not reflect our ideal picture of energy efficiency as a part of staff awareness and standard practice. Two key problems that undermine the success of energy efficiency programs are lost opportunities and incomplete actions. These problems can be caused by technology-related issues, but often the causes are institutional barriers (organizational or procedural {open_quotes}people problems{close_quotes}). Energy efficient decisions are not being made because of a lack of awareness or policy mandate, or because financial resources are not available to decisionmakers. The Bureau of Energy Conservation (BEC) is working to solve such problems in the City & County of San Francisco through the Intervention Strategies project. In the first phase of the project, using the framework of the building lifetime, we learned how energy efficiency in San Francisco municipal buildings can be influenced through delivering services to support decisionmakers; at key points in the process of funding, designing, constructing and maintaining them. The second phase of the project involved choosing and implementing five pilot projects. Through staff interviews, we learned how decisions that impact energy use are made at various levels. We compiled information about city staff and their needs, and resources available to meet those needs. We then designed actions to deliver appropriate services to staff at these key access points. BEC implemented five pilot projects corresponding to various stages in the building`s lifetime. These were: Bond Guidelines, Energy Efficient Design Practices, Commissioning, Motor Efficiency, and Facilities Condition Monitoring Program.

  9. Determining the life cycle energy efficiency of six biofuel systems in China: a Data Envelopment Analysis.

    PubMed

    Ren, Jingzheng; Tan, Shiyu; Dong, Lichun; Mazzi, Anna; Scipioni, Antonio; Sovacool, Benjamin K

    2014-06-01

    This aim of this study was to use Data Envelopment Analysis (DEA) to assess the life cycle energy efficiency of six biofuels in China. DEA can differentiate efficient and non-efficient scenarios, and it can identify wasteful energy losses in biofuel production. More specifically, the study has examined the efficiency of six approaches for bioethanol production involving a sample of wheat, corn, cassava, and sweet potatoes as feedstocks and "old," "new," "wet," and "dry" processes. For each of these six bioethanol production pathways, the users can determine energy inputs such as the embodied energy for seed, machinery, fertilizer, diesel, chemicals and primary energy utilized for manufacturing, and outputs such as the energy content of the bioethanol and byproducts. The results indicate that DEA is a novel and feasible method for finding efficient bioethanol production scenarios and suggest that sweet potatoes may be the most energy-efficient form of ethanol production for China. PMID:24727398

  10. Best Practicefor Energy Efficient Cleanrooms: Variable SpeedPumping

    SciTech Connect

    Xu, Tengfang

    2005-06-15

    Cleanroom energy benchmarking data shows that chiller plant designs and operating efficiencies varied significantly from cleanroom to cleanroom. While system optimization is critical to the overall energy efficiency of chiller plants, the operating efficiency of chilled water and condenser pumps, along with chiller efficiency and cooling tower efficiency, is a major factor in the overall system efficiency. The design and operating efficiency of water pumps directly affects energy use for such facilities. Figure 1 shows benchmarked HVAC energy end use in a semiconductor cleanroom facility. In this case, the water pumps collectively accounted for 17% of the total energy use. Figure 2 shows the electric power demand of the components in a chiller plant system. Pumps accounted for 18% of the total power demand for the whole chiller plant. It is important to design, select, operate, and control water-pumping systems to achieve high efficiency and to lower life-cycle costs for cleanrooms and their adjacent spaces.

  11. Energy efficiency in waste-to-energy and its relevance with regard to climate control.

    PubMed

    Ragossnig, Arne M; Wartha, Christian; Kirchner, Andreas

    2008-02-01

    This article focuses on systematically highlighting the ways to optimize waste-to-energy plants in terms of their energy efficiency as an indicator of the positive effect with regard to climate control. Potentials for increasing energy efficiency are identified and grouped into categories. The measures mentioned are illustrated by real-world examples. As an example, district cooling as a means for increasing energy efficiency in the district heating network of Vienna is described. Furthermore a scenario analysis shows the relevance of energy efficiency in waste management scenarios based on thermal treatment of waste with regard to climate control. The description is based on a model that comprises all relevant processes from the collection and transportation up to the thermal treatment of waste. The model has been applied for household-like commercial waste. The alternatives compared are a combined heat and power incinerator, which is being introduced in many places as an industrial utility boiler or in metropolitan areas where there is a demand for district heating and a classical municipal solid waste incinerator producing solely electrical power. For comparative purposes a direct landfilling scenario has been included in the scenario analysis. It is shown that the energy efficiency of thermal treatment facilities is crucial to the quantity of greenhouse gases emitted. PMID:18338703

  12. Energy efficiency at the University of Miami

    SciTech Connect

    Atherton, V.; Anzoategui, F.

    1996-07-01

    The University of Miami (UM) has embarked on a very important and worthwhile mission: ``To make UM one of the most energy efficient universities in the nation by the year 2000``. In order for the University to meet this goal the authors knew they would need to take advantage of all the available technologies and address the freon issues. In June 1990 the Coral Gables Campus had five chilled Water Production Plants, each representing small independent systems serving from four to ten buildings. Because of energy conservation measures of the past, each plant had excess capacity. At that time they also had identified about 600 tons of old falling-apart air conditioning equipment. The Capital Construction Program was beginning design efforts for a new Music Recital Hall and an addition to the Law Library. With all this considered it made sense to develop a common chilled water loop to connect these plants and provide a vehicle to capitalize on available capacity. In early 1991 Florida Power and Light offered a new CILC rate with criteria that the chilled water plants met. It allowed them to produce air conditioning at 5.8 cents a kWh, compared to 7.5 cents a kWh, at the buildings. This, added to the reality of not having to maintain or replace the old systems, made this the number 1 priority project. They were convinced that this could give them a competitive edge over other institutions because it insured that they could produce air conditioning at the least cost per square foot.

  13. How to buy energy-efficient distribution transformer

    SciTech Connect

    1998-07-01

    Section 161 of the Energy Policy Act of 1992 (EPACT) encourages energy-efficient federal procurement. Executive Order 12902 and FAR section 23.704 direct agencies to purchase products in the upper 25% of energy efficiency. Agencies that use these guidelines to buy efficient products can realize substantial operating cost savings and help prevent pollution. As the world`s largest consumer, the federal government can help pull the entire US market towards greater energy efficiency, while saving taxpayer dollars. The efficiency levels in this Recommendation are the same as those in NEMA`s TP-1 standard. Additionally, the EPA/DOE ENERGY STAR{reg_sign} program identifies efficient low-voltage distribution transformers with the ENERGY STAR{reg_sign} label. Complying models meet the same efficiency criteria specified in this Recommendation (and TP-1).

  14. States Address Air Pollution from Energy through Energy Efficiency and Renewable Energy Programs

    SciTech Connect

    Not Available

    2007-12-01

    This fact sheet highlights how renewable energy and energy efficiency technologies can and are being used to reduce air emissions and meet environmental goals, showcasing case studies and technology-specific topics.

  15. Energy Efficiency and Renewable Energy Network (EREN): Customer satisfaction survey

    SciTech Connect

    Anderson, A.V.; Henderson, D.P.

    1996-04-22

    The Energy Efficiency and Renewable Energy Network (EREN) Customer Satisfaction Survey was developed and executed in support of EREN`s continuous quality improvement (CQI) plan. The study was designed to provide information about the demographic make up of EREN users, the value or benefits they derive from EREN, the kinds and quality of services they want, their levels of satisfaction with existing services, their preferences in both the sources of service and the means of delivery, and to provide benchmark data for the establishment of continuous quality improvement measures. The survey was performed by soliciting voluntary participation from members of the EREN Users Group. It was executed in two phases; the first being conducted by phone using a randomly selected group; and the second being conducted electronically and which was open to all of the remaining members of the Users Group. The survey results are described.

  16. Energy Efficiency Improvement and Cost Saving Opportunities for the Glass Industry. An ENERGY STAR Guide for Energy and Plant Managers

    SciTech Connect

    Galitsky, Christina; Worrell, Ernst; Galitsky, Christina; Masanet, Eric; Graus, Wina

    2008-03-01

    The U.S. glass industry is comprised of four primary industry segments--flat glass, container glass, specialty glass, and fiberglass--which together consume $1.6 billion in energy annually. On average, energy costs in the U.S. glass industry account for around 14 percent of total glass production costs. Energy efficiency improvement is an important way to reduce these costs and to increase predictable earnings, especially in times of high energy price volatility. There is a variety of opportunities available at individual plants in the U.S. glass industry to reduce energy consumption in a cost-effective manner. This Energy Guide discusses energy efficiency practices and energy-efficient technologies that can be implemented at the component, process, system, and organizational levels. A discussion of the trends, structure, and energy consumption characteristics of the U.S. glass industry is provided along with a description of the major process steps in glass manufacturing. Expected savings in energy and energy-related costs are given for many energy efficiency measures, based on case study data from real-world applications in glass production facilities and related industries worldwide. Typical measure payback periods and references to further information in the technical literature are also provided, when available. The information in this Energy Guide is intended to help energy and plant managers in the U.S. glass industry reduce energy consumption in a cost-effective manner while maintaining the quality of products manufactured. Further research on the economics of the measures--as well on as their applicability to different production practices--is needed to assess potential implementation of selected technologies at individual plants.

  17. Energy efficient continuous flow ash lockhopper

    NASA Technical Reports Server (NTRS)

    Collins, Earl R., Jr. (Inventor); Suitor, Jerry W. (Inventor); Dubis, David (Inventor)

    1989-01-01

    The invention relates to an energy efficient continuous flow ash lockhopper, or other lockhopper for reactor product or byproduct. The invention includes an ash hopper at the outlet of a high temperature, high pressure reactor vessel containing heated high pressure gas, a fluidics control chamber having an input port connected to the ash hopper's output port and an output port connected to the input port of a pressure letdown means, and a control fluid supply for regulating the pressure in the control chamber to be equal to or greater than the internal gas pressure of the reactor vessel, whereby the reactor gas is contained while ash is permitted to continuously flow from the ash hopper's output port, impelled by gravity. The main novelty resides in the use of a control chamber to so control pressure under the lockhopper that gases will not exit from the reactor vessel, and to also regulate the ash flow rate. There is also novelty in the design of the ash lockhopper shown in two figures. The novelty there is the use of annular passages of progressively greater diameter, and rotating the center parts on a shaft, with the center part of each slightly offset from adjacent ones to better assure ash flow through the opening.

  18. Using the network to achieve energy efficiency

    SciTech Connect

    Giglio, M.

    1995-12-01

    Novell, the third largest software company in the world, has developed Netware Embedded Systems Technology (NEST). NEST will take the network deeper into non-traditional computing environments and will imbed networking into more intelligent devices. Ultimately, this will lead to energy efficiencies in the office. NEST can make point-of-sale terminals, alarm systems, televisions, traffic controls, printers, lights, fax machines, copiers, HVAC controls, PBX machines, etc., either intelligent or more intelligent than they are currently. The mission statement for this particular group is to integrate over 30 million new intelligent devices into the workplace and the home with Novell networks by 1997. Computing trends have progressed from mainframes in the 1960s to keys, security systems, and airplanes in the year 2000. In fact, the new Boeing 777 has NEST in it, and it also has network servers on board. NEST enables the embedded network with the ability to put intelligence into devices. This gives one more control of the devices from wherever one is. For example, the pharmaceutical industry could use NEST to coordinate what the consumer is buying, what is in the warehouse, what the manufacturing plant is tooled for, and so on. Through NEST technology, the pharmaceutical industry now uses a camera that takes pictures of the pills. It can see whether an {open_quotes}overdose{close_quotes} or {open_quotes}underdose{close_quotes} of a particular type of pill is being manufactured. The plant can be shut down and corrections made immediately.

  19. Energy-Efficient Context Classification With Dynamic Sensor Control

    PubMed Central

    Au, Lawrence K.; Bui, Alex A. T.; Batalin, Maxim A.; Kaiser, William J.

    2016-01-01

    Energy efficiency has been a longstanding design challenge for wearable sensor systems. It is especially crucial in continuous subject state monitoring due to the ongoing need for compact sizes and better sensors. This paper presents an energy-efficient classification algorithm, based on partially observable Markov decision process (POMDP). In every time step, POMDP dynamically selects sensors for classification via a sensor selection policy. The sensor selection problem is formalized as an optimization problem, where the objective is to minimize misclassification cost given some energy budget. State transitions are modeled as a hidden Markov model (HMM), and the corresponding sensor selection policy is represented using a finite-state controller (FSC). To evaluate this framework, sensor data were collected from multiple subjects in their free-living conditions. Relative accuracies and energy reductions from the proposed method are compared against naïve Bayes (always-on) and simple random strategies to validate the relative performance of the algorithm. When the objective is to maintain the same classification accuracy, significant energy reduction is achieved. PMID:23852981

  20. Off-peak electric energy for poultry feed processing

    SciTech Connect

    Tyson, E.J.

    1987-01-01

    Off-peak electric energy can be used for poultry feed processing, achieving substantial reduction in electric energy cost. In addition, high efficiency equipment and conservation measures add to energy cost savings. Careful planning and evaluation of time-of-use rates can maximize the savings for each type of enterprise.

  1. High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends

    NASA Astrophysics Data System (ADS)

    Li, Gang; Shrotriya, Vishal; Huang, Jinsong; Yao, Yan; Moriarty, Tom; Emery, Keith; Yang, Yang

    2005-11-01

    Converting solar energy into electricity provides a much-needed solution to the energy crisis the world is facing today. Polymer solar cells have shown potential to harness solar energy in a cost-effective way. Significant efforts are underway to improve their efficiency to the level of practical applications. Here, we report highly efficient polymer solar cells based on a bulk heterojunction of polymer poly(3-hexylthiophene) and methanofullerene. Controlling the active layer growth rate results in an increased hole mobility and balanced charge transport. Together with increased absorption in the active layer, this results in much-improved device performance, particularly in external quantum efficiency. The power-conversion efficiency of 4.4% achieved here is the highest published so far for polymer-based solar cells. The solution process involved ensures that the fabrication cost remains low and the processing is simple. The high efficiency achieved in this work brings these devices one step closer to commercialization.

  2. Consistent analytic approach to the efficiency of collisional Penrose process

    NASA Astrophysics Data System (ADS)

    Harada, Tomohiro; Ogasawara, Kota; Miyamoto, Umpei

    2016-07-01

    We propose a consistent analytic approach to the efficiency of collisional Penrose process in the vicinity of a maximally rotating Kerr black hole. We focus on a collision with arbitrarily high center-of-mass energy, which occurs if either of the colliding particles has its angular momentum fine-tuned to the critical value to enter the horizon. We show that if the fine-tuned particle is ingoing on the collision, the upper limit of the efficiency is (2 +√{3 })(2 -√{2 })≃2.186 , while if the fine-tuned particle is bounced back before the collision, the upper limit is (2 +√{3 })2≃13.93 . Despite earlier claims, the former can be attained for inverse Compton scattering if the fine-tuned particle is massive and starts at rest at infinity, while the latter can be attained for various particle reactions, such as inverse Compton scattering and pair annihilation, if the fine-tuned particle is either massless or highly relativistic at infinity. We discuss the difference between the present and earlier analyses.

  3. Updated estimation of energy efficiencies of U.S. petroleum refineries.

    SciTech Connect

    Palou-Rivera, I.; Wang, M. Q.

    2010-12-08

    Evaluation of life-cycle (or well-to-wheels, WTW) energy and emission impacts of vehicle/fuel systems requires energy use (or energy efficiencies) of energy processing or conversion activities. In most such studies, petroleum fuels are included. Thus, determination of energy efficiencies of petroleum refineries becomes a necessary step for life-cycle analyses of vehicle/fuel systems. Petroleum refinery energy efficiencies can then be used to determine the total amount of process energy use for refinery operation. Furthermore, since refineries produce multiple products, allocation of energy use and emissions associated with petroleum refineries to various petroleum products is needed for WTW analysis of individual fuels such as gasoline and diesel. In particular, GREET, the life-cycle model developed at Argonne National Laboratory with DOE sponsorship, compares energy use and emissions of various transportation fuels including gasoline and diesel. Energy use in petroleum refineries is key components of well-to-pump (WTP) energy use and emissions of gasoline and diesel. In GREET, petroleum refinery overall energy efficiencies are used to determine petroleum product specific energy efficiencies. Argonne has developed petroleum refining efficiencies from LP simulations of petroleum refineries and EIA survey data of petroleum refineries up to 2006 (see Wang, 2008). This memo documents Argonne's most recent update of petroleum refining efficiencies.

  4. Energy efficient industrialized housing research program

    SciTech Connect

    Berg, R.; Brown, G.Z.; Finrow, J.; Kellett, R.; McDonald, M.; McGinn, B.; Ryan, P.; Sekiguchi, Tomoko . Center for Housing Innovation); Chandra, S.; Elshennawy, A.K.; Fairey, P.; Harrison, J.; Mazwell, L.; Roland, J.; Swart, W. )

    1989-12-01

    This document describes the research work completed in five areas in fiscal year 1989. (1) The analysis of the US industrialized housing industry includes statistics, definitions, a case study, and a code analysis. (2) The assessment of foreign technology reviews the current status of design, manufacturing, marketing, and installation of industrialized housing primarily in Sweden and Japan. (3) Assessment of industrialization applications reviews housing production by climate zone, has a cost and energy comparison of Swedish and US housing, and discusses future manufacturing processes and emerging components. (4) The state of computer use in the industry is described and a prototype design tool is discussed. (5) Side by side testing of industrialized housing systems is discussed.

  5. Efficient exploration of discrete energy landscapes

    NASA Astrophysics Data System (ADS)

    Mann, Martin; Klemm, Konstantin

    2011-01-01

    Many physical and chemical processes, such as folding of biopolymers, are best described as dynamics on large combinatorial energy landscapes. A concise approximate description of the dynamics is obtained by partitioning the microstates of the landscape into macrostates. Since most landscapes of interest are not tractable analytically, the probabilities of transitions between macrostates need to be extracted numerically from the microscopic ones, typically by full enumeration of the state space or approximations using the Arrhenius law. Here, we propose to approximate transition probabilities by a Markov chain Monte Carlo method. For landscapes of the number partitioning problem and an RNA switch molecule, we show that the method allows for accurate probability estimates with significantly reduced computational cost.

  6. Superconductor digital electronics: Scalability and energy efficiency issues (Review Article)

    NASA Astrophysics Data System (ADS)

    Tolpygo, Sergey K.

    2016-05-01

    Superconductor digital electronics using Josephson junctions as ultrafast switches and magnetic-flux encoding of information was proposed over 30 years ago as a sub-terahertz clock frequency alternative to semiconductor electronics based on complementary metal-oxide-semiconductor (CMOS) transistors. Recently, interest in developing superconductor electronics has been renewed due to a search for energy saving solutions in applications related to high-performance computing. The current state of superconductor electronics and fabrication processes are reviewed in order to evaluate whether this electronics is scalable to a very large scale integration (VLSI) required to achieve computation complexities comparable to CMOS processors. A fully planarized process at MIT Lincoln Laboratory, perhaps the most advanced process developed so far for superconductor electronics, is used as an example. The process has nine superconducting layers: eight Nb wiring layers with the minimum feature size of 350 nm, and a thin superconducting layer for making compact high-kinetic-inductance bias inductors. All circuit layers are fully planarized using chemical mechanical planarization (CMP) of SiO2 interlayer dielectric. The physical limitations imposed on the circuit density by Josephson junctions, circuit inductors, shunt and bias resistors, etc., are discussed. Energy dissipation in superconducting circuits is also reviewed in order to estimate whether this technology, which requires cryogenic refrigeration, can be energy efficient. Fabrication process development required for increasing the density of superconductor digital circuits by a factor of ten and achieving densities above 107 Josephson junctions per cm2 is described.

  7. High-efficiency integrated piezoelectric energy harvesting systems

    NASA Astrophysics Data System (ADS)

    Hande, Abhiman; Shah, Pradeep

    2010-04-01

    This paper describes hierarchically architectured development of an energy harvesting (EH) system that consists of micro and/or macro-scale harvesters matched to multiple components of remote wireless sensor and communication nodes. The micro-scale harvesters consist of thin-film MEMS piezoelectric cantilever arrays and power generation modules in IC-like form to allow efficient EH from vibrations. The design uses new high conversion efficiency thin-film processes combined with novel cantilever structures tuned to multiple resonant frequencies as broadband arrays. The macro-scale harvesters are used to power the collector nodes that have higher power specifications. These bulk harvesters can be integrated with efficient adaptive power management circuits that match transducer impedance and maximize power harvested from multiple scavenging sources with very low intrinsic power consumption. Texas MicroPower, Inc. is developing process based on a composition that has the highest reported energy density as compared to other commercially available bulk PZT-based sensor/actuator ceramic materials and extending it to thin-film materials and miniature conversion transducer structures. The multiform factor harvesters can be deployed for several military and commercial applications such as underground unattended sensors, sensors in oil rigs, structural health monitoring, supply chain management, and battlefield applications such as sensors on soldier apparel, equipment, and wearable electronics.

  8. Analyzing Business Process Efficiency by Combining Business Process Simulation with Data Envelopment Analysis

    NASA Astrophysics Data System (ADS)

    Dohmen, Anne; Leyer, Michael

    2010-10-01

    A well grounded understanding of process efficiency is essential for the sustainable success of organizations. This paper presents a novel method for analyzing the efficiency of business processes. It combines Data Envelopment Analysis (DEA) and Business Process Simulation (BPS) on process level. DEA is used to measure the efficiency of a process while BPS analyzes potential changes leading to a better efficiency. The combination of DEA and BPS is a promising approach for analyzing the structure of process (in-)efficiency. The methodology is presented by a numerical example dealing with a loan application process. The results show that it is a powerful methodology to assess process efficiency improvements. However, it is limited by the general disadvantages of a DEA and the assumptions required for conducting a business process simulation.

  9. Energy level control: toward an efficient hot electron transport

    PubMed Central

    Jin, Xiao; Li, Qinghua; Li, Yue; Chen, Zihan; Wei, Tai-Huei; He, Xingdao; Sun, Weifu

    2014-01-01

    Highly efficient hot electron transport represents one of the most important properties required for applications in photovoltaic devices. Whereas the fabrication of efficient hot electron capture and lost-cost devices remains a technological challenge, regulating the energy level of acceptor-donor system through the incorporation of foreign ions using the solution-processed technique is one of the most promising strategies to overcome this obstacle. Here we present a versatile acceptor-donor system by incorporating MoO3:Eu nanophosphors, which reduces both the ‘excess' energy offset between the conduction band of acceptor and the lowest unoccupied molecular orbital of donor, and that between the valence band and highest occupied molecular orbital. Strikingly, the hot electron transfer time has been shortened. This work demonstrates that suitable energy level alignment can be tuned to gain the higher hot electron/hole transport efficiency in a simple approach without the need for complicated architectures. This work builds up the foundation of engineering building blocks for third-generation solar cells. PMID:25099864

  10. High Performance Healthcare Buildings: A Roadmap to Improved Energy Efficiency

    SciTech Connect

    Singer, Brett C.; Tschudi, William F.

    2009-09-08

    This document presents a road map for improving the energy efficiency of hospitals and other healthcare facilities. The report compiles input from a broad array of experts in healthcare facility design and operations. The initial section lists challenges and barriers to efficiency improvements in healthcare. Opportunities are organized around the following ten themes: understanding and benchmarking energy use; best practices and training; codes and standards; improved utilization of existing HVAC designs and technology; innovation in HVAC design and technology; electrical system design; lighting; medical equipment and process loads; economic and organizational issues; and the design of next generation sustainable hospitals. Achieving energy efficiency will require a broad set of activities including research, development, deployment, demonstration, training, etc., organized around 48 specific objectives. Specific activities are prioritized in consideration of potential impact, likelihood of near- or mid-term feasibility and anticipated cost-effectiveness. This document is intended to be broad in consideration though not exhaustive. Opportunities and needs are identified and described with the goal of focusing efforts and resources.

  11. HVAC & Building Management Control System Energy Efficiency Replacements

    SciTech Connect

    Hernandez, Adriana

    2012-09-21

    The project objective was the replacement of an aging, un-repairable HVAC system which has grown inefficient and a huge energy consumer with low energy and efficient HVAC units, and installation of energy efficient building control technologies at City's YMCA Community Center.

  12. An energy efficiency guide for use in cleanroom programming

    SciTech Connect

    Tschudi, Bill; Xu, Tengfang; Sartor, Dale

    2001-12-07

    This guide was developed to provide ideas for considering energy efficiency in the early stages of a cleanroom design project. Use of this guide will facilitate selection of design features that will improve energy efficiency in cleanrooms. Cleanroom owners and designers can use the guide to focus on energy intensive items in the design of a cleanroom facility.

  13. State Policy Initiatives for Financing Energy Efficiency in Public Buildings.

    ERIC Educational Resources Information Center

    Business Officer, 1984

    1984-01-01

    Alternative financing methods (other than state financing) for developing cost-effective energy efficiency projects are discussed. It is suggested that by properly financing energy efficiency investments, state campuses can generate immediate positive cash savings. The following eight initiatives for maximizing energy savings potential are…

  14. 2011 Residential Energy Efficiency Technical Update Meeting Summary Report

    SciTech Connect

    none,

    2011-11-01

    This report provides an overview of the U.S. Department of Energy Building America program's Summer 2011 Residential Energy Efficiency Technical Update Meeting. This meeting was held on August 9-11, 2011, in Denver, Colorado, and brought together more than 290 professionals representing organizations with a vested interest in energy efficiency improvements in residential buildings.

  15. Shared Savings Financing for College and University Energy Efficiency Investments.

    ERIC Educational Resources Information Center

    Business Officer, 1984

    1984-01-01

    Shared savings arrangements for campus energy efficient investments are discussed. Shared savings is a term for an agreement in which a private company offers to implement an energy efficiency program, including capital improvements, in exchange for a portion of the energy cost savings. Attention is directed to: types of shared savings…

  16. 77 FR 54777 - Accelerating Investment in Industrial Energy Efficiency

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-05

    ... ] Executive Order 13624 of August 30, 2012 Accelerating Investment in Industrial Energy Efficiency By the... order to promote American manufacturing by helping to facilitate investments in energy efficiency at... authorities to overcome these barriers, and our efforts to support investment in industrial energy...

  17. Improving hospital efficiency: a process model of organizational change commitments.

    PubMed

    Nigam, Amit; Huising, Ruthanne; Golden, Brian R

    2014-02-01

    Improving hospital efficiency is a critical goal for managers and policy makers. We draw on participant observation of the perioperative coaching program in seven Ontario hospitals to develop knowledge of the process by which the content of change initiatives to increase hospital efficiency is defined. The coaching program was a change initiative involving the use of external facilitators with the goal of increasing perioperative efficiency. Focusing on the role of subjective understandings in shaping initiatives to improve efficiency, we show that physicians, nurses, administrators, and external facilitators all have differing frames of the problems that limit efficiency, and propose different changes that could enhance efficiency. Dynamics of strategic and contested framing ultimately shaped hospital change commitments. We build on work identifying factors that enhance the success of change efforts to improve hospital efficiency, highlighting the importance of subjective understandings and the politics of meaning-making in defining what hospitals change. PMID:24132582

  18. Design Process of an Area-Efficient Photobioreactor

    PubMed Central

    Janssen, Marcel; Tramper, Johannes; Wijffels, René H.

    2008-01-01

    This article describes the design process of the Green Solar Collector (GSC), an area-efficient photobioreactor for the outdoor cultivation of microalgae. The overall goal has been to design a system in which all incident sunlight on the area covered by the reactor is delivered to the algae at such intensities that the light energy can be efficiently used for biomass formation. A statement of goals is formulated and constraints are specified to which the GSC needs to comply. Specifications are generated for a prototype which form and function achieve the stated goals and satisfy the specified constraints. This results in a design in which sunlight is captured into vertical plastic light guides. Sunlight reflects internally in the guide and eventually scatters out of the light guide into flat-panel photobioreactor compartments. Sunlight is focused on top of the light guides by dual-axis positioning of linear Fresnel lenses. The shape and material of the light guide is such that light is maintained in the guides when surrounded by air. The bottom part of a light guide is sandblasted to obtain a more uniform distribution of light inside the bioreactor compartment and is triangular shaped to ensure the efflux of all light out of the guide. Dimensions of the guide are such that light enters the flat-panel photobioreactor compartment at intensities that can be efficiently used by the biomass present. The integration of light capturing, transportation, distribution and usage is such that high biomass productivities per area can be achieved. PMID:18266033

  19. Design process of an area-efficient photobioreactor.

    PubMed

    Zijffers, Jan-Willem F; Janssen, Marcel; Tramper, Johannes; Wijffels, René H

    2008-01-01

    This article describes the design process of the Green Solar Collector (GSC), an area-efficient photobioreactor for the outdoor cultivation of microalgae. The overall goal has been to design a system in which all incident sunlight on the area covered by the reactor is delivered to the algae at such intensities that the light energy can be efficiently used for biomass formation. A statement of goals is formulated and constraints are specified to which the GSC needs to comply. Specifications are generated for a prototype which form and function achieve the stated goals and satisfy the specified constraints. This results in a design in which sunlight is captured into vertical plastic light guides. Sunlight reflects internally in the guide and eventually scatters out of the light guide into flat-panel photobioreactor compartments. Sunlight is focused on top of the light guides by dual-axis positioning of linear Fresnel lenses. The shape and material of the light guide is such that light is maintained in the guides when surrounded by air. The bottom part of a light guide is sandblasted to obtain a more uniform distribution of light inside the bioreactor compartment and is triangular shaped to ensure the efflux of all light out of the guide. Dimensions of the guide are such that light enters the flat-panel photobioreactor compartment at intensities that can be efficiently used by the biomass present. The integration of light capturing, transportation, distribution and usage is such that high biomass productivities per area can be achieved. PMID:18266033

  20. 77 FR 43807 - Renewable Energy and Energy Efficiency Advisory Committee; Extended Deadline for Solicitation of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-26

    ... Energy Efficiency Advisory Committee can be found in Federal Register of June 26, 2012, 77 FR 38040... International Trade Administration Renewable Energy and Energy Efficiency Advisory Committee; Extended Deadline... which it will accept nominations to serve on the Renewable Energy and Energy Efficiency...

  1. 10 CFR 429.70 - Alternative methods for determining energy efficiency or energy use.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 3 2012-01-01 2012-01-01 false Alternative methods for determining energy efficiency or....70 Alternative methods for determining energy efficiency or energy use. (a) General. A manufacturer... determined the energy efficiency of the basic model, either from testing the basic model or from applying...

  2. 48 CFR 52.223-15 - Energy Efficiency in Energy-Consuming Products.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 2 2010-10-01 2010-10-01 false Energy Efficiency in... Provisions and Clauses 52.223-15 Energy Efficiency in Energy-Consuming Products. As prescribed in 23.206, insert the following clause: Energy Efficiency in Energy-Consuming Products (DEC 2007) (a) Definition....

  3. 10 CFR 429.70 - Alternative methods for determining energy efficiency or energy use.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 3 2014-01-01 2014-01-01 false Alternative methods for determining energy efficiency or....70 Alternative methods for determining energy efficiency or energy use. Link to an amendment... such equipment in commerce unless the manufacturer has determined the energy efficiency of the...

  4. 48 CFR 52.223-15 - Energy Efficiency in Energy-Consuming Products.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 48 Federal Acquisition Regulations System 2 2012-10-01 2012-10-01 false Energy Efficiency in... Provisions and Clauses 52.223-15 Energy Efficiency in Energy-Consuming Products. As prescribed in 23.206, insert the following clause: Energy Efficiency in Energy-Consuming Products (DEC 2007) (a) Definition....

  5. 78 FR 54197 - Energy Efficiency Program for Commercial and Industrial Equipment: Energy Conservation Standards...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-03

    ...; ] DEPARTMENT OF ENERGY 10 CFR Part 431 RIN 1904-AD01 Energy Efficiency Program for Commercial and Industrial Equipment: Energy Conservation Standards for Commercial Packaged Boilers AGENCY: Office of Energy Efficiency... Efficiency and Renewable Energy, Building Technologies Office, EE-2J, 1000 Independence Avenue...

  6. 48 CFR 52.223-15 - Energy Efficiency in Energy-Consuming Products.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 48 Federal Acquisition Regulations System 2 2013-10-01 2013-10-01 false Energy Efficiency in... Provisions and Clauses 52.223-15 Energy Efficiency in Energy-Consuming Products. As prescribed in 23.206, insert the following clause: Energy Efficiency in Energy-Consuming Products (DEC 2007) (a) Definition....

  7. 10 CFR 429.70 - Alternative methods for determining energy efficiency or energy use.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 3 2013-01-01 2013-01-01 false Alternative methods for determining energy efficiency or....70 Alternative methods for determining energy efficiency or energy use. (a) General. A manufacturer... determined the energy efficiency of the basic model, either from testing the basic model or from applying...

  8. 48 CFR 52.223-15 - Energy Efficiency in Energy-Consuming Products.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 48 Federal Acquisition Regulations System 2 2011-10-01 2011-10-01 false Energy Efficiency in... Provisions and Clauses 52.223-15 Energy Efficiency in Energy-Consuming Products. As prescribed in 23.206, insert the following clause: Energy Efficiency in Energy-Consuming Products (DEC 2007) (a) Definition....

  9. Energy Efficiency Opportunities in Highway Lodging Buildings: Development of 50% Energy Savings Design Technology Packages

    SciTech Connect

    Jiang, Wei; Gowri, Krishnan; Thornton, Brian A.; Liu, Bing

    2010-06-30

    This paper presents the process, methodology, and assumptions for development of the 50% Energy Savings Design Technology Packages for Highway Lodging Buildings, a design guidance document that provides specific recommendations for achieving 50% energy savings in roadside motels (highway lodging) above the requirements of ANSI/ASHRAE/IESNA Standard 90.1-2004. This 50% solution represents a further step toward realization of the U.S. Department of Energy’s net-zero energy building goal, and go beyond the 30% savings in the Advanced Energy Design Guide series (upon which this work was built). This work can serve as the technical feasibility study for the development of a 50% saving Advanced Energy Design Guide for highway lodging, and thus should greatly expedite the development process. The purpose of this design package is to provide user-friendly design assistance to designers, developers, and owners of highway lodging properties. It is intended to encourage energy-efficient design by providing prescriptive energy-efficiency recommendations for each climate zone that attains the 50% the energy savings target. This paper describes the steps that were taken to demonstrate the technical feasibility of achieving a 50% reduction in whole-building energy use with practical and commercially available technologies. The energy analysis results are presented, indicating the recommended energy-efficient measures achieved a national-weighted average energy savings of 55%, relative to Standard 90.1-2004. The cost-effectiveness of the recommended technology package is evaluated and the result shows an average simple payback of 11.3 years.

  10. Efficiency and Effectiveness of a Resident Assistant Selection Process.

    ERIC Educational Resources Information Center

    Broitman, Thomas

    The American phenomenon of "more is better" extends a value-loaded concept implicit in budget preparation. At any university, the scope, magnitude and cost of a residence hall assistant program selection process is a metaphor to illustrate efficiency and effectiveness of human resources. In order to discover a more efficient and effective…

  11. 75 FR 31323 - Energy Efficiency Program: Energy Conservation Standards Furnace Fans: Public Meeting and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-03

    ...; ] DEPARTMENT OF ENERGY 10 CFR Part 430 RIN 1904-AC22 Energy Efficiency Program: Energy Conservation Standards... Efficiency and Renewable Energy, Department of Energy. ACTION: Notice of public meeting and availability of... FURTHER INFORMATION CONTACT: Mr. Mohammed Khan, U.S. Department of Energy, Office of Energy......

  12. 75 FR 32177 - Energy Efficiency Program for Consumer Products: Commonwealth of Massachusetts Petition for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-07

    ... of Energy Efficiency and Renewable Energy Energy Efficiency Program for Consumer Products... Efficiency Standard for Residential Non- Weatherized Gas Furnaces AGENCY: Office of Energy Efficiency and... Commonwealth of Massachusetts seeking an exemption from Federal preemption of certain energy...

  13. Fragmentation efficiencies of peptide ions following low energy collisional activation

    NASA Astrophysics Data System (ADS)

    Summerfield, Scott G.; Gaskell, Simon J.

    1997-11-01

    Low energy fragmentations of protonated peptides in the gas phase are generally attributed to charge-directed processes. The extent and location of peptide backbone fragmentation is accordingly influenced by the extent to which charge is sequestered on amino acid side-chains. We describe systematic studies of the efficiencies of decomposition of peptide ions to assess in particular the influence of the presence of basic amino acid residues and of the protonation state. In a set of analogues containing two arginine, two histidine or two lysine residues, the extent of fragmentation of [M + 2H]2+ ions decreases with increased basicity, reflecting decreased backbone protonation. The collisionally activated dissociation of multiply protonated melittin ions shows an increase in fragmentation efficiency with higher charge state (using activation conditions which are similar for each charge state). For a single charge state, acetylation of primary amine groups increases fragmentation efficiency, consistent with the reduction in basicity of lysine side-chains. Conversion of arginine residues to the less basic dimethylpyrimidylornithine, however, decreases fragmentation efficiency, suggesting more effective sequestering of ionizing protons; the effect may be attributable to a disfavouring of proton-bridged structures but this hypothesis requires further study. Preliminary data for the decompositions of [M- 2H]2- ions derived from peptides containing two acidic residues suggest that the sequestration of charge away from the backbone is again detrimental to efficient fragmentation. Apparently diagnostic cleavages adjacent to aspartic acid residues are observed.

  14. Energy Efficient Electrochromic Windows Incorporating Ionic Liquids

    SciTech Connect

    Cheri Boykin; James Finley; Donald Anthony; Julianna Knowles; Richard Markovic; Michael Buchanan; Mary Ann Fuhry; Lisa Perrine

    2008-11-30

    One approach to increasing the energy efficiency of windows is to control the amount of solar radiation transmitted through a window by using electrochromic technology. What is unique about this project is that the electrochromic is based on the reduction/oxidation reactions of cathodic and anodic organic semi-conducting polymers using room temperature ionic liquids as ion transport electrolytes. It is believed that these types of coatings would be a lower cost alternative to traditional all inorganic thin film based electrochromic technologies. Although there are patents1 based on the proposed technology, it has never been reduced to practice and thoroughly evaluated (i.e. durability and performance) in a window application. We demonstrate that by using organic semi-conductive polymers, specific bands of the solar spectrum (specifically visible and near infrared) can be targeted for electrochemical variable transmittance responsiveness. In addition, when the technology is incorporated into an insulating glass unit, the energy parameters such as the solar heat gain coefficient and the light to solar gain ratio are improved over that of a typical insulating glass unit comprised of glass with a low emissivity coating. A minimum of {approx}0.02 quads of energy savings per year with a reduction of carbon emissions for electricity of {approx}320 MKg/yr benefit is achieved over that of a typical insulating glass unit including a double silver low-E coating. Note that these values include a penalty in the heating season. If this penalty is removed (i.e. in southern climates or commercial structures where cooling is predominate year-round) a maximum energy savings of {approx}0.05 quad per year and {approx}801 MKg/yr can be achieved over that of a typical insulating glass unit including a double silver low-E coating. In its current state, the technology is not durable enough for an exterior window application. The primary downfall is that the redox chemistry fails to

  15. Efficient separations and processing crosscutting program: Develop and test sorbents

    SciTech Connect

    Bray, L.A.

    1995-09-01

    This report summarizes work performed during FY 1995 under the task {open_quotes}Develop and Test Sorbents,{close_quotes} the purpose of which is to develop high-capacity, selective solid extractants to recover cesium, strontium, and technetium from nuclear wastes. This work is being done for the Efficient Separations and Processing Crosscutting Program (ESP), operated by the U.S. Department of Energy`s Office of Environmental Management`s Office of Technology Development. The task is under the direction of staff at Pacific Northwest Laboratory (PNL) with key participation from industrial and university staff at 3M, St. Paul, Minnesota; IBC Advanced Technologies, Inc., American Forks, Utah; AlliedSignal, Inc., Des Plaines, Illinois, and Texas A&M University, College Station, Texas. 3M and IBC are responsible for ligand and membrane technology development; AlliedSignal and Texas A&M are developing sodium titanate powders; and PNL is testing the materials developed by the industry/university team members. Major accomplishments for FY 1995 are summarized in this report.

  16. Toward efficient aeroelastic energy harvesting through limit cycle shaping

    NASA Astrophysics Data System (ADS)

    Kirschmeier, Benjamin; Bryant, Matthew

    2016-04-01

    Increasing demand to harvest energy from renewable resources has caused significant research interest in unsteady aerodynamic and hydrodynamic phenomena. Apart from the traditional horizontal axis wind turbines, there has been significant growth in the study of bio-inspired oscillating wings for energy harvesting. These systems are being built to harvest electricity for wireless devices, as well as for large scale mega-watt power generation. Such systems can be driven by aeroelastic flutter phenomena which, beyond a critical wind speed, will cause the system to enter into limitcycle oscillations. When the airfoil enters large amplitude, high frequency motion, leading and trailing edge vortices form and, when properly synchronized with the airfoil kinematics, enhance the energy extraction efficiency of the device. A reduced order dynamic stall model is employed on a nonlinear aeroelastic structural model to investigate whether the parameters of a fully passive aeroelastic device can be tuned to produce limit cycle oscillations at desired kinematics. This process is done through an optimization technique to find the necessary structural parameters to achieve desired structural forces and moments corresponding to a target limit cycle. Structural nonlinearities are explored to determine the essential nonlinearities such that the system's limit cycle closely matches the desired kinematic trajectory. The results from this process demonstrate that it is possible to tune system parameters such that a desired limit cycle trajectory can be achieved. The simulations also demonstrate that the high efficiencies predicted by previous computational aerodynamics studies can be achieved in fully passive aeroelastic devices.

  17. CRADA final report: Technical assessment of roll-to-roll operation of lamination process, thermal treatment, and alternative carbon fiber precursors for low-cost, high-efficiency manufacturing of flow battery stacks and other energy devices

    SciTech Connect

    Daniel, Claus; Madden, Thomas; Wood, III, David L; Muth, Thomas R.; Warrington, Curtis; Ozcan, Soydan; Manson, Hunter; Tekinalp, Halil L.; Smith, Mark A.; Lu, Yuan; Loretz, Jeremy

    2015-09-23

    Among the various stationary-storage technologies under development, redox flow batteries (RFBs) offer the greatest potential to deliver inexpensive, scalable, and efficient grid-scale electrical-energy storage. Unlike traditional sealed batteries, in a flow battery power and energy are decoupled. Cell area and cell count in the stack determine the device power, and the chemical storage volume determines the total energy. Grid-scale energy-storage applications require megawatt-scale devices, which require the assembly of hundreds of large-area, bipolar cells per power plant. The cell-stack is the single system component with the largest impact on capital cost (due to the large number of highly engineered components) and operating costs (determined by overall round-trip efficiency).

  18. High Efficiency, Ultra-Low Emission, Integrated Process Heater System

    SciTech Connect

    Mason, Howard; Boral, Anindya; Chhotray, San; Martin, Matthew

    2006-06-19

    The team of TIAX LLC, ExxonMobil Research and Engineering Company, and Callidus Technologies, LLC conducted a six-year program to develop an ultra-low emission process heater burner and an advanced high efficiency heater design. This project addresses the critical need of process heater operators for reliable, economical emission reduction technologies to comply with stringent emission regulations, and for heater design alternatives that reduce process heater energy requirements without significant cost increase. The key project targets were NOx emissions of 10 ppm (@ 3% O2), and a heater thermal efficiency of 95 percent. The ultra low NOx burner was developed through a series of pilot-scale and field tests combined with computational fluid dynamic modeling to arrive at simultaneous low emissions and suitable flame shape and stability. Pilot scale tests were run at TIAX, at the 2 MMBtu/hr scale, and at Callidus at 8 MMBtu/hr. The full scale burner was installed on a 14 burner atmospheric pipestill furnace at an ExxonMobil refinery. A variety of burner configurations, gas tips and flame stabilizers were tested to determine the lowest emissions with acceptable flame shape and stability. The resulting NOx emissions were 22 ppm on average. Starting in 2001, Callidus commercialized the original ultra low NOx burner and made subsequent design improvements in a series of commercial burners evolving from the original concept and/or development. Emissions in the field with the ultra low-NOx burner over a broad spectrum of heater applications have varied from 5 ppm to 30 ppm depending on heater geometry, heater service, fuel and firing capacity. To date, 1550 of the original burners, and 2500 of subsequent generation burners have been sold by Callidus. The advanced heater design was developed by parametric evaluations of a variety of furnace and combustion air preheater configurations and technologies for enhancing convective and radiative heat transfer. The design evolution

  19. A high-efficiency energy conversion system

    SciTech Connect

    Belcher, A.E.

    1996-12-31

    A fundamentally new method for converting pressure into rotative motion is introduced. A historical background is given and an idealized non-turbine Brayton cycle engine and associated equations are described. Salient features are explained, together with suggested applications. Concerns over global warming, unacceptable levels of air pollution, and the need for more efficient utilization of nonrenewable energy resources, are issues which continue to plague us. The situation is further exacerbated by the possibility that underdeveloped countries, under pressure to expand their economies, might adopt power generating systems which could produce high levels of emissions. This scenario could easily develop if equipment, which once complied with stringent standards, failed to be adequately maintained through the absence of a reliable technical infrastructure. The Brayton cycle manometric engine has the potential for eliminating, or at least mitigating, many of the above issues. It is therefore of considerable importance to all populations, irrespective of demographic or economic considerations. This engine is inherently simple--the engine proper has only one moving part. It has no pistons, vanes, or other such conventional occlusive devices, yet it is a positive displacement machine. Sealing is achieved by what can best be described as a series of traveling U-tube manometers. Its construction does not require precision engineering nor the use of exotic materials, making it easy to maintain with the most rudimentary resources. Rotational velocity is low, and its normal life cycle is expected to extend to several decades. These advantages more than offset the machine`s large size. It is suited only to large and medium-scale stationary applications.

  20. Energy Efficient Glass Melting - The Next Generation Melter

    SciTech Connect

    David Rue

    2008-03-01

    The objective of this project is to demonstrate a high intensity glass melter, based on the submerged combustion melting technology. This melter will serve as the melting and homogenization section of a segmented, lower-capital cost, energy-efficient Next Generation Glass Melting System (NGMS). After this project, the melter will be ready to move toward commercial trials for some glasses needing little refining (fiberglass, etc.). For other glasses, a second project Phase or glass industry research is anticipated to develop the fining stage of the NGMS process.

  1. Thinking Globally: How ISO 50001 - Energy Management can make industrial energy efficiency standard practice

    SciTech Connect

    McKane, Aimee; Desai, Deann; Matteini, Marco; Meffert, William; Williams, Robert; Risser, Roland

    2009-08-01

    Industry utilizes very complex systems, consisting of equipment and their human interface, which are organized to meet the production needs of the business. Effective and sustainable energy efficiency programs in an industrial setting require a systems approach to optimize the integrated whole while meeting primary business requirements. Companies that treat energy as a manageable resource and integrate their energy program into their management practices have an organizational context to continually seek opportunities for optimizing their energy use. The purpose of an energy management system standard is to provide guidance for industrial and commercial facilities to integrate energy efficiency into their management practices, including fine-tuning production processes and improving the energy efficiency of industrial systems. The International Organization for Standardization (ISO) has identified energy management as one of its top five priorities for standards development. The new ISO 50001 will establish an international framework for industrial, commercial, or institutional facilities, or entire companies, to manage their energy, including procurement and use. This standard is expected to achieve major, long-term increases in energy efficiency (20percent or more) in industrial, commercial, and institutional facilities and to reduce greenhouse gas (GHG) emissions worldwide.This paper describes the impetus for the international standard, its purpose, scope and significance, and development progress to date. A comparative overview of existing energy management standards is provided, as well as a discussion of capacity-building needs for skilled individuals to assist organizations in adopting the standard. Finally, opportunities and challenges are presented for implementing ISO 50001 in emerging economies and developing countries.

  2. Tools for efficient design of multicomponent separation processes

    NASA Astrophysics Data System (ADS)

    Huff, Joshua Lee

    Separations account for as much as 85% of plant operating costs in chemical production; it is therefore important that they be designed with energy efficiency in mind. This can only be achieved if two things are achieved: the complete space of design options is known, and an accurate way is developed to compare all possible design options. For both membrane separation cascades and multicomponent distillation configurations, this dissertation explores methods for designing energy efficient separations. The operating cost of membranes used in production of nitrogen gas from air is largely driven by the compressors required to maintain a pressure differential. Optimization of the total compressor duty can reveal an ideal cascade arrangement and set of operating conditions for a given feed and recovery. With this optimization technique in hand, it is then possible to examine the effect of introducing extra stages to form intermediate stage cascades. Furthermore, the effect of varying the recovery of the nitrogen stream can be examined to discover a U-shaped relationship between recovery and energy requirement. Conventional distillation configurations use n -- 1 distillation columns to separate a multicomponent feed mixture into pure products. Past research has identified a way to quickly and algorithmically generate the complete ranklist of regular-column configurations using an integer programming formulation called the matrix method. Using this method, a formulation is here presented for the complete nonlinear programming problem which, for a given configuration, can ensure the globally minimum vapor duty of the configuration. Furthermore, a set of nonlinear equations designed to represent the capital and operating costs of the system are described. The need for a global optimization algorithm in the formulation of the cost product is demonstrated by comparison with a two-stage search algorithm; in addition, the cost formulation is compared to that of the vapor duty

  3. Information Processing Efficiency and Regulation at Five Months

    PubMed Central

    Diaz, Anjolii; Bell, Martha Ann

    2011-01-01

    Infants with short look durations are generally thought to have better attentional capabilities due to their efficient information processing. Although effortful attention is considered a key component of developing regulatory abilities, little is known about the relation between speed and efficiency of processing and self-regulation. In this study, 5-month-old infants with shorter look duration had greater EEG power values than infants with longer look during baseline, as well as during a distressing task and a post-distress attentional processing task. These short looking infants also demonstrated higher heart rate, relative to long looking infants, during post-distress information processing. Behaviorally the two groups differed in the amount of distraction during distress. These data provide evidence for an association between the efficiency of information processing and beginning regulatory abilities in early infancy. PMID:21269705

  4. High energy efficient solid state laser sources

    NASA Technical Reports Server (NTRS)

    Byer, Robert L.

    1989-01-01

    Recent progress in the development of highly efficient coherent optical sources was reviewed. This work has focused on nonlinear frequency conversion of the highly coherent output of the non-planar ring laser oscillators developed earlier in the program, and includes high efficiency second harmonic generation and the operation of optical parametric oscillators for wavelength diversity and tunability.

  5. High energy efficient solid state laser sources

    NASA Technical Reports Server (NTRS)

    Byer, Robert L.

    1988-01-01

    Recent progress in the development of highly efficient coherent optical sources is reviewed. This work focusses on nonlinear frequency conversion of the highly coherent output of the Non-Planar Ring Laser Oscillators developed earlier in the program, and includes high efficiency second harmonic generation and the operation of optical parametric oscillators for wavelength diversity and tunability.

  6. Pump efficiency in solar-energy systems

    NASA Technical Reports Server (NTRS)

    1978-01-01

    Study investigates characteristics of typical off-the-shelf pumping systems that might be used in solar systems. Report includes discussion of difficulties in predicting pump efficiency from manufacturers' data. Sample calculations are given. Peak efficiencies, flow-rate control, and noise levels are investigated. Review or theory of pumps types and operating characteristics is presented.

  7. How Energy Efficient are Modern Dishwashers?

    SciTech Connect

    Hoak, David E.; Parker, Danny S.; Hermelink, Andreas H.

    2008-08-26

    This report presents measurements of three recent vintage dishwashers of very different efficiencies showing that while they are substantially more efficient than older dishwashers, those tested will still use electric resistance elements for supplemental heat, even when supplied by solar water heating systems producing very hot water.

  8. Energy conservation and cost benefits in the dairy processing industry

    SciTech Connect

    1982-01-01

    Guidance is given on measuring energy consumption in the plant and pinpointing areas where energy-conservation activities can return the most favorable economics. General energy-conservation techniques applicable to most or all segments of the dairy processing industry, including the fluid milk segment, are emphasized. These general techniques include waste heat recovery, improvements in electric motor efficiency, added insulation, refrigeration improvements, upgrading of evaporators, and increases in boiler efficiency. Specific examples are given in which these techniques are applied to dairy processing plants. The potential for energy savings by cogeneration of process steam and electricity in the dairy industry is also discussed. Process changes primarily applicable to specific milk products which have resulted in significant energy cost savings at some facilities or which promise significant contributions in the future are examined. A summary checklist of plant housekeeping measures for energy conservation and guidelines for economic evaluation of conservation alternatives are provided. (MHR)

  9. Energy efficiency of information transmission by electrically coupled neurons.

    PubMed

    Torrealdea, Francisco J; Sarasola, Cecilia; d'Anjou, Alicia; Moujahid, Abdelmalik; de Mendizábal, N Vélez

    2009-07-01

    The generation of spikes by neurons is energetically a costly process. This paper studies the consumption of energy and the information entropy in the signalling activity of a model neuron both when it is supposed isolated and when it is coupled to another neuron by an electrical synapse. The neuron has been modelled by a four-dimensional Hindmarsh-Rose type kinetic model for which an energy function has been deduced. For the isolated neuron values of energy consumption and information entropy at different signalling regimes have been computed. For two neurons coupled by a gap junction we have analyzed the roles of the membrane and synapse in the contribution of the energy that is required for their organized signalling. Computational results are provided for cases of identical and nonidentical neurons coupled by unidirectional and bidirectional gap junctions. One relevant result is that there are values of the coupling strength at which the organized signalling of two neurons induced by the gap junction takes place at relatively low values of energy consumption and the ratio of mutual information to energy consumption is relatively high. Therefore, communicating at these coupling values could be energetically the most efficient option. PMID:19397950

  10. How Energy Efficiency is Adding Jobs in St. Paul, Minnesota

    SciTech Connect

    Hannigan, Jim; Coleman, Chris; Oliver, LeAnn; Jambois, Louis

    2011-01-01

    Saint Paul, Minnesota is using an energy efficiency grant to provide commercial retrofits that will allow a local produce distribution company to dramatically reduce its energy costs and add dozens of new workers.

  11. How Energy Efficiency is Adding Jobs in St. Paul, Minnesota

    ScienceCinema

    Hannigan, Jim; Coleman, Chris; Oliver, LeAnn; Jambois, Louis

    2013-05-29

    Saint Paul, Minnesota is using an energy efficiency grant to provide commercial retrofits that will allow a local produce distribution company to dramatically reduce its energy costs and add dozens of new workers.

  12. Strategies for Energy Efficient Remodeling: SEER 2003 Case Study Report

    SciTech Connect

    2004-11-01

    The goal of the Strategies for Energy Efficiency in Remodeling (SEER) project is to provide information, based on research and case studies, to remodelers and consumers about opportunities to increase home energy performance.

  13. Residential Energy Efficiency Research Planning Meeting Summary Report

    SciTech Connect

    none,

    2012-02-01

    This report summarizes key findings and outcomes from the U.S. Department of Energy's Building America Residential Energy Efficiency Research Planning meeting, held on October 28-29, 2011, in Washington, D.C.

  14. Three essays of economics and policy on renewable energy and energy efficiency

    NASA Astrophysics Data System (ADS)

    Meng, Yuxi

    In face of the crisis in energy security, environmental contamination, and climate change, energy saving and carbon emission reduction have become the top concerns of the whole human world. To address those concerns, renewable energy and energy efficiency are the two fields that many countries are paying attention to, which are also my research focus. The dissertation consists of three papers, including the innovation behavior of renewable energy producers, the impact of renewable energy policy on renewable innovation, and the market feedback to energy efficient building benchmarking ordinance. Here are the main conclusions I have reached in this dissertation. First, through the study on foreign patenting intention with the case study of Chinese solar PV industry, I looked at the patenting behaviors of 15 non-Chinese solar PV producers in solar PV technologies in China, and pointed out that foreign firms may file patents in the home country or production base of their competitors in order to earn the competitive edge in the global market. The second study is about the "Innovation by Generating" process. I specifically focused on Renewable Portfolio Standard (RPS) in the United States and the innovation performance within each state, and found out that wind power generation in RPS states has developed rapidly after the adoption of RPS, while the "Innovating by Generating" effect is more significant in solar PV technologies. In general, the innovations of the two technology groups are not prominently encouraged by RPS. My last study is about the benchmarking law and market response in the scenario of Philadelphia Benchmarking Law. By comparing the rental rate of LEED/EnergyStar buildings and ordinary buildings in the city of Philadelphia before and after the adoption of the building energy efficiency benchmarking law, I believe that the passage of Philadelphia Benchmarking Law may be helpful in improving the public awareness and understanding of energy efficiency

  15. Combining total energy and energy industrial center concepts to increase utilization efficiency of geothermal energy

    NASA Technical Reports Server (NTRS)

    Bayliss, B. P.

    1974-01-01

    Integrating energy production and energy consumption to produce a total energy system within an energy industrial center which would result in more power production from a given energy source and less pollution of the environment is discussed. Strong governmental support would be required for the crash drilling program necessary to implement these concepts. Cooperation among the federal agencies, power producers, and private industry would be essential in avoiding redundant and fruitless projects, and in exploiting most efficiently our geothermal resources.

  16. An energy-efficient, adiabatic electrode stimulator with inductive energy recycling and feedback current regulation.

    PubMed

    Arfin, Scott K; Sarpeshkar, Rahul

    2012-02-01

    In this paper, we present a novel energy-efficient electrode stimulator. Our stimulator uses inductive storage and recycling of energy in a dynamic power supply. This supply drives an electrode in an adiabatic fashion such that energy consumption is minimized. It also utilizes a shunt current-sensor to monitor and regulate the current through the electrode via feedback, thus enabling flexible and safe stimulation. Since there are no explicit current sources or current limiters, wasteful energy dissipation across such elements is naturally avoided. The dynamic power supply allows efficient transfer of energy both to and from the electrode and is based on a DC-DC converter topology that we use in a bidirectional fashion in forward-buck or reverse-boost modes. In an exemplary electrode implementation intended for neural stimulation, we show how the stimulator combines the efficiency of voltage control and the safety and accuracy of current control in a single low-power integrated-circuit built in a standard .35 μm CMOS process. This stimulator achieves a 2x-3x reduction in energy consumption as compared to a conventional current-source-based stimulator operating from a fixed power supply. We perform a theoretical analysis of the energy efficiency that is in accord with experimental measurements. This theoretical analysis reveals that further improvements in energy efficiency may be achievable with better implementations in the future. Our electrode stimulator could be widely useful for neural, cardiac, retinal, cochlear, muscular and other biomedical implants where low power operation is important. PMID:23852740

  17. US energy efficiency is improving. or is it

    SciTech Connect

    Ballard, K.P.; Reza, A.M.

    1993-08-01

    Utilities have watched in recent years as energy sales growth has declined relative to growth in the economy. The raw data suggest that more goods are being produced with less energy, leading many to conclude that the United States uses energy more efficiently. But is this simple interpretation really correct The authors suggest that this trend in energy use is the result of improvements in efficiency as well as structural and demographic shifts.

  18. Berkeley Lab Answers Your Home Energy Efficiency Questions

    ScienceCinema

    Walker, Iain

    2013-11-14

    In this follow-up "Ask Berkeley Lab" video, energy efficiency expert Iain Walker answers some of your questions about home energy efficiency. How do you monitor which appliances use the most energy? Should you replace your old windows? Are photovoltaic systems worth the cost? What to do about a leaky house? And what's the single biggest energy user in your home? Watch the video to get the answers to these and more questions.

  19. Berkeley Lab Answers Your Home Energy Efficiency Questions

    SciTech Connect

    Walker, Iain

    2013-02-14

    In this follow-up "Ask Berkeley Lab" video, energy efficiency expert Iain Walker answers some of your questions about home energy efficiency. How do you monitor which appliances use the most energy? Should you replace your old windows? Are photovoltaic systems worth the cost? What to do about a leaky house? And what's the single biggest energy user in your home? Watch the video to get the answers to these and more questions.

  20. Energy efficiency and the environment: Forging the link

    SciTech Connect

    Vine, E.; Crawley, D.; Centolella, P.

    1991-12-31

    Energy efficiency in homes, the workplace and transportation provides one of the most immediate and valuable solutions to the environmental problems that endanger the world. This book addresses the direct correlation between conserving energy and mitigating environmental hazards such as global warming, air pollution, acid rain, and ozone depletion. Twenty chapters focus on how energy efficiency measures and programs can reduce pollutant emissions, and how planners can incorporate environmental externalities in the allocation of natural resources. Based on papers presented at the ACEEE 1990 Summer Study on Energy Efficiency in Buildings, the book is written by leading researchers, program analysts and policymakers. Topics include: global warming--public perspectives and CO{sub 2} reduction potential; efficiency improvements as an acid rain compliance strategy; efficiency and regulatory policy options; environmental externality costs; integrating energy and environmental planning; trees, landscaping and urban heat islands; and CFCs, energy use in buildings.